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Abstract

In this dissertation we propose a methodology to reduce the size of optimization pro-

blems used for market clearing and planning studies purposes in power systems. Solving

these optimization problems is essential for daily operation of power systems and to ensure

their security and dependability. However, the biggest challenge in solving these problems

are their large sizes. Nonetheless, the empirical evidence and previous research suggest

that these problems contain many redundant constraints. We propose a methodology, cal-

led umbrella constraint discovery (UCD), which identifies the constraints of these problems

that contribute in forming the feasible set of solutions (umbrella constraints) and removes

the ones that do not contribute. These redundant constraints do not have any effect on

the solution of the problem, yet, they occupy memory and require CPU time. UCD is an

optimization-based approach which identifies the umbrella constraints through the enfor-

cement of a consistency logic on the set of constraints. In this dissertation, we apply UCD

on security-constrained optimal power flow and unit commitment problems for different

standard test systems. One of the advantages of UCD is that it lends itself well to decom-

position. We propose decomposition techniques to further expedite the solution of UCD

problems. Different decomposition approaches which exploit the structure of the parent

problem are tested and the most efficient ones are identified.

We also perform a sensitivity analysis on umbrella sets by varying the system load. The

results show that the umbrella sets are relatively insensitive to the changes of system loads.

This means that the system operators should not need to run UCD for each change of load

in the system, but rather they can use the results of UCD for the similar conditions of their

system. Additionally, the system operators can solve UCD problem for the entire system

load profile over the span of a year and use the union of all umbrella sets corresponding
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to each hour. We show that the size of this set is still very small in comparison with the

original constraint set.

Then, we introduce a new formulation that benefits from less computational complexity

than UCD, called partial UCD. This new method exploits the experience of running UCD

on the network at hand and by making some reasonable assumptions, it reduces the com-

putational burden for identifying non-umbrella constraints. This formulation is indeed an

approximation of UCD and can quickly identify non-umbrella constraints. Therefore, it can

be used as a pre-processing step to UCD solution.

To further investigate the efficacy of the proposed methodology, we apply UCD and

partial UCD on mixed-integer linear problems. We elaborate how the benefits of applica-

tion of the proposed methodology can be further exploited the proposed methodology can

improve the solution time of mixed-integer linear problems.

Finally, we explore the possibility of predicting heuristically the umbrella set of a net-

work if enough historical information of UCD results are available. We used neural networks

to demonstrate that this task is possible and the results are encouraging.
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Résumé

Dans cette thése, nous proposons une méthodologie qui permet la réduction de la taille

des problèmes d’optimisation utilisés dans les études d’équilibre du marché et de planifica-

tion des réseaux électriques. La résolution de ces problèmes d’optimisation est essentielle au

fonctionnement quotidien des réseaux élelectriques et à assurer leur sécurité et leur fiabilité.

Cependant, le plus grand défi dans la résolution de ces problèmes consiste en la taille de

ceux-ci. Néanmoins, les données empiriques, ainsi que les recherches antérieures, suggèrent

que ces problèmes contiennent de nombreuses contraintes redondantes. Nous proposons

une méthodologie, nommée la Découverte des Contraintes Parapluie (DCP), qui identifie

les contraintes de ces problèmes qui contribuent à former l’ensemble des solutions réali-

sables (les contraintes parapluie) et supprime les contraintes qui n’y contribuent pas. Ces

contraintes redondantes n’ont aucun effet sur la solution des problèmes et pourtant elles

occupent de la mémoire et consomment du temps machine (CPU). DCP est une approche

fondée sur l’optimisation qui identifie les contraintes parapluie par l’application d’une lo-

gique de cohérence sur l’ensemble des contraintes. Dans cette thèse, nous appliquons la

DCP dans l’analyse de répartition de puissance optimale sous contraintes de sécurité et

dans la gestion de la production électrique sur des réseaux standards d’éssai différents. Un

des avantages de la DCP est qu’elle se prête bien à la décomposition. Nous proposons des

techniques de décomposition afin d’accélérer la génération des solutions des problèmes DCP.

Différentes approches de décomposition qui exploitent la structure du problème majeur sont

testées et les plus efficaces sont identifiées.

Nous effectuons également une analyse de sensibilité sur les ensembles parapluie en

variant la charge du réseau. Les résultats démontrent que les ensembles parapluie sont

relativement insensibles aux changements des charges du réseau. Cela signifie que les ges-
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tionnaires du réseau de transport n’auront pas la nécéssité d’exécuter la DCP pour chaque

variation de la charge du réseau ; mais plutôt, ils peuvent utiliser les résultats de la DCP

obtenus dans des conditions similaires à leur réseau de transport.

En outre, les gestionnaires du réseau de transport peuvent résoudre le problème de

la DCP pour l’ensemble du profil de charge du réseau sur la durée d’une année et utiliser

l’assemblage de tous les ensembles parapluie correspondant à chaque heure. Nous montrons

que la taille de cet ensemble est largement inférieure à celle de l’ensemble des contraintes

d’origine.

Ensuite, nous introduisons une nouvelle formulation qui bénéficie d’une complexité de

calcul moindre à celle de la DCP, nommée DCP partielle. Cette nouvelle méthode ex-

ploite l’expérience de l’exploitation de la DCP sur le réseau connu et en faisant certaines

hypothèses raisonables. Ceci réduit la charge de calcul de l’ordinateur pour identifier les

contraintes non-parapluie. Cette formulation est en effet un rapprochement de la DCP

et peut identifier rapidement les contraintes non-parapluie. Par conséquent, elle peut être

utilisée comme une étape de pré-traitement à la solution de la DCP.

Afin d’approfondir l’efficacité de la méthode proposée, nous appliquons la DCP et la

DCP partielle sur des problèmes linéaires avec nombres entiers. Nous élaborons sur la

façon dont les bénifices de l’application de la méthodologie proposée peuvent être exploitées

davantage afin d’améliorer le temps de solution des problèmes linéaires avec nombres entiers.

Enfin, nous explorons la possibilité de prédire de manière heuristique l’ensemble pa-

rapluie d’un réseau si suffisamment d’information historique des résultats de DCP sont

disponibles. Nous avons utilisé des réseaux neuronaux afin de démontrer que cette tâche

est possible et que les résultats sont encourageants.
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Chapter 1

Introduction

The electricity industry has changed very positively the living standards of most human

beings since its dawn in the late 19th century. Electricity has been generated in centralized

power plants and transferred to load centers, be it cities or industrial sites, using transmis-

sion lines. A general sketch of a typical electricity system is shown in Fig. 1.1. Traditionally,

the operation of the electric systems was following a centralized “command-and-control”

paradigm. In this paradigm, most of the electric systems’ infrastructure were owned by gov-

ernments and electric networks in all (voltage) levels were run by the government-supervised

entities.

During 1970s and 1980s, some countries started restructuring industries which were his-

torically owned by governments by introduction of market and competition. Restructuring

brought in many advantages for these industries, including lower costs and rates of prod-

ucts. The restructuring of electricity industry started in 1980s by countries such as Chile

(1982), England and Wales (1990) and Norway (1990) [1]. In the United States of Amer-

ica, the Energy Policy Act marked the start of restructuring of the electricity industry by

mandating open access to the tranmission systems in 1992. In April 1996, the Federal En-
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ergy Regulatory Commission (FERC) issued Orders 888 and 889 which mandated further

access to the transmission systems by the creation of independent system operators (ISO).

In Order 888, FERC delineates 11 characteristics of ISOs. Consequent to the formation of

ISOs, in December 1999, FERC issued Order 2000 in which the voluntary formation of Re-

gional Transmission Operators (RTOs) is encouraged and 12 characteristics and functions

of this type of entity are enumerated. RTOs along with ISOs ensure a non-discriminatory

access to transmission networks. There are currently nine ISOs and RTOs functioning in

the United States of America and Canada. The regions which do not have an RTO or ISO

should conform to FERC’s open access mandate [2].

Since the appearance of ISOs/RTOS, utilities have merged and created large entities.

For example, an RTO in United States of America called PJM, serves more than 61 million

people in 13 states and the District of Columbia. Interconnecting power systems increases

the reliability of the whole system, but at the same time, introduces challenges and uncer-

tainties for the operation and planning of the power system.

1.1 Fundamentals of Modern Power System Security

Enforcement

ISOs/RTOs ensure the reliable operation of power systems while running a competitive

electricity market. In a restructured power system, most of the traditional tasks of utilities

are moved to ISOs. Some of the ISOs’ responsibilities are the following:

— Long-term regional planning,

— Managing the wholesale electricity market,

— Operation of the electric power systems.



1
Introduction

3

Generating Station
11kV–25kV

Generator Step-
Up Transformer

Transmission Lines 400kV, 275kV or 132kV

Transmission Customer
275kV and 132kV

Substation Step-
Down Transformer

Primary Customer
33kV, 11kV or 6.6kV

Secondary Customer
400V and 220V

Figure 1.1 Basic structure of a power system [3], [4]
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ISOs make long-term regional planning decisions while trying to address the needs of all

utilities and consumers within their region for the reliability and economic benefits. They

run different wholesale power markets: day-ahead market, hour-ahead market and real-

time market, while ensuring fair and non-discriminatory access to transmission networks

by all market participants. In the aspect of their operation responsibility, ISOs seek to

minimize the cost of electricity production while maintaining the system’s reliability. By

minimization of the general cost of system operation, ISOs should eventually contribute to

reducing the cost of electricity for consumers.

In the context of power systems, reliability consists of security and adequacy. In this

dissertation, we mostly deal with security rather than adequacy. Security of a power

system is its resilience against possible disturbances; this is in contrast to adequacy which

is concerned with having appropriate generation and transmission infrastructure to serve

the forecasted load [5].

There are five operating states in which a power system can be [6, 7]:

— In the normal state, the system load is satisfied and all of the system constraints

are respected. All equipment are functioning within their limits and the available

reserve in the system is enough to provide the level of security, should the system be

subjected to stresses.

— If all system constraints are satisfied, but the occurrence of some disturbances could

make some equipment to become overloaded, the system is in the alert state. By

taking preventive actions, the system operator can restore the system to the normal

state.

— If a disturbance occurs before taking preventive actions when the system is in the

alert state, the system enters the emergency state. In this state, some of the system
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inequality constraints such as equipment capacities are violated. However, the system

is still intact and corrective control actions are required to take the system back to

at least the alert state.

— If the system is in the emergency state and no corrective action is taken, the system

will disintegrate and enter the in extremis state. In this state equality and inequality

constraints are violated and system loads are lost. The system operator should take

emergency control actions to stop a total system collapse.

— By taking emergency actions the system collapse can be stopped and the system will

enter restorative state. By taking control actions the system can enter alert or normal

state of operation.

In order to secure the operation of power systems, system operators mainly follow two

control paradigms to ensure the system security: preventive and corrective security control.

In preventive security control, the system operators set the system control variables in such

a way that, without taking any action, system constraints are not violated if one of the

postulated contingencies occur in the system. On the other hand, in corrective security

control, if a contingency occurs, some of the system constraints are violated, but, the system

operators take predetermined actions in order to relieve those violations. Those actions are

determined by solving OPF problems considering the possible contingencies in the system

to avoid sliding the system into any insecure operating states. The accommodation of

corrective actions in SCOPF models allows the system operators to run the network at

a lower cost compared to a pure preventive control model. At the same time, the cost

of system operation using either corrective or preventive control is higher than the cost of

operation obtained by an economic dispatch problem since they include more constraints [8].
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Additionally, the level and diversity of uncertainties present in large-scale interconnected

electricity transmission and distribution networks are rising steadily. These increases will

speed up over the coming years with the massive integration of renewable generation, the

electrification of road transport and the continuous ageing of legacy network infrastructures.

To better manage these uncertainties and to better exploit the potential of the carbon-free

electricity from renewable resources, planning and operation tools available for assisting

system operators will have to model more explicitly the potential impacts of this wider

spectrum of uncertainties in order to keep the power system in its secure operation state.

1.2 Operational Cost Optimization in Power Systems

To minimize the cost of system operation, ISOs use different tools to model the power

system and to identify the combination of generators that could yield the most economic

state of the system while satisfying the forecasted load in the operation day. Indubitably,

the most economic state of the system must satisfy all of the technical constraints of the

network. We specifically talk about three optimization tools: economic dispatch, optimal

power flow (OPF) and security-constrained optimal power flow (SCOPF). New York ISO

estimated that the use of security-constrained economic dispatch can bring savings about

100 million dollars annually amounting to two billion dollars from 1977 to 1999 [9].

1.2.1 Economic Dispatch

One of the first attempts to optimize the power system was to minimize the cost of the

power generation given the different cost curves of generators in early 1930s [10]. To do so,

the system operators would form an optimization problem called “economic dispatch”. The

goal of economic dispatch problem was to allocate the total demand to different generators
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in such a fashion that the total demand is met and, at the same time, the total cost of

power generation is minimized. Back in 1930s, economic dispatch problems were solved

by experienced engineers using their judgment or by “specially-developed slide rules” [10].

In economic dispatch problems, the network is either not modeled at all or its constraints

are simplified [11]. Since this method ignores many of the constraints which are governing

operation of power systems, this method could yield a sub-optimal or infeasible solution.

Many efforts have been made since late 1950s and early 1960s to solve optimal real power

flow problems [12] with objective functions such as loss minimization using exact [13] or

approximate models [14].

Moreover, the economic dispatch problem does not include the possible abnormalities

(so-called contingencies) that may happen in real-time operation. Also, system voltages

and angles are not modeled within the problem. Therefore, if a contingency happens in a

system, it is possible that the system may slide into an insecure operation mode.

A general economic dispatch formulation can be represented as follows [15]

min
p

I∑
i=1

Ci(pi) (1.1)

subject to

I∑
i=1

pi =
I∑
i=1

di (1.2)

pi ≤ pi ≤ p̄i; i = 1, . . . , I (1.3)

where Ci(·) is the cost of generation of one megawatt in generating unit i, I is the number

of buses in the system including load and generating buses and di is the load at bus i.

Finally, pi is the generation level at bus i, and pi and p̄i are the minimum and maximum
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generation levels at bus i.

1.2.2 Unit Commitment

To meet the forecast load, sufficient generation capacity needs to be brought online prior

to dispatch. In an ISO setting, each generator who wishes to participate in the electricity

market, submits a bid for generation to the ISO before the operation day. Using this

information, the ISO clears the market while ensuring that the forecast load can be satisfied

subject to generators’ technical constraints. During the market clearing process, the ISO

utilizes a mathematical model called a security-constrained unit commitment (SCUC) [16–

22] to determine which generator should be turned on and what would be their level of

output for each hour of the next day. The SCUC problem considers network constraints

and possible contingencies in the system as well as the technical constraints of the units.

By taking these constraints into account, operators ensure secure operation of the system

in the event of occurrence of any postulated contingency. This constitutes a preventive

security control action.

The objective function of unit commitment problems has traditionally been the mini-

mization of the fuel cost of power production and start up and shut down costs. However,

the models can be modified to accommodate maximization of social welfare as the objec-

tive function [23]. It can be shown that despite the dissimilarities between these two forms

of unit commitment problem, they both are very similar in purpose [1]. Along with the

commitment of units for supplying the load, there is always some capacity committed as

reserve to buffer the errors in the load forecast. Again, it is the unit commitment that

determines the generators which will provide the reserve for the operating day. The unit

commitment problem formulation will be explained comprehensively in Chapter 4.
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Table 1.1 ISOs different daily markets [24]

ISO Name Day-Ahead Hour-Ahead Real-Time
CAISO 3 3 3

MISO 3 7 3

New England 3 7 3

New York 3 7 3

PJM 3 7 3

1.3 Optimal Power Flow

When the unit commitment results are obtained, the owners of the committed units

are notified about the status of their units for the operating day and the output of their

units. On the day of operation, the load forecast for the hour of operation is modified

based on the new information about the load. ISOs solve optimal power flow problems to

fine tune the output of committed generators. Some ISOs run hour-ahead markets where

participants submit their bids an hour ahead of the operation. When the operation hour

arrives, ISOs clear a real-time market (five minutes ahead of operation) based on the results

of the optimal power flow with the values of the actual load. Table 1.1 shows the list of

some of the ISOs in the United States of America and the markets that they clear daily.

Optimal power flow problems have different variations and their applications go beyond

market clearing. In fact, the optimal power flow is used very often in other contexts in

ISOs. They run an OPF every day, every hour and every five minutes to find the optimal

state of the network [10]. The OPF as a tool can help decision-makers in ISOs in different

situations. The following is a list of examples of the use of SCOPF and its variations in

some situations [25].

1. Not everything goes as planned in power systems all of the times. Different abnormal
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situations may arise while operating a complex network with so many elements such

as power systems. These abnormal situations (contingencies) could be in the form

of transmission lines failures, generators outages, transformer failures, etc. In such

situations, solving OPF problems can help ISOs to identify the minimum cost control

actions necessary to bring back the network to the “normal” state.

2. If the load of the system changes in such manner that makes some of the transmis-

sion lines overloaded, the system operator should take actions to correct the power

transmission of those overloaded lines. Solving an OPF problem subjected to line

constraints can give the operators the most economic combination of generators that

satisfies the system demand and at the same time relieves the congested lines. This

function of OPF in a deregulated environment can be referred to as “congestion

management”.

3. If voltages of a power system violate their allowed ranges, the operator takes corrective

actions to bring the voltages to their limits. The solution of OPF can identify the

control actions that will bring the voltages back into their normal limits.

4. In both the preventive or corrective security control paradigms, the OPF is in the

heart of decision making for the system operators.

5. When a power system is in the secure state, system operators solve OPF to further

minimize the cost of system operation.

6. In a deregulated environment, the OPF, and its extension SCOPF, can be used to

calculate locational marginal electricity prices. This is a common practice in several

ISOs such as California ISO (CAISO), ISO New England and PJM [26].

The OPF problem was formulated for the first time in 1962 by Carpentier [27]. The

objective of an OPF problem could be to minimize the cost of power production while
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satisfying a number of network constraints. These constraints include voltage limits, line

flow limits, transformer flow limits, tap changer limits, etc. With recent developments in

mixed integer programming solution methods in the past 20 years, integer decision variables

have also been integrated into OPF problems. A simple form of an OPF problem can look

like the following [25]

min
p,δ

I∑
i=1

Ci(pi) (1.4)

subject to

p
i
≤ pi ≤ p̄i i = 1, . . . , I (1.5)

pi − di = Pi(δ) i = 1, . . . , I (1.6)

−f̄` ≤ f`(δ) ≤ f̄` ` = 1, . . . , L (1.7)

where Pi(δ) is the power flow in lines connecting to bus i, f`(δ) is the power flow in line

` and δ is the vector of bus voltage angles. Equation (1.4) is the objective function of

the OPF problem. Constraint (1.5) bounds the power generation in each unit within its

limits. Equation (1.6) is the load balance constraints which ensures the balance of load

and generation in the system. Constraint (1.7) enforces the transmission line flow limits.

The resilience of a power system against credible contingencies is one of the most im-

portant aspects of all power systems. If a contingency happens in real-time operation, the

system variables must stay within their allowed limits either without intervention of the

system operator (preventive control) or with the intervention of some pre-defined corrective

actions (corrective control). To ensure the security of power systems, some constraints are
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included in the OPF problems to model the uncertainties arising from the system operation

under contingencies. This extension of OPF problem is called security-constrained OPF

(SCOPF) and was, for the first time, proposed in 1974 [28]. To implement an SCOPF, “se-

curity constraints” should be added to the OPF problem. These constraints enforce some

more limits on lines and other system variables by taking into account the post-contingency

description of the power system.

The SCOPF has been used for planing studies such as: (i) shunt var planning; (ii) trans-

fer capability studies; (iii) reactive interchange studies; (iv) loss optimization studies.

SCOPF calculations can be used to determine sizing and location of new capacitors in

the system in order to maintain normal operation of the system in the non-contingent case.

In this case, the objective function would be the capital cost of capacitors to be minimized

satisfying both pre- and post-contingency limits of the system. The SCOPF problem solu-

tion can also determine the optimal settings of control variables for flexible ac transmission

system (FACTS) devices with the goal to improve the market-clearing [29]. Moreover,

SCOPF calculations can be used as a pricing tool for electricity since the marginal prices

are provided by the solution of the problem. These prices can be calculated for binding

power system constraints, power production capacities, equipment regulation limits, area

interchanges and transactions, losses and bus powers [30].

The conventional SCOPF formulation considering corrective actions is as follows [8,26,

31]:
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min
x0,...,xK ,u0,...,uK

f0(x0,u0) (1.8)

subject to g0(x0,u0) = 0 (1.9)

h0(x0,u0) ≤ Ll (1.10)

gsk(xsk,u0) = 0 (1.11)

hsk(xsk,u0) ≤ Ls (1.12)

gk(xk,uk) = 0 (1.13)

hk(xk,uk) ≤ Lm (1.14)

|uk − u0| ≤ ∆uk (1.15)

where k = 0, . . . , K where K is the number of contemplated contingencies in the system

and we define that k = 0 corresponds to the non-contingent state of the system. f0 is

the objective function of the problem. xk are the state variables of the system such as

voltage magnitudes and angles while xsk represents the system state variables right after

occurrence of a contingency and before the system operator’s intervention. uk are the

control variables of the system such as active power output of generators or tap changer

values of transformers. Ll represents the normal transmission line limits, Lm represents the

medium-term transmission line limits and Ls represents the emergency line flow limits of

the system. ∆uk denotes the maximum change that is allowed between kth contingency and

the non-contingent state for control variable uk, which acts as binding constraint between

no-contingency and kth contingency state [26]. If ∆uk = 0, no corrective action will be

allowed and the problem will become the same as a preventive SCOPF. If ∆uk → ∞, all

corrective actions can be implemented without any limits, which turns the above problem
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to an OPF without considering any contingency. We note that the desired corrective

actions should not violate generation and line limit constraints. The equality constraints

(1.9), (1.11) and (1.13) in the above model represent the ac/dc load flow equations while

inequality constraints (1.10), (1.12) and (1.14) impose the transmission line flow limits in

the system, control variables limits and state variable limits, if any.

The mainstream approach in industry to solving such SCOPF is to use a generation

dispatch module and the simultaneous feasibility test (SFT) [32]. The generation dispatch

produces generating unit set points which are validated by the SFT for line flow violations

in both pre- and post-contingency states. Violations that are identified are used to generate

new linear constraints for the generation dispatch. These new constraints are based on shift

factors, which can also account for the nonlinearity of the power flow, and they are then

added to the the generation dispatch to eliminate those previously-identified violations.

This dispatch-SFT iterative process runs until no more violations are found. This is typ-

ical of security-constrained day-ahead market clearing algorithms and locational marginal

pricing calculations used in large ISOs and RTOs in the United States (see, for exam-

ple, [33]). Fig. 1.2 shows the steps taken in the successive economic dispatch/simultaneous

feasibility test algorithm to solve the SCOPF.

1.4 Problem Identification

The reliability of power systems has always been a very important aspect of the planning

and operation of electricity networks. The reliability and security aspects of power systems

are usually highlighted after the occurrence of a major blackout such as the blackout of

August 14, 2003. On that day, around 4:10 PM EDT, a major black out occurred in

the Northeast of the U.S. (including states such as New York, Ohio and New Jersey)
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Economic dispatch

Network con-
straint violations

Generate constraints as-
sociated with violations

Done

Yes
No

Figure 1.2 Flowchart showing the successive economic dis-
patch/simultaneous feasibility test algorithm to solve the SCOPF.

and Ontario, Canada (cities such as Toronto and Ottawa). It was estimated that the

blackout affected 55 million people and caused several fatalities. In the aftermath of this

blackout, U.S.-Canada Power System Outage Task Force final report, published in April

2004 [3], delineated several causes contributing to the blackout. The report highlights the

reliability issues arising from insecure operation of the heavily loaded and densely woven

interconnected North American power grid. Therefore, operation of power systems under

stress limits the manoeuvre options of the operators and will give less time to the operators

to decide on corrective actions, if a contingency occurs in the system. Consequently, there is

a constant need for developing new tools and at the same time making the algorithms faster

in order to help the system operators make crucial decisions during system contingency and

increase their knowledge and awareness about the state of the system.

The classic way to address the modeling issues is to formulate the planning problems

of the network operators as security-constrained optimal power flow (SCOPF) problems,

especially to deal with unplanned generation and transmission equipment outages (a.k.a.

contingencies) [26].

However, this modeling approach is undermined by the dimensions of the resulting
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SCOPF optimization problem formulations stemming from the large-scale nature of power

systems, the wide spectrum of potential uncertain events and their associated consequences.

The operators rely on these optimization problems, most significantly, OPF, SCOPF

and SCUC to ensure the reliable and secure operation of the systems before and after

occurrence of a contingency [31]. Given the small time window that operators have to

solve SCOPF/OPF problems to secure the system operation, it is vital to be able to solve

SCOPF/OPF problems very fast and robustly.

On the other hand, SCOPF/OPF problems have proven to be very difficult to solve. The

size of these problems is colossal and the complexity and non-convexity of their constraints

and the presence of many integer variables make them prone to difficult convergence [11,28].

For example, for IEEE 118 bus system, the corresponding SCOPF problem contains 65 730

constraints. For the real-life networks, the number of constraints could be in order of

millions. However, previous work [34, 35] and operator experience showed that only a

few of the constraints associated with the different contingencies have the potential to

be of importance in their final solution. In other words, most of the SCOPF constraints

are redundant. Those redundant constraints do not have the potential to contribute to

the feasible set of solutions; however, they use resources in the process of solving those

problems. Different simplification approaches have been implemented on SCOPF/OPF

problems to make them tractable since their first appearance.

In the field of operations research, there has been many studies trying to identify the

redundant constraints in linear problems [36–43]. Most notably, [44] presents a compara-

tive study of some approaches for identification of redundant constraints. The proposed

methods do not guarantee identification of all redundant constraints and, therefore, each

will leave out some redundant constraints. More exact methods need more computations

and solution time to identify more redundant constraints.
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In [45], its authors propose a modification to the method proposed in [46] to reduce the

computational effort and solution time of the problem.

In addition, Benders Decomposition [47] is one of the first approaches to be used to

simplify OPF problems and it continues to be one of the tools that is used nowadays.

In Benders decomposition, the problem is divided into a master problem and some sub-

problems. In the first step, the master problem is solved and using its results, the sub-

problems are solved. If any of the problem constraints are violated, a new constraint

(cut) is added to the master problem. By iterating this approach, the optimal solution is

found while satisfying all constraints. Reference [48] proposes a decomposition of SCOPF

problems based on Benders decomposition to overcome the size issue of SCOPF problems

due to incorporation of constraints arising from contingencies. Reference [49] explains

solving a security-constrained unit commitment problem using Benders decomposition in

details. In [8], Benders decomposition is utilized to solve the economic dispatch problem

including the security constraints with corrective control after occurrence of a contingency.

Running a full ACOPF problem with improved models for system constraints would

result in more precise power dispatches and improved market signals [9]. However, the

solution time for these models will increase to impractical levels very easily. Linearized

(dc) OPF, on the other hand, linearizes ac OPF problems based on several assumptions.

In dc OPF, we assume that all voltages in the system have magnitude of 1 per unit and

at the same time ignores the shunt capacitance and resistance of transmission lines. It

also assumes that the voltage angles remains close to zero. Based on these assumptions,

a linear dc formulation of the network is derived [15]. The dc OPF is used to calculate

locational marginal electricity prices [50]. DC approximation can be combined with ac OPF

to speed up the solution process and improve the efficiency of solution of ac OPF problems

[51]. DC models are also used in many security-constrained unit commitment [52,53]. [54]
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discusses the computational challenges introduced to OPF in the new deregulated market

environment. The article uses three different algorithms for solving OPF problems. The

paper addresses the problem of abrupt price changes around break points in the price/power

curve by presenting alternative algorithms and formulations.

The number of constraints of SCOPF problems are significantly larger than the OPF

problems. These constraints arise from the operation of the system under postulated con-

tingency. The number of constraints in SCOPF and OPF problems are the major drawback

for solving these problems. One of the areas of the research on OPF and SCOPF has long

been to identify the “unnecessary” or “redundant” constraints, especially, in SCOPF prob-

lems.

One method for reduction of the number of constraints is to identify the contingencies

that push the system out of its secure region and include only the constraints arising from

those contingencies. This method is called contingency filtering or contingency selection

and consists of two classes, namely, contingency ranking and contingency screening. The

contingency filtering has been a hot topic for research for many decades [55–74].

Most of contingency filtering approaches rely on a severity index which indicates how

severe a contingency would affect the system. The severity is measured based on line

thermal limits and voltage limit violations. If the severity index is above a certain threshold

for a contingency, that contingency is selected to be included in the SCOPF calculations.

The severity index calculations depend upon results collected from post-contingency load

flow calculations or Lagrange multipliers as in [35,75]. Other contingency filtering methods

include neural networks [73], fuzzy sets [72], calculation of eigenvalues [69], fast Fourier

transform [64], etc. Other legacy methods for contingency selection are based on overload

performance indices [15], concentric relaxation [15,76] and bounding [15,77] are not entirely

driven towards SCOPF calculations. They are more concerned with establishing bounds
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on system variables to preserve the security of the system and with determining the “radii

of impact” of contingencies in network space.

Research looking into the characterization of feasible operating regions of electricity

networks has been ongoing for over 30 years, with great emphasis on voltage and dynamic

stability; see key references [26,75,78–87]. Yet, the formalization of the concept of umbrella

contingency was first introduced in [35]. So far, very little specific research has looked into

the potential for identifying systematically umbrella contingencies and constraints and their

computational saving potential. Most notably, in [75], authors propose a contingency filter-

ing technique by introducing dominated and non-dominated contingencies. The conjecture

is that the larger the violation of a constraint, the more non-dominated that constraint.

Reference [87] uses the technique proposed in [75] to reduce the size of SCOPF problems

and solve them iteratively. Its authors aim to identify a subset of postulated contingencies

which encloses all binding contingencies in order to reduce the size of the corresponding

SCOPF and reduce the solution time. Further work in [51] proposes an iterative use of a

dc SCOPF approximation of the full ac SCOPF problem in order to reduce the solution

time of ac SCOPF problems. Additionally, [52] implements an iterative ac SCOPF solution

approach on large-scale systems.

Zhai et al. [53] approach the problem of inactive constraint elimination based on a

relaxation technique for network-constrained unit commitment, yet without considering

contingencies. The work of [88] uses robust optimization as a mean to address the large

number of constraints involved when dealing with n − K generation failures on a single-

node power system model. Nevertheless, the approach does not consider the outage of

network lines and incorporation of such constraints will render the problem intractable.

A key feature of all these proposals is that if one changes the SCOPF objective function,

the sets of “dominant and dominated” contingencies/binding constraints can change as a
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result.

For further reading on the subject, the reader can refer to these review papers [11, 26,

89,90]. Papers [30,31,91] present a review on the challenges of SCOPF problems.

One of the main contributions in this field is [35]. In this work, authors strive to find the

contingencies that enclose the feasibility region of the problem. Unlike the methods that

were presented before, the results of this work, is independent of the objective function

of the SCOPF problem. The work in this dissertation is motivated by findings of [35].

The only drawback the method proposed in [35] was that it failed to find all umbrella

constraints and those identified required the solution of the full SCOPF problem.

Here we distinguish between the two concepts of binding or active constraints and

that of potentially binding or umbrella constraints. Binding constraints are those which

the optimal solution is located on them. In other words, on the optimum solution, the

equality of binding constraints is satisfied [92]. On the other hand, umbrella constraints

are those constraints that construct the feasibility region of an optimization problem. These

constraints might not be binding for a specific solution which is obtained to minimize or

maximize a specific objective function, but they have the “potential” to become binding

for a different objective function. Most of the research in power systems is focused on

identifying binding constraints in SCOPF and SCUC problems. This approach might be

acceptable for a vertically integrated power system, but surely it is not suitable for a

deregulated market with high penetrations of renewable energies and stochastic analysis.

In such a volatile environment, the objective function of generation scheduling problem

may change repeatedly. Therefore, it is needed to run the process of finding the binding

constraints of the problem each time the objective function changes. On the other hand, if

the potential binding constraints are known, the generation scheduling problem could be

run only objected to those constraints and there is no need to re-identify those constraints
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every time that the objective function changes. This means significant time savings for

system operators which could be used towards making better decisions and give them more

time to implement more elaborate control actions. Any improvement in the solution of OPF

problems can bring significant savings from the power production costs. If only the solution

of OPF problems could be improved by 5%, there will be around 19 billion dollars annual

savings, based on 2009 power production statistics in the United States of America [10].

In this research, we propose an optimization-based formulation to identify the umbrella

constraints of linearized SCOPF problems. By the same token, we demonstrate that this

approach can be used on any convex optimization problem.

1.5 Dissertation Outline

Chapter 2: Umbrella Constraint Discovery

A formulation for the proposed approach for identifying “umbrella constraints” is pre-

sented, elaborated and tested in this chapter. In so doing, we introduce the problem

for formulation for Umbrella Constraint Discovery (UCD). First, a na ive version of UCD

(UCD-I) is presented in details and its difficulties and issues are discussed. Later, a much

more efficient formulation to identify umbrella constraints, which we call Umbrella Con-

straint Discovery II (UCD-II) is presented. This method is applied on several test systems

and its efficiency is shown. A decomposition method is introduced to reduce the compu-

tational burden of UCD-II. A sensitivity analysis is performed to show the insensitivity

of membership of constraints in the umbrella set for wide ranges of load on two sample

networks. We conclude this chapter with challenges of the proposed methods.

Chapter 3: Partial Umbrella Constraint Discovery

In this chapter, an approximation of the umbrella constraint discovery problem is intro-
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duced to overcome the shortcomings of the original umbrella constraint discovery problems.

The new formulation, called partial UCD, benefits from a new approach which needs fewer

cross-constraint comparisons to identify non-umbrella constraints. Partial UCD is tested

on different test systems and its solution time is significantly shorter than UCD-II. Partial

UCD can also be used as a complementary tools to many algorithms that try to iteratively

identify binding constraints as it can significantly reduce the size of the problems with very

little computational effort.

Chapter 4: Application on SCUC

Application of UCD and partial UCD is extended to power generation planning prob-

lems with binary variables, namely, security constrained unit commitment (SCUC) prob-

lems. It is shown that UCD can significantly reduce the size of SCUC problems as well. We

show in this chapter that the structure of SCUC problems is such that they do not contain

proportionally as many non-umbrella constraints as SCOPFs. Especially, the generation-

based set of constraints of these problems have very few non-umbrella constraints. Other

benefits of applying UCD on SCUC problems is investigated in this chapter.

Chapter 5: Prediction of Umbrella Constraints

Given the non-trivial computational requirements of UCD problem solution, in this

chapter we explore the possibility of predicting the umbrella set of a given network. We

apply a heuristic method based on artificial neural networks to achieve this goal. This is

done through a learning process whereby it is used to train the ANN to identify umbrella

constraints based on nodal load distribution. The importance of types of prediction errors

in neural networks are highlighted and a modified training algorithm for neural networks

are introduced. We show that it is indeed possible to exploit the cyclic nature of electric

load and consequently umbrella sets for the purpose of predicting umbrella sets.

Chapter 6: Conclusion
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This chapter summarizes the main contributions and achievements of this research.

Furthermore, future research directions are outlined.

Appendices

In the appendices, the data used for test networks are presented. Also, some of these

information are uploaded to a website to be easily accessible for interested researchers.

1.6 Claim of Originality

The following results of this research are the main contributions of the author to the

advancement of knowledge:

1. The most significant contribution of this dissertation is the proposal of an optimization-

based formulation, called Umbrella Constraint Discovery (UCD). The dissertation

provides a clear definition of umbrella and non-umbrella constraints in optimization

problems and introduces a formulation for systematic identification of all umbrella

constraints in any convex optimization problem. Some of the unique aspects of this

formulation are the followings:

(a) This formalization is a linear programming problem and can be easily solved

using off-the-shelf linear solvers.

(b) The Lagrange multipliers of the constraints of this formulation can be used to

flag weakly redundant constraints.

(c) In the process of identifying umbrella constraints, the algorithm provides the

geometric “distance” between a non-umbrella constraint and the feasible set of

solutions. This distance could be used by operators to know how far a line is

from potentially being congested.
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(d) Using the proposed formulation, system operators can build an umbrella set of

contingencies which contains all possible contingencies that may contribute the

umbrella set of constraints. These contingencies are the critical contingencies

that the operator should be prepared if any of them were to happen.

(e) If an optimization problem is infeasible, the corresponding UCD problem will

also be infeasible. The converse of this statement holds as well.

(f) If the original optimization problem is an MIP, the corresponding UCD problem

will convert the original constraints to linear constraints before analyzing them.

This feature helps to keep the UCD problem an LP and tractable and at the

same time, find the most compact formulation of the original MIP.

(g) This formalization can be used as a benchmark for any other approach which

attempts to identify umbrella/binding constraints, since it has been mathemat-

ically proven that UCD can identify all of the umbrella constraints in a given

convex optimization problem.

(h) This formulation is not exclusive to linear problems. It can be applied to any

convex problem.

2. The main feature of UCD is its decomposability. This feature comes very handy in

identifying umbrella constraints for large systems where corresponding UCD problems

are colossal. The UCD problem is split into sub-problems and the structure of UCD

allows to solve the sub-problems independently. This feature favors the use of parallel

computation to speed up the solution time of UCD problems. In this work, several

decomposition approaches are proposed and the efficiency of these approaches are

analyzed. Moreover, recommendations are made with respect to how decomposition

should be set up in SCOPF problems. We exploit the problem structure in such a
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way that faster umbrella constraint discovery is favoured.

3. An approximation of UCD, called partial UCD, is proposed to identify the umbrella

constraints much faster. Partial UCD avoids some of the computational inefficiencies

in UCD to identify non-umbrella constraints and to pre-screen the constraints before

entering UCD. Partial UCD has been applied on different test systems to verify its

capabilities.

4. The UCD is applied on problems with binary variables to explore the benefits that

UCD can offer in solving Mixed Integer problems (MIPs). UCD can help in strong

branching in MIPs. Also, the experience of applying UCD on SCUC shows that the

structure of SCUC problems does not contain many non-umbrellas.

5. The dissertation proposes to use artificial neural networks to predict the membership

of umbrella sets. The nature of umbrella set membership prediction requires avoiding

false negative errors and therefore a custom training algorithm is developed to respond

to this need.
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Chapter 2

Umbrella Constraint Discovery

This chapter presents in complete details the concepts behind umbrella constraints and

umbrella sets in security-constrained optimal power flow problems. We highlight the ba-

sic observations that differentiate umbrella and non-umbrella constraints. Subsequently, we

present an initial optimization approach for the identification of umbrella and non-umbrella

constraints. Later, we discuss the shortcomings and inefficiencies of this formulation. We

move on to present a much more efficient formulation for the identification of umbrella

constraints which overcomes the shortcomings of the original formulation. Moreover, we

propose a decomposition method to expedite the process of identifying umbrella constraints.

The proposed formulation is implemented on SCOPF problems associated to different stan-

dard test systems. The test results are carefully elaborated and interpreted. These tests

provide key evidence of the power of our proposal to allow for much shorter solution times

for problems subjected to their umbrella constraints only. Additionally, a sensitivity anal-

ysis is performed on two sample test systems to analyze the sensitivity of the umbrella

set of an SCOPF problem to changes in system parameters, in this case loads at different

network buses. The results of this work also confirms the general expectation that SCOPF
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problems have large proportions of non-umbrella constraints.

2.1 Introduction

The level and diversity of uncertainties present in large-scale interconnected electric-

ity transmission and distribution networks are rising steadily. These increases will speed

up over the coming years with the massive integration of renewable generation, the elec-

trification of road transport and the continuous ageing of legacy network infrastructures.

To better manage these uncertainties while ensuring power system security and to better

exploit the potential of the carbon-free electricity from renewable resources, planning and

operation tools available for assisting system operators will have to model more explicitly

the potential impacts of this wider spectrum of uncertainties. The classic way to address

this modeling issue is to formulate the planning problems of the network operators as

security-constrained optimal power flow (SCOPF) problems, especially to deal with un-

planned generation and transmission equipment outages (a.k.a. contingencies) [26]. This

modeling approach is undermined by the dimensions of the resulting SCOPF optimization

problem formulations stemming from the large-scale nature of power systems, the wide

spectrum of potential uncertain events and their associated consequences. Observations

made in previous work [34, 35] and operator experience showed that only a few of the

constraints associated with the different contingencies modeled within SCOPF problems

have the potential to be of importance in their final solution. This led to the proposal for

the definition of what we call an “umbrella contingency” [35]. Umbrella contingencies are

those abnormal operating states which are together sufficient to provide security cover for

all other abnormal states. The set of umbrella contingencies, and by extension the set of

umbrella constraints, defines the minimum set of constraints describing the feasible set of



2 Umbrella Constraint Discovery 28

the problem over which it is sufficient to solve the SCOPF to achieve the same original

secure full SCOPF solution. There is considerable potential for computational improve-

ments in the solution of SCOPF problems if they are subjected to much reduced sets of

constraints which only correspond to those of the umbrella constraints. The computational

improvements should be in terms of core memory and in potential solution speed-ups.

This dissertation contributes to the field of SCOPF computation by introducing two

formulations for the umbrella constraint discovery (UCD) problem, which finds the complete

set of umbrella constraints as a pre-processing step to the SCOPF solution. One UCD

formulation is based on mixed-integer linear optimization and the second, which is much

more efficient, is a linear program. We introduce a convergent decomposition technique

for solving the UCD problem. We validate the potential of UCD in streamlining SCOPF

solution processes, where we show for the IEEE 118 bus test system [93] a potential SCOPF

constraint count reduction of 99.31% leading to an SCOPF solution time representing

0.57% of the solution time with its original full set of constraints. Finally, we use the

IEEE Reliability Test System—1996 (RTS) [94] to show that UCD outcomes are relatively

insensitive to SCOPF parameter variations, with UCD results remaining valid over wide

ranges of system load, and where umbrella set membership is correlated to system demand.

We argue that the latter properties allow for umbrella sets to be pre-calculated offline

and/or reused when systems are planned under sets of similar conditions.

In this formulation, we do not rely on any heuristic, as in some of the methods in

the literature, to assess whether or not a network constraint has the potential to impact

network operation. UCD can determine systematically all the constraints the network

operator must consider. In fact, UCD could be used to validate the results of heuristic

contingency screening methods, as it can determine if a flagged contingency truly does

contribute constraints towards the umbrella set or not. On the other hand, contingency
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screening methods could be used in conjunction with UCD to reduce its computational

burden by potentially reducing the number of constraints UCD has to assess in the first

place.

In the next section, we formulate the SCOPF problem that we will be using in this

dissertation.

2.2 Preventive SCOPF

Preventive and corrective controls are two main operational paradigms to shield power

systems against contingencies. In this dissertation, we will only consider outages of lines

as postulated contingencies. Moreover, we use preventive control to model the system

without loss of generality. As will be shown later in this chapter, the proposed method can

be applied on any convex optimization problem.

The goal of the preventive SCOPF problem is to find the dispatch levels for each gen-

erating unit such that the operational cost of a network is minimized while all relevant

technical constraints corresponding to pre- and post-contingency states are satisfied simul-

taneously. Here, only branch contingencies can be considered, as purely preventive control

actions cannot properly deal with losses of generation or demand variations—corrective

generation-based actions are always needed after such contingencies in order to rematch

the system load. Therefore, the optimal values of the control variables, generation levels

here, are to remain constant following the occurrence of any credible line or transformer

contingency. In most instances of preventive SCOPF problems 1, the network technical

constraints include: (i) the system power balance; (ii) generation upper and lower produc-

tion limits; and, (iii) line flow limits enforced on the basis of the dc power flow both in pre-

1. In the remainder of this dissertation, the acronym SCOPF refers to the preventive SCOPF, unless
otherwise stated.
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and post-contingency states. Other control variables and constraints could be included,

like phase shifter set points and unit commitment decisions as well as their corresponding

constraints. Without loss of generality here and for the sake of brevity, we shall not include

those in this work. The focus of this work is the simplification of the SCOPF formulation,

which we hypothesize should have a positive impact on its solution process. Additionally,

in Chapter 4, we apply UCD on unit commitment problems and we investigate the benefits

of applying UCD on those problems.

2.2.1 SCOPF Problem Formulation

The SCOPF objective function shown in (2.1) generally minimizes the cost of operation

min
p

I∑
i=1

Ci(pi) (2.1)

where Ci(·) is the generation cost function at bus i, pi the generation level at bus i, and I is

the number of network buses. The above objective function is subjected to the system-wide

load balance, for which we ignore losses here,

I∑
i=1

pi =
I∑
i=1

di (2.2)

and where di is the load at bus i. Generation levels have to be bounded at each node

i = 1, . . . , I as well

p
i
≤ pi ≤ p̄i (2.3)

Here p
i
and p̄i are respectively the lower and upper dispatch limits of generation at bus i.

In addition, there are two constraints associated with each transmission line: one asso-

ciated with its upper limit and the other with its lower limit. Each line limit constraint pair
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has to be included to bound the line usage in all pre- and post-contingency states. Hence,

for all lines in the network, ` = 1, . . . , L, and for all line contingency states, k = 0, . . . , K,

the SCOPF solution has to satisfy

− f̄`(k) ≤
I∑
i=1

h`i(k)(pi − di) ≤ f̄`(k) (2.4)

where L is the number of lines of the network, f̄`(k) is the upper limit of line ` in contin-

gency state k, and h`i(k) is the linear generation shift factor (a.k.a. power transmission

distribution factor (PTDF)) relating power injection at bus i to the flow in line ` while con-

tingency state k is occurring [15,32]. We point out that contingency state k = 0 corresponds

to the pre-contingency, i.e. normal operating condition. For ease of exposition here, we

shall consider contingency states k where a single transmission component is down (N − 1

security); however, this can be generalized to multiple component contingencies (N − m

security).

2.2.2 Compact Formulation

We can convert all of the constraints, (2.2)–(2.4), to “less than or equal” form. In order

to convert the system-wide load balance, (2.2), which is an equality constraint, to the “less

than or equal” form, we first convert the constraint to two inequalities, one in the form of

“less than or equal”, (2.5), and the other one in the form of “greater than or equal”, (2.6).

I∑
i=1

pi ≤
I∑
i=1

di (2.5)

−
I∑
i=1

pi ≥
I∑
i=1

di (2.6)

For notational conciseness, we shall consider the SCOPF formulation, (2.1)–(2.4), in
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the following compact form

min f(p) (2.7)

subject to

Ap ≤ b (2.8)

where p is a vector of dimension I × 1 lumping all of the network’s bus-wise generation

levels, f(p) is some objective function, A is a constant matrix with dimensions J × I, and

b is a constant vector with dimensions J × 1, where J = 2 + 2I + 2(L + K(L − 1)). The

horizontal dimension of A corresponds to the number of buses in the network, I, while its

vertical dimension (as well as that of b), J , corresponds to (i) two rows standing in for the

power balance (2.5) and (2.6); (ii) 2I rows for the upper and lower generation limits (2.3);

and, (iii) 2(L+K(L−1)) rows for all the line limits in both pre- and post-contingency states

(2.4).The objective function, f(p) is immaterial in the proposed formulation. Therefore,

it could be an arbitrary function such as the system operation cost, maximum flow on a

transmission line, network losses, etc.

The number of constraints for the corresponding SCOPF problem of the IEEE Relia-

bility Test System—1996 (RTS) [94] accumulates to 2 864 constraints. The network has 24

buses and 38 lines. We consider the outages of each line as postulated contingency of the

system, except for line 11 2. Each line contributes two constraints in both no-contingency

state and each contingency state of the system. Obviously, the line that we are considering

its outage will not contribute any constraint to the problem. The constraints arising from

the operation of lines will total to 2 816 constraints. There will be 48 constraints to limit

the lower and upper limits of power at each bus. Finally, there are two constraints to ensure

the system-wide load balance, (2.5) and (2.6). We can see that most of the constraints are

2. The reason for this will be explained in details in Section 2.7.1
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coming from line constraints and their operation in contingency states. Therefore, for a

network with a large list of postulated contingencies and large number of lines, the size of

SCOPF problems could easily make the problem intractable and significantly increase the

solution time.

2.3 Umbrella Constraints and Umbrella Sets

The size of SCOPF problems is usually the biggest challenge in solving them in large

practical networks (i.e. with large I and L). Imposing all pre- and post-contingency

constraints at the same time can make the SCOPF calculations significantly arduous and

may lead to memory shortage and CPU time overruns [26]. It is common knowledge

that in SCOPF problems most of the constraints are not essential in constructing the

problem’s set of feasible solutions and, consequently, are irrelevant in finding the optimal

solution [26,35]. These non-essential constraints always remain non-binding (inactive), but

they do contribute to the use of memory and CPU time during the solution process. Hence,

the hypothesis here is that by identifying and removing these unnecessary constraints be-

fore solving an SCOPF problem, one should be able to increase numerical stability of the

solution process and find a solution using fewer computing resources.

This observation and hypothesis lead us, following the general idea of [35], to define the

concepts of umbrella constraint and umbrella set:

Definition 1 (Umbrella constraint) Let J be the set of indices corresponding to all the

constraints (rows) of an optimization problem formulated as (2.7) and (2.8), and let j ∈ J .

Constraint (row) j is an umbrella constraint of J if and only if removing it from J alters

set of feasible solutions of the original optimization problem.

Definition 2 (Umbrella set) The umbrella set U ⊆ J of an optimization problem is
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the set containing the minimum number of constraints (rows) necessary to form its set

of feasible solutions. Removing any member of the umbrella set U would alter the set of

feasible solutions of the original optimization problem, while adding any of the constraints

in the non-umbrella set, U ⊆ J , for which U ∩ U = ∅ and U ∪ U = J , would not change

the set of feasible solutions.

Here the term “umbrella” implies that some constraints provide “cover” for other less

stringent constraints. Umbrella constraints are also sometimes called “necessary” con-

straints in the optimization literature [40]. Solving an optimization problem constrained

by its umbrella set only would result in the same set of feasible solutions as the original

problem and the same optimal solution (for the same objective function). In fact, the um-

brella set of an optimization problem is independent from its objective function. This leads

us to underline that, unlike in [35], umbrella constraints do not have to be binding (active)

at the optimum of an optimization problem, while binding (active) constraints have to be

in the umbrella set, by necessity. In fact, umbrella constraints are the only constraints that

have the “potential” to be binding. Some of the umbrella constraints might not be binding

for a specific objective function; however, if the objective function and consequently the

optimal solution changes, these constraints might become binding. We recall that in [35]

only binding constraints were deemed to form the set of umbrella constraints. The fact

that constraints’ Lagrange multipliers were nonzero at the optimal solution of an SCOPF

problem was used as the litmus test for classifying constraints as umbrella. That approach

was practically sound; however, it failed to identify all the members of the umbrella set,

while it required that the full SCOPF problem be solved first to obtain its Lagrange mul-

tipliers. The fact that the umbrella set is independent of the objective function, makes

this work more valuable for cases where the same set of constraints are used for different
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objective functions, e.g. applications in big ISOs where markets are cleared repeatedly over

the same network.

The umbrella constraint and set concepts are illustrated in Fig. 2.1, for an optimization

problem in two variables with six linear constraints. It can be seen that this is a feasible

problem and the feasible set of solutions is indicated by the coloured area. By inspection

of Fig. 2.1, one can see that constraints 5 and 6 do not contribute in shaping the feasible

region of the problem. Their presence or lack thereof would not make any difference, and

they could simply be ignored. Constraints 1–4, on the other hand, are essential to describe

the interior of the feasible region. Eliminating any of these constraints would change the

problem’s feasible set and could lead to a change of the optimal solution; therefore, they

form the umbrella set for this problem. It is worth emphasizing that there is a difference

between an umbrella constraint and a binding (active) constraint. Binding constraints are

part of the umbrella set out of necessity. However, if a constraint is in the umbrella set,

it does not need to be binding at the optimum. The binding character of a constraint is

established by subjecting the umbrella set to the problem’s objective function. For example,

we can see from Fig. 2.1 that constraints 1–4 are umbrella, but only constraints 2 and 3

are binding, since the optimum solution, shown by the dot, is located at the intersection

of these two constraints. All other constraints are non-binding (including 1 and 4, which

are umbrella).

Because the number of constraints contained in umbrella sets for practical SCOPF

problems is usually much smaller than that of their original counterparts, we expect that

solving SCOPF problems subjected to their umbrella sets only could save on memory and

CPU time. Now the question is: How can we find the umbrella set for any SCOPF problem

formulated as in (2.7) and (2.8)? We provide an answer in the next section.
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Figure 2.1 Umbrella and non-umbrella constraints; binding and non-
binding constraints. Numbered arrows show the direction of the feasible half-
planes induced by individual constraints.

2.4 Identifying Umbrella Constraints

For an optimization problem with J linear constraints, as formulated in (2.7) and (2.8),

the brute force answer to the above question is to consider the 2J − 1 possible umbrella

sets and proving that each of them is either umbrella or not. This approach is obviously

counterproductive for practical SCOPF problems. In this dissertation, we propose and

demonstrate the validity of a much more efficient optimization approach for identifying

the members of the umbrella set of linearly-constrained SCOPF problems. However, the

formulation is easily applicable to any convex optimization problem.
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2.4.1 Preliminaries

In this section, we give the preliminary observations that led to the proposal of an

effective formulation for identifying umbrella constraints. What sets apart umbrella and

non-umbrella constraints come from the following two observations: we observe that there

is always at least one point lying on an umbrella constraint that is feasible with respect to all

other constraints in a linear SCOPF problem. In other words since the umbrella constraints

are the most inner constraints, in a feasible optimization problem (i.e. non-empty feasible

set of solutions), they will always satisfy all other constraints, including other umbrella

constraints. When a point lies on on a constraint, it means that the inequality constraint

is being satisfied with equality. Also, we observe, in the case of a non-umbrella constraint,

that there is no single point available on the constraint that can be feasible with respect to

all other constraints of the problem. We would like to point out that we might be able,

under special circumstances, to find points on non-umbrella constraints that satisfy all

other constraints individually; however, there is no point on non-umbrella constraints that

can satisfy all other constraints, especially all umbrella constraints simultaneously.

In Fig. 2.1 for example, we can find at least one point on constraint 1 that satisfies

all the other constraints, including all umbrellas i.e. constraints 2–4, and non-umbrellas,

i.e. constraints 5 and 6. Otherwise, picking constraint 6, which is non-umbrella, we are

not able to find any point on that constraint that is feasible with respect to all the other

constraints simultaneously.

These two observations form the basis of the initial idea for the classification of umbrella/non-

umbrella constraints implemented next.

Let aj denote the vector corresponding to the jth row of matrix A and bj the jth element

of the b vector of the system of inequalities in (2.8). Let us also define an arbitrary vector
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wj ∈ RI . We claim that constraint j is umbrella if and only if there exists a point wj

which lies on the hyperplane aTj wj = bj and is consistent with respect to all constraints

j′ = 1, . . . , J , i.e. wj satisfies aTj′wj ≤ bj′ for all j′.

Proposition 1 (Umbrella Constraint Discovery I (UCD-I)) Let uj ∈ {0, 1}, for all

j = 1, . . . , J , satisfy the assignment

uj =


0, if constraint j is umbrella

1, otherwise.
(2.9)

Solving the following mixed-integer mathematical program determines the set of umbrella

constraints of problem (2.7), (2.8)

min
w,u∈{0,1}J

J∑
j=1

uj (2.10)

subject to, for all j = 1, . . . , J ,

aTj′wj ≤ bj′ j′ = 1, . . . , J (2.11)

(1− uj)aTj wj ≥ (1− uj)bj (2.12)

where w ∈ RIJ and wj ∈ RI . The interpretation of UCD-I above goes as follows: the

lower bound on the objective function (2.10) is 0, which corresponds to the case where all

constraints in (2.8) are umbrella. If constraint j is indeed umbrella (uj = 0) then (2.11)

and (2.12) can be satisfied simultaneously thus implementing the rule on the existence of a

consistent wj stated in opening of this section. In that case, wj can lie on the hyperplane

aTj wj = bj, as implemented by the combination of (2.11) for j′ = j and (2.12) for j. In
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that case, the point wj also happens to be feasible with respect to all the other constraints

j 6= j′ of (2.11). Otherwise, if constraint j is not umbrella, the only way the above problem

can remain feasible is if uj is set to 1, effectively removing the jth constraint from (2.12).

We note that UCD-I is a nonlinear mixed-integer problem due to the presence of the

products (1 − uj)aTj wj. Nonetheless, it is well-known that such products of binary and

continuous variables can be linearized at the expense of more constraints and auxiliary

continuous variables [95]. Hence, UCD-I can be transformed into a mixed-integer linear

program (MILP) for which good commercial solvers are available. It remains, however,

that UCD-I itself is not a trivial problem, first because of its combinatorial nature—MILPs

are NP-complete in theory [92]—and second because of its large size—it has J(J + 1)

constraints, IJ continuous and J binary variables. It is trivial to parallelize solution of

UCD-I since the problem can be separated across j ∈ J .

2.4.2 Efficient Umbrella Constraint Discovery

Given the obvious drawbacks of UCD-I, we demonstrate next that the above problem

formulation can be recast as a much more computationally-efficient linear program. For

that purpose, we now define a new set of variables sj ∈ R+ for j = 1, . . . , J .

Proposition 2 (Umbrella Constraint Discovery II (UCD-II)) Let sj ≥ 0, for all

j = 1, . . . , J , satisfy the assignment

sj =


0, if constraint j is umbrella

> 0, otherwise.
(2.13)

Solving the following linear program (LP) determines the set of umbrella constraints of
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(2.7), (2.8)

min
w,s≥0

J∑
j=1

sj (2.14)

subject to, for all j = 1, . . . , J ,

aTj′wj ≤ bj′ j′ = 1, . . . , J (2.15)

aTj wj + sj ≥ bj (2.16)

The interpretation of UCD-II is quite similar to that of UCD-I. If all constraints are

umbrella, then sj = 0 for all j, thus achieving the lower bound of the objective function.

If a constraint j is truly umbrella (sj = 0) then (2.15) and (2.16) can be satisfied together,

meaning that there exists a wj that can lie on the hyperplane aTj wj = bj while still remain-

ing feasible with respect to all the other constraints j′ 6= j. In the opposite case, to maintain

feasibility of the whole problem, we have to increase the value of sj until we can find a

value of wj which can lie on the (geometrically-translated) hyperplane aTj wj = bj−sj while

satisfying all other constraints in (2.15). In fact, the slack variables sj serve to virtually

bring all non-umbrella constraints into the umbrella set as a way to ensure the feasibility

of UCD-II. This is unlike in UCD-I where the binary variable uj effectively removed the

requirement for wj to lie on aTj wj = bj as a mean to keep the problem feasibility. Lastly,

the objective function (2.14) ensures that the least amount of constraint translation is

performed to ensure global UCD-II problem feasibility and solution uniqueness.

It is interesting to attempt to interpret the meaning of the variables sj in UCD-II. One

can see sj as the minimum distance to cover for constraint j to “enter” the umbrella set. For

example, consider the arrows labeled s5 and s6 in Fig. 2.1. These arrows show the direction

and the distance to cover when translating constraints 5 and 6 to have them join the
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umbrella set already formed by constraints 1–4. The optimal values s∗j and their sensitivities

(e.g. ∂s∗j/∂b) could serve to predict under which conditions particular constraints become

members of the umbrella set or end up leaving it.

2.4.3 Some Remarks

Computational Complexity of UCD-II

UCD-II is an LP, and, as LPs can be solved in polynomial time [92], this reformulation

represents a major computational improvement over UCD-I. However, UCD-II is much

larger than the original SCOPF problem in (2.7), (2.8) (which is also an LP). UCD-II has

J(I + 1) variables and J(J + 2) constraints, as opposed to I variables and J constraints

for the SCOPF. Therefore, even for small power systems, the dimensions of UCD-II be-

come unmanageable. For example, UCD-II for the small-sized IEEE 118 bus standard test

system [93]—with I = 118 and J = 65 730 when implementing N − 1 security—cannot be

solved directly. We demonstrate how to overcome this difficulty in Section 2.5 through the

introduction of a decomposition approach.

UCD-II Infeasibility and Solution Uniqueness

It is worth noting that if the original SCOPF is infeasible, so is UCD-II and vice-versa.

This is because the constraints of the SCOPF, (2.8), are effectively contained in UCD-II

(represented therein by (2.15)). Moreover, UCD-II solutions are always unique in spite of

the fact that the original SCOPF may have duplicate constraints—for example, when the

SCOPF contains line flow limits for identical parallel lines. Duplicate constraints should

always be umbrella or non-umbrella together.
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Generality of UCD-II

As a final remark, we underline the general applicability of UCD-II for identifying

umbrella constraints in mathematical programs. First, UCD-II can be applied to linear

optimization problems with discrete decision variables. This is because what really matters

in terms of umbrella constraint set membership are the coefficients of the matrix A and

the right-hand side vector b in (2.8). In fact, by solving UCD-II on the constraint set of

a pure integer program (IP), one can obtain the feasible space closest to the IP’s convex

hull prior to the calculation of cutting planes. We will discuss the application of UCD-II

on problems with integer variables in Chapter 4.

In addition, UCD-II can be formulated and solved if the set of constraints of the original

optimization problem describes a convex set. In other words, solving

min
w,s≥0

J∑
j=1

sj (2.17)

subject to, for all j = 1, . . . , J ,

gj′(wj) ≤ 0 j′ = 1, . . . , J (2.18)

gj(wj) + sj ≥ 0 (2.19)

finds the set of umbrella constraints if subsets {x ∈ RN : gj(x) ≤ 0} are convex for each

j = 1, . . . , J . This claim is true as both the constraint set and the objective of (2.17)–(2.19)

are also convex.
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2.5 Decomposition

It is clear from the above discussion that UCD-II, in spite of being formulated as an

LP, is still intractable for practical SCOPF problems. We saw that the size of the UCD-

II problem can grow intractably large. We noticed that the process of finding umbrella

constraints can be broken down into smaller sub-problems. In fact, we demonstrate next

that UCD-II lends itself well to decomposition, especially as applied to the SCOPF problem.

2.5.1 Separation

By inspection of (2.14)–(2.16), we find that UCD-II is separable because both sj and

wj can be solved for independently of any other sj′ and wj′ , j 6= j′. Hence, by solving the

following problem independently for each j = 1, . . . , J we can uncover the set of umbrella

constraints

Proposition 3 (Separated UCD-II (S-UCD-II))

min
wj ,sj≥0

sj (2.20)

subject to

aTj′wj ≤ bj′ j′ = 1, . . . , J (2.21)

aTj wj + sj ≥ bj (2.22)

where wj ∈ RI . The problem (2.20)–(2.22) has I+1 variables and J+1 constraints, which

is essentially the same size as the original SCOPF, (2.7)–(2.8), and it can be solved for each

instance j = 1, . . . , J by running J parallel linear optimizations. This natural decomposi-

tion for UCD-II is obviously welcome. However, the number of separated subproblems is
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large for practical SCOPF problems, and the theoretical computational complexities asso-

ciated with solving the SCOPF and the separated UCD-II are essentially the same. This

lukewarm progress thus prompts a further consideration of the structure of the SCOPF

and its impact on the solution of UCD-II.

2.5.2 Divide-and-Conquer

The bulk of the constraints contributing to increasing the size of the SCOPF and UCD-II

problems come from the line flow constraints (2.4); there are 2(L+K(L−1)) of them in the

SCOPF and the S-UCD-II problems. The proposal here is to partition the set of line flow

constraints present in UCD-II in a classic divide-and-conquer optimization approach [96].

The divide-and-conquer optimization approach we are proposing for UCD-II relies on the

following principle:

Lemma 1 (Non-Umbrella Constraint Lemma) If constraint j ∈ J̃ , where J̃ ⊆ J , is

found to be non-umbrella when solving UCD-II for the set of constraints J̃ then constraint

j is also found to be non-umbrella when solving UCD-II for the full set of constraints J .

This principle is easily proved assuming that constraint j is indeed in the umbrella set

of J . It follows that if this is the case, j would also need to be umbrella when solving

UCD-II over J̃ . This is because if it is to survive the UCD-II solution process, constraint

j has to be umbrella for all subsets of J . This is in contradiction of the initial premise and

thus completes the proof. We note also that the converse of this lemma is not true, i.e. if

j ∈ J̃ is umbrella, j is not necessarily umbrella for J .

The corollary of this principle is that if a constraint is found to be non-umbrella when

we solve UCD-II over a subset of J then it is non-umbrella for the full set of constraints.

This motivates the following algorithm:
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Step 1: Partition the full set of constraints J = {J1, . . . ,JM} into a set of computationally-

manageable constraint blocks and solve UCD-II for each of those. The UCD-II step

can be executed by parallel processors.

Step 2: Recombine the umbrella constraints generated by the solution of UCD-II into

computationally-manageable constraint blocks and solve UCD-II for each of those

(again this can be done over parallel processors).

Step 3: Repeat Step 2 until the solution of a single UCD-II problem is obtained or when a

required constraint number reduction goal is attained.

The main issues one has to consider for using the above procedure is the initial parti-

tioning of the constraint set (in Step 1) and the way by which constraints get recombined

(in Step 2). Here the goal is to set up constraint blocks large enough to ensure maximum

non-umbrella constraint discovery while not overrunning memory and CPU time limita-

tions.

One very important note is that the s variables obtained by solving an S-UCD-II prob-

lem do not have the same values as the s variable values if the UCD-II problem were to

solved directly.

In the next section, we discuss the relative merits of two partitioning approaches for

the SCOPF. There are in fact a large number of possible partitions; however, we posit

that those which exploit best the SCOPF problem structure should be more successful.

Recombination is a secondary issue if the initial partition was properly chosen; this is the

reason why we do not address this matter in detail in this research.
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2.5.3 Partitioning

Let us then partition the index set of SCOPF constraints as J = {Jπ,Jλ}. Subset

Jπ corresponds to the set of SCOPF constraint indices related to the power balance (2.2)

and the generation limits (2.3), while Jλ is the subset of indices corresponding to the line

flow limits (2.4). The constraints in Jπ apply in each of the possible contingency states.

On the other hand, the constraints in Jλ do depend on the contingency state and may be

further partitioned along that dimension such that Jλ = {Jλ(0), . . . ,Jλ(K)}, where Jλ(k)

corresponds to all line flow limits associated with contingency state k. Likewise, Jλ can

be partitioned on a line index basis regardless of contingency state, Jλ = {J 1
λ , . . . ,J L

λ },

where J `
λ groups all constraints associated to line ` for all contingency states.

For most power systems, the cardinality of Jπ is smaller than that of Jλ (compare 2+2I

for Jπ to 2(L + K(L − 1)) for Jλ). The cardinalities of subsets Jλ(k) are 2L for k = 0

and 2(L − 1) for k ≥ 1, while that of J `
λ is 2(K + 1). Hence, the sizes of either Jλ(k) or

J `
λ are essentially the same when the SCOPF problem is enforcing N − 1 security. Under

special circumstances where outage of a line, say line j, is not considered for any reason,

the cardinality of J `
λ , ` = j is larger than J `

λ , ` 6= j. For such networks, the number of

contingencies are smaller than the number of lines and therefore, the cardinality of Jλ(k)

is smaller than J `
λ .

Contingency-Based Partitioning

Under a contingency-based partitioning, a UCD-II subproblem solved in Step 1 of the

solution algorithm considers the SCOPF constraints associated with the power balance and

generation limits, Jπ, on top of the constraints corresponding to line limits associated with

operation under contingency k, Jλ(k). We combine each subset with Jπ with the hope to
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maximize the number of identified non-umbrella constraints.

Contingency-based decomposition is an intuitively attractive partition because of the

natural decoupling between different contingency states. However, it is not as computation-

ally effective as line-based partitioning (introduced below) because it tends to let through

many more potential umbrella constraints in the first and in each successive iterations. It

fails to generate large numbers of non-umbrella constraints, those which have the advantage

of not having to be considered in the following iterations. For instance in Step 1, the UCD-

II subproblems are finding all the line limits applying to each contingency considered in

isolation, and they should be flagging a large proportion of line limits as umbrella because

the operation of each line in the network is limited. In other words, we need to compare

constraints arising from operation of a specific line in different contingency states against

each other rather than comparing constraints of different lines in each contingency state k.

This idea is the basis for line-based partitioning introduced below.

Line-Based Partitioning

Under a line-based partitioning, a UCD-II subproblem solved in Step 1 of the solution

algorithm considers the SCOPF constraints associated with the power balance and genera-

tion limits, Jπ, on top of the constraints corresponding to the limits on line ` under each of

the contingency states, J `
λ . This partitioning is much more effective than its contingency-

based counterpart because it generates relatively large numbers of non-umbrella constraints

at each step. This property stems from the fact that usually only a few contingencies lead

to lines reaching their limits. Schematically, with this partitioning it is as if we are ranking

up all the constraints applying to a given line over the set of contingency states and picking

the most stringent ones as umbrellas while rejecting all the others as non-umbrella. The

results in Section 2.7 demonstrate very well how line-based partitioning is most effective.
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Original SCOPF problem Form corresponding
UCD problem

UCD decomposi-
tion, if necessary

Solve the
UCD problem

Run the reduced-size
SCOPF problem

Figure 2.2 Flowchart showing the necessary steps for applying UCD on
SCOPF problems

Other approaches are possible—e.g. random partitioning—; however, they all perform

poorly when compared to line-based partitioning.

2.6 Three-Bus Example

In this Section, we demonstrate the workings of UCD problems using the three-bus

power system in Fig. 2.3. We formulate the preventive dc power flow-based SCOPF as

in (2.1)–(2.4) with N − 1 security (considering the loss of each line, for a total of four

contingencies). All lines have the same per unit series reactance while line capacities (f̄`)

are 100, 100, 60 and 80 MW respectively for lines ` = 1, . . . , 4. The objective function is

linear in the generation levels, ∑3
i=1 cipi, where the marginal costs ci and other generation

parameters are given in Table 2.1.

Table 2.1 Generation Parameters
i ci ($/MWh) p

i
(MW) p̄i (MW)

1 20 100 250
2 40 20 100
3 50 0 50
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Figure 2.3 Three-bus system.

The number of constraints for this very simple SCOPF problem already reaches 40

(two inequalities for the power balance, six for the generation limits and 32 to represent

the line limits in both pre- and post-contingency states). Solving UCD-II without any

decomposition requires solving an LP with 1 680 constraints and 160 variables which runs

in negligible time on a quad core 2.13 GHz Intel Xeon CPU with 24.0 GB of RAM using the

ILOG CPLEX 12.4 LP solver called by GAMS [97]. The UCD-II solution indicates that

only nine constraints are umbrella and thus necessary and sufficient to describe the feasible

set of the original SCOPF problem. Hence, 77% of the constraints are non-umbrellas and

can be ignored. The feasible set of solutions of this network with the given loads is shown

in Fig. 2.4. Note that we are showing a projection of the feasible set of solutions here.

Hence, we cannot see all of the umbrella constraints in this figure.

The set of umbrella constraints splits as follows: without much surprise two come from

the power balance (not shown in the figure) three come from generation limits (lower limit

on generator 1 (not shown in the figure) and upper limits on generators 2 and 3) and four

from line constraints (upper limits on lines 2 and 3 as line 1 is out and upper limits on
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Figure 2.4 Feasibility set of solutions for three-bus system. The optimal
solution is shown by the dot.

lines 1 and 3 as line 2 is out). In Fig. 2.4, line 1 represents upper limit of transmission

line 3 during outage of line 1 as well as upper limit of transmission line 4 during outage

of line 2. The line labeled 2 represents upper limit of line 2 during outage of line 1 as

well as upper limit of line 1 during outage of line 2. Lines labeled as 3 and 4 represent

upper limits of generators 3 and 2, respectively. Lines labeled 5 and 6 represent the lower

limit of generators 3 and 2, respectively. The line labeled 7 represents the upper limit of

transmission line 1 during outage of line 3 as well as the upper limit of line 2 during outage

of line 3. The line labeled 8 is representing the upper limit of line 3 in no-contingency state.

Generator 1 is assumed to be the slack bus and therefore it is not shown in Fig. 2.4.

Generator 1 is supplying the difference between the system load and the generation by

generators 2 and 3 which amounts to 160 MW.

Out of five contingency states, only two, the failures of lines 1 and 2, play a role in the

determination of the feasible space of the SCOPF. In the spirit of the concepts introduced
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in [35], these failures are umbrella contingencies, since they generate the line constraints

sufficient to cover all the remaining security constraints. From a power system operation

point of view, this means that one has to cover for the loss of either line 1 or 2 (because they

are identical) to cover the entire set of contingency states of the system. As expected, the

solution of the SCOPF subjected to its nine umbrella constraints is identical to its solution

when subjected to all of its 40 original constraints ($7 100 with p∗1 = 160 MW, p∗2 = 60 MW

and p∗3 = 30 MW). Finally, as the original SCOPF problem is much smaller than UCD-II,

the solution time required to successively solve UCD-II and the SCOPF subjected to its

umbrella constraints only is hardly justifiable.

In Section 2.7, we show the value of solving UCD-II in the solution of SCOPF problems

in larger standard test networks.

2.6.1 Lagrange Multipliers of UCD-II Constraints

Lagrange multipliers in optimization problems are representing the sensitivity of the

objective function with respect to the right hand-side value of a certain constraint. If the

Lagrange multiplier for a constraint is positive (negative), it means that by moving that

constraint the objective value for the problem will be increased (decreased). We analyze the

Lagrange multipliers of UCD-II constraints to see if we could gain any extra information

from them.

In the three-bus system in Section 2.6, we saw that UCD-II has 1 600 constraints.

These constraints are originating from the two sets of constraints in (2.21) and (2.22). The

Lagrange multipliers of the constraint set in (2.21) represent the change in the objective

function if a change happens in the right-hand side of these constraints. In other words, if

constraint j is moved 1 unit, what would be the change in the value of sj? Inspecting the

Lagrange Multipliers of these constraints shows that the Lagrange multipliers of umbrella
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constraints are zero. This confirms that moving umbrella constraints infinitesimally in any

direction, will not change the value of the objective function. However, if we move a non-

umbrella constraint, the “distance” of that constraint to the feasible set of solutions will

change and therefore, the value of sj for that constraint will change. Therefore, we can see

that the Lagrange multipliers confirm the findings of UCD-II.

Now, let us consider the special case shown in the example in Fig. 2.5. By inspection

we can say that constraints 1–3 are umbrella and constraint 4 is non-umbrella. However,

constraint 5 is on the border of the feasibility region, which means that it is not essential in

forming the feasibility region, but, an infinitesimal change in its right-hand side can make

that constraint either umbrella or non-umbrella. This type of constraint is called “weakly

redundant”. Nonetheless, UCD-II identifies such weak redundant constraints as umbrella.

If one is interested in identifying those weakly redundant constraints, Lagrange multipliers

of UCD-II problem can be very helpful.

By analyzing the corresponding Lagrange multipliers for set of equations (2.21), we

observe that all Lagrange multipliers of umbrella constraints are zero, except for constraint

5 which is weakly redundant. Moving this constraint would make it non-umbrella with

respect to constraints 1–3 and therefore, variable s5 would have to have a value for a non-

umbrella constraint. Hence, it has a non-zero Lagrange multiplier assigned to it. Here, we

can see that by analyzing the Lagrange multipliers of UCD-II constraints we can further

scrutinize the identified umbrella set and remove, if deemed necessary, the weakly redundant

constraints.

If one forms the dual problem of a UCD-II problem, the Lagrange multipliers of con-

straints in the primal problem will be the variables in the dual problem. Therefore, solving

the dual problem of UCD-II will present some more information regarding the location of

constraints with respect to the feasible set of solutions.
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Figure 2.5 The feasible set of solutions for a problem with 5 constraints. In
this problem, UCD-II identifies constraints 1–3 and constraint 5 as umbrella
and constraint 4 as non-umbrella. However, inspection of Lagrange multipliers
of constraint 5 shows that this constraint is weakly redundant.

2.7 Test Results

In this Section, we will apply UCD-II on corresponding SCOPF problems for two differ-

ent test systems. We form the SCOPF problems following the model explained in Section

2.2.1. We identify the umbrella constraints of these SCOPF problems and we show the

effectiveness of UCD-II and the time saving gained by applying UCD-II. The chosen sys-

tems are two IEEE test systems with 24 bus and 118 buses. As was pointed out in section

2.2.1, we use the PTDF coefficients to construct the line limit constraints in the SCOPF

problems.

2.7.1 IEEE RTS

In this section we apply UCD-II on to the SCOPF problem corresponding to the IEEE

Reliability Test System (IEEE RTS) [94]. The IEEE RTS, shown in Fig. 2.6, has 24 buses
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and includes 38 transmission lines. The system has 32 generating units located at 10 buses.

For this part of the studies, the system load is assumed to be the load of the first hour of the

year, i.e. the first hour of the first day of January. We consider the N −1 security criterion

and the line outages are the only possible system contingencies. Furthermore, the outage

of line 11, which connects bus 7 to bus 8, is not a possible contingency. The outage of this

line would disconnect bus 7 from the rest of the system and thus form an island. Therefore,

we are considering a total of 37 line outages only. The number of constraints arising from

the line limits pertaining to both pre- and post-contingency states totals 2 814 constraints

(Jλ). We note that we are considering both upper and lower limits of line capacities,

attributing two constraints for each transmission line. The system load balance constraint

is an equality constraint and is converted to two inequality constraints as shown before

in (2.5) and (2.6). The generation limits at each bus are translated into two constraints

accounting for 48 constraints. These 50 constraints are forming set Jπ. The total number

of constraints in the corresponding SCOPF problem is 2 864 constraints. The objective

function of the SCOPF problem is to minimize the cost of the system operation. The full

details of the system data can be found in Appendix A.

For benchmarking purposes, we first solve the fully-constrained SCOPF problem, and

the solution time required here is 0.015 s. The corresponding UCD problem has 2 864 ×

2 864 = 8 202 496 constraints. The size of the UCD problem allows for a direct solution of

the problem. The UCD direct solution time is 219.353 s. Obviously, the solution time is

not impressing compared to the solution time of the original SCOPF problem. To reduce

the solution time of UCD, we apply the proposed decomposition approaches to reduce the

solution time of UCD.
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Figure 2.6 IEEE Reliability Test System 1996 [4].
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2.7.2 Contingency-Based Partitioning

In contingency-based partitioning, we group all line constraints arising from the opera-

tion of the system in each contingency state. Since we are considering 37 line contingencies,

we have 37 blocks, each containing 74 line flow constraints corresponding to the operation

of the system under that contingency, and one block containing 76 line flow constraints

representing the system operation under no-contingency state. These sub-problems are

forming the set of J k
λ . We add the generation and system-wide load balance constraints

—which accounts for 50 constraints and forms set Jπ— on top of each sub-problem, J k
λ .

Thus, each sub-problem, contains 124 constraints and one sub-problem contains 126 con-

straints. UCD-II is run on each J k
λ and an average solution time of 0.0871 seconds is

required for each sub-problem. The total solution time, if all sub-problems were solved in

series, is 3.3110 s. At the end of this step, 38 line constraints and 49 generation limits are

identified as potential umbrellas. Solving UCD-II on the remaining constraints does not

identify ant non-umbrella constraints. Hence, the final umbrella set contains 87 constraint.

Line-Based Partitioning

With line-based partitioning, we collect all the constraints arising from operation of each

line in both pre- and post-contingency states in one sub-problem. Therefore, the number

of sub-problems is equal to the number of transmission lines in the system. Therefore, we

have 38 sub-problems. Each line in the network contributes two constraints for operation in

each state of the system. In the pre-contingency state, there are two constraints associated

with each line. However, in the case of post-contingency states, two constraints are assigned

to each line while the outage of another line is considered. For example, for the outage of

line 12, we assign two constraints to all other lines, but not to line 12, since this line is
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assumed to be out of service for that contingency. Moreover, for the case of the lines whose

outage is not listed in the possible contingency list, e.g. line 11 in the case of the IEEE

RTS, we assign two constraints in all system states to them. So, we have 38 sub-problems,

each containing 74 constraints, except for the sub-problem corresponding to line 11. This

sub-problem contains 76 constraints. These sub-problems are forming the sets J `
λ .

Now, we add the remaining 50 constraints corresponding to Jπ which includes the

system load balance constraints and generation limit constraints–on top of each J `
λ . Each

sub-problem now contains 124 constraints, except for sub-problem 11 which contains 126

constraints. Then, UCD-II is run on each of the sub-problems. At the end of this step,

we have 87 constraints left as potential umbrellas. The mean solution time for each sub-

problem is 0.0887 s. The total solution time, if all sub-problems were solved in series, is

3.3690 s.

Since the number of remaining umbrella constraints is small enough to run UCD-II

directly, we do not take the second step of divide-and-conquer algorithm presented in

Section 2.5.2. We combine all remaining potential umbrella constraints. This run of UCD-

II does not identify any constraint as non-umbrella. This means that in the first step we

have identified all umbrella constraints. The breakdown of the umbrella set is as follows:

(i) two constraints from the system-wide load balance (ii) 45 constraints from generation

limits (iii) 40 constraints from line limits.

The line-based umbrella constraints are the upper limits of line 11 for the no-contingency

state and for outages of lines 1 to 10 and 12 to 38. In other words, the only line constraints

in the umbrella set are the upper limits on line 11 in all of the system states. Also, the

only generation limit which is not umbrella is the upper limit of the generator at bus 7.

Further inspection of the system reveals that the upper limit of generator at bus 7 is 300

MW while the capacity of line 11 is 175 MW. If the load at bus 7, which is 64.2466 MW in
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the first hour of the year, is increased beyond 125 MW, we will see that the upper limit of

line 11 leaves the umbrella set. In Section 2.8.2 we provide a detailed sensitivity analysis

of the umbrella set membership and the load changes at bus 7.

In the case of IEEE RTS and with the current loading of the system, out of the initial

2 864 constraints, only 87 are umbrella and 2 777 constraints are identified as non-umbrella.

This number of non-umbrella constraints account for more than 96.96% of the original

constraint set. This shows us the potential computational savings that could be gained

by applying UCD-II on SCOPF problems whose solution is found repeatedly. Since each

sub-problem can be solved independently, one could make UCD-II run even faster by using

parallel computing.

Comparing the solution times of UCD-II with and without using partitioning, one can

see the obvious benefits of partitioning, specially line-based partitioning. However, the

effectiveness of each specific partitioning technique is significantly dependent upon the

nature of the problem.

Finally, note that the SCOPF problem of the IEEE RTS subjected only to its umbrella

constraints takes virtually zero seconds to solve as compared to 0.015 seconds solution time

of the original problem.

The IEEE RTS is a small size system and the effectiveness of UCD is more obvious in

large systems. In the next section, we apply UCD-II on a larger-scale system, the IEEE 118

bus system, and show the effectiveness of UCD-II formulation in reducing solution time of

SCOPF problems.

2.7.3 118 Bus System

In this Section, we apply the divide-and-conquer approaches for solving UCD-II intro-

duced in Section 2.5 on a larger power system model. To do so, first we use a modified
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version of the 118 bus IEEE test system [93] with its 186 lines and 54 generating units 3. In

our tests, we are considering 176 single line contingencies 4 along with the intact network.

The number of constraints generated by the SCOPF problem for this system is 65 730.

The generation limit constraints contribute 118 × 2 = 236 constraints for both upper and

lower limits. The load balance contributes two constraints. To represent the line limits,

we follow the same approach as for the IEEE RTS. In the no-contingency state, we have

186×2 = 372 constraints. In each contingency, we have 185×2 = 370 constraints. Since we

are considering 176 contingencies only, the total number of constraints arising from lines,

for operation under no-contingency and contingency states is 372 + 370 × 176 = 65 492

constraints. This full SCOPF solves in 2.808 s using the hardware and software listed in

Section 2.6.

The size of the full UCD-II here is not trivial; its number of constraints is 65 730 ×

65 732 ≈ 4.320×109 and the number of variables is 119 × 65 730 ≈ 7.822×106. Obviously,

the current size of UCD-II is impractical. Therefore, we apply the decomposition techniques

proposed in Section 2.5 to find the corresponding umbrella set.

Line-Based Partitioning of UCD-II

The first step of the decomposition process is to partition the original set of constraints

into appropriate subsets. As argued previously, partitioning SCOPF line constraints, group-

3. Line and generation limits and generation cost data for the IEEE 118 bus system are notoriously
ill-defined in the literature. Here, we are using the set of generation costs and limits found within the
Matpower library [98] and we modified the set of line limits used previously by researchers based at the
Illinois Institute of Technology. The complete data set can be found at http://cl.ly/3x0L3L393r24 and
in Appendix B.

4. The number of line contingencies is less than the number of actual test system branches because we
had to disregard the potential failure of 10 branches which serve to connect leaf nodes of the network. The
loss of any of those lines leads to node islanding and ultimately infeasible UCD-II and SCOPF solutions.
To consider the failure of those lines, we should add corresponding load shedding variables in the power
balance and at leaf nodes.

http://cl.ly/3x0L3L393r24
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ing all constraints pertaining to particular lines, is more effective than partitioning them

according to their contingency index. Thus, in Step 1 of the divide-and-conquer algorithm,

we break the constraint set into 186 line-based blocks as outlined in Section 2.5.3. Each

block corresponding to the lines whose outages we consider contains 352 line constraints

and 238 constraints accounting for power generation limits and the two power balance in-

equalities. For the 10 lines whose outages are not considered, the corresponding constraint

blocks contain two more line constraints.

Running UCD-II in parallel on each of these constraint blocks takes on average 17.542 s

per block using the hardware and software mentioned in Section 2.6. The result of this

first UCD-II run is impressive in terms of umbrella constraint discovery: out of the 65 730

original SCOPF constraints only 1 511 are flagged as potential umbrella constraints. In

other words, after a single algorithm step we eliminated 97.7% of the original SCOPF

constraints. At that stage, the solution of the SCOPF, while subjected to this much

reduced set of constraints, can be obtained much more rapidly (0.0470 s; 1.7% of the

original solution time).

Next, we combine all the constraints flagged as umbrella in the prior round into a single

constraint block, entirely skipping Step 2 of the algorithm in Section 2.5.2. After solving

UCD-II for this block of constraints, we are left with the final umbrella set containing 451

constraints only, representing 0.67% of the original number of constraints in the SCOPF.

Out of 65 492 constraints on line flows, only 217 (0.33% of all line constraints) are in

the umbrella set. Out of 236 constraints associated with generation limits 232 are within

the umbrella set and only 4 of them are identified as non-umbrella. The remaining two

constraints are the system-wide load balance constraints, which are always part of the

umbrella set since they are representing equality constraints. Constraints associated with

87 contingency states (out of the original 176) are contributing constraints into the umbrella
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set, thus indicating that there are 87 umbrella contingencies. The size of the UCD-II

problem here is quite significant and so is its solution time (480.2 s). Nonetheless, if we

solve the SCOPF now subjected to those 451 umbrella constraints, we achieve a solution

time of 0.0160 s (0.57% of the original solution time).

The UCD-II solution time can be reduced by partitioning the 1 511 potential umbrella

set once more as in Step 2 of the algorithm. We partitioned the 1 511 constraint set into

two blocks of 873 constraints each containing the generation limits and the power balance

constraints flagged as potential umbrellas and half of the potential umbrella line limits.

The solution time for this step is 85.582 s and reduces potential umbrella constraints to

509. Finally, running UCD-II on that set finds the same 451 constraints in 17.784 s. This

result demonstrates the power of the decomposition approach as the cumulative solution

time (103.366 s) with the extra step is much less than the solution time obtained with a

single 1 511-constraint block.

Contingency-Based Partitioning of UCD-II

We now provide evidence validating the poor performance of contingency-based parti-

tioning in the divide-and-conquer solution of UCD-II. Here, in Step 1 of the algorithm, we

bundle line flow constraints associated to the 177 possible power system states (176 contin-

gency states and one no-contingency state) with generation limits and the power balance.

Solving UCD-II on those constraint blocks results in the flagging of 7 828 potential umbrella

constraints (11.9% of the original lot), taking an average of 16.843 s per UCD-II subprob-

lem. As expected, the initial non-umbrella constraint discovery rate is not as appealing as

with line-based partitioning (88.1% versus 97.7%). The size of this set of potential umbrella

constraints is too large to go ahead with a single UCD-II solution as was attempted with

line-based partitioning. Hence, we complete Step 2 of the algorithm combining pairs of
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potential umbrella constraint blocks and then repeatedly solving UCD-II until we find the

same 451 umbrella constraints. In the end, it takes a further eight iterations and 840 s to

terminate the algorithm. Clearly, this approach is inferior to the line partitioning approach

and should not be used.

2.8 Sensitivity Analysis

The UCD-II solution times reported above are high, even when using the decomposition

approach with line-based partitioning. In fact, it is not difficult to see that UCD-II is itself

larger than the original SCOPF. Still, we have seen above the potential for SCOPF solution

time improvement for the minimum cost problem on the IEEE 118 bus system, when

subjected to its umbrella set only. A UCD-II pre-processing step is effectively worthless if

it ends up increasing the overall solution time of the original problem. In this Section, we

provide empirical evidence that the outcome of a UCD-II problem is generally insensitive

to changes in the parameters defining the SCOPF constraint set. Moreover, we show that

the union of all umbrella constraints arising over a full year of operation is generally small

in comparison to the original set of SCOPF constraints. From this, one can conclude that

an operator could reuse the results of a prior UCD-II run when facing similar operating

conditions, and thus save itself the UCD-II computation time, e.g. on a similar hour and

day in two consecutive weeks where the loading pattern and level are essentially the same.

Otherwise, the operator could simply use the union of all constraints flagged as umbrella

over the course of a year in lieu of the original constraint set. This union of all umbrella

constraints would usually be slightly larger than what would be provided by an exact UCD-

II run in each hour, but it would not lead to significant SCOPF solution time degradation.

Firstly, we do a sensitivity analysis on the three-bus system shown in Fig. 2.3 in Section
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2.6. For this small network, we are able to visualize the feasibility set of solutions to see its

changes as the total system load changes. Secondly, we do a sensitivity analysis on a larger

network, the IEEE RTS and we show the insensitivity of its umbrella set to the changes in

the system load.

2.8.1 Three-Bus System

In this section, we use the system shown in Fig. 2.3 to analyze the sensitivity of mem-

bership of constraints in the umbrella set with respect to changes in the system load at

different buses.

The feasibility set of the three-bus system with the loading and conditions shown in

Fig. 2.3 and Table 2.1 is shown in Fig. 2.4. To study the sensitivity of the umbrella set to

the load changes in the system, we change the load at bus 3 and bus 2 (one at a time while

keeping other parameters of the system constant) and identify the corresponding umbrella

set/constraints. We draw one sample of the feasibility region for each load range that has

the same umbrella constraints.

Load Change at Bus 3

The load at bus 3 of the system in Fig. 2.3 is 50 MW. The load at this bus is changed

from 0 MW to 90 MW and every time the umbrella set changes, the corresponding umbrella

set is identified. Note that, if any change happens in the system parameters, all of the

constraints move. However, this move might not be enough to push a constraint in or out

of the umbrella set. In this sensitivity analysis, when we talk about changes in the umbrella

set, we are referring to changes in the members of the set in terms of constraints leaving

and joining. Nonetheless, the reader is aware that any change in the load will change the

constraints.
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Table 2.2 Umbrella sets of the three-bus system for load changes at bus
3. Please note that system load balance constraints are always part of the
umbrella set and they are not included in this table.

Load (MW) Line Number Contingency Generation

0-19

2(U) 1 1(L)
1(U) 2 2(U)

3(U)
3(L)

20-40

2(U) 1 1(L)
3(U) 1 2(U)
1(U) 2 3(U)
3(U) 2 3(L)

41-50

2(U) 1 1(L)
3(U) 1 2(U)
1(U) 2 3(U)
3(U) 2

51-70

2(U) 1
3(U) 1 2(U)
1(U) 2 3(U)
3(U) 2

71-90 3(U) 1 2(U)
3(U) 2 3(U)

The first column in Table 2.2 shows all the load ranges for which the umbrella set is

constant. The second column indicates the line that the umbrella constraint is coming

from and whether the umbrella constraint is the lower or upper limit of that line. The

third column shows the contingency whose occurrence is making the line constraint on the

second column an umbrella constraint. The last column contains the bus number whose

generation limit constraints are in the umbrella set. The indicators (U) and (L) denote the

upper and lower limits of the constraints, respectively.
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Figure 2.7 Feasible set of the three-bus system with 10 MW load at bus 3

For the interval from 0 to 19 MW, the umbrella set contains two line limits: upper

limit of line 2 when line 1 is out and upper limit of line 1 when line 2 is out. Note

that line 1 and 2 are identical; therefore, their corresponding constraints are identical (for

similar conditions). As was explained in Section 2.4.3, identical or duplicate constraints

are umbrella or non-umbrella together. Fig. 2.7 shows the feasible set of solutions for

d3 = 10 MW. It can be seen that the optimal solution is located at the point p∗1 = 155

MW, p∗2 = 55 MW and p∗3 = 0 MW and the corresponding system cost of operation is

$ 5 300. As expected, comparing with the feasible set of solutions of the original case (with

d3 = 50 MW), shown in Fig. 2.4, as the load decreases the line constraints become less

stringent and more generation limits join the umbrella set.

For the interval of 20 to 40 MW, the membership of the umbrella constraints does not

change. However, as constraints are moving closer to the feasible set, and consequently,

shrinking the feasible set, two line constraint join the umbrella set. These two constraints
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Figure 2.8 Feasible set of the three-bus system with 30 MW load at bus 3

are the upper limit of line 3 during outages of line 1 or 2. A projection of the feasible set

when load at bus 3 is 30 MW is shown in Fig. 2.8. The new optimal value for objective

function is $ 6 100 which is obtained with the following generation combination: p∗1 = 160

MW, p∗2 = 60 MW and p∗3 = 10 MW. Movement of line constraints to the right (as opposed

to Fig. 2.7) is the reason that two line constraints have joined the umbrella set. The

direction of the movement of the constraints can be predicted by studying the Lagrange

multipliers of UCD-II constraints, as was discussed in Section 2.4.2.

For the interval of 41 to 50 MW, the feasible set of solutions is shown in Fig. 2.9. The

figure is repeated here in Fig. 2.9 for the convenience of the reader. The optimal solution

for a 50 MW load at bus 3 is $7 100 with p∗1 = 160 MW, p∗2 = 60 MW and p∗3 = 30 MW.

The umbrella set of this network is explained in details in Section 2.6.

For the interval of 51 to 70 MW, the umbrella set consists of eight constraints. The

umbrella line constraints are the same as for the interval of 41 to 50 MW but the lower
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Figure 2.9 Feasible set of the three-bus system with 50 MW load at bus 3

limit of generation at bus 1 leaves the umbrella set. The feasible set of solutions for 70

MW load at bus 3 is shown in Fig. 2.10. The optimal solution for this loading is $ 8 100

with p∗1 = 160 MW, p∗2 = 60 MW and p∗3 = 50 MW. Comparing the optimal answer of

this case with the optimal solution for 50 MW load at bus 3, we could see that although

the generator at bus 3 is the most expensive generator, and generators 1 and 3 did not

hit their limits yet, any increase in the load at bus 3 is provided by generator 3. This is

because transfer of power from other generators to bus 3 is not possible because of hitting

the transmission line limits specially during contingencies. The price of electricity at bus

3 is 50 $/MWh (which can be obtained by looking at Lagrange multipliers of the SCOPF

constraints); therefore, for the extra 20 MW, the objective function will increase $ 1 000

compared to the previous case.

For the interval of 71 to 90 MW, the feasible set of solutions will shrink even more. The

umbrella set consists of total of six constraints, of which two line constraints are upper limit
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Figure 2.10 Feasible set of the three-bus system with 70 MW load at bus 3

constraints for line 3 during outage of line 1 or line 2. Another two constraints are from

upper generation limits for buses 2 and 3. Of course, load balance constraints are members

of the umbrella set. The feasible set for a load of 90 MW at bus 3 is shown in Fig. 2.11.

For this loading, the feasible set of solutions is reduced to one single point. This point is

p∗1 = 140 MW, p∗2 = 100 MW and p∗3 = 50, which will increase the system operation cost

to $ 9 300. Any increase in the load at bus 3 will push the system into the infeasibility and

will result in the system collapse.

From analyses of the above cases, it can be seen that the more load located at bus 3,

the more costly it is feeding the load. Also, it can be seen that this cost is not increasing

linearly with the increase of load even when a cheaper generator is available. This happens

because the line limits in the no-contingency state as well as line limits in contingency

states do not allow for the transfer of power from the most economic generator to the load.

Therefore, in some cases, it is necessary to use the more expensive generator while the
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Figure 2.11 Feasible set of the three-bus system with 90 MW load at bus 3

cheaper generators are available. If the area of the projection of the feasible set of solutions

for different loadings of this example are compared, it can be seen that the feasible set of

solutions shrinks as the load of the system increases. These circumstances will push the

problem to its infeasibility border. For this problem, if the load at bus 3 is increased to 91

MW, the SCOPF and corresponding UCD-II problem become infeasible.

Another observation is regarding the run time of UCD-II problems. The run time of

UCD-II increases when the feasible set of solution becomes smaller. For example, the

corresponding UCD-II for the case that bus 3 has 10 MW load runs at a very negligible

time (the feasible set of solutions is shown in Fig. 2.7), while the corresponding UCD-II

problem for the case that bus 3 has 90 MW load takes 0.015 s of the CPU time (the feasible

set of solutions is shown in Fig. 2.11). UCD-II needs to find the values for its variables,

wj which satisfy all of the constraints. Now, the smaller the feasible set of solutions, the

more time UCD-II has to spend to find feasible values for its variables. This is believed to
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be the reason for the longer solution times for more stressed conditions of the network.

Load Change at Bus 2

In this section, we change the load in bus 2 and draw the feasible set of solutions for

one of the loads in each interval that umbrella set is constant. We form the SCOPF for

each system loading and run UCD-II on the SCOPF problem and identify the umbrella

constraints. We set the load at bus 2 at 50 MW.

Since the minimum generation of the three-bus system is 120 MW, the minimum value

for the load at bus 2 is 70 MW. We change the load at bus 2 from 70 MW to the point that

the SCOPF problem becomes infeasible. Table 2.3 shows the load intervals for which that

umbrella set remains constant. Please note that the load balance constraints are always

members of the umbrella set and they are not represented in this table.

From Table 2.3, we can see that at lighter loads, none of the line constraints are umbrella.

In this case, mostly lower limits of the generators are umbrella. As the load in bus 2

increases, some of the line constraints enter the umbrella set as well as the upper limits

of some generators. By increasing the load even more, it can be seen that more line

constraints are joining the umbrella set. For cases where the system is heavily loaded, the

line constraints become the most stringent constraints in the system. As the feasibility set

of solutions shrinks more and more, all lower limit constraints of generators retire from the

umbrella set.

These sensitivity analyses, presented in Tables 2.2 and 2.3 show that the umbrella set

for a given SCOPF problem remains unchanged for usually wide load intervals, and the

system operator does not need to run UCD-II to identify the umbrella set for given ranges

of load change. This observation contributes to reducing the number of times that UCD-II

may need to be carried out by system operators to cover load changes in the system.
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Table 2.3 Umbrella sets of the three-bus system for load changes at bus 2.

Load (MW) Line Number Contingency Generation

70–99
1(L)
2(L)
3(L)

100–119
3(U) 1 1(L)
3(U) 2 2(L)

3(L)

120–149

1(L)
3(U) 1 2(L)
3(U) 2 3(L)

3(U)

150–159

1(L)
2(L)

3(U) 1 3(L)
3(U) 2 3(U)

2(U)

160–170

3(U) 1 1(L)
3(U) 2 2(L)
2(U) 1 3(L)
1(U) 2 3(U)

2(U)

171–180

3(U) 1 1(L)
3(U) 2 3(L)
2(U) 1 3(U)
1(U) 2 2(U)

181–200

3(U) 1 1(L)
3(U) 2 3(U)
2(U) 1 2(U)
1(U) 2

201–240

3(U) 1
3(U) 2 3(U)
2(U) 1 2(U)
1(U) 2

241–250 2(U) 1 3(U)
1(U) 2 2(U)
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The other observation is that there are only 10 constraints (excluding the load balance

constraints) that form the different umbrella sets for different system loadings. In other

words, by taking the union of these umbrella sets, there is no need to run UCD-II for

changes in the load of bus 3 and bus 2. One should note that the union of the umbrella

set is still a small portion of the original set of umbrella constraints and can still make the

solution of SCOPF problem significantly faster. We do the same analysis on the IEEE RTS

in the next Section.

2.8.2 IEEE RTS

In this section, we illustrate the insensitivity of the membership of umbrella sets to

changes in load using the single-area version of the IEEE Reliability Test System—1996 [94],

shown in Fig. 2.6, in the first hour of the RTS year. Running UCD-II for the corresponding

SCOPF in that hour results in 87 constraints forming the umbrella set (out of the original

2 864). To assess the effects of load changes on the umbrella set membership, while keeping

all other parameters constant, the load at Bus 7 is increased from zero to the point where the

SCOPF problem (and therefore, the corresponding UCD-II problem) becomes infeasible.

In this case, the umbrella set changes only at three critical loadings (125, 126 and 159 MW)

before UCD-II becomes infeasible when the demand at Bus 7 reaches 383 MW. Performing

the same analysis for Bus 8 shows that the umbrella set changes also at three critical

loadings (1, 9 and 183 MW), and the SCOPF becomes infeasible when the nodal load

hits 350 MW. Similar results can be observed as the load is varied from zero to the level

where the SCOPF becomes infeasible at other nodes. If one generalizes this analysis to

multiple nodes where loads are varied, a matrix of critical loading ranges would be obtained.

From this, we can expect that in between critical loading levels, the umbrella set remains

constant, which entails that any pre-calculated UCD-II result can be reused under similar
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system conditions.

The details of this analysis are explained in the following two sections.

Change of Load at Bus 7

In the IEEE RTS, bus 7 is one of the critical buses in defining the number of umbrella

constraints since it is radially connected to the rest of the network. This bus is connected

using only line 11 to bus 8. An outage of line 11 will form an island containing only bus

7. Therefore, we form the corresponding SCOPF problem, considering outage of all lines,

except line 11, as possible contingencies. The corresponding UCD-II problem is saved for

different load intervals at bus 7 to find the intervals that the umbrella set remains constant.

The results show that for the interval from 0 to 124 MW, the umbrella set remains

constant and has 87 members. The umbrella set for this load interval breaks down as the

following: two load balance constraints, 47 generation limits and 38 line limits. These line

constraints are essentially coming from two lines, line 11 and line 29 (connecting buses 16

and 19–see Table A.3). The constraints corresponding to line 11 are upper limit constraints

coming from no-contingency state and failures of lines 1 to 29, except for line 11 which is not

considered. As was explained in Section 2.7.2, the reason why the upper limit constraint

of line 11 is in the umbrella set is because the generator at bus 7 can generate up to 300

MW, while the capacity of line 11 is 175 MW. If the load at bus 7 is less than 125 MW,

line 11 may be congested. The lower limit constraints of line 29 in the no-contingency case

and in contingencies of lines 1 through 8 are members of the umbrella set as well. The only

generation limit which is not in the umbrella set is the upper limit of the generator at bus

7. The reason for this is since the line 11 may be reaching its limit, the generation level at

bus 7 cannot be increased to its limit; therefore, it is not a member of the umbrella set.

If the load at bus 7 is increased to 125 MW, the generation limit at bus 7, moves toward
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the feasible set and reach the border of the feasible set, making both the upper limit of line

11 and the generation limit at bus 7 members of the umbrella set. Therefore, the number

of umbrella constraints in the umbrella set increases to 88 constraints.

If the load is increased beyond 125 MW, the available power to be transferred by line

11 decreases below its capacity. Therefore, the upper limit of line 11 leaves the umbrella

set along with the line limit for line 29. However, the generation limit at bus 7 remains in

the umbrella set. The umbrella set now contains 50 constraints, of which 48 are generation

limits and 2 load balance constraints. For the interval of 126 MW to 158 MW, the umbrella

set remains constant again.

For the interval of 159 MW to 300 MW, the umbrella set has 51 members. The lower

limit of generation at bus 7 leaves the umbrella set since it is replaced by the lower limit of

line 12 (connecting buses 8 and 9) during failure of line 13, and the lower limit of line 13

(connecting buses 8 and 10) during failure of line 12. The reason is that with the increase

of the load at bus 7, the load at bus 8 cannot be fed anymore from the generator at bus

7. Therefore, power should be imported from other generators to supply the load at bus 8,

which could in turn congest the lines connected to bus 8. If the load at bus 7 is increased

beyond 300 MW, generator 7 may not be able to provide all the power required by this

bus. Therefore, power should be transferred to bus 7 by line 11 to feed the load.

The umbrella set remains constant until the load at bus 7 reaches 384 MW for which

UCD-II, and therefore the corresponding SCOPF problem, becomes infeasible.

As can be seen from this sensitivity analysis, the umbrella set remains constant for

different intervals of the load at bus 7. Therefore, if the load at bus 7 changes from 0

to 384 MW, there will be only three different umbrella sets until the problem becomes

infeasible. The total number of the constraints contributing in the umbrella set in any

interval is 90. In other words, the union of all different umbrella sets for the span of the
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load at bus 7 only includes 90 constraints out of the original 2 864 constraints.

Change of Load at Bus 8

The load at bus 8 is supplied by lines 11, 12 and 13. To do the sensitivity analysis, the

load of the first hour of the year is chosen, and the load at bus 8 is changed from 0 to the

value that makes the corresponding SCOPF problem infeasible. Note that since the load

at bus 7 is set at 67.354 MW, the corresponding upper limit constraints for line 11 in the

no-contingency case and in contingencies 1-29 (except for contingency of line 11), and the

corresponding lower limits of line 29 in the no-contingency case and in contingencies 1-8

are part of the umbrella set. Other line limits will join or leave the umbrella set in each

load interval. The process is elaborated next.

If the load at bus 8 is set at zero MW, the umbrella set contains 88 constraints. The

line constraints in the umbrella set are constraints arising from line 11 and 29, as well as

the upper limit of line 13 during the outage of line 12 and the upper limit of line 12 during

the outage of line 13. The power generated by the generating unit at bus 7 that is not

consumed by the load at bus 7, is transferred using line 12 and 13. Since the load at bus 7

is 67.353 MW, the extra power produced by the generator at bus 7, which has the capacity

of 300 MW, is transferred through line 11. However, line 11 has a capacity of 175 MW.

If the load at bus 8 is set to zero, all 175 MW should be transferred through lines 12 and

13 to the rest of the system. In the no-contingency case, none of these two lines, which

each have capacity of 175 MW, could reach their limit. Nonetheless, if any of them is out

of service, the other one would be congested. Therefore, the upper limit of both lines for

the contingency of the other line is part of the umbrella set. The generation limits in the

umbrella set are the upper and lower generation limits of all generating units except for

the upper generation limit at bus 23.
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By increasing the load at bus 8, the power needed to be transferred through lines 12

and 13 is less than 175 MW. Therefore, these two lines, even in the outage of the other

one, would not be congested. This means that the upper limit on line 12 during outage of

line 13 and the upper limit of line 13 during outage of line 12 leave the umbrella set. In

this loading, the umbrella set contains 86 constraints. This umbrella set remains constant

for the load interval of 1 to 8 MW at bus 8.

If the load at this bus is increased to 9 MW, the upper generation limit of bus 23 joins

the umbrella set. This increase of load in bus 8 would relieve lines 12 and 13 some more.

The umbrella set remains the same until the point where the load at bus 8 reaches

183 MW. At this point, the lower limits on lines 12 and 13, when the other line is out,

join the umbrella set. Also, the lower generation limit at bus 7 leaves the umbrella set.

Consequently, the umbrella set contains 88 constraints. This condition remains constant

until the load at bus 8 reaches 350 MW, where, if the load is further increased, the SCOPF

and consequently UCD-II becomes infeasible.

Discussion

In this section, we discuss the findings and observations made during the sensitivity

analysis of the IEEE RTS. Further evidence showing how pre-calculated RTS umbrella set

membership could be used is found in Fig. 2.12. Here, the RTS umbrella set has been

calculated for each hour of week 1 of the RTS year. The result in Fig. 2.12 illustrates

clearly the correlation between the umbrella set size and the system-wide load. As the load

increases and decreases over its daily cycles, so is the number of constraints in the umbrella

set. More interestingly, however, in the case of weekly load cycles, the umbrella set for

hours t and t + 168 are generally the same. For instance, they can be identical up to 16

weeks in a row (e.g. in the first hour of each week in the months of November through
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February).

Finally, the weekly hour which generates the umbrella set with the largest number

of constraints is generally the union of all constraints flagged as umbrella in that week.

Therefore, if one takes a conservative approach whereby this “peak” umbrella set is used

for all hours of a week, substantial SCOPF computational savings could still be achieved,

and it would guarantee that no potential umbrella constraint could be left out 5. The

difference in umbrella set size at the peak and at other hours is generally small, and it

remains that the size of the peak umbrella set is still substantially smaller than that of

the original SCOPF, thus resulting only in marginal SCOPF solution time increase. In the

case of Fig. 2.12 the weekly peak umbrella set has 44 line constraints, in lieu of the original

2 814 line constraints, but in some hours the size of the line-only umbrella set could go as

low as zero. Going even further, one could just find the peak umbrella set for a full year

and use it in all hours. For the RTS, this happens in hour 42 of the year and the umbrella

set contains only 44 constraints which together form the union of all line-based umbrella

constraints ever entering the umbrella set over the year. Specific evidence for these is found

in Fig. 2.13, 2.14 and 2.15.

Fig. 2.13 shows the number of hours in the RTS year (which contains 52 × 7 × 24 =

8 736 h) that specific lines’ flow limits are umbrella constraints. Here, there are only seven

such lines, and the constraints on line 11 are found in the umbrella set most of the time

(8 158 h ≈ 93.4% of the year), while those applying to line 23 spend the least number of

hours in the umbrella set (306 h ≈ 3.5% of the year). Fig. 2.14 shows which contingencies

contribute at least one umbrella constraint in the RTS year. The vertical bars account for

the number of umbrella constraints generated by contingencies over a full year. The dashed

5. We note, however, that the peak umbrella set does not necessarily happen at the same time as the
peak in the system load.
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line shows the cumulative number of umbrella constraints generated by contingencies. This

number is normalized to the number of constraints generated by the original SCOPF over

a full year (2 864 × 8 736 ≈ 25 million constraints). One finds that the total number of

umbrella constraints generated in the RTS year represents only 1.3% of the total number

of constraints generated by the original SCOPF in that year.
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Figure 2.12 Week 1 IEEE RTS load (dashed line) [94] and size of the corresponding umbrella
sets (solid line).
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Figure 2.13 Number of hours each line in the RTS [94] contributes one or
more constraints in umbrella sets. Only the seven lines listed here, out of the
38 RTS lines, contribute umbrella constraints over the year.
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Figure 2.14 Umbrella constraints generated by all contingencies over the RTS year [94] (vertical
bars) and the cumulative number of umbrella constraints relative to the total number of SCOPF
constraints (dashed line). Only the 29 contingencies shown here, out of the 38 RTS contingencies,
contribute umbrella constraints over the year.
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Fig. 2.15 shows the number of hours each line-based umbrella constraint (the 44 con-

straints mentioned before) spends in the umbrella set normalized to the number of hours

in the RTS year. Most notably, 38 of those line constraints spend at least 93% of the time

in the umbrella set, with six more joining in at least 3.5% of the time. The first conclusion

that can be drawn here is that the umbrella set membership remains grossly the same

over a full year cycle. This provides further evidence of the relative insensitivity of the

umbrella set membership to changes in load. Most importantly, however, given that very

few constraints are potential members of the umbrella set and most of them remain in it for

a significant portion of the year, we argue that using the union of all of these constraints

would represent a good compromise between SCOPF compactness and potential SCOPF

solution time degradation. Subjecting the SCOPF to those 44 constraints in each hour

would be sufficient to cover the secure operation of the network. Yet, this set would be

necessary only in a few “peak” hours. This union of these 44 constraints still only represent

1.5% of the original SCOPF constraint set.
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Figure 2.15 Percentage of time all constraints spend in the umbrella set in a year. Only the 44
constraints shown here, out of the 2 864 SCOPF constraints, spend some time in the umbrella set.
The letters in the horizontal axis labels indicate the lines whose limits are in the umbrella set (A:
line 11, B: line 29, C: line 24, D: line 5, E: line 13, F: line 12 and G: line 23). The number next
to each letter indicates the contingency state associated with that limit. Black bars indicate lower
flow limits, while white bars indicate upper flow limits.



2 Umbrella Constraint Discovery 84

2.9 Discussion

One may argue that the UCD-II solution times are prohibitive for practical power system

use; however, we argue that it should not be the case if UCD-II is used in the appropriate

context. UCD-II is not meant for directly assisting real-time operations, yet its outcomes

could greatly improve the scope of application of SCOPF approaches in real time. It should

be used at the operational planning stage to list out systematically the constraints operators

should be concerned about and indicate which of the failures could have the most impact on

operations and future dispatch decisions. In real time still, UCD-II in its separated version,

(2.20)–(2.22), could be used to assess whether or not a new constraint needs to enter the

current umbrella set or not. Ultimately, real-time SCOPF applications are to gain more

importance as power systems are subject to ever more rapidly-changing conditions, and as

limited network resources need to be allocated rapidly. A tool like UCD should contribute

to streamline real-time SCOPF computations because it has the potential to make them

as compact as they can realistically be.

In fact, an SCOPF formulation, of which all non-necessary constraints have been re-

moved through the prior use of UCD-II, could be solved by an iterative dispatch-SFT

process as outlined in [32]. In that case, the dispatch-SFT process would run much faster

first because the number of constraints to be assessed would be significantly lower than in

the original problem. Second, once the initial dispatch is assessed through the SFT, the

next dispatch would be optimal because all binding constraints would have been found by

the SFT. This is the case because once violated umbrella constraints are satisfied all of

them have to be satisfied simultaneously. Moreover, UCD-II could be useful in assessing

whether or not new line investments or line retirements may have significant impacts on

the feasible operating space of a network. For example, if after adding a line, one finds that
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the number of line-based umbrella constraints has decreased with respect to a base case,

then this investment proposal may be beneficial because it would contribute to expand the

network’s operating space.

The current approaches available in the literature focus only on identifying the binding

(or active) constraints, or heuristically flagging contingencies for further analysis (contin-

gency screening)—see Section 2.1. We proposed a formulation which allows for the identi-

fication of all constraints in SCOPF problems which are necessary and sufficient to form

the feasible set of solutions of the problems. We also argued in Section 2.4.3 that UCD-II

can identify the minimum set of constraints necessary and sufficient to describe the feasible

set of any optimization problem with convex constraints.

SCOPF solution methodologies, which only seek the optimal solution of an SCOPF

problem, can be faster than successively solving UCD-II and its resulting compact SCOPF

formulation. However, the empirical evidence provided in Section 2.8 demonstrates that

the results of UCD are stable within often wide ranges of load, and that they are following

the same weekly and daily periodic patterns as the load. Therefore, once an umbrella

set is established for a given load range, it can be reused when the load falls within that

range and geographical distribution. Otherwise, one may use the union of all potential

umbrella constraints at all times found offline. This union set, albeit not always minimal,

is still much smaller than the original set of SCOPF constraints and its use should lead to

significant SCOPF solution time savings.

2.10 Summary and Conclusion

The solution of SCOPF problems is challenging because of their inherent large constraint

numbers. We saw that in the case of IEEE 118 bus system, we have 65 730 constraints if
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the N−1 security criterion is considered. As empirical evidence and longstanding operator

experience show, relatively few of the constraints of SCOPF problems actually serve to

enclose the feasible region of these problems. Removing these superfluous constraints can

reduce the sizes of SCOPF, thus improving the solution time and numerical stability of their

solution processes. In this chapter, an optimization-based formulation was proposed for

identifying umbrella constraints in SCOPF problems or, in fact, any optimization problem

with convex constraints. Note that the proposed formulation is independent of the objective

function of the SCOPF problem. So, even if the objective function is not convex, the

proposed formulation can be applied successfully. The most attractive umbrella constraint

discovery problem formulation is a linear program, which, nonetheless, is not a trivial

optimization problem when dealing with practical SCOPF problems. We addressed this

matter by proposing a flexible decomposition approach amenable to parallel computation.

In the first step, we implemented the formulation on a small three-bus system as well as a

medium size system, the IEEE Reliability Test System—1996. We have generated empirical

evidence using both systems showing the relative insensitivity of the umbrella set to changes

in demand and the correlation between system load and umbrella set membership. Also,

we tested the linear programming version of UCD on an SCOPF implementation for the

IEEE 118 bus test system and showed that more than 99.31% of its constraints are indeed

superfluous. By removing them, the SCOPF solution time was improved by two orders of

magnitude.

In the next chapter, we propose a new formulation —called partial UCD— based on

the UCD-II formulation that can be carried out significantly faster than other proposed

formulations. We implement this new method on different SCOPF problems and compare

the results with UCD-II.
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Chapter 3

Partial Umbrella Constraint

Discovery

3.1 Introduction

In the previous chapter, we explained how the umbrella constraint discovery (UCD)

problem 1 can successfully and systematically identify all umbrella constraints of a given

optimization problem. We also noted that the solution time of the corresponding UCD

problem is significantly longer than that of its corresponding SCOPF problem. We proposed

a decomposition technique to overcome this shortcoming, and we showed the effectiveness

of this technique by implementing it on different test systems. In this chapter, we propose

another UCD problem formulation that can identify non-umbrella constraints very fast.

This new formulation, called partial UCD, can be used as a pre-screening tool for constraints

before solving the full UCD problem. By using this technique, the number of constraints

entering UCD can be reduced significantly, resulting in a much faster solution of UCD.

1. In the remainder of this dissertation, the acronym UCD refers to the UCD-II formulation, unless
otherwise stated.
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We first discuss the motivation behind the proposal of this new formulation by pointing

out some of the computational inefficiencies in UCD and then we present the formulation

of partial UCD. Finally, we present the results of applying partial UCD on different test

systems and we compare its solution time with original UCD solution times.

3.2 Computational Inefficiencies in UCD

�In Chapter 2, we proposed a formulation that could identify the umbrella constraints

of an optimization problem in the general form found in (2.7) and (2.8). We also proposed

UCD-II, (2.14)–(2.16), as a way to identify all umbrella constraints of an SCOPF problem.

Ironically, the main drawback of UCD is also its size due to its large number of con-

straints. The vast majority of UCD constraints is coming from the set of constraints in

(2.15). Throughout the solution process, the LP solver has to look for wj values for each

constraint in (2.16) while ensuring its feasibility against all other constraints in (2.15). In

the event where such a wj cannot be found, sj must be increased until feasibility is re-

established. The observation one makes here is that the moment sj > 0, there is no longer

a need to keep on searching for a feasible wj as constraint j is proved to be non-umbrella

(as per the Non-Umbrella Constraint Lemma presented in Section 2.5.2). Therefore, it is

pointless to keep on comparing other constraints to a proven non-umbrella constraint. It

is also equally true that it is wasteful to compare non-umbrella constraints against each

other. For instance, in Section 2.7.3 and in ( [99]) when considering the IEEE 118 bus test

system, we found that only 451 constraints were indeed umbrella. Therefore, throughout

the UCD solution process, 65 279 SCOPF non-umbrella constraints were being compared

against each other without providing any more information about the actual set of um-

brella constraints. Thus, as a rule of thumb, we should seek to maximize the comparison
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of potentially non-umbrella constraints only with those constraints which would be likely

umbrellas. Such likely umbrella constraints are the generation limits and the power balance

which, in the case of the IEEE RTS, are members of the umbrella set throughout the year

2.8.2.

3.3 Partial UCD

As mentioned above, in UCD a constraint j is flagged as umbrella if the LP solver is

able to find a point wj on that constraint that satisfies all other constraints. To complete

this proof of umbrella membership, one requires that the constraint be compared against

all other constraints. On the other hand, to flag a constraint j as non-umbrella, a single

cross-constraint comparison with j′ could be enough if that comparison is able to show that

there is no point on constraint j that can satisfy that other constraint j′. We recall also

that if a constraint is flagged as non-umbrella at any point during the solution process, that

constraint is non-umbrella for the entire set of constraints, according to the Non-Umbrella

Constraint Lemma.

Obviously, it is not practical to interrupt the LP solution process every time an instance

of sj > 0 is being found. Instead, we propose here to solve an approximation of UCD as a

preprocessing step to its full solution. This preprocessing step, which we call partial UCD

(P-UCD), serves to rapidly identify non-umbrella constraints with the objective of reducing

the number of necessary constraint comparisons in the solution of the full UCD. The goal

of P-UCD is to identify non-umbrella constraints with as few cross-constraint comparisons

as possible. In the ideal case, we aim to identify non-umbrella constraints with only one

comparison. In order to achieve this goal, we should compare a non-umbrella constraint to

only an umbrella constraint. Therefore, we need to know which constraints are most likely
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to end up in the final umbrella set and compare the remaining constraints to them.

In P-UCD, the SCOPF constraint set is partitioned into two subsets: potential umbrella

(Jν) and potential non-umbrella (Jη) constraints such that J = Jν ∪Jη and Jν ∩Jη = ∅.

The membership in the potential umbrella and non-umbrella constraint sets are determined

heuristically. The heuristic here should be based essentially on operator experience and/or

on past UCD results. For instance, if the results of a prior UCD run are available, it is

reasonable to assume that the current UCD results will be similar given similar operating

conditions, as seen in [99]. Thus, in that case, Jν would contain the umbrellas from the

past UCD run and Jη would contain its non-umbrellas. Another valuable partition would

be to have Jν include the economic dispatch constraints (i.e. the generation limits and

the network-wide power balance), while Jη regroups all line flow limits. This is also in line

with the evidence found in [99], which shows that the vast majority of SCOPF umbrella

constraints come from the generation side.

By partitioning the constraint set into a potential umbrella (Jν) and a potential non-

umbrella (Jη) sets and comparing only these two sets against each other, we should avoid

the redundant comparisons between umbrella constraints as well as between non-umbrella

constraints.

3.3.1 Formulation of Partial UCD

Let us pick a constraint j ∈ Jν . Also, let aj denote the vector corresponding to the jth

row of matrix A and bj the jth element of the b vector of the system of inequalities in (2.8).

Similarly, for j′ ∈ Jη, let aj′ denote the vector corresponding to the j′th row of matrix

A and bj′ the j′th element of the b vector of (2.8). Let us also define an arbitrary vector

wj ∈ RI , where I is the number of variables in the SCOPF. We claim that by solving the

following optimization problem, the non-umbrella constraints in the set Jη with respect to
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the constraints in Jν are identified [100].

Proposition 4 (Partial UCD (P-UCD))

min
w,s≥0

∑
j∈Jη

sj (3.1)

subject to,

aTj′wj ≤ bj′ j ∈ Jη, j′ ∈ Jν (3.2)

aTj wj + sj ≥ bj j ∈ Jη (3.3)

The interpretation of partial UCD is very similar to that of the original UCD. If con-

straint j ∈ Jη is indeed umbrella, there exists a wj that can lie on the hyperplane aTj wj = bj

(as dictated by (3.3)) while still remaining feasible with respect to all constraints in subset

Jν , (3.2). In the case where constraint j ∈ Jη is not umbrella, to maintain the feasibility

of P-UCD, sj should be increased until one finds a wj which can lie on the hyperplane

aTj wj = bj− sj while simultaneously satisfying all constraints in subset Jν . This is just like

UCD where the slack variables sj serve to bring all non-umbrella constraints to the border

of the feasibility region to ensure the feasibility of the whole problem. In the case of the

partial UCD problem, nonetheless, the feasibility region is defined by the constraints in

subset Jν ⊆ J only, which are predetermined based on user input. This is unlike UCD in

(2.15) and (2.16) where its feasibility region is defined by all the constraints of the SCOPF.

Fig. 3.1 shows an example of P-UCD. Here, Jν comprises of all constraints except 1–4, 9

and 10. Clearly, constraints 1–4 are umbrella. The only non-umbrella constraints identified

through P-UCD are constraints 9 and 10. Partial UCD would find all non-umbrellas if Jν

contained only constraints 1–4. In all cases, it is necessary to follow up with a UCD run
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Figure 3.1 Illustration of partial UCD: we assume here that constraints 5–8
are potential umbrellas (members of Jν). The remaining constraints (1–4 and
9 and 10) are potential non-umbrella constraints (members of Jη). Solving
partial UCD will identify constraints 9 and 10 as non-umbrella. The subse-
quent UCD run on constraints 1–8 would identify constraints 1–4 as umbrella.
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to formally identify all umbrella constraints.

Here, we can see by inspection that constraints 1–4 are true umbrella. However, since

constraints 5–8 are deemed as potential umbrella constraints, the formulation can easily

find wj for j = 1, . . . , 4 that satisfies all constraints in Jν . Therefore, the corresponding sj

for constraints 1–4 remains zero. As we can see, if there are actual umbrella constraints

in the potential non-umbrella constraint set, Jη, P-UCD will identify those constraints as

umbrella constraints. This built-in feature of P-UCD assures the operator that no umbrella

constraint will be left out if the set of potential umbrella constraints is not accurately built.

The only non-umbrella constraints identified through P-UCD are constraints 9 and 10.

Partial UCD would find all non-umbrellas if Jν contained only constraints 1–4. Otherwise,

some true non-umbrellas would not be identified as such. In all cases, it is necessary to

follow up P-UCD with a UCD run to formally identify all umbrella constraints. Here, this

step would eliminate constraints 1–4.

3.3.2 Size of P-UCD

P-UCD allows for sj and wj variables to be allocated to potentially non-umbrella con-

straints only and therefore, it can have a significantly lower dimensionality in comparison

to UCD. It also has a much lower constraint count. As can be seen in the P-UCD formu-

lation, to rule out the non-umbrellas in the subset Jη, its elements are compared against

constraints in the subset Jν only. The number of constraints in a partial UCD problem is

|Jη| · |Jν | which can be significantly less than the number of the corresponding full UCD

problem, that is J(J + 2). The number of variables in P-UCD is |Jη|(I + 1) as opposed to

the number of variables in the corresponding UCD problem which is J(I+1). For instance,

in the case of the IEEE RTS [94], if we let Jν contain all 50 economic dispatch constraints

and Jη hold the remaining 2 814 line flow limits, P-UCD has 140 700 constraints and 67 536
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variables. This is in stark contrast with the full UCD which would have over eight million

constraints and 71 600 variables.

Obviously, the price to pay with the solution of P-UCD is that it only identifies the

constraints in Jη which are non-umbrella. It cannot identify any umbrella constraints

unless Jν is the umbrella set. As Jν is only a good guess of what the umbrella set is, Jν

may contain some non-umbrellas and Jη may have umbrellas within itself. What P-UCD

provides is a way to fast-track the identification of non-umbrellas so that a full UCD can be

performed only on those constraints in Jν and those in Jη not ruled out as non-umbrellas

by P-UCD. This way UCD can be run on a much reduced set of constraints which will be

identified as umbrella or not—providing the proof of umbrella set membership.

It is important to note that P-UCD cannot leave out a true umbrella constraint by

identifying it as a non-umbrella constraint. If a constraint j ∈ Jη (i.e. in the set of

potential non-umbrellas) is indeed umbrella, one can find a wj satisfying all constraints

in (3.2). Otherwise, it is non-umbrella by the Non-Umbrella Constraint Lemma. This

property ensures that the feasible set of solutions of the original SCOPF problem will

never be altered by P-UCD.

As mentioned before, the closer the set Jν is to the umbrella set U , the more non-

umbrella constraints in Jη get identified by P-UCD. Therefore, a good estimation of the

potential umbrella constraint set is essential for efficient function of P-UCD. In the next

Section, we provide empirical evidence of the efficacy of P-UCD as a pre-processing step

to a full UCD run.
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3.4 Partial UCD Test Results

In this Section, we apply P-UCD on two SCOPF problems which were previously in-

vestigated in Chapter 2. We highlight the importance of potential umbrella (Jν) and

non-umbrella (Jη) constraints set selection and how it affects the performance of P-UCD.

3.4.1 Application on IEEE RTS

We use the single-area version of the IEEE Reliability Test System–1996 [94] and form

the SCOPF problem considering only line contingencies in the first hour of the RTS year.

The machine which we use to run the tests is a PC with a Xeon E5606 2.13 GHz CPU and

24 GB of RAM. The corresponding SCOPF problem has a constraint set of size 2 864 (set

J ), where 2 814 constraints are arising from line constraints, 48 are from generation limits

at each bus —two constraints at each bus to enforce generation limits— and two constraints

are from the system-wide load balance—which are stemming from the conversion of the

system-wide load balance equality to two equivalent inequality constraints. Similar to the

modeling done in Chapter 2, we do not include the outage of line 11 in the contingency list.

The solution time of the corresponding SCOPF problem subject to all constraints is 0.015

s. By running UCD on the SCOPF constraint set, 87 umbrella constraints are identified

(3% of constraints are umbrella). The run time for UCD (ran without decomposition) is

219.35 s, while using the line-based decomposition technique proposed in [99], the UCD

run time can be decreased to 3.369 s.

To test partial UCD, an estimate of the actual umbrella constraints is necessary. The

experience of running UCD on this network (see [99]) suggests that most of the generation

limits are part of the final umbrella set along with the load balance. Therefore, a good

estimation of the umbrella set Jν , as suggested in the previous section, would be the set of
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generation limits and the load balance constraints. The remaining constraints, which are

all arising from line operations under no-contingency and contingency states, form the set

Jη.

These potentially umbrella and non-umbrella constraint sets are applied to (3.2) and

(3.3), and the corresponding solution time for partial UCD is 0.484 s. Hence 2 776 out of

2 814 constraints in Jη (98.6%) are flagged as non-umbrella. Only 38 constraints in set Jη

are flagged as potential umbrellas.

In the next stage, the 38 potential umbrellas from Jη are merged with the 50 constraints

from Jν . UCD is run with those 88 remaining constraints, and it takes 0.016 s to run. The

result of UCD is that only one generation limit from the set Jν is finally identified as non-

umbrella. Therefore, the final umbrella set has 87 constraints of which 38 are coming from

line constraints and 49 are coming from generation limits and load balance constraints (as

before). The total time for running P-UCD followed by UCD is 0.500 s. Following this,

if the minimum cost SCOPF is solved subjected to its umbrella set only the solution time

is virtually 0 s. Clearly here, P-UCD is very effective. Given the result (the elimination

of one extra constraint only) of the final UCD step and the extra time it takes to run it

(0.016 s), one may forgo it completely.

As it can be seen from these results, the solution time of UCD can decrease significantly

if the constraints are preprocessed using P-UCD; here we see a reduction from 219.35

s (using line-based partitioning) down to 0.5 s (0.23% of the UCD original time with

line-based decomposition). As was discussed before, the efficacy of P-UCD is strongly

dependent upon the accuracy of the potential umbrella set Jν . The estimation of the

potential umbrella set is not always a simple task. As will be shown in the next subsection,

it is not always enough to include generation limits and load balance constraints in Jν . A

poor estimation of the potential umbrella set may result in the identification of only a few
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non-umbrella constraints in Jη thus making the P-UCD step counterproductive.

3.4.2 Application on IEEE 118 Bus System

In this section we use the same IEEE 118 bus system and its corresponding SCOPF

that we used in Chapter 2. However, we reduce the load of the system at all nodes by

20% to represent the system load hourly variations. The corresponding SCOPF problem

of the IEEE 118-bus system 2 has 65 730 constraints. Generation limits account for 236

constraints, and the load balance constraints contribute two more inequality constraints.

Only 176 line contingencies are considered, and the constraints arising from the operation

of the lines under these contingencies account for the remaining 65 492 constraints. The

SCOPF problem takes 2.808 seconds to be solved. The corresponding UCD problem of this

SCOPF is too large to be solved directly as the one formulated with for the IEEE RTS.

Line-based decomposition is used to partition UCD problems into smaller sub-problems.

These sub-problems are independent from each other and can be run using parallel comput-

ing. We have 186 sub-problems and the cumulative run time of the UCD using line-based

decomposition takes 3 541.6 s to complete.

Partial UCD is used here to pre-process the set of constraints and rule out some non-

umbrella constraints in order to reduce the size and solution time of the full UCD. To set

up P-UCD, an estimation of potential umbrella constraints is necessary. We shall assume

the same Jν −Jη partition used with the IEEE RTS above, i.e. all generation-based limits

of the network along with the system-wide load balance constraints are forming the set Jν ,

and all of the line-based constraints are in the set of potential non-umbrella constraints,

Jη. Therefore, Jν has 238 members and the rest of the constraints (line constraints) belong

2. The complete data set of 118-bus system which was used in this study can be found at
http://cl.ly/3x0L3L393r24.
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to Jη which has 65 492 constraints. P-UCD has about 15.5 million constraints, which is

too large to be solved directly. The solution is to break down the set Jη into smaller

subsets (100 here) and run partial UCD on each of them. These subsets can be formed

using different approaches such as line-based or contingency-based decomposition. These

sub-problems can be solved independently using parallel computing.

We note here that although we are using line-based partitioning here, in partial UCD the

partitioning approach does not matter. In partial UCD we are comparing the constraints

against a fixed set of constraints (Jν). In other words, we assume that we know the umbrella

set, and we check if the constraints in Jη are umbrella with respect to constraints in Jν .

There is no comparison amongst the constraints in Jη. However, in UCD we try to find the

umbrella set of each sub-problem by comparing all constraints present in that sub-problem.

Therefore, in partial UCD we use partitioning merely as a tool to reduce the size of the

problem, so we can solve the UCD using available resources.

After partitioning the set Jη, each of the sub-problems are solved using partial UCD

with Jν as the potential umbrella constraint set. P-UCD takes 42.819 s to run cumulatively,

with 0.0654 s on average for each subset, and it identifies 39 806 constraints from the set

Jη as non-umbrellas. This leaves us with 25 686 constraints as potential umbrellas in Jη.

The large number of remaining constraints in Jη could be because some of the generation

limits in Jν are not as stringent as in the RTS case, while many of the line constraints in

Jη are more demanding and cannot be flagged as non-umbrella by the generation and load

balance constraints alone.

The remaining number of constraints in Jη is still too large to be considered for a single

run of a UCD to identify all umbrella constraints. This is mostly because the estimation

of the umbrella set was not accurate enough. To address this issue, there are two options.

Firstly, the problem can be solved using decomposed UCD which will identify all umbrella
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constraints at the expense of more computation time. Otherwise, we can use a better

estimation of the potential umbrella constraints in the first place. An example of such a

more exact estimation of the umbrella constraints could be the umbrella set of the previous

operating hour.

We consider now the case where the set Jν is set to U from the previous hour of operation

which typically has similar loading patterns to that of the current hour. redWe assume

that the results presented in Section 2.7.3 are representing the results for the previous

hour run of UCD. The umbrella set of the previous hour has 451 constraints, of which 234

are stemming from generation-based constraints while 217 are from line-based constraints.

Since change of system load, may move some constraints in or out of the umbrella set,

there might be some line-based constraints in U that are already identified as non-umbrella

in the present hour. Therefore, we are interested in Jη ∩ U . This set contains the line-

based constraints which were umbrella in the previous hour and have not been identified

as non-umbrella in the first round of P-UCD. In this case, there are six constraints in U

which are identified as non-umbrella by P-UCD in the first round. Likewise, there might

be generation-based constraints in Jν which are not in U . We would like to move those

constraints to the set Jη as they are likely to be non-umbrella. This accounts for four

generation-based constraints. We remove these constraints and append them to the new

Jη.

At the end of the first step, we have |Jη| = 25 686 constraints. This set has 211

constraints in common with the previous hour umbrella set —|Jη∩U| = 211. In other words,

there are six constraints in U which have moved out of the umbrella set due to the load

change and they are identified as non-umbrella in the first step. Since in the first step, we

only compared the constraints of Jη with the generation limits and load balance constraints,

it can be said that these six constraints have moved out of the hypercube built by generation
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limits. So, the number of line constraints present in the new Jη is 25 686 − 211 = 25 475

constraints. Now, in Jν , there are four constraints from the generation-based constraints

that are not in U . Those constraints are also appended to Jη. In total there are 25 475+4 =

25 479 constraints in the new potential non-umbrella set, Jη. As for the potential umbrella

set, we should have 451 constraints from U . But, we remove the constraints in U that are

already identified as non-umbrella for the current hour which accounts for six constraints.

Therefore, the new potential umbrella set, Jν , contains 451− 6 = 445 constraints.

As before, the set of potential non-umbrella constraints, Jη, is divided into smaller

subsets, each with 100 constraints here, and partial UCD is run for each of the subsets.

Each subset takes 2.44 s to run on average and the cumulative run time for all subsets

is 621.83 s. At this stage, only 393 constraints remain in Jη which shows the efficiency

of the alternative potential umbrella set Jν . Including Jν , there are now 838 constraints

which have the potential to be in the final umbrella set. The number of remaining umbrella

constraints is small enough to run a full UCD on them. UCD takes 85.19 s to run and

identifies 390 constraints as non-umbrella. The final umbrella set contains 448 constraints,

of which 213 constraints come from line constraints (about 0.3% of all line constraints in

the original set of constraints) and 235 constraints come from generation limits and load

balance constraints. The total run time for this method, including partial UCD followed

by UCD, is 749.84 s which is around 21% of the best UCD run time using decomposition.

The 213 line constraints in the umbrella set are coming from the operation of 53 lines

in 83 contingencies. The lines and the number of times its corresponding constraints are

present in the umbrella set are shown in Fig. 3.2. Line 54—connecting bus 30 to 38—has

the largest contribution in the umbrella set. Fig. 3.3 shows the umbrella contingencies of

the SCOPF problem. The contingencies that do not contribute two or more constraints in

the umbrella set are not shown in the figure.
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Figure 3.2 The lines that contribute more than one constraint to the umbrella set. The lines that
contribute only one constraint to the umbrella set are the following: 22, 24, 44, 46, 47, 53, 57, 58,
66, 107, 109, 115, 116, 125, 136, 137, 141, 143, 145, 148, 151, 152, 153, 159.
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Figure 3.3 The set of contingencies contributing to the final umbrella set. Only the contingencies
which contribute more than one constraint in the umbrella set are shown. The following constraints
contribute only one constraint to the umbrella set: 5, 13, 14, 16, 18, 20, 23, 24, 27, 29, 31, 35, 40,
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Table 3.1 UCD Solution Times with and without the Application of P-UCD

Test Network UCD Partial UCD Diff.
IEEE RTS 240 s 0.5 s 0.23%

IEEE 118 bus 3 541.6 s 751.2 s 20%

Table 3.1 summarizes the progress made through the use of P-UCD to streamline the

solution of UCD. In the case of the IEEE RTS especially, the results are impressive. How-

ever, the observations here may be artifacts of the structure of this particular test network

which is known to be transmission strong and generation weak. The fact that most of the

generation limits are umbrella indicates that the generation system restricts the feasible

space of the SCOPF the most, while transmission constraints do not contribute much to

the restriction of operations. In the case of the IEEE 118-bus system the situation is not

as clearcut, but the results show a significant improvement over the best case without P-

UCD. Given those improvements in UCD performance when combined with P-UCD, one

can consider its application to the security-constrained unit commitment, as we do in the

next Chapter.

3.5 Summary and Conclusion

In this chapter we presented a new formulation —called partial UCD— that is able

to identify non-umbrella constraints very quickly. Partial UCD exploits the Non-Umbrella

Constraint Lemma from Chapter 2 to pre-screen some non-umbrella constraints in order

to reduce the size of the umbrella set entering the UCD problem. Partial UCD decreases

the number of comparisons that are necessary in UCD formulation to flag a constraint as

umbrella or non-umbrella. In fact, partial UCD only identifies non-umbrella constraints

since, ideally, one comparison is enough to flag a constraint as non-umbrella. On the other
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hand, identifying a constraint as umbrella requires comparing that constraint against all

other constraints in the constraint set. Partial UCD is applied on SCOPF problems of the

IEEE RTS and the IEEE 118 bus system. For the case of the IEEE RTS, we showed that

the solution time of the corresponding UCD can significantly be reduced if partial UCD

is used to pre-process the constraints entering UCD. We used generation limits and load

balance constraints as the potential umbrella set for this system. For the case of the IEEE

118 bus system, the size of the SCOPF problem does not allow for a direct partial UCD

run. Therefore, similar to UCD, a we use partitioning and decomposition to break down

the problem into smaller sub-problems. We showed that in the case of the IEEE 118 bus

system, choosing generation and load balance limits as potential umbrella constraints does

not identify many non-umbrella constraints. We later show that using the results of the

previous run of UCD on this network is a better estimation for the potential umbrella set

as it identifies most of the non-umbrella constraints. The total solution time is significantly

reduced by accompanying UCD by a pre-processing step using partial UCD.

Given the improvements in UCD performance when combined with P-UCD, one can

consider its application to the security-constrained unit commitment, as we do next.
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Chapter 4

Application to Unit Commitment

Problems

4.1 Introduction

UCD has proven to be a very effective tool in identifying non-umbrella constraints in

SCOPF problems. One of the most important tools for ISOs and RTOs in day-ahead market

clearing is security-constrained unit commitment (SCUC), which is solved repeatedly. By

solving SCUC problems, operators aim to minimize the operation cost of the system or

the total bid cost while satisfying a subset of technical constraints of the power system.

Technical constraints arise from operation of the system in pre- and post-contingency states

and include system load demand, line limits and generation units constraints, such as

ramping limits, minimum up/down times, etc. A generic SCUC problem formulation is

presented in this Chapter. SCUC problems are more challenging than SCOPF problems

mainly due to the presence of binary variables and because of time couplings. Thus, it

could be beneficial to apply UCD as a preprocessing step to SCUC because of the relative



4 Application to Unit Commitment Problems 106

stability of the power system feasibility region over time spans of 12 to 24 hours. In this

Chapter, we first explain that how UCD treats the mixed-integer problems (MIP) and then

we implement UCD on different UC and SCUC problems.

4.2 UCD and Mixed-Integer Problems

In power systems, unit commitment problems and their variations, such as SCUC,

belong to the class of problems called mixed-integer problems (MIP) since they include

binary variables representing the status of the generating units in the system. A general

MIP can be represented by the set of equations in (4.1)–(4.3).

min f(p, u) (4.1)

subject to

[A|B]


p

u

 ≤

b

c

 (4.2)

u ∈ {0, 1}M (4.3)

where p is a vector in RN lumping all of the network’s continuous decision variables, u

is a vector representing all (M) binary decision variables of the network, f(p, u) is some

objective function, A and B are constant matrices and b and c are constant vectors all with

appropriate dimensions.

We argue here that the nature of variables are immaterial in applying UCD. Therefore,

if the original optimization problem includes binary variables, to form the corresponding
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UCD, we use 0-1 relaxations on these variables by adding two constraints corresponding

to each variable to the set of constraints. These two constraints bound the value of each

variable between 0 and 1. Therefore, if a constraint is umbrella for the MIP, it will be

umbrella for the LP relaxation problem. Also, a non-umbrella constraint of the LP re-

laxation problem, will be non-umbrella to the MIP. Nonetheless, it is possible to have a

constraint which is identified as umbrella for the LP relaxation and which may turn out to

be non-umbrella for the MIP. As a result, the application of UCD onto the LP relaxation

of (4.1)–(4.3) would generate the most compact MIP formulation, but not necessarily the

tightest one (corresponding to its convex hull). We demonstrate this concept next using an

example.

Assume we have the following optimization problem and whose feasible set of solutions

is defined by (4.5)–(4.9).

min f(x) (4.4)

subject to,

x2 ≥ 1 (4.5)

x1 + x2 ≤ 8 (4.6)

−x1 + x2 ≤ −1 (4.7)

x2 ≤ 4 (4.8)

x1 + x2 ≥ 3 (4.9)

The coloured area in Fig. 4.1 shows the feasible set of solutions for the above problem.

The optimum solution of this problem can be located at any of the vertices of the triangle
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depending on the objective function for this optimization problem 1. Note that the feasible

set of solutions is indeed independent of the objective function.

x1
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Figure 4.1 Feasible set of region of a given example with continuous vari-
ables

Now, assume that both variables x1 and x2 are restricted to be integer. The feasible

set of solutions for this case, is shown in Fig. 4.2. Note that only the black dots represent

feasible solutions of this problem.

By inspection of Fig. 4.2 and Fig. 4.1, we can see that by applying a 0-1 relaxation of

the binary variables we still able to identify the non-umbrella constraints of this problem,

i.e. constraints 4 and 5. Constraint 5 is actually weakly redundant as was explained in

Chapter 2, Section 2.6.1.

Therefore, it can be seen that UCD can still be applied on problems with binary (or

integer) variables. By relaxing of these variables, we keep UCD as an LP, which makes

UCD a very amenable problem for off-the-shelf LP solvers.

1. We know that for linear problems, the optimal solution should be placed on a vertex of the feasible
set of solutions. If the problem has multiple solutions, one of them must be located on a vertex [92].
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Figure 4.2 Feasible set of an example with binary variables

4.3 Formulation of the Unit Commitment Problem

The goal of an SCUC problem is to find the dispatch level and status of each generating

unit such that the operational cost of a network, is minimized while all technical constraints

are satisfied. These technical constraints include system-wide demand, generation limits

of each unit, line limits, system-wide reserve requirements, ramping limits of generating

units and minimum up and down times of each generating unit in both pre- and post-

contingency states. We present the formulation and constraints that we have considered in

the following.

The SCUC objective function, shown in (4.10), generally minimizes the cost of operation

min
I∑
i=1

T∑
t=1

Ci(pi,t) +
I∑
i=1

Si(ui,t) (4.10)

where Ci(·) is the generation cost function at generating unit i, pi,t is the generation level

of generating unit i at time t and I is the number of network buses. Variable ui,t is a binary

variable indicating the status of generating unit i in period t. if ui,t = 1, the generating
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unit i is turned on and if ui,t = 0, the generating unit i is turned off. Si(·) is the cost

function representing the total cost for starting up or shutting down unit i at time t. The

above objective function is subjected to the system-wide load balance, for which we ignore

losses here,
I∑
i=1

pi,t =
I∑
i=1

di,t (4.11)

where i is the index for the network buses and di,t is the load at bus i at time t.

There are two constraints associated with each transmission line; the lower and the

upper limit. Similar to the SCOPF problem, the SCUC problem is subjected to the line

constraint and should satisfy

− f̄`(k) ≤
I∑
i=1

h`i(k)(pi,t − di,t) ≤ f̄`(k) (4.12)

where h`l(k) and h`i are the linear generation shift factors (a.k.a. power transmission

distribution factors (PTDF)) relating power injections at bus l and i to the flow in line `

while contingency state k is occurring [15,32].

Generation levels have to be bounded for each generating unit

ui,tpi ≤ pi,t ≤ ui,tp̄i (4.13)

The total system spinning reserve should also be met in each period, t.

I∑
i=1

ri,t ≥ SRt (4.14)

where SRt is the total spinning reserve requirement for the system at time t and ri,t is the

contribution of each generating unit to the total reserve. Reserve contribution, ri,t, is also
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bounded for each generating unit depending on the current generation of the unit and the

maximum reserve the unit can contribute

ri,t = ui,t min{r̄i, p̄i − pi,t}. (4.15)

The ramp up and down rate for each unit is limited

|pi,t − pi,t−1| ≤ ∆i (4.16)

where pi,t and pi,t−1 are generations of unit i at time t and t− 1, respectively, and ∆i is the

ramp up/down limit of unit i. The above constraints for ramp up and down of each unit

should be active only if the unit remains on at time t−1 and t. Parameter pi,0 corresponds

to the initial condition of the unit, which is usually determined by previous runs of the unit

commitment problem.

Minimum up and down times for each unit specify that if a unit is turned on it should

stay on for at least its minimum up time or, if it is turned off, it should stay off for

at least its minimum down time. These constraints are modeled using the constraints

proposed in [101]. For the minimum up time of the units, the following constraints should

be satisfied depending on the time that the unit is turned on.
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Gi∑
t=1

[1− ui(t)] = 0 (4.17)

t+UTi−1∑
n=t

ui(n) ≥ UTi[ui(t)− ui(t− 1)] (4.18)

∀t = Gj + 1, . . . , T − UTi + 1
T∑
n=t

ui(n)− [ui(t)− ui(t− 1)] ≥ 0 (4.19)

∀t = T − UTi + 2, . . . , T

where UTi is the minimum up time for unit i and Gi is the number of time intervals that

unit i must remain on after t = 0. If the status of unit i at t = 0 is on, Gi will essentially

be the minimum of time horizon and the difference between minimum up time of the unit

and the number of time intervals that unit i has been on before t = 0. If the status of unit

i at t = 0 is off, Gi is zero. (4.18) ensures that minimum up time requirement is respected

for units that are on at t = 0. (4.19) enforces the minimum up time for unit i at time

intervals between Gi and T − UTi + 1, while (4.20) ensures that if any unit is turned on

after T − UTi + 1, it will remain online until the end of the time horizon. The minimum

down time of the units is formulated similarly.
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Li∑
t=1

ui(t) = 0 (4.20)

t+DTi−1∑
n=t

[1− ui(n)] ≥ DTi[ui(t− 1)− ui(t)] (4.21)

∀t = Lj + 1, . . . , T −DTi + 1
T∑
n=t

1− ui(n)− [ui(t− 1)− ui(t)] ≥ 0 (4.22)

∀t = T −DTi + 2, . . . , T

where DTi is the minimum down time for unit i and Li is the number of time intervals that

unit i must remain off after t = 0. If the status of unit i at t = 0 is off, Li will essentially

be the minimum of time horizon and the difference between minimum down time of the

unit and the number of time intervals that unit i has been off before t = 0. If the status

of unit i at t = 0 is on, Li is zero. (4.20) ensures that minimum down time requirement is

respected for units that are off at t = 0. (4.22) enforces the minimum down time for unit

i at time intervals between Li and T − DTi + 1, while (4.22) ensures that if any unit is

turned on after T −DTi + 1, it will remain online until the end of the time horizon.

4.4 Application of UCD to SCUC

What we investigate next is the application of UCD and P-UCD to the 0-1 LP relaxation

of an SCUC formulation. We also discuss some non-umbrella constraint identifications

which could have significant computational benefits for SCUC. Here we make use of the

IEEE RTS to illustrate the potential benefits and drawbacks of UCD and P-UCD on the

SCUC solution. Fig. 4.3 shows the steps that are taken in order to apply UCD and P-UCD
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UC/SCUC problem
(with binary variables)

Form correspond-
ing LP relaxation

Apply UCD/P-UCD
to LP relaxation

Run MIP sub-
jected to LP relax-
ation umbrella set

Figure 4.3 Flowchart showing the necessary steps for UCD-based size re-
duction for SCUC

on SCUC.

4.4.1 Application of UCD on Static Unit Commitment

In this section, we apply UCD on the corresponding single-period (static) unit commit-

ment problem of the IEEE RTS without considering the network for illustrative purposes.

We will add the network constraints in the next Section.

In order to form a UCD problem for the static unit commitment problem (UC), we

need to consider its 0-1 linear programming relaxation, wherein all binary variables are

converted to continuous variables and a lower (0) and upper (1) bounds are added to the

set of constraints for each variable.

The IEEE RTS has 32 generating units; therefore, in the corresponding UC, the gener-

ation limits contribute 64 constraints—one for the lower and one the for upper generation

limits. The load balance equality constraint contributes two equivalent inequality con-

straints. When forming the corresponding UCD problem, 64 constraints are added for

upper and lower limits on the relaxed binary variables. Therefore, in total, the set of

constraints for the corresponding UCD problem has 130 elements.
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The system load has been varied and the corresponding UC and UCD problems are

solved. For different ranges of loads, constraints join or retire from the umbrella set of

the problem as expected. All of these constraints are umbrella for loads below 3 005 MW.

The interesting observation is that if a lower limit constraint for a binary variable is non-

umbrella, i.e. ui ≥ 0 is non-umbrella, this indicates that the generating unit corresponding

to that binary variable would have to be “on” in that range of load when the UC is

solved. This observation determines which generators are must run for certain transmission

conditions. This is very interesting in the context of reliability and market power analysis. If

a generator is must run, then this generator is needed to participate for reliability purposes.

Consequently, it is likely that from the perspective of market power, the offer from that

generator should be mitigated. For the IEEE-RTS this situation happens for loads over

3 005 MW where, for example at 3 006 MW, lower limit constraints of units 22 and 23

become non-umbrella, signalling that these two generating units must remain online for

any load above that threshold. Also, if the load is increased even more, we observe that

the minimum generation limits of those units will also leave the umbrella set. The same

phenomenon repeats itself with other units if we keep increasing the load. This observation

continues until the load reaches a point where the problem becomes infeasible. Thus, if

the lower bound of a relaxed binary variable is flagged as non-umbrella, the corresponding

generating unit has to be online in the UC. A similar argument can be made in the case

of upper bounds on relaxed binary variables which are non-umbrella, i.e. ui ≤ 1 is non-

umbrella. In that case, the corresponding generator has to be offline. This happens with

very light loads of the system.

Knowing ahead of time that some of the binary variables should be fixed prior to the

UC solution process is quite advantageous as it would contribute to decrease the compu-

tational cost of the corresponding UC branch-and-cut algorithm. This type of information
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Figure 4.4 The feasible set of a problem with one binary variable and one
continuous variable

is only available when the system is either highly or lightly loaded, however. This type of

information is not usually available at mid-range loads of the system when binary variable

limits are umbrella constraints.

We illustrate this concept using a simple two-variable example. Geometrically, assume

the feasible set of the two variable optimization problem shown in Fig. 4.4 where x1 is a

continuous variable and x2 is a binary variable. The constraints of this problem are defined

by (4.23)–(4.26).

x1 − x2 ≥ 0 (4.23)

x1 + x2 ≤ 4 (4.24)

x2 ∈ {0, 1} (4.25)

The feasible set of solutions of this problem are the red lines shown in Fig. 4.4. Equations

(4.26)–(4.29) show the binary relaxation formulation of this problem.
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x1 − x2 = 0 (4.26)

x1 + x2 ≤ 4 (4.27)

x2 ≤ 1 (4.28)

x2 ≥ 0 (4.29)

The feasible set of solutions for the 0-1 relaxation problem is shown by the gray area in

Fig. 4.4. Running UCD on the 0-1 relaxation will identify all constraints as umbrella. Now,

assume that the following constraint is added to the problem x2 ≥ 0.5. This constraint

can be a non-umbrella constraint that has moved towards the feasibility region because of

the increase in the system load. The new feasible set of solutions for the binary problem is

shown by the red line and for the 0-1 relaxation is shown by the gray area in Fig. 4.5.
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Figure 4.5 The feasible set of the above problem with the new constraint

Now, if we run UCD on this problem, it will identify constraint (4.29) as no-umbrella.

As argued before, if the lower limit of a relaxed binary variable is flagged as umbrella,
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that variable can only be equal to 1. Inspection of Fig. 4.5 reveals that the feasible set of

solutions for this problem consists of points for which x2 = 1. The same argument can be

made when the upper limit of a binary variable is flagged as non-umbrella.

4.4.2 Application of UCD on Dynamic Unit Commitment

In this section, we apply UCD and P-UCD on multi-period (dynamic) UC problems

with pre-contingency network constraints. The test network is still the IEEE RTS (See

Appendix A) and the UC problem is modeled as was explained in Section 4.3.

For the purpose of this study, a planning horizon comprising the first four hours of the

IEEE RTS year is considered. This system has 32 generating units and 38 transmission

lines. The corresponding SCUC has 1 404 constraints of which 304 come from line limits,

while the rest are associated to generation-related inequalities. For each time period we

have 76 line constraints, therefore, the total line constraints for a four hour horizon would

be 76× 4 = 304 constraints—2× L× T where L is the number of lines in the system and

T is the time horizon. As for generation limits, the constraints breakdown is as follows:

(i) Load balance constraints count for two constraints in each time period—2 × T , where

T is the time horizon, eight constraints in this case, (ii) The reserve requirement counts for

one constraint in each time period, T—four constraints in this case, (iii) The total number

of constraints assigned to units’ reserve limits counts for 3 × I × T constraints, where I

is the number of generating units in the network—384 constraints, (iv) The generation

limits count for 2× I × T constraints for upper and lower limits—256 constraints (v) The

minimum up/down time limits counts for 2×I×T constraints—256 constraints, and finally

(vi) The ramp up limits count for 2× I × (T − 1)—192 constraints.

The solution time for the SCUC problem here is 0.063 s with the hardware used previ-

ously.
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Now, if we consider the corresponding UCD problem, it has an extra 256 constraints

associated with the 0-1 relaxation of the binary variables. Therefore, UCD has 1 660 con-

straints in total here. By running UCD, which takes 69.701 s to solve, only 491 constraints

are identified as non-umbrella (29.6%). From the constraints corresponding to the line

limits, all of them are non-umbrella for the whole time horizon, except for the upper flow

limit on line 11 (between buses 7 and 8) in each time period. This result was expected as

the net generation at bus 7 is over the upper flow limit of line 11. From generation-related

constraints, all system spinning reserve requirements are non-umbrella as well as most of

ramp limits. The most interesting result is that the ramp limits are not restricting unit

commitment decisions when it comes to the inter-period couplings. The minimum up/down

time restrictions are those playing this role as they are never flagged as non-umbrella. The

compact size original problem takes 0.047 s to solve (25% faster than with all constraints).

Table 4.1 summarizes the results of application of UCD on static and dynamic unit com-

mitment problems associated with the RTS.

In a scenario where both ramp limits and minimum up/down time constraints are

flagged as non-umbrella would be very interesting from an SCUC computational point of

view. This would indicate that two successive time periods have no coupling. If this were the

case for all generating units simultaneously, it would be possible to split the SCUC between

the periods where those non-umbrella constraints arise and then solve them independently.

This is obviously desirable property; however, it is very unlikely to happen in practice.

For time horizons over four hours in the case of the IEEE RTS, UCD becomes intractable

and cannot be solved directly. In this case, we can use P-UCD to pre-identify some of the

non-umbrella constraints. The results of P-UCD when Jη contains all line constraints and

Jν holds all generation limits match the results presented in [53].
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Table 4.1 Application of UCD on Static and Dynamic Unit Commitment

Static UC Dynamic UC
Horizon 1 hr 4 hr
# of constraints 66 1 404
UC run time 0 s 0.063 s
# of UCD constraints 130 1 660
UCD run time 0.109 s 69.701 s
# of non-umbrella 0 491
Compact UC run time 0 0.047 s

4.4.3 Discussion

As it can be seen from the results of the application of UCD on dynamic SCUC problems,

not many constraints are proven non-umbrellas. Most of the non-umbrella constraints, as

expected, are line flow constraints, and most of constraints arising from generation limits

are umbrella. One observation here is that what makes line flow limits good non-umbrella

constraint candidates is that they couple a large number of the problem’s decision variables

[see (2.4) which couples all pi variables]. Geometrically speaking, these constraints affect

multiple dimensions of the problem simultaneously. On the other hand, generation-based

constraints contribute to restrict at most four variables simultaneously (ui,t, ui,t−1, pi,t and

pi,t−1). Therefore, whether a constraint pertaining to a specific generating unit is flagged

as umbrella or not is essentially independent from the constraints on other generating units

(unless the system load is very high or very low). In addition, with the introduction of a

new time period or a new generating unit, new dimensions are added to the original feasible

space. For a constraint which was non-umbrella before the addition of a new variable, this

constraint will become umbrella of the new feasible space unless it is explicitly coupled
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with the added dimension.

The effective conclusion here is that one should use UCD and P-UCD to reduce the

number of transmission constraints (as with SCOPF). However, it is clear that the benefit

of applying UCD and P-UCD on unit commitment constraints is very slim given their

computational cost.

4.5 Summary and Conclusion

In this chapter, we implemented UCD and P-UCD on unit commitment and security-

constrained unit commitment problems. We showed that UCD can successfully identify

non-umbrella constraints in these problems. However, the structure of these problems does

not generate many non-umbrella constraints, especially in the generation-based constraints.

Results of application of P-UCD on UC problems are compared with [53] and the same

results are obtained. In the next chapter, we demonstrate that it is possible to exploit the

cyclical nature of umbrella constraint/sets over a year to predict the umbrella set using

heuristic methods.
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Chapter 5

Prediction of Umbrella Sets

5.1 Introduction

In this short chapter, we explore the possibility of predicting the membership in umbrella

sets using heuristic methods. The observation that led to this work is the cyclic nature

of umbrella sets as well as the system load as can be seen in Fig. 2.12. This figure along

with Fig. 2.15 show that the membership of constraints in the umbrella set is relatively

insensitive to the changes in system parameters, in this case the system load. Moreover, the

constraints that are constructing the umbrella sets are usually constant in the sense that

the same constraints are joining or leaving the umbrella set as the system load changes. As

seen in Chapter 2, the union of all umbrella constraints consists of few constraints which

can move in and out of the umbrella set for the changes of the system load. This fact can

inspire the idea that by taking the union of all constraints in the umbrella set of each hour of

an operation year, we could circumvent running UCD entirely. By using machine learning

techniques, we aim to develop a tool that can “learn” the characteristics of umbrella sets

over a span of a time horizon and to be able to predict the umbrella set of a given system
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conditions. Moreover, this tool can help system operators to avoid solving UCD for every

minor changes in the system. Although the decomposition techniques, proposed in Chapter

2, can make UCD problems run faster, but once a predictive tool is developed, it can predict

the umbrella sets very fast and can circumvent solution of UCD altogether.

To predict the umbrella set of a given SCOPF problem, historical load/UCD results are

used i.e. a training set. In every data sample we need the nodal load (the value and the

geographical position of the loads) of the system and the corresponding umbrella set for

that loading. Also, one could develop a dataset for changes in the system topology.

5.2 Neural Networks

We use artificial neural networks (ANNs) [102] to explore the possibility of umbrella

set prediction. Since proposal of ANNs, they have been used to solve variety of problems.

In the context of power systems, they have been successfully applied to different problems

such as electricity price forecasting and wind forecasting [103–107].

ANNs include an input, an output, and some hidden layers. ANNs consist of some

“neurons” where the weights of their connecting links are adjusted to minimize the mapping

error of the input to the output. The output of each neuron is a combination of its inputs,

y = f(
N∑
i=1

widi). (5.1)

A general representation of an artificial neural network is shown in Fig. 5.1. Neural

networks can contain more than one hidden layer depending on the complexity of the

problem. However, theoretically, a neural network with one hidden layer can approximate

any function [108].

The problem of adjusting the weights of connecting links between neurons can be re-
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Input

Hidden

Output

Figure 5.1 A general neural network with one hidden layer.

duced to an optimization problem and can be solved using any optimization algorithm. We

are using the standard back propagation (BP) algorithm [109] to train the neural networks.

Back-propagation algorithm uses gradient descent algorithm to find the minimum error.

This method usually uses the mean squared error (MSE) to calculate the prediction error.

5.3 Test System

We have used the IEEE Reliability Test System 1996 [94] for this study. The system is

well-defined in the literature and the hourly load of the system as well as its line flow limits

are available in details —See Appendix A. Additionally, the size of its SCOPF problem

allows for direct solution of its corresponding UCD problem. Since the preventive control

is used in this work, the long-term capacity of lines is used as their limits in the formulations.

The annual peak load of the IEEE RTS is 2 850 MW and it happens in week 51 of the
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RTS year. The RTS year is assumed to start in January. Therefore, the load peak happens

in December. The system includes 24 buses, of which loads are located at 17 buses and

generations are located at 11 buses. The IEEE RTS generation data can be found in

Appendix A. As can be seen from this data, if all of the system units were committed, i.e.

turned on, the minimum load that this system can supply is 1 036 MW. There are certain

hours during the RTS year that the system load is below the minimum generation of the

system. For those hours, which counts for 72 hours, the SCOPF problem does not have

a solution and becomes infeasible. Those hours and the results of their SCOPF are not

included in this study. The corresponding SCOPF problem of the IEEE RTS has 2 864

constraints, of which 50 constraints are coming from the generation limits and load balance

constraints and the remaining 2 814 constraints are coming from the operation of lines

under non contingent and contingent states.

We solve the UCD problem corresponding to the RTS over the span of a year (8 664

hours) and store the corresponding umbrella set of each hour along with the system loading.

Each run of UCD for a load instance takes 219.353 s without any decomposition technique,

see Section 2.7.1, and takes 0.5 s using P-UCD, see Section 3.4.1. We use this dataset for

the training of neural networks.

5.4 Implementation

We assign one neural network to each constraint to “learn” the membership of that

constraint in the umbrella set. Therefore, we need to form one neural network for each

constraint in the SCOPF problem. Thus, for the SCOPF problem corresponding to the

RTS, we form 2 864 neural networks. Now, we form different types of neural networks,

with different number of neurons and activation functions on the last layer to compare their
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performance for this specific problem. Then, each neural networks is trained, validated and

tested several times to ensure that the random weight assigning for the training process

initialization has been considered. Also, since the training samples of each network is

randomly selected from the dataset, by simulating a network several times, we ensure that

the network performance is not affected by data samples.

In order to train the neural networks, from the available samples, 80% (6 931 samples)

are randomly selected to train and validate the neural networks. From the set of training

data, 85% (5 891 samples) are assigned to the training of the neural networks and the

remaining 15% (1 040 samples) are assigned to the validation of the training process. The

remaining 20% of the total data (1 733 samples) are used for testing the neural networks.

To capture the whole characteristics of the problem, these training samples are chosen

randomly from the database. Then, all of the networks are trained using back-propagation

algorithm, validated and tested.

The criterion to compare different neural networks is the validation errors. By train-

ing and validating neural networks using the training set, the minimum validation error

obtained is 0.128% on a neural network with one hidden layer, 5 neurons on the hidden

layer and a linear activation function on the output layer. The error is the total mis-

categorizations occurred in the prediction of the validation set. For an SCOPF problem

with 2 864 constraints, this error means about 3.5 extra constraints in each run. Given that

the average number of umbrella constraints over an RTS year is about 84 constraints, the

solution time degradation for having three more constraints in the umbrella set is extremely

marginal.

The three neural networks with minimum errors are listed in Table 5.1. As it can be

seen, the networks with the least errors in the train and validation steps have the minimum

test error as well. Table 5.2 shows the networks with the minimum average errors over 10
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Table 5.1 Comparisons of the different neural networks results with back-
propagation as the training algorithm. HL stands for hidden layer. All errors
are in %.

Network # # of HL Neurons Act. Func. Train Er. Val. Er. Test Er.
1 1 5 Linear 0.143 0.128 0.135
2 1 50 Linear 0.143 0.128 0.135
3 2 20–10 Linear 0.144 0.129 0.135

Table 5.2 Comparisons of the average performance of different neural net-
works results with back-propagation as the training algorithm. HL stands for
hidden layer. All errors are in %.

Network # # of HL Neurons Act. Func. Train Er. Val. Er. Test Er.
1 1 5 Linear 0.140 0.141 0.138
2 1 50 Linear 0.140 0.141 0.138
3 2 20–10 Linear 0.140 0.141 0.138

runs. It can be seen that on average the three networks have the same error. The standard

deviation for all of the networks for the training error is 0.002, for validation error is 0.009

and for the test error is 0.003.

5.5 Error Types

There are two types of errors than can occur in the process of prediction in neural

networks. These errors are called error type I and error type II. Error type I occurs when

a constraint is not umbrella but is categorized as umbrella. This type of error is also

called “false positive error”. On the other hand, error type II occurs when neural network

categorizes a constraint as non-umbrella while that constraint is indeed a member of the

umbrella set. This type of error is also called “false negative error”. In back-propagation
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Table 5.3 Comparisons of false negative and false positive errors in neural
networks trained with the back-propagation algorithm. All errors are in %.

Network # Train Er. (FN/FP) Val. Er. (FN/FP) Test Er. (FN/FP)
1 0.023/0.120 0.022/0.105 0.024/0.110
2 0.023/0.120 0.022/0.105 0.024/0.111
3 0.022/0.121 0.021/0.107 0.023/0.112

algorithm, when calculating the prediction error, both types of error have the same weight

and the algorithm tries to minimize the MSE, regardless of the type of errors. However,

in the application of neural networks for prediction of umbrella sets, leaving out umbrella

constraints is unacceptable since it will alter the feasibility region of the problem. Therefore,

it is extremely vital to avoid the false negative errors to avoid changing the feasible set of

solutions. Occurrence of false negative errors may result in infeasible solutions of the

corresponding SCOPF problems. On the other hand, occurrence of false positive errors

(error type I) adds non-umbrella constraints to the predicted umbrella set. This type

of error does not cause an alteration of the umbrella set beyond its umbrella size. It will,

however, augment the umbrella set which causes a very marginal solution time degradation.

The errors reported in Section 5.2 include both false negative and false positive errors.

Table 5.3 shows the false negative and false positive errors in the neural networks with the

minimum errors.

In order to avoid the false negative errors during the test, we should implement a training

algorithm that differentiates between the types of errors and allows only for false positive

errors. The back-propagation algorithm does not differentiate between types of errors and

uses mean squared or sum of squared error functions to calculate the prediction errors.

Given the size of the problem and the fact that we are dealing with an optimization prob-

lem, a meta-heuristic evolutionary optimization method called particle swarm optimization
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(PSO), has been selected for this purpose.

5.6 Modified Training Algorithm

As was discussed before, for the application of prediction of umbrella sets, a more

conservative neural network is preferable since false negative errors cannot be tolerated.

Therefore, the value of the validation error, without paying attention to the type of errors,

is not the best criterion to choose a neural network for this specific application. The selected

neural network should have zero false negative errors and overall minimum validation error.

With regards to the above mentioned observation, it is necessary to have a customized

training algorithm for neural networks to replace the back-propagation algorithm. The

motivation for this replacement is that the back propagation algorithm does not differentiate

between false negative and false positive errors in the training process, while, for this

application, it is imperative to have no false negative errors while minimizing the number of

false positive errors. Therefore, it ismore possible for a network trained by back-propagation

to incur false negative errors compared to a network that was trained to avoid false negative

errors.

As was mentioned before, the problem of neural network training boils down to an

optimization problem with the objective function of minimizing the prediction error. The

weights of the links between neurons are the variables of this optimization problem. Here,

we use PSO [110] with the objective function to minimize the false negative errors as the

training algorithm. We repeat the process of training, validation and test of the same

neural networks as in Section 5.2, only with a different training algorithm and with the

goal of minimizing false negative errors.

All of the neural networks that obtained the minimum validation error and did not
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Table 5.4 Comparisons of the average performance of different neural net-
works results with back-propagation as the training algorithm. HL stands for
hidden layer. All errors are in %.

HL Neurons Act. Func. Train Er. Val. Er. Test Er.
1 5/10/15/20/25/30/40/50 sigmoid/hard limit 0.3367 0.3252 0.3338
2 10-5/20-10/20-15 sigmoid/hard limit 0.3367 0.3252 0.3338

make any false negative errors have hard limit 1 and log-sigmoid 2 activation functions in

their output layer. Moreover, these networks make the same number of false positive errors

in the training, validation and test. These networks have between 5 to 50 neurons and

contain one or two hidden layers. All of the networks have 0.325 % validation error with

no false negative test error. Table 5.4 lists all of these networks with their errors in each

train, validation and test step.

The test error for these networks is 0.3338 % and this means that for each run of SCOPF,

there will be about nine extra constraints compared to the same problem subjected to its

umbrella set obtained by solving its UCD.

We can see that the errors of the modified training algorithm is comparable with back-

propagation results. The advantage of this method is that it is less probable for the networks

trained with the goal of minimizing the false negative errors, to make a false negative error

when the network is being tested. However, we note that the network is incurring false

positive errors at the same rate as false negative and positive errors combined in back-

propagation algorithm. The reason for this is that there is no penalty assigned to incurring

false positive errors in the objective function. Therefore, to improve the performance of

neural networks, we modify the objective function of the training algorithm by including

false positive errors in the objective function. However, we still assign a heavy penalty for

1. A hard limit transfer function is a function with outputs of 0 or 1 (a Boolean value).
2. log-sigmoid is an S-shaped function defined by S(n) = 1

1+e−n .
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Table 5.5 Comparisons of different neural networks and their training algo-
rithm objective function. FN and FP stand for false negative and false positive
errors, respectively. HL stands for hidden layer. All errors are in %.

Obj. Func. Network Specs. Errors (%)
HL Neurons Act. Func. Train Er. Val. Er. Test Er.

FP + 2× FN 1 5 log-sig. 0.333 (0.001) 0.338 (0.007) 0.332 (0.006)
FP + 3× FN 1 5 log-sig. 0.334 (0.001) 0.335 (0.006) 0.334 (0.007)

FP+FN2 1 5 log-sig. 0.335 (0.002) 0.334 (0.015) 0.330 (0.006)

FP+FN3 1 5 log-sig. 0.334 (0.001) 0.335 (0.006) 0.334 (0.007)

incurring false negative errors in order to avoid those errors. We examine four different

objective functions: two linear combination of errors and two non-linear combination of

errors. Table 5.5 shows these functions and the neural networks with minimum errors for

each of these objective functions.

The numbers in front of the errors in parentheses are the standard variations. It can be

seen that for the objective function FP+FN2, the validation error is the least of all networks.

Also, the output layer activation function for these networks is log-sigmoid function. This

is expected since the outputs of the neural networks are in the form of 0 and 1.

5.7 Conclusion

In this chapter, we briefly introduced the possibility of prediction of umbrella set to

replace solving UCD problems directly. Since our intention was to establish the possibility

of this task, we used standard tools. Of course, further research could look into possible

modifications and probably more suitable tools for the task of umbrella set prediction to

reduce the errors. We also pointed out the importance of different error types and the

issues that standard back-propagation training algorithm have with this application of
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neural networks. Then, we used PSO as an optimization tool to train neural networks with

the goal of minimizing false negative errors.

However, we can see that the number of constraints arising from the errors in the pre-

diction of umbrella sets are very few compared to the original size of the SCOPF problem.

This size increase does not incur significant solution time degradation. By improving the

prediction tools, these errors could be significantly reduced.
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Chapter 6

Conclusion

6.1 Dissertation Overview

With the rise of uncertainties in modern power systems, system operators need to

explicitly represent these uncertainties in their models to ensure a secure operation of power

systems. Representation of these uncertainties along with the large sizes of interconnected

modern power networks make the size of system models intractable. The system operators

need to solve these models as many times as possible to optimize the system operation,

economically and technically. The large number of constraints that must be included in

these models, increases significantly their solution time. However, the empirical evidence

and previous studies suggest that only a small portion of constraints actually contribute to

the enclosure of the problem’s feasible set of solutions. In this dissertation, we proposed

a formulation to identify those constraints, so-called umbrella constraints. The proposed

formulation can be generalized to be applied on any convex optimization problem. The

proposed formulation, called umbrella constraint discovery (UCD), is an optimization-based

formulation and uses a series of combinatorial cross-constraint comparisons to identify the
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umbrella constraints.

In this dissertation, we first defined the concepts of “umbrella” and “non-umbrella”

constraints. In order to set apart umbrella and non-umbrella constraints, we observed that

it is possible to find a point on an umbrella constraint that satisfies all other constraints

simultaneously. However, there is no point available on non-umbrella constraints that can

satisfy all other constraints simultaneously. Based on these observation, we proposed a

formulation, called UCD-I. UCD-I is a mixed-integer problem (MIP). This formulation

uses binary variables to indicate the status of a constraint as umbrella or non-umbrella.

Given the size of UCD-I and the computational burden of MIPs, application of UCD-I

on large problems seems impractical. Later, we proposed an LP version of UCD-I, called

UCD-II. This new formulation has the same number of constraints as UCD-I but it does

not include binary variables, which makes UCD-II appropriate for off-the-shelf solvers. We

demonstrated the abilities of UCD-II on several test systems, ranging from a small three-bus

system to a large IEEE 118 bus system.

One of the main features of UCD-II is exploited by utilizing the Non-umbrella Constraint

Lemma. Based on this lemma, if a constraint is non-umbrella in a subset of a set of con-

straints, that constraint will be non-umbrella with respect to the original set of constraints.

The Non-umbrella Constraint Lemma can be compared to the transitivity property in set

algebra. This lemma allows us to break down a UCD-II problem into smaller sub-problems

which can be run independently from each other. We can utilize parallel computation to

expedite the solution time. We noted that it is important how constraints are divided

into sub-problems. Some dividing patterns result in the elimination of more non-umbrella

constraints rapidly. The decomposition method with the highest efficiency is a line-based

decomposition in which we group all constraints arising from the operation of a line in its

no-contingency and contingency states in one sub-problem. The other method could be
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grouping all constraints arising from each contingency in one sub-problem. We showed that

this method is not as efficient as the line-based decomposition approach.

Next, we showed that umbrella sets are relatively insensitive to a wide range of changes

in system load. We showed that by taking the union of all umbrella constraints in a system

year, the operator could run the SCOPF problem of each hour only subjected to a small

portion of the set of constraints, without actually running the UCD problem corresponding

to each operational hour. For example, for one year of the IEEE RTS, the union of all

umbrella constraints has about 90 constraints, while the SCOPF problem of one hour has

2 864 constraints. Using this approach the operators can run SCOPF problems a lot faster

while making sure that none of the umbrella constraints are left out.

Next, we proposed a formulation which can quickly identify non-umbrella constraints—

called partial UCD. In this formulation, we avoid some of the inefficiencies of UCD-II

by avoiding some unnecessary cross-constraint comparisons. In partial UCD, the set of

constraints is partitioned into two subsets: potential umbrella and potential non-umbrella

constraints. In the process of solving partial UCD, the only comparisons that are done

are between potential non-umbrella and potential umbrella constraints, i.e. there is no

comparisons among non-umbrella constraints themselves nor among umbrella constraints.

This modification can reduce significantly the solution time of partial UCD. Since the

potential umbrella and non-umbrella sets are not exact, partial UCD formulation does not

identify all non-umbrella constraints. Therefore, it is imperative to follow up a partial

UCD problem with a UCD-II run to identify all umbrella constraints. Another note is

that partial UCD never leaves out any umbrella constraint, i.e. even that the potential

umbrella and non-umbrella constraints are not exact, if an umbrella constraint is among

potentially non-umbrella constraints, it will not be identified as non-umbrella. Instead, it

will be carried on to the next level, where UCD-II can formally identify it as an umbrella
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constraint. This method was applied on the IEEE RTS and IEEE 118 bus systems. The

results show significant UCD-II solution time gains.

Following the remarkable results of UCD on SCOPF problems, we went on and applied

UCD (both UCD-II and partial UCD) on unit commitment problems. Unit commitment

problems are MIPs and UCD is applied on their 0-1 linear programming relaxations. An-

other characteristic of unit commitment problems is that they contain more generation-

based constraints than line-based constraints. We applied UCD on security-constrained

unit commitment problems (SCUC) and observed that there are not as many non-umbrella

constraints in these problems as with SCOPF. Most of the non-umbrella constraints are

coming from line-based constraints and only a few of generation-based constraints are non-

umbrella. We notice that, in unit commitment problems, if a generation or a time horizon

is added to the problem, several variables are added. In turn, those variables add new

dimensions to the problem and change previously non-umbrella constraints in to umbrella

constraints. Moreover, unlike the line constraints, the generation constraints do not link

many variables together. This is also another reason that most of the generation-based

constraints are indeed umbrella.

In the last part of this work, we explored the possibility of predicting the umbrella

set of a given network, IEEE RTS in this case, if the information about the umbrella set

of the past hours is available. We use artificial neural networks for this task. Further,

we demonstrate that a traditional neural network is not adequate for this purpose. The

reason is that in prediction of umbrella constraints it is vital not to leave out any umbrella

constraints, since such errors will alter the feasibility set of region of the problem. On

the other hand, leaving a non-umbrella constraint in the predicted umbrella set does not

do much harm. Therefore, we modified the training algorithm of the neural networks to

accommodate for this new requirement.
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6.2 Recommendations for Future Work

As this research is an initial step in identifying umbrella constraints, there are several

aspects of this work that can be taken further by researchers. In this section, we summarize

some of these future research areas.

• UCD has many constraints and considerably fewer number of variables. By forming

the dual problem of UCD, we might be able to run the dual problem faster than the

original UCD problem. The solution of the dual problem is the Lagrange multipliers

of the original problem. As was explained in Chapter 2, by having the Lagrange

multipliers of UCD constraints, we can infer which constraints are umbrella or non-

umbrella and even which ones are weakly redundant. Analyzing and forming the dual

problem of UCD can be a promising frontier.

• As was mentioned in Section 2.4.1, the values of s∗j and and their sensitivities (e.g.

∂s∗j/∂bj) could serve to predict under which conditions a specific constraint joins or

leaves the umbrella set. Moreover, values of ∂s∗j/∂bj can signal the directions that

constraints are moving to. These information can be vital for system operators to be

alerted if a line has some potential to join the umbrella set if some change happens

in the system.

• One could look into application of large change sensitivity analysis [111] on UCD-II

to analyze the movements of constraints in order to determine if a constraints has

joined or left the umbrella set. This method has already been successfully applied in

power systems [112].

• In the decomposition technique, we are able to separate the sub-problems as small as

we wish. One future work can be looking into finding an optimal size for decomposi-

tion problems in order to trade off between complexity of each sub-problem and the
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overall solution time of UCD-II.

• In this work, we showed that it is possible to predict the umbrella set of a given

SCOPF problem. The prediction of umbrella constraints can be improved by fine

adjustments on artificial neural networks. Other methods such as data mining can be

applied for this purpose. Also, more inputs can be considered for the neural networks

such as topology and configuration of the network.

• UCD can be generalized to solve other problems in power systems. One of these

problems is identification of the infeasible constraints in an infeasible SCOPF or unit

commitment problem. By doing changes in the UCD formulation, it is possible to

identify the constraints that are making a problem infeasible.

• UCD can be applied on stochastic analyses of power system where different scenarios

augment the size of the problems significantly.

• In this dissertation, we have used a linearized representation of power systems in

our models. An extension of this work could include ac models of power systems to

represent exact behaviour of power systems. These exact models contain non-linear

non-convex constraints which will introduce new challenges in solving SCOPF and

SCUC problems.
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Appendix A

IEEE Reliability Test System Data

This appendix presents the data of IEEE RTS 1979, which is taken from the “case24_-

ieee_rts.m” case file, provided with Matpower [98]. Table A.1 presents the bus data,

Table A.2 contains the generation data. Finally, the branch data is included in Table A.3.
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Table A.1 IEEE RTS bus data.
Bus pd qd gs bs vbase vmax vmin

1 108 22 0 0 138 1.05 0.95
2 97 20 0 0 138 1.05 0.95
3 180 37 0 0 138 1.05 0.95
4 74 15 0 0 138 1.05 0.95
5 71 14 0 0 138 1.05 0.95
6 136 28 0 -100 138 1.05 0.95
7 125 25 0 0 138 1.05 0.95
8 171 35 0 0 138 1.05 0.95
9 175 36 0 0 138 1.05 0.95
10 195 40 0 0 138 1.05 0.95
11 0 0 0 0 230 1.05 0.95
12 0 0 0 0 230 1.05 0.95
13 265 54 0 0 230 1.05 0.95
14 194 39 0 0 230 1.05 0.95
15 317 64 0 0 230 1.05 0.95
16 100 20 0 0 230 1.05 0.95
17 0 0 0 0 230 1.05 0.95
18 333 68 0 0 230 1.05 0.95
19 181 37 0 0 230 1.05 0.95
20 128 26 0 0 230 1.05 0.95
21 0 0 0 0 230 1.05 0.95
22 0 0 0 0 230 1.05 0.95
23 0 0 0 0 230 1.05 0.95
24 0 0 0 0 230 1.05 0.95
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Table A.2 IEEE RTS generator data.
Bus pmax pmin vg qmax qmin Type
1 152 30.4 1.035 60 -50 U76
2 152 30.4 1.035 60 -50 U76
7 300 75 1.025 180 0 U100
13 591 207 1.02 240 0 U197
14 0 0 0.98 200 -50 SynCond
15 155 54.3 1.014 80 -50 U155
16 155 54.3 1.017 80 -50 U155
18 400 100 1.05 200 -50 U400
21 400 100 1.05 200 -50 U400
22 300 60 1.05 96 -60 U50
23 310 108.6 1.05 160 -100 U155
23 350 140 1.05 150 -25 U350
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Table A.3 IEEE RTS branch data.
Line# From To r x bc smax τ θshift

1 1 2 0.0026 0.0139 0.4611 175 0 0
2 1 3 0.0546 0.2112 0.0572 175 0 0
3 1 5 0.0218 0.0845 0.0229 175 0 0
4 2 4 0.0328 0.1267 0.0343 175 0 0
5 2 6 0.0497 0.192 0.052 175 0 0
6 3 9 0.0308 0.119 0.0322 175 0 0
7 3 24 0.0023 0.0839 0 400 1.03 0
8 4 9 0.0268 0.1037 0.0281 175 0 0
9 5 10 0.0228 0.0883 0.0239 175 0 0
10 6 10 0.0139 0.0605 2.459 175 0 0
11 7 8 0.0159 0.0614 0.0166 175 0 0
12 8 9 0.0427 0.1651 0.0447 175 0 0
13 8 10 0.0427 0.1651 0.0447 175 0 0
14 9 11 0.0023 0.0839 0 400 1.03 0
15 9 12 0.0023 0.0839 0 400 1.03 0
16 10 11 0.0023 0.0839 0 400 1.02 0
17 10 12 0.0023 0.0839 0 400 1.02 0
18 11 13 0.0061 0.0476 0.0999 500 0 0
19 11 14 0.0054 0.0418 0.0879 500 0 0
20 12 13 0.0061 0.0476 0.0999 500 0 0
21 12 23 0.0124 0.0966 0.203 500 0 0
22 13 23 0.0111 0.0865 0.1818 500 0 0
23 14 16 0.005 0.0389 0.0818 500 0 0
24 15 16 0.0022 0.0173 0.0364 500 0 0
25 15 21 0.0063 0.049 0.103 500 0 0
26 15 21 0.0063 0.049 0.103 500 0 0
27 15 24 0.0067 0.0519 0.1091 500 0 0
28 16 17 0.0033 0.0259 0.0545 500 0 0
29 16 19 0.003 0.0231 0.0485 500 0 0
30 17 18 0.0018 0.0144 0.0303 500 0 0
31 17 22 0.0135 0.1053 0.2212 500 0 0
32 18 21 0.0033 0.0259 0.0545 500 0 0
33 18 21 0.0033 0.0259 0.0545 500 0 0
34 19 20 0.0051 0.0396 0.0833 500 0 0
35 19 20 0.0051 0.0396 0.0833 500 0 0
36 20 23 0.0028 0.0216 0.0455 500 0 0
37 20 23 0.0028 0.0216 0.0455 500 0 0
38 21 22 0.0087 0.0678 0.1424 500 0 0
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Appendix B

IEEE 118 Bus System Data

In this appendix, we include the information that we used for our simulations on IEEE

118 bus system. We used the set of generation costs and limits found within the Mat-

power library [98] and we modified the set of line limits used previously by researchers

based at the Illinois Institute of Technology. The complete data set can be found at

http://cl.ly/3x0L3L393r24. We provide bus, generation and line data here. For the sake

of brevity, we have not presented some of the information that could be easily accessed in

matpower. The type column in Table B.1 refers to the bus type according to the following

labeling (i) Type 1 is for PQ buses; (ii) Type 2 represents PV buses; and (iii) Type 3 is

the reference bus [98].

In Table B.2, all real power values, P , are in MW and all reactive power, Q, values are

in MVAr.
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Table B.1 IEEE 118 bus system data.
Bus Type Pd (MW) Qd (MVAr) Bus Type Pd (MW) Qd (MVAr)
1 2 51 27 38 1 0 0
2 1 20 9 39 1 27 11
3 1 39 10 40 2 66 23
4 2 39 12 41 1 37 10
5 1 0 0 42 2 96 23
6 2 52 22 43 1 18 7
7 1 19 2 44 1 16 8
8 2 28 0 45 1 53 22
9 1 0 0 46 2 28 10
10 2 0 0 47 1 34 0
11 1 70 23 48 1 20 11
12 2 47 10 49 2 87 30
13 1 34 16 50 1 17 4
14 1 14 1 51 1 17 8
15 2 90 30 52 1 18 5
16 1 25 10 53 1 23 11
17 1 11 3 54 2 113 32
18 2 60 34 55 2 63 22
19 2 45 25 56 2 84 18
20 1 18 3 57 1 12 3
21 1 14 8 58 1 12 3
22 1 10 5 59 2 277 113
23 1 7 3 60 1 78 3
24 2 13 0 61 2 0 0
25 2 0 0 62 2 77 14
26 2 0 0 63 1 0 0
27 2 71 13 64 1 0 0
28 1 17 7 65 2 0 0
29 1 24 4 66 2 39 18
30 1 0 0 67 1 28 7
31 2 43 27 68 1 0 0
32 2 59 23 69 3 0 0
33 1 23 9 70 2 66 20
34 2 59 26 71 1 0 0
35 1 33 9 72 2 12 0
36 2 31 17 73 2 6 0
37 1 0 0 74 2 68 27
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Table B.1 IEEE RTS bus data–Cont’d
Bus Type Pd (MW) Qd (MVAr) Bus Type Pd (MW) Qd (MVAr)
75 1 47 11 97 1 15 9
76 2 68 36 98 1 34 8
77 2 61 28 99 2 42 0
78 1 71 26 100 2 37 18
79 1 39 32 101 1 22 15
80 2 130 26 102 1 5 3
81 1 0 0 103 2 23 16
82 1 54 27 104 2 38 25
83 1 20 10 105 2 31 26
84 1 11 7 106 1 43 16
85 2 24 15 107 2 50 12
86 1 21 10 108 1 2 1
87 2 0 0 109 1 8 3
88 1 48 10 110 2 39 30
89 2 0 0 111 2 0 0
90 2 163 42 112 2 68 13
91 2 10 0 113 2 6 0
92 2 65 10 114 1 8 3
93 1 12 7 115 1 22 7
94 1 30 16 116 2 184 0
95 1 42 31 117 1 20 8
96 1 38 15 118 1 33 15
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Table B.2 IEEE 118 bus system generation data
Bus Pg Qg Qmax Qmin Vg (pu) Pmax Pmin

1 0 0 15 -5 0.955 100 0
4 0 0 300 -300 0.998 100 0
6 0 0 50 -13 0.99 100 0
8 0 0 300 -300 1.015 100 0
10 450 0 200 -147 1.05 550 0
12 85 0 120 -35 0.99 185 0
15 0 0 30 -10 0.97 100 0
18 0 0 50 -16 0.973 100 0
19 0 0 24 -8 0.962 100 0
24 0 0 300 -300 0.992 100 0
25 220 0 140 -47 1.05 320 0
26 314 0 1000 -1000 1.015 414 0
27 0 0 300 -300 0.968 100 0
31 7 0 300 -300 0.967 107 0
32 0 0 42 -14 0.963 100 0
34 0 0 24 -8 0.984 100 0
36 0 0 24 -8 0.98 100 0
40 0 0 300 -300 0.97 100 0
42 0 0 300 -300 0.985 100 0
46 19 0 100 -100 1.005 119 0
49 204 0 210 -85 1.025 304 0
54 48 0 300 -300 0.955 148 0
55 0 0 23 -8 0.952 100 0
56 0 0 15 -8 0.954 100 0
59 155 0 180 -60 0.985 255 0
61 160 0 300 -100 0.995 260 0
62 0 0 20 -20 0.998 100 0
65 391 0 200 -67 1.005 491 0
66 392 0 200 -67 1.05 492 0
69 516.4 0 300 -300 1.035 805.2 0
70 0 0 32 -10 0.984 100 0
72 0 0 100 -100 0.98 100 0
73 0 0 100 -100 0.991 100 0
74 0 0 9 -6 0.958 100 0
76 0 0 23 -8 0.943 100 0
77 0 0 70 -20 1.006 100 0
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Table B.2 IEEE 118 bus system generation data–Cont’d
Bus Pg Qg Qmax Qmin Vg (pu) Pmax Pmin

80 477 0 280 -165 1.04 577 0
85 0 0 23 -8 0.985 100 0
87 4 0 1000 -100 1.015 104 0
89 607 0 300 -210 1.005 707 0
90 0 0 300 -300 0.985 100 0
91 0 0 100 -100 0.98 100 0
92 0 0 9 -3 0.99 100 0
99 0 0 100 -100 1.01 100 0
100 252 0 155 -50 1.017 352 0
103 40 0 40 -15 1.01 140 0
104 0 0 23 -8 0.971 100 0
105 0 0 23 -8 0.965 100 0
107 0 0 200 -200 0.952 100 0
110 0 0 23 -8 0.973 100 0
111 36 0 1000 -100 0.98 136 0
112 0 0 1000 -100 0.975 100 0
113 0 0 200 -100 0.993 100 0
116 0 0 1000 -1000 1.005 100 0
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Table B.3 IEEE 118 bus system branch data
Line# From To R(p.u.) X(p.u.) B(p.u.) Limit (MW)

1 1 2 0.0303 0.0999 0.0254 100
2 1 3 0.0129 0.0424 0.01082 100
3 4 5 0.00176 0.00798 0.0021 500
4 3 5 0.0241 0.108 0.0284 100
5 5 6 0.0119 0.054 0.01426 100
6 6 7 0.00459 0.0208 0.0055 100
7 8 9 0.00244 0.0305 1.162 500
8 8 5 0 0.0267 0 500
9 9 10 0.00258 0.0322 1.23 500
10 4 11 0.0209 0.0688 0.01748 100
11 5 11 0.0203 0.0682 0.01738 100
12 11 12 0.00595 0.0196 0.00502 100
13 2 12 0.0187 0.0616 0.01572 100
14 3 12 0.0484 0.16 0.0406 100
15 7 12 0.00862 0.034 0.00874 100
16 11 13 0.02225 0.0731 0.01876 100
17 12 14 0.0215 0.0707 0.01816 100
18 13 15 0.0744 0.2444 0.06268 100
19 14 15 0.0595 0.195 0.0502 100
20 12 16 0.0212 0.0834 0.0214 100
21 15 17 0.0132 0.0437 0.0444 500
22 16 17 0.0454 0.1801 0.0466 100
23 17 18 0.0123 0.0505 0.01298 100
24 18 19 0.01119 0.0493 0.01142 100
25 19 20 0.0252 0.117 0.0298 100
26 15 19 0.012 0.0394 0.0101 100
27 20 21 0.0183 0.0849 0.0216 100
28 21 22 0.0209 0.097 0.0246 100
29 22 23 0.0342 0.159 0.0404 100
30 23 24 0.0135 0.0492 0.0498 100
31 23 25 0.0156 0.08 0.0864 500
32 26 25 0 0.0382 0 500
33 25 27 0.0318 0.163 0.1764 500
34 27 28 0.01913 0.0855 0.0216 100
35 28 29 0.0237 0.0943 0.0238 100
36 30 17 0 0.0388 0 500
37 8 30 0.00431 0.0504 0.514 100
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Table B.3 IEEE 118 bus system branch data–Cont’d
Line# From To R(p.u.) X(p.u.) B(p.u.) Limit (MW)
38 26 30 0.00799 0.086 0.908 500
39 17 31 0.0474 0.1563 0.0399 100
40 29 31 0.0108 0.0331 0.0083 100
41 23 32 0.0317 0.1153 0.1173 100
42 31 32 0.0298 0.0985 0.0251 100
43 27 32 0.0229 0.0755 0.01926 100
44 15 33 0.038 0.1244 0.03194 100
45 19 34 0.0752 0.247 0.0632 100
46 35 36 0.00224 0.0102 0.00268 100
47 35 37 0.011 0.0497 0.01318 100
48 33 37 0.0415 0.142 0.0366 100
49 34 36 0.00871 0.0268 0.00568 100
50 34 37 0.00256 0.0094 0.00984 500
51 38 37 0 0.0375 0 500
52 37 39 0.0321 0.106 0.027 100
53 37 40 0.0593 0.168 0.042 100
54 30 38 0.00464 0.054 0.422 100
55 39 40 0.0184 0.0605 0.01552 100
56 40 41 0.0145 0.0487 0.01222 100
57 40 42 0.0555 0.183 0.0466 100
58 41 42 0.041 0.135 0.0344 100
59 43 44 0.0608 0.2454 0.06068 100
60 34 43 0.0413 0.1681 0.04226 100
61 44 45 0.0224 0.0901 0.0224 100
62 45 46 0.04 0.1356 0.0332 100
63 46 47 0.038 0.127 0.0316 100
64 46 48 0.0601 0.189 0.0472 100
65 47 49 0.0191 0.0625 0.01604 100
66 42 49 0.0715 0.323 0.086 100
67 42 49 0.0715 0.323 0.086 100
68 45 49 0.0684 0.186 0.0444 100
69 48 49 0.0179 0.0505 0.01258 100
70 49 50 0.0267 0.0752 0.01874 100
71 49 51 0.0486 0.137 0.0342 100
72 51 52 0.0203 0.0588 0.01396 100
73 52 53 0.0405 0.1635 0.04058 100
74 53 54 0.0263 0.122 0.031 100
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Table B.3 IEEE 118 bus system branch data–Cont’d
Line# From To R(p.u.) X(p.u.) B(p.u.) Limit (MW)
75 49 54 0.073 0.289 0.0738 100
76 49 54 0.0869 0.291 0.073 100
77 54 55 0.0169 0.0707 0.0202 100
78 54 56 0.00275 0.00955 0.00732 100
79 55 56 0.00488 0.0151 0.00374 100
80 56 57 0.0343 0.0966 0.0242 100
81 50 57 0.0474 0.134 0.0332 100
82 56 58 0.0343 0.0966 0.0242 100
83 51 58 0.0255 0.0719 0.01788 100
84 54 59 0.0503 0.2293 0.0598 100
85 56 59 0.0825 0.251 0.0569 100
86 56 59 0.0803 0.239 0.0536 100
87 55 59 0.04739 0.2158 0.05646 100
88 59 60 0.0317 0.145 0.0376 100
89 59 61 0.0328 0.15 0.0388 100
90 60 61 0.00264 0.0135 0.01456 500
91 60 62 0.0123 0.0561 0.01468 100
92 61 62 0.00824 0.0376 0.0098 100
93 63 59 0 0.0386 0 500
94 63 64 0.00172 0.02 0.216 500
95 64 61 0 0.0268 0 500
96 38 65 0.00901 0.0986 1.046 500
97 64 65 0.00269 0.0302 0.38 500
98 49 66 0.018 0.0919 0.0248 500
99 49 66 0.018 0.0919 0.0248 500
100 62 66 0.0482 0.218 0.0578 100
101 62 67 0.0258 0.117 0.031 100
102 65 66 0 0.037 0 500
103 66 67 0.0224 0.1015 0.02682 100
104 65 68 0.00138 0.016 0.638 500
105 47 69 0.0844 0.2778 0.07092 100
106 49 69 0.0985 0.324 0.0828 100
107 68 69 0 0.037 0 500
108 69 70 0.03 0.127 0.122 500
109 24 70 0.00221 0.4115 0.10198 100
110 70 71 0.00882 0.0355 0.00878 100
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Table B.3 IEEE 118 bus system branch data–Cont’d
Line# From To R(p.u.) X(p.u.) B(p.u.) Limit (MW)
111 24 72 0.0488 0.196 0.0488 100
112 71 72 0.0446 0.18 0.04444 100
113 71 73 0.00866 0.0454 0.01178 100
114 70 74 0.0401 0.1323 0.03368 100
115 70 75 0.0428 0.141 0.036 100
116 69 75 0.0405 0.122 0.124 500
117 74 75 0.0123 0.0406 0.01034 100
118 76 77 0.0444 0.148 0.0368 100
119 69 77 0.0309 0.101 0.1038 100
120 75 77 0.0601 0.1999 0.04978 100
121 77 78 0.00376 0.0124 0.01264 100
122 78 79 0.00546 0.0244 0.00648 100
123 77 80 0.017 0.0485 0.0472 500
124 77 80 0.0294 0.105 0.0228 500
125 79 80 0.0156 0.0704 0.0187 100
126 68 81 0.00175 0.0202 0.808 500
127 81 80 0 0.037 0 500
128 77 82 0.0298 0.0853 0.08174 100
129 82 83 0.0112 0.03665 0.03796 100
130 83 84 0.0625 0.132 0.0258 100
131 83 85 0.043 0.148 0.0348 100
132 84 85 0.0302 0.0641 0.01234 100
133 85 86 0.035 0.123 0.0276 500
134 86 87 0.02828 0.2074 0.0445 500
135 85 88 0.02 0.102 0.0276 100
136 85 89 0.0239 0.173 0.047 100
137 88 89 0.0139 0.0712 0.01934 500
138 89 90 0.0518 0.188 0.0528 500
139 89 90 0.0238 0.0997 0.106 500
140 90 91 0.0254 0.0836 0.0214 100
141 89 92 0.0099 0.0505 0.0548 500
142 89 92 0.0393 0.1581 0.0414 500
143 91 92 0.0387 0.1272 0.03268 100
144 92 93 0.0258 0.0848 0.0218 100
145 92 94 0.0481 0.158 0.0406 100
146 93 94 0.0223 0.0732 0.01876 100
147 94 95 0.0132 0.0434 0.0111 100
148 80 96 0.0356 0.182 0.0494 100
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Table B.3 IEEE 118 bus system branch data–Cont’d
Line# From To R(p.u.) X(p.u.) B(p.u.) Limit (MW)
149 82 96 0.0162 0.053 0.0544 100
150 94 96 0.0269 0.0869 0.023 100
151 80 97 0.0183 0.0934 0.0254 100
152 80 98 0.0238 0.108 0.0286 100
153 80 99 0.0454 0.206 0.0546 100
154 92 100 0.0648 0.295 0.0472 100
155 94 100 0.0178 0.058 0.0604 100
156 95 96 0.0171 0.0547 0.01474 100
157 96 97 0.0173 0.0885 0.024 100
158 98 100 0.0397 0.179 0.0476 100
159 99 100 0.018 0.0813 0.0216 100
160 100 101 0.0277 0.1262 0.0328 100
161 92 102 0.0123 0.0559 0.01464 100
162 101 102 0.0246 0.112 0.0294 100
163 100 103 0.016 0.0525 0.0536 500
164 100 104 0.0451 0.204 0.0541 100
165 103 104 0.0466 0.1584 0.0407 100
166 103 105 0.0535 0.1625 0.0408 100
167 100 106 0.0605 0.229 0.062 100
168 104 105 0.00994 0.0378 0.00986 100
169 105 106 0.014 0.0547 0.01434 100
170 105 107 0.053 0.183 0.0472 100
171 105 108 0.0261 0.0703 0.01844 100
172 106 107 0.053 0.183 0.0472 100
173 108 109 0.0105 0.0288 0.0076 100
174 103 110 0.03906 0.1813 0.0461 100
175 109 110 0.0278 0.0762 0.0202 100
176 110 111 0.022 0.0755 0.02 137
177 110 112 0.0247 0.064 0.062 100
178 17 113 0.00913 0.0301 0.00768 100
179 32 113 0.0615 0.203 0.0518 500
180 32 114 0.0135 0.0612 0.01628 100
181 27 115 0.0164 0.0741 0.01972 100
182 114 115 0.0023 0.0104 0.00276 100
183 68 116 0.00034 0.00405 0.164 500
184 12 117 0.0329 0.14 0.0358 100
185 75 118 0.0145 0.0481 0.01198 100
186 76 118 0.0164 0.0544 0.01356 100



153

References

[1] M. Huneault, F. Galiana, and G. Gross, “A review of restructuring in the electricity
business,” in Proc. 13th Power Systems Computation Conference, Jun. 1999, pp.
19–31.

[2] M. Milligan, E. Ela, J. Hein, T. Schneider, G. Brinkman, and P. Denholm, “Explo-
ration of high-penetration renewable electricity futures. vol. 4 of renewable electricity
futures study,” National Renewable Energy Laboratory, Tech. Rep., 2012.

[3] U.S.-Canada Power System Outage Task Force, “Final report on the August 14, 2003
blackout in the United States and Canada: Causes and recommendations,” North
American Electric Reliability Corporation, Tech. Rep., Apr. 2004.

[4] R. W. Lincoln, “Learning to trade power,” Ph.D. dissertation, University of Strath-
clyde, May 2011.

[5] L. Fink, “Security: its meaning and objectives,” in Proc. Int. Symposium on Power
System Security Assessment, 1988, pp. 35–41.

[6] L. Fink and K. Carlsen, “Power/energy: Operating under stress and strain,” IEEE
Spectrum, vol. 15, no. 3, pp. 48–53, Mar. 1978.

[7] T. Dy Liacco, “The adaptive reliability control system,” IEEE Trans. Power App.
Syst., no. 5, pp. 517–531, 1967.

[8] A. Monticelli, M. V. F. Pereira, and S. Granville, “Security-constrained optimal power
flow with post-contingency corrective rescheduling,” IEEE Trans. Power Syst., vol. 2,
no. 1, pp. 175–180, Feb. 1987.

[9] The Joint Board on Economic Dispatch for the Northeast Region, “Study and recom-
mendations regarding security constrained economic dispatch (SCED) in the north-
east,” Tech. Rep., May 2006.

[10] M. B. Cain, R. P. O’Neill, and A. Castillo, “History of optimal power
flow and formulations,” Federal Energy Regulatory Commission, Dec. 2012.
[Online]. Available: http://www.isone.com/committees/comm_wkgrps/prtcpnts_
comm/pac/mtrls/2013/mar202013/a2_planning_technical_guide.pdf

[11] M. Huneault and F. Galiana, “A survey of the optimal power flow literature,” IEEE
Trans. Power Syst., vol. 6, no. 2, pp. 762–770, May 1991.

http://www. isone. com/committees/comm_wkgrps/prtcpnts_comm/pac/mtrls/2013/mar202013/a2_planning_ technical_guide. pdf
http://www. isone. com/committees/comm_wkgrps/prtcpnts_comm/pac/mtrls/2013/mar202013/a2_planning_ technical_guide. pdf


References 154

[12] R. B. Squires, “Economic dispatch of generation directly from power system voltages
and admittances,” IEEE Trans. Power App. Syst., vol. PAS-79, no. 3, pp. 1235–1244,
Apr. 1960.

[13] R. B. Shipley and M. Hochdorf, “Exact economic dispatch - digital computer solu-
tion,” IEEE Trans. Power App. Syst., vol. PAS-75, no. 3, pp. 1147–1153, Jan. 1956.

[14] J. F. Calvert and T. W. Sze, “A new approach to loss minimization in electric power
systems,” IEEE Trans. Power App. Syst., vol. PAS-76, no. 3, pp. 1439–1446, Apr.
1957.

[15] A. J. Wood and B. F. Wollenberg, Power Generation Operation and Control, 2nd ed.
New York, NY: Wiley-Interscience, 1996.

[16] J. M. Arroyo and F. D. Galiana, “Energy and reserve pricing in security and network-
constrained electricity markets,” IEEE Trans. Power Syst., vol. 20, no. 2, pp. 634–643,
May 2005.

[17] F. D. Galiana, F. Bouffard, J. M. Arroyo, and J. F. Restrepo, “Scheduling and pricing
of coupled energy and primary, secondary, and tertiary reserves,” Proc. IEEE, vol. 93,
no. 11, pp. 1970–1983, Nov. 2005.

[18] J. Wang, N. E. Redondo, and F. D. Galiana, “Demand-side reserve offers in joint
energy/reserve electricity markets,” IEEE Trans. Power Syst., vol. 18, no. 4, pp.
1300–1306, Nov. 2003.

[19] P. A. Ruiz, C. R. Philbrick, E. Zak, K. W. Cheung, and P. W. Sauer, “Uncertainty
management in the unit commitment problem,” IEEE Trans. Power Syst., vol. 24,
no. 2, pp. 642–651, May 2009.

[20] J. Wang, M. Shahidehpour, and Z. Li, “Contingency-constrained reserve requirements
in joint energy and ancillary services auction,” IEEE Trans. Power Syst., vol. 24,
no. 3, pp. 1457–1468, Aug. 2009.

[21] K. Hedman, R. O’Neill, E. Fisher, and S. Oren, “Optimal transmission switching
with contingency analysis,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1577–1586,
Aug. 2009.

[22] K. W. Hedman, M. C. Ferris, R. P. O’Neill, E. B. Fisher, and S. S. Oren, “Co-
optimization of generation unit commitment and transmission switching with n − 1
reliability,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 1052–1063, May 2010.

[23] F. Bouffard, “Electricity market-clearing with stochastic security,” Ph.D. dissertation,
McGill University, Feb. 2006.

[24] Federal Energy Regulatory Commission. (2013, Oct.) Electric power markets:
National overview. [Online]. Available: https://www.ferc.gov/market-oversight/
mkt-electric/overview.asp

[25] A. Gomez-Exposito, A. J. Conejo, and C. Cañizares, Electric energy systems: analysis
and operation. CRC Press, 2008.

https://www.ferc.gov/market-oversight/mkt-electric/overview.asp
https://www.ferc.gov/market-oversight/mkt-electric/overview.asp


References 155

[26] F. Capitanescu, J. M. Ramos, P. Panciatici, D. Kirschen, A. M. Marcolini, L. Plat-
brood, and L. Wehenkel, “State-of-the-art, challenges, and future trends in security
constrained optimal power flow,” Elect. Power Syst. Res., vol. 81, no. 8, pp. 1731–
1741, Aug. 2011.

[27] J. Carpentier, “Contribution to the economic dispatch problem,” Bulletin de la So-
ciété Française des Électriciens, vol. 3, no. 8, pp. 431–447, 1962.

[28] O. Alsac and B. Stott, “Optimal load flow with steady-state security,” IEEE Trans.
Power App. Syst., vol. PAS-93, no. 3, pp. 745–751, May 1974.

[29] A. Berizzi, M. Delfanti, P. Marannino, M. Pasquadibisceglie, and A. Silvestri, “En-
hanced security-constrained OPF with FACTS devices,” IEEE Trans. Power Syst.,
vol. 20, no. 3, pp. 1597–1605, Aug. 2005.

[30] J. Momoh, R. Koessler, M. Bond, B. Stott, D. Sun, A. Papalexopoulos, and P. Ris-
tanovic, “Challenges to optimal power flow,” IEEE Trans. Power Syst., vol. 12, no. 1,
pp. 444–455, Feb. 1997.

[31] B. Stott, O. Alsac, and A. Monticelli, “Security analysis and optimization,” Proc.
IEEE, vol. 75, no. 12, pp. 1623–1644, Dec. 1987.

[32] J. Zhu, Optimization of Power System Operation. Hoboken, NJ: Wiley, 2008, ch. 3.
[33] X. Ma, H. Song, M. Hong, J. Wan, Y. Chen, and E. Zak, “The security-constrained

commitment and dispatch for Midwest ISO day-ahead co-optimized energy and an-
cillary service market,” in Proc. IEEE Power & Energy Society General Meeting,
Calgary, AB, Jul. 2009.

[34] F. Bouffard, F. D. Galiana, and A. J. Conejo, “Market-clearing with stochastic
security—Part II: Case studies,” IEEE Trans. Power Syst., vol. 20, no. 4, pp. 1827–
1835, Nov. 2005.

[35] F. Bouffard, F. D. Galiana, and J. M. Arroyo, “Umbrella contingencies in security-
constrained optimal power flow,” in Proc. 15th Power Systems Computation Conf.,
Liège, Belgium, Aug. 2005.

[36] P. Giesbertz and R. van Amerongen, “On the identification of redundant constraints
in optimisation problems,” Archiv für Elektrotechnik, vol. 72, no. 5, pp. 341–347,
1989. [Online]. Available: http://dx.doi.org/10.1007/BF01573715

[37] A. Boneh, S. Boneh, and R. J. Caron, “Constraint classification in mathematical
programming,” Math. Program., vol. 61, no. 1-3, pp. 61–73, Jun. 1990.

[38] E. D. Andersen and K. D. Andersen, “Presolving in linear programming,” Math.
Program., vol. 71, no. 2, pp. 221–245, Dec. 1995.

[39] A. Brearley, G. Mitra, and H. P. Williams, “Analysis of mathematical programming
problems prior to applying the simplex algorithm,” Math. Program., vol. 8, no. 1, pp.
54–83, Aug. 1975.

http://dx.doi.org/10.1007/BF01573715


References 156

[40] R. Caron, J. McDonald, and C. Ponic, “A degenerate extreme point strategy for
the classification of linear constraints as redundant or necessary,” J. Optim. Theory
Appl., vol. 62, no. 2, pp. 225–237, Aug. 1989.

[41] H. J. Greenberg, “Consistency, redundancy, and implied equalities in linear systems,”
Ann. Math. Artificial Intelligence, vol. 17, no. 1, pp. 37–83, 1996.

[42] J. Telgen, “Identifying redundant constraints and implicit equalities in systems of
linear constraints,” Manag. Sci., vol. 29, no. 10, pp. 1209–1222, Oct. 1983.

[43] G. L. Thompson, F. M. Tonge, and S. Zionts, “Techniques for removing nonbinding
constraints and extraneous variables from linear programming problems,” Manag.
Sci., vol. 12, no. 7, pp. 588–608, Mar. 1966.

[44] S. Paulraj and P. Sumathi, “A comparative study of redundant constraints identifi-
cation methods in linear programming problems,” Mathematical Problems in Engi-
neering, vol. 2010, Sep. 2010.

[45] P. Sumathi and S. Paulraj, “Identification of redundant constraints in large scale
linear programming problems with minimal computational effort,” Applied Mathe-
matical Sciences, vol. 7, no. 80, pp. 3963–3974, 2013.

[46] I. Ioslovich, “Robust reduction of a class of large-scale linear programs,” SIAM J. on
Optimization, vol. 12, no. 1, pp. 262–282, Jan. 2001.

[47] A. Geoffrion, “Generalized Benders decomposition,” Journal of optimization theory
and applications, vol. 10, no. 4, pp. 237–260, 1972.

[48] Y. Li and J. McCalley, “Decomposed SCOPF for improving efficiency,” IEEE Trans.
Power Syst., vol. 24, no. 1, pp. 494–495, Feb. 2009.

[49] M. Shahidehpour, H. Yamin, and Z. Li, Security–Constrained Unit Commitment.
John Wiley & Sons, Inc., 2002, pp. 275–310.

[50] T. Overbye, X. Cheng, and Y. Sun, “A comparison of the ac and dc power flow models
for lmp calculations,” in Proc. 37th Ann. Hawaii Int. Conf. on System Sciences, Jan.
2004, p. 9 pp.

[51] A. Marano-Marcolini, F. Capitanescu, J. Martinez-Ramos, and L. Wehenkel, “Ex-
ploiting the use of DC SCOPF approximation to improve iterative ac scopf algo-
rithms,” IEEE Trans. Power Syst., vol. 27, no. 3, pp. 1459–1466, Aug. 2012.

[52] L. Platbrood, F. Capitanescu, C. Merckx, H. Crisciu, and L. Wehenkel, “A generic
approach for solving nonlinear-discrete security-constrained optimal power flow prob-
lems in large-scale systems,” IEEE Transactions on Power Systems, vol. 29, no. 3,
pp. 1194–1203, May 2014.

[53] Q. Zhai, X. Guan, J. Cheng, and H. Wu, “Fast identification of inactive security
constraints in SCUC problems,” IEEE Trans. Power Syst., vol. 25, no. 4, pp. 1946–
1954, Nov. 2010.



References 157

[54] H. Wang, C. Murillo-Sanchez, R. Zimmerman, and R. Thomas, “On computational
issues of market-based optimal power flow,” IEEE Trans. Power Syst., vol. 22, no. 3,
pp. 1185–1193, Aug. 2007.

[55] G. Ejebe and B. Wollenberg, “Automatic contingency selection,” IEEE Trans. Power
App. Syst., vol. PAS-98, no. 1, pp. 97–109, Jan. 1979.

[56] T. A. Mikolinnas and B. Wollenberg, “An advanced contingency selection algorithm,”
IEEE Trans. Power App. Syst., vol. PAS-100, no. 2, pp. 608–617, Feb. 1981.

[57] G. Irisarri and A. Sasson, “An automatic contingency selection method for on-line
security analysis,” IEEE Trans. Power App. Syst., vol. PAS-100, no. 4, pp. 1838–1844,
Apr. 1981.

[58] R. Fischl, T. Halpin, and A. Guvenis, “The application of decision theory to contin-
gency selection,” IEEE Trans. Circ. Syst., vol. 29, no. 11, pp. 712–723, Nov. 1982.

[59] R. Schlueter, J. E. Sekerke, K. L. Burnett, and A. G. Costi, “Improved contingency
measures for operation and planning applications,” IEEE Trans. Power Syst., vol. 4,
no. 4, pp. 1430–1437, Nov. 1989.

[60] Q. Jiang, Z. Huang, and K. Xu, “Contingency filtering technique for transient stability
constrained optimal power flow,” IET Gener. Transm. Distrib., vol. 7, no. 12, pp.
1536–1546, Dec. 2013.

[61] Q. Wang, J.-P. Watson, and Y. Guan, “Two-stage robust optimization for n-k
contingency-constrained unit commitment,” IEEE Trans. Power Syst., vol. 28, no. 3,
pp. 2366–2375, Aug. 2013.

[62] Y. Chen and A. Bose, “An adaptive pre-filter for the voltage contingency selection
function,” IEEE Trans. Power Syst., vol. 5, no. 4, pp. 1478–1486, Nov. 1990.

[63] V. C. Ramesh and X. Li, “A fuzzy multiobjective approach to contingency constrained
opf,” IEEE Trans. Power Syst., vol. 12, no. 3, pp. 1348–1354, Aug. 1997.

[64] T. Sidhu and L. Cui, “Contingency screening for steady-state security analysis by
using FFT and artificial neural networks,” IEEE Trans. Power Syst., vol. 15, no. 1,
pp. 421–426, Feb. 2000.

[65] V. Brandwajn, A. B. R. Kumar, A. Ipakchi, A. Bose, and S. Kuo, “Severity indices
for contingency screening in dynamic security assessment,” IEEE Trans. Power Syst.,
vol. 12, no. 3, pp. 1136–1142, Aug. 1997.

[66] L. Wehenkel, “Contingency severity assessment for voltage security using non-
parametric regression techniques,” IEEE Trans. Power Syst., vol. 11, no. 1, pp.
101–111, Feb. 1996.

[67] N. Amjady and M. Esmaili, “Application of a new sensitivity analysis framework for
voltage contingency ranking,” IEEE Trans. Power Syst., vol. 20, no. 2, pp. 973–983,
May 2005.



References 158

[68] C. Davis and T. Overbye, “Multiple element contingency screening,” IEEE Trans.
Power Syst., vol. 26, no. 3, pp. 1294–1301, Aug. 2011.

[69] C.-L. Chang and Y.-Y. Hsu, “A new approach to dynamic contingency selection,”
IEEE Trans. Power Syst., vol. 5, no. 4, pp. 1524–1528, Nov. 1990.

[70] F. M. Echavarren, E. Lobato, and R. Rouco, “Contingency analysis: feasibility iden-
tification and calculation algorithm,” Proc. IEE Gener. Transm. Distrib., vol. 152,
no. 5, pp. 645–652, Sep. 2005.

[71] Y. Jia, P. Wang, X. Han, J. Tian, and C. Singh, “A fast contingency screening
technique for generation system reliability evaluation,” IEEE Trans. Power Syst.,
vol. 28, no. 4, pp. 4127–4133, Nov. 2013.

[72] Y.-Y. Hsu and H.-C. Kuo, “Fuzzy-set based contingency ranking [power system se-
curity],” IEEE Trans. Power Syst., vol. 7, no. 3, pp. 1189–1196, Aug. 1992.

[73] Y. Mansour, E. Vaahedi, and M. El-Sharkawi, “Dynamic security contingency screen-
ing and ranking using neural networks,” IEEE Trans. Neural Net., vol. 8, no. 4, pp.
942–950, Jul. 1997.

[74] P. Ruiz and P. Sauer, “Voltage and reactive power estimation for contingency analysis
using sensitivities,” IEEE Trans. Power Syst., vol. 22, no. 2, pp. 639–647, May 2007.

[75] F. Capitanescu, M. Glavic, D. Ernst, and L. Wehenkel, “Contingency filtering tech-
niques for preventive security-constrained optimal power flow,” IEEE Trans. Power
Syst., vol. 22, no. 4, pp. 1690–1697, Nov. 2007.

[76] J. Zaborszky, K.-W. Whang, and K. Prasad, “Fast contingency evaluation using
concentric relaxation,” IEEE Trans. Power App. Syst., vol. PAS-99, no. 1, pp. 28–36,
Jan. 1980.

[77] V. Brandwajn, “Efficient bounding method for linear contingency analysis,” IEEE
Trans. Power Syst., vol. 3, no. 1, pp. 38–43, Feb. 1988.

[78] E. Hnyilicza, S. T. Y. Lee, and F. C. Schweppe, “Steady state security regions: Set-
theoretic approach,” in Proc. IEEE PICA, New Orleans, LA, 1975, pp. 347–355.

[79] R. Fischl, G. C. Ejebe, and J. A. De Maio, “Identification of power system steady-
state security regions under load uncertainty,” in Proc. IEEE PES Summer Meeting,
Portland, OR, 1976.

[80] C. G. Ejebe and B. F. Wollenberg, “Automatic contingency selection,” IEEE Trans.
Power App. Syst., vol. PAS-98, no. 1, pp. 97–109, Jan. 1979.

[81] M. H. Banakar and F. D. Galiana, “Power system security corridors concept and
computation,” IEEE Trans. Power App. Syst., vol. PAS-100, no. 11, pp. 4524–4532,
Nov. 1981.

[82] R. Fischl, T. F. Halpin, and A. Guvenis, “The application of decision-theory to
contingency selection,” IEEE Trans. Circuits Syst., vol. CAS-29, no. 11, pp. 712–
723, Nov. 1982.



References 159

[83] V. Brandwajn and M. G. Lauby, “Complete bounding for AC contingency analysis,”
IEEE Trans. Power Syst., vol. 4, no. 2, pp. 724–729, May 1989.

[84] A. B. R. Kumar, V. Brandwajn, A. Ipakchi, and R. Adapa, “Integrated framework
for dynamic security analysis,” IEEE Trans. Power Syst., vol. 13, no. 3, pp. 816–821,
Aug. 1998.

[85] C. Fu and A. Bose, “Contingency ranking based on severity indices in dynamic sever-
ity analysis,” IEEE Trans. Power Syst., vol. 14, no. 3, pp. 980–986, Aug. 1999.

[86] D. Ernst, D. Ruiz-Vega, M. Pavella, P. M. Hirsch, and D. Sobajic, “A unified approach
to transient stability contingency filtering, ranking and assessment,” IEEE Trans.
Power Syst., vol. 16, no. 3, pp. 435–443, Aug. 2001.

[87] F. Capitanescu and L. Wehenkel, “A new iterative approach to the corrective security-
constrained optimal power flow problem,” IEEE Trans. Power Syst., vol. 23, no. 4,
pp. 1533–1541, Nov. 2008.

[88] A. Street, F. Oliveira, and J. Arroyo, “Contingency-constrained unit commitment
with n− k security criterion: A robust optimization approach,” IEEE Trans. Power
Syst., vol. 26, no. 3, pp. 1581–1590, Aug. 2011.

[89] J. Momoh, R. Adapa, and M. El-Hawary, “A review of selected optimal power flow
literature to 1993. i. nonlinear and quadratic programming approaches,” IEEE Trans.
Power Syst., vol. 14, no. 1, pp. 96–104, Feb. 1999.

[90] J. Momoh, M. El-Hawary, and R. Adapa, “A review of selected optimal power flow
literature to 1993. ii. newton, linear programming and interior point methods,” IEEE
Trans. Power Syst., vol. 14, no. 1, pp. 105–111, Feb. 1999.

[91] A. Papalexopoulos, “Challenges to on-line opf implementation,” IEEE Trans. Power
Syst., vol. 12, no. 1, pp. 449–451, Feb. 1997.

[92] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization. Belmont,
MA: Athena Scientific, 1997.

[93] IEEE 118 bus power flow test case. [Online]. Available: http://www.ee.washington.
edu/research/pstca/pf118/ieee118psp.txt

[94] Reliability Test System Task Force, “The IEEE reliability test system—1996,” IEEE
Trans. Power Syst., vol. 14, no. 3, pp. 1010–1020, Aug. 1999.

[95] C. A. Floudas, Nonlinear and Mixed-Integer Optimization: Fundamentals and Appli-
cations. New York, NY: Oxford University Press, 1995.

[96] R. Baldick, Applied Optimization. Cambridge, U.K.: Cambridge University Press,
2006.

[97] GAMS Development Corporation, GAMS—A User’s Guide. Washington, DC:
GAMS, Jul. 2014.

http://www.ee.washington.edu/research/pstca/pf118/ieee118psp.txt
http://www.ee.washington.edu/research/pstca/pf118/ieee118psp.txt


References 160

[98] R. D. Zimmerman, C. E. Murillo-Sánchez, and D. Gan. MATPOWER 4.1: A
MATLAB power system simulation package. Cornell University. [Online]. Available:
http://www.pserc.cornell.edu/matpower/

[99] A. Ardakani and F. Bouffard, “Identification of umbrella constraints in dc-based
security-constrained optimal power flow,” IEEE Trans. Power Syst., vol. 28, no. 4,
pp. 3924–3934, Nov. 2013.

[100] ——, “Acceleration of umbrella constraint discovery in generation scheduling prob-
lems,” IEEE Trans. Power Syst., Aug. 2014, in press.

[101] M. Carrión and J. Arroyo, “A computationally efficient mixed-integer linear formu-
lation for the thermal unit commitment problem,” IEEE Trans. Power App. Syst.,
vol. 21, no. 3, pp. 1371–1378, Aug. 2006.

[102] S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.
[103] B. R. Szkuta, L. A. Sanabria, and T. Dillon, “Electricity price short-term forecasting

using artificial neural networks,” IEEE Trans. Power Syst., vol. 14, no. 3, pp. 851–
857, Aug. 1999.

[104] J. Contreras, R. Espinola, F. Nogales, and A. Conejo, “Arima models to predict
next-day electricity prices,” IEEE Trans. Power Syst., vol. 18, no. 3, pp. 1014–1020,
Aug. 2003.

[105] J.-B. Park, K.-S. Lee, J.-R. Shin, and K. Lee, “A particle swarm optimization for
economic dispatch with nonsmooth cost functions,” IEEE Trans. Power Syst., vol. 20,
no. 1, pp. 34–42, Feb. 2005.

[106] D. Park, M. El-Sharkawi, I. Marks, R.J., L. Atlas, and M. Damborg, “Electric load
forecasting using an artificial neural network,” IEEE Trans. Power Syst., vol. 6, no. 2,
pp. 442–449, May 1991.

[107] H. Hippert, C. Pedreira, and R. Souza, “Neural networks for short-term load forecast-
ing: a review and evaluation,” IEEE Trans. Power Syst., vol. 16, no. 1, pp. 44–55,
Feb. 2001.

[108] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural
networks, vol. 4, no. 2, pp. 251–257, 1991.

[109] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Cognitive modeling, 1988.

[110] J. Kennedy, R. Eberhart et al., “Particle swarm optimization,” in Proc. IEEE Int.
Conf. on Neural Net., vol. 4, no. 2. Perth, Australia, 1995, pp. 1942–1948.

[111] W. Butler and S. Haykin, “Multiparameter sensitivity problems in network theory,”
Proc. IEE, vol. 117, no. 12, pp. 2228–2236, Dec. 1970.

[112] A. Kalantari and S. M. Kouhsari, “An exact piecewise method for fault studies in in-
terconnected networks,” International Journal of Electrical Power & Energy Systems,
vol. 30, no. 3, pp. 216–225, Mar. 2008.

http://www.pserc.cornell.edu/matpower/

	Introduction
	Fundamentals of Modern Power System Security Enforcement
	Operational Cost Optimization in Power Systems
	Economic Dispatch
	Unit Commitment

	Optimal Power Flow
	Problem Identification
	Dissertation Outline
	Claim of Originality

	Umbrella Constraint Discovery
	Introduction
	Preventive SCOPF
	SCOPF Problem Formulation
	Compact Formulation

	Umbrella Constraints and Umbrella Sets
	Identifying Umbrella Constraints
	Preliminaries
	Efficient Umbrella Constraint Discovery
	Some Remarks
	Computational Complexity of UCD-II
	UCD-II Infeasibility and Solution Uniqueness
	Generality of UCD-II


	Decomposition
	Separation
	Divide-and-Conquer
	Partitioning
	Contingency-Based Partitioning
	Line-Based Partitioning


	Three-Bus Example
	Lagrange Multipliers of UCD-II Constraints

	Test Results
	IEEE RTS
	Contingency-Based Partitioning
	Line-Based Partitioning

	118 Bus System
	Line-Based Partitioning of UCD-II
	Contingency-Based Partitioning of UCD-II


	Sensitivity Analysis
	Three-Bus System
	Load Change at Bus 3
	Load Change at Bus 2

	IEEE RTS
	Change of Load at Bus 7
	Change of Load at Bus 8
	Discussion


	Discussion
	Summary and Conclusion

	Partial Umbrella Constraint Discovery
	Introduction
	Computational Inefficiencies in UCD
	Partial UCD
	Formulation of Partial UCD
	Size of P-UCD

	Partial UCD Test Results
	Application on IEEE RTS
	Application on IEEE 118 Bus System

	Summary and Conclusion

	Application to Unit Commitment Problems
	Introduction
	UCD and Mixed-Integer Problems
	Formulation of the Unit Commitment Problem
	Application of UCD to SCUC
	Application of UCD on Static Unit Commitment
	Application of UCD on Dynamic Unit Commitment
	Discussion

	Summary and Conclusion

	Prediction of Umbrella Sets
	Introduction
	Neural Networks
	Test System
	Implementation
	Error Types
	Modified Training Algorithm
	Conclusion

	Conclusion
	Dissertation Overview
	Recommendations for Future Work

	IEEE Reliability Test System Data
	IEEE 118 Bus System Data
	References

