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ABSTRACT 
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The purpose of this thesis is to present the exposition of 

a new algorithm. If we are given a group and a subgroup of finite index 

the algorithm determines the index. This part of the algorithm derives 

from the Todd-Coxeter algorithme The second function is to give a pres­

entati on for the subgroup in terms of those ori gi nal generators of the 

subgroup. This part of the algorithm is similar in scope to the class­

ical Reidemeister-Schreier technique. The thesis first gives a detailed 

description of the new algorithm with a worked example. Then a proof is 

given that the algorithm does give a presentation for the subgroup with 

the proof based on a proof used for the Reidemeister-Schreier algorithme 

An actual FORTRAN program is included which executes the algorithme The 

1 ast chapter i s concerned wi th vari oUS examples. 
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INTRODUCTION 

The purpose of this thesis is to present the exposition of 

an algorithme The algorithm performs two functions. If we are given a 

group and a subgroup offinite index, the algorithm determines the in­

dex. The second function is to give a presentation for the subgroup in 

terms of the ori ginal generators of the subgroup. Thi sis the fi rst 

time the complete algorithm has been described. 

This first function is the Todd-Coxeter a1gorithm (Coxeter 

& Moser, 1964). The second function is the Reiderœister-Schreier rewrit­

ing process (Magnus, Karrass, & Solitar, 1966, pp.a6-9a). The a1gorithm 

we describe combines these two operations into one. 

The first chapter of the thesis, called chapter 0, gives a 

few preliminary details. In chapter one we describe the new a1gorithm 

. in detail, with a worked examp1e. In the second chapter we outline the 

Reidemeister-Schreier process with the same example worked out. In the 

next chapter we prove the a1gorithm does actua11y give a presentation 

of the subgroup. Then we discuss a machine version of the algorithm 

gi ving the actual FORTRAN program. The 1 ast chapter contains some add­

itional results concerning various presentations. These results show 

how the algorithm may be used. 



CHAPTER 0 

Let G be a group and let 

s = { x. y, z, ... } 

be an arbitrary set of symbo1s and 
-1 -1 ,·1 -1 S ={x ,y ,z , ••• } 

an associated set of symbo1s. A word W is a finite sequence of 

symbo1s in sus-l, and the 1ength L(W), of W i s the number of symbo1s 

from SLS-1 in W. We define the empty word as a word of 1ength 0 

denoted by 1 or e. 

Now let a be a mapping from S to G 

a: x-+ 9 

. a: y-+ h 

We say that under a, X defines g, y defines h, etc ••• If W is a word 

in Sand 

W = f1f2 ••• fn 
and fi defines gi for i = 1,2, ••. n we say W defines 91 g2 ••. gn. 

If a is such that every e1ement of G is defined then we say S is a set 

of defining symbo1s for G. Suppose W is a word in S such that under a, 

W defines the identity e1ement of G; then W is ca11ed a re1ator of G. 

The equation 

R (x, y, z, ... ) = S (x, y, z, ... ) 

where the equa1 i ty means as an image of ais called a rel ation. if the 



word "RS-l is a relator. An equation of the form 

x = x 

is called a trivial relation and the word xx-1 is ca11ed a trivial 

rel ator. 

Suppose P, Q, R, ••• are re1ators in G. We say that the 

word W is derivable from P, Q, R, ••• if the fo110wing operations 

applied a finite number of times change W into the empty word: 

1. -1 -1 Insertion of one of the words P, P ,Q, Q , •.• or 

one of the trivial re1ators. 

2. -1 -1 Deletion of one of the words P, P ,Q, Q , ••• or 

one of the tri vial rel ators. 

3 

Let ~ = {P, Q, R, ••• } be a set of rel ators such that every rel ator 

is derivable from ~, then ~ is said to be a set of defining relators 

for G. So if we have the sets S, ~, we wri te 

G=(S;~) 

and call this a presentation of G. We say the presentation is finite1y 

generated (finite1y related) if the number of generators (defining re­

l ati ons) i s fi ni te. 1 fit i s both, then we say the presentati on i s 

fini te. 

For example, any cyclic group is finite1y presented, since 

if the order of the group i s n then 

( a ; an ) 

i s a presentati on. 

It is true that every group has a presentation (not 

necessari1y finite, see Magnus, Karrass & Solitar, 1966). 

.1 



The distinction between relaLr and relation may be relaxed 

since when we have a relator W we also have the relation 

W = e 

and conversely. 

4· 



CHAPTER ONE 

Let G be a discrete group generated by a finite number 

of gene ra tors 

sl' s2' s 3' •.. sm m ~ 1 

and defined by a finite number of relations 

g.(s) = e 
l 

i=1,2, ••• r 

where the gi(s) are words in the generators Sj and sj1, j = 1, ••• m. 

Let t k = tk(s) k = 1, 2, ••• n 

be n words in the generators Sj and sj1 and let 

H = { t1, t 2, ••• tn } 

be the subgroup generated by these words. The problems we wish to 

sol ve are : 

1. Assuming the index of H in G to be finite we wish to 

find the index. 

2. To give a presentation for H. 

Concerning prob1em 1, E. H. Moore (1897) and many others 

have systematica11y enumerated the cosets of H in G. Todd and Coxeter 

(1936) converted this method into a mechanica1 technique. It is pre­

cise1y this technique upon which the more sophisticated a1gorithm that 

we describe is based. 

Prob1em two requires us to find relations in the symbols 

t k such that every relation in H is a consequence of these relations. 

We will consider the classical solution to prob1em two in chapter two. 

We will use the positive integers 1, 2, 3, •.• to denote 

the cosets of H in G, and always agree to let the coset H be denoted 



by 1. We shall also be choosing coset representatives (one represen­

tative for each coset) and agree to denote the representative chosen 

for coset i by the symbol I. We always choose T to be the identity. The 

representati ves '2", 3, 4, ... are, of course, words in the generators s j 

and their inverses sjl. 

As the computation of the algorithm proceeds we build 

several tables, containing various sorts of information obtained to 

that point. The first table contains all the information of the type 

·is.=k., 
J 

i.e. how the cosets are permuted among themselves on right multi­

plication by the generators of Gand their inverses. This information 

is completely contained in a table displayed as follows: 

2 

3 

TABLE 1 

The en tri es are integers ( cosets ) and occur at the intersection of 

the rows indexed by 1, 2, 3, ••• and columns headed by sl' 52' s3' ••• 
-1 -1 -1 sl ' s2 ' 53 ' ••• • The infonnati on 

is. = k. 
J 

is recorded by placing the integer k. at the intersection of the i th 

6 



row and Sj th column. The information 
Il. -1 . Sj =.(. 

is recorded by placing the integer ~ in the kth row under the column 

headed by sjl. When the algorithm is complete, TABLE 1 will have 

d = [G:H] rows and there will be no empty spaces in the table. 

The second table which we will refer to as TABLE II will 

contain information of the type 
...,. 'J:'" 1:": -1 w-l...,. '('Sj = W~, ~Sj = .(. 

where W is an element of H. That is, when we multiply a coset repre­

sentative on the right by a generator or its irnverse we get a word 

in the subgroup times another coset representative. Of course, that 

word may only be the identity. (In the classical method, described 

further, W is expressed as a word in the Schreier generators of H and 

their inverses; in our algorithm the words W are expressed as words 

in the generators t i and thei r inverses.) The information i s recorded 

in TABLE II as was done in TABLE 1. 

Clearly the information contained at any stage in TABLE 1 

is contained in TABLE II but not conversely for, 

:rs. = W1i 
J 

i mpl ies immedi ately 

~Sj = Il. 
but from the 1 atter the former cannot be deduced il1ll1E!di ately. 

TABLE II is shown on the following page. 

7 



TABLE II 

New let W be a word in G or H. Then W is said to be written 

in expanded form ( Coxeter & Moser 1964 p.13 ) if the exponent of any 

symbol in W is ±1. For example 

W = 53525-2 
157 

written in expanded fonn is 
-1 -1 

W = 515151555557 57 

The third table consists of n subtables, one for each sub-

group generator t k = tk(s). If 

tk(s) = s~s~ ••• s~ 
then the table would appear as follows 

= sC? , 
11 

s~s~ , J 

1 1 
TABLE III 

o = ±l 

The vertical bars separate the symbols. Now we know that t k is in 

the subgroup hence 

1\ = 1 

and this information has already been entered above. We fill into 

TABLE III as much information as possible from TABLE 1. For example 

it may be that si is already a subgroup generator in which case the 

8 



above table would look like; 

So SO • • • p 

1 p 1 1 

The fourth and last table consists of r subtables, one 

for each relator gi(s). Each relator is written in expanded form with 

a number of rows below it. For example corresponding to the relator 

g. = sdse s 1 
l P q t 

we set up the table 

Now 

79i = 1 

sp Sq Sq ... Sq ... St ... St 
1 
2 

TABLE IV 

o = ±l 

sothat is why a 7 appears at both ends. In fact for any coset j and 

any rel ator 9 we have 

jg = j. 

We fill in as much information as possible from TABLE 1. 

9 

To see bette:r what these tables look like at the preliminary 

stage consider the group 

G = ( A, X; X2 AX = A2 ) 

and the subgroup 

H = { t, = X, t 2 = AXXXXA-l , t 3 = A-1XXXXA }. 

We immediately have 

7=H T=e 

.1 



1 X = 1 

1X-1 = 1 

TX = t1T 

TX-1 = tilT 

The tables are set up as follows; 

TABLE 1 

X x-1 A ~-l 

1 1 1 1 TI 

TABLE III 

t 1 = X 

'lI 111 
t 2 = A X X X X A-1 

'11 11 Il 
t 3 = A-1 X X X X A 

11 1 '1 Il 

TABLE II 

X x-1 A A-1 

t,T t-1T 
1 

TABLE IV 

X X A X A-1 A-1 

11 1111 1 1 

We leave this example for a moment and continue with our 

discussion of the general algorithme The first step in the algorithm 

is to define new information. This is a basic step at any stage. If 

a11 known information has been processed and there are still blank 

spaces in TABLE 1 then new cosets are defined. Thus we define coset 2 

by setting 

2 = ls~ 
J 

o = ±, 
where Sj is a group generator and the product 

then fo11ows that 

1 = 2s:0. 
J 

ls~ is not known. It 
J 

At the same time we choose ~, the representative of coset 2, to be 

'2 = Ts~ 
J 

and as above it fo11ows 

10 



T = 2Sjo. 
However we know 

T=e 

so '2 = s~ 
J 

We put this information in tables l .and II. We also put it in tables 

III and IV wherever possible. We now create new rows in TABLE IV by 

entering the new coset in every essentially different place ( of 

course omitting the places where it has already occurred.) By If ess­

entially different " we mean the following: 

A relator has a base length ( Trotter, 1966,p.13 ), that 

is to say a block of symbols of minimal length which is repeated one 

11 

or more times, to make up the relator. For example in the relator an 

the base length is one and in the relator (ab)n the base length is two. 

When we say a coset appears in every essentially different place we 

rœan the coset appears to the left of every symbol and to the ri ght of 

every symbol in the base. Thus if a relator has a base length of k, 

each coset must appear k or k+l times in each subtable in TABLE IV ( a 

coset will appear k+l times if it commences a row, otherwise k times ) 

We return to our example: 

We define 

2 = lA 

2= TA 

and enter this information in all four tables. The tables appear on 

the next page. 
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TABLE 1 TABLE II 

X X-l A A-l X X-l A A-l 

1 

1 

1 

1 1 

2 

1 

T tlT 1 -lT 

1 

2" 

2 1 r 
t l 

T 

TABLE III TABLE IV 

t l = X X X A X A-1 A-l 

1\ 1 11 1 1 1 1 2 2 

A-1 7 
t 2 = A X X X X 2 

1\ 1 1 \ 2 2 1 1 2 

t 3 = A-l X· X X X A 2 

7\ 7 1 7 2 

Me now discuss what occurs in tables III and IV. There are 

two possibilities for a particular row. The first is that there are 

blank spaces. In tables III and IV above every row has blank spaces. 

ln this case nothing can be done so it is left. 

The second possibility occurs when the row becomes complete 

i.e. no blank spaces left. Suppose in our example we now define 

3 = 'lX. 

We reproduce row 1 from TABLE IV above after entering the information 

X X A X A-1 A-l 

1 1 1 1 1 1 2 1 3 1 2 1 1. 

i.e. the row closes! We can now conclude 

2 = 3A-l 

3 = 'lA. 

We have gained new information. This is called row closure. We put 

this information in TABLE 1 and wherever possible in the other rows in 



tables III and IV. The same procedure is used if row closure occurs 

in TABLE III. 

When new cosets are defined there are no rules to say 

what the definition should be. However since row closure gives addit­

ional infonmation it is usually better to define cosets in such a 

manner that closure occurs as' often as possible. TABLE III is closed 

first and then the rows in TABLE IV starting with row ,. 

When row closure occurs, additional information of the 

type contained in TABLE II is also obtained. There are two separate 

cases. If row closure occurs in TABLE IV we procede as follows: 

We had 

1 1 1 2 3 2 1 

We solve for the generator where closure occurred, in this case A-l 

A-l = X- l A-l X-l X-l A 

Now we multiply both sides of the equation on the left by the coset 

occurring to the left of the solved for generator 

3A-l = 3 X-l A- l X-l X-l A 

We go to TABLE II and look up the information required and we find 

3 x-1 = !' 

50, continuing to mul tiply in this manner 

3 A-l = !' A-l x-l X-l A 

= T'Cl X-l A 

= t 1l T x- l A 

= t 1l t1l T A 

= t 12 !' 

13 



Thus we get the new infor~~tion 
- A-l -2 7f" 3 = t 1 1. 

2A=t~"J 
This information is put in TABLE II. Without reference to a particu1ar 

examp1e the following points should be noted: 

1. All products of the form r-s are known because the row 

closed~ i.e. the rewriting can always be carried out. 

2. If the final information is 

rs=wJ 

then W is a word in the subgroup. 

3. This procedure is called rewriting a row i. e. rewrit­

ing in terms of subgroup symbols and a coset represen­

tative. 

If row closure occurs in TABLE III the same procedure is 

followed with a slight complication. The complication is due to the 

fact that we are dealing with a subgroup generator of the form 

t k = tk(s) 

14 

Wh en we solve for the generator where closure occurred, we must remem­

ber to include t k on the left hand side of the equation. To show the 

exact procedure we will consider the subgroup generator t 2 in our example 

t 2 = A X X X X A~ 
7 7 2 3 2 7 

We have entered all the information that is possible at this moment. 

We now define 

3X = 4 

4X = 5 

3X = "4 

4X = ~ 



From the definitions we get immediate1y 

4X-l = 3 4X-1 = 3 

5X~ 1 = 4 n-1 = "4 

We put this information in tables 1 and II and proceed ta fi11 in as 

much as possible in TABLE III. We consider the generator ~ 

t 2 = A X X X X A-l 

1 1 1 234 5 2 1 

Row closure occurs in TABLE III. We see immediately 

5X = 2 

2X-l = 5 

However as was in the case in TABLE IV there is additional information 

15 

contained in row closure in TABLE III. We solve for the group generator 

where c10sure occurred, in this case, X 

X = X-l X-l X-1 A-l t
2 

A 

Note the di fference between row closure here and in TABLE IV. New we 

proceed as before and multip1y both sides of the equation on the left 

by the appropriate coset representative. 

n = ~ X-l X-l X-1 A -1 t 2 A 

As before, we go to TABLE II and get the information necessary to carry 

out the mu 1 ti pl :i ca ti on on the ri gh t han d si de • 

n = ~ X-l X-l X-l A-l t 2 A 

= 4 X-l X- l A-l ~ A 

= 3 X-1 A-l t A 
2 

= '2 A-l t 2 A 

= T t 2 A 

= t 2 T A 



~x : ~ "2 

This information is put in TABLE II. We have now dealt with row clos­

ure in tables III and IV. 

The example we are dealing with now looks like: 

7 

2 

3 

4 

5 

x 

7 

3 

4 

5 

2 

t l = X 

TABLE 1 

X-l A 

7 

5 

2 

3 

4 

2 

3 

TABLE III 

71 7 7 P 
t 2 = A X X X X A-l 

d 7 71 2 13141512\7 

t - A-l X X X X A 3 -
1 1 7 71 17 

7 

2 

x 
T t 1 T 

"2 "J 

"J "4 

"4 ~ 

"5 ~2 

X X 

7 7 

2 3 

5 2 

4 5 

3 4 

7 

4 

3 

2 

5 

TABLE II 

X-1 A 

-lT t 1 "2 

t;1~ t~"J 
"2 

3" 

"4 

TABLE IV 

A X A-1 

2 3 2 

1 1 
5 2 7 

" 3 

3 

4 

4 

5 

5 

4 

T 

t;2y 

1 

A-1 

7 

2 

5 

4 

3 

there is one further situation to be dealt with. Suppose 

a row closes and we get information of the type 

-i.s = j. 
We proceed to put j in the -i.th row and under the s in TABLE 1 but find 

i 
-- _~I 

16 



the space is not empty! Thus we already have an equation 

.is = k 

If j 1 k then we have a redundancy (Mende1sohn,1964, p.509) or a 

coincidence (Todd & Coxeter, 1936). By these words we mean that two 

numbers represent the same coset. Thus both j and k stand for the same 

coset. 

The situation is dea1t with as follows. We first rewrite 

the row where closure occurred to get the information 

..... W--,(.. s = j 

We also look in TABLE II to get the information 

Z's=VTf 

Combining the information in an algebraic manner i.e. by equating we 

find 

j = k 

Wj=VTf 

What does this say? Well, if we look in TABLE 1 it means the row num­

bered j and the row numbered k are the same. Thus we can compare the 

17 

two "rows, column by column, equating entries. A similar situation occurs 

in TABLE II. We assume that in numerical value 

j < k. 

We have the equation 

Wj=Vli" 

or 

1 = W-1V li" 

We must now multiply every entry in the Tf th row in TABLE Il by w-lv 
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and then equate rows J and E. 

There are four cases that can occur when comparing the two 

rows in tables 1 and II. Suppose we consider a column headed by a group 

generator SI. Let us denote by (SI ,j) the entry in the jth row and un­

der SI in TABLE I.Similarly let (SI ,1) denote the entry in the 7th row 

and under SI in TABLE II. The four cases are: 

1. (SI ,j) and (sl,k) are both empty. 

2. (SI ,j) is empty and (sl,k) is note 

3. (SI ,j) is not empty and (SI ,k) is empty. 

4. Both (SI,j) and (s"k) are nonempty. 

Of course, if (SI ~j) i S empty then so is (SI ~J). Thus the above cases 

ho1d in TABLE II as welle They are dea1t with as follows: 

1. This case is trivial. We also have (SI,n and (:il,i) 

are empty. There is no new information and nothing is done. 

2. In this case we have picked up new information. We put 

the entry (sl,k) in the b1ank space (SI,j). In TABLE II we put the entry 

(SI,1i) in the blank space (51,1). It should be remermered we have mul­

tiplied the entry (SI,R) by W-1V before comparing the rows. 

3. There is no new information in this case so nothing is 

done. 

4. This case provides further redundancies for we know that 

the entry (SI,j) and the entry (sl,k) are equal. This information ;s put 

in a list to await processing. Thus if we assume the following e.g. 

(SI ,j) = l 

(SI ,k) = m 



and we a1so assume e.g. 

(SI ,1> = Wll" 

(SI ,li) = Vliii 

19 

where Wl and Vl are words in the subgroup, then we wou1d have the fol1-

owing infonnation in our 1ist 

t=m 

W,l' = V,m 
We are now fi ni shed wi th the row k in TABLE 1 and the row 

Ti in TABLE II, hence these rows are erased. However there will be occurr­

ences of k in the body of TABLE 1 and occurrences of Ti in the body of 

TABLE 1 I.We now go th rough TABLE 1 and rep' ace every occurrence of k 

by j. We also know 

J = W-1VTi 

so Ti = v-1Wl 
We now go through TABLE II and replace every occurrence of Tiby v-1Wl. 

Next we deal with TABLE III. If a row has c'osed we ignore 

it even if it contains k. The replacement of k by j would not give us 

new information. If however k occurs in a row which has not c10sed then 

we repl ace k by j. In TABLE 1 V we merely erase every row whi ch contains 

k. We do this because these rows mere1y duplicate the rows containing j 

in the same position. 

The last step in dealing with redundancies is to look at 

the list of redundancies waiting to be processed. If there are any fur­

ther occurrences of k and Tiin the list they are rep1aced by j and 

v-1WJ respective1y. 



The problem of redundancies would at first glance appear 

to be fairly complicated. In order to deal properly with redundancies 

we must remember that we are systematically deleting occurrences of 

the higher numbered coset in any place it m~ occur. After the higher 

number has been deleted, it will leave a gap in the tables. This gap 

can be filled in two ways. We either renumber the cosets to fill the 

gap or we define a new coset with the old number. 

20 

We are now finished with the first redundancy. We proceed 

to deal with the next redundancy in the same systematic manner. There 

is one further situation which m~ occur in this liste That is, we may 

have equations of the form 

j = j 

q=~ 

i.e. a coset equal to itself. This is a very easy matter to deal with. 

We notice in the equation 

~=~ 

that we can cancel 7 and we are left with 

V = W. 

This is a relation in the subgroup. It will form part of a defining 

set of relations so it is kept in a liste This is all that is necessary 

to deal with this situation. After we complete processing of the list 

of redundancies, we proceed to tables III and IV and fill in as much 

information as possible. 

We consider our example and give some concrete occurrences 

of redundancies. Let us consider the subgroup generator t3 



t = A-l 
3 X X X X A 

We define 

6 = lA-l 6 = TA-l 

7 = 6X 1" = 6X 

8 = 1X 8= 7X 

9 = 8X V- = S'X 

We of course immediately get 

1 = 6A 

6 = 1X-l 

7 = 8X-l 

8 = 9X-l 

T= 6A 

- -::rv-l 6 = //\ 
1" = n-l 

- ;n,-l 
8 = 9/\ 

We enter this information in tables 1,11,111, and IV. 

TABLE 1 TABLE II 

X X-l A A-l X X-1 A 

1 1 1 2 6 T t 1 T -lT t 1 "2 

2 3 5 3 1 "2 '3 t;1~ t~'3 
3 4 2 2 '3 "4 "2 

4 5 3 "4 ~ '3 

5 2 4 5" 1iz"2 4" 

6 7 1 6 1" r 
1 8 6 .,. "8 7) 

8 9 1 '8 V- 1" 

9 8 V- 8 

.1 

21 

A-1 

7) 

T 

t~2"2 



.1 
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TABLE III TABLE IV 

t1 = X X X A X A-1 A-1 

'1 1 11 1 1 1 1 2 3 2 1 

t 2 = A X X X X A-1 6 1 1 6 

'1 1 1121314151211 
6 7 8 5 2 1 6 * 
2 3 4 3 2 

t 3 = A-1 X X X X A 
5 5 2 3 

11 1 11 6 171BI4!ll * 
4 5 2 3 4 4 
3 4 5 3 

4 5 

5 

4 
6 7 

6 7 

6 

7 B 9 7 
7 8 

7 
8 9 8 

8 9 
8 

9 9 
9 

9 

Two new pieoes of information occur, denoted by *. From TABLE III 

9X = 6 

6X-1 = 9 

After rewriting the row we get 

n - "f X-1 X-1 X-1 A t A-1 
- 3 

= t 3 '6 

and "6 X-1 - t-1"f - 3 



Note that TABLE III is comp1ete1y closed, hence it cannot provide any 

further information. We do not display it beyond this stage. Now from 

the row starting 6 in TABLE IV we see 

8A = 5 : 

5A-1 = 8 

After rewriting the row we find 

1" A = t-1 5" 
2 

~ A-1 = tif 

We enter this information in TABLE 1 and TABLE II and fi11 in TABLE IV 

wherever possible. 

TABLE 1 TABLE II 

X X-1 A A-1 X X-1 A A-1 

1 1 1 2 6 T t 1 T -lT tl ï "6 
2 3 5 3 1 2" 3" -15 t 2 t~3" T 

3 4 2 2 "3 "4 ï t;2ï 

4 5 3 " 5 3" 

5 2 4 8 5" t 2 2" "4 t 2 8 
6 7 9 1 6" "1 -1~ t3 T 

7 8 6 "1 8" "6 

8 9 7 5 1" "9 .,- t;15 

9 6 8 ~ t36" 8" 

23 
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TABLE IV 

X X A X A-1 A-1 

7 7 2 3 2 7 

8 9 6 7 6 8 1ft 

6 7 8 5 2 7 6 

2 3 4 3 2 

5 2 3 5 

4 5 2 3 4 4 

3 4 5 3 

4 5 8 

4 

9 6' 7 9 

6 7 

9 6 

7 8 9 7 

7 8 

7 

8 9 

9 

From the row starting 8 (denoted by *) in TABLE IV we find 

6A-1 = 8. 

However when we go to enter thi s information in TABLE 1 we find 

8A = 5. 

We may concl ude 6 = 5. 

We rewrite the raN starting 8 in TABLE IV to get 



6A-1 -1 = t 1 
t-1 
3 T 

or TA = t 3 t 1 "6 

From TABLE II we know 

TA = t 215'" 

so 5'" = t 2 t 3 t1 "6 

We reproduce part of TABLE 1 so we can easi1y compare rows 5and 6 

S 

6 

X X-1 A A-1 

2 

7 

4 

9 

8 

1 

From the column headed by X we can conc1ude 

1. 2 = 7 

(We will number the redundancies consecutive1y to aid in processing.) 

From the co1umn headed by X-1 we can conc1ude 

2. 4 = 9 

There is a1so the new information 

SA = 1 

We 'now mu1tip1y row "6 in TABLE II by t 2t 3t1 and reproduce that part 

of TABLE II of interest 

X X-1 A A-1 

'5 ~!" 4' ~T 

"6 t 2 t3 tl1" -19 ~ t3 tl t3 tz t3 t 1 T 

Corresponding to the equations obtained from TABLE 1 we can write 

down the fo110wing 

t2 ï = t2 t3 tl 1" 

4' = t2 t3 t 1 t; 19 

25 
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We a1so get the following new information which is entered in TABLE II 

)"A = ~t3tl T 

We now erase row 6 in TABLE 1; erase row 6in TABLE II; replace occurr­

ences of 6 by 5 in TABLE 1; replace occurrences of 6by t;lt;lt;l)" in 

TABLE II; and erase those rows in TABLE IV which contain 6. 

1 

2 

3 

4 

5 

7 

8 

9 

T 
'[ 

"J 
"4 
"5 
"1 
8" 
'9 

The tables for the examp1e now look 1ike: 

X 

1 

3 

4 

5 

2 

8 

9 

5 

TABLE 1 
-1 

X A 

X 

1 

5 

2 

3 

4 

5 

7 

8 

t 1 T 
"J 
"4 
)" 

t22 
"8 
'f 

t3 t;-lt;lt ;l)" 

2 

3 

1 

5 

8 

t;-lT 
-1)" t2 
"f 

"3 
4" 

t;-lt ;lt ;l-;-

1" 
8" 

TABLE IV 

X X A X A-1 

1 1 2 3 

8 9 5 1 1 

5 2 3 5 2 

2 3 4 

4 5 2 3 4 

34511 

4 5 

789 

7 8 

8 9 

:. ; 
TABLE IL" 

A 
'[ t;-lt;1't2-1-;-

t~3 T 
t;-2"f 

't2 t 3 t 1 T t 2 "8 

t;l-;-

A-1 

2 1 

5 8 

1 5 * 
3 2 

4 

53* 

8 

4 

7 

7 

9 



The rows marked by an asterisk in TABLE IV contain new information. 

However we will de1ay dea1ing with this information unti1 after a11 

the current redundancies are processed. The next redundancy to be pro­

cessed is number one. 

1. 2 = 7 

'f = t 3 t 1 7" 

We compare rows 2 and 7 in TABLE 1 to get the new redundancies 

3. 3 = 8 

4. 5 = 5 

The corresponding co1unns in TABLE II yie1d (after mu1tip1ying row 7" 

by t 3t 1) 

'3 = t 3 t 1 8 

-1 "F" -1 -1 -1"F t2 ;, = t 3 t l t 1 t 3 ~ ;, 

27 

We replace all occurrences of 7 by 2 in TABLE 1; replace all occurrences 

of 7" by tl1t;1'f in TABLE II; and erase any rows containing 7 in TABLE 

IV. We now dea1 with the next redundancy, number two. 

2. 4 = 9 

"4 = t2 t 3 t l t;l 7f 

We compare rows 4 and 9 in TABLE 1 to get the new redundancies 

5. 5 = 5 

6. 3 = 8 

We mu1tip1y row 7fin TABLE II by t2t 3t l t;1 and then compare with row 

"4 to obtain the corresponding equations 
.,.. -1 -1 -1 -1"F ;, = ~ t 3 t 1 t 3 t 3 t 1 t 3 t 2 ;, 



28 

]"" = tz t 3 t 1 t 3
1 T 

We replace a11 occurrences of 9 by 4 in TABLE 1; replace a11 occurrences 

of ~ by t3ti1t31tï14 in TABLE II; and erase any rows containing 9 in 

TABLE IV. The next redundancy to be dea1t with is 

3. 3 = 8 

-; = t 3 t, T 

We compare rows 3 and 8 TABLE 1 

7. 4 = 4 

8. 2 = 2 

(9 has been rep1aced by 4 under X) 

(1 has been rep1aced by 2 under X-1) 

We a1so get the new information 

3A = 5 

which we put in TABLE 1. We mu1tip1y row T in TABLE II by t 3t1 to get 
-1 -1 -1"T 4 = t 3 t 1 t 3 t 1 t 3 t 2 ~ 

T = t 3 t 1 t 1 -1 t 3
1 ï 

and the equation for the new information is 

]""A = t 3 t 1 tï
1 5" 

which we put in TABLE II. We now replace 8 by 3 in TABLE 1 ; replace 8' 

by t1lt;1]"" in TABLE II; erase any row in TABLE IV which contains 8; 

and in redundancy number 6, 8 is replaced by 3 and "8 1s replaced by 

t~ l t;l"3. The next redundancy to be processed i s 

4. 5 = 5 

-1,... -1 -1 -1 t 2 .;, = t 3 t l t 1 t 3 t 2 5" 

When we simp1ify we find 

tï1
-;- = t2ls 

wh1ch is a trivial relation and is ignored. 



5. 5 = 5 

"F" -1 -1 -1 -1-
~ = t 2 t 3 t , t 3 t 3 t , t 3 t 2 5 

This is again a trivial relation and ignored. 

6. 3 = 3 
-;- -1 -1 -1-;­
~ = ~ t 3 t , t 3 t , t 3 ~ 

We cancel 3to get the fo11C7iling relation 
-1 -1 -1 A. e = t 2 t 3 t , t 3 t , t 3 

whi ch we record as relation A.. 

7. 4 = 4 
T -1 1 l ~ = t 3 t , t 3 t , tj ti 4" 
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This relation is the inverse of relation A above and so is a1reaclY re­

corded. 

8. 2 = 2 

71" -1 -1 71" 
l. = t 3 t , t , t 3 l. 

This again leads to a trivial relation and so is ignored. 

We have now dea1t with a11 the redundancies. All new in-

formation has been entered and processed. On the next page we give 

the tables as they now appear. 
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TABLE 1 TABLE IV 

X X-1 A A-1 X X A X A-1 A-1 

1 1 7 2 5 1 1 2 3 2 1 

2 3 5 3 1 2 3 4 4 5 3 2 11\ 

3 4 2 5 2 3 4 5 1 5 3 

4 5 3 4 5 2 3 4 4 

5 2 4 1 3 5 2 3 5 2 1 5 

4 

TABLE II 

X Cl A A-1 

T t lT t~lT 2" -1 -1 -1~ t 1 t3 ~ 

2" 3" t;1~ t~3" T 

3" "4 2" -lr t3 t 1 t2 
-2-t 1 2 

"4 r 3" 

'5 t22 "4 t2 t3 t1 T -1 -13 t2 tl t3 

The on1y b1ank spaces remaining are in line 4 of TABLE 1 and correspon-

dingly in 1ine "4 of TABLE II. How ever the 1ine beginning with 2 in 

TABLE IV (denoted by *) gives 

4A = 4 

"7" 2 -1 -
~A = t 1 t 3 t l t 2 4 

We enter this information in tables 1 and II. We rewrite the rows be-

ginning 3, 4, and 5 in TABLE IV. These rows are complete because of in­

formation gained from the redundancies. We use this information te 

rewrite the rows and complete the algorithm. 

; = 3 X X A X A-1 A-1 



= 

. -1 -1 -l? = tz t 3 t 1 t 3 t l t 3 ~ 

This leads to relation A which we already have. 

4' = 4X X A X A-l A-l 

or 

Let us call this rel ati on B. 

-;- = -;- X X A X A-1 A-l 

When we collect all the relations which we have derived we have a 

presentation for our subgroup H; 

H = ( t 1, t z '· t 3 ; A, B) 
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The description of the algorithm is complete however a few 

general remarks may be of sorne help. At any tirne in the execution of the 

algorithm we are in one of three different states. The first state is 

that there are blank spaces in TABLE l but al1 information has been 

processed. In this case new cosets are defined •. The second state is that 

there are blank spaces in TABLE 1 and there is information to be pro­

cessed (redundancies etc.). The third state is terminal when there are 

no blank spaces in TABLE 1. In this case for any coset defined we re­

wri te each row in TABLE 1 V not al ready rewri tten in order to get a 



complete set of defining relations. This is the final step. 

It has been proved that if the index of the subgroup is 

finite the a1gorithm will terminate (Mende1sohn, 1964 & 1965). How­

ever it is impossible to say the number of cosets needed to be defined 

before termination of the a1gorithm. This is equiva1ent to the sol­

ution of the c1assica1 word prob1em and known to be unso1vab1e. 
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CHAPTER !WO 

In this chapter we wou1d 1ike to discuss the c1assica1 

Reidemeister-Schreier method for presenting a subgroup. We do not 

give proofs for the various asserti.ons since these proofs are eas­

i1y obtainab1e ( Hall 1959; Magnus,Karrass & Solitar 1966). However 

we will give a sumnary of the a1gorithm so the reader may compare 

wi th chapter one. 

The rewriting process was mentioned in the previous chap­

ter. This process is simi1ar in the Reidemeister-Schreier a1gorithm. 

Specifica11y let G be a group with the presentation 

G =( al' a2 ' ••• an; Rl (a) , . •• ) 

and let H be a subgroup generated by the words Ji(a), .••• Then a 

rewriting process is one which takes a word in H written in the sym­

bols ak and gives as a resu1t the same word but written in the symbo1s 

Ji. Let us agree to rename Ji{a} by si and consider the fo110wing: 

Theorem 2.1 Suppose T is a rewriting process for H then a presentat­

ion for H is obtained by using the symbo1s si as generating symbols 

and using the following equations as defining relations; 

(l) si = T{Ji{a» 

(2) T(V) = T{V1) 

where V and V1 are words in H which differ only by the insertion or 

deletion of trivial re1ators. 

(3) T(V,V2) = T{V,)T~V2) 
where V1 and V2 define e1ements of H. 



(4) T(W~W-1) = e 

where Rk is a defining re1ator for Gand W is any word in G. 
#### 
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This theorem is used to prove further resu1ts but has no 

practica1 significance. The reason this theorem has no practica1 appli­

cation is the considerable simp1if~cation that can be made by a partic­

u1ar choice of generators and rewriting process. One such choice in­

vol ves ri ght cosets. 50 let 

U = { e,ul'u2, ••• } 

be a set of right coset representatives for H. Further if 9 is a 

ward in G then let 

where 

i.e. 

9 = ui 

Hg = HUi 

is a mapping from G to U. Now by a theorem of Schreier it is 

possible to choose the set U so that it satisfies the fol1owing: 

If uj = a1a2 ••• at and uj is in U then a1a2 ••• at _1 is a1so 

in U. The system of coset representatives is ca11ed a Schreier system 

and the property above is ca11ed the Schreier property. 

Theorem 2.2 H is generated by 

- -1 .• U G { uaiuai : u lS ln , ai generator for } 
#### 

It is easy to see that a word uaua -1 is in H however to 

show every word in H is a product of e1ements of that form is some­

what technica1. We have obtained generators for H so we now need a 

rewriting process.When we rewrite using a Schreier system and a 



rewriting process called a Reidemeister rewriting process we end up 

with a Reidemeister-Schreier rewriting process. Let us use the symbol 

Su,a to represent uaua -1. Suppose we have a word V in H 

V = a~a; ••• a; 0 = ±l 

Then if L 1S a Reidemeister-Schreier rewriting process 

L(V) = S~ a S~ a ••• S~_,a 
r' r s' s -w -w 

where ° = ±l according as it is +1 or -1 in V 

and Ut is the coset representative of the initial segment of V pre­

ceding at if at hasexponent +1 or Ut is the representative of the 

initial segment of V up to and including aïl if at has exponent -1. 

e.g. ur = e if V = ara; ••• a; 

U = a-l i f V = a-l aO a ° r r r s··· -w 

e.g. Suppose aia21a3 defines an element of H. 

( 2 -1 ) -1 
L al a2 a3 = S S - S • 1 S • l ' e ,al al ,al al al a2 ,a2 al ,al ,a2 ,~ 

We now state our final theorem: 

Theorem 2.3 If L is a Reidemeister- Schreier rewriter then 

H = ( Sua ' ••• ; SM a , ••• , L ( URl. u -1 ) , • .• ), 
, r ' s 

where: u is an arbitrary Schreier coset representative 

ar i s an arbi trary generator 

Ri is an arbitrary defining relator for G 
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and M is a Schreier representative and as a generator such 

that Mas is the sarne as ~ except for the addi ti on or deleti on 

of sorne tri vi al rel ators. 
#### 



In order to show the details of the process we work out 

the same example as in chapter one. 

G = ( A, X ; X2AX = A2 ) 

H = { t 1 = X, t2 = AX4A-1, t
3 

= A-1X4A } 

From chapter one we know the index of H in G is 5 and the following 

are a Schreier system of coset representatives. 

A 2 AX3 e, A, AX, X, 

We al so know the val ues in TABLE 1 and so we can find W where W i s 

any word in G. From Theorem 2.3, H is generated by the symbols: 

Se,A' SA,A' SAX,A' SAX2,A' SAX3,A 

Se,X' SA,X' SAX,X' SAX2,X' SAX3,x 

i.e. for every coset representative and every generator for G we have 

a generator for H. Since there are 5 cosets and 2 generators for G we 

have 2 0 5 = 10 generators for H. 

From Theorem 2.3, H has two kinds of relators. The first 

kind gives us the fo11owing as re1ators: 

Se,A' SA,X' SAX,X' SAX2,X 

i.e. SAX,X is a re1ator because 

AX.X = AX2 

and AX.X = AX2 • 
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. There are 5 relators of the second kind. We let 't' be the Reidemeister­

Schreier rewriting process, and then the 5 re1ators are 

1. 't'(X2AXA-2) 

2. 't'( AX2AXA- 3) 

, 
-1 



3. T{AX3AXA-2X-IA-l) 

4. T{AX4AXA-2X-2A-l) 

5. T{AXSAXA-2X-3A-l) 

i.e. We have T{URU-l) where U is a coset representative and R is a 

re1ator. There are 5 coset representatives and 1 relator so we have 

5·1 = 5 re1ators of the second kind. We now rewrite each of the above. 

-1 -1 
= Se ,X S'X,X SXX,A Sm,x SXXAXA l,A SXXAXA lA l,A 

-1 -1 = Se,x Se,X Se,A SA,X SA,A Se,A 

-1 -1 -1 = Se,A SA,X SAX,X SAX2,A SAX2,X SAX,A SA,A Se,A 

3. T(AXXXAXA-lA-IX-IA-l) 

-1 = Se,A SA,X SAX,X SAX2,X SAX3,X SA,A SAX,X SAX2,A 
-1 -1 -1 1 

SAX2,A SAX,X SA,X S;,A 

5. T(AXXXXXAXA-lA-IX-IX-IX-IA-l) 
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-1 
= Se,A SA,X SAX,X SAX2,X SAX3,X SA,X SAX,A SAX3,X Se,A 

-1 -1 -1 -1 -1 
SAX3,A SAX2,x SAX,X SA,X Se,A 

We now de1ete the re1ators of the first kind from the generating set 

and from the remaining re1ators. We are 1eft with the generators: 

SA,A' SAX,A' SAX2,A' SAX3,A' Se,X' SAX3,X 

_1 



and the following rel a tors : 
2 -1 

1. Se,X SA,A 
-1 -1 

2. SAX2,A SAX,A SA,A 
-1 -1 

3. SAX3,A Se,X SAX3,A SAX,A 

-2 
4. SAX3,X SA,A SAX2,A 

-1 
5. SAX3,X SAX,A SAX3,X SAX3,A 

We now use the 5 relators to eliminate all generators except SAX3,A 

and SAX,A' 

From 5. 

From 3. 

From 1. 

From 2. 

SAX3,A = SAX3,X SAX,A SAX3,X 
-1 

Se,.X = SAX3,A SAX,A SAX3,A 
-1 -1 -1 

= SAX3,x SAX,A SAX3,x SAX,A SAX3,X SAX,A SAX3,X 

SA,A = S;,x 

( -1 -1 -1 S )2 = SAX3,X SAX,A SAX3,X SAX,A SAX3,X SAX,A AX3,X 

SAX2,A = SA,A SAX,A 
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( -1 -1 -1 )2 
= SAX3,X SAX,A SAX3,X SAX,A SAX3,X SAX,A SAX3,X 

.SAX,A 

We have written every generator in tenns of SAX3,X and SAX,A hence we 

may delete from the presentation every generator except SAX3,X and 

SAX,A" We are left only with relator 4 which we rewrite in terms of 

SAX3,X and SAX,A" Let 

B = SAX3,X 

C = SAX,A 
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Then we m~ write 4 as: 

4. B (B -1 C -1 B -1 CB CB ) (B -1 C -1 B -1 CB CB ) C -1 (B -1 C -1 B -1 CS CB ) ( B -1 C-1 

_B-1 CBCB )C-1 (BC-1 B-1 CBCB) (B-1 C-1 B-1 CBCB) 

= (C-1B-1C2BCB)(C-1B-1C-1B-1C-2BCB)2 

= BCBC-1B-1C2(BCBC-1B-1C-1B-1C-2)2 

Th us 

H=( B,C;4>. 

If we compare this with chapter one we see the two presentations are 

near1y the same. They can be made exact1y the same if we e1iminate the 

generator t 2 from the presentation in chapter one. Thus the methods of 

chapter one and chapter two give the same resu1ts in this case. In the 

next chapter we prove that this is a1ways the case under certain con­

di ti ons. 

.. i 



CHAPTER THREE 

ln this chapter we will prove that the extended Todd-Coxeter 

a1gorithm of chapter one does give a presentation for the subgroup. We 

shou1d keep in mind the restrictions that the group G must be finite1y 

presented and that the index of the subgroup H in G must be finite. Let 

us assume we have a group G 

G = ( a1,a2, ••• am ; R1 (a) ,R2(a), •.• Rg(a) ) 

and we have a subgroup H generated by n words 

k = 1,2, ••• n. 

We assume that the index of H in G is finite and we have comp1eted a 

coset en ume ration • Thus we have the tables I-IV of chapter one and also 

a number of re1ators derived from the coset enumeration. We will use 

Theorem 2.1 to prove that these relations are sufficient to present H 

in conjunction wi th the generators i<. Now in order to use Theorem 2.1 

we must first prove we have a rewriting process. Actual1y the process 

we use does more than a rewriting process. For suppose we have a word 

W in G 

W = aia j ••• are 

We multip1y W by T and use TABLE II to rewrite W. Let us denote this 

process by '[,# 

e.g. '['#(W) = Taia j ... ar 

If we look in TABLE II we might see 

so 

Ta. = , 
'['#(W) 
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We continue in this manner until we have an equation of the form 

T'{W) = aiaj ••• ar ~ 

where ai ••• ar are words in H. Now we know 

T'{W) = W 

so W = aiaj ••• ar ~. 

1 f iL = T , then W i s a word in H and 

W = ai aj ••• are 

So we have expressed W in terms of words in H. If li 1= T then W is not 

a word in H. Our processs not only rewrites a word but a1so decides 

whether or not that word is in the subgroup. Now according to the def­

inition in chapter two a rewriting process takes any word in H written 

in et a " symbols and gives the same word but written in " t " syliDo1s. 

We see this is exactly what the above process does so it is a rewriting 

process. Let us recal1 Theorem 2.1. It said: 

If T is a rewriting process, then the following relations 

are sufficient to present H. 

1. si = T{ti{a» 

2. T{V) = T{Vl ) where V and V1 differ by trivial 
rel ators. 

3. T{V1V2) = T{Vl )T{V2) 

4. T{WR.W-1) = e 
J 

We must show that the relations we have derived from the coset enumer­

ation enab1e us to prove the above relations and then our set of rela­

tions will a1so be sufficient to present H. 

ln order to show this relation is imp1ied by 



the relations of the extended eoset enumeration we merely need to say 

what this relation means. It means we rewrite the generators of H and 

set eaeh generator equal to a new symbole However TABLE III in the 

eoset enumeration is preei sely thi s operati on. Thus the rel ati ons 

si = 't"(ti{a» 

are ineorporated in the eoset enumeration for all i. 
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Now V and Vl di ffer by a tri vi al rel ator so let 

v = a1a2 ... aiaj ••• a~ o = ±l 

V -aoao aOa a-lao 
1 -. 1 2 ••• i: P P j aO 0 = ±l v 

When we apply the rewriting proeess 't"'" it will eertainly give the same 

result up to and ineluding ai. We May suppose 

"'{V) - 0 0 0 ~ 0 0 't" - ala2 ..• ai ~ aj ... av 

't"'" ( V
l

) = 0 o' 0 ~ .- -1 0 a 0 ala2 ••. ai ~ apap aj ... v 

where al,a2' ••• ai are words in H. Now we look in TABLE II and let 

r ap = 8
p 

p. 

Th us 

We have from above 
- -1 -1 or p ap = I3p ~ 

!nd substituting this in the above expression we see 

(V) 0 0 0 -1..... 0 0 't"'" 1 = ala2 ai I3pl3p ~ aj ... av 

o ~ 0 0 ai ~ aj ... av 

which is exaetly the same as 't"'(V). Thus 't" ... (v1) = 't"",(V) and relation 2 

;s der;vable . 
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To prove this relation is to prove T~ 

is finitely distributive over the words 

in H. However we know this is true by the definition of T~. The appli-

cation of T~ to a word consists of multiplying the first symbol in the 

word by T and then carrying out mul tiplt.cation synbol by symbole Thus 

if T occurs to the left of any symbol we may consider that as a new 

application of T~. We are given that Vl is a word in H so let 

T~(Vl) = a T 

Then it is easy to see 

T~(V1V2) = a T V2 

= a T"'(V2) 

= T~(Vl) T~( V2). 

4. To show this we recall how the relations we 

derived from the coset enumeration arose. For 

every relation Rj in Gand every coset ~ we applied r to the relation 

and got an equation 

ZRj = sr 
:rR.r1 = s 

J 
Thus S would be a relation in the subgroup. Now let us rewrite W 

T~(W) = il 

where a is a word in H and z: is the coset representative of the coset 

to which W belongs. We have of course 

.1 



We substitute this expression for W in 4 

T'(WRjW-l ) = T'(~j~la-l} 

= T'(a} T'(~j~l} T'(a-l ) 

where we may distribute T' by relation 3 ( alreaqy proved ). Now 

T'(~j~l) is a relator we derived 'in the coset enumeration and so 

may be deleted. We have now 

T'(WRjW-l } = T'(a} T'(a-l } 

= T'(aa-l ) 

= e 

Thus every relation of the form T(WRjW-l ) = e can be derived from the 

relations obtained by the coset enumeration technique. We have now 

proved that the extended coset enumeration technique gives a presen­

tation for H. 
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At this point, we would like to compare the extended coset 

enumeration method with other methods available. We have sketched the 

classical Reidemeister-Schreier method and the advantages of coset 

enumeration are easy to see. First, in order to use the Reidemeister­

Schreier algorithm it is necessary to perform an ordinary coset enumer­

ation. After getting the coset representatives U, it is necessary to 

rewrite the products (URjU-1) in terms of Schreier generators. In the 

extended version of coset enumeration we just do one coset enumeration 

and the process is finished. All rewriting is inclu~ed in the coset 

enumeration. Further the presentation we end up with is in terms of the 



ori gina1 generators not Schreier generators as in the Rei delhei ster­

Schreier al go ri thm. A1so in the 1 atter case the number of subgroup 

generators is proportiona1 to the numberof cosets whi1e in the coset 

enumeration technique the number of generators is fixed. Thus there 

are genera11y a large number of redundant Schreier generators, hence 

there must be an equally large number of re1ators to be able to e1im­

inate the redundant generators. This is of course extra work when 

compared to coset enumeration. We are justified in conc1uding that 

coset enumeration is superior to the Reidemeister-Schreier a1gorithm. 
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There are two other methods pub1ished which attempt to 

solve sorne of the prob1ems we have solved. These are due to Mende1sohn 

(1967), Mende1sohn and Benson (1966), and Leech(1962). The method of 

Leech is fair1y comp1icated as he uses coset enumeration to prove group 

identities. However in his method one must record separate1y a11 infor­

mationwhich occurs in row c10sure. Then to prove an identity he re­

writes the identity but using row closure information to simp1ify unti1 

on1y the identity remains. Further if the're are redundancies in the 

initial enumeration, he must use the redundancies to get further relat­

ions unti1 a set of relations has been found with which a coset enum­

eration can avoid redundancies and the original a1gorithm is then app­

licable. In the coset enumeration we have described, the information 

which occurs in row c10sure is automatical1y integrated and so there is 

no necessity to keep a separate record. Thus when we rewrite a word the 

row c10sure information is used automatica11y and no separate reference 

is needed. This is the advantage extended coset enumeration enjoys over 

Leeth 's method. 



Mendelsohn has published several papers and a computer 

program describing various algorithms similar to the one we have des­

cribed. In his earlier papers (1964,1965) he describes an algorithm 

which will write any word in G as a word in the subgroup H times a 

coset representative. Together with Benson, Mendelsohn made available 

a program which will perform the above function. His latest statement 

(1961) is a solution to the problemwe solved in chapter one, namely 
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find a presentation for a subgroup of a group in terms of subgroup gen­

erators. However his solution is very cumbersome. He claims it is still 

nec~ssary to use Reidemeister-Schreier generators in an intermediate 

step. However we have proved in this chapter that this is not the case. 

In his paper (1967) he gives an example which purports to show the nec­

essity of using Reidemeister-Schreier generators. This example is given 

in chapter five and a presentation is obtained without the use of spec­

ial generators. Thus, using his method it is necessary to introduce the 

Reidemester-Schreier generators however the method made available in this 

thesis is a step forward in that it is not necessary to introduce these 

generators but merely proceed with the original subgroup generators. 



CHAPTE R FOUR 

In this chapter we wou1d 1ike to discuss coset enurœration 

by computer. There have been a number of programs wri tten whi ch perform 

coset enumeration on a machine. Leech (1963) gives a good account of the 

work done up to 1963. The fi rst computer methods used were in 1953! 

Since that time there have been many improverœnts in the methods plus 

considerable advances in hardware. One program due to Trotter (1964, 

1966) will enumerate over 500 cosets in 1ess than 10 seconds. Even fas­

ter programs are now avai1ab1e (M~ Guy, unpub1ished). Coset enumeration 

of over 100,000 cosets has been accompli shed. However there has been 

only one attempt to produce a program simi1ar to the extended coset 

enumeration (Mende1sohn and Benson, 1966). This procedure is of course 

much more difficu1t and time consuming. Sorne of the difficu1ties that 

arise will be mentioned 1ater. 

The program that we wrote fo11ows the outline given in 

chapter one quite c10se1y. The 10gic is the same. However, there are 

many obscuring detai1s due to the necessity of keeping track of minor 

detai1s. For examp1e it is necessary to keep a list of those rows which 

have a1ready been rewritten, so the machine won't do them again. This 

1ist has to be checked every time the machine starts doing a row. There 

is one mainprogram and ten subprograms. We will exp1ain in detai1 what 

is the function of each part. 

1. Mainprogram: This program has three functions. The first is ta input 

and initia1ize the group data. The second is an overa11 

.1 
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control of execution i.e. it directs the machine!:o the various subpro­

grams. The 1ast function is to output the data. We wou1d 1ike to go 

through the program and show each section in detai1. The first section 

statements 1-7, initia1izes the computer. Common areas are set aside, 

dimensions created and switches are set. For examp1e a switch 1abe11ed 

Il AMT Il determi nes the nurnber of redundanci es wai ti ng to be processed. 

Since there are no redundancies at the beginning AMT is set equa1 to O. 

The next part of the first section is where the data is inputted. Note 

that a11 data to be inputted is numeric and a11 output is numeric. The 

data to be read in includes the 1ength of each subgroup generator (ex­

panded) in terms of group generators, the 1ength of each group re1ator, 

the subgroup generators and the re1ators. The next initia1ization to be 

performed is to set two arrays Il cns Il and Il WTAS Il equa1 to zero. Now 

WTAB corresponds to TABLE 1 and CTIS corresponds to TABLE II. The mach­

ine se arches the se tables constant1y and so every entry must be defined. 

When an entry is zero it means there i5 no information. Initial1y we 

have no information so every entry is made equa1 to zero. The 1ast array 

to be initialized is ca11ed Il NREL Il This array keeps track of which 

rows in each relator are complete. If a row is complete the entry is O. 

We initia1ize NREL at zero except for the first row which we set at 1. 

Whenever a new coset is defined, a nonzero row is made in NREL corres­

pond1ng to the nurnber of the new coset. 

The second section of the program is the control function. 

It is very simple. It first tells the machine to run through all the 

rows in tables III and IV (subroutine RUNTRU). If both these tables are 



50 

filled then we go to the output section. If there are still blank spaces 

the program checks for redundancies. If there are sorne redundancies, sub­

routine RDUN2 is called to deal with them. If there are no redundancies 

new cosets are defined (subroutine DEFINE) and the program goes back to 

subroutine RUNTRU. This sequence continues until there are no blank 

spaces and we get to the output section. 

The output section prints out the information we want. The 

first output is the number of cosets defined. This program does not have 

a consolidation routine hence it 1S also necessary to print out those 

cosets which are redundant.Finally the index is printed. This is of 

course the number of cosets defined minus the number of redundancies. 

The next output is TABLE 1. The rows are numbered consecutively. If any 

row is zero it means that number was a redundant coset. The final out-

put is TABLE II. However since the entries to TABLE II can be arbitrar­

ily long we only print reference numbers in the body of the table. That 

is, suppose we want the result of coset ~ times generator j. The entry 

may be 0 which means coset ~ x generator j is simply equal ta another 

coset. On the other hand there may be a nonzero number printed. This 

number is a reference number. To find the actual entry one looks in the 

list printed below until this reference number is found. The actual word 

is printed immediately below. The output is numeric. If we had 3 sub­

group generators A,B,C then A is outputted as l, B as 2, C as 3, A-1 as 

4, B-l as 5, C-l as 6 S of d ° ° • 0 1 a wor 1S glven as 

15345 

we would read it as AB-1CA-1B-1. 



2. Block Data: This is a technical FORTRAN subprogram to input data 

without a direct readin. We set the values of various 

group parameters. 
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3. CALC: This subroutine solves for new information. That is suppose we 

have found a row which gives new information. This subroutine 

solves for that new information and puts it in tables 1 and II. It 

makes the distinction between rewriting a subgroup generator and a rel­

ator. 

4. RDUN2: This subroutine deals with redundancies. The information that 

is inputted has the following form 

W:r = Vj 

where W and V are words in the subgroup and :r and Tare coset represen­

tatives. The subroutine performs exactly those actions outlined in chap­

ter one necessary to deal wi th redundancies. 

i) Solves for the smaller number in terms of the larger. 

i i) Compe. tes rows in tables 1 and II. 

iii) Eliminates all occurrences of the larger number. 

The subroutine th en checks to see if there are further redundanci es in 

which case it deals with them, otherwise it returns control to the main­

program. 

5. RUNTRU: This subroutine checks each row in TABLE III and in TABLE IV 

for new information. It first checks TABLE III. To check a 

row the program starts to rewrite from the beginning of the row. It goes 

forward as far as possible. It then starts at the end and goes backward. 
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If the two directions just tœet then there is new information and con­

trol is passed to subroutine CALC. If the machine fails to complete the 

row it goes on to the next row. If a redundancy occurs, this redundancy 

is put in an array to await processing. The subroutine checks through 

TABLE III first and then TABLE IV. The routine also zeroes out any row 

which is complete. 

6. DEFINE: This subroutine has a very simple function. It merely scans 

the rows in tables III and IV until it cornes to a blank space 

and defines a new coset at that blank space. It checks the subgroup 

generators first. If there is a blank space a new coset is defined, but 

if not then TABLE III i s zeroed out enti rely since there can be no new 

information there. The subroutine then starts checking TABLE IV for 

blank spaces. One interesting feature of the program is the reuse of 

redundant cosets. When a coset has been found to be redundant, it may 

then be redefined by this subroutine. That ts, the nurrber is reused. 

7. NSUM: lois subroutine is called whenever two words in the subgroup 

are to be multiplied together. The subroutine creates new 

space for the resul ting word. 

8. CHECK: This subroutine suppl'esses trivial relators of the form XX-le 

It is called after any word is made. e.g. CHECK is called by 

NSUM. 

9. INV: This subroutine gives the inverse of a word inputted. The in­

verse operation is done using modular arithmetic. For example 

if we have 3 subgroup generators A,B,C inputted as 1,2,3 then a word 

B2AC-2 
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wou1d be outputted as 

22166 

and the inverse wou1 d be 

33455 

i.e. we add 3 to each number mod 6 and then invert. 

la. 000: This subroutine performs modu1ar arithmetic. The input is 

two numbers x,y and the output is the value of x mod y. The 

reason that the library subprograms are not used is that a11 arithmetic 

in this program is using ha1fwords of storage instead of full words. 

This resu1ts ;n storage eff;c;ency but means we cannot use the 1ibrary 

subprograms • 

We reproduce a samp1e output below. The actual output ;s 

contained in a f1ap at the end of the thesis. The group we use as an 

examp1e is the same group we used in chapters one and two. The program 

does not output the actua l res u1 t of rewri ti ng the rows but mere 1y 

li sts tables 1 and II. We see that if we make the translation 

1 ~ t 1 4.~ t;l 

2 ~ t 2 
5 ~ t-l 

2 

3 ~ t 3 
6 ~ t-l 

3 

that these tables are almost exactly the same as in chapter one. The 

on1y di fference i s that occurri ng in TABLE II. The di fference i s due 

to the processing order of the computer. If we use the relation 
-1 -1 -1 t2 t 3 t l t 3 t l t 3 

tù rearrange sorne of the entries then there will be no difference. 
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The important part of the output is as fo11ows: 

NUMBER OF COSETS DEFINED 9 

REDUNDANT COSETS 6 9 8 7 

THE INDEX OF THE SUBGROUP IS 

5 

WTAB-MULTIPLICATION TABLE FOR COSETS 
1 : 1 2 1 5 
2: 3 3 5 1 
3: 4 5 2 2 

4: 5 4 3 4 
5: 2 1 4 3 
6: 0 a 0 0 

7: 0 a 0 0 

8: 0 0 0 0 

9: 0 0 0 0 

CTIB-POINTERS Ta LOCATION OF COSET REPRESENTATIVES 
1 : 1 0 3 48 
2: 0 8 13 0 

3: 0 79 0 5 
4: 0 153 0 ~61 

5: 11 30 0 97 
6: 0 0 0 a 
7: 0 0 0 0 
8: 0 0 0 a 
9: 0 0 0 0 
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THE ENTRIES TO TABLE II WHERE THE FIRST NUMBER IS THE LOCATION NUMBER IN 

THE TABLE ABOVE, THE SECOND NUMBER IS ONE MORE THAN THE NUMBER OF SYMBOLS 

IN THE WORD AND THEN THE WORD IS PRINTED BELOW IN NUMERIC FORM. EACH NUM-

BER REPRESENTS A SUBGROUP GENERATOR. 

1 2 
1 

3 2 
4 

48 4 
465 

8 3 
1 1 

13 2 
5 

79 6 
2 3 1 6 5 

5 3 
4 4 

153 8 
1123165 

161 8 
2346544 

11 2 
2 

30 4 
2 3 1 

97 6 
23465 

Note: ln tables 1 and II the co1umn headings are in the order 

X, A, x-l, A-1 not the same order as in chapter one. 
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We would like to mention some of the difficulties encount­

ered when writing the program. The first major difficulty is the com­

plexity of the algorithme It is considerably more involved than ordinary 

coset enumeration. A second difficulty is the problem of words and an 

associated problem of storage allocation. The words that are generated 

i.e. those in TABLE II are of arbitrary length. Hence a set amount of 

storage cannot be assumed for a particular word. We solved this problem 

by using one large array and storing the words in linear order. However 

this array has to be of quite large size initially but may not be used. 

Hence it i s somewhat ineffi cient. Further the longer the words the more 

time it takes to manipulate them. Thus there is a considerable decrease 

in the speed of execution as compared to ordinary coset enumeration. One 

other difficulty was that of output. The data is handled in numeric form 

internally but must be translated into group terms. There is however no 

standardized set of symbols when working with groups hence the problem 

of translation was left to the user. A copy of the entire program is 

enclosed in a flap at the end of the thesis. 



CHAPTE R FI VE 

In this chapter we wou1d 1ike to present severa1"examp1es 

i11ustrating the usefu1ness of the new a1gori thm. There are four and 

the fi rst i s the fo 11 owing. 

We wou1d 1ike to show that the group 

G = ( a, b, c ; a-1ca = c2, b-1ab = a2, c-1bc = b2 ) 

is the trivial group. The method we use is to pick a subgroup, to 

perform an extended coset enumeration and use the derived relations 

ta prove G is the identity. So let H be the subgroup generated by 

{ a, b2 } 

We define 3 cosets as fo11ows 

1 = H 

2 = lc-1 

3 = 2c-1 

T=e 

2 = c-1 

"3" -2 
::J = c 

From the definition of the subgroup we have immediately 

la = 1 

lb2 = 1 

Using this information and the definitions above, we fi11 in part of 

the relation tables 

ex 1 

a 2 

-1 c b 

~ 
LW-

c 

1 

2 2 2 

The row beginning ex gives us 

2b = 2 "[ b = b2"[ 

-1 a c a -1 c -1 c 

21 3 



We use the information obtained in row a to write row 8 and find 

3b = 3 3b = b~ 
Now row y gives us 

3a -1 = 2 - -1 -1-3a = a 2 

or 2a = 3 2a = a3' 

The third relation is used to derive a redundancy 

a b -1 a -1 a 

21 21 3 1 3 1 W 
This row gives the new information (after rewriting the row) 

2a-1 = 2 2a-1 = ab-4a-1b22 

or 2a = 2 

When we compare with the information obtained from row y we see 

2 = 3 a3 = b-2ab4a-12" 

We substitute the known values of the coset representativesi.e. 

2" = c-1 

"J = c-2 

and obtain the fo11owing identity 

c-2 = a -1 b -2 a b 4 a-1 c -1 

-1 -1 b -2 a b4 a-1 c = a 

= a -1 b -1 b -1 a b b3 a -1 

= a -1 b -1 a2 b3 a-1 

= a -1 (b -1 a b)2 b2 a -1 

= a -1 a4 b2 a-1 

= a3 b2 a-1 

So c = a b -2 a -3. 
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We substitute this value of c in the original group relations to get 

the three new relations: 

-2 -2 b a b-2 -2b-2 -3 = a a a 

b-2a-2a3b2 = ab-2a-2 

b-2ab2 = ab-2a-2 

b-1b-1abb = ab-2a-2 

b-1a2b = ab-2a-2 

a4 = ab -2a-2 

aS = b-2 

3. c-1bc-1 = b2 

a3b2a-1bab-2a-3 = b2 

We simp1ify using relation 2. 

a3a-5a-1baa5a-3 = a-5 

a-3ba3 = a-5 

b = a-5 

We now use relation 3 and simp1ify relation 1. 

1. a5aa-5 = a2 
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This of course implies 

a = e. 

Relation 3 immediately implies 

b = e. 

Since chas been defined in terms of a and b it is also true 

c = e. 

Thus the group G is the identity. The technique of coset enumeration 

allowed us to write c in terms of the subgroup generators a and b2 

and from that point on, straightforward algebraic manipulation gave us 

the proof. 

Another example of sone interest is the following. Let 

G = ( A, X ; X-1 A2X = A3 > 
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Mende1sohn gives this as an example (Mende1sohn, 1967) to show the 

necessity of introducing Reidemeister-Schreier generators when attempt­

ing to find a presentation for a subgroup. If we let 

H = { X, AS } 

then H = Gand further G. Hi gman has shown that in terms of X and AS 

G requires at least two defining re1ators. Now Mendelsohn states as 

there is only one coset, there is only one relation of the form. 

~7 = e ~ coset representative, R re1ator 

His method now introduces Reideneister-Schreier generators in order to 

get a second relation. His procedure is very roundabout which he admits 

in his paper. Our nethod is much simpler and more direct. We nerely 

rewrite the subgroup generator AS ta get the second relation. We will 

perform an extended coset enumeration on the subgroup 
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Hl = { X, A4 } 

The situation is very simi1ar to the one above. C1early Hl~ H hence 

H1= G. Also Hl requires at least two re1ators for its presentation. How­

ever the enumeration of cosets for Hl is si~ler than for H since on1y 

4 cosets need be defined before co11apse occurs while 8 need to be de­

fi ned in the fi rs t case. Let 

Defi ne 

1 = H 

2 = lA 

3 = 'lA 
4 = 3A 

T=e 

"f=TA=A 

"3 = "fA = A2 

"4 = -:fA = A3 

We use TABLE III and obtain the fo1lowing information. 

lX = 1 

4A = 1 

TX = ClT 

4A = ~T 

We use the information in the relation and obtain 

X-1 A A X A-1 A-l A-l 

11'l\~1 3\ 2\1 
Thus 

3X = 4 

3X = "3 A-1 A-l X A A A 

= Cl4 

At this point the coset multiplication table is as fo110ws on the next 

page. 



T 

2" 

"3 

4 

A 

We use the relation again and find 

4 

We find 

3A-1 = 4 

"3A-1 = Sa-IS-la 4 

However from the above table we know 

3A-1 = 2 

"3A-l = 2" 

Hence we may conclude 

2 = 4 

2" = Sa-IS-ICl 4 

x 
aT 

0.4 

Multiplying row 4 in the above table by\ Sa-IS-la gives: 

1. '3 = Sa -IS-laS T 

2. T = Sa-IS-la '3 

We a1so get the new information 

2X-l = Sa-IS-1 "3 
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We replace every occurrence of 4 by a- I SaS-I2" and erase row 4. We 

now process redundancy #1. We multip1y row'3by S-la-ISaS-1 and we 

note the fo11owing: 



3. 2 = S-la-lSaS-la-lSaS- l 2 

4. S-la-lSaS- l 2 = S-la-lSaS- l 2 

5. a T = S-la-1Sa2S- 1 2 

We repl ace "3 by Sa -lS-laST in the mul tipl ication table and in redun­

dancy #2. Redundancy #2 now gives the following 

T = Sa-lS-laSa-lS-laS T 

or Sa-lS-laSa-lS-laS = e. 
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This is our first relation. Redundancy #3 gives the inverse of this 

relation. Redundancy #4 is trivial. To process redundancy #5, we mult­

iply row 2 by a-lS-la-1Sa2S-1 and note: 

6. 2 = a -lS-la -lSaS-laS T 

7. S-la-lSaS-l 2 = a-lS-la-lSa2S-1 T 

8. a -1 T = a -1 T 

We now replace 2 by Sa-2S- l aSaT in the coset multiplication table 

whi ch gi ves us 

T 

A-l 

S-la-lSa-lS-laSaT 

X 

aT 

We also replace 2 in redundancies #6 and #7. We now process redundancy 

#6. The updated equation is 

Sa-2S- l aSa T = a-1a-1a-1eae-1ae T 

or Sa-2a-laSaS-la-lSa-lS-laSa = e. 

This is our second relation. Redundancy #7 gives the inverse of this 

relation. Redundancy #8 is trivial. The extended coset enumeration is 

complete since all the tables are filled. Thus we can present the sub­

group Hl as follows: 

1 



Hl = ( 0" (3 ; 1, II ) 

where 0, = X 

(3 = A4 

1 = (3o,-lS-lo,So,-lS-lo,(3 

11= So,-2S-1o,So,S-lo,-lSo,-lS-lo,So, 

Another point is shown by this example. If we attempt to use the 

Reidemeister-Schreier algorithm to get a presentation for Hl' the 

following results. There are two generators 

51,A' Sl,X 

and only one relation 
2 -1 -3 

Sl,XS1,A51,XS1,A 
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No new information is obtained. Even though Hl = G the Reidemeister­

Schreier technique does not give a presentation for Hl in terms of the 

generators of Hl. Thus in this instance, the extended coset enumeration 

is more fruitful. since we do obtain a presentation for Hl in terms of 

the subgroup generators. 

The third example is the group LF(2,p), that is the central 

quotient group of the special linear homogeneous group SL(n,q) of mat­

rices of determinant lover the Galois Field of order p. The group is 

generated by the linear fractional transformations (mod p) 

S: ZI = Z + l 

T: ZI = -1 
Z 

which, as matrices are 

... i 



5 = (1 n 
T = 

In 1933 Frasch (Frasch, 1933, p.252) gave the fo11owing 

set of defining rel ations for the group. If we let 

where a is a primitive root mod p then 
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p-l 2 
(1) LF(2,p) = ( S,T,V; sP = T2 = V 2 = (ST)3 = (VT) = e 

V-1SV = Sa2 
) 

with the extra relation 

(TVSa)3 = e 

when p = l(mod 4). We first prove that this is a set of defining re1-

ators and then we simp1ify the presentation somewhat. The proof of the 

first statement is adapted from a paper by Todd (Todd, 1932) and is 

simp1er than Frasch's original proof. We show that the group contains 

three operations V, S, T and that they satisfy the given relations; 

converse1y we show we can construct the group from the relations (1). 

From the definition of Sand T it is c1ear 

sP = T2 = e. 

A1so by definition, the operation V is the fo11owing 

V: ZI = a2Z 

Since a is a primitive root, V is an operation of period i{p-1). The 

operation V-1SV can be described as fo11ows 



V-1SV: Z = V-1S: a2 Z 

= V-1: (a2 Z + a2 ) 

= Z + a 2 

Thus we can conc1ude 

Simi 1ar1y 

VTVT: Z = VTV:-1 
Z 

= VT: -1 
'CiTz 

= V: -Z 
'CiT 

= Z 

Again we conc1ude 

(VT)2 = e. 

The other relations in (1), name1y 

(ST)3 = (TVSa )3 = e 

66 

are estab1ished in the same fashion. Thus the 1inear fractiona1 group 

contains the three operations S, T, V and they satisfy (1). Thus the 

presentation (1) either defines the group LF(2,p) or has it as a fac­

tor group. To show that it is the group LF(2,p) we show that its order 

is the same as the order of lF(2,p) name1y, !p(p2_1). In order to do 

this we perform a simple coset en~meration. Let H be the subgroup 

defined by 

{ S, V } = 00 



Then, H subject to the relations in (1) is of order ip(p-1) since all 

the elements in H can be expressed in the fonm 

O~h~Ejl' o ~ k ~ p-l 

We now define p cosets 0,1,2, ••• p-l in the following way. Let 

o = co·T 

1 = O·S 

2 = l·S 

p-l = p-2·S 

Then from the rel ator sP we have 

~.sj = ~ + j(mod p) 

We next use the relation (TV)2 = e 

T V T V 
co o a co co 

~nd we see that 

O·V = a 
We now go to the rel ati on V-l SV = Sa2 

V-l S V s-a2 

o a 7 a 2 0 

a2 1 2 2a2 a2 

Using the information a·v = 0 we then obtain l·V = a2 • This table 

enables us to find information of the form j·V assuming we know 

(j-l)·V. Thus in genera1 we have 

67 
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To complete the coset enumeration we have to fi11 in the 

multiplication table for the operation T. First using the re1ator (ST)3 

we get 

S T S T S T 
~ ~ 0 1 p-l 0 ~ 

i.e. l·T = p-l 

Now we use the rel ation (TV)2 = e. 

T V T V 

1 p-l e- laz a-z 1 

a-z p-faz e- l a lf. a-lf. a-z 

This relation enab1es us to find a11 the information of the form 

k = 1,2, • • • 

Now if P =-l(mod 4), -1 is a quadratic nonresidue mod p, consequent1y 

each of the numbers 1,2, ••• p-1 is either a quadratic residue or the 

negative of a quadratic residue. Thus in this case the set 

{ a-zk } 

is a complete set of numbers x, 1 s x s p-1 mod p. So the coset enum­

eration is finished since the mu1tip1i.cation table for the cosets is 

comp1eted. 

If P = 1 (mod 4) then -1 is a quadratic residue hence 

{ a-Zk. } 

i s not a complete set of numbers. If this happens we use the extra 

relation 
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(SaTV)3 = e 

and gain the fo11owing information 

T V Sa T V Sa T V Sa 

a -a- 1 a 0 00 00 00 0 0 a 

i.e. a-T = _a- 1 

We now use the rel ati on (TV)2 = e. 

T V T V 

a3 -a- 3 -a-1 a a3 

aS -a- S -a- 3 a3 aS 

We get the information 

k = 0,1,2, . . . 

Thus when p = l(mod 4) we use the extra relation and complete the coset 

enumeration. So in either case we have comp1eted the coset enumeration 

and shown that the index of H in (1) is p+1. Since the order of H is 

lp(p-1} we get that the order of the presentation (1) is lp(p2_1) prov­

ing it is a presentation of LF(2,p). 

Frasch's presentation may be simp1ified in the fo110wing 

way. First we find an expression for V in terms of Sand T. 

e = (S~V)3 
= Sa T V Sa V-1 V T V Sa T V --

or 



p-l 

Now we show V 2 is derivable from the other relations. First let us 

derive a few preliminary relations 

since 

for 

(2) vjTvjT = e 

(TVT) = V-l 

(TVT)j = v- j 

TVjT = v-j 

(3) v-jsvj = sa2j 

v-jsvj = v-j+lsa2vj-l 

= sa2 j 

Now v2j = Vj S T S T S T Vj 
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= Vj S V- j Vj T Vj v- j S Vj v- j T V- j vj S v- j Vj T vj 

-2j 2j -2j = Sa T Sa T Sa T 

If P = l(mod 4) let j = ~ , then 
p-l 

V 2 = V2j 

-(~) ~ -(p;!.) = Sa T Sa T Sa T 

Now a-(P;l) = -1 (mod p) and aPi1 = -1 (mod p) since a is a primitive 

root, so 

= e. 



On the other hand if p:: 3(mod 4), let j = 2.::!and then we have 
4 

Now 

i.e. 

rl -(~) E;1 -(~) 
V 2 = Sa T Sa T Sa T 

a-(P;3) = -a and aP;3:: -a-l, so 

p-3 -1 
V 2 = S-a T S-a T S-a T 

-1 1 = T(Sa T Sa T Sa T)- T 

p-l 

= T V T 

= V-1 

V 2 = e 

from above 

p-l 

Thus we can de1ete the re1ator V 2 from Frasch's presentation. We 

now rep1 ace V in the two rel ati ons 

(VT)2 = (SaTV)3 = e to get 

(4) (VT)2 = (V-1T)2 = (SaTSa-
1

TSa)2 = e 

(5) (SarV)3 = (v-1TS-a)3 

-1 3 = (SaTSa TSaTTS-a) 

= (SaTSa -lT) 3 

We now show that the relation v-1SV = Sa
2 

is redundant. 

frtmi (5) 

So 

... 1 
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We use (4) 

=v Sa V-l 

Thus after deleting V, and V-lsv = sa
2 

we are left with 

LF(2,p) = t S, T; sP = T2 = (sn 3 = (SaTSa:
1
T)3 

-1 2 
= (SaTSa TSa) = e ) 

A further simplification is possible if 2 is a primitive root. For we 

let a- 1 = 2 and a = p+lthen the relation 
2 

-1 2 
(SaTSa TSa) = e 

is redundant. For it becomes 

~ ~ ~ Q:!:l 
s 2 T S2 T S 2 S 2 T S2 T S 2 

E:!:l ~ 
= S 2 T S2 T S T S2 T S 2 

~ E:!:l 
= S 2 T S S T S T S S T S 2 

~ E!!. 
=S2 TS T STS2 

~----:;..--~ 

~ ~ 
= S 2 S-l S 2 

= e 

Th us when 2 i s a pri mi ti ve root E!!. 

LF(2,p) = ( S, T ; sP = r2 = (ST)3 = (S2TS 2 T)3 = e ) 

.. 1 
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Behr and Mennicke (1968) have proved that this presentation holds for 

all primes p. We will show that this last set of relations can be de­

rived from the relations of Frasch. However the more difficult problem 

of deriving Frasch's relations from those of Behr and Mennicke has not 

been done in an algebraic manner. The proof that Behr and Mennicke gave 

was indirect. In order to derive the relations of Behr and Mennicke, it 

is of course only necessary to show 

I!!l 
(S2TS 2 T) 3 = e. 

To do this we show 

k -k 3 
(Sa TSa T) = e k = 0,1,2, ... 

Suppose k is even i.e. k = 2m 

= V-m S T S T S T S T S T S T Vm 

= V-m (ST)6 Vm 

= e. 

Suppose k is odd i.e. k = 2m + 1 

( 
a2m+l a-2m-1)3 S TS T 

2m+l -2m-l 2m+l -2m-l 2m+l -2m-l = Sa T Sa T Sa T Sa T Sa T Sa T 



= e. 

Now there exists k such that ak = 2(mod p) and also a-k = ~(mod p) 
2 

since aka-k = aO = l(mod pl. However we have proved for all k 

k -k 3 
(Sa TSa T) = e 

and so in particular 

I!:tl. 
(S2TS 2 T)3 = e. 

Thus we have proved that the relations of Behr and Mennicke can be 

derived from the relations of Frasch. 
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Our last example is a nontrivia1 coset enumeration. We con-

sider the group 

< A, B ; A8 = B7 = (AB)2 = (A-1B)3 = e ) 

which is denoted by (8, 712, 3) (Coxeter 1939). We wish to prove that 

the word 

is the identity. Leech and Mennicke (1961) have a1ready showed this 

but their proof had "surprising indirectness" (Leech, 1963, p.266). 

In order to prove this relation more direct1y we take the subgroup 

H = { A2 , A-l B } 

Let a = A2 

6 = A-lB 

and we note H is subject to the following relations 

a 4 = 63 = (a6)2 = e. 



However we know 

H = ( a, ~ ; a~ = ~3 = (a~)2 = e ) 

is a presentation for the symmetric group of order 24 (Magnus,Karrass 

& Solitar, 1966, p.21, #13). Thus after the coset enumeration is com­

plete every element in (8, 7\2, 3) can be written as a word in H times 

a coset representative. Now H is a well known group hence (8, 7\2, 3) 

becomes well known in the sense that we can tell whether any given 

word in the group is the identity. 
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The order of (8, 7\2, 3) is known to be 10752 (Leech and 

Mennicke, 1961) and the order of H is 24. Thus the enumeration involved 

448 distinct cosets. However there were many redundant cosets so that 

enumeration of over 1000 cosets was ultimately required before collapse 

occurred. The multiplication tables are too voluminous to reproduce 

here ( approximately 18 pages would be required) but we do prove our 

original statement. We rewrite the word 

(A2B4)6 

in tenms of the generators of H and a coset representative. We find the 

coset representative is T and hence may be cance11ed. We now simplify 

the resultingword using the relations valid in H and find it is the 

identity 

= a~-2a-2~a~2 .e 

= a~a2~a~2 

= a~a a ~a~ ~ 

= ~-l a a- 1 ~ 

= e. 
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T~lS p~aG~AN DETERMINES THE INDEX OF A SUeGROUP IN A GROUP AND A 
5:T OF ~~=ININ~ ~LATI~NS FOR THE SUBGROUP 
T~IS ~~OG~AM ONLY ~ANOLES ONE GROUP P~R RUN 

** 
l'4PLICIT l'ÏTEGER*2(A-Z) 

EACH 0= TH~ DIMENSIONS IN THE CONMON STATEMENT IS THE MAXIMUM OF 
THE DIME!"310IllS GIVEN BELOW 
~~E~ THE dORD MLENGTH" IS USED. EXPANOED LENGTH IS MEANT. 

CO~NON NI.~6.N3.1117.NCI.NS.N2(3J.N~(I •• R(I.7'.S(3.6 •• WTAB(lOOO.~) 
1.CTI3(100~ •• ,.NREL(5.1000) 

THE COMNO,~ STATE!\fE!\oIT MUST BE ADJUSTED Ta CCNFORM TO THE INPUT DATA 
~l-NUNBER lF SUBGROUP GENERA TORS 
N2(K'-NUIOER OF GROUP ELEMENTS IN SUB6ROUP GENERATOR K 
~3- IIIUMBER OF RELATOAS 
N4(K'-NUN3ER O~ GROUP ELEMENTS IN RELATOR K 
IIIS-NUNBE~ GF GROuP GENERATORS 
~6 - LENGTrt OF LONGEST SUBGROUP GENERATOR 
~7 - L:NGToi 0: LONGEST RELATDR 
~CI~AXI!\fUN HUMBER OF eOSETS 
lU 1 •• 1) - IIi THE ~UMBER OF RELATORS .UJD J IS THE L ENGT H OF THE 1 

Hf qELATOR 
SC 1. J) t 1 S THE NUMBER :IF SUBGROUP GENERATORS AND ,J tS THE LENGTH 

~= T~E 1 TH SUBGROUP GENERATOR 
.T,a(I.,)) - VALUE OF (COSET 1 * GENERATOR J'. IT _ILL BE ANOTHER 

COSET 
=TI3(1.,J, 

N~ELCI.J) 

POINTER TO THE WORD THAT AESULTS .HEN COSET 
~U_TJPLIES GENERATOA J 
KEEPS TRACK OF AO.S WHICH AAE NOT COMPLETE. IF THE 
.J TH ROll IN RB..ATOR 1 HAS VALUE 0 THEN THAT RO. IS 
CO~PLETE DTHER_ISE A NONZERO VALUE 

T>iERE 15 '''0 MAXIMUM FOR EACH OF THE ABOYE VARIABLES. HoweVER THE 
O:OLLOIfI".. FORMULA SHOUl..D BE USED TO DETEANINE THE AMOUMT OF CORE 
NEEOEO Ta ~UN THE PROGRAM. 
C'JRE = 42.500 .. 4000*116 + 2*N3*"I7 + Nl*N6 + NI .. N3 + N7 
T~IS WILL RUN UP TO 1000 COSETS 

e~~~N /A~=Al/ CTABI(20000J.KEEP 

CT'31 - ~~RAV WHJCH KEEPS THE WOROS GENERATED IN LINEAR OROER 
.(::SP - c:,nit!::NT A'4fl!INT lIF NOfllEMPTV SPAeE IN CTA!H 

C~~~~~ /A~EA2' ~C~SE(IOOJ.RDUfII(IOO.2'.RDUflll(100.2) 

NC~SE - ~~ 4RRAV TO KEEP TRACK OF COSETS W~ICH ARE REDUNDAfIIT BUT 
~~EADV PROCESSED 

~~'J"'(l.J) 4f11'> R!):,1'''1.2) ARE TwO COSETS WHICH A~E EOUAL I.E. WHE" 
~:)lN.J\~:IES oeC:JIl THE VALUES ARE PUT 1111 QI)UN TO AlfAIT PRoeESSING 
'nJ:-Il - "'lll NTER Ti) TH~ W.JR\)S ASSac IATED lIfl TH THE REDUNDANCV 

I~TE~ER.2 EOJ'1/.I~Ole'1'.IBET/O'.flleOS!::T'I/.4MT'0/.AMTl/0/ 

EJ.J - IN'JICATES _HEN THEAE ARE NO BLAfIIK SPACES I~ THE RELATORS 
I...,Dle - IN.JICATES ...... EN THERE ARE ND BLAN!< SFACES IN THE suamoup 

--.. 
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C 1 iEf - 'V Hi'.: 1 a:: ,1Ei>UN!)ANr COSETS AVA ILA13LE FOR REUSE 
r"COSEr - "..,"'3ER é)F COSETS CURRENTLV D<::FINED 
I\'04T - NlJ>1ER 0= ~EOIJI\IDANCIES WAITII\IG TO BE PROCESSED 
A"Tl - NJ;t3E'l OF RE~UNDANCI~S wAITING TO ilE PROCESSED 

"''11 =2*:4'5 
.'113="15 

: * 

C 

C 

THIS 15 LiE II\IPUT SECTION 

TriE FIRST DATA CARO GIVES THE LENGTH OF EAC~ SUBGROUP GENERATOR 
W'iEN EXPA"OEI) 

REAOCS.31) (N2(J).J=I.Nl' 

r~E SEcaN~ INPUT CARO GIVES THE LENGTH OF EACH RELATOR EXPA~nED 

REAO(S.31(U (N4(.J,.J=I.N3' 

NExT EACH SU9GROUo GENERATOR IS REAO IN.ONE GENERATOR PER CARO. 
TiiE IN~UT )AU 1 S "fUMERIe AS EACH GRO.JP G!:NERATOR IS GIVEN A NUreER 
A~O ITS nif ERSE Ii GIVEN A NUNBER EOUAL Ta THAT NUMBER PLUS THE 
NU"BER OF GEI\IERATORS. FOR EXAMPLE IF G 15 GENERATEO BV (A.B.Ci WE 
~~ULD IN'~T ~ AS l.a AS 2.e AS 3.11,. INVERSE AS 4.B INVERSE S 5.e 

C INVE'tSE \; 6. sa ACCBAB WOULD BE INPUTTED AS 1 3 3 2 1 2 

l J 0:1 202 1=I.Nl 
11 K=N2 CI' 
12 REAOC5.31J) (SCI.J),J=I.IO 
11 ~02 CO~TINUE 

:: 
,. ... 

=II\IALLV EACti REL.AT::Ja 15 lEAD IN ONE T'J A CARO IN THE SAIE NUMERICAL 
MAIII"fER 

14 D~ 203 1=1.N3 
15 ~=N4(1' 
16 ~EA~C5.310' (R(I.J).J=l.K) 
17 :!')3 C::JNTI"UE 
13 JI0 F~qMAT(4012) 

: . 
• E CliO CHECK. 

1:J W~ITE(5.JI) (:I12(J,.,J=1.NI) 
~,) JI "')RMAT(I~I.l)(.· nus IS THE DATA 'IIIPUVTE'l I//IX. THE NUMBER OF ELE 

I~EIIITS IN TtiE SU~ ~~~UP GENERATORS ·/2OX.4012' 
!1 4RITE(6.32J (~4(J~.J=1.N31 
,!z 3~ FYf-I4AT(l>(." T"'~ '''U'04dER OF ELEMENTS 1111 THE RELATORS 1/20)(.4012) 
~ JIf'tITE(5.15) 
!4 35 F(H.I4AT( 1)(.' T'"tE 'iY3GROUP GENERATORS 1) 

~ 'j 1)') 33 1=1."1 
!? ~=NZ(I) 

~7 W~lTE(6.J~) (S(J.J).J=l.<) 
! 3 1'1 Cl'lTHUE 
~J 14 F~~~AT(2J)(.4J12) 
j ,) ,.,~'TE(ô .16& 
31 35 F::J~~AT(I)(.' THE QELATOQS 1) 

12 O~ 37 1=1.N3 
,j,3 K=N4( 1) 
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'lj. .li ~ 1 TE (5.3 3) (~ ( l ,J) ,..1= l ,K ) 
35 37 CJ~TI~UE 
ib 39 F3~~AT(2~(.~012' 

;: 
1'>1' TI AL 1 ZU l '),'1 

'7 :la 200 1=1,NCI 
38 )3 200 ..I=I,~31 

i~ CTI3(I,J):) 
4G _TABCI.J)=O 
II 2JO CJ~TINUE 
42 :>0 210 1=I.N3 
4'} NRELU ,U =1 

44 03 210 J=2.NCI 
".5 N~EL( l, ..1)=0 
l6 210 Cl:llTI'IIUE 

:: 
START EXECJTlùN OF ALGORITHN 

l7 2~O C4LL RUNT~J(INOIC,NCOSET.EOJ.ANT,AMTIJ 

~8 

:: 
:: 
:: 

43 
'il 
il 
;2 
'i3 
:;4 

:: 
:: 

:: 

26'1 

=JJ-INOIC~rOR OF WHEN TABLES ARE COMPLETE I.E. ALGORITHM TERMINATES 
I~IC- IN~ICATO~ THAT PROGRAM HAS FINISHED _ITH SUBGROUP GENERATORS 

IF(EOJ.EQ.O._NO.INOIC.EQ.O) GO TO 230 

A IIIT- TfiE 'UM9ER IJF REOUNOANC lES TO BE PROCESSED 

IF(4~T.EQ.JJ GO TO 260 
::, LL IOU'.2 ( A"4T, A"4 TI , 1 BET) 
G'J TO 24'1 
C4LL DEFINECINOIC,NCOSET,EOJ,IBET) 
IF(EJ.J.E'J.O) GJ TO 230 
:;0 TO 24'1 

• 
:lJTDJT se::r ION 
FIR5T ~UT~JT 15 THE NU~BER OF COSETS DEFINED AND THOSE WHICH ARE 
Qe::>UNDA~ 

i5 2~J ~~tTE(6.~70) NCOSET.(NCOSE(J),J=I.IBETJ 
:;e, 270 F.)q"'AT(//"X.· r-IU'4BER OF COSETS OEFlfIIED °5X,15//IX,' REOUNDANT COS 

,', 
~d 

1 ET S • ( 16 X2 01 H , 

C NE~T OJT~JT 15 T~E INDEX OF THE SUBGROUP IN THE GROUD 
:: 

J~< = NC~3~T-IBET 
*~'T=t~,271) JOK 

j~ ~71 ~~~~AT(/'l~,' THE INDEX OF THE SUBGROUP IS '//12XI4//' 

TH~ NE(T JJToJT 15 TABLE 1 

~~ .~IT=(5,Z13) 

>1 ~) 217 l=l,~COSET 
~~ .~lrE(o.lJ' 1.(.T4~(I.J',J=1,N81) 

~) )) F~~M~T(lx,J3,·:·,2015' 
~. 217 C3~TINUE 
~; .QIT:(&,4J) 
~~ '0 F3~M~T(//' 

) 
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èI::l(T Ol.lTo'.JT IS TA3LE 2-WHICH CONTAllliS LOCATION NIJMBERS OF THE 
IICTIJAL E~TRIES \HI CH ARE PR INTEO BELOA 

\II~ ITE (6. '! JI) 

)') 215 1~I.NCG5ET 
I/,~ IT E ( ') • lN) 1. (C T 1 :3 ( 1 • J) • J = 1 • NB 1 ) 

2 t '5 CJ 'ITINUE 
W:HTE(6.~.) 

THE LAST OUTPUT 15 THE ENTRIES Ta TABLE 2 PRINTED SEQUENTIALLY 
T~E ~UM8=R5 DRINTEO REFER TO SUBGROUP GENERATORS AND THEIR INVERSES 

WRITE( 6.26~) 
~6J FORMAT(lJt.' THE F.:~TRIES TO TABLE II WHERE THE FIRST NUM3ER IS THE 

1_0CATION'iJ'4S:R IN THE TABLE ABOV:.'/lX.· THE SECOND NUro\BER IS ONE 
1 ~I'1RE THA" THE NtJ"~ER OF SYMBI1.S 1 N THE WaRD AND THEN THE WORD IS 
l'/' P.tII\lT=) S=L:J'II IN NUMERIC FORM. =ACH NUMBER REPRESENTS A SUBGR 

lOUP GENERArOR • J 
~~ 255 l=l.NCOSET 

15 ()J 255 J=I,N~l 
76 ~<=CTIB(I.J) 

17 IF(KK.EQ.J) GO Ta 255 
19 ~N=CTAa1(KK)-1+KK 

1l ~RITE(6.25~) CTI3(I.J).(CTAB1(P).P=KK.MN) 
li> 255 C;JNTINJE 
il 25~ FOQMAT(/lX.I~.6X.16/(17X4012») 

32 ZB FJRMAH 1)(' ~TA3-"'I.JLTlPLACATlaN TABLE FOR COSETS') 
013 2 JI =OQMAT( U' CTIB-P,lINTEQS TO LOCATION OF caSH REPRESENTATIVES') 
14 ~JO =,)R~AT( 1 J(. (3':'.2015) 

35 
-:J6 

d7 
,J.) 

J l 

lil 

1 1 
H 

1 j 

H 

" 
15 

: * 
c 

C 

C 

C 
: 

ST'lP 

=...,0 

~_r)CK UAT A 
I~PLICIT I~T~G=R*2IA-Z) 
C,)"''40''l Nl .... 6. 1113.,.,. NC 1. N5. N2 (3). N4 ( 1) • RI t. 7) .SI 3.6) .WTAB( 1 001).41 

1.CTIB(lO·J().4) .... Qs..(5.10~0} 
Ca'4'40N /"'~=:Al/ CTAB1(20000).KEEP 

I)ATASTATE~E"'T MUST BE AD.lUSTED TD CONFOR'" TO INPUT DATA 
'''I.t'43.'i5 ... 5 .... 7 "RE ::>UNt:HED o\CCORDING Ta THElq VALUE FOR A PARTCU-
LAq GQOU::> • 

:>\ TA KEE 1'/1/, 1\13/ 1 / ,N5/2/, N1/ 3/. N6I' 6/. N7/6 /, NC. /1000/ 

E""I) 

I·HF.·';E~ ;: l'tICTlJ..., ::ALC*2(I.I.INTER.K.SW) 

T'U 5 5'.J91 JJTlIIIE ;iJL\lFS FOR NEW INFnR"ATION 

.... 'PLICIT l''ITEGëR*?(A-Z) 
::J'I4MON ·~I.Nô.N3, ... 7 .... (,I.N5.N2(3) ,N4(1 J.RI1.71.S(3.6) .'IITAe( 1000.4) 

1 .CTI ~I t 0) Jo '" ""'IEL ('5.1000' 
C3M140N /\lEAl/ CT~31(20000"KEEP 

lS .....,ST 'E DII4ENS1:J ... EI) AS THE NUteER OF RELATORS av THE LENGTH OF 

T~E LJ~G!ir RELo\TOR 
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I"TER ~J~T eE OI~e~SIO~ED A5 LONG AS THE LONGEST RELATUR 
TrlESE AR~4YS AilE TE'''PERARY STORAGE ARRAY'> 

~I~ENSION 1~TER(5Q).Rq(5.48) 

N~ 1=2*"15 
"B=N5 

S'II- TELL, IlltiETHER INFORMATIOfli CCCURS IN 5U3GP.OUP GENERATOR OR RELATOR 

IF(S~,Ea,Z) GO Ta 100 

SJ'!GROUP GENERATOR 

l~l SWI=~2(K) 

1;)2 [).] 712 l=l.NI 
1~3 KLK~N2(1) 

Il4 DO 712 J=I.KLK 
1:) .; ~ S( J .J) =S( 1. J) 
1.)6 712 C:lNTlNUE 
U7 G:l TO 704 

: ~ELATOR 

C 
1J ~ 7(1() SIfI=N40(K) 
1;)9 00 710 1=I.N3 
Il Il KLK=N4 ( 1) 

Il 1 Da 710 "=1. KLK 
Il 2 RS ( 1 • J, =Q ( 1 • J ) 
113 7t~ CONTINUE 
11 4 7·')4 LL=O 

115 
116 
111 

11.3 
11~ 

I.!J 
IH 
I~ ~ 

li! 3 
Il~ 

I~S 

I!! ::. 
127 
U·;j 

I~ ·1 

l-l'l 

;: 
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: 

IF INFJR~'TION OCCURS AT FIRST SYMBOL PROGRAM SKIPS TO 134 
1Ft IJ.Ea,l) G.::J TO 734 
IJ1=IJ+2 
IJ2=IJ+l 

:i:JL"ES ·3ACK\fAROS FROM POINT OF INFOR"'AT ION TO FIRST SYMBOL 

DO 132 .-.I=2.IJ 
ITT=INTE'l( IJI-/II, 
IIT=RS(K.IJ2-N)+~~ 

Il T=D:JD ( lIT • "'81 ) 
W~RD=CTI~(ITT.IIT, 

IFlwORl>,E:;),O) GO TO 732 
KK=CTAdl'.OR~)-1 

KEEPI=KEE::>.lL 
');) 735 M"I=I.KK 
CTA31(KE:31.~N)=CTABI(WO~~.~N) 

C:) ..... TI~UE 
LL=LL+KK 
C'J',nINUE 

IF I .... FJ~44r 13N :lCCU~S IN A ~EL4TOR PRIJGRAM SKIPS NEXT T\IIO LINES 
;)THE~..,I S=: TH': -.lU"'B:~ Oc THE SU8GROUP GENERATOR 15 AODED TD TME 

: I~FO~~ATION 50 F~R ATTAliIIED 

IJI 734 IF(S~,EQ,!) ~O Tl 7~7 
132 CTA611<Ee~.LL+l)=< 

IjJ LL=LL+I 
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r= I:~<=)~~-\TI:.J'" aCCURS o\T LAST SY"I8CL PROGRA"l SKIPS TO 737 

1~. 727 I<=(IJ.EQ.i.l) GO TO 737 
115 5~12=S41.1 

IJ6 II=lJ+2 
117 5~123 =S~12+1J+2 

116 ;.12~=S.1~3-1 

U-J 
hO 
I~ 1 
14<! 
a3 
1~4 

h5 
146 

: pq~RA~ ~~. SOLvES BACKWARDS FROM THE LAST 5YM~OL TO THE POINT OF 
1~Fü~~ATI3~ AND C~~PLETES T~E SOLUTION 

c 
;lCJ 746 N=ll .S.12 
ITT=INT:R(SW123-N' 
IIT=RS(K.S.124-N'+N8 
Il T=l>Ol( .. T. N81 ) 
~DRD=CT lac ITT.IIT, 
IF(W~RD.El.o) GO TO 746 
«=CTAB1,.ORD'-1 
1(: EPI =i<EEP+LL 

147 :n 747 I4N:l .KK 
l,a CTAal(KEE'l+~N)=CTAal(WORD+MN) 

1'9 7.7 C3NTINUE 
150 __ =LL+~K 
a51 7~6 CONTINUE 
1~2 737 IF(_L.NE.J' ~O Tl 750 
15 J :~L::=O 

lj4 ~:TJ~N 

155 7'jel CT~SlCO(E=:::>'=LL+l 

156 C\LC=C~=:C«K:=P' 
Ij7 <:~P=O(EEP.CTaBI(KEEP) 

ua l=:TURN 
a5'J E ... ") 

li> Il 

C 
;,; 

na 
1,2 

a, l 
LJ4 
I~ 5 
1;' <J 

SU~qOUTI~~ R~UN2(AMT.A~Tl.IBET) 

T.·tlS SJ3~<lUTlNE !)~ALS WIT~ REDUNOANCIE5 

1140LICIT l'''T:G=R.~(A-Z' 
C )-4'40'. 'il .'II6.N3. '111. Ne 1. N5.N2 C3' .N.( U. RC 1 .1 IoS( 3.6' .WTAB( 1000 .. 4' 

1.:TIB(IO».4'.'II~~L(5.1000' 
C"1""O:-.l /~~EA1/ CT~~I (20000) .KEEP 
;,; )4"3'" ,-'~: -,:y ~I)SE( 100' • ROUN (1 00.2) • ROU'''' ( 1 00.2' 

!II '3 1 =2*'115 
)~ "''\=N5 

r-tls 5=CTI)~ OECIi)ES WHICH 15 THE" SMALLEQ OF T'"tE TIIO CIJSETS AND 
,'" >4: '; 1 T "~l '. AND 'i4MES T HE LARG~P NM4X ANO FO~"'S THE wOR D SPEC 
3~~C- T'-f: tt ~IJRO t. 5UCH THAT N~IN=~OP~*~~A~ 

hl :3.)4 1:(~,):J,,('4TttJ-R')lJ"'(A'4T.2)) 107.108.10Q 
l~~ III ~41~=~~U"'(~MT.2) 
1.') 'l''\X=~U''( 4'4T.I' 
1/~ IT=RDU"'I(\~TI.2) 

III ITT=~3'.J~"o\"'TI.l) 
17Z 5'=:C=N5:)"'( lT.ITT) 
1/3 :il TC> 75 
174 131 ~'4lN=R3UN(4NT.I) 
17a N-44X=R3U'iCANT.2J 
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176 
17 , 

IT=qOU~I('~TI.1) 
IT T =~ ~U 1'\11 ( ~ MT 1 .2 ) 

1(3 5 P EC="J5l.MIITT.ITl 
17~ ~~~C=I~V(5?EC) 

13,) 7'5 I1ET=IBET+l 

N~A~ [5 Fl_E~ AS ~ QEUSA9LE CQSET 

Ul "C:1SE( J9Er) =NMA X 

T~E PRaG~~~ ZEROES OUT THE NMAX ROW IN RELATION TABLE 

.~2 DO ~a 1=1.Il0l3 
1 ~3 "'1 El. ( •• N·"")( '=0 
U4 81) COPI/TI NUE 
135 ~r>lMI/'Ar"T.2)=O 

::; 
;:; 

Uô 
D7 
ua 
Bl 
BI) 

::; 

: 
HI 
B2 
1)3 
.1;-I~ 

1.15 
Bô 
l-j7 

ua 
1.19 

2JJ 
2J 1 
2J .! 
?J j 

~)4 

2) j 

2)ô 

2J 7 

;:; 
::; 

!)!1 

2J9 
21,) 

Zl 1 
21,! 
21.1 
214 
21:; 
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Z:RO O~T ~EDJNOANCIES DEALT WITH AND OECREASE NUMBER OF REOUNDANCJES 

9V ONE 

R:)UN(4r.tT.l)=~ 

~!)lNt( AMT 1.1 )=() 

~:>U"ll(AMTI.2)=0 

A"T=4MT-l 
4',/jn=A"'TI-l 

C,JMPARE 'lJWS N"'I .... AND NMAX IN TAa.E 1 
1= 30T~ ~~E "JO"JE~PTV _F. HAVE A FU~THE~ REOUNOANCV 
J= "JMAX r:; N'JNE.,pTY AND NMIN IS EMPTV THE IN"ORJoCATIClN JS TQANSFERRED 
I~ NMAX IS E",PTY THEN PROGRAM SKIPS Ta NEXT COLUMN 

DJ 100 1=I.N81 
IF(WT43(~~AX.I).~Q.OJ GO Ta 100 
IFC~TA~C~41~.I'.EQ.0) GO TO 103 
A H=AMT+I 
A'4 n=A"'Tl + 1 
~:)U~CA~T.l)=~TA9("JM1N.,) 

R)UN,A4T.2,=WTAS(N"'AX.f' 
1 T=CTI6( -. ... 1 N.I) 
R~UI\j1C'MTI.l)=JT 

ITT=ÇTl3( ""'AX.I) 
ITT=NS~ ... (;3EC.ITT} 
IU'JNI' "MTl • 2)= l "1\1 ( ITT) 

:H 7 G:J TO 10:) 
1 J3 IITA3CN·41· ... 1 )=.T 43' ' ...... Al<.I» 

IT=CTI3( "4AlC.l) 
CT(3(~~I~.I)=NSU~(SPEC.IT) 

1 0) :) "'TI NJ=: 

It~ ~:::PL"C:: 4LL n:c,.:qpF"JCES OF NM4X av Nt41N 1"1 T A9LE5 1 AND 2 
r of:;; =?O. L-\3::LL~:l "'''AX 1 S ZEROED OUT IN r4aLES 1 4NI) 2 

5 3 '=CI =:1"'" SP:;::) 
):) 105 1 =I.!II~I 
~ESULT=AT4~C~M4X.J) 
.. "'".:3(",,,,,,'(.1'=0 
1~(qESJLT.~Q.O' ~l TO 105 

IT=I+"::I 
IT=;>,D( IT.'I!)I) 
ITT=CTIR(N"'A'(.I) 

---. 



21 ';) 
~1" 
21 d 
21 J 

2<:!;) 

221 
2.~ 2. 

CT ( .:I("',""'X. 1 ) =0 
I=(~TAd(~~SULT.IT •• EC.NMIN) GO Ta lOS 
IIr43(RESJLT. [Tl=:>!' .. I, .... 
ITT= (N" (J TT) 
CT (3"~:::5'J~ T • IT '='~5U'H 1fT. C;PEC l' 

1 )~ ClITI'IIClE 
IF(4~T.f-~.O) RETU~N 

T'i':: LIST )= ~E .. AI·HNG REOU/IIOANCIES IS CHECI<EO AND OCCURRENCES OF 
'II'" 4X AR E ~EPLACE() BY Nr.t IN 

,~2 J ;)') ~a() 1= 1. "''4T 
22 <) :>'l 400 .1=1.2 
2~5 IF(~D~N(I,J'.NE. ~~AX) GO TO 400 
226 ~1~ ~)UN(I,J'=N"'IN 

U7 1ê"(J.E\).2' G.J TO 405 
~28 ITT=SPECI 
22 ''1 1 T =RDUNI ( l , J ) 
2Ja ~)UN1(I.J)=~SU~CIT.ITT) 

211 GJ Ta 400 
2J2 4')S R':>U"U (I.J, =""SU'4(SPEC.RDUNl CI ."U 
2.l.3 400 :')' .. n NU; 
2.14 IF(AI41.N:. 0' :iD Ta 98 
23:'; R= TU~"I 

c 
:: T-ns SECTION oEILS lUTH THE CASE WHERE N"'IN=NMAX~ IF A RELATION OCCUR! 

(T 13 ?RI"4TE!) 

:: 
2~~ IJq ~()UN'~~T.l '=0 
2.Jl ~')!N(4"'T.2J=l 

2.1.,) 4'41=AI4T-l 
2.1 'J S.,SGE' ... =NSJ·", 'l:>LJ Nt CA III Tl .2' . ROUN' (I\'4T 1,1 )) 
,NO 1= (S'IS:i:N.EQ.O) GO TO 110 
2~ l _IT=5YSGE HO: TA~I CS'ISGEN'-I 
24:! IfRITE(6.119' (CTA3lC 1 hl=SYSGEN.LlT) 
2~ j li') Fl~"'4T(/.llX.· A RE_ATOR DERIVED FRCM REOU'NDANCIES. THE FIRST NUIoIBE 

l~ iS O'''E ":J"f~ THA'" THE LE,....TH OF THE qELATOR.'/IX.' THE REMAINING 
ItU"4:ERS '1:: HE ~':I..ATO~ ITSELF "/(1lCI.,5)(.4012» 

2~ 4 11 ') ~ :>·.I~lC A lIfT 1 • 1 )=0 
2~5 ~'~~I(A"'TI.2)=a 

2." 4'4TI=A"4TI-I 

,. ... 
2.1 
2.:'1 

,n" 

~jJ 

:: 

-
~-) 1 
.!.i~ 

2j,j 

Zj4 
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1= T~E~E ~~E FUqTrlE~ REDUNOANCIES T~EV 4RE pQOCESSED ~THERWISE 

R:::T J~"" T:J 14 .l''RO G 

1=(A~T.N:::.,») GO Ta ~e 
~:::TU~N 

='-D 

.iJ3~a~Tl ~~ R~~TqJCI~Dtc.~cnSF.T.EOJ.AMT,A~T1J 

r-H 3 S'JIH,),ITI"'E ;J=::5 THQOUGH THE SUBGROU~ GEIIIEP4TOQS "'ND RELATORS 
rJ T~Y ",-n PtC< '.1' ""'''' I~FO~"'ATIOII,J 

t PLIer T i"T:Gi:"*2(A-ZJ 
:::J 4"''1'''' :>Il, -"ô. ·,u ,'17 .Nct ,1II5.N2( 3'.1114 ( • ,. Re 1 .7' .S( 3.6' ,,,,TABC 1000,.) 

l,::TI6( 1 0.1J.4 ).IIIQ~L(5"1000) 
C,)"" .. ON /\~EAI/ CTA3' C20000,.KEEP 
::J")4(J'" /\"f:42/ NC1SECloo) ,ROlJNfI 00.2 loROU"I1 (100.2' 



-; 

255 
2ei" 
2j7 

2j:J 

25'1 

2~O 

.!~ 1 
2.,2 
2.:. J 

2:»4 
2:'~ 

260 
~~7 

!~ 3 
:hJ 
27 ) 
Z11 
212 

271 
21~ 

27, 
21, 
217 
'ua 
.!7 ) 

:: 

;;. 

: 

: 
: 

:: 

: 

OI~ENSI0~ INTER(50) 
"131=2*"15 
N:') ="15 

P;I'l"'RA'4 C-iECI(S T:J 'if:F. IF THE SUBGROUP G"'NERATOf~C; HIIVE ALL !3EEN 
~':i'lIUTTE:-.I 1.::. N13LANI{ S"'IICF.S OCCUR 

IF(INOIC.EQ.O) G'l TO 16 

T·-tE FIRST SECT 10'1 DEALS ~ITH SUBGROUP GENERATORS 

()() 10 1(=1."11 

W~ENEV;R ~ RO. 15 COMPLETED IT IS ZEROEO BECAUSE NO FURTHER 
I~FORNATI~~ CAN BE GAiNE~ 

IF(S(K.1,.EQ.O' GO TC 10 
!\IZA=N2(K, 
N21(sN2 (K)+ 1 

Ir'HER(J '=1 
Tri!.: PR'lGllAt4 GOeS F!1QWA~D IN A ROW AS FAR AS POSSIBLE 

:>:] 12 1=IoN2A 
IIT=5(K.I' 
ITT=INTE'UI' 
I~TE~(I+I)=WTAa(ITT.IIT' 

IFClNTERCI+U.NE. 0) GO TO 12 
l '1TER( ~J(' = 1 
I~CI.EQ.,"2A' GO TO 26 
1l=N2(J() 
11=1+1 

A=TER GOI~G ~O~WA~!) Ir GOES eACl(wARD AEMEMBEAING WHEAE IT STOPPED 
IN THE FO~WA~D DJqECTION 

)") 1 • .1=11.11 
Jrl=INT:~(N2K.II-J' 

TIT=S'K.~2~+I-J'."8 
TIT=:>OO(T1T.N8I' 
l''TER'N2K.I-J'=~TA3C1Tl.TIT' 

1~«INTER«N2K.I-J •• E~.0) GO TO 10 
14 C:lNTlNUF: 

T~E THRE~ CASES ,~e DEALT .'TH 
-'1.1 INFOQ· ... ATION GO TO 11) I.'!. TRY "NOTHE~ GENEICATOR 

;: -N:" 1 NFfJqr.oAT 1 Dili GO '0 26 
-~ElJ"',) • ...c:V GO TC 32 IJ~ 10 :lEPe"lOIl.jG ON THE PLACE OF 

; ~C:~q~ENCE 

!J) ri·J TO 26 
Z JI 1 <! '::1 '<l' lNUE 

: I~ Ttit:: IE'HIRE ~O'" 15 PROCESSEO Fn~WAq)S !::IT"'EP. A REOUIliDANCY sa 
P~;JGR.·" ~< 1 oc; TQ :1() OR Nf) NEW 1 fIF OR"ATI.JN sa THE ROW IS ZEROF:D OUT 

.:!.J~ IFCl:-..lT:R("?lo ..... e.lJ GO Trl 30 
:!:l j ;« 1(.1 , =0 
Zi ~ :;:1 T:1 10 

;: 
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255 
2jo 
2j/ 

li:! 

25'J 

2~O 

2:.0 1 
2~2 

.hJ 

2:»4 

2"'i 
260 
?.,7 
!.> ~ 
2 .. 1 
27 ) 
271 
2/2 

271 
2/ .. 

U'i 
21 :; 
217 
2/3 
~7 } 

v 

;; 
:: 
w 

: 

:: 

,;: 
:: 

OI~EN5IO~ INTER(50) 
N31=2*N5 
N'J=1'oI5 

P;FhiRA'-1 C-IECI(S T:J S~E IF THE SUBGROUP Gr=.NERATOR<; Ho\VE ALL !3EEN 

~~WRITTEN 1.=-. NJ 3LAN~ SPACF.S OCCUR 

IF(INDIC.EQ.O) Gl Ta 16 

T·iE FIRS ... • SECT 10'1 ()EALS WITH SUBGROUP GENERATORS 

on 10 K=I.NI 

W~ENEVER ~ Ra. IS COM~ETEO IT 15 ZEROEO BECAUSE NO FURTHER 
l''FORMATION CAN BE GAINE~ 

IF CS,K. U .EQ.O' ·:;0 TC t 0 

"'2A=N2'K, 
N2K=N2' 1( t+ 1 
INTER'I'=l 

T:-iE pRilG'lAII4 GOES FnRWA~O IN A ROlf AS FAR AS POSSIBLE 

:>:1 12 1=I.N2A 
IIT=SCK.I) 
ITT=INTER(( ) 
I~TE~'I+l)=WTA3(lrT.IJT' 
IF(JNTER(I+lJ.NE. 1)) GO TO 12 

1 -"T:R( "A2K):: 1 
IFCI.EQ.· .. 2AJ GO Ta 26 
11=N2CK, 
11=1+1 

A=TER GOI"G I=O~IIIA'l~ IT GOES eACKwARO REMF.MBERING WHERE IT STOPPEO 
IN THE F~RWA'lO DIRECTION 

)"] 1~ .J=II.JI 
ITI=INT:'l'N2K+II-J' 
TIT=S(K •• 2~+1-.J)+~8 
TI T=)OOC TtT.N8U 
I~TER'N2K+I-J)=~TA~(JTJ.TIT' 

IF'INTEH'N2K+J-.J).~~.O' GO TO 10 
1. CJ"ATiNuE 

T .... e: THREE CASES \~E OEALT wlTH 
-'II,] INFOR·""T ION GO TO II) 1.:. TRY ANOTHER GENEfëATOR 

~ -1-.1:/1 INF(JQ~ATIO'" GO Ta 26 
-~ElJ~~A~CY GO TC 32 OQ 30 ~EPE"'DI"'G ON THE PLACE OF 

; ~C~Jq~ENCE 

!J} :il TO 26 
2H 12 C:l"TINUE 

c!.1 ~ 

!:Ii 
2~~ 

7j95 
: 

F TtiE f;:,jfIRE ~O/l 15 PROCESSEO FO~WAQ)S EITt-EP A REOUNOANCY sa 
P~iJGRA'" ~<I ~'i TC> 1() Oq Nf) NEW IIIFORfoIATI JN !'O THE Raw IS ZEROED OUT 

IF(l~T:R("?K).~E.l) GO Tn 30 
i( 1(.1 )=0 
~J T:l 10 



T·ilS SECTIJ~ :>EAL5 WIT,", NEW INFORMATION 

~)'i ~.:; ITIT=I;HE~( 1+1' 
~iô ITTT=5(K,f)+~B 

.Hl ITTT=OOD( ITTT,NI31) 
2Si 11=(IIITA3(ITlT,ITTT).NE. 0) GO TO 12 
2i~ ~T49CITIT,lTTT'=lNT~R(I) 

ZI\) jfT4B' ITT,I IT'=I"ITE'lC J+I) 
2J 1 5-.=1 
212 CTIB(ITT.IIT)=CALC(I.INTER.K.5W) 
Zll KJ=CTIS'ITT.IIT' 
2-1~\ Cna(ITIT.ITTT)=INV(KJ) 
2,1 -:.\ GO TO 1 0 

,. .. 
~ THIS SECTION D~ALS WITH REDUNDANCIES THAT OCCUR ANYWHERE BUT AT 
~ r~E LAST 5Y~BOL 
: 

Z~Ô 32 A~T=AMT+1 
2~7 AOUN(ANT.I)=WTABCITIT.ITTT) 
213 ITT=INTE~(I-l) 

2:1 ~ 1 1 T= SC 1( • 1-1 ) 
3) J RDUN( AMT. 2 )= .. TA3(1TT • liT) 
3.11 A~Tl:ANT1+1 

3JZ R:JUNI (" MTI .1 '=C TlB (1 TI T .ITTT) 
3.1] SIIf=1 
lJ4 RDUNI(AMTI.2'=CALC(I.INTER.K.SW) 
3.15 :;:J Til 10 

: 

3Jô 
JJ 7 
.:1)!l 

31.1 ~ 
.ILl 
31 1 
J12 
313 
314 
315 
310 
311 

~ 

: 
:: 

.113 

.11 'J 
,3·N 

:: 

C 

3:! 1 
~~ 

c 
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T~15 SECTI3N D:ALS wlTH REDUNCANCIES THAT OCCUR AT THE LAST 5YMBOL 

.1') AlltT=AMT +1 
1 TT=INTE'l( "2") 
IT IT=S( K ...... 2 A J 
~l')UN( JV4T.l ) =IH A3( 1 TT .IT IT J 
R:>UN( II~T. 2) = 1 
""'Tl=I\ .... TI+l 
~:>UN1(ANT1,I)=CTIB(ITT •• TIT) 
l "=N2A 
S'If=l 
~()UNJ-( A "'TI. 2 )=CALC (1 N •• NTER.K.sV) 

1 t) C:lNT 1 NUE 
16 Jo) 18 K=1.N3 

THIS SECTION PARALLELS THE FIRST EXCEPT IT DEALS WITH THE RELATION 
T4BL: 

i'<l4K=N4 (K.+l 

~C:l5ET JS r HE cu'nE:4T "IJIfFtER OF C:lSETS OEF 11\E[) 

()') 20 J=l,i-4C1SET 
I~TER'I)=~~EL(K.J' 

1= A ~QW IS C~~~LeT: fT IS ZER~D OUT BECAUS: ~O NEW I~FOR~ATJO~ 

C-\N OCC\J~ Tfi::RE 

J=(INT~R'lJ.Ea.O) GO T~ ~O 

N4A=N4CK, 

EI\CH RO'" 1" TABLE. IS PRQCESSEO F"O~ THE RIGHT .AS F4P "S POSSI9LE. 



}'!i '.>1 22 !-=1.'lj4\ 
~'!4 Il T:::H 0(. il 
i.:! 5 t T t = 1 ~T ~ ~! t , 
~.!'-; [·HE~(r+l)='lIT.I\,(JTI.JIT) 

.1 ~ , 1 = (1 ~ r:=: ~ ( 1 + 1 ) • E 0 • (») c,n TD ~, 

·i.!8 2~ C),.TI ~,jE 

:: 

1= THE ='Hln: ",.J.- l'i PROCE55eO EJTt-eq A REDl;NDA"ICY CR NO NEW 
1 ~~.)~",.o.T 10 .... "50 T'iF: .taw IS ZEROEC OUT 

,~") 1= (JNTE::t( ~~<).·~E.IIIREL(K.J)' GO TO 71 

3iO Nq=L(~.J'=~ 
J~ 1 G:] Ta ?) 
J.j2 2J J"ITER('.4<'="~EL (I(.,J) 

J-i.j 1~(I.:l.'''H<)) ~.J Tf) 28 
jj4 11=1+1 
,1 ~!5 '\I~ KI =111~ 1(+ 1 1 
3;6 ,,~1(2=~~~+I 

j$7 
3.ioi 

3j ,1 

j~O 

3~1 

3,,2 

) • .J 

3:''' 
3:'5 
Hl> 
.h7 
jj~ 

3' ~ 
)"J 
:i:H 
:h2 
joi j 

J~4 

3;5 

'h" 
'h7 
HO. 
3j''l 

J.lJ 

3H 
3;2 
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TriE ~o~ 13 ~1. p~aCESSED FROM THE LEFT AS FA~ A5 POSSIBLE AND 3 CAses 
.: A~ IS: 

,. 

:: 

-INFOR~ATIO" OCCURS GO T~ 23 
-~E~U,,~ANCY OCCURS GO TO 52 OR 71 DEPENOING ON THE LOCATION 

OF THE BREAK 
-T~ERE ARE STILL BLANK SPACES 50 ANEW ROW IS CCNSIDEREO 

::n 24 ~=II .... ~A 
ITT=I"T~~(~41(1-L' 

TIT::~«."~~2-L'+~3 
Tl T::.lT)( TI T. 'dl) 
I~T~~( ... 4<2-Ll::~T,q(ITT.TI'~ 
1=( 1'"T=~( ''''K:?-L ).F:(leO, GO Ta 20 

!4 Cl ... Tl"lJE 

T~ts 5ECTIOIII ~EAL5 ~ITH NEW INFORMATJO~ 

2i ITIT::I ... T=~(I+I) 
'TTT:::~( .... 1 )+ ... s 
JTTT::~~~f JTTT.~~I' 

l'''CIIIT.I\3( lTIT.ITTT •• "IE. 0) GO Ta '52 
.T~3(ITIT.ITTT)=I~'ER(I) 

,..T .1\ 3( IT 1 • liT ) = t NT'= R ( 1 + 1 ) 

5W=2 
:T13( lTl.IITl=;:-\LCCt.INTER.K.SW' 
(J:CT J 3Ct TI .11 T) 

::T El( i TI T.I TTTl =1 .VIKJ) 

,,~<:: ... (.<.. J): J 
:>.1 T:J 21 

T-ilS S::TI)'1 .,;;:-'_5 \~IT'" ~El1llNDAKIE5 TH"T occu~ A!IIY.t-I::~: ~UT ~T 

T-i~ ... ~:;T 3f · .. ~:lL 

; ~ -\ H = ~ .. "'T + 1 
~")'Y~( ~~T.I )::o'IT.I\dCJT1T.ITTT' 
~",Y-:(.\H.?) :1""T~~(t) 

· ... Tl=~"'Tl+1 
~) J'Il( :. "Tl .1 )=c TI 3(1 TI T. J TTT) 

5.4=2 
~ "')'1 >Il ( 0\ "Tl .2 )=C 4i..C CI. J~TER.K .SW) 
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~TAdCi~TE~~.IIT)=~caS~T.l 
CT 13 C 1 III TE ~ M, 1 J T ) =) 

l , T T= liT + '"'S 
J J TT~ëll)DC '1 TT,NA 1) 

Ti~ NU~~2~ J= c];~rs DEFJ~ED IS INCPEAS~0 SV ONE 

...,,: lSëT=NC 15ET+l 
~r4~C~:~~;' .llrT)=I~TERM 

:rl~CN:OS:T.IITTt=O 
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41 If III"EI. C J .~C:)iET ):!IIC'JSET 
41; 1.) ::;O"ITIN..JE 
41ô ~=TU~N 

41 1 ~ 1 ~TeIU4:I'\ITERI 
413 :;C~"'TIIIIUE 

41 1 J C:JNTlNUE 
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.: OF I~OIC IS CHA~GEO 
:: 

4~n tNOI::O 
4~1 15 Y~4=O 

4~ ~ 

4~1 

\24 

4~5 

4~û 

4! r 
4~3 

4~'J 

4.i) 

Ul 
4i2 
4';; J 
4·)4 
4J5 

4j( 

4J7 
43 ·1 

"j~ 

7399 

T~IS SECTIOIII PA~4LLELS THE FIRST AS THE ROWS IN THE RELATIOh TABL~ 
A~~ 5EAQCH:D =3R T~E FIRST BLANK SPOT 
Ti~R~ IS A SLIGrlT ~ARIATIJN DUE Tl THE FAtT THAT REDUNOANT cnSETS 
A~a KE~T rQACK aF AlliO ~EJSEO 
:~:':JSE' 1 '-T iE IlIA"': :JF A REDUNCANT caSET ilHICH CAN RE qEUSEO 

NC;J=~Cil5ET 

Dl 9 14=1 •• :::1 
,,),l 7 1(=1 .... 3 
I~TEqM=~~~L(~.~, 

IF'INTE~~.EQ.O, ~:J TO 7 
"'4I\LT:N4C 1('-1 
:>il Il L=I.N4"-T 
11T=QC I<.L' 
1 NTERl=WT 1\6 C I ... r E~"'. 1 Il"' 
l:Ci~T:::Qt.~Q.ot ., 10 13 
."'l'EQ",= • ...,r ER 1 
:i:J T'l 11 

Il IlTT=UT+.j5 
1 1 TT=i)().')(-J 1 TT. 'II~ l' 

1'" T'iE~;:: \;1: ""y 'lêUSA~LE CaSETS THEY _qe '-SEO FU~ST 

IF (JdET .;"E. }) ~J TO 14 
wT~3(1~TE~4.IIT'=~C~SET+l 

CTI3(1~T~~~,llr)=, 

Ti: 'U'1:3=~ OF C·:J;:T:; OEFINED IS J-.CPEASE:> 9Y ;lNE 

\le ~;;ET=:"C)i:T +1 

Rl' . .,,;; A~E :~::\TE:l - .. THE: "'~"AY WT"9 FIN THE IliE" CDSET 
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4;2 ~~ELIKK.~OSE'19ET))=NCOSElIBET} 
4; J 17 C.JNTlNUE 
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:: 
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<:!!'=<EEot+::T~~1 (,<==13' 
~=T'.J~'" -
':rl 

IH~GE ~ ;:: N:: TI (l" CHECK* 2( P) 

T..fIS SiJ3iUl./TI!'II;: ELI'"l",lIT'!::S T~IVIAL RELATOP.S OF THE FOR~ XXINVERSf 

F~:J~ A ~ :rn 

7400 
-' 



437 
43'1 

4:)-;1 

,,~:) 

4~ 1 
4~~ 

4'13 

4~" 
-US 
'U6 
4~7 

4~cl 

" .. ~ 
5;),) 

5;11 
5~2 

;,)3 
5:)4 

;'>5 
5,); 
5J7 
5')~ 

5J,) 
51 () 
Sil 
S12 
51.1 
514 
51, 
51 <3 
5&7 
513 
,19 
sa ol 
5H 

x~ 
:. 

: 
;~ l 
5~. 

5<:5 
xe. 
3a 7 
:i~ ~ 

j~ J 

'Hl 
;)1 

5Ja 
5j 3 
:ij .. 

'5j, 

5J3 
5J7 
5i:\ 

L-
7401 

J."OLICJ T INTEGER*2CA-Z) 
C,ll4r.4()"1 NI ,"16, N3, "117. NC J ,N5,"'2 C3} ,N4( I} ,Re l ,7 hSC 3 ,6} ,.TABC 1000.4} 

1 • C TI B' 1 00:) ." , .. '1 R ~l. ( 5 .. 1000 , 
CO"''''Of'l l'I\.lEA1' CTAB! (20000 }.KEEP 
.J.J=CTA3IP') 
C·i~CK=~ 

N~I=2.Nl 

307 1~'CTAdICP}.LE.2} qeTURN 
«=CTABI(P)-2 
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PPP:rP+2 
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J T=ooO' IT .... 81 J 
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IFCKKoEQ.l} GD Ta 826 
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:>:1 802 ..I=I,I<KT 
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302 C~NT1NUE 
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JF(CTA31C~).NE.l) GO TO 807 
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30 J CONT J NUE 
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R;!rURN 
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~:TU~N 
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.'ITEGEIt Fl, .. cTICJN INY*2CP) 

T~IS S\J8A1)..ITINE GillES TtE lNV~Ase " THE WORD JNPUTTED 
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