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ABSTRACT
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Department: Mathematics
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The purpose of this thesis is to present the exposition of
a new algorithm. If we are given a group and a subgroup of finite index
the algorithm determines the index. This part of the algorithm derives
from the Todd-Coxeter algorithm. The second function is to give a pres-
entation for the subgfoup in terms of those original generators of the
subgroup. This part of the algorithm is similar in scope to the class-
ical Reidemeister-Schreier technique. The thesis first gives a detailed
description of the new algorithm with a worked example. Then a proof is
given that the algorithm does give a presentation for the subgroup with
the proof based on a proof used for the Reidemeister-Schreier algorithm.
An actual FORTRAN program is included which executes the algorithm. The

last chapter is concerned with various examples.
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INTRODUCTION

The purpose of this thesis is to present the exposition of
an algorithm. The a]gprithm performs two functions. If we are given a
‘group and a subgroup of finite index, the algorithm determines the in-
dex. The second function is to give a presentation for the subgroup in
terms of the original generators of the subgroup. This is the first

time the complete algorithm has been described.

This first function is the Todd-Coxeter algorithm (Coxeter

& Moser, 1964). The second function is the Reidemeister-Schreier rewrit-

ing process (Magnus, Karrass, & Solitar, 1966, pp.86-98). The algorithm -

we describe combines these two operations into one.

The first chapter of the thesis, called chapfer 0, gives a
féw preliminary details. In chapter one we describe the new algorithm
in detail, with a worked example. In the second chapter we outline the
Reidemeister-Schreier process with the same example worked out. In the
next chapter we prove the algorithm does actually give a presentation
of the subgroup. Then we discuss a machine version of the algorithm
giving the actual FORTRAN program. The last chapter contains some add-
itional results concerning various presentations. These results show

how the algorithm may be used.
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CHAPTER 0

Let G be a group and let
S={xsyszs ---}

be an arbitrary set of symbols and
s71 < { x'], y”1, z'], eeo }
an associated set of symbols. A word W is a finite sequence of

symbols in SLB']

1

, and the length L(W), of W is the number of symbols
from SU8™' in W. We define the empty word as a word of length Q
denoted by 1 or e.

Now let o be a mapping from S to G

al X> g

“a: y> h

We say that under o, x defines g, y defines h, etc... If W is a word
in S and

W= ff,... f
and fi defines 95 for i = 1,2, ... n we say W defines 992 +e- G-
If o is such that every element of G is defined then we say S is a set
of defining symbols for G. Suppose W is a word in S such that under «,
W defines the identity element of G; then W is called a relator of G.
The equation

R(Xs ¥s 2y eo0 ) =S (Xs ¥s 25 «u. )

where the equality means as an image of o is called a relation, if the



word RS™! is a relator. An equation of the form

X=X
is called a trivial relation and the word xx'] is called a trivial
relator. |

Suppose P, Q, R, ... are relators in G. We say that the
word W is derivable from P, Q, R, ... if the following operations
applied a finite number of times change W into the empty word:

1. Insertion of one of the words P, P'], Q, Q'l, .e. OF

one of the trivial relators.
2. Deletion of one of the words P, p-l, Q, Q'], cee OT
one of the trivial relators.

let ¢ = {P,Q, R, ... } be a set of relators such that every relator
is derivable from ¢, then ¢ is said to be a set of defining relators
for G. So if we have the sets S, ¢, we write

G=(S; 8
and call this a presentation of G. We say the presentation is finitely
generated (finitely related) if the number of generators (defining re-
lations) is finite. If it is both, then we say the presentation is
finite.

For example, any cyclic group is finitely presented, since
if the order of the group is n then

(a; a" )
is a presentation.

It is true that every group has a presentation (not

necessarily finite, see Magnus, Karrass & Solitar, 1966).



The distinction between relai.r and relation may be relaxed
since when we have a relator W we also have the relation
W=e

and conversely.
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CHAPTER ONE

Let G be a discrete group generated by a finite number

of generators

S5 Sp» Sgs .- Sp m=1

and defined by a finite number of relations

gi(s) = @ i=1,2, ... r
where the gi(s) are words in the generators sj and 53], j=1, ... m
Let t, = tk(s) k=1,2, ...n
be n words in the generators s. and sTl and let

J J
H={ t], t2’ coe tn }

be the subgroup generated by these words. The problems we wish to
solve are :
1. Assuming the index of H in G to be finite we wish to
find the index.

2. To give a presentation for H.

>Concerning problem 1, E. H. Moore (1897) and many others
have systematically enumerated the cosets of H in G. Todd and Coxeter
(1936) converted this method into a mechanical technique. It is pre-
cisely this technique upon which the more sophisticated algorithm that
we describe is based.

Problem two requires us to find relations in the synbols
tk such that every relation in H is a consequence of these relations.
We will consider the classical solution to problem two in chapter two.

We will use the positive integers 7, 2, 3, ... to denote

the cosets of H in G, and always agree to let the coset H be denoted



by 7. We shall also be choosing coset representatives (one represen-
tative for each coset) and agree to denote the representative chosen
for coset £ by the symbol Z. We always choose T to be the identity. The
wepresentatives 7, 3, 4, ... are, of course, words in the generators 55
and their inverses 55].

As the computation of the algorithm proceeds we build
several tables, containing various sorts of information obtained to

that point. The first table contains all the information of the type

i.e. how the cosets are permuted among themselves on right multi-
plication by the generators of G and their inverses. This information
is completely contained in a table displayed as follows:

-1 -1 -1
S; Sp - + - Sy S1 S, . . . Sp

W -

TABLE I
The entries are integers { cosets ) and occur at the intersection of

the rows indexed by 7, 2, 3, ... and columns headed by S1» Sp» Sgs .-

s{], 551, 55], ... . The information

is recorded by placing the integer k at the intersection of the £ th



row and sj th column. The information

lzsg] =i
"is recorded by placing the integer £ in the kth row under the column
1

headed by 53 . When the algorithm is complete, TABLE I will have
d = [G:H] rows and there will be no empty spaces in the table.

The second table whicﬁ we will refer to as TABLE II will
contain information of the type

Ts; = WE, Byl = WT |
where W is an element of H. That is, when we multiply a coset repre-
sentative on the right by a generator or its inverse we get a word
in the subgroup times another coset representative. Of course, that
word may only be the identity. (In the classical method, described
further, W is expressed as a word in the Schreier generators of H and
their inverées; in our algorithm the words W are expressed as words
in the generators t,i and their inverses.) The information is recorded
in TABLE II as was done in TABLE I.

Clearly the information contained at any stage in TABLE I
is contained in TABLE II but not conversely for,

ij = Wk

implies immediately

but from the latter the former cannot be deduced immediately.

TABLE II is shown on the following page.



-1 -1 -1
51 . . m « e e

TABLE II

Now let W be a word in G or H. Then W is said to be written
in expanded form ( Coxeter & Moser 1964 p.13 ) if the exponent of any
symbol in W is 1. For example

. e3c2e-2
W= 315557
written in expanded form is
- e=1lc-1
W 515151555557 S7
The third table consists of n subtables, one for each sub-

group generator t, = t(s). If

_ ab f
tk(S) —Sisj oo o Sp
then the table would appear as follows
= ° =
tk = s; cee s?sg cee sg . s; ces s; *1
11| | | | | |71
TABLE III

The vertical bars separate the symbols. Now we know that t is in

the subgroup hence

1y =1
and this information has already been entered above. We fill into
TABLE III as much information as possible from TABLE I. For example

it may be that S; is already a subgroup generator in which case the



above table would Took like;

= 9 ? oo ? °o LI Y O‘ co ° e
tk S,| S,| S1 S SJ Sp

IRRETRTENT z|"l | |

The fourth and last table consists of r subtables, one

. s°
R

for each relator gi(s). Each relator is written in expanded form with

a number of rows below it. For example corresponding to the relator

- d.e 1
95 spsq ees Sy
we set up the table
o0 go O o0 O [ o o o -
sp sp . sp sq sq sq ees S3 . St +]
1 1
2 2
TABLE IV
Now
Igi =]

so that is why a 7 appears at both ends. In fact for any coset § and
any relator g we have
i9 = 4.
We fill in as much information as possible from TABLE I.
To see better what these tables look 1ike at the preliminary
stage consider the group
6=¢ AX; X2Ax = AZ)
and the subgroup

H={t =X t,= AXXXXA™T, ty = A"TXXXXA 3.

We immediately have

1=H T=e
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1% =1 ™= t,T
=1 17 =tﬂT

The tables are set up as follows;

TABLE I TABLE II
x_x' _a AT X x' a4l

NN | TIaT [ 57 |
TABLE III TABLE IV

t; = X XXAXAT AT

11 1 11)1] | 1

t, = AXXXXAT

1| 1 1| | 1

ty = AT XXX XA

1]

11| |1

We leave this example for a moment and continue with our
discussion of the general algorithm. The first step in the algorithm
is to define new information. This is a basic step at any stage. If
all known information has been processed and there are still blank

spaces in TABLE I then new cosets are defined. Thus we define coset 2

by setting
= o ° = 4
2 1sJ +1
where sj is a group generator and the product 153 is not known. It
then follows that
= -.°.
1 ZSJ
At the same time we choose 7, the representative of coset 2, to be
= Ts®
7 7§J

and as above it follows
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T = “o
T 2§j .
However we know
T=e
= g9
so 2 sJ

We put this information in tables I and II. We also put it in tables
IIT and IV wherever possibTe. We now create new rows in TABLE IV by
entering the new coset in every essentia11y different place ( of
course omitting the places where it has already occurred.) By " ess-
entially different " we mean the following:

A relator has a base length ( Trotter, 1966,p.13 ), that
is to say a block of symbols of minimal length which is repeated one
or more times, to make up the relator. For example in the relator a"

" the base length is one and in the relator (ab)" the base length is two.
When we say a coset appears in every essentially different place we
mean the coset appears to the left of every symbol and to the right of
every symhol in the base. Thus if a relator has a base length of k,
each coset must appear k or k+1 times in each subtable in TABLE IV ( a
coset will appear k+1 times if it commences a row, otherwise k times )

We return to our example:

We define
2 = 1A
7=TA

and enter this information in all four tables. The tables appear on

the next page.



TABLE I TABLE II

x x1' a Al X X1 A Al
BERE 2 T | 4T tﬂT T
2 ‘ 1 7 T
TABLE III TABLE IV
t; = X * X X A x Al al
1| 1 1|1 11112 2 1
-1 1
t, = A X X X X A 2 |
Mt 1 | 7 2 |1 . .
t, = AV XX X X A z
11 1 1 Z

We now discuss what occurs in tables III and IV. There are

two possibilities for a particular row. The first is that there are
blank spaces. In tables III and IV above every row has blank spaces.

~ In this case nothing can be done so it is left.

The second possibility occurs when the row becomes complete

i.e. no blank spaces left. Suppose in our example we now define
3 = 2X.

We reproduce row 1 from TABLE IV above after entering the information
X X A x a1 ol
1lrfr)z]s] 2z |

i.e. the row closes! We can now conclude
2= 3"
3 = 2A.

We have gained new information. This is called row closure. We put

this information in TABLE I and wherever possible in the other rows in



tables III and IV. The same procedure is used if row closure occurs
in TABLE III.

When new cosets are defined there are no rules to say
what the definition should be. However since row closure gives addit-
jonal information it is usually better to define cosets in such a
manner that closure occurs as often as possible. TABLE III is closed
first and then the rows in TABLE IV starting with row 7.

When row closure occurs, additional information of the
 type contained in TABLE II is also obtained. There are two separate
cases. If row closure occurs in TABLE IV we procede as follows:

We had
X X A x ATV al
1 1 1 2 3 2 1
We solve for the generator where closure occurred, in this case A'l

A= x T ATt 7 x A
Now we multiply both sides of the equation on the 1eft by the coset
occurring to the left of the solved for generator

! =3x Al xT xta
We go to TABLE II and look up the information required and we find

It =7
So, continuing to multiply in this manner

Tal=7a Tl x 1 xla

=T7x ' x7a
7' TxT A

[} 1

¢ ot

— ) et
N

N _er

-

p-J

13
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Thus we get the new information

AT =27

TA=1t{3
This information is put in TABLE II. Without reference to a particular
example the following points should be noted:

1. A1l products of the form <£-s are known because the row

closed. i.e. the rewriting can always be carried out.

2. If the final information is

Ls=W7
then W is a word in the subgroup.
3. This procedure is called rewriting a row i. e. rewrit-
ing in terms of subgroup symbols and a coset represen-
. tative.

If row closure occurs in TABLE III the same procedure is
followed with a slight complication. The complication is due to the
fact that we are dealing with a subgroup generator of the form

t = tk(s)

When we solve for the generator where closure occurred, we must remem-
ber to include t, on the left hand side of the equation. To show the
exact procedure we will consider the subgroup generator t, in our example

t, = A X X X X Al
11 1 2 3 7 1

We have entered all the information that is possible at this moment.
We now define

3X

fl
L=
o

i
N

4X

P
o
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From the definitions we get imnediately

a7 =3 =3

3 S nl=7
We put this information in tables I and II and proceed to fill in as
much as possible in TABLE III. We consider the generator t2

t, = A X X X X AT
11 1 2 3 4 5 2 1
Row closure occurs in TABLE III. We see immediately
5X = 2
X7 =5
However as was in the case in TABLE IV there is additional information
contained in row closure in TABLE III. We solve for the group generator
where closure occurred, in this case, X
x=xTxTxlal g, a
Note the difference between row ;;bsure here and in TABLE IV. Now we
" proceed as before and multiply both sides of the equation on the left
by the appropriate coset representative.
x=5x1 xT xTal g, a
As before, we go to TABLE II and get the information necessary to carry
out the multiplication on the right hand side.
x=5x71 x1 x? Al
=7x T xT AT g, a

t2 A

!
ot

~
-
>



5X = tz'f
This information is put in TABLE II. We have now dealt with row clos-

ure in tables III and IV.

The example we are dealing with now looks like:

TABLE I TABLE II
x x1v a  al X X1 A Al
AR 2 | T | &7 | &7 7
2] 3 |3 3 |1 7 T |lgls | 3| T
30 4| 2 2 3 7 T 27
4 5 3 3 £3 3
5| 2 | 4 T | 4,7 | 7
TABLE III TABLE 1V
t; = X X x A x A1 a7l
1 T{1r 1|23 2 |1
t, = AXXXXAT 1
1] 1 1)2|s|e|s|2|s 1
2| 314 3| 2
ty = AT X X X X A 5123 5
11 1] |1 415 2]|3]|4 4
314153 3
¢ |3
5
| 4

There is one further situation to be dealt with. Suppose
a row closes and we get information of the type
is = 4,

We proceed to put § in the ith row and under the s in TABLE I but find

16
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the space is not empty! Thus we already have an equation

is=+F
If § # k then we have a redundancy (Mendelsohn,1964, p.509) or a
coincidence (Todd & Coxeter, 1936). By these words we mean that two
numbers represent the same coset. Thus both j and k stand for the same
coset.

The situation is dealt with as follows. We first rewrite
the row where closure occurred to get the information

Ls=W7
We also Took in TABLE II to get the information

ZLs=VEk
Combining the information in an algebraic manner i.e. by equating we
find

i=t

W7i=VEk
What does this say? Well, if we look in TABLE I it means the row num-
bered j and the row numbered k are the same. Thus we can compare the
two rows, column by column, equating entries. A similar situation occurs
in TABLE II. We assume that in numerical valﬁe

f < k.
We have the equation

Wi i=VFEk
or

T=wlvr
We must now multiply every entry in the kth row in TABLE II by w']v
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and then equate rows 7 and k.
There are four cases that can occur when comparing the two
rows in tables I and II. Suppose we consider a column headed by a group
generator s;. Let us denote by (s;,f) the entry in the jth row and un-
der s; in TABLE I.Similarly let (s;,j) denote the entry in the Fth row
and under s, in TABLE II. The four cases are:
1. (s1,4) and (s;,k) are both empty.
2. (s1,5) is empty and (s;,k) is not.
3. (s1,f) is not empty and (s;,k) 1is empty.
4. Both (si,f) and (s;,k) are nonempty.
Of course, if (s;,f) is empty then so is (s;,). Thus the above cases
hold in TABLE II as well. They are dealt with as follows:

1. This case is trivial. We also have (s;,7) and (51,k)
are empty. There is no new information and nothing is done.

2. In this case we have picked up new information. We put
the entry (s;,k) in the blank space (s1,{). In TABLé Il we put the entry
(s1,k) in the blank space (s;,7). It should be remembered we have mul-
tiplied the entry (s;.E) by w‘lv before comparing the rows.

3. There is no new information in this case so nothing is
done.

4. This case provides further redundancies for we know that
the entry (s;,f) and the entry (s;,k) are equal. This information is put
in a 1ist to await processing. Thus if we assume the following e.g.

(s1,4) = 2

(s1,k)

m
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and we also assume e.g.
(51 97.) = N1Z
(s1,%) = Vyin

where w1 and V] are words in the subgroup, then we would have the foll-
owing information in our list

£=m

W]Z = V17n'

We are now finished with the row k in TABLE I and the row
k in TABLE II, hence these rows are erased. However there will be occurr-
ences of k in the body of TABLE I and occurrences of k in the body of
TABLE II.We now go through TABLE I and replace every occurrence of k
by 5. We also know

7=wlE
s0 E=vhy
We now go through TABLE II and replace every occurrence of k by V'IW}'.

Next we deal with TABLE III. If a row has closed we ignore
it even if it contains k. The replacement of k by j would not give us
new information. If however k occurs in a row which has not closed then
we replace k by j. In TABLE IV we merely erase every row which contains
~ k. We do this because these rows merely duplicate the rows containing j
in the same position.

The last step in dealing with redundancies is to look at
the list of redundancies waiting to be processed. If there are any fur-
ther occurrences of k and & in the list they are replaced by 4§ and

v‘1w3' respectively.
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The problem of redundancies would at first glance appear
to be fairly complicated. In order to deal properly with redundancies
we must remember that we are systematicaily deleting occurrences of
the higher numbered coset in any place it may occur. After the higher
number has been deleted, it will leave a gap in fhe tables. This gap
can be filled in two ways. We either renumber the cosets to fill the
gap or we define a new coset with the old number.

We are now finished with the first redundancy. We proceed
to deal with the next redundancy in the same systematic manner. There
is one further situation which may occur in this list. That is, we may
have equations of the form

i=i

Vi =Wj
i.e. a coset equal to itself. This is a very easy matter to deal with.
We notice in the equation

Vi = Wj
that we can cancel 7 and we are left with

V=W.

This is a relation in the subgroup. It will form part of a defining .
set of relations so it is kept in a list. This is all that is necessary
to deal with this situation. After we complete processing of the list
of redundancies, we proceed to tables III and IV and fill in as much
information as possible.

We consider our example and give some concrete occurrences

of redundancies. Let us consider the subgroup generator ty



we define

t3=A"xxxXA

We of course immediately get

6= 18" 7=Ta
7= 6X 7 = BX
8= 7X T=7X
9 = gx 7 = BX
1=6A T=36A
6= 7% §=7x"
7= gx7! 7=
§ = 9x~! T = 9]

We enter this information in tables I,II,III, and IV.

TABLE 1 TABLE II

X xV A Al X X! A Al
11| 2 | 6 T| T (7| 7 | 7
2| 3 3|1 7| 3 |5 | &3] 7
3| 4 | 2 2 3 7 7 727
4| 5 | 3 7| 35 | 3
5| 2 | 4 T | %7 | 7
6| 7 1 N T
7] &8 |6 7| % | 7
8 9 7 k3 g 7
9 8 7 3

21



TABLE III TABLE 1V
ty = X X x A x Al aTl
o 111 )e]s] 2|1
ty = AXXXXAT 6|1 |1]
11 1|2|3|4|5|2|1 6 17(18]5]z2 116
t, = AT XXX XA B 512
3 5|23 5
f1 1] 6 |7|e|efelr * 415|234 4
314|5 3
4] s
6| 7
6|7
71819 7
71 8
7
s |9 8
g9
8
9 9
9
9

Two new pieces of information occur, denoted by *.
9X = 6
6x71 =g
After rewriting the row we get
=7 x xT xTa gy AT
= t3 3
and zTx1= t;'?'

From TABLE III

22



Note that TABLE III is completely closed, hence it cannot provide any
further information. We do not display it beyond this stage. Now from
the row starting 6 in TABLE IV we see

SA =5

57V = g
After rewriting the row we find

A=t T

TAT =7
We enter this information in TABLE I and TABLE II and fill in TABLE IV

wherever possible.

TABLE 1 TABLE II

x x1 a Al X X! A Al
N I 2 | 6 Tl T |7 7 | 7
2| 3 301 7| 3 |g5 | &3 | 7T
3| 4 |2 2 3 7 7 ;27
4 5 3 7 5 3
5 2 4 8 3 t.7 3 1797
6 7 |9 1 3 7 517 T
7| 8 |6 7| ¥ | 7 "
& 9 5 ?' g 7 ;1%
9| 6 | s T | tF | ¥




TABLE IV
X X A x At oatl
1 11112 3 211
glolel1|1]| 6|8 ®
6 |7]18|5]|2 116
2 )131| 4 31 2
5121| 3 5
4 2 {314 4
31415 3
4|5 §
4
91617 9
67
21 6
71 819 7
71 &
7
8§( 9
9
From the row starting & (denoted by *) in TABLE IV we find

Al = 5.

However when we go to enter this information in TABLE I we find
8A = 5,

We may conclude 6 = 5.

We rewrite the row starting & in TABLE IV to get

24
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=1 _ =1 -1
A =ty tg' 3

or BA = t3 t] 6

From TABLE II we know
= o=l

so T = t2 ty t-| I3

We reproduce part of TABLE I so we can easily compare rows 5and 6
x xV oA Al
5 2 4 8
6 7 9 1
From the column headed by X we can conclude
1. 2=17
(We will number the redundancies consecutively to aid in processing.)
From the column headed by X! we can conclude
2. 4=9 |
There is also the new information
5A =1
We 'now multiply row & in TABLE II by tztstl and reproduce that part
of TABLE II of interest

X x~1 A Al
3 t.7 7 t,¢
3 ttat, 7 ttsty t;]?' Ltsta T

Corresponding to the equations obtained from TABLE I we can write
down the following

t27 = tataty 7

T=thtstyts'7
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We also get the following new information which is entered in TABLE II

BA =

tytsty T

We now erase row 6 in TABLE I; erase row 4 in TABLE II; replace occurr-

ences of 6 by 5 in TABLE I; replace occurrences of & by t,'1t3"] t;]? in

TABLE II; and erase those rows in TABLE IV which contain 6.

The tables for the example now look like:

TABLE I TABLE 1V
X X A Al X X A Xx A7
1] 1 1 2 | 5 111 l1)2]3
2 3 5 1 §1| 9 5 1 1
314 |2 2 5(2(3]|5|¢2
4 | 5 | 3 2134
5 2 4 1 8 4 51 2 31 4
7] 8 |5 314151 }1
8 9 7 5 4 5
9 5 8
7 8§ 9
7 §
§1 9
TABLE II°
X x1 A '
T 6T T 7 it T
z 3 ;'3 tf3 T
3 7 7 tr27
7 1 3
5 t7 7 ttat, T t, %
7 7 tiits e 1y
3 g 7 t; 1%
7 |ttty 7

W = N




27

The rows marked by an asterisk in TABLE IV contain new information.
However we will delay dealing with this information until after all
the current redundancies are processed. The next redundancy to be pro-

cessed is number one.

1. 2=17
T=ty3t,7
We compare rows 2 and 7 in TABLE I to get the new redundancies
3. 3=28
4. 5=5

The corresponding colums in TABLE II yield (after multiplying row 7
by t3t-|)

-1 = _ =1 -1 -1

t2 ?-t3t] t] t3 1:2 5
We replace all occurrences of 7 by 2 in TABLE I; replace all occurrences
of 7 by t']']tgll' in TABLE II; and erase any rows containing 7 in TABLE
IV. We now deal with the next redundancy, number two.

2. 4=9

- -1

We compare rows 4 and 9 in TABLE I to get the new redundancies

5. 5=5

6. 3= 8
We multiply row 9 in TABLE II by t2t3t1 t;l and then compare with row

4 to obtain the corresponding equations

1 -1

_ - -1 -1
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_ -1
We replace all occurrences of 9 by 4 in TABLE I; replace all occurrences

of 9 by t3t;]t§]té]1' in TABLE II; and erase any rows containing 9 in

TABLE IV. The next redundancy to be dealt with is

3. 3=28

We compare rows 3 and 8 TABLE I
7. 4= 4 (9 has been replaced by 4 under X)
8.2=2 (7 has been replaced by 2 under X'])

We also get the new information
3A=5
which we put in TABLE I. We multiply row ¥ in TABLE II by t3t] to get
- =1 -1 -1
T=t,t, t, ]! 7
311 73
and the equation for the new information is
_ -1
which we put in TABLE II. We now replace & by 3 in TABLE I ; replace §
by t{1t513' in TABLE II; erase any row in TABLE IV which contains §;
and in redundancy number 6, 8 is replaced by 3 and § is replaced by
t{]tg131 The next redundancy to be processed is
4. 5=5
-1 -1 -1 -1
When we simplify we find
1 _ -1

which is a trivial relation and is ignored.
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5. 5=5

. -1 i I R

This is again a trivial relation and ignored.

6. 3=3
_ -1 ,-1 ,.-1
We cancel 3 to get the following relation
, - -1 ,.-1 .-1
which we record as relation A.
7. 4 = 4
_ -1 =1 -1

This relation is the inverse of relation A above and so is already re-

corded.
8.2=2
T=t,t, tt]7
311 -3
This again leads to a trivial relation and so is ignored.
We have now dealt with all the redundancies. All new in-

formation has been entered and processed. On the next page we give

the tables as they now appear.
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TABLE 1 TABLE IV
x x1 a al X X A x AV Al
111 | 2 | s 11123 2]
2 | 3 |3 3| 1 2|34 a|5]| 3|2 *
3| 4 |2 5 | 2 s|al|s5|1)1| 5|3
4|5 |3 45234 4
5 | 2 |4 1| 3 sla|s|s|2| 1]s
4
TABLE II
X X! A Al
T | T 1T 7 s
7| 3 15 23 T
3| 7 7 tatit; 5 t77
7 3 3
T T 7 tatat, T tLtt'3

The only blank spaces remaining are in line 4 of TABLE I and correspon-
dingly in line 4 of TABLE II. How ever the line beginning with 2 in
TABLE IV (denoted by *) gives

4A = 4

A = t% ty t t;l 7
We enter this information in tables I and II. We rewrite the rows be-
ginning 3, 4, and 5 in TABLE IV. These rows are complete because of in-
formation gained from the redundancies. We use this information to
rewrite the rows and complete the algorithm.

T=FXXAXA A
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T=TXAXA AT
: -1 ,.-1 .-1
This leads to relation A which we already have.
T= TXXAXAT AT
= 2 -1 -1 ,.-1,2
= t, 4 (t, t7 t3 t)° 7
- 2 -1 -1 .-1,2

Let us call this relation B.

T=FTxXXAXA AT

ttgty b byt £ 6 5

=5
When we collect all the relations which we have derived we have a
presentation for our subgroup H;

H=( ts ty, t3 5 A, B )

The description of the algorithm is complete however a few
general remarks may be of some help. At any time in the execution of the
algorithm we are in one of three different states. The first state is
that there are blank spaces in TABLE I but all information has been
processed., In this case new cosets are defined. The second state is that
there are blank spaces in TABLE I and there is information to be pro-
cessed (redundancies etc.). The third state is terminal when there are
no blank spaces in TABLE I. In this case for any coset defined we re-

write each row in TABLE IV not already rewritten in order to get a
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compiete set of defining relations. This is the final step.

It has been proved that if the index of the subgroup is
finite the algorithm will terminate (Mendelsohn, 1964 & 1965). How-
ever it is impossible to say the number of cosets needed to be defined
before termination of the algorithm. This is equivalent to the sol-

ution of the classical word problem and known to be unsolvable.
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CHAPTER TWO

In this chapter we would 1ike to discuss the classical
Reidemeister-Schreier method for presenting a subgroup. We do not
give proofs for the various assertions since these proofs are eas-
ily obtainable ( Hall 1959; Magnus,Karrass & Solitar 1966). However
we will give a summary of the algorithm so the reader may compare
with chapter one.

The rewriting process was mentioned in the previous chap-
ter. This process is similar in the Reidemeister-Schreier algorithm.
Spécifica11y let G be a group with the presentation

G = ys8pse.-3p3 R](a),...>
and let H be a subgroup generated by the words Ji(a),.... Then a
rewriting process is one which takes a word in H written in the sym-
bols a, and gives as a result the same word but written in the symbols

Ji‘ Let us agree to rename Ji(a) by S; and consider the following:

Theorem 2.1 Suppose t is a rewriting process for H then a presentat-
ion for H is obtained by using the symbols S; as generating symbols
and using the following equations as defining relations;

(1) 54 = ©(9;(a))

(2) (V) = <(vy)
where V and V.I are words in H which differ only by the insertion or
deletion of trivial relators.

where V] and V2 define elements of H.
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(4) <(WRMT) = e

where Ry is a defining relator for G and W is any word in G.
####

This theorem is used to prove further results but has no
practical significance. The reason this theorem has no practical appli-
cation is the considerable simplifdcation that can be made by a partic-
ular choice of generators and rewriting process. One such choice in-
volves right cosets. So let

U= { €,UqsUpsee. }
be a set of right coset representatives for H. Further if g is a
word in G then let

9=y
where Hg = Hui
i.e. ~ is a mapping from G to U. Now by a theorem of Schreier it is
possible to choose the set U so that it satisfies the following:

If Ug = ayap...a; and uy is in U then aja,...a, ¢ is also
in U. The system of coset representatives is called a Schreier system

and the property above is called the Schreier property.

Theorem 2.2 H is generated by

{ uaiﬁi; 1L uis in U, a; generator for G }

#i##
It is easy to see that a word uaua -1 is in H however to
show every word in H is a product of elements of that form is some-
what technical. We have obtained generators for H so we now need a

rewriting process.When we rewrite using a Schreier system and a
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rewriting process called a Reidemeister rewriting process we end up

with a Reidemeister-Schreier rewriting process. Let us use the symbol

Su a to represent uaua ']. Suppose we have a word V in H
- 0,40 [+
V= aras coe aw ° = 4]

Then if t is a Reidemeister-Schreier rewriting process

(V) = S° S° ee. S°
Ups8p Ug»8g Uy 23y
where ° = #1 according as it is +1 or -1 in V

and Uy is the coset representative of the initial segment of V pre-

ceding a if a; has exponent +1 or uy is the representative of the

initial segment of V up to and including a;1 if a; has exponent -1.

= i = ° °

e.g. u =e if Vv aag ... a
u_ = a\'1 if V= a'1a° °
r r rds - Y

1

e.g. Suppose a?aé ag defines an element of H.

52! - . S -
181827 53 1,231,382 &

2 -1 =
T(alaZ a3) - Se,alsél,al

We now state our final theorem:

Theorem 2.3 If t is a Reidemeister- Schreier rewriter then
H=¢( Sy,a® *er 3 SM,aS""’ r(uRiu'l),... ).
where: u is an arbitrary Schreier coset representative
a,. is an arbitrary generator
‘ Ri is an arbitrary defining relator for G
and M is a Schreier representative and a; a generator such
that MaS is the same as ﬁi;'except for the addition or deletion

of some trivial relators.
####
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In order to show the details of the process we work out

the same example as in chapter one.

2px = A2 )

4

G=¢ A, X : X
He {t) =Xty = X7, tg = A7x% )
From chapter one we know the index of H in G is 5 and the following
are a Schreier system of coset representatives.

e, A, AX, AXZ, AXS
We also know the values in TABLE I and so we can find W where W is

any word in G. From Theorem 2.3, H is generated by the symbols:

Se,A* SA,A* SAx,A® SAx2,A* SAX3,A

Se,x* SA,x* SAx,x® Sax2,x* SAxs,x

i.e. for every coset representative and every generator for G we have
a generator for H. Since there are 5 cosets and 2 generators for G we
have 2-5 = 10 generators for H.

From Theorem 2.3, H has two kinds of relators. The first

kind gives us the following as relators:

Se,A® SA,X* SAX,x* Saxz,x
i.e. SAX,X is a relator because

AX-X = AXZ

and AXX = AXZ.
~There are 5 relators of the second kind. We let t be the Reidemeister-
Schreier rewriting process, and then the 5 relators are

1. t(X2AXA™2)

2. t(AX2AXA™3)
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3. t(AX3AXAT2X"1AT1)

4. <(AX®AXATZXT2AT1)

5. t(AXSAXATZX73A71)
i.e. We have t(URU"!) where U is a coset representative and R is a
relator. There are 5 coset representatives and 1 relator so we have
5.1 = 5 relators of the second kind. We now rewrite each of the above.

1. t(XXAXA"1A71)

=S .Sv.yS S 52 szl
e,X SX,X SXX,A SXXA,X SXXAXA™T,A SXXAXA-IET,A
) A -1
= Se,X Se,X Se,A SA,X SALA Se.A
2. t(AXXAXAT1AT1A71)
- S "] -1 -.I

e, A SA,X SAX,X SAX2,A Saxz,X Sax,A SA,A Se,A
3. {AXXXAXAT1AT1X"1A71)

) 1 A -l
= Se,A SA,x Sax,x Sax2,x Sax3,A Se,A Sax3,A SAX,A SA,X
-1
Se,A

4. T(AXXXXAXATIATIXT1XTIATL)

. a

= Se,A SA,X SAx,x Saxz,x Sax3,x Sa,A Sax,x Sax2,A
-1 R TR B

Sax2,A Sax,x Sa,x Se.A

5. T(AXXXXXAXATIATIXT1X71X71A71)

S 1

AX SAX.X Sax2,x Sax3,x Sa,x SAX,A SAx3,x Se,A

-1 A el -1
SAX2,X SAX,X SAX Se,A

= Se,A

-1
SAx3,A

We now delete the relators of the first kind from the generating set

and from the remaining relators. We are left with the generators:

SA,A* SAX,A® Sax2,A* SAx3,A° Se,x Sax3.x



39

and the following relators:

2 -1

182 sila
2.s sl gl
- Sax2,A SAX,A SA,A
- a
3. Sax3,a Se,x SAX3,A SAX,A
-2 '

4. Spx3,x Sa,A Sax2,A

-1
S Sax3,x Sax,A SAx3,x Sax3,A

We now use the 5 relators to eliminate all generators except SAX3 A

and SAX,A’

From 5.

From 3.

From 1.

From 2.

Sax3,A = Sax3,x Sax,A Sax3,x
-1
Se,X = Sax3,A SAX,A SAX3,A
- R
= Sax3,x Sax,A Sax3,x Sax,A Sax3,x Sax,A SAX3,x
2
e, X

-1 A -l
( Saxs,x Sax,a Saxs,x S

Sp,A = S

S )2

AXLA SAX3,X SAX,A SAX3,X

Sax2,A = Sa,A SAX,A

el el oA 2
= ( Saxa,x Sax,A Saxs,x Sax,A Saxz,x Sax,A Saxs,x )

*Sax,A

We have written every generator in terms of SAX3 X and SAx A hence we

may delete from the presentation every generator except SAX3 X and
3

SAx A We are left only with relator 4 which we rewrite in terms of

B = Saxs,x

C = Sax,A



Then we may write 4 as:
a. (8" 'c '8 Veaes) (8¢ B ees)c (87 1c
.8~caee)c T (Bc '8 eae) (871 ¢ 18~ cae)
O O B M )
seec™18~1c2(Bcee 1B 1c 181 c2)2

Thus
H

(B,C;4).

40

“15-Tegee)(8~1c!

If we compare this with chapter one we see the two presentations are

nearly the same. They can be made exactly the same if we eliminate the

generator t2 from the presentation in chapter one. Thus the methods of

chapter one and chapter two give the same results in

this case. In the

next chapter we prove that this is always the case under certain con-

ditions.



CHAPTER THREE

In this chapter we will prove that the extended Todd-Coxeter
algorithm of chapter one does give a presentation for the subgroup. We
should keep in mind the restrictions that the group G must be finitely
presented and that the index of the subgroup H in G must be finite. Let
us assume we have a group G

G =¢( ays8ps +ee Ap 3 R](a),Rz(a), .ee Rg(a) )
and we have a subgroup H generated by n words

t, = t(a) k=1,2, ...n.

We assume that the index of H in G is finite and we have completed a
coset enumeration. Thus we have the tables I-IV of chapter one and also
a number of relators derived from the coset enumeration. We will use
Theorem 2.1 to prove that these relations are sufficient to present H
in conjunction with the generators t - Now in order to use Theorem 2.1
we must first prove we have a rewriting process. Actually the process
we use does more than a rewriting process. For suppose we have a word
Win G

W=a.a; ... a

13 re
We multiply W by T and use TABLE II to rewrite W. Let us denote this

process by t~

e.g. 2 (W) = Thia- e @y

If we Took in TABLE II we might see

so (W) = aiLaj e A
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We continue in this manner until we have an equation of the form

(W) = Ay eee n

r
where 4 ... o are words in H. Now we know
(W) = W
SO W= aiuj cee O R

If =T, then W is a word in H and
W= Ugls eoe Gy
So we have expressed W in terms of words in H., If = £ T then W is not
a word in H. Our processs not only rewrites a word but also decides
whether or not that word is in the subgroup. Now according to the def-
inition in chapter two a rewriting process takes any word in H written
in * a " symbols and gives the same word but written in " t " synbols.
We see this is exactly what the above process does so it is a rewriting
process. Let us recall Theorem 2.1. It said:
If © is a rewriting process, then the following relations
are sufficient to present H.
1. $; = T(ti(a))

2. (V) = r(V1) where V and V, differ by trivial
relators.

3. t(VqV,) = t(¥q)x(V,)
4. ‘I.'(WRjW-1) =e

We must show that the relations we have derived from the coset enumer-
ation enable us to prove the above relations and then our set of rela-

tions will also be sufficient to present H.

1. S5; = r(ti(a)) In order to show this relation is implied by
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the relations of the extended coset enumeration we merely need to say
what this relation means. It means we rewrite the generators of H and
set each generator equal to a new symbol. However TABLE III in the
coset enumeration is precisely this operation. Thus the relations

s; = r(ti(a))

are incorporated in the coset enumeration for all 1.

2. (V) = T(V]) Now V and V.| differ by a trivial relator so let
V= afaé cee a;ag ces as ° = +]
1

- 200 o =i_o0 o [ J—
V1 =aja; ... ai?pap aj e. @y = ]
When we apply the rewriting process - it will certainly give the same

result up to and including a;. We may suppose

-

(V) = a-‘l’aé afi’ 4 a

T‘(V-]) = a-Tag’... ot,i° p°p j ) Vv

where G305 -.. 05 aFE words in H. Now we look in TABLE II and let

La =8_p.

P p
- = A94© ° = -l.o o
Thus T (V1) ajas ... of Bp P ap a3 ay
We have from above
- -1 -1 -
7} ap Bp
&nd substituting this in the above expression we see
- - o_o o '] - (]
T (V-I) a0y ... Of Bpo A ag .o Ay
= a-‘l’ag a,‘i’ Ia;. . a\‘;

which is exactly the same as t°(V). Thus T‘(V]) = ¢-(V) and reiation 2

is derivable .
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3. r(V1V2) = r(V])r(Vz) To prove this relation is to prove t~
is finitely distributive over the words

in H. However we know this is true by the definition of t“. The appli-

cation of t” to a word consists of multiplying the first symbol in the

word by 7 and then carrying out multipltcation symbol by symbol. Thus

if T occurs to the left of any symbol we may consider that as a new

application of t°. We are given that V] is a word in H so let

T‘(V1) =aT
Then it is easy to see

T‘(V-IVZ) = o T VZ

o t’(Vz)

r‘(V1) T‘(Vz).

4. r(ijw']) =e To show this we recall how the relations we
derived from the coset enumeration arose. For
every relation Rj in G and every coset < we applied T to the relation
and got an equation
ZRj = ST
R =5
Thus S would be a relation in the subgroup. Now let us rewrite W
(W) = of
where o is a word in H and Z is the coset representative of the coset
to which W belongs. We have of course
W=of
W-] = Z-](X_']
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We substitute this expression for W in 4
T’(WRjN-l) = T'(02R52_1a-1)
= 7°(a) T‘(ZRJ-Z—]) t‘(a-])
where we may distribute t” by relation 3 ( already proved ). Now

r'(ZRjZ"1) is a relator we derived in the coset enumeration and so

may be deleted. We have now

T‘(WRjW-1) *(a) T‘(d-])

T‘(aa-])

t*(e)

= e

Thus every relation of the form T(Wij-]) = e can be derived from the
relations obtained by the coset enumeration technique. We have now
proved that the extended coset enumeration technique gives a presen-
tation for H.

At this point, we would 1ike to compare the extended coset
enumeration method with other methods available. We have sketched the
classical Reidemeister-Schreier method and the advantages of coset
enumeration are easy to see. First, in order to use the Reidemeister-
Schreier algorithm it is necessary to perform an ordinary coset enumer-
ation. After getting the coset representatives U, it is necessary to
rewrite the products (URjU'l) in terms of Schreier generators. In the
extended version of coset enumeration we just do one coset enumeration
and the process is finished. A1l rewriting is included in the coset

enumeration. Further the presentation we end up with is in terms of the
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original generators not Schreier generators as in the Reidemeister-
Schreier algorithm. Also in the latter case the number of subgroup
generators is proportional to the number of cosets while in the coset
enumeration technique the number of generators is fixed. Thus there
are generally a large number of redundant Schreier generators, hence
there must be an equally large number of relators to be able to elim-
inate the redundant generators. This is of course extra work when
compared to coset enumeration. We are justified in concluding that
coset enumeration is superior to the Reidemeister-Schreier algorithm.
There are two other methods pubiished which attempt to
solve some of the problems we have solved. These are due to Mendelsohn
(1967), Mendelsohn and Benson (1966), and Leech(1962). The method of
Leech is fairly complicated as he uses coset enumeration to prove group
identities. However in his method one must record separately all infor-
mationwhich occurs in row closure. Then to prove an identity he re-
writes the identity but using row closure information to simplify until
only the identity remains. Further if there are redundancies in the
initial enumeration, he must use the redundancies to get further relat-
ions until a set of relations has been found with which a coset enum-
eration can avoid redundancies and the original algorithm is then app-
licable. In the coset enumeration we have described, the information
which occurs in row closure is automatically integrated and so there is
no necessity to keep a separate record. Thus when we rewrite a word the
row closure information is used automatically and no separate reference

is needed. This is the advantage extended coset enumeration enjoys over

Leech’s method.
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Mendelsohn has published several papers and a computer
program describing various algorithms similar to the one we have des-
cribed. In his earlier papers (1964,1965) he describes an algorithm
which will write any word in G as a word in the subgrqup H times a
coset representative. Together with Benson, Mendelsohn made available
a program which will perform the above function. His latest statement
(1967) is a solution to the problem we solved in chapter one, namely
find a presentation for a subgroup of a group in terms of subgroup gen-
erators. However his solution is very cumbersome. He claims it is still
necassary to use Reidemeister-Schreier generators in an intermediate
step. However we have prbved in this chapter that this is not the case.
In his paper (1967) he gives an example which purports to show the nec-
essity of using Reidemeister-Schreier generators. This example is given
in chapter five and a presentation is obtained without the use of spec-
ial generators. Thus, using his method it is necessary to introduce the
Reidemester-Schreier generators however the method made available in this
thesis is a step forward in that it is not necessary to introduce these

‘generators but merely proceed with the original subgroup generators.

i



CHAPTER FOUR

In this chapter we would like to discuss coset enumeration
by computer. There have been a number of programs written which perform
coset enumeration on a machine. Leech (1963) gives a good account of the
work done up to 1963. The first computer methods used were in 1953!
Since that time there have been many improvements in the methods plus
considerable advances in hardware. One program due to Trotter (1964,
1966) will enumerate over 500 cosets in less than 10 seconds. Even fas-
ter programs are now available (M. Guy, unpublished). Coset enumeration
of over 100,000 cosets has been accomplished. However there has been
only one attempt to produce a program similar to the extended coset
enumeration (Mendelsohn and Benson, 1966). This procedure is of course
much more difficult and time consuming. Some of the difficulties that
arise will be mentioned later.

The program that we wrote follows the outline given in
chapter one quite closely. The logic is the same. However, there are
many obscuring details due to the necessity of keeping track of minor
details. For example it is necessary to keep a 1ist of those rows which
have already been rewritten, so the machine won’t do them again. This
list has to be checked every time the machine starts doing a row. There

is one mainprogram and ten subprograms. We will explain in detail what

is the function of each part.

1. Mainprogram: This program has three functions. The first is to input

and initialize the group data. The second is an overall
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control of execution i.e. it directs the machine to the various subpro-
grams. The last function is to output the data. We would 1like to go
through the program and show each section in detail. The first se;tion
statements 1-7, initializes the computer. Common areas are set aside,
dimensions created and switches are set. For example a switch labelled
" AMT " determines the number of redundancies waiting to be processed.
Since there are no redundancies at the beginning AMT is set equal to 0.
The next part of the first section is where the data is inputted. Note
that all data to be inputted is numeric and all output is numeric. The
data to be read in includes the length of each subgroup generator (ex-
panded) in terms of group generators, the length of each group relator,
the subgroup generators and the relators. The next initialization to be
performed is to set two arrays " CTIB " and " WTAB " equal to zero. Now
WTAB corresponds to TABLE I‘and CTIB corresponds to TABLE II. The mach-
ine searches these tables constantly and so every entry must be defined.
When an entry is zero it means there is no information. Initially we
have no information so every entry is made equal to zero. The last array
to be initialized is called " NREL ". This array keeps track of which
rows in each relator are complete. If a row is complete the entry is O.
We initialize NREL at zero except for the first row which we set at 1.
Whenever a new coset is defined, a nonzero row is made in NREL corres-
ponding to the number of the new coset.

The second section of the program is the control function.
It is very simple. It first tells the machine to run through all the
rows in tables III and IV (subroutine RUNTRU). If both these tables are
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filled then we go to the output section. If there are still blank spaces
the program checks for redundancies. If there are some redundancies, sub-
routine RDUN2 is called to deal with them. If there are no redundancies
new cosets are defined (subroutine DEFINE) and the program goes back to
subroutine RUNTRU. This sequence continues until there are no blank
spaces and we get to the output section.

The output section prints out the information we want. The
first output is the number of cosets defined. This program does not have
a consolidation routine hence it is also necessary to print out those
cosets which are redundant.Finally the index is printed. This is of
course the number of cosets defined minus the number of redundancies.
The next output is TABLE I. The rows are numbered consecutively. If ény
row is zero it means that number was a redundant coset. The final out-
put is TABLE II. However since the entries to TABLE II can be arbitrar-
ily long we only print reference numbers in the body of the table. That
is, suppose we want the result of coset i times generator j. The entry
may be 0 which means coset { x generator j is simply equal to another
coset. On the other hand there may be a nonzero number printed. This
number 1is a reference number. To find the actual entry one looks in the
list printed below until this reference number is found. The actual word
is printed immediately below. The output is numeric. If we had 3 sub-
group generators A,B,C then A is outputted as 1, B as 2, C as 3, A'] as
4, B~! as 5, ¢! as 6. So if a word is given as

15345
we would read it as AB 'CA™B™!.
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2. Block Data: This is a technical FORTRAN subprogram to input data

without a direct readin. We set the values of various

group parameters.

3. CALC: This subroutine solves for new information. That is suppose we
have found a row which gives new information. This subroutine
solves for that new information and puts it in tables I and II. It

makes the distinction between rewriting a subgroup generator and a rel-

ator.

4, RDUN2: This subroutine deals with redundancies. The information that
is inputted has the following form

WC = Vy
where W and V are words in the subgroup and Z and 7 are coset represen-
tatives. The subroutine performs exactly those actions outlined in chap-
ter one necessary to deal with redundancies.

i) Solves for the smaller number in terms of the larger.

ii) Compezces rows in tables I and II. |

iii) Eliminates all occurrences of the larger number.
The subroutine then checks to see if there are further redundancies in

which case it deals with them, otherwise it returns control to the main-

program.

5. RUNTRU: This subroutine checks each row in TABLE III and in TABLE IV
for new information. It first checks TABLE III. To check a
row the program starts to rewrite from the beginning of the row. It goes

forward as far as possible. It then starts at the end and goes backward.
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If the two directions just meet then there is new information and con-
trol is passed to subroutine CALC. If the machine fails to complete the
row it goes on to the next row. If a redundancy occurs, this redundancy
is put in an array to await processing. The subroutine checks through

TABLE III first and then TABLE IV. The routine also zeroes out any row

which is complete.

6. DEFINE: This subroutine has a very simple function. It merely scans
the rows in tables III and IV until it comes to a blank space
and defines a new coset at that blank space. It checks the subgroup
generators first. If there is a blank space a new coset is defined, but
if not then TABLE III is zeroed out entirely since there can be no new
information‘there. The subroutine then starts checking TABLE IV for
blank spaces. One interesting feature of the program is the reuse of
redundant cosets. When a coset has been found to be redundant, it may

then be redefined by this subroutine. That ¥s, the number is reused.

7. NSUM: Tnis subroutine is called whenever two words in the subgroup

are to be multiplied together. The subroutine creates new

space for the resulting word.

8. CHECK: This subroutine suppresses trivial relators of the form XX'.|

It is called after any word is made. e.g. CHECK is called by
NSUM.

9. INV: This subroutine gives the inverse of a word inputted. The in-
verse operation is done using modular arithmetic. For example

if we have 3 subgroup generators A,B,C inputted as 1,2,3 then a word

B2ac~2
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would be outputted as
22166

and the inverse would be
33455

i.e. we add 3 to each number mod 6 and then invert.

10. DOD: This subroutine performs modular arithmetic. The input is

two numbers x,y and the output is the value of x mod y. The
reason that the library subprograms are not used is that all arithmetic
in this program is using halfwords of storage instead of full words.
This résu]ts in storage efficiency but means we cannot use the library
subprograms .

We reproduce a sample output below. The actual output is
contained in a flap at the end of the thesis. The group we use as an
example is the same group we used in chapters one and two. The program
does not output the actual result of rewriting the rows but merely

Tists tables I and II. We see that if we make the translation

1>t ¢»q1
2>t s»gl
3t 6*%1

that these tables are almost exactly the same as in chapter one. The
only difference is that occurring in TABLE II. The difference is due

to the processing order of the computer. If we use the relation

21,-1,-1
tytatts by s

to rearrange some of the entries then there will be no di fference.



The important part of the output is as follows:

NUMBER OF COSETS DEFINED 9

REDUNDANT COSETS 6 9 8 7

THE INDEX OF THE SUBGROUP IS
5

| WTAB-MULTIPLICATION TABLE FOR COSETS

1: 1 2 1 5
2: 3 3 5 1
3: 4 5 2 2
4: 5 4 3 4
5: 2 1 4 3
6: 0 0 0 0
7: 0 0 0 0
8: 0 0 0 0
9: 0 0 0 0

CTIB-POINTERS TO LOCATION OF COSET REPRESENTATIVES

1: 1 0 3 48
2: 0 8 13 0
3: 0 79 0

4: 0 183 0 161
5: 11 30 o 97
6: 0 0 0 0
7: 0 0 0 0
8: 0 0 0 0
9: 0 0 0 0

54
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THE ENTRIES TO TABLE II WHERE THE FIRST NUMBER IS THE LOCATION NUMBER IN
THE TABLE ABOVE, THE SECOND NUMBER IS ONE MORE THAN THE NUMBER OF SYMBOLS
IN THE WORD AND THEN THE WORD IS PRINTED BELOW IN NUMERIC FORM. EACH NUM-
BER REPRESENTS A SUBGROUP GENERATOR.

1 2
1
3 2
4
48 4
465
8 3
11
13 2
5
79 6
23165
5 3
4 4
153 8
1123165
161 8
23465144
11 2
2
30 4
231
97 6
23465

Note: In tables I and II the column headings are in the order

X, A, X'], A-1 not the same order as in chapter one.
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We would like to mention some of the difficulties encount-
ered when writing the program. The first major difficulty is the com-
plexity of the algorithm. It is considerably more involved than ordinary
coset enhmeration. A second difficulty is the problem of words and an
associated problem of storage allocation. The words that are generated
i.e. those in TABLE II are of arbitrary length. Hence a set amount of
storage cannot be assumed for a particular word. We solved this problem
by using one large array and storing the words in linear order. However
this array has to be of quite large size initially but may not be used.
Hence it is somewhat inefficient. Further the Tonger the words the more
time it takes to manipulate them. Thus there is a considerable decrease
in the speed of execution as compared to ordinary coset enumeration. One
other difficulty was that of output. The data is handled in numeric form
internally but must be translated into group terms. There is however no
standardized set of symbols when working with groups hence the problem
of translation was left to the user. A copy of the entire program is

enclosed in a flap at the end of the thesis.



CHAPTER FIVE

In this chapter we would Tike to present several examples
illustrating the usefulness of the new algorithm. There are four and

the first is the following.

We would like to show that the group

1 2 1

G=¢a, b,c;a ca=c, b 2

The = b2)

ab = a%, ¢~
is the trivial group. The method we use is to pick a subgroup, to
perform an extended coset enumeration and use the derived relations
to prove G is the identity. So let H be the subgroup generated by
{a, b2 }
We define 3 cosets as follows
1=H T=e
2 = 1¢7] 7
3=2¢"! 3= 2
From the definition of the subgroup we have immediately
la =1 Ta = aT
1% = 1 2 = b2T
Using this information and the definitions above, we fill in part of

the relation tables

¢V b ¢ b1 b a7l ¢ a b !
o 1| 2|2 1 ‘y3|2|1|1|2|3
g 2| 3|3l2| 2]z

The row beginning o gives us

% = 2 Tb = b27



We use the information obtained in row o to write row g8 and find

b =3 B =bH
Now row vy gives us

a7 = 2 %l = a7z
or 2a = 3 7a = a3

The third relation is used to derive a redundancy

b1 2 b a7 a"l

| elsls] ela

This row gives the new information (after rewriting the row)

'2a'] = 2 Ta'] = ab'4a'1b22'

or 2a=2 7a = b~2ab%a”17

When we compare with the information obtained from row y we see
7=3 a7 = b~2apta17

We substitute the known values of the coset representativesi.e.
7=
7=

and obtain the following identity
¢cZ=alp2aptal !
¢cl-alp?aptal

a'] b".I b'] ab b3 a'1

-1 g1 42,3 -1

= a a a
=a’l b1 ab)2p?a’!
a1 g4 2

_ 32 5

So c=ab? a3,

58



We substitute this value of c in the original group relations to get

the three new relations:

1. b7lab = o2
2. a"Vca = c?
a-lab2a3a = ab~2a3ap25"3
b2a? = ab~2a%p 2573
b~2a~2a%? = ab~2a"2
b2ab® = ab~2a7?

b~Tb~Tabb = ab2a"2

3. ¢ Ibe! = b2

a3b2a~lpab~2a~3 = p2

We simplify using relation 2.

a3a~2a"lpaa%a™3 - a™d
a~3pad = ad
b=a"

We now use relation 3 and simplify relation 1.

1. asaa'5 = a2

a=a2

59
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This of course implies

a=e.
Relation 3 immediately implies

b =e.
Since ¢ has been defined in terms of a and b it is also true

c=e.
Thus the group G is the identity. The technique of coset enumeration
allowed us to write c in terms of the subgroup generators a and b2
and from that point on, straightforward algebraic manipulation gave us
the proof.

‘ Another example of some interest is the following. Let

G=CA X; X a2 =p3)
Mendelsohn gives this as an example (Mendelsohn, 1967) to show the
necessity'of introducing Reidemeister-Schreier generators when attempt-
ing to find a presentation for a subgroup. If we let

H=(X, A8
then H = G and further G. Higman has shown that in terms of X and A8
G requires at least two defining relators. Now Mendelsohn states as
there is only one coset, there is only one relation of the form

ZRI" =@ < coset representative, R relator
His method now introduces Reidemeister-Schreier generators in order to
get a second relation. His procedure is very roundabout which he admits
in his paper. Our method is much simpler and more direct. We merely
rewrite the subgroup generator A8 to get the second relation. We will

perform ain extended coset enumeration on the subgroup
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Hy = (X, AT}
The situation is very similar to the one above. Clearly H]IJH hence
H]= G. Also H] requires at least two relators for its presentation. How-
ever the enumeration of cosets for H] is simpler than for H since only

4 cosets need be defined before collapse occurs while 8 need to be de-

fined in the first case. Let

o= X
g = At

Define
1=H T=¢e
2= 1A 7=TA=A
3= 2A T=7n= A
4= 3A T=3n=A

We use TABLE III and obtain the following information.
1X=1 TX = oT
4A = 1 4A = 8T

We use the information in the relation and obtain

-1 -1 -1

A A X A A A
] i lelsle] 5| 2]

Thus
3X =4
X=3A" AT xaan
= of
At this point the coset multiplication table is as follows on the next

page.



A Al X X!
T 7 1T | oT | oIF
7 3 T
3 7 7 of
4 BT 3 o 13

We use the relation again and find

x1 A A x Al oAl oal

ff slelrn] el el
We find

T LI

A = galgla T
However from the above table we know

a7l = 2

=7

Hence we may conclude
2=4
7 =galg7la ¥
Multiplying row 7 in the above table by: B8a g la gives:
1. 3= 80" 1871ag T
2. T=8a" 1871 3
We also get the new information

7')(-'1 = Ba 1871 F

We replace every occurrence of ¥ by o !8ag"}Z and erase row 4. We

now process redundancy #1. We multiply row 3 by 8 la lRag™!

note the following:
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3. 7= g7 1lq71gag" e 187! 7

4, g7la1gag™l 7 = g7la1gag”l 7

5. a T=p8"1a"18a2871 7
We replace 3 by Ba 18"lag7 1in the multiplication table and in redun-
dancy #2. Redundancy #2 now gives the following

T = ga 18 taBa"187tag T

or Ba 1871laga" 187 1aB = e.
This is our first relation. Redundancy #3 gives the inverse of this
relation. Redundancy #4 is trivial. To process redundancy #5, we mult-
iply row 7 by o 1871a"1ga2g8”! and note:

6. 7= 0o 18 la718aB7 a8 T

7. 871la"1gag™l 7T = o717 1g71Ra2871 T

8. a1l T=4qa"1T
We now replace Z by Ba 28 lagal 1in the coset multiplication table

which gives us

A Al X X!
T  Ba 28 lagal 8" la"1ga 18" 1agaT of 17
We also replace 7 in redundancies #6 and #7. We now process redundancy
#6. The updated equation is

Ba 287 laga T = a 187 la" 18R lap T

or Ba 28 lapaR " la"1ga 187 laga = e.
This is our second relation. Redundancy #7 gives the inverse of this
relation. Redundancy #8 is trivial. The extended coset enumeration is

complete since all the tables are filled. Thus we can present the sub-

group H] as follows:
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H-|=( 0,8 3 I, II)

where a = X

g = Al

I

Ba 18" laga 187 taB

II1= go 287 lagaB™ la"1ga 187 1aBa
Another point is shown by this example. If we attempt to use the
Reidemeister-Schreier algorithm to get a presentation for H], the

following results. There are two generators
S1,8° S1,x

and only one relation

2 o1 -3
31,%51,a51,x51.,A

No new information is obtained. Even though H1 = G the Reidemeister-
Schreier technique does not give a presentation for H.| in terms of the
generators of H1. Thus in this instance, the extended coset enumeration

is more fruitful, since we do obtain a presentation for H] in terms of

the subgroup generators.

The third example is the group LF(2,p), that is the central
quotient group of the special linear homogeneous group SL(n,q) of mat-
rices of determinant 1 cver the Galois Field of order p. The group is
generated by the linear fractional transformations (mod p)

S: 7' =7+ 1

-1
Z

which, as matrices are

T: Z7°
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In 1933 Frasch (Frasch, 1933, p.252) gave the following

set of defining relations for the group. If we let

V= a C
0 !

where o is a primitive root mod p then

(1) LF(2,p) = ¢ STV 58P =12 = V2= (s1)3 = ()2 = e

vlsy = so?)
with the extra relation
(Tvs*)3 = e

when p = 1(mod 4). We first prove that this is a set of defining rel-
ators and then we simplify the presentation somewhat. The proof of the
first statement is adapted from a paper by Todd (Todd, 1932) and is
simpler than Frasch’s original proof. We show that the group contains
three operations V, S, T and that they satisfy the given relations;
conversely we show we can construct the group from the relations (1).

From the definition of S and T it is clear

P =12 <.
Also by definition, the operation V is the following

V: Z' = o2Z
Since o« is a primitive root, V is an operation of period %(p-1). The

operation VISV can be described as follows



vlsv: z = vls: o2z

= V-]: (a2Z + o2)
=7+ g2
2
=s%: 12
Thus we can conclude
2
vlsy = s%°,
Similarly
VIVT: Z = VTV:-1
= VT: -1
a<Z
= V: -2
oz
=7

Again we conclude

()? = e.
The other relations in (1), namely

(s1)3 = (Tvs*)3 =
are established in the saﬁe fashion. Thus the linear fractional group
contains the three operations S, T, V and they satisfy (1). Thus the
presentation (1) either defines the group LF(2,p) or has it as a fac-
tor group. To show that it is the group LF(2,p) we show that its order
is the same as the order of LF(2,p) namely, 'ép(pz-l). fn order to do

this we perform a simple coset enumeration. Let H be the subgroup
defined by

{S, V}=-
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Then, H subject to the relations in (1) is of order %p(p-1) since all

the elements in H can be expressed in the form

yhsk

We now define p cosets 0,1,2, .

0 = =T
1=20-S
2 = 1.5
p-1 = p=2.S

Then from the relator sP we have

i-sf = &+ j(mod p)

We next use the relation (TV)2 = e

gnd we see that

0<hz=x< E%l.’ 0s<k= p-1

. « p-1in the following way. Let

0.V =90
- 2
We now go to the relation V Tsy = s¢
- 2
vt s v s
0 0 1 a2 0
a? 1 2 202 o2

Using the information 0.V = 0 we then obtain 7.V = o2. This table

enables us to find information of the form j.V assuming we know

(§-1)<V. Thus in general we have

iV = 4a2,
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To complete the coset enumeration we have to fill in the
multiplication table for the operation T. First using the relator (ST)3
we get

S T § T S T

o o 0 1 p-1 0 =

i.e. 1.T = p-1

Now we use the relation (TV)2 = e.

T ) T v
1 p-1  p-la2 o2 1
o 2 p-ta2  p-la* 7% o 2

This relation enables us to find all the information of the form

- (p-1)aZk.T = 72k k=12, ...
Now if p =-1(mod 4), -1 is a quadratic nonresidue mod p, consequently
each of the numbers 1,2, . . . p-1 is either a quadratic residue or the
negative of a quadratic residue. Thus in this case the set

{ a72k }
is a complete set of numbers x, 1 < x < p-1 mod p. So the coset enum-
eration is finished since the multiplication table for the cosets is
completed. |

If p = 1(mod 4) then -1 is a quadratic residue hence

{ a72k }
is not a complete set of numbers. If this happens we use the extra

relation
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(s®1v)3 = e

and gain the following information

T v s¢ T v s T v s®

i.e. a°T = - !

We now use the relation (TV)2 = e,

T ) T v
o3 -3 -1 o a3
a5 -5 -3 3 o5

We get the information

a2ktl.T = .o~2k-1 k=0,1,2, ...

Thus when p = 1(mod 4) we use the extra relation and complete the coset

enumeration. So in either case we have completed the coset enumeration
and shown that the index of H in (1) is p+1. Since the order of H is
3p(p-1) we get that the order of the presentation (1) is ip(pz-l) prov-
ing it is a presentation of LF(2,p).

Frasch’s presentation may be simplified in the following

way. First we find an expression for V in terms of S and T.

(s°tv)3

e =
=s*TVs* vl yTus*TY
=1
=s*TsS* TS*TV
- -1
or vi=seTs® 157



p-1
Now we show V 2 s derivable from the other relations. First let us

derive a few preliminary relations

(2) WTviT =

since (rvr) = v
(rvr)d = vd
Tvir = v

- 3 2
(3) viisyd = s J

for yrigyd = y-dtlge?yi-l
= Sazj
Now vioystststyd

Wos vy pyd ydgyd y-dpyd ydgyd ydpyd
-23

) _
T S® 3 T s8¢ 23 T

SC!

If p = 1(mod 4) let j = Eil" then

-1
-z B ()
= s% Ts*" T5s°% T
_(p=1 -1
Now a (B2=) = -1(mod p) and dBT_ = -1(mod p) since a is a primitive
root, so
Pl
vZ = (sTn?

= e.
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On the other hand if p = 3(mod 4), let j = p-3 and then we have
4

e R I
=3 TS TS T

v 2
-(p=3 -3
Now a (272) = -qa and o = ~a 1, so
P=3 . -1 _
V2 =8*T7Ts™® 15T
-1 )
=T(s®Ts* TSt
= T(V'] )']T from above
=TVT
= V-]
p-1
i.e. V2 =¢
p-1l

Thus we can delete the relator V 2  from Frasch’s presentation. We
now replace V in the two relations

()2 = (s*v)3=e to get

4) (2 = (N2 = (5°715¥ 1592 = e

(5) (s°1v)3 = (v'l1s™)3

- )
= (s%15% TsoTTs )3

1
(s®1s® T)3

- 2
We now show that the relation V7SV = s*° is redundant.

- -1
vl = so1s® 1soT

-~ -yl L
TS™®* "TSTO4TS™® "TSTUSO%T from (5)

~1 ~1
So V=25% Ts%s® T



We use (4)

(s%7s® T15%)2 = e

-1 -1
S*TS* Ts*s*Ts8* Ts°

-1 -1
TS*TS* Ts8%*s*T1Ts8* T158%T

-1 ~1 a1 -1
=8%  TS®*TS* TSES*TS* T TSYT

wm
Q
I

=y 5%y
- 2
Thus after deleting V, and VISV = S we are left with
-1
LF(2,p) = €S, T3 SP = 12 = (sT)3 = (se15* 71)3
-1
A further simplification is possible if 2 is a primitive root. For we
let o”! = 2 and o = ptlthen the relation
2
-1
(s°Ts® T15%)2 = e

is redundant. For it becomes

pil ptl  ptl ptl
s2 7Ts2Ts2 s2 1s21s2
p+1 p+l
=s2 712157152152
p+l p+l
=S2 TS STSTS STS?
prl p+l
=S2 TS T STS 2
p+1 p+l
=SZ S-]SZ
= e

Thus when 2 is a primitive root +1

prl
LF(2,p) =¢ S, T3P =T =(sT)3=(sZ1s 2 1)3 = &)
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Behr and Mennicke (1968) have proved that this presentation holds for
all primes p. We will show that this last set of relations can be de-
rived from the relations of Frasch. However the more difficult problem
of deriving Frasch’s relations from those of Behr and Mennicke has not
been done in an algebraic manner. The proof that Behr and Mennicke gave
was indirect. In order to derive the relations of Behr and Mennicke, it

is of course only necessary to show

prl
(s21s 2 1)3 = e.

To do this we show

k -k
(s® 15 1) = e k=0,1,2, . ..

Suppose k is even i.e. k = 2m

Q21

2m__ -2 -2 -2m 2 2
(¥ 50 )3 = 5o 7 g0 g 0¥ ¢ g0 T 7 g0 ¢ ga ™

VISVETYES VY TS VETVES VTV TS VR TVES VT

VESTSTSTSTSTSTV

v (sT)® V™
= e.

Suppose k is odd i.e. k = 2m + 1

2m+1 -2m-1
" 1se T )3

(s T

2mt1 2m- 2m+1 m-1

-1 2m+1 -
= s¢ R T 5@ g

~2
T s¢ T

VSO By Pse iy sy Ty Bge Ty Tpy Mgy By Mga Tty ~y

- 1
T s* T s%

- -1 -1 -1
= VHS* TS TS*TS® TS*TS* THWE
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b |
VR(S® T 5% T)S\®

= e,

Now there exists k such that o = 2(mod p) and also ok = p+l(mod p)
2

since Ko = 40 = 1(mod p). However we have proved for all k

k -k
(s*1s* 13 =e
and so in particular

Pl

215 2 1)3 = e.

(S
Thus we have proved that the relations of Behr and Mennicke can be

derived from the relations of Frasch.

OQur last example is a nontrivial coset enumeration. We con-
sider the group

(A B;AS=8"=(m)?=(alg)3=e)
which is denoted by (8, 7|2, 3) (Coxeter 1939). We wish to prove that
the word

(A?B4)6
is the identity. Leech and Mennicke (1961) have already showed this
but their proof had "surprising indirectness" (Leech, 1963, p.266).
In order to prove this relation more directly we take the subgroup

H=1(A2, AlB }

Let o = A
B = A-1B

and we note H is subject to the following relations

ot = g3 = (aB)? = e.
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However we know
H=( a, B 3 a%=83=(aB)2 =¢)
is a presentation for the symmetric group of order 24 (Magnus,Karrass
& Solitar, 1966, p.21, #13). Thus after the coset enumeration is com-
plete every element in (8, 7|2, 3) can be written as a word in H times
a coset representative. Now H is a well known group hence (8, 7|2, 3)
becomes well known in the sense that we can tell whether any given
word in the group is the identity.
The order of (8, 7|2, 3) is known to be 10752 (Leech and
Mennicke, 1961) and the order of H is 24. Tﬁus the enumeration involved
448 distinct cosets. However there were many redundant cosets so that
enumeration of over 1000 cosets was ultimately required before collapse
occurred. The multiplication tables are too voluminous to reproduce
here ( approximately 18 pages would be required) but we do prove our
original statement. We rewrite the word
(A?B4)6
in terms of the generators of H and a coset representative. We find the
coset representative is T and hence may be cancelled. We now simplify
the resulting word using the relations valid in H and find it is the
identity ‘
T AZB4)6

aB la tag"la o g2 o LR T

aB 20 2BaB2 -e

aBa2Baf?

aBo o BaB B

Bl a ol B

e.
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TH4IS PRIGRAM DETERMINES THE INDEX OF A SUBGROUP IN A GROUP AND A
SZT OF DTTININS RELATIINS FOR THE SUBGROUP

T4IS PROGRAM ONLY HANDLES ONE GROUP PER RUN

%

IMPLICIT INTEGER#2(A-2Z)

EACH 0 THZI DIMENSIONS IN THE COMMGN STATEMENT IS THE MAX IMUM OF

THE DIMENSIONS GIVEN BELOW
#HEN THE #DRD “LENGTH®™ IS USED, EXPANOED LENGTH IS MEANT,

COMMON N1 sN6sN3eN7 sNCIsNSeN2{3)sN4(2)sRI15715S5(3:6) +WTAB(1000+4)
1sCT13(100924)2NREL(S,1000)

THE COMMON STATEMENT MUST BE ADWSTED TO CCNFORM YO THE INPUT DATA

N1-NUMBER JF SUBGROUP GENERATORS

N2{K)-NUN3ER OF GROUP ELEMENTS IN SUBGROUP GENERATOR K

N3- NUNBER OF RELATORS

NA{K)-NUM3ER OF GROUP ELEMENTS IN RELATOR K

NS—-NUMBER OF GROUP GENERATORS

N6 — LENGTH OF LONGEST SUBGROUP GENERATOR

N7 - LENGTH & LONGEST RELATOR

NCI-MAXIMUN NUMBER OF COSETS

R(1s5) — 1 I35 THE NUMBER OF RELATORS AMND J IS THE LENGYH OF THE 1

TH RELATOR
501+J) - 1 1S THE NUMBER JF SUBGROUP GENERATORS AND J IS THE LENGTH
I T4 I TH SUBGROUP GENERATOR

4TAB(I+J) — VALUE OF (COSET I * GENERATOR J)e IT WIlL BE ANOTHER
COSET

CTI3t1,J) — POINTER TO THE WORD THAT RESULTS WHEN COSET I
MU_TIPLIES GENERATOR J

NREL{I+J) - KEEPS TRACK OF ROWS WHICH ARE NOT COMPLETE. IF THE
J TH ROW IN RELATOR I HAS VALUE O THEN THATY RO¥ IS
COMPLETE OTHERWISE A NONZERO VALUE

THERE IS NO MAXIMUM FOR EACH OF THE ABOVE VARIABLES. HOWEVER THE
FOLLOWING FORMULA SHOULD BE USED TO DETERMINE THE AMOUMY OF CORE

NEEDED 7O IUN THE PROGRAM.
CIRE = 42+500 + 4000%N5 + 2%N3*N7 4+ NI1SNS6 + N1 + N3 + N7

THAIS witL RUN UP TO 1000 COSETS
COMMIN ZARZAL1/ CTAB1(20000) s KEEP

Cra3)l - ARRAY WHICH KEEPS THE WORDS GENERATED IN L INEAR ORDER
KIZEP = CJIIVENT AMOUNT OF NONEMPTY SPACE IN CTA31

CIMMIN ZAREAZ2/7 NIISE(100) +RDUN(100 4+2)9ROUN1I(100,+2)

NCISE = AN ARRAY TO KEEP TRACK OF COSETS wHICH ARE REDUNDANT BUT
ALIEADY PROCESSED

RIINCIe1) AND RDN(IL2) ARE TWO COSETS WHICH ARE EQUAL T.E. WHEN

[LOUNDIANSIES GCCIR THE VALUES ARE PUT IN RNDUN TO AWAIT PROCESSING

RIUNL ~ PPINTER TD THE WIRUS ASSOCIATED WEITH THE REDUNDANCY

INTESER*2 EQJ/L1/,INDIC/ 17+ IBET/0/+NCOSET/1/4AMT 70/ ,ANT1/0/

EJJ) - INDICATES WHEN THERE ARE NO BLANK SPACES IN THE RELATORS
INDIC ~ INJDICATES WHEN THERE ARE NO BLANK SFACES IN THE SUBGROUP




I3ET - NJA3Z 9% REDUNIANT COSETS AVAILABLE FOR REUSE
NCOSET = NJUM3IER IF COSETS CURRENTLY DZFINED

AT - NUM3IZR 0 WDUNDANCIES WAITING TO BE PROCESSED
AMTL ~ NIM3ER OF REDUNDANCIES WAITING TO BE PROCESSED

[ERTRENEN o

3 N31=2%:S
7 N3I=NS
™

THIS IS TAE INPUT SECTION

THE FIRST DATA CARD GIVES THE LENGTH OF EACH SUBGROUP GENERATOR
WHEN EXPANDED

(AN AN AN NN SN AN &

3 READ(S+313) (N2{J)+J=1,N1)

THE SECOND INPUT CARD GIVES THE LENGTH OF EACH RELATOR EXPANDED

[a RN R

9 READ(5+310) (N3 (J)»J=1,N3)

NEXT EACH SU3GROU® GENERATOR IS READ INsONE GENERATOR PER CARD.

THE INPUT DATA IS NUMERIC AS EACH GROJP GENERATOR IS GIVEN A NUMBER
AND ITS IYVERSE IS5 GIVEN A NUMBER EQUAL TO THAT NUMBER PLUS THE
NUMBER OF GENERATORS. FOR EXAMPLE IF G IS GENERATED BY (A+B,C) WE
WIULD INPJST A AS 1+3 AS 2.C AS 3+A INVERSE AS 4+B INVERSE S S»C
INVERSE A3 6, SO ACCBAB WOULD BE INPUTTED AS 1 3 3 21 2

OO n

[ ) D) 202 1=1sNt
11 K=N2(1I)
12 READ(Ss310) (S{1e0)eJ=1:K)
13 202 CONTINUE
- SINALLY EACH RELATIR IS EAD IN ONE T2 A CARD IN THE SAME NUMERICAL
< MANNER
14 DI 203 I=1.N3
15 K=Na(1l)
16 READ{(S5310) (R{1eJ) eJ=1,+K)
17 293 CONTINUE
i3 310 FIIMAT(4012)
*

*ZCHO CHECK#*

[ R 0N A0 81

13 WRATE(S5e31) (N2(JI)e)=1sN1)

29 31 SIRMAT(141,1Xe* THIS IS THE DATA INPUTTED *//1X*® THE NUMBER OF ELE
IMENTS IN THE SU3 GROUP GENERATORS */20X,4012)

21 ARITE(6432) (NA(JID+IJ=1,N3)

22 32 FIRMAT(1Xe® THZ YU4M3IER OF ELEMENTS IN THE RELATORS 9/20X,4012)

23 ARITE(S5433)

24 35 FORMAT(1Xe' THE SU3GROUP GENERATORS ')

25 D3 33 1=1..N1

23 K=N2(1) : s

27 WRILITE(G5+33) (S{1ed)evJI=15<)

23 33 CONTINUE '

2. 34 FIIMAT(2IX+4012)

3) WRITE(6636)

31 35 FIIMAT(1Xs* THE RELATNRS ¢)

32 03 37 I=1sN3

33 K=N4(1)
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36

37
33
39
49
31
42
43
44
+5
36
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28

32
39
31
32
33
34

37
>3
39

29
3t

23
2%
253

59

€00
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37
33

232

240

23)
270

23
217

30

AUTE(5+33) (R(I1sJ) sJ=14K)
CINTINUE ’
FIRMAT(23X,3012)

INITIALIZAT DN

33 200 1I=1..NCI
23 200 J=1sN31
CTIB(1eJ)=)
WTAB(I+J)=0
CINTINUE

20 210 I=1.N3
NREL(I»1)=1

D3 210 J=2,NC1
NEL{ 1, J)=0
CINTINUE

START EXECJTION OF ALGORITHM
CALL RUNTRJI (INDICyNCOSET+EOQJ9AMTAMTE)

ZJJ-INDICATOR OF WHEN TABLES ARE COMPLETE lefEe ALGORITHM TERMINATES
INDIC— INDICATOR THAT PROGRAM HAS FINISHED WITH SUBGROUP GENERATORS

IF(EDJ«EQe¢ 00 ANDLINDIC.EQ.0} GO TO 230
AMT- THE NJUM3ER OF REDUNDANCIES TO BE PROCESSED

IF(AMTLEQed) GO TO 260

CALL ROUNZ(AMT, AMT1, I1BET)

GJ ¥O 249

CALL DEFINE (INDIC/NCOSEV,EQJ, IBET)
IF(EJJ.E242) GI TO 230

30 70 249

*
JJTOYT SECTION
FIRST AUT3JT IS THE NUMBER OF COSETS DEFINED AND THOSE WHICH ARE

REJUNDANT

WRITTE(64270) NCOSET, (NCOSE(JD +J=1, IBET)
FIRMAT(/ /71 X+ * NUMABER OF COSETS DEFINED °*SXeIS//71Xe* REDUNDANT COS

1ETS *(16X2013))

NEXT OJT2UT IS THE INDEX OF THE SUBGROUP IN THE GROUP

JIK = NCIZT-IBET
WATTZNH+270) JOK '
EIIMAT( /771 Xe* THE INDEX OF THE SUBGROUP IS *//12Xx14//7)

THE NEXT JJUTOIT IS TABLE ¢

WRATE(54213)
23 217 I=1+NCOSET

WRAITE(5223) e (WTAB(1sJ) ¢ J=14NB1)
FIIMAT(IXs13+°2¢,2015)

CINTINUE

4RITZ(6443)

FIIMAT(//)
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339
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71

72

74
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76
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73
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253

255
239
213
272
290

NZIXT QUT®JT IS TASLE 2-wWHICH CONTAINS LOCATION NUMBERS OF THE
ACTUAL ENTRIES W4ICH ARE PRINTED BELOS

WATE(69+21)

)3 215 I=1,NCISET

AXITE(H59270) T« (CTIB(L1,J) oJ=14NBL)
CINT INUE

WRITE(6+4D)

THE LAST OUTPUT IS THE ENTRIES YO TABLE 2 PRINTED SEQUENTIALLY
THE NUMBSR3 ORINTED REFER TO SUBGRDOUP GENERATORS AND THEIR INVERSES

WRITE(6+263)

FORMAT(1Xs* THE ENTRIES YO TABLE I1 WHERE THE FIRST NUM3ER IS THE
1.0CATION NJMBZIR IN THE TABLE ABOVZ.*/1Xs' THE SECOND NUMBER 1S ONE
t MORE THAN THE NUM3ER OF SYMBOLS IN THE WORD AND THEN THE WORD IS
1279 PRINTIDI BZLIW IN NUMERIC FORM, ZACH NUMBER REPRESENTS A SUBGR
10UP GENERATOR *)

D3 255 I=1,NCOSET

03 255 J=1.N81

K«=CTI3(1:J)

IF(KK«EQed) G0 TO 255

MN=CT A3 1{KK)~1+KK

WRITE(66253) CTI3{(T14J) s (CTABL(P)IP=KK+MN)

CONT INUE

FORMAT( /1 Xs 15s6X+16/(17X0012))

FIRMAT{ 1X* WTA3-MULTIPLACAYION TABLE FOR COSEYS*)

ZORMAT(1X* CTIB-POINTERS TO LOCATION OF COSEY REPRESENTATIVES®)
SORMAT(EX. T3 °2¢,2015)

x

STIP
END

3.0CK DATA

IMPLICET INTEGZR*2{A-2Z)

CIMMON N1 N3sN7sNCIJNSsN2(3)eNA{12 4RI 1+s7)eS(3+6)+WTAB(1009,48)
1,C71I8(109004),NRZL(5+1030)

COYNIN /A= AL/ CTAB1(20000).KEEP

DATA STATEMENT MUSTY BE ADJUSTED TO CONFORM TO INPUT DATA
N1l o N3 NSy ¥59 ¥7 ARE DUNCHED ACCORDING TO THEIR VALUE FOR A ﬁFRYCU—

1.AR GROUY>

DATA KEEP/1/9N3/717 ¢NS/2/ N1/ 3/ ¢ NE/6/3sNT/76/eNC1 /10007
END

INTESER FINCTIIN CALC*2{TJ.INTER.K,SW)

TYIS SUSINITINE 3ILVFS FOR NEw INFORMATION

IMPLICEY INTEGER®2(A-2Z)
CIMMON N1 s N6eNI o N7 o NCLsNSeN2(3) oNAa(1)sR(1,725S{396) »wTAB(1000,4)
1sCTI3(102J948) e NREL(5,1000)

- CINMMON /AEAL/ CTAa31(2C000) +KEEP

S WUST 3IZ DIMENSIONED AS THE NUMBER OF RELATQORS B8Y THE LENGTH QOF
THE LINGI3T RELATOR

390




INTER MJST 35 ODIMENSIONED AS LONG AS THE LENGEST RELATUR
TAESE ARAYS ARE TEMPERARY STURAGE ARRAYS

v

47 DIMENSION INTER(50),RS5(5,48)
23 M3 1=2%N5
I3 N3 =N5

SA~ TELLS3 WHETHER INFORMATION CCCURS IN 5U3GROUP GENERATOR OR RELAYOR

€ ) (>

120 IF(SW.EQe2) GO TO 700

SYU3GROUP GENERATOR

(S RIS

191 SW1I=N2{K)
102 DJ 712 I=1,N1
193 KLK=N2(1)
s DN 712 J=1,KLK
135 S{L4I)=S{1+J)
136 712 CINTINUE
107 G3 TO 704

< RELATOR

c
3 700 SHLI=N&4(K)
129 DD 710 I=1.N3
1o KLK=N4(1)
il D3 710 J=1,KLK
2 RS(I+3)=R(1,J)
113 719 TONTINUE
114 734 LL=0

S R

IF INFIRMATION OCCURS AT FIRST SYM30L PROGRAM SKIPS TO 734

115 IF{ 1J.EQ.1) G530 TO 734
116 1I1=1J+2
117 1J2=13+1

SILVES 3ACKWARDS FROM POINT OF INFORMATION TO FIRST SYMBOL

O OO

113 DD 732 N=2.1J

119 ITT=INTER( 1J1-N)

129 TIT=RS(Ks[J2-N)+N3

121 I1T=DUD(IIT 4NBL)

122 WIRD=CTII(ITTLIIT)

123 IFIWORD sZ20) GO YO 732
1243 KK=CTA31(40RM ~1

125 KEEPI=KEEI+#LL

1295 DI 735 MN=1.KK

127 CTAJLI(KEZI] +MN) =CTAB1 (WORNEMN)
123 735 CINTINVE

129 LL=LLAKK

139 732 CONTINUE

t €

IF INFJIRAATION JCCURS IN A RELATOR PRNGRAM SKIPS NEXT TWD L INES
OTHERWISE THS NUMBER 0F THE SUBGROUP GENERATOR IS ADDED TO THE
INFOIMATION SO FAR ATTAINED

(SN SN

151 734 IF(SW.EQe2) (50 TI 727

132 CTAS1(KEED+LL4L)=K
133 LLsLL+1
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134
1335
136
137
133

139
130
131

142

134
135
146
147
133

153
134
155
156
157
158
139

159

131
122

123
154
1535
150

137
133
129
179
171
172
173
174
175

143

© 00N

Y €)1 O

[E AN R

[N SN ENEN R

727

747

745
737

33

34
1))

127

[T INFIRAATION OCCURS AT LAST SYMBCL PROGRAM SKIPS TO 737

IF{IJ.EQe541) GO TO 737
S5412=541+1

I1=14+2

SA123 =SW12+[J+2
34124=5w123~1

PRIGRAM V¥JI4 SOLVES BACKWARDS FROM THE LAST SYM3CL TO THE POINT OF
INFOIMATION AND COMPLETES THE SOLUTION

23 746 N=11,5¥12
ITT=INTZR(5W123-N)
TIT=RS(K,S#124~N) +N3
117=D0D(1IT.NSL)
WIRD=CT I3 ITT, 11T}
IF(WIRD.EJ.0) GO TO 746
<< =CTAB1(40RD)~-1
KZEPL=KEEP#+LL

D3 747 WN=1 KK

CTABL (KEE21 #MN)=CTAB 1 (WORD4+MN)
CINT INUE

-==LL#KK

CONTINUE

IF(.LeNEeI) 30 ¥TI 750
latss=

ETIRN
CTAa31(KEZI)=LL+1
CALC=CHECKL(KZEP)
KZEP=KEEP+CT 4B1 (KEEP)
IZTTURN

END

SU3ROUT I NS RDUN2({AMT , AMT 1, IBET)

TA1S SJU3IJUTINE ISALS WITH REDUNDANCIES

I¥9LICIT INTSGER®2(A-2Z)

C 34M0N NS oNGsN3 o NTeNCToNSoN2(3) oNS(2)sR(L47)5S(3+6)s¥WTAB(1000+4)
12TIS(1037:68)NRELI54+1000)

CIMMIN ZAIEAL/ CTAR1(20000) oKEEP

SI4MIN ZARIA2/ NCOSE(100) s RDUN(1005 2) oRDUNL(100,+2)

N31=28N5 ’ .

N3I=NS

T4IS 3ZCTIIN DECINDES WHICH IS THE SMALLER OF THE TwO COSETS AND
NAMES IT J4Id AND NAMES THE LARGER NMAX AND FORMS THE WORD SPEC
373C- THE** AORD ¢* SUCH THAT NMIN=WOPD®AMAX

I=S(RIINCAAT L1 )-RIUN(AMT ,2)) 107,108,109
NAINERDIUN(AMT 42)

MMAX= D UN(AYT 1)

1 T=ROUNI(AMT 1.2)

ITT=DINI{AMTIe 1)

SIZC=NSJAUITLITT)

3) 70 75

NUINZRIUN(AMT 1)

N¥AX=ROUN(AMT 4 2)

392




176
177
173
173
132

131

132
133
134
135

136
137
1338
133
1990

171

132

123
193

175
176
127
173
123
2)9
221

2)2
2)3
2)4
233
2)6
2)7

25
239
219
234

212
213
214
215

ty 1y 42

€ 1y

0t 0

€Y EY R 4 €Y

[R]

INEEE

39

317
1)3

IT=RDUNLITAYTL, 1)
ITT=ROUNL(AMT1,2)
SPECENSUM(ITTIT)
3PEC=INVISPEC)
I3ET=IBET+1

N4AX IS FILED AS A REUSABLE COSET

NCOISEL I3ET ) =NMA X

TAE PROGAM ZEROUES OUT THE NMAX ROW IN RELATION TABLE

DO 88 I=1sN3
NIEL(T9N4AX ) =0
CONTINUE
ROUNCAMT ¢2) =0

Z=R0 OUT EDINDANCIES DEALT WITH AND DECREASE NUMBER OF REDUNDANCIES
3Y ONE

RIUN(AMT,1)=9
IDUNL(AMT1,+1)=0
RDUNL{AMT L, 2)=0
A4T=AMT~1
AMT1I=AMTL~1

CJIMPARE RIWS NMIN AND NMAX IN TARLE 1
IS 3074 AT NONEVPTY WE HAVE A FURTHER REDUNDANCY
IS NMAX IS NINEMPTY AND NMIN IS EMPTY THE INFORMATION IS TRANSFERRED

I NMAX 1S EMPTY THEN PROGRAM SKIPS TO NEXT COL UMN

D3 100 I=1,nN81
FF(WTA3I(NVAX 1) eS20) GO TO 100
IF(WTAS(NAIN,I)«EQe0) GO 7O 103
AAT=AMY #1

AMTI=AMTI#1
IDUNLAMAT 1 )=4TASI(NMIN,GT)
RIUNCAAT 2 2) =WTAS(NMAX, 1)
IT=CTI3(NMIN,1)
ROUNL(AMT L ,.1)=1T
ITY=CYI3(WMAX 1)
ITT=NSUM(SIEC, ITT)
RIUNLLAMT L 2)=INVIITT)

53 7O 102
ATAB(NAL 4 § )=WTA3(NMAXHT)
IT=CTI3(N4AX.1)
CTEI(NHINI)=NSUA(SPECHIT)
TIANTINJZ

X7 RTPLACT ALL DZCUAFENCES OF NMAX BY NMIN IN TASLES 1 AND 2
45 20 LAIILLID M4AX IS ZEROED OUT IN TABLES 1 AND 2

$3SCI1=INVISPIC

23 105 1=1,N31
RESULT=RTAD(\NMAX 1)

WY A3{NYAX, | )=0
IF(RESJILTZQe0) 33 TO 105
IT=14N3

IT=0Ud(1T.N31})
1TT=CTIBINMAX.L)
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217
213
213
229
221

222

223
224
225
229
227
228
223
230
231
232
233
2345
2335

235
237
233
243
240
2%
242
2+ 3

234
233
24>

237
233
239

239

253
254
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€Y 1)t 4

Oy

(&1

435
400

13

112

CTI3(NAAX»1)=0
I(4TA3 (RZSULTLIT)«EQeNMIN) GO TO 105

ATA3{RESJILT o IT)=NUIN
ITT=INY{ITT)
CTISIRIESI_TLITI=NSUN(ITT,LSPECE)
CHIITINUJE

IF{AMT.52.0) RETURN

THZ LIST 2% REAAINING REDUNDANCIES IS CHECKED AND OCCURRENCES OF
N4AX ARE EPLACED 3Y NMIN

23 430 I=1,ANT

) 400 J=1,2

IF(RDUN{TeJ) eNEe ¥4AX) GO TO 40C
ROUN( L+ JI=NMIN

I7{JeEQe2) GI TO 205

1TT=SPEC}

IT=RDUNI({I+J)
IDUNL( T s II=NSUMLLTHEITT)

53 TO 4090

RINLLT ¢ J) =NSUM{SPEC,RDUN1(1,J3)})
CIONTINUZ

1IF(ANMToNZe 0) 350 TO 98

RZ TURIN

T41S SECTION DEA.S WITH THE CASE WHERE NMIN=NMAX. IF A RELATION OCCURS
IT I35 PRINTED

RDUN(AMT 1 )=D
IINLANT2) =D
A 4T=AMNT -1
SYSGEN=NSJA(RIUNI(ANTI2) s RDUNL{AMT 1,1))

I (SY533ZN«£Q.0) GO ¥O 110

~1T=5YSGE N4 TA31{SYSGEN) -1

WRITE(6+119) (CTA3L{1)sI=SYSGENLIT)

FIRMAT(//1Xe* A RE_ATOR DERIVED FRCM REDUNDANCI ESe THE FIRST NUMBE
12 IS ONE Y2335 THAN THE LENGTH OF THE RELATOR.*/1Xe? THE REMAINING
1MJ43ZRS A TH4E ISLATOR ITSELF */(1x14,5X+4012))

DINL(AMT L 41)=0

RYINL (AMT] ,2)=D

AT 1=AMT) -1

17 THERE AIE FURTHER REDUNDANCIES THEY ARE FROCESSED NTHERWISE
RETJRN TI 9W/2R0G

IT(AMTWNZEeD) GJ TI IR
RETTUIN
=IND

3J3BITI T RINTIJLINDICNCASETEQ) s AMT o AMTY)

T415 SJUBIIITINE 3IT3 THROUGH THE SUBGROUP GENERATORS AND RELATORS
2 TY A4 PICL U2 NFW INFOIMAT ION

1ASLICIT INTEGERS2(A-2Z)

ZIAIY N NOeN3 N7 sNCToNSoN2(3)sNA{1)eR(147)95(306) 4¥TAB(1000+6)
1sSTEB(1 03063 )eNRIL(541000)

CIMMON ZAREALZ CTAIL(20000)KEEP

ZOMMUN /AR 42/ NCISE(100) sRDUN{100¢2)9 RDUNE (10042)

l
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230
231
2»2
253

228
233
269
237
253
259
27)
2r1
2r2

273
273
2?3
275
277
273
27

23)
233

€Yy Ly ¢yt

(AN SN AN &

(AN EN RN trer )

tigryer gyt

19

DIMENSTION INTER(50)
N31=2%NS
N3=N5S

PRIGRAM CHECKS TI SSE IF THE SUBGROUP GENERATORS HAVE ALL 3EEN
RTARITTEN 145« NI 3LANK SPACES OCCUR

IF(INDIC.EQ.0) GI TQ 16

THE FIRST SECTION DEALS WITH SUBGROUP GENERATORS

D3 10 K=l NI

WHENEVER A RO¥ 15 COMPLETED IT 1S ZEROED BECAUSE NO FURTHER
INFORMATION CAN 3E GAENED

IF(SI{Ke1)+EQe0) 30 TC 10
N2A=N2(K)

N2K=N2(K)+1

INTER(1)=1

THE PRIGRAM GOES FNIRWARD IN A ROW AS FAR AS POSSIBLE

33 12 I=1sN2A

117=S5({K.I)

ITT=INTER(T)
INTER(I #1 )=WTAB(ITY,1IT)
IF{INTER{1I#+1)«NEe 0) GO TO 12
INTERINZK) =1

IF{1.EQeN2A) GO TO 26
11=N2(K)

11=1+1

ASTER GOI G FORWARD 17 GOES EACKWARD REMEMBERING WHERE [T STOPPED
IN THE FORWARID OIRECTION

37 14 J=11,11
ITI=INTERIN2K+11-D)

TIT=S{{K oN2K+1-J) NS
TIT=D0D(TITLN3L)
INTER(N2K+I-13)=wWTAILITI,TIT)
EE{INTER(NZK+I-S)eE3e0) GO TO 10
CINTINVE

THZ THRES CASES ARE DEALTY wWiTH
=NJ INFORMATION GO TO 10 eS¢ TRY ANOTHER GENERATOR
~NZ A4 INFORMATION GO TO 26
~IEVINDANCY GO TC 32 OR 30 DEPENDING ON THE PLACE OF
ICTIRIENCE

33 70 26
CINT INVE

17 THE ENTIRE 04 135 PROCESSED FOIWARIS S ITHER A REDUNDANCY SO
PRIGRAY SKIPS TO 30 OR NN NEW INFORNATIUN SO THE ROW IS ZEROED OUT

IFCINTER(N2K )eNEel) GO TD 30
5(Ke1)=0
3) 10




230
251
2»2
2>3

224
253
260
237
253
219
27)
271
2r2

273
273
2?73
275
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DIMENSION INTER(50)
N31=2%NS
N3 =N5

PAIGRAM CHECKS TI SEE IF THE SUBGROUP GENERATORS HAVE ALL BEEN
REARITTEN 145+ NI 3LANK SPACES 0OCCUR

IF{INDIC.EQ«0) G) TQ 16

THE FIRSY SECTION DEALS WITH SUBGROUP GENERATORS
DI 10 K=1sN1

WHENEVER A RON IS COMPLETED IT IS ZERDED BECAUSE NO FURTHER
INFORMATION CAN 3E GAINED

IF{S{K+1)eEQe0) 30 TC L0
N2A=N2(K)

N2K=N2(K)+1

INTER(1)=1

TAE PRIGRAM GOES5S FIRWARD IN A RON AS FAR AS POSSIBLE

23 12 I=1+N2A

TIT=5(K.l)

ITT=INTER(L)
INTER(I #1 )=WTAS{ITT,IIT)
IF{INTER{I+1).NEe 9) GO TO 12
INTZR{N2K) =1

IF{1.EQ.N2A) GO TO 26
11=N2{K)

11=1+1

ATTER GOI N6 FORWARD IT GOES EACKWARD REMEMBERING WHERE 1T STOPPED
IN THE FORIMWAID DIRECTION

2) 14 J=11.11
ITISINTZRINZK+II-))
TIT=S{Ks¥2K+1=-y) NS
TIT=D0D(TITeN31)
INTER(IN2K+I-J)=wTAI(ITI,TIT)
IS{INTER(N2K+I-J)eZ240) GO TO 10
CINTINVUE

THZ THRES CASES ARE DEALY wiTH
=NJ INFORMATION GO TO 10 I.S. TRY ANOTHER GENERATOR
-NZd INFORMATION GO TO 26
=EIINDANCY GO TC 32 3R 30 DEPENDING ON THE PLACE OF
JCTURRENCE

33 TD 26
CINT INUE

17 THE ENTIRE R04 13 PROCESSED FOIWAQRIS ZITHER A REOUNDANCY SO
PROIGRAY SCIP2S TO 3D OR NO NEW INTORVMATIUN SO THE ROW IS ZERQED ODUT

IF(INTER(NZK ) NESL) GO TH 30
3(Ket)=0
53 1310




235
236
237
233
239
229
271
272
273
230
2345

236
237
293
249
329
30

332
323
304
395

3J5
397
D3
3vI
312
311
a2
313
319
315
3io
7

313

9
329

(AN SN SN ]

[ R NI ] Y £ [y 8

(]

ENsRE

(4]

32

3D

19
16

TAIS SECTIIN DJEALS WITH NEW INFORMATION

ITITSINTER(I+1)

ITTT=S{K,1)+N3

ITTT=00D( ITTT,N31)
IF(WTA3(ITITLITTT)«NE. 0) GO TQO 32
ATAS{ITIT, ITTTI=INTER(])
ATABLITTLIIT)=SINTER(1I#1)

Sé=1
CTIB(ITT»TIT)=CALC{I+INTERsKoSW)
KI=CTIBLITYJIIT)
CTIB(ITIT JITYT )I=INV(KJ)

30 70 10

THIS SECTION DEALS WITH REDUNDANCIES THAT OCCUR ANYWHERE BUT AT
THE LAST SYNBOL

AMT=AMT #1
ROUNCAMT . 1) =¥TABCITITLITTT)
ITT=INTER{I-1)

117=5(Kel-1)
RDUNCAMT,2)=WTAS(ITT.IIT)
AMTI=AMT 141

ROUNI (AMT1+2)=CTIB(ITITLITTT)
sw=1

RDUNI (AMTE ¢2)=CALC(I s INTER K +SW)
33 To 10

T4IS SECTION DSALS WiTH REDUNCANCIES THAT OCCUR AT THE LAST SYMBOL

AMT=AMT +1

ITT=INTER(N2A)

ITIT=S(K,N2A)
RODUNCAMT o1 )=WTAB(ITTLITIT)
ROUN(AMT 2) =1

ANTI=AMT1+1

RIUNLLAMTL, 1)=CTEIB(ITTLITIT)
I M=N2A

SwH=1
DUNT(AMTL 42 )=CALC{IMIINTER «KoSW)
CIONTINVE

D3 18 K=1,N3

THIS SECTION PARALLELS THE FIRSY EXCEPT IT DEALS WITH THE RELATION
TABLE

NOK=NS (KD +1

NCISET IS THE CUR[ENT NUMAER OF CISETS DEFINED

D3 20 J=1+NCISET
INTER(D)I=NIELIK oI)

I A ROW 15 CPMILETE 1T IS ZEROED OUT BECAUSE NO NEW INFORMATION
CAN 0CCUR THIRE

IF(INTER({1) «SQ40) GC T3 20
NAA=NS (X))

EACH ROW [N TABLE & 1S PRNCESSED FROM YHE RIGHT AS FAP AS POSSISLE.




323 D) 22 I=1.N4A

304 I1T=(%.7)

325 ITISINTE2T)

3245 INTER(I+1)=4ATAI(ITL,LIIT)

327 IT(INTZ2( 141 )4EDe0) GO TO 23
328 22 CIINTINJGE

1= THE SNTIRS R34 15 PROCESSED EITHER A REDUNDANCY CR NO NEW
[4FIIMATION 30 THE A0W 1S ZEROEC 0OUT

[S3N SN B}

323 ISC(INTEU 30<) o NEWNRELIKGJ)) GO TO 71
330 NRTL(Ke 1) =0

351 G3 TJ 22

332 23 INTER(44X)=NREL (KeJ)

333 IF{TeZ2eN3{%x)) 33 T 28

3ia 1I=1+1

355 NI KL =NAK+H] T

356 NAK2=N4K+]

[§]

THE R[04 15 NId PROCESSED FROM THE LEFT AS FAR AS POSSIBLE AND 3 CASES

< ARISE
z - INFORMATION OCCURS GO 79 28
- -REIUNDANCY OCCURS GO TO 52 OR 71 DEPENDING ON THE LOCATION
- OF THE BREAK
- ~THERE ARE STILL BLANK SPACES SO ANEW ROwW [S CCNSIDERED
347 DY 24 _=11.N3A
333 ITT=INTIR(NAKL-L)
3i9 TIT=R(< s N3K2=L) +N3
3390 TIT=)22(T1T,%31)
331 INTER(NAK2-L)I=ATAS(ITT, TIT)
332 IS(INTENIK2-L )eEQs0) GO VO 20
3 3 24 CINTINJE

T415 SSECTION DEALS WITH NEW INFORMATIOAN

(R R N}

3149 23 ITIT=INTZR(I+1)
345 ITTT=(Re i) #N3
346 ITTY=DSD(1TTYT,LNS1)
37 IS(WTA3( ITITITTT)NEe O0) GO TO S2
349 $TAS(ITITLITTT)=INTER(])
339 WTA3L ITIIITI=INTER(I+1)
159 SW=2
351 STIS(ITISIITISSALCITI S INTERIKoSW)
12 <J=CTIAITELLIT)
3513 CTISCITITLITTIT)=] IVIKY)
334 NRSL{KeJ)=2
3595 53 12 2)
- T4I5 SIZTIIN DSA_S WITH IENUNDANCIES THAT OCCUR ANYWHERE AUT AT
< T4 LAST 374390
332 32 AAT=AUT #]
357 RVINCAAT 1 I =W TASCITITLITTY)
355 IVIN(AAT ) s INTIUL)
359 AATI=AMTI+
329 RIINICAATL 41 )=CTIB(ITITLITTT)
358 SAd=2
352 3YINI(AATL 4 2)=CALC(T o INTER oK 4SW)
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353
35%

3>
35
3>7
333
3
3790
3’
372
373
374
375
375
3r7
3’3
377
330
351
332
333
334
335
3306
347
343
339

320

371
322

3)3
324
335

335

$5¢?
343
322
19
421
422

23

433

233

0O

€ tr et ()

[ RN 4

(R AN R

73

NRIL(KeJ)=0
33 10 20

T4IS SSCTIIN DIEALS WITH RENUNDANCIES THAT OCCUR AT THE LAST SYMBOL

AAT=AMT +1
ITT=INTE (NG A)

ITIT=R{K, y3A)
RIUNCAAT,, 1) =NREL(Ks J)
IINIAMT 2 )=dTAB(ITTLITIT)
AATI=AMTL #1

(T=R(K,2)+N9

I7=D0D{ IT ,N81) )
RIUNILAMTL S 1)=CTII(INTER(2),1T)
SH=2

14=N4(K)
DINL(AMT L4 2D)=CALCL IMy INTER 4K 9S W)
ITI=R(K4N3A) #N3

1TI=D0D(1T1,N81)

ITT=INTER(NAK)

ITT=CTI(ITT,ITL)

RIUNL (AMTE 4 2)=NSIA(RDUNI{AMTE 32 ),1TT)
IF=INV{DINL (AMT1 +1))
IL=ROUNI{ AT 1,2)
IINL{AMT L 4 2)=NSUMIILIF)
NIEL(KeJD =D

CONTINUE

CINTINUE

R TURN

N9

3J3RIUTINZ DEFINE(INDICINCOSET.EQS,IBET)

T415 SJUBIIITINE DEFINES NEW COSETS WHEN THE TABLES ARE NOT COMPLEYE
AVd) THERE ARE VI EDUNDANCIZS TC BE PROCESSED

TAZRE ARE TwWD SECTICONS,ONE FOR DEF INING CNSETS IN A SU3GROUP
3INERATIY AND A SEZTION FR0OM STATEMENT 15 WHERE COSETS ARE DEF INFD
FII4 THZ 3I_ANKS I TWF TABLF OF RELATIRS

149LICIT INTSGERS2{A=-7)

CIAMIN N1 oN6 NI o N7, NCIaNFToN2 (3) NG (1) sR(1+7)9S{3+6)ewWTA3(100244)
+ZTI30102748)NRELIS,1002)

CIMMIN ZAIZA2/ NSOST(100) sRDUNI13042)eRDUNI(100.2)

N3 1 =285

NI =N

ISUINDICe=24)) 32 7] 15

THZ PRIS A4 CHICKS THRIUGH 0OWS IN THE SURGROUP GENERAT OIS UNTIL
THZ FIST 3LANS 32ACE IS FOUND AND THIN A NFW CISET IS DEFINED

33 3 X=1e11
[NTER4=1

N2ALT=N2{(<K) -1

IF(N2ALT 42340) 33 T2 3
IF05(Ke1)430e3) 37 TC 3
73 S L=l d2ALT
I11T=3(KL)
T4TERI=WTAI(INTERAG 11 T)
IZ(INTERIl«NEe 0) 30 YO &




406
437
+)3
437

a1V
a11
412

213
a1 4
a3
a3
417
313
al I

a2n
42}

4z
423
224
4235
426
27
423
429
a43)
2313
432
453
434
435

434
237
433

N33

[N AN B

€ 0Oy

(AN R} Y €)1

€ 61 8 U

“

(4]

£y 49 ¢

€0

13

w J

15

13

WTAS(INTEIMGIIT)=NCQSETH]
CTII(INTEIMLLIIT)=)
1ITT=1IT+NS
TITT=DUDLIITT.NAL)

THE NUM3ER J5 CI3STS DEFINED IS INCREASED BY ONE

NS ISET=NC ISET+]
WTABINSISZT o HITTISINTERM
STI3I(NCOSZTHI3TT)=D

RIWS ARE 5IZT UP IN TABLE 4 FOR THE NEW COSET

297 19 J=19N3

NREL{ JoNCIFET )SNCISET
CONTINJE

IETUIN

INTERM=INTERI]
CINTINUE

CINTINUE

IF THERE ARE ND 3LANKS IN THE SUBGROUP GENERATORS THEN THE VALUE
OF INDIC IS CHANGED

INDIC=
Y J4=0

THIS SECTION PARALLELS THE FIRST AS THE ROWS IN THE RELATION TABLE
ARE SEARCHED 3R THE FIRST BLANK SPOV

THERE 1S5S A SLIGAT VARIATION DUE T) THE FACT THAT REDUNDANT COSEYS
ARE KEPT TRACK OF AND REJSED

NCOSE(1)-THE NAME IF A REDUNCANT COSET WHICH CAN BE REVUSED

MCO=NCU3ET
DI 9 M=1,420

77 7 K=14N3
INTERM=NRILI K M)
IFCINTERV,EQLD) 533 T0 7
NS ALT =N4(K)-1

20 1) L=1eNOA_T
1IT=R(KsL)
INTERISWT AB(INT EXIH, 1IV)
IS{INTERLL.Z9.0) 31 TN 13
INTEQM=INTERT

53 T1 11

TITT=1(T#NS
TITT=D03¢11774N31)

I FHERE AHE ANY REUSAILE COSETS THEY SRE LSED FIRST
IF(IBETNEe D) 32 TO 18

WFAS(INTE A1 TIT)I=NCOSETH

CTI3CINTERMLIIT )=)

TH4T NJM3IEQX OF CISSTS DEFINED 1S INCREASED 3Y ONS
NZISET=NCIIET 41

RIS ARE ZIZATED "M THE ARRAY WTAZ FOR THE NEw COSEY

7399




430
441
44 2
343
84 45
435
49 >
as 7
433
249
4590
451
452
453
454

45>
436
457
453
457
450
301

432

236

€Yy €2 ¢

Mty 0

t N

"

14

17

—
O N o

524

502

572

WTAS(NCOSZTHLITT)I=INTERM
CTIBINCISET L I1TT )=

23 95 KK=1sN3
HREL{KK o« NCISZT)=NCISET
CINTINJE

ITTURN

WTAS{INTZEIMIIT )=NCAOSE(IRET)
CTIB(INTE W, 11T7)=0

1 T=NCOSE({ I3ET)
WTAS(IT11TT)=INTERM
CTIS( 1T .117T7)=0

00 17 KK=]+N3

NIELLKK s NCOSE(1IET) )=NCOSE( IBET)
CINVINUE

NCOSE( IBET) =)

THE NUM3EI OF REUSABLE COSETS 1S DECREASED BY ONE
I3ET=1IBET~-1

RETURN

CONT INUE

CONT INUE

CONTINUE

£3J=0

RE TURN

N

INTEGER FUNCTIIN NSHMI2(P1,P2)
T4I5 SU3RIJTINE MWLTIPLIES TWO WORDS TOGETHER

14DLECIT INTZEGER®2(A~2Z)
CIMMON ZAZAL1/ CTA31(20000)KEEP
15031 oNE D)) GO TD 508
NSUW=P2

= TURN

IF{P24NE)2 33 TI 506
NSUM=P}

1ETUIN

1IT=CTA31{(21)~)
[TT=TA3L{P2)~]

D0 6323 1=1,.17
CTABI(KES221)=CTAIL(PIF])
CONTINJE
KZEP1=KEE 2+ CTA31(P1)~1

DI 602 1=1.+177
CTAINUIKEZ 21 #1)=CTA31(P2+1)

CIOINTINUE

CTA31 (KES3)=2TASI(31)4CTAZ]1({P2)—}
NBUMSCHIECKIKEER)
(TEI=CEE?+ZTAIIKEZP)

%49

INTEGER 7 INCTION CHECK22(P)

T41S SU3RIUTINE ELIAINATES TRIVIAL RELATORS OF THE FORM XXINVERSE

FIJM A 43D




437
433

4332
232
431
472
423
a3
45
436
437
439
9 I
329
321
S)2
333
Vs
395
333
327
533

E1 ]
511
512
513
314
St 3
313
N7z
313
319
529
521

UAW

Vi g Wi \
cEUERLRRY
Wiwe™ Oy wyowm

(4
'Y

33>
EEE]
337
333

€ 6

307

302

@
<o
I~

IMPLICIT INTEGER®2{A-Z)
CIMMON N1 gNGeN3sN7s NCIosNSIN2(3)eNE(1)
1sCTIB(1000+8)NREL{S+1000)
COMMON ZAREA1/ CTAB1(20000).KEEP
JI=CTA31L?)

CHECK=P

N3 1=28N1

IF(CTAIL{P) LEe2) RETURN
<<=CTA31(P)-2

PP=Ps)

PPPIP2

DO 800 I=1sKK
§T=CTADLI(P+1)4N1

I1T=00D( IToN81)
1TT=CTABL(3P+])
1F(IT4NE.ITT) GO TO 800
IF{KK.EQs1) GO TO 826
IF(1.EQeKK) GO YO 827

€< T=KK~1

33 802 JI=1.KKT
CTABLI(P+3)=CTABI(PPP+J)
CINTINUVE
CTABI(PIZCTAILIP)=-2
IF{CTA31(P)eNEel) GO VO 807
GO ¥9 825

CONTINUE

1IF{CTAB1(?) «EQ+0) CHECK=D
RSTURN

CTA3L(P)=0

CHECK=)

RITUIN

Cra3i{Petr=0
CTA31({PII+1)=0
CTABM(PI=ITASN(P)-2

RZ TURN

£ND

INTEGER FUNCTION INVS2({P)

sREL+7)+S(3:6)sWTABC10001+4)

TH4IS SUBRIJTINE GIVES THE INVERSE OF THE WORD INPUTTED

14PLICET INTEGER®2(A-2)

CIMMON NI ¢ N6 oNI oNTeNCIsNSeN2{IDeNA (1)
1:CTIB(1 00208 )eNRELIS1200)
CIVYMIN ZAREAL/ CTABE(20000)+XEEP
17{IeNZ e0) GQ TO S02

1NVv=0

ITTTUIN

I T=CTA31(2)

N3I1329N]

CTA3MIKEZI)=17

32=291T79)

KETPI=KEEI=)

37 509 i=2,41T7

JI=CTAIB(3P=1)9NS

CT AS1 (KEE?141)=D0IIINAY)
SONTINUE

1NV EEP

2R{107)eS(3e6)eWTAB(1000+4)

7401




S339
550
531

“®on

3DATA

KZEP=KEEA+CTABLI()
IZTURN
END

FNTEGER FUNCTION OJD%2(XsY)

TH1S SUSRIUTINE GIVES THKE VALUE F X MOD Y

I4PLICIT INTEGER#2{A-2)
IF{X«GT e¥) GO TO 950
20D=X

G T0O 955

X=X =Y

33 10 95

RETURN

END

502




THI3 15 THE DAYA INPUTTZID

THE KUMBER JIF ELEMENTS IN THE 353 GROUP GENERATORS
1 66
THE ~NJMBeR JIF ELIZMINTS IN THE JELATORS
6 .
ThI SJ36I.N3 GEIZRATIRS
1
211118
4313112
THE RELATORS
11214808

A RILATIR DERIVED FROM IEDUNDANCIESe THE FIRSY NUMBER JS ONE NMORE THAN THE LENGTH OF THE RELATOR.
THE RZAAINING NINBERS ARE THME RELATOR 1 TSELF
? 23134685

A RILATII IERIVED FROM [OUNDANCEIES. THE FIRST NUMIER 1S CNE MORE THAN THE LENGTH OF THE RELATOR.
THE RIMALNING NIMIERS AIZ THE RELATOR ITVSELF
? 2313154806

NUM3ER OF COSETS DEFINED 9

REIIHOANT CIZETS 6 9 ] ?

TRE INDEX 7F TAZ SUBGRIUD IS

S

WTAI-MULT IPLACATION TA3LE PO COSETS
1
a3
332
L H
E-H
62
78
o
93

QQUQOWUNUVS W
CQUwmdyadi
QUOOPUNUL™
QOVOUWEN-O

ST13=2214T73233 T LICATION OF CISET REPRESENTATIVES

33 1 3 3 a3
a: 0 32 13 n
3: I | 2 5
'H o 133 o 181
s: 11 3 o 97
6: 0 ) G 3
73 0 2 ° ]
[-H G ? o b
9 b 2 2 ]
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THI
THI

+3

13

r9

v

io1

[

32

27

SARE  JSAGE

JIASNISTICZS

COMILLE Ti4=

ENTRIZS T3 7A8LE 11
SECIV) NUA3Z 1S

INT MIRE

234 55 %%

2

2

'y

2 31

6

23 3% 55

I3IZZTY 2J3D2= 23080 BYTES +ARRAY AREA=
¥J4323 OF = RXIIS= Ne NUMBER OF

447 3ZCEXECITION T IUE= 1.28 SEC,

AAZRE THZ FIRST NUMBER IS THE LOCATION NUMBER [N THE TABLE ABOVE,
TH4AN THE HUMAER NF SYMBOLS IN THE w0ORD AND THEN THE WORD IS
PRILTeD 3ELIA IN NUMERIC FIRMe EACH NUMBER REPRESENTS A SU3GRIJP GENERATOR

€7690 BYTES.TOTAL AREA AVAJILABLE=

WARNINGS= O

VATF IV «~ VERSICN } LEVEL 3 WARCH

95304

NUMBER OF EXTENSIONS=

1971

BYTES

o

DATE=

727005
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