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SOMMAI'RE 

Cette thèse décrit la recherche et la conception d'un nouvel environnement de développement 

CAO ainsi que l'implantation d'un prototype, 

Elle effectue une étude de la fonctionalité des systèmes existants ainsi que des besoins 

des environnements de CAO modernes et définit une architecture. 

L'architecture utilise la méthodologie orientée object et se base sur le language "C++" 

dans un environnement. de station de travail UNIX. 

Cette th(~se décrit la base d'un serveur orienté object ainsi qu'une librairie de classes 

pouvant être utilisée pa.r une a.pplication pour obtenir les services suivants; persistence 

d'object, accès invisible et simultané à plusieurs serveurs, contrôle de versions, facilité de 

description d'objects complexes et possibilité de fonctionner dans un réseau httérogène de 

stations de travail. 

Cet ouvrage discute aussi de méthodes d'implantation de services complexes tels la 

notification et l'administration de project et de version à haut niveau. 

Finalement, le protype est évalué et les résultats montrent qu'avec quelques améliorations 

de performance, ce système pourrait êt.re utilisé à la base d'un environnement de développement 

polyvalent. et extensible . 
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ABSTRACT 

This thesis describes the research and design of a new CAD framcwork and implcllwnts a 

working prototype of the system. 

The strengths and weaknesses of sorne existing systems and the needs of lllod('J'1l tool 

development are described. An architecture is defined. 

The architecture uses object oriented programrning rncthods and is implcmcntcd lISillg 

the "C++" language on workstations running the UNIX operating system . 

This thesis describes the basis of an object oriented server and a base c1ass Iibrary to 

be used by the client applications to obtain object persistence, transparent acccss to TIlul

tiple servers, version control, ri ch modeling capabilities and operations in a hcterogeneolls 

network of workstations. 

There is also a discussion of rnethods for implernenting advanced featul'es likc notifica

tion and project and version management. 

Finally, the working prototype is evaluated and the results show that with sOrTIe pel'

formance improvements, the system could be used as a foundation for a higldy venwtilp 

and expandable CAD framework. 
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Chapter 1 

Introduction 

This thesis describes the foundations for a new Computer Aided Design (CAD) framework 

and the implementation of a working prototype of the system. 

A CAO database should offer rich modeling capabilities, version control, client/server 

multi-user networked access, notification services and ease of integration and development. 

None of the systems examined perform aH these tasks adequately. 

The new framework is implemented in C++ [22] [46] [64] (an object oriented supers et 

of "C" [33]) under UNIX [2] [27] [47] in a TCP /IP [14] networked environment. 

Ideally the fra.mework should provide the following services: 

• object. persistence mechanism, 

• support for complex objects, 

• version control, 

• object. sharing at the application level, 

• COllcurrency control, 

• distributed client / server architecture, 

1 
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Cl-JAPTER 1. INTRODUCTION 2 

• inter process notification, 

• ease of development for new t.ools, 

• ease of integration of existing tools. 

• automatic version translation, 

• journaling, 

• error recovery, 

• indexing, 

• query language, 

• audit trail, 

• rollback / crash recovery, 

• portability. 

AlI of these issues are addressed at least partially in this thesis and a thesis written by 

Nathalie Farjallah [23], with the exceptions of indexing and query language facilities whi<:h 

are projects by themselves and [aIl outside the scope of thesc thesis. 

The proposed framework is divided in three parts: an Object Orientcd DataBasc 

(OODB) server, a client base class library and a network interface library fol' bot.h c1icnt. 

and server. The OODB server was developed by Nathalie Farjallah in the context. of her 

thesis while the client and network libraries were developed as part of this thesis. 

With the ever increasing complexity of Very Large Scalc Integration (VLSI) designs, 

CAD frameworks are becoming larger every year and havc encouragcd various separation 

of functionality. The following schema is felt to be a good layering of resources for CAD 

frameworks as shown in Fig 1.1. 

Each layer contains the following functionality: 

, ! ," ,.,.-
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n 
user interface module 

VLSI 
TOOLS 

, . , . 
, 

Figure 1.1: Suggested layering of a CAD framework 

3 

1. CAO OODS SUBSYSTEM: basically handles aIl the goals mentioned in the above 

lisf. but with only an elementary version control mechanism. 

2. PROJECT MANAGER: Provide more elaborate version control and concurrency 

access like: 

• access concurrency 

• two phase versioning 

• long time locking 

• group access 

• workspace 

• configuration 

• workspace and configuration browser 

• function library to set/modify defaults and policies. 

3. VLSI TOOLS: compactor, PLA generator, router, VHDL compiler, DRC . 
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4. TOOLS ACTIVATION AND USER INTERFACE. 

The division of the framework in this mult.i-Iayer diagram is n>l'y gl'Ileral amI k('l'ps ally 

VLSI specifies to the higher layers of the mode\. The OODa subsyst.cm is slight.ly orientpd 

towards general CAD usage and as is the Project Manager but. boUI arc also w('l1 suitt'd 

for software development projects. Specifie design oricnt.ations begill with t.h(' s('!.t iug or 
rules in the project manager. The TOOLS and Framework arC' ddillÎt.('ly VLSI ori<'n!.('d. 

By keeping the lower Iayers as general as possible, future devclopmrnt. is ilOt. limit.cd Ily 

arbitrary file formats or object types. 

This thesis concentrates on the first level: CAD OODB SUBSYSTEM. lt. int.egrat.<'s 

most of the services in the list above. The areas of special intcrcst arc {,ool int.rgl'tltioll 

and development, notification between tools and versat.ility in client./server dist.ributioll, 

the weakest areas of existing prototypes. 

The prototype provides a proof of concept and the results show that whil(' 80111(' p('r

forrnance irnprovernents need to be made to the prototype, thc system as il stands cOllld 

be used as the foundation for an advanced CAD framework. 

The rernainder of the thesis is structured as follow: 

The second chapter describes the following design goals of modem CA D sy8t(~IJlS .1.11<1 

how weIl sorne existing VLSI CAD frameworks meet thcse goals: 

• Object Oriented Database, 

• tool integration and developmenl, 

• notification, 

• version control and concurrency, 

• project management, user interface and tool control 

An emerging standard named CORBA that provides tool8 inler-op('J'ability Îs thcfI 

descrihed . 
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The third chapter reviews the concepts used in this project. It starts with a review of 

the Object Oriented (00) concept and more specifically the C++ language. Transparent 

object persistence through the use of smart pointers is studied along with related subjects 

sucll as the loaded object dictionary. Since persistent objects are names using a UNIX 

Iike pathname scheme, the natural way to store a loaded object dictionary is in the form 

of a dil'ectory tree. This UNIX similarity is exploited to implement the mount command 

that provides transparent access to multiple servers. This approach is very similar to NFS 

mounting multiple servers to form a single directory tree. Finally this chapter will coyer 

the topies of versioning, dynamic type checking, storage of complex objects, networking 

and notification. 

The fOUl'th chapter describes the implementation details of each of the features discussed 

in chapter three. 

The fifth chapter provides an evaluation of the prototype. It describes the details of 

the prototype then proceeds to evaluate the memory overhead, disk usage, performance of 

swizzled1 smart pointers versus regular pointers, loadingjsaving times of objects using the 

persistent object base class library versus direct NFS readjwrites. Also a comparison of 

the original design goals with the functionality provided by the prototype is given. The 

chapter concludes with a discussion of interesting areas for future developments. 

The last chapter provides the conclusions for this project. 

1 A swizzled smart pointer means that the object is loacled in memory and the smart pointer knows the 

address of that object 
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Chapter 2 

Background 

In the last few years, Computer Aided Design (CAO) systems in general and especÎally 

those targeted for VLSI, have rapidly increased in complexity. Sorne of the cadier projccts 

tackled the problem of designing a CAD system as a single task. The resulting pl'Oduct 

is a single huge program like Electric [51] [52] or a set of tightly cou pIed pl'Ograllls like 

Oct/VEM [54] [55]. Both projects expand on sorne interesting ideas but leavc room fol' 

work on more distributed and flexible schemas. 

Due to the increasing complexity of VLSI systems, stand-alonc systems can no longcr 

do aIl the work. Software developed by different organizations sharing il corn mon datahasc 

repository is often required. Thus, an important goal for CAD databascs has br:COll1c 

flexibility and ease of integration [12] [30] [41]. 

This chapter will describe sorne aspects of CAD frarneworks and why they should be 

design goals for modern CAO systems. It also reviews how weIl each one of these goals is 

fulfilled by existing systems. These goals are: 

• Object Oriented Database, 

• tool integration and development, 

• notification, 

6 
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CIJAPTER 2. BACKGROUND 7 

• version and concurreney control 

• projeci management, user interface and tool control. 

Finally, there is a review of an emerging standard ealled CORBA which defines many 

services desirable in any type of framework. 

2.1 Object Oriented Database 

One way to achieve flexibility is to avoid specificity. The base of any framework system is 

a rich database. If the database itself is restricted to a small set of primitive objects that 

it can store, incorporating new tools with their specifie formats might be diffieult if not 

impossible. 

Since the very beginning of the relational model, CAD researchers have reeognized its 

limitations and have often used hierarchical databases [34] [61]. 

With Object Oriented languages came Object Oriented Databases (OODB) [34]. CAD 

researchers, among others, adopted this new concept rapidly because it matches their needs 

weIl [28] [10]. Indeed, OODB have the intrinsic ability to store comp]ex objects. OODB 

research is a very active field with important projects like ORION [35], 02 [19], IRIS 

[72] and POSTGRES {62] [59] [63]. The latter implements 00 through extensions to the 

relational model. 

A basic OODB canvas includes the core object-oriented concepts reviewed in the next 

chapter. Like any other database, it must provide persistence for the objects and their 

descriptors (schema), an interface for schema definition and modification (data definition 

language), and a mechanism for creation and deletion of objects. 

This project uses a minimalist approach to object-oriented databases which can be 

augmented with many additional features. Good examples of extensions to the basic 

object-oriented database canvas can be found in the ORION system (more specifically the 

ORION-lSX system)[35] . 
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2.1.1 'rhe ORION Object Oriented Database System 

The ORION system is intended for applications that use object orient.ed concept.s lik(' 

AI, CAD, engineering and office information systems. ORION provid('s pcrsistcll(,c and 

sharing for objects. It has a set of database features. including qucries and automat.ir 

query optimization, transaction management, dynamic evolution of th(' dat.abasc schcma, 

multi-media information management framework, \,(,fsion change notificat.ion, composite 

objects and text search capabilities. 

ORION is based on the LISP programming language [57]. To pl'ovide an object-odcllt.ed 

database interface, the ORION system extends the LISP language with databasc-relat.<,d 

constructs. This approach simplifies the programmer's task since he ouly has to Icarn t.he 

new constructs. In relational systems "embedded SQL" is generally used t.o int.~l'face with 

programs. Such an approach requires the programmer to learn two languages: the host. 

language and SQL. Furthermore, the programmer is responsible to adapt. the data mode! 

of SQL and the data structures of the host language . 

ORION is a networked database that runs on local area networks of UNIX workstatiolls 

(Sun and Symbolics). Its client/server configuration adopts a star configuration as secn in 

Fig.2.1. The server provides concurrency control and locking on the objects. Communi

cations between clients and server are done via Remote Procedure Calls (RPC) [15]. Th(' 

server uses a storage manager that does not use UNIX file system but raLher manages ils 

own raw disk partitions, providing improved access efficiency. 

It supports versions for objects and distinguishes amongst tmnsicnl ve1'sùms (ternporary 

versions), working versions (stable versions) and released 1Jel'sions (st.able and debugg(·d). 

It has a change notification mechanism for refcrenccs. This t.ype of not.ification is 

suitable to warn users of modifications in an object referenced by one of t.heir own object.s. 

It is not suitable for tool notificatiol', which is necessary when many tool8 work concurrently 

on the same object. 

The ORION system uses only a simple write ahead log scheme that allows it to recover 

from a soft crash (which leaves the content of the disk intact). 11. does not however support 

archivaI dumping or mirroring of the database to allow recovery from a hard crafih (which 

"'''';~~~ 
~ ,/~ 
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Figure 2.1: ORION client/server configuration 

destroys the content of a disk). 

ORION being a research prototype, with limitations on manpower, did not address 

support for multiple application programming languages, such as "C". This is a major 

shortcoming in the CAD environment where most programs are written with the "C" 

language. 

2.2 Tool integration and development 

Previously, too) integration was done using filters that converted between incompatible 

formats. One way to minimize the number of filters needed by the framework is to provide 

one filter to a standard file type like the "Electronic Design Interchange Format" (EDIF) 

[39]. File translation and exchange is the most primitive system. It is lilJ'ited to tools 

that work in batch mode and makes it difficult to implement error reporting between the 

communicating tools. 

A more efficient integration requires the new tools to communicate with the CAD 

framework database. In such a case, the ease of integration varies with the framework 

depending on its internaI organization. Most frameworks require at least partial rewriting 

of the tool to integrate . 
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At one end of the spectrum are the CAD frameworks like Electric [51]. which n'quirt' 

integration of the new tool in the executable module of Electric its('lf. This requircs consid

erable rewriting of the tool and extensive knowledge of the internaIs of the host framewOI'k 

along with its database. Such an approach is not practical in today's CA 0 environllwnt, 

because of the large number of tools that are needed to achieve a complete CAO fl'élme"'OI'k. 

It is common for a VLSI CAD framework to offer many t.oo1s with similar fUllctionalit.y, Iik(' 

various flavors of place and route tools. Typically only one of these tools 1J('C'ds 1.0 1)(' tls('cl 

during a work session. Since every tool needs to be incorporat,ed into a single C'xecut.ahlt" 

the memory usage would greatly suffer. 

A compromise approach is taken by other systems like Oct [26] that use a CUSt.OIll 

implementation of the Remote Procedure CalI (RPC) rather than dir('ct. Iillking t.o tlH' 

framework's core executable. Oct provides interface functiolls [56] to t.he dat.abaRe syst.('1lI 

and the framework graphies system. This allows the new tools to l'un in a differcnt, addJ"('ss 

space than the server (Oct core). This way, t0018 run as different proccsscs cither on the' 

same machine or another one accessible through the network. A major advanl.ag(' ovel' 

Electric's core integration approach is that the framework does not have 1.0 he recornpilc!cl 

to integrate a new too1. However, Oct still restriets its representable objects to a limited 8<,t, 

of VLSI oriented primitives, and aIl object manipulations are clone through a »1'<'defilH'd s<,t 

of functions. The user has to recode its application to use Oct's object mode! and objcct. 

manipulation library. In other words, this system cloes not provide storag<' artd primit.ives 

for the user's objects, but rather expects the user to convert its object 1.0 an Od format, 

and manipulate them through a weIl defined Oct interface. 

Others more moderate frameworks require adding the appropriat.e dat.abase aCf('SH fUlI('

tion caUs in the tools to integrate, fiIl schema definition files to feed some special pl'epro

cess or or other similar schemes [30] [12]. Such an approach allows the user 1.0 create and 

manipulate its own objects, but still requires the programmer 1.0 und('fstéllld the details of 

the database mechanism, and adapt its data structures 1.0 the dat.a rnodel availahlc. Sorne 

systems using this scheme have reported on an average of four man-rnont.hs of inf.egrat.io/l 

effort per tool [12]. 

An alternative to a "linked" interface to the database Îs used by certain syst.ems like 
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Cadence. Cadence provides interf'tces to its database through a proprietary LISP-like in

terpreted language named ILjSKILL [11]. This interpreted language allows the framework 

user to build complete programs using the ILjSKILL language. In this language however, 

the only possible 1/0 with the outside of the framework environment is via UNIX files. In 

other words, this is a wonderful integration mechanism, but it only integrates the tools on a 

file cxchange basis. Such loose coupling integration does not satisfy the need for inter-tool 

communication and fast database access. Named pipes appear like files to the applications 

using them, hence can be used to speed up Cadence's tool interfacing. 

Ali the above methods require considerable effort and knowledge of both the new tool 

and the framework from the programmer. They also limit integration to the fixed schema 

supported by the database. An object oriented system like ORION allows easier integration 

but requires that the tool to integrate also be written in a compatible object oriented 

language. Table 2.1 summarizes the different tool integration approaches discussed above. 

Whatever method or system is used, interfacing a new tool to a framework is rarely a 

trivial task. 

As important as third party tool integration is tool development. Without automated 

support for persistent objects, the tool developer is responsible for translating the internaI 

data model into sorne suitable disk representation and using or implementing the data 

access functions. This amounts to a considerable amount of effort on the part of the 

framework user [28]. This is why the elementary file exchange methods that is the simplest 

form of tool integration requires more work for tool development. Many systems (Electric, 

Oct) that. provide a somewhat rigid object model and related access functions greatly 

speed tool development by cutting data representation and storage development overhead. 

However, both limit the tool to the object manipulation and representation facilities built 

in theil' respective systems. The object oriented approach is the simplest and most versatile 

silice it allows the programmer to use his own objects and internai object manipulation 

methods by providing persistence with language extensions. Object persistence is described 

in section 3.3 . 
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Type Description Disadvantages Advantages 
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Table 2.1: Tool intcgration methods 
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2 .3 Notification 

In an intcgrated CAD environrnent, many tools have to cooperate and work on the same 

data. Moreover, sorne of the tools are incremental (Le. they do their work based on changes 

issued by other tools). An example of this is an incrernental critical path evaluator [4] used 

in sorne VLSI CAD frameworks. The designer modifies a cell through the graphies editor 

which notifies the critical path evaluator when a change is made. The critical path evaluator 

then reevaluates the critical path. 

Sorne frameworks have data notification but it is limited to their own set of internaI 

tools running on a single host like Cadence [11] and Electric [51]. Oct [26] [53] offers 

something it calls notification, to external tools running as different processes (possibly on 

a different host). 

The next two subsections describe the Electric and Oct systems with emphasis on their 

notification capabilities. 

2.3.1 Notification in Electric 

Electric is a single user non networked VLSI CAD framework. It is written using the "C" 

prograrnming language in a UNIX workstation environment. Current versions run on the 

X windows system. It uses a common database for ail the tools integrated in its frarnework. 

The database contains objects related to VLSI CAD that form libraries. Each library of 

objects is represented by a UNIX file. 

In the Electric framework, ail available tools are compiled in a single executable pro

gram. When loading objects from disk, Electric loads the whole file (library or design 

project) in memory in a single operation resulting in a long loading period. Both these 

approaches of having a large executable with aIl tools integrated and loading fIe whole 

design/library in memory require large arnounts of resources from the host system. 

Figure 2.2 illustrates the internaIs of Electric. The core of Electric is its database. It 

is accessed by a predefined set of functions that manipulate the objects in rnemory. The 

') 

,,",," '" "'L~" ... à,,,,,{J 
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Figure 2.2: InternaIs of Electric 

1·1 

function library is somewhat simpler than the one provided by othcr systems silice it dOeH 

not have to worry about whether an object is loaded or resides on disk sillcc ail the design '1'1 

objects are loaded in memoryat startup time. 

Tools are built as functions that cali the database manipulation functions. Controlling 

the tools is a dispatcher which acts like a primitive non preemptive scheduler tha.t givcs 

running privileges to each tool in a round-robin fashion. 

A tool can either be on or off, in which case it simply skips its turn. Sincc cvcry 

modification to the database is done through a weil defined set of functions, the databasc 
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kccps tracks of what has been rnodified and when the dispatcher gives running privileges to 

a tao), the latter can then be inforrned of what happened while it was asleep. This is called 

notification. ft is made possible in a relatively painless manner sinee the framework is 

dcdicated to a single design operation and aIl tools share the same memory representation 

of the design. 

In a nctworked environment, the technical challenge of notification is greater as illus

trated by the Oct Framework which is discussed next. 

2.3.2 The Oct notification system 

The Oct system is a VLSI CAO framework originally developed as a single designer system. 

It was later enhanced with the Octane package providing it with versioning and concurrent 

access control. Octane's goal is to provide for group development. 

Oct is written using the "C" programming language on UNIX workstations. It has a 

tightly coupled graphies editor called VEM. The latter aets both as a graphies editor and 

user interface to control the otber tools. The graphies interface uses the X windows system. 

Oct is a data manager (or database) that aets as a central repository for aIl the design 

data. The objects have an unique internaI identifier, and a name resolution module is used 

to map those identifiers to UNIX pathnames. It supports a limited set of VLSI primitives 

that can constitute objects. To create, modify, manipulate, load and save objects, Oct 

has a function library general enough to suit the needs of most VLSI tools. This library 

is based on a customized RPC system. It allows tools to reside on a different host and 

obviates the need to recompile the framework every time a tool is added. 

An RPC function behaves much Iike a regular function but in a different address space. 

Onc difference with Electric is that Oct does not dispatch running time to its tools. The 

tools can be asynchronousIy started on one or more machines and concurrently access the 

central Oct server. Figure 2.3 illustrates the Oct mechanism (without the Octane package). 

Even though tools can be dispersed throughout many machines, they aU share a corn

mon central memory image of the objects on the Oct server. Since tooIs run concurrently, 

-__ ._,_,~!".J 
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Figure 2.3: Oct mechanisms 

no dispatcher can hand them a modification li st upon awakening. 

16 

ln the Oct system, every action performed on an object is done via a library function. 

Every function that modifies an object changes its timestamp and logs the action in a 

change list. Every tool interested in possible changes in the design must pcriodically poli 

either the change list or the timestamp of interesting objects. 

This is not a true notification mechanism. Indeed, as implemcnted herc, notification is 

associated with an interrupt mechanism rather than polling. Although a polling rncchanisfll 

simplifies the implementation of the "notification" system, constant polling brillgs abolit. 

an unnecessary load on both the server and the tools. 

An important problem with keeping and manipulating ail objects on the server is that in 

a multi-user environment, it becomes cumbersome and inefficient. With today's explosion 

of VLSI chip complexity, the number of objects that a single user can requcst may he 
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overwhelming. 

2.4 Versions and concurrency control 

As projects grow bigger, more designers work in parallel. The frameworks/ database become 

networked client/server processes. To insure data integrity, new multi-user systems need 

versioning and concurrent access control. 

To satisfy this need the Version Server research project [32] concentrated on versioning 

and concurrency control. Many research efforts were inspired by this work [6] [20] [21] [71] 
and notably [3]. Sorne of these principles are implemented in major projects like ORION 

[J 3] and Octane for Oct [53]. These principles and their implementation are discussed 

below. 

2.4.1 Two Phase Versioning 

In a CAO environment, a simple versioning mechanism is often not enough to support the 

needs of different groups working with the same objects. A more sophisticated two phase 

versioning/locking mechanism is needed [13] [6]. 

The first phase is a simple monotonously increasing version number and locking mech

anism for elementary objects, as can be found in source code control systems like secs, 
RCS and C\lS [50] [67] [5]. 

The second phase has to do with who wants to use the objects. This second phase has 

been divided in three stages: 

1. transient (for developer of the object) 

2. working (for technical users of the object) 

3. released (for public Release) 
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The following example will illustrate the need for those thrcc st.ages. ln a company 

that designs VLSI standard cells and libraries, many groups work in parallel. A group 

often uses sorne cells under development by another group as building blocks in thcil' OWII 

project. 

The group making the basic ceIls modifies them on a daily if not. hourly basis and cannot 

guarantee the functionality of the cells at aIl times. This group wOl'ks on a transient 

version of the celI, the most up to date but still bug ridden version. 

The second group needs a ceIl version that is relatively stable, and guarant.e<,d t.o be 

functional, yet recent enough to have aIl the new features. They need a working version 

of the celIs for their project. NaturaIly, a few bugs might. filter in t.he working version but. 

the groups communicate bug reports, and corrections are quickly made. 

The third user group is the customer. The customer should not, have access t.o anyt.hillg 

that has not been thoroughly tested. The customer will have a released version of the 

ceUs. Table 2.2 illustrates the relation between t1le users and the two phases of versiouing . 

It can be noted from the figure that aIl version numbers gel. 1.0 be transient. versions. 

Since not aIl versions are fully functional, working version skips a few version nUll1bcrs 

between each "promotion". Since bugs still exist in sorne working versioIls and a rclcased 

version has to be more stable, the latter skips a few working versions between eaeh promo

tion. In other words, during the life of a design, there are many transient versions, f(>wel' 

working versions and still fewer released versions. 

The simplest way of providing this notion of current version oriented t.oward the user 

is to have both design teams work on different servers and make physical copies of the 

version as it is ready to be promoted to the higher level. This method is error proru> and 

has no support for history of the second phase velgion progression. 

An intermediate approach is to use a check-iTl mechanism on a "group S(!fVer" that 

contains the working copies of the objects. The transient versions are kept in a local 

database used strictly by the designer of this set of objects. This aIJows an effective 

distribution of the resources over designer and group servel' but stiJl lacks a complete 

history mechanism of aIl version levels on a single servel' . 

~ ' ••• ~ 1 ~ ..., 

';;~ 
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VSER VERSION 

Pbase2 Pbasel 

1.0 

1.1 
.... -

1.2 

Customer Released 1.3 ..... 
1.4 

1.5 ..... 
1.6 

1.7 ..... 
Developer 

fromother 1.8 

Worqroup Working 1.9 

2.0 

Developer Tnnslent 2.1 

...... Prevlous "Worklng" versions 

Table 2.2: Users and two phase versioning system 

A more organized method is to use a single server. Such a system requires a two phase 

version/locking system. It can be implemented by simply using a table (see Table 2.3) to 

kcep track of the working and the released version number for a given object. The transient 

docs not need to be in this table sinee it is al ways the highest numbered version. 

2.4.2 Long time locking and group access 

Typical CAD engineering designs will take many days if not many mouths to complete and 

involve many designers. Locking of objects for the duration of the project while granting 

acccss t.o a selected group of designers is a much needed feature for a CAD design system. 

Members of the design team are allowed access to the design during the extended 

lock period but a lower level of locking must still be in effect to prevent two designers from 
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Object: Ifoo Ibar 1 cox 

Phase2 Phase 1 

1.0 
1.1 
1.2 

Relcased 1.3 

1.4 
1.5 
1.6 
1.7 

Working 1.8 
1.9 

~ Currcnt version 

Table 2.3: Table implementation of two phase vcrsioning syst.em 

modifying the same object simultaneously. An elementary object. locking fol' a work seRsioll 

period can easily be provided by the first phase of a two-phasc versioning rncchanislII. 

However, a higher level access management system is needed to provid<, a long Ume locking 

and group access. 

2.4.3 Workspace 

A workspace is a grouping of many objects to be ('ccognized as an cntit.y. Its purpos(' is 1.0 

allow a higher granularity of locking. Hence locking a workspace with certaill privil(~g('s is 

the equivalent of locking every individual object of this workspacc. 

A workspace can easily be implemented over elementary versioning/lockillg systems 

with a book keeping layer that should be inserted between the client and the databasc . 
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2.4.4 Configuration 

A project configuration is like taking a snapshot of the design at a certain point in time. It 

can be viewed as an internaI milestone or a product release version. It may also represent 

a specifie release targeted for a given environment, for instance a workstation or a personal 

computer configuration. It is a higher level of versioning for a whole project. 

A configuration merely takes note of aIl the objects that compose the design and their 

respective version [53] [32]. 

2.4.5 Version management in Oct using Octane 

Octane is the versioning mechanism for Oct. It implements most ~ of the principles pre

sented above. Figure 2.4 illustrates where Octane fits in the Oct library. Octane brings 

protection to a group of objects hence bringing the locking granularity to a higher level. It 

also performs version resolution and understands the notion of configuration. Octane was 

implemented as an extension to the Oct library. The Oct library functions that formerly 

accessed the Oct name resolution module now access the Octane name resolution module. 

The Octane name resolution module sits on top of the Oct name resolution module. 

The latter only copes with "direct" orders in the sense that it matches an object identifier 

with a UNIX pathname. It has no notion of policies or default values, it simply makes a 

direct match between two identifiers. 

The Octane name resolution module acts as the policy oriented module. When an 

applicat.ion requests an object without specifying a version number, Octane will select one 

according to its internaI policies. Since Octane filters all calls to the Oct Dame resolution 

module, it can add functionality for workgroups and configurations. If a workgroup or 

configuration is specified, Octane can expand its name to each of its member's names and 

versions number before passing them to the Oct name resolution module . 



• 

• 

• 

CHAPTER 2. BACI{GROUND 22 

Appllcadon 1 

AppUcadon 3 

Application 2 

1) RPC protocol 

Figure 2.4: Octane integrated to Oct 

2.5 Project manager, user interface and tool control 

Efficient project management and design browsing facilit.ies are requil'ed [411 for largel' 

projects since, more data, more tools and more people are involved. 

2.5.1 Project Manager 

The Octane package that was briefly described in the previous section, implmllcnts Buch 

data management (or project management) policies. Policies form a set of dcfault values 

and strict rules to be enforced on tools accessing the database. 

Since design policies vary from project to project and can even be modificcl III the 

middle of a l'roject, hard coding a set of policies in any given project management tool 

seems like a had idea. With this in mind, the Octane library was huitt with a versatil(~ 

rule (or default) setting interface. The previous section only shows Oct'f:! name resolution 

module, assuming that it uses hard coded rules. Figure 2.5 (figure from P>3]) iIIustrates 

the full Octane interface in the Oct context. Normal tools interface with the Oct library, 
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which in turn will pass its requests through the Octane name resolution layer. 

OctTool 
Interface 

layer 

....... 

Oct name resolution 

UNIX 

Combined 
Oct/Octane 

IIbrary 

Figure 2.5: Octane's Design Management interface 
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The Octane library provides sorne functions to set the defaults and ru les called Meta 

Design Daia used by its name resolution module. It also provides high level functions 

to set, revise and browse through workspaces and configurations. These functions can be 

accessed at the application level just like Oct functions. The Oct functions are accessed 

by the design tools that know nothing about policies or other high level information. 

The Octane functions are accessed by Design management tools. These are used by the 

pl'oject leader to set l,nd revise policies and by designers to browse through workspaces 

and configurations. This approach cleanly separates the design tools from the design 

management tools. 

Other high Ievel Design Management tools from other research projects can be inter

faced to the Octane library, like a graphical design browser [25] or a change coordination 
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system [73]. 

DMT TOOL 

" ~ .. ' ," ~. , . 
Oct , .. .," .. :: :. .::~~\. .. 1----.. ' .... .:: .. ~ 

.~~ .. :.: ... :' .:: ......... .. . ~~,..~. . . ..... .. 
~. ~ .. ~ .. : ..... ':. ',:.~.' 

• '. .:": f .,~,< .. " 

Oct : . ' .. 
...... --_ .. '.' 

... --- .:.' , .". 

.... M,. ... !o ...... ",~ ':0,: 
.. ~.. .. • ,:. "~ ... '$. .... ~. ~,"'. ,', 

A) DMT sets defaults D) TOOL uses default settings 

Figure 2.6: Octane's Meta Design 

Figure 2.6 (figure from [53]) shows how the Meta Design Data is set hy the Design 

Management TooIs, stored on disk and later loaded for future design sessions. 

2.5.2 User interface and tool control 

With many tools to control, the user needs a uniform user interface. Work 011 user interfaces 

to control local and remote tools in a uniform way have g<meratf'd t.ools likc VEM fol' Oct 

[26] and DEBBIE [74] for HILDA [30]. 

Other interesting work on general framework integration incllldc [7] [aO] [69]. 

2.6 CORBA 

While CORBA is not specifically a CAO framework, it cOllld be part of one. In 1989, a 

group of hardware and software vendors created the abject Management Group (OMG) 
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to address the problem of object interoperability in distributed applications. In 1991, 

the OMG came out with a reference model and the Corn mon Object Request Broker 

Architecture (CORDA) which describes the interfaces and the services provided by the 

system [45]. 

2.6.1 An Overview 

At the heart of CORBA is the Object Request Broker (ORB) which provides the interface 

between the client and server objects. CORBA provides an object messaging system that 

is language independent, location independent and platform independent. 

1'0 interface with a CORBA compliant ORB, a client must use an Interface Definition 

Language (IDL) which is then compiled in the language of choice to merge with the user's 

application. CORBA is independent of the machine architecture or the operating system 

on which the objects l'un. This means that an object coded in "C" on a UNIX machine 

cali access a service provided by an object coded in FORTRAN on a VMS host on the 

network. The location independence is also provided by the ORB. Given a request for 

an object, the ORB is responsible to find it. The object can be on the same machine or 

anywhere on the network. An ORB can even be interfaced with an X.500 service to locate 

objects. Once located, the ORB is in charge of passing the request to the servel' objects 

and returning the results to the client. 

The ORB uses a registry of servers called the implementation repository (also called 

interface repository). In order to be used, it must be registered with the repository. Once 

regist.el'cd the server can be re-Iaunched if it is not already running. This registry can also 

be quel'ied to gd a list of aIl operations supported by an object. 

In addition to the lDL, a client can access services through the Dynamic Invocation 

IntCl'facc (DII), The IDL and DH cau ,)e compared to queries to a relational database 

using eit,her embedded SQL or interpreted SQL. The former is hard coded in the program 

but very fast ",hile the latter can allo\\' a user to interactivel) formulate creative queries, 

but is much slowel' due to the dynamic parsing and type checking overhead. The DU 

combined wit.h the ability to list services provided by different servers can allow a client 
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to use services that did not. yet exist when it was written. Such ser\'Îct's could Lw é\ IWW 

editor or debugger that do not require cri tical communica t ion performances. 

There exists a layer called Object Adapt.er (OA) bet,we(,11 the 0 Il Band t Il<' S('I'\'('l' 

object. The Object Adapter can either interface with an object. writ t('11 fol' COH BA whirh 

has an mL interface or with legacy systems which were wriU<'1l bdor<, the ('xist.clH·{' of 

CORBA [31]. This latter kind of interface ran vary widl'Iy. l'Il<' 01\ support.s a rallg(' 

of interfaces from modern objects with multiple member fundions t.o nOIl ohj('ct ori('llt('d 

services where each function can be a separate program or a sh('11 script.. 

The implementations of systems compliant to CORBA are ('a1\('d Dist.rihut.('d Ohj('ct. 

Management Systems (DOMS). Many vendors are coming out with surh syst.ellls illcllldillp, 

HP's "Distributed Object Management Facility" (DOMF) (10\\'<'1' layC'1' of SofW('lIeh TM) 

and Sun's project "Distributed Object Everywhere" (DOE). 

Applications 
--

DOMS OODBM s 
ORB 

1 

RPCs (Sun RPCs, DCE RPCs .. . ) 
- -

Networking (e.g. TCP/IP) 

Hardware/Operating Syste m 
-- -----

Figure 2.7: Relationship between the communication t.edlllologips 

Figure 2.7 illustrates where the ORB sits with regard to other objl'rt t(~('hllologi(>:-. Iik(· 

the OODB and the other distributed computed sch('rnes. '1'1)(' servir('s J>rovid(·eJ hy t1H' 

DOMS are at the f;ame layer as the OODBMS. While the DOMS currclltly provid('s il 

good solution to encapsulation of legacy systems and the OODBMS provid('s good effici('nt 

data access, the difference between the two will bccome l(~ss distinct. as DOMS will start. 

providing services like backup and restore, change mallagement, concurrcllcy control and 

OODBMS will start incorporating CORBA communication mechaIlisllls . 

;, 
" 

" , 
1 
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Because the DOMS sits on top of the communication layers (RPCs, Tep /IP, OS ... ) and 

it uses an IDL compiler to interface with the application, it is expected to make applications 

more portable and to shield programmers from the netl,vork programming burden. 

2.6.2 Services 

The first release of CORBA intentionally left sorne areas undefined. One of those areas is 

a standard set of object services. The OMG is is the process of agreeing on a corn mon set 

of object services [43] [48]. Those services are: 

• naming (to help developers to find objects 01l the network), 

• event notification, 

• lifecycle (facility to create, destroy, move and copy objects), 

• persistence (automatic object persistence). 

This corn mon set of object services is expected to grow In the future and possibly 

include: 

• security, 

• relationships, 

• transactions, 

• concurrency cont.rol, 

• externalization, 

• data interchange, 

• licensing, 

• trading, 
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• query. 

Common facilities like browsers, print spooling, eledronic mail and hclp facilit.ies are 

also expected to be available through CORBA objects. 

2.6.3 The current state of CORBA and its future in CAD 

frameworks 

The current version of CORBA (v1.1) defines interoperability of heterogeneous software 

components within the context of a single ORB vendor, and portability of source ('ode 

across ORB vendors. AIso, it only specifies mapping between IDL and 'le". Fut.ure versions 

will address interoperability between ORBs of different vendors and mapping to ot.he .. 

languages (C++ being the highest priority). 

Integrating of existing applications as clients of CORBA compliant systems, t.he process 

requires rewriting large amount of code and restructuring in order 1.0 accommodate t.he IOL 

interface. 

The performance issues have not yet been observed (there are 5ti11 very few CORBA 

products out on the market) but it can be expected that the first implementations will 

be slow and unoptimized. Even after a couple of iterations, the CORBA systems will be 

slower than today's "hard wired" systems because of the added layers and added level of 

indirection (everything goes through the ORB). 

However, the promise of standard interoperability between objects will ccrtainly out.

weigh the performance loss and CORBA is Iikely to be part of future CAO fra.meworks. 

Many of these concepts addressed by CORBA are described in this thesis. 

More information on CORBA Îs available in references [29] [70] and [4,)]. 
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Chapter 3 

The Concepts 

This chapter will introduce the concepts developed in this project. It begins with an 

architecture overview of the project as a whole and continues with a more detailed study 

of the underlying concepts. These concepts include: 

• Object Oriented and C++, 

• persistence, 

• loaded objects dictionaries, 

• UNIX-Iike mount mechanism, 

• the ob ject database server, 

• versioning, 

• dyllamic type checking, 

• st.orage of complex objects, 

• networking and 

• notificat.ion 

29 
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3.1 Architecture overview 

Sorne of the driving goals of this project are ease of tool integl'ation, clicnt/sf'rvcl' al'chi

tecture and support for data notification between networked t.ools, 

The major tool integration methods were reviewed in the previous chaptf'I' and SUllll1lél

rized in Table 2.1. The most powerful and natural tool integl'ation method is ttlf' crcation 

of extensions to an object oriented language. Its main drawback is the necessity to code 

the application in an object oriented language compatible with the extensions, 

Most CAD programmers are familial' with the "c" progl'ammillg languag<" Indeed, 

most CAD applications are written in "C". Sin ce C++ is an extension to "C", any "C" 

program is also a C++ program. Thus, a "c" program can easily use Ctt extcnsions 

to provide database access and persistence. With this in mind, il. was decided to use this 

method for tool integration and development. This approach is by far the most transparent. 

one and requires minimal intervention from the programmer. 

Few CAD frameworks provide adequate notification services and fewer allow multiple 

servers: 

• Electric is not networked and uses a core integration method, 

• Oct has clients using remote procedures but keeps ail objects in the scrvcr's melllory 

with only remote manipulation allowed, 

• Cadence EDGE acts like Electric since al1 notified tools are core intcgrated. TIl(! ollly 

networked support is for the library servel' and batch tools. 

Ali have adopted a centralized object repository in the server, making notification 

mu ch easier since aIl tools share the same memory image of the objects. They do not allow 

external tools to benefit from notification services nor permit the (':-eation of new objccts 

types. 

In the proposed object servel', the objects are encapsulated. Thc servcr's knowlcdgc 

of the object is restricted to it 's name, version and timestamp. Notions of owncrship and 

other policy oriented mechanism could be added as an interface module . 
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This architecture is based on a minimal object server providing basic mechanisms while 

being ignorant of what the object is. The client (the tool) is not tied to a single server 

and can even access rnany servers simultaneously. A client registers with the server that 

stores the desired object and gets a copy of that object under read-write or read-only access 

permission. 

Since each application gets its own copy of the object it must cooperate and notify the 

server when an object is modified. Clients can register to receive change notification on a 

given object when reading it from the server. Sorne other client modifies the object locally. 

When the modifications are satisfactory, it notifies the server (sends it an updated copyof 

the object) which in turn notifies the registered clients. 

3.2 The 00 concept and C++ 

This section will give the reader the basic concepts needed to understand the ideas in this 

thesis. First, elements of Object Oriented languages terminology and sorne peculiarities of 

C++ are examined, on which lie sorne aspects of this project. 

3.2.1 The 00 concept reviewed 

In an Object Oriented language aIl conceptual entities are modeled as classes. A class 

contains attributes, rnuch like a struct in "C" or a record in Pascal. This is what holds 

the information. A class also has methods, i.e. funclions, that allow the class to interact 

with its environment. AlI attributes of a class are available to the class' rnethod as if they 

were local variables. Having both attributes and methods together in one entity is called 

encapsula,tion. 

The designer of the class decides what attribt."es and rnethods are visible outside the 

cIass, the others being kept for internai use. This feature is called data hiding. The 

attributes not visible outside their class are often indirectly accessed through a method 

that offers a cleaner interface. It is then possible to later change the attributes of the cIass 

as long as the interface remains the sarne . 
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A class is a new type just like integers, characters and floating points. The instantiation 

of a class is called an object (or an instance of the class ... ) much Iike an instance of int is 

a variable. 

When many classes share a certain amount of common attribut.es and methods, t.hese 

common attributesjmethods are grouped into a base c1ass from which more spccialized 

classes are derived. The derived classes inherit (share) the methods and at,t.ribut.es of the 

base class. 

An example of this would be the base class "car" from which one could del'ive t.he classes 

"convertible" and "four _door". Both derived classes (car model) share a.1I the fcaimes of 

the base class (basic model) plus the added options. This feature is ca1lcd inheritallce. 

Deriving a c1ass from another creates a class hierarchy. 

Another important notion of 00 languages is polymorphism. It. gives a.n action a name 

that is shared through a class hierarchy, with each class in the hierarchy implement,ing the 

action in its own appropriate way . 

For example, the base class "circle" has the attributes "position, diametcr" and a 

method "display" which displays a circIe. From this base class a new cIass called "bail" is 

derived. It contains the attribute "color" and the "display" method shows a colored circlc. 

Both class circIe and cIass ball have a method "display" which does the same action in 

both cases but tailored to the needs of each class. 

For more detailed information on the object oriented concepts the reader should read 

one of the many good books on Object Oriented Design [8]. 

3.2.2 The context of the C++ language 

One of the important features of C++ is the notion of constructorjrlesl1'Uctor. A con

structor is a method caUed automatically wheo the object is created (a ncw instance oC a 

class). Constructors can guarantee sorne kind oC default initialization when necdcd. The 

destructor is a method called automatically just before an object is deleted. The dcstruct.or 

can serve several purposes, like tying loose eods in a linked list when one of the clements 
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gets removed. 

Another important feature of C++ is overloading. 

Overloading allows multiple functions with the same name to be defined pro

vidcd their argument lists differ sufficiently for caUs to he resolved. By over

loading operators, the programmer can redefine the meaning of most C++ 
operators [22]. 
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This means that the meaning of certain operators can be redefined when they act upon 

a certain c1ass. This also means that many functions may exist with the same name. The 

compiler will decide which one to cali by looking at the types in the argument liste Of 

course, ail functions that share the same name should have the same semantics. 

A c1ass can be a data member (an attribute) of another c1ass as it is true that a "C" 

struct can he a field of another field. This has implications for constructors, destructors 

and structure (c1ass) assignments (copy). 

When performing an assignment to an initialized object, the right hand side of the 

assignment operator "=" must be recognized by an overloaded version of the assignment 

operator. If none exist, the system will look for a constructor that would accept the 

argument. If one is found, the destructor of the object is called and then the object is 

recollstructed by the appropriate constructor. 

A special constructor named copy consfrucfor is automatically provided by the compiler. 

It. is ca lIed t.o initia]jze a uewly constructed object with the values of another one. Ex: 

"or a given c1ass Bali, Bali mine = yours; where yours is an inst.ance of BaIl. When doing 

an assignmellt like "A = B" where A and B are instances of the same c1ass, the system 

does not. cali t.he copy constructor, even if there is no overload of the assignment operator. 

The system performs a member wise copy (as opposed to a bitwise copy. A member wise 

copy is a copy of one object to the other performed "member hy memher". If one of the 

nU'mbers is a c1ass, a "memher by member" copy will he performed too. A bitwise copy 

would sim ply make a bit image copy of the memory space of the objecte If an overload of 

the assignment operator is available, it will take precedence over the member wise copy . 
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Suppose a class B derived from base class A, a pointer of type base c1ass A (A '+: pt.l'I j) 

and an object instantiated from the derived class B (B foo;). The following stat.el1lcnt. is 

legal (ptr1 = &foo). In other words, a pointer to a base class can legally point. to any class 

derived from this base class. The converse, however, is not. truc. 

A virtual method of a class can be redefined in any of its derived classes and is act.ivat.cd 

according to the type of the object, not by the typf3 of the pointer. 1t. is wit.h \'irt.uéll 

functions that there can be polymorphism in Ctt. This means that. when we rcfer t.o Ct 

virtual method of an object, the most specialized defillition of that mcthod will b(' called 

(i.e. the most derived class that has a redefinition of the function). 

Let's look again at the previous example with base class A and dcrived c1ass B, hut. 

this time with a pointer to the derive.d class (B* ptr2j) assigned to addrcss of ail ohject. 

(ptr2 = &fooj). AlI methods defined in base class A would be availablc t.o use as 1)t.I'2-

>fundion-name, in addition to the methods defined in derived cla.ss B. On t.he othcr hand, 

the first pointer ptr 1-> function-name could only access the functions defilled in base claSH 

A. This is because it does not know about derived class B. One way to makc funct.ions 

from derived class B available to a pointer of the base class is to define them as virtual in 

the base class. Then, ptr! can calI the methods redefined in derived c1ass B. 

This notion is very important as many classes are derived from a base class. Since the 

base class is the on1y common ground between ail the derived classes, pointers arc dedat'cd 

to the base class type. Methods defined in derived classes can be accessed pl'Operly when 

defined as virtual. 

Finally, the C++ language has recently acquired a new facility called lemplalcs, One 

type of the templates of interest here, is the parameterized classe . ., or c1ass ternplates. A c1ass 

template specifies how individual classes can be constructed much as a c1ass dcclarat.ioll 

specifies how individual objects can be constructed. 

Traditionally if one writes a "linked list" of objects of class "cocon ut." that contains 

a pointer of type (coconut *) and wants to make a similar list but. this Orne of claSH 

"pumpkin", he must copy the class definition and change the (coconut. *) to a (pumpkin 

*), aIl this to satisfy type checking at compile time, One possible solution is to use opaque 

", ~J,.. ~ 
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pointers (void >Y) but it prevents meaningful type checking. 

Using templates, there is an argument <T> to the "linked list" class definition. Within 

that class is a pointer of type «T> *) which is used where <T> serves as a parameter 

for the dass template. This is particularly useful for container classes like trees, lists and 

bags. 

Fol' a more detailed reference on C++, the reader should consuIt the language definition 

and reference manual [64] [40] [22]. 

3.3 Persistence 

Persistence is the ability of complex memory objects to survive a program invocation [9] 

[18] [38] [17]. Programmers have used many ways of saving and restoring different kinds of 

complex objects like "C" structs, arrays, and linked lists but these mechanisrns are often 

type specific and the programmer spends great efforts reirnplementing these rnechanisms 

ID every prograrn. 

Transparent persistence support for complex objects could easily form the base of a 

CAD data repository. Ideally this would be done by the compiler for complete transparency. 

However unlike Eiffel [42] and Modula-3 [44], most main stream languages like "C" and 

"C++" do not offer su ch support. Persistence in C++ can he achieved via sorne language 

extensions [49] or other clever mechanisms [1]. 

Thel'e are mainly two challenges: Resolve references to complex objects stored on disk 

and implement the persistence in a transparent way. 

3.3.1 Pointer representation 

Heferences to complex ohjects are often kept as pointers, a memory address that changes 

from one program invocation to another. Thus, an alternative representation for references 

(,0 persistent objects must he found. The access method should not change whether the 

objed is on disk or in memory . 
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Many schemes are possible: using a unique integer as object identifi<"I', called extf'rnal 

data identifiers (XID) [55] or using symbolic names. A symbolir name, similar t.o t.he 

UNIX pathnames, where a name is composed of many tokens separat.cd by "/" is used in 

the system proposed here. ex: /foo/bar/cox. UNIX users are familial' with this hiNé\lThical 

naming convention. It allows the user to assign meaningful names t.o objects, as Opp08('d 

to arbitrary numbers. Thus, the reference to a persistent object. will use it.s pat.hnanw. 

3.3.2 The Smart Pointer 

A smart pointer contains the name (pathname) of the object. it, rcferenccs, a st.at.<' and 

possibly the memory address of the object, depending on t.he stat.e. A smart. pointel' can 

be in one of two states: swizzled or unswizzled. 

A swizzled smart pointer is one with a valid memory address pointing to t.he obj('d 

loaded in memory. An unswizzled one has only the name of the object.. Whenever somcone 

tries to access a swizzled smart pointer, the memory address serves as an orùinary pointel' . 

When an unswizzled smart pointer is accessed, it caUs the loading met.hod to get a valid 

memory address and then becomes swizzled. 

Since many smart pointers may reference t.he same persistent ob.iect, the object. can 1)(' 

loaded in memory without aIl smart pointers referencing it being swizzled. If a persistent 

object gets unloaded from memory, unswizzled smart pointers remain uuaffecteu but. UH! 

swizzled ones would contain a memory address that is no longer valid. 

To insure the integrity of smart pointers, a persistent object must notify ail swij',zl(~d 

smart pointers referencing it when it is being unloaded. They will then change t.hcir status 

to unswizzled. To do this, the persistent object must maintain a Jist of the swizzlcd smart. 

pointers referencing it. This brings up a second level of integrity. WheJl a swizzlcd smart. 

pointer gets deleted, it must notify the persistent object to remove it. from the lis!.. 

The smart pointers replace traditional pointers when refcrencing persistent obj(~cts. 

Pointers to non persistent objects remain unchanged. 

The cost of using smart pointers is relatively small. In terms of storage space it necus: 

-:--~r;~i~ 
.... "f4A 

" 



• 

CI/APTER 3. THE CONCEPTS 37 

1. OBJECT NAME + OBJECT ADDRESS + BACK POINTER TO SMART POINTER. 

Performance wise, the cost of a smart pointer is: 

1. If swizzled (most frequent case): CHECK IF SWIZZLED. 

2. If unswizzled, loaded: CHECK IF SWIZZLED + SWIZZLE. 

3. If unswizzled, unloaded: CHECK IF SWIZZLED + LOAD + SWIZZLE. 

The storage cost is the most significant of the two and can be reduced by mapping the 

pathnames to a numeric value. The CPU cost is very small. The swizzle and load time are 

advantageously compared with traditional reading from a disk file. It takes no more time 

and allows loading the objects on demand as opposecl to loading aIl possible objects at the 

beginning of the application. A swizzled pointer incurs very little CPU overhead, simply 

one comparison. The loading and swizzling are infrequent sinee a smart pointer usually 

gets loaded/swizzled only once but is referenced many times. 

The ove rail cost is minimal, considering the flexibility gained, sinee objects can be 

loaded or unloaded from memory dynamically. 

3.3.3 Transparent access to Persistence 

By using C++ operator overloading facilities, smart pointers can be supported transpar

ently. By transparent is meant that once initialized, the smart pointer behaves like a 

regular pointer. 

The persistent objects still need special attributes: a name and the back pointer list (of 

swizzled smart. pointers). Aiso needed are access methods to load, unload, save or delete 

the persistent objects. 

ln order to achieve almost. transparent persistenee for objects, the class derivation 

mechanism of C++ is used. A base class that holds the basic persistent object attributes 

and methods. To achieve persistenee, the user derives a class from the persistent base class 

,... -t 
_ ... , .. oèd 
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Figure 3.1: User defined "simply linked list" class using Base clasH and Smart. point('rs 

and uses smart pointers in its derived class when referring to otlter persist.cnt object.s. Fig 

3.1 shows the relation between persistent base class, smart point.ers and liser c1ass('s. 

3.4 Loaded Objects Dictionary 

An object is loaded from disk on the first reference to it through a smart point.cl·. WhclI 

other unswizzled smart pointers reference the same object, they must. locat.c t.his object in 

memory in order to avoid multiple loading of an object in the same program. 

Numerous methods can be uscd to do this, from a linked list to a hash t.able. A seardl 

tree is used sinee it directly maps to the persistent object names (t'ulI pat.hnarne). A tri f> 

is more efficient than a linked list and its hierarchical structure allows fol' easy int.eractive 

browsing through the loaded objects. 

The loaded object tree is made of three classes, Root, Dil' and Persist.entOhj. 'l'II<' 

PersistentObj class is the base class used to attain persistence. Persistcnt.Obj inst.ances 

are always leaves in the tree. The tree grows gradually as objects are loaded in memory. 

Each component in the object name (pathname) represents either a parent directory or 

the object itself, for the last component. Figure 3.2 shows an examplc of a user defined 

doubly linked list class. 

In the figure, the user has four objects: lAie, lAID, IB/E and IB/F linked together 

in a list. The base layer represents the loaded object trce built from its duce classes: a 
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....... Base elus Internai pOInte 1 User denved class 

r- - - - --i 
Base dass 

-+ Smart POInter 

Figure 3.2: Loaded Object Tree 

Root (/), two Dir (A,B) and four PersistentObj base Class (C.D,E,F). The top layer is 

the user derived doubly linked list class. To attain persistence, the user simply derived its 

c1ass from the Persistent base class and used smart pointers in its linked list class without 

knowledge of the underlying mechanisms. 

The hierarchical structure of the loaded object tree allows for recursive application of 

commands to a whole subtree simultaneously. This means that commands like unload or 

save could be given to aIl (or a subset of) the objecis loaded in memory by applying this 

command to the treeJoot object or to a given directory. 

By combining this feature with the object destructor it can be guaranteed that the 

objects will be saved automatically at program termination, without user intervention. If 

ail object destructors contain the "unload" command, whenever an object is about to be 
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destroyed, its destructor will be called and it will unload itself t.o disk. 

The analogy with the UNIX file system may be pursued furt hcr. ln part iclllar, a 

mechanism similar to the UNIX mount. is described in the next section. 

3.5 The Mount Mechanism 

The UNIX mount command aHows the system to map a fit subtree t.o anotlwr pal·t of 

the file system. When used with NFS, it does the same mapping but. across a J1('twork 

connection to another hosto It has proved to be an efficient. and scamless int.('I-facl' to 

distributed storage and is now an industry standard. 

ln this project, a mount-like command is implemented to perform nanl<' mapping !Je

tween networked clientjserverconnections. It is strongly inspired by the UNIX 1Il0uIltjNFS 

system [65]. 

When a mount command is executed on a client, the client rcquests Jwrmission to 

mou nt a server's directory with certain read/write access. Once the permission is granted, 

the client writes the mounting information in thc mount point. 

A mount point is a directory in the local memory tree. It contains the servel' id, li\(' 

mapped directory on the server and the access permissions. The access permissions cali he 

read-write or read-only. Every object accessed through this mount point will he imposed at. 

Ieast the access restrictions. Once the mount command is issued, object. nanleS arf' silllply 

mapped to their corresponding name on the server when objects are acccssed. Figure :J.a 
shows an example of mounting a remote servel". 

In figure 3.3, the client host FOO mounts ~~/LjN" from sel'ver host. BAH 011 its 11I01lnt 

point "/B". This means that on host FOO, "/B" at the bcginnillg of any path will b(' 

replaced by "BAR:/LjN" Nhen trying to save or load the object. For instance, wht>n 

tryillg to Ioad object "jB/Q/T" on host FOO, the system would automatically transform 

the name into "BAR:jL/N/Q/T", retrieve the object from host. BAR and load il, under 

"/B/Q/T" without the user knowing where the object was loadcd from . 

'"' 
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Client 
Host: FOO 

Network 
... ---- .... 

--- Connection', 

EX: Client FOO tries to access: IBIQIf 
it gets BAR:lLlNlQIf from Server BAR. 

Figure 3.3: Example of mount 

" 

Server 
Host: BAR 

41 

This provides the system with a seamless network interface. Directories are mounted 

from servers at the beginning of the application, and the rest is transparent. Similarly to 

UNIX NFS mount, many directories can be mounted from as many different servers, hence 

providing distributed data storage. 

The distributed data storage approach allows for many clients to query many servers 

in various ways (Fig. 3.4-A). It has certain advantages over the more conventional "star" 

configuration (Fig. 3.4-B) where many clients query one central server and are limited to 

only this one. With distributed databases, the load is distributed across possibly many 

servers. 

This simple name mapping mechanism enables very interesting applications. It allows 

for instance, mounting alternative versions of a library without any disturbance to object 

names. 

ex: 

A project referellces, among others, the cell "/lib/vlsi/cellnameXYZ". The 
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A) Distributed Servers - B) Star Configuration -
Figure 3.4: Client / Server configurations 

"/lib" directory is normally mounted from the server's "JusrJvlsLpackage/lib. 

1.54". A new release of the library arrives and the project's policies call fol' a. 

transition period where both libraries must he availahle 011 the server so that 

aU groups do not have to switch libraries at the same given tirne. Both libl'aJ'ics 

are stored side by side on the same server as: 

/usr/vlsi_package/lib-1.54 

/lib-1.55 

When a project is ready to switch to the new Iibrary, ail thcre is to do is a. 

rnount of the new "/usrJvlsLpackage/lib·1.55" libral'y instcad of tlte old onc. 

When ail projects have successfully switched to the new Iibl'ary, the old one 

can be moved to tape archive to save disk space. 

Alternatively one can use very long object identifiers that contain the host address and 

the time of creation. Objects across the network can he uniquely identificd titis way al, 

the cost of a complex identifier. The additionallevel of indirection brought by the mount 

mechanism makes the name of the object independent from its physical location 
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Another major point for such a naming scheme has to do with library merging. A 

system using numbers (as opposed to pathnames) to uniquely identify its objects can 

guarantee this uniqueness only if it aUocated aIl those numbers itself. If two tearns of 

designers work in paraUel on different servers and eventually want to merge their work in a 

common library, the system has to use sorne special merging facility to scan aIl the nurnbers 

in one database and compare them with ail the numbers in the other database and change 

any conflicting identifiers. This means that every reference to the old identifiers must be 

found and modified to preserve the database integrity. 

8.6 The Server 

Permanent storage is achieved through the server via the network. This section describes 

briefly the principles behind the server. For a more detailed study of the server, the reader 

is referred to [23]. 

3.6.1 Server Structure 

The server is mainly divided into two parts, memory tree and disk storage as shown in 

figure 3.5. The memory tree is similar to the one used in the client to keep track of which 

object is loaded. 

In the server's memory tree, each no de is either a directory (internaI nodes) or a per

sistent object. (the leaves). The diredories store such information as who mounted a given 

dil'ectoryand with what readjwrite access. The leaves contain the name of the persistent 

object, the list of clients that subscribed to it and each client's write access. 

The memory tree insures proper locking, mounting, notification and aIl the other ser

vices offered by the database. It is implemented as a C++ class Server with publicly 

accessible methods to offer its services. To create a server pLl'lcess, one simply has to 

instantiate the class Serve1'. 

In order for the server to have the ability to store any complex object, it is kept 
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............................................ .1 

Figure 3.5: Server's logistic and storage trees 

independent (ignorant) of the object 's internaI constituents. AIl knowledge of the objcct. 

is kept in the client sinee it is the creator and user of the object. To make this possible, 

each object is passed to the server as a string associated with a name in the form of a 

pathname. The server can directly map the object name (pathname) to the UNIX file 

system and store the string representing the object as a file. 

This method is quite appropriate for large objects but wasteful and inefficient for sma)) 

objects like those used in CAD frameworks. This is why the "granularity" of the storagc 

can be modified from one object (in a single version) per file to many objects with ail thcir 

versions in one file. 

Because of the simplicity of representation of persistent objeci,s (a string with a name), 

the memory tree is independent of the storage mechanism. A conventional re]ationa] 

database could also be used as a data repository. 
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3.6.2 Concurrency Control 

Sorne architectures like ORION [3.5] adopt a one server per client approach. A main server 

receives the requests and forks a lightweight process server to handle each client. This 

approach has sorne advantages among which is the guarant.ee that a stalled client will not 

interfere with the serving of other clients. It will at most staIl one of the many lightweight 

processes while others continue to provide service. A problem with this is the increased 

need for locking mechanisms both at the storage level and the memory tree. 

The approach used in this server is much simpler. AlI requests to the server are serialized 

(queued) to one single server process. Integrity of the memory tree is guaranteed without 

any locking sinee no two processes can modify it simultaneously. 

To guarantee data.base integrity, only one server process can be started per database. In 

the current implementation, since the objects are stored in UNIX files, a database becomes 

a subtree on the file system. Normal file system access permissions can be used to restrict 

each server to a different file subtree (database). 

3.6.3 Storage Policy 

The system provides mechanisms to protect database integrity without using the conven

tional write-ahead log. It is inspired by the POSTGRES database [60] and is achieved 

via a "no-overwrite" policy. With this method, the old records remain in the database 

whenever an update occurs and serve the purpose norrnally performed by a write-ahead 

log. The updated version is differentiated from the previous ones by its tirnestamp. 

The advantages of this approach are: 

• reducing the amount of code written to support crash recovery. By keeping the 

history of objects, recovery is achieved by simply retrieving the last committed object 

version and aborting the uncommitted ones . 

• Asynchronous daemons can take care of "vacuuming" obsolete records and possibly 

archiving them . 
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• supporting undo actions that the user may explicitly wish to apply on certain t.rans

actions. 

't·, 
On-disk objects are updated by database transactions. Each transaction is''assigned a 

unique identifier. The server maintains a log file indicat,ing the commit.t.ed transactions 

along with the opened database files. In the event of a soft. crash (whcn disks are not dam

aged), the log file is accessed and aIl the opened files are visited, deleting t,he uncol11lT1it.ted 

transactions. 

The system can provide mirroring of disk objects and log file on a separatc disk to allow 

recovery from hard crashes (when one disk is damaged). 

3.7 Versioning 

Each object has a version number and a timestamp associated with it. These two attt'ibut.es 

are part of the full object name. Bence, an object named "/foo/bar/cox" of version 1.57 

and timestamp 0847562 is stored as "/foo/bar/cox:1.57,0847562". 

3.7.1 Versioning Strategy 

The timestamp is necessary because of the "no overwrite" policy of the servel'. In a. 

conventional database system, when a user makes minor modifications to an ohject, he 

only updates the object on disk (overwrites the previous version). The version number is 

not affected. In order to mimic this behavior and still differentiate an updated object Crom 

a previous one, the system uses the timestamp. 

Having the timestamp as attribute also allows time oriented queries Iikc: "What objects 

where modified during the week of June 9th?", or "When was version 4.39 of ob jcct X 

created 7" . 

Since most of the transactions are performed on the most rccent version (and times

tamp) of the object, it would be inconvenient to al ways specify the full object name with 

version and timestamp. This is why three object naming methods can be used . 
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1. /foo/bar/cox:l,.57,0847562 

2. /foo/bar/cox:l,.57 

3. /foo/bar/cox 

The first method is the full object name, generally used for backtraeking/undo facility. 

The second can be used by the user to request a specifie version of the object. When the 

tirnestamp is not specified, the most recent one is used as the default value. The third 

form is the one commonly used, where the most recent version and timestamp are used as 

dcfalilt values. It is not possible, and would not make much sense, to specify the timestamp 

without the version number. 

Note that this version naming convention reserves two characters: ":" and "," as version 

and timestamp separators. These two characters cannot be used in an object name (not 

even in the directory part of the pathname). 

When saving an object t.hrough the server, the user has sorne control over the version 

nllmber. He cao specify any version number higher than the current one or decide to 

simply increment the current one. Increments can he made at two levels: a minor version 

increment would change version 1.57 to version 1.58; a major version increment would 

change 1.57 to 2.00. The user can also opt for no version change in which case the new 

object will only be differentiated by the timestamp. The timestamp is assigned by the 

server to every object written on disk and the user has no control over it. 

3.7.2 Limitations and the Project Manager 

Hecause of t.he server's "no overwrite" policy, only the current version and timestamp of 

an object. can be checked out in a read/write mode. Ail other versions ean be checked out 

fol' reading only. Because of this, only a limited set of primitives is implemented. 

To provide a more versatile front end, a project manager is needed on top of the 

e)emental')' versioning mechanism. As an example, con si der the situation where the user 



• 

• 

• 

CHAPTER 3. THE CONCEPTS 48 

wants to get and modify and old version (or timestamp) of an objed. The following st,{.'ps 

have to be done: 

1. Check out the current version in readjwrite mode. 

2. Check out the old version to modify in read only-mode. 

3. Copy the content of the old version in the current one. 

After this operation, the current version is now a copy of the old 011(' and can 1I0W he 

modified. It is equivalent to hacktracking to the old version, after l'calizing ail el'l'Ol'. III a 

non versioned environment, it would be necessary to retrieve an old backuJ> aJl(I ovel'wl'it.c 

the current version with it. Those steps are automated in the projed managel·. 

The mechanism proposed here is an enhanced version of the fil'st phase of Uw Iwo 

phase version mechanism described in the previous chapter. The enhancelllcllt lies in the 

elementary version resolution, the ability to accept an object name without. versioll or 

timestamp and get a default value. 

A higher level policy oriented entity is needed to provide services like Iwo-Jlh(u;c ve,.sion

ing, long time /ocking, group access, workspaces, and configurations. The version scrvic(! 

provided here is only concerned with version numbers and data integrity by asslIl'ing pl'Opel' 

object locking. 

One facility that should he implemented at the lower levc\ is brallching and rnerging of 

versions. It is also frequently call~d prototyping or tentative version. 8ranching is splitting 

a version into two parallel versions of the same object. It serves to evalual,c alternative 

designs, while development of the project continues on the main brallch of the version t.l'ce 

as illustrated in Fig. 3.6A. Merging is done when t.he prototype is sllcccssful alld becofllcs 

the main branch (Fig. 3.6B) 
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A) Unsucessful Prototype B) Sucessful Prototype 

Figure 3_6: Branehing of versions 

3.8 Type Checking 

Since the C++ language does not support persistence, it also does not support type check

ing of persistent ohjects. Compilers deal with what could be called "static type cheeking" 

where everything is ehecked at compilation. Persistent object systems have to dea} with 

"dynamic type cheeking" sinee these objects are loaded at runtime. 

To aehieve dynamic type checking, more information than is usually provided (class 

hieral'chy description) must be available at runtime. To circumvent that, each persistent 

object has a static (shared) attribute with the name of the class from which it was instan

tiatcd. The smart pointer has an attribute containing the name of the class type it points 

to. At load time, the smart pointer's class name attribute is compared with the one in the 

ohjed to he loaded. If they match, the type is correct. 

Such simple type checking would be sufficient for "c" structures but C++ classes 

require a more sophisticated system. As seen in a previous section, C++ allows a pointer 
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to a base class to reference an object from a derived class. This means t.hat élll obj{'ct, 

derived from class "baIl" could be stored on a servel' and later be legally retl'ieved with 

a smart pointer to the parent class "circle". The simple type checking descl'ibed aboV<' 

would fail to recognize this as a legal assignment. 

The solution to this lies in an extension to the simple type checking l11echanism. \\'Iwu 

the first type check fails, the system will verify if the pointers type is a parent of the object.. 

Failing that, the object is not loaded and type mismafch en·or message is displayed. 

Dynamic type checking must be performed on two occasions: 

1. When loading an object from disk, 

2. When swizzling a smart pointer to an object t.hat was already loaded (follnd ill t.he 

memory tree), 

3.9 Storage of Complex Objects 

To store a complex object, a special disk representation is required. As seen earlier, t.he 

most complex part of storing an object is representing the references to other objects. This 

is solved with the use of Smart Pointers. 

With the reference problem solved, objects are composed of elementary types that. cali 

aIl be easily represented on disk. The disk can be accessed directly or t.1ll'ough a lIetworked 

server. The storage mechanism must be modular and independcnt of the target storage 

media. It must also be general enough to handle any complex object. 

Since complex objects can have different numbers of variable lcngth data ITIcmbcrs 

(attributes), each object type must take care of its extcrnal reprcsentation. Indced, only 

the objects know what their internaI attributes are. The network mechanism and the servel' 

must remain general enough to accommodate any kind of complcx object. 

Hence, data members of complex objects are serialized into an ASCII string by an 

appropriate method defined in each clasf'.. The ASCII represcnta~ion takcs more space but 
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allows for easy debugging and independence of endian (big or small) ordering wh en dealing 

with an heterogeneous network of workstations. 

3.9.1 Serialization of a Complex Object 

A complcx object can be composed of many derived classes and each class knows its 

aUributes. Figure 3.7 illustrates the serialization procedure. Each class of an object builds 

a substring for the complex object. AlI substrings are put together to form the full data 

string that represents the object. The final string is sent to the procedure that interfaces 

with the network. 

OBJECT 

STRING I~ 

~~F=~~--';;;;;;;~ - ~SERVER 
.-----.., 

Base Class 

User Class 1 

User Classl 

User Class3 

• • • • • • 
User Cla55 " 

Figure 3.7: Serialization of a complex object 

Figure 3.8 shows the loading process. When loading back the object, the string repre

senting its data members is read by the client from the server. From there, each substring 

is read into the object by its respective class. 

The encoding/decoding sequence of an object is performed with the serializeO/loadO 

mcthods specific to each class . 
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........ .' ............. 

••• 

· • · • · • • • • • • .: 
•• •• •• 

Reading Data Member 

into Class 

52 

Server 

/object l 

1 object 2 -
object 3 

•.........•........•..... 

Figure 3.8: Loading a complex object from the sCl'ver 

3.9.2 Serialization Protocol 

To create the ASCII substrings, the protocol described below is used: 

Every data member is separated by a white space " "charader in the string rcpresl'Ilt.illg 

the object. Each data member is transformed into an ASCII reprcsentation alld appended 

to its class' substring which in turn is appended to the main string rcprescnting t.hC" complcx 

object. 

The protocol supports the following types: int, long, short, ullsigned, f1oat, double, 

char, String (Class String) and Smart (Smart Pointers). 

Sorne types like char, String and Smart cannot be directly appended to the strillg Hincc 

they may contain white spaces. For these particular types a special cncoding selwme is 

used. 

For class String and Smart, the internaI ASCII string is extracted and encodcd as string 
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lcngth followcd by the string. The exact format is: 

• STRING-LENGTH, white space(s), "@"STRING 

Fol' instance, "hello modern world" is encoded: 

18 @hello modern world 

and" hello modern world" (note the space before hello) is encoded: 

19 @ hello modern world 

This string representation is also used to encode both the substrings of each class and 

the full string containing the object. A single character (type char) is represented in a 

simllar manner but with the length omitted. Thus, a char attribute holding the value "t" 

will be represented as "@t" in the string and a " " will be represented as "@ ". 

3.9.3 Class Conversion 

Objects are stored on the server and may remain there for an arbitrary period of time. 

Between the time it was stored and the time it is restored, the user might have modified 

t.he class definillg the object. 

When the set of attributes of a class is modified, the serializeOjloadO methods are 

modified accol'dingly to enable proper encoding and decoding of an object between the 

servel' and memory representations. Because the encodingj decoding sequence for the object 

has been Illodified, it will not be able to recognize objects stored using a previous version 

of these classes. 

Olle met.hod to correct this situation is to apply a filter to the entire database to convert 

ail objects on disk from the previous version to the current one. The complexity of such 

an operat.ion makes il. prohibitive. The c1ass builders do not necessarily control the server, 

and may 110t kilO\\' the server's storage representation . 
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A second method, adopted here, is to automatically t.ranslal.e oldcr ''(,l'sions at load 

time. To allo\\' this: each class prepends its name and version to t.he subst rings it g,('II{,l'atl's 

when serializing an object. When a modification is made to a persistent da!'s, t II<' "{'rsioll 

of the class is incremented and a translator between the pr<>violls "('l'sion and t.h(' Il('\\' 01\1' 

is written. At load time, the class reads the substring alld looks at tilt, v(,l'sion lIuml>!'l'. 

If it corresponds to the current one, the object is rcad dil'ect.ly. If it is an old('1' v(,l'siol\, 

the translator is called and the object is loaded under the Ile\\' format. Whell the ohj(·(·t is 

Iater unloaded From memory, it is saved under the Ile,," format.. 

This method is transparent to the user and requi!'(~s litt.le work fl'om t.!\(, class bllildpl'. \t 

is also versatile in the sense that a translat.ol' is ilOt. applied t.o the whol(' objed. bill. l'at.h('I' 

to the specifie class that was .1l0dified. This simplifies t.he llIaint,('lIélll(,C' and upgl'ad(· of 

packages that use the persistent. st.ore. 

3.10 Networking 

The proposed system is designed to work in a local area net,work (LAN) of UNIX worksl.a

tions. In faet, any client can access any servel' anywherr 011 the Int.el'llet. [I~]. J>('rfOl'llléllH'(', 

however, dictates usage within the bounds of a LAN. 

Workstations with a BSD (Berkeley University) derived UNIX t.raclit.iollally co III III 11 lIi

cate with eaeh other through sockels [58]. The socket. interface treats rwt,work fOlillectiollS 

as files and uses the traditional functions: "open, ercat, close, l'cad, writ(·", which is very 

natural to programmers. A newer networking interface named Transport LC'VI'J IIIt.erfm'(' 

(TLI) [65] is promoted by UNIX Sys-V.4 and pl'Ovides similar services but. wit.h a sOll1ewhat. 

different set of commands. 

Both sockets and TLI use a selectable underlying communicat,ioJl pl'Ot()('ol. 'l'radiUoII

ally, User Datagram Protocol (UDP) and Transmission Control Protocol ('l'CP) runJlillg 

on top of the Internet Protocol (IP) have bcen used for connectionJess and COli flect iOIl

oriented protoeols respectively. Newer protocols arc> bcing developed which rnatdl mor(' 

closely to the OSI model [66] . 
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A higher level alternative to sockets and TLI is the Remote Procedure Call (RPC) in

terface. The latter allows a function to be executed on a remote computer while presenting 

exactly t.he same interface as if it was a regular local function. RPC uses either sockets or 

TLI as an underlying transport mechanism, hence making it more portable across different 

platforms. 

Idcally, a network interface should be modular enough to prevent code dependency on 

the undcrlying protocol. It should be portable on many platforms and easy to rnodify or 

replace. RPC being a higher level interface would seem like the ideal choice. However, 

RPC is most suited for stateless servers that do their job and die immediately after. This 

system requires a long lived server. Moreover, the notification mechanism requires greater 

flexibility than what RPC can easily accommodate. For these reasons, a socket based 

Interface is used. 

Special care is taken to regroup any dependencyon the network interface to a small 

nurnber of functions. If the need is feh to port the system to a different networking interface, 

only this restricted set of functions would have to be rewritten. Even then, thanks to the 

serialization of objects, the network interface is Iimited to simple exchanges. 

3.11 Notification 

Earlier in this document notification was mentioned without mu ch detail. There are two 

kinds of notification of interest to us. 

The first, data notification, is what is usually called notification. Data notification is 

t.he action of notifying a process that sorne data of interest has been modified. The second, 

mefhod notification is the action of asking an external process to execute oné of its rnethods 

of a certain object. method notification resembles the RPC mechanism with an added level 

of indircction, as explained later in this section. The following example will illustrate these 

two concepts. 

In a VLSI CAD framework, the designer uses the graphies editor to modify sorne part 

of the design. It simultaneously uses an incremental critical path evaluator to find the 
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bottleneck in his design. As he modifies the design, the gl'aphics editor not.ifies the el·it.ieal 

path evaluator of what objeets were modified, hence dala 1/otificalion. The latter will find 

the critieal path and tell the graphies editor to highlight the objects making the el'itical 

path. In other words, it is going to request the graphics editor t.o exeeut,e the highlight 
method on a list of objects forming the critical path, heu ce mefllOd notificalion. 

In other CAD frameworks, data notification is made easy by keeping allloaded objcets 

in a single memory location and manipulating them there (Oct). This is done al. t,hc cost. 

of greater limitations on the size of simultaneous designs on a single server (the servcr has 

a limited amount of memory). In most of those designs, method notification is dOlic in a 

tightly bound manner and usually only to the graphies editor. 

What is presented here is a general purpose notification meehanisrn. One approach is t.o 

have each tool communÎcate with each other and provide an R PC Iibrary of the funct.ions fol' 

use by other tools. This presents a few problems. First, the programming ovel'l)(~ad in cach 

toot would be considerable and much of the functionality would have to he replicat.ed in 

each too1. Second, this would break the network and persistence transpal'cncy mcchanislll 

sinee each toot would have to know the location of the other tools on the nctwork. 

A second more generic approach is to treat both data and method notification as ctJcnl 

notification without distinction between the two. In the persistence mechanism pl'csent.cd, 

the object is transparently fetched from the servel' to the requesting client. As an cxt.cnsion 

of this method, when the client registers for an object with thc scrvel', it, can ask to be 

notified of any change made to that object. If the object is changed, t.he> SCI'VCI' scnds a 

notification message to the client. 

With the approaeh of "notification through the server", t.he tools do not nœd to be 

aware of each other's location or identity sinee everythillg is reccived and dispatched by 

the servel'. Moreover, in such a centralized notification seheme, if funetionality Iike au

thentication is later added, the modifications can be Iimited to the servel' as opposcd to 

reworking aIl the tooIs. 

Since only one client ean register for an object in read-write access mode, ail others can 

either have read-onlyor read-notify mode. The servel' kecps a list of clients acccssing each 
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object along with the access mode. With this list the server can provide multiple client 

notification. 

Naturally, such a scheme requires cooperation from the client with read-write access on 

an object. If such a client modifies the object, it must eventually notify the server. This 

has an advantage over the "spying over the shoulder" or "polling" method used in other 

systems. Since the modifying client only lets the server know about the modification when 

it want.s 1.0, it can choose to commit modifications only at milestone modifications. 

Method notification is provided in a similar centralized way. When a client registers 

for objects, it can also make available a li st of methods accessible by other tools on those 

objects. This action is called exporting methods. Other clients of those objects can then 

notify the server that they want a given method executed on a given object. The server 

will in turn notify the clients that made this method available. This implies the possibility 

to pcrform method notification on many clients simultaneously. 

Naturally, method notification implies that tools using method notification must know 

a bit more about the other tools than simple data notification. They must know what 

methods arc exported by other tools in order to use them. This requirement is common 

1.0 any method notification system. 

As in the data notification, the added level of indirection provided by the server elimi

nates the need to know the location of other tools on the network as encountered if direct 

RPC were used. 

A useful example of this would be a class tutorial on CAD frameworks where the 

instructor does a design example and each student only runs a graphical editor with aIl its 

met.hods exported. The irlstructor's program could then make notifications for each action 

its graphie editol' performs, hence providing an "exact dynamic copy" of the operation to 

the studcnts. 

As for data distribution, clients can perform transactions with many servers. Notifica

tion mcchanisll1s are associated wit.h the objects, hence associated with the server storing 

each object. The server deals with ail the physical locations concerns and the multiple 

distribut.ion of not.ification messages. 

, , 
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The major improvements over existing methods are: 

• Data and method notification in a networked framework. 

• No limitation on the type of objects or methods to notify, 

• Modular and uniform programmillg interface for aIl notificat.iolls, 

• Independence of the physicallocation of different tools . 

• 

• 



, 
( 
l' 

~ 

,~;. i:.': _ 
" 

c_ 

t, . 
~ 
i, 
f>' 
f~ 

f, 
~
f .. 
J' 
i 
; 

• 

Chapter 4 

Implementation 

This chapter will detail the implementation of the concepts explained in the previous 

chapter. Most of the elements presented here have been implemented in a prototype. The 

latter is evaluated in the next chapter. 

4.1 Architecture 

This section studies the main data structures (classes), and their hierarchy, used in this 

project. The heart of the system revolves around two structures: the Smart Pointer and 

the Loaded Object Trec. 

4.1.1 The Loaded Object Tree 

The loaded object tree is based on four classes of objects: Object, Dir, Root and Persis

tcnt.Obj. Class Object is the base class from which al} other objects of the tree are derived. 

From that class, two branches are created. The first is PersistentObj used as base class for 

persistent objects defined by the user. Objects instantiated from class PersistentObj are 

the leaves of the tree. The second class derived from Object is Dir. Dir objects represent 

t.he nodes of the tree, holding it together. Only one no de is different from the others in 

59 
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ObJect 

Dir 

Root 

PersistentObJ 

• • 
• 

User derived classes 

Figure 4.1: Class Hierarchy of Loaded Object Trec 
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the tree, it is the root node. It is instantiated from class Roof and is unique in t1l(~ tl'ce. 

Figure 4.1 shows the class hierarchy forming the loaded object tree. 

In the "loaded object tree", the names of the objects are mapped on the internai nodes 

and the leaves of the tree (Dir and PersistentObj). Figure 4.2 ilIustrates how each t,ok en 

of the object's full pathname is mapped on a node of the tree. 

No single object in the tree contains its full pathname. The real objects are the Persis

tentObjs and to obtain their fully qualified name, they have to w;\.\k up the tree t.o t.he root. 

The tree has the functionality to reconstruct a pathname when needed, answcr qucries fol' 

pathnamcs as weIl as other pathname manipulat.ion operations required to manage the 

contained objects. Much of this functionality is spread t.hroughout the class hierarchy 

forrning the object tree. 

Class Object 

Class Object is the base class of the object tree. It contains at.t.ributes and methods 

corn mon to ail its derived classes. The basic attributes are: 

• name: One token of the full pathname . 
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Figure 4.2: Mapping of a pathname on the Loaded Object Tree 

• version: major and minor version number (ex:1.57). 

• tirnestamp: Timestamp assigned by the server. 

• parent: Pointer to parent Dir in the tree. 

• current status: Is this the current version of the object? 

61 

Most of those attribute names are self explanatory. AIl objects in the tree have a 

parent Di .. except for the root. The current status field is used to identify the current 

version of the object when it is loaded. 

Sorne functions exist in both class PersistentObj and class Dir pèrforming the same 

basic operation but on different classes. In tree manipulations, a basic pointer to class 

Object is used to reference both Dir and PersistentObj. To allow access to functions 

defined for those classes with this type of pointer, the functions have to be defined as 



• 

'. 

CHAPTER 4. IMPLEMENTATION 62 

virtualor (pure virtual) in the base class Object [22]. Most of the functions in c1ass('s Di .. 

and PersistentObj are virtual. 

Class Dir 

Class Dir is derived from class Object. By deriving from class Object., it. inhel'its ail or 

Object's attributes and methods, including a name and a version. 

A Dir contains the following attributes: 

• mount type: local or remote mou nt. 

• mount host: Server to which it mounts. 

• mount dir: Server Directory to be mounted here. 

• mount flags: Is the directory mounted in a read-only or read-writc mode'! 

• default unload flag: Action to take at unloading time. 

• son list: List of sons (Ieaves or subtrees). 

A Dir object can either be a mount point or a regular Dir. Since any Di .. objC'ct. can 

become a mount point upon execution of the mount command by the user, the basic 

attributes must be present in each Dir object whether it is used or ilOt. Thosc attribut,(!s 

identify the server to which it connects, the directory on the servel' that will be rnappcd 

to it and the write access flags of the mount. 

The current implernentation simply uses the name of the workstation hosting the Rcrver 

process as rnount hosto This is enough for the purpose of prototyping but should be rcfincd 

to allow many server pro cesses to run on a single hosto A mount type field exist.s in the 

Dir class to allow for future implernentation of a local server. 

For now, only remote servers are supported. In a normal design scenario, a designer 

will share sorne objects with a workgroup. These shared objects should be on a networked 

server (remote server). However, sorne of the designer's work cou Id be private and the 
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resulting objects stored somewhere on a local disk. In this case, it would be more efficient 

to have a private server process Iinked with the client tool for local private access. This 

local server would then have direct internai connections with the client process, hence 

speeding client/server transaction. 

Class Dir has a son list attribute to keep track of its sons. Since the object tree is an 

n-ary tree, no fixed number of attributes can be reserved to hold pointers to children. A 

dynamic list must be used to keep track of the sons. 

Typically, the degree of any node is not very large and a simple linked list implemen

tation is adequate to store a list of pointers to the sons. The list is encapsulated in a 

c1ass Son_List to allow transparent modification to the internai structure without affecting 

the tree mechanism. Such modifications could be changing from a linked list to a more 

efficient hash table [36] [16] if the number of sons increased significantly. Class Sonlist 

also encapsulates methods to search for a given sonl or to list the sons. The elementary 

version-completion mechanism discussed in previous chapters is implemented in this class. 

A Dir object can have two types of sons: a subtree (Dir) or a leaf (PersistentObj). To 

allow both types to be referencedl class Sonlist uses a pointer to type Object. FinallYI to 

speed up searches, the tree only keeps track of the objects that are loaded in memory. 

Finally the default unload behavior attribute will be discussed in a later section. 

Class Root 

Class Root does not conta in any attributes. It is used to provide a different behavior for 

some of the internai tree manipulation functions. One such function is the rebuilding of a 

full path name. It knows to stop when it reaches the Root object. 

Class PersistentObj 

Class PersistentObj is the base class used to attain persistence. It inherits the methods 

and attributes of c1ass Object and adds the following attributes: 

.. 
~~/_,,"J 
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• back pointer list: List of pointers to swizzled Smart point.ers rcfel'encing iL 

• unload behavior: Action to take at unload time. 

The back pointer list is used to keep track of the swizzled smart. pointers refel'cncing 

the persistent object. Such a list is necessary to preserve t.he integrity of the smart point.ers 

when loading/unloading persistent objects. This list is encapsulat.ed in a class similal' t.o 

Sonlist. This class also contains the mechanism to add, remove or bl'owse thl'ollgh the 

list. The "remove" method is called when a smart pointer is deleted to lIpdat.c t.he back 

pointer li st accordingly. 

The unload behavior attribute is used when unloading an object. ft. will be furthel' 

discussed in a later section on loading/unloading of persistent objects. 

4.1.2 The Smart Pointer 

Figure 4.3 shows the c1ass hierarchy used for the smart pointers. It is implemcnted as a 

general base class and a parameterized derived c1ass. 

Smart 

<T>.Smart 

Figure 4.3: Class Hierarchy of the Smart pointers 

Smart Pointer Hierarchy 

Parameterized smart pointers are required for dynamic type checking of loaded objects. 

A base c1ass "Smart" is defined to provide a common pointer type for ail Smart pointers. 

This way, the back pointer list for any "smart pointer" pointer can be of type (Smart *) . 

;;, 
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The base cJass Smart only contains an attribute for the name, basic methods and pure 

virtual functions. The parameterized cJass is class <T>Smart where <T> is the type of 

object the Smart pointer references. 

Smart Pointer transparency 

In order to use a smart pointer as a regular pointer (i.e. transparent usage of smart pointer), 

the smart pointer class overloads the operators commonly used with regular pointers. An 

operator is overloaded to accept different arguments. 

The following opera tors are overloaded in relation to: 

SmartPtrToTypeFoo A, Bj Foo * Cj 

• A-> ... j 

• A = Bj 

• A = "full pathname of an object"j 

• &A 

• A& 

• A == B 

• C == A 

• C == A 

Since the Smart pointer is meant to be used as a regular pointer, the operator mostly 

used is "->". It provides transpé.' rent loading of the ob ject into memory and regular member 

access to t.he loaded persistent obJect. Operator "=" is overloaded to prevent member wise 

copy of a smart pointer to another. A smart pointer copy must either make the copied 

pointer unswizzled or add the copied pointer to the object's back pointer list to assure 
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integrity of the object tree. The mechanism used here is 1.0 make an unswizzl('d copy of 

the smart pointer. The "=" operator with a string on the l'ight hand side (rhs) is t.aken 

care of by an overloaded constructor. lt has the effect of initializing the smart. point,('r 

to the string on the right hand side. Naturally, the smart pointel' is initially unswizzled. 

If the smart pointer was already initialized befme the assignment, t.he dest.l'llctOl' is first 

called. The destructor unswizzles the smart pointer before destroying it., henre prest'rving 

object tree integrity. Smart pointer comparison (A == B) is donc on the na111e part. ollly, 

therefore making the comparison valid even if both pointers are not. in the same swizzlc 

state. Comparison and assignment with regular pointers requires another overloading of 

the (==) and (=) operators. Taking the address of a smart point.er (&A) and making a 

reference to a smart pointer (A&) is normally handled by the language. 

To use a smart pointer, the user must initialize the smart. point.ers with the full pat.h

name of the object of interest. The object will be loaded transparently al. the fil'st. l'el'erel1<'(' 

made to it through the smart pointer. Persistent objects should not be crcatcd ma.nually, 

They may be statically scoped (local or global variable) or dynamically scopcd (a.l1ocat.cd 

with new) in the program. 

The user can obtain the memory address of a persistent object and acecss il. wit,hout. 

the use of smart pointers. The use of a regular pointer is sometimes nceded since using a 

smart pointer as the "index" in a graph traversaI would result in pOOl' performance, 

To illustrate this statement, consider the traversaI of a singly Iinked Iist whcl'c the 

persistent objects have a member "next" which is a smart pointel' to the next c1cmellt. in 

the list. To traverse the list a smart pointer "index" is used, Every time "next" is assigncd 

to "index" the destructor of "index" is called and an unswizzIcd copy of the point.er is 

made. When an access is made to the object referenced by "index" a swizzling operation 

is triggered. AlI this is too much overhead for time critical graph traversaI. For tllis reason 

the automatic translator (=) is provided that will assign a memory address 1.0 a regular 

pointer from a smart pointer. 

While the use of regular pointer is sometimes needed, t.he system cannot guarantee the 

validity of such a pointer since objects can be Ioaded, unloaded and reloaded transparently. 

To prevent any pointer corruption, the user should use a semaphore during the traversaI 
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of a graph of persistent objects linked by smart point~rs. 

r ln Ancestor table 

ln obJect's '" 
load mechanlsm l '-

. .................. . 
.. ·····ir needed, •••••••• 

mf perrorm dass i 
\, translation ,.: 

............................. 

Figure 4.4: Swizzling of a Smart pointer 

,...-----, 
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\Vith the above operators overloaded, and the smart pointer initialized with the path

name of the objec l ., the use of a smart pointer should be identical to the use of regular 

pointers. 

The swizzling mechanism that tran:;parently loads the object is the most important 

concept of the Smart pointer. Figure 404 illustrates the algorithm of the swizzling process 

including the load mechanism . 
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4.2 The Serialization Process and Protocol 

BI!fore going into the details of loading a persistent object., the prot.ocol for scrializing al\ 

object must be studied [37]. 

Figure 4.5 illustrates the calling diagram of the main functiol\s ",hieh int.eract. wlwll 

serializing/unserializing an object. Different levels of action are followcd by caeh module. 

The *toS and Sto* functions are the low level serialization routines explaincd in t.he' 

previous chapter. The" *" in their name is replaced by the type of object t.o conV(','t. ex: 

serializing an int is done by "itoS" and "Stol" transforms the string rcpl·eHcnt.ation back 1.0 

an int. Those primitives are used by serialize() and load() which hold the st.oring/loading 

strategy associated with each class. 

Class Object 
• - - - - - - - - - - .- - - - - - - - - - - - - - - - -1 

any functlon 
wrltln') objects 
ons."., 

·toS 

.. ~ J -:... . ~ . 

;, ""'-,' ~ ..... '.. .. ............. ", 

A) Write an obJect to server 

1 

Class <T>.Smart .- ---- - -- --- .. 
1 

1 
1 
1 

1- ___ _ 

Sto· 

B) Load an object 'rom server 

Figure 4.5: Serialization Architecture 
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4.2.1 Serialization of an object 

Scrialize as seen in fig.4.5A is called by aIl functions that want to write an object to the 

server. Those functions are: update_to..servO, unload_to..servO and are located in the base 

dass Objcct. 

As explained in the previous chapter, an object can inherit many classes where each 

class has a set of attributes. A whole object is stored in a string that is composed of 

substrings. Each substring represents a subinstance in the object. The serialize function 

is a virtual function redefined in each class that make the persistent object. Each serialize 

function knows ollly the attributes of its class and how to transform them into a substring. 

Each will in turn add its substring to the object 's global string. 

For instance, if class employee has three attributes: 

int emp_numberj 

String name; 

float salary; 

The serialize function for it will look like 

itoS(emp_number)j 

strtoS (name) ; 

ftoS (salary) J 

The knowledge of t.he attribut.es. their type and their relative order is hard coded in the 

serialize function. 

Also, (not illustrated in the previous example), each serialize function must put its class 

name and version at the beginning of the substring for type checking and version translation 

purposcs. To facilitate the dynamic type checking at load time, the most derived class of 

the object. appears first in the string. This way, when the string is read into memory from 

the server, the first field to be read will be the class name, type checking can then proceed 

wit.hout fUl'ther pat'sing of the string . 
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usr class 3 

usr class 2 

usr c1ass 1 

PersistentObj 

Object 

•• .. serialize 
• · _. 

serialize =. :s. .... 
•• • ~. serialize 

• • serialize 
• 
• • serialize 

4 _ 

~' 
• uscclass_2::scrializc , 

~-
~ 

: uscclass_l::scrializc 

-: Pers is tentOb j:: serializc ... 4 _ 

• , ... ~ Ob ject: :scrializc 

Figure 4.6: Virtual sel'ialize function 

ïO 

To make the most derived class execute "serialize" fil'st, the sel'ialize fUllct.ioll is dcdared 

virtual in the base class Object, as illustrated in figure 4.6. Each serialize functioll, aftel' 

serializing its attributes, will call its parent's serialize function with a fully qualified Ilallle. 

This calling chain will stop at hase class Object when the full object is translatcd 1.0 a 

string . 

Encapsulation 

The substring produced by serializing one class of an object is encapsulated and assernhlcd 

with the other substrings to form the complete string l'epresentillg the object,. Ellfltpsula

tion of each substring is done as follows: 

1 __ A __ I_B_I ___________ c ____________ 1 

\_------------ --------------- / 
\ 1 

D 

Where: 0 is the encapsulated substring 

A is the length of 0 in in ASCII representation 

1 
~ 
l 
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C is the substring to encapsulate 

B is a white space separating A and C 

The encapsulation adds the Iength of the encapsulation itself before the substring. 

Having the length as the first field of each substring allows resynchronization in case the 

loading mechanism fails for a given class. Indeed, if the erroneous load function reads too 

much data or not enough, the next load function still gets the correct offset in the string. 

4.2.2 Loading the object 

Figlll'e 4.5B illustrates how the Smart pointer, through the swizzle mechanism, loads the 

string into the object. This must not be confused with the higher levelloading mechanism 

wherc type checking is performed. This is sim ply object filling, performed after the higher 

level manipulations studied later in this chapter. 

The load function is handed a string representing the object's attributes and a pointer 

to an empty object. The only initialized attributes in the object at this time are its name, 

version numbel' and timestamp. Load must then perform the exact reverse steps done by 

serialize. 

Like serialize, load is virtual in order to have the most derived class load its data first. 

Loading of individual attributes is done by performing a Sto* for each attribute. Once a 

class is filled, it caUs its parent's load function using a fully qualified name and giving it 

the correct offset in the global string of the object. 

Translators 

Sine€:' the fh·st. data to be put in each substring by the serialize functions is the class name 

and version, decisions can be made on how to load the rest of the substring. 

If the stl'Îng represents an older version of the class, a translator can be called to 

correctly load the old format in the new object. Figure 4.7 illustrates the translation 

mechanism . 
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Partofan 
ObJect instandated 
hm Class Foo 
Version 1.4 

Substring 
r----:--.,.--~-.,...--------...., ......... .. , 

• • '--..;;;..;;.;;T--'----.;;F---'-t-...;;.;=..:::::=----.....J ....... _ •• 

............ 

Reading objed of version 1.2 and translatlng It tu version 1.4 

Figure 4.7: Class Translation Mechanism 

... ) 
1-

The load mechanism has a translation selector based on the version number of the claSH 

to translate. Once translated and loaded, the object is in the latest format. If t,he ohject, 

is saved to disk, it will be saved in the new format hence making the format tl'anslat,ioll 

permanent. This method makes translation transparent to the users and casy to illlplelllcllt. 

for the designers of the classes. Note that the version numbel' of l' c1ass is not. in any way 

related to the version number of the object that the user is workillg with. 

4.3 The Loading and Type Checking Mechanisms 

The loading of an object is done via an unswizzled smart point.er. Bcforc loadillg from the 

servel' the smart pointer checks in the loaded object tree that the ohject is flot alrcady 

loaded. If it is, it just swizzles itself with the memory addl'css of the objc!ct" If it is not, il, 
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loads the object from the server. 

The loading mechanism is divided in four steps: 

1. getting the object string (data string) from the server, 

2. performing a type checking between the smart pointer and the data string, 

3. creating an empty object to host the data string, 

4. filling the empty object with the data string. 

The first step involves looking up the loaded object tree to get information on the 

mount point. It needs the server id (host name) and the object name, once mapped with 

the mounted directory, to submit the request to the server. The read-write accesses are set 

in the smart pointer or defaults are used. The server returns a data string with a name, 

version and timestamp uniquely identifying the object. 

The second and the third steps are done through an ancestor table described in the 

next section. The fourth step was explained in the previous section. 

4.3.1 The ancestor table 

The ancestor table is a mechanism to provide dynamic type checking of persistent objects 

in a Ctt environment. The Ctt language with the inheritance mechanism adds more 

complexity to type checking. As seen in the previous chapter, a pointer to an ancestor of 

an object cau also be a legal pointer to this object. 

A pel'sisteuce mechanism must provide the same level of type checking and be as ver

satile as the host language. To provide such type checking, a simple name matching is not 

enough. The system needs an "ancestor" table to keep track of the legal ancestors of a 

givell class. A line in the ancestor table would look like this: 

• CLASS NAME, POINTER TO CONSTRUCTOR, ANCESTOR LIST 

.. ",,~;;~ 

, 
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Where the first field is the name of the class, the second field is a pointer to the 

constructor of that class and the third field is a list of the class names of direct anccstors 

(the latest version of C++ supports multiple inheritance). 

To perform type checking, the system extracts the type from the data stdng, fillds 

it in the ancestor table, and from there recursively se arches the ancestOl' list. lookillg fol' 

the smart pointer's type. If it reaches the PersisfentObj type without finding the smart 

pointer's type, it means that this object cannot legally be assigned to this smart. poillt.el'. 

In other words, the object is not an instance of a class derived from the smart poillt.er's 

type and therefore is an illegal assignment. 

Another purpose for the ancestor tahle is to build an empty object of the correct t.ype 

to host the data string. The object type leads to the corresJ>onding ent.l·y in th" table 

which contains a pointer to the proper constructor. 

Ancestor table implementation 

Ideally the C++ language should maintain information at run time about the class hier

archy. Failing that, a preprocessor could automatically extract the information rcquired 

to build the ancestor table. The alternative presented here is to define an objcct. of c1ass 

Meta for each class in the program. The constructor fol' Meta adds the entry (info) fol' 

the class in the ancestor table. 

Class Meta { Il Used to build the ancestor table. 

static * info ancestor_table; Il Pointer beginning of table. 

Meta(string, string, void *); 

-Meta() {rm_from_table()}; 

} 

Class info { Il Actual entry in the table. 

string namei Il Class name . 
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string ancestors; Il List of ancestors 

void * constructorj Il Ptr to constructor 01: class. 

info * next j Il Next entry in the table. 

} 

Example user c1ass: 

Class foo public bar) public cox { 

} 

Line to be automatically added by preprocessor or a script right after the class defini

tion: 

Meta foo_meta(' 'foo", l'bar cox") \&foo: :foo) j 

In this example, the class is derived from two ancestors: bar and cox. The added line 

creates a global object of type Meta. It's constructor will add an object of class Info in 

the ancestor table. 

4.4 Versioning 

The versioning follows the protocol described in the previous chapter. The version com

plet,ion mechanism is located in the SonJist class previously described. 

Versioning is divided into three levels of specification: name, version and timestamp. 

Whenever a level is missing, the system defaults to the current (most recent) item at that 

level. 
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Since the loading of objects is done through smart pointers, the object Ilame specificd 

in the smart pointer determines which version will be accessed. The loaded object tree has 

a version completion semantic identical to the servel'. Denee, a smart pointel' init.ialized 

with just the name of the object will get the current version. When it querics the loadt'd 

object tree to see if the object is loaded, it will ask for the CUITent version. 

When the servel' returns the data string to the client, it returns it wit.h the full object. 

name, version and timestamp, even if the request was made for thc current object. This 

allows the system to load the full information in memory. When the client savcs t.he object. 

to the server, it can specify a version number or a relative increment. It. cannot., howevCl', 

specify the timestamp field since it is automatically assigned by the servel' bascd 011 it,s 

own dock. 

Many smart pointers can be initialized to the same version of an object. The first one 

to load the object will query the server. Since loaded objects cOlltaill theÎl' vcrsion and 

timestamp, they can aU be differentiated from one allother but a flag is required t.o specify 

if an object is the most reeent version available. This Hag i8 stored in the cur ..status and 

can either indicate a current version, a current timestamp or simply t.hat this is not. the 

eurrent object in ally way. 

4.5 Unloading Objects 

Objects loaded in memory can be specifically de/eted (remove the disk copy as weil), trasllcd 

(do not save the modification to disk) or saved (saved to disk when unloaded). Unloadillg 

OCCllrs when explicitly requested by the user, when an object subtree is unmount.ed or UpOIl 

normal program termination. In future development a paging syst.em could bc desigllcd 

that would allow the user to load persistent object graphs that are largcl' t.han the machine's 

memory. 

If the system was dealing with a regular database server it could simply issue a save 

command from the root of the tree (for a global unload) or at the root of a particular 

subtree (before unmounting the subtree) and ail the objects would be saved to the servcl'. 
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Both modified and unmodified objects would overwrite the old ones on the server. 

Because of the server's "no-overwrite" policy, this approach would he very wasteful. 

Indeed, in many cases, a CAD work session only modifies a small percent age of the design 

objects loaded in memory. To avoid such a waste, the system should try to identify the 

modified objects and only save those. 

To provide a smart unload mechanism, each object 's unload method will look up the 

object's unload_behavior ftag to know whether to save the changes or trash the object. 

If the flag is not set explicitly for an object, the unload method walks up the tree to the 

mount point and looks at a default unload hehavior flag for the subtree. This flag is 

set as a subtree mount option. 

Each object 's destructor contains the unload function which is automatically called 

upon unloading. However, at program termination, nothing guarantees that the leaves of 

the tree (the PersistentObj) are destroyed before the internaI nodes (the Dirs). To unload 

themselves, the persistent objects need ail their ancestors up to the mount point in order 

to rebuild their full pathname and get the server's identification. 

To insure that persistent objects are unloaded first at program termination, the classes 

Dir and Root have special destructors. These destructors simply contain the unload com

mand which when applied to a Dir object will recursively apply the command on aIl its 

children before applying it to itself (post-order traversaI). Thus the unload commands 

processes the leaves first [16] [36]. 

4.6 Automating persistence 

This section first surnmarizes the steps required to attain persistence and then suggests 

methods to automate those steps . 
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4.6.1 How to attain persistence 

First, persistent objects must inherit from class PersistentObj and SllIart point.ers IIIUSt. 

be used to refer to those objects. There must be one and only one inst.ance of class Hoot. 

for the memory tree and it must be a global variable. 

Each class must provide two functions: 

1. geLclass.llameO: Returns the class name in an ascii string. 

2. geLclass_versionO: Returns the class version number in a float.. 

Those functions are required for serializing an object iut.o a string fol' stm'age on th<, 

server and are used for type checking at load time, 

After every user class definition, there should be an instance of c1ass Mela initialized 

with the class name, the list of ance'stors and a pointel' to the constructor of this class, 

This instance of Meta is used to automatically build the ancestor tabl(', 

Every user class must have at least. one constructor that does not. have argument.s. Othcl' 

constructors with arguments can be defined as weIl. The construct.or without arguments is 

needed by the ancestor table when building the empty object bcforc filling with t.he da.t.a 

string from the server. 

Finally, the serialize and load functions must exist in every user defilled c1ass. The first 

function serializes the data members of the objects into a st.ring to store on thc scrv(!r. The.' 

second takes the incoming data string from the server and fills the empty object with iL 

4.6.2 The preprocessor 

The first two steps, using smart pointers and deriving the user object.s from class Persis

tentObj, are done manually sinee they imply thc reorganization of an existing program or 

simple programming practices when developing a new package. 

The other steps can easily be automated with a pre-processor that would gencrate the 

required code . 

,.'. JL .'._ 
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The inlltantiation of the Root object is done automatically by linking the Root object file 

that defin{!s the corresponding global variable. Similarly, the constructor without argument 

is automatical1y generated by the C++ compiler. 

The "geLclass.J1ameO" function could easily be generated by the preprocessor. The 

"geLclass_versionO" however requires the programmer's cooperation since he sets the ver

sion number for the classes. The instantiation of class Meta can also be generated by the 

pre-processor easily. 

The more difficult part for the pre-processor is the generation of serializeO and loadO. 

The pre-processor must parse the class definition, identify the data members and their 

type and generate the appropriate calls for string conversion (*toS in serialize and Sto* 

in load). To support every possible user defined type, the pre-processor needs an almost 

complete C++ parser, which is not trivial given the complex syntax of C++. A simple 

compromise is to have the preprocessor generate template files from 10adO and serialize{) 

that the user can filI. Those templates would contain instructions on how to fill them. 

4.7 Networking 

The network interface between the clients and the servers has been implemented using the 

Berkeley socket interface [24] [65]. 

Figure 4.8 iIIustrates the network interface. On the client side, the loading of the objects 

is triggered by the smart pointer. AIl other network functions are called from the base class 

Object. The networking functions on the client's side prepare the request, open a reliable 

bidirectional communication channel with the server, send the request and wait for the 

reply from the servel'. 

The SCl'ver offers access to i ts database via a preclefined set of functions. Those fund ions 

can be accessed by aIl registered clients. The server has a weIl known address (socket 

number) to which alI requests are sent. The incoming requests contain the name of the 

function to access and the arguments for that functions. A dispatcher parses the client 's 

request and caUs the appropriate function. Only one request is processed at any given time. 

........ - ,- .. ~:-:':$ 
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Figure 4.8: Network Mechanism 
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Serverhost 

Other incoming requests wait in a queue. When the functiol1 returns with the l'csult.s, the 

dispatcher formats a reply packet and sends it back to the client through t.he coullect.ioll 

before taking another request. 

This system implies that both the sen der and the receivel' know exactly what. is going 

to be exchanged, size included. The protocol for the exchangc betwecll the client and the 

server is detailed in the next section. 

4.7.1 Object Server External Protocol (OSEP) 

OSEP is used to coordinate client/servel' exchanges. The OSEP is divided in two: COIII

munication from client to server, and from server to client. 

Communication CLIENT -> SERVER 

+-------------------------------------------------------
1 OSEP version (int) 1 Function # (int) 1 Function Data 

+-------------------------------------------------------

Every message from client to server adopts the convention illustrated above. The Orst 

integer represents the protocol version. The protocol version determines how the resl, of 
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the communication is interpreted. A server could be updated to a newer version of OSEP 

but would still handle calls from older clients using an outdated version of the protocol. 

The second field represents the function requested. The function number is unique 

arnong ail functions offered by the server. The function numbers and names are identified 

with 

#define dat a_Fun ctName_ V? n 

where? is the version number and n is a nurnber unique identifier for the function/version 

corn bi nation. 

This allows the server to provide many versions of the same function simultaneously. 

With this facility, experimental services can be tested while maintaining regular services. 

The first two fields (version and Function number) are called the OSEP header. 

The "Data" section of the message is only known by the specifie pair of functions (and 

version) that send (on the client) and receive (on the server) this field. The reply from the 

server contains the data requested by the client and its format depends on the function 

called by the client. 

Communication SERVER -> CLIENT 

+---------------
1 Function Data '" 

+---------------

Data Exchange 

The Function Data field found in messages sent by clients uses one of three possible formats: 

A!s9_wmppcr, Dafa_wrappel' or mS9_code. The first is generally used by to communicate 

commands to the server. It is a structure containing an object name, a client identifier, 

and a code describing the action requested . 
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The Data_wrapper is used to exchange persistent objects. It i~ simila.r 1.0 t,he l\lss_wrnpp(\1' 

structure, with an added field for the dat.a. string. It is used by COll111lé\lHIs lik(\: IIp<.1a.te, 

save (message to the server) and load (the reply from t.he server). 

The third format named msg_cooe is simply a number represt'Illillg an CI"I"OI' ('ode r('

turned by the server. 

4.8 Notification 

Server 

Client 3 

Host 3 

Notification Server 

ObJects 

./" 

Clent 1 Client 2 

Bost 1 Host 2 

Figure 4.9: Notification Mechanism 
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The notification mechanism is illustrated in figure 4.9. When not.ificat.ion of dat.a changt' 

is issued from the writing client, it sends its notification to the sen'er along with a copy 

of the modified object. The servel' keeps the modified object. in the memory t.re<' wit.hout 

writing it to disk. It then sends messages to the clients registered fol' not.ification of t.ltis 

object. The clients are then free to request a copy of the modified objC'd from t.lw S(,I'\'('I'. 

Figure 4.9 shows that each client has an embeddcd notificat.ion servel'. ln this figul'{', 

Client 3 has the write privilege on the objects while Clients 1 and 2 are regist.<'r('d fol' 

notification on those same objects. The notification servel' l'('('('ives not.ificat.ions (both 

data change and method request) from the object server(s) and »roccsses t.helll. \t. is t.JJ(' 

notification servel' that decides to load the modificd copy of the object based 011 péu'anlet.ers 

set by the tool it serves. Modified objects can be fetched asynchl'Ollously 01' synchl'ollotlsly. 

The notifications servel' has dynamically defined socket address (i.e, it is a Rocket 

attributed by the system at l'un time), This address is communicatcd 1.0 t.he obj<'ct serv<~I' 

when a notification request or method export is made. The same socket addrcss is us('d 

by aIl servers interacting with the client. Having a dynamically defined addrcss paves t.he 

way for supporting multiple clients on a single host where no predefined weil knowlI socket. 

address could serve aIl clients on a given hosto 
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Evaluation of the prototype 

5.1 Evaluation criterion 

This chapter presents an evaluation of the working prototype. The criterion for evaluation 

are: 

• size and complexity of the prototype, 

• memory usage overhead, 

• disk usage overhead, 

• swizzled smart pointer usage performance comparison, 

• unswizzled smart pointel' usage performance comparison (loading objects), 

• intcgréttion effort in a user's program, 

• comparison of design goals and prototype functionality. 

Fina.lly, possibilities for future development are discussed . 

84 
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5.2 Description of the prototype 

The prototype was written in C++ using the gnu CjC++ compiler gcc vcrsion 2..t.5. '1'11<-' 

hardware platform was the sparc workstation (mod<'l 1+ and Il) running th(' SllnOS·1. I.J h 

operating system. 

The implementation of the prototype is a proof of concept for the ideas d('\'('lol><,d in 1.1)(' 

architecture described in this thesis. Righ level classes from the gnu Iibg++ Iibl'<II'y éll'(' lls('d 

to simplify the development of the prototype resulting Îll some costs 1.0 performance. It. did 

however, allow efforts to be concentrated on the implemental.ion of 1.11<' tllOl'(' ('omplicaü'd 

aspects of the prototype. 

The gnu classes used are: 

• String: A highly versatile, if somewhat heavy, st.ring c1ass. 

• DLList: A double linked list container c1ass . 

• AVLMap: An AVL tree based map (used as an associative array) conl.aÏlwl' c1ass. 

The code is divided in five subsystems: 

• socket lib: A basic socket Iibrary written in "C". 

• 00 net interface: Object Oriented network interface that. can sit. 011 top of the sO('kpt, 

library or an RPC library. This Iibrary also provides the "mai n" function of t,Il<' 

server process which is where the dispatching of incorning messages is handl('d. Til(' 

communication protocol is also defined herc. 

• Server lib: A mini server library to ernulate the rcal backend devcloped in Na.t.Jlali(· 

Farjallah 's thesis [23]. 

• main lib: Main library that includes ail the base objects for the loaded ohjccf.s trec 

and smart pointer classes. 

• libg++ classes: Sorne regular and parameterized classes from the Iibg++ library [68] . 
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SECTION Il blank 1 comment 1 source 1 total 

socket lib: 336 381 427 1031 

00 net i/f: 585 942 671 2001 

Server lib: 214 266 455 828 

main lib: 1457 1870 1500 4467 

libg++ classes: 719 359 3489 4.519 

Table 5.1: !ines of code per subsystem 

The above table shows a breakdown of the amount of code in each subsystem. 

From these numbers the coding effort saved by using sorne classes from the libg++ 

Iibrary 1.0 build t.he prototype can clearly be seen. 

5.3 Memory usage overhead 

The memory overhead will vary with the length of the pathnames given to each object. 

Con si der an avel'age pathname length of 25 characters which is reasonable for this estimate. 

Also assume that the objects are under 5 directories that look like "/rnyproject/spiceView jpart

X" where X varies from 1 to 5. Vnder these directories, each celI is narned Cxxx where 

xxx is a nurnber. The mount point is "/rnyproject" which mounts "/usr/libraries/scoob" 

on a servel' named "bigSur". There are 1000 objects loaded and each is referenced by one 

smart. point.er. 

Each object in the loaded object tree inherits the Object class. An object can either be 

an inst.ance of Di,., Roof or PersisfentObj. In the context of mernory usage, the Root class 

can be considered 1.0 be like a Dir. The Dirs are nodes of the tree, while, the PersistentObj 

are leaves. Refel' to sections 3.4 and 3.5 for more details. 

The mernory usage for each class is: 

• Object: 28 bytes + length of pathnarne token . 
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• Dir (regular): 40 bytes. 

• Dir (mount point): 40 bytes + string length of servcr nam(' + motlllt dir 

• Root: 0 bytes. 

• PersistentObj: 12 bytes. 

• Smart Pointer: 12 bytes + length of full pathname of objC'ct refel'(,l1c('d. 

Note that a Dir can either be a regular dir or a mount point.. 

The loaded object tree will look like this: 

/ 

myproject 

spiceView 

1----------/--------1--------\--------\ 
part-l 

/ ... \ 
part-2 

/ ... \ 
C274 C192 C410 C874 

part-3 part-4 

The memory requirement for the tree will be: 

• "1": 41 bytes (40 + 1 for the name) 

part-5 

• myproject: 75 bytes (40 + 9 for the name + 6 for bigSur an cl 20 for /usr/libraries/scoob) 

• spiceView: 49 bytes (40 + 9 for the name) 

• part-l: 46 bytes (40 + 6 for the name) [.S x 46 = 230] 
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• C274: 16 bytes (12 + 4 for the name) [1000 x 16 = 16000] 

Memory tree total: 2225 bytes. 

Smart Pointers total: 42 bytes (12 + 30 for /myproject/spiceView/part-l/C274) 

[1000 x 442 = 42000 bytes] 

Grand total: 442225 bytes (43 Kbytes) 

Looking at the memory overhead for different sizes of objects: 

1 d 00 
overheadf ornumO f Elements 

over lea = 1 * --. --.--=------=----
Ob}ectslze * numO f Elements 

where numOfElements is 1000. 

• 512 bytes objects: 8.6% 

• 2K bytes objects: 2.15% 

• 8K bytes objects: 0.54% 

• 32K bytes objects: 0.27% 

The cost is small and could be further redueed by using shorter paths. 

5.4 Disk usage overhead 

The disk overhcad is less critieal than the memory overhead sinee disk space is much 

cheaper. The overhead in storing the objeds in an ascii form can be divided in two parts. 

The first is the overhead of encoding the class names, their version and the encapsulation 

format tlsed to represent strings of ascii data. This overhead for a class "myclass" that 

inherit.s from class PersistentObj is 60 bytes . 
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The second is caused by the fact that an ascii representatiol1 of a Humber lIsually t.akes 

more space than a binary. For instance an unsigned int 011 a 32 bit comput.er· al'chit.cdul'(' 

uses 4 bytes in binary format and can potentially use up to 10 charadel's, if t.lH' Humbel' is 

very large. Bere is a breakdown of the overhead for each type of data: 

• string: 3-5 char (length, white space and @ sign). 

• char: 1 (a char is proceeded by an @ sign) 

• long: 1-10 char vs. 4 bytes in binary mode 

• short: 1-5 char vs. 2 bytes in binary mode 

• uint: 1-10 char vs. 4 bytes in binary mode 

• int: 1-10 char vs. 4 bytes in binary mode 

• float: 1-10 char vs. 4 bytes in binary mode 

• double: 1-20 char vs. 8 bytes in binary mode 

If the numeric values stored are under 9999 there is no disk space oV<:'l'head in uHing an 

ascii representation of the data. However, saving and loading could be made fast.er by \Ising 

a binary representation of the data, since the binary <-> ascii translation is cxpellsivc in 

terms of CPU cycles. 

The reason for using ascii in the first place was to facilitate debuggillg. Secondly, an 

ascii representation is portable across different architectures regardless of thcir hyte order 

(big endian vs. little endian). There exists an eXternal Data Representation Iibrary (XDR) 

distributed with the SunOS operating system (and also availablc for other platforms) which 

translates binary data in a network neutral format. V se of this lib!'ary woulcl preserve the 

architecture independence, while reaping the performance benefits of a binary format,. 

White the ascii representation used in the prototype is potentially more spaC'e consuming 

it inflates the data size by a factor of 40% in the very worst case (aIl fields contain a 10 

digits numbers). Considering the fact that large disks are getting ch capel' cvery day, the 

resulting ration is acceptable even in the worst case, and is good on the average . 
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5.5 Swizzled smart pointer performance 

To make a performance comparison between regular pointers, and swizzled smart pointers 

a singly Iinked Iist was built, where each node is an instance of c1ass tstclass defined below. 

class tstclass 

{ 

tstclassSmartPtr next; 

String somedata; 

/ / smart pointer to next element in list 

/ / String representing the data 

} 

The test prograrn cycles 100,000 times tltrough a list of 1000 elements. 

5.5.1 List traversaI with Smart Pointers 

Given below is the code of the test with sorne contexl.ual information. The code is com

mented with a rough approximation of the number of machine instructions that each Hne 

will generate. 

tstclass *curObj; 

tstclass *nextObjj 

1/ normal ptr used as cursor duriI\g list traversaI 

1/ normal ptr used as cursor during list traversaI 

tstcIassSmartPtr listHead; 1/ Initialized to head of the list. 

The operators "=" and" ->" have becn overloaded to allow the smart pointer to provide 

automatic translation to a regular pointer on an assignment and autornatic swizzling of 

the object if needed when dereferencing the smart pointer. 

<T>* operator->O { /1 If unswizzled: swizzle smart pointer 

if (obj_ptr != NULL) 

return (obj _ptr) i 
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else 

return (swlzzle())j 

} 

operator <T>* 0 { Il allows assignment to regular pOlnter 

if (obj_ptr != NULL) 

return (obj_ptr) j 

else 

return (swizzle())j 

} 

Both operators are inline. If the smart pointer is swizzled, on a risc architecture ma

chine the approximate cost (in machine instructions) of operatol' "=" is 2 instructions and 

operator "->" is also 2 instructions . 

Test code annotated with number of machine instructions pel' linc: 

cycleCount = 0 j 

while (cycleCount < numOfCycles) 

{ 

} 

curObj = listHeadj 

elementCount = 1 j 

while (elementCount != numOfElements) 

{ 

} 

nextObj = curObj->next j 

curObj = nextObjj 

elementCount++ j 

cycleCount++ j 

Il 5 

Il 2 + 2 = 4 

Il 2 

Il 5 

Il 3 + 2 = 5 

Il 2 

Il 6 for ++ & 

116for++& 

«« overload 

«« overload 

jump 

jump 

, .f. 
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Total: cycleCount * ([outer loopJ + (numOfElements * [inner loop]» 

Total: 100,000 * (17 + (1000 * 18) = 1.802 x 10E9 instructions 

Tlme to run the test: 158 seconds 

5.5.2 List traversaI with regular pointers 

For the regular pointer test the c1ass was the same except for the replacement of the smart 

pointers with regular pointers. 

cycleCount = 0; 

while (cycleCount < numOfCycles) 

{ 

curObj = 11stHead; 

Il 5 

Il 2 ««< different 

elementCount = 1; Il 2 

while (elementCount != numOfElements) Il 5 

} 

{ 

} 

nextObj = curObj->next; 

curObj = nextObj; 

elementCount++ ; 

cycleCount++; 

Il 3 

//2 

««< different 

Il 6 for ++ Be jump 

Il 6 for ++ Be jump 

Total: cycleCount * ([outer loop] + (numOfElements * [inner loop]» 

Total: 100,000 * (15 + (1000 * 16) = 1. 601 x 10E9 instructions 

Time to run the test: 81 seconds 
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5.5.3 Analysis of results 

The ratio of machine instructions for regular pointers / smart. poillt.ers is 

while the time ratio is 

1.601 x 10E9 
100 * 1.802 x 10E9 = 89% 

81sec 
100 * 15 CI = 51 % 

~sec 

It is safe to assume that the difference in execution time can be auributed t.o t.he two 

Hnes of code identified as different in the test code. This time difference is 158 - 81 = 77 

seconds. After verification with the assembler code generated by the compiler, il. was roulld 

that the compiler did not inline the overloaded functions because the debug (-g) swi tell 

was selected for the compile instead of the optimize (-0). Inlilling the code would makp 

the time ratio similar to the instruction ratio which would mcan 89% of LIu' ('Hidc'lIcy of 

regular pointers (expected time of 91 sec). 

The other operations common ~.o both versions of the test can be at.t.l'ibutc·d for th(' 

remaining 81 seconds, The machine instructions for those common Iines is estirnat.c·d t.o bp 

around 13 for the outer loop and 13 for the inner loop. 

This is the minimum code needed to traverse a singly linked list. without. doing ttnyt.hiJJg 

else. To do anything meaningful to each node during the traversai the> iÎJJ1P pp!' itp!'atioJJ 

in the Ioop could easily be augmented by a factor of 2 to 4 (as seen in LlJ(' test. a single· 

function calI almost doubled the time), and thereby bringing the Iist traversai speed of 

smart pointer t.o 94-97% of the regular pointer. In practice hùwever, one (~otlld expect 

much heavier operations to be executed in the loor, which could hclp to fUl'ther minirnizc' 

the difference between a swizzled smart pointer and a regular pointer . 
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5.6 Object loading and saving performance 

Ncxt, il> a cornparison of the loading and saving times of objects using the smart pointer 

library versus regular NFS based disk access. 

5.6.1 Test description 

To perforrn aIl the dcvelopment and tests a substitute server was used, since the real server 

[2:IJ was not completely functional. The substitute server has a subset of the functionality 

of the real server that is sufficient to evaluate the prototype. 

The substitute server 

The substitute server is made of two files, an index file and a data file. The data file stores 

the ascii string that represents the objects. Each entry has a fixed size which is slightly 

larger than t.he average object size. The index file contains a list of object names and their 

offset. in the data file. When starting the server, the index file is loaded into a memory 

AVLMap, that. is used as an associative array to get the offset of a given object name. 

This solution is very simple (given the use of the AVLMap from libg++) yet reasonably 

efficient.. 

The front end of the server was already written and ready to interface with the real 

server so no extra work was required. 

Description of the NFS disk load/save test 

Due to tll<' different methods used for the reading and writing information between the t\\'o 

systems, a crude and straight forward implementation of direct disk reading and writing 

of objects was made. 

The test borrows the disk access primitives from the substitute server to read from the 

index file, and retrieve the ascii string encoded object. One by one, it loads the objects from 
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file and dynamically alloeates the memory in an attempt 1.0 ('l11ulat(· II\{' basic I)('hé\\'ior of 

a working system. The system timestamp (granularity: 1 second) is print,<:'d (JIH't' at 1 ht' 

beginning of test test and again when the loading is finished, 

The second part of the test opens a new file in the sanw directory as tlw original 011(' 

and writes the objects to it one at al. time, When this is finished, the s)'st('111 ti11l1' is pl'illt,!'d 

again to get the write time, 

Because this test code shares the same disk data format. as U1(' subst.it utf' SPI'\'('I', it. is 

natural to use the data files generated by the testing of the persistent objcct, sil\'Îng sell<'nlf', 

No attempt was made at trying to makc the object storag(' non seqm'ut.ial ill t.he disk, 

mainly because it would have involved rewriting another set. of disk 1\('(,(,S5 rOIlt.ÎIlC', TI\(' 

down side to this is that the disk readin:!;/writing takes full advantagC' of tTNIX/NFS disk 

caching thus considerably decreasing the read and write times for smaller ohj('('t.s, 

Description of the Persistent object load/save test 

This part of the test is divided in three programs, the server, th<, writ.illg t.1'St. and OH' 

loading t.est. 

First the writing test is run, which creates a singly linked Iist made of a givl'J1 11111111>1'1' 

of persistent objects of a specifie size. Eaeh object points to the []<'xt using a slIIart. poiJlt,c'r, 

Once created it proceeds to print the system time, traverses the list, saving (,(lell e1errH'lIt. 

to the server, and prints the system time once finished. 

The load test initializes a smart pointer with a weil knowll nalllc' (tlw lIill1l(' of t.he· 

list head) and starts traversing the list. Each time it tries to derefel'ellcc' a Slllilrt point.c'" 

through "->" the next object is loaded. The system time i~ printed al, tlll' hegilJning alld 

the end of the load test. 

Note that no optimization switches were enabled, to guarantee that OH' compi 1er woulcl 

not optimize out the test. Despite this precaution, it was observeu carlier that. t,/w compilc'" 

did not inline sorne operator overload as expected and therefore the smart. pointf'f tests 

showed slower results than expected . 
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Test setup 

The tests were executed using the following setup: 

• client machine: spare-II, 52Meg RAM, 90Meg swap space, 

• server machine: spare-I+ 28Meg RAM, 130Meg swap space, 

• operating System: SunOS 4.1.1b, 

• compiler: gcc 2.4 .. 5 with -g option, 

• network: ethernet with collision rates peaking at 15%. Care was taken to run the 

tests off hours and monitored for excessive collision rates. Empirical measures showed 

that an error margin of up to 10% could be caused by network collisions. 

5.6.2 Results 

The tests were made using objects of size ranging from 512 bytes to 32K. The number of 

objects ranged from 10 to 1000. 

OBJ SIZE Il 512 1 2K 18K 1321\ 

10objects: 3 2 2 5 

100 objects: 21 21 21 48 

1000 objects: 202 200 206 420 

Table 5.2: load time using smart pointers (in seconds) 
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OBJ SIZE 1151212K 1 81\ 132K 

10 objects: 1 1 1 2 

100 objects: 1 1 4 21 

1000 objects: 2 14 46 205 

Table 5.3: load time using nfs (in seconds) 

OBJ SIZE Il 512 12K 1 81\ 1 321\ 

10 objects: 4 3 3 5 

• 100 objects: 21 20 21 44 

1000objects: 233 201 211 480 

Table 5.4: write time using smart pointers (in seconds) 

OBJ SIZE 11512 12K 1 8K 1321\ 

10 objects: 1 1 1 3 

100 objects: 1 1 7 26 

1000objects: 3 16 65 366 

Table 5.5: write time using nfs (in seconds) 
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5.6.3 Results analysis 

As expected, reading/writing on the server server end and transmitting objects between 

the server and client through sockets requires significantly more time than having each 

client directly reading from disk. However, going through a server makes a number of 

advanced services possible. 

Times for load and save of persistent objects ranging in size from 512 to 8K are all 

idcntica1. This suggests that there is a fixed overhead associated with the loading and 

creation of new objects which greatly outweighs the manipulation time of the data for 

small objects (smaller or equal to 8K). Loading objects four times larger (32K) only takes 

double the time. This shows an area for performance improvement: the base overhead for 

small objects. This improvement is a fixed overhead not proportion al to the amount of 

dat.a loaded or saved since the times are identical for objects from 512 to 8K. When the 

objects are loaded, a memory allocation is made and the constructors are called to create 

the new objects. When saving however, the objects are not freed and no constructors or 

destructors are called. The only operations in corn mon are the socket communications to 

the server. In other words, to improve performances on small objects, efforts have to be 

conccntrated on network link and server overhead reduction. 

The 8K boundary coïncides with the 8K page size used by NFSjUDP and might have 

sorne effects on the performance jump between 8 and 32K. However, it cannot be the sole 

explanation for the differences since both the persistent object and the NFS scheme show 

these differences (although in different proportions). 

This jump in the times can be attributed to sorne of the inefficiencies of the prototype 

(the implementation, not the concepts). In the eurrent prototype, the data is copied many 

times from one layer to the next, before it is finally copied to the right data member of the 

ob ject (an instance of c1ass String). 

In the NFS based t.est, the times for smaU objects «= 8K) in quantities of 10 and 100 

are around 1 second. These times eompared with the same objects in quantities of 1000 

or larger objects (32K) clearly show the effect of the NFS cache on small objects (a larger 

number of smaU objects can fit in the cache). This explains the large difference in times 
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between the smart pointer and the NFS approach for those Rlllall objets. 

Any useful comparison between the smart pointer and the NFS scheme is mad(' impos

sible for those small objects because the NFS cache reads themall inoneop<.rat.ioll.lt. 

would require too great a number of small object.s to makc the cache eff('ct, negligible. 

A major optimization for large objects would he 1,0 design a mOl'e specializ('d string 

class that could accept a pre-allocated buffer containing a string as an argument. t.o olle of 

its constructors, rather than allocatillg a new buffer and recopying the string. 

A detailed profiling exercise would be needed 1,0 precisely pin point oUler major sources 

of improvements. The name lookup in the loaded object. t.ree is cxpccted t.o be anoth(>1' 

weak point since none of these operations have been optimized for s)Jeed in the prot,ot.yl)e. 

No matter what improvement are made, the results will always he slowc)' t.han NFS 

access. This is the cost of having access 1,0 a database. Optimizations can however, tl'y t.o 

minimize this cost. 

Another study [23] shows a clear comparison of read/write times of various acccss typeR 

for VLSI objects. The performance comparisons are similar 1,0 the on es found hcre (for 

the larger objects), and clearly show that the approach taken in this work is nevcrt.hcl('ss 

faster than interfacing tù a relational database. 

5.7 Comparison of design goals and prototype func

tionality 

This section looks back at the original design goals and looks al, the prot.ot.ype t.o m(~aSl1re 

how weIl these goals were achieved: 

• support for complex object: Full support 

• version control: Full support of version number and timestamps. 

• inter process notification: Not supported by the prototype, 
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• autornatic version translation: Supported. 

• ease of dcveloprncnt for new tools: The detailed steps needed to use the library 

arc described in section 4.6. The pre-processor has not yet heen written. However, 

tem plate files exist that the user can fill for the load and serialize function and a 

single quick-reference sheet should he enough for a user to feel comfortahle with the 

lihrary. 

• ease of integration of existing tools: If the user program is single threaded and written 

in C or Ctt, the user can simply modify his classes to inherit from the PersistentObj 

class and follow the other steps to get things working. Note that change a struct into 

a c1ass, ail you have to do is to change the word "struct" to "class" and add the 

keyword "public:" on the first line of the definition. The program can keep using 

regular pointers to access the objects because the program is single threaded and 

therefore no other process can unload objects without the main program's knowledge. 

The initialload is done by dereferencing a smart pointer containing the name of the 

object to load (the same pointer can be used many times by just changing it's name). 

The unload and save are taken care of automatically at the program termination . 

• portability: This system is directly portable to any UNIX system that supports the 

BSD sockets, and for which there is a port of the gnu C+t compiler (it currently 

supports 33 architectures) . 

• versatility in client/server distribution: The prototype is fully versatile in its ability 

to mou nt any number of servers on the loaded object tree for transparent access by 

the application. 

5.8 Future development 

Future development can he divided in three parts, features planned and designed for re

lease 1.0 that did not make it into the prototype, performance improvements and new 

functionality . 
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Features that did not make it in the protot.ype: 

• dynamic type checking, 

• pre-processor to help automate library interface st.ub generat.ioll, 

• data and function notification. 

Areas of performance improvements: 

• minimize the recopying of data through the different layers, 

• use XDR proto col and binary disk format to save space and run faster, 

• use a UDP with packet count and retransmission protocol similar to NFS rat 11er thall 

the heavier Tep /IP, 

• do detailed profiling to identify further improvements . 

New functionality: 

• a high level project manager. 

• a sophisticated version and configuration management, 

• study the possibilities for integration with CORBA communication illfrastructure. 

5.9 Conclusion of the evaluation 

This chapter evaluated the prototype CAD storage framework. The' rcsults sJIOW t.hat. 

most of the functionality described in the previous chaptcr was successfully implcrnented 

in the prototype. The memory and disk overhead were shown to be acceptable and in most 

applications the performance of a swizzled smart pointer is comparable to that of a rcgular 

pointer . 
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The loading and saving of objects with the prototype was observed to be about twice 

as slow as Ioading the same abject directly from NFS (for large objects). The overhead for 

sm ail objects is higher and useful comparison with NFS is made impossible because of the 

NFS caching. Major areas and methods for improving performances were identified and 

areas of interest for future development were listed. 
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Conclusion 

The goal of this thesis is to satisfy the need for a modern CAD VLSI franH'work. '1'0 

meet this requirement a study of sorne existing systems, their strcngths and short.collling 

is presented. A list of desirable features for a modern CAD framcwork is laid out. and th(· 

architecture of the foundations for such a framework is described. 

The architecture describes a multi client / rnulti server scheme where an'css t.o the 

server(s) is transparent to the client application. The server part is implemented in anot.hcl' 

thesis [23]. It is an object oriented database management system (OODBMS) with versatilf' 

storage granularity, a no-overwrite policy, concurrency control and basic versionillg. 

This thesis concentrates on the client library and networking facilities but also describcs 

the concepts of the global architecture. The architecture describes the concepts and irn

plementation methods to provide rich modeling capabilities, version control, concurr('ncy 

control and transparent network access to multiple databascs by a single client through 

object persistence. 

The irnplementation is done with an object oriented language allows easy integratioll 

of existing tools and easy migration for developers using the "c" language. The language 

chosen is "C++". 

The heart of the client architecture is a base class library from which the uscr's classcs 

are derived to obtain object persistence and other features listed above . 

103 
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In addition to these basic requirements, the thesis describes automatic version transla

tion upon loading an object instantiated frorn an oIder version of the user's classes. It is 

also concerned with portability across multiple UNIX platforms allowing clients of different 

architectures to access the sarne server. Port abili t y is achieved through the use of "C++" 

and the Berkeley sockets Iibrary available on rnost UNIX platforrns. 

A description of more advanced features such as project manager, data and method 

notification is also presented. 

As proof of concept, a working prototype of the client library and networking modules 

has bcen developed and tested. The prototype implernents all of the concepts discussed 

above with the exception of notification and project manager. 

Although the prototype is not implemented with performance or resource saving in 

mind, the test results show sorne moderate costs in mernory, disk and processing overhead 

in the object persistence mode!. 

Areas of performance improvements and rnethods to achieve them are described and 

ideas for future research and development are presented; the main topics are notification, 

project management and integration of CORBA compliant communication infrastructures. 

The architecture is functional and with sorne performance improvements could be used 

as the foundation for a working highly versatile and expandable CAD framework . 
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