Operationalizing Feature Models for
Concern-Oriented Reuse

Nishanth Thimmegowda
Master of Science
School of Computer Science

McGill University
Montreal,Quebec

2015-11-01

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Master of Science

Copyright (©) Nishanth Thimmegowda, 2015

i

DEDICATION

This thesis is dedicated to all the members of Software Engineering Lab, McGill Univer-

sity without whom this thesis would not have been possible

il

ACKNOWLEDGEMENTS

This thesis as it stands would not have possible without the help of a lot of people. 1

would like to express my gratitutde towards them.

First of all, my deepest respect and acknowledgement to Prof. Joerg Kienzle who guided
me throughtout my journey of Masters at McGill. Be it acadaemic or non-acadaemic, his
guidance has made me more ambitious, more dedicated and simply a better human being.
No amount of words can express the respect which I shall always have for him. Thank you

for all the opportunities which you provided me. Keep rocking Prof.

I would also like to thank Gunter Mussbacher for this continous support throughout my

thesis and answering any queries arised regarding jUCMNav technicalities.

Matthias, Berk and Celine - My three awesome companions at SEL, McGill who because
of their work, passion, beer and pure awesomeness made my time at McGill nothing but

extraordinary.

100 Gamaads, my group of friends from MSRIT, Bangalore, whose constant jokes, mes-
sages and support motivated me during my thesis.

Doda : "Lol"

Satvik : "Enro nimdhu"

Avinash : 9gag video

v

Sam : Image

Akash : Classy pic
Sridhar : "Rod macha"
Vikas : "En macha"
Tejesh : Non-existent
KT : "Yaakro"

Tejas : "Platinum gym"

Special mention to Hucha Venkat Sene Montreal Chapter, honarary director Vinnay Mayya,
Chief Treasurer, Kumar Vishwanath, Executive President, Kishan Pai, who enforced my

belief that anyone can make it big if he beleived in himself and the power of the sun.

All my friends from Montreal - Akhilesh, Vidhya, Adithya, Gaurav, Debal, Srishti, Nithin,
Nandu, Nikhil, Vanessa, Edward, Yaron, Muntasir, Navjot. Thank you for all your patience

and the support you people provided for me.

Lastly Vishnu, Manisha, Kavya, Divya, Aditya, Rajath, Harit you people were as much

as an integral part of my journey as me. This thesis would not have been possible if not for

you guys.

ABSTRACT

Concern-Oriented Reuse (CORE) is a reuse-focussed software development approach that
builds on the disciplines of model-driven engineering, software product lines and aspect-
orientation. CORE defines broad units of reuse called concerns, in which feature models
play a central role. They express the variability encapsulated within a concern, are used as a
basis for calculating the impact on non-functional properties and qualities of specific concern
configurations, and establish a link to the realization models that implement the functionality
of each feature. With the aim of creating the first CORE-based modelling tool, this thesis
investigated two different ways of operationalizing feature models within CORE: a) by means
of a well-defined interface that links an external implementation of feature models with the
CORE tool, and b) by directly integrating feature models into the CORE metamodel and
providing operations to perform edit operations. To simplify and streamline the interaction
between tool users and the feature models, this thesis also presents different feature model
visualization algorithms that are optimized for concern designers (i.e., modellers that create
or modify a concern) or for concern users (i.e., modellers that reuse an existing concern as

is).

vi

ABREGE

Concern-Oriented Reuse (CORE) est une approche de développement de logiciel axée
sur la réutilisation qui se fonde sur des disciplines de I'ingénierie dirigée par les modéles,les
lignes de produits logiciels et des techniques orientées aspect. CORE définit des larges
unités de réutilisation appelées des préoccupations ol les modéles de fonctions y jouent un
role central. Ils représentent la variabilité encapsulé dans une préoccupation. Ils sont utilisés
comme base pour le calcul de I'impact sur les qualités et les propriétés non-fonctionnelles
de configurations spécifiques. Ils établissent aussi un lien vers les modéles de réalisation qui
mettent en ceuvre la fonctionnalité de chaque caractéristique. Avec le but de créer le premier
outil de modélisation basé sur le concept de CORE, dans cette thése j’étudie deux maniéres
différentes de rendre opérationnels des modéles de fonction au sein de CORE: a) au moyen
d’une interface bien définie qui relie une mise en ceuvre externe de modéles de fonction avec
l'outil de CORE, et b) en intégrant directement les modéles de fonction dans le méta-modéle
de CORE et en fournissant des opérations pour effectuer des opérations de modification.
Pour simplifier et rationaliser I'interaction entre les utilisateurs de 1'outils et les modéles
de fonction, cette thése présente également différents algorithmes de visualization pour les
modéles de fonction qui sont optimisés pour les concepteurs, a savoir les modélisateurs qui
créent ou qui modifient une préoccupation, ou pour les utilisateurs de préoccupation, a savoir

les modélisateurs qui réutilisent une préoccupation telle qu’elle a été congue.

vii

TABLE OF CONTENTS

DEDICATION iii
ACKNOWLEDGEMENTS e iv
ABSTRACT . . . o e vi
ABREGE vii
LIST OF FIGURES e xi
1 Introductiono 1
1.1 Thesis Contributions o 4

1.2 Thesis Outline 6

2 Backgroundo 8
2.1 Variability Modelling in Software Product Lines 9

2.1.1 Feature Modelling Lo 9

2.1.2 Decision Modelling o o 9

2.1.3 Orthogonal Variability Management 9

2.2 Concern Representation 10

2.3 Designing a Concern o 11

2.4 Reusing a Concern o 13

2.5 Existing CORE Metamodel 16

2.6 TouchCORE o 17

3 Reuse of Existing Feature and Impact Model Implementation 21
3.1 User Requirements Notation (URN) 21

3.1.1 Use Case Maps (UCM) 22

3.1.2 Goal-Oriented Requirements Language (GRL) 22

3.1.3 Requirements Elicitation and Specification with URN 24

3.1.4 How URN can Support Feature Models 25

viii

3.2 JUCMNav e e
3.2.1 Feature Model Support in jJUCMNav
3.2.2 Impact Model Support in jUCMNav
3.3 Interface between CORE and Existing jJUCMNav Implementation
3.3.1 Structural Additions to the CORE Metamodel
3.3.2 Interface Operations
3.3.3 Limitations of the Proposed Interface

Feature Model Integration L.

4.1 Feature Model Structure oL
4.1.1 Feature Model and Feature Relationships / Constraints
4.1.2 Feature Model Configurations
4.2 Feature Model Behaviour 0L
4.2.1 Feature Model Editing Operations
4.2.2 Feature Model Selection / Evaluation Operations:
4.3 Integration of an External Constraint Solver
4.3.1 Integration of FAMILIAR with TouchCORE

Feature Model Visualisation

5.1 Concern Designer Visualization Algorithm
5.2 Concern User Visualization Algorithm
5.2.1 Compact User Visualization Mode
5.2.2 Verbose User Visualization Mode
5.3 Order of Visualization
5.3.1 Top-Down Display
5.3.2 Full Display

Related Work

6.1 Concerns and Aspect-Oriented Modelling Approaches
6.2 Variability Modelling o
6.3 Feature Models
6.3.1 Feature Model Types
6.3.2 Feature Model Implementations / Techniques
6.4 Work Related to Impact Models

Conclusion

7.1 Future Work s,

X

References

7.1.1 Full Integration of Impact Models
7.1.2 COREification of Additional Modelling Notations

Figure
2-1
2-2
2-3
2 4
3-1
3-2
33
4-1
4 2
4-3
5-1

5 2

-3
o4
55
6-1
6-2

6-3

LIST OF FIGURES

page
Association Feature Model0 13
Association Impact Model 14
Ordered concern reusing association 0oL 15
CORE metamodel 18
An Example Goal Graph 24
A Feature Model in jJUCMNav, 27
An Impact Model in jJUCMNav 27
CORE Metamodel 43
Screenshot of FAMILIAR tool 52
Interaction of TouchCORE with FAMILIAR 53
Concern and their Feature Models a7
Concern Designer Visualization Algorithm applied to the Smart Home Feature
Model 61
Compact User Visualization of the Smart Home Feature Model 65
Verbose User Visualization of the Smart Home Feature Model 67
Workflow Feature Model 67
Basic Feature Modelo 73
Cardinality Based Feature Model 74
Extended Feature Model oo 75

xi

Chapter 1
Introduction

Over the years, engineering disciplines have matured to a point where official organiza-
tions now exist that govern and regulate how engineers practice their professions. Different
engineering disciplines, e.g., civil engineering, provide standards and manuals for their pro-
cesses, practices, and even safety guidelines. These manuals guide the engineer in making
proper decisions and choosing the best solution that satisfies stakeholder’s requirements.
Similar to other engineering disciplines, software engineering aims at systematic production
of software, by choosing the best solution, and by applying the best practices that satisfy the
requirements, are cost-effective, and minimize time-to-market. Producing complex software
systems involves many stakeholders such as developers, scientists, engineers of other disci-
plines, the customer, and end users with specialized domain knowledge in their respective
fields. Bridging the gap between the specialized domain knowledges and the development
technologies (e.g., programming languages, technical infrastructure, testing methods) be-
comes a major challenge when different stakeholders work together in a software project.
Previous research has shown that manual efforts to bridge this gap result in accidental com-
plexities [18].

Model-Driven Engineering (MDE) [38] provides means to represent domain specific knowl-

edge within models. MDE aims at developing software through model creation, refinement,

and composition. If done with automated tool support, MDE helps reduce accidental com-
plexities and bridge the domain-implementation gap. MDE advocates using the best mod-
elling formalism that expresses the relevant properties of the system under development at
each level of abstraction, for a given stakeholder group. A formalism used at the require-
ment level for scientists is different from the formalism used at the design level for developers.
Through model transformations, models of higher level of abstraction are integrated with
lower-level models that are closer to the solution space, such as algorithms, data structures,
networking, etc. This process continues until an executable model (which can be code) is
generated.

However, MDE has challenges of its own. The crosscutting nature of most models makes
it difficult to apply in a modular way software engineering techniques such as information
hiding, decomposition, interfaces, and abstraction. In addition, modellers usually create
models from scratch as there is limited support for reusable model libraries. Model reuse
is a challenge in MDE, despite the success stories in programming languages as exemplified
by, e.g., class libraries, services, and components. Typically, there exist different reusable
solutions for a particular problem, with each solution having different impacts on high-level
goals and system properties. When reusing existing artefacts, software practitioners usually
rely on their experience to assess the advantages and disadvantages, or have to consult
lengthy and informal documentation, books, blogs, tutorials, etc.

To address the aforementioned issues, a novel reuse paradigm called Concern-Oriented
Reuse (CORE), that builds on the ideas of MDE, advanced Separation of Concerns (SoC) [16],

Software Product Lines (SPL) [35], and goal modelling [15, 43| was introduced in [3]. CORE

introduces a new unit of reuse called concern, that enables broad-scale model reuse. A con-
cern groups together software artifacts, in particular models, related to a domain of interest
to a stakeholder or developer. Typically models defined inside a concern span multiple
phases of the software development cycle, and go through different layers of abstraction.
Furthermore, and most importantly for this thesis, a concern encapsulates all relevant varia-
tions/choices that are available for reuse in the captured domain, together with guidance on
how to choose among those variations. The variations are specified in a variation interface
that takes the form of a feature model.

At the start of my thesis, the idea of CORE existed, but there was no modelling tool
that supported the concepts of CORE. Researchers had created feature models for example
concerns, e.g., Association, Observer, Workflow, on paper without proper tool support. The
detailed, generic design model realizing each feature or variation were separately designed
using stand-alone modelling tools with support for aspect-oriented composition. In order to
reuse a specific concern configuration, researchers had to use the stand-alone modelling tools
to compose the realization models of the desired features in the correct order.

This situation was not only cumbersome, but also highly error-prone, because the mod-
eller could easily decide to compose realization models of conflicting features, or forget to
compose realization models that take care of feature interactions. Since the main idea of
CORE is to make reuse simple and straightforward for the modeller, it was imperative to
operationalize CORE by creating a tool that would support the concepts of CORE and the
reuse process. For concern designers, this includes supporting the definition of feature models

and assigning realization models to features, and for concern users to streamline the concern

reuse process (automated evaluation of feature selections, evaluation of impacts, generation
of customized models, composition with application models).
1.1 Thesis Contributions
This master thesis focusses on operationalizing the fundamental concepts of concern-
oriented reuse: concerns, feature models and features, and how they are linked to realization
models. To demonstrate the usability of CORE, the existing aspect-oriented software mod-
elling tool TouchRAM was converted to concern-orientation. With TouchCORE, as the tool
is now called, it is now possible to build and reuse design concerns. At the beginning of
the thesis, we envisioned two possible ways to operationalize CORE, either by reusing an
existing implementation of feature and impact models to work with CORE or by directly
integrating features and impacts into CORE. One of the goals of the thesis was to evaluate
which appoach would be better.
Specifically this thesis makes the following contributions:
e Investigate the operationalization of feature models and impact models for CORE by
reusing an existing implementation
— Initially it seemed like the best idea to operationalize feature and impact mod-
els for CORE was to reuse an existing, external implementation. To this aim,
the features and impacts that were only abstractly defined in the CORE meta-
model were linked to an external implementation by means of an interface. This
interface defined enumeration types and function signatures which the external
implementation had to implement to interact with CORE. This external inter-
face included all the possible feature model editing operations which the modeller

might need. The interface and integration was implemented by building a bridge

between TouchCORE and jUCMNav, an Eclipse-based tool supporting feature
and goal modelling as defined by the User Requirements Notation [22].

— The main advantage of an external implementation is that it already exists, which
reduces the implementation effort. Additionally, by defining an interface, it is
possible to decouple CORE from a specific external implementation, and even use
different implementations, if available. Unfortunately, this approach also revealed
several serious limitations, e.g., problems with navigability, interface evolution,
cross referencing of model elements, etc.

e Operationalize feature models by directly integrating them into CORE

— The CORE metamodel was extended to directly contain the feature model. Classes
and enumeration types were added to the CORE metamodel to encode features
and feature dependencies. The concept of feature configuration was added to
store feature selections and feature re-exposure.

— Algorithms describing the edit operations for CORE feature models are described
in detail, and were implemented in TouchCORE. An algorithm that checks for
the validity of a given feature configuration is also presented.

— The integration of an external SAT solver with CORE in order to perform ad-
vanced validity checks of feature configurations is described, and was implemented
for TouchCORE.

e Propose different feature model visualization algorithms for concerns depending on
whether a modeller is designing a concern or reusing a concern

— When a concern designer works on realizing a feature within a current concern,

our proposed visualization algorithm shows any reused concerns and their selected

features as mandatory child features of the feature that made the reuse in the
current concern. This gives the concern designer all the information he needs to
properly integrate the models he develops with the structure and behaviour of the
current concern, in particular the parent features and the reuses they made.

— When a concern user reuses a concern, our proposed visualization algorithm
presents a condensed feature model that includes all the choices that the user
has to make, including reexposed choices of internally reused concerns, if any.
Any features that have to be reused (mandatory and already selected ones) are
hidden to simplify the reuse process.

— Furthermore, we propose two different selection orders to the concern user. Full
display involves showing the entire feature model of the concern that is being
reused including re-exposed features of lower-level concerns to the user, which
provides him with a condensed view of all options and allows him to try out the
different selections to compare their impacts. Top-down display presents the reuse
choices to the concern user layer-by-layer, starting with high-level decisions. Only
when the user has made a decision by selecting a feature, the next layer, i.e., the
subfeatures, are visualized. In this mode, the user is confronted only with the
minimal set of decisions that need to be made, thus reducing cognitive load.

1.2 Thesis Outline

This master thesis is structured as follows. Chapter 2 presents the main concepts of
concern-oriented reuse and the concern reuse process, as well as the old CORE metamodel.
Chapter 3 presents the background of URN and jUCMNayv, a tool that already supported fea-

ture models and impact models, and then describes how we attempted to reuse this existing

feature and impact model implementation to operationalize CORE. Finally, the limitations
of this approach are summarized.. Chapter 4 presents a stand-alone implementation of fea-
ture models. It introduces the new CORE metamodel with integrated feature modelling
together with algorithms describing the behavior of the operations on feature models re-
quired by CORE. Furthermore, the integration of an external SAT solver to validate partial
feature selections is also presented. Chapter 5 presents different visualization algorithms for
the feature model of a concern optimized for the type of modeller using the CORE tool, i.e.,
the concern designer or the concern user. Chapter 6 presents the related work in the field,

and last chapter concludes the thesis.

Chapter 2
Background

Model Driven Engineering (MDE) offers a new approach to address platform inabilities
and express the domain concepts effectively with the help of transformation engines and
generators which analyse certain aspects of models. Classic MDE focusses on models (design
models , sequence diagrams...) to be the essential unit of abstraction, design, construction
and reasoning. In sharp contrast to this classic approach of MDE, in Concern-Oriented
Reuse (CORE), the main focus is on concerns.

CORE aims to combine the best practices and principles from MDE, advanced modular-
ization techniques and Software Product Lines (SPL). Reuse is the main focus in the context
of SPL development [12]|. The reuse concepts of SPL offers limited scope. i.e. the reuse
are not intended to cross boundaries. CDD covers reuse in a broader sense. It enables reuse
across concerns. Concerns are designed individually and reuses are enabled by the means of
well defined interfaces.

Aspect Oriented Modelling (AOM) aims to increase modularity and allows separation
of concerns. Many aspect-oriented modelling approaches have been proposed [26]. AOM
provides generic methods to package concerns which enhances reusability. This reuse can
be utilized by the detailed specification of the concern using independent aspect oriented

modelling notations.

2.1 Variability Modelling in Software Product Lines

Software Product Lines (SPL) refers to software engineering methods used for creating
similar set of software products. SPL can exist in many forms, namely programs, libraries,
software artifacts..etc. To express the commonalities and variabilities which exists in a
software product lines, various modelling notations have been suggested. The prominent
modelling notations are presented below.
2.1.1 Feature Modelling

Feature Model was first introduced by Kang et al in 1990 [25]. Since then the topic of
feature models has been subjected to extensive research across various domains. A feature
is an unique characteristic of a software system which has particular importance to the
stakeholder or in the functioning of the software system. A feature model has a tree-like
structure with parent-child relationships between the features.
2.1.2 Decision Modelling

Decision Modelling(DM) originated from the Synthesis method [10] and has been existing
since the time of feature models. The origin of DM was mainly due to practical applications
or applications closely tied to industrial use. DM can be defined as “a set of decisions that
are adequate to distinguish among the members of an application engineering product family
and to guide adaptation of application engineering work products”.
2.1.3 Orthogonal Variability Management

Orthogonal Variability Management (OVM) [36]|was introduced to document variability
in a dedicated model. OVM documents only the variability of the product line. OVM

offers significant advantages which includes smaller and less complex models, consistency

across models, and improved communication [30]. The information about the variability is
documented in the following format.

e Variation point : What varies 7

e Variant : How does it vary 7

e Variability constraints : The constraints on the variation

e Visibility of variability : Who is it documented for 7

2.2 Concern Representation

The concern reuse unit defines three interfaces which specify the details on how it is

supposed to be reused. The three types of interfaces are described as below :

e Variation interface: The variation interface describes the available variations (and com-
monalities) provided by the concern and its encapsulated models. It also specifies the
impact that different variations have on non-functional requirements. These variations
are expressed at a high level of abstraction, i.e., as user-perceivable features, and the
relationships between those features. In concerns, feature models and goal models are
used to specify the variation interface.

Feature Models: Feature model can be defined as a model which expresses the variabilities
and commonalities between objects called feature in a hierarchical tree like format. The
features in between them can have relationships or constraints. The possible type of rela-
tionship with a child feature can be Optional, Mandatory, XOR or OR. Kong introduced
feature models in 1991, in order to explain the variabilities and commonalities which existed
in Software Product Lines.

Goal Modelling : Goal models are used to capture actors, stakeholders, business require-

ments and objectives during the early requirements phases. Goal models indicate ways of

10

satisfying objectives and the positive and negative impacts on higher level alternate goals

and objectives. GGoal models can provide quantitative and qualitative analysis on alternative

solutions which can be used to solve a problem.

2.3

e Customization interface : The customization interface specifies how a chosen variation

of the solution should be adapted according to the specific needs of the application
under development. Every variant of the concern is described as abstractly to enhance
reusability. The main principle of the customization interface is to highlight the model
elements that needs to be adapted to the application domain. The CORE tool can
be utilized to provide these highlighting. Some model elements in the concern, are
partially specified and needs to be mandatorily related or adapted to the application’s
elements that intends to use the generic elements. Hence the customization interface is
used when the chosen variant from the concern needs to be adapted to the application
domain.

Usage interface: The usage interface for the concern is similar to what the public
operations are to a class in object-oriented design. I.e., the public operations define how
to access the functionality provided by the class from the outside world. In a similar
manner, the usage interface of the concern describes how the application can access
the functionality provided by the concern unit. The functionality is the structural
and behavioral properties of the underlying generic concern design. In other words, it
abstractly presents the functionality encapsulated by the concern to the developer.

Designing a Concern

Designing a concern is a non-trivial task, which can be done only by a designer who is

an expert of the domain for which the concern is to be created. This domain expert should

11

know all the low level details of the concern being designed and how it can be adapted to
the various application domains which can use the current concern. The concern designer
will try to adapt the design to make it as generic as possible which will facilitate easy reuse
and faster adaptation to the reusing context.

The concern designer starts off designing the concern by identifying the key features of
the concern. The features represent the distinctive aspects of the software systems. These
features can be characterised with deep understanding of the system. These features are
grouped together in a feature model. Feature model capture the relationships and depen-
dencies that exist between these unique features and are represented in a hierarchical tree like
format with parent - child relationships between each pair of feature defined appropriately.
Some set of features can also have extra dependencies which cannot be easily represented
with the parent - child format. The four possible types of relationships which can exist in
feature model between a parent and a child are :-

e Mandatory - The child feature is mandatory to the parent

e Optional - The child feature is optional to the parent

e XOR - Exactly one child among all the children should be selected

e OR - At least one child among all the child must be selected
In addition to relationships mentioned above, certain cross dependencies can also exist be-
tween certain pairs of features. The two types of cross dependencies are :

e Excludes This indicates that one feature cannot work with another feature, i.e., Feature

A excludes Feature B
e Requires: This indicates that one features needs another feature to function appropri-

ately, i.e., Feature A requires Feature B.

12

‘ mandatory /4\ alternative (XOR) Association

& optional A\ or (I0R) T~ —
Ordered Unordered Key-Indexed Database
: FIFO Queue :
ArrayList (Linked List) TreeSet HashSet LinkedHashMap

Figure 2 1: Association Feature Model

The 2-1 represents the Association concern. The root level association has an XOR con-
straint, indicating only one child can be selected. It is followed by their children and their
respective relationships.

After designing the feature model for the concern, the concern designer proceeds to
model an impact model for the concern. These impact models represents the impacts of
certain features on high level goals and non-functional properties. The concern designer will
appropriately make use of sub level goals and contribution links to design the impact model
for the concern. These impact models can represent how different variants of the solution /
selection of a combination of features impact the high level goals.

After designing the impact and feature models for the concern, the concern designer needs
to provide the appropriate structural and behavioral properties for the features defined in
the model. The concern designer realizes each feature via a model which encapsulates the
properties at all relevant levels of abstraction. These features and models are interlinked to
make the concern complete.

2.4 Reusing a Concern
After the concern designer completes designing a concern, this concern can be used by

any concern user to adapt to any application domain. Even though designing a concern, is

13

Increase
performance

Increase
access
performance

Increase
insertion/deletion
performance

Figure 2 2: Association Impact Model

time - consuming, challenging and requires the concern designer to have in-depth knowledge
of the system and the functionality, the benefits of the process lie in the ease of the reuse
process. Any user who wants to reuse an existing concern needs to perform 3 simple steps :

e The concern user who wants to reuse a concern, must first select all the required features
he desires based on the impact of each variant on the non functional requirements and
high level goals. After the concern user chooses a specific variant from the feature
model, the CORE tool merges all the realizing models of those features to produce a
new model according to the user selection.

e The second step in the process is to adapt the produced model to the application
context of the user. Some elements in the produced model might have been purposefully
left partial which can later be completed by mapping the element to the application
context. The user maps all the elements from the produced detailed model through an

interface with the application’s model elements.

14

Observer

o« b ———o

Notification Concurrent
Method Controller Update

N—_

Pull Push Active Passive

Observer reuses Association<Unordered reexpose TreeSet, HashSet>

Figure 2 3: Ordered concern reusing association

e The concern user can use all the functionality provided by the selected configuration

model through the exposed usage interface.

Furthermore, it happens more often than not, that no concrete selections can be made
at that stage of process on what the user wants. This can result from the fact that the
current user of the concern is an intermediary concern designer for the next user. Hence this
intermediary concern designer aims to reduce the concern design specifically to a smaller sub
sets of application. For example : An authentication concern can be used by a designer to
design only a generic High - Level Security concern makes use of only biometric means to
provide the security measures. In such cases, the intermediary concern designer would want
to “re-expose” certain features, implying that the decision about such features is deferred
until the next user. All other features which are not selected by the user (intermediary
concern designer) are not shown to the next user nor included in the combined models. By
re-exposing the features, the concern designer defers the decision to the time of reuse of the
current concern. The reexposed features are inherently added to the variation interface of

the current concern.

15

In the ordered feature model presented, the concern reuses association reexposing treeset
and hashset features
2.5 Existing CORE Metamodel

Figure 4 represents the CORE metamodel. In the heart of the meta model lies the
COREConcern class which conceptually represents the whole concern.

This concern has two models to represent the variation interface, the feature model, rep-
resented by COREFeatureModel and the impact model, represented by COREImpactModel.
Both of these are subclasses of COREModel. The COREModel also references COREMod-
elElements which contains different model elements from the feature model, impact model
and the realization models. The features and impact models elements are represented by
COREFeature and COREImpactModelElements which are subclasses of COREModelEle-
ments.

The structural and behavioral properties represented by the feature is realized by a model.
These models are subclasses of COREModel. The composed detailed model produced from
the selection of features is also subclassed under COREModel.

The COREFeature has a reference to COREReuse, which conceptually signifies the reuse
of another concern by a feature. The COREReuse points to the concern reused. In this
reuse, CORECompositionSpecification is defined for the customization interface to map the
different model elements from the produced detailed model to the application model. This
is achieved by the to and from references from the COREMapping. The COREComposi-
tionSpecification also has a reference to the detailed model produced from the selection of

the user.

16

The concern has a COREInterface , referred by the COREConcern, which signifies the
usage interface. This interface has links to the selectable feature, the impacted features and
the customizable model elements for the user of the concern.

All the elements in the metamodel are subclassed under COREElement which has the
attribute of name and id. The id’s are used to uniquely identify a model element.

This metamodel is defined as abstractly as possible while maintaining the logical structure
of Concern-Oriented Reuse. Any implementation platform can implement their own feature
model techniques / operations combining them with their modelling notation and realizing
the same models. The idea of keeping the metamodel as abstract as possible was to encourage
and provide flexibility to the underlying implementations.

2.6 TouchCORE

TouchCORE is a multi-touch enabled tool for Concern-Oriented Reuse aimed at develop-
ing scalable and reusable software design models [42]. TouchCORE is based on TouchRAM,
which provides aspect-oriented modelling support as defined by the Reusable Aspect Mod-
els (RAM) [27] to express software design models using class, sequence and state diagrams.
At the start of my thesis, the first version of TouchCORE had just been released, which
extended TouchRAM with abstract support for concern-orientation.

TouchCORE consists of the front end, i.e., the graphical user interface (GUI), and the
backend, which contains the abstract CORE metamodel, the RAM metamodel, the con-
trollers for manipulating RAM models, and a RAM model weaver to compose RAM models.
The GUI for TouchCORE is realized using the open source Java framework Multitouch for
Java (MT4j) |28|. MT4j is an open source, cross platform Java framework, created for rapid

and easy development of visually rich 2D or 3D applications and is designed to support

17

[_suonezijeaypaiapisu0IIHOD | esneypeispisuos | @SNdYPaIBPISUOIIHOD |
,...o% SoAljeuId)e _

_

Q0BLIDIUITHOD
.. | /) @depueiul
ueajoog :Aiojepuewl : _ - _ _
uoneZIWOoISNIIHOD aimeaj3yH09 |0 [_1epowainiead3y0d | [1epowidedwiaHOD |
i | | 2
8 —
(o]
9|qeziwolsnd \, Q Agpazijeal \l,
X0 0 +'C _ 8

aiqesn | JuaWa|3|I9PONTHOD | siusfus|zjepO 19PONTHOD | “sjepow [wsdu033H09D u1ouoYpPasnal
A3 “AS _ Jopow A L _ _/
3

5 z
2
[] |] sBuiddew F o]
[_usened3yoo | [Pupuigayod | .0 _burddeyayo9 | pI]
aweu o]
[EET [ok) >

suoisodwoo

[_uoneayroadsuomisodwogzHod 1o 1 9snay3H09 |

Figure 2-4: CORE metamodel

different kinds of input devices with a special focus on multi-touch support. Many standard
multi-touch gestures are already built in and new gestures can easily be defined. Touch-
CORE has been tested on many popular platforms such as MacOSX, Windows etc. Its
dependence on Java and TUIO implies that it should work on any environment where both
of these are supported.

Although the front end of TouchCORE is dependent on MT4j, all other components of
the tool are decoupled from the GUI based on the Model-View-Controller design. Hence the
front end and the back end can have a separate evolution path without being dependent on
each other.

The back end of TouchCORE can be categorised into two parts: the CORE part, whose
foundation is the abstract CORE metamodel, and the realization part, whose foundation is
currently the RAM metamodel, the RAM controllers and the RAM weaver. Both metamod-
els are defined using the Eclipse Modelling Framework (EMF) [19]. EMF allows generation
of code from the defined structured data model which is further used by TouchCORE. The
models are serialized by XMI (XML Metadata Interchange) format corresponding to the
metamodel. The Object Constraint Langauge (OCL) is used for specifying constraints on
the meta-model specification of derived properties.

In this thesis, we used TouchCORE as a testbed for evaluating the different ways of
operationalizing CORE, i.e., adding concrete CORE structure and behaviour to the backend
(metamodel, operations for manipulating feature models, feature model composition algo-
rithms), as well as the front end (GUI and algorithms for feature model visualization using

MTAJ).

19

As the abstract CORE metamodel presented in section 2.5 has no concrete structural
support for feature and impact models, the first version of TouchCORE also did not support
creating, manipulating and visualizing CORE-related concepts. With no tool support, a user
who wanted to define or (re)use concerns was not able to do so. The goal of my thesis was
to make CORE practical and therefore as first step to the process, I investigated reusing an
existing feature model implementation just like the abstract CORE metamodel suggested to
do. The integration of an external feature model implementation to work with the original,

abstract CORE metamodel is presented in the next chapter.

20

Chapter 3
Reuse of Existing Feature and Impact Model Implementation

The unit of modularization, concern lays emphasis on reusability and adaptability. To
support this, concern metamodel has certain concepts namely, Feature Models and Impacts
Models abstractly defined. In case of Feature Model, CORE only specifies the Feature Models
and Feature, without specifying how they are linked or the relationships which exists between
them. The same follows with Impact Models. The main objective of this first part of the
thesis is to provide a concrete realization for Feature and Impact Models. While exploring
the different frameworks / languages / modelling notations which supported this, we came
across URN which supported all of this in the form of goal models. These were integrated
to work with the existing CORE structure. Based on the result of this integration, several
limitations of this approach were observed.

The structure of this chapter is as follows. Section 1 gives a brief background of URN with
subsections describing components of URN and its support for feature models. Section 2
describes the jUCMNav tool with support for feature and impact models. Section 3 describes
the interface structure which was defined to interact between jUCMNav and CORE followed
by the limitations of using an interface.

3.1 User Requirements Notation (URN)
URN is a lightweight graphical language used for modelling and analyzing requirements

in the forms of goals and scenarios and links between them.

21

URN is a part of the ITU family of languages, was standardized in 2008 [23], and was the
first standard which explicitly addressed functional and non-functional requirements under
the umbrella of one unified language. It was developed with the objective of focussing on
the early stages of software development, particularly the requirements stage. It aims at
supporting reusability, which is one of the top goals of the standard, along with providing
early performance analysis along with traceability and transformations to other languages.
It makes it possible to express specifications for stakeholders, non-functional requirements,
goals, rationales, behaviours and actors.

URN combines two modelling notations, namely, Use Case Maps and the Goal-oriented
Requirements Language.-

3.1.1 Use Case Maps (UCM)

UCM is a formal way of expressing use cases / scenarios / workflows and their relation-
ships Use Case Maps. The notation is most useful in the early stages of software development
and can be used in elicitation, validation and in high-level architectural design and genera-
tion of test cases. UCM’s can help bridge the gap between requirements and design greatly
by the flexible allocation of responsibilities to architecture decisions. UCMs can also ex-
press dynamic variations of scenarios, and provides features for incremental development
and integration of complex scenarios.

3.1.2 Goal-Oriented Requirements Language (GRL)
The Goal-oriented Requirements Language is intended to be used to capture the busi-

ness and system goals, and how the goals influence each other. This notation can be applied

22

to specify functional and non-functional requirements. GRL contains various graphical ele-
ments, which are used to express different kinds of concepts that are relevant during require-
ments specification. The four main categories of concepts are: the intentional elements, the
links, the actors and non-intentional elements.

The intentional elements contains elements like goals, tasks and softgoals. They are used
to allow answering questions for models pertaining to aspects of behaviors, informational
and structural aspects, and how and why they were included in the system requirement, and
what possible alternative options can be used instead of the other and the reasons for them.

The actors are the stakeholders for the goals. These actors are a subset of the stakeholders
of the system. Each goal model can contain one or more actors. Specifying actors in the
goal model can help understand in the GRL which stakeholders are affected by a particular
goal.

The links represent the contribution between two intentional elements, which specify how
much each intentional element influences or “contributes” to some other intentional element.
Each link has a contribution value. These contribution value can be absolute, indicating
whole values, or can be relative with respect to the contribution values on links coming from
other siblings. The links can be thought of as a means of connecting the intentional elements.
The links can also be of three decomposition types, namely, OR, XOR and AND. For AND
decomposition link, the minimum of the satisfaction value of the child elements is taken,
while for OR and XOR, the maximum is taken. GRL also provides different evaluation
mechanisms to calculate the quantitative and qualitative satisfaction of intermediary and
high level goals. It is done by assigning a value (satisfaction) to the tasks and goals at the

leafs of the goal graph. The values of the leafs are then propagated towards the top, to

23

.0 .0

(Security of Host > (Performance)
.mu-—T

Figure 3—1: An Example Goal Graph

successively determine all satisfaction values. Many evaluation mechanisms exists and the
user can apply a mechanism of his choice for the evaluation.
3.1.3 Requirements Elicitation and Specification with URN

GRL addresses both the functional and non-functional requirements, and exclusively
focuses on answering the “why” questions. UCM on the contrary tries to address the “what”
questions which may exist in the design. By defining both GRL. and UCM models, together
they address the “how” questions. GRL establishes traceability by linking the intentional
elements in the GRL model with the non-intentional elements in the UCM models. Specifying
both models aids in identifying further goals, and helps in developing more detailed and

accurate scenarios. It is recommended to start with high level goals, which are further

24

resolved as sub-goals and scenarios. As scenarios are refined they may impact the goals,
which leads to an iterative software development cycle.
3.1.4 How URN can Support Feature Models

In order to support feature modelling in URN, the metamodel of GRL was extended to
support feature modelling concepts. A feature is conceptually close to GRL tasks. Both rep-
resent the behavioral aspects or properties of a system/product. Hence Feature is subclassed
under the GRL intentional element. Keeping the existing GRIL propagation mechanism, to
preserve the semantics of feature selections, the optional link (OptionalFMLink) and manda-
tory link (MandatoryFMLink) are subclasses under of the contribution links in GRL. The
concepts of XOR / OR are reused from GRL as it is as they conceptually had the same
meaning. OCL constraints are used to express the requires and excludes constraints, men-
tioned in the feature model. Storing a set of features for configuration was performed by
subclassing feature configuration from GRL strategy concept which allowed to store a set of
model elements for analysis purposes.

The satisfaction values in a GRL graph is in the range between -100 (element not being
satisfied) to +100 (element is completely satisfied). However for feature models, the satisfac-
tion values can be either 0 (element not being selected) to +100 (element is selected). The
evaluation algorithm already defined in GRL handles cases in feature model for feature/in-
tentional elements, decomposition links/feature groups, feature configuration/ strategies and
integrity /OCL constraints. Hence the evaluation algorithm defined can be used for evalu-
ation of feature models with special rules for optional and mandatory links. Each optional
link have contribution link specified by a value of 100. In case of mandatory link, each value

of contribution link is specified such that the parent reaches a value of 100 when all children

25

are selected. With these changes, the existing GRL evaluation algorithm can be used to
adapt to evaluate feature models.
3.2 jUCMNav

JUCMNav [33]is an Eclipse-based [37] tool for URN which provides model editing and
analysis capabilities. As such, jUCMNav provides all the necessary support for requirements
elicitation, specification and validation expressed using UCM and GRL. jUCMNav is open
source.
3.2.1 Feature Model Support in jJUCMNav

When I started my master thesis, jJUCMNav already provided an implementation of fea-
ture models. As outlined in subsection 3.1.4, a goal model can be adapted to represent a
feature model . By treating tasks as features, and by changing the decomposition links to
accommodate “Optional” and “Mandatory” links, a goal model can be used as a fully func-
tioning feature model. Hence we decided to use the the jJUCMNav features (i.e., the tasks)
as a concrete realization of the abstract CORE feature, and use the feature model evaluation
strategy provided by jJUCMNav to evaluate the correctness of feature model selections.
3.2.2 TImpact Model Support in jJUCMNav

The concepts of the impact model that are needed to specify the variation interface of a
concern in CORE are actually a subset of the concepts found in goal models. The impact
model evaluation is also equivalent to the evaluation used in goal models, except that the leaf
goals are replaced by features (which are actually GRL tasks as described in subsection 3.2.1),
contributing to upper level goals. Selecting any feature in the feature model would set the

satisfaction value of the feature to 100.

26

w Run Window Help
3 BrE-wm oo BB n|[on v SEe - |Quick Access I | &' ava
& PM_ClientEnd Serverjucm |§ PM_GUI_ClientEnd.jucm ‘ 7] test java | [3] testjava | [3] testingjava [ﬂ “new filejucm &2

(Kevﬁmdemd) (o)

FestureDiagram?

Figure 3-2: A Feature Model in jJUCMNav

av Run Window Help

- H-FH-vero-r IS B Do | SEe F- Quick Act

23 PM _ClientEnd Serverjucm | & PM_GUI ClientEndjucm | 3] testjava | [J) testjava | 1] testing,java | &) "new_flejucm 52

+ s

+ s

(Ease of Use) C’!a\ntenance)
+

+

Enhanced
Security

+ s

User
Convenience

+

+ o

i

Retinal
Scanner

GRLGraph|

Figure 3-3: An Impact Model in jJUCMNav
indicating accordingly how much selecting each of the sub-task contributes to the propagation
to the parent

27

Since the feature and the impact model implemented in jUCMNav matched the require-
ments for expressing the variation interface for concerns as defined in CORE, we decided to
reuse the existing jJUCMNav implementations in the context of CORE.

3.3 Interface between CORE and Existing jUCMNav Implementation

Every modelling language that embraces concern-orientation and integrates with the
CORE metamodel — a process called corification — needs to be able to use feature models
and impact models to specify the variation interface of the concerns that are being built.
In order to keep the implementations of modelling languages independent from a particular
implementation of feature and impact models such as jJUCMNav, we needed to define a global
interface which would be used to communicate between the two implementations. This would
allow for all corified implementations to be independent from the underlying feature model
and impact model implementation in case in the future the jUCMNav implementation might
be replaced by a different one, e.g., one that uses Familiar [1|. The interface must cover all
the possible types of operations which the user might need while trying to construct or edit
or evaluate a feature model.

3.3.1 Structural Additions to the CORE Metamodel

To support different implementations, two new enumeration types had to be defined in

CORE to express the kind of relationships that exist between features, and to describe the

selection status of features.

28

Enum COREAssociation - {OR, XOR, Optional, Mandatory, None}

The five values defined by this enumeration type encode the four possible relationships a
child feature can have with its parent. An attribute indicating accordingly how much select-
ing each of the sub-task contributes to the propagation to the parent of type COREAssoci-
ation was added to the Feature class in the CORE metamodel, representing the relationship
kind that this feature has with respect to its parent. The values are interpreted as follows:

e OR - With this constraint, one or more children have to be selected for the feature
model to be valid. Note that when constructing a feature model, the tool must ensure
that all the children of a parent have their attribute value set to OR or none has.

e XOR - With this constraint exactly one child has to be selected from all the children
under the parent. Note that when constructing a feature model, the tool must ensure
that all the children of a parent have their attribute value set to XOR. or none has.

e Optional - The current child of the parent can be selected or not selected for the feature
model to be valid.

e Mandatory - The current child of the parent has to be selected for the feature model
to be valid.

Enum <Selection status> { NOT SELECTED ACTION REQUIRED,
NOT SELECTED NO ACTION REQUIRED, WARNING ,USER_ SELECTED
, AUTO SELECTED,USER RE REXPOSED,USER AUTO RE EXPOSED

}

The following 6 enumeration values were defined to encode the selection status of any
particular feature in the feature model. jJUCMNav evaluates the feature model and assigns
the evaluation result to the features. The evaluation result is determined internal to jUCM-

Nav. This enumeration type is needed to read the result of each individual result to the

29

user. Based on the value, the tool can adapt the way it displays the feature. The meaning
of each of the values is as follows:

e NOT SELECTED NO ACTION REQUIRED: The following feature has not been
selected by the user and during the evaluation no action is required by it. It usually
is for an optional feature or for a XOR child, where another sibling has already been
selected.

e NOT SELECTED ACTION REQUIRED: This enumeration value indicates that
the parent feature of the feature has been selected and an action is required either on
it or one its siblings. This enumeration is usually returned for XOR / OR relationships
where no children of the parent have been selected.

e WARNING: This enumeration value is assigned when there is a violation of constraints
of the feature model . Having this enumeration type in the feature model, indicates
the selection made by the user is invalid. It can arise in two situations:

— When a requires or excludes constraint in the feature model has been violated.
— When multiple children have been selected from an XOR parent.

e USER SELECTED : This enumeration value is assigned for features which are se-
lected exclusively by the user. These selections are made exclusively by the user choice,
indicating that the current feature is being preferred by the user. This enumeration
can be overwritten by other enumeration values based on implementation logic or by
the resulting evaluation.

e AUTO SELECTED : This enumeration is assigned when a feature is automatically
selected when a user makes another selection. Common cases where this occurs is when

a constraint exists in a feature model, selecting a feature will in turn select another

30

feature in the feature model. This enumeration can also be resulted when parents of a
particular feature are not selected by the user, hence during evaluation all the parents
from the current feature to the root feature are auto-selected if not selected by the
user. If any mandatory association exists between a child feature and a parent which
is either “auto selected “ or “user selected” and the feature is not selected, then the
child feature is assigned the enumeration value “auto_selected”.

e USER RE EXPOSED : This enumeration is used when a user wants to reexpose a
feature. Reexposing a feature implies that a feature selection is deferred by one level.
The enumeration value is determined by the feature set which were passed during the
function and then assigned to it. This enumeration is used only when the user wants
to exclusively re-expose a feature.

e USER _AUTO_ RE_ EXPOSED : This enumeration is used when the evaluation deter-
mines that some features have been re-exposed by the user, and because of constraints
the feature has to be auto-re exposed in order for the feature model to be valid. This
enumeration cannot override any other enumeration and is only used when the auto
re-expositions is deemed necessary.

3.3.2 Interface Operations

The proposed interface contains 11 operations, one for concerns (initialize), and 10 for
features (getRoot, addFeature, ...). The rest of this subsection describes the functionality /
behaviour to be provided. Based on the type of the behaviour of the operation, the operations

can be classified to be under one of the categories of initialization, getters, setters or edit.

31

COREConcern.initialize(String rootFeatureName)

This function is used to create the concern, by initializing everything by the constraints
of the meta model (one feature model and one impact model and one root feature). The
name of root feature will be the concern name. The name of the root feature is passed
as string constant to the underlying implementation so it can instantiate the feature class
implementation that subclasses the feature class of the CORE metamodel. The initial impact
model has initially no impact model elements in it. This operation can be classified under
the category of Initialization.

COREFeature = COREConcern.getRoot ()

This getter function returns the root feature of a concern and is mainly used to traverse
the feature model starting at the root. This operation can be classified under the category
of Getter.

COREFeature.addFeature(String childFeatureName,COREAssociation parentAs-
sociationKind) :

This interface function adds a child to the parent in the feature model. The function
is to be called on the parent. There are two parameters which are passed along with this:
the name of the child feature and the association kind of the child with respect to the
parent. With the child feature name being passed to the function, the function first creates
a COREFeature with the specified name and then sets the parent constraint as indicated in
the second parameter. Since the order of the children within their parent has no semantic
meaning, the position of the child is not included in the signature of the operation. This

operation can be classified under the category of Edit.

32

COREFeature.delete() :

This interface call is used to delete a feature in a feature model. The delete function
is directly called on the COREFeature, which deletes the COREFeature from the feature
model and any references from the parent to the feature. The interface function ensures that
it is called on leaf nodes only, as it was decided that cascading deletion of features should
not be supported in the interface. In case such a functionality is desired, it would be the
responsibility of the CORE tool to implement it. This operation can be classified under the
category of Edit.

COREFeature.rename(String newName)

This interface call is used to change the name of a feature. The new name of the feature to
be renamed is passed as a parameter with the function call. This operation can be classified
under the category of Setter.

COREFeature.changeLink(COREAssociation newAssociation)

This interface call is used to change the association type with its parent. Based on the ex-
isting relationship / association with its parent, the implementation of this function changes
the association of the rest of siblings if needed. If the current association is Mandatory /
Optional and is being changed to XOR / OR, the rest of siblings association with respect
to the parent are also changed. If the current association is OR/ XOR and is being changed
to Optional / Mandatory, then the rest of the sibling association types are changed to Op-
tional. However switching between XOR and OR, or between Optional and Mandatory do
not result in any change of association type of the siblings with its parent.This operation

can be classified under the category of Edit.

33

COREFeature.changeParent(COREFeature feature, COREAssociation newAs-
sociation)

This interface call sets the parent of the feature to a new feature. A parameter des-
ignating the new feature along with the new association type are passed in the call. The
implementation removes the feature from the children set of the current parent and adds the
feature to the children set of the new parent. Based on the existing relationship / association
with its parent, the implementation of this function changes the association of the rest of
siblings if needed. If the current association is Mandatory / Optional and is being changed
to XOR / OR, the rest of siblings association with respect to the parent are also changed.
If the current association is OR/ XOR and is being changed to Optional / Mandatory, then
the rest of the sibling association types are changed to Optional. However switching between
XOR and OR, or between Optional and Mandatory do not result in any change of association
type of the siblings with its parent. This operation can be classified under the category of
Edit.

COREFeature.requires(COREFeature feature)

The interface call is used to to assign a ‘requires’ constraint to a feature, indicating that
it requires another feature passed as a parameter. The requires constraint is uni-directional.
This operation can be classified under the category of Setter.

COREFeature.excludes(COREFeature feature)

This interface call is used to assign an ‘excludes” constraint to a feature, indicating that it
requires another feature to not be selected in the feature model to be valid during evaluation.
The excludes constraint is bi-directional. This operation can be classified under the category

of Setter.

34

COREFeature.removeConstraint(COREFeature feature)

The removeConstraint interface call is used to remove a constraint which may exist
between two features. The constraint can either be a ‘requires’ or ‘excludes’ constraint.
The function is called on the feature which contains the constraint. This operation can be
classified under the category of Edit.

COREFeature.addRealizedBy ((COREModel) Aspect)

This function establishes a realization link between a COREModel and a feature. Each
feature can have zero to many realizing models, which can be added sequentially. The
implementation of this function takes care of the bi-directionality of the association, i.e., it
also updates the realizes link of the COREModel that refers to the current feature. This
operation can be classified under the category of Setter.

{ Map<COREFeature feature, COREFeatureSelectionStatus selectionSta-
tus> , Map<COREFeature feature, int satisfactionValue> } static select(List<COREFea
selected, List<COREFeature> reexposed)

This function is used to evaluate a feature model based on the selected and the reexposed
features passed by the user as parameters. The implementation of the function takes into
consideration the constraints (parent-child relationships, requires and excludes constraints)
in the feature model to evaluate if the current selection is a valid one. The function returns
two hashmaps: one pertaining exclusively to the feature model and the other to the impact
model.

In the first map, all the features of the concern are returned with their appropriate
COREFeatureSelectionStatus value.

In the second map, all the impacts (top-level or intermediary) of the current concern are

returned along with their satisfaction values determined using the given feature selection.

35

The lower layer of the impact models are contributed by the features. A user selected feature
is considered as a full selection and contributes accordingly to the higher level parent and
then concurrently to all the upper level parents / goals. The contribution of all the high
level goals / impacts or all the intermediary impact / goals are then grouped together and
then passed back from the function.
3.3.3 Limitations of the Proposed Interface

The interface defined above provides a lot of benefits which enable cross compatibility
across different implementations of feature models and impact models to work in the context
of CORE in combination with other modelling notations that are corified. However, we
discovered several major limitation when we started using the interface.

e Difficulty in navigating the models: Creating an interface for the operations of feature
models allowed the flexibility to have a separate implementation in jJUCMNav. How-
ever to interact with thefeature model in CORE, knowledge of the concrete metamodel
of the external implementation was necessary. This creates a dependency on the ex-
ternal implementation, which defeats one of the main reasons for having a separate
implementation in the first place.To render CORE completely independent, the inter-
face towards the external implementation would have needed to be extended by adding
more helper functions, in particular getter operations.

e Significant implementation effort adapting the external implementation: The decision
to interface with an external feature and impact model implementation was motivated
primarily because of the expected reduced implementation effort. We discovered in
the end that it is not trivial to adapt the external implementation to connect with the

proposed interface. In our concrete case, the command pattern library that jUCMNav

36

used to perform edit operations on feature and goal models was incompatible with a
library that our TouchCORE tool depended on. In the end, in order to be able to use
the jJUCMNav implementation from TouchCORE through the interface, the jUCMNav
source code had to be refactored, and most of the editing code rewritten.

Difficulty in evolving the interface: Model evolution and maintaining consistency be-
tween evolving models is a challenge for MDE. Since concern-orientation is still a young
development paradigm, the evolution of the CORE metamodel is something which can-
not be avoided, e.g., to eliminate existing bugs or incorporate new ideas and trends in
concern-oriented software development. With each change in the CORE metamodel
for whatever reason, it would most likely require all the underlying implementations
for feature models and impact models to be adapted. This is not a viable situation, as
it involves escalating costs with each change.

Cross-referencing between models: With the implementation of feature and impact
models being separate, the models are also separately stored when they are persisted.
With the current structure of the metamodel, there exist mappings from concrete
classes of CORE to concrete classes in the feature model implementation. This results
in cross-model references and as a result yields poor portability of concerns. As long
as the implementation does not change, no problems occur. However, if users want
to load their concerns in a tool that is based on a different feature model / impact
model implementation, problems occur. To solve this issue, concerns would have to be
restricted to be used only on a specific implementation, or multiple versions of each

concern — one for each implementation — would have to be shipped.

37

Based on all the limitation encountered above, we decide to follow a different approach,
i.e., to integrate both the feature model and impact models into the CORE metamodel.
By placing the common implementation of feature and impact models inside the CORE
metamodel, all modelling tools and notations could share this easily to navigate the feature
and impact models. The details of this common implementation is described in the next

chapter.

38

Chapter 4
Feature Model Integration

Based on the limitation described in the previous chapter, it became very evident that
having an external implementation of feature models results in a contrived, sometimes even
non-efficient solution. Hence, we decided to integrate feature models into CORE. This
involved two steps: defining the structure for feature models and integrating it into the CORE
metamodel, together with any constraints if needed (see section 4.1), and defining behaviour
/ operations that implement the basic functionality needed to create and manipulate feature
models (see section 4.2).

4.1 Feature Model Structure
4.1.1 Feature Model and Feature Relationships / Constraints

To move the logic of feature models to CORE, the CORE metamodel had to be adapted.
The part of the CORE metamodel dealing with reuses was kept untouched.

The COREFeatureModel was added to be concrete class that derives from the abstract
class COREModel. A containment link from the COREConcern pointing to FeatureModel
was added. With this link, the feature model can be directly accessed from the CORECon-
cern.

COREFeature, a new concrete subclass of COREModelElement, was added, together
with a containment link from the FeatureModel to the COREFeatures it contains. To access
the root feature of the concern, a new unidirectional link named root with multiplicity 1

leads from the COREFeatureModel to the root feature of the feature model

39

Four additional, reflexive links point from the COREFeature class to itself:

requires (constraint): This is used to specify the requires constraints. The link refer-
ences all the other COREFeatures which are required by the current COREFeature.
Since this can be many COREFeatures, the multiplicity is 0 to many.

excludes (constraint): This is used to specify the excludes constraint. The link refer-
ences all the other COREFeature which are not to be selected along with the current
COREFeature. It can contain many COREFeatures, hence the multiplicity is 0 to
many.

parent: This is used to specify the parent of the feature in the feature model. The
parent link is of multiplicity O .. 1, indicating that a feature can either have a parent or
not, which is respecting the structure of feature model. A feature not having a parent
is when the feature is a root feature and does not point to any parent.

children: This is used to specify the children of the feature in the feature model. The

children multiplicity is zero to many.

The parent and children is represented as a bidirectional relationship, indicating that the

relationship is traversable in both the directions.

The following attributes were defined for the COREFeature class:

parentRelationship: The parentRelationship represents the relationship of the child
with respect to the parent. It is of type COREFeatureRelationshipStatus, defined in
the enumeration above. If the relationship is of None, then it indicates that it is the
root feature of the feature model. Optional and Mandatory relationship status can

exist independently regardless of the status of the other sibling features. However,

40

for XOR and OR relationships all siblings under the same parent must have the same

value.

The enumeration class of COREFeatureRelationship was added to the metamodel contain-

ing the five possible values of NONE, XOR, OR, OPTIONAL and MANDATORY. This

relationship defines the association a child holds with its parent. The indiviudal realtionship

meaning is as follows :

NONE - Indicates that the current feature is the root feature of the feature model, and
it does not have any parent.

OR - In this relationship, one or more children have to be selected for the feature model
to be valid.

XOR - In this relationship, exactly one child has to be selected from all the children
under the parent.

Optional - In this relationship, the current child of the parent can be selected or not
selected for the feature model to be valid.

Mandatory - In this relationship, the current child of the parent has to be selected for

the feature model to be valid.

The above changes reflect all the adaptions made to the CORE metamodel, which were

necessary to fully support feature models

4.1.2 Feature Model Configurations

A COREConfiguration is an object which contains a set of selected and reexposed features

of a particular concern.

Each configuration is defined for a particular concern, but if the concern reuses other

concerns then it may also contain selections of features in the reused concerns.

41

The COREConfiguration contains two sets under it, one to represent all the selected
features and the other to represent all the reexposed features. The selected and reexposed
features can contain features defined in more than one concern, i.e., features which are
contained in the reused concerns.

During the concern reuse process, a new configuration is created and stored with the
reuse. The metamodel provides support for a user to define and store several configurations
for a reuse, e.g., to evaluate different trade-offs. However for a particular reuse, the user can
ultimately select only one configuration, which is then used for customizing all the underlying
models.

In addition to configuration being defined and stored in the reuse, the concern designer
also has a choice to define configuration when the concern is being designed or created. The
configuration is defined based on non-functional requirements as the concern designer would
have the appropriate knowledge about the concern and its uses. This set of configuration
defined during the concern design process is a property of the concern and is accessible via
the interface as “default” configurations. These default configurations are also available to
the user during the reuse process if the user wants to it use it in his application domain.

For example, a concern which offers high security as a non-functional requirement can
offer it in a particular default configuration. It can contain a particular set of selected and
reexposed features. Different configurations that optimize other non-functional requirements,
such as cost, may also exist for a particular concern.

4.2 Feature Model Behaviour
With the CORE meta model adapted to reflect the required structural changes, the

operations defined in the interface in the previous chapter had to be implemented. The

42

1eoyy A | |
Jeol; .xIsmsom__J%Tsmsom: depieuiEiuoomokeT |

juawa|gnoke

sinoAej

[reasybiopmainieaanieral |

CORE Metamodel

Figure 4-1

| edwppinieaj3dod | 10
lepooedwt
it
- |eal :19syo
Wi yBlepeAielas | butobino 8ainos | jeas oyedbuleds| .0 [] [] 1spopeinyes)
{_uonnquuod3dod | .o L JUaWa|3|3POIN syuswia|jepoioeduwr | 12poioedwiIHOD 19PON@INIea33HOD ||
*..o\ﬁ SuORNQLIU0D edw|3yo0o H
1
i
J 0 y (s1esans) L
Buipuigiepon JUBW|F[8PONTHOD |~ sjuswiajFepow/ — M o] 183POWFHOO | sjepoy
edw|3y09 _ =15 5 | eonosAL .0’ Agpazijeas
| wiaybem] |3 !
[Buiddeppaybromauod |
e N . "0sosnayjepow
_ - sbuiddew [I oh
[wened3yoo | | buipuigzHod <0 uiddei3H09 ["esnagieponzH0d | =
.0 | sesnayjepow
.- 1
suonsodwod L0 |suoneinbyuoppapusixe .Eo suoneInBiyuoo ! mn:w&o uie: t
T l !) F II-_
{_uoneayroadsuonisoduiogapoaHod [uoneinbyuod3Hod | { 9snay3H0] | uiebuoppgsnai | UI99UOQIHOD |
“0 pajosjes
_ HO peiel asnal| | | ,0|sesnal
/.
[I
[uvoneayroadsuonisodwogzyog |
1001
sjuesaidal
adA| diysuonejeygainiea43400 S
b :diysuonejeyiuaied o
uaipjiyo (L0 2iN}eaJ3H0D ~
sopnoxe A0 .0/ sannbai sezileal "0
juased : <7
L0 { bulg ‘sweu | 4

juswivjgpaWeN3IHOI

following descriptions of the operations abstractly describe the model changes required by
the operations.
4.2.1 Feature Model Editing Operations

e Changing the parent of feature: If the user desires to change an existing feature in the
feature model to have a different parent, changes to the model have to be performed
in order to achieve this. The changes lie in the two links of the COREFeature parent
link and the children link. The current feature’s parent link is changed to point to the
new parent feature. Following this, from the previous parent children set, the current
feature is removed. Now the current feature needs to be added to the new parent’s
children set. By performing these three model changes, the parent of the feature is
changed. Additional checks are performed that while changing the parent of a feature,
the parent relationship constraint is not violated. For instance, a feature having an
XOR parent relationship can be moved to a parent whose children have XOR parent
relationship or a "Mandatory” or an “Optional” child can be added to a parent whose
children have only “Optional” or “Mandatory” parent relationship.

e Adding a requires constraint: If a feature has a requires constraint on any other feature,
it is stored in the reflexive “requires” association of COREFeature.

e Adding a excludes constraint: To add an ezcludes constraint from a feature to another
feature, the other feature has to be added to the reflexive ezcludes association of
COREFeature.

e Removing a constraint: A constraint may be of two types, a requires constraint or an
excludes constraint. It is impossible to have two constraints between the same two

features. Therefore, in order to remove a constraint between a feature and another

44

feature, the implementation must check if the other feature is contained in either the
requires or the excludes association, and if found, remove it.

Adding a realization model: Each COREFeature is realized by one or many CORE-
Models, which specify the behavioral and structural properties of the feature imple-
mentation. The realization models are stored in the realizedBy association between
COREFeature and COREModel. Any realization model has to be a subclass of CORE-
Model. Adding a realization model therefore simply requires adding the model to the
realizedBy set.

Adding a feature as a child: If a new feature is to be added under a feature as a child,
a newly created COREFeature must first be added to the containment association of
the COREFeatureModel and then added to the children set of the intended parent.
In addition to this, the feature’s attribute parentRelationship must be set to reflect
the relationship that it has with its parent. The COREFeatureRelationshipStatus of
“NONE” cannot be assigned to any child while adding the feature as a child, as this
relationship is only reserved for the root feature and can only be used when the feature
model is created. If all the children under the parent either have the relationship with
respect to parent as either “Optional” or “Mandatory”, a new feature with relationship
“Optional” or “Mandatory” is possible. Similarly, if all the children under the parent
have the relationship to be either “XOR” or “OR”, adding a new feature with relation-
ship “XOR” or “ORis allowed. However , if an “XOR” or “OR” relationship is added to
a parent whose children are either “Optional” or “Mandatory”, all the existing children’s
relationships with their parent are changed to an “XOR” or “OR” relationship, in order

to ensure consistency of the feature model. Similarly, if an “Optional” or “Mandatory”

45

relationship is added to a feature whose children are either “XOR” or “OR?”, all children
are either changed to “Optional” or “Mandatory” based on user preferences.

e Deleting a feature: A COREFeature can partake in several associations. In order to
delete a feature, it has to be removed from all associations. If a feature is not a leaf
feature, , i.e., the feature is in the mid-section of the feature tree, deleting it triggers
a cascading delete of all the children under it. To delete a leaf feature, the feature is
removed from the containment association in the COREFeatureModel. The next step
is to remove this reference from the children set. After performing these steps, the all
the features in the feature models are checked against if the current feature was in the
requires or excludes set of the feature. If the current feature is present in any of the
constraint, it is removed from the set.

4.2.2 Feature Model Selection / Evaluation Operations:

The above section presented all the operations which are used when editing a feature
model. This subsection presents the operations and algorithms that are needed to evaluate
the validity of selections of feature model. This is equivalent to the “select” operation defined
in the interface of chapter 3 3.3.2.

The enumeration type <Selection Status> {NOT _SELECTED ACTION REQUIRED,
NOT_ SELECTED NO_ ACTION REQUIRED, WARNING, USER_SELECTED, AUTO_ SELECTEL
USER RE EXPOSED, USER AUTO RE EXPOSED} is used to determine the selec-
tion status of a particular feature.

Before the start of the algorithm, all features in the feature model are assigned the value of

NOT_ SELECTED NO_ ACTION REQUIRED. This implies that no feature is currently

46

0 N D e W N

O YW L N3O R W N =

L S
= O © Xl N D ;A W N e

Algorithm 1 Feature Model Validation

evaluate (COREFeatureModel FeatureModel, Set<COREFeature> selectedFeatures, Set<COREFeature>
reexposedFeatures) {

evaluateOptionalMandatory(selectedFeatures)
evaluateORX0R(FeatureModel)
evaluateReexposedFeatures(reexposedFeatures)
evaluateConstraint (selectedFeatures)

Algorithm 2 Optional / Mandatory Evaluation

evaluateOptionalMandatory (Set<COREFeature> selectedFeatures) {
for all feature in selectedFeatures:
feature.select (USER_SELECT)
}

void select(Selection_Status type)q{

if (type == AUTO_SELECT and this.currentStatus == AUTO_SELECT)
return;

if (type == USER_SELECT and this.currentStatus == AUTO_SELECT)
this.currentStatus = USER_SELECTED
return;

if (type == USER_SELECT)
this.currentStatus = USER_SELECTED;

else
this.currentStatus = AUTO_SELECTED;
this.parent.select (AUTO_SELECT) ;

for all (child in this.children)
if child.parentRelationship == Mandatory then
child.select (AUTOSELECT)

selected and no action is required on any of the features. The evaluation function receives
as a parameter the set of features selected by the user.

The evaluation algorithm 2 represents the first stage of the simple evaluation of the feature
model. This evaluation is very basic and relies on iterating through each feature and assign-

ing them the user selected values. In this step, the features are determine whether they are

47

USER_SELECTED and whether they need to be AUTO _SELECTED. At the end of the al-
gorithm, the possible three values for the feature can are NOT SELECTION NO_ACTION,
USER_SELECTED and AUTO SELECTED.

The function loops through all the features in the selected feature set and sets their status
to USER SELECTED by calling the inner function select. In the inner helper function,
based on the value passed as a parameter, sets the feature’s selection status, following which
two operations are invoked in sequence. The first sequence assigns all the features from the
parent up to the root to be AUTO SELECTED. In the second sequence, the function takes
care of all the descendant features of the current feature. If any child of the feature is a
mandatory child, it is assigned as AUTO_SELECTED using a recursive call.

In order to avoid repetitive traversal of the feature models, certain break conditions
are applied at the start of the select function. Two break conditions can be applied: the
first one, if the current selection status is AUTO SELECTED and the current status to be
assigned is AUTO_SELECTED, the function is stopped, as all the features above the current
feature have already been handled previously. The second break condition is encountered
when the current status is AUTO SELECTED with the current status to be assigned is
USER_SELECTED, this signifies that the user has exclusively selected this feature, but it
has already been auto selected in a previous traversal, hence only the current selection status
of it is changed to USER_SELECTED and the function is terminated.

The second part of the evaluation determines whether if the current user selections is
valid, or whether there are any WARNING or SELECTED-NO-ACTION-REQUIRED status

to be assigned to any of the features. The below algorithm loops through all the features

48

w

o YW W N3 O

12
13
14
15
16
17

Algorithm 3 OR / XOR evaluation

void evaluateORXOR(COREFeatureModel fm) {
for all (feature in FeatureModel):
if (feature.currentStatus !'= NOT_SELECTED_NO_ACTION_REQUIRED): [Can be auto-selected
or user-selected]
continue the loop.

if (feature.parentRealationship == XOR):
if (number of children selected under feature.parent > 1):
for all (child in feature.parent.children):
child.currentStatus = WARNING
if (number of children selected under feature.parent == 0):
for all (child in feature.parent.children):
child.currentStatus = NOT_SELECTED_ACTION_REQUIRED
if (feature.parentRelationship == 0OR)
if (number of children selected under feature.parent == 0)
for all (child in feature.parent.children):
child.currentStatus = NOT_SELECTED_ACTION_REQUIRED

in the feature model to determine if the current feature model selection violates any OR or
XOR constraints.

The above algorithm represents the second part of the evaluation algorithm which de-
termines if the current feature model selection violates any XOR or OR constraints. The
function loops through all the features in the feature model, and only proceeds with the
functionality if the feature is selected, i.e., user-selected or auto-selected. For the first se-
quence, the algorithm checks for XOR relationships. An XOR relationship implies that only
one child can be selected under the parent. It checks the number of selected children, and if
it is more than one, all the selected children are assigned the WARNING status, indicating
the feature model selection is currently invalid. If the number of selected children is zero, all
the children are assigned the status of NOT SELECTED-ACTION-REQ), indicating that
the user needs to mandatorily make a decision on the children. A similar check is done in

case of the OR relationship.

49

© 0 NG TR W N =

R I N R N T e e e
LR W N RO Do ND O AW N RO

Algorithm 4 Reexposed feature selection validity checker

void evaluateReexposedFeatures(Set<COREFeature> reexposedFeatures) {
for (each feature in reexposedFeatures)
feature. reexposed (USER_REEXPOSE)
¥

void reexposed (Selection_Status type) {
if (feature already has a status other than AUTO-REEXPOSED || USERREEXPOSED)
return;

if (type == AUTO-REEXPOSED and feature == AUTO-REEXPOSED):
return;

if (type == USER_REEXPOSEDand feature == AUTO-REEXPOSED):
feature = USER_REEXPOSED
return;

if (type == USER_REEXPOSED)
feature = USER-REEXPOSED
else
feature = AUTO-REEXPOSED
parent .reexposed (AUTO-REEXPOSED)

if (any children under feature is Mandatory)
mandatoryChild.reexposed (AUTO-REEXPOSED)

Following the two algorithms, the completeness and the validity of the feature model
is checked next. A feature model is considered to be valid, if there are no WARNING or
SELECTED-NO-ACTION-REQ status in any of the features in the feature model. If there
are any, the feature model is considered to be invalid, which means that no impact model
analysis is performed for this invalid selection, as it would most likely return invalid results.

The above two algorithms presented do not take into account the selection validity of
reeexposed features. When the user of the concern wants to reexpose certain features whose
selection decision is deferred to one level down, these features are passed as a set of reexposed
features. . The algorithm presented below is used for the evaluation of features reexposed

by the user.

20

-

Q © O NG TR W N =

Algorithm 5 Requires and Excludes Constraint Checker Algorithm

void evaluateConstraint (Set<COREFeature> selectedFeatures){
for(each feature in selected) :
for(each requiredFeature in feature) :
if (requiredFeature not present in selectedSet) :
return false;

for (each excludedFeature in feature) :
if (excludedFeature present in selectedSet) :
return false;

The algorithm 4 is the same as the selection algorithm and performs the same actions,
except the first condition is used to break the function if a status already exists for a feature,
meaning it has already been evaluated and there is no need to evaluate it again now.

The algorithm 5 presents a simple constraint solver example, which checks exclusively if
any of the constraints specified in the feature model are violated.

All the features which are selected and assigned, AUTO SELECTED by the above
evaluation algorithms are collected together in a set and then looped through to check for
requires and excludes dependency.

4.3 Integration of an External Constraint Solver

The simple feature model selection validation algorithm presented in the previous sec-
tion 4.2 can check for constraint violations of the features selected by the user. However if a
user reexposes some features, the validation algorithm is not be able to check if in the end,
when the final selection is made, it is always possible to make at least one valid selection.

This stems from the fact that when a concern designer of concern A reuses a concern
B by making a selection of features and reexposing others, the selection decision for the
reexposede features is deferred to the next level. The concern A designer can depend on the

already selected features of concern B, and he can define constraints between the selected

ol

Figure 4-2: Screenshot of FAMILIAR tool

LR
- ;
e o
| eature \!E s
SEL

]; 0 CEIFIG); € & (I1D)+;)
3; D : CEIFIG); € & (113);)
50 CEIFIG; € @ CTID)e;)
sunion { fml fm2 fm3 }

FAMILIAR Console » b ‘ o B8-r3-

> FAMILIAR Console
fm1: (FEATURE_MODEL) A: [D] B-epwmereyyes (JI)*+
fml> renameFeature fm1.E as "Ebis"
res0: (BOOLEAN) true

fmi> 1
c1: (CONFIGURATION) selected: [A, B, C] deselected: [
fmi>

features and optional features of A, if needed. However, at the next level up, when the
concern user of A is selecting the features for of A which includes reexposed features from
B, making a selection on the reexposed features might result in a constraint conflict with
an already selected feature of A. These type of complex constraint conflict detection cannot
be detected by our simple verification algorithm presented above, which uses.an iterative
algorithm to traverse the feature model. Although it is well-adapted to check for OR and
XOR constraints, it is highly inefficient for cross-tree constraints (i.e., includes and excludes).

In the context of feature model evaluation, SAT solvers have been used extensively to
solve the problem of evaluating complex cross-tree constraints. Typically, techniques using
SAT solvers reduce the feature model that is to be analyzed to a propositional formula ,
which is then analyzed using standard SAT solving techniques.
4.3.1 Integration of FAMILIAR with TouchCORE

As a part of my thesis, the CORE tool which I worked on, TouchCORE, was integrated
with a domain specific language called FAMILIAR [1]. .

FAMILIAR (for FeAture Model scrlpt Language for manIpulation and Automatic Rea-

soning) is a domain specific language used for a variety of functions with respect to feature

o2

Figure 4-3: Interaction of TouchCORE with FAMILIAR

TouchCORE

Feature String Transformed
Model Transformation FM

Familiar
Processor

—o>

User

sainjes)
pejosjes

Transformed

User String ’ user
Selections [Transformatio

selections

l

|

| GUI Computed
I Displa Results

models. These functions range from composing, decomposing, editing, configuring, etc.,
multiple feature models. The functions can be used for analysis of feature models and in
particular variability management tasks. FAMILIAR also provides range of complex algo-
rithms specified for the validation of constraints in feature model based on SAT solving
techniques.
Flow of Control and Exchange of Information
The CORE tool is responsible for visualizing and editing operations of the feature model.

The interaction between the CORE tool, TouchCORE and FAMILIAR is as shown in 4-3.

93

During the concern reuse process, the feature model of the reusing concern is shown to the
user. The user makes the selection according to his requirements.

All the feature selections made by the user are composed together and are sent to the
evaluation algorithm of FAMILIAR. To this aim, the feature model that in memory is orga-
nized according to the CORE metamodel is first converted to the FAMILIAR format, i.e.,
flattened into a sequence of characters. A similar conversion is done to specify the set of
selected features. Then, FAMILIAR is invoked. FAMILIAR provides an API which accepts
the feature model and the selected features in a flattened format and checks for constraint
violations. It first checks for any parent relationship violation. Any violations would im-
mediately result in stopping the evaluation and returning the violations. Following this,
FAMILIAR then transforms the feature model into propositional logic and runs the SAT
solver algorithm.

If no solution is found, i.e., some constraints are violated, the violated constraints are
returned to CORE. To achieve this, we had to define a data exchange format that FAMILIAR
would produce and TouchCORE could read, so that subsequently the detected constraint

violations can be displayed in the GUI.

o4

Chapter 5
Feature Model Visualisation

Feature Models are at the heart of Concern-Oriented Reuse, since they capture the rela-
tionships and dependencies that exist between distinctive user-visible characteristics of the
software that a concern modularizes and encapsulates.. As such, they are extensively used
by both the concern designer and the concern user.

A concern designer is the user who is responsible for creating the generic reusable con-
cern. A concern designer has the most up-to-date knowledge of the domain and has all the
necessary background to understand the concern completely. He decomposes the concern
into features, thus creating the tree structure of the feature model, and then elaborates the
realization models for each feature.

The concern user on the other hand uses an existing concern by selecting features of
interest, performing trade-off analysis, and finally by customizing it to his specific application
context. Hence at this point it is advantageous to display the most important part of the
feature model pertaining to the user, i.e., the decisions that need to be made.

In order to maximally support the task of the modeller, depending on the type of user,
certain parts of the feature model become more important than others. Therefore, adapting
the way the concern feature model is displayed depending on the user greatly simplifies the
model creation process for the concern designer as well as aids in the concern user’s decision

making process.

95

Figure 5-1 shows three different concerns and their associated feature models: Smart
Home, Authentication, and Storage.

Storage concern presents the various options the user can use for storing information. The
presented features are ordered, unordered or by key indexed which can further be specified
by a remote lookup or a database Storage concern is used at the highest level of abstraction.
This concern can be used in any domain / application which needs storage mechanism.

Authentication concern presents the various options that the designer can utilize for au-
thentication purposes. The concern design makes a distinction between how the credentials
are stored either by Password or by Biometric means. Over these credentials, additional
mechanisms such as Access Blocking and Auto Logoff can be attached to it. The Authentica-
tion concern is used at the middle level of abstraction. This concern can use other concerns
and in turn some other concern can use Authentication concern in their design.

Smart Home concern presents the design of a modern home system with various option
for Door Security, Temperature Control and the method of communication. This concern
is at the lowest level of abstraction as it is defined for a particular domain. These three
concerns are not independent, but form a reuse hierarchy. In fact, the realization model of
the Smart Home concern’s feature Door Security,reuses the Authentication concern, which
in turn reuses the Storage concern.

In the following sections we describe how we propose these feature models to be visualized

depending on who is working with them! .

! Parts of this chapter of the thesis have been published as a paper entitled “Visualization
Algorithms for Feature Models in Concern-Driven Software Development” [41] in the "14th

o6

Figure 5-1: Concern and their Feature Models

[Smart Home |
|Communication | | Door Security ||Temperature Control | | Access Blocking | Credentials |Auto Logoff | | Ordered | | Unordered | | Key Indexed |

|802.11 || Wired || Burglar Intrusion |

Password Biometric

S

| Remote Lookup | | Database |

Legend
lmandatory A) optional A\ or A\ xor (alternative)

| Password Expiry | | Retinal Scan | | Fingerprint |

5.1 Concern Designer Visualization Algorithm

During the design of the concern, for the concern designer, the feature model can be
thought of as a table of contents which organizes all the features being designed, which in
turn group all the reuses that this feature makes and all the models that realize this feature.
This table of contents encodes in a precise, hierarchical way how features are organized,
i.e., how child feature relationships are classified and organized under a parent. In a feature
model, a child feature under a parent defines the additional structure and functionality which
needs to integrate with the parent’s feature structure and behavior. The child feature can
contain extra additional constraints which need to be satisfied to work with the parent.
Hence, while designing the realization model(s) of a feature in the concern, the concern
designer uses the feature model to be aware of what functionality of the parent and ancestor
features he can depend on or he needs to integrate with. To elaborate a coherent design,
having such a complete picture of what lies “above” a feature within the concern is crucial.

For example in Figure 5-1, the Burglar Intrusion feature in the Smart Home concern

can depend on the structure and behaviour of its parent feature Door Security .

tntermatiomal—Conferenrce—on Modularity”, co-authored by myself and my supervisor Jorg
Kienzle.

o7

In the concern reuse process, whenever a feature reuses another concern, all the child
features also have access to the functionality provided by the reuse, as the reuse is considered
to be an integral part of the feature that requested it. Therefore it is imperative for the
concern designer that he is aware of all the concern reuses of the parent and ancestor features,
and hence they should be visualized in the feature model during the design process. In
essence, the feature making the reuse imports and groups all the structural and behavioral
properties of all the selected features of the reused concern. Hence, to document the fact that
any descendant features can depend on the selected features of a reuse made in a feature, the
selected features of the reused concern are visualised as mandatory children of the feature
that made the reuse. As a result, the concern designer knows precisely which features the
descendants can depend on.

The reexposed features are not shown in this mode of display. The main reason for this
is that the designer of the concern cannot depend on any of the structure and behaviour
of the reexposed features of a reuse, since whether or not this functionality is available in
the end has not been decided yet. Furthermore, hiding reexposed features of a reuse in the
concern designer visualization mode reduces complexity and visual cluttering.

The DisplayFMDuringDesign visualization algorithm that implements the concern de-
signer visualization mode described above is presented in Algorithm 6. The following abbre-
viations are used:

e fm : Feature Model

f: Feature

cf : Child Feature

¢ : Concern

o8

00 ~ D Ut ok W =

I T T S T
H QO © KN O s W N = O ©

Algorithm 6 Concern Designer Visualization Algorithm

DisplayFMDuringDesign (fm:FM) {
fm.root.display ()
DisplayFDesign(fm,fm.root)

}

DisplayFDesign(fm:FM,f:F) {

forAll (Reuse r of concern c¢ within f) {
DisplayFSelected(f, c.fm.root, Sel(r))
}
forAll(cf, child of f) {
f.display(cf)
DisplayFDesign(fm,f,cf)
13

DisplayFSelected (parent:F,child:F,Selected:Set{F}) {
parent.displayMandatory (child)
forall(children f of child) {
if (f in Selected)
DisplayFSelected(child,f,Selected)
3}

e 1 : Reuse

e Sel(r) : Set of selected features for the reuse r
In the above algorithm, it is assumed that the root feature of a feature model can be accessed
via the property .root . The operation f.display(cf) displays the feature cf (which is a
child) and the relationship link to its parent, and the function f.displayMandatory(cf)
displays a mandatory dependency link between the feature cf and the parent feature f.

The above algorithm DisplayFMDuringDesign takes as input the feature model to be
displayed. This feature model is the feature model of the concern that the concern designer
is currently editing. After displaying the root feature of the feature model, the algorithm
calls the recursive DisplayF Design operation, passing the feature model and the root feature
as a parameter..

DisplayFDesign first loops through all the reuses of the feature passed as parameter, and

calls the DisplayFSelected operation to display the selected features in the reuse, passing the

99

current feature, the root feature of the reused concern as well as the set of selected features in
the reuse configuration as parameter (see description of DisplayFSelected below). Once this
is done, the operation continues to display the current feature model by iterating through
the children and calling itself recursively.

Inside the DisplayFSelected operation, the root feature of the reused concern is first
displayed as a mandatory child of the feature that makes the reuse. Then, each child feature
of the root feature of the reused concern is checked to determine whether it is also part of the
selected features. If yes, the DisplayFSelected operation calls itself recursively. This ensures
that all selected features in a reuse are displayed as a mandatory children under the feature
that made the reuse.

The current visualization algorithm only crosses the concern boundaries once, which
essentially shows reuses made only by the models that realises features of the concern are
shown. Inner reuses made by the features selected by the concern are not shown. This
is consistent with the information hiding principles, which dictate that a concern designer
should not depend on the internal design of a concern that is being reused, but only its
interface.

Figure 5 2 presents the application of the concern designer visualization algorithm on the
Smart Home concern. The selected features of the configuration of reuse of the Authentica-
tion concern are Access Blocking, Credentials and Biometric. These selected features show
up as mandatory sub features under Door Security, which is reusing the Authentication con-
cern. The Authentication concern reuses the Storage concern, but this is not shown in the
designer view, nor the selected configuration of Storage, which is the feature Key-indezed,

because the algorithm crosses concern boundaries only once. As a result, the knowledge of

60

@,
| Communication | | Door Security | |Temperature Control |

|802.11 || Wired | | Burglar Intrusion | |Authentication|

| Access Blocking | | Credentials |

Figure 5 2: Concern Designer Visualization Algorithm applied to the Smart Home Feature
Model

Authentication reusing Storage remains internal to the Authentication concern, and is not be
available to the concern designer of Smart Home. This is inline with the information hiding
principles enforced by concern-orientation.
5.2 Concern User Visualization Algorithm

One of the main goals of concern-orientation is to hide the complexity which exists within
a concern from the concern user whenever possible. The internal design and the working
of the concern should be abstracted away from the user as much as possible. For instance,
a concern user does not need to be aware of the extension hierarchy that exists between
realization models that makes it possible to share structural and behavioral design elements
among concern features. Also, feature interactions identified by the concern designer should
be dealt with in a way that is transparent from the concern user. During the concern reuse
process, the concern user needs to focus on the available user features and their impacts,
perform trade-off analysis and select features. Ultimately, what is important to be shown to

the concern user during the reuse is the available functional variants and the design choices

61

that the concern has to offer, and to evaluate and display the different impacts that the
different available choices have on non-functional properties.
5.2.1 Compact User Visualization Mode

Since the choices are most important during the reuse process, the visualization of the
feature model of the reused concern during reuse should be “condensed” to only show the
choices that are available to the concern user. For example, in the feature model, it is not
necessary for the user to see the mandatory children, but is very essential that the optional,
or the XOR or the OR children are shown. If the features inside the reused concern have
made reuses that reexpose features, those are also choices that the concern user needs to
consider, and hence they should be visualized as well. This visualization should continue
down the reuse hierarchy as long as there are reexposed features, since reexposition can cross
an unlimited number of reuse layers. To summarize, to maximally focus the concern user on
the choices he needs to make, mandatory as well as features of a reused concern that were
selected by the concern designer should be omitted from the feature model that is shown to
the concern user during the reuse process..

The DisplayFMDuringReuse algorithm described in Algorithm 7 receives the feature
model and the set of currently selected features as parameters. The root of the feature
model is displayed and then an inner function is called.

The inner function receives four parameters as follows :

e attachTo: This parameter refers to the feature under which the features are going to

be visualized.

e consider: This parameter indicates which feature is currently being examined for pos-

sible selections and reexpositions.

62

© 0 N3 T s W N =

B R A A A R R R R W W W W W W W W W WNN NN NN NNNN R e s S e e e
O 00N DO R W N RO O 00N DU R WN =D O 0 NSO WN OO 0O R Ww N O

Algorithm 7 Compact User Visualization Algorithm

DisplayFMDuringReuse (fm:FM,selected:Set{F}) {
fm.root.display ()
DisplayFRexOnly(fm.root ,fm.root,selected,{})

}

DisplayFRexOnly(attachTo:F,consider:F,
selected:Set{F},reexposed:Set{F}) {
selected_flag = false; reexpose_flag = false;
if (consider.relationship == 0OR) {
forAll (cf:child of comsider) {
if (cf in selected) selected_flag = true;
}
forAll (cf:child of comsider) {
if(cf in reexposed) {
if (selected_flagl} {
attachTo.displayOptional(cf);

} else {
attachTo.display(cf);
}
reexposed_flag = true;
}
¥
} else {

forAll (cf:child in comnsider) {
if(cf in reexposed){
attachTo.display (cf);
reexposed_flag = true;
}
}
}
forAll (cf:child in consider) {
if (¢f or descendant of cf in reexposed)) {
if (! (cf in reexposed) && reexpose_flag) {
attachTo.displayMandatory (cf);
DisplayFRex0Only (cf,cf,selected ,reexposed);
} else {
DisplayFRex0Only (attachTo ,cf,selected,reexposed);
}
} elseif (cf in selected or cf.relationship == mandatory) {
DisplayFRexOnly (attachTo,cf,selected,reexposed);
}
}
forAll (Reuse r of concern c¢ within consider) {
if (descendant of c.root in reexposed) {
if (reexpose_flag) {
consider.displayMandatory(c.root)
}
DisplayFRexOnly(c.root, c.root, selected+Sel(r), reexposed)
133

63

e selected: Set {F}: This indicates the set of selected features in the configuration,

e reexposed: Set {F}: This indicates the set of reexposed features.

It is more elaborate than the feature model visualization algorithm during concern design. In
particular, it must detect OR relationships where some children are reexposed and some are
selected and convert the selected features to mandatory features, and the reexposed ones to
optional features (lines 8 to 24). If a child feature has reexposed descendants and a sibling
is reexposed as well, then it needs to be displayed in order to guarantee that the feature
model is syntactically correct (lines 35 - 37). Furthermore, if a subfeature is mandatory or
selected, then it should not be displayed and can be skipped (lines 39 - 43). Finally, the
feature models of reused concerns have to be visualized as well, which means that concern
reuses have to be handled recursively as long as they contain any reexposed features (lines
45 - 52).

The algorithm for feature model visualisation for the concern user crosses the concern
boundary as many number of times as necessary to show all available choices to the concern
user, i.e., as long as there are reuses that reexpose features. Only when a reuse makes a
complete selection, i.e., if there are no open choices left, then the algorithm does not need
to enter the reused concern.

In Figure 5-3, the Smart Home concern reuses Authentication which in turn reuses Stor-
age. The reuse of Authentication reexposed the features Retinal Scan and Fingerprint. The
reuse of Storage inside Authentication reexposes the features Remote Lookup and Database,
with Key-indexed being selected in the configuration. Hence when showing the selections to
the user when a user reuses the Smart Home concern, Authentication is shown as a manda-

tory subfeature under Door Security as described in the algorithm. Credentials is shown

64

|Communication | | Door Security ||Temperature Control |

|802.11 || Wired | | Burglar Intrusion | |Authentication |

Credentials
O

| Retinal Scan | | Fingerprint | | Remote Lookup | | Database |

Figure 5-3: Compact User Visualization of the Smart Home Feature Model

as a mandatory child, under which the reeexposed features Retinal Scan and Fingerprint
are shown under the OR relationship. Similarly with Authentication reusing Storage, the
Storage feature is shown as mandatory subfeature under Authentication, followed by reex-
posed features Remote Lookup and Database with an XOR relationship. For this example,
the algorithm crosses the concern boundaries twice, since the reuse in Authentication has
reexposed features of Storage, which are again reexposed in the reuse of Authentication in
Door Security.
5.2.2 Verbose User Visualization Mode

The aim of the compact user visualization algorithm presented in the previous subsection
is to minimize the cognitive load on the concern user by only showing the features for
which decisions need to be made during the reuse process. As a result, the compact user
visualization algorithm often does not display many mandatory or already selected features.
This happens even if these mandatory or selected features are parents of features that are
reexposed. In that case, experience has shown that it is sometimes not obvious for the concern

user to understand to which part of the system the features apply. This in turn negatively

65

00 ~ D Ut ok W =

Algorithm 8 Verbose User Visualization Algorithm

forAll (cf:child in consider) {

if (¢f or descendant of cf in reexposed)) {
ancestor.displayMandatory(cf);
DisplayFRex0Only (cf,cf,selected,reexposed);

} elseif (cf in selected or cf.relationship == mandatory) {

DisplayFRexOnly(attachTo,cf,selected,reexposed);
}
}

affects the decision making process. To remedy this situation, we propose a verbose user
visualization mode which does not hide the intermediary mandatory nodes from the user.

A minor change to the algorithm in Algorithm 7 in lines 32-37 achieves the desired effect.
The condition in the elsif statement at line 37 has to be removed, transforming it into
an else statement. This ensures that all features up to the reexposed feature are shown as
mandatory.

Algorithm 8 shows the modified section of the previous algorithm that enables the verbose
user visualization mode.

Figure 4 shows the Smart Home concern visualized during a reuse with the verbose user
vosialization mode. As seen from the figure, all the sub features up to the reExposition are
visualized as mandatory children. In this case Biometric and Key-indered now appear as
children of Credentials rsp. Storage.

5.3 Order of Visualization

Both modes of the DisplayFMDuringReuse algorithm maximally focusses the attention
of the concern user to the decisions that must be made. In both modes, the set of decisions
that the concern user has to make is shown explicitly. This section proposes two ways of
interactively presenting the feature model that constrain the order in which a concern user

makes decisions as part of the reuse process.

66

lCommunicalion | | Door Security | | Temperature Control |

‘ 802.11 H Wired | ‘ Burglar Intrusion ‘ |Authenlication |

Credentials

Biometric

.I

Key Indexed

‘ Retinal Scan | I Fingerprint | | Remote Lookup I ‘ Database ‘

Figure 5-4: Verbose User Visualization of the Smart Home Feature Model

* mandatory /P\ alternative (XOR)

Workflow

NS

\

Timed s Cor':ditic_matl_
Synchronization ynchronization
O @)
Concurrent Exception Hierarchical Conditional
110 Sequence Branching Handling Workflow Execution
Input Output Parallel Synchronization Blocking Synchronizing
Execution

Workflow reuses Association<Unordered reexpose TreeSet, HashSet>
Synchronization reuses Association<Ordered reexpose ArrayList, FIFOQueue>

Figure 5-5: Workflow Feature Model

67

5.3.1 Top-Down Display

In this mode, the CORE tool prompts the concern user to make decisions in a top down
manner. The idea of this mode is to display to the user the choices to be made level by level.
In other words, optional children are only displayed once the decision about their parent
has been made. This forces the user to make a decision at a particular level, and only then
the options for the next level will be shown. This imposes a decision order aligned with
the abstraction level of features. General decisions are made before the concern user has to
worry about detailed decisions.

The reduction of cognitive load is easily demonstrated by means of the feature model
of the Workflow concern shown in Figure 5-5. When reusing Workflow, the first level of
decisions that the concern user needs to make is to determine which kind of workflow control
flow elements he needs: he needs to decide whether Timed Synchronisation, 1/0, Concur-
rent Branching, Ezceptional Handling, Hierarchical Workflow, Conditional Execution and/or
Conditional Synchronisation is needed (the mandatory feature Sequence is always selected,
and hence not displayed in the DisplayFMDuringReuse algorithm). Only once a feature such
as I/0 is selected, the sub features that require decisions, in this case Input and Qutput, are
shown to the user. The same situation occurs for the Blocking and Synchronizing features
under Hierarchical Workflow.

5.3.2 Full Display

In this mode of display, the CCD tool from the beginning displays all the choices that

need to be made by the concern user. In other words, the tool does not impose an order

on the decision making to the concern user. As a result, the concern user can inspect the

68

feature model from top to bottom, together with all the relationships and cross constraints
that exists between features.

In the Workflow example shown in Figure 5, this means that the concern user is con-
fronted immediately with all the choices, i.e., Timed Synchronisation, 1/0, Input, Output,
Concurrent Branching, Fxceptional Handling, Hierarchical Workflow, Blocking, Synchroniz-
ing, Conditional Ezecution, and Conditional Synchronisation. Additionally, there are also
decisions that need to be made for the reexposed features TreeSet, HashSet, ArrayList and
FIFOQueue.

The advantage of the top-down display is that it again reduces cognitive load. The
concern user does not have to be aware of the existence of variants that determine low-level
details when it is undecided if those details are relevant for his particular use of the concern.
For Workflow, the concern user is initially confronted with 9 independent choices when using
top-down display, instead of a total of 15 in full display mode.

The advantage of full display is that the concern user has a complete overview of the
features that the concern offers before making any decisions. For example, the concern
user would see that the Hierarchical Workflow feature offers hierarchical workflow decom-
position with synchronization, which is an alternative to Conditional Synchronization and

additionally provides structural decomposition benefits when creating workflows.

69

Chapter 6
Related Work

This chapter presents an overview of research and tools that are related to this thesis.
Section 6.1 summarizes the modelling notations and modelling approaches related to CORE.
Section 6.2 presents the different variations of feature models that have been proposed in the
literature, describes the modelling tools with support for feature modelling and comments
on their ways of visualizing variability.

6.1 Concerns and Aspect-Oriented Modelling Approaches

Multi-dimensional separation of concerns (MDSoC) was first introduced conceptually by
Tarr et al. in [40]. The units of reuses (e.g., classes) were grouped together in modules
to address a particular concern. The programming language HyperJ [34] is a prototype
extension of the Java that realized the MDSoC vision at the programming language level. The
MDSoC inspiration lead to the development of ModelSoC [24], an abstract MDE framework
in which development is organized around concerns, and models are developped that specify
the concerns by means of orthogonal views.

There are many other MDE approaches which contain units of development which en-
capsulate cross-cutting concerns. Concerns are separated at design and requirements level
with Theme [6]. ArchEvol [32] manages concerns at a higher level of abstraction and can

trace concerns back to code level as well.

70

Several MDE approaches use aspect-oriented techniques to support separation of con-
cerns. [39|proposes a modelling framework which simplifies both the tasks of model develop-
ment and specifying transformations. Generic Reusable Concern Compositions (GReCCo) [21]
proposes a composition method which can be used to compose concern models specified in
UML.

In MDSoC, ModelSoC and the aforementioned approaches inspired by aspect-oriented
modelling techniques, though, the word concern is used in a more narrow sense than in
CORE, as the modules in MDSoC typically only dealt with a specific solution for a concern,
and did not provide capabilities for impact analysis. In CORE, a concern is a unit of reuse
that has a broader perspective, since it additionally modularizes all relevant variants of
a development concern and exposes them in a formal variation interface that allows the
developer to perform trade-off analysis.

6.2 Variability Modelling

Software Product Line engineering [44] is a research area that focusses on reuse of devel-
opment assets in the context of a closed family of products. Various SPL approaches have
been proposed in the past that use different modelling notations to express the variability
within a family of products.

Feature models, first introduced by Kang et al. [25] in Feature Oriented Domain Analysis
(FODA), express the variability in a top down tree like format with different parent child
relationships between the features. Many variants of feature models exist, and they are
discussed in Section 6.3. Decision Modelling [10] uses sets of decisions to separate different
products in a software product line and has mainly been applied in an industrial setting.

Orthogonal Variability Management [36] documents the variability within a product line with

71

variation points. Each variation point describes the possible configurations and associated
constraints.

The Common Variability Language (CVL) [20] is a domain independent language for
specifying and resolving variabilities. Just like UML it is an OMG standard. At the heart of
CVL variation points are defined over base models, which can be of different types depending
on the kind of variation that is to be expressed. Every variation point is bound one variation
specification which describe the abstract variability. The variation specification can be used
to specify a constraint.

Additionally to specifying variability, CVL also provides mechanisms for operationalizing
how a product is derived. This process is called resolving the variability. Fach type of
variation specification has its own type of resolution. The variation specification contains
different information necessary to materialize the product model. Choices represent a yes /
no decision, Variables contain the actual values defined and Classifiers imply the creation of
instance.

In CORE, the variability is expressed in terms of feature models, since they are the
most widely used formalism for expressing variability, and on top of that very intuitive
and easy to understand. Every feature specified in the feature model is represented by
a realization model which represent the behaviorial and structural aspects of the feature.
These features are mapped to their respective realization models. Based on the configuration,
all the models that realize the selected features to yield new models corresponding to the
desired configuration. In CVL, based on all the variation specification, variability is resolved

to formulate the final product. In contrast to CORE, where variations is defined by the

72

Figure 6-1: Basic Feature Model

Legend:
‘ Mandatory
o Optional
__l__ Or
Calculator [\ Alternative
- T
— ""-—____
-
r’ff /\ R
Cperations | Llsarlnterface Plath:arm
Addition = Multiplicatior = Graphical ~Console = Mobile PC

configurations which the user can select, CVL defines different variation specification which
represent different variations to derive the final product.
6.3 Feature Models

The application of feature models varies across different fields, such as, but not limited
to, model driven engineering, feature-oriented programming [31|, and reuse applications [29|.
All the applications revolve around software product lines. Feature models can also be used
in all phases of the software development cycle — from requirements gathering to design.
6.3.1 Feature Model Types

Although there exist many different types of feature model languages, we present here
the three most common ones.

Basic Feature Models

Basic feature models consists of feature models which consists of the four relationships

of Optional, Mandatory, Alternative and Or. Basic feature also allow to specify cross tree

constraints in the form of requires and excludes.

73

Figure 6-2: Cardinality Based Feature Model

Request Management System

[1.1] 0.1 fo.1]
Request Realization Reaquest Validation Request Evaluation
Supervised Direct
Realization Realization

Many researches have worked on expanding basic feature models to improve their ca-
pabilities for analysis. For instance, Don Batory [7] introduced the concept of applying
proposition logic to feature diagrams to enhance the capability to debug feature models. So
far, CORE uses basic feature models only.

Cardinality-Based Feature Models

Cardinality-based feature models refers to integrating a number of extensions to the
original FODA specification. It is used by some authors to allow features and feature groups
to be selected more than once, and to express additional constraints [14]. This extension
was mainly inspired by practical application and conceptual completeness.

In cardinality-based feature models, cardinality refers to the minimum and the maximum
number of children a parent feature can contain. Tt is defined by an interval denoted by [n..m|,

where n represents the lower bound and m represents the upper bound.

74

Figure 6-3: Extended Feature Model

WikiMatrix
; - Unicod Language
LicenseCostFee Storage RSS License nicode
Difierent us || community | | Files || Database | | Fiercs | | commercial | [notimit | | arL | | Griz | | vava || Python | | PHP || Pen
E— E— T T — T — —
Storage <-> Unicode GPLZ? -= PHP DifferentLicenses -= -GPL
Bl = Community <> FileRCS | = GPL - Storage E = Daabase -~ -Python Mut A or Mandatory
Ei(l:?:{gesrial <P-;HUS10 MNolimit -> —DifferentLicenses 0.1 utex
Uneode oo Lan guage LIJ Unicode -> —Nolimit
US10 <> Java cst LicenseCostFee - —Files A Xor \ Optional

Extended Feature Models

Due to the limited amount of information which can be represented and encoded directly

in a feature model, several approaches have augmented feature models with additional in-

formation. These types of feature models are called extended feature models. Typically, the

additional information is added in terms of so called feature attributes.

Extended feature models are sometimes used to express additional cross-tree constraints

or to aggregate the existing relationships [2]. Most often though they are used to perform

some form of analysis or reasoning to inform the decision making process to compare different

configurations. An example of such an analysis is presented in [8], where the number of

potential products a FM contains is estimated so as to determine if the SPL can become

more flexible.

1)

6.3.2 Feature Model Implementations / Techniques

FAMILIAR([1] is a Domain Specific Language which is used for management of feature
models. The language provides support for separation of concerns. It implements extended
feature models and provides support for feature model composition. Constraints can be
specified using the language, and it also provides support for evaluating the validity of a
selection of features in a given feature model.

FeaturePlugin [4] is an Eclipse [5] based plugin for feature modelling. It supports
cardinality-based feature modelling with constraints. Users can group together a set of fea-
tures and define a configuration to specialize a feature diagram. With these specializations,
additional analysis can be performed on feature models.

Text Variability Language (TVL) [9] is a proposed text-based variability language with
C-like syntax aimed for easier adoption of feature models in an industrial context. The goal
of TVL is to be scalable and to support modularity. TVL provides support for all types
of feature models, including basic and cardinality-based feature models, which additional
support for constraint specification.

[11] proposes a XML-based feature modelling technique which aims at modelling the
software assets behind a product line. The technique provides the ability to decompose
feature models to extensible and self-contained modules. It uses a XML based technique to
express feature models by which any tools can easily derive support.

6.4 Work Related to Impact Models

In addition to expressing the variations offered by a concern, the quality attributes for

features are specified in an impact model. An impact model is a type of goal model which

specifies the positive / negative impacts on various high level goals and quality aspects.

76

The analysis of impact model offers provides guidance to the decision making process which
identifies the best suited solution. In other words it can be considered as a model which
describes the advantages and disadvantages of features of a concern and their impacts on
high-level goals.

Impact model i.e., the impact of choosing a feature, can be specified with goal models.
Goal models can be described with GRL, which is a part of User Requirements Notation
(URN) standard [22], or the NFR framework [13], i* [45] or KAOS [15].

The impact models used in the concern are rarely used in isolation. With the reuses of
concern, the impact models are also reused which results in composition of impact models.
Feature models have the ability to specify constraints. With the reuse of concerns, the
maximum achievable value which a goal might attain can significantly alter.

During my thesis, I also contributed to [17]. Tt specifies the proposal for the reuse of goal
models which have received little attention. The work also presents an evaluation algorithm
which calculates the maximum value a goal might attain with the constraints specified on

features, when a concern reuse is applied.

7

Chapter 7
Conclusion

In this thesis we have investigated different ways of operationalizing feature models, with
the aim of creating the first CORE-based modelling tool.

Based on the existing CORE metamodel, this thesis first proposed an interface which
links an external implementation of the feature model to the CORE tool. The interface
defines 11 operations (initializers, getters, setters and complex edit operations), one for
the concern and ten that operate on features. The proposed approach and interface were
tested by linking the TouchCORE tool with an external implementation of feature models
of the Eclipse-based modelling tool jUCMNav. Implementing this approach resulted in
the discovery of certain limitations, such as difficulty in navigability, problems with cross-
referencing between model elements, difficulties with evolution of the external tool, problems
separating the implementations, incompatible library dependencies,etc.

As a result, feature models were subsequently integrated directly into CORE. This was
performed by defining the structure of feature models, i.e., features, parent-child relationships
and inter-feature constraints, as well as feature configurations and integrate them into the
CORE metamodel. This was followed by defining behaviour / operations that implement
the basic functionality needed by CORE to create and manipulate feature models. The

TouchCORE tool was updated with the new metamodel, the editing operations implemented

and a graphical user interface for feature models was devised. Additionally an external

78

constraint solver was integrated with TouchCORE to determine the validity of partial feature
selections.

Finally, in order to maximally support the creation and reuse of concerns, two visualiza-
tion modes for feature models are proposed. Concern designers are users who are responsible
for creating generic reusable concerns, and to streamline their interaction with the tool our
algorithm shows all the features of the concern being developed. Additionally, any reused
concerns and their selected features are visualized as mandatory child features of the feature
that made the reuse in the current concern. This gives the concern designer all the informa-
tion he needs to properly integrate the models he develops with the structure and behaviour
of the current concern, in particular the parent features and the reuses they made.

On the other hand, concern users use an existing concern by selecting the desired features,
performing trade-off analysis and finally by customizing it to his application context. For
the concern user our algorithm presents a condensed feature model that includes all the
choices that the user has to make, including reexposed choices of internally reused concerns,
if any. Any features that have to be reused in any case (i.e., the mandatory and already
selected ones) are hidden from the user, since no decision needs to be made. This significantly
simplifies the reuse process. Furthermore, we propose two different selection orders to the
concern user. Full display involves showing the entire feature model of the concern that is
being reused including re-exposed features of lower-level concerns to the user, which provides
him with a condensed view of all options and allows him to try out the different selections
to compare their impacts. Top-down display presents the reuse choices to the concern user
layer-by-layer, starting with high-level decisions. Only when the user has made a decision by

selecting a feature, the next layer, i.e., the sub features, are visualized. In this mode, only

79

the user in confronted with the minimal set of decisions that need to be made, thus reducing
cognitive load.
7.1 Future Work

Thanks to the work performed in this thesis, concern-oriented reuse is now operational.
It is now possible with the TouchCORE tool to create reusable concerns, and realize the
design of each feature with design models using the (previously existing) support for class
diagram, sequence diagram and state diagram editing and weaving. This now opens many
exciting possibilities for further research, two of which are explaining here in more detail.
7.1.1 Full Integration of Impact Models

During the thesis, due to the shortcomings of the external interface approach, feature
models were integrated into the CORE metamodel, but not impact models. In parallel to
this work, a Ph.D. student started adding limited impact model support to CORE. Using this
initial integration, we worked on investigating how to propagate impacts of a reused concern
in the variation interface of the reusing concern, which resulted in a publication at SDL [17].
However, currently only very simple impact models are supported in CORE. Goal modelling,
the notation that impact models are based on, supports many more advanced concepts, such
as stakeholders, AND and OR goal decomposition, key-performance indicators (KPIs), etc.,
and it would be interesting to investigate if they would be useful in the context of CORE.
7.1.2 COREification of Additional Modelling Notations

Following the ideas of MDE, CORE has been designed in such a way that concerns can
encapsulate models using different modelling notations. In theory, in order to be usable
in the CORE framework, a modelling notation has to extend the CORE metamodel to

include any CORE concepts that are missing in the modelling language and/or align any

80

similar concepts that already exist in the modelling language with CORE. Once this is done,
realization models can be created in the modelling notation and attached to features of
a concern. Thanks to this thesis, this theory can now be put to the test by making an
additional modelling notation available to the users of TouchCORE. A project attempting
to integrate support for the Aspect-Oriented User Requirements Notation (AoURN) has just

begun.

81

1]

2|

13l

4]

5]

6]

7]
18]

191

References

Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. Familiar: A
domain-specific language for large scale management of feature models. Science of
Computer Programming (SCP), 78(6):657-681, 2013.

Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B France. Familiar: A
domain-specific language for large scale management of feature models. Science of
Computer Programming, 78(6):657-681, 2013.

Omar Alam, Jorg Kienzle, and Gunter Mussbacher. Concern-oriented software design.
In 16th International Conference on Model-Driven Engineering Languages and Systems
- MODELS 20183, volume 8107 of Lecture Notes in Computer Science, pages 604-621.
Springer, 2013.

Michat Antkiewicz and Krzysztof Czarnecki. Featureplugin: Feature modeling plug-in
for eclipse. In The 2004 OOPSLA Workshop on Eclipse Technology eXchange - Eclipse
‘04, pages 67 72, Vancouver, British Columbia, Canada, 2004. ACM Press, ACM
Press.

Michal Antkiewicz and Krzysztof Czarnecki. Featureplugin: feature modeling plug-in for
eclipse. In Proceedings of the 2004 OOPSLA workshop on eclipse technology eXchange,
pages 67-72. ACM, 2004.

Elisa Baniassad and Siobhan Clarke. Theme: An approach for aspect-oriented analysis
and design. In Proceedings of the 26th International Conference on Software Engineer-
ing, pages 158-167. IEEE Computer Society, 2004.

Don Batory. Feature models, grammars, and propositional formulas. Springer, 2005.

David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés. Automated reasoning on
feature models. In Advanced Information Systems Engineering, pages 491-503. Springer,
2005.

Quentin Boucher, Andreas Classen, Paul Faber, and Patrick Heymans. Introducing tvl,
a text-based feature modelling language. In Proceedings of the Fourth International

82

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

83

Workshop on Variability Modelling of Software-intensive Systems (VaMoS’10), Linz,
Austria, January, pages 27-29, 2010.

Neil Burkhard. Reuse-driven software processes guidebook. version 02.00. 03. 1993.

Vaclav Cechticky, Alessandro Pasetti, O Rohlik, and Walter Schaufelberger. Xml-based
feature modelling. In Software Reuse: Methods, Techniques, and Tools, pages 101-114.
Springer, 2004.

Lianping Chen, Muhammad Ali Babar, and Nour Ali. Variability management in soft-
ware product lines: a systematic review. In Proceedings of the 13th International Soft-
ware Product Line Conference, pages 81 90. Carnegie Mellon University, 2009.

Lawrence Chung, Brian A. Nixon, Eric Yu, and John Mylopoulos. Non-Functional
Requirements in Software Engineering. Springer, 2000.

Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing cardinality-
based feature models and their specialization. Software process: Improvement and
practice, 10(1):7-29, 2005.

A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements acquisition.
Science of Computer Programming, 20:3-50, 1993.

Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1st edition, 1997.

Mustafa Berk Duran, Gunter Mussbacher, Nishanth Thimmegowda, and Joérg Kienzle.
On the reuse of goal models. In SDL 2015: Model-Driven Engineering for Smart Cities,
pages 141-158. Springer, 2015.

Robert France and Bernhard Rumpe. Model-driven Development of Complex Software:
A Research Roadmap. In Future of Software Engineering, FOSE ’07, pages 37-54.
[EEE, 2007.

Timothy J Grose. Eclipse modeling framework, 2008.

(Oystein Haugen, Andrzej Wasowski, and Krzysztof Czarnecki. Cvl: common variability

language. In Proceedings of the 16th International Software Product Line Conference-
Volume 2, pages 266 267. ACM, 2012.

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

84

Aram Hovsepyan, Stefan Van Baelen, Yolande Berbers, and Wouter Joosen. Generic
reusable concern compositions. In Model Driven Architecture—Foundations and Appli-
cations, pages 231-245. Springer, 2008.

International Telecommunication Union (ITU-T). Recommendation Z.151 (10/12):
User Requirements Notation (URN) - Language Definition, approved October 2012.

ITUT ITU-T and Z Recommendation. 151 (11/08), user requirements notation (urn)
language definition. Geneva, Switzerland, approved November, 2008.

Jendrik Johannes and Uwe Afmann. Concern-based (de) composition of model-driven
software development processes. In Model Driven Engineering Languages and Systems,
pages 47-62. Springer, 2010.

K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-oriented domain
analysis (FODA) feasibility study. Technical Report CMU /SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, November 1990.

Jacques Klein and Jorg Kienzle. Reusable Aspect Models. In 11th Aspect-Oriented
Modeling Workshop, Nashuville, TN, USA, Sept. 30th, 2007, September 2007.

Jacques Klein and Jorg Kienzle. Reusable aspect models. In 11th Aspect-Oriented
Modeling Workshop, Nashuville, TN, USA. Citeseer, 2007.

Uwe Laufs, Christopher Ruff, and Jan Zibuschka. Mt4j-a cross-platform multi-touch
development framework. arXiv preprint arXiv:1012.0467, 2010.

Kwanwoo Lee, Kyo C Kang, Wonsuk Chae, and Byoung Wook Choi. Feature-based
approach to object-oriented engineering of applications for reuse. Software-Practice and
Ezperience, 30(9):1025-1046, 2000.

Andreas Metzger and Klaus Pohl. Variability management in software product line
engineering. In Companion to the proceedings of the 29th International Conference on
Software Engineering, pages 186-187. IEEE Computer Society, 2007.

Mira Mezini and Klaus Ostermann. Variability management with feature-oriented pro-
gramming and aspects. In ACM SIGSOFT Software Engineering Notes, volume 29,
pages 127-136. ACM, 2004.

Eugen C Nistor, Justin R Erenkrantz, Scott A Hendrickson, and André Van Der Hoek.
Archevol: versioning architectural-implementation relationships. In Proceedings of

[33]
[34]

[35]

[36]

[37]

38
[39]

|40]

|41]

42|
[43]

85

the 12th international workshop on Software configuration management, pages 99-111.

ACM, 2005.
University of Ottawa. jucmnav version 6.0. Accessed: 2010-09-30.

Harold Ossher and Peri Tarr. Hyper/j: Multi-dimensional separation of concerns for

java. In Proceedings of the 22nd International Conference on Software Engineering,
ICSE '00, pages 734 737, New York, NY, USA, 2000. ACM.

Klaus Pohl, Giinter Bockle, and Frank J. van der Linden. Software Product Line En-
gineering: Foundations, Principles and Techniques. Springer-Verlag New York, Inc.,
Secaucus, N.J, USA, 2005.

Klaus Pohl, Giinter Bockle, and Frank J van der Linden. Software product line engi-
neering: foundations, principles and techniques. Springer Science & Business Media,
2005.

Jean-Francois Roy, Jason Kealey, and Daniel Amyot. Towards integrated tool support
for the user requirements notation. In System Analysis and Modeling: Language Profiles,
pages 198 215. Springer, 2006.

Douglas C. Schmidt. Model-driven engineering. IEEE Computer, 39:41-47, 2006.

Arnor Solberg, Devon Simmonds, Raghu Reddy, Sudipto Ghosh, and Robert France.
Using aspect oriented techniques to support separation of concerns in model driven
development. In Computer Software and Applications Conference, 2005. COMPSAC
2005. 29th Annual International, volume 1, pages 121-126. IEEE, 2005.

Peri Tarr, Harold Ossher, William Harrison, and Stanley M Sutton Jr. N degrees
of separation: multi-dimensional separation of concerns. In Proceedings of the 21st
international conference on Software engineering, pages 107-119. ACM, 1999.

Nishanth Thimmegowda and Jorg Kienzle. Visualization algorithms for feature models
in concern-driven software development. In Companion Proceedings of the 1jth Inter-
national Conference on Modularity, pages 39-42. ACM, 2015.

TouchCORE. Touchcore version 6.0. Accessed: 2010-09-30.

Axel Van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In
Proceedings of the Fifth IEEE International Symposium on Requirements Engineering,
RE 01, pages 249-262, Washington, DC, USA, 2001. IEEE Computer Society.

86

[44] David M Weiss et al. Software product-line engineering: a family-based software devel-
opment process. 1999.

[45] Eric Yu. Modelling strategic relationships for process reengineering. Social Modeling
for Requirements Engineering, 11:2011, 2011.

