Su orm$ |
may have been removed from
this dissertation.

While these forms may be included
in the document page count,
heir re

Babak Mahdavi

School of Computer Science
McGill University, Montreal

August, 2002

A thesis submitted to the Faculty of Graduate Studies and Research in partial {ulfilment
of the requirements of the degree of Master of Science.

Copyright © 2002 by Babak Mahdavi

3

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

| Lol]

Canada

Your file Votre référence
ISBN: 0-612-88254-3
Our file Notre référence
ISBN: 0-612-88254-3

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

The Multidisciplinary Design Optimization (MDO) can be defined as a methodology for
the design of complex engineering systems where collaboration and abilities to mutually
interacting between different disciplines are fundamental. The goal of MDO is to meset
the needs for increased interdisciplinary interaction and communication and to reduce
design cycle time. It provides a mean fo integrate two or more design disciplines under
the same optimization environment. It is a collection of tools and methods that permit the
interaction between different disciplines involved in the design process. it enables the
efficiency of designs 10 be optimized while supporting trade-off studies between the
design objectives of diverse disciplines. Multidisciplinary analysis and design are often
carried out by geographically dispersed engineering groups in a heterogeneocus
computer environment. In such a collaborative design environment, engineers working ai
geographically distributed locations can make a good design decision in a reduced
timeframe, realizing lower product cost. In aerospace industry particularly,
multidisciplinary optimization methodologies have necessitated the development of
frameworks or problem solving environments capable to meet the needs of MDO
practices. This framework can be defined as a hardware and software architecture that
enables integration, execution, and communication among diverse disciplinary
processes. In this thesis, Virtual Aircraft Design and Optimization fRamework (VADOR),
a distributed, object-oriented, component-based framework enabling MDO practice at
Bombardier Aerospace is introduced. The purpose of the VADOR framework is o
enable the seamiless integration of commercial and in-house analysis applications in a
heterogeneous, distributed computing environment, and allow the management and
sharing of the data. The VADOR distribuied environment offers visibility to the process,
permitting the teams to monitor progress or track changes in design projects and
problems. Documentation of the MDO process is vital to ensure clear communication of
the process within the team defining it and in the broader design team interacting with it.
VADOR Is implemented in Java, providing an object-oriented, platform-independent
framework. The concepts of design pattern and componeni-based approach are used
along with multi-tiered distributed design to deliver highly modular and flexible

architecture.

L'optimisation multidisciplinaire (MDO) peut étre définie comme une méthodologie pour
le design de systémes complexes d'ingénierie de conception ol la collaboration et les
capacités a interagir mutuellement entre différentes disciplines sont fondamentales. Le
but de la MDO est de satisfaire les besoins accrus d'interaction et de communication
interdisciplinaires et de réduire la durée du cycle de conception. Elle fournit un moyen
d'intégrer deux ou plus des disciplines de conception sous le méme environnement
d'optimisation. C'est une collection d'outils et de méthodes qui permettent l'interaction
entre différentes disciplines impliquées dans le processus de conception. Elle permet
d’'optimiser le rendement des designs tout en supportant les études d’harmonisation
entre les objectifs de conception de diverses disciplines. L'analyse et la conception
multidisciplinaires sont souvent effeciuées par des groupes dlingénierie
géographiquement dispersés dans une configuration matérielle hétérogéne. Dans un tel
environnement collaboratif de conception, les ingénieurs travaillant dans des endroits
géographiquement distribués peuvent prendre des bonnes décisions de conception
dans un espace de temps réduit, réduisant ainsi le codt du produit. Dans l'industrie
aérospatiale en particulier, les méthodologies multidisciplinaires d'optimisation ont rendu
nécessaire le développement d'infrastructures ou d'environnements de résolution des
problemes capables de satisfaire les besoins des pratiques en matiere de MDO. Cetle
infrastructure peut étre définie comme une architecture matérielle et logicielle qui permet
Fintégration, I'exécution, et la communication parmi des processus disciplinaire divers.
Dans ceite these, Virtual Aircraft Design and Optimization fRamework (VADOR), une
infrastructure orientée-objet, distribuée et basée sur des composants permettant
['utilisation de la MDO au sein de Bombardier Aéronautique est présenté. Le but de
VADOR est de permetire [intégration fransparente des applications d’analyse
commerciales et internes dans un environnement de calcul distribué et hatérogene, et
de faciliter la gestion et le partage des données. L’environnement distribué de VADOR
donne une visibilité au processus, permettant & 'équipe de surveiller le progres ou de
repérer les changements dans les projets et les problemes de conception. La
documentation du processus de MDO est essentielle pour assurer la communication
claire du processus au sein de I'équipe qui le définit et de I'équipe de conception plus

large qui interagit avec eille. VADOR est implanté en Java, fournissant un cadre orienté-

objet et indépendant de plate-forme. Les notions de modéle de conception, approche
basée sur les composants et un design multi-niveaux distribué sont également employés

pour fournir une architecture fortement modulaire et flexible.

“If I have seen far, it is because | have stood on the shoulders of giants.”

| like this statement from Sir Isaac Newton which | assume can describe well
my very strong gratitude towards people who helped me in one way or another in
this thesis research project. | would like to thank my research directors Professor
Ozell, my external supervisor from Ecole Polytechnique, for his inestimable
commitment and his immense wise guidance throughout the course of preparing
and analyzing the material presented in this thesis, and Professor Newborn from
McGill for his immeasurable devotion 1o helping see this project through to its

final completion, and his generous and judicious direction.

I would also like to thank Professor Trépanier and Professor Guibault for their
key roles in the VADOR project, as well as all the former and current
professionals, students, and trainees involved in its development, contributed in
one way or another to the advancement of this framework: Yun Wang,
Abdulsalam Alzzubi, Amadou Ndiaye, Djamel Bouhemhem, Bin Chen, Daojun

Liu, Qun Zhou, Christophe Tribes, Sébastien Carton and Franck Anouan.

| would further like to thank David Leblond from Bombardier Aerospace, who
generously provided me with feedback on VADOR assessment in performing
their selected processes at Bombardier. His presence at our weekly meetings,
along with Francois Pépin, were of assistance in the constant evolution of the

YVADOR framework.

I would like to recognize Fassi Kafyeke from Bombardier Aerospace for
supporting the VADOR project, J. A. Bombardier Foundation and the Natural
Sciences and Engineering Research Council of Canada (NSERC), for their
financial support, and Centre de Recherche en Calcul Appligué (CERCA) for

providing a pleasant R&D working environment.

Finally, | would like to thank Homayoun, Lise, Nagi and Shahrzad for

encouraging me to continue and complete my master degree.

This thesis is dedicated to the soul of my father who departed to the heavenly

kingdom during the first semester of my master programme at McGill.

ABSTRACT 2

RESUME 3
ACKNOWLEDGEMENTS 5
CHAPTER 1 : INTRODUCTION i
I IMIOTIVATION oottt ice ettt eee vt tttrass b eeena s st b e sansbeesaeasaassnssrs s vossnsssssnsssssarsessaesonsnntansrnssiseranssssrnnssns 11
1.2 METHODOLOGY AND UBJIECTIVE .ttetieieriiisiiieinssiatenereessisitiseessoesaos sessasssssesessoessessssnssssesssessesosansnras 14
1.3 SCOPE OFPRESENT WORK AND THESIS CONTRIBUTION ...ucvvereiirieioserinrcnrireeeersassssesssssstenssessssssnrsees i7
1.4 OVERVIEW AND STRUCTURE OF THESIS .1 reteerirrriaeretiiieeeiiitriuteessiosiesassssssssasssasssissomsssssmnrssesisosssssnees 20
CHAPTER 2 : BACKGROUND 2%
2.1 RESEARCH IN MDO’S CONCEPTUAL COMPONENTS ..ieriererircrtrinrrcerereersevarvasscrssreesrsersesersssssnssessons 21
2.2 MDO TECHNOLOGY OBJIECTIVES o ceririearisieaassisscsraeseesarssssssessessssasisssssssssssnsessssiassessinsssstsssensos 23
2.3 MO FRAMEWORK 1eoctteeiteieeeeraeieeeeseetseesasastenraseeasssaserteneasssssesasssssssannnsesessanretoessnssessessnnnessasresnes 24
2.3.1 Requirements for a Large-Scale MDQO Capabilityovoeeirciriccvnriiceinecereecreeses e 24
2.3.2 Framework ODJeCtiVesocoueviaeieieeneeecte s eite st as e es e e e st e st e sbessaesseneseesanesinens 25
2.3.3 Framework ReqUIFEIENESccouivveieririiitiomneeeete et st ess st sesee e san e cnssennannanes 26
2.34 AAVANCED MD O FrAMEWOTES ..vovveveieiiieeeieeereiiiieeeeecisireerieessaesesiessessssasssnsrassssssasssssisssseseesrosone 28
CHAPTER 3: VADOR FRAMEWORK 50
3.1 INTRODUCTION TO VADOR ..ottt te s et taee st s e sassasssnsssssas s tnnes s ansessass sossneeneessssssinen 50
3.1.1 VADOR QBJECIIVES «.eveecer e eeiariee et estassea e eatssssesstessaastassasesssesassassnssssasssenssesinsessessnsonsennsens 51
3.1.2 VADOR SPECIfICATION «.cooceeireeeereeineecearete s sasssssessssaeesssasssaneesssaasesneassssasesanecntessssnesas 33
3.13 VADOR Current CritiCOl REVIEW ..c.....oooevivveivrriieeeiee s eeasseestatssssseasssssssssessmerseneessssensesaesse 56

3.2 OBJECT-ORIENTED DESIGN BY AN OBIECT-ORIENTED TOOL ..ovoeiveeee ettt 57
3.3 VADOR DATAMODEL ...oooiioeeeee e et aeeeeeear s eeaeessse e s st e e e srnnnese s semessarsenneesanneaeeserreseeas 59
3.4 A COMPONENT-BASED DEVELOPMENT .uvvitcititiiriereremiesstiereesansstrteeseesssasiesossssesssiasssnsssssessesserassssssses 60
3.4.1 Contract AWATe COMPORERLS.......covveiiciiriretensecctnisierie e sise st sosensess e sectrenssaessessaserarsesnesesen 62
3.4.2 Data COMPOTERLc.ocoeeiairireiirrersae et easre st et ete st s se e e bt e e b eear e e s st e et e nee s e aerasaeeennneasees 63
3.4.3 Strategy COPPORENL.........ccccccvrereiiiie et eire et rtrete ettt e st ee et e e as it e st asneenesanssecnensesaneesenaas 65

3.5 DESIGNED BY PATTERNS. ..eureeieiirereeetrsrtesreeasseresssisereessesssssssessassnserssosssmmsssssonsstessssssssssessansesssssseses 68
3.6 VADOR DISTRIBUTED ARCHITECTURE .ciiitiiiiiivretisititreisiessimeiaeeresessasessessasssnssanbsaassessssssnssssenscsraeas 71
3.6.1 VADOR LIDTOITAT....oooooeeereeeeeeeeeeeee e eee et e tesattenesemene e nen e e e nenesananeaenresenanameanannemeromanannn 74
3.6.2 VADOR EXCOUIIVE. c.ceeveeeiieeeeaeeeeee e ee et e e e eee e eeem e anrassaaersnevasasaaeemsinn s anaeeaeinaeeenemnanes 76
3.6.3 VADOR CPU oo e e eeeeeeeser e e e e e nes s eenaes e e eenraenasasmnsnsenaseneennnnnnneas 79
3.6.4 LOAA BAIATICIRG .ottt ettt ettt b et ams sttt n e saaneren e s smeen 82
3.6.5 VAIDOR GUI ..ot eeter e eettteen e reeamtrsstveesenaeeane s stratssassnnasseassssnssaenesseeessnrtesanssanns 85
CHAPTER 4 : OPTIMIZATION ISSUES 89
4.1 OPTIMIZATION PROBLEMoveiiiii ittt eee et e e eteeeeraa s aeset e eaeessaneaesemsnesssenssnsneaerarnnesessrinnraeenas 89
4.2 IMPLEMENTATION OF OPTIMIZATION CAPABILITIES IN VADOR oot seee oo, 91
CHAPTER 5 : CASE STUDIES 95
5.1 DAMAGE TOLERANCE ANALYSIS ..ot ioctieeeeeeeeeeereeesetteeaarttae e enenasaeeeeseraeeeeantanssnsssseseanssnnerennnes 95
5.2 AIRFOIL SHAPE OPTIMIZATION ..ot iieiititrriieeiereeeseesssesstaeaeessestressanesiessesiesssiossssntessesssressnsseossrssensone a8
5.3 BEND AND ST iriiiiii ittt ettt ee e e oot eereeeesessteneeaeasse s s srssantasesoeaannsersassnnsarseaaesnsesanes 101
S PREAN S D it e et et e e ettt et e e e s e sttt aaaens s aeasion et b e nesastbaneesiensearne 103
5.5 OBSBRVATION RESULTS ON IMPLEMENTED CASE STUDIES ...civooceeverterceeereeseeessirracsnmrrsneseseesinannes 105
CHAPTER 6 : FUTURE WORK 167

CHAPTER 7 : SUMMARY AND CONCLUSION 111

APPENDIX A: NOMENCLATURE iie
APPENDIX B: UML DIAGRAMS.... 118
B UL PACKAGE ..cuveeiereerairesteececsraeneseestensteseestsenessersasenmesstsonsesssesassaresstosss saoeseasssseesumessasssessssasressssans 118
BI.J VADOR PACKIGES creeueivieeiireiiceeeietisereraveensessest e s sresenssssctssnsan e sans sasstons s asmsss s nenssansracsnranss 118

B2 UL CLASS DIAGRAMS o cretretveereeeraieeranesesiararaseatesasasensessaeseesesssassesscasetnstsasss enmsasasarcss sosssssssosereevarases 119
B.2.1 DataComponent Class DIQZram.......ccoi e eesessn s siaecaaveassss s 1i9
B.2.2 StrategyComponent CLass DIGQrami......c.covvicnimrecenneencrinncninenininesissressssssssersssesnsesasssres 120
B.2.3 Librarian Class DIOZIami. ... oo ieetsetscviteeeestanasestenseestesasssnsrasstsanensssssnsssnsssesaes 120
B.2.4 Executive Class DIGGTaMLcccrviioranii ittt st s sasnss e sis b ssnn et bsanesne s e 121
B.2.5 CPU Server (Wrapper) Class Diagramcccooovvivvviiiniiciiininnine s i 121
B.2.6 Loadbalance Class DIGGrami...........occcvieeimmiceivenieieetenesaeesessnesseneetsnssiosssissssssssssssmssssussssans 123
B.2.7 VADOR Search Class DIGQramt ...c.uvevevcvconieriicsrennicontensces e cincessessssensssresssssssesnssneones 124
B.2.8 DBEExplover Class DIGGIAMc..coceiiiiiriercreciiiisiiinie et sesva et st ssst st s sssrasnareseees 124
B.2.9 Network Tools’ Package Class DIGETamlceceveereericeiroricieiireicsiseeiic st sssssesns 124
B.2.10 VADOR Observer Package Class DIQGrami.........cccccconvircivvinnninicininnnis e e sessn s 125

B3 UML SEQUENCE DIAGRAMS ..coteeriierecirersesssereaessesaeaasasteeesessaessssstanssssaeransaceaasssnanesserssasinssesinessnss 125
B.3.1 VADOR CPU (Wrapper) Server Sequential DiGgramccccovivveiricienrininninieenicieneseiennns 125
APPENDIX C: FLOWCHARTS 126
C1 CREATION OF DATACOMPONENTS EXAMPLE ...cocoviiiiiiicciinitctie st srasss e sens e 126
C2 CREATION OF STRATEGYCOMPONENTS EXAMPLEuuviteiiiemiiacisnrererecretererereeseressnseaseenaenssessassnnnnsase 126
APPENDIX D: YVADOR IMAGES 127
D1 VADOR EXPLORER ..oeeviiireieit et ereetceseres s et seescsaesesseseesceneseesesas e saeseeatsassmsinssassssnsssns ssnsnssnnsessnssssns 127
D2 ATOMIC DC BUILDER ..ottt st e st e s rs s assaesas st s st e sse s marssacsssasesse stsessnanssssesesnsnnansnns 127
D3 COMPOSITE DU BUILDER ..covt ettt et sae st ebesasssn s sacssas st s bessbanas smssnsasnssssnenpesnnesas 128
D4 ATOMIC STRATEGYCOMPONENT BUILDER ...ccooviiimiiiiiinicttiit et sns ettt sbe s s 128
D5 COMPOSITE STRATEGY COMPONENT BUILDER ...c.coemueireriaseenecrres s sresae s cessaesestosansssassnsssssssssssnsns 128
REFERENCES 129

List of Figures

Figure 1: MDO principal conceptual components and their breakdowns ..covvvrvevirincciniencee e 22
Figure 2: Example Of 2 SImPIe PrOCESS. oottt e eet sttt tere st se e bes et a b eneseaessenentnane 67
Figure 3: VADOR AFCHILECIUTE ..vveriiriirtieiiiiorieevitrees e sseetesitesss e tssareseeneessesesneassestansesesnsonsseseneessassnssennn 72
Figure 4: A component diagram view of the VADOR architecturecocovevrrenenonececcce oo 74
Figure 5: Process execution distribution 10 VADOR CPU SETVEIS ccveoeriiciie e ccecccrtncesesrcsecerenssinns 80
Figure 6: VADOR GUI ..ottt sttt et e e s e bt b e b e nacsnns 86
Figure 7: VADOR S€arch .ottt et e st sasn e st n e 87
Figure 8: VADOR DBEXDIOTET ..o ittt rcercenente et e s s s ass et s s e ss e sre v se s vt s cannsan 88
Figure 9: Example of an MDO optimization problem.. ..ot eeee s e sene e see e 91
Figure 10: Example of an Optimizer COQ ..ottt e e asa e ses e s s s sn s s ssarresnnsans 92
Figure 11: OptimizerSGY calis 2 s0lverSGY via CONmECION cvovmrriiiiinercicrres e 93
Figure 122 Initial DTA DPIOCESS ..ottt s e st s e nas e e ne e 96
Figure 13: DTA process implemented w1th1n VADOR oottt s e 97
Figure 14: Airfoil shape OpLIIIZAION DIOCESS. .cvviireeteierterereceeetercentereente e taesereeasestesoaste s e aserseraesassasssnins 99
Figure 15: Bend and TwWiSt PrOCESS ..coviiiiiiiirenrieienertiieeresreststeresteeses e castesenetceseaesras e easare s s aeesessessaesnn 101
Figure 16: PRE-INSU3DD DIOCESS c.oicveeiiierciiiiiriniinracrnens e e catetes st esesasecastessesteae s seneaesenessesesnsniessnsessrnses 103

List of Tables

Table 1: Examples of advanced frameworks ...ttt e v e 29
Table 22 Qualifiers GUIE ..oooovv e et ettt et s st et ne ettt 48
Table 3: Review of the advanced framework requIrGmMEntS. ... 49
Table 4: Complete critical review of VADOR ..ottt sn s 57
Table 5: Example of DataComponent atriBUBSooireiiriie e st srcsts s cosee s seesen et eeneas s esneses 64
Table 6: Example of StrategyComponent atfribules ..ot e e 66

10

The increasing complexity of producis in foday’'s marketplace reguires an
increased need for more robust, accurate and less costly design processes.
Today's advanced products challenge designers fo atitain performance
requirements at affordable cost. The rapid pace at which new technologies and
concepts enter these product designs severely limits the usefulness of past
experience as a design guide [1]. Besides, advanced product design requires
multidimensional analysis and simulation, usually within a very synergistic
interacting coupled disciplines environment. Consequently, a new technology to
aid designers working in such conditions throughout the design cycle is evolving;
this technology demands an increasing reliance on processes that incorporate
analysis and optimization. In the past two decades, vigorous research and
development efforts by industry, universities, and government laboratories have
established a foundation for the above process in mathematics, computer
software and hardware, methodology, and engineering practice, which now
coalesce into an emerging technology called Mullidisciplinary Design

Optimization (MDO)".

lotivation

1.1

Industry Canada [2] has identified MDO as one of 50 ksy technologies to be

developed in the near fulure in order 1o maintain the competitiveness and

! Also for Multi-Disciplinary Optimization (MDOQ). In fact, different names have been used to describe this field of emerging
technology. The terms such as: Computation-based Design, Simulation-based Design, Computational Prototyping, and
the Concept of a Design Space are subtly referring to the same technology.

11

prosperity of the aerospace industry in Canada. The motivating factors for a
framework or problem solving environment in the aerospace industry are the

following:
e Aircraft design is multidisciplinary in nature
e Different disciplines execute independent of each other
o Potential exists for concurrent execution of some subtasks
e Hardware requirements vary with the discipline
e Large quantities of data and files are generated
e Potential exists for automating the design brocess

The aircraft industry has given considerable attention to MDO as manufacturers
attempt to reduce the time-to-market of new products. Aircraft MDO practitioners
would prefer to use high-fidelity analysis methods as early as possible in the
design process, where the increased accuracy of the high fidelity methods can
most strongly influence aircraft design. However, the existence of finite
computational resources and time constraints limit the extent to which the high
fidelity analyses may be applied in the early stages of the aircraft design process

[31.

In the aerospace industry, the use of computational fluid dynamics (CFD) and
computational structural dynamics (CSD) is now a part'of the daily activities of
engineers. Furthermore, analysis and design specialists also rely on additional
‘in house" programs tailored to the specific requirements of their tasks. The

computational-based design environment then becomes highly complex and

12

specific 1o each application. Even within a single organization, each department
has its own set of computational tools and programs, and which have little in
common with those from other depariments [4]. As a result of this complexity, the
application of multi-disciplinary analysis and optimization (MDO) practices [5] has
become desirable, although it faces a number of significant challenges, including

collaboration, data sharing and management.

The challenge in applying an MDO methodology in a large aeronautical
corporation lies mainly in the organizational aspeé’ts of engineering design.
Mostly for historical reasons, the design departmenis are strongly segregated by
disciplines such as "siructures,” "aerodynamics,” "loads," "weights,” and "stress,"
each depariment being responsible for specific aspects of the engineering work

required to design an aircraft. As a result, challenges arise for several reasons
[6l:

e FEach department has its own vocabulary and methods and it requires a

substantial effort to generate efficient multidisciplinary communication.

e Discipline specialisis do not want to compromise on the tools used in their
own discipline and recommend using state-of-the-art software. As a resul,
the computational resources required during a design optimization effort

are enormous.

e Discipline specialists need to control everything in relation with the resulis

produced by their codes, in order to ensure their proper usage.

13

e The transfer of information between depariments is praciically never
automated and the transfer of data from the output of one discipline
software to another discipline software frequently requires a several man-

hours of processing by one or more persons.

As a resuli, many design or analysis problems are multidisciplinary; that is, they
require the coordination of information from a number of highly specialized
disciplines. Often the practice has been for specialists to independently optimize
each discipline with limited direct interaction or communication with others. The
development of computational frameworks offers the capability to take up these
challenges via the use of sophisticated computational procedures combined with
state-of-the-art optimization or design and analysis improvement techniques. The
benefils of an integrated problem solving environment lie in the capability to
support distributed analysis, to manage data flow between applications, and to
access geometric design data and numerical drivers such as optimization

methods.
1.2 Methodology and Objective

The term "methodology” is defined as a body of methods, procedures, working
concepts, and postulates. Consistent with this definition, MDO can be described
as a methodology for the design of systems where the interaction between
several disciplines must be considered, and where the designer is free io
significantly affect the sysiem performance in more than one discipline [23]. In
efforts to develop such a methodology that will be successful for aircraft MDO at

Bombardier Aerospace and under the sponsorship of foundation J.A. Bombardier

14

and the Natural Sciences and Engineering Research Council of Canada
(NSERC), Cenire de Recherche en Calcul Appligué (CERCA) is currently
working on a project called Virtual Aircraft Design and Optimization fRamework
(VADOR), to develop a framework for integrating muiti-disciplinary design
optimization, mulii-fidelity engineering analyses programs and for managing the

resulting analysis results. The main objectives of the VADOR project are:

e To develop a state-of-the-art software framework capable of supporting an

MDO paradigm in a collaborative design environment.

¢ To implement within the framework, data management capabilities to

closely follow the design data used and shared by the design team.

e To develop interfaces to selected in-house and commercial applications in

use at Bombardier Aerospace.

e To deploy the framework at Bombardier Aerospace and train engineers in

its programming and use.

All major players in aeronautics (Boeing[7], NASA[8][9], Airbus [10]) are currently
performing research and development in & similar integrated design framework.
As far as the technical engineering deparimenis are concerned, the weakness of
the integration preciudes the application of the MDO methodology in the design
cycle and a possible solution is to integrate the various analysis packages in a
software framework. In all cases, specifically tailored systems are developed on

top of various available distributed computing technologies.

15

The requirements for such MDO frameworks have been written in the form of
specifications which will guide the sofiware development. The specifications
address four subjects: “Architectural Design,” “Problem Formulation
Construction,” “Problem Execulion,” and “Access to Information.” The
“Architecmraf Design” specifications impose an object-oriented architeciure, a
natural GUI, the usage of standard languages and protocols, extensibility, and
the support of collaborative design. The “Problem Formulation Construction”
specifications require configurability through the GUI, the support of legacy
applications and debugging facilities based on history traces. The “Problem
Execution” specifications enforce that VADOR automates the execution of
processes and the movement of data, support user interaction during the design
process, allow users o operate in interactive mode or in batch mode and be
fault-tolerant and flexible. The “Access to Information” specifications compel
VADOR to provide database management features and provide tools to monitor

the status of execution [11].

in fact, when the focus is on applications, one of the main objective of the
framework, namely the management of the data, tends to be overlooked. When
the focus is put on data, applications simply become methods required io
produce or transform the data and the object-oriented paradigm reveals its
fundamental nature. Accordingly, a good architecture for VADOR must be
centered on the data. In the context of engineering design, data is usually stored
in a file server and individual files can be quite large. In addition, these files are

usually not self-describing and the appropriate management of this data requires

16

proper encapsulation into components with the required properties in order 1o

meet the specifications for data management.

d Thesis Contribution

13 S

This thesis reports on VADOR, a new MDO framework developed to help
engineers at Bombardier Aerospace o apply the MDO concept that enables the
efficiency of design to be optimized and supports trade-off studies between the

design objectives of diverse disciplines.

VADOR takes advantage of the Java to deliver highly modular, object-
oriented portable design, using design pattern paradigm, as well as multi-tiered
distributed architecture and component-based design approaches. This approach
differs from other approaches in that all the existing frameworks fall short of
satisfying the VADOR specifications, mostly because of their inability to store, in
an appropriate fashion, the design data and the design decisions making a
complete design project. In fact, most existing frameworks for integration and
MDO propose mainly integration capabilities linked to optimization engines, and

this addresses only partially the VADOR specifications.

The VADOR project was started in September 1999. By the time | joined the
project (January 2000), the VADOR team consisted of three professors as well
as a research assocciate. Currently, almost three years later, the VADOR team
comprises ten people including three professors, two research associaies and

five students.

17

My main contributions fo this thesis are:
Research
e A survey of the previous efforis made in this field

e A study and analysis of the technologies used in the advanced MDO

framework structures, and identification of their strengths and weaknesses

e A feasibility study and an evaluation of the technologies and tools to be

utilized
Requirements analysis and specification

o ldentification and documentation of the exact requirements of the VADOR
large-scale software system, particularly the VADOR prototype, Executive

Server, VADOR Search, Strategy builder and optimization

Conceptualization and design

e Architectural and detailed design

e Specification of particular software systems that meet the requirements
Implementation and module validation

o Development of prototypes and codes

e Testing of individual modules
Integration and system testing

e Incorporation of all the individual modules and testing as a whole system

18

Delivery and maintenance

e Instaliation of the VADOR framework within the Bombardier designaied
infrastructure and modification of the system after the initial delivery as

maintenance
These contributions aim to enable the large-scale VADOR framework to:

e capture in the framework the design methodology in use at Bombardier

Aerospace

e collaborate with teams of engineers geographically distributed and

simultaneously working on a design project
e auiomate the execution of analysis codes and data transfers
e implement single discipline and mulli-discipline design loops
e track the history of a design project or piece of data

e ideniify the individuals working on a project, their respective

responsibilities, and the status of their work
e keep track of the team designers’ comments on a given design or result
® vob’tam a seamless transfer of data between applications
o {llustrate the possibilities of the framework

e ensure a long-term benefit for the industrial pariner

19

verview a ructure of Thesis

Chapter 2 presents a background discussion and a general overview on
Multidisciplinary Design Optimization and efforis on MDO framework
developments. Chapter 3 covers the VADOR architecture and describes its
various key components. The optimization issue and its implementation in
VADOR are discussed in Chapter 4. Some case studies are presented in
Chapter 5. Plans and recommendations for future work are explained in Chapter
6. Finally, Chapter 7 summarizes the research thesis work along with the

conciusion.

20

Aircraft design demands a methodology that is more efficient, and sophisticated
than the traditional serial design approach [12]. That is basically why it has been
gradually replaced by Concurrent Engineering (CE) methodology, which is a
systematic approach to the integrated, concurrent design of products and their
related processes, including manufaciure and support [13][14][15][16][17][18]
[19]. The interaction of all participating engineering groups throughout a large-
scale engineering design cycle is a multidisciplinary effort in a discipline such as
aircraft design. In the 1980’s, the effort to combine the concept of large-scale
multidisciplinary engineering design and Concurrent Engineering led to the new

invented research field of Multidisciplinary Design Optimization (MDO) [20].
2.1 Research in MDO’s Conceptual Components

Some MDO research areas involve efforis in posing and solving large-scale
engineering problems, the iterative system analysis, system simulation and MDO
frameworks. The two main challenges of MDO are computational cost and
organizational complexity. Ozell et al. [11], inspired by Sobieszczanski and
Haftka [23], classify the MDO research fields into the following component
groups: Approximation Concepis, Sensitivity Analysis, Decomposition

Methodologies, Visualization, and MDO Frameworks.

The reduction of time and cost within the multidisciplinary design cycle is a

very common goal of both the MDO and researchers in this area. Figure 1 shows

21

Sobieszczanski’s principal components of MDO and their breakdown into more
specific areas of research [21]. An MDO framework, for instance, can embody
some or all of the found solutions in any of these seven principal areas, in

different forms, such as module integration.

Computer / hardware

o Mathematical | Design-oriented - Search Human Optimization
Approximations Modeling Analysis Decomposition Algorithms Interface Procedures

Neural Non- Costvs. . . .
- | Networks | || Physical | Accuracy —| Hierarchic — Stopping

D.OE. n . _| Inexpensive | Hybrid- B .
B {Taguchi) Physical re-analysis Hierachic Refomulating

® ® @ @ @

@ @ @ @ @

Figure 1: MDO principal conceptual components and their breakdowns

Ikoo [84] also gives a list of the research areas based on categories identified at

National Science Foundation (NSF) workshop:
e (Collaborative design tools and techniques
e Prescriptive models, design methods & normative theories
e System integration and infrastructure tools
e Design automation systems/tcols
e Analysis, simulation, optimization tools

e Formal models of design process/design theories

[\
]

e Design information access and support systems

D Technology Objectives

The fundamental objective of MDO technology is to develop an improved design

capability while considering disciplinary interactions for synergistic affects.

Renaud [1] states that MDO technology is ofien comprised of (but is nof

necessarily limited to):
e analysis that is tailored to efficient repetitive use in design

e analysis that allows for trade-off of solution accuracy for computational

cost
e sensitivity analysis at the discipline, component, and product levels

e optimization which similarly spans the range for detail to overall product

performance
e accounting for uncertainties

e comprehensive, dynamic, and possibly distributed, large database

management tools
e data visualization capabilities

e user interfaces that engage the designer in the process

23

Rogers et al. [24] define a framework as a hardware and software architecture
that enables integration, execution, and communication among diverse

disciplinary processes.

2.3.1 Reguirements for a Large-Scale MDO Capability

in the constantly evolving large-scale engineering design discipline, and
particularly Multidisciplinary Design Opilimization, Sobieszczanski [5][20][21][23]
made an important contribution. In his review, Sobieszczanski identifies six
important attributes that an MDO environment should have in order to support

computational based design. These six attributes are[5][22]:

1- Computer Speed: the ability of the computer environment to provide
answers rapidly, ideally in the order of seconds, in order to support the

designer's creative train of thought.

2- Computer Agility: the ability of the software environment to provide a
seamiess transition between computational tools and models of various

levels of accuracy, ranging from conceptual to detailed design.

3- Task Decomposition: the ability of the MDO system optimization
software to allow teams of specialisis to work concurrently on an MDO

problem.

4- Sensitivity Analysis: the ability of the software environment o generate
results on the sensitivity of the resulis to the variables conirolled by the

designer. This important information answers direclly the What if?

24

question and provides the designer with knowledge without the need for

re-analysis.

5- Human Interface: the ability of the MDO sofiware and hardware
environments to provide a designer with a form of data easily absorbable
by human senses. This means the user interface to the MDO system
should be through a naiura! and simple GUI and the analysis of results
should use high performance virtual reality-type visualization for

communication.

6- Data Transmission: the ability of the computer environment to transmit

automatically, reliably, rapidly, and securely huge amounis of data.

These six attributes are for now only partially available to design engineers.
improvements are expected from various sources, including the increase in
computer power (and particularly the efficient use of massively parallel
computers), the increased reliance on computer science expertise and
technologies, the improvement in efficiency of disciplinary optimizations and
sensitivity computations, and the development of specific MDO methodologies
and strategies. The design of a software framework should provide all these

attributes for creating an ideal MDO environment.
2.3.2 Framework Objectives

The primary aim is to create a hardware and software architecture that provides
support for multidisciplinary design optimization application development and

execution. Most of the time, the resulting framework identifies means for reducing

25

the time and cost associated with the multidisciplinary design cycle. If MDO can
be defined as: “How to decide what to change, and to what extent {o change it,
when everything influences everything else,” [25] MDO framework objective can
be described as such a framework software enabling these changes can be

made. In general, the two most common objectives can be described as [26]:

e development of a state-of-the-art software framework capable of

supporting the paradigm of MDO in a collaborative design environment.

e implementation in the framework of management capabilities to closely

follow the design data used and shared by the design team.
2.3.3 Framework Requirements

Salas and Townsend [27] from the Multidisciplinary Design Optimization Branch
(MODB) at NASA Langley Research Center (LaRC) propose framework
requirements for an ideal MDO at LaRC’s MDO Research. The requirements are

summarized in the four following poinis of view:
1- Architectural Design
A framework should:
a) provide a Graphical User Interface (GUI) that is intuitive.
b) be designed using object-oriented principles.

¢) be exiensible and provide support for developing the interfaces

required to integrate new processes into the system.

26

d) not impose an unreasonable amount of overhead on the optimization

process.
e} be able to handle large problem.
f) support collaborative design.
g) be based on standards.
2- Problem Formulation Construction
A framework should:

a) allow the user to configure complex branching and iterative MDO

problem formulations easily without low-level programming.

b) allow the user fo easily reconfigure existing MDO problem

formulations.

c) support the user in incorporating legacy codes (written in different
languages) and proprietary codes (where the source is not available)

into the MDO problem formulation.

d) allow the user to integrate discipline analyses with several optimization

methods, including multilevel schemes involving sub-optimizations.

e} provide facilities for debugging of multiple processes on computers

across a network.
3- Problem Execution
A framework should:

a) automate the execution of processes and the movement of data.

27

b) be able to execute multiple processes in parallel.

c) support execution distributed across a network of heterogenecus

computers.
d) support user interaction (steering) during the design time cycle.
e) allow the user o operate in a baich mode.
4- Access to information
A framework should:
a) provide database management features.

b) provide the capability to visualize intermediate and final optimization

and analysis results.

c) provide a monitoring capability for viewing the status of execution,

including the system status.
d) provide some mechanism for fault tolerance.
2.3.4 Advanced MDO Frameworks

MDO frameworks and/or problem solving environmenis as a Research and
Development (R&D) area includes universities, industries, and government
research labs. Table 1 summarizes some studied developments in this active

research area [11][27]. The following subsections briefly describe these products.

28

Table 1: Examples of advanced frameworks

Framework Developer Main Purpose
Distributed software integramtion framework; Management of
Access . the computing process and data at Boeing ; Multidisciplinary
Boeing . L
Manager environment that focus less on optimization but more on
distributed heterogeneous computing _
AMI Modeling language for knowledge-based engineering; Focus on
TechnoSoft, Inc. the data involved in the design; Comumercial product
DAKOTA Sandia Naﬁmnal Multilevel parallel framework for design optimization
Laboratories
Web-based framework to reduce design cycle by improving
DARWIN gjﬁg‘ Ames Research access to wind tunnel data; Focus on the data involved in the
design
DeMAID NASA LaRC Desxgg manager’s alq for intelligent decomposition in
multidisciplinary design
University of New . .
FACETS York at Buffalo Simulation-based MDO framework
MDO environment that focuses less on optimization but more on
FIDO NASA LaRC distributed heterogeneous computing;
DISCONTINUED
IMAGE Georgia Institute of Distributed computing and data management utilities; Focus on
Technology the data involved in the design;, DISCONTINUED
iSIGHT fnr::gmeous Software, Optimization toolkit environment; Commercial product
Virtual experiments and optimization based on simulation
LMS Optimus | LMS International programs; simulation management and design space exploration;
Commercial product
MDICE/ CFD Research Multidisciplinary environment that focus less on optimization but
MDICE-AE | Corporation more on distributed heterogeneous computing
MIDAS NASA Jet Propulsion Support mtegratmn for MDO in d.lsm‘but‘ecz3 tI;f,tefogeneous
(OASIS, DEVO) Laboratory environment; Focus less on optimization; er integrated
optimization systems with MIDAS: OASIS, DEVO
Enables multidisciplinary design and analysis of engines;
NASA Glenn e . . N
NPSS Multidisciplinary environment that focuses less on optimization
Research Center Lo .
but more on distributed heterogeneous computing
Phoenix Phoenix Integration . S .)
Integration Tnc. Integrating multidisciplinary problems; Commercial product
Pointer / Optimization and integration;, Advanced computer aided
Synaps, Inc. . .]
Epogy exploration software for engineers; Commercial product
ProFES Applied Research Integrating MDO and probabilistic methods to perform RBMDO;
Associates, Inc. Probabilistic FEA system
University of New
WICKED York at Buffalo Web interface supporting parallel processing for MDO
XCAT/CCAT | Indiana University Managerent of Computational Resources, High Performance

Computing

29

Developed and deployed at Boeing Information and Support Service, Research
and Technology, the Access Manager [28] sofiware framework enables
multidisciplinary design and optimization in a distributed heterogeneous
computing environment. It supports a very flexible process control paradigm.
Open architecture aliowing the expansion of capabilities, object-oriented design,
client/server architecture, coarse grained dataflow and parallelization and
standard user-friendly Motif/X-Windows interface are some of its key atiributes.
Software is coded in C and C++, and the Remote Procedure Call (RPC) is used
{0 enable distributed computing. Ridlon [28] states that Access Manager is
designed o take into account identified needs of engineering users involved in
MDO-type efforts such as the need 1o support existing applications without
7 modification or access fo the source code, the need to support iterative design
and analysis and reuse of results, the need to support large quantities of data
and large file sizes, as well as supports for long running, reusable processes and
data and processes sharing in a distributed environment. With the deployment of
the Access Manager by a number of different engineering organization in Boeing,
Ridion completes that the overall management of the computing process and the
management of the data associated with that process is greaily facilitated using
Access Manager framework. Unfortunately, there is no available information
concerning the eventual current usage of the Access Manager in Boeing or its

research and development discontinuation confirmation.

30

2.3.4.2 AML

The Adaptive Modeling Language {AML) [29][30] from TechnoSoft inc, enables
the multidisciplinary modeling and simulation of the product development cycle.
The AML framework provides a web-enabled, distributed, collaborative design
environment for concurrent engineering. Knowledge-based modeling is the basis
for concurrent engineering and AML presents a unique object-oriented modeling
paradigm to capture domain expertise into knowledge bases fo assist in the
design to production automation. AML is based on the LISP programming
language. Scott [51] reports that efficient usage of AML requires familiarizing with
the LISP language and good understanding of object-oriented programming
practices in ‘general. His report identifies AML’s integrated parametric modeling
capabilities as a strength and non user-friendy environment as one of the
weakness for this framework. AML has been used at Lockheed-Martin in a

design study.
2.3.4.3 DAKOTA

Design Analysis Kit for Optimization and Terascale Applications (DAKOTA)
[31][32] is a noncommercial framework that provides optimization toolkit
capability, developed by Sandia National Laboratories, a Lockheed-Martin
company, for the US Department of Energy’s National Nuclear Security
Administration. Its object-oriented design using C++ provides a flexible,
exiensible, problem-solving environment as well as a platform for rapid
protolyping of advanced methodologies that focus on increasing robustness and

efficiency for computationally complex engineering problems. The same flexibility

31

and extensibility also permiis the interface between analysis codes and iteration
methods. This interface is intended to be very general, encompassing broad
classes of numerical methods that have in common the need for repeated
execution of simulation codes. The scope of iteration methods available in the
DAKOTA system currently includes a variety of optimization, non-deterministic
simulation, non-linear least squares, and parameter study methods. Eldred et al.
[103] report that while DAKOTA was originally conceived as an interface between
simulation codes and optimization algorithms, the new version expands to
interface with other types of iterative analysis methods, such as uncertainty
quantification with nondeterministic propagation methods, parameter estimation
with nonlinear least squares methods, and sensitivity analysis with general-
propose parameter study capabilities. It is a production tool for engineering
design activities and a research tool for the development of new algorithms in
optimization, uncertainty guantification, and related areas. DAKOTA can serve as
a rapid prototyping tool for algorithm development. Data is exchanged between
DAKOTA and the simulation code by reading and writing short data files. Access
to the source code of the user’s simulation software is not required. DAKOTA is
executed through commands that the user applies in an input file. Distributed
computing is supported using Message Passing Interface (MPI). DAKOTA has
been used by Sandia to implement application on massively parallel machines

[32].

32

The Developmental Aeronautics Revolutionizing Wind-tunnels with Intelligent
systems for Nasa (DARWIN) [33][34] created at NASA Ames Research Center
wants to redefine the classic approach to wind tunnel and other aerospace
experimental testing. DARWIN is a framework for providing streamlined
information access of experimental and numerical test facility data 1o
aeronautical customers. The purpose of the improved information accessibility is
to provide aeronautical engineers with essential elements to shorten and
enhance the efficiency of wind tunnel testing in the design cycle process.
Schreiner et al. [104] name five major product elemenis of the DARWIN
information system as: Remote Access System, Integrated Instrumentation,
Intelligent Database, Data Visualization and Infrastructure Enhancement. They
are designed to work together to provide the aerospace customer of the future
with the necessary access to information to greatly improve the design cycle
process by gleaning more knowledge from available data and thus providing the
capability to perform true design cycle i’teratiohs in a single test entry. DARWIN

uses Web technology to access data.
2.3.4.5 DeMAID

DeMAID is not precisely a framework for optimization problem. Created by
NASA, DeMAID stands for “Design Manager’s Aid for Intelligent Decomposition.”
[79] introduces it in the following way: “The decomposition of a complex design
system into subsystems requires the judgment of the design manager. DeMAID

reorders and groups the modules based on the links (interactions) among the

33

modules, helping the design manager make decomposition decisions early in the
design cycle.” This corresponds to the primary goal of MDO, which is to
decompose a large multidisciplinary system into & related grouping of smaller,
more traciable, coupled subsystems. Rogers [80] from NASA LaRC, in his paper
titled “Reducing Design Cycle Time and Cost through Process Resequencing”
states that DeM‘AlD minimizes the feedback couplings that create iterative
subcycles, groups processes inic iterative subcycles, and decomposes the
subcycles into a hierarchical structure. The real benefits of producing the best
design in the least time and at a minimum cost are obtained from sequencing the
processes in subcycles. The DeMAID software contains a generic algorithm that
rapidly examines many different sequences and selects the optimum sequence
of processes within each iterative subcycle. It displays the processes in a design
structure matrix format in which an element on the diagonal is any process that
requires input and generates output. DeMAID is a knowledge-based software
tool for reordering the sequence design processes and for identifying a possible
multilevel structure for a design cycle [81]. It can be used io assist a project
manager in making decisions that can potentially reduce time and cost of a

design cycle [82].
2.3.4.6 FACETS

Framework for the Analysis of Coupled ‘Engineering Techniques in Simulation
(FACETS) [12] [83] is primarily inierested in testing MDO methods and strategies
on a simulation-based level by providing designers with an all encompassing

computational infrastructure. By bringing together these numerous MDO tools

34

and techniques and making them available to a design manager, all in a single,
all-encompassing infrastructure, such a tool can provide an MDO design
manager with a powerful means for identifying possibilities for time and cost
reduction within an existing multidisciplinary design. Developed in
Multidisciplinary Optimization and Design Engineering Laboratory (MODEL) [58]
of University of New York at Buffalo, FACETS contains a multitude of MDO tools
and techniques intended for large-scale coupled system reduction. The ultimate
purpose of FACETS is to provide a preliminary design tool ’that can enable a
design manager to identify potential means for time and cost reduction within the
elaborate multidisciplinary design process, in a simulation-based setting.
FACETS also includes an optimization module, a system planning module, and
an elaborate post-processor for result verification. This computational framework
tool encompassing all of the research concepts provides an environment for
simulating large-scale multidisciplinary design problems, and allows the user to
explore numerous techniques and methods for solution. The benefit of FACETS
is that it allows the user to quickly simulate the structure of a real-life coupled
system, view its initial characteristics, perform some meaningful baseline
calculations in simulation, and then view the final results. Thereafter, the user
can then make judgements and subsequent modifications based on these
results, and can quickly and easily re-run a new simulation in hopes of attaining

better resulis and more useful insight to the true problem.

35

The purpose of the Framework for Interdisciplinary Design Optimization (FIDO)
[35][36] was to investigate the use of a distributed, heterogenecus computing
system to facilitate communications, apply computer automation, and introduce
parallel computing to produce a truly mullidisciplinary process. Developed by
Multidisciplinary Design Optimization Branch (MDOB) at NASA LaRC io
demonstraie the technical feasibility and usefulness for selected distributed and
parallel execution of a multidisciplinary analysis and optimization application by
automating the coordination of analyses in various disciplines into an integrated
optimization scheme, while allowing for visualization and steering by the
designer. Although FIDO was not impiemented as a generic framework for MDO
applications, its development has provided much experience with the issues of
framework architecture and problem formulation. Based on Parallel Vertical
Machine (PVM) for distributed computing, FIDO had a Communication Network
module for connecting computers, a Communication Library module to handie
communications, a Master Scheduler for controlling the interactions between
disciplines and a Data Manager for providing a central database connectivity.
Lack of a research tool, platform-dependency, complex communications
constructs, and complicated switching between discipline codes were some of
the shortcomings of the FIDO framework reporied by Sistla et al. [91]. The
research and development on this framework have been discontinued at NASA

LaRC.

36

Developed at Aerospace Systems Design Laboratory (ASDL) of Georgia Institute
of Technology, the Intelligent Multidisciplinary Aircraft Generation Environment
(IMAGE) was a research project of the Aerospace Engineering Department. lis
modular and distributed computing architecture was used 1o assist in design
activities such as posing design problems, assembling necessary anaﬂyses to
tackle these problems, and executiing them. Hale et al. [37] state IMAGE
infrastructure is comparable to FIDO and other efforts in the development of
underlying computing technologies. However, the IMAGE infrastructure is
designed to expilicitly support general design activities and an information model
within an accountable design context. IMAGE waé taking advantage of PVM for
distributed computing and Berkeley Tk/tcl widget library for developing graphical
user interfaces [38]. With IMAGE, a designer could build easily application-based
scenarios to investigate a variety of engineering systems. El Aichaoui et al. [39]
after doing several examples using the IMAGE system conclude: “Within the
IMAGE environment, improved design can be achieved and high level of
efficiency can be reached.” IMAGE was based on object-oriented model with an
emphasis on reusable components (agent-based architecture). The research and
development on this framework have been discontinued at Georgia Institute of

Technology ASDL.
2.3.4.9 iSIGHT

The original focus of ISIGHT [40][41] is on effeclive design optimization. This

commercial software framework by Engineous Software, Inc., now available in

37

version 8.0, is a tool for integrating analysis codes and solving complex MDO
problems. iSIGHT can considerably improve the efficiency of an MDO process by
using various approximation models [42]. It provides an optlimization toolkit that
enables a combination of optimization methods such as Design Of Experiments®
(DOE), Response Surface Modeling® (RSM), to be applied to the MDO
application. Quality Engineering Methods (QEM) such as Six Sigma* are also
implemented in the framework as well as Monte Carlo® simulation capability.
Engineers can use GUI and its Multidisciplinary Design Optimization Language
(MDOL) for constructing MDO problems. With MDOL, a user can create different
type of ‘blocks’ which handles specific operations such as control flow of the
design problem, simple internal calculation and system-level analysis methods.
integration of CATIA® a commercial finite analysis code used by most aerospace
industry companies such as Bombardier, is also possible in iSIGHT. Sistla et al.
[91] count the shortcomings of the ISIGHT in its handling of large problems, the
requirement to learn MDOL and Tk/Tcl, the lack of database or file management
and debugging capabilities, and its sequential processing on a single host

computer. Scott [51] reports that iSIGHT's major limitations are its inability to

2 Design Of Experiments (DOE) method allows to carefully conirol the number of simulations to run and to determine the
search direction.

% Response Surface Modeling (RSM) is a mathematical model that approximates individual data points.

* Six Sigma is a highly disciplined process that focuses on developing and delivering near-perfect products and services.
Sigma is a statistical term that measures how far a given process deviates from perfection. The central idea behind Six
Sigma is that by measuring the number of "defecis” in a process, one can systematically figure out how to eliminate them
and get as close to "zero defects” as possible.

*Monte Carlo method is useful in assessing influence of variablity on the design after it is optimized,

® Computer Aided Three-dimensional Interactive Application (CATIA) is developed by DASSAULT SYSTEMES and
marketed, distributed and supported by IBM. CATIA is an integrated suite of software applications covering all aspecis of
product design: Computer Aided Design (CAD), Computer Aided Engineering (CAE) and Computer Aided Manufacturing
{CAM), whether by providing the necessary functionality to support collaborative product designs of all types, or the
seamiess integration that allows full support of company processes. hitp//www.catia.com/ ’

38

easily distribute the execution of analyses to other machines, especially across
platform boundaries. As for its greatest strengths, he mentions the system-level
analysis and optimization because of a wide range of opiimization methods
including in this framework, and the ability to run these analyses in paralle! in
conjunction with its extensive system-level analysis capabilities. ISIGHT also
includes a very detailed and flexible means for monitoring/reviewing the results.
Boeing, Lockheed-Martin as well as Bombardier Aerospace are some example of

aerospace industry users of this framework.
2.3.4.10 LMS Optimus

LMS Optimus made by LMS International [43][44] is an environment in which the
user can automatically visualize and explore the design space to gain the critical
insights into the dynamics of the problem. This commercial framework provides
parallel processing capabilities, openness tc multiple analysis codes, and an
intelligent exploration of a range of algorithms to hélp a convergence to an
optimal design. Nonlinear programming optimization techniques as well as DOE
and RSM methods can be performed with this framework. The user employs the
LMS Optimus GUI written in C++ and Molif to define analysis sequence.
inclusion of legacy code in the analysis sequence without modification is also
possible. With the LMS Optimus, one can perform virtual experiments and
optimization based on a sequence of mulliple simulation programs. The tree
representation of the database content, monitoring for failed analysis program
runs, and interactive definition of the inputs, oulpuls and intermediate processes

during a run using GUI are some features of the LMS Optimus.

39

2.3.4.11 MDICE / MDICE-AE

The Multi-Disciplinary Computing Environment (MDICE) [45] developed by CFD
Research Corporation provides an environment in which several engineering
analysis programs run concurrently and cooperatively to perform a multi-
disciplinary design, analysis, or optimization problem. Using MDICE, engineers
are able to couple inherently dissimilar disciplines and programs from a variety of
sources, performing distinct tasks such as geometry modeling, grid generation,
CFD and structural analysis, and post processing into a single software system.
This distributed object-oriented system can achieve a high degree of integration
between the essential engineering analysis tools in a user-friendly environment.
Automatic data transfer along with integration are among the sirengths of this
framework, while database capabilities is not. Paralleled distributed execution of

codes is through PVM, and all codes can run on distributed computers.

There is also another project by CFD Research Center called Multi-
Disciplinary Computing Environment for AEroelasticity (MDICE-AE) [46]. The
purpose of this project is to design a multi-disciplinary computing environment for
performing dynamic aeroelastic calculations using almost any CFD and CSD

analysis codes. The framework is based on a distributed object model.

2.3.4.12 MIDAS

The objective of the Mullidisciplinary Integrated Design Assistant for Spacecraft
(MIDAS) [47] project from NASA Jet Propulsion Laboratory (JPL) is to produce a
graphic tool that allows designers with little or no computer experience to

describe the design methodology that they use to design their paris of the

40

system, and to rapidly link together engineering and manufacturing tools fo
design the product. MIDAS supports integration for multidisciplinary analysis in a
distributed, heterogeneous environment. As a design converges towards ihe
design goal, the users can express the desire to visualize the progress via its
interactive GUI. Graphical connection through interfacing the commercial
products with MIDAS are also possible. There are two other optimization system

development efforts at JPL that are integrated with MIDAS: DEVO and OASIS.

Design Evolver (DEVO) [105], a system for spacecraft design optimization,
aims to provide an optimization tool that is seamlessly integrated into.an existing
computer-aided design (CAD) environment for spacecraft, which enables users
to apply optimization algorithms, with a minimal amount of human effort. MIDAS

is used as the design environment for DEVO.

Optimization Assistant (OASIS) [106][107], a self-configuring tool for
automated spacecraft design optimization, improves system performance by
automatically determining heuristic optimization strategies customized to specific
spacecraft design optimization problem instances. The impact of using such a
tool are the increasing quality of spacecraft designs generated, and the reduction
of human expertise required to perform successful optimization. OASIS consists
of an integrated suite of global optimization algorithms that are applicable to
difficult black-box optimization problems, and an integrated intelligent agent that
decides how to apply these algorithms to a particular problem. Given a particular
spacecraft design optimization problem, OASIS performs a "meta-level’

optimization in order to select an appropriate optimization technigue to apply to

43

the problem and automatically adapts and customizes the technigue 1o fit the
problem. One of the major component of OASIS, called spacecraft design model,
uses MIDAS as for its graphical design environment to aliow users fo integrate a
system of possibly distributed design model components together using a

graphical diagram representing data flow of the system.
2.3.4.13 NPSS

Numerical Propulsion System Simulation (NPSS) [48]{49] is a concerted effort by
NASA Glenn Research Center’ to develop an advanced engineering
environment for the analysis and design of aircraft engines and, eventually,
space transportation components. lts purpose is to dramatically reduce the fime
(up to fifty percent), effort, and expense necessary to design and test jet engines.
Using NPSS, engine designers will be able to analyze different paris of the
engine simultaneously, perforrh different types of analysis simultaneously (e.g.
aerodynamic and structural) and perform analysis faster, better and cheaper. An

object-oriented approach is used to design and built the framework for NPSS.
2.3.4.14 Phoenix Integration

Phoenix Integration [52] solution includes Analysis Server and Model Center [53]
developed by Phoenix Integration Inc. Product design requires the use of multiple
applications often running on different platforms where data must be iransferred

between applications through the design time. The company’s solution is to wrap

"The project is also supported by High Performance Computing and Communications Program {(HPCCP) which aims 1o
accelerate the development of high-performance computers and networks and the use of these resourcss in the Federal
Government and throughout the American economy [50].

42

the applications, integrate the process, and then share the resulis. Analysis
Server can wrap various software applications. Once wrapped, they can be
securely published over the network (authentication is also possible [54]). Model
Center aliows access to these applications and exchange between them in order
to get product optimization, a robust design and even a design for Six Sigma.
Scott [51] compares Analysis Server operation to a Web server, which instead of
hosting Web pages, hosts disciplinary analyses. Analogous to a Web browser,
the Model Center program can access and utilize these wrapped analyses by
negotiating with any number of Analysis Server programs being run on different
machines. Phoenix Integration gets high marks for the intuitiveness and user
friendliness of Model Center, as well as its flexibility in wrapping and distributing
disciplinary analysis. The CATIA software can also be integrated into the system.
Written in Java, Analysis Server can be used on various platforms from Unix-
based to Macintosh. NASA, Boeing and Lockheed-Martin have already adopted

Phoenix Integration in their aerospace design activities.
2.3.4.15 Pointer / Epogy

Before the Epogy release in September 2001, Pointer [55] name was used for
both the optimization core and the process integration software. Both developed
at Synaps Inc., Epogy combines Pointer now [56]. Poinier automatically controls
a group of complementary optimization algorithms in such a way that they can
efficiently solve a wide range of problems in a fully automatic manner. Pointer
can be added to any existing parametric simulation software as an embedded

application. In its combined form, Epogy is Synaps’ Advanced Computer Aided

43

Exploration Software for Engineers. The sofiware integrates the complex system
of commercial and in-house simulation software tools required to perform
multidisciplinary optimization tasks. lts Analysis Scheduler allows to graphically
insert new analyses into the process. Conditional branching, parallel execution
and sub-process execution are supported. Epogy allows the execution of in-
house proprietary and commercial codes with no access to source. Epogy can be
applied to any engineering discipline. For instance, Bombardier uses Epogy to
improve wing design. Graphical stress representation such as NASTRAN® and
other application in CFD, EDA, CAD can also be exploited. Airbus and Lockheed-

Martin are among other customers.
2.3.4.16 ProFES

Sues and Cesare [85] present ProFES as a framework for integrating MDO and
probabilistic methods to perform Reliability-Based MDO (RBMDOQ) [86]. RBMDO
problems can be defined as a class of MDO problems wherein the system
parameters (e.g., material properties, boundary conditions, loads, model
prediction errors) are not necessarily deterministic and are described by
probability distributions. For these problems, the objective is to maximize system
performance (e.g., payload, aerodynamic efficiency) while satisfying constraints
that ensure reliable operation. Since system parameters are not necessarily

deterministic, the objective funcltion and constraints must be stated

% NASTRAN, the NASA Stuctural Analysis System, provides a finite element analysis (FEA) capability for use in
computer-aided engineering in aerospace research projects. NASTRAN is a siandard in the structural analysis field,
providing the engineer with a wide range of modeling and analysis capabiiities.

44

probabilistically. For RBMDO problems the objective is to maximize expected

system performance while saﬁsfying constraints that ensure reliable operation.

The Probabilistic Finite Element System (ProFES) [87][88] application is
developed by the Computational Mechanics Group of Applied Research
Asscciates Inc. (ARA). ProFES enables the user to quickly develop probabilistic
models of personal model executables and analytical formulations. It is a
probabilistic Finite Element Analysis (FEA) system built on an innovative daia-
driven software architecture that seamlessly integrates siate-of-the-art
probabilistic mechanics techniques with commercial CAD software to make it
practical and feasible to execute probabilistic analysis of complex structural
components. The framework includes a GUI supporting a 3D graphical
environment, a probabilistic analysis engine, public domain and commercial
optimizers, and methods to rapidly integrate legacy and in-house applications as
well as third party commercial applications for multi-disciplinary analysis. This
add-on feamre of ProFES permits work with commercial FEA such as
NASTRAN. Only available on a Windows platform, creating customized external
functions to extend ProFES’ capabilities requires a 32-bit C, C++, or FORTRAN |
compiler with Windows application libraries. Indusiry partners in development of
the ProFES deveiopmerit include: Pratt&Whitney and General Electric, both

providers of aircraft engines.
2.3.4.17 WICKED

Becker and Bloebaum [57], in order to demonstraie the potential uses of Java for

MDO problems and effectiveness of using the Internet as a communication tool,

45

presem the Web Interface for Complex Engineering Design (WICKED), a
software that simulates the convergence of a decomposed complex system in a
distributeﬁ computing environment and computes the sensitivity derivatives of the
system with respect to the independent input variables using Global Sensitivity
Equation (GSE)® or finite difference methed. Written entirely in Java, WICKED
aims to support parallel processing for MDO problems on a network process.

This is another development at MODEL [58] of University of New York at Buffalo.

This lab has other interesting ongoing research projects on MDO such as
development of a framework for the solution of simulation-based coupled design
probiems in MDO, development of a virfual visualization environment for large-
scale MDO problems, development of optimal convergence strategies for MDO,
using Virtual Reality (VR) as an aid for solving design optimization problems, and
approximation of GSE using RSM in MDO, most of them sponsored by NASA
LaRC, Lockheed-Martin Tactical Aircraft Systems, and the National Science

Foundation (NSF).
2.3.4.18 XCAT /CCAT

Both XCAT and its earlier implementation Common Component Architecture
Toolkit (CCAT) [59] were developed at Exireme Lab of indiana University. These

CAT’s (Component Architecture Toolkit) are software layers above a Grid'® that

® One approach to MDO involves the use of the Giobal Sensitivity Equation {GSE) method. This method involves the
computation of the total derivatives of a system by first solving for the parilal derivatives of each subsystem. These partial
derivatives are then used fo obtain the total derivatives, algebraically.

" A grid [B0] is a software framework providing lavers of services 1o access and manage distributed hardware and
software resources. NASA's information Power Grid (IPG) [61] and Globus [62] are examples of grid,

46

enables users to make use of the Grid services in order to build and run
distributed component-based applications. XCAT and CCAT are based on
Globus Grid for its core security and remote task creation. However, a Grid alone
cannot, in the near term, enable very large, single problems such as CFD
calculations to be spread across distribuied systems [63]. Both XCAT and CCAT
are implementation of Common Component Architecture (CCA)''. The Extreme
Lab introduces XCAT as an impieménta’tion of the CCA component specification
that can be utilized to build Grid applications in two basic ways: via the generic
application manager and control scripts, and via specialized components built for
the application in question, either in Java or C++. Use of component technology,
object-oriented design, and support of distributed heterogeneous resources
through the use of Globus Grid make both XCAT and its earlier release CCAT
very good and sirong developments from a computer science point of view.
However, the university-based nature of this product usually cannot interest

industries because of the lack of support.

" The Common Component Architecture (CCA) specification describes the consiruction of poriable sofiware components
that may be re-used in any CCA compliant runtime frameworks. CCA consist of two type of entities: Components and
Frameworks. The philosophy of CCA is to precisely define the rules for constructing components and o specify the
required behavior a component must exhibit and the interface between components and the framework. However, very
little is said about the way the framework is constructed or the way the user interacts with the framework to connect
componenis together. The reason for this is that there will be many different frameworks that can be used in very different
situations. Some frameworks will be designed to optimize the use of components that are distributed across a wide-area
grid. In other cases, the frameworks will be designed tc optimize the composition of components that run on a single,
massively parallel supercomputer. The goal is 1o provide a standard way that a component can be built so that it may be
reused in any number of CCA compliant frameworks {70].

47

2.3.4.19 Review of the Advanced Frameworks Requirements

The framework requirements (see Section 2.3.3) review of presented advanced
frameworks is presented in Table 3. it is important o mention that the purpose of
this table is not a direct comparison of these frameworks with each others. Eh
fact, the evaluation of these frameworks is mostly based on very limited available
resources and information about them. Some were simply experimental while
others are now discontinued or are basically not commercial producis, which
makes the accessibility to the resources even harder. It is obvious given, such
conditions, that the evaluation is based on the limited and disproportionate
information obtained from different resources regardless of the other frameworks
estimation resources. The frameworks capabilities in regard to the requirements

are indicated by the five qualifiers shown in Table 2.

Table 2: Qualifiers guide

meets or strongly meets the requirements ©
meets or partially meets the requirements ®
below the requirements ®
not applicable

information missing ?

48

Table 3: Review of the advanced framework requirements

M o Jeedee e o | [@RI & @]l O] D o] ©
SO Do |]|OOO| O Q|| O] @ |||
SO OO OO0 O |0 O] || |@
F O 00O | |00 0 OO |~ |®
A OO] | OD| & D] OO |||
A O Q||| |-ODD O OO]| O] || |@
RO OO | |O Q@ @ OD|~ 0|0 |®O6
R OO0~ |00 0 0«0 0|0 [~«~|lo
SO 000|000 |0|cc]d|d |~|eld
SO Do |eolec@ @ @ @l @@ |||
Blo Jofof o | 1 oo |or o] o Joo oo | o | o forfo] o
&9 0O | 1 DO |O O O] OO |O||O
SO ||| 1 |0|®®0] o |[@|c]|e]| & | & [ofo o
%M AR I W A W B W \ o | o @ @ @ ® [@ @ [R @
X000 00000 0|0~ 0|0 |~06
SO 0000|0000 0|00l |~
MM @ @ e o I [\ @ @ @ @ o o e] o TS U I U I W NS
Bl (o o] o | 1 o fe o o] o oo]o]or] o | o lewlonlon
= O 00| |l DOD| D ||| DD D]~
2O 00| |~000 0|0~ 0| |~0O
2O 00000000 000060 |load
m fonl

21,8 |SIE ol @ %x2T o8
AlCEZ|dln |[ojL|L|2|2SO|S|IS|IZEEQWal=z|O

49

This chapter focuses on an introduction o VADOR, iis global framework

architecture and various components.

3.1 Introduction to V.

The increasing complexity of engineering systems has sparked increasing
interest in MDO, particularly in the aircraft industry. It is no surprise that
Bombardier Aerospace, the main aeronautical company in Canada, and the third
largest civil aircraft manufacturer in the world, makes efforts to get advantage of

the so called “the concept of a design space.”

Under the sponsorship of foundation J.A. Bombardier and the NSERC,
CERCA has started working on Virtual Aircraft Design and Optimization
framework (VADOR) since 1999. The first year was used to acquire an accurate
definition of the framework specifications as well as an implementation of a
prototype version. The first objective has been achieved by pa‘railel investigations
of the main aspects of the technical review and the selection of technologies for
implementation, the selection and scheduling of interfacing tasks, and definition
of the GUI This included the siudy of Bombardier information management
structures and a survey of various depariments, including mesting with managers
and engineers in order to get their feedback, analysis of the design cycle, and
identification of all the applications that could be integraied and/or interfaced with

VADOR [6]. In spite of the confidential nature of certain information concerning

50

Bombardier Aerospace and this project, the rest of this thesis tries to present and

break down as much as possible the details while respecting this confidentiality.
3.1.1 VADOR Objectives

The main challenge in applying MDO technology in a large corporation such as
Bombardier Aerospace lies in the organizational aspects of engineering design.
Design departments being often segregated by disciplines, the transfer of
information between these deparimenis is partially automated. Most legacy
applications being custom-made in-house, need specialized interfaces to
communicate to each other. On the other hand, analysis process documentation
and results data are essential for these organizations. VADOR aims to address
all these issues by implementing the MDO methodology within Bombardier. The

specific objectives are [26][64]:

e Development of a state-of-the-art software framework capable of

supporting the paradigm of MDO in collaborative design environment.
This objective permiis:

o capture in the framework of the design methodology in use at

Bombardier Aerospace.

o collaboration within a team of geographically distributed engineers

working simultaneously on a design project.

o automation of the execution of analysis and optimization codes and

their corresponding data transfer.

51

e Implementation (within the framework) of management capabilities o

closely follow the design data used and shared by the design team.
This objective permits:
o keeping the history of a design project or a piece of data.

o identifying the people involved in a project and their respective

responsibilities and work status.

o keeping track of the various designers’ comments on a given

design and/or result.

e Development of interfaces to selected in-house and commercial

applications in use at Bombardier Aerospace.
This objective permits:
o implementation of seamless data transfer between applications.

e Deployment of the framework at Bombardier Aerospace and train

engineers in its programming and usage.
This objective permits:
o long term benefits for the industrial partner.

The main goal of this project is to provide technical engineers with an
integration solution of legacy analysis applications and the associated data
management tools necessary i¢ handle the vast amounts of results data

produced daily by the various depariments of Bombardier Aerospace.

52

3.1.2 VADOR Specification

The specification of the VADOR framework [11][26] document meeis the

framework requirements described in Section 2.3.3.

The following are comments on these requirement points of view:

1. Architectural Design

a)

b)

d)

The interaction with the VADOR framework should be through a GUI
which allows a graphical visualization of a design process,
emphasizing on the flow of data within components. The GUI shouid

also provide an advanced search tool.

The object-oriented should be used in the design of the VADOR
framework architecture. Java language is chosen for implementing the

adopted object-oriented methodologies.

The VADOR framework should be extensible. The user should be able
to create new interfaces permitting integration of new process inio the
framework. Similarly to the programming language, using the basic key

elements the user should be able to create exiensible processes.

The VADOR framework should aim to reduce the amount of overhead

on an optimization process.

e) The VADOR framework should aim to handle any MDO problems

regardless of their size.

53

f)

g)

a)

b)

a)

Muitiple users should be allowed to access simultaneously. This
implies that appropriate access permissions are defined and controlled

to ensure the integrity of the data.

Basic standards of software components, languages and protocol
should be used. Furthermore, this will ensure the longevity of the
strategical and intensive VADOR framework usage in a real design

environment.

. Problem Formulation Construction

The configuration of complex branching and iterative problem
formulation should be allowed. The GUI should enable configuration

for a given problem to be as simple and intuitive as possible.

Reconfiguration of an existing MDO problem should be possibie and

simple.

The VADOR framework should enable the incorporation of legacy
codes written in different languages and proprietary programs or
applications for which there are no available sources. This would be
possible by creating a proper generic wrapper mechanism and protocol
in the system which permits these codes to work on their appropriate

platform within the framework.

The VADOR framework should aim to allow the integration of user

discipline analyses with several optimizations.

54

e)

a)

b)

d)

Facilities for debugging should be possible. Tracing an object history is
one of the way to facilitate such a debugging. This requires that all
objects should be able to report on their status. Log files can aiso be

useful for debugging purposes.

. Problem Execution

The VADOR framework should automate the execution of processes
and creation of the data files. Processes are strategy objects that

monitor the creation of the data files encapsulated in data objects.

Execution of multiple processes and their movement of data in parallel,

should be supported.

In order to allow collaboration across the network, the VADOR
framework should allow a transparent execution across a distributed
network of heterogeneous computers while taking care of the

corresponding data transfers.

Interaction during the analysis and design process should be
supported. The user can halt the execution of a process, modify the

data and resume it again or simply stop (kill) the process.

Users should be able to use the VADOR framework in interactive or
batch mode. Once the project is launched, user can logout while the

process continues to execute.

55

4. Access to information

a) The VADOR framework should provide database management
features in order to support a comprehensive data management

capabilities.

b) The intermediate and final visualization of the results should be

possible whenever analysis codes permit it.

¢) Tools and/or widgets for monitoring the status of execution should be
provided in VADOR GUI. The framework can inquire the status of any

object at anytime and present them in appropriate manner to the user.

d) The VADOR framework should be fault tolerant. A wrongly done
operation should not result in neither the crashing of the servers, nor

the jamming of the GUI.
3.1.3 VADOR Current Critical Review

Table 4 shows the VADOR complete critical review of the VADOR specification
at the time of writing this thesis. A range of asterisks "*" from one to six is used to

specify the level of the framework appreciation upon the spéciﬂcation criteria’s
points. In this way, one asterisk presents the lowest rank for absoclutely not
meeting the specification and six asterisks the highest rank for fully meeting the

specification.

56

Table 4: Compilete critical review of VADOR

Specification VADOR
1a) infultive GUI ko E %
1b) Object-oriented % g k%
1¢) Extensibility e G % &
1d) No overhead on optimizaﬂon % % % %
1e) Handie large problem % e % Y%
1§) Coliaborative %k F %
10} Standards % %k k%R
2a) Configure complax branching g ke ke d
2b) Reconfiguring existing problem %k %k I
2¢) Incorporating legacy codes B % %k k%
2d) Integrating analyses with several optimization method % ¥ % R
2e) Debugaing % % &
3a) Automation % % %k % %k
3b) Execute multiple process in parallel % % % %
3c) Execution across heterogeneous computer k % % k%
3d) User interaction g g
3e) Batch & gk %k _%k
4a) Database g e % Kk b
4b) Intermediate visualization % % %
4c) View status of execution % d_de
4d) Fault tolerance % % %

57

3.2 Object-Oriented Design by an Object-Oriented Tool

With respect to the VADOR specification (1b in Section 3.1.2), Java language
has been chosen for the design and implementation of the adopted object-
oriented methodologies in VADOR. Java is considered more than a language
today. While Sun Microsystems iniroduces it as a technology [72], Berg and
Fritzinger [73] demonstrate how Java language go from being a language fo
being an indusiry. Although Flanagan [78] insists on the imporiance of the

distinction between the Java programming language, the Java Virtual Machine

(JVM), and the Java platform, deploying Java as a development tool makes it
possible to take advantage of all its parts. Based on the power of networks, Java
as whole enables the Internet and private networks to become a computing
environment. A Java application can easily be delivered over the Internet, or any
network, without operating system or hardware platform compatibility issues. This
initially had an important influence on the language of choice since using Web
technologies and tools such as Internet and a Web browser have been
envisaged for the users of VADOR. In fact, the user of the VADOR prototype was
also able to execute an MDO problem using a Web browser through a Java
applet'?, although tight security restrictions within the same organization
departments on one side and limitations of Java applets for both reading and
writing files on the other side did not make it practical to take advantage of this

Java feature for large-scale MDO problems.

Java package (and possibly subpackage) which permits to group related
classes and define a namespace for the classes they contain, can also provide
an ideal environment for the development of a large project such as VADOR.
Two programmers located in two different offices, with poor communication, and
responsible for different packages, can still name the classes without being
concemned about the class name conflict. Although, Java now supporis

versioning by adding mechanism 1o discover and track changes of a piece of

2 An applet is a littie application, a small program that can be sent along with a Web page to a user. Java applets can
perform interactive animations, immediate calculations, or other simple tasks without having to send a user request back
to the server [74].

58

code, package, and JVM, other versioning tools such as CVS'® can still be used

to complete an ideal development environment.

Other considerations for choosing this object-oriented language among others
are: its simple and complete development platform, portability or platform
independence (cross platform), network-aware platform, central administration of
new software versions, easy access to IT resources, rich and highly functional
user interface, local data manipulation, technological unified network
environment, simple and robust security model. Moreover, Java technology
eliminates many of the problems associated with installing and running
applications. Developing on the Java platform means that projects are completed
faster and with less debugging. Becker and Bloebaum [57], in their paper
entitled: “Distributed Computing for MDO Using Java” demonstrate that Java
holds great promise for industrial MDO applications. Although Villacis [75] reporis
that the Java environment falls short for scientific computing, he concludes that
Java is still useful as the glue for programming around scientific codes, while also
reminding us of its rich object model, extensive set of core libraries, and

simplified distributed computing framework.

3.3

An effective framework enabling MDO practices provides the user with a flexible
and configurable data model that can adequately satisfy the evolving

reguirementis of enginesrs using computational-based analysis-and-design

® Concurrent Versions System (CYS) is a program that lets a code developer save and retrieve different development
versions of source code. It also lets a team of developers share conirol of different versions of files in a common
repository of files.

59

programs. Such a system must provide capabilities for the automation and
integration of various processes used by engineers. It must also support and
promote coliaboration and data sharing. In the VADOR framework, collaboration
and data-sharing are enabled through the use of components. Two basic kinds of
these components, DataComponent and StrategyComponent, described in
Sections 3.4.2 and 3.4.3, are respectively encapsulated design data and design -
methodologies. Their set of key atiributes and types are stored in a database to

provide basic data management capabilities in the system.
3.4 A Component-Based Development

Component-based development architectures have emerged as a standard
design paradigm in many areas of application development. It is the building of
software systems out of prepackaged generic elements, or, at least, from
packages with well-known capabilities and precise functionality that can be
encapsulated to create such a generic element [11]. The current trend toward
this type of architecture is mainly the result of the convergence of the four

phenomena originating from different perspectives:

1. Scientific: the progress of modern software engineering ideas with

special emphasis on code reuse.

2. Commercial: the widespread success of theoretically unpretentious
but practically useful technigues for building GUIls, databases, and

other parts of applications out of single elements.

60

3. Academic: the generalization of object technology, which provides
both the conceptual basis and the practical tools for building and using

components.

larket: the push by some of the major players for competing
technologies such as Common Object Request Broker Architecture
(CORBAY“, Component Object Model (COM)™® Distributed
Component Object Model (DCOM)'®, JavaBeans'’, and Enterprise

JavaBeans (EJB)*.

The goal of a component architecture is to simplify the application design
process and speed application development [70]. An architecture of this kind,
offering a component view of software, provides a way to implement more

easily a network distributed framework.

* Common Object Request Broker Architecture (CORBA) [65] is an architecture and specification for creating,
distributing, and managing distributed program objects in a network. it allows programs at different locations and
developed by different vendors to communicate in a network through an "interface broker.” CORBA was developed by a
consortium of vendors through the Object Management Group (OMG), which currently includes over 500 member
companies. Both intemational Organization for Standardization (IS0} and X/Open have sanctioned CORBA as the
standard architecture for distributed objects (which are also known as components).

* Component Object Model (COM) [66] is Microsoft's framework for developing and supporting program component
objects. it is aimed at providing similar capabilities to those defined in CORBA. COM provides the underlying services of
interface negotiation, life cycle management (determining when an object can be removed from a system), licensing, and
event services (putting one object into service as the result of an event that has happened to another object).

' Distributed Component Object Mode! (DCOM) [67] is a set of Microsoft concepts and program interfaces in which client
program objects can request services from server program objects on other computers in a network. DCOM is based on
the COM, which provides a set of interfaces allowing clients and servers fo communicate within the same computer (that
is running Windows 95 or a later version).

7 JavaBeans {68] is an object-oriented programming interface from Sun Microsystems that lets you build re-useable
applications or program building blocks called components that can be deployed in a network on any major operating
system platform.

'® Enterprise JavaBeans {EJB) [69] is an architecture for setting up program components, writien in Java, that run in the
server paris of a computer network that uses the client/server model. Enterprise JavaBeans is built on the JavaBeans
technology for distributing program components to clients in a network. Enterprise JavaBeans offers enterprises the
advantage of being able to control change at the server rather than having io update each individual computer with a
client whenever a new program component is changed or added. EJB components have the advantage of being reusable
in multiple applications.

61

3.4.1 Coniract Aware Components

When integrating components into a larger framework, an important design task
is to ensure that each component behaves exactly as expected. To this end, a
component can be seen as a service provider, and the framework as an
interaction manager for the movement of data between each agent. The goal of
designing a proper environment for a framework then becomes the one in which
the components are conlract aware, i.e. there is a way of determining beforehand
whether a component can be used within a certain context or not. Ideally, this
ihformation should take the form of a specification that describes what the
component does without entering into the details of how. Furthermore, the
specification should provide parameters against which the component can be
verified and validated, thus providing a kind of contract between the component

and its user. A proper classification of these coniracts distinguish four levels [11]:

1. Basic contract: provides a simple component interface that lists all the
operations and their signature (types of inputs and outputs) with no
semantic properties. Static type checking verifies at compile time that all
clients use the component interface properly, whereas dynamic iype
checking delays this verification until runtime. CORBA, DCOM, and

JavaBeans all permit this type of contract to take place.

2. Behavioral contract: expresses what operations do, independently of
how they do it. This permits developers o specify precisely every

condition that can go wrong, and 1o assign explicitly the responsibility o

62

either the routine caller (the client) or the routine implementation (the

contractor). Such contracts carry mutual obligations and benefits.

3. Synchronization contract: describes the sequence in which the
operation will be executed. This becomes quite crucial in parallel
programming where various operations must be synchronized and

executed in the right order.

4. Quality-of-service contract: covers issues such as the maximum
response delay, the average response time, the quality and precision of

results, and the throughput of data streams.

Most of these contracts can be represented in form of diagrams by using Unified

Modeling Language (UML),
3.4.2 Data Component

As described in Section 3.3, there are two basic key components defined in the
VADOR data model. DataComponent is one such component. It encapsulates
the design-and-analysis data which is usually contained in a data file {76]. In
addition to this simple or technical data usually stored in a data file, the
requirements for the VADOR MDO framework forces it 1o keep a set of
information tied to the data and encapsulated within the DataComponent.

Examples of such attributes are presented in Table 5.

*® Unified Modeling Language (UML) {71] is a standard notation for the modeling of real-world objecis as a first step in
deveioping an object-oriented design methodology. its notation is derived from and unifies the notations of three object-
oriented design and analysis methodologies: Booch's methodology, Rumbaugh's Object-Modeling Technigue (OMT) |,
Jacobson's use case methodology . UML has been fostered and now is an accepted standard of the Object Management
Group (OMG). Vendors of computer-aided sofiware engineering products are now supporting UML and it has been
endorsed by almost every maker of sclftware development products, including IBM and Microsoft.

63

Table 5: Example of DataComponent attributes

Attribute Basic Content
Owner Object owner
Data file reference URL of the encapsulated data file
Strategy ID Identifier of the creator sirategy
History Pareni(s), creation method and date
Access Access permission
Validity Level of confidence on data
Status Data status
Comments Any comments about object

There are two major kinds of DataComponent in the system, extending directly
from it: DCinstance and DCType. DClintance is an instance of a newly created
DataComponent. A DataComponent has a type which serves as a mechanism
for data standardization and validation. Furthermore, DataComponents can be
classified by their respective types. DCType objects serve as type holders for
DataComponents in the system. The size of a DataComponent is reasonably
small considering the fact that a data file is typically stored in the file server(s)
and only a reference to it is kept (in the form of a URLZO).Y In this respect, many of
the VADOR component attributes are so called metadata since they contain the
description of data rather than the data itself. This is important since the

instances of DataComponents are then stored in a database.

DataComponent can be atomic by encapsulating a data file (as described
above), or composite by encapsulating one or more atomic or composite

DataComponent(s). This user-defined hierarchical composition of

% Uniform Resource Locator (URL) is the address of a file (resource) accessible on the Internet. The type of resource
depends on the internet application protocol.

64

DataComponents enables the creation of a complex group of data files if
necessary. Composite DataComponents are also classified by their types. A
DataComponent requires a StrategyComponent (described in Section 3.4.3) to fill
its encapsulated data file. An atomic example of a DataComponent could be a

CFD_grid DataComponent, which encapsulates a mesh_CFD_analysis data file.
3.4.3 Strategy Component

DataComponent and StrategyComponent are both part of the VADOR initiative
for making an abstraction of a complex engineering process. To achieve this
level of abstraction, VADOR needed a way o encapsulate the programs and
processes and then provide a mechanism fo link them to the data. These
executable programs, scripts, applications, or interactive graphical software
applications usuaﬂﬁly require inputs in form of data files or interactive user entries
and generally produce outputs (in form of data files). Execution of these legacy
programs (in most cases) in a controlled sequence of operation normally
representable in form of a flowchart corresponding to an algorithm, is what is

defined here as a process.

The DataComponents described in Section 3.4.2 only encapsulate the
technical data files used and shared by the design engineers. The
StrategyComponents intend to capture the design process or methodology
(strategy). This is done using composite StrategyComponents, which represent
the basic methods and the data flow required to transform data in a given
process. Compared to the DataComponent, it represents a higher level process.

Atomic StrategyComponents are used to encapsulate executable programs,

65

scripts or applications that can create or fill the data files encapsulated in
DataComponents. This can be seen as defining methods for creation of
DataComponents. The required execution time for these programs can vary from
a few milli-seconds to many days or weeks, depending on the engineering
analysis to be performed. The type of StrategyComponent indicaies the type of
DataComponent that it can create. Sharing some similar attributes with
DataComponent, Table 6 shows an example of StrategyComponent attributes.

Table 6: Example of StrategyComponent attributes

Attribute Basic Content
Owner Object owner
Type Type of created DataComponent
Usage Usage siring of the encapsulated program
History Pareni(s), creation method and date
Access Access permission
Commenis Any comments about object

This capturer of design process or methodology aiso enables the data flow
standardization and documentation; that is, a better management of design
strategies. Different kinds of StrategyComponent exist in order to construct a
complex process, in the same way that a procedural language supporting
parallelism (or at least pseudo-parallelism) provides basic mechanism permitting
to describe a paralle! algorithm. Instantiation, parallelism, testing, branching, and
looping are possible in VADOR, using visually-presented and mouse-selectable
different ranges of Strategies such as SequentialStrategy, ParallelStrategy,

IfStrategy, WhileStrategy, ForStrategy, ConditionalStrategy. An example of a

66

complex StrategyComponent consists of the encapsulation of an optimizer,

requiring use of OptimizerStrategy.

3.4.3.1 A Simple Procedure Example

The following steps should be performed for a simple process, shown as a

flowchart in Figure 2:

1.

/ CFD_grid /

A

CFD_prog

A
/ CFD_solution_1 / CFD_solution_2 /

Figure 2: Example of a simple process

Definition of three DataComponent types encapsulating data files:

CFD_grid, CFD_solution_1 and CFD_solution_2.

Definition of a composite DataComponent type encapsulating the data

created by program CFD_prog, for instance, CFD_solution_1&2,

containing respectively CFD_solution_1 and CFD_solution_2.

Definition of an atomic StrategyComponent, encapsulating the CFD_prog,
which is capable of producing a composite DataComponent of type
CFD_solution_1&2 and requiring an atomic DataComponent of type

CFD_grid as input.

67

3.5 Desi by Patterns

The American Heritage Dictionary defines “pattern” as: “A model {o be followed
in making a thing.” That thing in our context is an object-oriented software
design. By observing a problem occurring repeatedly and by finding a solution for
such a problem, ‘one can creale a model that can be used by everyone. To
document such a pattern, one needs to describe the problem, describe the
solution, illustrate the consequences of applying such a solution and finally, give
a name to the pattern. Gamma et al. [89] define Design Pattern as “descripticns
of communicating objects and classes that are customized to solve a general

design problem in a pafticular context.”

A design pattern systematically names, motivates, and explains a general
design that addresses a recurring design problem in object-oriented systems. It
describes the problem, the solution, when to apply the solution, and its
consequences. It also gives implementation hints and examples. The solution is
a general arrangement of objects and classes that solve the problem. The
solution is customized and implemented to solve the problem in a particular

coniext.

Many of known and classified patierns have been used in the design of
VADOR. Before stariing to describe the major components in the VADOR
architecture in the following section, a brief description of the actual patterns
employed in the design of VADOR are given so they can later be used as

reference to what (and why) they have been implemented.

68

1. Siructural Patterns

a) Composite: composes objects inio tree structures to represent part-
whole hierarchies. Composite lets clienis treat individual objects and
compositions of objects uniformly. This pattern is used in design of
composite DataComponent and composite StrategyComponent. They
have a tree structure containing respectively other DataComponents or

StrategyComponents.

b) Proxy: (also known as Surrogate) provides a surrogate or placeholder
for another object 1o conirol access {o it. All the server components in
VADOR provide proxies that permit a conirolled connection to these

servers from other components or servers.
2. Behavioral Patterns

a) Visitor: represenis an operation to be performed on the elements of
an object structure. Visitor lets a new operation be defined without
changing the classes of the elemenis on which it operates. For
instance, in VADOR different types of ComponeniStrategy such as
ParallelStrategy and DoWhileSirategy can implement SgyVisitable
interface in order 1o accept different visitors such as
EexcuteSgyVisitor, SaveSgyVisitor and DeleteSgyVisitor, which
implements [SgyVisitor interface, so they can perform different
operations. Most of these interfaces are in NetworkTools package. A

class diagram of this package can be found in Appendix B.

69

b) Observer: (also known as Dependents and Publish-Subscribe)

d)

defines a one-to-many dependency between objects so that when one
object changes state, all iis dependents are notified and updated
automatically. In fact, diverse VADOR components may generate
several events. Listeners interested in these kinds of events can
register themselves as observers, so they can be later notified if the
specific event for which they have been registered happens. These
observers can be VADOR users or other VADOR componenis in
system. Most classes and interfaces enabling this mechanism are

found in the VADOR Observer package.

Mediator: defines an object that encapsulates how a set of objects
interact. Mediator promotes loose coupling by keeping objects from
referring to each other explicitly, and it lets you vary their interaction
independently. Some of the dialog boxes used in the VADOR GUI
package encapsulate collective behavior in a separate mediator object
which help to avoid a tedious individual customizing of every Veach of
them by simply subclassing from a mediator class. For instance, the
VADORGUIDierctor class in the VADOR GU! package is a mediator

where other similar but different type of dialogs extends from it.

Command: (also known as Action and Transaction) encapsulates a
request as an object, thereby letting parameterize clients with different
requests, queue or log requests, and support undoable operations.

Sometimes it is necessary to issue requests to objects without knowing

anyithing about the operation being requested or the recsiver of the
request. The call(} method of Vador_Agent class (found in the
NetworkTools package) can be invoked by other VADOR components
such as VADOR Librarian without knowing anvthing about the

operation implemenied in the method.

3.6 stributed Architecture

One of the reguirements for VADOR, or any MDO framework in general, is to
provide extensibility and support for new integrations into the system. The
architecture for such a complex engineering design and analysis must, therefore,
be flexible and modifiable. The goal is then to create an agile software

~ framework.

Three-Tiered Architecture

Creating such an agile system demands a new architectural design rather than
Monoliths and Two-tiered client/server approach. On the one hand, need for the
custom interconnection between pieces of a system in the monolithic world which
contains all the code needed to manage the data, implements the rules of
application, and provides the user interface in a single mass, and on the other
hand, difficult distributed system management in two-tiered systems leave the
adoption of a three-tiered architecture approach as the best choice. The three-
tiered architecture enables agile software in several ways. First, by treating
software components as stand-alone data providers, service providers and

service consumers, the three-tiered architecture creates a software infrastruciure

71

of reusable paris. This reuse speeds the development and increase the overall
system quality. Although, it is important to mention that there is more 1o
componeni-based sofiware reuse than just building the component themselves.
Separation of all these component-based entities into different layers, make
three-tired software applications easier t0 maintain and update. In the three-
tiered architecture, applications are made up of cooperating collections of
networked components. The switch from seeing components as integral paris of
applications to seeing componenis as stand-alone entities which can provide
services for applications, provides much of the power of the three-tiered
architecture. Like any other good approaches, three-tiered architectures suffer
from some drawbacks and limitations. Overhead of communication between the
various layers causing some additional latency into the system is the more
important one from the VADOR point of view. Figure 3, presents a global view of

the VADOR architecture in a three-tiered appearance.

User Interface / e
Persentation i

VADOR

Admip
gui DBExpiorer

Domain/Logic VADOR VADOR VADOR
GlobeiCollector Executive) Librarian
VADOR VADOR YADOR YADOR
Local Collector l.ocal Coliector CPU Server CPU Server

Data

Management File Fite o
/ Persistant EVUADS TR e File ggggggg
Data ’ S ! SUN/Solaris

Figure 3: VADOR Architecture

72

The data provider component, identified as data management and persistent
data tier in Figure 3, consists of the Database Management System (DBMS?Y),
and actual persistent f.iiés on different machines. Service provider components in
domain and logic tier include VADOR Executive, VADOR Librarian, VADOR CPU
Servers, VADOR GiobalCollector, and VADOR LocalCollectors. Finally, service
consumer represented in the user interface or presentation tier includes VADOR
GUI, DBExplorer and all the small GUI applications that can be launched via

VADOR GUI such as VADOR Search and System Monitor.

The three-tiered architecture seems like a minor exiension to client/server
approach which makes the difference a very subtle and critical issue, thus a
pitfall to avoid. For instance, components of the data tier should provide service
to the domain/logic tier or user interface tier without knowing which component
made the request and from which tier. Generally, in a three-tired environment, it
is not appropriate for components in the logic domain or presentation tiers to talk
directly to data sources since this violates the encapsulation and abstraction
maintained by each tier. Instead, component(s) in data tier should interface with
the actual data storage mechanism and present an abstract interface to the other
tiers while hiding the implementation details of how and where the data are
stored. In the cases where it is not obvious to produce a canned query or

interface for every possible query, componenis of the other tiers may directly

A database management systemn (DBMS), is a program that ieis one or more computer users create and access data in
a database. The DBMS ensures the integrity and security of the data.

73

interface with database with the condition that data tier supports a SQL*
mechanism for the other tiers. The data tier should still implement an abstract
interface which minimizes the use of raw SOL and ease the future maintenance.
This interface can eveniually be developed in VADOR. Figure 4 shows a UML
component diagram view of the global VADOR architecture.
==gpplication=» . Bystem Monitor
%ﬂapmicaﬂnnw VADOR GUI _:Tﬂ“_[’ff_}%
DBExpiorer -
«includfeg‘{/”’ P
; %««applicahon» 72 /*'/ : E
i VADOR Search sxusees o7 <<gpng=e | =<usess |
I e | t
I e i [
| <<use:->, //
| | > <=gpplication=» ««application=>
i 5<(app“caﬁon>b égxggw~ VADOR Exacutiva [T~ wADOR GlotalCollector
«mess,,{ i e e
{
|
|
|
|
|
|

VADOR Librarian
1
<<zends> | <2USES> |

e
~
'

«=application»>
VADOR LocalCollector

<=<applicafion»>
YADOR CPU Sewvsr

I

<<agcessr> 7

-

s -~ I

- »

Vs ~
I g eeiicesses -
i P

— ~

RLBLCESSF> /‘:806553”’
L

Ve
é # O\V e \AO

Database inferface o
SGURIX 08 inferface IBIIAIX O3 Iniarface

Figure 4: A component diagram view of the VADOR architecture

3.6.1 VADOR Librarian

A real librarian in a real library provides people with information and services
related to the _bOoks, while at the same time he or she archives, files, manages
and constantly updates information about these books in the database. VADOR
Librarian is very similar 1o a real librarian with some differences. First, it is not a
person but a Java server process, or a daemon. Second, instead of books it

primarily manipulates the components, for the most part the instances of

2 structured Query Language (SQL) is a standard interactive and programming language for getting information from and
updating a database.

74

DataComponents and StrategyComponents. Third, instead of people, it supplies
services and information to the service consumer tier (VADOR GUI) or other
service provider componenis such as Executive. VADOR Librarian provides a
suitable interface to the VADOR database, permitling a persistent storage,
retrieval and updating of information about component atiributes. These
aitributes, as mentioned before, mainly keep the descriptive information or
metadata so that only reference to a file (e.g. an URL string) is stored in the
database and the actual file (potentially large) remains in the location where it
has been created or moved to. Presently, the database used in the VADOR
system is MySQL [98], a popular open source SQL. database. VADOR Librarian
uses Java Database Connectivity (.JDBC)23 APl to connect to this relational
database. Moving from MySQL database to any other relational database
supporting a standard ANSI or ISO SQL requires only the loading in VADOR
Librarian of the appropriate JDBC driver for the new database. If such a driver
does not exist, it is still possible to use a bridge to connect JDBC to ODBC?
using JDBC-ODBC bridge. In the case that the new database is not relational, a
new interface should be written for VADOR Liberian in order o communicate with

such a database.

* Java Database Connectivity {(JDBC) is an Application Program Interface (AP!) specification for conneciing programs
written in Java to the data in popular databases. The API permits to encode access request statements in SOL that are
then passed to the program that manages the database.

Open Database Connectivity (ODBC) is an open AP! for accessing a database. By using ODBC statements in a
program, it is possible io access to files in a number of different databases, including Access, dBase, DB2, Excel, and
Text.

75

3.6.2 VADOR Execuiive

Execution of the diverse disciplinary processes is one of the fundamental tasks of
any MDO framework. VADOR Executive is a Java server program which primary
task consisis of the execution of the design process captured within the
StrategyComponents. VADOR Executive guarantees the automation of process
execution, sequenced or paralleled, interactively or in a batch mode, within a
distributed heterogeneous environment. Taking advamage of polymorphism
combined with Visitor and Composite Patterns (see Section 3.5) in design of
StrategyComponent, VADOR Executive can execute the different type of
StrategyComponents simply by invoking a simple execute method. This ensures
the automatized execution of the processes in a heterogeneous distributed
environment. It is likely to have more than one Executive server within the
VADOR system, every one of which is able to handle the execution of many
different processes encapsulated in StrategyComponents. In fact, the Executive
is a multi-threaded server, capable of managing multiple requesis by the same
user or different users simultaneously. The request of a service of each user,
either an engineer or other VADOR server components, is képt track of as a
thread with a separate identity. VADOR Executive makes sure that the status of
execution on behalf of any thrown thread is kept irack of until the execution is
completed. A successful execution of a StrategyComponent (atomic or
composite) ends with the creation of an atomic or composite DataComponent. A
typical sequehce of an execution request from VAOR GUI takes place in the

following sequence:

76

Heceiving the execution request for a given process (identified by
DataComponent instance ID that will be created as a resuli of this
execution, passed as parameier) from VADOR GUI (running locally on the

user machine).
Launching a new thread for the new received request.

Communicating with VADOR Librarian in order to recuperate the Data
Component inslance object and consequently the encapsulated

StrategyComponent.

Communicating with the VADOR CPU server(s) in order to delegate the
actual execution of the StrategyComponent and their including

StrategyComponenti(s) in case of a composite strategy.

Notifying VADOR Librarian at the end of the successful execution,
permitting to add information about the new created instance(s) in the

database and updating the status of the components.

Sending a final message or an e-mail to the user after the final completion
of execution. During the execution of a composite StrategyComponent,
VADOR Executive also sends intermediate messages at the end of
execution of any atomic StrategyComponent, which provides the user with

information about the status of current execution and its progress.

77

Network Connection Type

Any interaction between these servers is impossible without a kind of
communication connection. A network TCP? stream socket-based connection
(found in java.net package) is used for the communication between VADOR
Executive and other servers such as Librarian and CPUs. TCP provides a
reliable session-based service and peer-io-peer (with each node having both
server and client capabilities) mechanism. The stream provides the data transfer
mechanism on top of the socket. With a stream socket, streams of bytes formed
as packets are sent without errors and received in the same order that they are
sent. Using this socket-based communication, component objects are serialized
and passed from one server to the other. It is important to mention that this type
of communication was not initially used in connection between VADOR Executive
and the VADOR CPU server. Instead, a more sophisticated client/server
mechanism using Java Remote Method Invocation (RMI) was implemented for
this purpose. Java object-oriented RMI, considered a key component of the
JavaBean architecture, is a lightweight mechanism which allows one Java
application to call methods and access variables inside another application,
which may be running in different Java environments or different sysf{emé, and {o
pass objects back and forth over this connection. Due to a caliback problem in
using Java RMI, which was causing an excessive and unreasonable additional

time for VADOR Executive to receive any kind of notification from the VADOR

% Transmission Controt Protocol (TCP) is a protocol used along with the internet Protocol (IP) o send data in the form of
message uniis between computers over the Internet.

78

CPU server after the remote execution of StrategyComponents (thus a serious
impact on the performance of VADOR), and as a result of unsuccessful
investigation about the real cause of this problem, it has been decided {0 use a
socket-based connection which is also used in communication between
Executive and Librarian. CORBA [65] would be certainly a very good aiternative
(despite of its expensive licensing fee comparing to the free RMI) for all these
communications. [90][21][92] provide more information concerning the potential

usage of CORBA for solving MDO problems.
3.6.3 VADOR CPU

VADOR CPU is another Java server program designed to remotely execute the
analysis task encapsulated in StrategyComponents. These servers are installed
on a diverse range of computers with different architectures and operating
systems, selected to be a part of the VADOR system. As explained in the
previous section, VADOR Executive manages and coordinates task executions
by delegating remotely the actual execution to the CPU servers.
StrategyComponents restored in VADOR Executive, they encapsulate the design
and analysis code, usually in a composite form; a tree structure containing other
branches or leaves of composite or atomic Sirategies. This tree structure is
traversed by the Executive server and consequently, every actual atomic
StrategyComponent leaf node, encapsulating a program, application or script, is
sent (sequentially or in parallel, depending on its type) to these CPU servers for a
remote execution. The CPU servers then run these legacy scripts or programs

written in different languages such as C, C++ and Foriran able to run on a

79

specific platform for which they have been composed. This mechanism gives ihe
impreSsion that these legacy executable codes are wrapped in the way that they
can be carried out within the VADOR framework regardless of the type of the
programming language, or machine architecture and operating system on which
they can run. That is why the CPU servers are also named and known as
Wrapper servers in the VADOR ierminology. Figure 5 shows how VADOR
Executive receives the execution request from VADOR GUI, communicates with
Librarian to recuperate that actual component, and then starts the execution
procedure by dispatching the executable tasks to the VADOR CPU servers and

consequently updates their status in the database through Librarian.

Socket
onnectio POrt:Z000

POruSoos

L

Librarian

POrt:8040

Serviet

Downloacd & Upload Fil

Figure 5: Process execution distribution to VADOR CPU servers

The choice of a CPU server by Executive for the execution of a task is not made
at random. There are a range of different machines which are classified by their

architecture and their operating sysiem, for instance IBM/AIX, SGVIRIX,

30

SUN/Solaris. VADOR administrator makes sure that a VADOR CPU server runs
in every machine that is assigned to host the remote execution. The selection of
the hosts is made by the engineer who creates the process. Therefore, the name
of a target host is specified in the StfaiegyComponem, which indicates 1o
Executive where the StrategyComponent should be executed. Usually, there may
be more than one CPU server for a class of machine. In this case, the load
balancing system (discussed in Section 3.6.4) in VADOR and its designated
servers for this purpose can help users and Executive to monitor the system and

send the execution where the load of task is ﬂdwer.

To run a task, a CPU (Wrapper) server performs the following steps [93]:

e N

. Locates the executable program, application, or script file
2. Builds a temporary directory

3. Transfers all input files to the temporary directory

4. Runs the program, application, or script file

5. Transfers the created output files

o

. Cleans up and destroys the temporary directory

Synchronization of all these steps is guaranieed by the CPU servers, which,
similarly to the Executive server, use multi-threading for hosting other executions

at the same time.

Generally, the input and output files are not kept locally on the machine where
the execution takes place. In such a condition, the file transfer mechanism is

necessary to download and upload all the necessary files. In order to download

81

files, the CPU server uses the Apache server (designed normally for
downloading web-context files), however, for uploading ouiput files, the CPU
server need 1o use a Java serviet module which in turn requires a Tomcat server
to be added to the Apache server in order to validate Java serviet's functions.
With such a custom transfer protocol, based on standard and 'wideﬂy available
servers, the CPU servers can perform a secure transfer of files, necessary for the
remote execution of the legacy engineering analysis codes within the VADOR

system.
3.6.4 Load Balancing

VADOR is not a run-time system, however, because it manages and executes
different programs in paraliel, the performance of the system is still considered a
crucial issue. In order to improve the performance of such a distributed system, a
load balance mechanism needs to be used to reach an even workload across the
CPU servers. The goal to achieve for the VADOR Executive as a process
managey, is to allocate the processes to the CPU servers, by making sure that
worklocad is spread around the available CPU servers as ito make full and
balanced use of the computing power available. This goal aims to avoid a

situation where some CPU server hosts are overloaded while the others are idle.

Load balancing is the equitable distribution of workload among the computing
resources available in a network [95]. The primary function of load balancing is to
recommend decisions that improve performance [26]. There are basically two
kinds of load balancing algorithm: sialic and dynamic. Static load balancing

algorithms are simple and have low overhead. They rely on the estimated

82

execution times of processes and inter process communication requirements.
This may cause that some CPU servers be idle when others are overloaded,
hence unsatisfactory for a parallel-able server. The "taking-turns" Round—-Robin
algorithm falls into this category. On the other hand, dynamic load balancing
algorithms permit adaptation to changing circumstances. These algorithms which
make run-time decisions based on system state can be defined by their

implementation of the following policies [95]:

o [nformation policy: specifies what load information is to be collected,
when it is to be collected, and from where. It is important that the load
information takes into account not only the needs of a task, but aiso I/O

and memory operation requirements.

e Placement policy: determines where a process should be located or

transferred to.

e Transfer policy: describes the conditions under which a process should

be fransferred.

These algorithms should also take into account the nature of the tasks which can
be: CPU-bounded, memory-bounded, or 10-bounded. For instance, a CPU-
bounded task should be assigned to a host with the lowest CPU load. In the
same way, a memory-bounded task cannot be assigned to a host with not
enough memory resources available. These load balancing algorithms should be
used in the way that the entire system loads will be estimated. This estimation
may coniain the information load consisting of: system CPU usage, CPU idle,

current free memory, system buffer activities, and page fault.

83

In VADOR, the load balancing mechanism is enabled by implementing two
different kinds of Java server programs, described in Sections 3.6.4.1 and

3.6.4.2.
3.6.4.1 Global Coliector

This server is responsible for collecting CPU servers’ host load information
across the network by applying the load balancing algorithm. The GlobalCollector
server periodically gathers system lcad information by communicating the
LocalCollector servers and ensures the proper management of these information.
The management of the LocalCollector servers is also under the responsibility of
GlobalCollector. If one of LocalCollectors crashes, it will be restored by
GlobaiCollector. Obviously, VADOR Executive is the first client of
GlobalCollector. However, the user can also utilize the System Monitor frame in
VADOR GUI to visualize the load information on available hosts, via the VADOR
Executive connection, and possibly assign an expﬁcit execution of a
StrategyComponent on a selected host. In the absence of GlobalCollector, the
Executive server may continue to apply the random algorithm to assign an
execution task to a selected CPU server among a range of available CPU

servers for the same class of machine/OS architecture.
3.6.4.2 lLocal Collector

The LocalCollector Java servers are basically present in every host where a CPU
server is running. They periodically collect information about a host, provide a
load information estimation, and compare it with the previous collection. If a

change is observed as the result of this comparison, they notify GlbbalCoElector

84

by establishing a communication channel, otherwise, they can sleep until the
next pooling loop. GlobalCollector can also explicitly require them a load

information.
3.6.5 VADOR GUI

The VADOR GUI is the main interface between users and the other part of the
VADOR framework. It mainly interacts with the Executive and the Librarian
servers. Efforts have been made to create a user-friendly environment where
users can intuitively exploit the framework. With VADOR GUI, engineers can use
different available builders to create DataComponents (atomic or composite),
along with their types, and StrategyComponents (atomic or composite). A
browser can be used to navigate through the system directory folder to view,
open, or delete the instances of DataComponents and StrategyComponents.
Different views of DataComponent and StrategyComponent are provided by

choosing the appropriate icons in the GUL

VADOR GU!l is multi-tasking environment, means that more than one
application can be used within the same GUI frame. For instance, the user can
launch VADOR Search (describéd in Section 3.8.5.1), and VADOR Explorer at
the same time while building an atomic Strategy via the atomic Strategy builder.
A view example of VADOR GUI is presented in Figure 6. More images of other
parts of VADOR GUI, widgets and tools, including VADOR Explorer and different

component builders can be found in Appendix D.

85

% @ ocinstance

© B NurbsOptimioop _babsk nurbs dowhile_BQinst te) interpolmedProf... 1720, CERCA . mtemolatedProfileb.. Uncraarsd mandae 04.19.02 1
ZRimtapproxcuTe . uUncreated mahdav) 04.19.02 11..

aptimBFGSOUTP... Uricrgared mahdayi 04.19.02 11

B discretebrafile b... izza. CERCA..., discreteProfile_bebak .. Uhéreated mahdavi 04.15.02 1

©- J2 initAnproxOUTPUTs babak_nurbs doWhile i

@ Y optimBFGSOUTPUTS babak nurbs_dowhite

L
¢ B roouchendowhifel

i B Nurbs test

@ P reotnurbsOpumioneshon) Ll

P 5 _sphine interpolation
P wivial Approximation
¢ 4l FGs optimization

- Y Discretization

o - . . :
e A S B s e R R L e R

Figure 6: VADOR GUI

3.6.5.1 VADOR Search

With the VADOR Search tool integrated into VADOR GUI, users can perform a
very user-friendly search on the different VADOR components atiributes, stored
in the database. The user does not need to have any knowledge of database
language since SQL queries are built transparently. The results of the research
are presented in the Java table (JTable) or in the form of a tree structure, if the
search is recursive. Users can ultimately do different permitted operation on the
found results, although this operation is still not completely implemented. VADOR
Search utilizes Liberian in order to get the results out of the VADOR database.

Figure 7 shows a view of VADOR Search.

86

Y 050602171, raahdavi
‘BM Typs_Opt_Optout BM._INET SppOpt,_. | 05.06.0217.1.., mahdavi
ddisrretaProfile_hahak nurhs dohile LN 5. ioahdavt 0, tdiscrel

AR e

Figure 7: VADOR Search

3.6.5.2 DBExplorer

The DBExplorer is a sysiem administration tool application (VADOR Admin.
GUI), permitting the VADOR administrators communicate directly with a
database to perform SQL queries, create a new group or class of host, add a

new user or host, and export the database. Figure 8 shows a view of DBExplorer.

Although DBExplorer works as a separate independent application, it would
be possible o integrate this application within VADOR GUI and give the

launching permission only 1o the VADOR users with admin pr‘iviieges.

87

imshdavi
srrizh dawi Mo Usage
root3M_Comps. e imahdayi No Usags
B, SOy _Optimi.., Jhomefcerc, .. mahdawi IR 180 1M
V")E‘?_b{f,SGY_Atoml: fhome/fcere

e s e Labl il i LGS e
kése#ect * from StrategyDefinition where strOwner = ‘mahdayi’
i

it

T e e L e e

e

?,E/,,WWMzw/mmxw,,w,,x,/,,;/,W»w/»,:/m»ﬁ)wm»wym ,

e

|

Figure 8: VADOR DBExplorer

38

Vanderplaats [97] gives the following definition about the optimization: “The
concept of optimization is basic to much of what we do in our daily lives. The
desire to run a faster race, win a debate, or increase corporate profits implies a
desire to do or be the best in some sense. In engineering, we wish to produce
the best quality of life possible with the resources available. Thus in designing
" new products, we must use design tools which provide the desired results in a

timely and economical fashion.”

Although not precisely synonyms, the words improvement or enhancement

can be two alike terms when thinking of the optimization.

This chapter discusses the optimization issues by giving examples of
optimization problems, their particularity, and how they can be used within the

VADOR framework.
4.1 Optimization Problem
An optimization problem in engineering includes the following paramet'ers:

e Function: Function to be evaluated with an objective {e.g. minimizing or

maximizing a cost function).

e Variables: Changeable paramsters that signify a potential for change.

(e.g. design variables and/or behavioural variables).

89

e Constraints (optional): Limitation on solving the objective function. (e.g.
limitation on the design space and/or variables). These limitations can be
of any kind, mostly representable mathematically under the form of

equality, inequality and side constrainis.

A mathematical example of such a problem can be presented in the following

form:
Minimizing: F(X) objective function
Where: X={X1X2X3... Xn} design variables
Subjectto: g(x) 20 ineguality constraints
h(x) = 3 equality constraints
XTSXSXY i-im | side constraints

A typical example of an optimization problem can be a cost function, minimizing
the cost given variables and constraints. The next section discusses the problem
with the programs that uses such an optimization, and how they are implemented

in VADOR.

950

Figure 9 shows an example of an MDO optimization problem, demonstrating the

data flow and dependency between various programs and stored information.

t Optimizer

7 ""
{ Flow Solver
) ~
\%

Figure 9: Example of an MDO optimization problem

In VADOR terminology, the term Solver is used to describe an appraisable
function, namely the program that implements such an objective function. On the
other hand, the term Optimizer is used for a program that needs to use one or
more solver programs during its execution. The OptimizationStrategy is created
in order to enclose an optimization process design consisting of an optimizer
program encapsulated in OptimizerStrategy ahd the solver(s), which can be
enbapsuia’ted using a normal atomic StrategyComponent(s). To understand why
there is a need for such a specific StrategyComponent, it is important fo
recognize the difference between an OptimizerStrategy and other types of
Strategies, and this becomes clear particularly in the course of the execution.
The VADOR Executive, once it traverses a composite Straiegy tree structure and
launches every atomic node by delegating to the chosen CPU servers, does not

expect any kind of interaction with the launched Strategies, rather it will be

91

notified by CPU Server on the success or failure of the execution, since all the
encapsulated programs or scripts in Strategies have all the necessary input and
ouiput parameters in order to ierminate their execution until the end. Figure 10

shows some part of a real optimizer program as example. As it can be seen, the

NE=0
DIFFTYPE=2
ANALYT=FALSE.

DO =L N
KX(D=XSTOM
ENDDXO

FLAG =2
CALL SOLVERI (C1, FLAG)

SUBROUTIN SOLVERI] (FHX, FLAG)

INCLUDE ‘08FUCQ.INC’

DOUBLE PRECISION FHX, ¢1, Cd

INTEGER FLAG, UNIT

CHARACTER FICHOUT*72, CDUMMY

LOGICAL FILEXI

CALL SYSTEM (‘/home/mahdavi/MDO/solverl.sh’)

SUBROUTIN SOLVER2 (FGX, FLAG)

é;\LL SYSTEM (‘“home/mahdavi/MDO/solver2.sh”)

V

Figure 10: Exampile of an optimizer code

program calls a solver, which in turn carries it out by making a hard-coded
CallSystem for execution of the solver. It should be clear that such a hard-coded
program cannot be encapsulated within 2 normal atomic StrategyComponent,
which aims to bring the flexibility and reusability into the framework. The location
of the executable programs or script may change occasionally, which results in

the failure of the whole created process.

The only way 1o encapsulate these kinds of programs within a

StrategyComponent is to replace these CallSystems by a mechanism that

92

permits calling to the solvers take place under the control of the VADOR system,
more precisely the Executive server. The OptimzerStrategy is created as a part
of solution for this particular case. An OplimizerStrategy on its path of the
execution, needs the result of a solver (or solvers) in many different points of the
program execution. In this case, it should be able to communicate with VADOR
Executive and explicitly request the execution of the solver(s) Strategy. VADOR
Executive, after the reception of such a request, will launch the solver program,
encapsulated within a Strategy. Figure 11 illustrates how this mechanism is

implemented in VADOR.

after receiving the solver_SGY
10, Executive will launch the

corresponding solver_SGY on
CPU server. s Executive Daemon

Optimizer Program

Optimization_SGY

set DC_ID=%1

Haosi=
set Exec_Host=$2 plimizer_SGY

FLAG = 2

GALL SOLVER (G1, FLAG) solver_SGY (ID=1)

. solver,_SQY (ID=2)
send (solver_SGI ID#) \

SUBROUTIN SOLVERT (FHX, FLAG) Connector
INCLUDE '02FLUCOING'

DOUBLE PRECISION FHX, ¢t, Cd
INTEGER FLAG, UNIT

LglCAL FILEX!
YU IBAD D soivertah')
taunch

u java Connector solver SGY ID#

port:

i (; WW ,,,,, -
Opti izer_S‘%> \/‘ : _

Figure 11: OptimizerSGY calls a solverSGY via Connector

93

An OptimizationStrategy consisis of an Oplimizer, and one or more solver
Strategy. The execution of this Strategy starts by launching the execution of the
optimizer part. The invoking CallSystems are replaced by calling to the
Connector routine program writien specially for establishing the connection
between running OptimizerStrategy and the Executive daemon. Via this
connecior, the optimizer program can call a given solver Strategy by providing its
ID. This is because Strategies can have the same names, but IDs are unique.
Although, this may not sound very intuitive at first, the procedure is very similar to
any usual programming, using a high level computer language. Most of the time,
an external program or an internal function is writien; or at least, it is given a
name; then, this name is used to make a call to the program or the function in the
main program. Here, OptimizationStrategy and obligatory all its children are first
created, then the main optimizer program is completed by calling the sought

solver Strategies, using their IDs instead of names.

94

From the start of the VADOR project until now, many different processes have
been implemented uéing the VADOR framework. In almost all the cases, these
processes were the aciual processes used in various engineering depariments at
Bombardier Aerospace as a part of whole big process, aiming uliimately to build
aircrafts. These cases permit initially, using the VADOR prototype, to study the
feasibility of the system and choose the appropriate technologies. Additional
cases implemented after starting the new VADOR framework allowed not only
the evaluation of the framework and verification of its specification, but also
measurement of its performance and its appreciation level. Although most of
these cases have been recreated and used at CERCA, today there are some
processes that are only implemented and used at Bombardier. This actual use of

the VADOR at Bombardier provides more accurate evaluation of the system.

The following sections describe and provide detail about some of the projects,
built and used within VADOR framework at CERCA and/or Bombardier
Aerospace. Although the creation of atomic and composite Data and Strategy
Components are not explained, Appendix C provides a good example of how

these flowcharis can be mapped into Data and Strategy components.

5.1 Damage Tolerance Analysis

Damage Tolerance Analysis (DTA) is one of the first cases implemented within

the VADOR proiotype. DTA is a process based on crack propagation and

95

residual strength analysis. One of the mission of this project was the

autoimmunization of the process shown in Figure 12 [99].

RN toaduTREEs 3

i EROLOHT 1
¢ BORGEFREES
o e ey RAs IR0 S bination 6l

i hecaboys @ Hes /——-*-—‘JW
- : IGRDET RESE JRTeUT e -

WRNTE RTRESS EQUSTIONS Y
SPEREATE G ARGVE INPUR EILEG

NOM BARGESAIRED

5 LA e

BAHGEAIR
Zariincing

T HEPBRYFOR
TR mme sk
JE o

TELDY RESULTS |
Es’vnzmkﬂ BETY

{ CONCATENATE
BESULTS

i

Figure 12: initial DTA process

The Loadsiress program pre-processes the loads for the spectrum generation
computer program Rangpair. The Loadstress program selects the loads from a

file and performs the specified mathematical operations. it needs two input files:
1. control, which contains the instructions and a list of load cases.

2. load , which contains all the FEM post-processed loads, produced by the

Xpost program post-processing NASTRAN outputs.

The Loadstress program reads the loads and performs a sequence of operations

on them for each load case. These mathematical operations are specifiedg in the

control file in reverse-polish notation.

A file containing the results is generated after the run of Loadsiress. This
result file must be edited o add the path of MissionDefinition file used to apply a

factor on the fatigue unit load cases and superimpose the effects of many load

96

cases assumed {o occur at the same time during a flight segment. The output file
and the MissionDefinition file are used as inputs to run Rangpair which generates
a range-pair-ranged load specira at any particular location on an aircraft. Two

oulput files are produced by the Rangpair program:
1. range-paired: Contains the range-paired results.
2. non-range-paired: Contains containing the initial spectrum.

The last step of the process is to display the spectrum in a piot tool and Vrepeat
the range-pair-range counting technique for all the different MissionDefinition
files. This process builds‘the stress history for one siress component at a time as
required usually. However in some cases, it is required to calculate the stress
history for several components and to combine them into one single component.

Figure 13 shows the process steps as it has been implemented within VADOR.

G

Figure 13: DTA process implemented within VADOR

97

A small custom GUI had to be build in order to capture user eniries, including the
stress equation in a normal form. In fact, the tedious part of the process, which is
also the most prone to human errors, is the generation of the Joad file; the
residual part of the different files containing the siress eguation operands. The
stress equation can be written in a regular notation using custom GUI box, then
after parsing, it is converted 1o a reverse-polish notation and inseried in the‘
introduction block of the control file (before, most of these jobs were done using
manual procedures such as cut-and-paste). The dia.ini file is created by the
custom GUI, while difa.sh and addpath.sh scripts had to be written in order to fully

automate the flow of the process.
5.2 Airfoil Shape Optimization

An optimized Non-Uniform Rational B-Spline (NURBS) geometrical
representation for wing asrodynamic design is used in this example. To solve this
problem, an approximation of an existing wing profile (Bombardier-Canadair
airfoil and the positions of its control points) is needed which implies an
optimization problem and discretization. The approximation approach consisis in
finding an initial guess for the approximation and then optimiiing the positions
and weights of the control points. For the optimization, the gradient-based BFGS

method is used with an objective function evaiuating the average error:

EH’ moy — %Z dk
k=1

and the maximal approximation error :

Ef max = max {0i} I<k<n

98

The objective function is then built as a combination of both errors :

F(X) = EIT moy + 2 * EIT max

where X is the design variables vector containing the positions and weights of the
approximation control points. The choice of the initial guess is crucial if the
approximation method is to be reliable and efficient. Indeed, the objective
function of such a problem is strongly non-linear, so the optimizer is most likely to
diverge, or to converge towards a local minimum, if the initial guess is too far

from the solution. The optimization process is depicted in Figure 14.

nter

profile.pie

| ocraet il o

coporm s

i % —
evaluate.dat

Yes
optimized
outl.ple

Figure 14: Airfoil shape optimization process

sphin e | e
: Lo b

Brief descriptions of programs:

e The data file bgk.air contains the wing profile in the form of a set of points.

e The inter program interpolates the profile using B-spline with the same

number of control points. The order of the B-spline is specified by the

user, and if it is chosen 1o be 2, the program simply transforms a bgk({.air)

format file to pie format file, here profile.pie.

The create_init program creates an initial file in.pie for the optimization of

the NURBS representation of the wing profile described in profile.pie.

The optim_gr program pérforms the optimization of the NURBS
representation of the wing profile using BFGS method. It needs user
interaction to set the optimization variables. It generates two dataset files,
one containing the optimized profile out.pie and the other the errors of the

approximation evalue.dat.

The boolean program if converge?, can determine if the optimization has
converged or not after a given number of iterations. If not, another

optimization loop is started.

The outin program converts the optimized profile out.pie to the input

format of the optimizer, if the process has not converged.

100

5.3 Bend and Twist

The Bend and Twist process (Figure 15) is an iterative process used to compute

the wing deformations for some specified flight conditions. The starting point is a

Exiamal file i / a7

Swa 7

optional Tes é BT
(enternal) .‘;:3—-1-.
EREELS

oh.dat / ona.datjig.e // wist dat /’/ STOP_twist /’

AR [T KTRAN
(R T
; k:
CEE S/
oG —
S et/ ava) AIRLOADS v
[_earion_J TRRT Y e
Jevalawik S / ovalCLOF /'
findioading
: |
L_.._‘__*/
nodes.u v, i ass 7/
»I—‘r"’.!’
2l ittty @‘;3 dosigi i
a7 »L] 3
LTS
sotup. 100000/ / aidoil.stuse / fan.aa[,__fg_m_&é [[
fort 38 W rop.bin fort. 103
rone2 E [et 7
=1 naswing.dat _
/[anoilpg / on3s_ J
y
dourve9s ‘ T _9
/_clom 100000

/ _teun3as

Figure 15: Bend and Twist process

wing jig model. The jig model represents the geometry of the wing as it is built.

Under the aerodynamic loads encountered in flight, the wing bends and twists to

take the flight geometry. Unlike the jig geomelry that is unique, a flight geometry

101

exists for each set of flight conditions simulated. The bend and twist process,
after convergence, returns the vertical and twist deflections of the wing and
therefore, the desired flight geometry. The Bend and Twist Process implemented
in VADOR is used for a wind-tunnel model. A similar process, involving a few
different subroutines for the computation of the structural properties, exists for

the real wings.

Brief descriptions of programs:

e sumiwist : Adds the twist deflection computed in the previous iteration to

the jig twist to produce the geometry given to KTRAN.
e KTRAN : Computes the flow and the aerodynamic loads on the model.
e findloading : Extracts the wing loading from the KTRAN solution.
e airfoil1, airfoil2 : Calculates the geometric and structural properties.
e ldcurve98, force, doeigj: Pre-processing for NASTRAN.

e NASTRAN : Computes the wing deflections in response to the loads

applied.

e nasTOtwist : Exiracts the twist and vertical deflections from the NASTRAN

output file.

e verptwist : Reformats the ouiput data in a verp (plotting software) format.

102

b —
extract E“ R

extract.icg

inE L oS “l
SaRIx

’ |

» _amg.unt smgsd.og

s

izt

/ Sarrdn L Tmstals 7

f
_toRstic_4 l @
Semimix

| !

mwls jnputt pronsw Bd_tometisiog
etz input2

metis Inputd

metis.inputd

matis.oumuta

The PRE-NSUS3D process is used to convert a grid file produced by the ICEM
software into a format that can be easily read by the NSU3D code. The process
involves different utilities, as well as a recompilation step. The complete process
needs also to be run on two architectures, namely IRIX and CRAY machines.

Figure 16 presents PRE-NSU3D in form of the flowchart.

]

St 3

pans

Figure 16: PRE-NSU3D process

103

Brief descriptions of programs:

e extract: Converts a *.bin file {obtained from ICEM) into an *_edge.unf file.

The *_edge,unf file contains the list of edges and the edge coefficients.

e amg3d : Pre-processor which builds the coarse multi-grid levels for the

agglomeration multi-grid algorithm employed by NSU3D.

e distf3d : Pre-processor which compuies the distance function required by

certain turbulent models in the flow solver.

e prensu3d_crash : A version of the prensu3d program that was compiled

with minimal arrays sizes. The lack of memory makes the program crash.

e generate_common : From the log file created with the crash of prensu3d,
this program generates a Fortran file containing the appropriate sizes for

all the arrays.

e compile_prensu3d : Compiles prensu3d using the Fortran file generated in

the preceding step.

e prensu3d_toMetis_4 : General pre-processor. The first call to prensu3d

creates the output files for the Partitioner.
e kmetis : Grid partitioner. Creates the pariitions.

° prensu3d : Generates the fully pariitioned output necessary for the
NSUS3D flow solver. Final step before running NSU3D. This execution is

done on the CRAY machine.

104

piemented Case Studies

Despite of the differences between these implemented processes, some
common advantages and improvements of using the VADOR framework versus

the actual in-use techniques have been experienced. These are:

e Fully automation of the process — no more manual interaction of the user
is needed. Furthermore, the user can work on different tasks while
VADOR is executing the process. This automation benefit alone, can
already save a lot of time (therefore money) and justify the use of such a
tool. In fact, the DTA study shows that about 35% of time-saving was
attributed to the automatization of the process compared to the previocus

in-use manual procedure [99].

e Visual representation of the process — this provides a better giobal view of
the process and involved data. The user sees what has been done and

what remains to be done.

e Visual representation of the process execution — the actual status of the
execution is known, so the user is alerted to the task being executed and

the data already created.

e Traceable records of the performed tasks — every piece of data can be
traced (and reproduced if necessary). In addition, add-in applications can

be used to open the traced data for editing or visualization purpose.

e Lower risk of errors — programs have inpuis and outputs with predefined

types. This reduces the danger of executing a program with a wrong input

file. Moreover, the user cannot delete by mistake a file that is linked to

other files.

More reusable process ~ standardization of the data and process into

componentis promote the reusability of the process.

Easier tracking of the work of others — the process is somehow
documented, so it is possible for others to see what has been done by

other people in the project.

Refined search — by classification of the system, and providing an
advanced search tool, enriched searches can be performed on data and

components in the system.

File duplication prevention — unnecessary or erroneous duplication of files

is prevented or at least minimized.

Easier training of new staff — already created process is easier to
understand for the new unfamiliar project member. Once understood, the
same concept, uniform appearance, and approach are used for creating,

using, or understanding the other processes.

More conventional practice — using different user-friendly common widgets

such as browser, permits an easier and more intuitive practice at work.

Enforcement of the standard practices.

106

VADOR constantly improves and a list of planned enhancement is always
prepared to ensure that this framework traverses its path towards an increasing
level of maturity. In the next phase of development, the incorporation of the Web
technologies is envisaged. Usage of the Extensible Markup Language (XML)
[100] can provide a common information format that can be exploited in different
forms. Every component in the system is linked to an XML file, which keeps the
record of the course of the execution, and the eventual errors in XML format.
This can improve the debugging aspect of the system. Later, it would be also
possible to define components in XML format and export them to the VADOR

database.

The execution of the cross-organization distant process that involved two
Bombardier branches located in two different distant cities is emphasized. The
totally different administration and account management even within the same
organization creates more server securily concerns. it is important to shift the
socket-based communication into a higher level form of network communication
where standard protocols such as Secure Sockets Layer (S§SL) and Transport
Layer Security (TLS) can be employed. This is also crucial }for keeping the
integrity of the account of all the VADOR users, even within the same
organization location. The deliberate or inadvertent kind of not-trusted Strategy
execution is thus not possible, creating a safer environment and avoiding

catastrophes.

107

A bypass solution for encapsulating discipline codes on the CRAY [101]
machines is also undergoing. There is no available JVM for these
supercomputers at this moment, making it impossible for either the VADOR
servers or VADOR GUI 1o run on these super machines. This means a user
cannot even browse a directory on CRAY computers in order io enclose

discipline codes within a StrategyComponent.

The use of parallel computing techniques still remains challenging. VADOR
should be assured that parallel processes are truly done in parallel, at the same
time, and on different machines or processors. This is different from pseudo-
parallelism, where processes are launched simultaneously on the machines
equipped with only one processor, without being sure that two parallel sub-
processes are not threaded on the same machine. Although early advanced
frameworks took advantage of conventional standards such as PVM and MPI
[102], the new trend in research towards new ways of paralielism in the broader
dimension, using technologies such as CORBA and Grids, [60][61][62] are

certainly worthy.

The use of the Artificial Intelligence (Al) technigues (such as efforts done on
OASIS system) are practically missing in the development of all the actual
advanced frameworks. Al technigues can definitely bring enhancement and
improvement in the automation of the design. By the acquisition of information
and with rules for using the information, and using the rules to reach approximate
or definite conclusions, it is possible to move from some existing knowiledge-

based frameworks towards a more expert kind of system in which the use of

108

information is more dynamic. For instance, applying search and machine learning
techniques can help to propose the best performance profile based on the past

optimization occurrence on similar problems

Subtly in the same direction, undergoing study of the Enterprise Resource
Planning (ERP) tools provided by leader companies in this field, such as SAP
[108][109] , BaaN [110], Oracle [111], PeopleSoft [112], and J. D. Edwards [113]
can certainly help to create new modules within the VADOR framework that
assist engineers and design, process, risk and change managers by giving them
the new facet of the VADOR utility. Although the initial basic idea about these
ERP tools was initially to provide customers with the ability to interact with a
common corporate database for a comprehensive range of assembied
applications, today these tools manage the important parts of any business, from
finance to human resources, inciuding product planning, parts purchasing,
inventory management, interacting with suppliers, customer service, and order
tracking. In fact, the ERP approach shares some similarity change paradigm that
VADOR also tries to bring into the engineering work environment. The
approaches are information- and process-oriented (bring attention from data to
process), trying to integrate these processes in order io bring a manufacturing
performance improvement, using the business or industry change effort strategy.
ERP tools also help industrial operations optimize their enterprise performance
strategies in the knowledge-driven environment, with iis ever-increasing
demands for information, integration, and collaboration. After all, MDO also aims

at economic competitiveness, a balanced product performance encompassing

109

manufacturing, life cycle issues, design process timeiable, and economics.
Historically, the integration of ERP 1iools was not very successful in the
engineering-oriented organization contrary to any other kind of organization.
Using an engineering-oriented tool that integrates partially or *{otaﬂy the
fundamenial engineering-management modules can possibly bring new
accomplishments not yet achieved in this field. An example could be the creation
of a new module within the VADOR framework that collects the existing
dispersed information about processes and people involved in a given projec,
and provides the manager with the appropriate precise information on the
progression of the particular project, inciuding detailed data on the advancement
of each sub-process done individually by the responsible engineers. Managers
could then calculate the risks and apply all the necessary changes to the

process.

110

MDO definition, its value, particularly in the aerospace industry, and the
motivations for the design of a problem solving environment where MDO

concepts can be practiced, were briefly described in Chapter 1.

in Chapter 2, a short history of the MDO origin, its objectives and the multiple
open research areas on this subject were presented. Moreover, it was explained
how an MDO framework is defined and what are the requirements for such a
problem solver environmeni. This was followed by a concise description of all the
current and former efforts for creating such a framework, having the goal of
allowing the MDO practices. Most of the presented frameworks were developed
only for research purposes, such as FIDO and IMAGE. Some of these projects
gave way to new projects using the acquired experience from previous work, or
they were simply discontinued. Many of these R&D efforts have been obviously
done by universities, although NASA remains the main organism interested by
the subject, considering the fact that most of the R&D realized by universities
were also financially supported by NASA. Many of these frameworks are case
specifics, designed only for solving particular MDO problems and they may not
suitable for generic MDO pracilices. For instance, ProFES is intended for
performing RBMDO problems. Stiff competition seems not to exist among the
builders of the remaining generic MDO commercial frameworks, since users can
study their needs and restrictions, in order to easily find the tool that suits them

best. It is not surprising that the organizations that do not find any of these

i1t

commercial tools fitting in well with their working environment or their current
technologies try to command a customized system that takes into consideration

the particularities of the industry.

Chapter 3, presented VADOR, a generic MDC framework, where its
specifications attempt to meet the requirements of any ideal MDO framework and
one of its specific objective is to bring MDO capability practices within the
Bombardier Aerospace, considering the mythologies in practice in this aerospace
industry. The critical review of the VADOR versus framework requirements
demonstrated that, although this framework is still far from being an ideal
framework, given the constant improvements and anticipated modifications the
potential exists that a very notable and unigue MDO framework will result from
these efforts. Java is certainly a good choice for developing in a heterogeneous,
object-oriented, component-based environment; however some promising Web
facilities using Java applets seem o have some server security limitations on
writing and reading files, creating a limitation on its large-scale MDO capabilities
with regards to usage of a Web browser as the interface to the framework.
Another difficulty was the unsolved latency problem during callback using RMI,
which forced VADOR for the time being to use the socket-based communication.
The only advantage of using this form of communication socket over other
technologies such as RMI/CORBA is its performance in terms of speed. Socket
is slightly faster than RMI or CORBA. On the other hand, the socket
programming model is very primitive, using only a very low level of abstraction. A

custom protocol for passing the request of service names and their arguments

112

should be created. Also, implementing all these multiple services causes major
maintenance and programming problems. In addition, transactions, distributed
method invocations, dynamic discovery and metadaia support, are not
supported. Furthermore, standard security protocols such as SSL and TLS which

demand a higher level form of network communication cannot be employed.

The two kinds of compo.nent family in VADOR were also introduced. The first
one encapsulates the data, while the second component family encapsulates
programs and the design process. The advantage of this component-based
approach will be even more apparent when other componenti-based standards
such as CORBA are used. Moreover, extra effort should be made to make sure
the VADOR components are also the Java components. This can be done by
making sure that they fully conform to the rules of JavaBeans. Thus, the broader
benefits of these true component-based environments can be explored by taking
full advantage of Java programming language. The different types of design
patterns implemented in VADOR were also explained. The idea is to bring more
modularity and consequently more reusability of different part of the sysiem,
which is important for any complex distributed architecture such as VADOR.
Different paris of the VADOR multi-tiered distributed architecture were illustrated
including servers and load balancing which aims to bring the equitable

distribution of workload among the VADOR CPU servers.

in Chapter 4, the concept of an optimization problem was enlightened using

an example, and the technical problem of using optimizer program was explained

113

along with the solution for solving this impasse in the optimization capabilities of

the VADOR framework.

In Chapter 5, the case study processes implemented within the VADOR
framework at CERCA and Bombardier Aerospace were depicted using their
respective process flowcharts. The advantage of using the VADOR framework
versus the former manual techniques were enumerated, giving evidence of its
sure road towards a higher level of maturity. And finally, a list of undergoing and

future planned work along with subtle suggestions, were presented in Chapter 6.

The increasing complexity of the products within an economic competitive
environment, accentuates the need to reduce the design cycle time. This need is
even bigger in aerospace industry, where the more complex aircraft design is
multidisciplinary in nature, and different disciplines involved in design, work
independently of each other. In such an environment, the need to apply the MDO
practices ié essential. VADOR is not the first effort to create an environment
enabling MDO solutions, and it will certainly not be the last. The challenges of
creating an ideal MDO environment are enormous. VADOR succeeds in creating
an automated engineering and time-sffective environment, where seamless
integration of the legacy analysis codes and the design processes are visually
feasible. This MDO-enabling distributed framework gives visibility to the
processes, permitting the change tracking in a design project and possibly
monitoring of the progress. Any other tentative for creating a similar distributed
system can take advantage of most of the concepts used in the development of

this framework or avoid its faults. The multi-tiered architecture, design patierns,

114

component-based and object-oriented approaches are now known concepts. The
key is to use these standards properly within a complex distributed system

designed for large-scale engineering tasks.

- 115

Al

AML
ANSI
API
ARA
ASDL
CAD
CAE
CAM
CAT
CATIA
CCA
CCAT
CE
CERCA
CFD
COM
CORBA
CsD
Cvs
DAKOTA
DARWIN

DBMS

- DC

DCOM
DOE
DTA
EJB
ERP
FEA
FIDO
GSE
GUI
HPCCP
IMAGE
1O (/O)
P

IPG
SO
JDBC
JPL

Artificial Intelligence

Adaptive Modeling Language

American National Standards Institute
Application Program Interface

Applied Research Associates

Agrospace Systems Design Laboratory
Computer Aided Design

Computer Aided Engineering

Computer Aided Manufacturing

Component Architecture Toolkit

Computer Aided Three-dimensional Interactive Application
Common Component Architecture

Common Component Architecture Toolkit
Concurrent Engineering

CEntre de Recherche en Calcul Appliqué
Computational Fluid Dynamics

Component Object Model

Common Object Request Broker Architecture
Computational Structural Dynamics
Concurrent Versions System

Design Analysis Kit for Optimization and Terascale Applications

Developmental Aeronautics Revolutionizing Wind-tunnels with
Intelligent systems for Nasa

DataBase Management System

Data Component

Distributed Component Object Model

Design Of Experimenis

Damage Tolerance Analysis

Enterprise JavaBeans

Enterprise Resource Planning

Finite Element Analysis

Framework for Interdisciplinary Design Optimization

Global Sensitivity Equation

Graphical User Interface

High Performance Computing and Communications Program
Intelligent Multidisciplinary Aircraft Generation Environment
Input Output (input/Output)

internet Protocol

Information Power Grid

International Organization for Standardization

Java DataBase Connectivity

Jet Propulsion Laboratory

116

JVM
LaRC
MDICE
MDO
MDOB
MDOL
MIDAS
MODEL
MPI
NASA
NFS
NPSS
NSERC
NSF
NURBS
obDBC
OMG
OMT
0S
ProFES
PVM
QEM
R&D
RBMDO
RMI
RPC
RSM
SAP
SQL
SSL
TCP
Tkitcl
TLS
UML
URL
VADOR
VR
WICKED
XML

Java Virtual Machine

LAngley Research Center

Multi-Disciplinary Computing Environment
Multidisciplinary Design Optimization/Multi-Disciplinary Optimization
Multidisciplinary Design Optimization Branch
Multidisciplinary Design Optimization Language
Multidisciplinary Integrated Design Assistant for Spacecraft
Multidisciplinary Optimization and Design Engineering Laboratory
Message Passing Interface

National Aeronautics and Space Administration
National Science Fondation

Numerical Propulsion System Simulation

Natural Science and Engineering Research Council
National Science Foundation

Non-Uniform Rational B-Spline

Open Database Connectivity

Object Management Group

Object-Modeling Technique

Operating System

PRObabilistic Finite Element System

Parallel Virtual Machine

Quality Engineering Methods

Research and Development

Reliability-Based MDO

Remote Method Invocation

Remote Procedure Call

Response Surface Modeling

Systems, Applications, Product

Structured Query Language

Secure Sockets Layer

Transmission Control Protocol

Tool Kit / Tool Command Language

Transport Layer Security

Unified Modeling Language

Uniform Resource Locator

Virtual Aircraft Design and Optimization fRamework
Virtual Reality

Web Interface for Complex Engineering Design
Extensible Markup Language

117

I

1.1 VADOR Packages

1

1

I

WadorGUl

Metworkioois ioadi DBExpierer
+Meathod OpenBiralegy +GDataTable +DBEspiorer
+1Sgyawiicier +LGarDats SGLDIatog
+Method SaveCommeant +«LSarsSerer HelpDiaiog
+Method Copyment +TaskData +CopyDBDIg
«iftistory\isitor +Hostl oad +CopyTables
SMTP L Baigorithmiing +AddGroupDig

+Method SaveHistory
+Mathod OpsnHistory
+AMethad Gbservar
+Method DeleteHistory
+HLbransnfroxy
+iEmall

+Method OpenComment
+Method NotiObserver
+Email

+iiyadorisior

+ iV adorBUIProxy
+Method DeleteObserver
*Meathou Sirategy
+Wador Agent

+Method OpenObserver
+Message Future
+idethod History
+Comroe itV isior
+Mathod SaveObgerver
+Method DeleteStrategy
+iVadorProxy

+Method DaleteComment
+hiethod SaveStrategy
+Method Rerpuest
+ISgyiiisitor
+IObserverVisitor

1

Libragian

+Librarian
+Configure
+LibrarianThread
+Query
+LibrarianProxy

1

+TaskCollector
+LLlocaiCollectorlisiner
«LBAlyorithm

+Task

+LRupServer
+GlocalCallactorProxy
+LProcessTime
+GGlobalCollector
+LBAlgorithmRandom
+BConnectiocals
+LBAlgorithmSimpie
+LoadbalanceParamEditar
+L8AlgorthmComplexy
+_nadbalancemanager

+CreateDefauip/alues
+AddHosiClassDig
+AddHaositDig
+8ddUserDig

3

Vragper

Taskifanagement
JobManagement
Exception
Commanditanagement
Connection

nstatiData
+*CheckExistence
+DCinstListDig
+OCBuillder
+adoraUiMonitor

P opup
+AlamicSGYBuilderDiatog
+TypsListDly
+GriddedPang]
+OpenDCinsiDig
+ReadersConfigDialog
+DCBirategyTres
*WRHorGUIFramse
+lconCellRenderer
+lconData
CheckListiCeliRenderer
+StrategyExplorer
+adorGUiltilities
+DisplayDCNpde
+hessagebDig

+CheckSgyDependencies
+AOMisSEY
+QptimizationS3Y
+ADSractWhileIBY
+ADstraciOplimizationSGY
+ParallglS ey
+8gyVisitabie

+Stratagy
+ADstractiierative33Y
+BoeY

+Programinfo
+IptirmizersSGyY
+ConditionalSey
+DawhileSGY

+DCinstHistory
+HistoryDeletevisitor
+HistorySaveVisitor

1

+LBAlgorithmDynarnic :Eh:::;(i::emrmer :Srogr?TOSrazt;Tngg
&
+Laoil$m'ihuies Editor +MonionRuitiChoice
———¥ +UsageviewDiriog
l — +DrawSgyisitar
pm—— Vadortiistony Checklistener
+DCTypeHistory +LpadTable
TrnieBEY +VadorHistory +DCheratorDlg
*Forsay +SirategyHistory DialonL ayout2
+Stratagyinfo +HistoryOpenvisitor

+TypeExplorar
+DCFoldeviewer
+L_oadvisw
+DCInstanceDeleter
+ilonitorSys

+CommentOperiisitor
+StratagyComment
+CommentDeletevisitor

A

SearchResulfTabieModsl

DataComponert

L

Executhe
Server
CHent
Exscutionioois

VadorSearch TS eqUeNTAIEGY
+iBearchPanel
+~DCinstar chiFana) !
+SortableTableMode!
+OhservarSearcnPanel adorobsarver
+DCTypeSearchPans! +/adorObserar
+SearchResul +ChserverUpenyisitar
“BesrchDisiog Tomo e Cvarts.
+StrategySaarchPana!

+OhserverSavevisitor
+ObsenveriotifVisitor
+VedorObsarver Events
+DhssverDelateVisiior
+ShrateaySGbserver Events

1

Utils

+CommandSystam
+FincProgressCaliback
FindByContent
FindByData

+FinciFites
+FincFiterfacton
FindAccessary

+FileCp My

WPt
+MuitiCurveSalling
+CurvaSetiings
FGrapnSeltings
~Lhils
+OrupioiSatings
~Griupiot
+DataFiiter
+BnuCurveSsettings
*eicomevpiot
+FiteProperties
+GnuGraphSettings
+CurveSetingsTable
+Walct
~PioiSettings
+PiotDevice

1

Virappes serdiet
~WirapperTransFile

118

+DC! pector
VadorComment +OpenDCDIY
+VadprComment +VadorGii8erverThread
+DCinstCommant +DrawDCVisitor
+DCTypeComment +NewDCinst
+CommentSavevisitor +GhrategyPans

+WagorGUiProxy
+CreateNewinsianca
+SetThreshald
+FolderPanel
+StrategissFanst

+ DU iewer
+~DCPanaiviewar
+DCDetsilViewer
+CheckBoxt.ist
+RigplavList
+*3geViewer
+RegisterObserverDly
*WadorGiiServer
+BirategyBuliderframs
+DCnstExplorer
+viewDCDIg
+DCRutton
~HastsConfigDiaing
“WritereCGonfigDialog
+UsageConfigDialog
+ianitoyConfigFile
+DialogSeparator
+Adjustabletist
*VadarGUi
+BelinpDCOIg
+DisplayTree
+DisplayTypeResults
+PNFalder

£

The following diagrams show the main classes and their relationship o each

other in their respective packages.

2.1 DataComponent Class Diagram

DefaulibiutableTreeblode Cuslomizer
DiataC unponent Seralizabie
— Diatalonpineitinio
e‘i "h(‘n. i‘«l\ P
| N
C]':l[)l:mstance WadorFolder CheckTypeDependencies
%\3 &NL‘—_\—.—-‘-—'_""\-«_‘___ M""“‘——______w

AtomicDCinstance CompositeDCinstance

AtomicDCType CompositeDCType

A

H

" £
B A A
DCBooleaninst DCBooleanType IDCType DCVector

118

Customizer
Serializable
Stratendnio

2.2 StrategyComponent Class

lagram

interfare
Sy Visitable

&
H 't‘{

A

DefaulihutableTreehode

properyChangs

g N '7’-“' 3
Customizer
Serlalizabie
Programinfo
properiyChange

Sbategy

- fitomicSGY

EESequentiaISG’f

/,./”

CheckiSmibependencies

¥

AbsbactOplinvzationSGY

e
-

il

WA

!Msfmcmfm.fest;!f l

™,

]

q:lmrsmr

DohileSGY

E;Zlomimizatiunsmf

B.2.3 Librarian Class Diagram

#Cnnﬁgure =

qELihrarian

4

Thread

uiery

LibrarianThread

L ibrarianProg
LibrarianProsy

120

B.2.4 Executive Class Diagram

Thread Seraizabis
ExecitiiveThread Execuielask

Y

N ExecutiveUtility VisitorSisie
While\VisitorStale
E.i:‘f:nmpnnemparser ?Execmmwuxy VisltorSiate
SeguentiaiVisitorState
YisitorSiate iSgviisitor
ParalielisiiorSiate ExecuteSoqAisiton

B.2.5 CPU Server (Wrapper) Class Diagram

The Wrapper package contains the classes for implementation of CPU Servers.
These classes are regrouped in subpackages shown in Sections B.2.5.1 to

B.2.5.5:;

B.2.5.1 Wrapper / Thread Controller

Thread
WirapnerThread
,3:;7 ;:: 7 4 “‘\j_
ST T~
o~ "'f 7 g M'H-\—‘—h"\-,
-t -

TestWrapperihread WirapperLocaliCopy WirapperHT TPDownleal qJWrapnerExecm%@mmam

121

B.25.2

EF Wrapper Crdinterpredor
J_J_.J-F"""m})v" '\“q}\"'-..

e

o o ‘H“""‘-.__ﬂ__k
™ o,

qﬂwmppeﬂm‘alﬂmmmgmmtm q:‘mayp&muhtmﬂmm é_quWannerSuhEmmmramrm”r

?Wram&rmmmandﬂuilder

—
A T
WrapperSubCommandB Wirapper TotalCommandBuilder
i
T %\ﬁk
"-_k.ﬂ“
B

!;FWrannerLungTimECummanﬂB Wi apper ShortTimeCommandB

B.2.5.3 Wrapper / Job Management

interface Interface
Wrapperieh! VirapperfobFroducer]

~ ™ //

o hY It
ﬁﬁwmrsmmm% ?@Weﬂm&obﬁmﬁpi ?‘f.’mpperswwl ?mmmsmalsmmwl ?wpmmmmpg t}mmemmmww’ ?WmmmExteimﬂmmPE
AR Ty
Al .[‘.‘« ‘k\‘\k\\‘“&»h

kit
e T i \ . .
e *\ *\..\
\ . e,
/ el // i . \“‘\u

iﬁ?ﬁpﬂﬂa{;&y&mi ﬁvm«:owwmi P&ammﬂr%ﬁ%lzgeécb! ;@mwnmmm' !v«amfmmmhl Fameneswmgem]

122

B.2.5.4}

apper / Task Management

—

e
Wapperﬁuh‘fhreadmﬂ)] C;-'lmapp&mesummﬁl EFWranpe:BuhCm@%Resu&Wn}
~

.,
'\‘\
\‘m
Seriatizable \\\
Wrapper TaskExeruter -

!mapperShunTaskExec«nerl iWappeergTaskExecMerl l?m-appefl'asks(:onﬂolers IWrapperThmadsCoMmler! IVWapperResuﬁanmo!erl

B.2.5.5 Wrapper / Connection

WrapperProxy |

Thread
WrapperTomector
)/_ ‘\\\ R T TR T
pd .
. /’ \\«
e ~ {
'MapperSemerPruxy AT apper ThreadProxy SubRoutineProxy l
SubRowtineConnector qﬂmappermmad(:unnector
Efl.‘-luxirappenask(:onnectm

B.2.6 Loadbalance Class Diagram

Sy

l:‘r:wmgomhm : EFGGIobaICoilecmr l
7 o
&4 K3

./’)/ \\»

R
- - ;
.
o ™. EF - E
Vv ., Taskattributes
pd \\ W
e | \\ Thraard
i ™, K LinceiCollectarbistner
?LBMgomhmﬂaMSrﬂg ILBAIgorRmWamécE ?Lﬂﬂlgmﬁhmainel CPGDMST@M&“ Thread
= o GCannectlocals
A A
i T
i !
i
} ‘ JDialog I:;ZJ Task] JFrame § TSeratizable
L BAH r‘tthiln e Lt BaslgorithmConmpl RemListenst - Faskbata
[? i i ﬁ qj s pw} 1 oatbalanceParamEditor
‘ MDiatog
L GLocalCattectorProny | HestClassticationEditor

Serighizable ETaskCuHecésr !
Hostioad

B.2.7 VADOR Search Class Diagram

interface Benalizabie
iSearchPaned SearchResult
A N N
- 4 - T
T / hS
f""', Ve ™ R
»»’J‘ - ,i' .N.\‘ .
5 AbstraciTabiebodel JPanei JPanet] O JPane! E;IJ JPanel
TabisModeilistener DllinstenceSearchifanst OhserverSearchPanz] ’ DL TypaSearchiPane! l ShrategybearchPans!
= = >
........................... \ / /_// / /,-ﬂ“"’
\”“—_ﬂ__ “\ /’/’
—\N\'«-«,_ / T
AbstraciTabiemods! JFrame
SearchResult Tabiebodet | SearchDialoy
B.2.8 DBExplorer Class Diagram
JDialog JDialog JDialog JDialog JDialog CopyTables JDialog
AdiliserDig AddHostClassDig HelpDialog CopnDBDIg AddGrounDiy /. S04 Dialoy

B.2.9 Network Tools’ Package Class Diagram

[l fwe) [5] o wmim) [Tow
{ e § | s | unasageruie| sy
voror Apans T
L &

&

iz24

B.2.10 VADOR Observer Package Class Diagram

Serfalizzble Seralizable iObssrverVisitor
YadaDbeerver Evermis YadorObserver [~ DhsererOpenyisiior
A N : -
) rd E \,\ [;‘3 [ObsenerVisitor
/ Ny ObserverDelatevisitor
N |

- . L3 sopsenerVisior
DL TymeObserver Bvenis DCInstOhserver Bvends SirstemyObserver Pyents ' ObserverMotiiffisitor

B3 UML Sequence Diagrams

I0bserer/isior
DhserverSaveVisiior

B.3.1 VADOR CPU (Wrapper) Server Sequential Diagram

Wrannar I.\r tolsr I')g[gnng:nﬂmgym; [’ i ’T'Luunemﬁ. i AN [ﬁ!mugg[ﬂﬂﬂmlggﬂ
i T] 1 i i T i
I ! i I 1 1
wldpieaTask ! § ! } : :
1 i | i 1
runhextstep ! § | t 1
i 1 § 1
| 1 i i
N 1 1 i i
getdvaiiatieDirkame H I H
............ ,_,.__.~_._%lj ' ! !
tart ! | i
i I i
! lagutaThread : {
[T § ! i
i 1 i
iegOuuaThread Ll T i | 1 i
By i I i 1 1
arhentstep ! : ; : :
start t i { i
+ + L t
1 i !
1] logOutaThrzad i
T T 1
[J J i I
" | | | :
. n 1
fogQuraThieud T) i 1 i i
i i | 1 1
runhextites i H i 1 1
an i ! ! |
i i i B
1 i i i
fopDutAThread T 3 i 1 t i
runkaxtsrep I i i t f
+ i I t '
H t ' 1
neiifyProcessFinished i t 1 I
J) removeAT sk : I : :
] i 1 1
et H i i i
Ui T i i i f 1
i i i i i i ¢
1 i ! i i i i
i i 1 i i H 1
i i i i i H i
| i i i 1 i i !

125

eation of

SgTaty
centaromt s e 5

mesh

A Benmenyc
AR T

C2 Creation of StrategyComponents Example

G o
Z {ertirniat qmg Ty ;

Mesher GUI ’Q" '
L |5

mesh param

Mesher
{ l i > Emm),
IBM/AIX
mesnh
%
l ’ Sotver GUI

‘ J CFD Solver

L]

sON/Soiaris

gl T Ign
frledy :

126

CFMAnaEysis_se_compositeASGY

More images from different parts of VADOR GUI, more specifically types and
components browser as well as types and components builders can be found in

this appendix.

Explorer

il i
x%% //‘/f’@%xﬂ/m :

% i vador | @ (30 MurbsOpom _babakNurbsi
@ it ndizye | i+ [interpotatedProfite_babakMurbsi
; G [InitApproxQUTPUTS babakNurbsil
: [Yintapproxerofile_babakMNurbst
P [rergetCurvature_babakNurb st

501 optimBFGSOUTPLITS ! !
nterpolatedProfile [T discreteProfile babakNurbst
UMt ist_outputs

MurbsOptimioop

| & [BM_Type_Opt_Appin

P @8 Type.Opt Appin

icost_slover_input

. , :
IR J.‘Mu,.r...mm_«...x?

oiver.gif

= type of the cosz solver input

Sy

lnrogram.

3 e _Type Opt OptOut

! M _Type_Opt_sppOut

G / .
ati iz nie

babak nacadlLZ _inter

.
Babak_OPT_TestjmpOutn; .

BFCSparam i

B _CompTyp e.Oth\nDd,

L
=
E
E
[
¥

RO,

: i
AR S e

[2]

[3]

[5]

Renaud J. E., Aerospace and Mechanical Engineering, Notre Dame

University, URL: http//www.nd.edu/~ame/facultysiafi/Renaud,John.html

Ontario Aerospace Council. Critical Technology Reports: Technical Report,
1996.

Giunta, A. A., "Aircraft Multidisciplinary Design Opiimization Using Design
of Experiments Theory and Response Surface Modeling,” Ph.D.
Dissertation, Virginia Polytechnic Institute and State University, VA, 1997.
Chen B., Liu, D., Mahdavi, B., Zhou, Q., Bouhemhem D., Ndiaye A,
Guibault F., Ozell B., Pelletier, D., and Trépanier, J-Y., “A Data-centric
Distributed Framework for Engineering Design,” 48" Annual Conference of
The Canadian Aeronautics and Space Institute, Toronto, ON, Canada, April
29 - May 2, 2001.

Sobieszczanski-Sobieski, J., “Multidisciplinary Design Optimization MDO
Methods: Their Synergy With Computer Technology in The Desing
Process,” The Aeronautical Journal, 1991.

Ndiaye, A., Trépanier, J-Y., Guibault, F., Ozell, B.,, and Mahdavi, B.,
“Recommendations on Application Interfacing and Integration,” Technical
Report, CERCA, March, 2000.

Ridion, S. A., “A Software Framework for Enabling Multidisciplinary Analysis

and Optimization,” 6" AIAA/NASA/ISSMO Symposium on Multidiciplinary

129

[10]

[12]

Analysis and Optimization, Bellevue, WA, AIAA-96-4133-CP, pp.1280-
1285, September, 1996.

Townsend, J. C., Weston, R. P. and Eidson, T. M., “A Programming
Environment for Distributed Complex Computing. An overview of the
Framework for Interdisciplinary Design Optimization (FIDO) Project,”
Technical Report, NASA TM 109058, 1993.

Weston, R. P., “FIDO - Framework for Interdisciplinary Design
Optimization,” 1996.

Allwright, S., “Multidisciplinary Design, Analysis and Optimization of
Aerospace Vehicles - the MDO Project,” Royal Aeronautical Society MDO
Conference, 1998.

Ozell, B., Trepanier, J-Y., Mahdavi, B., Ndiaye, A., and Guibauli, F.,
“Recommendations on Architeétural and Technological Issues for the
VADOR Framework,” Technical Report, CERCA, June, 2000.

Hulme, K. F., “The Design of a Simulation-Based Framework for the
Development of Solution Approaches in Multidisciplinary Design
Optimization,” Ph.D. Dissertation, University of New York at Buffalo, 2000.
Society of Concurrent Engineering (SOCE) / Society of Concurrent Product

Development (SCPD), URL: htip://www.soce.org/

Concurrent Engineering Research Center (CERC), West Virginia University,

URL: http://www.cerc.wvu.edu/

Concurrent Engineering Research and Applications (CERA) Journal,

Technomic Publishing Company, URL: hitp:.//www.cerai.com/

130

[16]

[17]

[18]

[19]

[20]

[21]

[23]

Concurrent Engineering Conferences (CECONF),

URL: hito//www . cecontf.com/

Concurrent Engineering Team (CETEAM) / Concurrent Engineering

institute, URL: hilp://'www.ceteam.comy/

Hartley, J. R., “Concurrent Engineering. Shortening Lead Times, Raising
Quality, and Lowering Cosis,” Productivity Press, Cambridge, MA, USA,
1992.

Carter, D. E. and Baker, B. S., “Concurrent Engineering: The Product
Development Environment for the 1990’s,” Addison-Wesley Publishing
Company, New York, NY, USA, 1991.

Sobieszczanski-Sobieski, J., “A Linear Decomposition Method for
Optimization Problems - Blueprint for Development,” NASA Technical
Memorandum 83248, 1982.

Sobieszczanski-Sobieski, J., “Multidisciplinary Design Optimization: An
Emerging, New Engineering Discipline,” Advances‘ in Structural
Optimization, Kluwer Academic, 1995.

Alzubbi, A., Ndiaye A., Mahdavi, B., Guibault, F., Ozell, B., and Trépanier,
J-Y, “On the use of Java and RMI in the development of a computer
framework for MDO,” 8™ AIAA/NASA/USAF/ISSMC Symposium on
Multidisciplinary Analaysis and Optimisation, Long Beach, California. AIAA
2000-4903, September 6-8, 2000.

Sobieszczanski-Sobieski, J., and Haftka, R. T., “Multidisciplinary Aerospace

Design and Optimization: Survey of Recent Developments,” AIAA paper 96-

[29]

[30]

0711, 34" Aeospace Sciences Meeting and Exhibit, Reno, NV, January
1996.

Rogers, J. L., Salas, A. O., and Wést«an, R. P., “A Web-Based Monitoring
System for Multidisciplinary Design Projects,” 7™ AIAA/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, St. Louis,
Missouri, September, 1998.

AIAA Multidisciplinary Design Optimization Technical Commitiee (MDO
TC),

URL: hito://endo.sandia.gov/AIAA MDOTC/Hag/MDOTC whatisMDO .himl

Ndiaye, A., Trépanier, J-Y, Gui‘bauli, F., Ozeil, B., and Mahdavi, B.,
“Database Requirements for an MDO Software Framework,” CFD2K, 8e
Conférence annuelle de la Société canadienne de CFD, Montréal, Québec,
Canada, Vol. 2, 721-728, June 11-13, 2000.

Salas, A. O., and Townsend, J. C., “Framework Requirements for MDO
Application Development,” AIAA-98-4740, 1998.

Ridlon, S. A., “A Software Framework for Enabling Multidisciplinary Analysis
and Optimization,” 6" AIAA/NASA.ISSMO Symposium on Multidiciplinary
Analysis and Optimization, Bellevue, WA, AlIAA-96-4133-CP, pp.1280-
1285, September, 1996.

Adaptive Modeling Language (AML), TechnoSofi, inc., Ohio,

URL: hito://www technosoft.com/oroducts.him

Zweber, J. V., Blair, M., Kamhawi, H., Bharatram, G., and Hariong, A,

Structural and Manufacturing Analysis of a Wing Using the Adaptive

132

[31]

[32]

[33]

[34]

[35]

Modeling Language,” 38" AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, Long Beach, CA, AIAA-98-
1758-CP, pp. 483490, April, 1998. |

Design Analysis Kit for Optimization and Terascale Applications (DAKOTA)

Project, Sandia Nation Libratories, URL: hiip://fendo.sandia.gov/DAKOTA/

Eidred, M. S., Hart, W. E., Bohnhoff, W. J., Romero, V. J., Hutchinson, S.
A., and Salinger, A. G., “Utilizing Objeci-Oriented Design to Build Advanced
Optimization Strategies with Generic Implementation,” g
AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Bellevue, WA, AlAA-96-4164-CP, pp. 1568-1582,
September, 1996.

Developmental Aeronautics Revolutionizing Wind-tunnels with Intelligent
systems for Nasa (DARWIN), NASA Ames Research Center,

URL: htto://www.darwin.arc.nasa.gov

Walton, J. D., Korsmeyer, D. J., Batra, R. K., and Levy, Y., “The DARWIN
Workspace Environment for Remote Access to Aeronautics Data,” AIAA 97-
0867, January, 1997.

Townsend, J. C., Wesion R. P. and Eidson, T. M., “A Programming
Environment for Distributed Complex Computing: an Overview of the
Framework for Interdisciplinary Design Optimization (FIDO) project,”
Technical report, NASA TM 109058, 1993.

Weston, R. P., Townsend, J. C., Eidson, T. M., and Gates, R. L., “A

Distributed Computing Environment for Multidisciplinary Design,” 5%

133

[39]

[40]

[41]

AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and
Optimization, Panama City Beach, FL, AlAA-94-4372-CP, pp. 1091-1097,
September, 1994.

Hale, M. A., Craig, J. 1., Mistree, F., and Schrage, D. P., “DREAMS and
IMAGE: A Model and Computer Implementation for Concurrent, Life-Cycle
Design of Complex Systems,” Concurrent Engineering: Research and
Applications, Vol. 4, No. 2, pp. 171-186, June, 1996.

Hale, M. A, and Craig, J. 1., “Techniques for integrating computer programs
into design architectures,” 6" AIAA/NASA/ISSMO Symposium on
Multidiciplinary Analysis and Optimization, Bellevue, WA, AIAA 96-4166-
CP, pp.1594-1601, September, 1996.

El Aichaoui, S., Hale, M., and Craig, J., “Building Design Applications Using
Process Elements,” 7" AIAA/USAF/NASA/ISSMO Symposium on
Multidiciplinary Analysis and Optimization, St.Louis, MO, AIAA 98-4876,
September, 1998.

iISIGHT, Engineous Software, URL: hitp://www.engineous.com/

Tong, S. S., Powell, D., and Goel, S., “Integration of Artificial Intelligence
and Numerical Optimization Techniques for the Design of Complex
Aerospace Systems,” AIAA Paper 92-1189, February, 1892,

Golovidov, O., Kodivalam, S., Marineau, P., Wang, L., and Rohl, P.,
“Flexible Implementation of Approximation Concepts in an MDO
Framework,” 7" AIAA/USAF/NASA/ISSMO Symposium on Multidiciplinary

Analysis and Optimization, St.Louis, MO, AlAA 98-4959, September, 1998.

134

[43]

[44]

LMS Optimus, LMS International, URL: hito://www.Imsinil.com/

Guisset, P., and Tzannetakis, N., “Numerical Methods for Modeling and
Optimization of Noise Emission Applications,” ASME International

Mechanical Engineering Congress and Exposition, Dallas, TX, 1897.

- Multi-Disciplinary Computing Environment (MDICE), CFD Research

Coporation, USA, URL : http://www.cldrc.comy/

Multi-Disciplinary Computing Environment for AEroelasticity (MDICE-AE),

URL.: http://www.va.airl.af. mil/vaa/vaac/CAE/cidre.himi

George, J., Peterson, J., and Southard, S., “Multidisciplinary Integrated
Design Assistant for Spacecraft (MIDAS),” 36"
AIAA/ASME/ASCE/AHS/ASC Structures, ‘Structura! Dynamics, and
Materials Conference, New Orleans, LA, AIAA-95-1372-CP, pp.1790-1798,
April 1995.

Numerical Propuision System Simuiation (NPSS), NASA Glenn Research

Center, Ohio, URL.: hitp://hpcc.grc.nasa.gov/npssintro.shimi

Evans, A., Lytle, J., Follen, G., and Lopez, 1., “An Integrated Computing and
Interdisciplinary Systems Approach to Aeropropulsion Simulation - NPSS,”
International Gas Turbine and Aeroengine Congress and Exhibition,
Orlando, FL., June 1997.

NPSS Industry Review, NASA Glenn Research Center, October 1999.
Scott, A. T., “An Evaluation of Three Commercially Available Integrated

Deéign Framework Packages for use in the Space Systems Design Lab,”

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

S8DL, School of Aerospace Engineering, Georgia Institue of Technology,
April 2001.

Phoenix Integration, URL: hitp//www.phoenix-int.com/

Analysis Server and Model Center overviews, Phoenix Integration,

URL: http://'www.phoenix-int.com/publications/

Authentication in Analysis Server and Model Center, Technical White
Paper, Phoenix intergration, August, 2001.

Van der Valen, A., Kokan, D., Frommann, O., The Pointer MDO
Framework, Synaps, 2000.

Pointer / Epogy, Synaps Inc.,

URL: hitp://www.synaps-inc.com/software.htmi

Becker, J. C., and Bloebaum, C. L., “Distributed Computing for
Multidisciplinary Design Optimization using Java,” 8™ AIAA/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA,
AlAA 96-4165-CP , pp. 1583-1593., September, 1996.

Multidiciplinary Optimization and Design Engineering Laboratary (MODEL),
Departement of Mechanical and Aerospace Engineering, University of New

York at Buffalo, URL: htto//www.enag.buffalo.edu/Research/MODEL/

XCAT / CCAT, Extreme Lab, Indiana University, IN,

URL: hito//www.extreme.indiana.edu/xcal/

URL: hito/fwww.exireme.indiana.edu/ccal/

Gilobal Grid Forum, URL: hito://www.gridiorum.org/

136

[65]

[66]

Information Power Grid (IPG), NASA, URL: hilp//www.ipg.nasa.gov/

The Globus Project, URL: hitp:///www.globus.org/

Johnston, W. E., Vazir, A., Tanner, L. A., Feiereisen, W. J., and Thigpen,
W., “Information Power Grid,” Detailed Document of the Approach and

Goals for NASA's Information Power Grid, NASA Ames Resarch Center.

Bouhemhem, D., Chen, B., Guibauli, F., Liu, D., Mahdavi, B., Ndiaye, A.,
Ozell, B., Pelletier, D., Trépanier, J-Y., and Zhou, Q., “Sofiware

Requirements Document,” Technical Report, CERCA, September, 2000.

Common Object Request Broker Architecture (CORBA), Object

Management Group (OMG), URL: hitp://www.omg.org/corba/

Component Object Model (COM), Microsoft,

URL: http://'www.microsoft.com/com/

Distributed Component Object Model (DCOM), Microsoft,

URL: htto//www.microsoft.com/com/tech/DCOM.asp

JavaBeans, Sun Microsystems,

URL: nitn://iava.sun.com/products/iavabeans/

Enterprise Java Bean (EJB), Sun Microsystems,

URL: hitp://iava.sun.com/nroducis/eib/

137

[70]

[71]

[72]

[75]

[76]

Bramiley, R., Chiu, K., Diwan, S., Gannon, D., Govindaraju, M., Mukhi, N.,
Temko, B., and Yehuri, M., “A Component Based Service Architecture for

Building Distributed Applications,” Indiana University, IN.

Unified Modeling Language (UML), Rational,

URL: htip://www.rational.com/uml/

What is Java Tecnology, Sun Microsystems,

URL: hitp://lava.sun.com/iava2/whatis/

Berg, D., and Fritzinger, J. S., “Advanced Techniques for Java Developers,”

Wiley Computer Publishing, 1999.

Java Applet, Sun Microsystems,

URL: htip://java.sun.com/applets/

Villacis, J., “A Note on‘ the Use of Java in Scientific Computing,” Indiana

University, IN.

Chen, B., Liu, D., Mahdavi, B., Zhou, Q., Bouhemhem, D., Ndiaye, A.,
Guibault, F., Ozell, B., Pelletier, D., and Trépanier, J-Y., “A Data-centric
Distributed Framework for MDO Management,” 8™ International Conference
on Computer Supporied Cooperative Work in Design, London, ON,

Proceeding, 279-284, July 12-14, 2001.

[77]

[80]

[82]

Anocuan, F., Bouchemhem, D., Chen, B., Guibault, F., Liu, D., Mahdavi, B.,
Ndiaye, A., Ozell, B., Trépanier, J-Y., and Zhou, Q., "VADOR User Guide,”

Technical Repori, CERCA, February, 2002.

- Flanagan, D., “Java in a Nutshell,” O'Reilly, 1999.

The Desing Manager’s Aid for Intelligent Decomposition (DeMAID),

URL: httn://www.openchannelfoundation.org/proiecis/DEMAID/

Rogers, J. L., “Reducing Desing Cycle Time and Cost Through Process
Resequencing,” International Conference on Engineering Design (ICED),

1997.

Rogers, J. L., and McCulley, C. M., “Integrating a Genetic Algorithm into a
Knowledge-based System for Ordering Complex Desing Porcesses,”

NASA-TM-110247.

Salas, A. O., and Rogers, J. L., “A Web-Based System for Monitoring and

Controling Multidiciplinary Desing Projects,” NASA-TM-97-206287, 1997.

Hulme, K. F., and Bloebaum, C. L., “Development of a Simulation-based
Framework for Exploitling New Tools and Techniques in Muitidisciplinary
Design Optimization,” ASMO UK/ISSMO Conference on Engineering

Design Optimization, likley, United Kingdom, pp.179-186, July, 1999.

139

[91]

Kroo, 1., “Computation-Based Design,” White Paper, Aircraft Aerodynamics

and Design Group, Stanford University, 1996.

Sues, R. H., and Cesare, M. A, “An Innovative Framework for Reliability-

Based MDO,” AlIAA-2000-1509, 2000.

Sues, R. H, Aminpour, M. A., Shin, Y., “Reliability Based MDO for
Aerospace Systems,” AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference and Exhibit, 42" Seattle, WA, April

16-19, 2001.

Probabilistic Finite Element System (ProFES), URL: htip://www.profes.com/

Cesare, M. A., and Sues, R. H., “PorFES Probabilistic Finit Element
System--Bringing Probablistic Mechanics to the Destop” AIAA 99-1607,

1999.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., “Desing Pattern —

Elements of Reusable Object-Oriented Software,” Addison-Wesley, 1998.

Sankar, M. R., Isaacs, A., Mujumdar, P. M., and Sudhakar, K., “MDO
Framework Development - A Case Study With An Elementary Model Of

Airborne Early Warning System Optimization.”

Sistla, R., Dovi, G., Su, P., and Shan, R., "Aircraft Desing Problem

Implementation under the Common Request Broker Architechirue

140

(CORBA),” 40" AIAA/ASME/ASCE/AHS/ASC SDM Conference, MO, April

1898.

Barth, 7., Grauer, M., Freisieben, B., and Thilo, F., “Distributed Solution of

Simulation-Based Optimization Problems on Networks of Worksiations,”

- University of Siegen, Germany.

[96]

[97]

(98]

Zhou, Q., Mahdavi, B., Liu, D., Guibault, F., Ozell, B., and Trépanier, J-Y.,
“A Web-based Distribution Protocol for Large Scale Analysis and
Optimization Applications,” 15" Annual International Symposium on High
Performance Computing Systems and Applications, Windsor, Ontario,

Canada, June 18-20, 2001.

Cao, J., and Bennett, G. K. Z., “Direct Execution Simulation of Load
Balacing Algorithm with Real Workload Distribution,” The Journal of System

and Software, p.p. 227-237, 2000.

Wolffe, G. S., Hosseini, S. H., and Vairavan, K., “An Experimental Study of
Workload Indices for Non-dedicated, Heterogenous System,” University of

Wiscousin.

Kalyani, M. A. L., Wait, R., and Ranasighe, D. N., “Load Balacing
Techniques for Distributed Memory Multiprocessor,” January, 2001.
Vanderplaats, G. N., “Numerical Optimization Technigues for Engineering

Design: With Applications,” McGraw Hill, New York, 1984.

MySQOL database, MySQL AB, URL: hilp//www.mysgl.com

141

[99] Bouhemhem, D., Chen, B., Guibault, F., Liu, D., Mahdavi, B., Ndiaye, A.,
Ozell, B., Pelletier, D., Trépanier, J-Y., and Zhou, Q., “Damage Tolerance
Analysis Interfacing, Automation and Integration,” Technical Repori,

CERCA, September, 2000.

[100] Extensible Markup Language (XML), W3C, URL: http//www.w3.0rg/XML/

[1011CRAY supercomputers, URL.: htip//www.cray.com/products/systems/

[102]Geist, G. A., Kohil, J. A., and Papadopoulos, P. M., “PVM and MPI: a
Comparison of Features,” Calculateurs Paralleles Vol. 8 No. 2, pp. 137-150

June, 1996.

[103] Eldred, S. M., Giunta, A. A., Bloemen Waanders, G. B., Wojtkiewicz, F. S.,
Hart, E. W., and Alleva, P. M., “DAKOTA, a Muitilevei Parallel Object-
Oriented Framework for Design Optimization, Parameter Estimation,
Uncertainty Quantificiation, and Sensitivtiy Analaysis,” SAND Report,

SAND2001-3796, Sandia National L.aboratoiries, April, 2002.

[104]Schreiner, A. J., Trosin, J. P., Pochel, A. C., and Koga, J. D., “DARWIN —
Intergrated Instumentaion and Intelligent Daabase Elements,” NASA Ames

Research Center.

[105]Fukunaga, A., and Stechert, D. A., “An Evolutionary Optimization System
for Spacecraft Design,” Proceedings of Tengh International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert

Systems, Allanta, GA, 1997.

142

[1068] Fukunaga, A., Chien, 8., Mutz, D., Sherwood, R., and Stechert, A,
“Automating the Process of Oplimization in Spacecraft Design,”
Proceedings of the 1997 IEEE Aerospace Conference, Snowmass, CO,

pp,m 1-428, vol 4, 1997.

[107]Fukunaga, A., Stechert, A., and Chien, S., “Towards a Seli-Configuring
Optimization System for Spacecraft Design,” Proceedings of International
Symposium on Ariificial Intelligence, Robotics and Automations in Space,
Tokyo, Japan, 1997.

[108] Kale, V., “Implementing SAP R/3: The Guide for Business and Technology

Managers,” SAM, 2000.

[109] Systems, Applications, Product (SAP), URL: http://www.sap.comy/

[110] BaaN, URL: hitp//www.baan.comy/

[111] Oracle, URL: htip://www.oracle.com/

[112] PeopleSoft, URL: hiip://www.peoplesoft.com/

[113]J.D. Edwards, URL: hitp://www.jdedwards.com/

143

