
STEADY-STATE MODEL OF NEUTRON STAR

CRUST

Hugo Olivares

Department of Physics

McGill University

June 2008

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of Master of Science.

c©Hugo Olivares 2008





Contents

Acknowledgements v

Abstract vii

Abrégé ix
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Abstract
The advent of X-ray astronomy has turned the study of compact objects

into one of the most active research fields in modern-day physics. Diverse

luminosity phenomena have been remarked upon in neutron stars and it is

believed that in many of them the neutron star crust plays a critical role. This

work presents a steady-state model for the neutron star crust that describes, in

particular, the profiles of temperature and flux along this region. It is divided

as follows: First, a review of observational phenomena in neutron stars, where

crust characteristics are thought to be crucial, are presented, alongside general

aspects of the theoretical models applied. Second, the different elements that

are needed to construct this model are considered. Third, the set of struc-

ture equations to be resolved and the calculations of the components of these

equations are provided. Finally, the results are shown and discussed and the

conclusion is presented.





Abrégé
L’avènement de l’astronomie des rayons X a transformé l’étude des objets

compacts en un des champs de recherche des plus actifs en physique moderne.

Divers phénomènes de luminosité ont été observés dans les étoiles neutron

et on estime que la croûte de l’étoile neutron joue un rôle important dans

beaucoup de ces phénomènes. Cet ouvrage présente un modèle d’équilibre

stable pour la croûte de l’étoile neutron qui décrit, en particulier, les profiles

de température et flux dans cette région. L’ouvrage est divisé comme suit:

Premièrement, une révision des phénomènes observés dans les étoiles neutron,

où les caractéristiques de la croûte sont supposées être cruciaux, est présentée,

avec les aspects généraux des modèles théoriques utilisés. Deuxièmement,

les différents éléments nécessaires pour construire ce modèle sont examinés.

Troisièmement, l’ensemble des équations de structure à résoudre et les calculs

des composantes de ces équations sont présentés. Finalement, les résultats

sont montrés et discutés et la conclusion est présentée.





Chapter 1

Luminosity phenomena in

neutron stars

Different high luminosity events are observed in neutron stars. Although the

main source of power of these events is either the core of the star or the ac-

cretion process, the crust plays an important role in regulating the release of

energy and duration not only during high energy events, but also within the

quiescent periods. We present a brief review of these phenomena as introduc-

tion and with the aim of illustrating the importance of the crust model in

studying different types of luminosity phenomena in neutron stars.

We can classify the observed phenomena in two parts: for isolated neutron

stars we consider the cooling of the star, whereas for binary systems we consider

the events related to accretion. We also present a brief review of the variability

phenomena observed in isolated and accreting neutron stars.

§1.1 Cooling of isolated neutron stars

Neutron stars are born as a result of a supernova explosion, with an initial

temperature of T ∼ 1012 K, after which they cool down gradually. The proto-

neutron star becomes transparent to neutrinos ∼ 30 s after the explosion,

with an equation of state almost independent of temperature in its interior

(Yakovlev & Pethick, 2004). From this point the star cools by neutrino emis-
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sion and heat transport. Once the heat reaches the surface of the star, it is

liberated in the form of thermalized photons. This process can be analyzed

considering the relativistic nature of the star (Shapiro & Teukolsky, 1983).

As an example to estimate the temperature at the surface, consider a star of

mass M and radius R, with TS denoting the effective temperature. Hence,

Lγ = 4πR2kBT 4
S is the thermal photon luminosity in the frame of reference

of the star. In this way, the redshifted temperature and luminosity we can

observe from the distance are

T∞
S = TS

√
1− rg

R

L∞γ = Lγ

(
1− rg

R

)
,

(1.1)

where the Schwarszchild radius is defined as rg = 2GM/c2 ≈ 2.95 M/M� km.

Since the surface temperature can be non-uniform (v.gr. magnetized stars),

a mean effective temperature of T̄ 4
S = Lγ/(4πR2kB) is considered, where Lγ

total thermal luminosity.

However, non-thermal emission is often strong enough to obscure the ther-

mal radiation of the star. In young pulsars (t ∼ 1000 years) this might happen

due to a process in the magnetosphere, whereas in old ones (t & 106 years)

the dominant source of radiation can be located at the poles (see Yakovlev

& Pethick, 2004, for a review on physical parameters of isolated neutron

stars). On the other hand, isolated middle-aged neutron stars (t ∼ 104 − 106

years) appear to be objects where the thermal emission is more noticeable

within the whole spectrum. The surface temperatures for these objects ranges

TS ∼ (0.5− 1)× 106 K, so the thermal profile is observed in soft X-rays. The

detection of many features related with the cooling has been possible due to the

relatively recent generation of X-ray observatories, such ROSAT (1990-1998),

Chandra and XMM-Newton (both launched in 1999).

The cooling of the neutron star can be separated into three main stages

(Yakovlev et al., 2008):

1. During the first 10 to 100 years, due to the much stronger neutrino

emission in the core, the crust is thermally decoupled from the core.
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Thus, the surface temperature is the one of the crust.

2. The star cools through high neutrino emission (Lν � Lγ) coming mainly

from the core for t . 105 years.

3. For t & 105 years the cooling is led by photons emitted from the surface

(Lν � Lγ). The evolution of the internal temperature is directed by the

radiation from the surface and thus is determined by the properties of

the outer parts from the star.

The thermal relaxation of the star takes place during these phases. In the

end, the redshifted temperature will become constant in the interior of the

star, reaching a balance.

The value of TS cannot be obtained directly, but by fitting some parame-

ters in theoretical models applied to observational data, such as radius, sur-

face gravity, distance and spectrum of interstellar absorption. In such models

(Yakovlev & Pethick, 2004), the thermal spectrum is calculated from either

a black-body spectrum or a neutron star atmosphere model which could also

include a magnetic field. In models where the surface is composed of hydrogen,

the depth from where the photons emerge to the surface strongly determines

the hardness of the spectrum, due to the dependence of the radiative opacity

on the energy of these photons. Thus, when photons come from deeper layers,

their higher energy produces a harder spectrum for a given TS than their equiv-

alent for black-body models. Furthermore, the effective temperatures from the

hydrogen atmosphere models are only half of the ones calculated using black-

body models, while for an iron atmosphere both give similar TS. Nonetheless,

these atmosphere models appear to be less accurate when the stars are cooler

than middle age ones (T ∼ 106 K), or when a strong magnetic field requires

other calculations such as ionization equilibrium or spectral opacities in mag-

netized plasmas.

Within the the whole model of the star (both interior and surface), the

properties of the crust are fundamental to determine features such as the dura-

tion and intensity of the cooling curves. We will present a theoretical overview

of the crust structure in the section §1.4 to illustrate this. Meanwhile, we
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present a brief summary of different observational phenomena which motivate

the construction of crust models for neutron stars.

§1.2 X-ray Burst in Binary Systems

Some variability phenomena observed in neutron stars have been attributed

to the interaction of the compact star and its companion. The compact object

will accrete matter from its companion over its surface (or magnetosphere),

accumulating material which, under different conditions, might ignite. This

leads to an increment in luminosity with respect to the one seen in quiescence.

Some parts of the crust of the neutron star are then replaced by material

from the companion. What is more, the entire crust can be substituted (Brown,

2000). The density of the replaced crust, typically consisting of hydrogen

and helium, is high enough (& 6 × 1011 g cm−3) to sustain non-equilibrium

reactions that release a considerable amount of heat (∼ 1 MeV per accreted

nucleon). Moreover, if the accretion is rapid enough to allow stable burning

(Ṁ ∼ 10−8M� yr−1, typical in LMXBs), most of the heat will be conducted

to the core, this results in an inversion of the thermal gradient, where the

emission of neutrinos regulates the temperature.

The purity of the crust with respect to its ground state (when no accretion

has taken place yet) as well as its overall composition will affect the thermal

profile of the cooling of the star, which also will determine the features of

the luminosity phenomena, in case unstable burning of the accreted material

occurs. The latter happens when X-ray bursts take place.

§1.2.1 Overall features

The X-ray bursts were discovered in the mid-1970s, and it was just a few

years later when different authors (e.g. Maraschi & Cavaliere, 1977) suggested

the possibility that the X-ray bursts were due to thermonuclear flashes on

the surface of accreting neutron stars. However, the discovery of the Rapid



§1.2. X-RAY BURST IN BINARY SYSTEMS 5

Burster 1 indicated that such repetitive bursts could not be explained with

thermonuclear flashes, since a very high flux of persistent X-ray emission due

to the release of gravitational potential energy should be present, and this was

not observed.

In 1977 Hoffman2 discovered that the Rapid Burster emits two different

types of bursts, introducing the classification type I and type II. He claimed

that the rapid and repetitive type II burst is due to accretion instabilities and

the type I is due to thermonuclear flashes. Later work has strengthen the idea

that this mechanism originates the bursts, although is still under debate. It

was thought for some time after their discovery that bursts sources are LMXBs,

and direct evidence of this has been found since the early 1980s -by means of

the optical counterparts and orbital periods of the sources-. This identification

has allowed the construction of models where the accretion process (through

Roche lobe overflow) and the composition of accreted crust are constrained.

Neutron stars in LMXBs appear to have weak magnetic fields compared to

the ones in population I binary systems. This is believed due to the absence

of X-ray pulsations in LMXBs and that X-ray bursts do not occur in systems

that show X-ray pulsations (Lewin et al., 1997). Therefore, it is possible to

construct models of X-ray bursts where the magnetic field is less important

than composition or other characteristics of the neutron star interior. More-

over, since the X-ray bursts of type I are originated in the outer layers of the

neutron star, models need to include some crust composition that reflects its

impurity due to accretion.

The rise and decay times are among the most important features of the

bursts. The rise varies from less than a second to ∼ 10 s and the decay times

vary from ∼ 10 s to minutes. In general the burst depends strongly on the

photon energy, so when the photon energies are higher, the decay times are

much shorter than at low energies. The energy dependence of the burst profile

is associated with a softening of its spectrum during the decay, which seems to

be a result of the cooling of the neutron star photosphere (Lewin et al., 1997).

1A source where ∼ 1000 bursts per day were observed during several weeks (Lewin et al.,
1976).

2Hoffman et al. (1978)
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Neutron stars in X-ray binaries increase their luminosity to LX ∼ 1037 ergs

s−1 during the bursts, while in the relative quiescence periods (months-decades)

this luminosity is LX . 1034 ergs s−1. The quiescence X-ray spectrum is

divided into two components: a soft thermal component (black-body kT ∼ 0.2

keV) and a power-law component that dominates the emission above 2 keV

(Ushomirsky & Rutledge, 2001).

Bursts with double peak profiles have also been found. These events belong

to a very energetic type I X-ray bursts during which the luminosity becomes

so high (that is, it reaches the Eddington limit) that the atmosphere of the

neutron star expands due to radiation pressure. Because of the rise of the

radius of the photosphere, the temperature decreases and X-rays are no longer

emitted. As the photospheric radius slowly starts to decrease, the temperature

increases again, restarting the X-ray emission with increased energy according

to the rising of the temperature. The radius stops decreasing once the surface

reaches its original size, after which the photosphere cools again but without

shrinking (Lewin et al., 1993).

The bursts intervals vary in regularity, on time scales of hours to days,

ranging from ∼ 5 minutes to days; and showing no activity in periods from

days to months (although on a few regular behaviour has been observed).

The bursts recurrence is sometimes related to the level of persistent X-ray

emission. In some sources, like 4U 1820-303, it has been found that bursts

frequency decreases when the persistent flux is increased, and the bursts stop

completely if the flux increases even more. In other sources (i.e. MXB 1658-

298 and GX 3+1) some burst regularity is observed while the persistent X-ray

flux is relatively low (Lewin et al., 1997). Although bursts have been observed

while some objects are in bright state, such as in the transient sources Cen

X-4, 4U 1608-522, Aql X-1 and EXO 0748-673, the anticorrelation with respect

to the bursts occurrence is maintained. However, bursts behaviour tends to

be very irregular in sources with high and persistent X-ray luminosities, which

could be the result of having values close to the critical that such luminosities

can reach (near half of the Eddington). Above that value the bursts are not

supposed to occur, according to some thermonuclear flash models. Many of

the large bursts variations have been observed to be unrelated to variations in
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the rate of accretion.

There are some thermonuclear models where it is implied that there is a

correlation between the time interval of the bursts and their integrated energy

(Lewin et al., 1997). In other words, the burst energy would be higher for

longer time intervals, mainly because there would be more nuclear fuel avail-

able. The observational evidence for this hypothesis seems to point in more

than one direction. Although the correlation has been observed, longer waiting

times do not entail significantly larger bursts in some sources. It has also been

observed that for longer time intervals between bursts, photospheric radius

expansion is ∼ 101 − 102 km, which is followed by a gradual recontraction.

These radius expansion bursts are believed to be originated when the critical

Eddington luminosity is exceeded and the atmospheric layers are lifted.

It is also important to mention that the luminosity observed during the qui-

escence (1032 − 1033 ergs s−1, called basal luminosity) of burst sources shows

peculiarities that imply that its origin lies in the neutron star crust. According

to Ushomirsky & Rutledge (2001), it has been suggested that such luminosity

is caused by one of the following phenomena: a)the continued accretion in qui-

escence, possibly through an advection-dominated accretion flow; b)accretion

onto the magnetosphere of the neutron star; and c)thermal emission from a

hot core of the star heated by non-equilibrium reactions in the neutron star

crust. It is considered that from all these possibilities, only the heated-thermal

emission predicts the luminosities observed in the thermal spectral component,

although a combination of the three is not ruled out. We will refer to the heat-

ing scenario in the description of our model.

§1.2.2 Optical Observations

There have been different campaigns of coordinated optical and X-ray obser-

vations of burst sources. The first optical/X-ray burst was detected in the

object 4U 1735-444 (Grindlay et al., 1978). The fluence in the optical burst

was equivalent to ∼ 2× 10−5 times the one observed in X-ray burst, which is

∼ 6 times greater the one expected if the optical emission corresponds to the

low-energy tail of the black-body X-ray burst. This and other observations
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may indicate that the optical emission comes from the interaction of the X-

rays of the source with the surroundings of the neutron star, i.e. the accretion

disk and the companion star. The optical signal will therefore be delayed ac-

cording to the distances from the source to the observer and to the place where

X-rays are reprocessed and transformed into optical photons before reaching

the observer. In this scheme, X-rays will illuminate the environment of the

neutron star, providing information of the surrounding area in the form of

optical radiation.

§1.2.3 Superbursts

In recent years a phenomenon has been discovered that is similar to the type

I X-ray bursts, but notably more energetic. This phenomena is observed in

about 10% of the burst sources and displays around 1000 times more energy

than the regular type I X-ray burst (hence they are referred to as superbursts),

over time scales of hours to a day (Keek et al., 2008).

So far, the superbursts have only been seen in systems where continuous

accretion has been registered for at least 10 years and in sources with persistent

pre-burst luminosities (L ' 0.1− 0.25LEdd). Also, when the neutron star was

monitored with sufficient time in advance, a precursor burst was observed.

The recurrence time of these events has not yet been well specified, although

estimations are of the order of one year (Cumming et al., 2006). Around 10

superburst have been registered so far (Keek et al., 2006). Wijnands (2001)

even reported two events from 4U 1636-536 which were ' 4.7 years apart.

During the rise and decay of superbursts luminosity it is possible to observe

how the spectrum hardens and softens, respectively. We can also see this in the

spectral fits of the time-resolved pre-burst subtracted X-ray spectra, obtained

during the superburst (Kuulkers, 2004).

The similarity of these events with the type I X-ray burst led to the idea

that the their origin lies in thermonuclear runaway events as well (although

deviations from the exponential decay profile exist). However, the differences

in energy and duration indicate that if the scenario of thermonuclear flashes is

true, the burning layer should be much further down in the neutron star than
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those where the regular bursts occur to account for the duration (Keek et al.,

2008).

It is very likely that superbursts restrain the apparition of “regular” type

I X-ray burst. During continuous monitoring of the source 4U 1735-444, no

normal X-ray burst activity was detected after 7.5 days after the superburst,

despite the X-ray flux being similar to the one observed when the objects

showed normal X-ray bursts. This was also true for the sources KS 1731-

260 and Ser X-1. These objects showed normal X-ray burst activity before

superbursts were seen, after which no normal events were registered for around

a month (Kuulkers, 2004).

Whereas the models of type I X-ray bursts rely on the unstable burning of

H and/or He, it is thought that superbursts are originated from the burning

of those materials but from deeper layers. Alternatively, the ignited material

can include carbon, as pointed in models by Cumming et al. (2006). Different

simulations using these models indicate that the superburst events are very

sensitive to the thermal properties of the neutron star interior, such as accreted

composition of the crust and neutrino emission (both from the core and crust).

This offers the opportunity to use this kind of events to explore the interior of

neutron stars, in particular the crust structure. We will see more about this

in §1.4.2.

§1.3 Variability phenomena

§1.3.1 Variable emission from transient accretion

Variability of the luminosity of neutron stars during quiescence has also been

observed, and it seems to represent another phenomena where the crust plays

an important role. The basal luminosity during the quiescence periods of

neutron stars (1032−1033 ergs s−1) is reported to vary by a factor of as much as

∼ 3 or more during time-scales of days to years. There are three main scenarios

considered in the literature to explain the origin of this type of variability

(Ushomirsky & Rutledge, 2001):

1. Variable accretion on the neutron star. If accretion on the surface dom-
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inates the luminosity in quiescence, changes in the accretion rate can be

responsible for variations in the thermal part of the spectrum, since the

photospheric spectrum at the assumed low accretion rate gives the re-

quired thermal emission, supposing absence of shock and an appropriate

quasi-continuous accretion rate.

2. Variable accretion on the magnetosphere. The power spectral tail that

appears to dominate the emission above 2 keV is explained through this

process. The intensity variability of that component can be a result of

accretion rate variations.

3. Variable absorption column density (NH). The outburst may be accom-

panied by outflows, increasing the local column density of material. This

may cause the value of the absorption column density to vary which in

turn accounts for the observed variation in density.

Observations of transient variability in quiescence have been made par-

ticularly on the sources Aql X-1 and Cen X-4 —see Ushomirsky & Rutledge

(2001), Rutledge et al. (2002), Campana (2005)—. Initially, the observations

were difficult due to the little and poor data. But recent experiments, such as

Chandra, have brought to light better data in this field.

The analysis from Rutledge et al. (2002) of the Chandra data from Aql

X-1 on quiescence after an outburst in 2000 found a variable flux and X-

ray spectrum. They interpreted this fluctuation in terms of variations of the

neutron star effective temperature, which in turn suggested low level accretion

during quiescence. It is worth mentioning that these observations were the

first to show clear luminosity variation and, more importantly, an increase of

temperature during quiescence. On the other hand, observations made with

XMM-Newton of Cen X-4 discovered rapid (> 100 s), large (45±7% rms in the

10−4 − 1 Hz range) intensity variability, especially at low energies (Campana,

2005) with no appreciable periodicities (although aparition of flares in the

optical is reported).

As mentioned in §1.2.1, whether steady accretion during quiescence can sus-

tain the observed luminosities is still debated. However, it is only through vari-

ations in the effective temperature of the neutron star that variability can be
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sustained for some sources (Rutledge et al., 2002). These temperature changes

can account as well for features observed in the power law tail and differences

in the column density. This raises the question of the existance of mechanisms

of heating deep in the crust region, more likely from non-equilibrium nuclear

reactions. This idea has been explored by different research groups, in com-

bination with accretion variation, although there are not conclusive results

yet.

§1.4 The role of the crust in the model of the

neutron star interior

After the above summary of observations, we present a short and general de-

scription of the theoretical models that are applied to simulate the events where

the crust plays a main role. We focus on the cooling of isolated neutron stars

and superbursts in binaries since these are the events where the contribution

of the crust is most evident. Also, these two phenomena require models where

the composition of the crust varies, so the robustness of the model can also be

tested.

§1.4.1 Cooling of isolated neutron stars

Just after the neutron stars are born in the supernova explosion, the interior

remains opaque to neutrinos for about one minute (Yakovlev et al., 2008).

Later, the star begins its phase as a regular neutron star when it becomes

transparent to the neutrinos created in its interior. Both neutrino emissivity

and thermal emission of photons constitute the two main ways of cooling in

neutron stars. The keystone of the contemporary simulations are the structure

equations defined by Thorne (1977) to calculate the thermal evolution of the

star. Considering spherical symmetry, for the energy and flux we have,

e−λ−2Φ

4πr2

∂

∂r
(e2ΦLr) = −Q + Qh −

cT

eΦ

∂T

∂t
(1.2)
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and
Lr

4πκr2
= e−λ−Φ ∂

∂r
(TeΦ), (1.3)

where r is the radial coordinate, Q is the neutrino emissivity, cT is the heat

capacity (per unit volume), κ is the thermal conductivity, Lr is the luminosity

(understood as the heat flux transported from the interior) and Qh is a non-

specified heating contribution (such as nuclear reactions in the crust, we will see

this in the next chapter). The function Φ represents the gravitational redshift

and λ the gravitational distortion of radial scales, e−λ =
√

1− 2Gm(r)/c2r

(m being the mass within the sphere of radius r). At the surface we have

Φ(R) = −λ(R).

To build the model of the neutron star, it should be noted that its internal

structure can be regarded as temperature independent. Therefore, some mod-

els will be determined mostly by the central density and the equation of state.

In the outermost layers, where it is believed the material is non-degenerate,

the thermal conduction is radiative. In deeper regions, from the crust and

onwards, the heat is carried by electrons, whereas in the core it is produced by

electrons, neutrons and other baryons (Yakovlev & Pethick, 2004). The mod-

els of cooling are aimed to predict the curves of T∞
S (t) and L∞S (t) —see §1.1—

during the thermal relaxation period of the neutron star. When this phase is

over, the redshifted temperature Ti(t) = T (r, t)eΦ(r) becomes constant in the

star interior. The equations 1.2 and 1.3 are thus replaced by the equation of

global thermal balance

C(Ti)
dTi

dt
= −L∞ν (Ti) + L∞h − L∞γ (TS), (1.4)

where
L∞ν (Ti) =

∫
dV Q(T )e2Φ,

L∞h =
∫

dV Qhe
2Φ,

C(Ti) =
∫

dV cT (T ).

(1.5)

The element of proper volume is dV = 4πr2eλdr and C represents the heat

capacity for the whole star, whereas L∞ν is the total neutrino luminosity for the
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observer and L∞h is the heating from intermediate layers (Yakovlev & Pethick,

2004).

Besides the ones mentioned above, other physical parameters come into

play when determining the cooling of neutron stars. The most important are

the following:

1. The composition of the neutron star, which in turn determines the equa-

tion of state.

2. The rate of the neutrino emissivity from the interior of the neutron star.

3. The heat capacity of the interior.

4. The thermal conductivity in the crust.

5. The heating mechanisms in the intermediate layers of the star, such as

non-equilibrium nuclear reactions in the crust, frictional dissipation or

rotational energy.

6. The magnetic field, although in some cases it is considered negligible.

When it is strong, the magnetic field may largely modify the thermal

characteristics of the neutron star.

Most of these properties are calculated independently for core and crust, so

it is customary that the approach to some problems assumes a fixed model of

one of these two regions to be able to modify the other and, according to what

is required, explore certain features. This has been done by distinct authors

(e.g. Brown, 2000 or Haensel, 2001). Their models experiment extensively

with diverse properties of the crust, whereas for the core the main parame-

ter analyzed is the neutrino emissivity. We will talk in more detail of these

properties in the next chapter, when we present the model of the crust.

A strong magnetic field in the neutron star can lead the evolution of the

thermal profiles from the star. It is widely believed that some observational

phenomena such as soft gamma-ray repeaters (SGRs) 3 and anomalous X-ray

3Sources that show large bursts of gamma-rays and X-rays at irregular intervals.
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pulsars (AXPs) 4, occur due to the presence of strong magnetic fields (B & 1014

G) in isolated neutron stars (Kaminker et al., 2006). These special type of

neutron stars, known as magnetars, are thought to originate such phenomena

in the course of the decay of their magnetic fields, which takes place during

cooling.

One of the expected results of the presence of magnetic fields in the neu-

tron stars is the appearance of inhomogeneities in the surface temperature.

Depending on the geometry of the magnetic field, “hot spots” may arise, mod-

ifying the temperature distribution (which could also be achieved by means

of rotational effects) and thus altering the luminosity profiles. Therefore, it

becomes crucial to bring to light the mechanisms by which the magnetic field

influences the overall emission of the stars, specially the X-ray emission. In

models such as the one from Geppert et al. (2005) the consequences of “nor-

mal” magnetic field strengths (1012 − 1013 G, bipolar and originated in the

crust) in the surface temperature distribution are analyzed.

According to Arras et al. (2004), the evolution of the magnetic field passes

through a series of equilibrium states after the sporadic release of stresses in

the crust and stimulations of motion in a liquid core. It is also believed that the

geometry of this field has poloidal and toroidal components (purely poloidal

or purely toroidal are unstable configurations for the field). In this picture,

the magnetic field would evolve according to the induction equation,

∂B̄

∂t
= ∇×

[
(v̄ + v̄amb + v̄Hall)× B̄

]
+

∂B̄

∂t

∣∣∣∣
fracture

, (1.6)

where v̄amb is the speed with which the magnetic field is advected by the

diffusing component (electrons/protons) of the core, v̄Hall = −J̄/ene (ne is the

electron density number) and v̄ is the hydrodynamic response of the core to

the combined effect of this transport processes. It is also considered that the

crust, if rigid, is affected by possible fractures that would cause changes in the

magnetic field in short timescales.

4X-ray pulsars characterized by slow rotation periods and the absence (or very small)
of long term variability. Both phenomena share many similarities, although the specific
physical characteristics that differentiate the two classes remain unclear (Wachter et al.,
2007).
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The decay of the magnetic field in the crust is given by Ohmic and Hall

effects, which dictates the development of currents in that region. In fact, the

timescales of decay in the crust are much shorter than those in the core, thus

becoming more important, in particular, for the construction of models where

the accretion contributes to the evolution of the field itself. Furthermore,

the Hall effect is likely to build up stresses in the crust that can be released

during SGR and AXP (Cumming et al. (2006)). It is worth mentioning that

the previous is applied to study the evolution of the magnetic fields of neutron

stars in binary systems as well, where accreted crust composition is considered.

With the above we finish the description of the general characteristics of

the cooling models. Now we will continue with an overview on the superbursts

models.

§1.4.2 Superbursts in binary systems

As we have said previously, it has been suggested that superburst are originated

due to heating deep in the crust structure. It is believed that the material that

fuels the superburst is produced by hydrogen and helium burning through

rapid proton capture process (rp-process) around the neutron drip line, which

apparently explains the extended tails of these events (∼ 100 s). This process

allows the production of accumulating layers of heavier elements that hinder

the conduction of heat, thus increasing the thermal gradient. What is more,

according to some calculations, the temperature at which this material ignites

agree with the observations (Cumming et al., 2006).

Other models consider the ignited material as pure carbon going through

unstable burning (the initial reaction would be 12C + 12C → 20Ne + α) in

a layer between the crust and the accreted layers. This model (Cumming &

Bildsten, 2001) has been successful in reproducing different features observed

in superbursts, such as energy, recurrence time, light-curves and the expected

suppression of “normal” type I X-ray burst after the superburst event (Keek

et al., 2006). However, the processes under which enough quantity of car-

bon is produced and how unstable ignition is achieved at accretion rates of

0.1 ṀEdd (inferred in superbursters) are not totally clear. Diverse theoretical
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work has been done to comprehend the characteristics by which the accreted

material (hydrogen and helium) burns and transforms into the superburst fuel,

reproducing the observed luminosity.

In Cumming & Macbeth (2004) it is pointed out that the unstable burning

of carbon takes place at densities of ρ ∼ 105 − 106 g cm−3, producing heavy

elements (mainly iron) via rp-process and residual carbon with mass fractions

of Xc ∼ 0.01 − 0.1, which can be ignited when the mass of the ashes layer

reaches∼ 1025 g. This calculation agrees with the observed superburst energies

for Xc ' 0.1 and when the release of energy from the nuclear burning is 1

MeV per nucleon. It is also possible that heavy nuclei are photodesintegrated

(producing elements within the iron group) when the flash occurs, enhancing

the nuclear release.

In a cooling model like this, the evolution profile is calculated through the

entropy equation,

cP
∂T

∂t
= −εν −

1

ρ

∂F

∂r
, (1.7)

and the flux equation

F = −K
∂T

∂r
. (1.8)

Unlike expressions 1.2 and 1.3, the heat source is only given by the neu-

trino emissivity εν , although intermediate heat sources (e.g. non-equilibrium

reactions) could be considered. Again, K is the thermal conductivity and cP

the thermal conductivity. After all the considerations about the crust struc-

ture, heating from the core (outgoing flux) and integration conditions are made

(which will be described in the second chapter), the thermal evolution can be

computed. In the model of Cumming & Macbeth (2004) it is found that dur-

ing the firsts hours of the event, ∼ 1042 ergs are liberated from the surface.

A large ammount of this energy is conducted inwards, moving the peak of

temperature deeper into the crust. Consequently, the release of energy occurs

on longer timescales.

Cumming et al. (2006) affirm that cooling curves predicted by this model

(flux and luminosity) agree not only to observations, but also to the prediction
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of the inhibition of regular X-ray bursts after the superbursts, which is argued

to be a result of the stabilization in the burning process of H/He. Another

important result of this work is that the early phase of the cooling depends

mostly on the energy released in the flash, whereas the late phase depends for

the most part on the thickness of the layer. Since in this model the fuel is

supposed to burn instantly, there are no predictions on the rise of burst.

It is worth mentioning that some models that attempt to reproduce the

variability in transiently accreting neutron stars rely on crust models capable

of sustaining reheating mechanisms that contribute to the appearance of the

outburst and to the variability itself. Haensel & Zdunik (1990b) built a model

to calculate heating due to non-equilibrium nuclear processes within the outer

and inner crust for a one-component plasma, assuming that the outer layers of

the matter produced in the X-ray burst consisted of pure 56Fe. Their assump-

tions also included transitions from the ground state due to electron captures,

thus maximizing neutrino losses. The results showed that the deep crustal

heating, produced mainly in the inner crust, was Q ∼ 1.4 MeV per accreted

nucleon. Subsequent work using improved models (Haensel & Zdunik, 2003;

Gupta et al., 2007), for example, considering multicomponent plasmas, showed

that electron captures in the outer crust lead mostly to excited states of the

produced heavy nuclei, which heat the material when deexcite. Hence, they

considered the neutrino losses in that region to be negligible, which strongly

increases the outer crust heating. This result, although important, does not

significantly alter the overall heating since the outer crust contributes only

a small fraction of it. Simulations of the thermal relaxation of the neutron

star interior under these mechanisms of heating have been done by different

groups with the aim of predicting the outburst behaviour as well as the basal

luminosity in accreting binary systems (e.g. Ushomirsky & Rutledge (2001)),

using some models of cooling that, at least in principle, are similar to the ones

described before.

As we have seen, high-energy events on neutron stars are strongly deter-

mined by the composition and general structure of the crust. In the next

chapter, we will present a general picture of the physics of the crust, intro-

ducing one by one the required pieces to build a simulation of its thermal
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behaviour.



Chapter 2

Physics of the Crust

In this chapter we introduce the description of the basic ingredients to build

a model of the neutron star crust. To this aim, we use theoretical models for

each part that have appeared in the literature and are currently employed in

different astrophysical models. In consequence, the accuracy of some of them

is still actively discussed.

We begin with a review of the structure of the crust and then we divide

the chapter in sections to present the equation of state, thermal conductivity,

neutrino emission and heat capacity.

§2.1 Structure of the crust

When a neutron star begins the process of cooling 1 we consider the object as

a “regular” neutron star (typically M ' 1.4 M� and R ' 10 km). At this

stage, we distinguish four different regions: the core, the crust, the atmosphere

and the envelope. The atmosphere and envelope contain a negligible amount

of mass, but each of them play an important role in shaping the observable

properties of the star.

As densities increases, we find the outer crust, where the matter is made

of nuclei and electrons. The exact density at the top of the crust is not well

known, since it can vary from ∼ 109 g cm−3 in accreting neutron stars to ∼ 105

1The cooling stage begins when the matter becomes transparent to neutrinos at T ≤ 1010

K.
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g cm−3 in isolated cooling neutron stars (Cumming et al., 2004). In a fully

ionized electron-plasma, like the crust interior, this border is delimited by the

parameter Γ,

Γ =
(Ze)2

kBTa
(2.1)

where

a =

(
4

3
πni

)−1/3

, (2.2)

kB is the Boltzmann constant, T the temperature, Z the atomic number, a

denotes the mean inter-ion distance and ni is the ion number density. The value

of Γ is useful to set regions on the crust, in particular its outer border, where

a phase transition between liquid and solid occurs when Γ ' 175 (Potekhin

& Chabrier, 2000). Thus we will consider the crust as the region where the

external layers of the neutron star become solid. These parameters are valid

under the assumption that the material is constituted of one ionic species at

a time, such consideration is known as the one-component plasma (OCP).

At these densities, the proximity between atomic nuclei is such that one has

to consider modifications to the Coulomb energy. Such densities also set the

electrons in a state of strong degeneracy, thus dominating the pressure. The

electron Fermi energy increases with density, which in turn induces nuclear

reactions that are energetically favourable to convert electrons and protons

into neutrons (and neutrinos) by means of electrons captures, so nuclei become

richer in neutrons. When density reaches ∼ 1011 g cm−3, the neutrons begin

to drip out of the nuclei, forming a gas around them. The apparition of these

free neutrons on the material define the region called the inner crust.

The matter in the inner crust consists of atomic nuclei, electrons and free

neutrons that increase in number with the rise of density. In this range of

density the nuclei stop being totally spherical, and later disappear when the

density reaches ∼ 0.5ρ0, where ρ0 = 2.8× 1014 g cm−3 is the density of the nu-

clear matter at saturation, so the matter turns into a mix of protons, neutrons

and electrons. This condition sets the base of the crust and the top border

of the core (Potekhin & Chabrier, 2000). The crust constitutes a small part
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of the whole neutron star: the outer crust extends for a few hundred meters

while the inner crust extends for approximately one kilometer; together they

contain a total mass of the order of 0.01M�.

Below the inner crust resides the core that encloses 99% of the total mass.

Similarly to the crust, we can consider a subdivision of the core. The outer core

extends to ∼ 2− 3 ρ0 and consists of neutrons with an admixture of protons,

electrons and possibly muons, which at this point are all strongly degenerate

(Yakovlev et al., 2008). For densities up to ∼ 2ρ0 the composition and equation

of state of the matter are reasonably well constrained by experiments and

theory on nuclear physics, where the border of the outer and inner core resides.

The inner core extends down to the stellar center, where densities of ∼
10−15 ρ0 are expected (at least for massive stars) but with an uncertain com-

position, although it could be the same of outer core or it can occur that low

mass stars do not have an inner crust at all. Hyperions may appear in addi-

tion to nucleons, as well as exotic matter: pion or kaon condensates, strange

quark matter or mixed phases. From these particles, nucleons, hyperons and

quarks can be in a superfluid state (we will discuss the implications of this on

the neutrino emission further on). It is noteworthy that there is currently an

active discussion on the possibility that some type of neutron stars are rather

strange stars, constituted totally or in part of strange quark matter (Yakovlev

& Pethick, 2004).

Since our investigation is focused on the crust, the features of the core will

be important only in the context of its contribution to the incoming 2 flux on

the bottom layer of the crust. Now we will concentrate in the characteristics

of the crust in order to obtain an equation of state.

§2.2 Equation of state

We will work under the assumption of two different states for the matter in

the neutron star crust. The first will be the case when the matter is in ground

state, which corresponds to an isolated star that has gone through different

nuclear reactions to produce heavier nuclei. The second will correspond to

2...or outgoing, although this possibility is not explored in our model.
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the situation in which the neutron star belongs to an accreting binary system,

thus modifying the composition of its crust from the ground state. To find

out which composition corresponds to each particular case, we turn to those

models that describe nuclear matter at high densities and pressures.

We will begin by presenting the models utilized to obtain the nuclear masses

and particle fractions as a function of density, for both ground state and ac-

creted crust. These values constitute the inputs of the equation of state, which

will be tackled afterwards.

§2.2.1 Composition of the crust

Nowadays, most of the models are based on the classic paper of Baym, Pethick

& Sutherland (1971) 3. This model assumes that matter is in its ground state

in complete thermodynamic equilibrium (cold catalized matter) and it forms

a perfect crystal lattice of a single species of atomic nucleus (A, Z). Different

modifications of this model has been considered over the years, as for example,

the model from Haensel & Pichon (1994) which describes the matter below the

neutron drip point. According to it, at a given pressure P the equilibrium value

of A, Z is determined by the condition of minimum Gibbs energy per nucleon,

where the lattice is modeled considering the Wigner-Seitz cell approximation.

The energy of each cell is given by the expression

Ecell(A, Z) = WN(A, Z) + WL(Z, nN) +
[εe(ne, Z) + P ]

nN

, (2.3)

where WN is the energy of the nucleus (including rest energy), WL is the body-

centered cubic lattice energy per cell, εe is the mean electron energy density

and nN , ne refer to nuclei and and electron number densities, respectively

(ne = ZnN). The pressure for this model is calculated as

P = Pe(ne, Z) + PL(nN , Z). (2.4)

When at the pressure Pi the optimal values A, Z change into A′, Z ′, a

jump in the baryon density occurs (∆nb). This is given by the approximation

3Often referred to as BPS in the current literature
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formula
∆nb

nb

' Z

A

A′

Z ′ − 1, (2.5)

which comes from the condition of continuity of pressure (we will see later that

P ' Pe). In this model, the nuclear masses (and some isotopes) are taken from

both experimental data and theoretical models (see Haensel & Pichon (1994)

and references therein). We use the values on their table to define the crust

from its base up to ρ = 2.67× 1011.

After the drip point, we use the nuclear data from Douchin & Haensel

(2001). In this paper, the equation of state for matter in the crust below

the drip point and the core is analyzed. When no experimental data is avail-

able, there are roughly three ways to calculate parameters such as structure,

composition and equation of state in the inner crust, each one correspond-

ing to different approximations to solve the many-body problem. The first

is a full quantum mechanical treatment using a Hartree-Fock approximation

with an effective nucleon-nucleon interaction; the second is to approximate

the many-body wave function using semi-classical Extended Thomas-Fermi

approximations. The last technique is based on the Compressible Liquid Drop

Model (CLDM) from the classical paper from Mackie & Baym (1977).

Although all three methods have been used in the last decades, the CLDM

is widely used in contemporary literature for diverse reasons. One of them is

that it enables the separation of the different contributions to the total energy

of the W-S cell, so their role and mutual interaction can be identified. This is,

Ecell = EN,bulk + EN,surf + ECoul + Ee, (2.6)

where EN,bulk corresponds to the bulk contribution of nucleons, EN,surf gives

the contribution of the interface between neutron gas and nuclear matter,

ECoul is the term that includes the Coulomb interactions while Ee gives the

contribution of the electrons, that conform a Fermi gas.

This model has been improved by different authors. Most recently Douchin

& Haensel (2001) used a particular method called Skyrme Lyon (SLy) to ac-

count for the effective nuclear interactions. The nuclear data for densities just

before the drip point is taken from that paper.
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Therefore, in our calculations we use data from Douchin & Haensel (2001)

to obtain the parameters from the bottom layers of the outer crust, so we omit

the use of values for a couple of density layers —just before the drip point—

from the tabulation in Haensel & Pichon (1994). Here we follow the same

convention found in Cumming et al. (2004).

In the case of the composition of accreted crust, we turn to the work of

Haensel & Zdunik (1990a). They suggest an extrapolation of the CLDM model

for the case of rich nuclei immersed in a neutron gas, when no experimental

data is available. The presence of this gas would exert pressure on the nuclei,

thus decreasing the surface nuclear energy. Similarly to eq. 2.3, the Gibbs

energy of the cell can be written as

Ecell(A, Z) =WN(A, Z, nn) + WL(nN , Z)

+
[εe(ne) + (1− nNVN)εn(nn) + P ]

nN

,
(2.7)

where VN represents the volume of the nucleus and nn the number density of

neutrons that form the gas. The pressure in this model is calculated as

P = Pe(ne, Z) + PL(nN , Z) + Pn(nn). (2.8)

At a given pressure, the equilibrium value of Z is determined by minimizing

the Gibbs energy of the unit cell. The calculation of the density profile of an

accreted crust show that, in order to compress an initial density of ∼ 108 g

cm−3 to the density ∼ 6 × 1011 g cm−3 (where the drip point is believed to

be in this case), the star has to accrete a mass of 3 × 105/Ṁ−10 years, where

Ṁ−10 is the accretion rate in units of 10−10 M�/year. Compression up to the

maximum density considered in the model (1.2 × 1013 g cm−3) would require

accretion of ∼ 5×10−4 M�, that in turn needs ∼ 5×106/Ṁ−10. After this time

the entire crust up to the considered densities would consist of non-catalyzed

matter (Haensel, 2001).

To obtain the composition, the evolution of an element of matter produced

from the helium burning under the compression due to accretion is considered.

Below this layer, the material (A = 56, Z = 26) should go through the reaction
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56Fe +e− →56Mn +νe. In general, the nucleus enriches approximately under

the scheme
(A, Z) + e− → (A, Z − 1) + νe

(A, Z − 1) + e− → (A, Z − 2) + νe.
(2.9)

The neutron drip begins with reactions of neutron capture, which gives place

to a chain of non-equilibrium reactions. The process follows 56Ar →52S+4n−
2e−+2νe. The electron captures cause the values of Z to decrease as the density

rises, until the point where fusions of nuclei take place, through pycnonuclear

reactions. That begins with 34Ne +34Ne→68Ca, therefore reducing the number

of nuclei by one half when the processes are completed. These reactions might

constitute an important source of heat in the crust, as we will see when we

discuss the neutrino emission (Haensel, 2001).

The composition of both inner and outer crusts for an accreting neutron

star is taken from a table in Haensel & Zdunik (1990b). As we can see, the

nuclear masses vary with respect to the matter in ground state. For example,

above the neutron drip, the atomic number Z for accreting stars remains lower

than the one for catalyzed matter, as well as the values for mass number A.

It is worth noting that the value of the neutron drip does not greatly vary in

either situation: for isolated and accreted compositions ρdrip ' 1011 g cm−3.

It is also notable that the composition values for isolated crust after the

neutron drip have been extrapolated, according to the results of the papers

used to obtain the data (non-integer values for Z and A, Haensel & Pichon

(1994) and Douchin & Haensel (2001)).

§2.2.2 Components of the equation of state

Electrons, nucleons and free neutrons each contribute to the pressure in the

crust. Thereby we divide the calculation of the equation of state into these

three parts.

Electrons

In the whole crust the pressure is high enough to compel the electrons to be in

a state of degeneracy, thus forming a Fermi gas. Hence the equation of state
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depends only on density and composition.

Let us consider an ideal gas of fermions, with arbitrary relativity (v � c

or v ∼ c). The number of states with energy E is given by the expression

g(E) =
8πp2

h3v
. (2.10)

On the other hand, for a Fermi gas, the occupation number of a state with

energy E is

f(E) =
1

1 + e(E−EF )/kBT
, (2.11)

where EF is the Fermi energy. Therefore, the number density of particles with

energy between E and dE is

n =

∫
f(E)g(e)dE, (2.12)

with an internal energy given by

U =

∫
f(E)g(E)dE. (2.13)

To obtain the pressure we multiply eq. 2.12 by the moment flux across a

unit area (and passing within a solid angle dΩ) given by
∫

d(cos θ)p(cos θ)(v cos θ).

Thus pressure becomes

P =
1

3

∫
pvf(E)g(E)dE. (2.14)

Since we consider the case where electrons form a completely degenerate

gas, EF � kBT holds. Thus for eq. 2.11 we get

f(E) =

{
1 if E < EF

0 if E > EF .
(2.15)

Integrating eq. 2.12 over momentum we obtain

n =

∫ pF 8πp2dp

h3
=

1

3π2

(pF

~

)3

(2.16)
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where pF = ~kF is the Fermi momentum. We define the Fermi wave vector as

kF =
(
3π2n

)1/3
. (2.17)

In the relativistic and non-relativistic limits, we have for the Fermi energy

EF = pF c ∝ n1/3 relativistic. (2.18)

and

EF =
p2

F

2m
∝ n2/3 non-relativistic. (2.19)

Finally, using the above relations, the pressure in those limits gives

P =
1

4
nEF relativistic. (2.20)

and

P =
2

5
nEF non-relativistic. (2.21)

To find the relations between particles abundances in degenerate gases, it

is customary to work with units of number (Yj) and mass (Xj) fraction, where

the index refers to the particle species. The expressions

ρYj = njmp

ρXj = (Ajmp)nj,

(2.22)

define such number and mass fractions, respectively. However, since our model

contemplates only one atomic species at a time, then Aj = 1 and thus Yj = Xj.

We keep the notation Yj to indicate number fractions, except for neutrons,

where it is customary to use the notation Xn.

First we get the relations between nuclei (i) and neutrons (n) using ρ =

Ampni + mpnn and eq. 2.22,

1 = AYi + Yn. (2.23)

On the other hand, since ne = Zni, we have Ye = ZYi. Combining this with
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eq. 2.22 we obtain

Ye =
Z

A
(1− Yn). (2.24)

These relations are very useful to simplify the expressions for the electron

pressure. In the relativistic case, we do this by replacing values in eq. 2.20 from

relations 2.18, 2.17 for the Fermi momentum, and 2.22 to obtain an expression

in terms of the electron number fraction. Once we replace the constant values

we get

Pe = 1.23244× 1015 Y 4/3
e ρ4/3 erg cm−3. (2.25)

In the inner and outer regions of the crust the electrons are relativistic

(Cumming et al., 2004), so their contribution to the total pressure will be

calculated only using the previous equation.

Neutrons

The neutrons that drip from nuclei are non-relativistic. According to the

CLDM from Mackie & Baym, the neutron chemical potential for pure neutron

matter µn can be calculated by means of the expression

µn = W (k, 0) +
1

3
k
∂W (k, 0)

∂k
(2.26)

where W (k, 0) is a term that contains the bulk energy per baryon, and accounts

for the neutron-neutron interactions (the energy units are MeV). This can be

approximated by the equation

W (k, 0) = c0k + c1k
2 + c2k

3 + c3k
4 (2.27)

where

c0 = 1.2974, c1 = 15.0298, c2 = −15.2343, c3 = 7.4663.

Therefore, eq. 2.26 becomes

µn =
4

3
c0k +

5

3
c1k

2 + 2c2k
3 +

7

3
c3k

4. (2.28)
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In these equations, k = (3/2 π2nn)1/3 as appears in the original paper

from Mackie & Baym, which is slightly different to the definition of Fermi

wave vector in eq. 2.17. Due the strong degeneracy, µn = EF,n holds and we

can simply replace the above calculation in the expression 2.21 to obtain the

neutron pressure

Pn =
2

5
µnnn (2.29)

Nuclei

The overall pressure is dominated by electrons and neutrons throughout the

crust as will be shown further on. Due to this, we only considered a oversim-

plified calculation of the ion contribution.

Let us consider an ideal gas of ions. Thus pressure is given by

Pn = nikBT (2.30)

where ni corresponds to the mass fraction of ions, which can be obtained using

Ye = ZYi in equation 2.24.

Total pressure

For the total pressure, we consider only the contributions of electrons, neutrons

and ions. Therefore

Ptot(ρ, T ) = Pe + Pn + Pi. (2.31)

To obtain the pressure, we use the nuclear data from the tables mentioned

in the section §2.2.1, assuming that the calculations shown hold for both

ground state and accreted crust, so the composition and density are enough to

obtain a good approximation of the pressure value in each case. The model is

largely simplified if we do not include the contributions of the Coulomb ener-

gies to the pressure, as in fact, they are not relevant to the calculation of the

overall pressure.
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§2.3 Thermal conductivity

To obtain an expression for the thermal conductivity in the crust is crucial

for the calculations that allow th prediction of the features of the luminosity

observed in the star. The conducted flux is originated largely in the core

and conducted through the crust on its way to the surface. For a material in

degenerate state, the heat conduction is dominated by electrons.

According to Schatz et al. (1999), The conductivity can be written as

K =
π2k2

BTne

3m∗νc

= 4.1× 1017erg cm−1s−1K−1ρ6 T8

(
1016s−1

νc

)
Ye

(1 + x2)1/2
,

(2.32)

where the collision frequency νc = νei+νee includes the contribution of electron-

ion and electron-electron collisions, respectively; m∗
e = me + EF /c2 (EF the

Fermi energy including the rest mass) and x is the relativistic factor calculated

as x = pF /(mec) .

The electron-ion collision frequency νei is given by

νei =
4e2m∗

3π~3

ΣiYiZ
2
i

Ye

Λei = 1.8× 1016s−1 ΣiYiZ
2
i

Ye

Λei

(
m∗

e

me

)
, (2.33)

where the Coulomb logarithm Λei is calculated as

Λei = Λ0
ei −

v2
F

2c2
; Λ0

ei = ln

(
rmax

rmin

)
(2.34)

and vF = pF /m∗
e. Λ0

ei represents a relativistic correction to the cross-section

while rmax and rmin are the limits of the integral over impact parameters. This

parameter can be rewritten if we observed that Γ of the mixture is

Γ =
e2

kBTa

ΣniZ
2
i

Σini

= 0.23

(
ΣiYiZ

2
i

ΣiYi

)
(ρ6ΣiYi)

1/3

T8

, (2.35)
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so Λ0
ei from eq. 2.34 becomes

Λ0
ei = ln

[(
2ππ

3

)1/3 (
Y e

ΣiYi

)1/3 (
3

Γ
+

3

2

)1/2
]

, (2.36)

and thus, combined with eq. 2.34 and eq. 2.35 gives the value of νei.

On the other hand, to obtain the electron-electron collision rate νee we use

the fitting formula from Potekhin et al. (1997):

νee =
3α2(kBT )2

2π3~m∗
ec

2b
3/2
e

J(y), (2.37)

where y =
√

3Tpe/T , which in turn includes the quantities

Tpe =
~ωpe

kB

, ωpe =

√
4πe2ne

m∗
e

, (2.38)

that represent the electron plasma temperature and frequency, respectively.

Also, α = e2/(~c), β = x/
√

1 + x2 and be = α/(πβ). Lastly, J(y) is approxi-

mated by another fitting (for different relativistic values x and y) by

J =

(
1 +

1

5x2
+

2

5x4

) [
y3

3(1 + 0.07414y)3
ln

(
2.810− 0.810β2 + y

y

)
+

π5

6

y4

(13.91 + y)4

] (2.39)

that reproduces the exact solution for the νee within 3.7% of mean error,

according to the authors.

The above allows us to calculate the overall collision rate νc that we need in

order to determine the thermal conductivity. We will see how this incorporates

the overall thermal behaviour of the crust in the next chapter.

§2.4 Neutrino emission

The calculation of the neutrino emission is separated into two parts, one for

neutrinos produced at the core and one for those created at the crust. The



32 2. PHYSICS OF THE CRUST

characteristics from the neutrino emission in the core are particularly impor-

tant, as they determine what is the amount of thermal energy available at the

base of the crust (incoming flux) that can be conducted throughout it (in the

way seen in the last section §2.3). On the other hand, the rate of neutrino

emission in the crust will let us know what amount of that thermal energy is

actually conducted to the surface and how much is lost in form of neutrinos.

Neutrinos from the core

In a core formed by non-superfluid matter, the mechanisms of production of

neutrinos are divided into slow and fast ones. The emissivity Qν for each of

this processes is calculated as

Qslow = QsT
8
9 , Qfast = QfT

6
9 . (2.40)

The values of the factors Qf and Qs depend on the type of nuclear reaction

occurring in the core. For the slow neutrino emission we have Bremsstrahlung,

N + N→ N + N+ν + ν̄, (2.41)

that liberates Qs ' 1020 − 3× 1021 [erg cm−3 s−1], and Modified Urca,

n + N→ p + N + e+ν̄, or p + N + e→ n + N+ν, (2.42)

that produces Qs ' 1020 − 3 × 1021 [erg cm−3 s−1] (Yakovlev et al., 2008).

The most powerful emission comes from a direct Urca process in nucleon or

nucleon/hyperon matter, which corresponds to the emission of a pair neutrino-

antineutrino by means of beta decay and neutron and electron capture on a

proton (Qs ' 1026 − 3 × 1027). A modified Urca by an additional neutron

N required by conservation of energy and momentum, these mechanisms are

classified in nn, np and pp for dense npe matter.

According to eq. 2.40, the neutrino luminosities can vary largely for differ-

ent stars. This is due to the differences in the inner core densities for massive

or low-mass stars (where the inner core can be even suppressed). In a young
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massive star, for example, neutrinos are emitted by direct Urca in a core at

T = 109 K, so the luminosity Lν reaches ∼ 1046 erg s−1, while in a low-mass

star at the same temperature, the luminosity can be ∼ 7 orders of magnitude

lower. In both cases Lν decreases appreciably with time, for instance, in a

low-mass star Lν ∼ 1034 erg s−1 after ∼ 106 years (Yakovlev et al., 2008).

In the case of superfluid cores, the neutrino emission is largely diminished.

This occurs when the temperature T drops below the critical temperature

Tc of a given baryon species, producing an energy gap in the baryon energy

spectrum that suppresses all the reactions where they participated (Yakovlev

& Pethick, 2004). We do not consider this case in our model, so the energy

available at the base of the crust (incoming flux) is assumed as originated by

non-superfluid cores.

Neutrino emission in the crust

Part of the non-neutrino flux coming into the base of the crust is lost in form

of neutrinos, influencing the luminosity profiles of the neutron star. Through-

out the crust, the neutrino pair bremsstrahlung is assumed to be the major

mechanism of neutrino losses. This process is written, in general, as

e + (Z,A)→ e + (Z,A) + ν + ν̄. (2.43)

which takes place under either neutral or charged electroweak currents. Ac-

cording to Kaminker et al. (1999), this process is valid only when T . 5× 109

K, up to where the nuclei are not dissociated. Our calculations for the rate of

neutrino loss are based on the paper of this authors.

The emission mechanisms for neutrinos are different for crusts in liquid

or solid states (sec. §2.1). In the liquid phase the neutrinos come from the

scattering of electrons by nuclei while in the solid state they come from two

processes: electron-phonon scattering (known as the phonon contribution) and

the Bragg diffraction of electrons (static-lattice contribution).

The general expression for the neutrino emissivity from neutrino-pair

bremsstrahlung for relativistic degenerate electrons in a plasma of spherical



34 2. PHYSICS OF THE CRUST

nuclei is written as

Q =
8πG2

F Z2e4C2
+

567~9c8
(kBT )6niL

' 3.229× 1011ρ12ZYeT
6
8 L erg s−3,

(2.44)

where GF = 1.436 × 10−49 represents the Fermi weak coupling; the factor

C+ = C2
V +C2

a +2(C ′2
V +C ′2

V ) represents the constants for the weak interaction:

the first two for electron neutrinos, while the other two correspond to muonic

and tauonic neutrinos. The parameter L includes the mentioned contributions

for different phase states. In liquid L = Lliq while in solid L = Lph + Lsl

(phonon and static-lattice contributions). The calculations of each of this

contributions can be approximated by the fitting formula:

log Q =11.204 + 7.304τ + 0.2976r − 0.370τ 2 + 0.188τr − 0.103r2

+ 0.0547τ 2r − 6.77 log(1 + 0.220ρ/ρ0),
(2.45)

where τ = log T8, r = log ρ12 and ρ0 = 2.8 × 1014 g cm−3. This formula gives

the emissivity Q (units in erg cm−3) for the ranges 109 g cm−3 ≤ ρ ≤ 1.5×1014

g cm−3 and 5 × 107 K ≤ T ≤ 2 × 109 K, where the nuclei is expected to be

spherical (except maybe within 1014 g cm−3 ≤ ρ ≤ 1.4× 1014 g cm−3) with a

relative error of 1% with respect to the exact solutions. To the purposes of our

model, the above fitting gives an appropriate rate to calculate the neutrino

losses.

§2.5 Heat capacity

We saw in the first chapter how the thermal evolution of the star depends on

the heat capacity for cooling models (e.g. eq. 1.2). The main contributors

to the heat capacity in the crust are the ions. We will consider only heat

capacity for ions and for electrons. We will again show calculations for each

contribution separately.
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Ions

The calculation is separated into two parts; the liquid and solid crust. As we

have seen in section §2.1, the regions are defined by the value of the coupling

parameter Γ (eq. 2.1). Hence, a phase transition occurs when Γ ' 175.

In the liquid “ocean” (Γ < 175), we will use the heat capacity approx-

imation calculated by Potekhin & Chabrier (2000). Their model calculates

the Helmholtz free energy of electron-ion plasmas (one-component plasma),

consisting in different species of point-like ions and electrons for a wide range

of degeneracy and relativity. According to the model, considering that all the

thermodynamic functions of the “classical” OCP can be expressed as functions

of the only parameter Γ, the expansion of the internal energy yields

uii ≡
Uii

NikBT
=−

√
3

2
Γ3/2 − 3Γ3

[
3

8
ln(3Γ) +

CE

2
− 1

3

]

− Γ9/2(1.6875
√

3lnΓ− 0.23511) + ....

(2.46)

The first term corresponds to the Debye-Hückel energy, the second comes from

the model of energy expansion of Abe (1959) —where CE = 0.57721, the Euler

constant—, while the third one from the model of Cohen & Murphy (1969).

In this manner, the free energy is obtained by integration:

fii ≡
Fii

NikBT
=

∫ Γ

0

uii(Γ
′)

Γ′
dΓ′ = −Γ3/2

√
3
− Γ3

(
3

8
lnΓ + 0.24225

)

−Γ9/2(0.64952lnΓ− 0.19658).

(2.47)

Even so, the above expression does not apply for Γ & 1. For the range

1 ≤ Γ ≤ 200, Potekhin & Chabrier use results from Dewitt & Slattery (1999),

who obtained data from Monte Carlo simulations, as well as the corresponding

analytic fits. But since these fits does not reproduce data at small Γ, Potekhin
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& Chabrier propose their own parametrization:

uii = Γ3/2

[
A1√

Γ + A2

+
A3

Γ + 1

]
+

B1Γ
2

Γ + B2

+
B3Γ

2

Γ2 + B4

, (2.48)

where A3 = −
√

3/2 − A1/
√

A2. This expression is an improved version of a

model proposed by the same authors in a previous paper (Chabrier & Potekhin,

1998), where only the terms in the square brackets were considered. In the

above expression, the term with B1 reproduces the data from Monte Carlo

simulations at large Γ, whereas the last term adjusts to eq. 2.46 at small Γ.

Therefore, with eq. 2.48 in mind, the free energy is obtained from eq. 2.47:

fi =Ai

[√
Γ(A2 + Γ)− A2 ln

(√
Γ/A2 +

√
1 + Γ/A2

)]
+ 2A3

[√
Γ− arctan

√
Γ
]

+ B1

[
Γ−B2 ln

(
1 +

Γ

B2

)]
+

B3

2
ln

(
1 +

Γ2

B4

)
,

(2.49)

where

A1 = −0.9070 A2 = 0.62954 A3 = −0.86602540− (A1/
√

A2)

B1 = 4.56× 10−3 B2 = 211.6 B3 = −1.0× 10−4 B4 = 4.62× 10−3

(2.50)

are fitting parameters. The heat capacity is calculated from the thermal free

energy as Cv∂E/∂T ; according to their calculations this gives

Cv, i

NikB

=
Γ3/2

2

[
A3

Γ− 1

(Γ + 1)2
− A1A2

(Γ + A2)3/2

]
+ Γ2

[
B3

Γ2 −B4

(Γ2 + B4)2
− B1B2

(Γ + B2)2

]
,

(2.51)

which represents the dimensionless heat capacity for the liquid ocean. When

crystallization occurs (Γ > 175), however, there are quantum effects that have

to be taken into account. In this case we turn to the model of Chabrier et al.

(1992) which deals with the calculation of the free energy of a lattice. The

energy of the states is calculated using an Einstein model (all modes vibrate
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at the same frequency ω) for a longitudinal mode and a Debye model (linear

dispersion approximation, ω = ck where c is the speed of light and k the wave

vector, for the vibrational spectrum 4) for the transverse modes. Considering

that the relation

E = F − T
∂F

∂T
(2.52)

gives the thermal free energy per particle of the lattice, they found that

F

NikBT
=

E0

NikBT
+

[
−2

3
D3(αη) + 2 ln(1− e−αη)

]
, (2.53)

where the dimensionless parameter η is given by

η =
~ωp

kBT
=

~
kBT

(
4πZ2e2ni

Amp

)1/2

= 7.76× 10−5ZY
1/2
i ρ1/2

A1/2T8

, (2.54)

the parameters α = 0.399, γ = 0.899 are taken from Potekhin & Chabrier

(2000). D3 corresponds to the Debye function

D3(x) =
3

x3

∫ x

0

t3dt

et − 1
, (2.55)

and the ratio of the zero-point energy to the kinetic energy is

E0

NikBT
=

3

2
ηµ1, (2.56)

where the first moment of the frequency spectrum is µ1 = 0.511. In order

to calculate the free energy, it is useful to note that derivatives of the Debye

function can be expressed in terms of the Debye function itself. In other words,

1

3
xD′

3(x) =
x

ex − 1
−D3(x). (2.57)

Therefore, utilizing eq. 2.52 we get

E

NikBT
=

E0

NikBT
+ 2D3(αη) +

γη

eγη − 1
, (2.58)

4This approximation is found in Landau & Lifshitz (1969), among others classical text-
books.
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so the heat capacitance gives

Cv, i

NikB

=
E − E0

NikBT
− 2αηD′

3(αη) +
γη

eγη − 1

[
γηeγη

eγη − 1
− 1

]
. (2.59)

The previous equation can be further simplified using the eq. 2.57, so we

get
Cv, i

NikB

= 8D3(αη)− 6αη

eαη − 1
+

γ2η2eγη

(eγη − 1)2
. (2.60)

The validity of the above expression is reinforced due to its reproduction

of the limit for low densities (η � 1), that is, it gives the expected value

Cv, i→ 3NikB. The evaluation of D3 can be done by either solving the integral

from eq. 2.55 or using the fitting formula (Landau & Lifshitz, 1969),

D3(x) '

{
f(x) = π4

5x3 − 3e−x

x3 (6 + x(6 + x(3 + x))) if x� 1

g(x) = 1− 3
8
x + 1

20
x2 if x� 1,

(2.61)

and using the criterion D3(x) ' Min(f(x), g(x)). Using this expression, the

value of D3(αη) has a maximum error of 5% compared to the numerical solution

of 2.55 within the range of densities and composition we use (see next chapter).

Electrons

For degenerate relativistic electrons we simply use the expression:

Cv,e = π2

(
YekB

mp

) (
kBT

EF

)
. (2.62)

So far we have presented all the elements used in our model of the neutron

star crust. In the following chapter we will show how the parts are combined

when we introduce the structure equations.



Chapter 3

Simulations and Results

In this chapter we describe the model we built for the neutron star crust.

We first introduce the system of equations to be solved in order to reproduce

the structure of the crust and obtain the thermal and flux profiles. To this

aim, we also present the individual results for the equation of state, thermal

conduction, neutrino emissivity and heat capacity based on the models shown

in the previous chapter. Finally, we will show our results for the model and

conclusions.

§3.1 Structure equations

Our model assumes that the crust is under hydrostatic balance in steady state.

Furthermore, heating produced by possible compression (e.g. caused by accre-

tion) is ruled out, since it is of an order negligible throughout the degenerate

crust and core (Brown, 2000). Hence, the internal pressure comes only from

internal heating release in equilibrium against self-gravity. The hydrostatic

balance is justified due to the thermal-timescale of the crust (from days to

years), which is much longer that the crossing time for sound (milliseconds).

Moreover, the equation of state is almost independent of temperature. Thus,

the crust hydrostatic structure can be regarded as independent of the thermal

evolution of the star.

Let us consider a shell of infinitesimal thickness dr at the distance r from

the center of a spherical star. The mass of the shell would be given then by
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Mr+dr −Mr = dMr = 4πr2ρ(r)dr, or in the integral form Mr =
∫ r

0
4πr2ρdr.

Now, if the local gravity given by g(r) = GMr/r
2 is acting on an element of

volume 1cm2 × dr in the shell, the attractive force would be

ρgdr = ρ
GMr

r2
dr. (3.1)

Assuming hydrostatic equilibrium, there should exist a force to counter-

balance the gravitational pull, that is, the pressure. The net pressure on the

shell is P (r) − P (r + dr) = −P (dP/dr)dr. Differentiating this expression we

find the equation of motion

ρr̈ = ρ
GMr

r2
dr. (3.2)

In hydrostatic equilibrium r̈ = 0. So we get

dP

dr
= −GMr

r2
ρ = −gρ. (3.3)

Since the quantities g, ρ are both positive, the pressure gradient should

be negative, decreasing as the radius increases. This condition represents the

balance in the crust that we use as the framework for the flux and thermal

transport equations. We will see this below.

Firstly, the heat is transported by conduction, so a good approximation is

Fick’s law of diffusion,

F = −K
dT

dr
(3.4)

where the diffusion coefficient is equal to the conductivity K. Secondly, the

temperature profile follows the heat equation,

cp
∂T

∂t
= εν −

1

ρ

∂F

∂r
(3.5)

in one dimension. In this equation cp represents the heat capacitance and εν the

thermal energy lost in form of neutrinos. Since we consider only steady-state,

the above becomes
dF

dr
= ρε. (3.6)
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To solve these equations we adopt a plane-parallel approximation. That is,

we assume that gravity g through the thickness of the crust is constant, along

with the redshift factor 1 + z. This is certainly a good approximation due

to the relatively small extension (and mass content ∼ 0.01 MNS) of the crust

with respect to the whole neutron star. Furthermore, it is useful to avoid the

integration of the full structure of the star since we can solve the equations

in terms of a new independent variable, the column depth y. This change of

variable is

dy = −ρdz (3.7)

and then, the above equations 3.4 and 3.6 become

dT

dy
=

F

Kρ
,

dF

dy
= εν . (3.8)

These equations represent the system to be resolved. Before we discuss

the boundary conditions, we will show some results on each of the parameters

presented in chapter 2.

§3.1.1 Components of the crust model

Equation of state

For the equation of state we have degenerate electrons, neutrons and ions. We

follow the equations 2.25, 2.29 and 2.30 to obtain the total pressure. Each of

this contributions can be seen in fig. 3.1. There we can see how the degenerate

electrons dominate the pressure from the surface of the crust (set as ρ = 109

g cm−3) up to the neutron drip (ρ ∼ 3× 1011 g cm−3 for isolated composition

and ρ ∼ 6×1011 g cm−3 ). After this point the free neutrons begin to dominate

the pressure. Note that the ion pressure is always much lower than that of

electrons and neutrons. In these two plots, the temperature is T = 108 K and

constant through the extent of the crust. Even for higher temperatures (e.g.

T ∼ 109) the ion pressure is kept at low values, at most Pi ∼ 1028 g cm−3 at

the base of the crust, well below Pe and Pn.

There is a change in slope of the pressure in both situations, beyond the
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neutron drip. This is due to the series of electron captures during the reac-

tions that produce the free neutrons, thus reducing the number of degenerate

electrons that provide such pressure before the neutrons themselves compen-

sate the loss of pressure. For the isolated crust, the drip neutrons start from

zero, since interpolation is used after the drip (see §2.2.1 ), contrary to the

accreted crust where the first neutron number fraction beyond the drip is not

zero. Therefore, the initial high value of Pn is seen in the plots.

Figure 3.1: Pressure in the crust for isolated (above) and accreted com-
positions (below). We show the different contributors to the pressure such
as the electrons (dotted-dashed lines), neutrons (dashed) and ions (dotted).

The pressure does not vary significantly for isolated and accreted crust.
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We can see the comparison of these two pressure profiles in figure 3.2.

Figure 3.2: Pressure, neutron fraction Yn, nuclear charge Z and electron
charge Ye for isolated (solid) and accreted (dashed) compositions

.

Conductivity

The conductivity profiles are obtained using the expression 2.32. Two plots

obtained for K at different temperatures can be seen in the figure 3.3, for each

composition. We can see that the value of the conductivity gets closer to each

other as the temperature rises.

Neutrino emission

We calculate the neutrino emissivity using the fitting formula 2.45. In Figure

3.4 it is possible to see the sensitivity of Qν to temperature. The significant

difference between the upper and lower figures will be crucial in determining

the temperature profiles of the star, since low Qν is emitted when temperature
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Figure 3.3: Thermal conductivity for isolated (solid lines) and accreted
(dashed-dotted lines) compositions, for different constant temperatures in
the crust, Tc = 1× 108 K (upper figure) and Tc = 5× 108 K (below figure).

is low (∼ 108 K). However this quantity can be significantly increased for

small variations of T , reducing considerably the amount of heat that can be

transferred by conduction. Although the first profile looks very different from

the other two, in all three the same tendency (drop of Qν with density) is

represented, although the density at which this drop occurs is much higher

when temperature increases. We will see this further on when analyzing the

solution of the structure equations. For this calculation we have only used the

isolated composition.
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Figure 3.4: Neutrino emissivity Qν for different temperatures, in the upper
figure T = 1 × 108 K, and in the bottom one T = 3 × 108 K (solid) and
T = 7× 108 K (dashed-dotted lines).

Heat capacity

The heat capacity is only needed to calculate the thermal evolution of the star,

so it is not necessary to show the steady-state thermal profile. However, we

show the calculation only with the aim of illustrate its behaviour as another

quantity that determines features of the crust.

To obtain the neutrino emissivity Qν we use the fitting formulas shown in

eqs. 2.51 and 2.61, according to the condition of liquid (Γ < 175) or solid

(Γ > 175) crust.
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Figure 3.5: Heat Capacitance for different constant temperatures, Tc =
1×108 (solid), Tc = 3×108 (dashed) and Tc = 7×108 (dashed-dotted). The
horizontal line at Γ = 175 represents the phase change of the matter in the
crust.

As we can see in the upper figure in 3.5, Cv increases with temperature,

which becomes more evident for deep regions in the crust. The phase change

is shown in the figure below. On the left of the same figure, when T = 7× 108

K it is possible to see the “ocean” part of the crust (liquid phase) as a smooth

curve that drops down to ρ ∼ 1 × 109 g cm−3, when the crust becomes solid

and Cv increases a small amount. The same occurs when T = 3 × 108 K but

for a smaller density region (∼ 1× 109 − 2× 109 g cm−3). For T = 1× 108 K
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the crust is always solid.

After this brief summary of the behavior of the parameters we use to con-

struct the steady-state model of the crust, we present the results for the solu-

tion of the structure equations.

§3.1.2 Results and Discussion

In the previous figures we have seen that the bottom and top of the crust have

been set to ρbottom = 109 g cm−3 and ρtop = 1014 g cm−3, respectively. As

was pointed out in section §2.1, the bottom border was chosen slightly lower

than density of nuclear matter saturation (ρ = 2.8× 1014 g cm−3). It was also

indicated how the top border varies with temperature for accreted and isolated

neutron stars. Therefore, we choose to set the top of the crust up to where it

will extend for a wide range of surface temperatures, in accreted and isolated

stars.

With this in mind, to integrate throughout the star interior, we use the

change of variable from the expression 3.7. Hence, instead of using ρ, we

will integrate throughout the column density. We get y from the hydrostatic

equilibrium condition (eq. 3.3),

dP

dy
= gy, (3.9)

where g = GM/R2. For the standard values of a neutron star, M = 1.4 M�

and R = 105 cm, g = 1.857× 1014. Thus, we first calculate the pressure for a

given density with the above equation to obtain y, within the range of densities

109 − 1014 g cm−3.

The boundary conditions are set to flux and temperature at the top of the

crust, integrating inwards. In the case of accreting neutron stars, we choose the

initial flux in terms of Fout = ṁQnuc (Cumming et al., 2006), with an accretion

rate of ∼ 104 g/cm2/s and the energy released per nucleon Qnuc ∼ 1017 erg/g,

so Fout ' 1021 erg/cm2/s. To set the temperature, considering different values

from the literature —e.g. Brown (2000)— we use Tout ∼ 5× 108 K. Finally, in

the flux equation from eq. 3.7 we take εν = ρQν .
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We integrated the set of differential equations for a wide range of temper-

atures and fluxes around the two values mentioned above. We have chosen to

show two sets of solutions in Figures 3.6 and 3.7. For the first figure we have

used Fout = 2×1021 erg/cm2/s and three different temperatures Tout = 1×108,

5×108 and 8×108 K. We found that lower initial fluxes (say ∼ 1020 erg/cm2/s

and below) do not induce a significant change in the temperature profile, unless

we choose the initial temperature larger as well (e.g. ∼ 109 K for F ∼ 1020

erg/cm2/s). The composition data for an accreted neutron star have been

used in the following solutions. Since the differences between this and isolated

composition are not considerable (for the parameters considered here), we can

restrict ourselves to the accreted case.

In the figures we can also see how the neutrino emissivity change along the

column depth. Observe in Figure 3.6 the large differences between the values

of εν for the first (Tout = 1 × 108 K) and the other two temperatures. This

indicates the strong dependence of the neutrino emissivity for small variations

of temperature, a variation of a factor of only 5 in temperature produces a

difference of ∼ 4 orders of magnitude in temperature. We can also see a slight

increment of εν at the bottom of the crust when Tout = 8× 108 K, which may

account for the corresponding high flux. This suggest that, if neutrino losses

are important, a much higher flux is necessary to sustain the temperature fixed

at the top.

The flux profile, on the other hand, changes more appreciably. These

results indicate that to achieve the value of Fout, the flux deep in the crust

must increase considerably (when Tout = 1 × 108 K, the flux is even almost

constant). This accounts, of course, for the neutrino losses along the crust.

This also suggests that if neutrino emissivity keeps increasing as on the profile

for Tout = 8 × 108 K, the flux in the crust will have to increase in order to

compensate these εν losses and maintain the thermal energy supply.

We also present the calculation for the heat capacity. As we said, this is

shown just with the aim of illustrate another property that characterizes the

crust. In Figure 3.6 we see how the overall profile of Cv does not change much

along the crust. However, each curve reflects the strong dependence of Cv in

composition (for clarity, we have only show Cv for two temperatures). We can
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Figure 3.6: Temperature and Flux profiles for Fout = 2× 1021 erg/cm2/s
and three different initial temperatures Tout = 1× 108 K (solid), 3× 108 K
(dashed) and 8×108 K (dotted-dashed). The heat capacity Cv and neutrino
emissivity εν for this temperatures are also shown.

observe also a change of slope in these curves at the transition from liquid to

solid material, for T = 1× 108 K the curve is continuous for almost half of the

crust, while for the other two curves there is a “step” at the phase change.

The Figure 3.7 includes another set of solutions for the structure equations.

Again, we set the flux value at the top of the crust (Fout = 1× 1022 erg/cm2/s

) and integrate for three different temperatures Tout = 1 × 108, 3 × 108 and

5 × 108 K, inwards in the crust. It is interesting to observe how the profiles

get closer to each other as the column density increases in the crust. However,

we have found that our code does not integrate temperatures over higher Fout

ranges than the order of magnitude chosen here, unless the temperature at the

top is lower (say Tout ∼ 107 K). In this sense, the program is very sensitive

to the election of high fluxes, and though this can be fixed by reducing the

temperature, it does not necessarily represent the physical behaviour of the

crust.

The neutrino emissivity, on the other hand, does not change significantly
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Figure 3.7: Temperature and Flux profiles for Fout = 1× 1022 erg/cm2/s
and three different initial temperatures Tout = 1 × 108 K (solid), 3 × 108

K (dashed) and 5 × 108 K (dotted-dashed). We also show the profiles for
neutrino emissivity εnu and heat capacity Cv, although for the latter only
for the top and bottom temperatures (for clarity in the plot).

for the first two lowest temperatures, but it is noticeable how the emissivity

rises again at the bottom of the crust when Tout = 5×108 K, unlike at the other

temperatures. Although this increment in εν does not prevent the temperature

from rising, we can see how the temperature profiles are close to each other

for most of the crust. The heat capacity as in the previous solution, does not

show an overall change but demonstrate features that reflect its composition

dependence.

As we have said, we perform several integrations for wide ranges of flux

and temperatures. The simulations have shown that for outgoing fluxes be-

low ∼ 1020 erg/cm2/s, neither the temperature profile nor the flux change

appreciably. For the flux this is consistent with the behaviour of the neutrino

emissivity, as we see in the Figure 3.7 (Tout = 1 × 108 K), where lower tem-

peratures correspond to a much lower εnu compared to those emissivities for

temperatures a bit higher. We also perform simulations using outwards inte-

gration (from the bottom of the crust). The results were consistent with those
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presented here (inwards integration).

§3.2 Conclusions

We have presented a simulation of a steady-state model of the neutron star

crust. To this aim, we included a review of the observational phenomena

where it is believed the crust plays an important role. We have also reviewed

general characteristics of the crust within the context of the whole neutron star,

considering the two main different scenarios where the neutron stars have been

observed to exist, i.e. isolated and subjected to accretion processes.

The elements that conformed the steady-model have also been analyzed

so we could present the calculations for each one in the context of the sim-

ulations. Finally the description of the method and the results are shown,

which include the profiles of temperature and flux along the crust. We found

that the behaviour of these two variables correspond to the expectations, con-

sidering the values used as boundary conditions. In spite of this, we have

also mentioned that after pushing the initial values beyond certain quantity,

we observed behaviour which does not seem to correspond to the nature of

the crust. Nonetheless, the results obtained here appear to reflect the broad

comportment of those parameters in the crust.

As has been said throughout this work, to construct models of the neutron

star crust allow us to constrain, by means of observational data, the character-

istics of the interior of these particular stars, which in turn represent a unique

laboratory in the universe.

Our model intends to present a phenomenological analysis of the main

physical quantities that govern observational features in the crust. It can be

improved in many ways. Firstly, extending the model to a time-dependent

simulation (using eq.3.5), mainly with the purpose of studying the cooling

features of neutron stars. Secondly, we avoided the inclusion of some variables

in the calculations, such as the radiation pressure or the possible reheating

processes within the crust, that can ultimately be the main reason for the

apparition of some phenomena (Kaminker et al., 2006). A more serious analysis

would contemplate the inclusion of magnetic fields as well, since the cooling
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processes in magnetars are obviously affected by them.
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