
ln compliance with the
Canadian Privacy Legislation

some supporting forms
may have been removed from

this dissertationœ

hile these forms may be included
in the document page count,

their removal does not represent
any loss of content trom the dissertationœ

THE DESIGN OF A DISTRIBUTED, OBJECT ...
ORIENTED, COMPONENT .. BASED FRAMEWORK
IN MUL TIDISCIPLINARY DESIGN OPTIMIZATION

By

Babak Mahdavi

School of Computer Science

McGiII University, Montreal

August, 2002

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment
of the requirements of the degree of Master of Science.

Copyright © 2002 by 8abak Mahdavi

1+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and
Bibliographie Services

Acquisisitons et
services bibliographiques

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-88254-3
Our file Notre référence
ISBN: 0-612-88254-3

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou aturement reproduits sans son
autorisation.

Abstract

The Multidisciplinary Design Optimization (MDO) can be defined as a methodology for

the design of complex engineering systems where collaboration and abiiities to mutually

interacting between different disciplines are fundamental. The goal MDO is to meet

needs for increased interdisciplinary interaction and communication and to reduce

design cycle time. It provides a mean to integrate two or more design disciplines under

the same optimization environ ment. It is a collection of tools and methods that permit the

interaction between different disciplines involved in the design process. It enables the

efficiency of designs to be optimized while supporting trade-off studies between the

design objectives of diverse disciplines. Multidisciplinary analysis and design are often

carried out by geographically dispersed engineering groups in a heterogeneous

computer environment. In such a collaborative design environment, engineers working at

geographically distributed locations can make a good design decision in a reduced

timeframe, realizing lower product co st. In aerospace industry particularly,

multidisciplinary optimization methodologies have necessitated the development of

frameworks or problem solving environments capable to meet the needs of MDO

practices. This framework can be defined as a hardware and software architecture that

enables Integration, execution, and communication among diverse disciplinary

processes. In this thesis, Virtual Aircraft Design and Optimization fRamework (VADOR),

a distributed, object-oriented, component-based framework enabling MDO practice at

Bombardier Aerospace is introduced. The purpose of the VADOR framework is to

enable the seamless Integration of commercial and in-house analysis applications in a

heterogeneous, distributed computing environment, and allow the management and

sharing of the data. The VADOR distributed environ ment oHers visibility to the process,

permitting the teams to monitor progress or track changes in design projects and

problems. Documentation of the MDO process is vital to ensure clear communication of

the process within the team defining it and in the broader design team interacting with it.

VADOR is implemented in Java, providing an object-oriented, platform-independent

framework. The concepts design pattern and component-based approach are used

along with multi-tiered distributed design to deiiver highly modular and flexible

architecture.

2

Résumé

L'optimisation multidisciplinaire (MDO) peut être définie comme une méthodologie pour

le design de systèmes complexes d'ingénierie de conception où la collaboration et les

capacités à interagir mutuellement entre différentes disciplines sont fondamentales. Le

but de la MDO est de satisfaire les besoins accrus d'interaction et de communication

interdisciplinaires et de réduire la durée du cycle de conception. Elie fournit un moyen

d'intégrer deux ou plus des disciplines de conception sous le même environnement

d'optimisation. C'est une collection d'outils et de méthodes qui permettent l'interaction

entre différentes disciplines impliquées dans le processus de conception. Elle permet

d'optimiser le rendement des designs tout en supportant les études d'harmonisation

entre les objectifs de conception de diverses disciplines. L'analyse et la conception

multidisciplinaires sont souvent effectuées par des groupes d'ingénierie

géographiquement dispersés dans une configuration matérielle hétérogène. Dans un tel

environnement collaboratif de conception, les ingénieurs travaillant dans des endroits

géographiquement distribués peuvent prendre des bonnes décisions de conception

dans un espace de temps réduit, réduisant ainsi le coût du produit. Dans l'industrie

aérospatiale en particulier, les méthodologies multidisciplinaires d'optimisation ont rendu

nécessaire le développement d'infrastructures ou d'environnements de résolution des

problèmes capables de satisfaire les besoins des pratiques en matière de MDO. Cette

infrastructure peut être définie comme une architecture matérielle et logicielle qui permet

l'intégration, l'exécution, et la communication parmi des processus disciplinaire divers.

Dans cette thèse, Virtual Aircraft Design and Optimization fRamework (VADOR), une

infrastructure orientée-objet, distribuée et basée sur des composants permettant

l'utilisation de la MDO au sein de Bombardier Aéronautique est présenté. Le but de

VADOR est de permettre l'intégration transparente des applications d'analyse

commerciales et internes dans un environnement de calcul distribué et hétérogène, et

de faciliter la gestion et le partage des données. L'environnement distribué de VADOR

donne une visibilité au processus, permettant à l'équipe de surveiller le progrès ou de

repérer les changements dans les projets et les problèmes de conception. La

documentation du processus de MDO est essentielle pour assurer la communication

claire du processus au sein de l'équipe qui le définit et de l'équipe de conception plus

large qui interagit avec elle. VADOR est implanté en Java, fournissant un cadre orienté-

3

objet et indépendant de plate-forme. Les notions de modèle de conception, l'approche

basée sur les composants et un design multi-niveaux distribué sont également employés

pour fournir une architecture fortement modulaire et flexible.

4

Acknowledgements

"If 1 have seen far, it is because 1 have stood on the shoulders of giants."

1 like this statement from Sir Isaac Newton which 1 assume can describe weil

my very strong gratitude towards people who helped me in one way or another in

this thesis research project. 1 would like to thank my research directors Professor

Ozell, my extemal supervisor from École Polytechnique, for his inestimable

commitment and his immense wise guidance throughout the course of preparing

and analyzing the material presented in this thesis, and Professor Newbom from

McGili for his immeasurable devotion to helping see this project through to its

final completion, and his generous and judicious direction.

1 would aiso like to thank Professor Trépanier and Professor Guibault for their

key roles in the VADOR project, as weil as ail the former and current

professionals, students, and trainees involved in iis development, contributed in

one way or another to the advancement of this framework: Yun Wang,

Abdulsalam Alzzubi, Amadou Ndiaye, Djamel Bouhemhem, Bin Chen, Daojun

Liu, Qun Zhou, Christophe Tribes, Sébastien Carton and Franck Anouan.

1 would further like to thank David leblond trom Bombardier Aerospace, who

generously provided me with feedback on VADOR assessment in performing

their selected processes ai Bombardier. His presence aï our weekly meetings,

along with François Pépin, were of assistance in the constant evolution of the

VADOR framework.

5

1 would like to recognize Fassi Kafyeke from Bombardier Aerospace

supporting the VADOR project, J. A. Bombardier Foundation and the Natural

Sciences and Engineering Research Council of Canada (NSERC), for their

financial support, and Centre Recherche en Calcul Appliqué (CERCA) for

providing a pleasant R&D working environ ment

Finally, 1 would like to thank Homayoun, Lise, Nagi and Shahrzad for

encouraging me to continue and complete my master degree.

This thesis is dedicated to the soul of my father who departed to the heavenly

kingdom during the firs! semester of my master programme aï McGill.

6

Table of Contents

ABSTRACT ... 2

RÉSUMÉ .. 3

ACI\:NOWLEDGEMENTS .. 5

CHAPTER 1 : INTRODUCTION ... 11

1.1 MOTIVATION .. 11
1.2 METHODOLOGY AND OBJECTIVE ... 14
1.3 SCOPEOFPRESENTWORKANDTHESISCONTRIBUTION .. 17
1.4 OVERVIEW ANDSTRUCTUREOFTHESIS ... 20

CHAPTER 2 : BACKGROUND .. 21

2.1 RESEARCH IN MDO's CONCEPTUAL COMPONENTS ... 21
2.2 MDO TECHNOLOGY OBJECTIVES .. 23
2.3 MDO FRAMEWORK ... 24

2.3.1 Requirementsfora Large-Scale MDO Capability .. 24
2.3.2 Framework Objectives ... 25
2.3.3 Framework Requirements .. 26
2.3.4 Advanced MDO Frameworks .. 28

CHAPTER3: VADORFRAMEWORK .. 50

3.1 INTRODUCTION TO V ADOR .. 50
3.1.1 VADOR Objectives .. 51
3.1.2 VADOR Specification .. 53
3.1.3 VADOR Current Critical Review ... 56

3.2 OBJECT-ORIENTED DESIGN BY AN OBJECT-ORIENTED TOOL .. 57
3.3 VADORDATAMoDEL ... 59
3.4 A COMPONENT-BASED DEVELOPMENT ... 60

3.4.1 Contract Aware Components ... 62
3.4.2 Data C0I11pOnent .. 63
3.4.3 Strategy Component ... 65

3.5 DESIGNEDBYPATTERNS .. 68
3.6 V ADOR DISTRIBUTED ARCHITECTURE ... 71

3.6.1 VADOR Librarian .. 74
3.6.2 VADOR Executive .. 76
3.6.3 VADOR CPU .. 79
3.6.4 Load Balancing .. 82
3.6.5 VADOR GUI .. 85

CHAPTER 4: OPTIMIZATION ISSUES .. 89

4.1 OPTIMIZATIONPROBLEM ... 89
4.2 IMPLEMENTATION OFOPTlMIZATION CAPABIUTIES IN VADOR ... 9t

CHAPTER 5 : CASE STUDIES ... 95

5.1 DAMAGE TOLERANCE ANALYSIS ... 95
5.2 AIRFOIL SHAPE OPTIMIZATION .. 98
5.3 BE~DANDTwIST ... 101

5.4 PRE-NSU3D ... 1 03
5 .5 OBSERVATION RESULTS ON IMPLEMEN"TED CASE STUDIES .. 105

CHAPTER 6 : FUTURE WORK ... 107

7

CHAPTER 7 : SUMMARY AND CONCLUSION ... 111

APPENDIX A: NOMENCLATURE .. 116

APPENDIX :8: UML DIAGRAMS .. 118

BI UML PACKAGE .. 118
B1.1 VADORPackages ... 118

B2 UML CLASS DIAGRAMS ... 119

B.2.1 DataComponent Class Diagranl .. 119
B.2.2 StrategyComponent Class Diagram ... 120
B.2.3 Librarian Class Diagram ... 120
B.2.4 Executive Class Diagram ... 121
B.2.5 CPU Server (Wmpper) Class Diagram ... 121
B.2.6 Loadbalance Class Diagram .. 123
B.2.7 VADOR Search Class Diagram ... 124
B.2.8 DBExplorer Class Diagram ... 124
B.2.9 Netwark Taols' Package Class Diagram ... 124
B.2.10 VADOR Observer Package Class Diagram ... 125

B3 UML SEQUENCE DIAGRAMS .. 125

B.3.1 VADOR CPU (Wrapper) Server Sequential Diagram ... 125

APPENDIX C: FLOWCHARTS .. 126

Cl CREATION OFDATACOMPONENTS EXAMPLE ... 126
C2 CREATION OF STRATEGyCOMPONENTS EXAMPLE .. 126

APPENDIX D: V AD OR IMAGES ... 127

Dl VADORExPLORER ... 127
D2 ATOMIC DC BUILDER .. 127
D3 COMPOSITEDC BUILDER ... 128
D4 ATOMIC STRA TEGyCOMPONENT BUILDER ... 128
D5 COMPOSITE STRATEGyCOMPONENTBuILDER ... 128

REFERENCES .. 129

8

List of Figures

Figure 1: MDO principal conceptual components and their breakdowns ... 22
Figure 2: Example of a simple process .. 67
Figure 3: V ADOR Architecture .. 72
Figure 4: A component diagram view of the V ADOR architecture .. 74
Figure 5: Process execution distribution to V ADOR CPU servers ... 80
Figure 6: V ADOR GUI ... 86
Fi.gure 7: V ADOR Search ... 87
Figure 8: V ADOR DBExplorer ... 88
Figure 9: Example of an MDO optimization problem .. 91
Figure 10: Example of an optimizer code ... 92
Figure 11: OptimizerSGY caUs a solverSGY via Connector .. 93
Figure 12: Initial DT A process .. 96
Figure 13: DT A process implemented within V ADOR .. 97
Figure 14: AirfoH shape optimization process ... 99
Figure 15: Bend and Twist process ... 101
Figure 16: PRE-NSU3D process ... 103

9

List of Tables

Table 1: Examples of advanced frameworks ... 29
Table 2: Qualifiers guide ... 48
Table 3: Review of the advanced framework requirements ... 49
Table 4: Complete criticai review of V ADOR .. 57
Table 5: Example of DataComponent attributes .. 64
Table 6: Example of StrategyComponent attributes .. 66

10

Chapter 1: Introduction

The increasing complexity of products in today's marketplace requires an

increased need for more robust, accu rate and less costly design processes.

Today's advanced products challenge designers to attain performance

requirements at affordabie cost The rapid pace at which new technologies and

concepts enter these product designs severely limits the usefulness of pas!

experience as a design guide [1 J. Besides, advanced product design requires

mul!idimensional analysis and simulation, usually within a very synergistic

interacting coupled disciplines environ ment Consequently, a new technology to

aid designers working in such conditions throughout the design cycle is evolving;

this technology demands an increasing reliance on processes thaï incorporate

analysis and optimization. In the past two decades, vigorous research and

development efforts by industry, universities, and government laboratories have

esiablished a foundation for the above process in mathematics, computer

software and hardware, methodology, and engineering practice, which now

coalesce into an emerging technology called Multidisciplinary Design

Optimization (MDO) 1•

1.1 Motivation

Industry Canada [2] has identified MDO as one of 50 key technologies to be

developed in the near future in order to maintain the competitiveness and

1 Aiso for Multi-Disciplinary Optimization (MDO). In fact, different names have been used to describe this field of emerging
technology. The terms such as: Computation-based Design, Simulation-based Design, Computational Prototyping, and
the Concept of a Design Space are subtly referring to the same technology.

11

prosperity of the aerospace industry in Canada. The motivating factors for a

framework or problem solving environment in the aerospace industry are the

following:

@ Aircraft design is multidisciplinary in nature

@ Different disciplines execute independent of each other

@ Potential exists for concurrent execution of some subtasks

@ Hardware requirements vary with the discipline

@ Large quantities of data and files are generated

@ Potential exists for automating the design process

The aircraft industry has given considerable attention to MDO as manufacturers

attempt to reduce the time-to-market of new products. Aircraft MDO practitioners

would prefer to use high-fidelity analysis methods as early as possible in the

design process, where the increased accuracy of the high fidelity methods can

most strongly influence aircraft design. However, the existence of finite

computational resources and time constraints limit the extent to which the high

fidelity analyses may be applied in the early stages of the aircraft design process

[3].

ln the aerospace industry, the use of computationai fluid dynamics (CFD) and

computational structural dynamics (CSD) is now a part of the daily activities of

engineers. Furthermore, analysis and design specialists also rely on additional

"in house" programs tailored the specifie requirements of their tasks. The

eomputational-based design environ ment then beeomes highly eomplex and

12

specifie to application, Even within a single organization, each department

has its own set of computational tools and programs, and which have !iUle in

common with those from other departments [4]. As a result of this complexity, the

application of multi-disciplinary analysis and optimization (MDO) practices [5] has

become desirable, although ii faces a number of significant challenges, including

collaboration, data sharing and management

The challenge in applying an MDO methodology in a large aeronautical

corporation lies mainly in the organizational aspects of engineering design.

Mostly for historical reasons, the design departments are strongly segregated by

disciplines such as "structures," "aerodynamics," "Ioads," "weights," and "stress,"

each department being responsible for specifie aspects of the engineering work

required to design an aircraft. As a result, challenges arise for several reasons

[6]:

® Each department has its own vocabulary and methods and it requires a

substantial effort to generate efficient multidisciplinary communication.

® Discipline specialists do not want to compromise on the tools used in their

own discipline and recommend using state-of-the-art software. As a result,

the computational resources required during a design optimization effort

are enormous,

® Discipline specialists need to control everything in relation with the resuits

produced by their codes, in order to ensure their proper usage.

13

@ The transfer of information between departments is practically never

automated and the transfer of data trom the output of one discipline

software ta another discipline software frequently requires a several man­

hours of processing by one or more persans.

As a result, many design or analysis problems are multidisciplinary; that is, they

require the coordination of information from a number of highly specialized

disciplines. Onen the practice has been for specialists to independently optimize

each discipline with limited direct interaction or communication with others. The

development of computational frameworks offers the capability to take up these

challenges via the use of sophisticated computational procedures combined with

state-of-the-art optimization or design and analysis improvement techniques. The

benefits of an integrated problem solving environ ment lie in the capability to

support distributed analysis, ta manage data flow between applications, and to

access geometric design data and numerical drivers such as optimization

methods.

1.2 Methodology and Objective

The term "methodology" is defined as a body of methods, procedures, working

concepts, and postulates. Consistent with this definition, MDO can be described

as a methodology for the design of systems where the interaction between

seve rai disciplines must be considered, and where the designer is free to

significantly affect the system performance in more than one discipline [23]. In

efforts ta develop such a methodology that will be successful for aircraft MDO at

Bombardîer Aerospace and under the sponsorship of foundation J.A. Bombardier

14

and the Natural Sciences and Engineering Research Council of Canada

(NSERC), Centre de Recherche en Calcul Appliqué (CERCA) currently

working on a project called Virtual Aircraft Design and Optimization fRamework

(VADOR), to develop a framework for integrating multi-disciplinary design

optimization, multi-fidelity engineering analyses programs and for managing the

resulting analysis results. The main objectives of the VADOR project are:

® To develop a state-of-the-art software framework capable of supporting an

MDO paradigm in a collaborative design environment.

@ To implement within the framework, data management capabilities to

closely follow the design data used and shared by the design team.

® To develop interfaces to selected in-house and commercial applications in

use at Bombardier Aerospace.

® To deploy the framework at Bombardier Aerospace and train engineers in

its programming and use.

Ali major players in aeronautics (Boeing[7], NASA[8][9], Airbus [10]) are currently

performing research and development in a similar integrated design framework.

As far as the technical engineering departments are concerned, the weakness of

the integration precludes the application of the MDO methodology in the design

cycle and a possible solution is to integrate the various analysis packages in a

software framework. In ail cases, specifically tailored systems are developed on

top of various available disiributed computing technologies.

15

The requirements for such MDO frameworks have been in the form of

specifications which will guide the software development. The specifications

address four subjects: "Architectural Design," "Problem Formulation

Construction," "Problem Execution," and "Access to Information," The

"Architectural Design" specifications impose an object-oriented architecture, a

natural GUI, the usage of standard languages and protocols, extensibility, and

the support of collaborative design, The "Problem Formulation Construction"

specifications require configurability through the GUI, the support of legacy

applications and debugging facilities based on history traces. The "Problem

Execution" specifications enforce that V ADOR automates the execution of

processes and the movement of data, support user interaction during the design

process, allow users to operate in interactive mode or in batch mode and be

faulî-tolerant and flexible. The "Access to Information" specifications compel

VADOR to provide database management features and provide tools to monitor

the status of execution [11],

ln fact, when the focus is on applications, one of the main objective of the

framework, namely the management of the data, tends to be overlooked. When

the focus is put on data, applications simply become methods required to

produce or transform the data and the object-oriented paradigm reveals its

fundamental nature. Accordingly, a good architecture for VADOR must be

centered on the data. In the context of engineering design, data is usually stored

in a file server and individual files can be quite large. In addition, these files are

usually not self-describing and the appropriate management of this data requires

16

proper encapsulation into components with the required properties in order

meet the specifications for data management.

1.3 Scope of Present Work and Thesis Contribution

This thesis reports on VADOR, a new MDO framework developed to help

engineers at Bombardier Aerospace to apply the MDO concept that enables the

efficiency of design to be optimized and supports trade-off studies between the

design objectives of diverse disciplines.

V ADOR takes advantage of the Java to deliver highly modular, object­

oriented portable design, using design pattern paradigm, as weil as multi-tiered

distributed architecture and component-based design approaches. This approach

differs trom other approaches in that ail the existing frameworks faU short of

satisfying the VADOR specifications, mostly because of their inability to store, in

an appropriate fashion, the design data and the design decisions making a

complete design project ln fact, most existing frameworks for integration and

MDO propose mainly Integration capabilities linked to optimization engines, and

this addresses only partially the VADOR specifications.

The VADOR project was started in September 1999. By the time 1 joined the

project (January 2000), the VADOR team consisted of three professors as weil

as a research associaie. Currently, almost three years later, the VADOR team

comprises ten people inc!uding three professors, two research associates and

five students.

17

My main contributions to this thesis are:

Research

@ A survey of the previous efforts made in this field

@ A study and analysis of the technologies used in the advanced MDO

framework structures, and identification of their strengths and weaknesses

@ A feasibility study and an evaluation of the technologies and tools to be

utilized

Requirements analysis and specification

@ Identification and documentation of the exact requirements of the VADOR

large-scale software system, particularly the VADOR prototype, Executive

Server, VADOR Search, Strategy builder and optimization

Conceptualization and design

@ Architectural and detailed design

@ Specification of particular software systems that mee! the requirements

Implementation and module validation

@ Development of prototypes and codes

@ Testing of individual modules

Integration and system testing

® Incorporation of ail the individual modules and testing as a whole system

18

Delivery and maintenance

® Installation of the V ADOR framework within the Bombardier designated

infrastructure and modification of the system after the initial delivery as

maintenance

These contributions aim to enable the large-scale VADOR framework to:

El> capture in the framework the design methodology in use at Bombardier

Aerospace

® collaborate with teams of engineers geographically distribuied and

simultaneously working on a design project

® automate the execution of analysis codes and data transfers

El> implement single discipline and multi-discipline design loops

@ track the history of a design project or piece of data

@ identify the individuals working on a project, their respective

responsibilities, and the status of their work

El> keep track of the team designers' comments on a given design or result

@ obtain a seamless transfer of data between applications

@ iIIustrate the possibilities of the framework

@ ensure a long-term benefit for the industrial partner

19

134 Overview and Structure of Thesis

Chapter 2 presents a background discussion and a general overview on

Multidisciplinary Design Optimization and efforts on MDO framework

developments. Chapter 3 covers the VADOR architecture and describes

various key components. The optimization issu~ and its implementation in

VADOR are discussed in Chapter 4. Some case studies are presented in

Chapter 5. Plans and recommendations for future work are explained in Chapter

6. Finally, Chapter 7 summarizes the research thesis work along with the

conclusion.

20

Chapter 2: Background

Aircraft design demands a methodology that is more efficient, and sophisticated

th an the traditional seriai design approach [12]. That is basically why it has been

gradually replaced by Concurrent Engineering (CE) methodology, which is a

systematic approach to the integrated, concurrent design of products and their

related processes, including manufacture and support [13][14][15][16][17][18]

[19]. The interaction of ail participating engineering groups throughout a large­

scale engineering design cycle is a multidisciplinary effort in a discipline such as

aircraft design. In the 1980's, the effort to combine the concept of large-scale

multidisciplinary engineering design and Concurrent Engineering led to the new

invented research field of Multidisciplinary Design Optimization (MDO) [20].

2.1 Research in MDO's Conceptual Components

Some MDO research areas involve efforts posing and solving large-scale

engineering problems, the Iterative system analysis, system simulation and MDO

frameworks. The two main challenges of MDO are computational cost and

organizational complexity. Ozel! et al. [11 J, inspired by Sobieszczanski and

Haftka [23], dassify the MDO research fields into the following component

groups: Approximation Concepts, Sensitivity Analysis, Decomposition

Methodologies, Visualization, and MDO Frameworks.

The reduction of time and cost within the multidisciplinary design cycle is a

very common goal of both the MDO and researchers in this area. Figure 1 shows

21

Sobieszczanski's principal components of MDO and their breakdown into more

specifie areas of research [21]. An MDO framework, for instance, can embody

some or ail of the found solutions in any of these seven principal areas, in

different forms, such as module Integration.

MDC H Computer 1 hardware

1

Search
Aigorithms

Human
Interface

Optimization
Procedures

Stopping

Refomulating

Figure 1: MDO principal conceptual components and their breakdowns

Ikoo [84] also gives a list of the research areas based on categories identified at

National Science Foundation (NSF) workshop:

@ Collaborative design tools and techniques

ID Prescriptive models, design methods & normative theories

@ System Integration and infrastructure lools

@ Design automation systems/tools

@ Analysis, simulation, optimization tools

® Formai models of design process/design theories

22

@ Design information access and support systems

2.2 MDO Technology Objectives

The fundamental objective of MDO technology is to develop an improved design

capability while considering disciplinary interactions for synergistic affects.

Renaud [1] states that MDO technology is often comprised of (but is not

necessarily limited to):

@ analysis that is tailored to efficient repetitive use in design

@ analysis that allows for trade-off of solution accuracy for computational

cost

@ sensitivity analysis at the discipline, component, and product levels

@ optimization which similarly spans the range for detail to overall product

performance

® accounting for uncertainties

@ comprehensive, dynamic, and possibly distributed, large database

management tools

@ data visualization capabilities

@ user interfaces that engage the designer in the process

23

2.3 DO Framework

Rogers et al. [24] define a framework as a hardware and software architecture

thaï enables Integration, execution, and communication among diverse

disciplinary processes.

2.3.1 Requirements for a LargemScale MDO Capability

ln the constantly evolving large-scale engineering design discipline, and

particularly Multidisciplinary Design Optimization, Sobieszczanski [5][20][21][23]

made an important contribution. In his review, Sobieszczanski identifies six

important attributes thaï an MDO environ ment should have in order to support

computational based design. These six aUributes are[5][22]:

1- Computer Speed: the ability of the computer environ ment to provide

answers rapidly, ideally in the order of seconds, in order to support the

designer's creative train of thought.

2- Computer Agility: the ability of the software environment to provide a

seamless transition between computational tools and models of various

levels of accuracy, ranging from conceptual to detailed design.

3- Task Decomposition: the ability of the MDO system optimization

software to allow teams of specialists to work concurrently on an MDO

problem.

4- Sensitivity Analysis: the ability of the software environment to generate

results on the sensitivity of the results to the variables controlled by the

designer. This important information answers directly the What if?

24

question and provides the designer with knowledge without the need for

re-analysis.

5- Human Interface: the ability of the MOO software and hardware

environments to provide a designer with a form of data easily absorbable

by human senses. This means the user interface to the MOO system

should be through a natural and simple GUI and the analysis of results

should use high performance virtual reality-type visualization for

communication.

6- Data Transmission: the ability of the computer environment to transmit

automatically, reliably, rapidly, and securely huge amounts of data.

These six attributes are for now only partially available to design engineers.

Improvements are expected from various sources, including the increase in

computer power (and particularly the efficient use of massively parallel

computers), the increased reliance on computer science expertise and

technologies, the improvement in efficiency of disciplinary optimizations and

sensitivity computations, and the development of specifie MOO methodologies

and strategies. The design of a software framework should provide ail these

attributes for creating an ideal MOO environment.

2.3.2 Framework Objectives

The primary aim is to create a hardware and software architecture thaï provides

support for multidisciplinary design optimization application development and

execution. Most of the time, the resulting framework identifies means for reducing

25

the Ume and cost associated with the multidisciplinary design cycle. If MDO can

be defined as: "How to decide what to change, and to what extent to change it,

when everything influences everything else," [25] MDO framework objective can

be described as such a framework software enabling these changes can be

made. In general, the two most common objectives can be described as [26]:

® development of a state-of-the-art software framework capable of

supporting the paradigm of MDO in a collaborative design environment.

lb implementation in the framework of management capabilities to closely

follow the design data used and shared by the design team.

2.3.3 Framework Requirements

Salas and Townsend [27] from the Multidisciplinary Design Optimization Branch

(MO DB) at NASA Langley Research Center (LaRC) propose framework

requirements for an ide al MDO at LaRC's MDO Research. The requirements are

summarized in the four following points of view:

1- Architectural Design

A framework should:

a) provide a Graphical User Interface (GUI) that is intuitive.

b) be designed using object-oriented principles.

c) be extensible and provide support for developing the interfaces

required to integrate new processes into the system.

26

d) impose an umeasonable amount of overhead on the optimization

process.

e) be able to handle large problem.

f) support collaborative design.

g) be based on standards.

2- Problem Formulation Construction

A framework should:

a) allow the user to configure complex branching and Iterative MDO

problem formulations easily without low-Ievel programming.

b) allow the user to easily reconfigure existing MDO problem

formulations.

c) support the user in incorporating legacy codes (written in different

languages) and proprietary codes (where the source is not available)

into the MDO problem formulation.

d) allow the user to integrate discipline analyses with several optimization

methods, including multilevel schemes involving sub-optimizations.

e) provide facilities for debugging of multiple processes on computers

across a network.

3- Problem Execution

A framework should:

a) automate the execution of processes and the movement of data.

27

be able to execute multiple processes in paraliel.

support execution distributed across a network of heterogeneous

computers.

d) support user interaction (steering) during the design time cycle.

e) allow the user to operate in a batch mode.

4- Access to information

A framework should:

a) provide database management features.

b) provide the capability to visualize intermediate and final optimization

and analysis results.

c) provide a monitoring capability for viewing the status of execution,

including the system status.

d) provide some mechanism for fault tolerance.

2.3.4 Advanced MDO Frameworks

MDO frameworks and/or problem solving environments as a Research and

Development (R&D) area includes universities, industries, and government

research labs. Table 1 summarizes some studied developments in this active

research area [11 The following subsections briefly describe these products.

28

Table 1: Examples of advanced frameworks

Framework Developer Main Pm."pose
Distributed software integramtion framework; Management of

Access
Boeing

the computing process and data at Boeing ; Multidisciplinary
Manager environment that foeus less on optimization but more on

distributed heterogeneous computing

AML TechnoSoft, Ine.
Modeling language for knowledge-based engineering; Focus 00

the data iovolved in the design; Commercial product

DAKOTA
Sandia National

Multilevel paraUel framework for design optimization
Laboratories

NASA Ames Research
Web-based framework to reduce design cycle by improving

DARWIN
Center

access to wind tunnel data; Focus on the data involved in the
design

DeMAID NASA LaRC
Design manager's aid for intelligent decomposition in
multidisciplinary design

FACETS
University of New

Simulation-based MDO framework
York al Buffalo

MDO environment that focuses less 00 optimization but more on
FIDO NASALaRC distributed heterogeneous eomputing;

DISCONTINUED

IMAGE
Georgia Institute of Distributed computing and data management utilities; Focus on
Technology the data involved in the design; DISCONTINUED

iSIGHT
Engineous Software,

Optimization toolkit environment; Commercial product
Ine.

Virtual experiments and optimization based on simulation
LMS Optimus LMS International programs; simulation management and design space exploration;

Commercial product
MDICE/ CFD Researeh Multidiseiplinary environment that foeus less on optimization but
MDICE-AE Corporation more on distributed heterogeneous eomputing

MIDAS NASA Jet Propulsion
Support integration for MDO in distributed, heterogeneous

(OASIS. DEVO) Laboratory
environment; Foeus less on optimization; Other integrated
optimization systems with MIDAS: OASIS, DEVO

NASA Glenn
Enables multidisciplinary design and analysis of engines;

NPSS
Researeh Center

Multidiseiplinary environment that foeuses Jess on optimization
but more on distributed heterogeneous eomputing

Phoenix Phoenix Integration
Integrating multidisciplinary problems; Commercial product

Integration Ine.
Pointer /

Synaps, Ine.
Optimization and integration; Advanced computer aided

Epogy exploration software for engioeers; Commercial product

ProPES
Applied Research Integrating MDO and probabilistic methods to perform RBMDO;
Associates, Ine. Probabilistic PEA system

WICkED
University of New

Web interface supporting paraUd processing for MDO
York at Buffalo

XCAT/CCAT Indiana University
Management of Computational Resources, High Performance
Computing

29

2.3.4.1 Access Manager

Developed and deployed at Boeing Information and Support Service, Research

and Technology, the Access Manager [28] software framework enables

multidisciplinary design and optimizationin a distributed heterogeneous

computing environment. It supports a very flexible process control paradigm.

Open architecture allowing the expansion of capabilities, object-oriented design,

client/server architecture, coarse grained dataflow and parallelization and

standard user-friendly Motif/X-Windows interface are some of its key aUributes.

Software is coded in C and C++, and the Remote Procedure Cali (RPC) is used

to enable distributed computing. Ridlon [28] states that Access Manager is

designed to take into account identified needs of engineering users involved in

MDO-type efforts such as the need to support existing applications without

modification or access to the source code, the need to support iterative design

and analysis and reuse of results, the need to support large quantifies of data

and large file sizes, as weil as supports for long running, reusable processes and

data and processes sharing in a distributed environment. With the deployment of

the Access Manager by a number of different engineering organization in Boeing,

Ridlon completes that the overall management of the computing process and the

management of the data associated with thaï process is greatly facilitated using

Access Manager framework. Unfortunately, there is no available information

concerning the eventual current usage of the Access Manager in Boeing or its

research and development discontinuation confirmation.

30

2.3.4.2 AMl

The Adaptive Modeling Language (AML) [29][30] from TechnoSoft Inc, enables

the multidisciplinary modeling and simulation of the product development cycle.

The AML framework provides a web-enabled, distributed, collaborative design

environment for concurrent engineering. Knowledge-based modeling is the basis

for concurrent engineering and AML presents a unique object-oriented modeling

paradigm to capture domain expertise into knowledge bases to assist in the

design to production automation. AML is based on the LISP programming

language. Scott [51] reports thaï efficient usage of AML requires familiarizing with

the LISP language and good understanding of object-oriented programming

practices in general. His report identifies AML's integrated parametric modeling

capabilities as a strength and non user-friendy environment as one of the

weakness for this framework. AML has been used at Lockheed-Martin in a

design study.

2.3.4.3 DAKOTA

Design Analysis Kit for Optimization and Terascale Applications (DAKOTA)

[31][32] is a noncommercial framework that provides optimization toolkit

capability, developed by Sandia National Laboratories, a Lockheed-Martin

company, for the US Department of Energy's National Nuclear Security

Administration. Its object-oriented design using C++ provides a flexible,

extensible, problem-solving environment as weil as a platform for rapid

prototyping of advanced methodoiogies thaï focus on increasing robustness and

efficiency for computationally complex engineering problems. The same flexibility

31

and extensibility also permits the interface between analysis codes and iteration

methods. This interface is intended to be very general, encompassing broad

classes numerical meihods that have in common the need for repeated

execution of simulation codes. The scope of Iteration methods available in the

DAKOTA system currently includes a variety of optimization, non-deterministic

simulation, non-linear least squares, and parameter study methods. Eldred et al.

[103] report that while DAKOTA was originally conceived as an interface between

simulation codes and optimization algorithms, the new version expands to

interface with other types of Iterative analysis methods, such as uncertainty

quantification with nondeterministic propagation methods, parameter estimation

with nonlinear least squares methods, and sensitivity analysis with general­

propose parameter study capabilities. Il is a production tool for engineering

design activities and a research tool for the development of new algorithms in

optimization, uncertainty quantification, and related areas. DAKOTA can serve as

a rapid prototyping tool for algorithm development. Data is exchanged between

DAKOTA and the simulation code by reading and writing short data files. Access

to the source code of the user's simulation software is not required. DAKOTA is

executed through commands thaï the user appiies in an input file. Disiributed

computing is supported using Message Passing Interface (MPI). DAKOTA has

been used by Sandia implement application on massively parallel machines

[32].

32

2.3.4.4 DARWIN

The Developmental Aeronautics Revolutionizing Wind-tunnels with Intelligent

systems for Nasa (DARWIN) [33][34] created at NASA Ames Research Center

wants to redefine the classic approach to wind tunnel and other aerospace

experimental testing. DARWIN is a framework for providing streamiined

information access of experimental and numerical test faciiity data to

aeronautical customers. The purpose of the improved information accessibility is

to provide aeronautical engineers with essential elements to shorten and

enhance the efficiency of wind tunnel testing in the design cycle process.

Schreiner et al. [104] name five major product elements of the DARWIN

information system as: Remote Access System, Integrated Instrumentation,

Intelligent Database, Data Visualization and Infrastructure Enhancement. They

are designed to work together to provide the aerospace customer of the future

with the necessary access to information to greatly improve the design cycle

process by gleaning more knowledge from available data and thus providing the

capability to perform true design cycle iterations in a single test entry. DARWIN

uses Web technology to access data.

2.3.4.5 DeMAID

DeMAID is not precisely a framework for optimization problem. Created by

NASA, DeMAID stands for "Design Manager's Aïd for Intelligent Decomposition."

[79] introduces it in the following way: "The decomposition of a complex design

system into subsystems requires the judgment of the design manager. DeMAID

reorders and groups the modules based on the links (interactions) among the

33

modules, helping the design manager make decomposition decisions early in the

design cycle." This corresponds to the primary goal of MDO, which is to

decompose a large multidisciplinary system into a related grouping of smalier,

more tractable, coupled subsystems. Rogers [80] from NASA LaRC, in his paper

titled "Reducing Design Cycle Time and Cost through Process Resequencing"

states that DeMAID minimizes the feedback couplings that create Iterative

subcycles, groups processes into Iterative subcycles, and decomposes the

subcycles into a hierarchical structure. The real benefits of producing the best

design in the least time and at a minimum cost are obtained from sequencing the

processes in subcycles. The DeMAID software contains a generic algorithm that

rapidly examines many different sequences and selects the optimum sequence

of processes within each Iterative subcycle. It displays the processes in a design

structure matrix format in which an element on the diagonal is any process that

requires input and generates output. DeMAID is a knowledge-based software

tool for reordering the sequence design processes and for identifying a possible

multilevel structure for a design cycle [81]. It can be used to assis! a project

manager in making decisions thaï can potentially reduce time and cost of a

design cycle [82J.

2.3.4.6 FACeTS

Framework for the Analysis of Cou pied Engineering Techniques in Simulation

(FACETS) [12] [83] is primarily interested in testing MDO methods and strategies

on a simulation-based level by providing designers with an ail encompassing

computational infrastructure. By bringing together these numerous MDO tools

34

and techniques and making them available to a design manager, ail in a single,

all-encompassing infrastructure, such a tool can provide an MDO design

manager with a powerful means for identifying possibilities for time and cost

reduction within an existing mulfidisciplinary design. Developed

Multidisciplinary Optimization and Design Engineering laboratory (MODEl) [58]

of University of New York at Buffalo, FACETS contains a multitude of MDO tools

and techniques intended for large-scale coupled system reduction. The ultimate

purpose of FACETS is to provide a preliminary design tool that can enable a

design manager to identify potential means for time and co st reduction within the

elaborate multidisciplinary design process, in a simulation-based setting.

FACETS also includes an optimization module, a system planning module, and

an elaborate post-processor for result verification. This computational framework

tool encompassing ail of the research concepts provides an environment for

simulating large-scale multidisciplinary design problems, and allows the user to

explore numerous techniques and methods for solution. The benefi! of FACETS

is that it allows the user to quickly simulaie the structure of a real-lite coupled

system, view its initial characteristics, perform some meaningful baseline

calculations in simulation, and then view the final results, Thereafter, the user

can then make judgements and subsequent modifications based on these

results, and can quickly and easily re-run a new simulation in hopes of aUaining

better results and more useful insight to the true problem.

35

2.3.4.1 FIOO

The purpose the Framework for Interdisciplinary Design Optimization (FIDO)

[35][36] was to investigate the use of a distributed, heterogeneous computing

system to facilitate communications, apply computer automation, and introduce

parallel computing to produce a truly multidisciplinary process. Developed by

Multidisciplinary Design Optimization Branch (MDOB) at NASA LaRC to

demonstrate the technical feasibility and usefulness for selected distributed and

parallel execution of a multidisciplinary analysis and optimization application by

automating the coordination of analyses in various disciplines into an integrated

optimization scheme, while allowing for visualization and steering by the

designer. Although FIDO was not implemented as a generic framework for MOO

applications, its development has provided much experience with the issues of

framework architecture and problem formulation. Based on Parallel Vertical

Machine (PVM) for distributed computing, FIOO had a Communication Network

module for connecting computers, a Communication Ubrary module to handle

communications, a Master Scheduler for controlling the interactions between

disciplines and a Data Manager for providing a central database connectivity.

Lack of a research tool, platform-dependency, complex communications

constructs, and complicated switching between discipline codes were some of

the shortcomings of the FIDO framework reported by Sistla et . [91]. The

research and development on this framework have been discontinued at NASA

LaRC.

36

2.3.4.8 IMAGE

Developed at Aerospace Systems Design Laboratory (ASDL) of Georgia Institute

of Technology, the Intelligent Multidisciplinary Aircraft Generation Environment

(IMAGE) was a research project of the Aerospace Engineering Department. Its

modular and distributed computing architecture was used to assist in design

activities such as posing design problems, assembling necessary analyses to

tackle these problems, and executing them. Hale et al. [37] state IMAGE

infrastructure is comparable to FIDO and other efforts in the development of

underlying computing technologies. However, the IMAGE infrastructure is

designed to explicitly support general design activities and an information model

within an accountable design context. IMAGE was taking advantage of PVM for

distributed computing and Berkeley Tk/tcl widget library for developing graphical

user interfaces [38]. With IMAGE, a designer could build easily application-based

scenarios to investigate a variety of engineering systems. Aichaoui et al. [39]

after doing several examples using the IMAGE system conclude: "Within the

IMAGE environment, improved design can be achieved and high level of

efficiency can be reached." IMAGE was based on object-oriented model with an

emphasis on reusable components (agent-based architecture). The research and

development on this framework have been discontinued at Georgia Institute of

Technology ASOL.

2.3.4.9 iSIGHT

The original focus of iSIGHT [40][41] is on effective design optimization. This

commercial software framework by Engineous Software, Inc., now available in

37

version 6.0, is a tool for integrating analysis codes and solving complex MDO

problems. iSIGHT can considerably improve the efficiency of an MDO process

using various approximation models [42]. it provides an optimization toolkit that

enables a combination of optimization methods such as Design Of Experiments2

(DOE), Response Surface Modeling3 (RSM), to be applied to the MDO

application. Quality Engineering Meihods (QEM) such as Six Sigma4 are also

implemented in the framework as weil as Monte Carlos simulation capability.

Engineers can use GUI and its Multidisciplinary Design Optimization Language

(MDOL) for constructing MDO problems. With MDOL, a user can create different

type of 'blocks' which handles specifie operations such as control flow of the

design problem, simple internai calculation and system-Ievel analysis methods.

Integration of CATIA 6 a commercial finite analysis code used by most aerospace

industry companies such as Bombardier, is also possible in iSIGHT. Sistla et al.

[91] count the shortcomings of the iSIGHT in its handling of large problems, the

requirement to learn MDOL and Tk/Tcl, the lack of database or file management

and debugging capabilities, and its sequential processing on a single host

computer. Scott [51] reports that iSIGHT's major limitations are its inability to

2 Design Of Experiments (DOE) method allows ta carefully control the number of simulations to run and to determine the
search direction.

3 Response Surface Modeling (RSM) is a mathematical model that approximates individual data points.

4 Six Sigma is a highly disciplined process that focuses on developing and delivering near-perfect products and services.
Sigma is a statistical term that measures how far a given process deviales from perfection. The central idea behind Six
Sigma is that by measuring the number of "delects" in a process, one can systematicaily figure out how to eliminate them
and get as close to "zero defects" as possible.

5Monte Carlo method is useful in assessing influence of variablity on the design after it is optimized.

6 Computer Aided Three-dimensional Interactive Application (CATIA) is developed by DASSAULT SYSTEMES and
marketed, distributed and supported by IBM. CATIA is an integrated suite of software applications covering ail aspects of
product design: Computer Aided Design (CAO). Computer Aided Engineering (CAE) and Computer Aided Manufacturing
(CAM), whether by providing the necessary functionality ta support collaborative product designs of ail types, or the
seamless integration that allows full support of company processes. http://www.catia.com/

38

easily distribute the execution of analyses to other machines, especially across

platform boundaries. As for its greatest strengths, he mentions the system-Ievel

analysis and optimization because of a wide range of optimization methods

including in this framework, and the ability to run these analyses in parallel in

conjunction with its extensive system-Ievel analysis capabilities. iSIGHT also

includes a very detailed and flexible means for monitoring/reviewing the results.

Boeing, Lockheed-Martin as weil as Bombardier Aerospace are some example of

aerospace industry users of this framework.

2.3.4.10 LMS Optimus

LMS Optimus made by lMS International [43][44] is an environment in which the

user can automatically visualize and explore the design space to gain the critical

insights into the dynamics of the problem. This commercial framework provides

parallel processing capabilities, openness to multiple analysis codes, and an

intelligent exploration of a range of algorithms to help a convergence to an

optimal design. Nonlinear programming optimization techniques as weil as DOE

and RSM methods can be performed with this framework. The user employs the

lMS Optimus GUI writt~n in C++ and Motif to define analysis sequence.

Inclusion of legacy code in the analysis sequence without modification is also

possible. With the LMS Optimus, one can perform virtual experiments and

optimization based on a sequence of multiple simulation programs. The tree

representation of the database content, monitoring for failed analysis program

runs, and interactive definition of the inputs, outputs and intermediate processes

during a run using GUI are some features of the lMS Optimus.

39

2,3.4,11

The Multi-Dlsciplinary Computing Environment (MDICE) [45] developed by CFD

Research Corporation provides an environment in which several engineering

analysis programs run concurrently and cooperatively to perform a multi­

disciplinary design, analysis, or optimization problem. Using MDICE, engineers

are able to couple inherently dissimilar disciplines and programs from a variety of

sources, performing distinct tasks such as geometry modeling, grid generation,

CFD and structural analysis, and post processing into a single software system.

This distributed object-oriented system can achieve a high degree of Integration

between the essential engineering analysis tools in a user-friendly environment.

Automatic data transfer along with Integration are among the strengths of this

framework, while database capabilities is not. Paralleled distributed execution of

codes is through PYM, and ail codes can run on distributed computers.

Them is also another project by CFD Research Center called Multi­

Disciplinary Computing Environment for AEroelasticity (MDICE-AE) [46J. The

purpose of this project is to design a multi-disciplinary computing environment for

performing dynamic aeroelastic calculations using almost any CFD and CSD

analysis codes. The framework is based on a distributed object modal.

2,3.4.12 MIDAS

The objective of the Multidisciplinary Integrated Design Assistant for Spacecraft

(MIDAS) [47] project from NASA Jet Propulsion Laboratory (JPL) is to produce a

graphie tool that allows designers with liHle or no computer experience to

describe the design methodology that they use to design their parts of the

40

system, and to rapidly together engineering and manufacturing tools to

design the product. MIDAS supports Integration for multidisciplinary analysis a

distributed, heterogeneous environment As a design converges towards the

design goal, the users can express the desire to visualize the progress via its

interactive GUI. Graphical connection through interfacing the commercial

products with MIDAS are also possible. Them are two other optimization system

development efforts al JPL that are integrated with MIDAS: DEVO and OASIS.

Design Evolver (DEVO) [105], a system for spacecraft design optimization,

aims to provide an optimization tool that is seamlessly integrated into an existing

computer-aided design (CAO) environment for spacecraft, which enables users

to apply optimization algorithms, with a minimal amount of human effort. MIDAS

is used as the design environment for DEVO.

Optimization Assistant (OASIS) [106][107], a self-configuring tool for

automated spacecraft design optimization, improves system performance by

automatically determining heuristic optimization strategies customized to specifie

spacecraft design optimization problem instances. The impact of using such a

tool are the increasing quality of spacecraft designs generated, and the reduction

of human expertise required to perfarm successful optimization. OASIS consists

of an integrated suite of global optimization algorithms that are applicable to

difficult black-box optimization problems, and an integrated intelligent agent that

decides how to apply these algorithms to a particular problem. Given a particular

spacecraft design optimization problem, OASIS perfarms a "meta-!evel"

optimization arder to select an appropriate optimization technique to apply to

41

the problem and automatically adapts and customizes the technique to fit the

problem. One of major component of OASIS, called spacecraft design model,

uses MIDAS as for its graphical design environment to allow users to integrate a

system of possibly distributed design model components together using a

graphical diagram representing data flow of the system.

2.3.4.13 NPSS

Numerical Propulsion System Simulation (NPSS) [48][49] is a concerted effort by

NASA Glenn Research Center7 to develop an advanced engineering

environ ment for the analysis and design of aircraft engines and, eventually,

space transportation components. Its purpose is to dramatically reduce the time

(up to fifty percent), effort, and expense necessary to design and test jet engines.

Using NPSS, engine designers will be able to analyze different parts of the

engine simultaneously, perform different types of analysis simultaneously (e.g.

aerodynamic and structural) and perform analysis faster, better and cheaper. An

object-oriented approach is used to design and built the framework for NPSS.

2.3.4.14 Phoenix Integration

Phoenix Integration [52] solution includes Analysis Server and Model Center [53]

developed by Phoenix Integration Inc. Product design requires the use of multiple

applications oHen running on different platforms where data must be transferred

between applications through the design time. The company's solution is to wrap

7The project is also supported by High Performance Computing and Communications Program (HPCCP) which aims to
accelerate the development of high-performance computers and networks and the use of these resources in the Federal
Government and throughout the American economy [50].

42

the applications, integrate the process, and then share the results. Analysis

Server can wrap various software applications. Once wrapped, they can be

securely published over the network (authentication is also possible [54]). Madel

Center allows access to these applications and exchange between them in order

to get product optimization, a robust design and even a design for Six Sigma.

Scott [51] compares Analysis Server operation to a Web server, which instead of

hosting Web pages, hasts disciplinary analyses. Analogous to a Web browser,

the Model Center program can access and utilize these wrapped analyses by

negotiating with any number of Analysis Server programs being run on different

machines. Phoenix Integration gets high marks for the intuitiveness and user

friendliness of Model Center, as weil as its flexibility in wrapping and distributing

disciplinary analysis. The CATIA software can also be integrated into the system.

Written in Java, Analysis Server can be used on various platforms from Unix­

based to Macintosh. NASA, Boeing and Lockheed-Martin have already adopted

Phoenix Integration in their aerospace design activities.

2.3.4.15 Pointer 1 Epogy

Before the Epogy release in September 2001, Pointer [55] name was used for

both the optimization core and the process integration software. Both developed

at Synaps Inc., Epogy combines Pointer now [56]. Pointer automatically controls

a group of complementary optimization algorifhms in such a way that they can

efficiently solve a wide range of problems in a fully aufomatic manner. Pointer

can be added to any existing parametric simulation software as an embedded

application. In its combined form, Epogy is Synaps' Advanced Computer Aided

43

Exploration Software for Engineers. The software integrates the complex system

of commercial and in-hou se simulation software tools required to perform

multidisciplinary optimization tasks. Its Analysis Scheduler a!lows to graphically

insert new analyses into the process. Conditional branching, parallel execution

and sub-process execution are supported. Epogy allows the execution of in-

house proprietary and commercial codes with no access to source. Epogy can be

applied 10 any engineering discipline. For instance, Bombardier uses Epogy to

improve wing design. Graphical stress representation such as NASTRAN8 and

other application in CFD, EDA, CAD can also be exploited. Airbus and Lockheed-

Martin are among other customers.

2.3.4.16 ProFES

Sues and Cesare [85] present ProFES as a framework for integrating MDO and

probabilistic methods to perform Reliability-Based MDO (RBMDO) [86]. RBMDO

problems can be defined as a class of MDO problems wherein the system

parameters (e.g., maïerial properties, boundary conditions, loads, model

prediction errors) are not necessarily deterministic and are described by

probability distributions. For these problems, the objective ls to maximize system

performance (e.g., payload, aerodynamic efficiency) while satisfying constraints

that ensure reiiable operation. Since system parameters are not necessarily

deterministic, the objective function and constraints must be stated

8 NASTRAN, the NASA Structural Analysis System, provides a finite element analysis (FEA) capability lor use in
computer-aided engineering in aerospace research projects. NASTRAN is a standard in the structural analysis field,
providing the engineer with a wide range of modeling and analysis capabiiities.

44

probabilistically. For RBMDO problems the objective is to maximize expected

system performance while satisfying constraints that ensure reliable operation.

The Probabilistic Finite Element System (ProFES) [87][88] application is

developed by the Computational Mechanics Group of Applied Research

Associates Inc. (ARA). ProFES enables the user to quickly develop probabilistic

models of personal model executables and analytical formulations. It is a

probabilistic Finite Element Analysis (FEA) system built on an innovaïive data­

driven software architecture that seamlessly Integrates state-of-the-art

probabilistic mechanics techniques with commercial CAD software to make it

practical and feasible to execute probabilistic analysis of complex structural

components. The framework includes a GUI supporting a 3D graphical

environment, a probabilistic analysis engine, public domain and commercial

optimizers, and methods to rapidly integrate legacy and in-house applications as

weil as third party commercial applications for multi-disciplinary analysis. This

add-on feature of ProFES permits work with commercial FEA such as

NASTRAN. Only available on a Windows platform, creating customized external

functions to extend ProFES' capabilities requires a 32-bit C, C++, or FORTRAN

compiler with Windows application libraries. Industry partners in development of

the ProFES development include: Pratt&Whitney and General Electric, both

providers of aircraft engines.

2.3.4.17 WICkED

Becker and Bloebaum [57], in order to demonstrate the potential uses of Java for

MDO problems and effectiveness of using the Internet as a communication tool,

45

present the Web Interface for Complex Engineering Design (WICkED), a

software that simulates the convergence of a decomposed complex system in a

distributed computing environment and computes the sensitivity derivafives of the

system with respect to the independent input variables using Global Sensitivity

Equation (GSE)9 or finite difference method. Written entirely in Java, WICkED

aims to support parallel processing for MDO problems on a network process.

This is another development at MODEl [58] of University of New York at Buffalo.

This lab has other interesting ongoing research projects on MDO such as

development of a framework for the solution of simulation-based coupled design

problems in MDO, development of a virtual visualization environment for large-

scale MDO problems, development of optimal convergence strategies for MDO,

using Virtual Reality (VR) as an aid for solving design optimization problems, and

approximation of GSE using RSM in MDO, most of them sponsored by NASA

laRC, lockheed-Martin Tactical Aircraft Systems, and the National Science

Foundation (NSF).

2.3.4.18 XCAT/CCAT

Both XCAT and Hs earlier implementation Common Component Architecture

Toolkit (CCAT) [59] were developed at Extreme Lab of Indiana University. These

CATs (Component Architecture Toolkit) are software layers above a Grid10 that

9 One approach to MDO involves the use of the Global Sensitivity Equation (GSE) method. This melhod involves the
computation of the total derivatives of a system by tirs! solving for the partial derivalives of each subsystem. These partial
derivatives are th en used to obtain the total derivatives, algebraically.

10 A grid [60J is a software framework providing layers of services to access and manage distributed hardware and
software resources.NASA's Information Power Grid (IPG) [61] and Giobus [62] are examples of grid.

46

enables users to make use of the Grid services order to build and run

distributed component-based applications. XC AT and CCAT are based on

Globus Grid for its core security and remote task creation. However, a Grid alone

cannot, in the near term, enable very large, single problems such as CFD

calculations to be spread across distributed systems [63]. Both XCAT and CCAT

are implementation of Common Component Architecture (CCA)11, The Extreme

Lab introduces XCA T as an implementation of the CCA component specification

that can be utilized to build Grid applications in two basic ways: via the generic

application manager and control scripts, and via specialized components built for

the application in question, either in Java or C++. Use of component technology,

object-oriented design, and support of distributed heterogeneous resources

through the use of Globus Grid make both XCAT and its earlier release CCAT

very good and strang developments fram a computer science point of view.

However, the university-based nature of this praduct usually cannot interesi

industries because of the lack of support,

11 The Common Component Architecture (CCA) specification describes the construction of portable software components
thaï may be re-used in any CCA compliant runtime frameworks. CCA consist of Iwo type of entities: Components and
Frameworks. The philosophy 01 CCA is to precisely define the rules for constructing components and to specify the
required behavior a component must exhibit and the interface belween components and the framework. However, very
litUe is said about the way the framework is constructed or the way the user interacts with the framework ta connect
components together. The reason for this is that there will be many different frameworks that can be used in very different
situations. Some frameworks wil! be designed to optimize the use of components that are distributed across a wide-area
grid. In other cases, the frameworks will be designed ta optimize the composition of components that run on a single,
massively parallel supercomputer. The goal is to provide a standard way that a component can be ouilt so that it may be
reused in any number of CCA compliant frameworks [70J.

47

2.3.4,19 Review of the Advanced Frameworks Requirememts

The framework requirements (see Section 2.3.3) review of presented advanced

frameworks is presented in Table 3. It is important to mention that the purpose

this table is not a direct comparison of these frameworks with each others. in

fact, the evaluation of these frameworks is mostly based on very limited available

resources and information about them. Some were simply experimental while

others are now discontinued or are basically not commercial products, which

makes the accessibility to the resources even harder. It is obvious given, such

conditions, that the evaluation is based on the limiïed and disproportionate

information obtained from different resources regardless of the other frameworks

estimation resources. The frameworks capabilities in regard to the requirements

are indicated by the five qualifiers shown in Table 2.

Table 2: Qualifiers guide

meets or strongly meets the requirements ©
meets or partially meets the requirements ê
below the requirements ®
not applicable

information missing ?

48

Table 3: Review of the advanced framework requirements

Framework la lb le Id le U 19 2a 2b 2c 2d 2e 3a 3b 3e 3d 3e 4a 4b i 4e 4d

Access © © © ? © © © ? @ © ? @ © © @ @ © © © © ?
Manager
AMl @ © © ? © © © ? ? © ? @ © © © © @ @ @ @' ?

DAKOTA @ © © ? @ @ © ? @ @ ? ? © © © ? © @ @ ? ?
DARWIN @ ? ? ? ? @ © ? ? ? ? ? @ ? ? ? - © ? ? ?

DeMAID @ ? ? - - @ @ - - - - ? @ ? ? ? - ? ? ? ?

FACETS @ ? ? ? ? @ @ ? @ ? ? ? @ ? ? ? ? ? ? ? ?

FIDO @ @ ? ? @ © @ ? @ @ ? ? @ @ @ © ? @ © © @

IMAGE © © @ ? @ @ © @ @ © ? @ © © ? @ @ @ © © @

iSIGHT © @ @ ? @ @ © @ @ © ? @ © @ @ @ @ @ © © @

LMS @ © @ ? @ @ © © ? © ? @ @ © @ © ? @ @ @ ?
Optimus

MDICE © @ ? ? ? @ © @ @ © ? @ © © © © @ @ © © @

MIDAS @ ? ? ? ? @ ? ? ? ? ? ? ? ? @ @ ? ? ? ? ?

NPSS © © ? ? ? ? © ? ? ? ? ? ? © ? ? ? © ? ? ?
Phoenix © © @ ? ? © © © ? © ? @ © © © © © @ © © @
Integration
Pointer / © @ @ ? ? @ © @ ? © ? @ © © @ @ © @ @ @ @
Epogy

ProFES @ ? @ ? ? ? ? ? ? © ? ? ? ? @ ? ? ? ? ? ?

WICkED @ © ? ? ? ? © ? ? ? ? ? ? ? © ? ? ? ? ? ?

CCAT @ © © ? ? @ © @ ? © ? ? @ © © @ @ @ @ ? @

49

Chapter 3: VADOR Framework

This chapter focuses on an introduction to V ADOR, its global framework

architecture and various components.

3.1 Introduction to VACOR

The increasing complexity of engineering systems has sparked increasing

interest in MDO, particularly in the aircraft industry. It is no surprise that

Bombardier Aerospace, the main aeronautical company in Canada, and the third

largest civil aircraft manufacturer in the world, makes efforts to get advantage of

the so called "the concept of a design space."

Under the sponsorship of foundation J.A. Bombardier and the NSERC,

CERCA has started working on Virtual Aircraft Design and Optimization

framework (VADOR) since 1999. The first year was used to acquire an accurate

definition of the framework specifications as weil as an implementation of a

prototype version. The firs! objective has been achieved by parallel investigations

of the main aspects of the technical review and the selection of technologies for

implementation, the selection and scheduling of interfacing tasks, and definition

of the GUI. This included the study of Bombardier information management

structures and a survey various departments, including meeting with managers

and engineers in order to get their feedback, analysis of the design cycle, and

identification of ail the applications that could be integrated and/or interfaced with

VADOR [6]. In spite of the confidential nature of certain information concerning

50

Bombardier Aerospace and this project, the rest of this thesis tries to present and

break down as much as possible the details while respecting this confidentiality.

3.1.1 V ADOR Objectives

The main challenge in applying MDO technology in a large corporation such as

Bombardier Aerospace lies in the organizational aspects of engineering design.

Design departments being oHen segregated by disciplines, the transfer of

information between these departments ls partially automated. Most legacy

applications being custom-made in-house, need specialized interfaces to

communicate to each other. On the other hand, analysis process documentation

and results data are essential for these organizations. VADOR aims to address

ail these issues by implementing the MDO methodology within Bombardier. The

specifie objectives are [26][64]:

® Development of a state-of-the-art software framework capable of

supporting the paradigm of MDO in collaborative design environment.

This objective permits:

o capture in the framework of the design methodology in use at

Bombardier Aerospace.

o collaboration within a team of geographically distributed engineers

working simultaneously on a design project.

o automation of the execution of analysis and optimization codes and

their corresponding data transfer.

51

@ Implementation (within the framework) of management capabilities to

closely follow the design data used and shared by the design team.

This objective permits:

o keeping the history of a design project or a piece of data.

o identifying the people involved in a project and their respective

responsibilities and work status.

o keeping track of the various designers' comments on a given

design and/or result.

@ Development of interfaces to selected in-house and commercial

applications in use aï Bombardier Aerospace.

This objective permits:

o Implementation of seamless data transfer beïween applications.

@ Deployment of the framework aï Bombardier Aerospace and train

engineers in its programming and usage.

This objective permits:

o long term benefits for the industrial partner.

The main goal of this project is to provide technical engineers with an

Integration solution of legacy analysis applications and the associated data

management tools necessary handle the vast amounts of results data

produced daily by the various departments of Bombardier Aerospace.

52

3.1.2 V ADOR Specification

The specification of the VADOR framework [11][26] document meets the

framework requirements described in Section 2.3.3.

The following are comments on these requirement points of

1. Architectural Design

a) The interaction with the VADOR framework should be through a GUI

which allows a graphical visualization of a design process,

emphasizing on the flow of data within components. The GUI should

also provide an advanced search tool.

b) The object-oriented should be used in the design of the VADOR

framework architecture. Java language is chosen for implementing the

adopted object-oriented methodologies.

c) The VADOR framework should be extensible. The user should be able

to create new interfaces permitting Integration of new process into the

framework. Similarly to the programming language, using the basic key

elements the user should be able to create extensible processes.

The VADOR framework should aim to reduce the amount of overhead

on an optimization process.

e) The VADOR framework should aim to handle any MDO problems

regardless of their size.

53

f) Multiple users should be allowed to access simultaneously. This

implies that appropriate access permissions are defined and controlled

to ensure the integrity of the data.

g) Basic standards of software components, languages and protoco!

should be used. Furthermore, this will ensure the longevity of the

strategical and intensive VADDR framework usage in a real design

environment

2. Problem Formulation Construction

a) The configuration of complex branching and iterative problem

formulation should be allowed. The .GUI should enable configuration

for a given problem to be as simple and intuitive as possible.

b) Reconfiguration of an existing MDD problem should be possible and

simple.

c) The VADDR framework should enable the incorporation of legacy

codes written in different languages and proprietary programs or

applications for which there are no available sources. This would be

possible by creating a proper generic wrapper mechanism and protocol

in the system which permits these codes to work on their appropriate

platform within the framework.

d) The VADDR framework should aim to allow the Integration of user

discipline analyses with seve rai optimizations.

54

e) Facilities for debugging should be possible. Tracing an object history is

one of the way to facilitate such a debugging. This requires that ail

objects should be able to report on their status. Log files can also be

useful for debugging purposes.

3. Problem Execution

a) The VADOR framework should automate the execution of processes

and creation of the data files. Processes are strategy objects that

monitor the creation of the data files encapsulated in data objects.

b) Execution of multiple processes and their movement of data in parallel,

should be supported.

c) ln order to allow collaboration across the network, the VADOR

framework should allow a transparent execution across a distributed

network of heterogeneous computers while taking care of the

corresponding data transfers.

d) Interaction during the analysis and design process should be

supported. The user can hait the execution of a process, modify the

data and resume it again or simply stop (kil!) the process.

e) Users should be able to use the VADOR framework in interactive or

batch mode. Once the project is launched, user can logout while the

process continues to execute.

55

4. Access ta information

a) The VADOR framework should provide database management

features in order to support a comprehensive data management

capabilities.

b) The intermediate and final visualization of the results should be

possible whenever analysis codes permit it.

c) Toois and/or widgets for monitoring the status of execution should be

provided in VADOR GUI. The framework can inquire the status of any

object at anytime and present them in appropriate manner to the user.

d) The VADOR framework should be tault tolerant. A wrongly do ne

operation should no! result in neither the crashing of the servers, nor

the jamming of the GUI.

3.1.3 V ADOR Current Critical Review

Table 4 shows the VADOR complete critical review of the VADOR specification

at the time of writing this thesis. A range of asterisks ",*" from one to six is used to

specify the level of the framework appreciation upon the specification criteria's

points. In this way, one asterisk presents the lowest rank for absoiutely not

meeting the specification and six asterisks the highest rank for fully meeting the

specification.

56

Table 4: Complete review of VADOR

SOElcification VADOR

ia) Intuitive GUI ****
1b) Obiect-orienled '* '* '* '*
1 cl Ex!ensibilily '*'*'*'* 1

id) No overhead on oDlimization '*'***
1e) Handle larQe problem '*'***
1 f) Collaborative *'*'**
1 ,J) Standards *****
2a) ConfiQure comalex branchinQ * '* '* '*
2b) ReconfiQurinQ existinQ problem '* '* '* '*
2c) IncorporatinQ leQacy codes '* '* '* '* '*
2d) InteQratinQ analyses with several optimization method '* * * *
2el Debuooino '**'*
3a) Automation '*****
3b) Execute multiple process in parallel ****
3c) Execution across heteroQeneous computer *****
3d) User interaction * *
3e) Batch ****
4a) Database *****
4b) Intermediate visualization **'*
4c) View status of execution '* '* '* *
4dl Faul! tolerance ***

3.2 Object=Oriented Design by an Object-Oriented Tooi

With respect to the VADOR specification (1 b in Section 3.1 .2), Java language

has been chosen for the design and implementation of the adopted object-

oriented methodologies in VADOR. Java is considered more than a language

today. While Sun Microsystems introduces it as a technofogy [72], Berg and

Fritzinger [73] demonstrate how Java language go trom being a language to

being an industry. Although Flanagan [78] insists on the importance of the

distinction between the Java programming language, the Java Virtual Machine

57

(JVM), and the Java platform, deploying Java as a development tool makes it

possible to take advantage of ail its parts. Based on the power of networks, Java

as whole enables the Internet and private networks to become a computing

environment A Java application can easily be delivered over the Internet, or any

network, without operating system or hardware platform compatibility issues. This

initially had an important influence on the language of choice since using Web

technologies and tools such as Internet and a Web browser have been

envisaged for the users of VADOR. In fact, the user of the VADOR prototype was

also able to execute an MDO problem using a Web browser through a Java

applet12
, although tight security restrictions within the same organization

departments on one side and limitations of Java applets for both reading and

writing files on the other side did not make it practical to take advantage of this

Java feature for large-scale MDO problems.

Java package (and possibly subpackage) which permits to group related

classes and define a namespace for the classes they contain, can also provide

an ideal environ ment for the development of a large project such as VADOR.

Two programmers located in two different offices, with poor communication, and

responsible for different packages, can still name the classes without being

concerned about the class name conflict Aithough, Java now supports

versioning by adding mechanism to discover and track changes of a piece of

12 An applet is a little application, a small program that can be sent along with a Web page to a user. Java applets can
perform interactive animations, immediate calculations, or other simple tasks without having to send a user request back
to the server [74].

58

code, package, and JVM, other versioning tools such as CVS13 can still be used

to complete an ideal development environment.

Other considerations for choosing this object-oriented language among others

are: its simple and complete development platform, portability or platform

independence (cross platform), network-aware platform, central administration of

new software versions, easy access to IT resources, rich and highly functional

user interface, local data manipulation, technologicai unified network

environment, simple and robust security modal. Moreover, Java technology

eliminates many of the problems associated with installing and running

applications. Developing on the Java platform means that projects are completed

faster and with less debugging. Becker and Bloebaum [57], in their paper

entitled: "Distributed Computing for MDO Using Java" demonstrate that Java

holds great promise for industrial MDO applications. Although Villacis [75] reports

that the Java environment falls short for scientific computing, he concludes that

Java is still useful as the glue for programming around scientific codes, while also

reminding us of its rich object model, extensive set of core libraries, and

simplified distributed computing framework.

3.3 VADOR Data Model

An effective framework enabling MDO practices provides the user with a flexible

and configurable data model that can adequately satisfy the evolving

requirements of engineers using computational-based analysis-and-design

13 Concurrent Versions System (CVS) is a program tha! lets a code developer save and retrieve different development
versions of source code. It also lets a team of developers share control of different versions of files in a common
repository of files.

59

programs. Such a system must provide capabilities for the automation and

Integration of various processes used by engineers. It must also support and

promote collaboration and data sharing. In the VADOR framework, collaboration

and data-sharing are enabled through the use of components. Two basic kinds of

these components, DataComponent and StrategyComponent, described in

Sections 3.4.2 and 3.4.3, are respectively encapsulated design data and design·

methodoiogies. Their set of key attributes and types are stored in a database to

provide basic data management capabilities in the system.

3.4 A Component .. Based Development

Component-based development architectures have emerged as a standard

design paradigm in many areas of application development. It is the building of

software systems out of prepackaged generic elements, or, at least, from

packages with well-known capabilities and precise functionality that can be

encapsulated to create such a generic element [11]. The current trend toward

this type of architecture is mainly the result of the convergence of the four

phenomena originating from different perspectives:

1. Scmentific: the progress of modern software engineering ideas with

special emphasis on code reuse.

2. Commercial: the widespread success of theoretically unpretentious

but practically useful techniques for building GUis, databases, and

other parts of applications out of single elements.

60

3. Academie: the generalization object technology, which provides

both the conceptual basis and the practical tools for building and using

components.

4. Market: the push by some of the major players for competing

technologies such as Common Object Request Broker Architecture

(CORBA)14, Component Object Model (COM)15, Disîribuîed

Component Object Model (DCOM) 16, JavaBeans 17, and Enterprise

JavaBeans (EJB) 18.

The goal of a component architecture is to simplify the application design

process and speed application development [70]. An architecture of this kind,

offering a component view of software, provides a way to implement more

easily a network distributed framework.

14 Common Object Reques! Broker Architecture (CORBA) [65] is an architecture and specification for creating,
distributing, and managing distributed program objects in a network. it allows programs al different locations and
developed by different vendors to communicate in a network through an "interiace broker.· COR BA was developed by a
consortium of vendors through the Object Management Group (OMG), which currently includes over 500 member
companies. Both International Organization for Standardization (ISO) and X/Open have sanctioned CORBA as the
standard architecture for distributed objects (which are also known as components).

15 Component Object Model (COM) [66] is Microsoft's framework for developing and supporting program component
objects. It is aimed al providing similar capabilities to those defined in CORBA. COM provides the underlying services of
interface negotiation, life cycle management (determining wh en an object can be removed lrom a system), licensing, and
event services (putting one object into service as the result of an event that has happened to another object).

16 Dislributed Component Object Model (DCOM) [67J is a set of Microsoft concepts and program interfaces in which client
program abjects can request services tram server program objects on other computers in a network. DCOM is based on
the COM, which provides a sel of interfaces aliowing clients and servers to communicate within the same computer (that
is running Windows 95 or a later version).

17 JavaBeans [68] is an object-oriented programming interface from Sun Microsystems that lets you build re-useable
applications or program building blacks calJed components that can be deployed in a network on any major operating
system platform.

18 Enterprise JavaBeans (EJB) [69J is an architecture for setting up program components, written in Java, thaï run in the
server parts of a computer network that uses the client/server modeL Enterprise JavaBeans is buil! on the JavaBeans
technology for distributing program components to clients in a network. Enterprise JavaBeans aHers enterprises the
advantage of being able to control change al the server ra!her than having to update each individual computer with a
client whenever a new program component is changed or added. EJB components have the advantage of being reusable
in multiple applications.

61

3,4.1 Contract Aware Components

When inîegrating components into a larger framework, an important design task

is to ensure that each component behaves exactly as expected. To this end, a

component can be seen as a selVice pro vider, and framework as an

interaction manager for the movement of data befween each agent. The goal of

designing a proper environment for a framework then becomes the one which

the components are contract aware, i.e. there is a way of determining beforehand

whether a component can be used within a certain context or not Ideally, this

information should take the form of a specification that describes what the

component does without entering into the details of how. Furthermore, the

specification should provide parameters against which the component can be

verified and validated, thus providing a kind of contract between the component

and its user. A proper classification of these contracts distinguish four levels [11]:

1. Basic contract: provides a simple component interface that lists ail the

operations and their signature (types of inputs and outputs) with no

semantic properties. Statlc type checking verifies at compile time that ail

clients use the component interface properly, whereas dynamic type

checking delays this verification until runtime. CORBA, DCOM, and

JavaBeans ail permit this type of contract to take place.

2. Behavioral contract: expresses what operations do, independently of

how they do it. This permits developers to specify precisely every

condition that can go wrong, and to assign explicitly the responsibility to

62

either the routine caller (the client) or the routine implementation (the

contractor). Such contracts carry mutual obligations and benefits.

3. Synchronization contract: describes the sequence in which the

operation will be executed. This becomes quite crucial in parallel

programming where various operations must be synchronized and

executed in the right order.

4. Quality=of=service contract: covers issues such as the maximum

response delay, the average response time, the quality and precision of

results, and the throughput of data streams.

Most of these contracts can be represented in form of diagrams by using Unified

Modeling Language (UML) 19.

3.4.2 Daia Component

As described in Section 3.3, there are !WO basic key components defined in the

VADOR data model. DataComponent is one such component. It encapsulates

the design-and-analysis data which is usually contained in a data file [76]. In

addition to this simple or technical data usually stored in a data file, the

requirements for the VADOR MDO framework forces it to keep a set of

information tied to the data and encapsulated within the DataComponent.

Examples of such attributes are presented in Table 5.

19 Unified Modeling Language (UML) [71] is a standard notation for the modeling of real-world objects as a first step in
developing an object-oriented design methodology. its notation is derived from and unifies the notations of three object­
oriented design and analysis methodologies: Booch's methodology, Rumbaugh's Object-Modeling ïechnique (OMT) ,
Jacobson's use case methodology . UML has been fostered and now is an accepted standard of the Object Management
Group (OMG). Vendors of computer-aided software engineering products are now supporting UMl and il has been
endorsed by almost every maker of software devetopment products, including IBM and Microsoft

63

Table 5: Example of DataComponent attributes

Attributs Basic Content

Owner Object owner 1

Data file reference URL of the encapsulated data file
1

Strategy iD Identifier of the creator strategy

History Parent(s), creation method and date

Access Access permission

Validity levei of confidence on data

Status Data status

Comments Any comments about object

There are two major kinds of DataComponent in the system, extending directly

fram it: DClnstance and DCType. DClntance is an instance of a newly created

DataComponent. A DataComponent has a type which serves as a mechanism

for data standardization and validation. Furthermore, DataComponents can be

classified by their respective types. DCType objects serve as type holders for

DataComponents in the system. The size of a DataComponent is reasonably

small considering the fact that a data file is typically stored in the file server(s)

and onlya reference to it is kept (in the form of a URL20
). In this respect, manyof

the VADOR component attributes are so called metadata since they contain the

description of data rather than the data itself. This is important since the

instances of DataComponents are then stored in a database.

DataComponent can be atomic by encapsulating a data file (as described

above), or composite by encapsulating one or more atomic or composite

DataComponent(s). This user-defined hierarchical composition of

20 Uniform Resource locator (URL) is the address of a file (resource) accessible on the Internet. The type of resource
de pends on the internet application prolocol.

64

DataComponents enables the creation of a complex group data files if

necessary. Composite DataComponents are also classified by their types. A

DataComponent requires a StrategyComponent (described in Section 3.4.3) to

its encapsulated data file. An atomic example of a DataComponent cou Id be a

CFD_grid DataComponent, which encapsulates a mesh_CFD_analysis data file.

3.4.3 Strategy Component

DataComponent and StrategyComponent are both part of the VADOR initiative

for making an abstraction of a complex engineering process. To achieve this

level of abstraction, VADOR needed a way to encapsulate the programs and

processes and then provide a mechanism to link them to the data. These

executable programs, scripts, applications, or interactive graphical software

applications usually require inputs in form of data files or interactive user entries

and generally produce outputs (in form of data files). Execution of these legacy

programs (in most cases) in a controlled sequence of operation normally

representable in form of a flowchart corresponding to an algorithm, is what is

defined here as a process.

The DataComponents described in Section 3.4.2 only encapsulate the

technical data files used and shared by the design engineers. The

StrategyComponents intend to capture the design process or methodology

(strategy). This is done using composite StrategyComponents, which represent

the basic methods and the data flow required to transform data in a given

process. Compared to the DataComponent, ii represents a higher level process.

Atomic StrategyComponents are used to encapsulate executable programs,

65

scripts or applications that can create or fil! the data files encapsulated in

DataComponents, This can be seen as defining methods creation of

DataComponents, The required execution time for these programs can vary from

a few milli-seconds to many days or weeks, depending on the engineering

analysis to be performed, The type of StrategyComponent indicates the type of

DataComponent thaï it can creaie. Sharing some similar aUributes with

DataComponent, Table 6 shows an example of StrategyComponent attributes,

Table 6: Example of StrategyComponent attributes

Aîtribute Basic Content

Owner Object owner

Type Type of created DataComponent

Usage Usage string of the encapsulated program

History Parent(s), creation method and date

Access Access permission

Comments Any comments about object

This capturer of design process or methodology aiso enables the data flow

standardization and documentation; that is, a better management of design

strategies, Different kinds of StrategyComponent exist in order to construct a

complex process, in the same way that a procedural language supporting

parallelism (or aï least pseudo-parallelism) provides basic mechanism permitting

to describe a parallel algorithm, Instantiation, parallelism, testing, branching, and

looping are possible in V ADOR, using visually-presented and mouse-selectabie

different ranges of Strategies such as SequentialStrategy, ParallelStrategy,

IfStrategy, WhileStrategy, ForStrategy, ConditionalStrategy. An example of a

66

complex StrategyComponent consists of the encapsulation of an optimizer,

requiring use of OptimizerStrategy.

3.4.3.1 A Simple Procedure Example

The following steps should be performed for a simple process, shown as a

flowchart in Figure

Figure 2: Example of a simple process

1. Definition of three DataComponent types encapsulating data files:

CFD_grid, CFD_solution_1 and GFD_solution_2.

2. Definition of a composite DataComponent type encapsulating the data

created by program CFD_prog, for instance, CFD_solution_1 &2,

containing respectively CFD_solution_1 and CFD_solution_2.

3. Definition of an atomic StrategyComponent, encapsulating the CFD_prog,

which is capable of producing a composite DataComponent of type

CFD_solution_1 &2 and requiring an atomic DataComponent of type

CFD_grid as input.

67

3.5 Designed by Patterns

The American Heritage Dictionary defines "pattern" as: "A model to be followed

in making a thing." That thing in our context is an object-oriented software

design. By observing a problem occurring repeatedly and by finding a solution for

such a problem, one can creaie a model that can be used by everyone. To

document such a pattern, one needs io describe the problem, describe the

solution, iIIustraie the consequences of applying such a solution and finally, give

a name to the pattern. Gamma et al. [89] define Design Pattern as "descriptions

of communicating objects and classes that are customized to solve a general

design problem in a particular context."

A design pattern systematically names, motivates, and explains a general

design that addresses a recurring design problem in object-oriented systems. It

describes the problem, the solution, when to apply the solution, and its

consequences. Il also gives implementation hints and examples. The solution is

a general arrangement of objects and classes that solve the problem. The

solution is cuslomized and implemented to solve the problem in a particular

context.

Many of known and classified patterns have been used in the design of

VADOA. Before starting to describe the major components the VADOR

architecture in the following section, a brief description of the actual patterns

employed in the design of VADOR are given so they can later be used as

reference to what (and why) they have been implemented.

68

1. Structural Patterns

a) Composite: composes objects into tree structures to represent part­

whole hierarchies. Composite lets clients treat individual objects and

compositions of objects uniformly. This pattern is used in design of

composite DataComponent and composite StrategyComponent. They

have a tree structure containing respectively other DataComponents or

StrategyComponents.

b) Proxy: (also known as Surrogate) provides a surrogate or placeholder

for another object to control access to it. Ali the server components in

VADOR provide proxies that permit a controlled connection to these

servers from other components or servers.

2. Behavioral Patterns

a) Visitor: represents an operation to be performed on the elements of

an object structure. Visitor lets a new operation be defined without

changing the classes of the elements on which it operates. For

instance, in VADOR different types of ComponentStrategy such as

ParallelStrategy and DoWhiieStrategy can implement SgyVisitable

interface in order to accept different visitors such as

EexcuteSgyVisitor, SaveSgyVisitor and DeleteSgyVisitor, which

implements ISgyVisitor interface, so they can perform different

operations. Most of these interfaces are in NetworkTools package. A

class diagram of this package can be found in Appendix B.

69

b) Observer: (also known as Dependents and Publish~Subscribe)

defines a one-to-many dependency between objects so that when one

object changes state, ail iis dependents are notified and updated

automatically. In tact, diverse VADOR components may generate

several events. listeners interested in these kinds of events can

register themselves as observers, so they can be later notified if the

specifie event for which they have been registered happens. These

observers can be VADOR users or other VADOR components in

system. Most classes and interfaces enabling this mechanism are

found in the VADOR Observer package.

c) Mediator: defines an object that encapsulates how a set of objects

interact. Mediator promotes Ioose coupiing by keeping objects trom

referring to each other explicitly, and il lets you vary their interaction

independently. Some of the dialog boxes used in the VADOR GUI

package encapsulate collective behavior in a separate mediator object

which help to avoid a tedious individual customizing of every each of

them by simply subclassing from a mediator class. For instance, the

VADORGUIDierctor class in the VADOR GUI package is a mediator

where other similar but different type of dialogs extends from if.

d) Command: (also known as Action and Transaction) encapsulates a

request as an object, thereby letting parameterize clients with different

requests, queue or log requests, and support undoable operations.

Sometimes it is necessary to issue requests to objects without knowing

70

anything about the operation being requested or the receiver of the

request. The callO method of Vador_Agent Glass (found the

NetworkTools package) can be invoked by other VADOR components

such as V ADOR Librarian without knowing anything about the

operation implemented in the method.

3.6 VACOR Distributed Architecture

One of the requirements for VADOR, or any MDO framework in general, is to

provide extensibility and support for new Integrations into the system. The

architecture for such a complex engineering design and analysis must, therefore,

be flexible and modifiable. The goal is then to create an agile software

framework.

Three-Tiered Architecture

Creating such an agile system demands a new architectural design rather than

Monoliths and Two-tiered clientlserver approach. On the one hand, need for the

custom interconnection between pieces of a system in the monolithic world which

contains ail the code needed to manage the data, implements the mies of

application, and provides the user interface in a single mass, and on the other

hand, difficult distributed system management in two-tiered systems leave the

adoption of a three-tiered architecture approach as the best choice. The three-

tiered architecture enables agile software several ways. First, by treating

software components as stand-alone data providers, service providers and

service consumers, the three-tiered architecture creates a software infrastructure

71

of reusable parts. This reuse speeds the development and increase the overali

system quality. Although, it is important to mention that there is more to

component-based software reuse than Just building the component themselves.

Separation of ail these component-based entities into different layers, make

three-tired software applications easier to maintain and update. In the three-

tiered architecture, applications are made up of cooperating collections of

networked components. The switch fram seeing components as Integral parts of

applications to seeing components as stand-alone entities which can pravide

services for applications, pravides much of the power of the three-tiered

architecture. Like any other good appraaches, three-tiered architectures suffer

fram some drawbacks and limitations. Overhead of communication between the

various layers causing some addiîional latency Into the system is the more

important one tram the VADOR point of view. Figure 3, presents a global view of

the VADOR architecture in a three-tiered appearance.

User Interface 1
Persentation

Domain/logic

Data
Management
1 Persistant

Data

VADOR
GUi

Figure 3: V ADOR Architecture

72

The data provider component, identified as data management and persistent

data tier in Figure 3, consists of the Database Management System (DBMS21
),

and actual persistent files on different machines. Service provider components in

domain and logic tier include VADOR Executive, VADOR Librarian, V ADOR CPU

Se rvers, VADOR GlobalColiector, and VADOR localColiectors. Finaily, service

consumer represented in the user interface or presentation fier includes VADOR

GUI, DBExplorer and ail the small GUI applications that can be launched via

VADOR GUI such as VADOR Search and System Monitor.

The three-tiered architecture seems like a minor extension to client/server

approach which makes the difference a very subtle and critical issue, thus a

pitfal! to avoid. For instance, components of the data tier should provide service

to the domain/logic tier or user interface tier without knowing which component

made the request and from which lier. Generally, in a three-tired environment, it

is not appropriate for components in the logic domain or presentation tiers to talk

directly to data sources since this violates the encapsulation and abstraction

maintained by each fier. Instead, component(s) in data lier should interface with

the actual data storage mechanism and present an abstract interface to the other

tiers while hiding the implementation details of how and where the data are

stored. in the cases where it is not obvious to produce a canned query or

interface for every possible query, components of the other tiers may directly

21 A data base management system (DBMS), is a program that lets one or more computer users create and access data in
a database. The DB MS ensures the integrity and security of the data.

73

interface with database with the condition that data tier supports a SOl22

mechanism for the other tiers. The data tier should still implement an abstract

interface which minimizes the use of raw SOL and ease the future maintenance.

This interface can eventually be developed in VADOR. Figure 4 shows a UMl

component diagram view of the global VADOR architecture.

1
<.:[3cceSSH 1

1 1 1
1 /
1 ,/

..:..:send>:.> 1 <.o:use» 1

l "
1 /

1 «access:l» ./,/

l ,,"
1 ,//

6~'/
Oatabase Interface

SGIIIRIX OS interface

Figure 4: A component diagram view of the V ADOR architecture

3.6.1 VADOR librarian

A real librarian in a real library provides people with information and services

related to the books, while at the same time he or she archives, files, manages

and constantly updates information about these books in database. VADOR

Librarian is very similar to a real librarian with some differences. First, it is not a

person but a Java server process, or a daemon. Second, instead of books it

primarily manipulates the components, for the most part the instances of

22 Structured Query Language (SOL) is a standard interactive and programming language for getting information trom and
updating a database.

74

DataComponents and StrategyComponents. Third, instead of people, it supplies

services and information to the service consumer tier (VAOOR GUI) or other

service provider components such as Executive. VAOOR Librarian provides a

suitable interface to the VAOOR database, permiUing a persistent storage,

retrieval and updating of information about component attributes. These

attributes, as menfioned before, mainly keep the descriptive information or

metadata so that only reference to a file (e.g. an URL string) is stored in the

database and the actual file (potentially large) remains in the location where it

has been created or moved to. Presently, the database used in the VAOOR

system is MySOL [98], a popular open source SOL database. VAOOR Librarian

uses Java Oatabase Connectivity (JOSC)23 API to connect to this relational

database. Moving fram MySOL database to any other relational database

supporting a standard ANSI or ISO SOL requires only the loading in VADOR

Librarian of the apprapriate JOSC driver for the new database. If such a driver

does not exist, it is still possible to use a bridge to connec! JOSC to OOSC24

using JOBC-OOBC bridge. In the case that the new database is not relational, a

new interface should be written for VAOOR Liberian in order to communicate with

such a database.

23 Java Oatabase Connectivity (JOSC) is an App!ication Program Interface (API) specification for connecting programs
written in Java to the data in popular databases. The API permits to encode access reques! statements in SOL that are
then passed to the program that manages the database.

24 Open Oatabase Connectivity (ODSC) is an open API for accessing a database. Sy using ODBC statements in a
program, it is possible to access to files in a number of different databases, including Access, dBase, D82, Excel, and
Texi.

75

3,6.2 V ADOR Executive

Execution of the diverse disciplinary processes is one of the fundamental tasks of

any MDO framework. V ADOR Executive is a Java server program which primary

task consists of the execution of the design process captured within the

StrategyComponents. V ADOR Executive guarantees the automation of process

execution, sequenced or paralleled, interactively or in a batch mode, within a

distributed heterogeneous environ ment. Taking advantage of polymorphism

combined with Visitor and Composite Patterns (see Section 3.5) in design of

StrategyComponent, VADOR Executive can execute the different type of

StrategyComponents simply by invoking a simple execute method. This ensures

the automatized execution of the processes in a heterogeneous distributed

environment. It is likely to have more than one Executive server within the

VADOR system, every one of which is able to handle the execution of many

different processes encapsulated in StrategyComponents. In fact, the Executive

is a multi-threaded server, capable of managing multiple requests by the same

user or different users simultaneously. The request of a service of each user,

either an engineer or other VADOR server components, is kept track of as a

thread with a separate identity. V ADOR Executive makes sure that the status of

execution on behalf of any thrown thread is kept track of until the execution is

completed. A successful execution of a StrategyComponent (atomic or

composite) ends with the creation of an atomic or composite DataComponent. A

typical sequence an execution raquest trom VAOR GUI takes place in the

foliowing sequence:

76

@ Receiving the execution request for a given process (identified by

DataComponent instance ID that will be created as a result of this

execution, passed as parameter) from VADDR GUI (running locally on the

user machine).

@ Launching a new thread for the new received request.

® Communicating with VADDR Librarian order to recuperate the Data

Component instance object and consequently the encapsulated

StrategyComponent.

® Communicating with the VADDR CPU server(s) in order to delegate the

aciual execution of the StrategyComponent and their including

StrategyComponent(s) in case of a composite strategy.

® Notifying VADDR Librarian aï the end of the successful execution,

permitting to add information about the new created instance(s) in the

database and updating the status of the components.

® Sending a final message or an e-mail to the user after the final completion

of execution. During the execution of a composite StrategyComponent,

VADDR Executive also sends intermediate messages ai the end of

execution of any atomic StrategyComponent, which provides the user with

information about the status of current execution and its progress.

77

Network Connection Type

Any interaction beîween these servers is impossible without a kind of

communication connection. A network TCP25 stream socket-based connection

(found in java.net package) is used for the communication between VADOR

Executive and other servers such as Librarian and CPUs. Tep provides a

reliable session-based service and peer-to-peer (with each node having both

server and client capabilities) mechanism. The stream pravides the data transfer

mechanism on top of the socket. With a stream socket, streams of bytes formed

as packets are sent without errars and received in the same order that they are

sent. Using this socket-based communication, component objects are serialized

and passed fram one server to the other. It is important to mention thaï this type

of communication was not initially used in connection between VADOR Executive

and the VADOR CPU server. Instead, a more sophisticated clienVserver

mechanism using Java Remote Method Invocation (RMI) was implemented for

this purpose. Java object-oriented RMI, considered a key component of the

JavaBean architecture, is a lightweight mechanism which allows one Java

application to cali methods and access variables inside another application,

which may be running in different Java enviranments or different systems, and to

pass objects back and forth over this connection. Due to a callback problem in

using Java RMI, which was causing an excessive and unreasonable additional

time for VADOR Executive to receive any kind of notification fram the VADOR

25 Transmission Control Protocol (TCP} is a protocol used along with the Internet Protocol (IP) to send data in the form of
message units between computers over the Intemet.

78

CPU server after the remote execution of StrategyComponents (thus a serious

impact on the performance of VADOR), and as a result of unsuccessful

investigation about the real cause of this problem, it has been decided to use a

socket-based connection which is also used communication between

Executive and Librarian. CORBA [65] would be certainly a very good alternative

(despite of its expensive licensing fee comparing to the free RMI) for ail these

communications. [90][91][92] provide more information concerning the potential

usage of CORBA for solving MDO problems.

3.6.3 V ADOR CPU

VADOR CPU is another Java server program designed to remotely execute the

analysis task encapsulated in StrategyComponents. These servers are installed

on a diverse range of computers with different architectures and operating

systems, selected to be a part of the VADOR system. As explained in the

previous section, VADOR Executive manages and coordinates task executions

by delegating remotely the actual execution to the CPU servers.

StrategyComponents restored in VADOR Executive, they encapsulate the design

and analysis code, usually in a composite form; a tree structure containing other

branches or leaves of composite or atomic Strategies. This tree structure is

traversed by the Executive server and consequently, every actual atomic

StrategyComponent leaf node, encapsulating a program, application or script, is

sent (sequentially or in parallel, depending on its type) to these CPU servers for a

remote execution. The CPU servers then run these legacy scripts or programs

written in different languages such as C, C++ and Fortran able to run on a

79

specifie platform for which they have been eomposed. This mechanism gives

impression thaï these legacy executable codes are wrapped in the way thaï they

can carried out within the V ADOR framework regardless of the type of the

programming language, or machine architecture and operating system on which

they can run. That is why the CPU servers are also named and known as

Wrapper servers in the VADOR terminology. Figure 5 shows how VADOR

Executive receives the execution request from VADOR GUI, communieates with

Librarian to recuperate that actual component, and then starts the execution

procedure by dispatching the executable tasks to the VADOR CPU servers and

consequently updates their status in the database through Librarian.

Figure 5: Process execution distribution to VADOR CPU servers

The choice of a CPU server by Executive for the execution of a task is not made

ai random. There are a range of different machines which are classified by their

architecture and their operating system, for instance IBM/AIX, SGIIIRIX,

80

SUN/Solaris. VADOR administrator makes sure that a VADOR CPU server runs

in every machine thaï is assigned to host the remote execution. The selection of

the hosts is made by the engineer who creates the process. Therefore, the name

of a target host is specified in the StrategyComponent, which indicates to

Executive where the StrategyComponent should be executed. Usually, there may

be more th an one CPU server for a class of machine. In this case, the load

balancing system (discussed in Section 3.6.4) in VADOR and its designated

servers for this purpose can help users and Executive to monitor the system and

send the execution where the load of task is lower.

To run a task, a CPU (Wrapper) server performs the following steps [93]:

1. Locates the executable program, application, or script file

2. Builds a temporary directory

3. Transfers ail input files to the temporary directory

4. Runs the program, application, or script file

5. Transfers the created output files

6. Cleans up and destroys the temporary directory

Synchronization of ail these steps is guaranteed by the CPU servers, which,

similarly to the Executive server, use multi-threading for hosting other executions

al the same time.

Generally, the input and output files are not kept locally on the machine where

the execution takes place. In such a condition, the file transfer mechanism is

necessary to download and upload ail the necessary files. In order to download

81

files, the CPU server uses the Apache server (designed normally for

downloading web-context files), however, for uploading output files, the CPU

server need to use a Java servlet module which in turn requires a Tomcat server

to be added to the Apache server in order to validaie Java servlet's functions.

With such a custom transfer protocol, based on standard and widely available

servers, the CPU servers can perform a secure transfer of files, necessary for the

remote execution of the legacy engineering analysis codes within the VADOR

system.

3.6.4 Load Balancing

VADOR is not a run-time system, however, because it manages and executes

different programs in parallel, the performance of the system is still considered a

crucial issue. In order to improve the performance of such a distributed system, a

load balance mechanism needs to be used to reach an even workload across the

CPU servers. The goal to achieve for the V ADOR Executive as a process

manager, is to allocate the processes to the CPU servers, by making sure that

workload is spread around the available CPU servers as to make full and

balanced use of the computing power available. This goal aims to avoid a

situation where some CPU server hosts are overloaded while the others are idle.

Load balancing is the equitable distribution of workioad among the computing

resources available in a network [95]. The primary function of Joad balancing is to

recommend decisions that improve performance [96]. There are basically two

kinds of Joad balancing algorithm: static and dynamic. Static load balancing

algorithms are simple and have low overhead. They rely on the estimated

82

execution fi mes of processes and inter process communication requirements.

This may cause that some CPU servers be id le when others are overloaded,

hence unsatisfactory for a parallel-able serveL The "taking-tums" Round-Robin

algorithm faUs inîo this category. On the other hand, dynamic load balancing

algorithms permit adaptation to changing circumstances. These algorithms which

make run-time decisions based on system state can be defined by their

implementation of the following policies [95]:

@ Information policy: specifies what load information is to be collected,

when it is to be collected, and trom where. It is important that the load

information takes into account not only the needs of a task, but also 1/0

and memory operation requirements.

@ Placement policy: determines where a process should be located or

transferred to.

@ Transfer policy: describes the conditions under which a process should

be transferred.

These algorithms should also take into account the nature of the tasks which can

be: CPU-bounded, memory-bounded, or 10-bounded. For instance, a CPU­

bounded task should be assigned to a host with the lowest CPU Joad. In the

sa me way, a memory-bounded task cannot be assigned to a host with not

enough memory resources available. These load balancing algorithms should be

used in the way that the entire system loads will be estimated. This estimation

may contain the information load consisting of: system CPU usage, CPU idle,

current free memory, system buffer activities, and page fault.

83

ln VADOR, the Joad balancing mechanism is enabled by implementing two

different kinds of Java server programs, described in Sections 3.6.4.1 and

3.6.4.2.

3.6.4.1 Global Collector

This server is responsible for collecting CPU servers' host Joad information

across the network by applying the Joad balancing algorithm. The GlobalColiector

server periodically gathers system Joad information by communicating the

LocalColiector servers and ensures the proper management of these information.

The management of the LocalColiector servers is also under the responsibility of

GlobalCollector. If one of LocalCollectors crashes, it will be restored by

GlobalColiector. Obviously, VADOR Executive is the first client of

GlobalCollector. However, the user can also utilize the System Monitor frame in

VADOR GUI to visualize the Joad information on available hosts, via the VADOR

Executive connection, and possibly assign an explicit execution of a

StrategyComponent on a selected host. In the absence of GlobalCollector, the

Executive server may continue to apply the random algorithm to assign an

execution task to a selected CPU server among a range of available CPU

servers for the same Glass of machine/OS architecture.

3.6.4.2 local Collector

The LocalCollector Java servers are basically present in every host where a CPU

server is running. They periodically collect information about a host, provide a

load information estimation, and compare it with the previous collection. If a

change is observed as the result of this comparison, they notify GlobalColiector

84

by establishing a communication channel, otherwise, they can sleep until the

next pooling loop. GlobalColiector can also explicitly require them a load

information.

3.6.5 VADOR GUI

The VADOR GUI is the main interface between users and the other part of the

VADOR framework. It mainly interacts with the Executive and the librarian

servers. Efforts have been made to create a user-friendly environment where

users can intuitively exploit the framework. With VADOR GUI, engineers can use

different available builders to creaie DataComponents (atomic or composite),

along with their types, and StrategyComponents (atomic or composite). A

browser can be used to navigate through the system directory folder to view,

open, or delete the instances of DataComponents and StrategyComponents.

Different views of DataComponent and StrategyComponent are provided by

choosing the appropriate icons in the GUI.

VADOR GUI is multi-tasking environment, means that more than one

application can be used within the same GUI frame. For instance, the user can

launch VADOR Search (described in Section 3.6.5.1), and VADOR Explorer at

the same time while building an atomic Strategy via the atomic Strategy builder.

A view example of VADOR GUI is presented in Figure 6. More images of other

parts of VADOR GUI, widgets and tools, including VADOR Explorer and different

component builders can be found in Appendix

85

B B _Spline interpolation

m Init!aI Appr~x!matJOn

m SFGS Optimlzation

fil D!scretizatlon

Ur;craated mahdavÎ
, discreuProfllle_beba;'; . Uncneatled mahdavi

Figure 6: VADOR GUI

3.6.5.1 V ADOR Search

With the VADOR Search tool integrated into VADOR GUI, users can perform a

very user-friendly search on the different VADOR components attributes, stored

in the database. The user does not need to have any knowledge of database

language since SOL queries are built transparently. The results of the research

are presented in the Java table (JTable) or in the form of a tree structure, if the

search is recursive. Users can ultimately do different permitted operation on the

found results, although this operation is still not completely implemented. VADOR

Search utilizes Liberian in order to get the results out of the VADOR database.

Figure 7 shows a view of VADOR Search.

86

Figure 7: VADOR Search

3.6.5.2 DBExplorer

The DBExplorer is a system administration tool application (VADOR Admin.

GUI), permitting the VADOR administrators communicate directly with a

database to perform SOL queries, create a new group or class of hast, add a

new user or host, and export the database. Figure 8 shows a view of DBExplorer.

Although DBExplorer works as a separate independent application, it would

be possible to integrate this application within VADOR GUI and give the

launching permission only to the VADOR users with admin privileges.

87

Figure 8: VADOR DBExplorer

88

Chapter 4: Optimization Issues

Vanderplaats [97] gives the following definition about the optimization: "The

concept of optimization is basic to much of what we do in our daily lives. The

desire to run a faster race, win a debate, or increase corporate profits implies a

desire to do or be the best in some sense. In engineering, we wish to produce

the best quality of life possible with the resources available. Thus in designing

new products, we must use design tools which provide the desired results in a

timely and economical fashion."

Although not precisely synonyms, the words improvement or enhancement

can be two alike terms when thinking of the optimization.

This chapter discusses the optimization issues by giving examples of

optimization problems, their particularity, and how they can be used within the

V ADOR framework.

4.1 Optimization Problem

An optimization problem in engineering includes the following parameters:

@ Function: Function to be evaluated with an objective (e.g. minimizing or

maximizing a cost function).

@ Variables: Changeable parameters that signify a potential for change.

(e.g. design variables and/or behavioural variables).

89

@ Constraints (optional): Limitation on solving the objective function. (e.g.

limitation on the design space and/or variables). These limitations can be

of any kind, mostly representable mathematically under the form of

equality, inequality and side constraints.

A mathematical example of such a problem can be presented in the following

form:

Minimizing: F(X)

Where: X = {Xi X2 X3 ... Xn}

Subject to: g(x) > 0

h(x) = 3

objective function

design variables

inequality constraints

equality constraints

side constraints

A typical example of an optimization problem can be a co st function, minimizing

the cost given variables and constraints. The next section discusses the problem

with the programs that uses such an optimization, and how they are implemented

in VADOR.

90

4.2 Implementation of Optimization Capabilities in VACOR

Figure 9 shows an example of an MDO optimization problem, demonstrating the

data flow and dependency between various programs and stored information.

Suface
Geomet

Figure 9: Example of an MDO optimization problem

ln VADOR terminology, the term Solver is used to describe an appraisable

function, namely the program that implements such an objective function. On the

other hand, the term Optimizer is used for a program that needs to use one or

more solver programs during its execution. The OptimizationStrategy is created

in order to enclose an optimization process design consisting of an optimizer

program encapsulated in OptimizerStrategy and the solver(s), which can be

encapsulated using a normal atomic StrategyComponent(s). To understand why

there is a need for such a specifie StrategyComponent, it is important to

recognize the difference between an OptimizerStrategy and other types of

Strategies, and this becomes clear particularly in the course of the execution.

The VADOR Executive, once it traverses a composite Strategy tree structure and

launches every atomic node by delegating to the chosen CPU servers, does not

expect any kind of interaction with the launched Strategies, rather it will be

91

notified by CPU Server on the success or tailure of the execution, since ail the

encapsulated programs or scripts in Strategies have ail the necessary input and

output parameters in order to terminate their execution until the end. Figure 10

shows some part of a real optimizer program as example. As it can be seen, the

NH~O

DlFFfYPE=2
ANALYT;.FALSE.

OOI;l.N
X(I);XSTO(l)

ENDDO

FLAG;2

CALL SOLVERI (Cl, FLAO)

SUBROUTIN SOLVERI (FHX, FLAO)
INCLUDE ·08FUCO.INC'
DOUBLE PRECISION FHX, cl, Cd
INTEOER FLAO, UNIT
CHARACTER FlCHOUT*72, CDUMMY
LOGICAL FlLEX!
CALL SYSTEM ('/home/mahdaviJMDO/solverl.sh')

SUBROUTIN SOLVER2 (FGX, FLAO)

... -

CALL SYSTEM ('lhome/mahdaviJMDO/solver2.sh')

Figure 10: Example of an optimizer code

program caUs a solver, which in tum carries it out by makin'g a hard-coded

CallSystem for execution of the solver. It should be clear that such a hard-coded

program cannat be encapsulated within a normal atomic StrategyComponent,

which aims to bring the flexibility and reusability into the framework. The location

of the execufable programs or script may change occasionally, which results in

the failure of the whole created process.

The only way to encapsulate these kinds of programs within a

StrategyComponent is ta replace these CaliSystems by a mechanism that

92

permits calling the solvers take piace under the control of the VADOR system,

more precisely the Executive serveL The OptimzerStrategy is created as a part

of solution for this particular case. An OptimizerStrategy on ils path of the

execution, needs the result of a solver (or solvers) in many different points of the

program execution. In this case, it should be able to communicaïe with VADOR

Executive and explicitly request the execution of the solver(s) Strategy. VADOR

Executive, after the reception of such a request, will launch the solver program,

encapsulated within a Strategy. Figure 11 iIIustrates how this mechanism is

implemented in VADOR.

Optimizer Program

set DC_ID=$1
set ExBC~HO$t:42

FLAG~2

CALL SOlVERl (Cl, FLAC)

SUBROUTIN SOlVERl (FHX, FLAG)
INCLUDE 'OSFUCO.lNG
DOUBLE PRECISION FHX, cl, Cd
INTEGER FLAG, UNIT
l ICAL FILEXI

:\:Y java Connector solvecSGY IDII

after reoeiving the soive1cSGY
10, Executive wililaunch the
corresponding solvecSGY on
CPU server.

,----~)l port

send (solve,_SGIIDII)
1

Executive Daemon

Optimizalioi1_SGY

19P1imizer_SGY

soivecSGY (10=1)

so!vecSGY (10=2)

Figure 11: OptimizerSGY caUs a solverSGY via Connector

93

An OptimizationStrategy consists an Optimizer, and one or more solver

Strategy. The execution of this Strategy starts by launching the execution of the

optimizer part. The invoking Cali Systems are replaced by calling to the

Connector routine program written specially for establishing the connection

between running OptimizerStrategy and the Executive daemon. Via this

connector, the optimizer program can cali a given solver Strategy by providing its

ID. This is because Strategies can have the same names, but IDs are unique.

Although, this may not sound very intuitive at first, the procedure is very similar to

any usual programming, using a high level computer language. Most of the time,

an external program or an internai function is written; or at least, it is given a

name; then, this name is used to make a cali to the program or the function in the

main program. Here, OptimizationStrategy and obligatory ail its children are first

created, then the main optimizer program is completed by calling the sought

solver Strategies, using their IDs instead of names.

94

Chapter 5: Case Studies

From the start of the VADOR project until now, many different processes have

been implemented using the VADOR framework. in almost ail the cases, these

processes were the actual processes used in various engineering departments at

Bombardier Aerospace as a part of whole big process, aiming ultimately to buiid

aircrafts. These cases permit initially, using the VADOR prototype, to study the

feasibility of the system and choose the appropriate technologies. Additional

cases implemented aner starting the new VADOR framework allowed not only

the evaluation of the framework and verification of ifs specification, but also

measurement of its performance and its appreciation level. Although most of

these cases have been recreated and used at CERCA, today there are some

processes that are only implemented and used at Bombardier. This actual use of

the VADOR at Bombardier provides more accurate evaluation of the system.

The following sections describe and provide detail about some of the projects,

built and used within VADOR framework at CERCA and/or Bombardier

Aerospace. Although the creation of aîomic and composite Data and Strategy

Components are not explained, Appendix C provides a good example of how

these flowcharts can be mapped into Data and Strategy components.

5.1 Damage Tolerance Analysis

Damage Tolerance Analysis (OTA) is one the first cases implemented within

the VADOR prototype. OTA 1s a process based on crack propagation and

95

residual strength analysis. One of the mission of this project was the

autoimmunization of the process shown in Figure 12 [99].

Figure 12: Initial DTA process

The Loadstress program pre-processes the loads for the spectrum generation

computer program Rangpair. The Loadstress program selects the loads from a

file and performs the specified mathematical operations. It needs two input files:

1. control, which contains the instructions and a list of Joad cases.

2. Joad, which contains ail the FEM post-processed loads, produced by the

Xpost program post-processing NASTRAN outputs.

The Loadstress program reads the loads and performs a sequence of operations

on them for each Joad case. These mathematical operations are specified in the

control file in reverse-polish notation.

A file containing the results is generated after the run of Loadstress. This

result file must be edited to add the path of MissionDefinition file used to apply a

factor on the fatigue unit Joad cases and superimpose the effects of many load

96

cases assumed to occur aï the same time during a flight segment. The output file

and the MissionDefinition file are used as inputs to fun Rangpair which generates

a range-pair-ranged load spectra at any particular location on an aircraft. Two

output files are produced by the Rangpair program:

1 . range-paired: Contains the range-paired results,

2. non-range-paired: Contains containing the initial spectrum.

The last step of the process is to display the spectrum in a plot tool and repeat

the range-pair-range counting technique for ail the different MissionDefinition

files. This process builds the stress history for one stress component at a time as

required usually. However in some cases, it is required to calculate the stress

history for several components and to combine them into one single component.

Figure 13 shows the process steps as it has been implemented within VADOH.

L~~:~

! 1 ·,t'i .~
/=.I~d-·'"'-'7- "·--··L-,~~t,ol /

Lm .•.... _."[L;: ~:.:,-:~~:l~§l
i ~J

/ oo'Po<.;"'''.'' 7
i

/ Qut.rgp 7 7 "-----~

Figure 13: DT A process imp!emented within VADOR

97

A smal! custom GUI had to be build in order to capture user entries, including the

stress equation in a normal fOim. In fact, the tedious part of the process, which is

also the most prone to human errors, is the generation of the Joad file; the

residual part of the different files containing the stress equation operands. The

stress equation can be written in a regular notation using custom GUI box, then

after parsing, it is converted to a reverse-polish notation and inserted in the

introduction block of the control file (before, most of these jobs were done using

manual procedures such as cut-and-paste). The dta.ini file is created by the

custom GUI, while dta.sh and addpath.sh scripts had to be written in order to fully

automate the flow of the process.

5.2 Airfoil Shape Optimization

An optimized Non-Uniform Rational B-Spline (NURBS) geometrical

representation for wing aerodynamic design is used in this example. To solve this

problem, an approximation of an existing wing profile (Bombardier-Canadair

airfoil and the positions of its control points) is needed which implies an

optimization problem and discretization. The approximation approach consists in

finding an initial guess for the approximation and then optimizing the positions

and weights of the control points. For the optimization, the gradient-based BFGS

method is used with an objective function evaluating the average error:

1 n
Err moy = - L dk

n k=!

and the maximal approximation enor :

Err max = max {dk} l:::;k:::;n

98

The objective function is then built as a combination of both errors :

F(X) = Err moy + 2 * Err max

where X is the design variables vector containing the positions and weights of the

approximation control points. The choice of the initial guess is crucial if the

approximation method is to be reliable and efficient Indeed, the objective

function of such a problem is strongly non-linear, so the optimizer is most likely to

diverge, or to converge towards a local minimum, if the initial guess is too far

trom the solution. The optimization process is depicted in Figure 14.

V.s

Figure 14: Airfoi! shape optimization process

Brief descriptions of programs:

® The data file bgk.air contains the wing profile in the form of a set points.

® The inter program interpolates the profile using B-spline with the same

number of control points. The order of the B-spline is specified by the

99

user, and if it is chosen to be 2, program simply transforms a bgk(.air)

format file to pie format file, hem profile. pie.

@ The create_init program creates an initial file in.pie for the optimization of

the NURBS representation of the wing profile described in profile.pie.

@ The optim_gr program performs the optimization of the NURBS

representation of the wing profile using BFGS method. Ii needs user

interaction to set the optimization variables. It generates two dataset files,

one containing the optimized profile out.pie and the other the errors of the

approximation eva/ue. dat.

@ The boolean program if converge?, can determine if the optimization has

converged or not after a given number of Iterations. If not, another

optimization loop is started.

@ The outin program converts the optimized profile out.pie to the input

format of the optimizer, if the process has not converged.

100

5.3 Bend and Twist

The Bend and Twist process (Figure 15) is an Iterative process used to compute

the wing deformations for some specified flight conditions. The starting point is a

Figure 15: Bend and Twist process

wing jig modal. The jig model represents the geometry of the wing as it is built

Under the aerodynamic loads encountered in flight, the wing bends and twists to

take the flight geometry. Unlike the jig geometry that is unique, a flight geometry

101

exists for each set of flight conditions simulated, The and twist process,

after convergence, retums the vertical and twist deflections of the wing and

therefore, the desired flight geometry, The Bend and Twist Process implemented

in VADOR is used for a wind-tunnei model. A similar process, involving a few

different subroutines for the computation of the structural properties, exists for

the reai wings.

Brief descriptions of programs:

® sumtwist: Adds the twist deflection computed in the previous Iteration to

the jig twist to produce the geometry given to KTRAN.

® KTRAN : Computes the flow and the aerodynamic loads on the model.

® findloading : Extracts the wing loading from the KTRAN solution.

® airfoil1, airfoi/2: Calculates the geometric and structural properties.

® Idcurve98, force, doeigj: Pre-processing for NASTRAN.

® NASTRAN: Computes the wing deflections in response to the loads

applied.

® nasTOtwist: Extracts the twist and vertical deflections trom the NASTRAN

output file.

® verptwist: Reformats the output data a verp (plotting software) format.

102

5.4 PREwNSU3D

The PRE-NSU3D process is used to convert a grid fiie produced by the ICEM

software into a format thaï can be easily read by the NSU3D code. The process

involves different utilities, as weil as a recompilation step. The complete process

needs also to be run on two architectures, namely IRIX and CRAY machines.

Figure 16 presents PRE-NSU3D in form of the flowchart.

Figure 16: PRE-NSU3D process

103

Brief descriptions of programs:

@ exiract: Converts a *.bin file (obtained from ICEM) into an *_edge.unf file.

The *_edge.unf file contains the list of edges and the edge coefficients.

@ amg3d: Pre-processor which builds the coarse multi-grid levels for the

agglomeration multi-grid algorithm employed by NSU3D.

@ distf3d: Pre-processor which computes the distance function required by

certain turbulent models in the flow solver.

@ prensu3d_crash: A version of the prensu3d program that was compiled

with minimal arrays sizes. The lack of memory makes the program crash.

@ generate_common: From the log file created with the crash of prensu3d,

this program generates a Fortran file containing the appropriate sizes for

ail the arrays.

@ compile_prensu3d : Compiles prensu3d using the Fortran file generated in

the preceding step.

@ prensu3d_toMetis_ 4 : General pre-processor. The first cali to prensu3d

creates the output files for the Partitioner.

@ kmetis: Grid partitioner. Creates the partitions.

@ prensu3d: Generates the fully partitioned output necessary for the

NSU3D fiow solver. Final step before running NSU3D. This execution is

done on the CRAY machine.

104

5.5 Observation Results on Implemented Case Studies

Despite of the differences between these implemented processes, some

common advantages and improvements of using the V ADOR framework versus

the actual in-use techniques have been experienced. These are:

@ Fully automation of the process - no more manual interaction of the user

ie needed. Furthermore, the user can work on different tasks while

VADOR is executing the process. This automation benefit alone, can

already save a lot of time (therefore money) and justify the use of such a

tool. In tact, the OTA study shows that about 35% of time-saving was

attributed to the automatization of the process compared to the previous

in-use manual procedure [99].

@ Visual representation of the process - this provides a better global view of

the process and involved data. The user sees what has been done and

what remains to be done.

@ Visual representation of the process execution - the actual status of the

execution ls known, so the user is alerted to the task being executed and

the data already creaied.

@ Traceable records of the performed tasks - every piece of data can be

traced (and reproduced if necessary). addition, add-in applications can

be used to open the traced data for editing or visuaiizaîion purpose.

@ Lower rlsk of errors - programs have inputs and outputs with predefined

types. This reduces the danger of executing a program with a wrong input

105

file. Moreover, the user cannot delete by mistake a file thaï is linked to

other files.

@ More reusable process - standardization of the data and process into

components promote the reusability of the process.

@ Easier tracking of the _work of others - the process is somehow

documented, so it is possible for others to see what has been do ne by

other people in the project.

@ Refined search - by classification of the system, and providing an

advanced search tool, emiched searches can be performed on data and

components in the system.

@ File duplication prevention - unnecessary or erroneous duplication of files

is prevented or at least minimized.

@ Easier training of new staff - already created process is easier to

understand for the new unfamiliar project member. Once understood, the

same concept, uniform appearance, and approach are used for creating,

using, or understanding the other processes.

@ More conventional practice - using different user-friendly common widgets

such as browser, permits an easier and more intuitive practice ai work.

@ Enforcement of the standard practices.

106

Chapter 6: Future Work

VADOR constantly improves and a list of planned enhancement is always

prepared to ensure that this framework traverses its path towards an increasing

level of maturity. the next phase of development, the incorporation of the Web

technologies is envisaged. Usage of the Extensible Markup Language (XML)

[100] can provide a common information format that can be exploited in different

forms. Every component in the system is linked to an XML file, which keeps the

record of the course of the execution, and the eventual errors in XML format.

This can improve the debugging aspect of the system. Later, it would be also

possible to define components in XML format and export them to the V ADOR

database.

The execution of the cross-organization distant process thaï involved two

Bombardier branches located in two different distant cities is emphasized. The

totally different administration and account management even within the same

organization creates more server security concerns. It is important to shift the

socket-based communication into a higher level form of network communication

where standard protocols such as Secure Sockets Layer (SSL) and Transport

Layer Security (TLS) can be employed. This is also crucial for keeping the

integrity of the account of ail the VADOR users, even within the same

organization location. The deliberate or inadvertent kind of not-trusted Strategy

execution is thus not possible, creating a safer environment and avoiding

catastrophes.

107

A bypass solution for encapsulating discipline codes on the CRAY [101]

machines ls also undergoing. There is no available JVM for these

supercomputers at this moment, making it impossible for either the VADOR

servers or VADOR GUI to run on these super machines. This means a user

cannot even browse a directory on CRAY computers in order to enclose

discipline codes within a StrategyComponent.

The use of parallel computing techniques still remains challenging. VADOR

should be assured thaï parallel processes are truly done in parallel, aï the same

time, and on different machines or processors. This is different trom pseudo­

parallelism, where processes are launched simultaneously on the machines

equipped with only one pràcessor, without being sure that two parallel sub­

processes are not threaded on the same machine. Although early advanced

frameworks took advantage of conventional standards such as PVM and MPI

[102], the new trend in research towards new ways of parallelism in the broader

dimension, using technologies such as CORBA and Grids, [60][61][62] are

certainly worthy.

The use of the Artificial Intelligence (AI) techniques (such as efforts done on

OASIS system) are practically missing in the development of ail the actual

advanced frameworks. AI techniques can definitely bring enhancement and

improvement in the automation of the design. By the acquisition of information

and with rules for using the information, and using the rules to reach approximate

or definite conclusions, it is possible to move from some existing knowledge­

based frameworks towards a more expert kind of system in which the use of

108

information is more dynamic. For instance, applying search and machine leaming

techniques can help to propose the best performance profile based on the past

optimization occurrence on similar problems

Subtly in the same direction, undergoing study the Enterprise Resource

Planning (ERP) tools provided by leader companies in this field, such as SAP

[108][109] , BaaN [110], Oracle [111], PeopleSoft [112], and J. D. Edwards [113]

can certainly help to create new modules within the VADOR framework thaï

assist engineers and design, process, risk and change managers by giving them

the new facet of the VADOR utility. Although the initial basic idea about these

ERP tools was initially to provide customers with the ability to interact with a

common corporate database for a comprehensive range of assembled

applications, today these tools manage the important parts of any business, from

finance to human resources, including product planning, parts purchasing,

inventory management, interacting with suppliers, customer service, and order

tracking. In fact, the ERP approach shares some similarity change paradigm that

VADOR also tries to bring into the engineering work environment. The

approaches are information- and process-oriented (bring attention trom data to

process), trying to integrate these processes in order to bring a manufacturing

performance improvement, using the business or industry change effort strategy.

ERP tools also help industrial operations optimize their enterprise performance

strategies in the knowledge-driven environ ment, with its ever-increasing

demands for information, Integration, and collaboration. AUer ail, MDO also alms

at economic competitiveness, a balanced product performance encompassing

109

manufacturing, life cycle issues, design process timetable, and economics.

Historically, the Integration of ERP tools was not very successful in the

engineering-oriented organization contrary to any other kind of organization.

Using an engineering-oriented tool that integrates partially or totally the

fundamental engineering-management modules can possibly bring new

accomplishments not yet achieved in this field. An example could be the creation

of a new module within the VADOR framework that collects the existing

dispersed information about processes and people involved in a given project,

and provides the manager with the appropriate precise information on the

progression of the particular project, including detailed data on the advancement

of each sub-process done individually by the responsible engineers. Managers

cou Id then calculate the fisks and apply ail the necessary changes to the

process.

110

Chapter 7: Summary and Conclusion

MDO definition, its value, particularly the aerospace industry, and the

motivations for the design of a problem solving environment where MDO

concepts can be practiced, were briefly described in Chapter 1.

ln Chapter 2, a short history of the MDO origin, its objectives and the multiple

open research amas on this subject were presented. Moreover, it was explained

how an MDO framework is defined and what are the requirements for such a

problem solver environ ment. This was followed by a concise description of ail the

current and former efforts for creating such a framework, having the goal of

allowing the MDO practices. Most of the presented frameworks were developed

only for research purposes, such as FIDO and IMAGE. Some of these projects

gave way to new projects using the acquired experience from previous work, or

they were simply discontinued. Many of these R&D efforts have been obviously

done by universities, although NASA remains the main organism interested by

the subject, considering the fact that most of the R&D realized by universities

were also financially supported by NASA. Many of these frameworks are case

specifies, designed only for solving particular MDO problems and they may not

suitable for generic MDO practices. For instance, ProFES is intended for

perlorming RBMDO problems. Stiff competition seems not to exist among the

builders of the remaining generic MDO commercial frameworks, since users can

study their needs and restrictions, in order to easily find the tool that suits them

best. it is not surprising that the organizations that do not find any of these

III

commercial tools fitting in weil with working environ ment or their current

technologies try to command a customized system that takes into consideration

the particularities of the industry.

Chapter 3, presented VADOR, a generic MDO framework, where iis

specifications attempt to meet the requirements of any ideal MDO framework and

one of its specifie objective is to bring MDO capability practices within the

Bombardier Aerospace, considering the mythologies in practice in this aerospace

industry. The critical review of the VADOR versus framework requirements

demonstrated that, although this framework is still far from being an ideal

framework, given the constant improvements and anticipated modifications the

potential exists that a very notable and unique MDO framework will result from

these efforts. Java is certainly a good choice for developing in a heterogeneous,

object-oriented, component-based environment; however some promising Web

facilities using Java applets seem to have some server security limitations on

writing and reading files, creating a limitation on lts large-scale MDO capabilities

with regards to usage of a Web browser as the interface to the framework.

Another difficulty was the unsolved latency problem during callback using RMI,

which forced VADOR for the time being to use the socket-based communication.

The only advantage of using this form of communication socket over other

technologies such as RMI/CORBA is its performance terms speed. Socket

is slightly faster than RMI or CORBA. On the other hand, the socket

programming model is very primitive, using only a very low level of abstraction. A

custom protocol for passing the request of service names and their arguments

112

should be created. Also, implementing ail these multiple services causes major

maintenance and programming problems. In addition, transactions, distributed

method invocations, dynamic discovery and metadata support, are not

supported. Furthermore, standard security protocols such as SSL and TLS which

demand a higher level form of network communication cannot be employed.

The two kinds of component family in VADOR were also introduced. The first

one encapsulates the data, while the second component family encapsulates

programs and the design process. The advantage of this component-based

approach will be even more apparent when other component-based standards

such as CORBA are used. Moreover, extra effort should be made to make sure

the VADOR components are also the Java components. This can be done by

making sure that they fully conform to the rules of JavaBeans. Thus, the broader

benefits of these true component-based environments can be explored by taking

full advantage of Java programming language. The different types of design

patterns implemented in VADOR were also explained. The idea is to bring more

modularity and consequently more reusability of different part of the system,

which is important for any complex distributed architecture such as VADOR.

Different parts of the VADOR multi-îiered distributed architecture were iIIustrated

including servers and load balancing which aims to bring the equitable

distribution of workload among the V ADOR CPU servers.

ln Chapter 4, the concept of an optimization problem was enlightened using

an example, and the technica! problem of using optimizer program was explained

113

along with the solution for solving this impasse the optimization capabilities of

the VADOR framework.

ln Chapter 5, the case study processes implemented within the VADOR

framework al CERCA and Bombardier Aerospace were depicted using their

respective process flowcharts. The advantage of using the VADOR framework

versus the former manual techniques were enumerated, giving evidence of its

sure road towards a higher level of maturity. And finally, a list of undergoing and

future planned work along with subtle suggestions, were presented in Chapter 6.

The increasing complexity of the products within an economic competitive

environ ment, accentuates the need to reduce the design cycle time. This need is

even bigger in aerospace industry, where the more complex aircraft design is

multidisciplinary in nature, and different disciplines involved in design, work

independently of each other. In such an environ ment, the need to apply the MDO

practices is essential. VADOR is not the tirst effort to creaie an environment

enabling MDO solutions, and it will certainly not be the last. The challenges of

creating an ideal MDO environment are enormous. VADOR succeeds in creating

an automated engineering and time-effective environment, where seamless

Integration of the legacy analysis codes and the design processes are visually

feasible. This MDO-enabling distributed framework gives visibility to the

processes, permitting the change tracking in a design project and possib!y

monitoring of the progress. Any other tentative for creating a similar distributed

system can take advantage of mos! of the concepts used in the development of

this framework or avoid its faults. The multi-tiered architecture, design patterns,

114

component-based and object-oriented approaches are now known concepts, The

key is to use these standards properly within a complex distributed system

designed for large-scale engineering tasks,

115

Appendix A: Nomenclature

AML
ANSI
API
ARA
ASDL
CAD
CAE
CAM
CAT
CATIA
CCA
CCAT
CE
CERCA
CFD
COM
CORBA
CSD
CVS
DAKOTA
DARWIN

DBMS
DC
DCOM
DOE
DTA
EJB
ERP
FEA
FIDO
GSE
GUI
HPCCP
IMAGE
10 (1/0)
IP
IPG
ISO
JDBC
JPL

Artificiallntelligence
Adaptive Modeling Language
American National Standards Institute
Application Program Interface
Applied Research Associates
Aerospace Systems Design Laboratory
Computer Aided Design
Computer Aided Engineering
Computer Aided Manufacturing
Component Architecture Toolkit
Computer Aided Three-dimensionallnteractive Application
Common Component Architecture
Common Component Architecture Toolkit
Concurrent Engineering
CEntre de Recherche en Calcul Appliqué
Computational Fluid Dynamics
Compone nt Object Model
Common Object Request Broker Architecture
Computational Structural Dynamics
Concurrent Versions System
Design Analysis Kit for Optimization and Terascale Applications
Developmental Aeronautics Revolutionizing Wind-tunnels with
Intelligent systems for Nasa
DataBase Management System
Data Compone nt
Distributed Component Object Model
Design Of Experiments
Damage Tolerance Analysis
Enterprise JavaBeans
Enterprise Resource Planning
Finite Element Analysis
Framework for Interdisciplinary Design Optimization
Global Sensitivity Equation
Graphical User Interface
High Performance Computing and Communications Program
Intelligent Multidisciplinary Aircraft Generation Environment
input Output (Input/Output)
Internet Protocol
Information Power Grid
International Organization for Standardization
Java DataBase Connectivity
Jet Propulsion Laboratory

116

JVM
LaRC
MDICE
MDO
MDOB
MDOL
MIDAS
MODEL
MPI
NASA
NFS
NPSS
NSERC
NSF
NURBS
ODBC
OMG
OMT
OS
ProFES
PVM
OEM
R&D
RBMDO
RMI
RPC
RSM
SAP
SOL
SSL
TCP
Tkltcl
TLS
UML
URL
VADOR
VR
WICkED
XML

Java Virtual Machine
LAngley Research Center
Multi-Dlsciplinary Computing Environment
Multidisciplinary Design Optimization/Multi-Disciplinary Optimization
Muitidisciplinary Design Optimization Branch
Multidisciplinary Design Optimization Language
Multidisciplinary Integrated Design Assistant for Spacecraft
Multidisciplinary Optimization and Design Engineering Laboratory
Message Passing Interface
National Aeronautics and Space Administration
National Science Fondation
Numerical Propulsion System Simulation
Natural Science and Engineering Research Council
National Science Foundation
Non-Uniform Rational B-Spline
Open Database Connectivity
Object Management Group
Object-Modeling Technique
Operating System
PRObabilistic Finite Element System
Parallel Virtual Machine
Ouality Engineering Methods
Research and Development
Reliability-Based MDO
Remote Method Invocation
Remote Procedure Cali
Response Surface Modeling
Systems, Applications, Product
Structured Ouery Language
Secura Sockets Layer
Transmission Control Protocol
T 001 Kit 1 T 001 Command Language
Transport Layer Security
Unified Modeling Language
Uniform Resource Locator
Virtual Aircraft Design and Optimization fRamework
Virtual Reality
Web Interface for Complex Engineering Design
Extensible Markup Language

117

Appendix B: UML Diagrams

81 UMl Package

81.1 VADOR Packages

1
NetworkTcoœs

+Method OpenStrategy

+ISgyBuilder

+Method Save Comment
+MethOd Comment
+II-If;storyl/is,tor

SMfP
+Method SaveHlstory

+Ml3thod OpenHisrory
+Method Observer
+Method DeleteHlstory

+ fLibram;mProxY

+JEmaH
+Method OpenComment

+Method NotlfyObserver

+Email
+IVac!Orvf.s/tor
+IVadorGUJProxy

+Method DeleteObserver

+Method Strategy

+Vador Agent
+Method OpenObssJ1Isr

+Message Future
+Metnod Hi$tory
+lcommentVi.silor

+Method Save Observer

+Method DeleteStrategy
+IVâdorPrœ<Y
+Method DeleteComment

+Method S~veStrategy

+Method Request

+ISgyVisitor

..,. fObs&lVerViSJ'tor

L1brarian

+Ubrarian

+conflgure

+LibrarlanThread

+Query

+LibrarianPro"Jl:.>,'

Vador"Search

+lSearchPenel

+DClnstanceSearchP~nel

+SortableTableModel

+ObserverSearchPanei
+DCTypeSearchPanel

+8earchResu!t
+SearchDlalog
+StrategySaarchPane!

Ss@rchResulITableModel

Seruer
CHent
ExecuUonToois

J.
Loadbalance

+GDataTable
+LSarData

+LSarServer
+TaskData

+HostLoad
+LBAlgorithmune

+TaskCollector
+LLocalCollectorUstner

+LBAlgorithm
+Task

-+LRupSetver
+GLocalCollectorProKY
+LProcessTîme

+QGlobalCollector
+LBAlgorithmRandom

+OConnectLocals

+LBAlgorlthmSlmple
+LoadbalanceParamEd!tor

+L8AlgorlthmComple)!.V

+LoadbalanceManager
+LBAlgorithmDynamic

+Task"Attributes
+HostClasslflcationEdftor

J.
Str"'emf

+WhileSGY

+ForSGY
+8trategylnfo

+CheckSgyDependencies

+.AJ:omitSGY

+OptlmlzationSGY

+AbstractWhHeSGY

+AbstractOptimiZ9UonSGY

+ParallelSGY
+SgyVk;itable

+Strategy

+ArutrectiteratlVeSGY
+IfSGY

+Progran'llnfO
+OptlmizerSGY

+ConditionalSGY

+-DoWhileSGY

+SequentialSGY

~
VadorObsenrer

+V.adorObsBr.,.'er
+ObserverOpenVisi1or

+DCTypeObsetver Events

+DClnstObserver Events
+Observer$aveVisitor

+ObserverNotlfyVlsitor
... iladorOb$-.';)Ner Evant$

+ObserverDeieteVisitor

+8trategyObserver Events

i
ums

+CommandSystem

f- FindProgressCa/ibac f<

Fjnd8~(Content

Flnd8yDate

+FfndPifte.'

.(0 FjndFi/terFac~oiY

FindAccessory

-foFl!eCp MY

.... OBExPlorer

SOLOIslog

HelpOlalog

+CopyD8Dlg
.,.CopyTables

+AddGroUpOlg

+CreateDefaultValues

+AdCiHostClassDlg

.... AddHostOlg

+AddUserDlg

Taskl\ilanagemem
,JobManagemem
Exception
CommandManagemem
Connection
threadcomroler
Executive

VadorHistolY

+DCTypeHistory

.... VadorHistory

+8trategyHistory

+Histor'IJ'OpenVisltor
+DClnstHistory

+HistoryDeleteVisitor
.... HlstorySaveVisitor

InstallOata
.... CheckExistence
+DClnstUstDlg

+DC6uilder
+VadorGU1Monitor
+xPopup

+AtomîcSGYBuilderDialoQ
.... TypeUs1DIg

+GrlddedPanel

+OpenDClnstDlg

+ReadersConfigDlalog
+DC8trategyTree

+VadorGUIFrame

.... lconCellRenderer

+lconData

CheckListCellRenderer
+StrategyËxplorer

+VadorGUIVtilities
+DisplayDCNode

+MessageDlg

+ProgramSetfingDlg

+VievNadorObjDlg

+MonitofMultiChofce

+UsageViewDialog
+Dra'NSg)N'îsitor

CheckUstener

""LoadTable
+DCtteratorDlg
+D1310gLayout2

+TypeExplorer

+DCFoldeNiewer
.... LoadView

+DClnstanceDeleter

+Monitorsys

+DCStrategylnspector

VadorComment +OpenDCDlg

.... VadorComment "'VadorGUl8erverThread

+OClnstComment +OrawOCVlsltor
+DCT''lPeComment +NewDClnst

+commentSaveVisitor +8trategyP.ane

+CommentOpenVisitor ..j,VadorGU1Proxy

+StrategyComment +CreateNewlnstance

+CommentDeleteVlsltor +SetThreshold

VPlot

+MUltiCutvsSetting

+Curve8etl:lngs

+GraphSettîngs

+Ut!ls

+GnutJlotSe11lngs

+Gnuplot

+DaWFlltsr

+GnuCurveSettings

+WelcomeVplot

+FilePropertles

+GnuGraphSettings

+CurveSettingsTable

+Vplot

+PlotSeitings

+PlotDevl:.::e

L 'VVrapper senAet J
+-WrapperTransFile

118

+FolderPanel

..... StrategiesPanel

+QCI/Je...ver
+DCPanelViswer

+DCDetailViewer

+CheckSoxUst
+DisplayUst

+$gyVfewer

+RegisterObserv'erDlg
+VadorGU!8er,,rer

+8tratagyBullderFrame

+DClnstExPlorer

"t-ViewDCDlg

+DC8utton

-+HostsConfigDialog

+W'rltersConfigDialog

+Vs:5lgeConflgDlalog

+MonltolConfigFiie
+DialogSeparator

+AdjustableLlst

+VadorGU!

+8etlrwutOCDlg

+DisplayTree

+D!SPlayTypeResults
... nrÇn\dpy

,

r,,:

i

82 UMl Class Diagrams

The following diagrams show the main classes and their relationship to each

other in their respective packages.

8.2.1 DataComponent Class Dlagram

DefaultMutableTreel\lode

DataComponent
Customizer
Seria/izable

DataComponenl!'nfo

t-D_C_T...=;y",-p_e -+E---IChecklypeDependencies

.f --
..... _~ -----~-~

~--~=-------~ , ~

"'.omicDClnm~mce CompositeDClnmance
.... l AtomicDClype CompositeDClype

y
... ~

DCBooleanlnm DCBoolean Type ffDCType DCVector

119

B.2.2 StrategyComponent Class Diagram

Customizer

Serializable

interface
S gyVisitable

_..::::st:!!r..::::atO!!e~!!.!m::.::o::"'--L ____ ---IDefaultMutableTreeNOde i&_--lCheckSQYDepemiencies
properlyChange Sntegy

B.2.3 librarian Class Diagram

J UbrarianPro:xy

UbrarianPmX,ll

Thre@d

Ubrarian Huead

120

8.2.4 Executive Class Diagram

Thread

Execlltnre lhre<i)(:i

Serfafizable

E:loiecllte 1 <i)sk

ComponentP<i)rser

VisitorState

P<i)ralleMsitorState

ISgyVisllor

ExecliteSmiVisitor

VisitorState

WhileVisitorState

VisitorStaîe

SequentiaMsitorState

8.2.5 CPU Servel" (Wrapper) Class Diagram

The Wrapper package contains the classes for implementation of CPU Servers.

These classes are regrouped in subpackages shown in Sections 8.2.5.1 to

8.2.5.5:

8.2.5.1 Wrapper 1 Thread Controller

l esMirapperlhread Wr<.lpperlocalCow

121

B.2.5.2 Wrapper 1 Command Management

WrapperlotalCommam:lBuilder

WrapperShortlimeCommalldB

B.2.5.3 Wrapper 1 Job Management

122

B.2.5.4 Wrapper 1 Task Management

Wrapl'erTasksControler !wral'l'erT",eooscomroler 1 WrapperResuitsControier

8.2.5.5 Wrapper 1 Ccmnection

1MapperSefll!lrProl!ll' 1MapperThreadProl!ll'

1MapperTaskConnector

8.2.6 loadbalance Class Diagram

1

ryGDalsr!"1

JDialog

ltemUstener
Loa!lbal1IDceParamE<lilor

JOiaJog

IloolC!assifoca<t,ooE<litor

123

SubRoutineConllector

ls ... seiWrl-___ -::""~

Thread

llocaiCoIlectorUsiner

JFrame
Loadbah:mceManager

S]TaskAttributes 1

YlProcessTimel

IraskcoUectof 1

B.2.7 VADOR Search Class Diagram

AbstractTableModel

TableModelUtJtener

Sortable TaliIeMo!!e1

AbstraclTableModel
SoorcllResuliTallleMlldellE-. -----1

B.2.8 DBExplorer Class Diagram

JDialog

AddUserDlg

,JDialog

MdHostClassDlg

CreateDefal.lltV

JDialog

HelpDialog

JDialog

CopyOBDlg

interface

B.2.9 Network Tools' Package Class Diagram

124

JDialog

AddHostDlg

B.2.10 VADOR Observer Package Class Diagram

Ser.iafizab/e Seriaiizab.le
VadorObserwr i!<EO------

flClmrtObserwr Events

IObsewerVil3itor

ObserwrOpefiVisitor

9 IObsewer!/isitor

1 ObserwrDeleteVisitor

IObl3ewerViôitor

ObserwrNotifyVisitor

fObsewerl/iôitor

ObserwrSaveVisitor

B3 UMl Sequence Diagrams

B.3.1 VADOR CPU (Wrappel") Servel" Sequential Diagram

iO;:;O:'HATl<reacl

J

1""·"<1"'''''''"'''1
1
1
1
1
1

~_ext~~~ _____ 1

r",o.nrIo:pmrn''''1I'v",m"T:pQgwnl.a, 1

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

~.:~:~~~~_:j~_,,_e~_îr~_·>~ __ ~_~_Q~ ______ ~li
-. _'O,:",~T-h''''''-D 1

-------!---
1
1
1
1
1
1 ,

1
1
1
1
1

I,""·..,,,,,,:,,eomma., 1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

IWC"'''":',.,.,!
, ,
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

~-~----~-- -------i---------- ------1 ___ ___ }~?".::'!hé:~~~ l
1 1
1 1
1 1

r\lI'I~ex_t:S.ep 1 1

~--------li«lf""'=--" --l---------1------------i--' ___ 1

~r-J<nStef

J

i :--ou
1 1

1 1 1

··· .. :::11
1
1
1
1

!

125

1 1
1 1
1 1
1 J
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
! 1

1

Appendix C: Flowcharts

C1 Creation of DataComponents Example

C2 Creation of StrategyComponents Example

j.

126

Appendix D: VADOR Images

More images fram different parts of VADOR GUI, more specifically types and

components brawser as weil as types and components builders can be found in

this appendix.

D1 VADOR Explorer

tt' ;;.:,Jvador

0-W n dl;:"YIi:

~·~.;jdj:!l.."el

~::Jtnbes

()--~l(;ht!n

~ ;::,.,,t mahdav!

0- ~:) mterp",lat..:dProfHe

'~.':'~ sumtw'lst_outl'luts

~ ::J NurbsOptjrnLoop

~ œ NurbsOptlmLoop_b'll;bakNurb$

4-::J 8M_Type_Opt..Appln

~ ::J S_Type_Opt..A.pptn

~ ::'J 6M_Type::_Opt,...AppOut

~ ;~:"i zhouQun

D2 Atomic DC BuUder

127

D intcrpolatedProflle_babllkNurbsll

, Ej lm1:ApproxOUTPUTs,..babaKNurb,;:11

D inltApproxProf!.Je_babakNI,H".,s:IJ

D targetCurvatynLbabakNurbslI

~J:!] optîmB1=CiSOUTI='UTs_babakNurbsll

Cl discr~teProflJe_bab;skN\Jrbsll

D3 Composite DC Builder

D4 Atomic StrategyComponent Builder

D5 Composite StrategyComponent Builder

m SwLType_OpcOptOut

œ BM_TYP1LOpt..A-ppOut

128

References

[1] Renaud J. E., Aerospace and Mechanical Engineering, Notre Dame

University, URL: http://www.nd.edu/-ame/facultystaff/Renaud.John.html

[2] Ontario Aerospace Council. Critical Technology Reports: Technical Report,

1996.

[3] Giunta, A A, "Aircraft Multidisciplinary Design Optimization Using Design

of Experiments Theory and Response Surface Modeling," Ph.D.

Dissertation, Virginia Polytechnic Institute and State University, VA, 1997.

[4] Chen B., Liu, D., Mahdavi, B., Zhou, Q., Bouhemhem D., Ndiaye A.,

Guibault F., Ozell B., Pelletier, D., and Trépanier, J-Y., "A Data-centric

Distributed Framework for Engineering Design," 48th Annual Conference of

The Canadian Aeronautics and Space Institute, Toronto, ON, Canada, April

29 - May 2, 2001.

[5] Sobieszczanski-Sobieski, J., "Multidisciplinary Design Optimization MDO

Methods: Their Synergy With Computer Technology in The Desing

Process," The Aeronautical Journal, 1991.

[6] Ndiaye, A., Trépanier, J-Y., Guibault, F., Ozell, 8., and Mahdavi, B.,

"Recommendations on Application Interfacing and Integration," Technical

Report, CERCA, March, 2000.

[7] Ridlon, S. A, "A Software Framework for Enabling Muliidisciplinary Analysis

and Optimization," 6th AIAA/NASAIISSMO Symposium on Multidiciplinary

129

Analysis and Optimization, Bellevue, WA, AIAA-96-4133-CP, pp.1280-

1285, September, 1996.

[8] Townsend, J. C., Weston, R. P. and Eidson, T. M., "A Programming

Environment for Distributed Complex Computing. An overview of the

Framework for Interdisciplinary Design Optimization (FIDO) Project,"

Technical Report, NASA TM 109058, 1993.

[9] Weston, R. P., "FI DO - Framework for Interdisciplinary Design

Optimization," 1996.

[10] Allwright, S., "Multidisciplinary Design, Analysis and Optimization of

Aerospace Vehicles - the MDO Project," Royal Aeronautical Society MDO

Conference, 1998.

[11] Oze!!, B., Trépanier, J-Y., Mahdavi, B., Ndiaye, A., and Guibault, F.,

"Recommendations on Architectural and Technological Issues for the

VADOR Framework," Technical Report, CERCA, June, 2000.

[12] Hulme, K. F., "The Design of a Simulation-Based Framework for the

Development of Solution Approaches in Multidisciplinary Design

Optimization," Ph.D. Dissertation, University of New York ai Buffalo, 2000.

[13] Society of Concurrent Engineering (SOCE) 1 Society of Concurrent Product

Development (SCPD), URL: http://www.soce.org/

[14] Concurrent Engineering Research Center (CERC), West Virginia University,

URL: http://www.cerc.wvu.edu/

[15J Concurrent Engineering Research and Applications (CERA) Journal,

Technomic Publishing Company, URL: "-'-=.:;;".:.;..:....;...;...;..;;..;...;...;;.;;;;..;:;..;;..='"'-':...;;;..;...;:..;;..

130

[16J Concurrent Engineering Conferences (CECONF),

URl: http://www.ceconf.com/

[1 Concurrent Engineering Team (CETEAM) Î Concurrent Engineering

Institute, URl: .:...:.:.:.~.:..:...::..::...:.:..:.==.::..:.:.::=~

[18] Hartley, J. R., "Concurrent Engineering. Shortening Lead Times, Raising

Quality, and Lowering Costs," Productivity Press, Cambridge, MA, USA,

1992.

[19] Carter, D. E. and Baker, B. S., "Concurrent Engineering: The Product

Development Environment for the 1990's," Addison-Wesley Publishing

Company, New York, NY, USA, 1991.

[20] Sobieszczanski-Sobieski, J., "A Linear Decomposition Method for

Optimization Problems - Blueprint for Development," NASA Technical

Memorandum 83248, 1982.

[21] Sobieszczanski-Sobieski, J., "Multidisciplinary Design Optimization: An

Emerging, New Engineering Discipline," Advances in Structural

Optimization, Kluwer Academie, 1995.

[22] Alzubbi, A., Ndiaye A., Mahdavi, B., Guibault, F., Ozell, B., and Trépanier,

J-Y, "On the use of Java and RMI in the development of a computer

framework for MDO," 8th AIAAlNASAIUSAF/ISSMO Symposium on

Multidisciplinary Analaysis and Optimisation, Long Beach, California. AIAA

2000-4903, September 6-8, 2000.

[23] Sobieszczanski-Sobieski, J., and Haftka, R. T., "Multidisciplinary Aerospace

Design and Optimization: Survey of Recent Developments," AIAA paper 96-

131

0711, 34th Aeospace Sciences Meeting and Exhibit, Reno,

1996.

January

[24] Rogers, J. L., Salas, A O., and Weston, R. P., "A Web-Based Monitoring

System for Multidisciplinary Design Projects," i h AIAAlNASAlISSMO

Symposium on Multidisciplinary Analysis and Optimization, St. Louis,

Missouri, September, 1998.

[25] AIAA Multidisciplinary Design Optimization Technical Committee (MDO

TC),

URL: http://endo.sandia.gov/AIAAMDOTC/faq/MDOTCwhatisMDO.html

[26] Ndiaye, A, Trépanier, J-Y, Guibault, F., Oze!!, B., and Mahdavi, B.,

"Database Requirements for an MDO Software Framework," CFD2K, 8e

Conférence annuelle de la Société canadienne de CFD, Montréal, Québec,

Canada, Vol. 2, 721-728, June 11-13,2000.

[27] Salas, A O., and Townsend, J. C., "Framework Requirements for MDO

Application Development," AIAA-98-4740, 1998.

[28] Ridlon, S: A., "A Software Framework for Enabling Multidisciplinary Analysis

and Optimization," 6th AIAAlNASAISSMO Symposium on Multidiciplinary

Analysis and Optimization, Bellevue, WA, AIAA-96-4133-CP, pp.1280-

1285, September, 1996.

[29) Adaptive Modeling Language (AML), TechnoSoft, Inc., Ohio,

URL: http://www.technosoft.com/products.htm

[30] Zweber, J. V., Blair, M., Kamhawi, H., Bharatram, G., and Hartong, A,

Structurai and Manufacturing Analysis of a Wing Using the Adaptive

132

Modeling Language," 39th AIAAlASME/ASCE/AHS/ASC Structures,

Structural Dynamics, and Materials Conference, Long Beach, CA, AIAA-98-

i758-CP, pp. 483-490, April, 1998.

[31] Design Analysis Kit for Optimization and Terascale Applications (DAKOTA)

project, Sandia Nation Libratories, URL: http://endo.sandia.gov/DAKOTAI

[32] Eldred, M. S., Hart, W. E., Bohnhoff, W. J., Romero, V. J., Hutchinson, S.

A., and Salinger, A. G., "Utilizing Object-Oriented Design to Build Advanced

Optimization Strategies with Generic Implementation," 6th

AIAAlNASAlISSMO Symposium on Multidisciplinary Analysis and

Op1imization, Bellevue, WA, AIAA-96-4164-CP, pp. 1568-1582,

September, 1996.

[33] Developmental Aeronautics Revolutionizing Wind-tunnels with Intelligent

systems for Nasa (DARWIN), NASA Ames Research Center,

URL: hUp://www.darwin.arc.nasa.gov

[34] Walton, J. D., Korsmeyer, D. J., Batra, R. K., and Levy, Y., "The DARWIN

Workspace Environment for Remoie Access ta Aeronautics Data," AIAA 97-

0667, January, 1997.

[35J Townsend, J. C., Weston R. P. and Eidson, T. M., "A Programming

Environment for Distributed Complex Computing: an Overview of the

Framework for Interdisciplinary Design Optimization (FIDO) project,"

Technical report, NASA TM 109058, 1993.

[36] Weston, R. P., Townsend, J. C., Eidson, T. M., and Gates, R. L., "A

Distributed Computing Environment for Multidisciplinary Design," 5th

133

AIAAlNASAIISSMO Symposium on Multidisciplinary Analysis and

Optimization, Panama City Beach, FL, AIAA-94-4372-CP, pp. 1091 097,

September, 1994.

[37] Hale, M. A., Craig, J. 1., Mistree, F., and Schrage, D. P., "DREAMS and

IMAGE: A Model and Computer Implementation for Concurrent, Life-Cycle

Design of Complex Systems," Concurrent Engineering: Research and

Applications, Vol. 4, No. 2, pp. 171-186, June, 1996.

[38] Hale, M. A, and Craig, J. 1., "Techniques for integrating computer programs

into design architectures," 6th AIAAINASAIISSMO Symposium on

Multidiciplinary Analysis and Optimization, Bellevue, WA, AIAA 96-4166-

CP, pp.1594-1601, September, 1996.

[39] El Aichaoui, S., Hale, M., and Craig, J., "Building Design Applications Using

Process Elements," i h AIAAlUSAF/NASA/ISSMO Symposium on

Multidiciplinary Analysis and Optimization, St.Louis, MO, AIAA 98-4876,

September, 1998.

[40] iSIGHT, Engineous Software, URL: http://www.engineous.com/

[41] Tong, S. S., Powell, D., and Goel, S., "Integration of Artificial Intelligence

and Numerical Optimization Techniques for the Design of Complex

Aerospace Systems," AIAA Paper 92-1189, February, 1992.

Golovidov, O., Kodiyalam, S., Marineau, P., Wang, L, and Rohl, P.,

"Flexible Implementation of Approximation Concepts in an MDO

Framework," i h AIAAlUSAF/NASAIISSMO Symposium on Multidiciplinary

Analysis and Optimization, St.Louis, MO, AIAA 98-4959, September, 1998.

134

[43J LMS Optimus, LMS International, URL: .:..:.:.::.i:::":':':"';:":"'::':"'::"::"=:":;:;';':":"::':"=:":::"

[44] Guisset, P., and Tzannetakis, N., "Numerical Meîhods for Modeling and

Optimization of Noise Emission Applications," ASME International

Mechanical Engineering Congress and Exposition, Dallas,TX, 1997.

[45] Multi-Dlsciplinary Computing Environment (MDICE), CFD Research

Coporation, USA, URL: http://www.cfdrc.com/

[46] Multi-Dlsciplinary Computing Environment for AEroelasticity (MDICE-AE),

URL: http://www.va.afrl.af.millvaa/vaac/CAE/cfdrc.html

[47] George, J., Peterson, J., and Southard, S., "Multidisciplinary Integrated

Design Assistant for Spacecraft (MIDAS)," 36th

AIAAfASME/ASCE/AHS/ASC Structures, Structural Dynamics, and

Materials Conference, New Orleans, LA, AIAA-95-1372-CP, pp.1790-1799,

April 1995.

[48] Numerical Propulsion System Simulation (NPSS), NASA Glenn Research

Center, Ohio, URL: http://hpcc.grc.nasa.gov/nQssintro.shtml

[49] Evans, A., Lytle, J., Follen, G., and Lopez, 1., "An Integrated Computing and

Interdisciplinary Systems Approach to Aeropropulsion Simulation - NPSS,"

International Gas Turbine and Aeroengine Congress and Exhibition,

Orlando, FL, June 1997.

[50] NPSS Industry Review, NASA Glenn Research Center, October 1999.

[51] Scott, A. T., "An Evaluation of Three Commercially Available Integrated

Design Framework Packages for use in the Space Systems Design Lab,"

135

SSDl, School of Aerospace Engineering, Georgia Institue Technology,

ApriJ 2001.

[52] Phoenix Integration, URL: http://www.phoenix-int.com/

[53] Analysis Server and Model Center overviews, Phoenix Integration,

URL: http://www.phoenix-int.com/publications/

[54] Authentication in Analysis Server and Model Center, Technical White

Paper, Phoenix Intergration, August, 2001.

[55] Van der Valen, A., Kokan, D., Frommann, O., The Pointer MDO

Framework, Synaps, 2000.

[56] Pointer / Epogy, Synaps Ine.,

URL: http://www.synaps-inc.com/software.html

[57] Becker, J. C., and Bloebaum, C. L., "Distributed Computing for

Multidisciplinary Design Optimization using Java," 6th AIAA/NASAIISSMO

Symposium on Multidisciplinary Analysis and Optimization, Bellevue, WA,

AIAA 96-4165-CP, pp. 1583-1593., September, 1996.

[58] Multidiciplinary Optimization and Design Engineering laboratary (MODEl),

Departement of Mechanieal and Aerospace Engineering, University of New

York at Buffalo, URL: http://www.eng,buffalo.edu/Research/MODEU

[59] XCAT / CCAT, Extreme lab, Indiana University, IN,

URL: http://wvvw.extreme.indiana.edu/xcat/

URL: http://www.extreme.indiana,edu/ccat/

[60J Global Grid Forum, URL: http://www.gridforum.org/

136

[61] Information Power Grid (IPG), NASA, URL: http://wv\IW.ipg.nasa.gov/

[62] The Globus Project, URL: http://www.globus.org/

[63] Johnston, W. E., Vaziri, A, Tanner, L. A, Feiereisen, W. J., and Thigpen,

W., "Information Power Grid," Detailed Document of the Approach and

Goals for NASA's Information Power Grid, NASA Ames Resarch Center.

[64] Bouhemhem, D" Chen, B" Guibault, ,Liu, D., Mahdavi, B" Ndiaye, A,

Ozell, 8., Pelletier, D., Trépanier, J-Y., and Zhou, Q., "Software

Requirements Document," Technical Report, CERCA, September, 2000.

[65] Common Object Request Broker Architecture (CORBA), Object

Management Group (OMG), URL: http://www.omg.org/corba/

[66] Component Object Model (COM), Microsoft,

URL: http://www.microsoft.com/com/

[67] Distributed Component Object Model (DCOM), Microsoft,

URL: http://www.microsoft.com/com/tech/DCOM.asp

[68] JavaBeans, Sun Microsystems,

URL: .b.!!Q:/ /iava.sun.com/products/javabeansl

[69] Enterprise Java Bean (EJB), Sun Microsystems,

URL: http://java.sun.com/products/eib/

137

Bramley, R., Chiu, K, Diwan, S., Gannon, D., Govindaraju, Mukhi, N.,

Temko, B., and Yehuri, M., liA Component Based Service Architecture for

Building Distributed Applications," Indiana University, IN.

[71] Unified Modeling Language (UML), Rational,

URL: http://www.rational.com/uml/

[72] What is Java Tecnology, Sun Microsystems,

URL: http://java.sun.com/java2/whatis/

[73] Berg, D., and Fritzinger, J. S., "Advanced Techniques for Java Developers,"

Wiley Computer Publishing, 1999.

[74] Java Applet, Sun Microsystems,

URL: http://java.sun.com/applets/

[75] Villacis, J., "A Note on the Use of Java in Scientific Computing," Indiana

University, IN.

[76] Chen, B., Liu, D., Mahdavi, B., Zhou, a., Bouhemhem, D., Ndiaye, A.,

Guibault, F., Oze!!, B., Pelletier, D., and Trépanier, J-Y., "A Data-ceniric

Distributed Framework for MDO Management," 6th International Conference

on Computer Supported Cooperative Work in Design, London, ON,

Proceeding, 279-284, July 12-14, 2001,

138

[77] Anouan, F., Bouchemhem, D., Chen, B., Guibault, E, Liu, D., Mahdavi, B.,

Ndiaye, A., Ozell, B., Trépanier, J-Y., and Zhou, Q., "VADOR User Guide,"

Technical Report, CERCA, February, 2002.

[78] Flanagan, D., "Java in a Nutshell," O'Reilly, 1999.

[79] The Desing Manager's Aid for Intelligent Decomposition (DeMAID),

URL: http://www.openchannelfoundation.org/projects/DEMAID/

[80] Rogers, J. L, "Reducing Desing Cycle Time and Cost Through Process

Resequencing," International Conference on Engineering Design (ICED),

1997.

[81] Rogers, J. L., and McCulley, C. M., "Integrating a Genetic Algorithm into a

Knowledge-based System for Ordering Complex Desing Porcesses,"

NASA-TM-11 0247.

(82] Salas, A. O., and Rogers, J. L., "A Web-Based System for Monitoring and

Controling Multidiciplinary Desing Projects," NASA-TM-97 -206287, 1997.

[83] Hulme, K. F., and Bloebaum, C. L, "Development of a Simulation-based

Framework for Exploiting New Tools and Techniques in Multidisciplinary

Design Optimization," ASMO UKIISSMO Conference on Engineering

Design Optimization, IIkley, United Kingdom, pp.179-186, July, 1999.

139

[84] Krao, "Computation-Based Design," White Pape l, Aircraft Aerodynamics

and Design Group, Stanford University, 1996.

[85] Sues, R. H., and Cesare, M. A, "An Innovative Framework for Reliability­

Based MDO," AIAA-2000-1509, 2000.

[86] Sues, R. H, Aminpour, M. A, Shin, V" "Reliability Based MDO for

Aerospace Systems," AIAAlASME/ASCE/AHS/ASC Structures, Structural

Dynamics, and Materials Conference and Exhibit, 42nd
, Seattle, WA, April

16-19,2001.

[87] Probabilistic Finite Element System (ProFES), URL: htlp://www.profes.com/

[88] Cesare, M. A, and Sues, R. H., "PorFES Probabilistic Finit Element

System--Bringing Probablistic Mechanics to the Destop" AIAA 99-1607,

1999.

[89] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., "Desing Pattern -

Elements of Reusable Object-Oriented Software," Addison-Wesley, 1998.

[90] Sankar, M. R., Isaacs, A, Mujumdar, P. M., and Sudhakar, K., "MDO

Framework Development - A Case Study With An Elementary Model Of

Airborne Early Warning System Optimization."

[91] Sistla, R., Dovi, G., Su, P., and Shan, R., "Aircraft Desing Problem

Implementation under the Common Request Broker Architechtrue

140

(CORBA)," 40th AIAAlASME/ASCE/AHS/ASC SDM Conference, MO, April

1999.

[92] Barth, T., Grauer, M" Freisleben, B., and Thilo, F., "Distributed Solution of

Simulation-Based Optimization Problems on Networks of Workstations,"

University of Siegen, Germany.

[93] Zhou, Q" Mahdavi, 8., Liu, D., Guibault, F., Ozell, B., and Trépanier, J-Y.,

"A Web-based Distribution Protocol for Large Scale Analysis and

Optimization Applications," 15th Annual International Symposium on High

Performance Computing Systems and Applications, Windsor, Ontario,

Canada, June 18-20, 2001.

[94] Cao, J., and Bennett, G. K. Z., "Direct Execution Simulation of Load

Balacing Algorithm with Rea! Workload Distribution," The Journal of System

and Software, p.p. 227-237, 2000.

[95] Wolffe, G. S., Hosseini, S. H., and Vairavan, K., "An Experimental Study of

Workload Indices for Non-dedicated, Heterogenous System," University of

Wiscousin.

[96] Kalyani, M. A. L., Wait, R., and Ranasighe, D. N., "Load Balacing

Techniques for Distributed Memory Multiprocessor," January, 2001.

[97] Vanderplaats, G. N., "Numerical Optimization Techniques for Engineering

Design: With Applications," McGraw Hill, New York, 1984.

[98] MySOL database, MySOL AB, URL: .;...:..:;.;:.,::;.:.;..:...;c..::...:..:..;c.:..::..:...:..::...<..:::;.;=.:;;..:...:.;.

141

[99] Bouhemhem, D., Chen, B., Guibault, F., D., Mahdavi, B" Ndiaye, A,

Oze Il , B" Pelletier, D., Trépanier, J-Y., and Zhou, O., "Damage Tolerance

Analysis Interfacing, Automation and Integration," Technical Report,

CERCA, September, 2000.

[100] Extensible Markup language (XML), W3C, URl: http://www.w3.org/XMId

[101] CRAY supercomputers, URL: http://www.cray.com/products/systems/

[102] Geist, G. A., Kohl, J. A, and Papadopoulos, P. M., "PVM and MPI: a

Comparison of Features," Calculateurs Paralleles Vol. 8 No. 2, pp. 137-150

June, 1996.

[103] Eldred, S. M., Giunta, A A., Bloemen Waanders, G. B., Wojtkiewicz, F. S.,

Hart, E. W., and Alleva, P. M., "DAKOTA, a Multilevel Parallel Object­

Oriented Framework for Design Optimization, Parameter Estimation,

Uncertainty Ouantificiation, and Sensitivtiy Analaysis," SAND Report,

SAND2001-3796, Sandia National laboratoiries, April, 2002.

[104]Schreiner, A J., Trosin, J. P., Pochel, A C., and Koga, J. D., "DARWIN­

Intergrated Instumentaion and Intelligent Daabase Elements," NASA Ames

Research Center.

[105] Fukunaga, A., and Stechert, D. A., "An Evolutionary Optimization System

for Spacecraft Design," Proceedings of Tengh International Conference on

Industrial and Engineering Applications of Artificiai Intelligence and Expert

Systems, Atlanta, GA, 1997.

142

[106] Fukunaga, A., Chien, S., Mutz, D., Sherwood, ,and Stechert, A.,

"Automating the Process of Optimization in Spacecraft Design,"

Proceedings of the 1997 IEEE Aerospace Conference, Snowmass, CO,

pp,411-428, vol 4, 1997.

[107] Fukunaga, A., Stechert, A., and Chien, S., "Towards a Self-Configuring

Optimization System for Spacecraft Design," Proceedings of International

Symposium on Artificial Intelligence, Robotics and Automations in Space,

Tokyo, Japan, 1997.

[108] Kale, V., "Implementing SAP Rl3: The Guide for Business and Technology

Managers," SAM, 2000.

[109] Systems, Applications, Product (SAP), URL: http://www.sap.com/

[110] BaaN, URL: http://www.baan.com/

[111] Oracle, URL: http://www.oracle.com/

[112] PeopleSoft, URL: http://www.peoplesoft.com/

[113]J.D. Edwards, URL: http://www.idedwards.com/

143

