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ABSTRACT 

This thesis finds the basis states of the symplectic model for 

nuclear collective behaviour. We are able to find a complete set of 

states for Sp(6), the most important group of collective motions in 

nuclei. From the multitude of possible eigenstates we are interested 

in vibrational type ones, or Bohr-Mottelson type, which are at the 

same time a basis in the subgroup Sp(2)~ 0(3) of Sp(6). The basis we 

find is not orthonormal but complete and nonredundant and we show how 

to use it to determine generator matrix elements between these states. 

Since the Hamiltonian of the problem is in the enveloping algebra of 

Sp(6) it can be expressed as a low rank polynomial in the Sp(6) 

generators and the actual vibrational spectrum of nuclei is then 

calculable. The results are applicable to all nuclei (any Z). We are 

able to exactly solve the difficult problem of finding the basis 

states using generating function methods. We first obtain the 

generating function giving branching rules for the chain Sp(6)? 

Sp(2)~0(3) and we interpret the terms appearing in the generating 

function as stretched products of a finite set of elementary 

permissible diagrams which form the integrity basis. The basis states 

of the group and subgroup are defined in terms of this integrity 

basis. 
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RESUME 

Cette th~se trouve les etats de base du mod~le symplectique pour 

le comportement collectif nucl~aire. Nous trouvons une base compl~te 
I d'etats pour Sp(6), le plus important groupe de mouvements collectifs 

dans les noyaux. Parmi la multitude d',tats propres possibles, nous ne 

sommes int~ress~s que dans ceux de type vibrationnel, dits de 

Bohr-Mottelson, qui forment en meme temps une base dans le sous-groupe 

Sp(2)x0(3) de Sp(6). La base que nous trouvons n'est pas orthonormale 

mais elle est compl~te et nonredondante et nous montrons comment 

!'utiliser pour calculer des 'l~ments de matrices des g~n~rateurs 

entre ces etats. Puisque le Hamiltonien du probl~me ob~it a l'algebre 

enveloppante de Sp(6), il peut s'exprimer comme un polynome de bas 

I I rang dans les generateurs de Sp(6) et le spectre vibrationnel des 

noyaux peut done ~tre calcul~. Ces resultats peuvent ~tre appliqu~s 

pour tout noyau (tout Z). Nous parvenons a r~soudre le probl~me 

compliqu' de trouver les ~tats de base en utilisant les m~thodes de la 

fonction g~n~ratrice. Nous obtenons premi~rement la fonction 

g~n~ratrice donnant des regles d'embranchement pour la cha1ne 

Sp(6)? Sp(2)~0(3) et nous interpretons les termes apparaissant dans la 

fonction g~n4ratrice comme des produits allongls d'un ensemble fini de 

diagrammes ~l~mentaires permissibles qui forment une base d'int~grit&. 

Les ~tats de base de ce groupe et de ce sousgroupe sont d~finis en 

t d t b d
,. I • I ermes e cet e ase 1ntegr1te. 
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STATEMENT OF ORIGINALITY 

Apart from the Introduction and Chapter 2 which places the 

present work in the general framework of the group theoretical 

approach to Nuclear Collective Models, most of the material presented 

in this thesis is original. Chapter 3 discusses the needed algebra 

and the problems we encounter. The solutions are found in the 

literature but their application to our specific problem is original. 

The most important contribution is the generating function for 

Sp(6)? Sp(2) ~ 0(3) given in Chapter 4. The Sp(6) generators are known 

but we treat them in the light of the Sp(2)X 0(3) subgroup. We 

calculate the Clebsch-Gordan couplings for Sp(2) which we were unable 

to find in the literature. The research presented in Chapters 5 and 6 

is also original as it uses as a starting point the basis states given 

by the original generating function. 
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CHAPTER 1. INTRODUCTION 

1.1. Brief exposition of the problem 

Group theoretical methods have been proven very useful in 

solving physical problems. Here we are interested in the collective 

behaviour of many - nucleon systems which is associated with the 

symplectic geometry of a system of A nucleons. The goal is to 

determine complete sets of states which can further be used in 

nuclear structure calculations. 

The first successful introduction of collective degrees of 

freedom in nuclear theory was in the framework of the liquid drop 

model of Niels Bohr [Bo36] and what became later the Bohr-Mottelson 

model [BM53]. In this model the surface of the drop is parametrized 

by 

(1-1) 

where the right hand side is just some function in spherical 

coordinates expanded in spherical harmonics and the coefficients can 

be considered as collective coordinates. Such a surface equation is 

certainly not the most general one but is widely used and quite 

successful in nuclear structure problems. The quadrupole 
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deformations correspond to l=2, the octupole ones to t=3, etc. 

Since in almost all nuclei the quadrupole degree of freedom plays a 

fundamental role, we restrict ourselves to the case t=2 and we have 

five parameters ~~ as collective coordinates which we now call ~~' 

m=2,l,O,-l,-2. The equation of the surface becomes [BM53] 

+l-

r=ro (1+ £-~'Yr.m) (1-2) 

'Ill 
with «.,.= (-1) oe._'"-. The deformation parameters .c-. are related to the 

mass quadrupole of the nucleon system which is a scalar with respect 

to the O(n) group of rotations in the nucleon index space (n is 

essentially the number of nucleons) and thus can be used to describe 

collective behaviour. 

In the group theoretical approach we use the concept of a 

dynamical group as opposed to a symmetry group. A symmetry group of 

transformations leaves the Hamiltonian invariant and gives rise to 

degenerate multiplets of states which carry representations of the 

group. Examples are the rotation group S0(3) and the isospin group 

SU(2). A dynamical group, on the other hand, requires only that 

energy eigenstates belong to a single irreducible representation of 

the group but does not require that all states of an irreducible 

representation be degenerate. A familiar example is the simple 

3-dimensional harmonic oscillator for which the dynamical group is 

Sp(G) (or Sp(3,R)) while the symmetry group is its SU(3) subgroup. 

Another example is Elliott's model in which SU(3) and its S0(3) 
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subgroup are both dynamical groups but only 50{3) is a symmetry 

group. Thus in Elliott's model, the different angular momentum 

states of a given SU(3) representation are separated in energy but 

the multiplets of a given angular momentum remain degenerate. The 

Lie algebra of a dynamical group is also called a "spectrum 

generating algebra". 

For a system of A nucleons in ordinary 3-dimensional space the 

problem has 3n degrees of freedom, where n=A-1 (the center of mass 

of the system of nucleons is eliminated). Assuming the basis states 

to be the energy eigenstates of an isotropic 3n-dimensional harmonic 

oscillator, the symmetry group is SU{3n) which is contained in 

Sp(6n), the dynamical group of a 3n-dimensional harmonic oscillator. 

We must retain only the states of symmetric representations. This 

means all representation labels of SU(3n) are zero except the first 

one. This corresponds to the metaplectic irreducible representations 

'~ ~~-£ . of Sp(6n) [(1/2) ] and [(1/2) ,(3/2)] whlch are spanned by the 

SU(3n) states of even and odd representation labels respectively. 

Historically the first authors to develop the point of view in 

which we are interested here are Goshen and Lipkin [GL59,GL68] who 

considered an n-body system in one dimension described by Sp(2n) 1 

the symplectic group in 2n dimensions. When considering the 

subgroup Sp(2)~0(n) 1 Sp(2) describes the collective excitations and 

the Hamiltonian is in the 0(2) subgroup of the latter. A few years 

later they extended their analysis to two dimensions, i.e. 

Sp(4n)JSp(4)XO(n). The works of Goshen and Lipkin provide the 
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foundations for the whole branch of nuclear physics and group theory 

called microscopic collective models. 

In the early seventies Zickendraht [Zi71] and Dzublik et al. 

[D072] showed how to transform the coordinates from the 3n degrees 

of freedom of the problem (in the usual 3 dimensional space) to six 

collective degrees of freedom and 3n-6 single-particle excitation 

degrees of freedom. It was shown by Morinigo [Mo72], Filippov 

[Fi73] and Vanagas [VK73] that, whereas collective rotational 

coordinates are associated with the rotational group S0(3), 

intrinsic coordinates can be associated with the group O(n) of 

orthogonal transformations in particle index space. Hence Filippov 

[Fi73,Fi78] introduced the method of generalized hyperspherical 

functions exploiting the subgroup structure 

0 ( 3 n) ::> SO ( 3) X 0 ( n) 

Instead of expanding the nuclear wave functions on 0(3n) spherical 

harmonics, Filippov expanded them on O(n) spherical functions with 

coefficients (collective wave functions) depending on six collective 

coordinates. A similar approach was used by Neudachin and Smirnov 

and Vanagas [Va71] in their translationally invariant shell model 

when they introduced a basis of states for shell model calculations 

in the subgroup chain 

U(3n) :,') U(3) X U(n) :> S0(3))(. O(n) 
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~ Major progress was made with the complementarity theorem of 

c 

Moshinsky and Quesne [MQ71] • They showed that in the chain 

Sp(6n)? Sp(6) )( O(n) 

keeping all shell model states of a given hyperspherical function is 

equivalent to restricting to a single Sp(6) irreducible 

representation (IR). Note that restricting to a given hypersherical 

function is not the same as restricting to a sin~le O(n) 

representation any more than states of fixed angular momentum 

quantum numbers LM belong to a single 50(3) representation. In fact 

one can think of the O(n) hyperspherical functions as the intrinsic 

component of the many-particle wave function and the complementary 

Sp(6} wave function as the collective component. 

Authors like Rosensteel and Rowe [RR76,RR80], Biedenharn, Buck, 

Cusson and Weaver [WB73,WC76,BB79] worked with groups related to 

Sp(6). Studying the collective motions and the operator algebra 

they introduced cm(3), the collective motion Lie algebra and the 

vortex spin operator which couples the rotational motion to the 

internal dynamics. It was soon realized that CM(3), the group 

associated with the Lie algebra cm(3), is a subgroup of Sp(6), which 

these authors call Sp(3,R). Rowe and Rosensteel then proceeded in 

finding a basis for the IRs of Sp{6)? CM(3) using both 

group-theoretical and shell model considerations and carried out 

calculations of nuclear structure using these bases. Sp(6) contains 
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also U(3) as a natural subgroup and Sp(6)JU(3)~ S0{3) was 

considered to obtain bases for nuclear collective motions. After 

the universal acceptance of Sp{6} as describing the collective 

behaviour of many nucleon systems, many authors tried to find the 

solution to the problem, that is to find the matrix elements of the 

generators of Sp(6) between basis states. This is highly nontrivial 

because it implies finding a solution to the commutation relations 

of the generators' algebra. Realizing the difficulty of this task, 

approximate solutions were tried. For instance Rosensteel and Rowe 

[RR80] took the liquid (i.e. many nucleon) limit of the Sp(6) Lie 

algebra and obtained the u{3)-boson Lie algebra which consists of 

the unitary algebra u(3) plus a bosonic (Heisenberg) algebra as the 

ideal and they were able to solve exactly this liquid limit. In 

order to solve the Sp(6) problem numerically they suggested the 

steepest descent method using the u(3)-boson matrix elements as a 

first approximation and they carried out the computer calculations 

only for very special cases (representations) which do not arise for 

real nuclei. It is interesting to note here that their boson algebra 

is mathematically isomorphic to the interacting boson algebra of 

Arima and Iachello [AI76]. 

The Sp(6) collective model, called also the symplectic nuclear 

model combines the features of both Elliott and Bohr-Mottelson 

models. When interested in rotational or Elliott [El58] type states 

one has to consider the subgroup U(3) the unitary group in three 

dimensions which is a natural subgroup of Sp(6) while for 
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vibrational motions one has to find Bohr-Mottelson type states which 

form a basis in the chain Sp(6)? Sp(2)~ 0(3). 

Gaskell, Rosensteel and Sharp [GR81] used generating functions 

to obtain a basis in the chain Sp(6)~ SU(3)XU(l) which is of 

interest when studying collective rotations (remember Elliott's U(3) 

group). Their method enables one to get. ~nalytically a complete set 

of basis states for the group-subgroup Sp(6)~ U(3) (for the compact 

version Sp(6) as well as for noncompact Sp(6,R)). In this 

group-subgroup chain the subgroup does not provide enough labels to 

specify the states uniquely - the same U(3) may occur many times in 

one Sp(6,R) (or Sp(6)) representation. One solution to this missing 

labels problem is to define a complete linearly independent but 

nonorthonormal basis. The generating function obtained implies a set 

of polynomial bases. First, one evaluates the highest states of the 

elementary multiplets as polynomials in the states of the 

fundamental irreducible representations (100), (010), and (001). 

Compatible products of powers of these highest states correspond 

one-to-one to highest states of all U(3) multiplets contained in 

Sp(6) representations. The analytic basis states in the subgroup 

SU(3)~U(l) obtained by Gaskell et al. could be used to derive 

analytic generator matrix elements for nuclear structure 

calculations. 

For Bohr-Mottelson or vibrational type states one has to find a 

basis in the chain Sp(6)j Sp(2)~0(3). After the pioneering work of 
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Goshen and Lipkin, Moshinsky [Mo84] studied the problem in d=l,2 

dimensions, i.e. the chains Sp(2d)~ Sp(2)~0(d). Their effort to 

solve the three dimensional problem proved unsuccessful except for 

the very simple case of closed shells. 

1.2 Summary of this work 

The present work deals with the vibrational collective nuclear 

behaviour as described by the symplectic model. We use the 

generating function approach to derive analytically basis states for 

the chain Sp(6)~ Sp(2)~0(3), i.e. for the real three dimensional 

world. We encounter the missing labels problem and in this case 

there are five missing labels (after Racah [RaSl] Sp(6) has 

l/2(r-t)=l/2(21-3)=9 internal labels where r is the rank and t the 

order of the Lie algebra and the subgroup Sp(2)~0(3) provides 2+2=4 

labels; missing labels~9-4=5). Like in the Sp(6)~U(3) case (with 3 

missing labels) one approach is to use a ~~~r-th~~) bas?l~, but•ov''' 
~····-------"---~'·"''-~ 

complete and nonredundant. We (~xpl ici t~y construct these statesr in 

terms of the elementary multiplets suggested by the generating 

function and we calculate analytically representative matrix 

elements of Sp(6) generators between the basis states thus obtained. 

In the next two chapters, we introduce the theoretical 

background and we discuss in more detail the related nuclear models 
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as well as the group theoretical notions we are using. Chapter 4 

contains a description of the generating function method and the 

actual way of obtaining the desired 5p(6)j 5p(2)X0(3) generating 

function. we start with the known 5p{6)~ 0(3) generating function 

and we convert the 5U(3) subgroup to 50(3) using the 5U(3)~ 50(3) 

generating function and also convert U{l) to noncompact 5p(2). We 

also obtain some additional generating functions which we present at 

the end of chapter 4. Knowing the 5p(6)~ 0(3) generating function 

we obtain the 5U(n)JO(n) one, first three labels of 5U(n) non-zero. 

Also we convert the 5p(6)? 5p(2)X0(3) generating function to 

0(3n) ~0(3)~0{n), first label of 0(3n) non-zero. The respective 

generating functions (and the branching rules) are related by 

complementarity conditions. The generating function for our problem 

suggests an integrity basis, that is, a set of elementary 

permissible diagrams (epd's). In chapter 5, we define the 

vibrational states in the nuclear symplectic model in terms of 

products of powers of the epd's. Certain combinations of epd's are 

forbidden and we call the incompatible products syzygies ; the 

syzygies can be read directly from the generating function and they 

correspond to epd's which never appear together in the binomial 

expansion of the generating function. we give explicit expressions 

for the epd's and show by explicit examples how they are 

constructed. Chapter 6 discusses the generating matrix elements of 

Sp(6) in our basis. We start with the 5p(6) algebra and its 

generators; we then show how use of the Wigner-Eckart theorem 

reduces the number of matrix elements to be calculated and we give 
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examples of generator matrix elements. The last chapter gives a 

summary of the results as well as presenting conclusions and outlook 

for future work. 
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CHAPTER 2.THE SYMPLECTIC MODEL AS A UNIFIED MODEL 

2.1. The collective model and the vortex spin 

In the Bohr-Mottelson model (also known as the 

Bohr-Mottelson-Frankfurt or BMF model), one assumes that the 

collective configuration of the nucleus is given by the shape and 

the orientation of its surface. It is natural then to describe the 

surface by an expansion in spherical harmonics of the form given in 

Eq. (1-1) • The deformation parameters ~, are the collective 

coordinates. The coefficient«~ describes changes in the nuclear 

volume. Since the nuclear fluid is highly incompressible, we 

require the volume to be kept fixed at V=4/3~r; for all 

deformations. This defines the constant 

(2-1) 

The term l =1 describes mainly (at least for small deformations) a 

translation of the whole system and the three parameters ~4~ can be 

fixed by the condition that the origin coincides with the center of 

mass 

J- 3 r d r = 0 (2-2) 
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In the following we omit both f=o and f=l since they are not 

relevant for small collective oscillations of the surface. The £=2 

case corresponds to quadrupole deformations which give a good 

description of the collective oscillations for the purpose of 

further calculations. Octupole (and higher) deformations are known 

to be small. 

For the quadrupole deformations we have five parameters ~~ • Not 

all of them describe the shape of the drop. Three determine the 

orientation of the drop in space and correspond to the three Euler 

angles. Requiring that the surface equation is invariant under a 

rotation of the coordinate system, the collective coordinates 

must behave like Y 1~ under a rotation of the coordinate system 

(characterized by the Euler angles .l1= c<, ~ ,'t) [Ed57, Eq. (5.2.1)], 

i.e., 

(Y ,l.M) new L:,. t 
= D , (..Q. ) ( Y1 , ) old 
~ 

IN-M M 

(2-3) 

r.. t 
aL"M- = D ,(.Jl) o{J. ~ 

-." .. M tM. 

2 
where the D~(JL) are rotation matrix elements and the at. are the 

deformation parameters in the new system. For L=2 the rotation is 

(2-3') 

and we choose the rotation which brings us to the body-fixed system 
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whose axes coincide with the principal axes of the mass distribution 

of the drop. In this system of coordinates the five coefficients a~m 

reduce to two real independent variables a 2.0 and a1.2. =a1t (a.u = 
a~i= 0), which, together with the three Euler angles, give a 

complete description of the system. It is usual to introduce for 

convenience instead of a 10 and a 1~ the so-called Hill-Wheeler [HW53] 

coordinates ~,-f' ( ~>0) through the relations 

from which we have 

and 

a2.o = f-> cos -r 
a'lz.. = ~ sin t';.fl 

2. 2.. e:/-
a 2.o + 2 a 2-2.. = \ 

r ( & ,Cf) = r 0 [ 1 + ~Jt.< cosT(3 cos
4e- 1) + 

+ 3sin 1- sin 2 9 cos2 Cf) J 

{2-4) 

(2-5) 

(2-6) 

The coordinates ~ ,~ are related to the rotational invariants 

(Q
1

xQ2.)0 and (Q ,xQ,_xQ,_)0 as follows 

0,'1. 0 r ,.., < Q 2. x Q~ > 

and they are used in writing down phenomelogical potentials such as 

A~2. for a spherical nucleus or A~'2. +B ~~ cos3Y +C ~it for a nucleus with 
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an axially deformed equilibrium shape. Hess et al.[HS80,HM81] 

consider more general potentials in ~ and T with application to 

BMF calculations. 

The excitations in the BMF model are the surface oscillations. 

The surface parameters ~bn(~~2) of Eq.(2-l) are the dynamical 

variables. They are considered to be functions of time : ~l~(t). 

For low-lying excitations one can expect that they produce small 

oscillations around the spherical equilibrium shape with «!M=O, and 

that the classical collective Hamiltonian H~ that describes this 

process has the harmonic oscillator form [Bo52] 

(2-7) 

Here the parameters of inertia A! and of stiffness Bt are real 

constants. The Eq.(2-7) is, in fact, the only quadratic form which 

is invariant under rotation and time reversal. 

The constants AL and Bt can be calculated within the fluid 

picture; they depend on the flow associated with the surface 

oscillations. Now it becomes important to look at the nucleus from a 

hydrodynamic perspective. For practical purposes the nucleus is a 

zero temperature system so that its equilibrium state is its ground 

state. In considering its collective properties, it was natural 

therefore, at the beginning, to expect it to behave like familiar 

~, macroscopic quantum fluids, eg. liquid helium at low temperature. 
~ 
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Consequently, the liquid drop model portrayed the nucleus as a 

superfluid (vortex free) droplet [BK37]. However, it turned out 

that experimentally observed collective mass parameters and moments 

of inertia for low-lying states were several times larger than 

superfluid values. If we look closer at why a low temperature 

quantum fluid exhibits superfluidity we can see if the nucleus is or 

not vortex free. 

Consider, for example, an ideal qas of non-interacting Bose 

particles at sufficiently low temperature that all particles are in 

their ground state. If the container is rotated slowly, the flow can 

be calculated using perturbation theory and one finds that the 

velocity field, ~(r), is irrotational, i.e.,Vxv(r)=O. Starting 

from this idea, Inglis [In54,In55] proposed the cranking model for 

the nucleus in which the nuclear container is an ellipsoidally 

deformed harmonic oscillator potential. The ground state of a system 

of non-interacting nucleons in a slowly rotating harmonic oscillator 

potential exhibits some interesting properties {BM55]. If the 

nucleon number corresponds to a closed spherical harmonic oscillator 

shell, the cranking returns an irrotational flow value for the 

moment of inertia. On the other hand, for an open shell nucleus, 

the moment of inertia turns out to be the rigid body value for flow 

rotations. Including spin-orbit forces and pairing correlations the 

crancking model yields moments of inertia between the two limits and 

in good accord with experimentally observed values. 
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To see why the collective model needs vorticity we make the 

following point (from a 1968 paper by Cusson [Cu68]). Consider a 

general linear model in which the collective flow lines satisfy the 

equation 

(2-8) 

where g1 {t) is a time-dependent 3x3 matrix. The velocity field is 

given by 

For rigid rotations the matrix g~ should be an orthogonal 

(rotation) matrix, implying that its time-derivative is an 

antisymmetric matrix and that '7! can be expressed as 

--- - -v=c.V>C r 

On the other hand for irrotational flow, one requires 

-"VX v=O 

{2-9) 

(2-10) 

(2-11) 

which means that the time-derivative of the matrix g~ has to be 

• symmetric. Allowing the matrix g "A to have both symmetric and 

antisymmetric parts, the model admits rotations with and without 

vorticity. Altogether, we get 9 collective degrees of freedom. In 

this work, we restrict to monopole (i=O) and quadrupole <i=2) 

collective motions. The model has then 6 collective degrees of 

freedom. With the assumption that quadrupole collective motions are 

volume-conserving, one decouples the monopole and quadrupole modes 



0 

25 

and restricts to 5 quadrupole degrees of freedom. We include both 

{=0 and l=2 because they are coupled by the algebraic structure. 

For a rigid nucleus, it is possible to suppress the vibrational 

degrees of freedom and consider a collective model with only 

rotational degrees of freedom. This is the rigid rotor model as 

opposed to the soft rotor model with vibrational shape fluctuations. 

As we discussed before, if we allow both rigid rotations and 

irrotational flow, we have to augment the six-dimensional collective 

model with three additional rotational degrees of freedom 

corresponding to rigid flow. The total angular momentum of the 

augmented model then has two components 

....... -+ _... 
J = L + S (2-12) 

This nine-dimensional model reverts to the six-dimensional model 
_.. 

with irrotational flows only if restricted to states of S=O. Thus, 
_.. 

loosely speaking, we can regard S as a vortex spin angular momentum 

which takes zero value for irrotational flow. However very recently 

Le Blanc et al.[LC85] showed that it is possible to take into 

account the vortex spin degrees of freedom by a renormalization of 

the collective parameters. If this is correct we can use the six 

vibrational degrees of freedom in the frame of the Sp(6) symplectic 

nuclear model without fear of neglecting the vortex spin 

coordinates. Also this is in accord with the remarkable successes 

of the BMF model with adjustable parameters in nuclear 

phenomenology. 
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2.2 The shell model and the CM(3) collective model 

While the liquid drop model generically, and BMF in 

particular, study global properties of the nucleus, the shell model 

is needed to describe many nuclear properties, including the 

similarities with atomic physics such as the occurrence of so-called 

magic numbers. In the shell model the nucleons are considered as 

independent particles moving on almost unperturbed single particle 

orbits. This is possible because the nucleus is not a very dense 

system as a consequence of the Pauli and uncertainty principles. 

This model takes into account individual nucleons and thus provides 

a quantum-mechanical many-body non-relativistic microscopic 

description of the nucleus with two-body interactions. 

In this single-particle model the nucleons move in an average 

potential which is assumed to be of harmonic oscillator type. For A 

nucleons in three dimensions we write the harmonic oscillator 

Hamiltonian 

3 A 

H0 = 1/ (2m) L. L 
i.:t S...t 

2.. 'l. ~ ~ 
P. + (1/2) mc..> f=-'- x~s 
~ ~I Sd 

(2-13) 

Of course much better zero-order independent Hamiltonians can de 

devised, like Hartree-Fock, but the harmonic oscillator is an 

irresistible choice because of its rich group theoretical structure 

[KM68,KJ80]. Thus, even if one uses Hartree-Fock wave functions in 
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a shell model calculation, it is usually convenient to expand them 

in a harmonic oscillator basis. 

This particular Hamiltonian in (2-13) has the nice property 

that it easily separates the center-of-mass component. By an 

orthogonal transformation of coordinates the harmonic Hamiltonian 

separates 

3 ~-t. 3 1.-l 

H = l/(2m)~ L P~ + (1/2) m(lfj~z:. L:. x'7 + Hc.m. 
6 a,-.& Sa1 t..,l S•i ~ 

(2-14) 

where Xis and Pis are the Jacobi coordinates and momenta and n=A-1 

is the number of relative Jacobi coordinates. The Jacobi coordinates 

are defined by 

x, 
&.S. 

-1/2. 5 
= [S(S+l)) [;[_ X&.t 

~=\ 
- S X t S+l ) ' s=l, ••• n (2-15) 

with their conjugated momenta Pi$ =-i (d/dX~s). Thus, to remove the 

center-of-mass, one simply replaces in (2-13) A by n=A-1 and 

reinterprets the coordinates. To explain detailed properties one 

must include two-body interactions. To be able to use the 

conventional shell model to describe the properties of highly 

collective states, it is necessary to include effective interactions 

and charges. If specifically interested in collective states, one 

needs to diagonalize a collective Hamiltonian, like the one in 

Eq.(2-7) in shell model space. For many years the search for a 

shell model expression for the collective kinetic energy remained 



0 

28 

unsuccessful. Looking for momenta conjugate to the mass quadrupole 

moments, Weaver and Biedenharn [WB70,WB72] were able to construct 

generators of quadrupole deformations. To close the algebra under 

commutation, they were forced to include the three angular momentum 

operators. In this way, they ended up with the eight generators of 

the special linear group SL(3,R). 

Thus, weaver, Biedenharn and Cusson [WB73] proposed the CM(3) 

(Collective Motion in 3 dimensions) model with six monopole and 

quadrupole operators and eight momentum operators. This model has 

the algebraic structure of a semi-direct sum Lie algebra 

cm ( 3) I'V [R'] sl (3, R) • Adding a genera tor for monopole deformation, the 

algebra extends to cm+(3),..,[R,]g1(3,R). 

The six generators of monopole and quadrupole deformations are 

the six components of the tensor 

(2-16) 

fully symmetrized and the angular momenta are the three components 

of the antisymmetric tensor 

,.,.,. 
L ,·J-· = L ( X • P. - XJS· P. ) 

~ ~ A$ "S 
s~' c1 

(2-17) 

These nine generators span the Lie algebra gl(3,R). The six 

monopole-quadrupole moments 
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(2-18) 

span the abelian R' algebra. 

2.3 The symplectic model 

The unified symplectic model is based on the sp(6) (known also 

as sp(3,R)) algebraic structure and embraces both the microscopic 

collective model and the harmonic oscillator shell model. A simple 

Hamiltonian would be 

H = H0 + V(Q) (2-19) 

where He is the harmonic oscillator Hamiltonian of Eq.(2-13) and 

V(Q) is a collective potential like A~. The eigenvectors and 

eigenvalues can be calculated analytically even for a huge number of 

nucleons because H is a simple polynomial in the generators of the 

Sp(6) symplectic group. 

The Sp(6) generators are given by the 6 Cartesian quadrupole 

moments (Q i.i of (2-18)), the 9 gl (3 ,R) generators of deformations 

(S ~ of (2-16)) and rotations (L 1ft of (2-17)) and the 6 components 

of the quadrupole flow tensor (Kij. ) 

(2-20) 
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Note that the generators of Sp(6) are invariant under permutation of 

nucleons (rotations in O(n) space) and thus working with Sp(6) does 

not involve taking into account the Pauli exclusion principle. This 

is quite a nice feature of the Sp(6) collective model since some 

authors, trying to find shell model states in O(n) representation 

spaces, were forced to conclude that "we have no choice but to 

violate the Pauli principle"[Va80] in order to realize 

microscopically the Bohr-Mottelson model. This algebra contains the 

collective motion algebra cm(3) as a subalgebra. It also contains 

Elliott•s su(3) algebra as a subalgebra. Since H0 is an element of 

the Lie algebra, one can choose basis states for an irreducible 

representation which are eigenstates of H0 and work in the shell 

model. These basis states can also be chosen to belong to Elliott's 

SU(3) subgroup and to have definite angular momentum. This is 

equivalent to working with the group-subgroup chain 

Sp ( 6) ~ U ( 3)? U ( 1 )X SU ( 3) ';) SO ( 3) -
For this chain Gaskell et al.[GR81] gave the generating function for 

the branching rules which enables one to write down the basis states 

in terms of epd's. However they did not calculate the matrix 

elements of the generators of Sp(6) in this basis. 

When interested in quadrupole vibrations one has to find a 

basis in Sp(6) which is at the same time a basis in the subgroup 

Sp(2)X0(3); this is what concerns us in this thesis. 

In the next chapter, we review the notions of symplectic 
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geometry and the properties of the dynamical group Sp{6n), 

emphasizing the subgroup Sp{6)~0(n). We discuss the complementarity 

principle showing the relation between theIR's of O(n) and Sp(6). 

We give explicitly the generators and the weight operators of Sp(6) 

and of its subgroups 0(3) and Sp(2). Looking for states of definite 

angular momentum we use polynomials in the raising Sp(6) generators 

and to get states belonging to a specific 0(3n) representation we 

have to use traceless versions of these generators. 
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CHAPTER 3.THE SYMPLECTIC ALGEBRA 

3.1 Sp(6n) and its subgroups 

We start with A=n+l nucleons in three dimensions as in equation 

(2-14), eliminate the center-of-mass and work with the Jacobi 

coordinates Xts and their canonically conjugate momenta Pis. They 

form a 3n-dimensional Weyl-Lie algebra 

(3-1) 

(we work in a system of units where~, the nucleon mass and the 

classical oscillator frequency are all equal to unity) 

The Hermitian quadratic expressions in X~s and Pjt 

, (3-2) 

close under commutation [Mo73] and provide the 3n(6n+l) generators 

of the symplectic group Sp(6n). In Sp(6n) we consider the following 

Hamiltonian of the shell model type (2-14) 

~ "' 
H0 =1:1: H.:!. with His = (1/2) ( P~ + X~) 

i:1 S•i 
(3-3) 

The 3n operators His are particular combinations of the Sp(6n) 
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gene~ato~s in (3-2) that commute among themselves, thus giving the 

weight generato~s of this g~oup [Mo67]. 

Obse~ve that the gene~ato~s in (3-2) a~e quad~atic expressions 

and thus a~e inva~iant unde~ space ~eflections and that a general 

Sp(6n) Hamiltonian will be a function of them rathe~ than linear in 

X· P~ Thus, if we have the mat~ix elements of the gene~ato~s of 
L$ ' .;. • 

Sp(6n) in the basis of eigenstates of H0 , we know in p~inciple the 

mat~ix rep~esentation of an a~bitra~y Hamiltonian and diagonalizing 

it p~ovides us with the ene~gy levels. 

The subg~oups of Sp(6n) allow us to classify furthe~ the 

eigenstates of H0 • The ~elevant subgroup is 

Sp(6n) ") Sp(6)>CO(n) (3-4) 

Fo~ O(n) the gene~ato~s a~e obtained f~om the (3-2) gene~ators of 

Sp(6n) by cont~acting with ~espect to i while the Sp(6) ones a~e 

obtained by cont~acting with ~espect to s. Fo~ O(n) these 

gene~ato~s have the well known form 

~st= (3-5) 

The~e a~e n(n-1)/2 of them with the quad~atic Casimi~ operator 

;t
2 

= (1/2) [. -;{: • 
st s 

(3-6) 

Fo~ Sp (6) the~e are 6 (6+1) /2=21 of them and they a~e the S tj , L~l , 
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Q, and K•i given in (2-16), (2-17), (2-18) and (2-20). We observe 

that s~~ and K ·· can be expressed in terms of commutators of Q, .. 
' ~ ? 

with He. 

S .• = i [ H 1 Q-- ] c,t c tt 
(3-7) 

K ~j = Q •i - ( 1/2 ) [ H r> , [ H 0 1 Q it ] ] 

and that the Lij are the generators of the 0(3) subgroup of Sp(6). 

When we need the matrix elements of the Sp(6) generators, it is 

sufficient to calculate only the matrix elements of Q~ in the 

specific basis and those of S 'i and K~ are easily obtained from the 

commutation relations (3-7). 

Note that the Hamiltonian H0 given in (3-3) is the Hamiltonian 

of the 3n-dimensional harmonic oscillator. Its dynamical group is 

Sp(6n) and its physical states of even number of quanta belong to 

theIR [(1/2)~~] while the states of odd number of quanta belong to 

the IR [ (1/2)~"'-1 {3/2)] of this group. 

If we deal only with the metaplectic IR's of Sp(6n), the IR's 

of Sp(6) and O(n) are complementary, i.e., if we fix theIR of O(n), 

the IR of Sp(6) is given and vice versa. This is related to the 

fact that there are polynomial relations between the Casimir 

operators of O(n) and of Sp(6). Collectivity means restricting to a 

specific IR of O(n) and thus to a specific IR of Sp(6). Then the 
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collective Hamiltonian is defined in the enveloping algebra of Sp(6) 

rather than in that of Sp(6n) so that H~ is a function of the 

Sp(6) generators s 1 , Lit , Q~A and K'i • Also one has to impose for 

the collective Hamiltonians invariance under the subgroup 0(3) of 

Sp(6) (i.e. invariance under space rotations) and invariance under 

O(n) (rotations in the nucleon index space). These restrictions 

drastically reduce the dimension of the Hilbert space. From a 

problem with 3n quantum numbers (the occupation number for 3n 

harmonic oscillators) we reduce it to one with only 9 quantum 

numbers (the number of internal labels of Sp(6)). This is a 

spectacular reduction if we consider that the number of nucleons can 

be of the order of one hundred. However this is a trading off 

situation because we deal now with the more complex case of a 

problem with constraints. 

The symmetry group of the 3n-dimensional harmonic oscillator 

is U(3n) and the physical states are symmetric irreducible 

representations (N) of N quanta. This corresponds to the metaplectic 

IR's of the dynamical group Sp(6n) of even or odd N. In the chain 

SU(3n)';)SU(3) )(SU(n) (3-8) 

u 
0 (n) 

the IR's of U(3) and U(n) are also related by complementarity when 

we fix the IR of U(3n) to be (N). Both IR's of U(3) and U(n) are 

partitions of N (number of quanta} in 3 numbers. If the U(n) IR is 
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[h 4 , h~, h~], theIR of O(n) as a subgroup of U(n) is also a 

partition in three numbers (c..> 4 ,~2. ,~3), where 'Vi, .S. ht., i=l,2,3; all 

the other O(n) labels are zero. When the representation labels of 

O(n) are chosen, the Sp(6) labels are determined [Mo84] 

[ (n/2) + "'" , (n/2) + t.>,_ , (n/2) +CJ3 

These are in fact the weight labels of Sp(6), i.e. the eigenvalues 

of the weight operators of the group; the weight operators of Sp(6) 

are the weights of Sp(6n) Hl! summed over the particle index to 

obtain the three H· = '!:. H.; .. , as we discuss in the next section. 
~ ~ .. 

The O(n) IR's (~1 ,~2.,w~) are directly related to the actual 

nucleus we are interested in, its (Z,A) values. The scalar 

representation of O(n) (CJ,,cv,.,GJ"')=(O,O,O) corresponds to doubly 

closed shell nuclei and was studied by the Mexican group [CH84] in a 

two dimensional space, that is in the chain Sp(4n) :::> Sp(4).>(0(n), with 

the Sp(4) representation given by (n/2, n/2). But most nuclei do not 

fit in this category and the actual IR has to be found. Sabaliauskas 

[Sa79] cosidered that the ground state band is the one which 

corresponds to the maximal eigenvalue of the quadratic Casimir 

operator of the SU(3). Thus he gave a table of O(n) IR 's for 

different nuclei. His table is reproduced by Castanos et al. [CF82]. 

In our work we consider the general case with open shells. 

To be consistent we use in this thesis Dynkin representation 

labels ~~ for the compact groups O(n), SU(n) : 
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; ... 2. < ~td d~) 
., (at;. I ll.:) 

(3-9) 

Here MA is the highest weight of the IR <l> and «~ are the simple 

roots of the group. The O{n) partition labels given above 

(CJ, , W,_ , w3 ) are related to the Dynkin labels by : 

(3-10) 

for 0(8) cJ3 =~.3t=~, and for 0(7) W~=)..,;2. The exception is S0(3) for 

which we use ~/2=l as the IR label. For non-compact Sp(6) we use 

the labels (p,q,d) of the "bottom" 0(3) IR : (p,q) are its SU(3) 

labels and (d) its "vertical" weight component. Given the 

complementarity, for an IR ("'" ,eJu~) of O(n) ( or ( ).,~1 ,.A3 ) in 

Dynkin notation) the Sp(6) IR labels (p,q,d) are: 

p = ~., = w, - c.>2. , q = )).. = ~2. -c.J3 , d = (C431 +c.>1.+t.v.3) /2 (3-11) 

= < .:1.,+2 ~l. +3A3 > 12 

Observe here that d is half the number of quanta , d= ( '4 + ~2. +WJ) /2 so 

that integer d means even metaplectic Sp (6n) IR [ (1/2 )
3

"' ] while 

half-odd d corresponds to odd metaplectic IR of Sp(6n) 

[ (1/2) ?>l'\-l (3/2)]. Vice-versa, for a given Sp(6) IR of (p,q,d) 

labels, the corresponding O(n) IR are given by 

< ~f, ~'1.., AJ > = r p, q, (2d-p-2q> /3 1 (3-12) 
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C in Dynkin notation, or o..,=(2p+q)/3, Cc.>L=(p-q)/3, tc)J=(2d-p-2q)/3 in 

partition language. 

We characterize our states by an IR of O(n) and thus by an IR 

of Sp(6) and also by an IR of a subgroup of the latter. We are 

interested in the chain Sp(6)~ Sp(2)~0(3). The generators of 0{3) 

are the L~ of (2-17) while those of Sp(2) are the 0(3) scalars that 

we can form from the Sp(6) generators. There are three of them given 

by 

3 

Ii = {1/4) ~ K .• - Q •. ) 
L=l ... "" 
3 

I1 = (1/4) r. ( g .. (3-13) 
tc• lA. 

3 

I3 = (1/4) L. K .• + Q .. ) 
t::~ u &A 

which satisfy [Mo73] the commutation rules 

(3-14) 

.2. 2. 2. l . The Sp(2) Casimir operator is I =I~ -r4 -I~ and 1s related to the 

Casimir operator of 0(3n) because of the complementarity in the 

chain Sp(6)J Sp(2)X0(3n). We discuss this relation in Section 3.3 

when we need states of a definite 0{3n) IR, or equivalently, of a 

definite Sp(2) IR. 
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3.2 Polynomials in the raising generators of Sp(6) 

Until now we discussed the algebra of Sp(6n) and its subgroups 

in terms of the Jacobi coordinates of Eq.(2-15) and their conjugated 

momenta P.;5 =-id/dXts , which obey the Heisenberg-Weyl algebra (3-1). 

For convenience we transform to the creation and annihilation 

operators in Sp(6n) 

M = (X. - iP. ) /J2 , 
- L ··s ~-~ • \ r = (X. +iP. )/J2 

5> is "S •s 
(3-15) 

which satisfy the commutation relations 

In this new basis the generators of Sp{6) in (2-16) 1 (2-17) 1 (2-18) 

and (2-20) become 

+ 
B·· 
~ 

The B~i and B •J
Sp{6) and there 

(3-17a) 

(3-17b) 

(3-17c) 

are respectively raising and lowering generators of 

are six of each ( the "'. and S. commute with 
I.'s 'S 
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themselves so that these operators are symmetric under the 

interchange i <--> j). 

The c1 coincide for iFj with the generators of the U(3) subgroup 

of Sp(6) ~la given below 

(3-18) 

and they can be subdivided into raising, lowering and weight 

generators 

C~l i<j raising operators 

c .. 
~ 

i>j lowering operators (3-19) 

c .. 
&C. weight operators 

(a) (b) 

The above figures (a) and (b) diagrammatically represent the raising 

U (3) generators C~z., c,~ , c13 and the lowering generators C2.t , CJ.I 

and Cl~ respectively. 

From the commutation relations (3-16} one can verify the 

commutation relations of the operators in (3-17). We give them in 
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Chapter 6 when we discuss the Sp(6) generators and their matrix 

elements in our basis. 

We can see that the weight operators of Sp(6) Cu. are the Ht 

we get after summing the Sp(6n) weight generators H~ of Eq.(3-3) 

over the particle index s. Thus the weight generators of Sp(6) give 

the energy associated with the Hamiltonians H' in units of ~w=l <wt 
plus the ground state energy n/2) while the weight operators of the 

0(3) subgroup of Sp(6) ~ii count the number of quanta ~~ of H~. 

M. 

c .. 
IL 

~ 

= (1/2) L.. 
S•l 

<1\s.l\!o+ !,~"la's> = ~1 1\sJ is + ( n/2) 

Ill\, '2. 2.. 
H \ = (1/2) L: (P. +X. ) = 

5 
lS, .. , 

=\ 

c .. 
!A, 

(3-20) 

(3-21) 

The total number of quanta is (w1+~~+w~) and corresponds to the U(l) 

label in Elliott notation and to (2d) where d labels the "vertical" 

component of the Sp(6). The SU(3) labels in Elliott notation are 

"'-'1 -(..)2- and wJ.-c.>~, the same with our (p, q) label of the "bottom" 

SU(3). It follows that the Moshinsky way of labelling the Sp(6) IR 

by [ (n/2)+t.J1 , (n/2)+t4u (n/2)+c..l3 ] (in [Mo84], [CC84]) refers to the 

eigenvalues of the three Sp(6) weight generators Hi=Cu • 

Consider now the oscillator Hamiltonian in (3-3) 
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and let us call its ground state 10>. From the expression of H0 we 

see that 10> is a state of lowest Sp(6) and lowest U(3) weight. This 

means that applying the lowering Sp(6) generators 

one must get zero. Applying the weight generators c .. 
1.1. 

and C.. i> j 't 
one gets the 

U(3} weights of the state [~~+(n/2),~~+(n/2),Wl+(n/2)]. 

B ~t I 0 > = 0 , C 'j I 0 > = 0 for i > j (3-23) 

c"- IO>= (tJt +n/2 > 10> i=l,2,3 (3-24) 

If the nucleus is open shells-type, the ground state energy is 

(~4 +'-'l.+"'3+3n/2), where we can consider (Ct)4 +44>a.+c..>~) as "intrinsic" 

quanta, due to the internal structure of the nucleus in question. 

The excited states with 2J "extra" quanta are obtained by applying 

all possible homogeneous polynomials of degree (..)) in B ~ (B~ is 

quadratic in the creation operator ~s so that applying one B~i we 

create two quanta}. We get states of the form 

P._, (B"f:.) 10> 
'et 

( 3-25) 

which belong to the same O(n) IR (~~~~~~~3 ). As we see in the next 

Section they form an Sp(6) basis with the 0(2) subgroup of Sp(2) 

labelled by (2~). 

In principle one would consider· in (3-25) polynomials in all 

Sp(6) raising generators, i.e., both at. and C\.i,, i<j. using the 
"t ll 
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commutation relation of Bt.. and C.. ( see Chapter 6 ) 
'l "'~ 

(3-26) 

one pulls all the c't at right in front of 10>. The C'f are 

essentially the ~et of U (3) (see (3-18)) and the annihilation 

operatorS· when applied to the ground state gives zero. In this way 
j'!> 

all terms containing C~ vanish, leaving only terms of the form 

(3-25). 

The states in (3-25) are characterized by the angular 

momentum L and we consider highest 0(3) states of angular momentum 

projection M=L, which implies 

(3-27) 

where L~ are the components of the angular momentum (the 3 

independent components of the antisymmetric tensor L~ of (2-17)) 

and L±=<~±iL~) • To get the states of arbitrary M one applies 

(L_) repeatedly (L-M) times to the polynomials (3-25). 

+ The Bt:t, i,j=l,2,3 is a symmetric tensor of rank two. It has 

therefore six independent components and we 

Cartesian components to spherical-type ones 

then to the irreducible tensor form 

prefer to transform from 

+ B\~, q,q'= 1,0,-1 and 
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<lq, lq' tf m> Bt 
tt' 

, t= 0,2 (3-28) 

Here <lq,lq't{m> is the Clebsch-Gordan coefficient for the coupling 

(lq) with (lq') to form a (00) or a (2m), m=2,l,O,-l,-2 state. In 

spherical notation (q,q'=-1,0,1) the raising generators are given by 

at,= Lll) II'J, , i.e. 
tcr !::> 'ts Lots. 

a: = (1/!2> f '~& , 
a!o = (1/[2) Z:.. tJt2. , 

S Lo$ 

a:r = < 1/ J2 > t:. n. 1. , 
I S j,T~ 

(3-29) 

and the irreducible tensor form of a\. is easily obtained if we take 
+ 1 

the t=m=2 component to be s., and we crank down with L_. Then the 

B+ (~=2) are given by: 
IIM. 

t 
(1/(2) ~ ,~ a2- = 

a+ 
I = (1/2) [L_,a~ ]= 2i- 'tr~"lo~ 

s+ = (1/[6) [L_,B~ ] = (1/{3) f <"to~ + <1.~ ~is) (3-30} 
0 

at 
T = (1/.[6) [L_,s: l = f IY}_Ts"1o~ 

s+ 
1. = (1/2) [L_,B~ ]=(1/[2) ~ '1t: 

The t:o part of the B~i is orthogonal to the 1=2, m=O: 

B t = z:. ( M;. -2 ot, ~- ) I [6 oo s. . L .. !. IS 

Now the polynomial in B+at became a polynomial in B~ and B~ • 

We note that B~ 0 is an 0(3) scalar and the Sp(2) raising generator. 
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When applied to an Sp(6) state it increases only the vertical 

component, adding two quanta. When we construct the basis states by 

coupling the B~ to the bottom Sp(6) IR we are interested in states 

of lowest Sp(2) weight and we use only the t=2 part of the raising 

generators B~ m=2,l,O,-l,-2. Note here that the B~ being only 

functions of ~is commute among themselves and are the components of a 

Racah tensor of order 2. 

To determine the states of the form (3-25) and of angular 

momentum L one has to find some basic homogeneous polynomials of the 

type (2~,L), of degree~ in a:. This is the procedure used by 

Chac6n, Moshinsky and Sharp [CM76] for the states characterized by 

the IR of the chain U(5)? 0(3). Their problem was solved by 

introducing three such basic polynomials and the states were 

products of these simple polynomials called elementary permissible 

diagrams (epd's) [MS69,SL69]. The same type of polynomials will 

solve our problem and Castanos, Chacon and Moshinsky [CC84] found 

five of them which characterize the scalar IR of O(n). Their epd's 

contain only polynomials in the raising generators since the ground 

state is trivial. 

In our case, when the ground state we start with is nontrivial 

(has nonzero SU(3) labels), we have to couple the "bottom" 50(3) 

(p,q} of the Sp(6) IR (p,q,d) of the given nucleus (given (~4 ,~a,~3 ) 

O(n) IR) to the~~· The~ form the 0(3) multiplet (2,0,1), that 

is, the SU(3) sextet (2,0). The 0(3) projection of the sextet 
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provides the quintet L=2 (the B~ ) and the .!=O part B:, • To create 

two quanta states one applies a polynomial of first degreee in B~* 

to the ground state, that is one couples the U{3) multiplet {2, 0, 

1) to the "bottom" (ground state) U(3) multiplet (p,q,d) of the 

Sp(6) IR. This translates in terms of SU(3)-coupled products 

( 2 , 0 ) y.. ( p, q) = ( p+ 2 , q) + ( p, q+ 1) + ( p+ 1 , q-1) + 

+ (p-2, q+2) + (p-1, q) + (p, q-2) 

provided p~2 and q~2. For states of four quanta one applies a 

second degree polynomial in B~M and these states span a reducible 

U(3) representation which decomposes into the 0(3) IR's contained in 

the symmetric part of the product 

[ ( 2 , o , 1) " ( 2 , 0 , 1) ]
5 

x ( p, q, d) 

or, in SU(3) projection [(2,0) x (2,0)]sx(p,q). To obtain states of 

2~ quanta one uses the U(3) multiplet (a4 , ~, a 4 /2+b4 ) 

corresponding to polynomials of degree v = Cl..,j2+b4 in B+""" • To apply 

these polynomials to the ground state means to couple their U(3) IR 

to the "bottom" U(3) IR (p,q,d) and obtain the excited Sp(6) states 

labelled (a, b, at/2+b4 +d). The "vertical" component is the sum of 

the original Sp{6) IR ( d equals half the number of "intrinsic" 

quanta) and the degree in the raising generators B~ (v equals half 

the number of "created" quanta}. Then the "vertical" component of 

the "final" Sp(6) , d +v, is half the total number of quanta. 

Coupling the B~ to SU(3) representations considerably complicates 

the problem, and the number of epd's in our problem is nearly sixty. 
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Of course the closed shell ones found by Casta~os et al. [CC84] are 

in our list. This problem could not be solved without the use of 

generating functions methods. 

3.3 The traceless Sp(6) generators 

We require the basis states of our problem to belong to a 

given IR of Sp(2) of label (z). The total number of quanta N is 

related to the IR of the 0(2) subgroup of Sp(2) whose generator is 

13 of (3-13); it is easy to verify that r3 =H0 /2 and this means that 

z is half the eigenvalue of H0 • 
..... 

We introduce the number operator N 

which counts the quanta of a given state and the eigenvalue of H0 is 

N+3n/2 if N is the eigenvalue of the operator N. 

3 

= Z:. Cu:- (3n)/2 
to I 

(3-31) 

N P""(B: )10>= N P"(B~)IO> (3-32) 

As discussed before if the ground state has 2d quanta and we apply 

P~ which creates 2v additional quanta, N=2d+2v. 

As stressed many times, in the chain Sp(6n)':) Sp(2) x 0(3n), 

because of the metaplectic Sp(6n) IR, there is complementarity 

between the IR's of Sp(2) and 0(3n). Requiring a certain Sp(2) label 
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(z) uniquely determines the 0(3n) representation label (~} (only the 

first one is nonzero). To see how the two labels are related we 

consider the IR's labelled by the eigenvalues of their Casimir 

operators. The Casimir operator of Sp(2} is given by 

l. 1 '1. 2. I = I3 -1 4 -Iz. (3-33) 

with I-i ,12.,1~ given in Eq. (3-13). For 0(3n) we use the Casimir 

operator of (3-6) and it is simple to verify that the two are 

related [Mo84] 

2.. 
Il-=(1/4) ['it +(3n)2 /4-(3n)] (3-34) 

2. 
We denote the eigenvalues of 12. by z(z-1) and those of ~ by 

)(A+3n-2); we obtain from (3-34) the relation between the 

eigenvalues z and A : 

z= A/2+ (3n)/4 (3-35) 

This equation implies 2z=A+(3n)/2 which is transparent from r3 =H0 /2 

and H0 =N+(3n)/2 if z is the eigenvalue of I~ and if the eigenvalue ~ 

equals the eigenvalue N of the number operator N. But l equals N 

only for special states. 

To see the relation between the Casimir operator of 0(3n) 

"' .../11. and the number operator N we write out explicitly ~ [EG70] 

(3-36) 

This is the same Casimir operator given in (3-6) but expressed now 
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in terms of creation and annihilation operators. After some 

rearrangement of factors it can be written as 

..,,_ "" A. " 
11v = N(N+3n-2)-('[~ 1\'1 ) ( £...~. !. ) 

-t lit lif:: s c.s ~$ 
(3-37) 

From (3-37) we see that the polynomials in (3-25) correspond to a 

definite IR of Sp(2) of label z and at the same time to the IR of 

0(3n) of label l=N if and only if the polynomials are "harmonic", 

i.e. they satisfy 

{3-38) 

Our polynomials in (3-25) do not satisfy (3-38) as they stand and 

thus they do not correspond to a definite IR of 0(3n). There is 

however a method originated by Vilenkin [Vi68] and further developed 

by Lohe [Lo74J by means of which we can enforce the harmonicity in a 

relatively simple way. 

Like these authors we introduce "traceless boson operators" 

defined by 

+ ,.. -· a. =M. - (2,0) (2N+3n) ~is 
~s ~.s 

where (2,0} is the 0(3) scalar of the B~ sextet in (3-30) 

(2,0} = J6s:, = ~ <fVI~ -2'1,$'?;s> 

(3-39) 

Replacing in (3-17a) "lts by their traceless versions a\!> we get the 



0 

so 

().~ + traceless partners r~ of the raising generators B1~. We use the 

definitions (3-17) and the commutation relations 

" _, " _, 
(2N+3n) ""· ="1,. (2N+3n+2) 

· lls ~s 

(2'N+3nr' 'J, = }. (2N+3n-2( 1 
•s ~ 

to get the following form for the traceless raising generators 

+ ,.. -t BL't- (2 ,0} (2N+3n) (C1 +Ct~ ) + 
'l,. A "- \ +(2,0) [(2N+3n+4} (2N+3n+2>r 

As we did in the paragraph with (3-28) we can convert the 

(3-40) 

( 3-41} 

(3-42} 

traceless versions of the raising generators to the irreducible 

tensor form. The e=2 part is given by: 

+ + ...., -\ 1 "- A -i 
~- = BIWI -2(2,0} (2N+3n} 0,..+(2,0) [(2N+3n+4) {2N+3n+2)] B"""' (3-43) 

Here we introduced the notation Q~~ = (C~ +C ~.:) /2 and o_ and B- are 

the t=2, m=-2,-1,0,1,2 components of the tensors Q~ and 

same way as B~ is the !=2 part of B; in (3-30). Using 

in the 

traceless versions of the raising generators, the polynomials become 

harmonic, and the states (3-25) obey (3-38} if we make sure that the 

ground state IO> is also harmonic. 

To make the ground state harmonic we remember that it is 

essentially an SU(3) IR (p,q), where p and q are the degrees in the 
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unbarred 't~ and barred ~ variables which form respectively the 

triplets (1,0) and (0,1). To make the variables traceless we make 

the replacements [DS82] : 

A. -1 

f1Li --> ai = ~ - B (N+3) d'f . ., 
(3-44) 

- A -1 l'j 
M -->a· =m. - B (N+3) o. 

t ~ " . ~~- "2.~ 

Here B= f ~ ~ is an SU (3) scalar and N= ~ <"f.:t.,~ +i.d~.> =p+q is the 

total degree. The proof that the polynomials in ai and a, are 

traceless, i.e., orthogonal to any state containing B as a factor, 

is similar to that for traceless raising operator given by Lohe and 

Hurst [LH71]. 

With these the eigenstates are "harmonic", meaning they obey 

(3-38) and thus they correspond to the 0 (3n) IR of label A =N and, 

by complementarity, to the Sp(2) IR of label z. In Chapter 5 when we 

explicitly construct the basis states we use the traceless versions 

of the raising generators (3-43) and of the creation operators 

(3-44). 
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CHAPTER 4. THE SP(6)~SP(2)~0(3) GENERATING FUNCTION 

4.1. Generating function method in group theory 

The concept of generating function was introduced in 1897 by 

Molien [Mo97] in connection with the invariants of a finite group of 

matrices. The generating function proved to be a very useful tool in 

the representation theory of finite 

[DS79,JB77,Mc74,Me54,PS78,PS79,PS80,Sl77] and continuous groups and, 

more recently, spacegroups [PS85), supergroups [SV85] and Kac-Moody 

algebras. 

There are several types of generating functions named after 

the information they carry; a good account and examples of use are 

given in a recent Ph.D thesis by Couture [Co80]. We name here the 

most used categories of generating functions : 

- generating function for polynomial irreducible tensors; 

- generating function for Clebsch-Gordan series; 

- generating function for weights; 

- generating function for group-subgroup branching rules. 



0 

53 

As one can see the generating functions may be used in many 

different group theoretical calculations; they are a compact and 

convenient way of storing, carrying and manipulating information. 

All generating functions have the same structure : they are infinite 

sums of monomials in several variables, say l, 

~ iz ~--c. . v
1 

v ..... v._ 
...... t.fc. .. " 

(4-1) 

containing only positive terms, c~.~~ ... c:, ~0. They can be written as 

fractions, or sums of several fractions, whose denominator factors 

are of the form (1-X). The X's in the denominators and the Y's in 

the numerators are of the form 

where~ , ••• ,p~ are integers. When expanded, one obtains the 

infinite power series in (4-1). As an example consider the 

following function 

. 2. 1 2. 1. -! 
G ( V-1 r V 2. 1 V 3 ) = ( 1 + V..f V 2. V l ) [ ( 1-V4 ) ( 1-V 1 V a, ) ( 1-V 4 v3 ) ( 1-V .a.. V 3 ) ] ( 4-2 ) 

which meets the requirements of a would-be generating function. The 

generating functions are not only a neat, convenient and compact way 

of presenting results but they make possible the manipulation of a 

large amount of information; they may be added, subtracted, and in 

certain cases, coupled (multiplied) and substituted one into 
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another. 

In this work we are concerned with the generating functions 

for group-subgroup branching rules. It has been shown [SL69 7Wy72] 

that the reduction of the irreducible representations (IR's) of a 

group into the irreducible representations of a subgroup can be 

given in terms of powers of a finite set of elementary factors 

called elementary permissible diagrams (epd's). The name epd was 

first introduced by Bargman and Moshinsky [BM61] and was generally 

adopted; the term elementary multiplet is also used. The epd's are 

denoted by ( l
4

, ••• , A_t ; n" , ••• , n-w~) where the ).~ and n~ are 

respectively the Cartan labels for the IR's of the group and the 

subgroup. This means that the subgroup multiplet (n
4 

, ••• ,n~) is 

contained in the low irreducible representation ( l.,,. . . At) of the 

group. For the multiplet content of higher IR's of the group one 

uses stretched products of epd's. Weitzenb8ck [We32] proved that 

the set of epd's is finite for all semisimple Lie algebras. We note 

here that for noncompact group-subgroup chains, the epd's need not 

have any ,l . 

The connection with generating functions is immediate if we 

consider the X and Y defined before as epd's or stretched products 

of powers of them. To make things clear we take as a simple example 

the chain SU(3)~S0(3) for which the branching rules are given by the 

following stretched product of elementary factors 
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4- ~ .c. J. f 
(1,0;2) (0,1;2) (2,0;0) (0,2;0) {1,1;2) (4-3) 

where a,b,c,d are integers from 0 to~ and f=0,1 only. The 

corresponding generating function is [BM61,Ga78] 

F (P ,Q; N) = {1+PQN1
) [ (l-PN1

) (l-QN2.) (l-P2.) (l-Q2.)] -i (4-4) 

where P, Q and N carry respectively the SU(3) and S0(3) 

representation labels as exponents. If we want to see the S0(3) 

content of the SU(3) IR of Cartan labels (2,2} we look for the term 

P~Q~ in our generating function; it is 

l. "' 8 c. 't P Q (N +N +2N +1) (4-5} 

This is to be read as 

(2,2)~(8)+(6)+2(4)+(0) 

Note that the infinite powers arise from the denominator factors 

when expanded while the numerator corresponds to the power f=O,l in 

( 4-4) • 

4.2. Obtaining the desired generating function 

In this section we describe in detail how to obtain the 

,generating function for Sp(6)? S0(3)XSp(2) branching rules. The 

strategy is first to determine what subgroup multiplets are 



56 

generated by the raising generators of Sp(6). By raising generators 

we mean the B~ ; there are six of them (five after making them 

traceless) and then keep all subgroup multiplets obtained by 

coupling them to the "bottom states" which comprise a single 

SU(3)XU(l) representation. We use Dynkin or Cartan representation 

labels for compact groups (e.g. the SU(3) octet is (1,1)) and for 

Sp(6) we use (p,q,d) where (p,q) is the "bottom" SU(3) 

representation and d the U(l) value of the bottom states. 

The coupling of "raising generator multiplets" to "bottom 

multiplet states" can be done directly in an S0(3) basis or in an 

SU(3) basis followed by the replacement of SU(3) by S0(3} with the 

help of the SU(3)~ S0(3) branching rules generating function. In the 

end the two forms would be equivalent. Since the coupling is already 

done in the SU(3) basis [GR81] we are going to follow that route. 

But first we indicate how it could also be done directly in S0(3). 

For the raising generators we can use the S0(3) quintet B~. 

The use of B!o is not necessary since we are interested in traceless 

states, that is bottom states of Sp(2) multiplets. 

The S0(3) multiplets which are polynomials in the components of 

a quintet are described by the generating function 

l+z' L~ (4-6) 

(1-Zl..) (1-Z~) {l-ZL1 ) (l-Z2. L2.) 
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When expanded in a power series 

the coefficient C}t gives the members of linearly independent 

t-multiplets of degree z. One can recognize in (4-6) the elementary 

multiplets (epd's) (2,0), (3,0), (1,2), (2,2) • Since (3,3) appears 

in the numerator, it can be used at most linearly (no higher 

powers) • 

Similarly the S0(3) states in the bottom SU(3) multiplet (p,q) 

are described by the generating function 

l+PQL (4-7) 

(1-P1
) (1-PL) (l-Q2.) (1-QL) 

which gives branching rules for SU(3)) S0(3). Note that this is the 

same equation as (4-4) with L=N1., or l=(L;~. When we expand (4-7) in 

a power series 

the coefficient Cttt gives the multiplicity oft in (p,q). 

Now we want to couple ~·s from (4-6) to t•s from (4-7) and keep 

all direct products. This is done by computing 
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l+Z3 CL'\ . . )( 

(1-zl') (1-zl) (l-ZL4 L4) (1-z" L:L ~ 2.) 

X 
1 + PQL t..L 'a, 

-----------------------------X 
(4-8) 

(1-P2.) (l-PL 4 Lt} (1-Qz.) (1-QLl..L~) 

The first factor in (4-8) is just (4-6) with L--> L4 L1 , the second 

is (4-7) with L--> L~L~ , the third is the Clebsch-Gordan generating 

function for S0(3), integral 2•s : 

(4-9) 

(here the coefficient of L4~ L!~ Le is the multiplicity of Cl) in 

(f.,)X(eJ..)) with L
1
--> L'_.-i , L:z.,--> Li,-1 • 

The subscript is an instruction to retain only the 

coefficient of L'A L;_, at power zero. 

The result of (4-8) will be called here 

( 4-10) 

and has to be divided by (1 - DZ) to become the desired generating 
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function for Sp(6)~ S0(3)XSp(2) branching rules. When expanded 

( 4-11) 

the coefficient cftd...t,rl.t~is the multiplicity of the S0(3)XSp(2) 

representation (t,z) in the Sp(6) representation (p,q,d). From 

(4-10) all the epd's for the problem can be read off. The labels 

e~, e~ which are the e•s values of the multiplet from the bottom 

states and from the raising generators respectively, which are 

coupled to get the resultant tin (4-11), are not essential but are 

useful in sorting out the syzygies and in seeing the structure of 

the epd's. The extraction of the L~ 0 L'~0 term in (4-8) involves 

somewhat messy algebra, but the rules are known and the procedure is 

straightforward. 

Now let's start over, proceeding via SU(3) and later going to 

S0(3). This is the route we followed. 

The raising generators form an 0(3) sextet (2,0;1). The SU(3) 

multiplets which are polynomials in its components are described by 

the generating function (see {De70]} : 

1 ( 4-12) 

(1-Z~) (1-ZAl.) (l-Z2.B2..) 

The coefficient of z1 A~B~ is the multiplicity of the SU(3) 
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representation (a,b) of degree, or U(l) label, z. Similarly the 

SU(3)XU(l) representation (a,b,z) at the bottom of the Sp(6) 

representation is described by the generating function 

1 (4-13) 

(1-PA) (1-QB) (1-DZ) 

Now we must couple the SU(3) representations described by (4-12) and 

(4-13) using the SU(3) Clebsch-Gordan generating function which is 

1 
-------------------------------------------~ 

] ( 4-14) 

or keeping the part even in A~ ,B( (which will be the A,B of (4-12}) 

1 
---------------------------------------------~ 
(1-A;A'-) (1-A;z,A) (l-B4lBZ.) (1-B~B) (1-A,,tB!) (1-B.f~~) 

(4-15) 



0 

61 

We multiply (4-12) , with the replacements A--> A A'-4 B--> B B'-1 A <f , .t 4 ' 

by (4-13) with A--> A'~4, B--> B';1, and (4-15) with A~--> A~ , 

B\ --> B 's.. , A1r --> A '2..- , B2..--> B 'a.. and keep the A~ • A ',.,.0 B '-to B •: 

part. Because of the simple form of (4-12) and (4-13) this is 

simple to do. The result is just (4-15) with the replacements A~--> ., 
~ 2.. 2. .2. 

ZA
4 

, B4 --> z B,. , AL --> P, B.:~.--> Q, with of course the additional 

denominator factors (1- Z3 ) (1 - DZ ) • We get the Sp(6), SU(3)XU(l) 

branching rules generating function 

1 
------------------------------------------------------------X 
(1-Z~) (1-DZ) (l-ZA!"A1

) (1-PA) (l-Z1 BlB2.) (1-QB) (l-ZAf01 ) (l-zl.B_.2P.t) 

( 4-16) 

+ (l+ZAiOA) (z.t'B,.'Q2.AZ.+Z:tB.l"PQA+Z1 B,.tQAB+ZltB_.4 PQ~A.t.B) ] 

1-Z'--B,/-04 A'-' 

Of course this is just equation (4-6) of [GR81], except that they 

did not keep A• and B1 (they were set= 1). It is better to keep 

AA,~ because the labels aA ,~ which they carry as exponents 

describe the SU(3) representation formed from the raising 

generators. They help sort out the syzygies especially when we have 

gone to S0(3)XU(l). Without them in the second term of (4-16) one is 

tempted to divide the numerator factor (1 + ZAJQA)--> (1 + ZQA) into 

the denominator factor (1 - Z~BtO~A4 )--> (1 - Z.tQl.A~). 



62 

We can rewrite (4-16) in a more compact form if we observe 

that nothing changes when interchanging 

p <---> Q (4-17a) 

A <---> B ( 4-17b) 

A 1.-z .. <---> B_. 2.- Z ~ (4-17c) 

This is due to the form of the equations used to obtain (4-16) • The 

first two replacement leave (4-13) unchanged and the last one does 

not affect (4-12). One can also verify directly that (4-16) is 

invariant under these changes. This observation is helpful in 

simplifying the generating function in (4-16). We can now separate 

the epd's into pairs defining the "conjugate" of an epd as the one 

obtained by the replacements (4-l?a,b,c). With this we rewrite 

(4-16) as 

F(P, Q, D; A , B ; A, B, Z)= 

= [(l-et) (1- ~ ) (1- T) (1- "'t'*) (1- ~) (1-!*) (1- £ ) (1-~*) ]-t X 

x [ (1 + '\ + & + ")(.. +l~*+ Pz- e + "l_'X- + ~,_*> Cl-~ >-" + 

+( ~*+ tt*+ 8*+ ')(..,*+ .J .,_ + ~· &*+ '\*')(.;*+ ~*"l"t*) (1-_:s *)-·] 

The letters on the right hand side stand 

rl...= z~ , ~= oz, -t= PA, t= 02. Al z, 
\" 2, 2. 2. 
)=P A_, B Z, 

for the epd' s : 

S. = A" 2- A 2, Z , 

?t...=PQA..f .2. BZ. 

The asterisk denotes the "conjugate" epd, obtained by the 

(4-18) 

replacements (4-17). As we just discussed, the generating function 

(4-18) is conjugation-symmetric, i.e., is unaffected by these 
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interchanges. When (4-18) is expanded in a power series, 

(4-19) 

the coefficient c, summed over aA ,b1
, gives the multiplicity of the 

U(3) multiplet (a,b,z) in the Sp(6) IR (p,q,d). 

The exponents in (4-19) (or in the epd's) provide 

instructions for constructing the basis states (or the epd's): 

couple the U(3) multiplet (a.,b4 ,a 4 /2+b~), whose components are 

polynomials of degree a 4 /2+b1 in the Sp(6) raising generators (they 

form the U(3) multiplet (2,0,1) and are the B~f of Eq. (3.2a) or 

n1- of Eq.(3.6) of [Mo84]), to the bottom U(3) multiplet (p,q,d) of 

the Sp(6) IR to obtain the U(3) multiplet (a, b, a~/2+b4 +d). The 

U(l) label is greater than a 1 /2+bA+d by three times the degree in OC, 

the SU(3} scalar of third degree in the raising generators. 

The subgroup SU(3} of Sp(6) is converted to S0(3) by 

substituting into Eq.(4-17) the SU(3)~ 0(3) branching rules 

generating function 

G (A,B, L) = [ (1-At) (l-B.2.) (1-AL) (1-BL) ]-! (1 +ABL) 

The substitution is accomplished [PS80] by evaluating 

( 4-20) 
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( 4-21) 

The subscript A' 0 B' 0 is an instruction to retain only the term in 

A' and B' of degree zero. The variables A,B are inserted to retain 

the SU(3) representation labels; as noted above, we will need all 

the labels we can get. The U(l) label z now becomes the weight 

label of the Sp(2) subgroup. The U(l) group is converted to 

(noncompact) Sp(2) simply by multiplying by 1-Z, or, more precisely, 

1-M*, where M* is the epd A~~A~Z defined below. Then z, the 

exponent of z, is the Sp(2) representation label, the lowest weight 

of the Sp(2) multiplet. 

To evaluate the expression in Eq.(4-21) we used a procedure 

for separating positive and negative powers in a product 

communicated by Richard Stanley of M.I.T. The starting point is the 

identity: 

1 1 

(l-AX) (1-BX-l ) l-AB 

1 --
l-AB [ 

AX 

l-AX 

1 
-t-----

-\ 
1-BX ] 

If one wants to separate the more complicated expression 
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1 

( 1-AX"" ) ( 1-BX- n.. ) 

(m and n positive integers), then one can still use this formula by 

multiplying both numerator and denominator by 

( 1 +Ax
'IW\ 2. 'l.W\ 1\.-4 ('1\•l) W1 -lP!. l -2..,. "11'\-1 -(M -4) l\. 

+A X + ••• +A X ) (l+BX +B X + ••• B X ) 

The result is the following formula 

1 1 [ -· -· _,,._,,,. l+BX + ••• +B X 
+ 

( 1-AX M' ) ( 1-BX -rt. ) 1-A""'BM 
If'{\. 

l-AX 

M\. - ~ IM "-\ , .... ) .. ] 
B X (l+AX + •••• A X ) 

+ 
1-Bx-~ 

1 
[ "' ... _,. ,... -<•·n• 

A X ( 1 + BX tWI. + ••• + B X ) - + -
1-A<v~. Bw.. l-AX 

] 'W\ 1101.-• xt"'-1)"" l+AX + ••• +A: 
+-----------------------------------

Using these repeatedly one is able to separate any product with 

positive and negative degree parts. 

To separate the term of degree zero in Eq.(4-21) we analyse the type 

c 
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of terms we encounter and, for each type, get a formula which gives 

directly the zero power part in one variable. ·we extract first the 

zero power part in A' and we repeat the procedure to get also zero 

power in B'. We list below the types of terms which appear and 

their zero power parts. In these formulae a, b, c, d, e do not 

contain the variable A. 

(1-aA) (l-bA11
) (l-cA4 

) (1-dA-2.) A0 

1 

A 

-( 
A 

--

::: 

(1-aA) (1-bA) (l-cA2.-) (1-dA-t ) (1-eA-1) 

1 

(1-aA) (1-bA) (l-cA2.) (1-dA-t ) (l-eA -4) 

Ao 

Ao 

(l-ac~ (1-bd)[ 

a 
+ be ] 

1-at..d 1-bc2. 

(l-ac~ (1-bd) [ 

1 
+ be J 

l-a1d 1-bcl.. 

(1-ac~(l-bd)[ 
ad 

1-:c] 
+ 

1-a2.d 

1 [ a+b 

(l-ad) (l-ee) (1-at.e) (1-b:z.e)+ 

b2.d 
cd J + + 

(1-b4 e) (1-bd) (1-bd) (1-cdl..) 

1 [ l+~e -
(l-ad) (l-ee) (1-a4e) (1-bl.e) + -
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bd ed~ J 
+ +------

(l-b21e) (1-bd) (1-bd) (l-ed 21 ) 

__ A --1 1 [ ae+be 

(1-aA) (1-bA) (l-eFt-) (l-dA4 ) (1-eA:t) A0 -= (l-ad) (l-ee) (1-a%-e) (1-b~e) + 

b2.de ed3 J + +-----
( 1-b 2. e) ( 1-bd ) ( 1-bd ) ( 1-ed t-) 

-- 1 [ e+abe~ 
(l-ad) (l-ee) (l-a2-e) (1-b~e) + (1-aA) (1-bA) (1-eA:a.) (1-dA-\ ) (l-eA-~) 

+ bde +---d-.2..--] 
(1-b:te) (1-bd) (1-bd) (l-ed2..) 

1 -- __ 1 [ a:te 

(l-ad) (1-be) (l-a2.e) (l-ee} + 

A 1 r ae 

(l-ad) (1-be) L (1-a:t.e) (l-ee) + 

ede 
+ + 

(l-ee) (l-ed1..) 
d ] 

2,.. 1. 
(l-ed ) (1-bd ) 

c 
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At. I 
(-1---a-A_)_(_l ___ b_A':t-) -(l---c-~-4-)_(_l ___ d_A __ -, -) -(1---e-A---2-) A

0
: 

(l-ad) :1-be) [(1-.,..e~ (l-ee) + 

cd
1

e dt. J + +------
(1-ce) (1-cdl-) (1-cd.t.) (1-bd") 

The result of the above calculation is the desired Sp(6)? 

Sp(2) X 0(3) generating function. It is given in (4-22), in terms of 

epd's. The epd's ~ ,~ in (4-22) are the same as in (4-18); the 

others are as follows (the notation is (pq,a 4b1 ,ab,t) which stands 

for 

f " A., t Q. ~ !o.4-t-t.,. ~ 
P Q A

4 
B

4 
4 A B Z L ) : 

J=(02,20,00,0), K=(lO,OO,lO,l), M=(00,02,02,0), 

a= (20 ,oo ,20 ,0}, b=(00,20,20,2), c= ( 2 0 , 2 0 , 0 2 , 0 ) , 

d= (20 ,20 ,02 ,2) 1 e=(l1,00,11,1), f=(l0,02,01,1), 

g= (11 ,20 ,01 ,1), h= (10,20,11,1), i=(l1,20,20,0)' 

j= (10,02,12,2), k=(20,02,11,1), t=(12,20,02,0), 

m= (10,20,11,2), n= (21,20,11,1), p= ( 2 0 , 2 0 , 21 , 1 ) , 

q= (21 ,22 ,02 ,0), r=(21,20,22,0), s=(11,22,ll,l), 

t= (11 ,20 ,12 ,1), u= (30,22,22,0), v= ( 3 0 , 2 0 , 12 , 2 ) , 

w= (20 ,22 ,12 1 1), x= (10 ,22 ,21 ,2), y=(00,22,22,3). 
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H ( P, Q, D; A1 , B1 ; A, B; Z, L ) • 

•[(1-•)(1-1)(1-J)(1-J*)(1-K)(1-K*)(1-M))-1X 

x{[(1-a)(1-a*)(1-c)]- 1[a*+e+r+a*h+i*+a*k+f+a*n+ci+ck*+ 

+u+ch*+q+eq+ii*+a*s]+ 

+[(1-a)(1-a*)(1-c*))-1(c*+c*e+r*+ah*+i+ak*+t•+an*+c*i*+ 

+c*k+u*+c*h+q*+eq*+c*ii*+c*s]+ 

+[(1-a)(1-c)(1-d))-1(c+v+cp+ch+cf+ck+cg+cn+cdi+cgb+cfp+ 

+cfb+cfg+cfn+cfi+cs]+ 

+[(1-a*)(1-c*)(1-d*))-1(c*d*+v*+c*p*+c*h*+c*f*+c*k*+c*g*+c*n*+ 

+c*d*i*+c*g*h*+c*f*p*+c*f*h*+c*f*g*+c*f*n*+ 

+c*f*i*+c*d*s]+ 

+[(1-a)(1-b*)(1-d)]-'(1+j+p+h+f+k+g+n+di+gh+fp+fh+fg+fn+fi+s]+ 

+[(1-a*)(1-b)(1-d*)]-'[d*+d*j*+p*+h*+f*+k*+g*+n*+d*i*+g*h*+ 

+f*p*+f*h*+f*g*+f*n*+d*f*i*+d*s]+ 

+[(1-a*)(1-b)(1-c)]- 1 [a*b+j*+t+a*bh+bi*+a*z+be+a*f*h+ 

+cf*+bck*+v+bch*+bq+cf*h*+f*i*+a*bs]+ 

+[(1-a)(1-b*)(1-c*)]-'[b*c*+c*j+t*+ab*h*+b*i+az*+b*e*+afh*+c*f+ 

+b*c*k+v*+b*c*h+b*q*+c*fh+c*fi+b*c*s)+ 

+[(1-b)(1-c)(1-d)]- 1[bc+hm+cm+bch+bcf+cz+bcg+cf*h+cdf*+ 

+bcgb+cfm+bcfh+bcfg+cms+cff*+bcs]+ 

+[(1-b*)(1-c*)(1-d*)]-l[b*c*d*+h*m*+c*m*+b*c*h*+b*c*f*+c*z*+b*c*g*+ 

+c*fh*+c*d*f+b*c*g*h*+c*f*m*+b*c*f*h*+ 

+b*c*f*g*+c*m*s+c*ff*+b*c*d*s)+ 

+[(1-b)(1-b*)(1-d))-1(b+y+m+bh+bf+z+bg+f*h+df*+ 

+bgh+fm+bfh+bfg+ms+ff*+bs]+ 

+[(1-b)(1-b*)(1-d*)]- 1[b*d*+d*y+m*+b*h*+b*f*+z*+b*g*+fh*+ 

+d*f+b*g*h*+f*m*+b*f*h*+b*f*g*+ 

+m*s+d*ff*+b*d*s]} 

Eq. (4-22) 
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The conjugate of an epd, denoted by an asterisk in Eq(4-22), has the 

same meaning as in (4-18): interchange the SU(3) labels in each of 

the three pairs, i.e. (pq,a 4 ~ ,ab~)*=(qp,bA~ ,ba,~). The epd's ~, 

~, e, s, y are self-conjugate. The generating function in (4-22), 

apart from the missing denominator factor 1-M*, removed in 

converting from U(l) to Sp(2), is conjugation symmetric, a fact 

which was helpful in sorting out the epd's and giving a first 

indication about it's being correct. 

To'make sure you get only bottom states of Sp(2) multiplets 

from the other epd's you must render them traceless by the procedure 

described in [Mo84]. Those substitutions of course mutilate the 

SU(3) properties, as expected; nevertheless the SU(3) labels a~b~ 

and ab are useful as instructions on how to construct the epd's and 

were invaluable to us ( we had to rederive the generating function 

with them included) in writing the generating function with the 

different terms interpreted consistently in terms of epd's. 

4.3. Checking the generating function 

As mentioned above, the generating function in (4-22) is 

conjugation symmetric, a fact which was considered as a first 

positive indication about its correctness. The generating function 

was also subjected to what may be called consistency checks. For 
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example the coefficient of i in (4-22) is 

[ (1-a) (l-a*) (1-c*) r• + c[ (1-a) (1-a*) (1-c) ]-i + 

d [(l-a) (1-b*) (1-d) ]-t + b* [(l-a) (1-b*) (1-c*) ]-l +cd [(l-a) (1-c) (1-d) f 1
• 

It may be verified that each product of powers of three denominators 

epd's which appear in the same fraction (including those in which 

one or more exponents are zero) appears just once in the above 

expression: this check was made separately for each numerator epd 

and for each product of numerator epd's. 

As a final check we converted the expression in (4-22) into 

a generating function for S0(3) weights instead of S0(3) multiplets; 

it was then compared with the corresponding weight generating 

function obtained by converting (4-18) directly; since an analytic 

comparison would be prohibitively laborious, the necessary 

substitutions were made by a computer program and the two generating 

functions compared for random values of their arguments. In what 

follows we explain this checking test and we give in Appendix A a 

listing of the program used and the actual result. We start with 

the known [GR81] generating function for Sp(6)~SU(3)~U(l) generating 

function 
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1 
-----------------------------------------------------~ 
(1-z3 ) (1-DZ) (1-ZA.l.) {1-PA) (l-Z.?.B2.) (1-QB) {1-ZQl..) (1-Z2.Pl.) 

)( r(l+ZQA+ZPAB+ZPQB) (l+Z.z,PB) + 
[ l-ZPLB2. 

+ (1 +ZQA) ( Z2.Q2..A.t +Z.tPQA+Zl. QAB+Z4 PQ2,A2-B) ] 

1-ZLQ.t.A:Z.. 

(4-23) 

with Sp(6) labels {pqd) and the SU(3) labels (ab). This is (4-16) 

with A1 =B4=1. Since the factor (1-DZ) appears both in the 

generating function (4-22) to be checked and in (4-23) considered 

correct and used for numerical comparison we drop this factor in 

both generating functions. We get the function F(P, Q, A, B, Z). We 

want now to convert the SU(3) group to SU(2)~U(l) and to do this we 

couple our function to 

G(A, B, T, Y) 
1/3 -l/J - 1/3 7/3 -1 

= [ (1-ATY ) (l-AY ) (1-BTY ) (1-BY ) ] • (4-24) 

This is the SU(3):>SU(2)>CU(l) generating function where we use the 

same (AB) labels for SU(3) representations, T is the SU(2) label and 

Y stands for U(l). Since we are not interested in the U(l) subgroup 

here, we drop the Y in this equation and get the simpler function 

G(A, B, T) = [ (1-AT) (1-A) (1-BT) (1-B) ]-i (4-25) 
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We want to go from Sp(6) to SU(2) via SU(3). To do this we 

substitute the generating function for SU(3))SU(2)~U(l) in the 

generating function for Sp(6))SU(3).XU(l). We have to make sure that 

the "transient" SU(3) representation is the same in both generating 

functions and to enforce this we couple (i.e. multiply together) 

-4 -i F(P, Q, A, B, Z)•G(A ,B ,T) (4-26} 

and retain only the A
0

B0 part. In this way the SU(3) labels from the 

two generating functions are equal and what we get is a 

Sp(6),SU(2)~U(1) generating function. Since the labels P, Q, Z are 

not affected in these calculations we write F(A, B) and understand 

by it the complete F(P, Q, A, B, Z). To get the ~B0 part of (4-26) 

involves some algebra and we prefer to use the residue calculation 
• 0 method. It can be easily shown that taking the AB part of our 

expression 

F(A, B) 

is equivalent with taking the residue of 

Res A-1 B-l F (A, B) Res ABF(A, B) 
------------------------------: 

A,B (1-A-4 T} (l-A-4 
} (1-B-• T) (1-B-t } A,B (A-T) (A-1) (B-T) (B-1) 

with respect to both A and B. To perform the residue we use the 
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following formula for the residue of a function with two simple 

poles 

Res AF (A) TF(T) F(l) ---------+---
A (A-T) (A-1) T-1 1-T 

Applying this formula twice we get 

Res 

AB 

ABF(A, B) 
--------------------= 
(A-T) (A-1) (B-T) (B-1) 

T'F(T,T}-TF(T,l)-TF(l,T)+F(l,l) 

(T-1) ~ 

( 4-2 7) 

We want to keep track of the SU(3) labels (A,B) since the generating 

function to be checked contains these labels. Call this 

H(P,Q,A,B,Z,T}. 

H(P,Q,A,B,Z,T)= ( 4-28) 

4-T F(P,Q,AT,BT,Z)-TF(P,Q,AT,B,Z)-TF(P,Q,A,BT,Z)+F(P,Q,A,B,Z} --
(T-1).%. 

F(P,Q,A,B,Z) is given by (4-23) without the denominator factor 

(1-DZ). The expression in (4-28) can be used as a generating 

function for Sp(6)~SU(2)XU(l) with Sp(6) labels (P, Q, D=Z) and 

SU(2) label T. We want to convert this generating function for 

multiplets into the corresponding generating function for weights. 
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we know that the SU(2) weights are given by 

1 (4-29) 

such that we have to multiply H(T) of (4-28) (we disregard here the 

labels P,Q,A,B,Z which are not affected) by (4-29) with T--> T-l, 

and take the T0 part of it or, equivalently, the residue with 

respect with T. 

Res TH (T) : 1 H (l"f_)- r.(1 H C'f1 ) (4-30) H(T) 
= 

<T-rv <T- tri' > tt- nz-1 

This gives us the SU(2) weights. To compare with the 50(3) weights 

that we get directly from our Sp(6))Sp(2)X0(3) generating function 

we double the weights in (4-30), i.e. replace'[ by"l,1 • Now we are 

ready to compare the weights given by 

2. ,_ -z , -1. 0( H(P,Q,A,B,z,nz: )-~ H(P,Q,A,B,Z, t. ) (4-31) 

't l. - '2-2. 

with the weights given by the Sp(6),Sp(2)~0(3) generating function. 

For the actual comparison we randomly generated positive real values 

for the labels P,Q,A,B,z,t and evaluated the generating function 

given by (4-22) with A4 =~ =1. We compared the value with the result 

of (4-31). In Appendix A we give the listing of the program used and 

an output with the two functions and their ratios for randomly 
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generated values for the labels. 

4.4. Related branching rules 

Complementarity relations in group-subgroup chains imply 

connections between apparently unrelated branching rules. Thus the 

generating functions of Eq.(4-18) and (4-22), for Sp(6)~ U(3) and 

Sp(6)~ Sp(2) ~ 0(3) respectively, imply branching rules generating 

functions for SU(n)~ SO(n), with all but the first three SU(n) 

labels zero and for 0(3n) :::> 0{3) )( O(n), with all but the first 0(3n) 

label zero, respectively. 

Although not needed for the theory of nuclear collective 

motions, we present the results here since we get them at not much 

extra effort. 

For the chains of subgroups 

Sp(6n) :> Sp(6}" O(n) 

Sp(6n) :::> Sp(2)X 0(3n) 

( 4-32a) 

(4-32b) 

complementarity relations hold (see [CC84], Section II). This means 

that, since the representation of Sp(6n) is [(1/2~~] or 

[ (1/2)?>"'-", (3/2)] (the metaplectic ones), the IR of Sp(6) determines 

the IR of O(n) and vice-versa in (4-32a) and the same holds for 

S p ( 2 } and o ( 3 n) in ( 4- 3 2 b) • 
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we can give the generating function for metaplectic Sp(6n)~ 

Sp(6)XSO(n) (pqd labels for Sp(6) and hjk for the first three SO(n) 

labels and all the next labels zero) • 

1 ( 4-33) 

Here the integer powers of D correspond to even metaplectic Sp(6n) 

and half-odd powers of D to odd metaplectic Sp(6n). Substituting 

into this the generating function (4-18) for Sp(6))U(3) we get the 

generating function for metaplectic Sp(6n) into U(3)XSO(n) ( ABZ 

stand for U(3) and HJK for SO(n)). Looking at (4-33) we see that 
4/<. . 4/4 

this is done replacing in (4-18) P--> z H, Q--> ZJ, o--z K. This 

means that the generating function for metaplectic Sp(6n)~ U(3)~0(n) 

is aiso given by (4-18) but the letters now stand for: 

d. =z
3 

--> z3 , (b =DZ--> Zl/2. K , 'f = PA--> z'/2. AH, "'f 11
=QB--> ZBJ, 

b =Q2 Z--> z3 J2., t'=P2 Z2..--> z'H'l., £=A2..Z--> ZAl, , fi"=B:.Z 2 --> Z2 B'2., 

j"=P4 B4 Z--> Z4B.t.H~, !•=Q2.A4 z4 --> ZltA
4

J1., nz_=PBZ:t--->z5/4 BH, 

~=QAZ--> Z%.AJ, ~=PQBZ--> Z~~BHJ, ?t~=PQAZ4--> z•I~AHJ. 

Now we can convert further to a generating function for the 

chain SU(n)~O(n) ( from ABZ as labels for U(3) to EFG as the first 

three labels of SU(n) and the rest of them zero). We use the 

generating function for SU (3n)) SU (3 ))c SU (n) (the first SU (3n) label 

is z, the SU(3) labels are AB and SU(n) labels EFG) : 
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1 

(4-34) 

From this generating function we see that we have to make the 

2./3 t/3 2/3 replacements z--> G , A--> EG , B-->FG in the previous 

generating function or replacing directly in (4-18) : 

p --> G t/3 H Q --> G*'J D --> Gt/3 K A --> 
-1/3 , , , EG 

B --> FG-Z/3 , z --> GZ/J, A --> .. 1, B1 --> 1 . 

We can say now that (4-18) is the generating function for SU(n))O(n) 

branching rules (SU(n) labels EFG and O(n) labels HJK) if the 

letters on the right hand side stand for: 

3 2. /).. '5/2. 1/2. ..,.. 
l=z --> G , 1_,=z K--> GK, 'f=z AH--> EH, ls=>ZJB--> FJ, 

f =z3 i· --> G1 i·, ~'¥-=Z'!J H2 --> G2.H'Z. , £ =ZAI.. -->E~, ~ =Z2 rl--> F2., 

J =z'ts-'l· --> rH.t, J*=z4 A'J.. J 2..-->E.t.Gl..Jl.., tt, =Z5'/.lBH--> FGH, 

• 2. 'i/2. * 1/2.. 2. '£.. =Z AJ--> EGJ, ')'(.. =Z BHJ--> FGHJ, % =Z AHJ--> EG HJ. 

The above substitutions are valid when n~ 9. For n= 8 the 
113 

substitution for D changes to D --> G KK' where the nonzero 0(8) 

labels are (h,j,k,k'), with k= k', and for n= 7 the substitution 
tl3 2 forD is D --> G K (here the three 0(7) labels are (h,j,k)). We 

do not consider the case n ~ 6. 

Similarly, starting with the generating function for Sp(6}~ 

Sp(2) "/. 0(3) given in (4-22} (Sp(6) labels PQD, Sp(2) label z and 
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0(3) label L), substituting (4-33) and (4-34) generating functions 

we get the branching rules generating function for the chain 0(3n)~ 

0(3)XO(n), all but the first label of 0(3n) zero. The labels are U 

for 0(3n), L for 0(3) and HJK for O(n) (all but the first three 

labels zero) • 

All what we have to do is to substitute in (4-22) 

P --> UH , Q --> Ut J , 0 --> UK , Z --> U~ , L --> L 

A4 --> 1 , B 4 --> 1 , A --> 1 , B --> 1 ; 

These substitutions hold for n> 9. The substitutions for D become -
D --> UKK' (n=8) and D --> UK2. (n=7). 
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CHAPTER 5. THE SP{6)~SP(2)~0(3) BASIS STATES 

5.1. The Basis States for Our Problem 

The general basis states for the group-subgroup chain 

Sp(6)j Sp{2)x0(3) can be read from the generating function given in 

Eq.(4-22). Expanding the generating function (4-22) in a power 

series, we get an infinite number of terms (infinite powers from the 

denominator factors) and we interpret each term as a basis state. 

In fact, the energy eigenstates are linear combinations of 

the basis states we use here. As stated in Chapter 1.-the subgroup 

Sp(2)~0(3) does not provide enough labels for Sp(6). After Racah 

[Ra51], the group Sp(6) needs (r-!)/2 = 9 {r=21 is the order of 

Sp{6) and l=3 is the rank) internal labels while the subgroup 

provides only four (two from Sp(2) and two from 0(3}). Thus in the 

branching Sp(6)' Sp(2)~0(3) there are five missing labels and this 

leads to a nonorthonormal basis. However the basis is complete and 

the states are linearly independent. One could apply an 

orthogonalization procedure (such as Gramm-Schmidt) but the new 

states would be cumbersome to work with. There is no need to 

orthogonalize because the non-orthonormal basis is as good to work 

with as an orthogonal one. One has to define matrix elements of an 

operator .n. by the coefficients n.., below 
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and not by ~\=<jl~li>. To find the eigenvalues and the eigenstates 

of the operator J2 (e.g. jl=H) one just diagonalizes the matrix JlJ. 

All the terms (i.e. all the basis states) in the expansion of 

the generating function have the same structure. Firstly, all 

contain the factors from the common denominator in front, 

~~ ~ J' J*' K' K*' M' 
F = d.. ~ J J* K K* M 

where the powers~·,~·, J', J*', K', K*', M' are positive integers 

or zero. Secondly, all terms contain the three denominators in front 

of each square bracket. There are twelve different ones of the form 

G 
1 

a' a*' c' 
= a a* c , G 

2 

a' 
= a a* 

a*' c*' 
c* 

' • • • • I G 
12 

b' b*' d*' 
= b b* d* 

And finally the terms inside each square bracket (there are 16 of 

them) differ by their numerator factor. Let us call this numerator 

factor H~~; i (l~iS12) stands for the square bracket to which H'i 
belongs and j (15j~16) shows its position inside the square bracket 

i. Note that the numerator factors appear just at the power one and 

in each bracket we write in the first position (j=1) the term which 

contains only epd's which occur in the denominator Gt • We call this 

first term the denominator term. 



82 

To summarize, the basis states are of the form 

F (5-1) 

(no sum over i); there are 12xl6=192 types of terms. Of course there 

is an infinity of basis states (Sp(6) is non-compact) corresponding 

to the infinity of powers in F and G • 

The basis states involve products of epd's. The products are 

stretched (all labels additive except the SU(3) ones). Since each 

epd is the highest S0(3) and lowest Sp(2) state of an S0(3)XSp(2) 

multiplet, a general basis state which is a product of such epd's is 

also highest S0(3) and lowest Sp(2) of the subgroup multiplet which 

it represents. 

Of course in the stretched products with all labels additive 

we refer only to the Sp(6), Sp(2) and S0(3) labels. We ignore now 

the labels a, b, a4 , b4 which were helpful in sorting out the epd's. 

They are not additive under the multiplication of epd's. We could 

have kept them as actual labels but then we would need projection 

procedures to retain only the stretched part in them. It is simpler 

to ignore them. 

Looking at the generating function given by (4-22), one can 

see that certain epd's never appear multiplied together. We call 

these combinations incompatible products or syzygies. 
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5.2. The epd's and their Syzygies 

we mean by a syzygy an incompatible product of epd's. The 

syzygies can be read from the generating function because the 

incompatible epd's do not appear multiplied together in the series 

expansion of the generating function. The incompatible products are 

superfluous because they can be expressed as linear combinations of 

products of compatible epd's, i.e., which are present in the 

generating function and provide the same group-subgroup labels. 

Strictly, the word syzygy means just the equation which relates the 

incompatible product to the allowed products of epd's ; we use the 

word in a looser sense to designate the incompatible products. 

For example the pair "be" does not appear in the generating 

function; thus b and e are incompatible (see also Figure 5-3 below). 

One can verify that be is expressible as 

be = ( Kj* - K*m ) I f2 

where Kj* and K*m are compatible products. 

From the generating function we can extract all the syzygies. 

The common denominator epd's {~, ~, J, J*, K, K*, M) are all 

compatible among themselves and with all the other epd's. The epd's 

in the sets of three denominator factors in front of the twelve 

square brackets are not all compatible. We give below in Figure 5-l 

the compatibility among the denominator epd's a, a*, b, b*, c, c*, 
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d, d*. The star (*) stands for an incompatible product. 

a* b b* c c* d d* 

a > * > > > > * 

Fig 5-l. Compatibility table for denominator epd's 

in the generating function for Sp(6)JSp(2)X0(3} 

branching rules. 

All the other epd's appear only in the numerators and we call 

them numerator epd's. We list below in Figure 5-2 all numerator 

epd's together with the denominator factors Gt with which they are 

compatible. The generating function is conjugation symmetric, i.e. 

is not affected if all epd's are replaced by their conjugates (see 

Chapter 4, Eqs. (4-17a,b,c)). This implies that a compatibility 

relation ( or an incompatibility one} between two epd's holds for 

their conjugate partners. Using this we reduce the size of our table 

almost to half (the epd's e, s, y are self-conjugate). 
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Fig 5-2. The numerator epd's and their compatibility 

with the denominator factors G~. 

* 
> 

> 

> 

* 

* 

* 
* 
> 

* 
* 

* 

* 

> 

* 

* 
* 

* 
> 

> 

* 

> 

* 

* 
* 

* 

* 
* 

* 

* 
* 

* 

* 
> 

* 

* 
* 
* 

* 
> 



0 

86 

In Fig.S-2 the (>) stands for compatible and (*) for incompatible. 

If interested in the compatibility of the conjugate of a numerator 

epd, say g*, we first observe that the twelve G~ can be organized 

into six pairs under conjugacy, such that G4*=Gl., G3 *=G't, ••• , G.u*=G-4.t 

and if, for instance, g is compatible with G3 , G5 , Gq and GH and 

incompatible with the rest, then g* is compatible with Gt, G5 , Gto 

and Git. (the conjugates of G~, G5 , Gq and G4t) and incompatible with 

the rest. This is a consequence of the fact that the entire 

generating function is conjugation symmetric and, since the 

denominators are in conjugacy pairs (G~=G*~-i, k=l, •• 6), the 

corresponding numerator parentheses are also paired under conjugacy. 

From Figure 5-2 we extract the compatibility between numerator epd's 

and individual denominator epd's. When a numerator epd is compatible 

with a three factors denominator, say G4 =aa*c, it is compatible with 

each of a, a*, c. When the numerator epd is incompatible with the 

denominator G~, it is incompatible with at least one of its three 

factors. 
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e f g h i j k 1 m n p q r s t U V w X y 

> > > > > > > > * > > > > > * > > * * * 

> * * > > * > > * > * > > > > > * > > * 

* > > > * * * > > * * > * > > * * > > > 

* > > > > > > * > > > * * > * * * * > > 

> > > > > * > > > > > > > > > > > > > * 

> > * > > > > * * * * * * > * * * * * * 

* > > > > > > * > > > * * > * * > * > > 

* > * * * * * * * * * * * > * * * * * > 

Fig 5-3. Compatibility of numerator epd's 

with denominator epd's 

For the conjugate numerator epd's {f*, g*, h*, ••• etc.) which 

are not listed in Figure 5-3 one has to take the "conjugate" of this 

table, i.e. if f is incompatible only with a*, then f* is 

incompatible with a and compatible with everything else in the list. 

Note that the self-conjugate epd's (e, s, y) are compatible (or 

incompatible) with both members of a conjugacy pair (e is compatible 

with a, a* and c, c*). 

What about compatibility of the numerator epd's among 

themselves? Observe that in the generating function, they appear in 

pairs at most and even the appearing pairs are exceptions (just a 

few in the list of all possible ones). All combinations of three or 
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more numerator epd's are forbiddden and the only allowed pairs of 

numerator epd's are the following ones: 

ff*, ee*, eq, eq*, fg, f*g*, fh, f*h*, fh*, f*h, fi, f*i*, 

fm, f*m*, fn, f*n*, fp, f*p*, gh, g*h*, hm, h*m*, ms, m*s. 

All other pairs are forbidden. The allowed pairs are incompatible 

with all numerator epd's but they are compatible with the 

denominator factors they appear with. We give below in Figure 5-4 

the compatibility table of the allowed numerator pairs with the 

denominators G~. Again we use the conjugacy property to reduce the 

size of our table. For compatibility of f*m*, for example, one sees 

that fm is compatible with G ~ and GAt ; hence f*m* is compatible with 

G* 9 and G*
11 

, that is, with GAo and G•~. 
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G G G G G G G G G G G G 
1 2 3 4 5 6 7 8 9 10 11 12 

aa*c aa*c* acd a*c*d* ab*d a*bd* a*bc ab*c* bed b*c*d* bb*d bb*d* 

eq > * * * * * * * * * * 

ff* * * * * * * * * > > > 

ii* > > * * * * * * * * * 

fg * * > * > * * * > * > 

fh * * > * > * * * > * > 

fh* * * * * * * * > * > * 

fi * * > * > * * > * * * 

fro * * * * * * * * > * > 

fn * * > * > * * * * * * 

fp * * > * > * * * * * * 
gh * * > * > * * * > * > 

hm * * * * * * * * > * * 

ms * * * * * * * * > * > 

Fig S-4. The compatibility of allowed pairs of numerator 

epd's with the denominator factors Gt. 

As we did for individual numerator epd's, we can extract from 

Figure 5-4 the compatibility of numerator pairs with individual 

denominator epd's. Since the denominator epd's appear in the 

binomial expansion of the generating function to all powers, the 

compatibility with a, a*, b, b*, c, c*, d, d* is in fact 

compatibility with these to any power. In the table below we give 

* 

> 

* 

* 

* 

> 

* 

* 

* 

* 
* 

* 

* 
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the compatibility of pairs of numerator epd's with denominator 

epd's. 

a 

a* 

b 

b* 

c 

c* 

d 

d* 

eq ff* ii* fg fh fh* fi fm fn f__p gh hm ms 

> * > > > > > * > > > * * 

> * > * * * * * * * * * * 

* > * > > > * > * * > > > 

* > * > > > > > > > > * > 

> > > > > * > > > > > > > 

* > > * * > > * * * * * * 

* > * > > * > > > > > > > 

* > * * * > * * * * * * * 

Fig 5-S. Compatibility of allowed pairs of numerator 

epd's with denominator epd's 

This analysis was helpful in checking the consistency of our 

generating function. For instance, an allowed pair of numerator 

epd's is expected to appear together with the denominator Gt if both 

epd's of the pair appear by themselves with G~. Checking this we had 

to change the interpretation of a few terms in order to comply with 

this consistency requirement. This explains why the version given in 

Equation (4-22) is slightly different from the one given in the 

published paper [MN85] (see Appendix B). We made the following five 

(times two) changes: 
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du --> cfp and d*u* --> c*f*p* in G~ and G+ resp. 

k*w --> cf*h* and kw* --> c*fh in G'T and G! resp. 

hs --> bq and h*s* --> b*q* in Gt and Gg resp. 

dhs --> bcfg and d*h*s* --> b*c*f*g* in G, and G I<O resp. 

dw --> cfm and d*w* --> c*f*m* in Gg and G lo resp. 

For example, fp was established as a compatible pair of 

numerator epd's (it appeared in Gs>· Checking the compatibility off 

and p separately, we see that both f and p appear in G!, so the pair 

fp was expected to be there too, and this is why we reinterpreted 

du --> cfp. The changes of du and of dw into cfp and cfm 

respectively (and their conjugates, of course) involve giving up 

single numerator epd's u and w (the epd "d" is denominator one and 

it will appear anyways multiplied at an arbitrary power from the G3 

and Gq in front), and the changes affect only the table in Fig. 5-2 

and 5-3, everything remaining consistent. The other changes involve 

pairs of numerator epd's into pairs of numerator epd's and we have 

to be careful not to give up a pair which is expected to be there. 

Fortunately everything comes out nicely by making hs and k*w (and 

their conjugates) incompatible; and this is possible since they do 

not occur anywhere else in the generating function. In the end we 

have the minimum number of allowed pairs of numerator epd's and 

these pairs are present with the denominators compatible with both 

members of the pair. 
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5.3. How to Construct the epd's Explicitly 

The epd's are specified by the set of labels 

(p,q,a\ ,b\ ,a,b,t) which stands for 

a b a 4 /2+b..c .t 
A B Z L (5-2) 

in the binomial expansion of the generating function in Eq. (4-22) • 

. Here pq are the first two Sp(6) labels (or the SU(3) labels of the 

"bottom" states since we consider the lowest Sp(2) states). The 

labels a•, ~ are the SU(3) labels of the SU(3) tensor made from the 

raising generators while a, b are the "final" SU(3) labels and are 

found in the Clebsch-Gordan series (pq),c (a4 b4 ) • The label e is the 

S0(3) label and we consider highest (m=t> states. The label z is the 

U(l) label which gives the degree in the raising generators. The 

third Sp(6) label d appears only in the epd ~= DZ so we did not 

reserve space for it in the notation. If we omit ~= z3 and ~= DZ, 

the label z is redundant, for it always equals a 4/2 + b4 • 

To construct explicitly an epd given by its labels 

(pq,a 4 ~ ,ab,l) one has to multiply the SU(3) representation (pq) by 

the SU(3) representation (a 4b1 ) to obtain the final (ab), project in 

SO ( 3) and take the m = l component. 

The Sp(6) in our problem originated from Sp{6n), the dynamical 
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4l> group of a 3n-dimensional harmonic oscillator. For details on 

symplectic geometry see Chapter 3. As discussed there, we have n 

0 

particles (in fact A = n+l nucleons but one eliminates the 

center-of-mass) in 3 dimensions with the Jacobi coordinates and 

momenta x i.s and Pis , i = 1, 2, 3 and s = 1, 2, ••• n satisfying the 

commutation relations of Weyl type. The creation and annihilation 

operators are given by the usual 

;.[2 (5-3) 

Without losing any generality we may think of n as being equal to 9 

(A=lO nucleons). We get a 27-dimensional harmonic oscillator and the 

chain is Sp(54)~ Sp(6)~0(9). Instead of the components i = 1, 2, 3 

we prefer to use polar-type -1, 0, 1 components defined as 

' (5-4) 

Also in the particle-index space, we prefer "hyperspherical" 

components. For this purpose we define j by n = 2j+l and replace the 

index s = 1, 2, ••• n by the index m= j, j-1, ••• ,-j. In our case 
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(n=9) the new components are given by 

Xt4 = ( x4 + i x2. ) 112 -
Xi:3 = xl + i Xlt ;[2 (5-5) -
xt2. = XS' + i X~ ;[2 -
xi:« = X::j. ±.. i Xg ;[2 

X 0 = Xg 

The highest state in S0(3) and S0(9) is the i = +1 and m = +4 state, 

~,~· To construct the SU(3) representations (pq) we use the highest 

S0{3) and S0(9) states. For (pq)=(lO) triplet 

Fig. 5-6a 

we use 

(5-6) 

The S0(3) projection is 

·--·--· Fig. 5-6b 

For the anti-triplet (pq)=(Ol} we have two choices: either the 

particle-antiparticle scheme where the (01) represents an 

antiparticle (and the states have an asterisk "*") as opposed to 

(10) in Fig 5-6a which stands for a particle, 
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Fig 5-7a 

either the two-particles scheme where the (01) is obtained by 

multiplying two triplet (10} representations of two different 

particles, say of m=4 and m=3 in 50(9). 

'i't d.+ i) cl3 r 
\ I \ I I\ 

\ I X \ I = I \ 
\ I \ I I \ 
\I \I ,.I \ -i ... 

~lt h ~ 

In the two-particles scheme the product is antisymmetrized as 

follows: 

= 

~· = d.. t ~ - -tit G{3 = '1,1t , lj 

"114 11h3 

o..* = .;fi ~'!I- ~'I i3 = ~''htt 111,3 

M. Olt Pjo; 

And the 50(3) projection is the following: 

-01-* ~· * -o 
·----·----· {2 Ji Fig 5-7b 

(5-7} 
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0 The {2 stands for the matrix elements of L..._ (L_). We use rJ..., f.> , r for 

(pq)=(10) and -1*, ~*, ~· for (pq)=(Ol) understanding that they 

stand for (5-6) and (5-7). As discussed in Chapter 3 p.51 the 

0 

"ground state" bottom Sp(6) IR (p,q) has to be "harmonic" and, for 

this purpose, we have to use traceless variables for the basic SU(3) 

IR's (1,0) and (0,1). When the antitriplet (0,1) is given in the 

particle-antiparticle scheme one replaces the triplet variables 

(~,~,t), i.e. the unbarred ( ~i~ ones and the antitriplet states 

(-t*,(l.*,d...*), i.e. the barred { hj.) ones by their traceless versions 
l- Hll 

given in chapter 3 eq. (3-44). 

1\ -· "liO\ --> '1,~- B (N+3) d,. 
Ln\ 

(5-8) 

-
B (~+3 )-1 J,tfl'\ "lUn--> "L..; 

Here B is the SU(3} scalar 

B = O.d....* + ~ \3* +it* (5-9) 

"" and N is the total degree operator which gives p+q when acting on an 

SU(3) IR (p,q). By these replacements we insure that the states do 

not contain the scalar B; they are in fact orthogonal to B. 

The problem of tracelessness does not arise in the two-particles 

scheme for the antitriplet (0,1). In this scheme the scalar B 

vanishes when we multiply the antitrip1et (-t*,p*,~*) of (5-7) with 

the triplet (~ ,~ ,~) of (5-6). 
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B= r/... r/.. * + P. P.* + l ~ - rfl r r u - ·· L •lt 

which is the expansion after the first column of the determinant: 

1\lt fVl. '~ t'Yl,~ 

~'t tt'\.o} "lo4 

'1.,4 ~13 IYJn 

We just proved that the unwanted SU(3) scalar vanishes identically 

in the two-particles scheme, in which case the starting Sp(6) states 

are automatically traceless. 

The higher IR's are obtained by taking products of the triplet 

and antitriplet states given above. 

The (pq)=(20) representation is given by 

Fig 5-Ba 

0 
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with its S0(3) projection 

~=2 17'n: 'P" ~~. ~ i/r1. ·-·-·-·-· Fig 5-8b 

~iF 

i=o 

while the (02) representation is 

Fig 5-9a 

with the S0(3) projection 

t: - r~.y - ~"6.. 1. 

tl.·-·-·-2 -·-·1''/(i. 
(t'...-Gl¥)1~ 

~=2 Fig 5-9b 

t=o -(ff1
-2 orclr*)l~ 

The (pq)=(ll) representation is 

b a 
I 

I \ 
I \ 

c I .g ,h ) f 
\ 

\ I Fig 5-lOa 
\ I 

\ I 
d e 

c 
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where the letters stand for 

b = "t f>'lt-

c = rf..."*-t 
d = oltt ~ 

e = - f.O --~~ 

f =-o..i.,.. 

g = ( r/..tl..*- 1Y*>If2 is the ~=1, m=O state 

h = ( 2 (b~ *- o-r:A *- i"t*) 1!6 is the ~=2, m=O state 

with the S0(3) content (11)~ (2)+(1). 

1=2 -c ___ ---~--- ---· f 

Cb-d >I .[2 (a+e)l 2 

1 =1 (b+d) I [2 (-a+e) 1f2 Fig S-lOb 

g 

To construct the epd's we also need the representations 

(5-10) 

(a 4 b~) which couple to (pq) to get the final (ab) representations. 

The (~~) are made of the raising generators B~M (see Chapter 3). 

The raising generators are quadratic in the creation operators such 

that the (a~b4 )=(20) representation is linear in silO\ and (a,.b.)=(02) 

is quadratic in B~. The degree in ai~ is given by (a1 12+b4 ). Here 

also we use the traceless versions of B~ called ~~ in (3-42) and 

(3-43). 
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For (a.b 4 )=(20) we use the sextet 

j f. ~ 

\ I 
\ I 
e\ /~ \ 

Fig 5-11a 

\ I 
\ I 
Vx 

The S0(3) projection (20))(2)+(0) 

:s·-·-·-·-·~ e A , 
Fig 5-11b 

·~ 

corresponds to the raising generators stm (=B~) and B~0 • We can 

identify 

and 

6 = B-tt 

(5-11) 

+ 
= Boo • 

Since we are interested in "bottom" Sp(6) states (lowest Sp(2)) we 

do not use the 0(3) scalar s+ , which is the Sp(2) raising 
oo 

generator, to construct our states. Then ~and ~are given by 

(5-12) 

To construct the (02)=(a1 ~) representation which is quadratic in 
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4E> Bt, we take the square of the (20) representation. The highest state 

( t=m=2) is a linear combination of "'t'l. and blt. The coefficients are 

determined by requesting that L+ applied to the state give zero. L+ 

is .[2 (E \'!» +E>2-) (where E 13 , E32 are SU ( 3} generators, see below the 

diagram) 

Fig 5-12 

With this we get the highest weight state of (a,~ )=(02) 

proportional to (~~-2bn) and we normalize the state deviding by !6. 

Applying the generators in Fig 5-12 we get the following anti-sextet 

")t, .. 

1\ 
I \ 

(V[,* 11 \\ e ... 
I \ 

I \ 
~"*I \ s~ 
6 £.""' 

Fig 5-13a 

and the corresponding 50(3) projection. 

·---·---·---·---· Fig 5-13b 

f=o 

The anti-sextet states are the following second degree combinations 



in the sextet states 

'5 .. c:: ( ,'1_ 1 ~'}<..) 11' 

t7* :::. ( 1. €- -..ri. [& )//3 

')<..~ ::::. ( f-2 - ~d~ )/lt, 

PL * == -( £&- J'2. tt-s> 1!3 
b .... ::: c el.-z 'X.~)/" 
i .... -==- ( ~ e- Vi r.. x) /./3 
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~ * = (Ji x* _ e_:'ll')!U3 • ( f-2.. -~f~ -~e -1-12 E. >c.) 13 

(5-13) 

~¥.::::. ( 1t.-if +11 t-*) /IS :: ( t z- 2 f~ + 2'?9 - 2'-i. £.".)((.:sa.) 

Using these (pq) and (a(bf) representations we can begin 

constructing the epd's. 

5.4. Examples of epd's 

The simplest to construct are those epd's for which either 

(pq) or (~~) labels equal zero, such that no coupling of SU(3) 

representations is required. Looking in our list we see that K, K*, 

M, a, a*, b, b*, e, y are in this simple category. For the rest of 

them one has to couple the (pq) with (a1 ~ ), get the (ab) 

representation (first the highest state) and take the required e=m 

part of it. When multiplying two representations (p~q 4 ) and (p~q~ 

we obtain the representations of the following two types: 



103 

I • (p +p -a-b-2c, • a. q-4 +~-a-b+c) 

with 0 < a ~ p4 , q.t. 

0 < b < q', p.:L 

0 < c < p -a, P. -b - - -1 :t 

I I. (p +p -a-b+c, q +q -a-b-2c) 
4 2,. ~ 2,-

with 0 < a ~ P,. , q2. 

0 < b 5. q,., p2--
1 < c < q -a, q -b 

- .t.- 1 

To verify if the content of a product of two representations is 

correct one can check the dimensions on both sides of the 

multiplication. The dimension of an SU(3) IR (pq) is given by 

(p+q+2) (p+l) (q+l)/2. The rest of this chapter contains examples of 

explicitly written epd's. 

5.4.1. K={lO,OO,lO,l) 

Here (pq)=(lO) is by itself and one takes the 1=m=l part. It 

is clear that K=ci, i.e. it) like in {5-6). 
1Lt 

5.4.2. K*=(Ol,OO,Ol,l) 

,!If 'Lt; I This is (pq)=(Ol) by itself and from (5-7) we see K*=-~*= 
~ .. ~0~ 

5.4.3. M=(00,02,02,0) 

Here (a 1 b4 ) = (02) , the degree in B: is z=2 (=a 4 /2+b~ ) • So we 

need thel=m=O part of the antisextet. One takes a linear 

combination of 'K-* and f.,* as M=')(..-*+A£.* and determines A imposing 
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L+M=O. Alternatively one starts with the l=m=2 state 

').*=<tttz.-2~%)//6, applies L_ twice to get the ~=2, m=O state the)* 

in Fig 4-13b and take M (~=m=O) as the combination perpendicular to 

. . * 1t, 1.e. M= f4 • We get M=2 ~ ~ -2~& +3 £
1

• 

5.4.4. a=(20,00,20,0) 

To get the epd a we consider the (pq)=(20) and a is the 

linear combination ~'-+ArJ.:t. Impose L+(~1 +AGC..t )=2~[2£(+Ad2~ =0, then 

A=-2 such that a= f" -2 tJ..t. 

5.4.5. a*=(02,00,02,0) 

Now we start with (pq)=(02) which is the antisextet in Fig 

5-9 with rJ...*, P->* and -1'* given by {5-7) • The epd a* is a linear 
2... 

combination of ~*/J2 and - 1'* ol.. * such that L+a*=O. After some 

simple algebra we get a*= ~ }_2 fl...* T* 

5.4.6. J=(02,20,00,0) 

To construct J we have to couple (pq)=(02) from Fig 5-9 to 

(~b4 )=(20) from Fig 5-11. The things are quite simple if we observe 

that all we need is a scalar <l=m=O). Projected in S0(3) both (02) 

and (20) consist of a quintet (~=2) and a singlet <l=O). For the 

(a 4 ~ )=(20) we do not use the singlet, so the only way to get a 

scalar is to use the two ~=2 projections {from Fig 5-9b and 5-llb), 

coupling m=2 from one to m=-2 from the other, and so on. We have for 

J the linear combination: 
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J = 6 ~·}.f2+ '5 -t•~.f2 + A[e <- ~*-t*>+Pf.. <- rJ...* ~·>J + 

+ B A ( ~ .z. + J....* "i' *) ;[3 

The constants A,B are determined requiring L+J=O. We obtain A=-1 

and B=+l. 

5.4.7. J*=(20,02,00,0) 

We couple to (pq)=(20) the (aAb4 )=(02) quadratic in the 

raising generators. We make a scalar from the two quintets •. 

J * = b' * « ,_1 J2 + ~ * tl.l./2 + A [ e * ~ t- + <-I\ * > eA. ~ 1 + 

+ B A * ( ~7..+ r~,.t) I [3 

We require L+J*=O and obtain A=-1 and B=+l. 

5 • 4 • a • et = z3 

The epd <X is a scalar (~=0) cubic in the raising generators. 

It is of the form 

rJ.. = 3e2.. +A ~.l.s +a·s ,z. +c n-t.Ae +o A 3 

We require L+"' =0 and obtain A=-2{2;3', B=l, C=-J2/3' and D=(l/3>/2;3'. 

5.4.9. ~=DZ 

This is an 80(3) scalar cR=m=O). We take it to be the 

determinant M,l4f ~~~ '1,l 

~, ... ,.,,~ ~.2. 

M;t ill i~ hJ7.t 
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5.4.10. b=(00,20,20,2) 

This is simply b of (aAb4 )=(20) in Fig 5-11. 

5.4.11. b*=(00,02,02,2) 

This is)* of Fig 5-13. We take b*=~2 -2f~. 

5.4.12. c=(20,20,02,0) 

We have to construct a scalar out of (pq)=(20) in Fig 5-8 

and the quintet of the raising generators in Fig 5-11. The scalar is 

c= ~ --t-1. In+ ~ cliJ2+A (, r;t + e ~~ ) +B 9. ( ~1.. + clt ) lE 
Requiring L+c~O we get A=-1, B=l. 

5.4.13. d=(20,20,02,2) 

we combine the sextets in Fig 5-8 and Fig 5-Ll to get an 

antisextet and d is its highest state. Then d is of the form: 

d = 'X- r~.'-IJ2 + A b (bt. I Ji + B '1 rA{!> 

By requiring L~d=O we get A=+l, B=-1. Observe that if we start with 

d and apply L_ twice we obtain the 120> state of the antisextet. The 

epd c is the combination orthogonal to this 120> state. 

5.4.14. d*=(02,02,20,2) 

Similarly, we construct d* as the highest state of the 

sextet (20} obtained by multiplying the antisextets in Fig 5-9 and 

Fig 5-13. Then d* is the combination: 

d* = )*r'l.l{i + AH..*t*2..1fi + B6*(-~*t*) 

By requiring L+d*=O we get A=+l, B=-1. From d* we get c* if we apply 
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L_ twice and take the combination orthogonal to this. 

5.4.15. e=(11,00,11,1) 

This epd is the m=i=l state of the (pq)=(11) octet in Fig 

5-10. The wanted projection is (-a+e) =- Dl~ *- ~t* (here a,e are those 

given in (5-10)). 

5.4.16. f=(10,02,01,1) 

We combine the triplet (pq)=(lO) with the antisextet (02) in 

Fig 5-13. The highest state of the resulting triplet (01) is the 

combination 

f = rl f.* + A ~ & * + B "'t ~· 

By requiring EA~f=E31 f=O we get A=1, B=-/2 

5.4.17. f*=(Ol,20,10,1) 

Similar to f we couple (01) of (5-7) to (20) of (5-11) to 

get a triplet (10). 

f*= ~ot* + Apt~* + BE... (-'f*) 

We require E,:t. f*=El2. f*=O and we obtain A=l/[2, B=-1/{2. We take 

f*= c:t * + ,~ * + J2 ~et* 

We ana1yze in this way all the epd's in our list and we get 

their explicit expressions. Some of the epd's are not as simple to 

construct as the examples given above. Since we do not wish to bore 

the reader we conclude with an epd which is more complicated to 

construct. 
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5.4.18. x*=(01,22,12,2) 

We combine the antitriplet (01} of (5-7) with the 

(aAb•)=(22) representation which is the product of the sextet (20) 

of (5-11) with the antisextet (02) of (5-13). The first step is to 

explicit the (22) representation of the raising generators. We give 

it below 

)'X JL tx• 0'>'"'1:' 

I \ 
I \ 

I a, b. \ 
l',~.~ ,ae* 

a:= I,_ .. + fi. ee" I I \ 
I I \ \ ;,. ::. tvt ")<...,.. + vz. E.. e-.,. 

I I \ \ 
l~~< I ® > > 6~"" \ 

\ \ I I 
\ \ I I 

&oi(\ I ;;~~ 
\ I 

\ I 
~ • /""KJ"" x?;"' "').(..(_. 

We couple this to the antitriplet (01} to get the representation 

(12). The highest state is the following combination 

1 H > = ~ * < o 1r1. * + .f2 z,e * > +A ~ * < ~ ')\. * +li t 8 * > + B <- 1 * > '- x * + c &k *ox * 

We impose E 11 1 H>=E 2;; 1 H>=O and get A=-3/2, B=SI2 and C=-SI/2. With 

these 

The (21} representation looks like 
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I 
I 

I 
I 
\ 

\ 
\ 

I 

I 
I 

I 

I\ 
I \ 

I \ 
I \ 
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The S0(3) projection of the (12) is (3)+(2)+(1). The epd x* is the 

m=~=2 state, a linear combination of a and c in the figure above 

such that ~ x*=O. The state a is obtained from 1 H> by applying E32. • 

a=-5 ot* 09 *+ ~ * ( ~~ *- £"5 *-2J2 ~&*>- "t* ( &?J *+ ll-JH-*+2J2 ee *) 

One applies again s3~to get b=l3,3>. We then calculate c=E!t b 

c=-5 r1.. * ~ ~ *-5{2 ~ *-x.! *-tf-* (3 f)J *+2')(.~*+ fi. '7 €.*) 

Finally x*=a+Ac such that L+x*=O. The result is 

x*=5 ('}..* ( ~Yt's*- bS*)+ ~* (5[2 'X.~*+ fe_ *- t}*-2{2 ~6*)

- -t * < f '1] * + flJ 1l* + 2 l2 E. e *-3 & :r *-2 '){ 9 * -12 "1 t. * > 
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CHAPTER 6. GENERATOR MATRIX ELEMENTS 

6.1. The Generators of Sp(6) 

The problem we discuss here involves a system of n particles 

in the 3-dimensional physical space. The phase-space is then 

6n-dimensional and the group of linear canonical transformations 

(i.e. the transformations which leave the Hamiltonian and the 

Poisson brackets of coordinates and momenta unchanged) is the real 

symplectic group Sp(6n). This is also the dynamical group of the 

3n-dimensional harmonic oscillator. 

In the Cartan classification of classical Lie groups Sp(6n) 

is called C~~ of rank 3n and order (number of generators) 3n(6n+l). 

The Sp(6n) generators are given in (3-2) in terms of Jacobi momenta 

and coordinates. The 3(6+1)=21 generators of the Sp(6) subgroup are 

obtained by contracting the Sp(6n) generators of (3-2) over the 

particle index and one gets as generators the Qa.J , L~~ , S .:i and K ij. 

in Eqs.(2-16) to (2-20). In terms of creation and annihilation 

+ operators the Sp(6) generators are the B~~, Ct:j and B~ of 

Eqs.(3-17). They satisfy the following commutation relations 
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(6-1) 

The B ~J , c ia , B ~i relate to the Q ~~ , Ltj , s~j , K ~i in the following 

way: 

(6-2) 

As we work in a Sp(2)xS0(3) basis of Sp(6) it is very useful 

to look at the Sp(6) generators in a Sp(2)~S0(3) scheme. The 

raising Bt'~ and the lowering B.:i generators project in S0(3) as a 

quintet £=2 and a singlet.£.=o. The £=o raising B~6 and the .t=o 

lowering B00 generators are respectively the raising and lowering 

Sp(2) generators called I+ and I_. 
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+ B00 r-v I,.. = IA + i I2. 

B 00 - I_= 1 4 - ill,-

where 14 , I~, I 3 are the Sp(2) generators like those in (3-13) but 

now expressed in terms of creation and annihilation operators. They 

obey the commutation rules (3-14). From the Sp(2) point of view the 

raising generators ~~ and the lowering ones B1~ are respectively 

the M=+l and M=-1 of an Sp(2) triplet II=l,M>. The M=O part of the 

Sp(2) triplet is the S0(3) quintet <1=2) made out of the SU(3} 

generators E •a shown in Fig. 5-12. 

+ t + Bt Bt B- BT Bo 1 t :t 

M=+l * * * * * 
o_ o_ Q Q Q!'l., 

1 4 0 " Sp(2) M=O * * * * * 
(I=l) B_ B- B B_, B-2 l 1 0 

M=-1 * * * * * 
m=-2 m=-1 m=O m=+l m=+2 

S0(3) • 
(~=2) 

Fig 6-1 The Sp(6) generators under Sp(2)XS0(3) 

The SU{3} generators form an octet (1,1} in Figure 5-12 which 

projects in S0(3) as a quintet Q~ which is the middle row in the 

above figure and a triplet, the usual angular momentum operators L~, 
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L , L
0

• Thus we organize the 21 5p(6) generators into the 
-1 

5p(2)~50(3) fifteenplet in Figure 6-1 and two triplets shown below 

in Figure 6-2. 

M=+l 

M=O 

M=-1 

* I 
" 

* Io 

* I -I 

* * * 
L-t Lo L·H 

m=-1 m=O m=l 

Figure 6-2 The 5p(2) and the 50(3) generators 

For the purpose of our calculation we write explicitly the 

generators in the fifteenplet in a consistent way. This is done by 

requiring that the middle row of the 5U(3) generators have their 

usual expressions. The members of the fifteenplet are related by I+, 

r_ in the 5p(2) direction and L+' L_ in the 50(3) direction. We 

take as usual L+ and L_ to have the following matrix elements 

0 0 0 

0 0 L = - (6-3) 0 

0 0 f2 0 

In terms of the creation operators we write: 
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L-4- = .J2 (E,~ +E~;.) =fi 'i- <'1rsddS+ ~olis) 
L_=.f2 (E'!1 +E23 ) = (2 'i (t,Osd•~ + 'l;"do.s) 

L = L (PI 'd -lh d ) 
o s · t,,. •~ 1; 5 is 

They obey the commutation rules 

[ L 1 L-+ ] = ± L :t 1 [ L+ , L _ ] = 2 L 0 
0 -

or, for L , L , L • 
4 0 - .. 

with the S0(3) C1ebsch-Gordan coefficients: 

<: 
1 :) <: 

1 1) _/1 1 
= o -\o 0 -1 -1 

<~ 
1 

:) =(_: 
1 

~) =<-: 
1 

1 1 0 
t 

_:) 

_:) 
The angular momentum components are given by L1 

1 

=~ 

1 
= --.[2 

=-L_./.[2 I 

and L0 =EAI -E.u. • In a similar way, the Sp(2) raising and 

generators have the following matrix elements 

0 [2 0 0 0 0 

I =i 0 0 J2 I 0 0 + -
0 0 0 0 [i 0 

(6-4) 

(6-5) 

(6-6) 

( 6-7 a) 

(6-7b) 

~"=L_//2 

lowering 

(6-8) 
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and the triplet components in Fig 6-2: I.=ii+/J2, I =-ii_/J2. The , -f 

I~, I_ of (6-S) have the following expressions in terms of creation 

operators 

and 

I.._= (1/2) !:: 
" 

I = (1/2) 1: - ' 
I 0 = (1/2) L.. 

s 

2. 
< ~os - 2 IV[ IS 'lis > 

( d~ -2 '~ts Jrs> 

(111 J +M d +~ 'd )+(3/4)n=(l/2)N"+(3/4)n 
to!~ os · Ifs 1s · 'Ts 7s 

They obey the commutation rules 

( I 0 , It. ] = ± I:t , [ I , I ] = 2 I 0 - + 

or, in terms of IJ, I)' (y,z=-1,0,1): 

[I ,I)'] =-h < l 
d y 

(6-9) 

(6-10) 

(6-11) 

The Sp(2) Clebsch-Gordan coefficients in (6-11) happens to be the 

same with the 50(3) ones in (6-7a,b). 

Now we turn our attention towards the fifteenp1et in Fig 6-1 

and we want the middle row, Q~ to be the e=2 projection of the 

known SU(3) generators: 
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Ql-= E4~ 

Q\ = (112) [L_ ,Q .2.] = (E):t -E 4s ) 1/2 

Q
0

= (liJG) [L_ ,Q 1 ] = (ll.f6) (E 11 +E:u. -2E.u ) 

QT = (ll.f6) [ L_ ,Q 0 ] = (E~1 -En } 1{2 

Q = E.,., i .... 

(6-12) 

In terms of the creation and annihilation operators we rewrite the 

middle row of the fifteenplet: 

Q = E = I: PI,s "d;s 
2. lt $ 

Q I = ( 1 I [2 ) ( E 31. - E f l ) = ( 1 I [2 ) f ( fl1 os~' -it] IS ~ 0 S' ) 

Qo = {11 .[6) ( E ~· +E .t.:;z. -2E 33 ) = ( ll .(6) ~ (f"•!> d,!> + hJrs t;s -2~os ?o.s) 

o.;= (11.[2) (E 31 -E1."?,)=(11J2>~ (fl70s'd•!. -IIJ;s'd~s.> 

Qi= E:u = 't- "frs I 1!> 

(6-13) 

As stressed here, the members of the fifteenplet are related by the 

Sp(2) raising and lowering generators in the "vertical" Sp(2) 

direction and by the L+' L in the S0(3) direction. Then the B: has 

to be • 

The rest of the quintet follows either by applying L_ repeatedly to 

B: or, applying I+ to the quintet QIW': 
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a+ = [I+, Q~ 1 I< i[i > = <- il [2 > ~ "1,~ t 

a+ = [I.._, o,ll<if2>=<112> [L_, a+ ] =- i 1:. "1ts '•s ' ~ .s 
at [I+' Q0 ]l(iJ'2)=(11J6> [L_, a+ ]=(-ill3>L: .t. = ('7os + '11s. W]is 0 ' $ 

a-t = [I"'" , Q~]l(if2)=(11fG) [L_, a-+ ] =- i f "lo'i. ~is T 0 

a+ = [ I-4-, Ql.JI(i/2)=(112) [L_, B~ ]=(-il[i)Z:. "1-2.. (6-14) 
1 I $ 1$ 

The quintet of the lowering generators B~ are also related to Q~ 

and they are obtained taking the commutator with I_ : 

2. 
B~ = [I_, O.z.l I ( iJ2) = ( iiJ2> f gi$ 

a, = [I_' Ql ] I ( i/2) = (112) [L_, B2. ] =- i £ 'Jos 'drs s 

Bo = [I_, Q
0
]l(i(2)=(11/6) [L_, Bl 1 = ( iiJ3) f <?o~ + ~4s ~Ts > 

Br = [I , Qi]l(i.f2)=(11J6) [L_, Bo 1 =- i ~ 'd,s 'jos 

B- = [I_, Q-]l(i{2)=(112) [L , B- ] = 01[2) !:_ (1
1
2..- (6-15) 

L ~ - I $ S 

We got now a consistent picture of the 5p(6) generators under the 

5p(2)X50(3) subgroup. We look now for the commutation relations 

between the 5p(6) generators. Of course the commutation rules given 

in (6-1) are perfectly valid but they ref~r to the st , B~ and ~J , 
the 5p(6) generators in Cartesian components (i,j=1,2,3). The 

commutation relations inside the 50(3) triplet L~ are given in {6-6) 

while those between the 5p(2) triplet I~ are given in (6-11). For a 

more compact writing we call the members of the fifteenplet in 

Fig 6-1 generically B~. The first subscript is the 5p(2) projection 
~ 

(z=-1,0,1) and the second subscript refers to the 50(3) projection 

(m=-2,-1,0,1,2). Thus the Q~of (6-13) are the Bom' the B~ of 
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(6-14) the new B4,._, and the lowering BIM.. are now called B.r""· The I¥ 

have the 60(3) label zero while the L~ are Sp(2) scalars. Thus when 

we commute I~ with B~M the coupling is done only in Sp(2) while 

when we commute L~~~. with B 'h.._ the coupling is an SO (3) one. We deduce 

the following commutation rules 

/1 1 

:+J [I, I B ]=-.fi \ B1+a''WI. (6-16) 
b~ y z 

B~~]=-~ (: 2 :+) [L I B ,, "1'\.-th- (6-17) 
1\iW\. 

n 

The Sp(2) C1ebsch-Gordan {CG) coefficients in (6-16) are those 

already given in (6-7a,b). The CG coefficients which appear in 

(6-17) are given below: 

<: 
2 2) 1 (~ 

2 :)=-~ (: 2 j 2) 1 
2 = [3 0 1 =:r;- (6-18a) 

'1 2 

(: 2 2) 1 <1 2 

:)=-~ (: 2 2) 1 
1 =-[6 -1 0 = r;:- ( 6-18b) 

1 2 -1 

(-~ 
2 

:)=-~ (: 
2 2/ 1 <: 

2 2) 1 
-1 =-;;- -1 =5 (6-18c) 

1 -1 -2 
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(6-18d} 

The commutator of two a,~ involves coupling in both Sp(2) and S0(3) 

directions. As a result one gets three terms containing B?"', Ii" and 

{42 

<: 
1 

y:z)~: 
2 m:J B ~~)' "'+"-[B? ,B J = --~~ 3 z n 

4{l0( 1 y:)\: 2 I :) 11t"1 (6-19) 
3 y z n 

{3o /1 1 o\<2 2 1 J . 
-2\Y o/ m 

Ll\otA +h. 
z n m+n 

Of course [ Id' , L,..J = 0 • The Sp{2) CG coefficients in (6-19) are given 

below 

• 

<~ 
1 o) 11 1 0) 1 <~ 

1 :/ 1 

0 = \-1 0 = {3 =-- (6-20) 
-1 1 0 .[3 
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we give below the S0(3) CG coefficients which appear in (6-19). For 

the coefficient of B~~ we need 

2 

1 

:11: 
:J ~: _: 

2 

2 

while for the one of I'tti 

/2 2 
\2 -2 

2 

2 

and the one of L j~M.~ 

(: 2 

:) = -~: -2 

(: 2 

~)= (_: -1 

2 

=~ 

1 
=-
li4 

2 :} 2 

"ha 2 

2 1) 1 
1 0 =-[lo' 

2 

0 

2 

1 

<: 
2 

, 
0 

t 

2 

0 

:) = 0 

(6-2la) 

o\ 1 

o/ =rs 

( 6-21c) 

With this we exhausted the commutation relations among the Sp(6) 

generators. When we construct the basis states as shown in Chapter 

5 we use the quintet of the raising generators a!. To ensure that 

the basis states are bottom Sp(2) states the raising generators we 

use to construct them have to be traceless. Thus the raising 

generators we call in Chapter 5 $, 't , ') , e and S are the traceless 

part of the Sp(6) raising generators B+ in (6-14) and are given by 
""" 
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(3-43) on page 50. 

~ ,... _, 2,- ,... " _., 

BM!\- (2,0) (2N+3n) QIM+(2,0) [(2N+3n+2)(2N+3n+4)] B""' 

t 
The traceless part of the raising generators (the ~-above) are 

t 
obtained from the Sp(6) raising generators B-=BAm given in (6-14) by 

subtracting a term proportional to Q =B
0 

given in (6-13) and one 
I#J4. Ill\. 

proportional to B~=B~M given in (6-15). The S0(3) scalar (2,0) in 

the equation above is 

't. 
(2,0)= L (M' -21Yj, ~- ) =2I+ 

" tos I!> 1$ 

6.2. Reduced Matrix Elements of the Sp(6) Generators. 

In the collective symplectic model collectivity means 

restricting to a definite IR of O(n) which, by complementarity, is 

equivalent to restricting to an IR of Sp(8) and the collective 

Hamiltonian is in the enveloping algebra of Sp(6), i.e., it is a 

function of the Sp(6) generators. The main problem is then to 

calculate the matrix elements of the Sp(6) generators in the chosen 

basis. 

The Sp(6) basis states we are working with are products of 

powers of epd's as given by the generating function in (4-22). The 
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epd's, and consequently the basis states, are taken as highest S0(3) 

(m=L) and lowest 5p(2) ("bottom" states, M=I) in their multiplet. To 

obtain the rest of the multiplet one applies the lowering 50(3) 

operator L_ and the Sp(2) raising one B:'"' I+. Clearly, the raising 

50(3) L+ and the lowering Sp(2) B00 ..,. I_ generators give zero when 

applied. Diagrammatically, our states are in the lowest right 

corner of their Sp(6) IR. 

l 
Sp(2) 

50(3)--> 

Fig 6-3 The basis states as lowest 5p(2} 

and highest 50(3) states 

For the members of the same S0(3) maltiplet, we can use the 

Wigner-Eckart theorem to calculate the reduced matrix elements for 

the generators. As stated at the beginning of Chapter 5 we use 

non-orthonormal states and define the matrix elements of an operator 

..n..as the coefficient .I"J'i in -'l.l i>= r I j>I~;c:. This does not affect 

the validity of the Wigner-Eckart theorem. Let us assume that we 

apply the operator A:.. ( in our case L =2 and m refers to any 

component) to a state characterized by L,, m~ and other quantum 
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numbers Gl" 

Multiplying with the CG coefficient 

the whole transforms like jL~, mL>' i.e., 

We multiply both sides by the CG coefficient 

and sum over Lt., m:z...• Using the property 

L_ ( L L-1 L,_XLt L L~) = &" ... .,., s/M(.,.'M.: 
Lz. .. "'z.. m m4 mt. m2.- J m' .. 

we obtain t 

L 

r~.) ~ S ,= L c L:t. L. A""' L., LL ':;(L L1 L•) I'M-1 ' ....... -·*• L ~ I' I 
of). 

m_. :l-lc/.2. m.L m m-\ mL 

and dropping the primes (with of course m~=m+m4 ) 

L 

~) 
c L'l. A L-' = L_ L~ ~~(L L .. L~~ ~ J..'l. 

L.t.. ) G{z. m A m~ m m~ mlt 

0 
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On the right-hand side we obtain a linear combination of states 

..n..l i>= 4=1 j>...Q..·· 
J ;J" 

and the coefficients 

1(.1 ) 

are the matrix elements of the operator 
L 

between the states A~ 

I L -t , m 4 , rJ.., > and I L .v m V rJ.'1..> • we use round parentheses to stress the 

fact that our basis is not orthonormal. This is essentially the 

Wigner-Eckart theorem: the m-dependence of the matrix element 

arbitrary tensor operator is given by a CG coefficient. The 

m-independent part CL~ is called "reduced matrix element" (or 
lilt.. 

of an 

"double-barred") and is obtained by dividing the matrix element by 

the corresponding CG coefficient. 

L2.) (6-22) 

mL 

To render the reduced matrix elements more symmetric for different 

L~ values one defines them with a supplementary factor ~2L~+l 1 

[Go66]. If the basis were orthonormal (which is not our case) we 

would multiply both sides by the bra <L~,m~,~41 and get the usual 

form of the theorem 
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L L 
<Lt. m.t- G£., I A,.,_.l LA m4 .,r.1 > = < L.t«z.ll A 11 L.f J, > 

...[2L2., + 1 

The Wigner-Eckart theorem shows that, independent of the operator 

component we use and the m-values of the states, we can calculate 

the reduced matrix elements which depend on the nature of the 

operator and the L4 , L~ of the states involved and not on the 

orientation of the coordinate frame (m values). Thus for the 

operators in an 50(3} multiplet B+, we need to calculate the matrix .... 
elements for only one component, say B~. Dividing by the appropriate 

Clebsch-Gordan coefficient, we get the reduced matrix elements which 

are the same for all m-components of the tensor operator. We use 

the Wigner-Eckart theorem also in the Sp(2) direction and we need 

the Sp{2} CG coefficients. In this way, we characterize the whole 

fifteenplet in Fig 6-1 by one reduced matrix element~ 

6.3. Clebsch-Gordan Coefficients for 50(3) and Sp(2) 

t 

We need CG coefficients for both 50(3) and Sp{2) in order to 

calculate the matrix elements of the fifteen generators. For 50(3) 

we relate first the CG coefficients to the Wigner coefficients 

(T' Tt,. 

M, M21 
(6-23) 

Since we apply the Sp(6) generators which are members of an 50(3) 



126 

0 quintet (L=2) to the initial state I i>= I L
4 

,m1 > and get the final 

state jL~,mk>, the L~ is greater than L4 by at most 2. We further 

transform the Wigner array in (6-23) into the so-called Regge form 

0 

Tt Tz., T~ Tz.. +T3 -T_. T~ +T~ -T~ T~ +T-2.- -T3 ) = T~ -M~ T1--M.'2..- T3 -M3 (6-24) 

MA Mt, M~ T-t +M~ Tl,+M.t, T3 +M3 

Since L~~~ +2, the Regge form in (6-24) has at least one element on 

the first row smaller than 2 and we use the formulae (6-25), (6-26) 

and (6-27) to calculate them: 

a b 0 

c d e 

f g h 

a b 1 

c d e 

f g h 

b 2 

d e 

g h 

"""( = (-1) 1 

a! b! e! h! 

c! d! f! g! (a+ b+ 1) ! 

a! b! e! h! 
t!+.f 

= (-1) (fd-cg) 

c ! d ! f ! g ! (a+ b+ 2) ! 

(6-25) 

(6-26) 

d.tf 
= ( -1) [ d ( d -1 ) f ( f -1) -2 d f cg + c ( c-1) g ( g -1 ) ] " ( 6- 2 7 ) 

a! b! e! h! 

2c! d! f! g! (a+b+3)! 
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For Sp(2) the CG coefficients were not calculated before. The 

Sp(6) generators form an Sp(2) triplet and thus are a finite IR of 

label I=l. The states on which we apply the generators (the basis 

states of our problem) are S0(3) Sp(2) multiplets labelled by their 

highest S0{3) and lowest Sp(2) member as shown in Fig 6-3. These 

multiplets extend to infinity in the "vertical" Sp(2) direction. 

They form infinite Sp(2) IR's of label I and the projection is 

M=I,I+l, ••• ~ (I~l). We need the CG coefficients which couple the 

finite Sp(2) IR of the generators to the infinite Sp(2) IR of the 

states. The generators can change the Sp(2) label of the state by 

-1,0 or +1. Starting with the state II,M> we end up with II;,M~>, 

where I~ can be only 1+1, I or I-1, depending on whether the 

generator is raising, SU(3) (middle row) or lowering one. Thus we 

need to calculate CG coefficients of the form 

I If\ <1 
M I , 0 

I I I~) (1 
M I M I 1 

I 

(6-28) M+l M-1 

with ~=I+l, I, I-1. We show in Appendix~ the detailed calculation 

of these 9 Clebsch-Gordan coefficients. 

Now we can use the Wigner-Eckart theorem in both S0(3) and 

Sp(2) directions. We generalize (6-22): 
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L,!. 
L_, I 4 m" M.t o(" ) 

ll 
ol1 ) (La., It. m 1- M~ llll.-1 A 1 = (L ,_ I;t. ri. 4 ll A 11 L" I-1 

111",1'\. 

J ( 2 L~ + 1 ) ( 2 It.+ 1 ) 

(6-29) 

<: L~ ILY<I I4 I I) 
m4 lm M M-t l!t 

The double-reduced matrix elements are obtained from the matrix 

element by division with the CG coefficients for the S0(3} and Sp(2) 

couplings and multiplication by the two numerical factors ~L~+l and 

J2r~+l: The Sp(6) generators in Fig 6-1 are characterized by L=2, 

I=l. L~ and M~ depend on the initial state we apply the generator~ 

and, since we consider highest S0(3) and lowest Sp{2) states, m1 =~ 

and M• =I~ • 

6.4. How to Calculate the Matrix Elements 

The states are given by the power e~pansion of the generating 

function in Eq.(4-22) as discussed in Chapter 5. The "denominator" 

part of the generating function consists of the terms in the first 

position of each bracket and which contain only denominator epd's. 

The denominator part of the generating function is 

a* c* c 
+ + + 

(1-a) {1-a*) (1-c} (1-a) (1-a*) (1-c*) (1-a) (1-c) (1-d} 
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c*d* 1 d* 

+ -t + + 
{l-a*) {1-c*) (1-d*) (l-a) (1-b*) Cl-d) (1-a*) (1-b) (1-d*) 

(6-30) 

a*b b*c* be 

+- + + 
(1-a*) (1-b) (1-c) (l-a) ( 1-b*) { 1-c*) (1-b} {1-c) (1-d) 

b*c*d* b b*d* 

+ + + 
(1-b*) (1-c*) (1-d*) (1-b) (1-b*) (1-d} (1-b} (1-b*) (1-d*) 

It can be easily verified that this is the same as the following: 

aa*c a a* acd 
.f- + + 

(1-a} (1-a*) (1-c) (1-a) (1-a*) (1-c*) (1-a) (1-c) {1-d) 

c* a d* 

-------+ + + 
(1-a*) (1-c*) (1-d*) (1-a) (1-b*) (1-d) (1-a*) (1-b) (1-d*) 

(6-31) 

1 ac* cd 
+ + + 

(1-a*) (1-b) (1-c) (l-a) (1-b*) (1-c*) • (1-b) (1-c) (1-d) 

b* d bb* 

+------ -------+ 
(1-b*) (1-c*) (1-d*) (1-b) (1-b*) (1-d) (1-b) (1-b*) (1-d*) 

All the numerator terms remain the same. We choose as initial state 

the one given by 

-1 a*' b' c' 
[(l-a*) (1-b) (1-c)] = a* b c 



0 

0 

130 

with a*', b', c' arbitrary non-negative powers. Of course we include 

the factors from the common denominator in front: 

I I J I J* I K 1 

I i> = c/..d.. P:>r> J J* K 
K*' M' 

K* M 
a*' b' c' 

a* b c (6-32) 

To this state we apply the raising generators B~ of Fig 6-1. 

The epd's ~' ~' J, J*, K, K*, M, a*, band care given in Chapter 4 

in the list on page 68 and they are constructed explicitly as shown 

in Section 5.4. The state li> is a stretched product of epd's such 

that the Sp(2) label z=a~/2+~ and the S0(3) label L are additive. 

The Sp(2) label I and the S0(3) label L of li> are given by 

I = 3c(.'+~'+J'+2J*'+2M'+b'+c' 

L = K'+K*'+2b' 

(6-33) 

We consider li> to be in the lower right corner of the 

Sp(2)XS0{3) multiplet it represents as in Fig 6-3 such that M=I and 

m=L. When we apply the Sp(6) generators of the fifteenplet B;~ to 

our initial state li> we obtain a linear ~ombination of states of 

our basis. We obtain the simplest combination on the right-hand side 

when we apply the lower right corner of the fifteenplet, i.e. Br~· 

This is due to the fact that we decrease the Sp{2) label by 1 and, 

at the same time, increase the L value by 2. The generator B1~ is 

essentially a double derivative with respect to the creation 

operators ~~ (see first equation in (6-15)). When we operate on 
f..TS 

the states (6-33) with this double derivative we obtain the 
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~ following two types of terms: 

a) terms in which a-.~ operates on each epd. These are listed below. 

I J' J*' K' K*' M' 
(!> J J* K K* M a* 

a*' b' c' 
b c B'i.a.. d.. 

1 f J'-1 J*' K' K*' M' a*' b' c' 
J • J..c/.. ~ J J* K K* M a* b c a-,.L J 

;...' j!>' J' J*'-1 K' K*' M' a*' b' c' 
J* 1 J,.. ~ J J* K K* M a* b c Bn ... J* 

~· ~· J' J*' K' K*' M'-1 a*' b' c' 
M' ~ ~ J J* K K* M a* b c B1~ M 

r)..' ~ , J , J * 1 K , K * , M , a* 1 b 1 c ' -1 
c' ~ ~ J J* K K* M a* b c a 12 c 

a 1~ applied to all other individual epd 1 s in li> give zero. 

b) terms in which a1~ operates on pairs of epd's like 

( 6-34a) 

(6-34b) 

( 6-34 c) 

(6-34d) 

(6-34e) 

M' a*' 
d..' f!o' J' J*' K' K*' M'-1 a* 1 -l b' c' 

rJ._ f1.. J J* K K* M a* b c L (~ .. M)(~- a*) r S 1$ IS 

There are 45 terms in this category which we do not list here. 

The terms of the form (6-34) are relatively easy to identify. 
t 

We used the program REDUCE [He85] to obtain B-,~(epd). The result is 

an explicit expression in the variables ~~ • Since we know that Bi~ 

decreases z by 1 and increases L by 2 we can expect certain products 

of epd 1 s to appear, which we also expand in the variables ~is using 

REDUCE. The exact coefficient is given by the comparison of the two 

expressions. For example Br~~ contains b*, a1~J is proportional to 

K*~, B;~M to b and B;4 c to K~; more complicated is Bi~J* which is a 

Cj combination of d, Kh and ab. The matrix element of a14 is the 
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. "'Aif coefficient in a7~(epd~)=k (epd~). This coefficient (matrix t 1L 

element) depends on the definition of the two epd's, more precisely 

on their normalization constant. Since we work with non-orthonormal 

states there is no point in an overall normalization of the 

individual epd's or of the states made out of them. We only need to 

be consistent, that is, to define the epd's once for all in the 

simplest way to work with and look for their coefficients. When we 

diagonalize the matrix of generators the result will not depend on 

the actual normalization we use in these calculations. 

We continue on a specific example for the purpose of giving 

the complete algorithm. When we operate with BA~ on ji> in (6-32) 

one of the final states is (6-34b). Let us identify the states by 

the exponents of the epd and not repeat the exponents which remain 

unchanged such that ji>=!J' ,K*'> and lf>=IJ'-l,K*'+2>. The 

coefficient is A~!,= J' 19/2/3: this is the matrix element of s 7 •• t 2. .... 

t.t 
Bjl,. I i>=A i"&. If> or (J'-1, K*'+2jBi~l J', K*')= A~t 

To obtain the reduced matrix element between li> and jf> which is 

the same for the whole fifteenplet we divide At~ by the two CG 

coefficients and multiply by /2(L+2)+l'and byJ2(I-l)+l as 

prescribed by (6-29). 
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A~i =(L+2,L+2,I-1,I-11Br~l L,L,I,I) = {L+2,I-1J JBJ JL,I) 

~ (2L+5} (21-1} 

<
2

2 

L L+2)/1 

L L+2 \-1 
I 

I-1) 

I-1 I 

(6-35) 

The two CG coefficients are equal to one. In terms of the Sp(2) and 

S0(3) couplings we can write 

1 2\ 
-1 2/ 

1 

I 

I-1 

I-1 

L+2) 

L+2 

(6-36) 

Now we are ready to apply another generator of the fifteenplet. If 

we move in the Sp(2) direction and choose B0~, the S0(3) CG remains 

unchanged and we get two different Sp(2) components. We apply B0~ 

to the same initial state and we get: 

B 02.1 i>= 1 

:) I L) =/2 L IL+2\\l I I I-1) I-1 L+2~ + 
I L \2 L I L+2/ 0 I I I 0 I L+2 

\2 L L+2\(l I :) I L+2) (6-37) 

2 L L+2/ 0 I I L+2 

The S0(3) CG is the same and still equal to one; the Sp(2) CG are 

and I 

I 

The new information is contained in the second term, the IL+2,I> 
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state. We have to isolate it by subtracting from B04 li> t~e first 

term which is nothing else but I+ applied to s1~1i> of (6-36) 

divided by the matrix element of I~. 

I+ 1 I-1, I-1> = JT2I-i> 1 I-1, I> 

Then (6-37) becomes : 

i~I/ (I-1 ~ I BO.:t I i>= ( i/J"'j"':l)I~1.t.l i> + 

~ 2I-2 I 

L+2\ 

L+2/ (6-38) 

and we can now extract II,I,L+2,L+2> and decide which particular 

combination of basis states it represents. Since we already 

separated the CG coefficients in (6-37) and (6-38) the coefficients 

we find need only to be multiplied by J (2L+S).J(2I+l)'- to become the 

reduced matrix elements between li> and lj>= I I, L+2>. We can go 

one more step in the Sp(2) direction by applying now B~~. We obtain 

three terms. Since the S0(3) CG coefficient does not change we do 

not write it anymore. 

B I i>=(l u .. 
1 

I 

I 

I-1) 

I+l 

I-1) +/1 

I+l \1 

I I 
I+l) 

I+l II+l) 

I+l I I 

As before the new combinations of basis states are in the last term. 

We subtract the first one as being I~r B
7 

li> and the second one as + + .. 2. 

I+B04 1i> (of course after division by the matrix elements). 

We apply the same strategy in the S0(3) direction. After we 

apply s 1~ as given by (6-36) we apply a1 , to li>. Since nothing 

changes in the Sp(2) direction we do not repeat the Sp(2) CG 

coefficients and we write : 
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L+2) L+2\ + /2 L 

L+1 L+1/ \ 1 L 
L+1) IL+l) 
L+l L+1 

The IL+2,L+1> is just L_ applied to IL+2,L+2> of (6-36) divided by 

the matrix element. The S0(3) CG coefficients are easy to calculate 

and we extract the IL+1,L+l> state which provides new matrix 

elements. We can go on in the S0(3) direction in this way until we 

sweep the whole fifteenplet. The strategy exposed here gives at 

each step only one new type of final states 1 I~,L+> which are easier 

to identify. If we try to apply directly the upper left corner of 

the fifteenplet of generators (B
4
!) to the initial state li>=II,L>, 

the final state contains all possible combinations of basis states 

with I-l~I~~I+l and L-2~Lt~L+2. Since the basis states are rather 

complicated we believe that the interpretation of the result would 

be impossible. 
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SUMMARY AND OUTLOOK 

In the group theoretical description of Nuclear Collective 

Models, there is an unanimous consensus upon the central role of the 

symplectic Sp(6) group. As we tried to make it clear in Chapter 2, 

all previous algebraic models were proposing different groups which 

turn out to be subgroups of Sp(6). 

One can choose to work with Sp(6) states which are at the same 

time basis states in the U(3) subgroup of Sp(6) and these correspond 

to Elliott-type states (well suited for the study of the rotational 

nuclear spectra) or with Bohr-Mottelson (vibrational) states which 

form a basis in the Sp(2)~0(3) subgroup of Sp(6). Since the 

generating function for Sp(6)~U(3) was known [GR81] (see equation 

(4-16) on p.61 or (4-18) on p.62) we felt the challenge to try and 

solve the Sp(6)~Sp(2)~S0(3). 

The problem of finding the basis states was not simple and, due 

to the missing labels, the basis is non-orthonormal. However it is 

complete and non-redundant. The basis states are easily identifiable 

and can be written explicitly in terms of products of epd's. All the 

information needed to construct them is contained in a condensed 

form in the generating function on page 69 which is a major result 

of our research. 
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Once the basis states are obtained, the next step is to 

calculate the generator (we use the singular on account of the 

Wigner-Eckart theorem) matrix element between our basis states. We 

use the algorithm described in the last chapter. Due to the 

arbitrary normalization of our epd's (and, consequently, states) the 

only interesting results are the eigenvalues of the matrix, i.e. the 

diagonal elements after diagonalization of the matrix. This can be 

done only after we complete the entire list of generator matrix 

elements. 

The problem is quite complex: the basis states are products of 

powers of at least 10 different epd's from a list of over 50. Even 

for the simpler case of Sp(6))U(3) with a total of less than 20 

epd's, the generator matrix elements are not yet published. It will 

take us some extra effort and time to complete the list of the 

generator matrix elements in the Sp(6)jSp(2)~0(3) basis and to 

diagonalize it. Only afterwards can we apply the generator matrix 

elements to phenomenological models for calculating vibrational 

nuclear spectra. 
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APPENDIX A. Computer Program to Check the Generating Function 

In this Appendix we give the listing of the program used to 

check the generating function followed by an actual output which 

compares the S0(3) weights derived from the generating function 

(4-22) with the S0(3) weights obtained directly from the previously 

known Sp(6))U{3) generating function [GR81]. The known generating 

function appears as the function F(P,Q,A,B,Z) in the program. We 

convert SU(3) to S0(3) and one recognizes in the function 

FG(P,Q,A,B,Z,T) the H(~,Q,A,B,Z,T) of eq.(4-28) (see p.74). Finally, 

the S0(3) weights of eq.(4-31) are calculated by the function FH. 

On the other hand, we input our generating function in the 

subroutine FJ(P,Q,A1 ,B~ ,A,B,Z,L). The function H6 converts FJ to 

S0(3) weights. We calculate numerically FH and H6 (with AA=B~=l) for 

randomly generated values of the labels which are now real numbers 

between 0 and 2. In the output we give in the first 6 columns the 

actual random values of P, Q, A, B, Z,~; columns 7 and 8 contain 

respectively FH and H6 corresponding to these values of the labels. 

The last column is their ratio which is seen to be exactly 1 to 

double precision accuracy for 50 different sets of labels. 
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/INFO MVS JOB(PZ35CHCK) C(PZ35) S(OOO) TI{S) PA(30) CL(ll) N(HIKI) 
/INFO MSGL(O,O) 

// EXEC FORTRAN 
//FORT.SYSIN DD * 

IMPLICIT REAL*8 (A-Z,$) 
INTEGER J 
COMMON $ 
$=1.DO 
CALL RSTART (1,7) 
PRINT 8 

8 FORMAT('O'//) 
DO 7 J•l,SO 
P=UNI(0)*2.DO 
Q•UNI(0)*2.DO 
A=UNI(0)*2.DO 
B=UNI(0)*2.DO 
Z•UNI(0)*2.DO 
ALPHA=UNI(0)*2.DO 
RFH=FH(P,Q,A,B,Z,ALPHA) 
RH6=H6(P,Q,$,$,A,B,Z,ALPHA) 
RAT=RFH/RH6 
PRINT 6,P,Q,A,B,Z,ALPHA,RFH,RH6,RAT 

6 FORMAT(' ',lOX,6(F9.6,1X) 1 2(Gl2.5,1X),F9.6) 
7 CONTINUE 

STOP 
END 

DOUBLE PRECISION FUNCTION F(P,Q,A,B,Z) 
IMPLICIT REAL*S (A-Z,$) 
COMMOl'; $ 
F=$/($-Z*A**2)/($-Z**2*B**2)/($-P*A)/($-Q*B) 

$/($-Z*Q**2)/($-Z**2*P**2)/ 
$($-Z**3)*(($+Q*A*Z+P*A*B*Z+P*Q*B*Z)*($+P*B*Z**2)/ 
$($-P**2*B**2*Z)+(Q*A*B*Z**2+P*Q*A*Z**2+Q**2*A**2 
$*Z**2+P*0**2*A**2*B*Z**4)*($+Q*A*Z)/ 
$($-Q**2*A**2*Z**2)) 

RETUR:• 
END 

DOUBLE PRECISION FUNCTION FG(P,Q,A,B,Z,T) 
IMPLICIT REAL*8 (A-Z,$) 
COMMON $ 
FG=T**2*F(P,Q,A*T,B*T,Z) 
FG=FG-T*F(P,Q,A,B*T,Z) 
FG=FG-T*F(P,Q,A*T,B,Z} 
FG=FG+F(P,Q,A,B,Z) 
FG=FG/(T-$)**2 
RETURN 
END 

DOdBLE PRECISION FUNCTION FH(P,Q,A,B,Z,ALPHA) 
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IMPLICIT REAL*8 (A-Z,$) 
COMMON $ 
FH•ALPHA**2*FG(P,Q,A,B,Z,ALPHA**2) 
FH=FH-FG(P,Q,A,B,Z,$/ALPHA**2)/ALPHA**2 
FH=FH/(ALPHA**2-$/ALPHA**2) 
RETURN 
END 

DOUBLE PRECISION FUNCTION H6(P,Q,Al,Bl,A,B,Z,ALPHA) 
IMPLICIT REAL*8 (A-Z,$) 
COMMON $ 
H6=ALPHA*FJ(P,Q,Al,Bl,A,B,Z,ALPHA**2) 
H6=H6-FJ(P,Q,Al,Bl,A,B,Z,$/ALPHA**2)/ALPHA 
H6=H6/(ALPHA-$/ALPHA) 
RETURN 
END 

DOUBLE PRECISION FUNCTION FJ(P,Q,Al,Bl,A,B,Z,L) 
IMPLICIT REAL*8 (A-Z,$) 
COMMO~ $ 
E=Z**3 
G=Q**2*Al**2*Z 
H=P**2*Bl**2*Z**2 
J=P*A*L 
K=Q*B*L 
M=Al**2*A**2*Z 
N=Bl**2*B**2*Z**2 
A2=P**2*A**2 
B2=Q**2*B**2 
C=Al**2*A**2*Z*L**2 
D=P**2*Al**2*B**2*Z 
El=Bl**2*B**2*Z**2*L**2 
Fl=Q**2*Bl**2*A**2*Z**2 
Gl=P**2*Al**2*B**2*Z*L**2 
Hl~Q**2*Bl**2*A**2*Z**2*L**2 
I=P*Q*A*B*L 
Jl=P*B1**2*B*Z**2*L 
Kl=Q*A1**2*A*Z*L 
Ll=P*Q*Bl**2*A*Z**2*L 
Ml=Q*Bl**2*A*B*Z**2*L 
Nl=P*Q*Bl**2*B**2*Z**2 
Pl=P*Al**2*A*B*Z*L 
Ql=P*Q*Al**2*A**2*Z 
R=P*Q*Al**2*B*Z*L 
S=Q*Bl**2*A*B*Z**2*L**2 
Tl=Q**2*Al**2*A*B*Z*L 
U=P*Q**2*Al**2*B**2*Z 
V=P**2*Bl**2*A*B*Z**2*L 
W=P*Al**2*A*B*Z*L**2 
X=P**2*Q*Bl**2*A**2*Z**2 
Y=P*Q*Bl**2*A**2*B*Z**2*L 
Zl=P*Q**2*Bl**2*A*B*Z**2*L 
A3=Q**2*Bl**2*A*B**2*Z**2*L 
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B3=P*B1**2*A*B**2*Z**2*L**2 
Cl•P**2*A1**2*A**2*B*Z*L 
Ol=P**2*Q*A1**2*A*B*Z*L 
E2=Q*A1**2*A**2*B*Z*L**2 
F2=P*Q*A1**2*A*B**2*Z*L 
Il=P*Q**2*A1**2*B1**2*A**2*Z**3 
T2=P*Q**2*B1**2*A**2*B**2*Z**2 
K2=P**2*Q*Al**2*A**2*B**2*Z 
L2=P**2*Q*Al**2*Bl**2*B**2*Z**3 
M2=P*Q*Al**2*Bl**2*A*B*Z**3*L 
N2=P*Al**2*B1**2*A**2*B*Z**3*L**2 
O=P**3*A1**2*A*B**2*Z*L**2 
P2=Q**2*Al**2*B1**2*A**2*B*Z**3*L 
Rl=Q*Al**2*Bl**2*A*B**2*Z**3*L**2 
Sl=P**2*A1**2*Bl**2*A*B**2*Z**3*L 
T3=Q**3*Bl**2*A**2*B*Z**2*L**2 
F3~Q**3*Al**2*Bl**2*A**2*B**2*Z**3 
C2=P**3*A1**2*Bl**2*A**2*B**2*Z**3 
P3=Al**2*Bl**2*A**2*B**2*Z**3*L**3 
FJ=$/($-E)/($-G)/($-H)/($-J)/($-K)/($-M)/($-N) 
JJ=(B2+I+K2+B2*Pl+B2*Ql+Tl+U+B2*Dl+Nl+B2*V+C2+D*Ml+Nl*Ql+ 

#B2*M2+L2+I*L2)/($-A2)/($•B2)/{$-0) 
JJ=JJ+(D+O+O*Cl+D*Pl+D*Ql+Pl*R+O*R+D*Dl+D*Jl+D*V+Gl*C2+ 

ID*Jl*Pl+D*Jl*Ql+D*M2+D*Jl*R+D*Jl*Ol)/($-A2)/($-0)/($-Gl) 
JJ=JJ+($+B3+Cl+Pl+Jl*Ql+M2+Ql+Rl+R+Dl+Jl+V+Jl*Cl+Jl*Pl+Jl*R+ 

IJl*Ol)/($-A2)/($-Gl)/($-El) 
JJ=JJ+(B2*C+E2+F2+B2*C*Pl+Kl*Nl+B2*C*M2+B2*Kl+C*Tl+C*U+B2*Kl*Pl 

t+C*Nl+B2*N2+Sl+C*D*Ml+Pl*M2+D*Kl*Ml)/($-B2)/($-C)/($-D) 
JJ=JJ+(C*D+Pl*W+D*W+C*D*Pl+D*Jl*Kl+C*D*M2+D*Kl+C*Pl*R+C*D*R+ 

iD*Kl*Pl+C*D*Jl+D*N2+Gl*Sl+C*D*Jl*Pl+Gl*Pl*M2+D*W*M2)/($-C)/ 
1($-0)/($-Gl) 

JJ=JJ+(C+P3+W+C*Pl+Jl*Kl+C*M2+Kl+C*Rl+C*R+Kl*Pl+C*Jl+N2+Jl*W+ 
IC*Jl*Pl+Jl*Kl*W+W*M2)/($-C)/{$-Gl)/($-El) 

JJ=JJ+(Fl+Fl*I+Il+Fl*Dl+X+A2*Zl+T2+A2*Ml+Fl*Nl+Fl*V+F3+Fl*Pl+ 
1Fl*Ql+Fl*Tl+X*F3+Fl*M2)/($-A2)/($-B2)/($-Fl) 

JJ=JJ+(El*Fl+Fl*B3+El*Il+Fl*Jl*Pl+El*X+X*B3+Y+A2*El*Ml+Fl*Jl+El*Fl 
i*V+P2+El*Fl*Pl+El*Fl*Ql+Fl*Rl+Fl*Jl*Ql+El*Fl*M2)/($-A2)/($-El)/ 
1($-Fl) 

JJ=JJ+(Fl*Hl+Fl*T3+Hl*Il+Fl*Kl*Zl+Fl*Ll+Fl*Zl+Fl*A3+Fl*Ml+Fl*Hl*Nl 
i+Fl*Ll*Ml+Fl*Kl*A3+Fl*Kl*Ml+Fl*Kl+Fl*Hl*Tl+Fl*Kl*Nl+Fl*Hl*M2)/ 
#($-82)/($-Fl)/($-Hl) 

JJ=JJ+(Fl*Hl*Jl+El*Fl*Ll*Ml+Fl*Kl*S+El*Fl*Kl*Ml+El*Fl*Kl+Fl*Hl*Rl 
t+Fl*Jl*Kl+El*Fl*Hl*M2+El*Fl*Hl+Fl*Ml*S+El*Hl*Il+Fl*Ll*Rl+El*Fl*Ll 
i+Fl*Jl*Ml+Fl*S+El*Fl*Ml)/($-El)/($-Fl)/($-Hl) 

JJ=JJ+(Hl+T3+Kl*Ll+Kl*Zl+Ll+Zl+A3+Ml+Hl*Nl+Ll*Ml+Kl*A3+Kl*Ml+ 
iHl*Kl+Hl*Tl+Hl*Kl*Nl+Hl*M2)/($-B2)/($-C)/($-Hl) 

JJ=JJ+(El*Hl+Ml*S+Jl*Kl*S+Ll*Rl+El*Ll+Jl*Ml+S+El*Ml+Hl*Jl+ 
#El*Ll*Ml+Kl*S+El*Kl*Ml+El*Hl*Kl+Hl*Rl+Hl*Jl*Kl+El*Hl*M2)/ 
1($-Hl)/($-C)/($-El) 

FJ=FJ*JJ 
RETURN 
END 



0 0 

p Q A P> z 111., V" l="z. +·I F.~, 
0.000459 0.221694 1. 297415 0.822077 1.436584 1. 535693 14. 164 14. 164 1.000000 
1. 135040 1. 177902 1. 047140 0.918596 0.980348 1.276054 . 132200+08 . 132200+08 1.000000 
1. 971756 1.944533 0.757175 0.367130 0.699804 1. 962421 8049.8 8049.8 1.000000 
0.601940 1. 525586 1.003661 0. 581995 0.887661 0.934614 . 225290+08 . 225290+08 1.000000 
1. 430254 0.076828 1.261462 1. 791177 1. 158016 0.244873 . 439010-03 . 439010-03 1.000000 
0.009669 1.210900 0. 145959 1.881301 0. 150257 1.633643 . 75772 . 75772 1.000000 
0.047873 0. 741471 1. 709974 0.959166 1.040268 0. 546467 -2484.9 -2484.9 1.000000 
1. 805962 1. 685408 0.501650 1. 563967 0. 151056 0.066433 -.338640-05 -.338640-05 1.000000 
1. 572353 1.232394 1. 645727 1. 558941 1.963697 1. 592436 -125. 19 -125. 19 1.000000 
1. 909813 1.630780 1.773096 0.796705 1.988783 1. 746838 -.83465 -.83465 1.000000 
1. 546157 1.239308 1.840005 0.677037 1. 762801 1. 568070 1925. 1 1925. 1 1.000000 
0.222222 1. 035767 0. 767435 1.348718 1.908256 0.620327 222.64 222.64 1.000000 
1.026392 1.474789 1.644814 1.637753 1.922702 0. 140062 . 969670-07 . 969670-07 1.000000 
0.400874 0.954825 1.960293 0.459655 1. 220445 0. 373698 -3.9305 -3.9305 1.000000 
0.271555 0.565906 1. 554153 1.683072 0. 141867 0.855750-5242.8 -5242.8 1.000000 
1. 716203 0.410425 1.772381 1. 201397 0.204514 1.926657 7. 5486 7. 5486 1.000000 
0.317504 0.445534 0.608693 1.678077 1. 144411 1.249753 54345. 54345. 1.000000 
1. 193642 0. 598208 1.863295 0.291843 1. 421131 0. 562731 -10.334 -10.334 1.000000 
0.588792 0. 546096 0.787771 0.299117 1.324464 0. 187408 . 499590-01 . 499590-01 1.000000 
1.776605 1. 155727 0.809218 1.338594 0.640748 1. 690601 755.58 755.58 1.000000 
0.781782 1.914993 1. 210487 1.235534 0.695370 1.420359 25217. 25217. 1.000000 
0.202421 1.752978 1.599658 1.642977 0.995868 0. 543128 77.901 77.901 1.000000 
1.615463 0.476879 0.745899 1. 047686 1.775581 1.306762 -3887.9 -3887.9 1.000000 
1. 581306 1. 154875 0.932250 1.829645 0. 515767 0. 507025 -38.831 -38.831 1.000000 
1. 275217 1.854159 0.697078 1.496784 0. 130381 0.416502 16. 553 16. 553 1. 000000 ..... 
0.478036 1.978344 1.835894 0.980006 1.951315 0.007223 . 568550-13 . 568550-13 1. 000000 .!::'-
0.033157 1.884003 0.802539 1. 782185 1. 046358 0. 542689 -203. 50 -203. 50 1. 000000 N 
0.618734 0.718397 1.093470 1. 676111 0. 795966 0.236923 . 10084 . 10084 1.000000 
1. 512956 1.509039 1. 041242 0.287329 0.238093 1.945702 -45.109 -45. 109 1.000000 
0.398667 1. 228148 1.475894 0.230843 0.678184 1. 741603 21304. 21304. 1.000000 
0.864957 0.712703 0. 102195 1.483264 1.272729 0.074754 . 148840-01 . 148840-01 1.000000 
0.678279 0.003187 0.884910 0.295084 1.663754 1. 275446 -1291.3 -1291. 3 1.000000 
1. 120410 0.792751 0.047238 1.855003 0.751821 0.180165 -51.425 -51.425 1.000000 
0.035523 0.095103 1. 872037 1. 012225 1. 603445 1.882125 -.16500 -. 16500 1.000000 
1. 302186 1.934626 1.291583 1.381969 0.382225 1.871175 75. 152 75. 152 1.000000 
1.026663 0.824637 0.730684 0.850584 0.744154 1.660219 -26.492 -26.492 1.000000 
1.352895 1.850341 1. 572836 1.824553 0.279391 1.297724 -1823.2 -1823.2 1.000000 
1.843660 1. 290257 1.680005 1. 586140 0.930434 1.945558 -7.0567 -7.0567 1.000000 
1.910596 1. 948910 1. 966413 0.439224 1.974227 0. 588896 -24.641 -24.641 1.000000 
1. 781687 0. f44010 1.907967 0.780016 0.937523 1.674794 -50.798 -50. 798 1.000000 
0.269177 0.927063 1. 956819 0.217645 0.834554 1.840278 -109.29 -109.29 1.000000 
1. 318984 1.829834 1.420482 1. 412868 1. 663358 1.312061 -159.02 -159.02 1.000000 
1. 434597 0. 104780 0.653684 1.365076 0. 538370 1. 143124 41593. 41593. 1.000000 
1.430540 1. 405555 0.480291 1.806896 1.277766 1. 575267 344.88 344.88 1.000000 
1. 932617 0. 547423 1. 173811 1. 747985 1. 710906 0. 139139 -. 795410-05 -. 795410-05 1.000000 
0.498141 0.060232 0.003837 1. 133856 0.470686 0.626207 -196.58 -196. 58 1.000000 
0. 170384 1.350023 1.545989 0.808012 1. 281601 0.013490 . 669270-09 . 669270-09 1.000000 
1. 114359 0. 148786 1. 454223 1.206511 1. 625811 0. 136372 . 574200-06 . 574200-06 1.000000 
1. 805589 1.464592 0. 154234 1. 166813 0. 763391 1. 580126 -133.95 -133.95 1.000000 
0. 123227 0.995802 1.025773 0.220693 1. 813234 1.877050 4.0208 4.0208 1.000000 
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APPENDIX B. Published Version of the Generating Function 

We reproduce here the published version of the generating 

function (4-22) which differs from the version on page 69 by the 

changes given on page 91. These changes arose from consistency 

considerations. The new generating function has the minimal number 

of compatible numerator epd pairs and these pairs are found where 

they are expected to appear, i.e. with the denominator factors with 

which both pair members are compatible. 
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Using generating function methods, branching rules for Sp(6) :::> Sp(2) X 0(3} are derived. The 
branching rules suggest an integrity basis, or set of elementary permissible diagrams. in terms of 
which the subgroup basis states are defined; they correspond to vibrational, or Bohr-Mottelson 
type. states in the nuclear symplectic model. 

I. INTRODUCTION 

We refer the reader to the earlier papers in this series1
-

3 

for general literature references and for a historical and 
physical introduction to the subject. The nuclear symplectic 
model combines the features of the Bohr-Mottelson and El
liott models. 

The basis states of a nucleus of n + 1 nucleons are taken 
to be the energy eigenstates of an isotropic 3n-dimensional 
harmonic oscillator. The symmetry group is then SU(3n) and 
the states are those of symmetric representations (all repre
sentation labels zero except the first one). The metaplectic 
irreducible representations (IR's) [(1/2)3"], [{lilt"- 1

, (3/2)] 
ofSp(6n) are spanned by the SU(3n) states of even. odd repre
sentation labels, respectively. 

The physically significant subgroup of Sp(6n) is 
Sp(6)XO(n), and for theIR's ofSp(6n) under consideration 
the Sp(6) and O(n) IR's are correlated; see Eq. (3.1) below. 
The Hamiltonian for nuclear collective motion is assumed to 
be in the enveloping algebra of Sp(6). 

The Sp(6) basis states may be classified according to the 
U(3) subgroup, yielding Elliott or rotational type states, or 
according to the subgroup Sp(2) X 0(3), yielding Bohr-Mot
telson, or vibrational type states. It is our purpose in this 
paper to derive the integrity basis, or elementary permissible 
diagrams (epd's) with their-syzygies (incompatible products); 
they define vibrational, or Sp(2)X0(3), type basis states for 
general JR•s of Sp(6), corresponding to open shells. 

In Sec. 11 we derive the generating function for 
Sp(6) :::> Sp(2)X0(3) branching rules and interpret it in 
terms of a finite set of epd's. The basis states are defined in 
terms of products of powers of the epd's, with certain combi-

1 

nations forbidden because of syzygies (polynomial identi
ties). The basis states obtained are not orthonormal, but are 
complete, nonredundant, andJIDalytic. 

In Sec. m we discuss briefty the problem of computing 
generator matrix elements ofSp(6) between our states; it is in 
terms of them that the Hamiltonian operator for collective 
nuclear motions is defined. 

Section IV shows how to convert the Sp(6) :::> U(3) gen
erating function to that for Su(n) :::> O(n), all but the ftrst 
three labels of SU{n) zero, and how to convert the 
Sp(6) :::> Sp(2)X0(3) to 0(3n) :::> 0(3)XO(n), all but the ftrst 
label of0(3n) zero; the respective generating functions (and 
the branching rules) are related because of complementarity 
conditions. 

We use Dynkin representation labels.A.1 for the compact 
groups O(n), SU(n): 

A1 = 2(M.t la1)1(atlat), 

where MA is the highest weight of the IR (A. ). and a 1 are the 
simple roots; the exception is 80(3), where we use A. /2 = I as 
the IR label. For (noncompact) Sp(6} we use the labels fp.q,d ) 
of the "bottom" U{3) IR; (p.q) are its SU(3} labels and (d) its 
"vertical" weight component. The O(n) labels ~1,m2,m3) of 
Ref. 3 are related to the Dynkin labels used here by 

01 = A.1 + A.2 + Al> ~ = A2 + A.3, 0 3 == A3 for n>9; 
for 0(8) we have w3 =A., = A.4; and for 0(7), w3 = A.~2. 

11. Sp(8) :::> Sp(2) X0(3) BRANCHING RULES . 

WebeginourderivationofSp(6) :::> Sp(2)X0(3)branch
ing rules with the known• generating function for 
Sp(6) :::> U(3) branching rules 

F(P,Q.D; A1.B1; ;l;/J';Z) = [{1- a)( I-PXl- y)(l- ~)(1- cSKl - cS*Xl - EXl- ~)] -• 

X [(1 + '1/ + 8 + K + &11* + f/8 + '1/K + Jrq*Xl-,,-l 
+I&'*+.,.+ e• + K* + ,., + ,•e• + ,.K* + c•,.,•xt-c •)- 1]. (2.1) 

al Member of lnstituto Nacional de lnvestipciones Nucleares and El Cole
aio NacioDal. 
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The letters on the riJbt stand for the epd's: 

a==Z 3
, (J=DZ, r==PA., 6=Q 2A. 1

2Z, 
E=A/A. 2Z, '=P2A. 1

2B 2Z, '1=PB1
2BZ 2

, 

8 == PA. 1
2A.BZ, K = PQA. 1

2BZ. 

The "conjugate" of an epd, denoted above by an asterisk, is 
obtained by the replacements P-Q. A. 1

2Z-B/Z2
, 

A. - B; the generatins function (2.1) is conjugation symmet
ric, i.e., is unaffected by these interchanses. Equation (2.1} 
with .4. 1 and B 1 set equal to unity is just Eq. (3.6) of Ref. 4. 
Strictly, the labels a 1,b1, carried as exponents by the dum
mies A. 1,B1, are not necessary; we comment below on their 
usefulness. When (2.1) is expanded in a power series 

F= 'LP'Q 9D•A. 1••B1"•A.•B"Z"Cpqt~,~~,,.,,., (2.2) 

the coefficient C, summed over a1,b., gives the multiplicity 
of the U(3) multiplet (a,b,z) in the Sp(6) IR fp,q,d ). 

Throupout this paper we follow the convention that 
representation labels, denoted by lowercase letters, are car
ried as exponents by the corresponding uppercase letters. 

The exponents in (2.2) (or in the epd's) provide instruc
tions for constructins the basis states (or the epd's): couple 
the U(3) multiplet {a1,b1,a1/2 + b1), whose components are 
polynomials of degree a 1/2 + b1 in the Sp(6) raising genera
tors [they form the U(3) multiplet (2,0,1) and are the B ;j of 
Eq. (3.2a) orB~ ofEq. (3.6) of Ref. 3], to the bottom U(3) 
multiplet fp,q,d) of the Sp(6) IR to obtain the U(3) multiplet 
(a,b,a1!2 + b1 +d). The U(l) label is greater than a 1/ 

2 + b1 + dbythreetimesthedegreeina, theSU(3)scalarof 

B(P,Q,D; At.B,; A.,B; Z.L) 

145 
third dqrec in the raising generators. 

The labels a1,b1 help in the interpretation of the epd's 
and of the basis states. For example, without them, one 
miJbt, erroneously, think that' • is the square of ,•. When 
(2.1) has been converted to give Sp(6) ::> Sp(2) X 0(3) branch
ing rules, the difticulties and ambiguities in interpreting it in 
terms of epd's are greatly increased. It is important to keep 
labels like a 1 ,b •. 

The subgroup SU(3) of Sp(6) is converted to 50(3) by 
substituting into Eq. (2.1) the SU(3) :::> 0(3) branching rules 
generating function 

G(A..B.L) 

== [(1 -A. 2)(1 - B 2Kl - .4L )(1 - BL)] - 1(1 + A.BL ). 
(2.3) 

· The substitution is accomplished5 by evaluating 

F(P,Q.D;A..B,;A. '.B'.Z)G(A •-lA.,B'- 1B.L H..c"'B"'· 

The subscript A. 10B 10 is an instruction to retain only the term 
in A. ' and B ' of 4egree zero. The variablesA.,B are inserted to 
retain the SU(3) representation labels; as noted above, we 
will need all the labels we can get. The U(l) label z now 
becomes the weiJbt label of the Sp(2) subgroup. The U( 1) 
group is converted to (noncompact) Sp(2) simply by multi· 
plying by 1-Z,or,moreprecisely, 1-M*, whereM*istheepd 
.4. 1

2 A. 2 Z defined below. lbenz, the exponent ofZ, is the Sp(2) 
representation label, the lowest weiJbt of the Sp(2) multiplet. 

The result of the above operation is the desired 
Sp(6) :::> Sp(2)X0(3) generating function. It is given as fol
lows: 

= [(1-a){l-(J)(1-/}(1-J*X1-K)(l-K*Hl-M)] -t 

x{[(l- a)(l- a*)(l-c)] -•[a* + e + r +a*h + , .. + a•k +I +a*n + ci +ck* 

+ u +eh • + q + eq + iz .. + a*s] + [(1- a)(l- a*)( I- c*)] -•re• + c*e + r* + ah • + i + ak * 

+I* +an*+ c•z .. + c*k + u• + c*h +q* + eq* + c*iz .. + c•s] + [(1-aKl-c)(l- d)] -•[c + v +cp +eh 

+ cf + ck +cg +en+ cdi +cgh + du + cfh + cfg + cfn + cfi + cs] + [(1-a*Kl-c*X1-d•)] - 1[c*d• 

+ v* + c*p* + c*h • + c• j• +c•k• +c-g* + c•n• +c*d•z .. + c*g*h • +d*u* + c- j•h • 

+ c* /* g* + c• f*n* + c* f*z .. + c*d •s) + [(1 - a)(l - b *)(1 - d)] - 1 
[ 1 + j + p + h + f + k + g + n + di 

+gh +lP +fh +fg+fn +fi +s] + [(1-a*)(l -b)(l -d•)] - 1[d* +d*r +P* +h • +I* +k* 

+g* +n* +d*z .. +g*h • +f*p• +f*h * +f*g* +f*n* + d* f*z .. +d*s] 

+ [(1- a•x•- b )(1 -c)] -•[a*b + r + t+a*bh + bl .. +a*x +bl +a* f*h +cl*+ bck. + w 

+bch • + hs + k*w + f*z .. + a*bs] + [(1- a)(l- b*Ml- c*)] - 1[b*c* +c-j + t* +ab *h • + b *i 

+ax* +b•l• +afh • +c* f+ b*c*k+w* +b•c*h +h *s+kw* +c* fi +b*c-s] 

+ [(1- bX1- c)(1- d)]- 1[bc+ hm +cm+ bch +be/+ ex+ beg+ cf*h +cdf* 

+ bcgh + dw + bc/h + dhs +ems+ cff* + bcs) + [(1- b *XI- c*)(l- d•)] - 1[b *c*d* 

+h*m• +c*m* +b*c*h* +b*c* f* +e-x• + b*c•g• +c* fh • +c*d• f +b*c•g*h• +d*w• 

+ b*c• f*h • +d*h*s + c*m*s +c* If*+ b*c•d*s] + [(1-b )(1- b*)(l-d)] - 1[b + y 

+m+bh +bf+x+bg+f*h +df*+bfg+fm +bfh +bfg+ms+ff* +bs] 

+ [(1-bKt-b•)(l-d*)] -'[b*d* +d*y+m• + b*h * +b* f*+x* +b*g* +fh • +d* f+ b•g*h • 

+/*m*+ b* f*h • +b* f*g* +m*s+d* If* +b*d*s]}. (2.4) 
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The epd's a,/J in Eq. (2.4) are the same as in (2.1 ); the 
others are as follows [the notation is (pq,a1b 1,ab,l) which 
stands for P'Q'A. 1••B.''•A •s•zun.,.,, +"·L ']: 

J = (02,20,00,0), K = (10,00,10,1), M= (00,02,02,0), 
a= (20,00,20,0), b = (00,20,20,2), c = (20,20,02,0), 
d = (20,20,02,2), e = (11,00,11,1). f = (10,02,01,1), 
g = (11,20,01,1), h = (10,20,11,1), i = (11,20,20,0), 
j = (10,02,12,2), k = (20,02,11,1), I= (12,20,02,0), 
m= (10,20,11,2), n = (21,20,11,1), p = (20,20,21,1), 
q == (21,22,02,0), ,. = (21,20,22,0), s = ( 11,22, 11,1 ), 
t = ( 11,20,12,1 ), U = (30,22,22,0), V = (30,20,12,2), 
W = (20,22,12,1), X= (10,22,21,2), y = (00,22,22,3). 

The conjugate of an epd, denoted by an asterisk in Eq. 
(2.4) obtained by interchanging the SU(3) labels in each of the 
three pairs: (pq,a 1b1,ab,)* = (qp,b1a1.ba,); the epd's a,/J,e,s-3 
are self-conjugate. The generating function in (2.4) apart 
from the missing denominator factor 1 - M •, removed in 
converting from U(l) to Sp(2), is conjugation symmetric, a 
fact which was helpful in writing it in terms of the epd's. The 
generating function was also subjected to what may be called 
consistency checks. For example, the coefticient of i in Eq. 
(2.4) 

[(1 - aKl -a*)( I- c*)]- 1 + c((l - a)(1- a*)( I -c)]- 1 

+d[(l-a)(l-b*)(l-d)]- 1 +b*((1-a) 

X(l-b*)(l-c*)] -t 

+ cd [(1- a)(l- c)(l-d)) -t. 

It may be verified that each product of powers of three de
nominator epd's which appear in the same fraction (includ· 
ing those in which one or more exponents are zero) appears 
just once in the above expression; this check was made sepa
rately for each numerator epd and for each product of nu
merator epd's. As a final check we converted the expression 
in Eq. (2.4), by appropriate substitutions, into a generating 
function for S0(3) weights instead ofS0(3) multiplets; it was 
then compared with the corresponding weight generating 
function obtained by converting (2.1) directly; since an ana
lytic comparison would be prohibitively laborious, the nec
essary substitutions were made by a computer program and 
the two generating functions compared for random values of 
their arguments. 

Ill. CONSTRUCTING THE BASIS STATES 

The Sp(6) ::> Sp(2)X0(3) generating function, as given 
in Eq. {2.4) defines the epd's (integrity basis) in terms ,of 
which all subgroup representations are given as stretched (all 
representation labels additive) products; epd's which are in· 
compatible because of syzygies may be read from the gener
ating function: they never appear multiplied together. 

It is straightforward to construct the epd's, using their 
labels (p,q-,a1,b1;a,b;l ): couple the SU(3) IR(a1,b1), of degree 
a 1/2 + b1intheraisingSp(6)generators, tothebottomSU(3) 
multiplet (p,q) to obtain the IR (a,b ); in every case the cou
pling is nondegenerate, i.e., unique. Next, choose the S0(3) 
multiplet contained in the SU(3) multiplet (a,b ); again, the 
multiplet I is always nondegenerate. Apart from their useful. 
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ness in constructing the epd's, the labels a1,b1,a,b were in· 
valuable in sorting out the epd's and their syzygies. Finally, 
to ensure that the states we are constructing are bottom 
states of Sp(l) multiplets, they must be rendered traceless 
{harmonic) by the use ofEq. (4.1b) of Ref. 3. 

The bottom [lowest U( 1)) multipJet of the Sp(6) IR (pqd) 
is best visualized in terms of the epd's for 
Sp(6n) ::> Sp(6)XO(n). 

The branching rules generating function 

[(1 - PD 112H Xl - QDJ)(l - D 312K)] -I 

= ~H"JiKicP1tQiD1112W.I•+lJ+3ki (3.1) 

shows that the O(n) IR (hjk) is correlated with the Sp(6) IR 
(pqd) with p = h, q = j, d = (h + 2j + 3k )/2; integer values 
of dbelong to even metaplectic Sp(6n~ [(!13

"], half-odd values 
of d to odd metaplectic Sp(6n ), [(~t"- 1,n. Each of the three 
epd's stands for an elementary Sp(6)XO(n) multiplet, and is 
conveniently represented by the state of the multiplet which 
has the highest O(n) weight and, for Sp(6), the lowest U(1) 
and highest SU(3) [or S0(3}] weight. The exponent of Dis one 
half the number of quanta in the state in question. Then 
PD lllH is represented by 1/w where the first subscript de· 
notes the highest state of the SU(3) [or S0(3)] triplet while the 
second one implies the highest state of the O(n) multiplet 
(100. • .0). The epd QDJ, t;epresented by 

I::: ::I · 
is the highest state of an SU(3) antitriplet [or 0(3) triplet] and 
the highest state of the O(n) multiplet (010. • .0). The third 
epd D 312K is represented by · · 

'1/u '1/t:z '71t3 

1lz1 1/n 1lz3 ; 

'7131 '713l '7133 

it is an SU(3) [~ 0(3)] scalar and is the highest state of the 
O(n)multiplet(OOlO· • .0). Thus the bottom states of the Sp(6) 
IR(pqd) are defined by the product of powers of the three 
epd's with respective exponents p, q, (2d-p-2q)/3. These 
states are annihilated by the Sp(6) lowering (annihilation) 
generators, and no steps are needed to render them traceless. 

The 21 generators of Sp(6) decompose under the sub
group Sp(2)X0(3) into three irreducible tensors which can 
be denoted by (1,0), (0,1}, (1,2). The first two triplets are just 
the generators of Sp(l} and 0(3}; their matrix elements are 
well known. The matrix elements of only the (1,2) 15-plet 
need to be computed between our basis sta~ For that pur
pose it is necessary to compute only its reduced matrix ele
ments between pairs of subgroup multiplets; although 
straightforward, that task is made laborious by the size of the 
integrity basis and the consequent large number of types of 
subgroup multiplet. We hope to complete it in a future publi· 
cation. 

IV. RELATED BRANCHING RULES 

Complementarity relations in group-subgroup chains 
imply connections between. apparently unrelated branching 
rules. Thus the generating functions of Eqs. (2.1) and (2.4), 
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for Sp(6) ::> U(3) and Sp(6) ::> Sp(2)X0(3), respectively, im· 
ply branchins rules seneratiua functions for SU(n) ::> SO(n ), 
all but the first three SU(n) labels zero, and for 0(3n) 
::> 0(3)XO(n), all but the first 0(3n) label zero, respectively. 

Althoush not needed for the theory of nuclear collective 
motions, we present the results here since we set them at no 
extra cost. 

For the chains of subgroups 

Sp(6n) :::> Sp(6}XO(n), 

Sp(6n) :::> Sp(2)X0(3n), 

(4.la) 

(4.1b) 

complementarity relations hold (see Ref. 3, Sec. 11). This 
means that, since the representation of Sp(6n) is [(~)3ft] or 
[(~)3"- 1 ,(~)] (the metaplectic ones), theIR ofSp(6) determines 
theIR ofO(n) and vice versa in (4.1a) and the same holds for 
Sp(2) and 0(3n) in (4.lb). 

Because of the complementarity in the chain in Eq. 
(4.la) WC CaD COD Vert the Jeller&Ung function (2.1) giving the 
branching rules for Sp(6) :::> U(3) to a senerating function for 
the chain SU(n) :::> O(n) [all but the first three labels ofSU(n) 
zero] by the substitutions 

P-G 113H, Q-G 213J, D-G 113K, A-EG- 113, 

B-FG-213, z -G2Il, At-1, B~-1; 

the SU(n) nonzero labels are denoted by (e,/ .g) and the O(n) 
ones by (h,j,k ). 

The above substitutions are valid when n)9. For n = 8 
the substitution forD changes to D- G 113 KK. ', where the 
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nonzero 0(8)1abels are (h,j,k,k ')with k = k ',and for n = 7 
the substitution for D is D- G 113K 2 [here the three 0(7) 
labels are (h,j,k )]. We do not consider the case nc;6. 

Similarly, startins with the Jenerating function for 
Sp(6J :::> Sp(2)X0(3) given in Eq. (2.4) we Jet the branching 
rules generating function for the chain 0(3n) :::> 0(3)XO(n), 
an but the first label of0(3n) zero, by the substitutions 

P- UH, Q- U 2J, D- UK, z- U 2, L-L, 

.41 - 1, B1 - 1, A- 1, B- 1; 
(u) labels 0(3n)IR's, (/)labels 0(3) IRrs, and (h,j,k) are the 
O(n) labels (all but the first three zero). These substitutions 
hold for n;;;o.9. The substitutions forD become D- UKK' 
(n = 8) andD- UK 2 (n = 7). 
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APPENDIX c. Clebsch-Gordan Coefficients for Sp(2) 

On account of the Wigner-Eckart theorem used in Section 6.2 the 

Sp(2) Clebsch-Gordan coefficients figure together with the S0(3) 

ones in the expression for the generator matrix elements (6- ) • 

Hence we need Clebsch-Gordan coefficients of the form (6-13) which 

couple the generators which form a finite Sp(2) IR of label I=l to 

the infinite IR of the basis states. The Sp(2) raising and lowering 

operators are as usual 

I_= I~ - i I ;:t (C-l) 

with t 1 , I• given in Chapter 3 by eqs (3-13) and they satisfy the 

commutation rules in (3-14) where t 3 is the weight generator of 

Sp(2). They act on triplet states ll,m> (m=-1,0,1) in the following 

way: 

I+ll,-l>=iJijl, 0> 

I_ll, O>=iJ2jl,-l> 

I_ll,-1>= I+ll,l>=O 

I+ll, O>=i/211, 1> 

I_ll, l>=ilijl, O> (C-2) 

Note that because of the finite IR of a noncompact group the matrix 

elements are complex. The scalar product is obtained by multiplying 

a state by its dual, and, to be consistent, we choose 

<l,ljl,l>=<l,-ljl,-1>=1 and <l,Ojl,0>=-1. These matrix elements in 
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(C,-2) obey Gel'fand phase conventions for Sp(2) SU(1,1) [HB66]; 

matrix elements of I~, I_ have the same phase, positive imaginary. 

Another possible choice, which avoids imaginary matrix elements, is 

to ask that I~ have positive matrix elements; then those of I_ are 

negative. 

The infinite Sp(2) IR of the basis states are labelled by the lowest 

Sp(2) weight I. The states belonging to the IR (I) extend from M=I, 

I+l, I+2, ••• to infinity, I11. When we crank with I~ and r_ on an 

arbitrary state I I, M> we get (Gel'fand [GZSO] ,[GG65] ,[HB66]): 

I+ p, M>=~(M+I) (M-I+l) p, M+l> 

I_ I I, M>= ~(M-I) (M+I-1) I I, M-1> 

Obviously, I_II,I>=O. 

Let us begin with the couplings 

I 
I+l) <1 I I+l) ;1 

M I 0 M M , \1 M+l 

I 

M-1 

For this we form the "composite" ji+l,I+l> as the linear 

combination: 

I+l)= 

I+l 

A ll\ I) + B 1\ I\ + C 
11/ I o/ I+l/ 

(C-3) 

(C-4) 

(C-S) 
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We determine the constants A, B, C requiring I_ to give zero on this 

state. Using (C-2) and (C-3) we get 

B= i ( 2 I+ 1' c, A= i R B = - J I ( 2 I+ 1) c 

We normalize to 1 

<
I+l I+l) =IAI.L. -IBil- +ICil.. = 1 , then C=-~I(2I-l) J-~ 
I+l I+l 

and (C-5) becomes 

ti+l)= .f2Bl'1) I\- i.~ 
II+l ~~ 1 I/ ~~> 

l)j I\- 1 
0 I+l/ j; (2I-1)

1 

(C-6) 

We apply I+ to (C-6) repeatedly (M-I-1) times. The left-hand side 

becomes 

I I+l\ = "(2!+2) (2I+3) ••• (M+I) .1.2 ... (M-I-1) 

I I+l/ 

= (M+I)! (M-I-1)! 

(2!+1)! (C-7) 

On the right-hand side, we work separately on the three terms. The 

first term gives 
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:) :_J~2I (2I+l) •• (M+I-2) .1.2 •• (M-I-1) 

= (M+I-2)! (M-I- (C-8) 

(2I-1)! 

while the second term is 

= (M+ I -1) ! (M- I ) ! + (M- I -1) '{2 i 

( 2 I) ! 

(M+I-2) ! (M- I-1) ! 

( 2 I) ! 

(C-9) 

and the third term 

M-l-1 
I 

-1-

= 11\ I \ 

1-1/ M+l/ 

l)I :-1-1 
-1 

I \ + (M- I -1 ) \ 

!+2/ 

t1-l- 2 
I~ 

+ (M-I-1) (M-I-2) I~ 
2 

1\ I:-I-"b 11 \ = 

-1 { !+2/ 

(M+ I ) ! (M- I+ 1) ! + (M- I -1) i J2 l 
0

1) MI \ (M+ I -1) 1 (M- I ) ! + 

(2I+1) 1 1 (2I+1> 1 
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0 

+ (M- I -1 ) (M- I -2 ) (- 2 ) 

2 
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(M+I-2)! (M-I-1)! 

(2I+1) 1 (C-10) 

We go back to (C-6) with the left-hand side given by (C-7) and the 

right-hand side by the three terms in (C-8), (C-9) and (C-10) and we 

obtain the Clebsch-Gordan coefficients 

I 

M-1 

I +M1) = -1 " I . ( 2 I + 1 ) ! I 

~I(2I-1) ~(M+I)!(M-I-1)! 

= - (M- I ) ( M- I+ 1 ) 

I(2I-1) 

(M+ I) ! (M- I+ 1) ! 

(2I+1)! 

(2!+1)! ~- {M-I-1) i{2 M+I-1) !{M-I)! -

(M+ I ) ! {M- I -1) ! l {I ( 2 I -1) ' ( 2 I+ 1) ! 

- i(2W" 
v~> 

(M+I-1;! (M-I) t{ = -i (M+ I) (M-I) 

I(2I-1} (2I)! J 
c 2 I +l , l r J 2 I+ 1 cM +I_ 2 , l ( M- I -1 , ! _ 

(M+I) 1 (M-I-1)! ~ 2I-1 (2I-1)! 

- i ~ (M-I-1) iJ2 
~ i('2i:1) 

(M+I-2)! (M-I-1)! 

( 2 I) ! 

(C-11) 

(C-12) 



0 

c 

153 

1 (-2) (M- I -1 ) ( M- I-2 ) (H+I-2) I (H-I-1) !} = 

~I (21-1) 2 2(21+1)1 

= 21+1 t (2I+1)2I + (2I+l) (M-I-1) + (H-I-1) (H-I-2) 1 = 

(M+I-1) (M+I) 21-1 I(2I-l) J 21 (21+1) (2I-l) 

= (M+1) (M+1-l) (C-13) 

21(21-1) 

To calculate the couplings 

< 
1 I I \ , <1 I l I ) , I 1 I 

-1 M+l M I 0 M M \1 M-1 

(C-14) 

we start with the state ji,I> as a linear combination 

(C-15) 

and, by imposing I_ II,I> = O, we obtain A= i~ B. The 

normalization condition -IAI2+1B12 =1BI~<l-I)=-l then yields B=l/!f-1 

and A=iJI/(I-1)'. Now we apply I-'- (M-I) times to (C-15): the 

left-hand side becomes 

:; = :; (M+I-1)! (M-I)! 

(21-1)! 

(C-16) 
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The two terms on the right-hand side give 

M-I 
I.f- 1) I\= 1\ I\ 

-1/ I+1/ -1/ M+1/ 

+ (M-I) ih 

(M+I-1) 1 (M-I)! + 

(21-1)! 

M+I-2) 1 (M-I-1)! 

(2I-1) 1 

(M+ I) 1 (M- I+ 1) ! + 

(2 I) ! 

(M+ I -1) ! (M- I) ! 

( 2 I) ! 

+ (M- I ) (M- I -1 ) (- 2 ) 

2 

(M+I-2)! (M-I-1) 1 

( 2 I) ! 

(C-17) 

(C-18) 

With (C-16) for the left-hand side of (C-15) and (C-17)-(C-18) for 

its right-hand side, we obtain the Clebsch-Gordan coefficients 

(: I 

:) = 
(21-1)! (M+I)! (M-I+l)! = (M+I) (M-I+l) (C-19) 

M+1 (M+I-1) 1 (M-I) 1 (2I)! {I-1) 2I(I-1) 

<~ :;= 
I (2!-l) I { (M-I) (M+ 1-1 ) ! (M- I ) ! + 

M (M+I-1) !(M-1)! ~ ( 21) ! 
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M-1 

+ i[I' 
~ I-1 
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(M+I-1) 1 (M-I) 1 

(21-1) ! 

= i (M-I) + i I = i M 

JI(I-1) ~I(I-1) VI(I-1) 

( 2 I -1 ) 1 J - (M- I ) (M- I -1 ) X 

(M+I-1) ! (M-I) ! t ~ I-1 

(C-20) 

{M+I-2}! (M-I-1)! + iJ~ (M-I)iJ2! 

(2I)! I-1 

(M+ I- 2 ) ! {M- I -1) ! }:::. 

(2I-1)! 

=- I M-I \ [ (M-I-1) +2I] 

~(M+I-1) (I+1)2I 

= - (M-I) (M+I-1) 

21(1-1) 

(C-21) 

Finally, to the state I1-1,I-1> = 11,-l>II,I> we apply I+ (M-1+1) 

times to obtain 

I-1) = 
I-1 

= (M+I)!(M-1+1)! 

(21-1)! 

- (M- I+ 1) (M- I) 

(21-3)! 

l I-1) 

I M 

(M+ I- 2 ) ! (M- I + 1 ) ! 

1\ I \+ifi (M-I+1) (M+I-1) I (M-I 

-1 I M+ 1 I ( 2 I -1 } I 

(M+I-2}! (M-I-1)! 

(2 I-1) ! 

~ 1\ I\ 
1 1/ M-1/ 

(C-22) 

(C-23) 
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From (C-22) and (C-23), we obtain after some simplification the last 

three Clebsch-Gordan coefficients 

<-~ 
I I:l) = (M+I-1) (M+I) (C-24) 

M+1 (21-2) (21-1) 

<: 
I I:l) = i 2 (M-I+1) (M+1-l) (C-25) 

M (21-2) (21-1) 

(~ 
I I:l) = - (M-I) (M-I+l) (C-26) 

M-1 (21-2) (21-l) 
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