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ABSTRACT

This thesis finds the basis states of the symplectic model for
nuclear collective behaviour. We are able to find a complete set of
states for Sp(6), the most important group of collective motions in
nuclei. From the multitude of possible eigenstates we are interested
in vibrational type ones, or Bohr-Mottelson type, which are at the
same time a basis in the subgroup Sp(2)X 0(3) of Sp(6). The basis we
find is not orthonormal but complete and nonredundant and we show how
to use it to determine generator matrix elements between these states.
Since the Hamiltonian of the problem is in the enveloping algebra of
Sp(6) it can be expressed as a low rank polynomial in the Sp(6)
generators and the actual vibrational spectrum of nuclei is then
calculable. The results are applicable to all nuclei (any 2). We are
able to exactly solve the difficult problem of finding the basis
states using generating function methods. We first obtain the
generating function giving branching rules for the chain Sp(6) D
Sp(2)X0(3) and we interpret the terms appearing in the generating
function as stretched products of a finite set of elementary
permissible diagrams which form the integrity basis. The basis states
of the group and subgroup are defined in terms of this integrity

basis.
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RESUME

Cette thése trouve les états de base du modéle symplectique pour
le comportement collectif nuclaire. Nous trouvons une base compléte
d'états pour Sp(6), le plus important groupe de mouvements collectifs
dans les noyaux. Parmi la multitude arétats propres possibles, nous ne
sommes intéressés que dans ceux de type vibrationnel, dits de
Bohr-Mottelson, gui forment en meme temps une base dans le sous-groupe
Sp(2)x0(3) de Sp(6). La base que nous trouvons n'est pas orthonormale
mais elle est compléte et nonredondante et nous montrons comment
l'utiliser pour calculer des éiéments de matrices des générateurs
entre ces états. Puisque le Hamiltonien du probléme obéit % 1'algebre
enveloppante de Sp(6), il peut s'exprimer comme un polynOme de bas
rang dans les générateurs de Sp(6) et le spectre vibrationnel des
noyaux peut donc Btre calculé. Ces résultats peuvent ®tre appliqués
pour tout noyau (tout Z). Nous parvenons a résoudre le probléme
compliqué de trouver les &tats de base en utilisant les mdthodes de la
fonction génératrice. Nous obtenons premiérement la fonction
génératrice donnant des regles d'embranchement pour la chalne
Sp(6)D Sp(2)%X0(3) et nous interprétons les termes apparaissant dans la
fonction génératrice comme des produits allongéE d'un ensemble fini de
diagrammes é1émentaires permissibles qui forment une base d'intégrité.
Les etats de base de ce groupe et de ce sousgroupe sont définis en

termes de cette base d'intébrité.
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STATEMENT OF ORIGINALITY

Apart from the Introduction and Chapter 2 which places the
present work in the general framework of the group theoretical
approach to Nuclear Collective Models, most of the material presented
in this thesis is original. Chapter 3 discusses the needed algebra
and the problems we encounter. The solutions are found in the
literature but their application to our specific problem is original.
The most important contribution is the generating function for
Sp(6)D Sp(2) X 0(3) given in Chapter 4. The Sp(6) generators are known
but we treat them in the light of the Sp(2)X 0(3) subgroup. We
calculate the Clebsch-Gordan couplings for Sp(2) which we were unable
to find in the literature. The research presented in Chapters 5 and 6
is also original as it uses as a starting point the basis states given

by the original generating function.
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CHAPTER 1. INTRODUCTION

1.1, Brief exposition of the problem

Group theoretical methods have been proven very useful in
solving physical problems. Here we are interested in the collective
behaviour of many - nucleon systems which is associated with the
symplectic geometry of a system of A nucleons. The goal is to
determine complete sets of states which can further be used in

nuclear structure calculations.

The first successful introduction of collective degrees of
freedom in nuclear theory was in the framework of the liquid drop
model of Niels Bohr [Bo36] and what became later the Bohr-Mottelson
model [BM53]. 1In this model the surface of the drop is parametrized

by

™g

i
r=r(0,9)=r, (1+ E_émym(o,tf)) (1-1)

>
"

where the right hand side is just some function in spherical
coordinates expanded in spherical harmonics and the coefficients can
be considered as collective coordinates. Such a surface equation is
certainly not the most general one but is widely used and quite

successful in nuclear structure problems. The quadrupole
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deformations correspond to R=2, the octupole ones to {=3, etc.

Since in almost all nuclei the quadrupole degree of freedom plays a
fundamental role, we restrict ourselves to the case =2 and we have
five parameters of, as collective coordinates which we now call «,,

m=2,1,0,-1,-2. The equation of the surface becomes [BM53]

+2

r=r, (1+ Z Xu¥,,) (1-2)
. W .

with o, =(-1) od_y. - The deformation parameters «,_ are related to the

mass quadrupole of the nucleon system which is a scalar with respect

to the 0(n) group of rotations in the nucleon index space (n is

essentially the number of nucleons) and thus can be used to describe

collective behaviour.

In the group theoretical approach we use the concept of a
dynamical group as opposed to a symmetry group. A symmetry group of
transformations leaves the Hamiltonian invariant and gives rise to
degenerate multiplets of states which carry representations of the
group. Examples are the rotation group SO(3) and the isospin group
SU(2). A dynamical group, on the other hand, requires only that
energy eigenstates belong to a single irreducible representation of
the group but does not require that all states of an irreducible
representation be degenerate. A familiar example is the simple
3-dimensional harmonic oscillator for which the dynamical group is
Sp(6) (or Sp(3,R)) while the symmetry group is its SU(3) subgroup.

Another example is Elliott's model in which SU(3) and its S0 (3)
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subgroup are both dynamical groups but only SO(3) is a symmetry
group. Thus in Elliott's model, the different angular momentum
states of a given SU(3) representation are separated in energy but
the multiplets of a given angular momentum remain degenerate. The
Lie algebra of a dynamical group is also called a “spectrum
generating algebra".

For a system of A nucleons in ordinary 3-dimensional space the
problem has 3n degrees of freedom, where n=A-1 (the center of mass
of the system of nucleons is eliminated). Assuming the basis states
to be the energy eigenstates of an isotropic 3n-dimensional harmonic
oscillator, the symmetry group is SU(3n) which is contained in
Sp(6n), the dynamical group of a 3n-dimensional harmonic oscillator.
We must retain only the states of symmetric representations. This
means all representation labels of SU(3n) are zero except the first
one. This corresponds to the metaplectic irreducible representations

INn—-4

of Sp(6n) [(1/23™] and [(1/2) ,(3/2)] which are spanned by the

SU(3n) states of even and odd representation labels respectively.

Historically the first authors to develop the point of view in
which we are interested here are Goshen and Lipkin [GL59,GL68] who
considered an n~body system in one dimension described by Sp(2n),
the symplectic group in 2n dimensions. When considering the
subgroup Sp(2)X0(n), Sp(2) describes the collective excitations and
the Hamiltonian is in the 0(2) subgroup of the latter. A few years
later they extended their analysis to two dimensions, i.e.

Sp(4n) D Sp(4)X0(n). The works of Goshen and Lipkin provide the
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foundations for the whole branch of nuclear physics and group theory

called microscopic collective models.

In the early seventies Zickendraht [Z2i71] and Dzublik et al.
[DO72] showed how to transform the coordinates from the 3n degrees
of freedom of the problem (in the usual 3 dimensional space) to six
collective degrees of freedom and 3n-6 single-particle excitation
degrees of freedom. It was shown by Morinigo [Mo72], Filippov
[Fi73] and Vanagas [VK73] that, whereas collective rotational
coordinates are associated with the rotational group S0(3),
intrinsic coordinates can be associated with the group O(n) of
orthogonal transformations in particle index space. Hence Filippov
{Fi73,Fi78] introduced the method of generalized hyperspherical

functions exploiting the subgroup structure
0(3n) D SO0(3)X O0(n)

Instead of expanding the nuclear wave functions on 0(3n) spherical
harmonics, Filippov expanded them on 0O(n) spherical functions with
coefficients (collective wave functions) depending on six collective
coordinates. A similar approach was used by Neudachin and Smirnov
and Vanagas [Va7l] in their translationally invariant shell model
when they introduced a basis of states for shell model calculations

in the subgroup chain

U(3n) D U(3)XU(n) D SO(3)X 0(n)
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Major progress was made with the complementarity theorem of

Moshinsky and Quesne [MQ71]. They showed that in the chain

Sp(én) > Sp(6) x 0(n)

keeping all shell model states of a given hyperspherical function is
equivalent to restricting to a single Sp(6) irreducible
representation (IR). Note that restricting to a given hypersherical
function is not the same as restricting to a single 0O(n)
representation any more than states of fixed angular momentum
quantum numbers LM belong to a single SO(3) representation. In fact
one can think of the 0(n) hyperspherical functions as the intrinsic
component of the many-particle wave function and the complementary

Sp(6) wave function as the collective component.

Authors like Rosensteel and Rowe [RR76,RR80], Biedenharn, Buck,
Cusson and Weaver [WB73,WC76,BB79] worked with groups related to
Sp(6). Studying the collective motions and the operator algebra
they introduced cm(3), the collective motion Lie algebra and the
vortex spin operator which couples the rotational motion to the
internal dynamics. It was soon realized that CM(3), the group
associated with the Lie algebra cm(3), is a subgroup of Sp(6), which
these authors call Sp(3,R). Rowe and Rosensteel then proceeded in
finding a basis for the IRs of Sp(6)> CM(3) using both
group-theoretical and shell model considerations and carried out

calculations of nuclear structure using these bases. Sp(6) contains
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also U(3) as a natural subgroup and Sp(6)D U(3)D S0(3) was
considered to obtain bases for nuclear collective motions. After
the universal acceptance of Sp(6) as describing the collective
behaviour of many nucleon systems, many authors tried to find the
solution to the problem, that is to find the matrix elements of the
generators of Sp(6) between basis states. This is highly nontrivial
because it implies finding a solution to the commutation relations
of the generators' algebra. Realizing the difficulty of this task,
approximate solutions were tried. For instance Rosensteel and Rowe
[RR80] took the liquid (i.e. many nucleon) limit of the Sp(6) Lie
algebra and obtained the u(3)-boson Lie algebra which consists of
the unitary algebra u(3) plus a bosonic (Heisenberg) algebra as the
ideal and they were able to solve exactly this liquid limit. 1In
order to solve the Sp(6) problem numerically they suggested the
steepest descent method using the u(3)-boson matrix elements as a
first approximation and they carried out the computer calculations
only for very special cases (representations) which do not arise for
real nuclei., It is interesting to note here that their boson algebra
is mathematically isomorphic to the interacting boson algebra of

Arima and Iachello [AI76].

The Sp(6) collective model, called also the symplectic nuclear
model combines the features of both Elliott and Bohr-Mottelson
models. When interested in rotational or Elliott [E158] type states
one has to consider the subgroup U(3) the unitary group in three

dimensions which is a natural subgroup of Sp(6) while for
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vibrational motions one has to find Bohr-Mottelson type states which

form a basis in the chain Sp(6)D Sp(2)X 0(3).

Gaskell, Rosensteel and Sharp [GR81l] used generating functions
to obtain a basis in the chain Sp(6)D SU(3)XU(l) which is of
interest when studying collective rotations (remember Elliott's U(3)
group) . Their method enables one to get analytically a complete set
of basis states for the group-subgroup Sp(6)9 U(3) (for the compact
version Sp(6) as well as for noncompact Sp(6,R)). In this
group-subgroup chain the subgroup does not provide enough labels to
specify the states uniquely - the same U(3) may occur many times in
one Sp(6,R) (or Sp(6)) representation. One solution to this missing
labels problem is to define a complete linearly independent but
nonorthonormal basis. The generating function obtained implies a set
of polynomial bases. First, one evaluates the highest states of the
elementary multiplets as polynomials in the states of the
fundamental irreducible representations (100), (010), and (001).
Compatible products of powers of these highest states correspond
one-to-one to highest states of all U(3) multiplets contained in
Sp(6) representations. The analytic basis states in the subgroup
SU(3)XU(1l) obtained by Gaskell et al. could be used to derive
analytic generator matrix elements for nuclear structure

calculations.

For Bohr-Mottelson or vibrational type states one has to find a

basis in the chain Sp(6)D Sp(2)x0(3). After the pioneering work of
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Goshen and Lipkin, Moshinsky [Mo84] studied the problem in d4=1,2
dimensions, i.e. the chains Sp(2d)> Sp(2)x0(d). Their effort to
solve the three dimensional problem proved unsuccessful except for

the very simple case of closed shells,

1.2 Summary of this work

The present work deals with the vibrational collective nuclear
behaviour as described by the symplectic model. We use the
generating function approach to derive analytically basis states for
the chain Sp(6)D Sp(2)X0(3), i.e. for the real three dimensional
world. We encounter the missing labels problem and in this case
there are five missing labels (after Racah [Ra51] Sp(6) has
1/2(r-8)=1/2(21-3)=9 internal labels where r is the rank and L the
order of the Lie algebra and the subgroup Sp(2)X0(3) provides 2+2=4

labels; missing labels=9-4=5). Like in the Sp(6)DU(3) case (with 3

S—

e \\‘ i
missing labels) one approach is to use a(ﬁono:@hgnnrma@*ba51s, but

complete and nonredundant. Weigxplicigiy construct these statesﬁin

terms of the elementary multiplets suggested by the generating
function and we calculate analytically representative matrix

elements of Sp(6) generators between the basis states thus obtained.

In the next two chapters, we introduce the theoretical

background and we discuss in more detail the related nuclear models

ﬂ/ ['v- ;‘,5:,, R~ RV , ;
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as well as the group theoretical notions we are using. Chapter 4
contains a description of the generating function method and the
actual way of obtaining the desired Sp(6)D Sp(2)X0(3) generating
function. We start with the known Sp(6)D U(3) generating function
and we convert the SU(3) subgroup to S0{(3) using the SU(3)D SO0(3)
generating function and also convert U(l) to noncompact Sp(2). We
also obtain some additional generating functions which we present at
the end of chapter 4. Knowing the Sp(6)> U(3) generating function
we obtain the SU(n)?) O0(n) one, first three labels of SU(n) non-zero.
Also we convert the Sp(6)D Sp(2)x0(3) generating function to

0(3n) D0(3)%0(n), first label of 0(3n) non-zero. The respective
generating functions (and the branching rules) are related by
complementarity conditions. The generating function for our problem
suggests an integrity basis, that is, a set of elementary
permissible diagrams (epd‘'s). 1In chapter 5, we define the
vibrational states in the nuclear symplectic model in terms of
products of powers of the epd's. Certain combinations of epd's are
forbidden and we call the incompatible products syzygies ; the
syzygies can be read directly from the generating function and they
correspond to epd's which never appear together in the binomial
expansion of the generating function. We give explicit expressions
for the epd's and show by explicit examples how they are
constructed. Chapter 6 discusses the generating matrix elements of
Sp(6) in our basis. We start with the Sp(6) algebra and its
generators; we then show how use of the Wigner-Eckart theorem

reduces the number of matrix elements to be calculated and we give
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‘:> examples of generator matrix elements. The last chapter gives a
summary of the results as well as presenting conclusions and outlook

for future work.
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CHAPTER 2.THE SYMPLECTIC MODEL AS A UNIFIED MODEL
2.1. The collective model and the vortex spin

In the Bohr-Mottelson model (also known as the
Bohr-Mottelson-Frankfurt or BMF model), one assumes that the
collective configuration of the nucleus is given by the shape and
the orientation of its surface. It is natural then to describe the
surface by an expansion in spherical harmonics of the form given in
Eq.(l-1). The deformation parameters db“are the collective
coordinates. The coefficient %, describes changes in the nuclear
volume. Since the nuclear fluid is highly incompressible, we
require the volume to be kept fixed at V=4/3ﬂrf for all

deformations. This defines the constant

I m (2-1)
The term £,=1 describes mainly (at least for small deformations) a
translation of the whole system and the three parameters «,, can be

fixed by the condition that the origin coincides with the center of

mass

J?dsr= 0 (2-2)
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In the following we omit both f=0 andg {=1 since they are not
relevant for small collective oscillations of the surface. The‘€=2
case corresponds to quadrupole deformations which give a good
description of the collective oscillations for the purpose of
further calculations. Octupole (and higher) deformations are known

to be small.

For the quadrupole deformations we have five parameters «,. « Not
all of them describe the shape of the drop. Three determine the
orientation of the drop in space and correspond to the three Euler
angles. Reguiring that the surface equation is invariant under a
rotation of the coordinate system, the collective coordinates
must behave like ¥y, under a rotation of the coordinate system
(characterized by the Euler angles 1= x,# , %) [EA57, Eq.(5.2.1)],

i.e.,

(Yy,, ) new DE“M: (L) (Ylm,)old

L,
(2-3)

_ 4

Am E:/ Dmln’ (L) o“'“-’

2 . .
where the Dwuggl) are rotation matrix elements and the ap, are the

deformation parameters in the new system. For l=2 the rotation is
Z oo -
a-)_m = ", Dmmt (.0-) O(zm’ (2-3 )
M

and we choose the rotation which brings us to the body-fixed system

c
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whose axes coincide with the principal axes of the mass distribution
of the drop. In this system of coordinates the five coefficients a,,

reduce to two real independent variables a,, and a,,=a,3 (a =

1)

a,y= 0), which, together with the three Euler angles, give a
complete description of the system. It is usual to introduce for
convenience instead of a,, and a,, the so-called Hill-Wheeler [HW53]
coordinates (’.»,'/" ([5>0) through the relations

a = (b cos?¥ (2-4)

A sin /2

i)

from which we have

z
2
Lol = a v 22, = 8 (2-5)
and
r (6.,¢) =r°[l+F:jl_—§( cos ¥ (3 cos?'e—l) + ' (2-6)

+ 3sin¥sin?p cos2¢)]

The coordinates (5,“6" are related to the rotational invariants

o [-]
(szQ,‘,_) and (szQZXQz) as follows

B ~(0Q,x0, )

o

3
(}m%‘f~(Q1x Q, x Q,)

and they are used in writing down phenomelogical potentials such as

A@z for a spherical nucleus or AF"+Bf>3cos3T +C{5‘* for a nucleus with
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an axially deformed equilibrium shape. Hess et al.[HS80,HM81]
consider more general potentials in P and T with application to

BMF calculations,

The excitations in the BMF model are the surface oscillations.
The surface parameters dh“(ﬁzz) of Eq.(2-1) are the dynamical

variables. They are considered to be functions of time : dl (t).

"
For low-lying excitations one can expect that they produce small
oscillations around the spherical equilibrium shape with dlw\=0' and

that the classical collective Hamiltonian Hch that describes this

process has the harmonic oscillator form [Bo52]

e 2 1
(
H =7 +vV =t T [al + B, & 2-7
ol R R A MR A LA (2-7)
Here the parameters of inertia Ay and of stiffness BQ are real

constants. The Eq.(2-7) is, in fact, the only quadratic form which

is invariant under rotation and time reversal.

The constants AL and BL can be calculated within the fluid
picture; they depend on the flow associated with the surface
oscillations. Now it becomes important to look at the nucleus from a
hydrodynamic perspective. For practical purposes the nucleus is a
zero temperature system so that its equilibrium state is its ground
state. In considering its collective properties, it was natural
therefore, at the beginning, to expect it to behave like familiar

macroscopic quantum fluids, eg. liquid helium at low temperature.
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Consequently, the liquid drop model portrayed the nucleus as a
superfluid (vortex free) droplet [BK37]. However, it turned out
that experimentally observed collective mass parameters and moments
of inertia for low-lying states were several times larger than
superfluid values. If we look closer at why a low temperature
quantum fluid exhibits superfluidity we can see if the nucleus is or

not vortex free.

Consider, for example, an ideal qas 6f non-interacting Bose
particles at sufficiently low temperature that all particles are in
their ground state. If the container is rotated slowly, the flow can
be calculated using perturbation theory and one finds that the
velocity field, V(r), is irrotational, i.e., ¥YxV(r)=0. Starting
from this idea, Inglis [In54,In55] proposed the cranking model for
the nucleus in which the nuclear container is an ellipsoidally
deformed harmonic oscillator potential. The ground state of a system
of non-interacting nucleons in a slowly rotating harmonic oscillator
potential exhibits some interesting properties [BM55]. If the
nucleon number corresponds to a closed spherical harmonic oscillator
shell, the cranking returns an irrotational flow value for the
moment of inertia. On the other hand, for an open shell nucleus,
the moment of inertia turns out to be the rigid body value for flow
rotations. Including spin-orbit forces and pairing correlations the
crancking model yields moments of inertia between the two limits and

in good accord with experimentally observed values.
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To see why the collective model needs vorticity we make the
following point (from a 1968 paper by Cusson [Cu68]). Consider a
general linear model in which the collective flow lines satisfy the
equation

X (8) =L gy (6) x (0) (2-8)
¢

where g% (t) is a time-dependent 3x3 matrix. The velocity field is
given by

v () =T gy (8 % (0) where g, =(3/3t) 9 (2-9)
3

For rigid rotations the matrix g% should be an orthogonal
(rotation) matrix, implying that its time-derivative is an

. . . -

antisymmetric matrix and that v can be expressed as
-
\

-
r

-ty
=) X

(2-10)
On the other hand for irrotational flow, one requires
T X V=0 (2-11)

which means that the time-derivative of the matrix 9y has to be
symmetric. Allowing the matrix 6‘6 to have both symmetric and
antisymmetric parts, the model admits rotations with and without
vorticity. Altogether, we get 9 collective degrees of freedom. 1In
this work, we restrict to monopole (£=0) and quadrupole ({=2)
collective motions. The model has then 6 collective degrees of
freedom. With the assumption that quadrupole collective motions are

volume-conserving, one decouples the monopole and quadrupole modes
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and restricts to 5 quadrupole degrees of freedom. We include both
(=O and l=2 because they are coupled by the algebraic structure.

For a rigid nucleus, it is possible to suppress the vibrational
degrees of freedom and consider a collective model with only
rotational degrees of freedom. This is the rigid rotor model as
opposed to the soft rotor model with vibrational shape fluctuations.
As we discussed before, if we allow both rigid rotations and
irrotational flow, we have to augment the six-dimensional collective
model with three additional rotational degrees of freedom
corresponding to rigid flow. The total angular momentum of the

augmented model then has two components

> - -
J L + 8 (2-12)
This nine-dimensional model reverts to the six-dimensional model
with irrotational flows only if restricted to states of-§¥0. Thus,
loosely speaking, we can regard-g as a vortex spin angular momentum
which takes zero value for irrotational flow. However very recently
Le Blanc et al.[LC85] showed that it is possible to take into
account the vortex spin degrees of freedom by a renormalization of
the collective parameters. If this is correct we can use the six
vibrational degrees of freedom in the frame of the Sp(6) symplectic
nuclear model without fear of neglecting the vortex spin
coordinates. Also this is in accord with the remarkable successes
of the BMF model with adjustable parameters in nuclear

phenomenology.
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2.2 The shell model and the CM(3) collective model

While the liquid drop model generically, and BMF in
particular, study global properties of the nucleus, the shell model
is needed to describe many nuclear properties, including the
similarities with atomic physics such as the occurrence of so-called
magic numbers. In the shell model the nucleons are considered as
independent particles moving on almost unperturbed single particle
orbits. This is possible because the nucleus is not a very dense
system as a consequence of the Pauli and uncertainty principles.
This model takes into account individual nucleons and thus provides
a quantum-mechanical many-body non-relativistic microscopic

description of the nucleus with two-body interactions.

In this single-particle model the nucleons move in an average
potential which is assumed to be of harmonic oscillator type. For A
nucleons in three dimensions we write the harmonic oscillator

Hamiltonian

(2-13)

3 A 2 3 2
Ho= 1/(2mZ L p + (1/2) me' 22 x%
{ 14

=t L=t sel
Of course much better zero-order independent Hamiltonians can de
devised, like Hartree-Fock, but the harmonic oscillator is an
irresistible choice because of its rich group theoretical structure

[RM68 ,KIJ80]. Thus, even if one uses Hartree-Fock wave functions in
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a shell model calculation, it is usually convenient to expand them

in a harmonic oscillator basis.

This particular Hamiltonian in (2-13) has the nice property
that it easily separates the center-of-mass component. By an
orthogonal transformation of coordinates the harmonic Hamiltonian

separates

2t z "EE b N
H, = 1/‘2m’ez..7:—.4pis +(1/2) & Xy + Hep, (2-14)

where Xis and P, are the Jacobi coordinates and momenta and n=A-1
is the number of relative Jacobi coordinates. The Jacobi coordinates
are defined by

) 2 ]
X£s = [s(s+l)] [-*:= Xjpg - S X 1 ., s=l,...0 (2-15)

US4y
with their conjugated momenta P; =-i(d/dXi¢). Thus, to remove the
center-of-mass, one simply replaces in (2-13) A by n=A-1 and
reinterprets the coordinates. To explain detailed properties one
must include two-body interactions. To be able to use the
conventional shell model to describe the properties of highly
collective states, it is necessary to include effective interactions
and charges. 1If specifically interested in collective states, one
needs to diagonalize a collective Hamiltonian, like the one in

Eq. (2-7) in shell model space. For many years the search for a

shell model expression for the collective kinetic energy remained
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unsuccessful. Looking for momenta conjugate to the mass quadrupole
moments, Weaver and Biedenharn [WB70,WB72] were able to construct
generators of quadrupole deformations. To close the algebra under
commutation, they were forced to include the three angular momentum
operators. In this way, they ended up with the eight generators of

the special linear group SL(3,R).

Thus, Weaver, Biedenharn and Cusson [WB73] proposed the CM(3)
(Collective Motion in 3 dimensions) model with six monopole and
quadrupole operators and eight momentum operators. This model has
the algebraic structure of a semi-direct sum Lie algebra
cm(3)n,[R6]sl(3,R). Adding a generator for monopole deformation, the

algebra extends to cm+(3)~;[R6]gl(3,R).

The six generators of monopole and quadrupole deformations are

the six components of the tensor

"
S =2 (X, P+ Py, X;) (2-16)
% S=4 ;) ,5 5 [

fully symmetrized and the angular momenta are the three components

of the antisymmetric tensor

M
L. = ({ X. P. = X:. P ) 2-17
% 55' % as £ ( )

These nine generators span the Lie algebra gl(3,R). The six

monopole-quadrupole moments
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m
Q. = Z'_ X. X- (2-18)
Se4

span the abelian RG algebra.
2.3 The symplectic model

The unified symplectic model is based on the sp(6) (known also
as sp(3,R)) algebraic structure and embraces both the microscopic
collective model and the harmonic oscillator shell model. A simple
Hamiltonian would be

H = Hy + VI(Q) (2-19)
where H, is the harmonic oscillator Hamiltonian of Eq.(2-13) and
V(Q) is a collective potential like Aﬁf. The eigenvectors and
eigenvalues can be calculated analytically even for a huge number of
nucleons because H is a simple polynomial in the generators of the

Sp(6) symplectic group.

The Sp(6) generators are given by the 6 Cartesian quadrupole
moments (Qié of (2-18)), the 9 gl(3,R) generators of deformations
(Sg& of (2-16)) and rotations (Lg} of (2-17)) and the 6 components
of the quadrupole flow tensor (K§ )

m
RK,, = & P. P (2-20)
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Note that the generators of Sp(6) are invariant under permutation of
nucleons (rotations in 0O(n) space) and thus working with Sp(6) does
not involve taking into account the Pauli exclusion principle. This
is quite a nice feature of the Sp(6) collective model since some
authors, trying to find shell model states in O(n) representation
spaces, were forced to conclude that "we have no choice but to
violate the Pauli principle”([Va80] in order to realize
microscopically the Bohr-Mottelson model. This algebra contains the
collective motion algebra cm(3) as a subalgebra. It also contains
Elliott's su(3) algebra as a subalgebra. Since H, is an element of
the Lie algebra, one can choose basis states for an irreducible
representation which are eigenstates of H, and work in the shell
model. These basis states can also be chosen to belong to Elliott's
SU(3) subgroup and to have definite angular momentum. This is
equivalent to working with the group-subgroup chain

Sp(6)D U(3)D U(1)xSU(3)D 80(3)
For this chain Gaskell et al.[GR8l] gave the generating function for
the branching rules which enables one to write down the basis states

in terms of epd's. However they did not calculate the matrix

elements of the generators of Sp(6) in this basis.
When interested in quadrupole vibrations one has to find a
basis in Sp(6) which is at the same time a basis in the subgroup

Sp(2)X0(3); this is what concerns us in this thesis.

In the next chapter, we review the notions of symplectic
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geometry and the properties of the dynamical group Sp(6n),
emphasizing the subgroup Sp(6)X0(n). We discuss the complementarity
principle showing the relation between the IR's of 0(n) and Sp(6).
We give explicitly the generators and the weight operators of Sp(6)
and of its subgroups 0(3) and Sp(2). Looking for states of definite
angular momentum we use polYnomials in the raising Sp(6) generators
and to get states belonging to a specific 0(3n) representation we

have to use traceless versions of these generators.
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CHAPTER 3.THE SYMPLECTIC ALGEBRA

3.1 Sp(6n) and its subgroups

We start with A=n+l nucleons in three dimensions as in equation
(2-14), eliminate the center-of-mass and work with the Jacobi
coordinates X; and their canonically conjugate momenta P; . They
form a 3n-dimensional Weyl-Lie algebra

p

[ X 1= 18y & (3-1)

s’ Tt
(we work in a system of units where 11, the nucleon mass and the

classical oscillator frequency are all equal to unity)

The Hermitian quadratic expressions in X, and Pét
close under commutation [Mo73] and provide the 3n(6n+l) generators

of the symplectic group Sp(6én). In Sp(6n) we consider the following

Hamiltonian of the shell model type (2-14)

n . 2 2
H, =‘2 ,Z‘ Hy with Hi = (1/2) ( Py + X)) (3-3)
t=} &=

The 3n operators Hy;, are particular combinations of the Sp(6én)
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generators in (3-2) that commute among themselves, thus giving the

weight generators of this group [Mo67].

Observe that the generators in (3-2) are quadratic expressions
and thus are invariant under space reflections and that a general
Sp(6n) Hamiltonian will be a function of them rather than linear in
X% ' %” . Thus, if we have the matrix elements of the generators of
Sp(6én) in the basis of eigenstates of H,, we know in principle the
matrix representation of an arbitrary Hamiltonian and diagonalizing

it provides us with the energy levels,

The subgroups of Sp(6n) allow us to classify further the
eigenstates of H,. The relevant subgroup is

Sp(6n) > Sp(6)X0(n) ' (3-4)
For O(n) the generators are obtained from the (3-2) generators of
Sp(6n) by contracting with respect to i while the Sp(6) ones are
obtained by contracting with respect to s. For 0(n) these

generators have the well known form

is P ~ XopPig ) - (3=5)

There are n(n-1)/2 of them with the quadratic Casimir operator

2

2
L= ax)r ist. (3-6)
st

For Sp(6) there are 6(6+1)/2=21 of them and they are the S

‘,JI L,‘jl
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(2% and K%’ given in (2-16), (2-17), (2-18) and (2-20). We observe
that S;é and Kij can be expressed in terms of commutators of Q%:
with H
Sy =1 [He w0y |
(3-7)
Kij =Qy - (1/2) [H, [Hey 04 ]

and that the [%} are the generators of the 0(3) subgroup of Sp(6).
When we need the matrix elements of the Sp(6) generators, it is
sufficient to calculate only the matrix elements of Q; in the

't

specific basis and those of S and KH: are easily obtained from the

%

commutation relations (3-7).

Note that the Hamiltonian H, given in (3-3) is the Hamiltonian
of the 3n-dimensional harmonic oscillator. 1Its dynamical group is
Sp(6n) and its physical states of even number of quanta belong to
the IR [(l/ZP”] while the states of odd number of quanta belong to

3"""‘(3/2)] of this group.

the IR [(1/2)
If we deal only with the metaplectic IR's of Sp(6n), the IR's
of Sp(6) and O(n) are complementary, i.e., if we fix the IR of 0O(n),
the IR of Sp(6) is given and vice versa. This is related to the
fact that there are polynomial relations between the Casimir
operators of O(n) and of Sp(6). Collectivity means restricting to a

specific IR of O(n) and thus to a specific IR of Sp(6). Then the
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collective Hamiltonian is defined in the enveloping algebra of Sp(6)
rather than in that of Sp(6n) so that Hg, is a function of the

Sp(6) generators Scf' LQ ’ Q% and K Also one has to impose for

G
the collective Hamiltonians invariance under the subgroup 0(3) of
Sp(6) (i.e. invariance under space rotations) and invariance under
0(n) (rotations in the nucleon index space). These restrictions
drastically reduce the dimension of the Hilbert space. From a
problem with 3n quantum numbers (the occupation number for 3n
harmonic oscillators) we reduce it to one with only 9 quantum
numbers (the number of internal labels of Sp(6)). This is a
spectacular reduction if we consider that the number of nucleons can
be of the order of one hundred. However this is a trading off

situation because we deal now with the more complex case of a

problem with constraints.

The symmetry group of the 3n-dimensional harmonic oscillator
is U(3n) and the physical states are symmetric irreducible
representations (N) of N quanta. This corresponds to the metaplectic

IR's of the dynamical group Sp(6n) of even or odd N. In the chain

SU(3n) D50 (3) XSU (n) (3-8)
V

0(n)
the IR's of U(3) and U(n) are also related by complementarity when
we fix the IR of U(3n) to be (N). Both IR's of U(3) and U(n) are

partitions of N (number of quanta) in 3 numbers. If the U(n) IR is

-~
\ 4
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[h‘, h,, h3], the IR of 0(n) as a subgroup of U(n) is also a
partition in three numbers (W,,w, ,¥N3 ), where w; < h;, i=1,2,3; all
the other 0(n) labels are zero. When the representation labels of
0(n) are chosen, the Sp(6) labels are determined [Mo84]

[(n/2)+8, , (n/2)+w, ,(n/2)+Q; ]
These are in fact the weight labels of Sp(6), i.e. the eigenvalues
of the weight operators of the group; the weight operators of Sp(6)
are the weights of Sp(6n) H;; summed over the particle index to

obtain the three Hi=i: H, as we discuss in the next section.

s
The O0(n) IR's (&,,w,,w;) are directly related to the actual

nucleus we are interested in, its (%,A) values. The scalar
representation of 0(n) (w,,w,,w,)=(0,0,0) corresponds to doubly
closed shell nuclei and was studied by the Mexican group [CH84] in a
two dimensional space, thét is in the chain Sp(4n) > Sp(4)X0(n), with
the Sp(4) representation given by (n/2, n/2). But most nuclei 4o not
fit in this category and the actual IR has to be found. Sabaliauskas
[Sa79] cosidered that the ground state band is the one which
corresponds to the maximal eigenvalue of the quadratic Casimir
operator of the SU(3). Thus he gave a table of 0(n) IR 's for
different nuclei. His table is reproduced by Castanos et al. [CF82].

In our work we consider the general case with open shells.

To be consistent we use in this thesis Dynkin representation

labels ﬁ; for the compact groups 0(n), SU(n) :
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d-
V. o 2<Maldi> (3-9)
¢ CHED)
Here M, is the highest weight of the IR (J)) and «: are the simple

roots of the group. The O(n) partition labels given above

(W, ,W, ,W3 ) are related to the Dynkin labels by :
W, =A+A+A , w=A+d;, ©,=0% for n39 ; (3-10)

for 0(8) Wy=A3=d, and for 0(7) Wy=d3/2. The exception is SO(3) for
which we use A/2=£ as the IR label. For non-compact Sp(6) we use
the labels (p,q,d4) of the "bottom"™ U(3) IR : (p,q) are its SU(3)
labels and (d) its "vertical” weight component. Given the
complementarity, for an IR (®,,w,,#5) of O(n) ( or (3,,9;,)3) in
Dynkin notation) the Sp(6) IR labels (p,q,d) are:

p=24=w4-w1' q:A;=w1—&)3' d

(Wy +00,+W,) /2 (3-11)

( A+24,+345) /2

Observe here that 4 is half the number of quanta , d=(& +@9,+Wy) /2 so
3

that integer 4 means even metaplectic Sp(6n) IR [(1/2)“ ] while

half-odd 4 corresponds to odd metaplectic IR of Sp(6n)

[(1/2) ™!

(3/2)] . Vice-versa, for a given Sp(6) IR of (p,q,d)

labels, the corresponding O0(n) IR are given by

( A, 8%,43) = [ p, q, (2d-p-2q)/3 ] (3-12)
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in Dynkin notation, or ©,=(2p+q)/3, &=(p-q)/3, %=(2d-p-2q)/3 in

partition language.

We characterize our states by an IR of O(n) and thus by an IR
of Sp(6) and also by an IR of a subgroup of the latter. We are
interested in the chain Sp(6)D> Sp(2)X0(3). The generators of 0(3)
are the L% of (2-17) while those of Sp(2) are the 0(3) scalars that

we can form from the Sp(6) generators. There are three of them given

by

3

o= /0L (K - 0p )
3

I, = /4 Z (sp) (3-13)
LG
3

I, = (1/4) 2= (K, +Q, )

=4 w w

<«

which satisfy [Mo73] the commutation rules

.. .22 .
The Sp(2) Casimir operator is 1 =14 _yz -I:’ and is related to the

Casimir operator of 0(3n) because of the complementarity in the
chain Sp(6)D Sp(2)X0(3n). We discuss this relation in Section 3.3
when we need states of a definite 0(3n) IR, or equivalently, of a

definite Sp(2) 1IR.
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3.2 Polynomials in the raising generators of Sp(6)

Until now we discussed the algebra of Sp(6n) and its subgroups
in terms of the Jaéobi coordinates of Eq.(2-15) and their conjugated
momenta 23 =—13/9x“ , which obey the Heisenberg-Weyl algebra (3-1).
For convenience we transform to the creation and annihilation

operators in Sp(6n)

e A2, § =, +ipg ) A2 (3-15)

" i Kos

15

which satisfy the commutation relations

SOTLFY = 8 84 (3-16)

In this new basis the generators of Sp(6) in (2-16), (2-17), (2-18)

and (2-20) become

M
= é MM (3-17a)

35
m
C.. =(1/2)SZ=| (%{sgﬁs +§a.sn2. ) (3-17b)

(,3 \s
(3-17¢)

B{,i = % 50526‘5

+ . . .
The B;i and B;& are respectively raising and lowering generators of

Sp(6) and there are six of each ( the q, and _gscommute with
%
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themselves so that these operators are symmetric under the
interchange i <--=> j).

The C;{ coincide for i#j with the generators of the U(3) subgroup

of Sp(6) ‘G;a' given below
% - 5. cim B+ oy

and they can be subdivided into raising, lowering and weight

generators
C%’ i<j raising operators
C % i>j lowering operators (3-19)
Cu weight operators
C C C
23 43 2 —
X # /\
\ / / \
\ / / \
\Z__’ Clz. / &
Ca Caz
(a) (b)

The above figures (a) and (b) diagrammatically represent the raising
U(3) generators Cy,, (as r Cy3 and the lowering generators Ca v Cy

and Ca respectively.

From the commutation relations (3-16) one can verify the

commutation relations of the operators in (3-17). We give them in
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Chapter 6 when we discuss the Sp(6) generators and their matrix

elements in our basis.

We can see that the weight operators of Sp(6) Cyi are the H{
we get after summing the Sp(6n) weight generators Hy, of Eq.(3-3)
over the particle index s. Thus the weight generators of Sp(6) give
the energy associated with the Hamiltonians H; in units of hw=1 (wy
plus the ground state energy n/2) while the weight operators of the

U(3) subgroup of Sp(6)‘€d,count the number of quanta w; of H;.

m m

Cy = (1/72) $Z=I ("lisx-':}is‘us): SZ.-"’L{SECS + (n/2) (3-20)
M 2 2

Hy = (1/2) I, (P ) = Cy (3-21)
5=y

The total number of quanta is (a%+uh+u§) and corresponds to the U(l)
label in Elliott notation and to (2d) where 4 labels the "vertical"
component of the Sp(6). The SU(3) labels in Elliott notation are
w,-w, and W,-w,, the same with our (p, q) label of the "bottom"
SU(3). It follows that the Moshinsky way of labelling the Sp(6) IR
by [(n/2)+dh,(n/2)+wL,(n/2)+ﬁg] (in [Mo84], [CC84]) refers to the

eigenvalues of the three Sp(6) weight generators H; =Cy .

Consider now the oscillator Hamiltonian in (3-3)

is] sel .

3 W 2 3 3 3
Ho=(1/2)Z Z (X, +P;, ) -zcy =Z‘ @%}g +(/2)1= 2 Gyt B0/2) - (3-22)
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and let us call its ground state 10>, From the expression of Hy we
see that 10> is a state of lowest Sp(6) and lowest U(3) weight. This
means that applying the lowering Sp(6) generators B% and C¢§ i>j

one must get zero. Applying the weight generators Cy; one gets the

U(3) weights of the state [®,+(n/2),®,+(n/2),W+(n/2)].
By 10>=0 , Cy 10>=0 for i>j (3-23)
Cu 10>=(w:+n/2) 10> i=1,2,3 (3-24)

If the nucleus is open shells-type, the ground state energy is
(w;+w,+u5+3n/2), where we can consider (w,+@,+Ws) as "intrinsic"
guanta, due to the internal structure of the nucleus in question.
The excited states with 2v "extra" quanta are obtained by applying
all possible homogeneous polynomials of degree (J) in B% (BE_ is

quadratic in the creation operator %,, so that applying one st we

create two quanta). We get states of the form
p, (8t.)i10> (3-25)
v Ty

which belong to the same O(n) IR (®,,w,,W;). As we see in the next
Section they form an Sp(6) basis with the 0(2) subgroup of Sp(2)

labelled by (2V).

In principle one would consider in (3-25) polynomials in all

Sp(6) raising generators, i.e., both B:; and C@ , i<j. Using the
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commutation relation of B and C;; ( see Chapter 6 )

% K|

[ Cy » Biel = S*kB,L+$ (3-26)

bt
one pulls all the C% at right in front of 10>. The C%: are
essentially the éﬁj of U(3) (see (3-18)) and the annihilation
operator %F when applied to the ground state gives zero. In this way
all terms containing C%; vanish, leaving only terms of the form

(3-25).

The states in (3-25) are characterized by the angular
momentum L[ and we consider highest 0(3) states of angular momentum

projection M=L, which implies

) 10>=LP, (B, )10> (3-27)

+ +
L, P, (BL )10>=0, L,P, (B P

+ % 3 Y
where L; are the components of the angular momentum (the 3
independent components of the antisymmetric tensor L%: of (2-17))
and L4,=(L411LL) . To get the states of arbitrary M one applies

(L_) repeatedly (L-M) times to the polynomials (3-25).

The B% i,j=1,2,3 is a symmetric tensor of rank two. It has
therefore six independent components and we prefer to transform from
+

Cartesian components to spherical-type ones 311,, q,q'= 1,0,-1 and

then to the irreducible tensor form
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+ = ' ‘r = -
B, = L <la, lq t{ m> B g , 4= 0,2 (3-28)

q9q
Here <lq,lq'|€m> is the Clebsch-Gordan coefficient for the coupling
(1) with (lgq') to form a (00) or a (2m), m=2,1,0,-1,-2 state. 1In

spherical notation (g,q'=-1,0,1) the raising generators are given by
¥ .
B = 1 L] L

w el 1o

+

B, =(AA T M, B, =B}, = =Z Ml

B, =<1/J'5>75; x ., B}, =B Z—‘h“lu (3-29)
+ o t gt

B =2 T % . Bl =By

Il

- S (‘LSNIIS

and the irreducible tensor form of Bt. is easily obtained if we take

the €;m=2 component to be B: and we crank down with L_. Then the
Bt; (Q=2) are given by:

-+

B, = /2"

o

B] = (1/2)[L_,BY 1= T Mios
BY = (/{6 [L,BY 1=/ Z (@7 + M) (3-30)
8L = (1/f6) (L_,BF 1= T Tvsos

B = (/) [L.,BY1=aAD L "%

ol +

The E:O part of the EZ; is orthogonal to the £=2, m=0:

- Y5
B, = Z (o 20,0/ {6

o0

Now the polynomial in BE became a polynomial in BIA and B-:o

We note that é:o is an 0(3) scalar and the Sp(2) raising generator.
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When applied to an Sp(6) state it increases only the vertical
component, adding two quanta. When we construct the basis states by
coupling the B}m to the bottom Sp(6) IR we are interested in states

of lowest Sp(2) weight and we use only the £=2 part of the raising
+-

~m

generators é;‘ m=2,1,0,-1,-2. Note here that the B being only
functions of qb commute among themselves and are the components of a

Racah tensor of order 2.

To determine the states of fhe form (3-25) and of angular
momentum L one has to find some basic homogeneous polynomials of the
type (2v,L), of degree ¥ in B;. This is the procedure used by
Chacén, Moshinsky and Sharp [CM76] for the states characterized by
the IR of the chain U(5)D 0(3). Their problem was solved by
introducing three such basic polynomials and the states were
products of these simple polynomials called elementary permissible
diagrams (epd's) [MS69,SL69]. The same type of polynomials will
solve our problem and Castahos, Chacdn and Moshinsky [CC84] found
five of them which characterize the scalar IR of O0(n). Their epd's
contain only polynomials in the raising generators since the ground

state is trivial.

In our case, when the ground state we start with is nontrivial
(has nonzero SU(3) labels), we have to couple the "bottom" SU(3)
(p,g) of the Sp(6) IR (p,q,d) of the given nucleus (given (9,,®,,ws)
O(n) IR) to the %:. The q; form the U(3) multiplet (2,0,1), that

is, the SU(3) sextet (2,0). The 0(3) projection of the sextet
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provides the quintet =2 (the ﬁ;\) and the 4=0 part E; . To create
two quanta states one applies a polynomial of first degreee in B;m
to the ground state, that is one couples the U(3) multiplet (2, O,
1) to the "bottom" (ground state) U(3) multiplet (p,q,d) of the

Sp(6) IR. This translates in terms of SU(3)-coupled products

(2,0)%X (p,gq) = (p+2, g) + (p, g+l) + (p+l, g-1) +
+ (p-2, g+2) + (p-1, q) + (p, g-2)

provided p>2 and g>2. For states of four quanta one applies a
second degree polynomial in B:M and these states span a redﬁcible
U(3) representation which decomposes into the U(3) IR's contained in
the symmetric part of the product

[(z,0,1) *x (2,0,1)], x (p,q,4d)
or, in SU(3) projection [(2,0) x(2,0)]sx(p,q). To obtain states of
2V quanta one uses the U(3) multiplet (a,, b, , a4/2+b‘)
corresponding to polynomials of degree V= &4/2+b, in Bt, . To apply
these polynomials to the ground state means to couple their U(3) IR
to the "bottom" U(3) IR (p,q,d) and obtain the excited Sp(6) states
labelled (a, b, a,/2+b,+d). The "vertical" component is the sum of
the original Sp(6) IR ( d equals half the number of "intrinsic"
quanta) and the degree in the raising generators B:‘(Q equals half
the number of "created" quanta). Then the "vertical" component of
the "final" Sp(6) , d +V , is half the total number of quanta.

Coupling the Btkto SU(3) representations considerably complicates

the problem, and the number of epd's in our problem is nearly sixty.
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0f course the closed shell ones found by Castallos et al. [CC84] are
in our list. This problem could not be solved without the use of

generating functions methods.

3.3 The traceless Sp(6) generators

We require the basis states of our problem to belong to a
given IR of Sp(2) of label (z). The total number of quanta N is
related to the IR of the 0(2) subgroup of Sp(2) whose generator is
I, of (3-13); it is easy to verify that I;=H,/2 and this means that
z is half the eigenvalue of H,. We introduce the number operator N
which counts the quanta of a given state and the eigenvalue of H, is

N+3n/2 if N is the eigenvalue of the operator ﬁ.

Pl

N=ZZ = E' Ci - (3n)/2 (3-31)
A 4 _ 4‘-

N P, (B, )10>= N P (B, ) 10> (3-32)

As discussed before if the ground state has 2d quanta and we apply

P, which creates 2V additional quanta, N=2d+2y.

As stressed many times, in the chain Sp(6n)> Sp(2) x 0(3n),
because of the metaplectic Sp(6n) IR, there is complementarity

between the IR's of Sp(2) and 0(3n). Requiring a certain Sp(2) label
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(z) uniquely determines the 0(3n) representation label (A) (only the
first one is nonzero). To see how the two labels are related we
consider the IR's labelled by the eigenvalues of their Casimir
operators. The Casimir operator of Sp(2) is given by

™ = 17 -1}t -1} (3-33)
with 14,11,13 given in Eq. (3-13). For 0(3n) we use the Casimir

operator of (3-6) and it is simple to verify that the two are

related [Mo84]
2 2 2
I'=(1/8)[ L +(3n)* /4-(3n)] (3-34)

We denote the eigenvalues of 1% by z(z-1) and those of " by
)()+3n-2); we obtain from (3-34) the relation between the
eigenvalues z and } :

z= A/2+(3n) /4 (3-35)
This equation implies 2z=1+(3n)/2 which is transparent from I, =Hy /2
and H°=ﬁ+(3n)/2 if z is the eigenvalue of I, and if the eigenvalue )
equals the eigenvalue N of the number operator %. But A equals N

only for special states.

To see the relation between the Casimir operator of 0(3n)

2
and the number operator N we write out explicitly £ [EG70]

kA
L = (1/2) Z 18 - i) [k ~"lisSit ] (3-36)

This is the same Casimir operator given in (3-6) but expressed now
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in terms of creation and annihilation operators. After some
rearrangement of factors it can be written as

3.) (3-37)

L A A

= N(N+3n-2)-( Y (L%,
z AR AN
From (3-37) we see that the polynomials in (3-25) correspond to a
definite IR of Sp(2) of label z and at the same time to the IR of
0(3n) of label A=N if and only if the polynomials are "harmonic",

i.e. they satisfy

(X §. i) By (8L 210> = 0 (3-38)
S

Our polynomials in (3-25) do not satisfy (3-38) as they stand and
thus they do not correspond to a definite IR of 0(3n). There is
however a method originated by Vilenkin [Vi68] and further developed
by Lohe [Lo74] by means of which we can enforce the harmonicity in a

relatively simple way.

Like these authors we introduce "traceless boson operators"

defined by

4 A -1
a;, =M, -(2,0) (2R+30) ¥y (3-39)

where (2,0) is the 0(3) scalar of the Bim sextet in (3-30)

r 2
(2,0) = V6B, = Z;‘ (Nlos =2 75"%s)

Replacing in (3-17a) q“ by their traceless versions aﬂ we get the

]
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+
traceless partners Pu\of the raising generators B;;. We use the

definitions (3-17) and the commutation relations

(2he3n]" w, =n, (2R+e3ne2]” (3-40)

(2N+3n)" 3," Iv.s(z’ﬁ+3n-2)" (3-41)

to get the following form for the traceless raising generators

+ - + A -i . )
(s‘.z._ B‘.‘L-(z,O) (2N+3n) " (Cy +Cyi )+

+(2,0)" [(28+3n+4) (28+3n+2) ™" By (3-42)
As we did in the paragraph with (3-28) we can convert the

traceless versions of the raising generators to the irreducible

tensor form. The €=2 part is given by:
+ ~ .} 2 Ay o -4
Pm‘= Bm\—2(2,0)(2N+3n) QM3(2,0)[(2N+3n+4)(2N+3n+2)] B... (3-43)

Here we introduced the notation Qg =(C§ +C£¢)/2 and Q, and B, are
the £=2, m=-2,-1,0,1,2 components of the tensors Q% and Bq in the
same way as B:\ is ﬁhe L=2 part of Bt% in (3-30). Using the
traceless versions of the raising generators, the polynomials become

harmonic, and the states (3-25) obey (3-38) if we make sure that the

ground state |0> is also harmonic.

To make the ground state harmonic we remember that it is

essentially an SU(3) IR (p,q), where p and g are the degrees in the
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unbarred ﬂ4 and barred ﬁi variables which form respectively the
triplets (1,0) and (0,l1). To make the variables traceless we make

the replacements [DS82] :

. an -1
m, ==> a;=0, - B (N+3) 9,7‘
(3-44)
—-— -_— T _ A "‘
M ==>3; =0, - B (N+3) 9,1

¢ .

— P —
= - i =2 +M 5 ) =p+q i
Here B I_E(’L_”[L is an SU(3) scalar and N=Z ('7‘,3,15 . 7{) p+q is the
total degree. The proof that the polynomials in a; and 3J; are
traceless, i.e., orthogonal to any state containing B as a factor,

is similar to that for traceless raising operator given by Lohe and

Hurst ([LH71].

With these the eigenstates are "harmonic", meaning they obey
(3-38) and thus they correspond to the 0(3n) IR of label :X=N and,
by complementarity, to the Sp(2) IR of label z. In Chapter 5 when we
explicitly construct the basis states we use the traceless versions

of the raising generators (3-43) and of the creation operators

(3-44).
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CHAPTER 4. THE SP(6) D SP(2)X0(3) GENERATING FUNCTION

4.1. Generating function method in group theory

The concept of generating function was introduced in 1897 by
Molien [M097] in connection with the invariants of a finite group of
matrices. The generating function proved to be a very useful tool in
the representation theory of finite
(DS79,3B77 ,Mc74 ,Me54 ,PS78,PS79,PS80,S177] and continuous groups and,
more recently, spacegroups (PS85], supergroups [SV85] and Kac-Moody

algebras.

There are several types of generating functions named after
the information they carry; a good account and examples of use are
given in a recent Ph.D thesis by Couture [C0o80]. We name here the

most used categories of generating functions :

generating function for polynomial irreducible tensors;

generating function for Clebsch-Gordan series;

generating function for weights;

generating function for group-subgroup branching rules.
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As one can see the generating functions may be used in many
different group theoretical calculations; they are a compact and
convenient way of storing, carrying and manipulating information.
All generating functions have the same structure : they are infinite

sums of monomials in several variables, say v;,

¢
D ¢
F(‘l‘ ,VL,oo.,Vh)= Z" C"‘“.‘-‘ \{“V;‘...ka (4_1)
iq...(vk [ 3
containing only positive terms, C; ., 20. They can be written as

fractions, or sums of several fractions, whose denominator factors
are of the form (1-X). The X's in the denominators and the Y's in

the numerators are of the form

fA f:- Fk
V4 Vz ...V"~

where p4,...,p’k are integers. When expanded, one obtains the
infinite power series in (4-1]). As an example consider the

following function

G(g,,vz,v

3)=(1+v“v,vv3")[(1—&74")(1—v4v‘2,)(1-v4v;‘)(l—v‘,’v::)]-1 (4-2)

which meets the requirements of a would-be generating function. The
generating functions are not only a neat, convenient and compact way
of presenting results but they make possible the manipulation of a
large amount of information; they may be added, subtracted, and in

certain cases, coupled (multiplied) and substituted one into
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another.

In this work we are concerned with the generating functions
for group-subgroup branching rules. It has been shown [SL69,Wy72]
that the reduction of the irreducible representations (IR's) of a
group into the irreducible representations of a subgroup can be
given in terms of powers of a finite set of elementary factors
called elementary permissible diagrams (epd's). The name epd was
first introduced by Bargman and Moshinsky [BM61l] and was generally
adopted; the term elementary multiplet is also used. The epd's are
denoted by (}4,...,3£;n4,...,nm) where the A; and n, are
respectively the Cartan labels for the IR's of the group and the
subgroup. This means that the subgroup multiplet (n,,...,nm) is
contained in the low irreducible representation (ﬁ,h...ﬁc) of the
group. For the multiplet content of higher IR's of the group one
uses stretched products of epd's. Weitzenbdck [We32] proved that
the set of epd's is finite for all semisimple Lie algebras. We note
here that for noncompact group-subgroup chains, the epd's need not

have any A

The connection with generating functions is immediate if we
consider the X and Y defined before as epd's or stretched products
of powers of them. To make things clear we take as a simple example
the chain SU(3)>S80(3) for which the branching rules are given by the

following stretched product of elementary factors
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d
2,007 ©0,2:0" a,12f (4-3)

a
(L,0;2) (0,1;2)

where a,b,c,d are integers from 0 to ® and f=0,1 only. The

corresponding generating function is [BM61l,Ga78]

F(P,Q;N)=(1+PON*) [ (1-PN*) (1-ON?) (1-P*) (1-Q*)1 % (4-4)

where P, Q and N carry respectively the SU(3) and SO (3)
representation labels as exponents. If we want to see the S0(3)
content of the SU(3) IR of Cartan labels (2,2) we look for the term
PzQx in our generating function; it is

PlQL(N8+N‘+2Nq+1) (4-5)
Tﬁis is to be read as

(2,2)5(8)+(6)+2(4)+(0)
Note that the infinite powers arise from the denominator factors
when expanded while the numerator corresponds to the power £=0,1 in

(4-4).

4.2, Obtaining the desired generating function

In this section we describe in detail how to obtain the

.generating function for Sp(6)D SO0(3)XSp(2) branching rules. The

strategy is first to determine what subgroup multiplets are
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generated by the raising generators of Sp(6). By raising generators
we mean the Bt‘; there are six of them (five after making them
traceless) and then keep all subgroup multiplets obtained by
coupling them to the "bottom states"™ which comprise a single
SU(3)XU(l) representation. We use Dynkin or Cartan representation
labels for compact groups (e.g. the SU(3) octet is (1,1)) and for
Sp(6) we use (p,q,d) where (p,q) is the "bottom"™ SU(3)

representation and 4 the U(l) value of the bottom states,

The coupling of "raising generator multiplets" to "bottom
multiplet states" can be done directly in an SO(3) basis or in an
SU(3) basis followed by the replacement of SU(3) by S0(3) with the
help of the SU(3)D SO0(3) branching rules generating function. In the
end the two forms would be equivalent. Since the coupling is already
done in the SU(3) basis [GR8l] we are going to follow that route.

But first we indicate how it could also be done directly in SO0(3).

+

For the raising generators we can use the SO0(3) quintet By -

The use of Bt; is not necessary since we are interested in traceless

states, that is bottom states of Sp(2) multiplets.

The SO0(3) multiplets which are polynomials in the components of

a quintet are described by the generating function

1+ 12 (4-6)

(1-2%) (1-2%) (1-21%) (1-7* 1)
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When expanded in a power series

Z Cth‘?Le

2t
the coefficient C}L gives the members of linearly independent
[—multiplets of degree z. One can recognize in (4-6) the elementary
multiplets (epd's) (2,0), (3,0), (1,2), (2,2) . Since (3,3) appears
in the numerator, it can be used at most linearly (no higher

powers) .

Similarly the SO0(3) states in the bottom SU(3) multiplet (p,q)

are described by the generating function

1+PQL (4-7)

(1-p*) (1-PL) (1-0%) (1-0L)

which gives branching rules for SU(3)) SO(3). Note that this is the
same equation as (4-4) with L=Nz, or'%4l/€h. When we expand (4-7) in

a power series

r et
?5:2 PQLcﬂe ,

the coefficient Cf@ﬂ gives the multiplicity of { in (p,q).

Now we want to couple b's from (4-6) to {'s from (4-7) and keep

all direct products. This is done by computing
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.
4 X
(1-2*) (1-2%) (1-2L, L)) (1-2*LiLyY)

3
1+2° L, L

1+pPQL,L" (4-8)
% M 2 X

(1-P*) (1-PL,L}) (1-0*) (1-QL,L})

1+ Ly

X
(1-Ly L) (1-Ly o) -nyt et

[ -4
LYLY

The first factor in (4-8) is just (4-6) with L--> L‘L; , the second
is (4-7) with L--> LL i , the third is the Clebsch-Gordan generating
function for SO(3), integral P's :

14L, L, L (4-9)

(1-L,L) (1-L,L) (1-L,L,)

e, 4

(here the coefficient of L,*L,? Le is the multiplicity of (E) in

(B)x(€)) with L --> L' , L --> Ly~ .

{
The subscript Lu° Laf is an instruction to retain only the

coefficient of L', L, at power zero.

The result of (4-8) will be called here
F(PIQ;L4 rLz’lLrZ) (4-10)

and has to be divided by (1 - D2Z) to become the desired generating
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function for Sp(6)D SO0(3)XSp(2) branching rules. When expanded

Pl bt

P oD L,'L, (4-11)

Cc
pqd Wy ruithly

the coefficient qu&&hgis the multiplicity of the S0(3)XSp(2)

representation (f,z) iz the Sp(6) representation (p,q,d). From
(4-10) all the epd's for the problem can be read off. The labels
84, ez which are the 0's values of the multiplet from the bottom
states and from the raising generators respectively, which are
coupled to get the resultant  in (4-11), are not essential but are
useful in sorting out the syzygies and in seeing the structure of
the epd's. The extraction of the L% L',° term in (4-8) involves

somewhat messy algebra, but the rules are known and the procedure is

straightforward.

Now let's start over, proceeding via SU(3) and later going to

SO0(3). This is the route we followed.
The raising generators form an U(3) sextet (2,0;1). The SU(3)
multiplets which are polynomials in its components are described by

the generating function (see [De70]) :

1 (4-12)

(1-2°) (1-za%) (1-2%B%)

a
The coefficient of iﬁA ﬁ‘ is the multiplicity of the SU(3)
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representation (a,b) of degree, or U(l) label, z. Similarly the
SU(3)XU(l) representation (a,b,z) at the bottom of the Sp(6)

representation is described by the generating function

1 (4-13)

(1-pPA) (1-QB) (1-D2)

Now we must couple the SU(3) representations described by (4-12) and

(4-13) using the SU(3) Clebsch-Gordan generating function which is

1

(1-a,3) (1-A,A) (1-B,B) (1-B, B) (1-A,B,) (1-B,A,)

1 B,B, A (4-14)
-+

1-A,A,B  1-BB,B

or keeping the part even in 3,,B, (which will be the A,B of (4-12))

1
S

(1-aFa%) (1-3,3) (1-B2B?) (1-B,B) (1-3B;) (1-B;2%)

(1+AyB,A+A2A,AB+A A, B, B) (1+B,"A,B) X (4-15)

<
1-a*a’B

(1+A/aB, ) (B2B; a%+B}A, B, A+B2B, AB+B}A, B2AYB)
2

2,2
1—B43LA
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We multiply (4-12) , with the replacements A--> A‘A;", B--> B,B "%,

by (4-13) with a--> a's4, B--> B!, and (4-15) with A ,-=> A} ,

B,--> B} , A,-=> A% , B,--> B, and keep the A" a'° B'’ B'°

part. Because of the simple form of (4-12) and (4-13) this is

simple to do. The result is just (4-15) with the replacements Ai--)
2

ZA?, BT—-) Z B}, A,--> P, By--> Q, with of course the additional

denominator factors (1 - Zs)(l - DZ ). We get the Sp(6)D> SU(3)XU(1l)

branching rules generating function

1

(1-2°) (1-D2) (1-2zA%A%) (1-PA) (1-22B}B*) (1-0B) (1-2320%) (1-2*B2pP?)

(1+2A%0A+2A2 PAB+2AF POB) (1+2%B.2PB) . (4-16)

1-za? p*B*

(1+23703) (Z¥B2o*a%+7¥Biroa+z” BloaB+2 B Po*atB)

1-z28}%0*a*

Of course this is just equation (4-6) of [GR81], except that they
did not keep A, and B, (they were set = 1). It is better to keep

A, ,B, because the labels a,,b, which they carry as exponents
describe the SU(3) representation formed from the raising
generators. They help sort out the syzygies especially when we have
gone to SO(3)XU(l). Without them in the second term of (4-16) one is
tempted to divide the numerator factor (1 + ZAfQA)-—> (1 + 2QA) into

the denominator factor (1 - ZzBszAz)--> (1 - ZzQzAz).
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We can rewrite (4-16) in a more compact form if we observe

that nothing changes when interchanging

P <===> Q (4-17a)
A <---> B (4-17Db)
A%z <---> B,¥zY (4-17c)

This is due to the form of the equations used to obtain (4-16). The
first two replacement leave (4-13) unchanged and the last one does
not affect (4-12). One can also verify directly that (4-16) is
invariant under these changes., This observation is helpful in
simpliffing the generating function in (4-16). We can now separate
the epd's into pairs defining the "conjugate" of an epd as the one

obtained by the replacements (4-17a,b,c). With this we rewrite

(4-16) as

F(P, Q, D; A , B ; A, B, 2)=
={(1-k ) (1=-P ) (1-T) (L-F*) (1- §) (1-8*) (1-¢) (1--fr,*)]"1 X
X[(1 +m +© +72€ +3m*+ oL0+opc+ MM*) (1-3)"“ + (4-18)

+( X+ AL*+‘9*+ WhE § ko + ,,L* B *+ m*r*+ ;*Az,,l*) (1_3 *)—1 ]

The letters on the right hand side stand for the epd's :

2
§=p"a Bz, '2=PB42BZ‘Z , B=pA,2ABz, 7%=PQA,%BZ.

The asterisk denotes the "conjugate" epd, obtained by the
replacements (4-17). As we just discussed, the generating function

(4-18) is conjugation-symmetric, i.e., is unaffected by these
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interchanges. When (4-18) is expanded in a power series,

4
F= 0 fQ D A Bf" A B z‘7 C‘HM‘&‘“(,? (4-19)

the coefficient C, summed over aA,b4,

U(3) multiplet (a,b,z) in the Sp(6) IR (p,q,d).

gives the multiplicity of the

The exponents in (4-19) (or in the epd‘'s ) provide
instructions for constructing the basis states (or the epd's):
couple the U(3) multiplet (a 4,a /2+b ) » whose components are
polynomials of degree a,/2+b, in the Sp(6) raising generators (they

form the U(3) multiplet (2,0,1) and are the B of Eq. (3.2a) or

‘Y
B;M‘ of Eq.(3.6) of [Mo84]), to the bottom U(3) multiplet (p,q,d) of
the Sp(6) IR to obtain the U(3) multiplet (a, b, a4/2+b4+d). The

U(l) label is greater than a4/2+b4+d by three times the degree in &,

the SU(3) scalar of third degree in the raising generators.

The subgroup SU(3) of Sp(6) is converted to SO0(3) by
substituting into Eqg.(4-17) the SU(3)D 0(3) branching rules
generating function

G(a,B,L)=[ (1-2%) (1-B%) (1-aL) (1-BL)]~ ¥ (1+aBL) (4-20)

The substitution is accomplished [PS80] by evaluating
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F(P,Q,D;A,,B, ;A" ,B',2)+G(a'""a,8' ! B,L) (4-21)
A'°B'®

The subscript A'°B'® is an instruction to retain only the term in
A' and B' of degree zero. The variables A,B are inserted to retain
the SU(3) representation labels; as noted above, we will need all
the labels we can get. The U(l) label z now becomes the weight
label of the Sp(2) subgroup. The U(l) group is converted to
(noncompact) Sp(2) simply by multiplying by 1-Z, or, more precisely,
1-M*, where M* is the epd AALALZ defined below. Then z, the
exponent of 7, is the Sp(2) representation label, the lowest weight

of the Sp(2) multiplet.

To evaluate the expression in Eq.(4-21) we used a procedure
for separating positive and negative powers in a product
communicated by Richard Stanley of M.I.T, The starting point is the

identity:

1 1 [1 px~! ]
= +
(1-2X) (1-Bx~") 1-AB 1-AX 1-sx !

1-AB

1
|
—
>
>
+
-

1-aX 1-BX

If one wants to separate the more complicated expression
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1

(1-ax™) (1-Bx~ ")

(m and n positive integers), then one can still use this formula by

multiplying both numerator and denominator by

2 2 - - - - -4 —(m-
(142X 42 X" 4o +a™ O™ QeBX M 4B 4L B O
The result is the following formula
- - —(M")n
1 _ 1 1+BX " +...+B" ' X .
(L-AX™) (1-Bx"") 1-"p™ 1-ax™

-m - (M-DOm
B™ X " (1+ax™ +....2a" ' x
>
1-Bx~ ™
mn -n - (-
1 AX (14BX 4.l +BXTY
= +
.4
1-a"g" 1-AX
142X +.. 42! xovm
-

1-BX

Using these repeatedly one is able to separate any product with

positive and negative degree parts.

To separate the term of degree zero in Eq.(4-21) we analyse the type
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of terms we encounter and, for each type, get a formula which gives
directly the zero power part in one variable., We extract first the
zero power part in A' and we repeat the procedure to get also zero
power in B', We list below the types of terms which appear and
their zero power parts. 1In these formulae a, b, ¢, 4, e do not

contain the variable A.

-4

A _ 1 a + be
(1-aA) (1-bA”) (1-cA™' ) (1-dn"%) | & (1-ac) (1-bd)| 1-a*d  1-bc*
1 1 [ 1 be |
= +
(1-aA) (1-bA*) (1-ca™") (1-da™%) | & (1-ac) (1-bd)| 1-a*d  1-bc*
A 1 [ ad c ]
- = +
(1-aa) (1-ba") (1-ca™!) (1-an"2) | ¥ , (l-ac) (1-bd)| 1-a*d  1-bc
-1
A 1 a+b
= +

(1-aA) (1-ba) (1-ca¥) (1-an~' ) (1-en?) |w° (1-ad) (1-ce) | (1-a%e) (1-bZ?e)

bt a cd

+ +
(1-b*e) (1-bd) (1-bd) (L-cd?)

1 _ 1 l+abe .
(1-ad) (1-ba) (1-cA%) (1-daa~' ) (1-ea~%) |2° (1-ad) (1-ce) | (1-a%e) (1-b%e)
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bd ca?
& +

(1-b%¥e) (1-bd) (1-bd) (1-cd?)

A 1 ae+be
= +
(1-aA) (1-bA) (1-ca?) (1-d2~' ) (1-en"?) I (1-ad) (1-ce) | (1-a%e) (1-b¥e)

b¥*de ca’
+
(1-b%e) (1-bd) (1-bd) (1-cd?)

A 1 e+abe?

_ f .
L

(1-aA) (1-bA) (1-cA?) (1-da~! ) (1-er™2) [a° (1-ad) (1-ce) | (1-a%e) (1-b%e)

bde a
+ +

(1-b%e) (1-bd) (1-bd) (1-cd®)

1 1l ale +
(1-ad) (1-bA%) (1-ca®) (1-aa~' ) (1-en™2) | (1-ad) (1-be)| (1-a%e) (1-ce)

ce 1
+ +
(1-ce) (1-cd¥) (1-cd”)(1-bd”)}

A 1 ae
= +
(l-aA) (1-ba%) (1-ca¥) (1-da~"' ) (1-eA™%) |2° (1-ad) (1-be) | (1L-a%e) (1-ce)

cde d
+ + - -
(L-ce) (1-cd¥)  (1-cd¥) (1-bd™)
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Az 1 e
C = *
(1-ad) (1-ba%) (1-ca%) (1-da~' ) (1-er~2) [a° (1-ad) (1-be) | (1-a%e) (1-ce)
cdle dz
+ +

(L-ce) (1-cd®) (l-cd?) (1-bd%)

The result of the above calculation is the desired Sp(6)D
Sp(2) X 0(3) generating function. It is given in (4-22), in terms of
epd's. The epd's o 'P in (4-22) are the same as in (4-18); the
others are as follows (the notation is (pq,a4b‘,ab,Q) which stands
for

Tt A BY A oot ) :

J=(02,20,00,0), K=(10,00,10,1), M=(00,02,02,0),
a=(20,00,20,0), b=(00,20,20,2), c=(20,20,02,0),
d=(20,20,02,2), e=(11,00,11,1), £f=(10,02,01,1),
g=(11,20,01,1), h=(10,20,11,1), i=(11,20,20,0),
j=(10,02,12,2), k=(20,02,11,1), £=(12,20,02,0),
m=(10,20,11,2), n=(21,20,11,1), p=(20,20,21,1),
g=(21,22,02,0), r=(21,20,22,0), s=(11,22,11,1),
t=(11,20,12,1), u=(30,22,22,0), v=(30,20,12,2),

w=(20,22,12,1), x=(10,22,21,2), y=(00,22,22,3).
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H(P,Q D;A,, By A,B; 2, L) =
[ (1-¢)(1-8) (1-3) (1-J%) (1-K) (1~K*) (1-M) ] - 21X
xX{[(1-a)(1l-a*)(1l-c)]-2[a*+e+r+a*h+i*+ark+(+a*n+ci+ck*+
+u+ch*+qreq+iir+ars]+
+[(1-a)(l-a*)(l-c*)]‘1[c*+c*e+r*+ah*+i+ak*+[*+an*+c*i*+
+crk+ut+crh+qr+egr+criireichg]+
+[(1-a)(1l-c)(1-d)]-*[c+v+cp+ch+cE+ck+cg+cn+cdi+cgh+cfp+
+cfh+cfg+cfn+cfi+cs]+
+[(1l-a*)(1-c%)(1l-d*)]-? [cxd*+vrksciprichhi+chfXsckkRickgReCchnt+
+ckdriksckgrthr+chkfrphickfrhr+ckfrghickfrni+
+ckfkikickdig]+
+[(1-a)(1-b%x)(1-d)]-2[1+j+p+thef+k+g+n+di+gh+fp+fh+fg+fn+fiss]+
+[(1-a*)(1-b)(1-d%)]-1[d*+d*xj*+pr+hx+fr+k*+g+nk+d*ik+gth®+
+fxprefrhnifrgrifrnk+drfxinsdrsg]+
+[(1-a%*)(1-b)(1-c)]-[a*b+j*+t+a*bh+bi*+a*x+bl+a*f*h+
+cfx+bck*+w+bch*+bg+cfrhx+fxi*x+axbs]+
+[(1-a) (1-b*)(1-c*)]-2[brc*+c*j+t*+ab*h*+bri+ax*+b*fr+afhr+ctf+
+bxcxk+wk+ibrcth+brgr+ckfheckfis+brc*g ]+
+[(1-b)(1-¢)(1~-d) ] -2 [bc+hm+cm+bch+becf+cx+beg+cfxh+cdf %+
+becgh+cfm+becfh+bcfg+cms+cff*+bes]+
+[(1-b%) (1-c*)(1-d%)]-1[b*c*d*+h*m*+c*m*+brcrhk+brckfr+chx*+brcrgr+
+c*fhx+ckd*f+bikcrgrthrscrErxmribicfxhis
+bxckfrxghicrmrg+crEfx+brcrdrg ]+
+[(1-b) (1-b%) (1-d) ] - [b+y+m+bh+bf+x+bg+f*h+df*+
+bgh+fm+bfh+bfg+ms+ff*+bs ]+
+{(1-b)(1-b*)(1-a%) ] -2 [bxd*+d*y+mr+bkh*+bkfx+xk+bkgr+fhk+
+@*f+bkgrh+ fxm*+brfkhk+bRfRgh+

+m*g+d*xffx+brd*s ] }

Eq. (4-22)
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The conjugate of an epd, denoted by an asterisk in Eq(4-22), has the
same meaning as in (4-18): interchange the SU(3) labels in each of
the three pairs, i.e. (pq,a‘b4,ab,{)*=(qp,b4a4,ba,(). The epd's « ,
@, e, s, y are self-conjugate. The generating function in (4-22),
apart from the missing denominator factor 1-M*, removed in
converting from U(l) to Sp(2), is conjugation symmetric, a fact
which was helpful in sorting out the epd's and giving a first

indication about it's being correct.

To make sure you get only bottom states of Sp(2) multiplets
from the other epd's you must render them traceless by the procedure
described in [Mo84]. Those substitutions of course mutilate the
SU(3) properties, as expected; nevertheless the SU(3) labels a‘b4
and ab are useful as instructions on how to construct the epd's and
were invaluable to us ( we had to rederive the generating function
with them included) in writing the generating function with the

different terms interpreted consistently in terms of epd's.

4.3. Checking the generating function

As mentioned above, the generating function in (4-22) is
conjugation symmetric, a fact which was considered as a first
positive indication about its correctness. The generating function

was also subjected to what may be called consistency checks. For
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example the coefficient of i in (4-22) is

[(1-a) (1-a*) (1-c*) 1" + cl(1-a) (1-a*) (1-c) 17 +

d[(1-a) (1-b*) (1-d) 1"} + b*[(Ll-a) (1-b*) (1-c*) 17} +cd [ (1-a) (1-c) (1-d) 1.

It may be verified that each product of powers of three denominators
epd's which appear in the same fraction (including those in which
one or more exponents are zero) appears just once in the above
expression: this check was made separately for each numerator epd

and for each product of numerator epd's.

As a final check we converted the expression in (4-22) into
a generating function for SO0(3) weights instead of SO(3) multiplets;
it was then compared with the corresponding weight generating
function obtained by converting (4-18) directly; since an analytic
comparison would be prohibitively laborious, the necessary
substitutions were made by a computer program and the two generating
functions compared for random values of their arguments. In what
follows we explain this checking test and we give in Appendix A a
listing of the program used and the actual result. We start with
the known [GR81] generating function for Sp(6)>SU(3)xU(l) generating

function



72

1
z

(1-2%) (1-D2) (1-23%) (1-PA) (1-2¥B%) (1-0B) (1-20%) (1-2%p%)

(1+ZQA+ZPAB+ZPQB) (1+2¥PB) (4-23)

+

1-zp*B?

*-(l+ZQA)(ZzQLAz+ZzPQA+ZzQAB+Z4PQLAzB)

1-7%0%a%

with Sp(6) labels (pgd) and the SU(3) labels (ab). This is (4-16)
with A,=B,=1. Since the factor (1-DZ) appears both in the
generating function (4-22) to be checked and in (4-23) considered
correct and used for numerical comparison we drop this factor in
both generating functions. We get the function F(P, Q, A, B, 2Z). We
want now to convert the SU(3) group to SU(2)xU(l) and to 4o this we
couple our function to

G(a, B, T, ¥) = [(1-ATY“3)(1-Ai4”)(1-BT§¢3)(1-5299)]'1. (4-24)

This is the SU(3)>SU(2)xU(l) generating function where we use the
same (AB) labels for SU(3) representations, T is the SU(2) label and
Y stands for U(l). Since we are not interested in the U(l) subgroup

here, we drop the Y in this equation and get the simpler function

G(a, B, T) = [(1-AT)(l—A)(l—BT)(l-B)]‘L (4-25)
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We want to go from Sp(6) to SU(2) via SU(3). To do this we
. substitute the generating function for SU(3)>SU(2)xU(1l) in the
generating function for Sp(6))SU(3)xU(l). We have to make sure that
the "transient" SU(3) representation is the same in both generating
functions and to enforce this we couple (i.e. multiply together)

F(P, Q, A, B, 2)G(a~' ,B”}

,'T) (4-26)
and retain only the 2’ B’ part. In this way the SU(3) labels from the
two generating functions are equal and what we get is a
Sp(6)2SU(2)xU(l) generating function. Since the labels P, Q, Z are
not affected in these calculations we write F(A, B) and understand
by it the complete F(P, Q, A, B, Z). To get the A B° part of (4-26)
involves some algebra and we prefer to use the residue calculation
method. It can be easily shown that taking the NS part of our

expression

F(A, B)

(1-2~*7) (1-a~') (1-B"' T) (1-B~")

is equivalent with taking the residue of

Res s ira, B) Res ABF (A, B)

an—.

A,B (1-A"T)(l-A“)(l-B“T)(l-B“) A,B (A-T) (A-1) (B-T) (B-1)

with respect to both A and B. To perform the residue we use the
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following formula for the residue of a function with two simple

poles

Res AF (A) TF(T)*. F(l)

A (A~-T) (A-1) T-1 l1-T

Applying this formula twice we get

T*F(T,T)-TF(T,1)-TF(1,T)+F(1,1) (4-27)

Res ABF (A, B)

—-—

AB  (A-T) (A-1) (B=T) (B-1) (T-1)%

We want to keep track of the SU(3) labels (A,B) since the generating

function to be checked contains these labels. Call this

H(P,Q,A,B,Z,T).

H(P,Q,A,B,2,T)= (4-28)

TLF(P,Q,AT,BT,Z)—TF(P,Q,AT,B,Z)-TF(P,Q,A,BT,Z)+F(P,Q,A,B,Z)

(r-1)%

F(P,Q,A,B,Z) is given by (4-23) without the denominator factor

(1-DZ) . The expression in (4-28) can be used as a generating

function for Sp(6)DSU(2)xU(l) with Sp(6) labels (P, Q, D=2) and

SU(2) label T. We want to convert this generating function for

multiplets into the corresponding generating function for weights.
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‘We know that the SU(2) weights are given by

1 (4-29)

(l-T»l) (1-'1‘/7"“)

such that we have to multiply H(T) of (4-28) (we disregard here the

labels P,Q,A,B,Z which are not affected) by (4-29) with T--> T~ %,
and take the T° part of it or, equivalently, the residue with

respect with T.

H(T) Res TH(T) @ H@W) - B! (4-30)

—
—

(1-1"'9) -1ty ) [1° T (T-0) (T-0p") -y

This gives us the SU(2) weights. To compare with the SO(3) weights
that we get directly from our Sp(6)D>Sp(2)x0(3) generating function
we double the weights in (4-30), i.e. replace qvby'n?. Now we are

ready to compare the weights given by

0%H(P,Q,A,B,%,% ) -G H(P,0,A,B,2,7"%) (4-31)
2

n° -

with the weights given by the Sp(6)2Sp(2)x0(3) generating function.
For the actual comparison we randomly generated positive real values
for the labels P,Q,A,B,%,9 and evaluated the generating function
given by (4-22) with A, =B, =1. We compared the value with the result
of (4-31). In Appendix A we give the listing of the program used and

an output with the two functions and their ratios for randomly
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generated values for the labels.

4.4, Related branching rules

Complementarity relations in group-subgroup chains imply
connections between apparently unrelated branching rules. Thus the
generating functions of Eqg.(4-18) and (4-22), for Sp(6)> U(3) and
Sp(6)> Sp(2) x 0(3) respectively, imply branching rules generating
functions for SU(n); S0(n), with all but the first three SU(n)
labels zero and for 0(3n)D 0(3) X0(n), with all but the first 0(3n)

label zero, respectively.

Although not needed for the theory of nuclear collective
motions, we present the results here since we get them at not much
extra effort.

For the chains of subgroups

Sp(6n) > Sp(6) x O0(n) (4-32a)

Sp(6én) D Sp(2)x 0(3n) (4-32Db)
complementarity relations hold (see [CC84], Section II). This means
that, since the representation of Sp(6n) is [(1/2?“’] or
[(1/2)>™™*,(3/2)] (the metaplectic ones), the IR of Sp(6) determines

the IR of 0(n) and vice-versa in (4-32a) and the same holds for

Sp(2) and 0(3n) in (4-32b).
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We can give the generating function for metaplectic Sp(6n)>
Sp(6)xS0(n) (pgd labels for Sp(6) and hjk for the first three SO(n)

labels and all the next labels zero).

1 : (4-33)

(1-p0™R 1) (1-0p3) (1-0**K)

Here the integer powers of D correspond to even metaplectic Sp(én)
and half-odd powers of D to odd metaplectic Sp(6n). Substituting
into this the generating function (4-18) for Sp(6)>U(3) we get the
generating function for metaplectic Sp(6n) into U(3)XSO(n) ( ABZ
stand for U(3) and HJK for SO0(n)). Looking at (4-33) we see that
this is done replacing in (4-18) P--> ZdzH, Q--> 2J, D-—Z”lK. This
means that the generating function for metaplectic Sp(6n)> U(3)x0(n)
is also given by (4-18) but the letters now stand for:

3 3/2

3 1/2
& =2 -=> 2% , (5=Dz-—> 27k , %= rpa--> z/ AH, T'=QB--> ZBJ,

2 2 2 2 2
$ =0%z--> z33%, &%p?z’--> z°u®, €=a%z--> za¥ , ¢*=’z°--> 2%,

2
r=p*B*z--> z*B*u?%, ¥=o*a*zt--> z*atst, »L=PBZZ'—->Z5/2'BH,

PP=QRZ--> 7 1AJ, M =PQBZ--> 7% BHI, W*=PQAZ*--> 77/%aH7.

Now we can convert further to a generating function for the
chain SU(n)>0(n) ( from ABZ as labels for U(3) to EFG as the first
three labels of SU(n) and the rest of them zero). We use the
generating function for SU(3n)>SU(3)xSU(n) (the first SU(3n) label

is 2, the SU(3) labels are AB and SU(n) labels EFG) :
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1

(-2 ag) (1-2BF) (1=2%%G) (4-34)

From this generating function we see that we have to make the

replacements Z--> Gys, A-~> EG¢3, B--->FG2/3 in the previous

generating function or replacing directly in (4-18) :
p-=>6®u, 0-->6®3,p->cPx,a--> e

B --> FG~¥, 7 ——> ¢¥, A,-->1, B -->1.

We can say now that (4-18) is the generating function for SU(n)>0(n)
branching rules (SU(n) labels EFG and 0O(n) labels HJK) if the
letters on the right hand side stand for:

3 2
A=z --> G, [>= ko> ax, F=z

2

L
AH--> EH, ¥=2JB--> FJ,
S=2*7 - &t i?, S ut--> & W, €=ZA2'-—>E2' g =72 ——> F?

R e

Y=ztptut > F"Hz, 3 =z ->e*e*r*, g =2%Bu--> FoH,

l‘f=Z2'AJ-—> EGJ, % =27 BHI--> FGHJ, %*=z’/’~AHJ-—> EG?HJ.

The above substitutions are valid when n> 9. For n= 8 the
substitution for D changes to D --> dn KK' where the nonzero 0(8)
labels are (h,j,k,k"), with k= k', and for n= 7 the substitution
for D is D --> G'BK2 (here the three 0(7) labels are (h,j,k)). We

do not consider the case n £ 6.

Similarly, starting with the generating function for Sp(6)>

Sp(2) X 0(3) given in (4-22) (Sp(6) labels PQD, Sp(2) label z and
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0(3) label L), substituting (4-33) and (4-34) generating functions
we get the branching rules generating function for the chain 0(3n)>
0(3)X0(n), all but the first label of 0(3n) zero. The labels are U
for 0(3n), L for 0(3) and HJK for O(n) (all but the first three
labels zero).
All what we have to do is to substitute in (4-22)
P-->UH ,Q-->U0%J3 ,D-->UK , Z-->U0" , L-->L
A‘-—>1,B4-->l, A-->1,B-~-->1;

These substitutions hold for n> 9. The substitutions for D become

2

D --> UKK' (n=8) and D --> UK (n=7).
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CHAPTER 5. THE SP(6) D SP(2)x0(3) BASIS STATES

5.1. The Basis States for Our Problem

The general basis states for the group-subgroup chain
Sp(6)D Sp(2)x0(3) can be read from the generating function given in
Eq. (4-22) . Expanding the generating function (4-22) in a power
series, we get an infinite number of terms (infinite powers from the

denominator factors) and we interpret each term as a basis state.

In fact, the energy eigenstates are linear combinations of
the basis states we use here. As stated in Chapter 1. .the subgroup
Sp(2)X0(3) does not provide enough labels for Sp(6). After Racah
[Ra51], the group Sp(6) needs (r-{)/2 = 9 (r=21 is the order of
Sp(6) and =3 is the rank) internal labels while the subgroup
provides only four (two from Sp(2) and two from O0(3)). Thus in the
branching Sp(6)> Sp(2)x0(3) there are five missing labels and this
leads to a nonorthonormal basis. However the basis is complete and
the states are linearly independent. One could apply an
orthogonalization procedure (such as Gramm-Schmidt) but the new
states would be cumbersome to work with. There is no need to
orthogonalize because the non-orthonormal basis is as good to work
with as an orthogonal one. One has to define matrix elements of an

operator L by the coefficients lljibelow
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Q)i>= Z IJ'>—0-35
3

and not by 1%;=<j|41|i>. To find the eigenvalues and the eigenstates
of the operator {0 (e.g. {l=H) one just diagonalizes the matrix l%ﬂ.

All the terms (i.e. all the basis states) in the expansion of
the generating function have the same structure. Firstly, all

contain the factors from the common denominator in front,

d,, P’ J? J*' K' K*' M!
F=d& p J J* K K* M
where the powers d', P', J', J*¥', K', K*¥', M' are positive integers
or zero. Secondly, all terms contain the three denominators in front

of each square bracket. There are twelve different ones of the form

al a*l cl a' a*l c*l b! b*! d*!
G = a a* c, G = a a* c* reesey, G = b Db* a*

And finally the terms inside each square bracket (there are 16 of
them) differ by their numeratof factor. Let us call this numerator
factor Hié; i (1£ig12) stands for the square bracket to which Pfé
belongs and j (1£j<16) shows its position inside the square bracket
i. Note that the numerator factors appear just at the power one and
in each bracket we write in the first position (j=1) the term which

contains only epd's which occur in the denominator G; . We call this

first term the denominator term.
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To summarize, the basis states are of the form
v
F G, H; (5-1)

(no sum over i); there are 12x16=192 types of terms. Of course there
is an infinity of basis states (Sp(6) is non-compact) corresponding

to the infinity of powers in F and G .

The basis states involve products of epd's. The products are
stretched (all labels additive except the SU(3) ones). Since each
epd is the highest S0(3) and lowest Sp(2) state of an SO(3)XSp(2)
multiplet, a general basis state which is a product of such epd's is
also highest SO(3) and lowest Sp(2) of the subgroup multiplet which

it represents.

Of course in the stretched products with all labels additive
we refer only to the Sp(6), Sp(2) and SO(3) labels. We ignore now
the labels a, b, a, , b, which were helpful in sorting out the epd's.
They are not additive under the multiplication of epd's. We could
have kept them as actual labels but then we would need projection
procedures to retain only the stretched part in them, It is simpler

to ignore them.

Looking at the generating function given by (4-22), one can
see that certain epd's never appear multiplied together. We call

these combinations incompatible products or syzygies.
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5.2. The epd's and their Syzygies

We mean by a syzygy an incompatible product of epd's. The
syzygies can be read from the generating function because the
incompatible epd's do not appear multiplied together in the series
expansion of the generating function. The incompatible products are
superfluous because they can be expressed as linear combinations of
products of compatible epd's, i.e., which are present in the
generating function and provide the same group-subgroup labels.
Strictly, the word syzygy means just the equation which relates the
inéompatible product to the allowed products of epd's ; we use the

word in a looser sense to designate the incompatible products.

For example the pair "be" does not appear in the generating
function; thus b and e are incompatible (see also Figure 5-3 below).
One can verify that be is expressible as

be = ( Kj* - K*m ) /2

where Kj* and K*m are compatible products.

From the generating function we can extract all the syzygies.
The common denominator epd's («,f, J, J*, K, K*, M) are all
compatible among themselves and with all the other epd's. The epa's
in the sets of three denominator factors in front of the twelve
square brackets are not all compatible., We give below in Figure 5-1

the compatibility among the denominator epd's a, a*, b, b*, c, c*,
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d, d*. The star (*) stands for an incompatible product.

a* b b* ¢ c*d 4a*

Fig 5-1. Compatibility table for denominator epd's
in the generating function for Sp(6)>Sp(2)X0(3)

branching rules.

All the other epd's appear only in the numerators and we call
them numerator epd's. We list below in Figure 5-2 all numerator
epd's together with the denominator factors G; with which they are
compatible. The generating function is conjugation symmetric, i.e.
is not affected if all epd's are replaced by their conjugates (see
Chapter 4, Egs. (4-17a,b,c)). This implies that a compatibility
relation ( or an incompatibility one) between two epd's holds for
their conjugate partners. Using this we reduce the size of our table

almost to half (the epd's e, s, y are self-conjugate).
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8

G

9

G

10

G

11

G

12

aa*c aa*c* acd a*c*d* ab*d a*bd* a*bc ab*c* bcd b*c*d* bb*d bb*d*

>

*

>

*

*

>

*

*

*

>

*

*

*

*

*

>

*

>

*

*

>

*

>

Fig 5-2. The numerator epd's and their compatibility

with the denominator factors G;.
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In Fig.5-2 the (>) stands for compatible and (*) for incompatible.
I1f interested in the compatibility of the conjugate of a numerator
epd, say g*, we first observe that the twelve G; can be organized
into six pairs under conjugacy, such that G, *=G, , G3*=G*,..., G, *=G,,
and if, for instance, g is compatible with G3, Gg s Gg and G, and
incompatible with the rest, then g* is compatible with Gyr Ggs Gy
and G,, (the conjugates of G,, Gy, Gq and G,) and incompatible with
the rest. This is a consequence of the fact that the entire
generating function is conjugation symmetric and, since the
denominators are in conjugacy pairs (Gu(=G*zh-4' k=1,..6), the
corresponding numerator parentheses are also paired under conjugacy.
From Figure 5-2 we extract the compatibility between numerator epd's
and individual denominator epd's. When a numerator epd is compatible
with a three factors denominator, say G,=aa*c, it is compatible with
each of a, a*, c. When the numerator epd is incompatible with the
denominator G;, it is incompatible with at least one of its three

factors.
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c* >>*>>>>******>******

Fig 5-3. Compatibility of numerator epd's

with denominator epd's

For the conjugate numerator epd's (f*, g*, h*,...etc.) which
are not listed in Figure 5-3 one has to take the "conjugate" of this
table, i.e. if f is incompatible only with a*, then f* is
incompatible with a and compatible with everything else in the list.
Note that the self-conjugate epd's (e, s, y) are compatible (or

incompatible) with both members of a conjugacy pair (e is compatible

with a, a* and ¢, c*).

What about compatibility of the numerator epd's among
themselves? Observe that in the generating function, they appear in
pairs at most and even the appearing pairs are exceptions (just a

few in the list of all possible ones). All combinations of three or
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more numerator epd's are forbiddden and the only allowed pairs of

numerator epd's are the following ones:

ff*, ee*, eq, eqg*, fg, f*g*, fh, f*h*, fh*, f£*h, fi, f*ix,

fm, f*m*, fn, f*n*, fp, f£*p*, gh, g*h*, hm, h*m*, ms, m*s,

All other pairs are forbidden. The allowed pairs are incompatible
with all numerator epd's but they are compatible with the
denominator factors they appear with. We give below in Figure 5-4
the compatibility table of the allowed numerator pairs with the
denominators Gy . Again we use the conjugacy property to reduce the
size of our table. For compatibility of f*m*, for example, one sees
that fm is compatible with G4 and G, ; hence f*m* is compatible with

G*3 and Gﬁ, , that is, with G and G,, .
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G G G G G G G G G G G G
1 2 3 4 5 6 7 8 9 10 11 12
aa*c aa*c* acd a*c*d@* ab*d a*bd* a*bc ab*c* bcd b*c*d* bb*d bb*d*
eq > * * k * * * * * * * *
ff* * * * * * * * * S > > >
i i* > > * * * * * * * * * *
fg * * > * > * * * > * > *
fh %* * > %* > * * * > * > *
fh* * * * * * * * > * > * >
fi * * > * > * * > * * * *
fm * * * * * * * * > % > *
fn %* * > * > * * * * * %* *
fp * %* > * > * * * * * * *
gh * * > * > * * * > * > %*
hm %* * * * * * * * > * * *
ms * * * * * * * * > * > *

Fig 5-4. The compatibility of allowed pairs of numerator

epd's with the denominator factors Gg.

As we did for individual numerator epd's, we can extract from
Figure 5-4 the compatibility of numerator pairs with individual
denominator epd's. Since the denominator epd's appear in the
binomial expansion of the generating function to all powers, the
compatibility with a, a*, b, b*, ¢, c*, 4, d* is in fact

compatibility with these to any power. In the table below we give
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the compatibility of pairs of numerator epd's with denominator

epd's.

eq ff* ii* fg fh fh* fi fm fn fp gh hm ms

a > * > > > > > * > > > * *
a* > * > * * * * * * * * * *
b * > * > > > * > * * > > >

c > > > > > * > > > > > > >
c* * > > * * > > * * * * * *
d * > * > > * > > > > > > >
ax* * > * * * > * * * * * * *

Fig 5-5. Compatibility of allowed pairs of numerator

epd's with denominator epd's

This analysis was helpful in checking the consistency of our
generating function. For instance, an allowed pair of numerator
epd's is expected to appear together with the denominator G; if both
epd's of the pair appear by themselves with G;. Checking this we had
to change the interpretation of a few terms in order to comply with
this consistency requirement., This explains why the version given in
Equation (4-22) is slightly different from the one given in the
published paper [MN85] (see Appendix B). We made the following five

(times two) changes:
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du --> cfp and d*u* --> c*f*p* in G, and G, resp.
k*w --> cf*h* and kw* --> c*fh in G} and G, resp.
hs --> bg and h*s* —-~> b*g* in G, and Gy, resp.

dhs --> bcfg and d*h*s* --> b*c*f*g* in G, and G,, resp.
dw --> cfm and d*w* --> c*f*m* in G, and G resp.
For example, fp was established as a compatible pair of
numerator epd's (it appeared in Gg). Checking the compatibility of f
and p separately, we see that both f and p appear in Gy, SO the pair
fp was expected to be there too, and this is why we reinterpreted
du --> cfp. The changes of du and of dw into cfp and cfm
respectively (and their conjugates, of course) involve giving up
single numerator epd's u and w (the epd "d" is denominator one and
it will appear anyways multiplied at an arbitrary power from the G,
and Ggq in front), and the changes affect only the table in Fig. 5-2
and 5-3, everything remaining consistent. The other changes involve
pairs of numerator epd's into pairs of numerator epd's and we have
to be careful not to give up a pair which is expected to be there.
Fortunately everything comes out nicely by making hs and k*w (and
their conjugates) incompatible; and this is possible since they do
not occur anywhere else in the generating function. In the end we
have the minimum number of allowed pairs of numerator epd's and

these pairs are present with the denominators compatible with both

members of the pair.
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5.3. How to Construct the epd's Explicitly

The epd's are specified by the set of labels

(p,q,a,,b‘,a,b,g) which stands for

Pga b, a b a/2+b |
PQA B, A B 2 L (5-2)

in the binomial expansion of the generating function in Eq. (4-22),

Here pqg are the first two Sp(6) labels (or the SU(3) labels of the

"bottom" states since we consider the lowest Sp(2) states). The
labels a, » by are the SU(3) labels of the SU(3) tensor made from the
raising generators while a, b are the "final" SU(3) labels and are
found in the Clebsch-Gordan series (pq)x(a, b, ). The label € is the
80(3) label and we consider highest (m=[) states. The label z is the
U{(l) label which gives the degree in the raising generators. The
third Sp(6) label d appears only in the epd $= DZ so we did not
reserve space for it in the notation. If we omit «= Z3 and @= Dz,

the label z is redundant, for it always equals a,/2 + b,.

To construct explicitly an epd given by its labels
(pq,a‘b1,ab,Q) one has to multiply the SU(3) representation (pqg) by
the SU(3) representation (a,b;) to obtain the final (ab), project in

S0(3) and take the m =[ component.,

The Sp(6) in our problem originated from Sp(6n), the dynamical
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group of a 3n-dimensional harmonic oscillator, For details on
symplectic geometry see Chapter 3, As discussed there, we have n
particles (in fact A = n+l nucleons but one eliminates the
center-of-mass) in 3 dimensions with the Jacobi coordinates and
momenta x; and p, , i =1, 2, 3 and s =1, 2,...n satisfying the
commutation relations of Weyl type. The creation and annihilation

operators are given by the usual

M= (% - ipy) /V2 (5-3)
3;5 ( xy¢ + ipy ) /J—z-

Without losing any generality we may think of n as being equal to 9
(A=10 nucleons). We get a 27-dimensional harmonic oscillator and the
chain is Sp(54)D Sp(6)x0(9). Instead of the components i =1, 2, 3

we prefer to use polar-type -1, 0, 1 components defined as

X, = Xq ¢ %Xy = (%, % ix, ) /{2 (5-4)
Also in the particle-index space, we prefer "hyperspherical"
components. For this purpose we define j by n = 2j+l1 and replace the

index s =1, 2,...n by the index m = j, j-1,...,-j. In our case
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(n=9) the new components are given by

+
[

xz)/ﬁ
x, ) /2 (5-5)
Xy, = (% £ i %) /(2

xg)/rZ—

Xi4= ( X‘

]
123
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—
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(=]
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o~
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—
s
-+
[
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"

X0

The highest state in SO(3) and SO(9) is the i = +1 and m = +4 state,
%,q' To construct the SU(3) representations (pg) we use the highest

SO0(3) and SO(9) states. For (pg)=(10) triplet

o

P
&=y + P=1y and 'b‘=(1.74 . (5-6)

we use

The SO(3) projection is

T P o Fig. 5-6b

For the anti-triplet (pq)=(01l) we have two choices: either the
particle-antiparticle scheme where the (0l1) represents an
antiparticle (and the states have an asterisk "*") as opposed to

(10) in Fig 5-6a which stands for a particle,
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Fig 5-7a
& —x
either the two-particles scheme where the (0l) is obtained by
multiplying two triplet (10) representations of two different

particles, say of m=4 and m=3 in S0(9).

4 « % d o
" 7" \ 7 ° A
\ / x N\ 7 - /N
N/ N/ /N
\/ \/ W/ \ g
By Ps

In the two-particles scheme the product is antisymmetrized as

follows:

T "y

-1 *

0(4{’;3-0(3]’54 B P’Lo« ”103

o(a j‘b - fq d3 = ”"“0 ’Vll.’
Mk My

P*

1
*
]

7‘1 Py - {5" ’&3 = | e M
Mow o

And the SO(3) projection is the following:

et Fig 5-7b

(5-7)



96

The Y2 stands for the matrix elements of L,(L_). We use A, ,¥ for
(pqg)=(10) and -3¥*, ﬁ*, «* for (pq)=(01) understanding that they
stand for (5-6) and (5-7). As discussed in Chapter 3 p.51 the
"ground state" bottom Sp(6) IR (p,q) has to be "harmonic" and, for
this purpose, we have to use traceless variables for the basic SU(3)
IR's (1,0) and (0,1). When the antitriplet (0,1) is given in the
particle-antiparticle scheme one replaces the triplet variables
(d,ﬁ,f), i.e. the unbarred ( un ones and the antitriplet states
(-1*,@*,¢f), i.e. the barred (7ﬁm) ones by their traceless versions

given in chapter 3 eq. (3-44).

m, --> M- B (f+37" 37

m
(5-8)
M -—> m - B+3)”
"L'" s a'lim
Here B is the SU(3) scalar
B = L& * +§§* +33 (5-9)

AL . . .
and N is the total degree operator which gives p+q when acting on an
SU(3) IR (p,q). By these replacements we insure that the states do

not contain the scalar B; they are in fact orthogonal to B.

The problem of tracelessness does not arise in the two-particles
scheme for the antitriplet (0,1). In this scheme the scalar B
vanishes when we multiply the antitriplet (-¥*,p*,x*) of (5-7) with

the triplet (m,,@~,# ) of (5-6).
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N M "
B= Lot +ppt + T = ”1.4 & 3 +”t°‘t ALN (3 —02“ "1.“ "7‘3
. mo'f ”lo} M.T‘( QT& Aloq ,\L“5
%o A\oq W\'DB "l(q (yl,q} ﬂl'lq
gk B .
s My Ny My Moy oy

which is the expansion after the first column of the determinant:

Nl.\q. ﬂll% Nllq.
(vl'° % ”l,03 01 A
ALT‘* M3 D1

We just proved that the unwanted SU(3) scalar vanishes identically
in the two-particles scheme, in which case the starting Sp(6) states

are automatically traceless.

The higher IR's are obtained by taking products of the triplet

and antitriplet states given above.

The (pqg)=(20) representation is given by

Wi a¥ o«

\

px\ 4

Fig 5-8a

p‘/f %
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with its S0(3) projection

1=2 ”6"{5. B 4P L Fig 5-8b
gt

=0 . g2y

2 e

while the (02) representation is

#70
/\
// \\
Py B
/ \ Fig 5-9a
/ \\ 2
x . ~§*
e
with the SO(3) projection
£= df’_ - e _ v_‘n . _
2 £ _-F¥ . BY 4.  Fig 5-9b
F v )s
L=0 .(Ig‘.z Vi

The (pg)=(ll) representation is

b a
/ \
/ \
// . \ ]
c 9
( )
\ / Fig 5-10a
\ /
\ /
d e
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where the letters stand for

a = d§*

b = ¥p"

c = d*%

d = d*p (5-10)
e = -p¥”

f=-ad”

g = (ox*= ¥¥*) /N2 is the {=1, m=0 state

h = ( 2fpp *-ad*-3¥*)/[6 is the L=2, m=0 state

with the S0(3) content (11)D (2)+(1l).

l=2 -c 13 o f
(b-d) /2 (ate)/ 2

L=1 (b+a)/ {2, . (-at+e) /)2 Fig 5-10b

To construct the epd's we also need the representations
(a,b;) which couple to (pg) to get the final (ab) representations.
The (a4q ) are made of the raising generators B%m (see Chapter 3).
The raising generators are quadratic in the creation operators such

that the (a,b, )=(20) representation is linear in BI“and (alb‘)=(02)

is quadratic in Br. The degree in Qt\is given by (a,/2+b,). Here
-

also we use the traceless versions of B:“ called (Q; in (3-42) and

(3-43) .
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For (a,b‘)=(20) we use the sextet

\ / Fig 5-1la

The SO0(3) projection (20)>(2)+(0)

L=z s

Sc . . .
&6 A " :
: Fig 5-11b
2=0 .rb
. s + .t ul
corresponds to the raising generators B, (=B, ) and B,, - We can
identify
+ + + +
&= B, m=18, , $=Bz, o=B8B7
and (5-11)

A=(Zwre) A3 = B, petw-126)/03 = By, .

Since we are interested in "bottom"™ Sp(6) states (lowest Sp(2)) we
+

-4

do not use the 0(3) scalar B' , which is the Sp(2) raising

generator, to construct our states. Then v and & are given by
* x
¢ = By, /[3 and »x=J2/3 B, (5-12)

To construct the (02)=(a; b, ) representation which is quadratic in
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B};, we take the square of the (20) representation. The highest state
({=m=2) is a linear combination of nf‘and . The coefficients are
determined by requesting that L, applied to the state give zero. L,

is JE(E‘3+EBL) {(where Eg+ E are SU(3) generators, see below the

32
diagram)
E2s €
N At
\ /
. \\//
2
‘e /\ > B Fig 5-12
/ \
/ \
E3|“ Ve,

With this we get the highest weight state of (a,b, )=(02)
proportional to (q}-ZSn) and we normalize the state deviding by J6.

Applying the generators in Fig 5-12 we get the following anti-sextet

%'ﬁ
N\
// \
AP
"y \©
// \\ Fig 5-13a
X*/ \3*
E*

and the corresponding SO(3) projection.

f=2 57T A er & Fig 5-13b

{=0 %y

‘; The anti-sextet states are the following second degree combinations
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@ in the sextet states

3 = (q2-28%) /k
B* = ( 9 ¢ -VZ 403
" = (e* =288/
OV* =-(€b-J203) /L3
§* = (0™2%%)/V¢
£* = (mo- vz en)AB
N* = (Brt-e*) /3 = (€7-285 % +HE Ex) /3
pr= (o +IRE)MB = (€285 4276 ~25¢ex) /(32)

(5-13)