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ABSTRACT

Image segmentation, or the extraction of the boundaries of objects, is one of the most
impottant problems in computer vision and image processing. As a high-level technique for
boundary identification, active contours are used extensively for segmentation purposes.

Two different active contour approaches, zc., parametric active contours and discrete
dynamic contours, wete used and compared for the segmentation of middle-ear images. We
used histological and Magnetic Resonance Microscopy (MRM) image datasets for our
experiments.

Parametric and discrete dynamic contouts show similar boundary identification results for
the histological and MRM datasets. Gradient, Gradient Vector Flow (GVF), and the gradient
plus pressure were used as the external force. The gradient has the disadvantage of having a
restricted capture range. Two solutions for improving the capture range, gradient vector flow
and pressure force, were compatred. Although GVF provides a good capture range, it
sometimes wrongly identifies the low-contrast boundaries. It was also found that GVF may
wrongly identify the boundaries of close neighbouring structures. As an alternative, pressure
forces have shown promising results for histological and MRM middle-ear images. For the
same initial contours, a larger number of iterations is required for the parametric contours to
converge to the boundary than with the discrete dynamic contours, when the gradient is
used as the external force. However, when using GVF and gradient plus pressure, parametric
active contours tequite a smaller number of iterations for active contour convergence,
compated with the discrete dynamic approach.

The use of open contours was demonstrated for shared boundaries and thin structures, in

addition to the usual closed contouts.
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RESUME

La segmentation d’image ou Pextraction des contours d'un objet est une des taches les
plus importantes en traitement des images. Les contours actifs font partie des techniques de
haut niveau fréquemment utilisées dans ce but.

Dans ce mémoire, nous comparons deux approches différentes, fondées sur les contours
actifs, pour la segmentation de loreille moyenne dans des données d’images histologiques et
des données d’images de microscopie par resonance magnétique.

Ces deux approches, les contours actifs paramétriques et les contours dynamiques
discrets, fournissent des résultats semblables. Différentes forces externes sont testées : le
gradient, le flux de vecteurs gradients et le gradient plus la pression. L'utilisation du gradient
ne permet qu'une plage de capture limitée. Pour remédier a ce défaut, nous comparons les
approches utilisant le flux de vecteurs gradients et utilisant la pression. Bien que le flux de
vecteurs gradients posséde une bonne plage de capture, il est peu efficace sur les contours de
faible contraste et sur les contours d’objets voisins. Au contraire, les forces de pression
fournissent des résultats encourageants sur nos images histologiques et nos images de
microscopie pat résonance magnétique de Poreille moyenne. Etant donnés des contours
initiaux identiques, un plus grand nombre d’itérations est requis pour les contours actifs
paramétriques par rappott aux contours dynamiques discrets, dans le cas ou le gradient est
utilisé comme force. Dans le cas ou le flux de vecteurs gradients ou le gradient plus la
ptession sont utilisés, on observe le phénomene inverse.

Pour la segmentation des structures fines et des contours communs a deux structures,
nous utilisons des contours ouverts, et dans les autres cas, nous utilisons des contours

fermés.
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1. INTRODUCTION

Image processing and computer vision have become important within the past two
decades. Image processing and computer vision techniques aim to improve the pictorial
information for human interpretation and the processing of image data for autonomous
machine petception.

Image segmentation, or identification of the boundaries of objects in images, is one of
the most impotrtant problems in computer vision and image processing. The applications of
segmentation techniques range from medicine (¢.g., locating a lesion) to industty (g, robotic
vision) and the military (e.g., target detection). With medical imaging playing an increasingly
prominent role in the diagnosis and treatment of disease, segmentation techniques have been
applied for extracting clinically useful information about anatomic structures through
modalities such as x-ray CT (Computer Tomography), MRI (Magnetic Resonance Imaging),
PET (Position Emission Tomography), ultrasound and other modalities (Stytz ez a/, 1991;
Ayache, 1995; Bizais ¢t al., 1995; Mclnerney & Terzopoulos, 1996; Yezzi et al, 1997). The
segmentation of the images can be performed either manually or using image processing and
computer vision techniques. In manual segmentation a skilled operator, using a computer
mouse or track ball, traces the structures of interest on each slice of the image dataset.
Manual segmentation benefits from anatomical knowledge that the user employs for
boundaty identification of the objects. Manual segmentation, however, suffers from several
drawbacks, such as the difficulty in achieving reproducible results, and the facts that it is time
consuming and open to operator bias (McInerney & Terzopoulos, 1996). The computer-
vision based type of segmentation relies more on the mathematical concepts that are applied
for boundary identification.

A wide variety of mathematical and computational approaches has been proposed for
solving segmentation problems. Segmentation techniques are classified into low-level and
high-level techniques. Low-level techniques, such as traditional edge detectors, region
growing and mathematical morphology, use only image information. These techniques are
generally computationally fast and may be simple but they require a considerable amount of
expert interactive guidance. Furthermore, automating these model-free approaches is

difficult because of the shape complexity and variability within and actoss anatomical



structutes. In general, the undet-constrained nature of the segmentation problem limits the
efficacy of approaches that consider local information only. Noise and other image artefacts
can cause incotrect regions or boundary discontinuities in objects identified by these
methods (McInerney & Terzopoulos, 1996).

Active contouts, or snakes (Kass ¢z al., 1986), are high-level techniques that overcome
many of the limitations of low-level image-processing techniques by applying information
about the boundaries as part of an optimisation procedure. Active contours ate energy-
minimising contours that are generally controlled by two energy terms. There are force terms
associated with the energy tetms, Ze., internal and external forces. The internal force is
computed based on the local shape of the contour and preserves the smoothness of the
contour. The external energy that drives the active contour to the boundary is based on the
image information (e.g., any conventional edge detection technique). The interactions of the
force terms cause the active contout to evolve from an initial position (e.g., drawn by the user
with a2 mouse) and it convetges to the optimal position, Ze., on the structure boundary, where
forces balance one another.

Active contouts are used extensively for segmentation and a number of alternative
apptoaches have been proposed, such as geometric deformable models (Miller, 1990),
geometric active contours (Caselles ez 4/, 1995 & Malladi ez 4/, 1995) and discrete dynamic
contours (Lobregt & Viergever, 1995). Active contours have been applied to many medical
imaging modalities, including x-ray, angiography, MRI, PET and ultrasound (McInetney &
Terzopoulos, 1996). “Active contours have been used to segment, visualise, track and
quantify a variety of anatomic structures, ranging from macroscopic to microscopic scale,
including the brain, heatt, face, kidney, lungs, stomach, liver, skull, vertebra, arteries,
neurons, chromosomes and objects such as brain tumours and a foetus” (Mclnerney &
Terzopoulos, 1996). For instance, Leymaire (1990) used active contours for tracking the
deformation and locomotion of cells in the plane. Cohen (1991) used them on a set of
successive cross sections of ultrasound and magnetic resonance images, leading to 3D object
reconstruction. Ranganath (1995) utilised active contours for contour extraction in cardiac
MRI images. Lobregt & Viergever (1995) used active contours for segmentation of femurs
from x-ray CT images, brain tumours from MRI images and blood vessels from ultrasound
images. Davatzikos ez a/. (1995) & Atkins ef al. (1998) used active contours for segmentation

of the brain from MRI images. Wang e /. (1998) applied active contours for segmentation



of MRI images of heatt ventricles, blood vessels, brain, and bone. Valdés e 4/ (2000)
petformed trachea segmentation for the respiratory system using CT images.

Because of the extensive successful applications of active contours in the medical
imaging field, we wete interested in applying active contours for segmentation of middle-ear
images. Middle-ear images include tiny objects such as ligaments, muscles and bones that
tequite precise boundaty identification prior to labelling, registration, 3-D reconstruction and
modelling. We used grey-scaled histological and magnetic resonance microscopy (MRM)
datasets of the middle ear for our experiments. Two different active-contour approaches
were used and compared for segmentation of middle-ear images. These techniques include
the traditional active contours (parametric contours) (Kass ez 4/, 1986) and discrete dynamic
contouts (Lobregt & Viergever, 1995). The reason we chose discrete dynamic contours was
because of the simplicity of the implementation, and the fact that Lobregt & Viergever
(1995) claimed that the discrete dynamic contours do not exhibit problems such as shrinking
and clustering that exist with traditional parametric contours. We were interested to test the
discrete dynamic contours with our datasets. Although the gradient is usually a successful
method when used for computation of external forces, it has a limited capture range. We
compated the gradient with two other techniques, c., pressure (or balloon) force (Cohen,
1991) and gradient vector flow (Xu & Prince, 1997), that have been suggested to improve
the captute range of the gradient. We did experiments with both closed and open contours.
In closed contours the starting and ending vertices are connected while in open contouts

they are unconnected.

Chapter Two introduces conventional edge-detection and edge-enhancement techniques
as low-level techniques. Some of these techniques are referred to in the later chapters. In
Chapter Three, a history of active contours is followed by the definition and discussion of
some different approaches. Chapter Four describes the implementation of the two active-
contour approaches, ze., parametric and discrete dynamic, that we used for our experiments.
Chapter Five introduces the materials, Ze, the image datasets, that we used for our
experiments; and Chapter Six presents the results of the comparisons of the active-contour
approaches, using gradient, gradient vector flow and pressure force, on the image datasets.

The conclusions and future work are discussed in Chapter Seven.



2. CONVENTIONAL EDGE-DETECTION AND
EDGE-ENHANCEMENT TECHNIQUES

In digital image processing, a grey-level image is considered as a 2-D array, e.g, I(x,Yy),
composed of picture elements (pixels), each having a magnitude and a spatial location
tepresented by x and y coordinate components. An edge is defined by changes of grey
level between neighbouring pixels. Depending of the rate of change (abrupt or slow) of grey
level between neighbouring pixels, edges can be called strong or weak.

Edge detectors ate applied to an image to discriminate the edge pixels from non-edge
pixels. The result will be an edge map, which gives the data for tracing the boundaries of the
regions of interest in an image. Edge enhancers are used to intensify the edges but they do
not discriminate between edge and non-edge pixels. The gradient and the Laplacian of
Gaussian (LOG) operatots ate edge enhancers, and thresholding and the Canny operator are

edge detectors.

In the following sections we review these techniques. Some of them are later used 1n

Chapter Three for active contours.



2.1 Gradient

Using partial detivatives, the gradient of a scalar field (a function) generates a field of
vectors. The gradient of an image gives the rates of change of grey level per unit distance in

the ditections of the cootdinate axes. The gradient of the image is written as:

) G,
Vi=—x+—y= ,
8xX+8yy {G} 2.1)

y

ol ol : o . ,
where G, ==— and G, =—— are the partial detivatives of the image with respect to the

ox dy

coordinate components in the directions of the coordinates axes. The magnitude of the

gradient is an important quantity in edge detection. It can be computed as:

mag (VI) =[G? +G* 1~ 2.2

The direction of the gradient vector is another important quantity. This can be represented
as:

G
O(VI)=tan™ G_y (2.3)

X

where the angle is measured with respect to the x axis at each location.

The gradient has three properties that are of concern in image processing. First, if there
is little or no change of grey level in neighbouring pixels (e.g, homogeneous regions) the
gradient for that location will be zero or a small value close to zero. Second, at a location on
an edge (boundary) where an abrupt change of grey level exists, the gradient of the image at
that location will have a large magnitude depending on the rate of grey-level change. Third,
according to the gradient theorem (Kreyszig, 1993), the gradient of an image at a certain
point (e.g, pixel) on a constant surface (e.g, an edge) is a vector normal to that surface at that
point.

In digital image processing, the gradient is computed using spatial filters that are



convolved with the images. The filters are implemented to act as partial denivatives, in the
form of paits of masks, at every pixel location. Each pair is used to calculate the partial
detivatives in two orthogonal directions. The mask is centred and superimposed on each
pixel, covering some neighbouring pixels depending on its size. The products of mask
weightings and the corresponding pixels are then summed up and the result is considered as
the intensity of the pixel corresponding to the centte of the mask. The filters have the
propetty that the sum of the weights is equal to zero, so they satisfy the gradient property of

giving a zero value for homogeneous regions. Below, examples of such masks are provided:

+1
[-1 0 +1] 0
-1

Hotizontal and vertical gradient operators

o i 5

Diagonal pair Robetts operators

-1 -2 -1 -1 01
o 0 O -2 0 2
1 2 1 -1 0 1

Horizontal and vertical Sobel operators



Figure 2.1 shows an image. Figure 2.2 shows the image filteted by the above horizontal

and vertical gradient operator, Robert operators and Sobel operator.

Figure 2.1: An MRM image used for testing gradient operators.
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Figute 2.2: Examples of spatial filtering using gradient operators on the image from Figure 2.1: (a) & (b) by
hotizontal and vertical gradient operators, (c) & (d) by a diagonal pair Roberts operator, and (¢) & (f) by
hotizontal and vertical Sobel operators, respectively.



Figure 2.3 shows an example of the magnitude of the gradient produced by applying
Sobel operators to a given image (Figure 2.1).

Figure 2.3: Example of the magnitude of the gradient of an image: original image (top), and the magnitude of
the gradient of the image (bottom).



2.2 Laplacian Operator

Similar to the gradient operators, the Laplacian operator is another edge enhancer based

on the derivatives of the image. The gradient operator uses the first spatial derivative of an

image, while the Laplacian operator (V2) is based on the second derivative of an 1mage:

FI  FI

V21=yx+yy-

2.4)

As in the gradient operator, the Laplacian (V*I) computes the partial detivatives of image
values in each location (pixel) with respect to the x and y coordinate axes.

Noise contains a wide range of frequencies: low and high frequencies. The derivative-
based opetatots (the gradient and Laplacian operators) enhance high frequencies that can be
edge points or high frequency noise. Intensifying noise is an undesired result. To deal with
this issue, Matr & Hildreth (1980) proposed the Laplacian of Gaussian (LOG) operator. This
opetator is a combination of a 2-D Gaussian kernel and the Laplacian. The 2-DD Gaussian
(bell-shaped) kernel has a smoothing effect on the image since it is low-pass filter and has
the chatacteristic of averaging among the neighbouring pixels within an image. By
smoothing an image, the Gaussian removes noise. Then, the Laplacian (Ze., the second
derivative) will high-pass filter the image and intensify edges. However, this technique does
not guarantee that the noise is completely removed and that only the edges are intensified.

Figure 2.4 shows a Laplacian of Gaussian kernel.

10
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Figure 2.4: Laplacian of Gaussian function: (right) cross section, (left) intensity function image.
The LOG operator can be defined as:
2 2
(x2+y2) 1 e_(x +;’ )

20
40* 270

where (2.6)

Vh(x,y) =

(PP
e 20°

1
R

where g is the standard deviation of a 2D Gaussian kernel, ze., h(x,y), and V?h(x,y)

represents the Laplacian of the Gaussian kernel. The Laplacian of Gaussian can be
implemented as a spatial filter that is convolved with an image. As seen in Figure 2.5, the
spatial filter must be designed to assign a high positive weighting in the centre and negative
values, with a smaller absolute value than the centre weighting, surrounding the centre

weighting, and zero for other weightings, for example:

0 -1 0
-1 4 -1
0 -1 0
LOG operators
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The standard deviation of the Gaussian kernel determines the smoothness of the LOG
filter. By increasing the standard deviation the filtered image becomes smoother. Choosing
the value for 0 depends on the amount of noise in the image. Figure 2.5 illustrates the result

of an LOG operator on an image.

Figure 2.5: Example of an image filtered by an LOG operator: original image (top), the results of applying an
LOG operatot on the image (bottom).
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2.3 Thresholding

Thresholding is a simple technique for edge detection and image segmentation. In this
technique, first a threshold value (T ) is chosen in the grey-level range of the image and
pixels over and under the threshold value are marked differently. Thresholding can be

defined as follows:

I(x,)’)>T%IT(x7)’)=1;

I(x,y) ST — I (x,y) =0; @9

where I,(x,y) is the image after thresholding. Hence, all pixels with intensities larger than
T are set to a certain numbet, e.g., 1, and the rest are set to zero. Consequently, the result of
thresholding is a binary image.

Thresholding can be single-level, two-level or multi-level. In single-level thresholding

only 2 single thresholding value is chosen, as described above. In the two-level method, two

threshold values, ze., low (T,,) and high (7},,,) threshold values are chosen. Pixels with

intensities lying in this range are considered as edge points and are set to a certain value, ¢.g,

1, and the rest will be set to 0. Two-level thresholding can be represented as follows:

1(x,y) > Ty = I (x,y) =0;
Ty S1(x,Y) < Ty, = I (%, y) =15 @.7)

I(x,y)<T,, = 1;(x,y)=0.

Choosing thresholds values is very important since edge points having intensities even
slightly lower ot higher than a low or high threshold may be excluded (set to zero) , which
results in an edge with missing parts. The threshold values are not easily chosen, and they ate
mostly found based on trial and error. Figure 2.6 shows examples of single-level and two-
level thresholding. Thresholding does not always give a good result. An example of edges

with missing parts is shown in Figure 2.6 (bottom).

13
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Figure 2.6: Examples of single-level and two-level thresholding: original image (top), and the image after single-
level (middle) and two-level (bottom) thresholding. Edges missing parts are seen in the bottom image.
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2.4 Canny Operator

It is important that edges that occur in the image should not be missed, and that the edge
points should be well localised. That is, the distance between the Points marked by the

detector and the “centre” of the true edge should be minimized (Canny, 1986).

Low-level techniques such as gradient, thresholding and LOG do not always give good
results, especially in case of noisy images or images with a wide range of pixel intensities on
edges. Edges with parts missing often happen with edges having a wide range of intensities

when using low-level edge-detection techniques.

Canny (1986) proposed a mote powerful edge detector than the above-mentioned low-
level edge detectors. One aim of this operator is to provide the points marked as edge points
that are the centte of the true edge (Canny, 1986).

The Canny operator consists of three processes. First, a low-level edge-enhancer is
applied for noise reduction and edge enhancement. Second, two-level thresholding is used to
discriminate between edge and non-edge pixels in order to produce a continuous edge
outline. Afterwards, the edge-thinning process can be applied to reduce the width of edges
to one pixel that is at the centre of the edge.

Since in any itmage some amount of noise may exist, it is very important to reduce the
noise. To do this, an LOG filter is applied to the image for noise reduction. The LOG filter
also intensifies the edge points. The next step is an adaptive two-level thresholding process
with hystetisis. The purpose of using hystetesis 1s to ensure that edges are not broken up
into multiple edge fragments.-

The final step is the edge-thinning process. Based on the gradient magnitude of the
thresholded image, the edge-thinning process searches for the edge points mn the direction of
the gradient, that is, normal to the edge at the edge points. Then, in this process, the centre
pixel ot pixels of the edge in the direction of the gradient are set to 1 and the test of the
pixels to zero. Consequently, the result will be a binary image containing the edges or the

outline of the regions. Figure 2.7 shows an edge map produced by the Canny operator.
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Figure 2.7: Example of edge map using the Canny operator: the original image (top), the result of the
opetator on the image (bottom).

16

Canny



3. ACTIVE CONTOURS

3.1 Introduction and history

Low-level segmentation techniques serve to simply analyse the image by drastically
reducing the amount of data to be processed. However, by reducing the data some necessary
image information may be lost. In addition, given a large amount of noise ot low contrast,
the image information by itself may not be sufficient to result in a successful segmentation.
As an alternative, high-level techniques are used, although they are more sophisticated and
computationally more expensive than the low-level techniques. Active contours, also known
as snakes or deformable contour models (Kass ¢ 4/, 1986), have proven to be an effective
method in line and edge detection, segmentation, shape modelling and motion tracking
(Kass et al., 1986).

Active contours wete otiginally proposed by Kass ef /. (1986). Active contours are an
example of a general technique of matching a deformable model to an image boundary by
means of energy minimisation (Kass ef 4/, 1986). Energy minimising models have a rich
histoty in computer vision going back at least to the 1970s (Mclnerney & Terzopoulos,
1996):

The name “deformable models” stems primarily from the use of elasticity
theoty at the physical level, generally within a Lagrangian dynamics setting. The
physical interpretation views deformable models as elastic bodies which respond
natutally to applied forces and constraints. In the Lagrangian setting, the
deformation energy gives tise to elastic forces internal to the model. Taking a
physics-based view of classical optimal approximation, external potential energy
functions are defined in terms of the data of interest to which the model is to be
fitted. These potential energies give rise to external forces, which deform the
model such that it fits the data. The mathematical foundations of deformable
models represent the confluence of geometry, physics, and approximation theory.
Geometty setves to represent object shape, physics imposes constraints on how
the shape may vary over space and time, and optimal approximation theory
provides the formal underpinnings of mechanics for fitting the models to

measured data.
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“The notion of snake for active contouts was inspired by the way living snakes slither
while minimising their energy” (Kass ez 4/, 1986).

The original parametric active contours (Kass ¢z al, 1986) are elastic curves or splines
defined in an image domain and have a dynamic behaviour that evolves from an initial
position in the image to converge to the boundaries of the objects. The initial position is
provided either by interactive action of the user or by a higher-level process (Kass e al,
1986). Based on the Lagrangian formulation of motion, the dynamic behaviour of the elastic
curve is associated with the energy functional of the curve. The energy functional is
composed of two energy terms, Ze., the internal and the external energy terms. The internal
energy term is based on the curve itself. The external energy terms arise from the image
information. There ate force terms that are associated with the energy terms, Ze., the internal
and external forces. The internal fotce term preserves the smoothness and is composed of
two force constraints: tension and rigidity. The external force drives the active contour
toward the boundary and is derived from image information, e.g., the gradient of the image.
The interaction of the force terms causes the active contour to evolve and the evolution
process is terminated when the terms balance each other where the energy functional is
minimised (ze., on the object boundary).

The application of traditional active contours to identify boundaries of the objects is,
however, not without limitations. One problem lies with the external forces that have a
limited captute range. This is because the external force is computed based on the
conventional edge detection techniques (e.g., a gradient operator). The gradient of the image
has a limited capture range and the active contour must be located close to the boundary in
otder to converge (Xu & Prince, 1997). Therefore, if the active contour is not located close
enough to the boundary, it may not converge to the boundary. The internal force not only
cannot solve this problem, but it also has a shrinking behaviour that may lead the active
contour to implode, or at least slows the convergence of the active contour to the boundary
(Cohen, 1991; Xu & Prince, 1997). Choosing approptiate parameters for tension and rigidity
constraints is very difficult in practical applications. In addition, the traditional parametric
contours are computationally expensive due to the way they are implemented (Menet ef al,
1990).

Vartiant implementation methods such as B-snakes (Menet ez 4/, 1990), Fourier snakes

(Staib & Duncan, 1992) and finite-element snakes (Cohen & Cohen, 1993) have been
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proposed in an effort to improve aspects of the original implementation of parametric
approach (e.g., to decrease initialisation sensitivity, to simplify the computation, and to get rid
of the internal force parameter). In all these methods a curve is considered in segments. For
instance, in B-snakes and finite-element snakes, the curve is segmented into polynomial basis
functions, and in the Foutier snakes the curve is segmented into a set of trigonometrical
basis functions.

Two othet alternative approaches have also been proposed for active contouts:
geometric deformable models (Miller, 1990) and discrete dynamic contouts (Lobregt &
Vietgever, 1995). Although the names of these approaches may seem different from the
parametric approach, they basically use the same principles as the traditional parametric
contours. In all these approaches the cutve is considered as a set of points or vertices which
are connected by straight lines or edge segments. All the active contours have a dynamic
behaviour that leads the active contout to evolve from an initial position to a final position
(where a boundary is located). The dynamic behaviour of the active contour is based on the
interaction of a set of constraints or forces that is intended to minimise a cost function,
enetgy functional ot a force term. There are constraint terms, comparable to the internal
force, that are defined based on the active contour and are responsible for preserving its
shape and smoothness. Also, there is an image constraint which is usually based on the
gradient of the image. The major differences among all these active-contour methods are in
the way the internal forces, or the equivalent constraint terms, are viewed. For instance, in
the traditional parametric contours the components of the internal force, the tension and
tigidity, ate derived from the locations of and the distances between the vertices of the
contout. In geomettic deformable models (Miller, 1990) the internal constraints are based on
the angles between the adjoining edge segments and their lengths, which are again derived
from the locations of the neighbouring vertices. In discrete dynamic contours (Lobregt &
Viergever, 1995) the internal force is based on the angles between adjoining edges and the
normal vectors to the vertices, which ate once more computed based on the locations of
vertices.

“Since in the active-contour approaches the external force is based on the gradient of the
image, these active contours still suffer from a limited capture range for the external force.
Also, when an image has a complex background, the active contour may get confused and

finding the cotrect object boundary from the gradient magnitude only is not easy” (Xu &

19



Prince, 1997). Vatious methods such as pressure force ot balloon (Cohen, 1991), attraction
potential forces (Cohen & Cohen, 1993) and gradient flow vector (GVF) (Xu & Prince,
1997) have been suggested to significantly increase the external force capture range. These
methods are described in the following sections.

As a different approach, geometric active contours (Caselles e 4/, 1995; Malladi ef al,
1995) have been proposed based on the curve-evolution theory and the level-set method.
Based on this theoty a cutve (active contour) is shrinking in perimeter in order to minimise
its length. The minimisation of the curve is driven by the interaction of functions defined
based on the cutve and a function computed based on the gradient of the image. Using the
level-set method makes it possible for the active contours to simultaneously converge to
several objects.

In section 3.2, we only review and discuss the traditional parametric contours, the
internal and external forces and the constraints that are applied to improve the capture range
of the gradient. In sections 3.3 to 3.5, the geometric deformable models by Miller (1990),
geomettic active contours by Caselles ef 4/, (1995) & Malladi 7 4/, (1995), and discrete
dynamic contours (Lobregt & Viergever, 1995) will be presented in more detail. We used the
last approach for our experiments that are reported in Chapter 6 and it is discussed in more

detail.
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3.2 Parametric contours

In the paramettic approach, an active contour is represented as a curve or spline,
ze., V() =(x(s), y(s)), including vetrtices. x and y represent the coordinates of the

vertices and are functions of the normalised arc length 0 < s <1. The active contour has a

dynamic behaviout that deforms from an initial position and hopefully converges to the

boundary of the object. An energy functional (i.e., E “snake ) composed of energy terms defines

this behaviout:
1 1
E ke = By, (V(9))dls = [E,, (v(9)) + E,,,(v(s5))ds 3.1)
0 0

where E.

.. and E__ denote the internal and external energy terms associated with the active
contout, respectively. The intetnal energy term is computed based on the local shape of the
contour and preserves the continuity and the smoothness of the active contour. The external
energy tetm is computed based on the image information and it drives the active contout to

the boundary. In the parametric approach, the general-form energy functional of the active

contout, ze., Equation 3.1, can be represented as:

(v(s)lds. (3.2)

ext

1
E'sate = [ 1 V()P +81v(s) )+ E
0

Parameters @ and [ are the coefficients of the internal enetgy term and represent tension
and rigidity, respectively.
The deformation process of the active contour is driven by minimisation of the energy

functional. An active contour that minimises the energy functional (Equation 3.2) must

satisfy the Euler equation (Kass ef 4/, 19806):
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o0 ov(s), o°
_g(a Js )+8s2

92v(s)

ds? =0

(B y+VE

ext

or (3.3)

av’(s)— W"(s)-VE,, =0.

Equation 3.3 can be also viewed as a force balance so that the energles are associated

with the forces (Xu & Prince, 1997):

F +F_ =0

int ext

whete (3.4

F,,=av'(s)—Bv"(s)
F_ =-VE

ext ext*

F

int

and F

. denote the internal and external forces, respectively. In this way the
deformation process can be explained based on the interaction of the force terms and the
deformation stops when the forces balance each other, ze., on the location of the boundary.
As suggested in some publications (e.g., Xu & Prince, 1997), we prefer to use the force
balance equation to explain the behaviour of the active contour, so it is simpler to
undetstand the concept.
The external force itself can be the image force, using only image information, or may

include additional constraints such as a pressure force or a usetr-defined constraint force. We

describe the forces associated with the energy terms in detail in the following sections.

3.2.1 Internal force

The internal energy term and the associated force, Ze., the internal force, preserve the
smoothness and continuity of the active contour. According to Equation 3.4, the internal

force is composed of the second and forth derivatives of the contour which are weighted by
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o and [ parameters, tespectively. The second-order right-hand term, ze., aV'(s), causes

the active contour to behave like 2 membrane to resist stretching, and the fourth-order term,
ie., Bv7(s), causes the active contour to act like a thin plate to tesist bending. We refer to
o and [ as tension and rigidity parameters, respectively. The tension keeps the active
contour contracted and the rigidity keeps it smooth.

The active contour has inhetently a tendency to shrink, which is related to the tension
force. To explain this, the active contour can be considered as an ideal rubber band, with
zero initial length and linear behaviour, to represent the tension force. If such a rubber band
with any length other than zero (an active contour) is only affected by tension, it shrinks to a
point. In the presence of only rigidity, by contrast, the active contour tends to be like a wire
and cannot converge to the sharp corners. Consequently, vatious values for @ and f
produce different results for an active contour, with the behaviour ranging from a rubber
band to a rigid wire. The examples of different combinations of tension and rigidity

parameters ate provided in Chapter Six, Section 6.2.1.

3.2.2 Image force

While the intetnal force is tesponsible for preserving the shape of the active contour, the
external force drives the active contour to the boundary. The external force is primarily the
image force, computed based on the image itself, and a constraint force can optionally be

added. The external force is represented as:

F =F,, +F (3.5)

ext image constraint

where F.

image

and F

omsraine 1€ the image and constraint forces, respectively. One reason for
applying a constraint force is the capture-range limitation that the image force may exhibit.
The constraint force is used to provide a high-level guidance to the active contout, to
expedite the active contour convergence to the boundary and improve the capture range of
the image force (Feng & Gelenbe, 1998).

Accotding to Equation 3.4, the external force is the negative of the gradient of the
image. In order to intensify the edges, prior to computing the gradient of the image, an edge

detector ot enhancer can be applied to the image. We compared the performances of the
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edge-detection and edge-enhancement techniques in Chapter 2 as the external force for
parametric active contouts on different regions of an MRM image. These techniques were
thresholding, LOG, gradient and Canny opetator. The ctitetion for choosing the edge-
detector or edge-enhancement technique was the simplicity of computation. Based on the
literature and our own results, we chose the gradient operator as an edge detector. The

reasons for this choice are as follows:

e Thresholding is the least sophisticated technique in terms of computation among the
mentioned techniques. The result of this technique is a binary image. Therefore, some
grey-scale information which may be related to the boundary is lost by binatising an
image. Apart from this issue, choosing a proper threshold value is based on trial and
error and can differ from one image to another, or from one image slice to another in a
single volume. In addition, in some cases, as shown in Figure 2.6, thresholding may

result in edges with gaps.

e Although the Canny operator is known as a successful edge detector, this technique has
some disadvantages. Firstly, it is the most complicated technique among the above-
mentioned edge detectots. Secondly, because of its thresholding process it produces a
binaty image, which is undesited. And finally, the edge-thinning process in the Canny
operator may change the natural shape of the boundaries and may lead the active

contout not to precisely identify the boundary.

e Similar to thresholding, choosing the appropriate value for the standard deviation of the
LOG operator may vary from one image to another, depending on the noise content and
image sharpness. This parameter is found by trial and error. We prefer to use LOG only

as a pre-processing technique for enhancement of noisy images.

e The gradient operator is less complicated than the Canny operatot, and in contrast to
thresholding and LOG, there is no need for choosing any parameter (.., threshold or

standard deviation).
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3.2.3 Constraint force

Using image information, the image force drives the active contour towards the
boundary. This fotce can be computed based on any conventional edge detector and
enhancer (¢g, thresholding, LOG, the gradient or Canny operator) to detect the objects’
boundaties.

Since the image fotce computations ate generally based on the gradient magnitude of the
image, the active contour is attracted to contours with large gradients, ., strong edges. A
disadvantage of the gradient technique is the limited capture range that it produces for the
image force (Cohen, 1991; Xu & Prince, 1997). The limitation exists since the gradient
technique results in a noticeable magnitude where there is an abrupt change in grey-scale
(e.g, an edge pixel) but inside a homogeneous region the result of the gradient operator is
zero or a small value close to zero. As a tesult, the active contour must be located close to
the boundary in order to converge to it.

Kass ¢t a/. (1986) introduced “springs” and “volcanos” as user-defined constraints that
can be applied to an iterating active contour using a users’ interface programme. The uset-
defined constraints ate used to push the vertices ( selected by the user) relatively close to the
boundary so that the active contour can converge to the boundary.

A “spring” is modelled as a linear spring with a fixed point and a vertex to which it is
connected, positioned by the user on the image. The user also chooses the vertex. The
spring pulls the vertex towards itself with a force proportional to the distance between the

spring point and the vertex:

F

spring,i — k(s—v,) (3.6)
where § and Vv atre positions of the spring and the vertex, respectively, and k is a weighting
factor.

As a constraint term, a volcano cteates a pushing-out force that is applied to all vertices
from a point ¢ inside the region of interest. At each vertex this force is inversely
ptoportional to the distance between point ¢ and the vertex. In the case that a vertex is
exactly on point ¢, this force is considered to be zero in order to prevent the division by

zero. A volcano is defined as:
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1
Fvolcano,i =— (vi - C) (37)
r

where v and ¢ ate the positions of a vertex and of point ¢, respectively. 7 1s the distance

between point ¢ and the vertex.

A pressute force or balloon model (Cohen, 1991) was proposed as a constraint force to
improve the captute range of the gradient. The pressure force is independent of the image
information and defines the ditection of the active contour deformation by inflating or
deflating it. Using this technique, the external force is composed of the image and the

pressure forces:

F ] e
Fext = kprESSuren(S) - k — (3.8)
u image
where k pressure is the pressure weighting and its positive or negative sign leads the active

contour to inflate and deflate, tespectively; n(s) represents the unit vectors normal to

vettices; k is the image force weighting and the image force 1s the gradient of the image.
The normalization to the image force is applied to intensify the boundary, especially when
the boundary has low contrast.

If the pressure force acts too strongly, the active contour may overwhelm weak
boundaties, especially in the presence of contours with gaps (Xu & Prince, 1997). Therefore,
the image force weighting (k) must be larger than the pressure weighting (k ). This is

pressure
because the image force should dominate the pressure force and stop the active contour at

the location of the boundary; otherwise the pressure force will lead the active contour to

pass the boundary.
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3.2.4 Alternative image force

Alternative techniques have been proposed to improve the capture range of the image
force. An attraction potential force (Cohen & Cohen, 1993) was proposed as the external
force. It is the negative gradient of a potential function that is computed using a Euclidean

distance map which is based on the image information:

F, . =-VP(@). (3.9)
The Euclidean distance map can be computed in different ways, for example (Cohen &

Cohen, 1993):
P(v) = - (3.10)

where d(v) is the distance between a point v on the image and the nearest image edge pixel
that is detected by an edge detector. P(v) is the potential and the closest edge point has the

greatest effect at a position v (Cohen & Cohen, 1993). Similar to the image force produced
by the gradient technique, the attraction potential forces also point normal to a boundary

concavity and do not lead the active contour to converge to the concavity (Xu & Prince,

1997).
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3.2.5 Gradient Vector Flow (GVF)

Xu & Prince found that ptessute forces may overwhelm subjective contouts, ze., parts of
a boundaty with weak or zero contrast. They proposed Gradient Vector Flow (GVF) to
improve the captute range of the image force, and found that it could be applied to
subjective contouts without overwhelming them. GVF involves a vector field derived by
solving a vector diffusion equation which diffuses the gradient vectots of a grey-level image.
The particular advantage of GVF is the ability to move into boundary concavities (Xu &
Prince, 1997).

The GVF field is defined to be the vector field x(x, y) = [u(x, y),v(x, y)] that minimises

the energy functional (€):

£= J'Jﬂ(uzx +ul, +vi Hvi))+ |Vf|2lx - Vf|2dxdy
(3.11)
J,y)==E, .. (X, ¥).

The subscripts represent partial detivatives with respect to x and y. f(x,y) is the image
energy term that can be the gradient of the image. 4 is a weighting parameter, also called a
regularisation (Xu & Prince, 1997) factor. It is applied to manage the trade off between the
two terms of the integrand. When |Vf | is small (e.g., in homogenous regions), the energy
functional is dominated by the first term (sum of squares of the partial derivatives of the
vector field) yielding a slowly varying field. This term is called the smoothing term. However,

if |Vf | is large, the second term dominates the integrand, and the term is minimised when

X = Vf . In the latter case, Equation 3.11 keeps the X nearly equal to the gradient of the
image energy term when its gradient is large. Choosing 4 depends on the amount of noise
in the image. The more noise is in the image, the larger # should be. This is because in the
ptesence of noise the gradient increases and £/ should increase in order to control the trade-

off between the first term and the second term in Equation 3.11.
The solution for the minimisation of the energy functional (Equation 3.11) is performed
using the Euler equations (Xu & Prince, 1997):
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WV u+u—f(f,+f,7)=0

X . (3.12)
WVY+(v=f ) +f,)=0

where V? represents the Laplacian operator. The above pair of equations can be solved by

treating u and v as functions of time:

w, (%, y,0) = UV u(x, y,0) ~ [u(x, y,0) = £, (5, .01 [(fo (6, 3)" + £, (2, 9)°] (.13
v, (63, 1) = BV, 3,0 = & 3,0 = £, (69,01 (35 9)° + £, (% 0]

The coupled Equations 3.13 can be solved iteratively, in order to compute the GVF vector
field. The GVF fields, e, u and v, have converged when the value of the left-hand side of
Equation 3.13 remains the same between successive iterations. Since the gradient of the
image in the homogeneous regions is neatly zero, the second terms of the pair of equations

(Equation 3.13) are zero. In such a case, u and v are determined by Laplace’s equation

using the Laplacian operator (V?) and the resulting gradient vector field is interpolated from
the region’s boundary, reflecting a sort of competition among the boundary vectors (Xu &
Prince, 1997). In other words, GVF is the result of mixing the gradient and Laplacian.

The gradient vectors are normal to the boundary surface, but by combining Laplacian
and gradient the result is not the normal vectors to the boundary surface. As a result of this,
GVF yields vectors that point into boundary concavities, so that the active contour 1s driven
through the concavities. Figures 3.1 & 3.2 show a quasi-oval object and an object with
natrow concavities, tespectively. The vector fields produced by the gradient and GVF

technique are demonstrated in Figures 3.3 & 3.4.
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Figure 3.1: An MRM image for testing GVF

Figure 3.2: An MRM image showing a structure with narrow concavities for testing GVF
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Figure 3.3: Vector fields for object from Figure 3.1: produced by (a) gradient and (b) GVF.
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Figure 3.4: Vector fields for object from Figure 3.2: produced by (a) gradient and (b) GVF.
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As shown in Figures 3.3 and 3.4, the GVF vectors originate inside the region and point
towatrd the boundary. The boundaty is seen where the vectors from inside and outside of the
region meet in the opposite direction. Therefore, GVF drives the active contour to the
boundary and fastens the active contour on the location of the boundary.

GVF provides a latge capture range for the boundary, so the active contour is not
requited to be located close to the boundary. It also improves the active convergence for the

concavities.
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3.3 Geometric deformable contours

Miller ez a/. (1990) proposed a geometric deformable model. In their model an active
contour is considered as a polygon, consisting of points (vertices) and edge segments
connecting the points. As with all active contours, this polygon model deforms until it
converges to the boundaty of an object. The deformation process 1s performed by
minimising a cost function that defines the displacement of the vertices. The cost function is
a sum of constraint terms based on the shape of the polygon shape (angle and distance
constraints), the image (image constraints) and pressute (pressure constraint). The constraint

equation is defined as follows:

C,(x,y,d,a)=a,7(x,y)+a,D(x,y)+a,A(d) +a,0(c) (3.14)

where C,(x,y,d,q)is the cost function associated with the position of the vertices; d and
o denote the distance between the two neighbouting vertices and the angle between
adjoining edge segments, respectively; 7(x,y) is the image constraint term; D(x,y) is the
the pressure constraint tetm; A(d) is the distance constraint term; 6(¢) is the angle
constraint term; and a,, 4,, a,& a, are weightings. We briefly explain these constraint

terms:

The image constraint term, 7(x,y), is a thresholded image and it can be an edge map

produced by any edge detector.

The ptessure constraint term, D(x,y), controls the direction of deformation by inflating
ot deflating the polygon model. This constraint term is a monotonically increasing or
decteasing function of the distance between a vertex and a reference point. In the decreasing

form the pressure constraint term is represented as:

M
D(x,y)=1 3.15
) ) = G 19

where M is the diameter of the image, (x,y) is the position of the vertex and (x,,y,) is
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the position of a reference point that is assigned inside the object of interest. In this form the

ptessure constraint term deflates the polygon. In the increasing form the pressure constraint

term is applied to the constraint equation, and it inflates the polygon.

D(x,y)

The distance constraint term, ze., A(d), maintains the distribution of the vertices, based
on the distance between the neighbouring vertices. To do this, the mean distance (i)

between neighbouring vertices is calculated:

1 &L 1 k=
H=— PULAMCIORIACHYEinD Y ACTIELMCRY (3.16)
i=k—n i=k+1

where n is the number of neighbours to each side of the vettex k, P, reptresenting the

position of vertex i. Furthermore, the minimum (ie, d, ;) and maximum (ie, d

i )
distances are defined 20% below and above i, respectively. A(d) is defined based on the
minimum and maximum distance in such a way that, if the length of each edge segment
(dqg ) 2djoining a vettex is between these two distances, the distance constraint term will
be zero. However, if the edge length is smaller than the minimum distance, the distance
constraint will be equal to the difference between the minimum distance and the edge length,

and for edge lengths larger than the maximum distance the distance constraint will be the

difference of the maximum and the edge length.

The angle constraint term, ze., €(¢x) , maintains the shape of the polygon model. First, the
initial internal angle (&) between two adjoining edges is calculated for each vertex. The
minimum angle (i.e., &, ) and maximum angle (Ze., &,,, ) are computed as 15% below and
above @ . During the deformation process, if an angle is between the maximum and
minimum values, the angle constraint is set to zero; otherwise, if the angle 1s smaller than the
minimum parameter the angle constramt is equal to the difference between the angle and the
minimum value. For an angle larger than the maximum angle, the angle constraint is set to

the difference between the angle and the maximum value.
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The deformation process is catried out by minimizing the cost function for each vertex.
To minimise the cost function, each vertex moves in the direction of the gradient of the cost
function (ze., 0C, /dx and 9C,/dy). The minimization process is performed iteratively until

the cost function for each vertex reaches zero ot a certain small value.

Geomettic deformable models are computationally less expensive that traditional active
contours (Millet, 1990). In geometric deformable models the constraint equation is evaluated
only for the vertex position, not for the trajectory of the connecting edge segments. This
makes the model discrete; therefore, the length of the connecting edges defines its resolution

(Lobregt & Viergever, 1995).
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3.4 Geometric active contours

Geometric models of active contouts wete proposed by Caselles ¢z 2/ (1993) and Malladi
et al. (1995). These models are based on the theory of curve evolution and geometric flows.
In these active contour models, the cutve is propagating (deforming) by means of a velocity
that contains two terms, one related to the shape of the curve and the other to the image
(Caselles ef al., 1995).

Malladi e# o/ (1995) used the level-set method for the geometric active contours. The

level-set method was proposed by Osher & Sethian (1988). The curve evolution is
implemented by embedding the curve C(s) in a sutface function ®(X,y,t) . Specifically, at
t=0, the curve is the level set given by ®(X,y,t =0)=0. The cutve evolves as the
surface evolves over time. When the evolution of ®(X,y,t) stops, for example at
®D(x,y,t =T), the evolved curve can be obtained from the level set ®(X,y,t=T)=0.

By using the level-set method, the geometric active contours have the advantage over
other active contours that they can automatically handle topological changes (e.g., the
splitting and merging of cutves during evolution). Therefore these active contouts can
simultaneously detect several objects.

Caselles ¢z al. (1995) showed that a particular case of the classical energy-minimising active
contours is equivalent to finding a geodesic curve (minimal distance path between given
points) in a Reimannian space with a metric derived from the image. This geodesic active
contour includes a new component in the curve velocity, based on the image information,
that improves the geomettic active contour model. The new velocity component allows

accurate tracking of boundaries even with small gaps.
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3.5 Discrete dynamic contours

Discrete dynamic contours were proposed by Lobregt and Viergever (1995), inspired by
the geomettically deformable model (Miller e al., 1990). Adopting the basic structute of the
model that vertices are connected by edge segments, discrete dynamic contours depend on
the distance between a vertex and its neighbours, and the estimation of local curvature.

The dynamic behaviour of the contour model is defined based on a force equation, which

is computed for each vertex:

Ftotal,i = Wext l::ext,i-l_ wint I::im?,i-'“ Wdamp Fdamp,i (317)
where F,,,; is the total force term; F,,;, F,,; and E,,, are the external, internal and
damping fotce tetms, respectively; and w,,,, W, and W, are the external, internal and

damping weightings, respectively. The internal force is computed based on the local shape of
the contour, the external force is based on the image information, and the damping force is
used to improve the stability of the dynamic process of the active contour. First the dynamic

behaviour of the active contour is described and later we discuss the fotrce terms.

According to the fotce equation (Equation 3.17) the interaction of the force terms results
in a cost function (ze., total force) for each vertex. Similar to traditional parametric contouts,
in this model the deformation process is petformed by minimization of the total force for
each vertex. The dynamic behaviour of the active contour is determined by computing an

acceleration term for each vertex using the total force:

a,(1) = —F, 0., (1) (.18
m

i

where a, is the acceleration vector of vertex I, m; represents the mass of the vertex and 1s a

scalar, and ¢ tepresent the state of the contour in an iteration. The velocity term and the

position of each vertex are then computed based on the acceleration term:
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v,(t+At)=v, (1) +a,(t)At (3.19)
and

p,(t+ A= p,(t)+v,(DA (3.20)

whete V, is the velocity vector of vettex i, Af represents the incremental time between two

iterations, and p, represent the position of the vertex.
In the following sections we discuss the internal, external and damping forces in detail.

3.5.1 Internal force term

In the discrete-dynamic approach, a contour consists of vertices that are connected by
straight-line edge segments. The internal force aims to preserve the contout’s smoothness.
To do this the internal force should minimise the local curvature for each vertex. The
measure of the local curvature for the vertex is the angle between the two adjoining edges at
each vertex. The local curvature for each vertex is defined as the difference between the

directions of the two edge segments that join at that location. Figure 3.5 shows a contour

composed of eleven vertices. Each vertex is represented as V;, and the previous and next

neighbouring vertices are represented as V,_; and V,, respectively. Figute 3.6 shows two

edge segments and the local curvature vector.

The local curvature is defined as
(3.21)
where C; represents the local curvature at V. which is located between the adjoining edge

H

segments d; and d,_;; d; and d,_; are the unit vectors which tepresent the directions of the

edge segments. The local curvature has a length which depends only on the angle between
the adjoining edge segments at the location of the vertex and is not influenced by the lengths

of the two adjoining edge segments.
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i+)

Figute 3.5 A contour consisting of a set of eleven vertices (V) that are connected by edge segments (from
Lobregt & Viergever, 1995).

Figure 3.6: Calculation of local curvature. Local cutvature (G) at the position of a vertex (V,) is defined as the
difference between the directions of the adjoining edges (d, &d, ;) (from Lobregt & Viergevet, 1995).
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The radial unit vectors are calculated based on the locally tangential unit vectors for each
vertex. The tangential unit vector for each vertex is the normalised sum of the unit vectors
of the two adjoining edge segments at that location. The radial unit vector for that vertex will

be the rotation of the tangential unit vector by 90 degrees. Figure 3.7 shows the tangential

(f,) and radial (f,) unit vectors at the location of vertex V.

Figure 3.7: Local tangential and radial vectors for a vertex. ,, f, and V, are the local tangential vector, the
radial vector and the vertex, respectively (from Lobregt & Viergever, 1995).

Equation 3.22 represents the computation of the locally tangential and radial unit vectors

for vertex V,:

’t\ — di+dt+1
Cold+d
(3.22)
0 1].
1= ti
-1 0
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The goal of applying the internal force is to presetve the smoothness of the contour by
reducing the local curvature. The calculation of the internal force can be done by considering
the interal fotce for a vertex as only the component of the local curvature vector of the

vertex in the direction of the local radial vectort, as follows:

F,,. =(c, 1)t (3.23)

Figure 3.8 shows examples of contours for which the internal force gives a satisfactory
result (c) and unsatisfactory results (a & b). The contours are shown on the left-hand side,
including the internal force vectors (arrows). On the right side the internal force vectors are
shown in r,t coordinates. The vertical (#) and horizontal (f) axes of the coordinates
represent the radial and tangential directions, which are perpendicular to each other. As
shown in this coordinate system, the internal force vector of each vertex is parallel to the
radial unit vector. In contour (a) the internal force vectors attempt to minimise the areas
with constant curvatute, and this has a shrinking effect and leads the contours to implode to
a point. In contoutr (b) this intetnal force leads the active contour to accumulate the vertices
in the sharp cotners. However, the internal force gives a successful result for model (c),
minimising the local curvature and straightening the contour.

Howevet, the internal force should reduce the local curvature without affecting areas of
constant cutvature. For that reason, the lengths of the internal force vectors should be zero

for parts of the contour with constant cutvature.
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r,t-coordinates
@ 1
a .
::-_—j b
W : | ! I ! [ !

Figure 3.8: Examples of different contours (left). The atrows represent the internal forces. On the right, the
internal forces ate shown using the locally tangential {, and radial f coordinates, for each contour (from

Lobregt & Viergever, 1995).

In order to prevent the internal force from shrinking areas with constant curvature, one

solution (proposed by Lobregt and Viergever) is to convolve the result of Equation 3.23

with a filter (k;):

Fint,i =(c;: fi )Ek; . (3.24)

k; can be designed in different ways. Lobregt and Viergever used the simple symmetrical

filter

k,={...000-11-1,000,..} (325

so the internal force will be
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E. =l % (¢, B +(e1)- % (i TDIT; (3.26)

In this case the internal force of each vertex is a combination of local curvature of the
vertex in its radial direction, combined with half of the internal forces of the neighbouring
vertices. The internal force of each vertex is in either the same ot the opposite direction as
the radial unit vector for the vertex. In this formulation, the local curvature and the direction
of the radial unit vectors of the neighbouting vertices affect the internal force of the vertex.
The new internal force can solve most of the shrinking effects that exist with the internal
force of Equation 3.26. Figure 3.9 shows the internal forces computed with Equation 3.26
for the same contours shown in Figure 3.8. The new internal force computation gives

satisfactoty tesults for contours (a), (b) and (c).

t,t-coordinates

= 0

f.

T AN

Figure 3.9: Examples of different models (right) that are shown in Figure 3.8. The arrows represent the internal
forces. The internal forces are shown in the locally tangential Ei and radial £ cootdinates for each model (left)

(from Lobregt & Viergever, 1995).
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Fot open contouts, at the open ends, t; is defined to be equal to the direction of the first

or the last contour segment: t; =d, and t, =d,_,, while the local cutvature is set zero for

both end positions.

3.5.2 External force term

In disctete-dynamic contouts, the external force term is similar to that in other active

contoutrs:

F . =F_ +F (3.27)

ext,i image,i constraint ,i

where the image fotce term can be a gradient of the image, and the external constraint is an

optional uset-defined external constraint such as springs or volcanoes.

3.5.3 Damping force term

A damping force term is used to improve the stability of the deformation process. This
term is used because sometimes the contour may oscillate between two states. For each

vertex, the damping fotrce term is a force proportional to the vertex velocity as:

Frmsi ==V, (3.28)

where V,; is the velocity of the vertex.

3.5.4 Re-sampling
A re-sampling process is applied to maintain the resolution of the active contour. To do

this, a desired distance value between neighbouring vertices, d is defined by the user,

edge >

then minimum and maximum distances are set:
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(3.29)

In this procedure, if the edge length between two neighbouring vertices is more than

d, .. anew vertex is inserted in between, while two neighbouring vertices are merged if the

distance between them is less than dmin .

The discrete dynamic contours are conceptually simple and computationally less
expensive than the previous active contouts, ¢.g.,, parametric contours (Kass ez 4/, 1986) and
geomettic deformable models (Miller ¢ 4/, 1990). The re-sampling process of the discrete
dynamic contour improves the tesolution that exists with active contours such as Miller’s
geometric deformable models. It also reduces the shrinking effect caused by the internal

forces of the traditional active contours (Lobregt & Viergever, 1995).
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4, IMPLEMENTATION OF ACTIVE CONTOURS

In this chapter we will concentrate on the implementation of two approaches proposed
for active contouts, ze., the parametric approach (Kass ¢f 4/, 1986) and the discrete dynamic
apptroach (Lobregt & Viergever, 1995). We used active contours based on these approaches

for our experiments in Chapter Six.

4.1 Parametric contours

In this section we review the discrete (in terms of time and space) implementation
for parametric contours which was originally proposed by Kass ef 4/ (1986). They applied
numerical methods for the implementation of their active contours. A contour consists of n
vertices (V) that are connected by straight lines.

In the discrete form, the enetgy functional of the active contour (Equation 3.1) can be

* represented as:

E*snake = Z [Eint (vi) +Eext (vi )]

i=1

where
E, = ai|vi - Vi—l‘z + ﬁi |Vi—1 =2V, +V,, ’ 4.1)
Eext = _|VI|

where v, =V, , meaning that the active contour 1s a closed contour and the first and last

vertices are at the same location. The vertices are represented as column vectors, with

respect to the coordinate components:
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—xJ _ylT

X2 Y2
X = . y =

| *n | Yn |

The corresponding Euler equation for energy minimization of the active contour (Equation

3.3) is teptresented as (Kass ez a/., 1986):

(V= Vi) =0y (Vi — V)

+ BV, =2V, +V,]- 281V, =2V, + vV 1+ B[V, = 2v,, +V,] 4.2)
+ (VEext , V‘E‘ext ) — 0
ox  dy

ot, with respect to the coordinate components,

o (x, =X, ) = Oy (X — X;)
+ B x ., —2x, +x]1- 2ﬁi [x, —2x; +x,, ]+ :Bm [x; —2x,, +x]
VE

ext —_ O
+ (—ax )

4.3)
(Y = Yi) = %y (Vi — Vi)
+B[yin =2y, + y1=-2B1y., -2y + Vil ¥ By =2y, + ]
VEext

Equation 4.3 can be written in matrix form as:

Ax+—07Em (xy) _ 0
ok

Ay+—0_)Ee"’ ) _ 0
o

(4.4)
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whete A is a penta-diagonal banded mattix. The size of this matrix is #Xn (n being the
number of vertices). For instance, for an active contour consisting of 10 vertices, matrix A

is as follows:

20+6 —a—-4f f 0 0 0 0 0 0 0
—a-4f 20+6B —a-4B B 0 0 0 0 0 0
Yi] -4 20+6f —o-4p p 0 0 0 0 0
0 B —a-48 20+68 -o-48 B 0 0 0 0
A 0 0 p —a-4f 2a+6 -a-4f B 0 0 0
0 0 0 B —a-4f 22a+68 -a-48 B 0 0
0 0 0 0 B —a-4f 2a+6f -a-48 S 0
0 0 0 0 0 B —a-4B 2a+68 -a-4f f
0 0 0 0 0 0 B —a-48 20a+68 -a-4f
|0 0 0 0 0 0 0 B -a-48 20+6f

To solve Equation 4.4, the right-hand sides of the equations can be set equal to the
ptoduct of a step size and the negative time derivatives of the left-hand sides (Kass et al.,
1986):

AX + wext (xt—l’yt—l) —

t Y _7(Xt _Xt—l) 45
O, (X, 15Y,1) )
Ay, 1 ext 0;1’ =17 _ —7’()’, ~Yt—1)

where subscript ¢ is the iteration number and ¥ is the step size. According to Equations

4.6, the balance between the force terms is achieved when the right-hand sides of the
equations are zero, which means that the location of the vertices in the successive iterations
has not changed. The solution for Equations 4.5 to compute the vertex positions is done by

matrix inversion as follows:

49



OE s (X5 Y1)
ok

O ., (X, 1,Y, 1)
&

X, =(A+ D)7 (%, - )

(4.6)

Y, = A+ Oy, ~ )

where I is an nXn identity matrix. The A matrix must be updated after each iteration.

For our expetiments with patametric active contours, we used an implementation by Xu
& Prince at the Image Analysis and Communications Lab, Johns Hopkins University. The
code was written in Matlab (The MathWorks Inc.). Further information about the
implementation and the code is provided at http://iacl.ece.jhu.edu/projects.

Accotding to the implementation by Xu & Prince of the parametric active contours, to
apply a pressure force to the active contour, as in Equation 3.8, Equation 4.6 can be

modified to:

aEimage (X,_15 Y1)
ox

aE,-mage (X5 Y1)
oy

Xt = (A + }l)_l(yxt—l + Kln(xt—l) —-K )

“4.7)

y, =(A+ 71)_1(73':—1 +rn(y, )—K )

where n represents the normal unit vectors to the vertices, K 1s the image force weighting,
and K, reptesents the pressure weighting, which can be a positive or negative value to inflate

ot deflate the active contour, respectively.

In the implementation by Xu & Prince, a re-sampling process is applied that maintains

the resolution of the active contour. After each iteration the distance between two vertices is

computed. If it is larger than a defined maximum value (eg, 14 pixel) a new vertex is

inserted in between, and if the distance is less than a defined minimum value (¢, + pixel)

the vertices are merged.
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4.5 Discrete dynamic contours

We developed a semi-automatic computer programme, Oxiana, that implements the
discrete dynamic contours of Lobregt & Viergever (1995). This programme was initially
written by Hamelin, Labonté & Pelletier (1999) in our lab. Oxiana is written in C. It uses
GIMP, the GNU Image Manipulation Programme, for graphics and general data structure
implementations. The GIMP programme includes the GLADE toolkit, which is used to
build the graphical user interface. The GLADE toolkit uses GTK and GDK, multi-platform
toolkits for creating graphical user interfaces, and the Glib library, containing libraries for the
graphics, and for general data structure implementations. Further information about GIMP
and GLADE is available at http://www.gimp.org. Information about GTK, GDK and the
Glib library is available at http://developet.gnome.otg/doc/API/.

The user can either draw an initial contour using the mouse, or load a previously saved
contour. To draw an initial contour using the mouse, the user clicks in the region of interest
and Oxiana connects the successive vertices by lines. It connects the first and last points in
otder to draw a closed contour. Figure 4.1 shows the sequence of drawing a closed contour.
The user interface makes it possible for the user to edit the location of each vertex through
the Vettex List. Also through the Edit Vertex window, the user can set the selected vertex to
be either normal or anchored. The user can add a spring point that 1s applied to the selected
vertex. The volcano has not been yet added to the intetface, although the code for volcanoes
is available in the programme. This was because we prefered to use pressure forces instead
of volcanos, since applying pressute forces requires less user interaction and is easier than
using volcanoes. Figure 4.2 shows the Vertex List and edit menu for the vertices of a current

active contout.
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Figute 4.1: The sequence of drawing a closed contour using the mouse.

32000000 1.000000 0.000000
1000 43.000000 1.000000 0.000000
52.500000 1.000000 0.000000

57.500000 1.000000 0.000000
1000 54500000 1.000000 0:000000
1800 47.000000 1.000000 0.000000
44500000 1.060000 0.000000

Figure 4.2: Vertex List, and edit menu for a selected vertex that can be manually modified by the user.
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Oxiana includes both the gradient and GVF to calculate the external forces. The user can
change the external force from gradient to GVF and vice versa, at any time. All the force
weighting factors can be changed through the user interface by the user. The uset can save
the current active contour at any time and later the contour can be loaded for further
applications.

Oxiana had to be debugged first and then to be modified in order to handle other

features, which are described in this section.

4.5.1 Debugging

In the progtamme as implemented by Hamelin, Labonté & Pelletier (1999), thete wete
two bugs that needed to be fixed beforehand. One was related to an “if condition” for
finding the external force value of the cotresponding vertices. The other one was related to

the re-sampling process of merging close vertices, which was using a wrong pointet.

4.5.2 New features
Oxiana was improved to include the application of open contours and pressure forces,

and some other features that are discussed in detail below.

4.5.2.1 Open contours

Oxiana was originally designed to automatically connect the first vertex to the last
initialised one; therefore, it could only implement closed contours. We improved the
programme in order to allow open contours. To do this, the code was modified in such a
way that the first and the last vertices remain unconnected and are considered as anchors, if
the contour 1s open.

Figure 4.3 shows an example of the sequence of drawing an open contour.

53



Figure 4.3: The sequence of drawing an open contour.

In a step-by-step process, the user can draw an active contour in several steps, iterating
the active contour after each vertex is added. This provides connected open contours that
can be considered as a simple contour in the end. This has the advantage of easily applying
as many anchor points as desired, instead of implementing the entire active contour all at

once and then anchoting the intermediate vertices using the edit vertex interface.
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4.5.2.2 Pressure
Positive and negative pressure forces were the next feature added to Oxiana. As defined
in section 3.2.3, the ptessure forces are implemented as vectors perpendicular to the vertices.

By combining Equations 3.9 & 3.17, we reach Equation 4.10, as follows:

E‘otal J = Wext Fext,i+ Wint l:‘;m‘,i"*- wdamp Fdamp,i+ Wpressure pressure i (48)
whete W, and F . . are a pressure weighting factor and a unit force vector,

respectively. w is defined by the user, and can be a negative or positive value to

pressure

deflate or inflate the active contour model, respectively. F is the radial unit vector to

pressure,i

the vertex .

4.5.2.3 Application to multiple slices

Oxiana has the ability to save the current active contour, and to then reload it for use on
the same image or other images. Therefore, we can apply and iterate an active contour on a
slice from a dataset and when the segmentation of a region of interest is completed, by
opening the next slice and loading this active contour, the active contour will appear at the
same cootdinate positions as in the previous slice, and it can then be iterated on the new
slice. Hence, no active contout initialisation is requited for the second slice. This results in
time saving and simplicity of operation. Figure 4.4 illustrates this feature of Oxiana on three
successive slices of an MRM dataset. An initial active contour is implemented and iterated to
segment a desired structure in a slice (e.g., slice 109), and the converged active contour 1s
loaded on the successive slice (e.g., 110), for the same structure. Thereafter, by iterating the
active contour on this slice, it fits itself to the boundary of the structure in this slice and

segments the desired structure. In this example we continued this process on the next slice

(e.g., 111).
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Shice 109 ()

Slice 110 (d)

Slice 111 (¢) : Slice 111 (f

Figure 4.4: Example of the multi-loading propetty of active contours in Oxiana: (a) the initial active contour
(white line) on slice 109 of MRM dataset, (b) the final contour after 150 iterations when the active contour
converges to the boundary, (c) the active contour loaded on the same structure in slice 110, (d) the final
contour on slice 110 after 30 iterations, () the active contour loaded on the same structure in slice 111, and (f)
the final contour on slice 111 after 20 iterations.
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4.5.2.4 Exporting

Oxiana can be a complementary tool for the computer programmes Fie (Fabrication
d'imagerie extraordinaire) and Tt3 (for triangulating 3-D surfaces between serial-section
contours), both written in our laboratory. Using Fie the user manually segments the
structutres of interest. Fie produces a text file containing locations of vertices, slice names,
names of contouts and various other information which is used by the Tt3 programme to
create 3-D models for visualisation (using VRML) and finite-element simulation. Further
information about Fie and Tt3 are available at
http://audilab.bmed.mcgill.ca/~funnell/Audil.ab/sw/.

Oxiana can output active-contour information that can be easily fed to Fie. The output of
Oxiana is a text file including vertex coordinates, contour name, slice name, and z-
coordinate. The last three items are defined by the user. Using any text editor, the user can

copy and paste the information directly into the file used by Fie and Tt3.

4.5.2.5 Avoiding collapse

Disctete dynamic contours have a tendency to shrink due to the internal force
characteristics, although it was claimed by Lobregt & Viergever (1995) that the shrnking
ptoblem is solved in discrete dynamic contours. In cases where the external forces cannot
balance the force equation, either due to a high negative pressure force or because the initial
contour was located far from the boundary, the active contour would keep shrinking and
would eventually collapse. This results in losing the active contour mnformation, since the
programme re-draws the active contour after the user-defined number of iterations. A check
was added to verify if the content of the active contour is NULL, Ze., the contour has
collapsed, after the user-defined number of iterations. In such a case the programme
terminates the iteration process and avoids re-drawing the collapsed active contour.

Moteover, a warning message will advise the user to save the current active contour before

losing it.
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4.5.3 Springs vs. anchors

Sptings and anchots are constraints that are used to assist the convergence of active
contours to desited boundary regions. A spting acts as a local constraint force that attracts a
selected vertex to a desited location on the image. An anchor, by contrast, immobilises a
vertex when applied.

To fix a vertex on a weak boundary, we can use either anchors or springs. Using Oxiana,
a spring is easily applied to the desired vertex. For doing this, the desired vertex is selected
through the pop-up vertex list and the user can change the x & y coordinates of the spring
by typing them (e.g, any actual boundary pixel) and the spring weighting factor. In the next
iterations the spring affects the selected vertex and draws it to the spring point. To anchor a
vertex, the desired vertex can be easily set to anchor mode through the vertex list, and also
its location can be changed manually, if necessary, for instance to position it exactly on the
boundaty pixels. In such cases, the difference between a spring and an anchor is that the
anchor must be located on the boundary and the user should recognise the boundary; while
using a spring a user need only locate the spring point somewhere close to the boundary. A
spting helps to move the vertex close enough to the boundary that the active contour can
convetge.

A spting can be set as positive ot negative in order to either attract or repel the selected
vertex. The difference between a spring and a pressure force is that the spring is applied
locally, on only one vettex, while the pressure force is applied globally to the active contour

and affects all vertices.
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5. MATERIALS

This chapter describes different image datasets that we used for our active-contour
expetiments. The datasets include histology and Magnetic Resonance Microscopy (MRM)
images. There are three kinds of image datasets available for the study of middle-ear images,
including histology, MRM and x-ray Computer Tomography (CT). Since x-ray CT cannot
show the soft tissues as well as MRM images, we chose not to use it. The two datasets used

here are typical of the histology and MRM datasets available.

5.1 Histology

Histology is the study of tissue, which is an organized collection of cells and their
suppotting structutes. In contrast with CT and MRM techniques, histology provides colour
images with higher resolution. The preparation of histological images such as the middle ear
includes several processes (Ham & Cormack, 1979).

First, the tissue is fixed with formaldehyde in order to prevent post-mortem
decomposition, presetve structure and intensify subsequent staining. Next is decalcification
of bones or calcified cartilages using decalcifying fluid. This process dissolves the inorganic
salts that would cause difficulty in slicing the structures afterwards. The decalcified structure
is embedded in, for example, paraffin or celloidin, to prevent distortion during slicing. Then,
the structure is sliced and stained. Staining the slices is done by using hematoxylin and eosin
ot other stains. For instance, under the influence of hematoxylin, the tissue absorbing this
stain will take on a blue to putple colour. For the tissues absorbing eosin, a pink to red
colour is achieved, depending on the properties of the tissue. The last process 1s mounting
the stained slices on a glass slide, for protection.

Thete are three issues related to the use of histological data for 3-D modelling purposes.
Firstly, due to the thinness of sectioning, serial sectioning results in a large quantity of slices;
since the staining and mounting process is time consuming, typically every fifth or tenth slice
is mounted and the slices in between are discarded. Secondly, the mounting process results

in misalignhment between the slices; therefore, the histological data require an alignment
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ptocess before 3-D reconstruction. Thirdly, serious distortion may occur even after the
embedding process.

The histology dataset that we used for our experiments was prepared by C. C. Northrop
and S. R. Levine from The Temporal Bone Foundation, Inc., Boston. The data are from a
human eat, sectioned at 20pm in the horizontal plane; every fifth section was mounted on
mictoscope slides. The slides wete scanned using a Polaroid slide scanner with a resolution
of 2700x2700 pixel/inch. The size of each image is 1976X1684 pixels. Figure 5.1 shows an
example of a middle-ear histological slice. Although our original histological dataset consists
of colour images, in out expetiments, which ate discussed in the following chapter, we used

the histological dataset after converting them to grey-scale images.

Figure 5.1: Slice number 256 from histological dataset of human middle ear.
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52 MRM

Magnetic Resonance Microscopy (MRM) is an extension of Magnetic Resonance Imaging
(MRI) to the microscopic domain, with higher spatial resolution than MRI. They are both
based on Nuclear Magnetic Resonance (NMR). The principles of NMR, MRI, and MRM are
provided in several publications (e.g., Cutry ez 4/, 1990; Bronzino, 1995; Brown ez al., 1999).
MRM is 2 new form of mictoscopy that overcomes many limitations of conventional
microscopy, such as the need for slicing and staining, or ionizing radiation, which are all
invasive and destructive procedures. Both MRM and MRI are powerful, non-invasive and
high-quality imaging modalities for three-dimensional cross-sectional scanning with the
ability to demonstrate anatomical structures and pathological changes. Soft-tissue

differentiation is generally better than with x-ray imaging.

The MRM dataset we used for our experiments was made available by M. Henson &
O.W. Henson, Jt., from the University of North Carolina at Chapel Hill. Middle-ear
specimens were scanned at Duke University in the Center for In Vivo Microscopy. The
-dataset number 13641 is from a human ear. The dataset consists of 180 transverse sections,
each 187X256 pixels, and the voxel size is approximately 120um. Figure 5.2 shows a sample

slice.
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Figure 5.2: Slice number 110 from MRM dataset of human middle ear.
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6. RESULTS

Our reseatch on the segmentation of middle-ear images using active contours includes
the following phases:

e Investigation of the calculation of GVF;

e Experiments with force weighting factors;

e Comparisons between parametric and discrete dynamic active contours for
segmentation of histological structures;

e Compatisons between parametric and discrete dynamic active contours for
segmentation of MRM structures;

e FExperiments with discrete dynamic open contours for histological and MRM
structures.

We discuss the phases in the following sections.

We used two different programmes for the two active-contour approaches. One
progtamme, which implements parametric active contours, GVF and pressure, was written
in Matlab (The MathWorks Inc.) by Xu & Prince (1997) from the Image Analysis and
Communications Laboratoty, Johns Hopkins University. Oxiana, developed in our lab, was

used to implement the discrete dynamic contouts.

6.1 Calculation of GVF

We did experiments with GVF in order to find the appropriate number of iterations for
convergence. We applied different numbers of iterations to compute the GVF, and then we
compated the external force maps for each number of iterations. Figures 6.3 and 6.4 show

the external force maps for 5, 40 and 80 iterations for a histological image (Figures 6.1) and

for an MRM 1image (Figure 6.2), respectively.
We found that 80 iterations is appropriate, although for many images 40 iterations seems
good enough (as in Figure 6.4). It is important to note that this is not a quantitative analysis.

The ctiterion for choosing 80 iterations is based on the observation that we actually see no
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visual difference between 80 iterations and the next examined number of iterations above it,
i.e., 100 iterations. GVF computation is a time consuming process; therefore, by choosing 80

iterations, less time is required for GVF computation than with laxger numbers of iterations.

Figure 6.1: Malleus bone in slice 196 of the histological dataset.

Figure 6.2: A cavity in slice 110 of the MRM dataset.
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Figure 6.4: The external force maps produced by GVF of Figure 6.2: for (top) 5, (middle) 40 and (bottom) 80
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6.2 Force weightings for active contours

One of the most important issues for active-contour applications is choosing the
apptoptiate weighting factors, ze., tension, rigidity and the external force weightings for the
patametric approach, and the internal, external and damping weighting factors for the
discrete dynamic contours. Experiments were performed to evaluate the performance of the
two types of active contours with different combinations of force weighting factors, as
discussed in the following sections.

According to the force-balance equations for parametric (Section 3.2) and discrete
dynamic (Section 3.5) contours, the active contour evolves and then comes to rest when it
has minimized its energy. The change of the location and number of the vertices reaches a
very small number ot zero. In consequence, the positions of the vertices remain practically
unchanged. The combination of the internal and external force weightings has a crucial
effect on the fotce-balance equation. Any inappropriate combination of the weighting

factors affects the active-contour performance and produces undesired results.

6.2.1 Parametric contours

Figure 6.5 shows some examples of inappropriately chosen values for tension, rigidity and
the external force weighting factors. In these examples, the values of the weightings are
exaggerated in order to clearly show the effects. As discussed in Section 3.2.1, increasing the
tension weight will cause the active contour to behave more like a rubber band trying to
contract. Figute 6.5(a) shows this effect for a = 0.5. Figure 6.5(b) shows the result of

increasing rigidity to a high value (/8 =20), which causes the active contour to act as a stiff

wite which cannot converge to the concavities. Increasing the external force too much
causes the active contour to follow the external force influence and the internal fotce
(tension and rigidity) can no longer preserve the contour’s smoothness. Figure 6.5(c) shows
this effect for x =5.

It is important to note that the best combination of the weighting factors may vary
depending on the characteristics of the region of interest (e.g., the contrast and shape), the
number of points of the initial contour, and the distance of the points from the boundary.
We found that the combination suggested by Xu & Prince (1997), ze., ¥ =0.6, oz = 0.05 and

B = 0.01, gave good results for most of the selected regions of interest of our datasets.
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Figure 6.5: The effect of increasing internal force parameters: (a) tension weight (& =0.5),
(8 =20) and (c) external-force weight (k=5).
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The acceptable range for each weight 1s as follows.

Increasing S will increase the rigidity of the model and would affect the shape even if
close to start with. We found that the rigidity weighting factor can be increased from 0 to
0.03 with almost the same results. Decteasing the tension weight causes the active contour to
follow the influence of the external force and lose its smoothness. The acceptable range that
we found for tension was from 0.02 to 0.08. For values over & = 0.08, the active contour
must be initialised close to the boundary; otherwise, the tension force tries to contract the
model and prevents the contour points from easily converging to the boundary. Figure 6.6
shows the example of an initial contour located close enough to the boundary (a) that
convetges for both @ =0.02 (b) & a =0.08 (c), and an initial contour located farther from
the boundary (d) than the one in (a), which converges for & =0.02 (e) but fails for & =0.08
(f) and continues shrinking due to the internal force characteristics of the parametric

contoutrs.

S g e

Figure 6.6: Examples of the relationship between the initial position of the active contour & tension: an initial
contout located close enough to the boundary (a), this contour convetges for «=0.02 (b), and for a=0.08 (c).
Another initial contour located farther from the boundary (d) than the one in (a), and it converges for «=0.02
(e), but fails for «=0.08 (f).
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We found that with paramettic active contours the ratio of force weightings is more
important than the values themselves. For instance, if the force weighting is increased four
times, which indeed exceeds the previously recommended ranges for the force weightings
- (ze., kK =2.4, aa= 0.2 & f=0.006), the active contour behaves as it does for ¥ =0.6, & = 0.05
& [=0.01, but it tequires that the initial contour be closer to the boundary. Although

keeping the rigidity weighting factor equal to zero when applying our suggested combination
does not noticeably affect the active-contour behaviour, we found that when using the
combinations that ate several times bigger than our suggested combination, if the rigidity is
zero the behaviour of the active contour changes: the effect of tension becomes more
evident, and the initial contour must be located closer to the boundary. In fact tension and
rigidity have modifying effects on each other and it becomes noticeable when the force
weightings are proportionally increased. The other combinations that we used for our

experiments on histology and MRM datasets are discussed in Sections 6.3 and 6.4.

6.2.2 Discrete dynamic contours

Figure 6.7 shows simple examples of inappropriate combinations of the weightings for a
disctete dynamic contour. In any of these examples the forces cannot balance each other, the
total force never reaches zeto or a small number, and consequently the positions of the
vertices continue to change. In this situation the active contour energy is never minimized
and it keeps evolving. In such a case the active contour approaches the boundary but it is
not smooth, as seen in Figure 6.7. The weighting factors are slightly exaggerated in order to
clearly illustrate the details for the limited size of image. For instance, decreasing the
damping and the internal force weightings to a smaller value than required, or increasing the
external force mote than required, e.g., w,,=6, will cause the active contour to follow the
influence of the external force without having the proper effects of the internal and the
damping forces to keep the model smooth. Figure 6.7(a) shows this example. In another
case, if the internal force weighting is higher than both the damping and external forces
weightings in such a way as to unbalance Equation 4.16, e.g, w;,,=2.5, the position of each
vertex is dominated by the internal force of that vertex, which is either in the same direction

as its radial unit vectors or in the opposite direction. This situation can be seen in Figure
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6.7(b). Finally, in the case where the damping weighting factor exceeds its proper limit, ¢.g,

w =3.5, it will result in a non-smooth contour model. This is the result of a situation

damp
where the total force from Equation 4.6 is never minimized for each vertex and
consequently, too much velocity is fed back (in the form of positive feedback) to the force
balance equation through the damping force. Figure 6.7(c) shows this example. Also, if any
two out of the three weighting factors are kept in their acceptable ranges, and only the
remaining one is set to zeto, the absence of this force will affect the force balance equation
and the behaviour of the active contour. For instance, if the extetnal and damping force
weightings ate kept and the internal force weighting is set to zero, the active contour follows
the external force influence and the contour is not smooth. Figure 6.8(a) shows this effect.
In another case, if we set the damping force to zero, this force weighting combination does
not result in a smooth active contour. This is because the damping force, which to some
extent provides the smoothness of the active contour, is absent. However, in this case the
active contour converges to the boundary. Figure 6.8(b) shows this effect. In the case where
the external force weighting is zero, the effect of the internal force 1s dominant and leads the
active contour to shrink, so the active contour cannot converge to the boundary. Figure

6.8(c) shows this effect.
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Figure 6.7: Effect of increasing force term values: (a) the external force weight, (b) the internal force weight and
(c) the damping force.
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Figure 6.8: Examples of setting force weightings to zero. (a) the internal force weight is set to zero, (b) the
damping force weight is set to zero, and (c) the external force weight is set to zero.
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For the datasets that we used for our experiments, the proper weighting-factor ranges

that we found were w,,=0.5£0.3, w,,=0.6£0.3 & w,,,,,=110.5. The combination can be

vatied depending on the characteristics of the regions of interest (e.g., contrast). This will be
discussed later in Sections 6.3 and 6.4 on experiments with discrete dynamic contours.

We found that only with discrete dynamic contours, and not with parametric contouts,
the ranges of the force weightings are more important that the ratios. For instance, by
increasing the force weightings four times, which indeed exceeds the ranges for the force

weightings (z.e., W,,, =2, W,,, =2.4 & W,,,,=4), the active contour does not behave as it does

when w,, =0.5, w,,=0.6 & w,,. =1, and it affects the smoothness of the active contour.

damp
This is due to the fact that the total force is proportional to the force weighting factors;
therefore, by increasing all the weighting factors two times the total force will be doubled.
Figure 6.9 shows the result of the best combination of force weightings(a) and then shows
the effect of increasing the weighting factor twice (b) and four times (c). By increasing the

weighting factors the smoothness of the contour is degraded.
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Figure 6.9: Examples of increasing the force weighting factors: (a) the best combination, (b) two times the best
combination and (c) four times the best combination.
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6.3 Parametric & discrete dynamic contours with the

histological dataset

This section includes the experiments with closed contours on the histological dataset,
comparing parametric and discrete-dynamic contours. The studies contain experiments with
the gradient alone, with GVF, and with the gradient plus pressure force. To precisely
compare the performance of the two active-contour approaches, identical mitial contours
were applied for both approaches.

The cross-sectional anatomical structutes chosen for the experiments wete mainly two
tiny bones of the middle ear: malleus and incus. Figure 6.10 shows the bones as quasi-oval

dark regions.

“Malleus

Figure 6.10: Histological slice 241 showing the malletis & incus bones as quasi-oval datk regions.
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6.3.1 Timings

Both out progtammes, Oxiana (discrete-dynamic approach) and the Matlab programme
(patamettic approach) ate run under Linux on a system with a 1-GHz Intel processor and
1GB of RAM. Due to the faster performance of programmes written in C than of those
implemented in Matlab, the speed of the computation is much higher with Oxiana. We
compated the execution times for computing GVF and gradient, and for active-contour
iterations, using the two programmes. The speed of GVF computation is different between
Oxiana and the Matlab programme. For instance, for each histological slice (770 x 500
pixels), the computation of GVF takes approximately 20 seconds with Oxiana and
approximately 3 minutes 30 seconds with the Matlab programme. Calculation of the gradient
with Oxiana and the Matlab programme takes 2 and 4 seconds, respectively. It is important
to note that Matlab has a built-in function for computing the gradient and therefore the
speed difference between Oxiana and the Matlab programme is not as big as for the
computation of GVF.

Again, the speed of iterations was different with Oxiana than with the Matlab
programme, and it is much higher with Oxiana. The information about the time required for
active contour iterations is provided in Table 6.1. This is a comparison between the
programmes that implement the active-contour approaches and cannot be considered as a
compatison between the approaches themselves.

We concluded that the computation for each iteration of an active contour with Oxiana
takes approximately 200Usec, while with the Matlab programme each iteration takes
apptroximately 1.5 sec. For this experiment, we used an initial contour composed of 11
-vertices as shown in Figure 6.11, for both active contours. The time difference between the
iterations in Oxiana and the Matlab programme is firstly due to the lower speed of
computation of the programmes implemented in Matlab, and secondly is related to the
algorithm implementation that computes the inverse of the #-by-# (z being the number of
vertices)) pentadiagonal matrix (described in Section 4.1). Although the matlab INV function
(for calculating (A+ }/I)_1 from Equation 4.6) is a built-in function, in general it is a time-

consuming calculation that affects the speed of the Matlab programme, for each iteration.
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Figure 6.11: Example of an active contour. It was used for the calculation of the speed of Oxiana and the
Matlab programme. The initial contour consists of 11 vertices on a selected structure. This contour was used
for both active contours, ie., parametric and discrete dynamic contours, to compute their iteration times, as
provided in Table 6.1.

Oxiana (iterations/sec) Matlab programme (itetations/sec)
10,000/2 5/7
20,000/4 10/15
50,000/10 20/30
100,000/20 40/60

Table 6.1: The comparison between the number of iterations for the same initial contour in Oxiana and in the
Matlab programme. We needed to apply very large numbets of iterations for Oxiana, to be able to calculate the
interval between each iteration.
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6.3.2 Gradient

In this experiment we applied the gradient as the external force for active contouts.

Table 6.2 provides the details of the experiments on some of the structures of interest.

No. of Discrete approach Parametric approach
Slice Structure | points for
number the initial No. of iterations No. of iterations
contout
181* Malleus 11 30 40
187 Malleus 10 35 50
196 Malleus 11 85 100
246%* Incus 11 50 65
266 Incus 12 60 80
306 Incus 13 75 90
306 Malleus 12 60 80

Table 6.2: Applying gradient alone for discrete dynamic and parametric active contours. The structures marked
with astetisks are shown in Figure 6.12.

The most important thing for the initial contour was that they must be close enough to
the boundary in order to converge. The number of points itself is not important, except in
so far as they allow the creation of an initial contour close enough to the boundary. Figure
6.12 shows the results of boundary delineation using parametric and discrete dynamic
contours for the selected structures marked with asterisks in the table. The two active-
contour approaches had similar boundary-delineation results using the gradient technique.

The gradient technique gave good results for all the structures of interest.
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Figute 6.12: Segmentation using the two contour approaches. The active contours were tested with the malleus
from slice 181: (a) the initial contout, (b) using discrete-dynamic approach and (c) using parametric approach,
and for the incus from slice 246: (c) the initial contour, (d) using discrete-dynamic approach and (e) using
patametric approach.

Since the capture range of the gradient is limited, however, the initial contour must be
located close enough to the boundary; otherwise the active contours may not converge to
the boundary. Figure 6.13 shows the results for an initial contour which was located close to
the boundary, and for two which were located farther from the boundary and that failed to

converge to the boundary.
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Figute 6.13: Segmentation with different initial contours. The active contours were applied to the malleus from
slice 196: (a) the initial contour (white line) located close to the boundary, (b) the final contour for the initial
contout shown in (a), (c) & (e) the initial contours located far from the boundary, (d) the contour from (c) after
600 iterations that is tending to collapse and fails to converge to the boundary and (f) the contour from (e) after
600 iterations that is not completely converged to the boundary and cannot converge any more.
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Using the same initial contour, the parametric-active contour requites a larger number of
iterations than does the discrete dynamic contout, as indicated in Table 6.2.

Using anchors or springs can overcome the limited captute range of the gradient for
regions where the initial active-contour points are located far from the boundary. In the
following sections we evaluate other suggestions, ze., GVF and pressure, to improve the

capture range of the gradient.
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6.3.3 GVF

In this section we evaluate GVF as the external force since the use of GVF attempts to
overcome the capture-range limitation of the gradient method; so the initial contour can be
located farther from the boundaries. Figure 6.14(a) shows an example of an initial contour
located too far from the boundaty, so that the active contour using the gradient fails to
converge to the boundaty (b), while GVF helps the active contour to converge to the

boundary (c).

Figute 6.14: Compatison of active contour convetgence for gradient and GVF. (a) An initial contour located
too far from the boundary. (b) The result of using the gradient is that the active contour cannot converge to
the boundary. (c) The result of using GVF that leads the active contour to converge to the boundary.

For some structures for which that the gradient gave good results, we used GVF to
accelerate the convergence of the active contours to the boundary. For instance, we used the

same initial contour comprised of four points for both parametric and discrete-dynamic
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approaches. The structute used for this example was the malleus from slice 196, shown in
Figure 6.13. The tesults, provided in Table 6.3, confirm that, in order to converge to the
structute’s boundaty, active contours requite smaller numbers of iterations when using GVF

than when using the gradient method.

Approach type No. of iterations for | No. of iterations for
Gradient GVF (£=0.2)
Parametric 3000 20
Discrete dynamic 2150 30

Table 6.3: A compatison between using the gradient alone and using GVF.

To further examine the capture range of GVF and the required number of iterations for
parametric and discrete dynamic contours, simple triangular initial contours were used for all
the selected structures. The triangle models were intentionally initialised far from the
boundaties to examine the captute range of GVF, and inside the structures in order to
protect the active contours from the effects of external forces related to the neighbouring
regions. The same triangle was applied for both parametric and discrete-dynamic contour
apptroaches. For most of the selected structures, however, these initial contours failed. This
failure was related to the small high-contrast regions existing inside the structures of interest.
Figure 6.15(a) shows examples of such small regions inside structures of interest, and the

corresponding external forces are shown in Figure 6.15(b).
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Figure 6.15: Example of a failure of convetgence using GVF. Histological slice 246 shows the malleus and
incus cross-sectional structutes. Both structutes contain small regions with high contrast (as marked) which
produce false boundaties that attract the active contours. (a) An example of the active contour (white line) that
overwhelms the boundary since the boundaty of the incus is wrongly identified by GVF with 0=0.2 and (b) the
external force map of (a) produced by GVF. The cortesponding location of the wrongly identified boundary of
the incus structute is shown by black arrows in Figutes (a) & (b).
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GVF produces extetnal forces for these small regions. For example, if any vertex is
located close to one of these small regions, the active contour converges to that region
boundary and not to the desited boundary. Therefore, for structures containing small
regions with high contrast, an appropriate initial model should contain as few points as
possible, but it must be closet to the desired boundary than to the small-region boundaties.
Figure 6.16 shows an example of an initial contour (white line) which succeeds for the

malleus containing small regions.

Figure 6.16: Example of initial contour containing high-contrast small regions. The active contour succeeded
for the malleus in slice 246.

For both active-contour approaches, we first used £ =0.2, as suggested by Xu & Prince
(1997). According to Equation 3.10, as 4 is reduced, the effect of the Laplacian decreases
and the gradient becomes dominant. We found that when 4 is very small, eg, 0.02, the

effect of GVF is not significantly different from that of the gradient alone. Therefore, we did
not apply 4 < 0.02 since it will have the same limitations as the gradient method. For our

expetiments with GVF, # was chosen to be as large as possible without causing wrong

identification of the boundary.
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Table 6.4 provides the information about the numbers of points of the initial models, the

approptiate 4 and the numbers of iterations required for convergence of parametric and

discrete dynamic contours.

No. of Discrete approach Parametric approach
Slice Structute | points for . .
number the initial Appro!)r;:te fo. . of ApptoPr;:tte To. . of
contour M weight | iterations M weight iterations
181 Malleus ok failed failed
187 Malleus ok failed failed
196* Malleus 4 0.2 35 0.2 10
Malleus 6 0.08 30 0.05 20
246*
Incus 5 0.08 15 0.05 20
Malleus 5 0.05 25 0.05 15
266
Incus 7 0.15 75 0.08 80
Malleus ok failed failed
306
Incus kK failed failed

Table 6.4: Applying GVF for disctete dynamic and parametric approaches. The structures marked with an
asterisk are shown in Figures 6.17 & 6.18. ** represents all initial contours, even those initialised close enough

to the boundary.

We found that GVF causes the boundaries of structures with low boundary contrast, e.g.,

malleus in slice 181, to be wrongly identified and the final contour to rest in the wrong place.

Figure 6.17(a) shows an example of a wrongly identified boundary, where the active contour

has passed the actual boundary. Figure 6.17(b) shows the external force map produced by

GVF. The cotresponding location of the wrongly identified boundary is shown by black

arrows in Figures 6.17(a) & (b).
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Figure 6.17: Example of the active contour passing the boundary when using GVF. Histological slice 181
shows the malleus cross-sectional structure. (a) The result of active contour (white line) that passes the right
boundary due to the wrongly identified boundary by GVF with g = 0.2. (b) The external force map produced

by GVF for i = 0.2; the actual location of the right boundaty is shown by a black line. The arrows point to the
location of the actual boundary.
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We found that the segmentation results of both approaches were very similar. Figures
6.18 & 6.19 show examples for the initial contours and the final contours using discrete
dynamic and parametric active contours. Compared with discrete dynamic contours,
paramettic active contours required mostly smaller numbers of iterations to converge to the
boundaries of the regions of interest when using the same initial contour. We found that

patamettic and discrete-dynamic contours sometimes require different (4 for satisfactory

results.

89



Figure 6.18: Example of paramettic and disctete dynamic contours using GVF. The active contours were
applied on the malleus in histological slice 196: (a) the initial contour (white line) composed of four points, (b)
final contour using discrete dynamic contour and (c) final contour using parametric active contour.
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Figure 6.19: Example of parametric and discrete dynamic contours using GVF. The active contours were
applied on the incus from histological slice 246: (a) the initial contour (white line) composed of six points, (b)
final contour using discrete dynamic contour and (c) final contour using parametric active contour.
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Fort structures with very low boundary contrast, there were no approptiate [/, as marked
‘failed’ in Table 6.4. Even by applying £ =0.02 (the smallest applicable factor), the active

contours of both approaches pass the boundaries. GVF was not a'successful method for
such structures. Figure 6.17(a) shows an example for a structure with low boundary contrast.

We also found that GVF may lead the active contours to wrongly identify the boundary
regions between nearby structures even with high boundary contrast. GVF extends the
influence of the stronger boundary over the weaker one. To prove that this issue was not
related only to the low contrast of the weaker boundary, both structures were cut from the
otiginal image and the GVF with £ =0.2 was applied to them. The segmentation results
wete then successful for both separate structures. Figure 6.15 shows an example of such

structures. The problem with wrongly identified boundaries is reduced when 4 decreases.
Figure 6.20 shows the external force map of Figure 6.15(a) produced by GVF with 4 =0.2
and 1 =0.05.

In an attempt to avoid the wrong boundary identification caused by GVF, we applied
different combinations of the force weighting factors. We found that decreasing the external
force weighting factor and increasing rigidity and tension weights for parametric contours,
and internal and damping force weight for discrete dynamic contours, did not remove this
issue. This is because the GVF leads the active contour to wrongly identify the boundatry.
Therefore, changing the external force weighting factor cannot correct the position of the

boundary, and internal force has no control over it.

In conclusion, 4 used for GVF computation depends on the boundary contrast of the
region of interest. Since the contrast is not consistent within a slice, nor through slices, the
appropriate [ must be chosen by trial and error. GVF fails for regions with low contrast. In
addition, GVF may intensify the effects of the neighbouring regions within the vicinity of a
few pixels; it is not a good method for the regions of interest in out histological dataset.
GVF 1s good for simple images, but for complex images including regions with low contrast

and/or weak edges, GVF may give undesired results.
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Figure 6.20: External force maps produced by GVF using different i values (of the malleus from slice 196): (a)
with &£ = 0.2, and (b) with 4= 0.05. The black arrows point the left boundary of the incus structure that is
wrongly identified with ¢ = 0.2.
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6.3.4 Gradient plus pressure

As an alternative approach to improving the capture range of the gradient method, we
applied a pressure force, discussed in Section 3.2.3. The pressure force is independent of the
image information, in contrast with the gradient and GVF that are computed based on the
image information. In this section we evaluate the use of gradient plus pressure force as the
external force fotr both parametric and discrete dynamic contours.

To compate the number of iterations required for active-contour convergence with and
without pressure, an experiment similar to that of Table 6.3 (Section 6.3.3) was done for
both active-contour approaches using the same initial contour. The structure used for this
expetiment was the malleus from slice 196. Table 6.5 shows the results of the experiment.
The approptiate pressure weighting factor used for both approaches was 0.08. In this
example, even the gradient alone is good for the segmentation but using the pressure makes

the convergence faster.

No. of iterati P No. of iterations for
Approach 0. of rierations fot Gradient with
Gradient
ptessute
Parametric 3000 130
Discrete dynamic 2150 195

Table 6.5: A compatison between using the gradient alone and the gradient plus pressure.

For our experiments with the gradient plus pressure, we used the same simple initial
contours that were previously used for GVF experiments (Table 6.4) on the structures of
interest. Table 6.6 shows the results for the appropriate pressure weighting factors and the
numbers of iterations required for the convergence of the active contours. The criterion for
choosing an appropriate pressure weighting factor was that it should be as large as possible
without leading the active contour to overwhelm the boundary. As the initial contours are
located inside the structutes of interest, we applied a pressure force that inflates the active
contouts, Z¢., a positive pressure force.

Both parametric and discrete dynamic-contour approaches using gradient plus pressure
give very similar boundary delineation of the structures of interest. Figure 6.21 shows the
examples of the results of segmentation with discrete dynamic and parametric contours

using gradient plus pressure.
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B

Figure 6.21: Examples of using gradient plus pressure. The middle column shows the discrete dynamic
contours and the right column shows the parametric active contours: (a) the initial contour on the malleus from
histological slice 181, (b) the final discrete dynamic contout and (c) the final disctete dynamic contour; (d) the
initial contour on the malleus from histological slice 196, (e) the final discrete dynamic contour and (f) the final
discrete dynamic contour; (g) the initial contour on the incus from histological slice 246, (h) the final discrete
dynamic contour and (i) the final discrete dynamic; (j) the initial contour on the incus from histological slice
306, (k) the final discrete dynamic contour and (I) the final discrete dynamic contour.
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N Discrete dynamic Parametric active
o. of
. Structure . approach approach
Slice points fot Optimal Ovbtimal
numbet the initial ptima No. of ptima No. of
pressure | . ] pressure . .
contout . iterations . iterations
weight weight
181* Malleus 3 0.05 350 0.05 360
187 Malleus 3 0.05 650 0.01 2015
196* Malleus 4 0.11 160 0.08 195
Malleus 6 0.06 165 0.06 160
246*
Incus 5 0.06 325 0.03 360
6 Malleus 5 0.06 295 0.03 365
2
Incus 7 0.04 410 0.03 390
306 Malleus 5 0.03 225 0.02 290
Incus 8 0.02 975 0.01 1670

Table 6.6: Applying the gradient with pressure for discrete dynamic and parametric approaches. The structures
marked with an asterisk are shown in Figure 6.21.

The comparison between Table 6.6 and Table 6.2 shows that for a particular pressure
weighting factor, many more iterations were required when using the gradient with pressure
than when using GVF. However, GVF failed for several structures while the gradient with

pressure force was successful in all selected structures.

We found that the appropriate pressute weighting factor depends on the boundary
contrast. This is similar to the situation with 4 of the GVF, which also depends on the
boundary contrast. For structures with low boundary contrast when using the gradient alone,
by increasing the external force weighting factor we can intensify the boundary regions with
low contrast. However, by increasing the external force weighting factor we increase the
effect of false boundaries that are produced by the small high-contrast regions inside the
selected structure. The same problem exists when using GVF. This 1s because the external
force produced by the gradient or GVF depends on image information, so an increase of the
external force weighting 1s applied’ to the whole image and can at the same time intensify the

undesired edges that can attract the active contours. In contrast, since the pressure force is
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independent of image information, by using pressute we may solve the problem that exists

with false interior boundaries. This worked for all the cases we tried.

Oxiana permits the user to apply a negative or positive ptessute, or to turn off the
pressure, at any time. For example, if the user applies a positive pressure force and the active
contour passes the boundary, the user can apply a negative pressute to drive the active
contour back towards to the boundary, and then tutn off the pressure and iterate the active

contour again m order to converge to the boundaty using gradient alone.

97



6.3.5 Summary

In the experiments on our histological dataset, we evaluated gradient, GVF and gradient-
plus-pressure as the external force for the parametric and discrete dynamic approaches. The
two active-contour approaches give similar boundary delineation of the structures of
mterest.

The gradient technique gives good results for all the selected structures, provided that the
initial contour is located close to the boundatry, since the capture range of the gradient is
limited. Both GVF and the gradient plus pressure improve the limited capture range of the
gradient. As a result a smaller number of iterations for active contout convergence is
requited when using GVF ot the gradient plus pressute. When using the same initial
contours, active contours require smaller numbers of iterations with GVF than with the
gradient plus pressure.

For regions with low boundatry contrast GVF may wrongly identify the boundary and
lead the active contours to overwhelm the boundary. Also, GVF may lead the active
contours to wrongly identify the boundary regions between nearby structures even with high
boundary contrast. The gradient plus pressure succeeded for most tegions which GVF
technique failed for. Since the pressure force is independent of image information, by using
pressute we may remove the issue that exists with false boundaties.

Both £, used for GVF computation, and the pressure force weighting, used for the
gradient plus pressure, depend on the boundary contrast of the region of interest, and since

the boundary contrast is not consistent within a slice, nor through slices, the appropriate 1

and pressure weighting factors must be chosen by trial and etror.
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6.4 Using active contours for segmentation on the MRM

dataset

This section contamns experiments with closed active contours on the MRM dataset.
These experiments include comparative studies of parametric and discrete dynamic contouts.
The studies also include experiments with the gradient alone, with GVF and with the
gradient plus pressure forces. To precisely compare the petformance of the two
active-contour approaches, the same initial contours were applied for both contour
approaches.

The cross-sectional anatomical structures chosen for the experiments included bones (e.g,
malleus and incus), soft tissues (e.g, tensor tympani muscle), and some cavities. It is
important to note that MRM images have lower contrast and resolution than do histological
images. We used structures with a variety of shapes and boundary contrasts since we wete
mterested in evaluating the performance of the active contours on these structures. Figures

6.22 & 6.23 show the examples of the structutes of interest.

Figure 6.22: MRM slice 110 showing the malleus, incus and some cavities (as labelled).
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Figure 6.23: The malleus bone and tensor tympani muscle are illustrated in MRM slices: (a) 83 & (b) 90.
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6.4.1 Gradient

In this section we use the gradient alone as the external force to evaluate the
performance of parametric and disctete dynamic contours on our MRM dataset. Similar to
our experiments on the histology dataset, the gradient alone gives good results provided that
the initial contour is located close to the boundary.

For almost all the structures containing concavities (mostly narrow concavities), e.g,
cavity 3 in slice 110 (Figure 6.22), active contours could not converge to the concavities
when using gradient alone. This is because the gradient produced force vectots that are
notmal to the edge sutface and therefote for natrow concavities the external force cannot
drive the active contour towards the concavity boundaries, as desctibed in Section 3.3. This

is shown in Figure 6.24.

Figure 6.24: Final contour using the gradient on Cavity 3 from slice 110. The active contour (white line) cannot
converge to the narrow concavities using the gradient alone.
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Table 6.7 shows the tesults of the expetiments using the gradient for the two active-

contour approaches on structures with low boundary contrast and/or containing concavities.

Slice No. of points for the Discrete Parametric
Structure . s
number initial contour approach approach
Malleus* 5 195 215
83 Tensor 6 150 170
tympanit
Malleus* 3 160 250
90 Tensor'* 3 70 85
tympanit
Incus* 4 80 110
Malleus* 5 105 160
Cavity 1 4 85 95
110 Cavity 2 4 40 45
Cavity 3* 13 35 40
Any initia] contour even if
Cavity 4 located close to the Failed Failed

boundary

Table 6.7: Applying gradient for discrete dynamic and parametric contours. For the structures matked with an

asterisk, the external force weighting was increased to 4.0 to enhance the external force.

Parametric and discrete dynamic contours gave similar segmentation results. Figure 6.25

shows results of boundaty delineation for some structures of interest using parametric and

discrete dynamic contouts.
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Figure 6.25: Boundary delineation with discrete dynamic and parametric active contours. The active contours
were applied on the malleus from MRM slice 83: (a) initial contour (black line), (b) final contour with discrete
dynamic contour and (c) final contour with parametric active contour. Cavity 3 from slice 110: (d) initial
contour (white line), (e) final contour with discrete dynamic contour, and (f) final contour with parametric
active contoutr.

For most of the selected structures, using the weighting combinations provided in
Sections 6.1 & 6.2 resulted in active contours failing to converge to the parts of the
boundary with low contrast and narrow concavities. By increasing the external force
weighting factor to 4.0 we were able to the convergence failures The structures on which we
used this combination are marked with an asterisk. In Table 6.7 cavides 1 and 2 did not
requitre the external force weighting to be increased to 4.0, since their boundary contrast was

high enough.
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For the structure with the lowest boundary contrast, cavity 4, labelled as failed,
increasing the external force weighting factor could not help the active contour convetge to
the boundaries.

Parametric and discrete dynamic contours had very similar delineation results for most
structures. We found that parametric active contours required the starting contours to be
located closer to the boundary than did discrete dynamic contouts. Figure 6.26 shows an
example of an initial contour that converges to the boundary using a discrete dynamic
contour but fails when using a parametric active contour. In addition, paramettic active
contours required a larger number of iterations than discrete dynamic contouts, for an

identical mitial contour model.

Figure 6.26: Examples of initial contours. The initial contour (white lines) is composed of four points on cavity
1 from slice 110, showing the sensitivity of parametric approach to the location of initial contours, compared
with the discrete dynamic approach: (top) the initial converges to the boundary using both parametric and
discrete dynamic approach, and (bottom) the initial contour is located farther from the boundary (compared
with initial contour shown in (top)). This contour fails when using the parametric active contour and converges
to the boundary when using the discrete dynamic apptoach.
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6.4.2 GVF

In this section we evaluated GVF as the external force since the use of GVF attempts to
overcome the capture-range and concavity limitations of the gradient method. We used the
same initial contours in order to compare the two active contour approaches. The initial
contours were simple triangles. These models were intentionally implemented far from the
boundary to test the capture range of the GVF method. Figute 6.27 shows examples of

triangle initial contours.

Figure 6.27: Examples of triangle initial contours. The initial contours (black triangles) used for parametric and
discrete dynamic contours.

We started applying GVF with g =0.2, as proposed by Xu & Prince. We found that this
value leads the active contours to overwhelm the boundaties. Similar to our experiments
with the histological dataset, using a & less than 0.02 gives behaviour very similar to that of
gradient alone, and therefore there is no advantage to using GVF with 1 <0.02. For our
expetiments with GVF, £ was chosen to be as large as possible without its causing
boundary misidentification. Table 6.8 shows the apptroptiate £ and number of iterations for

some of the structures of interest with low boundaty contrast and/or concavities.
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i No. of points Discrete approach Parametric approach
ice
Structure | for the initial | Appropriate No. of Appropriate No. of
number
contour 1 weight iterations )L weight iterations
Malleus 3 0.02 50 Failed
8 | Tensor o Failed Failed
tympani
Malleus 3 002 | 25 002 | 20
90| Tensor - Failed Failed
tympani
Incus* Hok Failed Failed
Malleus* Hok Failed Failed
Cavity 1 ok Failed Failed
110 -
Cavity 2 ok Failed Failed
Cavity 3 +ox Failed Failed
Cavity 4 ok Failed Failed

Table 6.8: Applying GVF for disctete dynamic and parametric contours. For the structures marked with an
astetisk we increased the extetnal force weighting to 4.0. ¥* represents for any initial contour even located close
enough to the boundary.

No appropriate ¢ was found to give a good result for the structures labelled ‘failed’: all
the values for # led the active contours to overwhelm the boundaries. This was because

GVF wrongly identified the boundaries and therefore active contours converged to the
misidentified boundatry. Figure 6.28 shows an example of a misidentified boundary produced

by GVF and the results of the active contour.
In general, we found that only for a few selected structures, with high boundary contrast,

could GVF give good results, and 1n these cases the appropriate values of £ are very small,

e.g., 0.02.
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Figure 6.28: Segmentation of the malleus. The active contour, using GVE

dataset: (a) active contour overwhelms the left boundary and (b) the external force map of (a) produced by

0.02). The corresponding location of the misidentified boundary of the malleus is shown by black

arrows in (a) & (b).
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As with the histological dataset (Section 6.3.3), we found that GVF may lead the active
contours to wrongly identify the boundary regions between nearby structures even with high
boundary contrast, ¢.g., cavities 2 & 3. This is an effect of a stronger boundary on the weaker
one, because GVF extends the influence of the stronger boundary over the weaker one. To
prove that this issue was not related to the contrast of the boundary, both structures were
cut from the otiginal image, then the GVF with £ =0.2 was applied to them and the
segmentation results were successful for both separate structures. The wrongly identified
boundary issue was generaly reduced when 4 was decreased. Figure 6.29(a) shows an
example of such structutes, and the external force map of Figure 6.29(a) produced by GVF
with £ =0.2 and 1 =0.02 are shown in (b) & (c), tespectively. However, in this example the

active contour using £ =0.02 still fails to converge to the actual boundary.

In conclusion, i used for GVF computation depends on the boundary contrast of the
region of interest. The GVF technique failed for most MRM structures, since they generally
have low boundary contrast. In addition, GVF may intensify the effects of the neighbouring
regions within the vicinity of a few pixels. GVF is not a good method for the regions of

interest in our MRM dataset.

108



= //.,K LALA2 hY : w JA7
w2 st 57
I ...r!//i YA EE e\ .\\cs!
SN 7 S aeam NN (AR X 7 DN P82
SN G s T Y (O G
b AN NN e \ S YUAN o e i
s AM//Z Ghntey e NS S a4 G, s
e SN 1 NS o NSO s S N
Pl RS &/ I S o SR e S
AR \\ %5 \\ v NN e NS A F i n“\ \ TS
T NG NN RS e e S
e
77 N

7 LAl T
=

D i o

}
T —y

st B Y S
Lo naies \ By B S Sy ruu/(w\ AR
e “ R ol P i tanens e I»ﬂ/ Weﬁ
Ny “ Rty
X gl Rl lutm o L E NN
DN = e S
RN \\Q\\\
= W.N&“ 3N
mmmE N iy g SN
NN S i
=iz 7 N
AW \\\\w§ 8 SN N»W 7
N e S e SN A ) AN
N 11055 e NI T N A N AN T

P =NV R A AN ///NWWVV; T8 e LA \m\\ Jf/W&\« N
7 m\s\.& \\w\\.\\x\nﬁww WRVERS o YT e ST

O enagnd e g S

T e N = TS IR =

(c) the external force map produced by GVF with

0.02. The neighbouring boundaties between the cavities ate misidentified. This is because of the effect of a
stronget boundary on the weaker one. The corresponding location of the misidentified boundary of the cavities

is shown by black atrows on (a) & (b).
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Figure 6.29: The external force maps produced by GVF using different & . (2) MRM slice 110 shows cavities 2
1

& 3, (b) the external map produced by GVF with g
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6.4.3 Gradient plus pressure

Similar to our experiments with histological images (Section 6.4.2), we applied a pressure
force to improve the capture range of the gradient method and furthermore to compare it
with GVF (Section 6.4.1) for the MRM dataset. To compare the number of iterations for
active-contout convetgence between parametric and discrete dynamic contours, the same
initial contours used for GVF (Table 6.4) were applied with the pressure force. The initial
contours were intentionally implemented far from the boundary to test the behaviour of
active contours with an additive pressute force. Table 6.9 shows the results for the
appropriate pressute weighting factors and the numbers of iterations required for the
convetrgence of the active contouts. The criterion for an appropriate pressure weighting
factor was that the pressutre weighting factor should be as large as possible but not lead the
active contour to overwhelm the boundatry. As the initial contours are located inside the
structutes of interest, we applied a pressure force that inflates the active contouts, ze., a

positive pressure force.

No. of Disctrete approach Parametric approach
Slice points for : :
number Structuse | o initial 1?::2;;2 _No. of 1())1-2:::: No. of
contour weight Iterations weight 1terations
Malleus 3 0.06 125 0.02 300
83 Tensor o Failed Failed
tympant
Malleus 3 0.04 160 0.03 100
20 Tensor 3 0.07 180 0.04 130
tympani
Incus* 3 0.06 285 0.05 205
Malleus 3 0.03 270 0.03 235
110 Cavity 1 3 0.05 230 0.04 150
Cavity 2 3 0.08 125 0.07 80
Cavity 3 *K Failed Failed
Cavity 4 *K Failed Failed

Table 6.9: Applying the gradient with pressure for discrete dynamic and parametric contours. For the structure
marked with an astetisk we increased the extetnal force weighting to 4.0. ** indicates that no initial contour
succeeded even when located close to the boundary.
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Both paramettic and disctete dynamic approaches using the gradient plus pressute give
similar boundary delineations of the sttuctures of interest. Figure 6.30 shows examples of

boundary delineation using both parametric and discrete dynamic contours.
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Figure 6.30: Examples of using gradient plus pressute on malleus. The malleus structutes were from slices 83 (a
& b) and 90 (c & d). The triangular initial contours are shown in Figure 6.21. (a) Result of using discrete

dynamic contout, (b) result of using parametric active contour, (c) result of using discrete dynamic contour and
(d) result of using parametric active contour.
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The comparison between Tables 6.8 & 6.9, i.e., results of segmentation using GVF and
using gradient with pressure, shows that the pressure force worked successfully for most
sttuctures that GVF failed for. With the pressute force, the parametric active contouts
require a smaller pressure weighting factor and a smaller number of iterations than discrete
dynamic contours do.

For only one structure with weak boundaries, labelled with an asterisk, ze., mncus 1 slice
110, for which the pressure force leads the active contours to overwhelm the boundaries,
increasing the external-force weighting intensifies the weak boundaries and prevents the
active contours from overwhelming the boundaries. For this structure the appropriate
external-force weighting was found to be 2.0.

Pressure force wotks successfully for the structures with concavities such as the malleus
in slices 83 and 90. However, for almost all narrow concavities such as cavity 3, active
contours of both approacheé cannot converge to the concavity for an appropriate pressure
weighting factor, and increasing the external force weighting factor is not effective in these
cases.

Similar to our experiments with gradient plus pressure on the histological dataset
(Section 6.3.4) we found that the appropriate pressure weighting factor depends on the
boundary contrast. And similar to experiments with GVF (Section 6.4.3) the gradient plus

ptessure failed for the structures with low boundary contrast.
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6.4.4 Summary

In the expetiments on our MRM dataset, we evaluated the gradient, GVF and the
gradient plus pressure as the external force for parametric and discrete dynamic approaches.
The two active contour approaches give similar boundary delineation of the structures of
intetest. Howevet, when using GVF and the gradient plus pressure, parametric active
contours tequired smaller numbers of iterations for active contour convergence compared
with the discrete dynamic approach.

The gradient technique gives good results for all the structures of interest, provided that
the initial contout is located close to the boundary since the capture range of the gradient is
limited. We found that parametric contours using the gradient require the initial contour to
be closer to the boundary than do discrete dynamic contours, and for the same initial
contour the parametric contours required a larger number of iterations for active contour
convergence than do discrete dynamic contours.

GVF failed for most of the structures of interest, since MRM structures have low
boundary contrast, and it was successful only for structures with high boundary contrast.
However, GVF may lead the active contour to wrongly identify the boundary regions
between neatby structures even with high boundary contrast. We found that for structures
with low boundaty contrast and/or containin‘g concavities, the discrete dynamic approach is
mote successful than the parametric approach. However, for structures with high boundary
contrast paramettric active contours require smaller numbers of iterations than do discrete
dynamic contours.

The gradient plus pressure worked successfully for most structures, especially those
containing concavities, that GVF failed for. When using the gradient plus pressure, the
parametric active contours require a smaller number of iterations than discrete dynamic
contours do.

GVF and the gradient plus pressure both accelerate the convergence of the active
contours to the boundary, but in equal conditions (a structure with the same initial contour),
active contours using GVF converge more quickly to the boundary than do those using the
gradient plus pressute. It is important to note that the gradient, GVF and the gradient plus
pressure all failed for some structutes with low boundary contrast and/or narrow
concavities.

Similar to our experiments with histological dataset (Sections 6.3.2 & 6.3.3), the factor U
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(used for GVF computation) and the pressure force weighting (used for the gradient plus

ptessure) depend on the boundary contrast of the structure. The approptiate f and
pressure weighting factors must be chosen by trial and error because the boundary contrast

is not consistent within a slice, nor through the slices.
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6.5 Using open contours for segmentation

A closed contour completely encloses the region which corresponds to a structure. The
use of open contours (in addition to the usual closed contours) facilitates the controlled

handling of complex structures with shared surfaces or of thin structures.

The structures we used for segmentation with open contours were the shared surfaces
and thin structures. The contrast of these regions is neither consistent within a slice, nor
through the slices. This problem is especially present in the MRM dataset where the
resolution and contrast of the images is not high enough to have a clear discrete view of the

different structures.
In the experiments with closed contours we found that the gradient alone and the

gradient with pressure force give better segmentation results than GVF. Therefore for open

contours, we applied only the gradient alone and the gradient with pressure.
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6.5.1 Histological dataset
Open contours were used to segment the shared boundaries between bones (e.g., incus
and malleus) and the soft tissues (c.g.,, ligaments). Figures 6.31 and 6.32 show examples of

such sttuctures.

Incus

Malleus

Soft tissue
malleus and incus

Figure 6.31: Histological image data showing the malleus and incus. The structures are in Slice 251. The soft
tissue between the two bones is shown.

Incus

ateral bundle

Figure 6.32: Histological image data showing the incus. The structute is in Slice 346. The lateral and medial
bundles of the posterior incudal ligament are shown.
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We fitst applied the gradient alone as the external force for the open contours. A
pressute was then used to improve the capture-range of the gradient technique for the cases
where the initial contour was not located close enough to the boundary. For other initial
contouts that were located close enough to the boundary, pressure force was used to
accelerate the convergence of the active contour. Figure 6.33(a) shows an example of an
initial contour located not close enough to the boundary and the results when using the

gradient alone (b) and when using the gradient plus pressure (c).

Figure 6.33: Open contours using gradient and gradient plus pressure. (a) Initial contour located far from the
boundaty, (b) the final contour using the gradient which does not converge to the boundary and (c) the final
contour using the gradient plus pressure that converges to the boundary.

The ctiterion for choosing the appropriate pressure weighting factor is as described m
Section 6.3.4. Table 6.10 provides the details of using the gradient alone and the gradient

plus pressure for the segmentation of the shared surfaces of interest in several slices.

118



No. of | Gradient alone | Gradient plus pressure

Slice points .
appropriate
number Structure for the No. of pprop No. of
initial . . pressure . .
iterations . g . iterations
contour weighting
The surface between
malleus and the soft 3 595 01 80

tissue between malleus
251% & incus

The surface between
incus and the soft tissue 4 755 0.08 75
between malleus & incus
The surface between
malleus and the soft 3
tissue between malleus
286* & incus

The surface between
incus and the soft tissue 3 545 0.02 235
between malleus & incus
Lateral bundle of the

1945 0.03 270

341 postetior incudal 3 1055 0.03 170
ligament
Lateral bundle of the
postetiot incudal 3 395 0.02 270

ligament
*
346 Medial bundle of the

postetior incudal 3 105 0.03 90
ligament
Lateral bundle of the
postetior incudal 3 220 0.03 80
ligament

351 h/%edial bundle of the
posterior incudal 3 90 0.03 30
ligament

Table 6.10: Applying gradient alone and gradient plus pressute for discrete dynamic open contouts on the
histological dataset. The contour initialisation and final discrete dynamic and parametric contours are shown in
Figure 6.27 for structures marked with an asterisk.

Simple initial contours including three vertices were initialised for the segmentation of
the shared surfaces of interest. These initial contours were not successful for all the surfaces.
This was because some false edges (produced by the small regions existing in the structures
of interest as described in Section 6.3.3) were located in the vicinity of the initial contouts
and would prevent the active contour from converging to the desired boundary. In one case
we had to use an initial contour with one extra point to locate the open contout closer to the

desired boundary and farther from the false edge.
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Figure 6.34 shows examples of the initial contours and the results of segmentation with
open contours using the gradient alone and the gradient plus pressure. Open contours using
the gradient alone and the gradient plus pressure give almost the same results. The gradient
alone requited more numbers of iterations for the open contour convergence to the
boundary. Using the gradient plus pressure removes the capture-range limitation that exists
with the gradient alone; and therefore, the initial contour can be located farther from the

boundary than the initial contour used for the gradient alone.

&

Figure 6.34: Examples of open contours using gradient alone and gradient plus pressure: (a) the initial contour
on the slice 251 (the incus shared surface), (b) the final contour using the gradient, and (c) the final contour
using the gradient plus pressure; (d) the initial contour on the slice 286 (the malleus shared surface), (e) the final
contour using the gradient and (f) the final contour using the gradient plus pressure; (g) the initial contour on
the slice 346 (the incus shared surface with later posterior ligament), (h) the final contour using the gradient,
and (i) the final contour using the gradient plus pressure.
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We were also interested in using open contours for segmentation of thin structures such

as the eardrum. Figure 6.35 shows examples of the eardrum structure.

Figure 6.35: Examples of the eardrum. The structures were selected from (a) histological slice 506, and (b)
histological slice 551.

Segmentation of very thin structures such as the eardrum requires that the open contour
detect the middle pixel of the structure rather than the exterior pixels. The gradient alone
was not successful to detect the central pixel along the length of the eardrum structure. As a
result the open contour using the gradient often jumps to the other side of the edge. Figure
6.36(a) & (c) shows examples of this problem. The magnified versions of the regions of
interest, showing that the active contour leaped to the other side of the structure, are shown
in (b) and (d) for (a) and (c), respectively. To solve this issue an algorithm that detects the

centre of the structure should be used to compute the external force for open contouts.
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()

Figure 6.36: Final open contours (red line) for eardrum structure segmentation: on histological slice 496 (a) and
slice 551 (c). (b) & (d) are the magnified versions of the regions of interest from (a) and (c), respectively. The
black arrows point to part of the structures where the open contour jumps from one side of the edge to the
other side because of the edge detector.
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In our experiments with open contours on the histological dataset, we found that both
the gradient alone and the gradient plus pressure give good results for segmentation of the
shared surfaces between structures. However, since pressure force removes the capture-
range limitation which exists with the gradient method, we found that when using the
gradient plus pressure the initial contour can be located farther from the boundary than
when using the gradient alone. Also, a smaller number of iterations is required for open
contours to converge to the boundary when using the gradient plus pressure. For
segmentation of thin structures such as the eardrum, we found that the gradient is not an
appropriate technique since it only detects the exterior pixels along the structure’s length
while the central pixels ate required for this putpose. In some cases, since the contrast of the
eardrum varies along its length, the gradient cannot even propetly detect the extetior pixels

and it may cause the open contour to jump from one side to the other side of the structure.

6.5.2 MRM dataset

Open contours were used to segment the shared boundaries between bones and soft
tissues. The shared surfaces we used for our experiments were the bony tympanic ring,
shown in Figure 6.37(a), the shared surface of the incus and malleus with the soft tissue
located between them, shown in Figure 6.37(b), and the shared sutface between incus and
the posterior incudal ligament, shown in Figure 6.37(c). MRM slices have generally lower
contrast than the histological dataset. Therefore, the shared surfaces of interest are better
seen in the histological data than in the MRM dataset.

Simple initial contours including three vertices were initialised for our expetiments. The
simple initial contours were successful for all our desired shared surfaces.

We first applied the gradient alone as the external force for the open contours. A
pressure was later used to accelerate the active contour convergence to the boundary. The

criterion for choosing the appropriate pressure weighting factor is described in Section 6.43.
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Bony tympanic
ring

Apmular

ligament

The shared surfaces

Postetior  incudal

ligament

Figure 6.37: Examples of shared surfaces: (a) bony tympanic ring from slice 85, (b) between bones (incus &
malleus) and the soft tissue located between them from slice 115, and (c) between the incus and the postetior
incudal ligament from slice 129.
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Table 6.11 provides the details of applying the gradient alone and the gradient plus

pressure for the segmentation of the shared surfaces of interest in several slices.

No. of | Gradient alone | Gradient plus pressure

Slice points -
pumber Structure tjor. t.he No. of appropriate No. of
initial . . pressure . .
iterations .y iterations
contour weighting
85% The bony tympanic ting 3 100 0.02 55
88 The bony tympanic ring 3 85 0.02 45
The surface between

incus & the soft tissue 3 55 0.03 25

115% between malleus & incus
The surface between
malleus & the soft tissue 3 90 0.03 45
between malleus & incus
The surface between
incus & the soft tissue 3 100 0.03 45
between malleus & incus
The surface between
malleus & the soft tissue 3 110 0.03 50
between malleus & incus
Shared surface between
128 incus & the postetiot 3 15 0.02 8
incudal igament

Shared surface between
129* | incus & the postetior 3 15 0.02 8

incudal ligament

118*

Table 6.11: Applying the gradient alone and the gradient with pressure for discrete dynamic open contours in
the MRM dataset. The contour initialisation and final discrete dynamic and parametric contours are shown in
Figure 6.27 for structures marked with an asterisk.

In our experiments, open contours using the gradient alone and the gradient plus
pressure give almost the same results. Similar to out expetiment with open contours on the
histological dataset in Section 6.5.1, the gradient alone required a larger number of iterations
for convergence to the boundary. Using the gradient plus pressure removes the capture-
range limitation that exists with the gradient alone; therefore, the initial contour can be
located farther from the boundaty than the initial contour used for the gradient alone. Figure
6.38 shows examples of the initial contours and the tesults of segmentation with open

contours using the gradient alone and the gradient plus pressure.

125



Figure 6.38: Examples of open contours using gradient and gradient plus pressure: (a) the initial contour on the
slice 85 (bony tympanic 1ing), (b) the final contour using the gradient, and (c) the final contour using the
gradient plus pressure; (d) the initial contour on the slice 115 (the incus shared surface with the soft tissue
located between incus and malleus), (¢) the final contour using the gradient and (f) the final contour using the
gradient plus pressure; (g) the initial contour on the slice 118 (the malleus shared surface with the soft tissue
located between incus and malleus), (h) the final contour using the gradient, and (i) the final contour using the
gradient plus pressure; (j) the initial contour on the slice 129 (the incus shared surface with the postetior incudal
ligament), (k) the final contour using the gradient, and (I) the final contour using the gradient plus pressute.
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6.5.3 Summary

In our experiments with open contours on the histological and MRM datasets, we found
that both the gradient alone and the gradient plus pressure give good results for
segmentation of the shared surfaces between structures. However, since pressure force
improves the capture-range limitation which exists with the gradient method, we found that
when using the gradient plus pressure the initial contour can be located farther from the
boundary than when using the gradient alone. Also, a smaller number of iterations is
required for open contours to converge to the boundary when using the gradient plus
ptessute.

For segmentation of the thin structures in the histological dataset such as the eardrum,
we found that the gradient is not an appropriate technique since it only detects the extetior
pixels along the structure’s length while the central pixels are requited for this putpose. In
some cases, since the contrast of the eardrum varies along its length, the gradient cannot
even propetly lead the active contour to converge to the exterior of the structure and it may

cause the open contour to jump from one side to the other side of the structure.
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7. CONCLUSION AND FUTURE WORK

7.1 Conclusion

Image processing and computer vision have been well-established academic fields since
the 1970s. Although many academics have published applications in this field, few have been
highly reliable and successful i practice. Academic emphasis tends to be directed more
toward pure innovation and mathematical elegance — demonstrated with a few catefully
chosen test results — than toward reliability (Guéziec, 2002).

Modern imaging devices provide exceptional views of internal anatomy, but the use of
computers to quantify and analyse (¢.g., segment) the embedded structures with accuracy and
efficiency 1s limited (Mclnerney ez a/, 1996. Segmentation or boundary identification of
structures from medical images 1s difficult due to the complexity and variability of anatomic
shapes of interest. Furthermore, the shortcomings typical of sampled data, such as sampling
artefacts, spatial aliasing and noise, may cause the boundaties of structures to be indistinct
and disconnected (Mclnerney ez 4/, 1996). Traditional low-level image-processing techniques
(e.g, gradient operators), which consider only local information, can make incorrect
assumptions and generate undesired object boundaries (e.g., a contour with gaps).

As an alternative, instead of exploiting only image information as low-level techniques
do, active contours also use the information about the boundaties as patt of an optimisation
ptocedure. Vatiant approaches and techniques have been proposed to improve the original
form of active contours, Ze., traditional parametric contouts as otiginally proposed by Kass ez
al., (1986). For instance, techniques such as pressure force (Cohen, 1991) and GVF (Xu &
Prince, 1997) were proposed to improve the captute range of the external forces, which are
generally based on the gradient of the image. Different active-contour formulations, such as
discrete dynamic contours (Lobregt & Viergever, 1995), wete also introduced to simplify the
complexity of computation and improve the petformance of the patametric contours.

We used histological and MRM datasets of the middle-ear for our experiments. In our
expetiments with active contours on middle-ear images, we used and compared traditional
parametric and discrete dynamic contours with gradient, with gradient vector flow and with
the gradient plus pressure force as the extetnal force. For implementation of traditional

active contours, we used a Matlab programme written by Xu & Ptince at Image Analysis and
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Communications Lab, Johns Hopkins University. We used Oxiana, a semi-automatic
computer programme, developed in our lab, that implements the discrete dynamic contours.
Closed contouts were used for the experiments with both active contour approaches. We
also demonstrated open contours for segmentation of shared boundaries between structures.

When using gradient as the external force, for the same initial contours, a larger number
of iterations is required for the parametric contours to converge to the boundary than with
the discrete dynamic contours. However, when using GVF and the gradient plus pressure,
parametric active contours require a smaller number of iterations for active contour
convergence, compared with the discrete dynamic approach, at least for the weighting
factors used here.

The gradient alone gives good results for all the selected structures, but the initial contour
must be located relatively close to the boundary in order to converge. This affirms the
capture-range limitation of the gradient technique. The GVF and the gradient plus pressure
increase the capture range of the gradient and also accelerate the convergence of the
contours to the boundatries. As a tesult, a smaller number of iterations and less time ate
required for active contour convergence when using GVF or gradient plus pressure,
compared with gradient alone.

When using the same mitial contours, active contours require smaller numbers of
iterations with GVF than with gradient plus pressure. Although GVF is good for simple
images, we found that in real images (¢.g., our datasets) it is not a reliable technique. One
reason is that GVF may wrongly identify the boundary and lead the active contours to pass
the boundary, when applied to regions with low boundary contrast. The other reason 1s that
GVF may wrongly 1dentify the boundary regions between nearby structures even with high
boundary contrast.

The MRM datasets have a lower resolution and contrast than the histological datasets.
With the histological dataset, the gradient plus pressure succeeds for most regions where the
GVF technique fails, especially for structures containing concavities. With the MRM dataset,
however, fot some structures with low boundarty contrast and/ot natrow concavities, active
contours fail even when using the gradient plus pressure.

Both 4 (used for GVF computation) and the pressure weighting (used for the gradient

plus pressure) depend on the boundary contrast of the region of interest. Since the boundary

contrast is consistent neither within a slice nor across slices, the appropriate f and pressure
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weighting factors must be chosen by trial and error.

In our expetiments with open contouts in the histological and the MRM datasets, we
found that gradient and gradient plus pressure give good results for segmentation of the
shared sutfaces between structures. However, since pressure force improves the capture
range of the gradient, we found that when using the gradient plus pressure the initial contour
can be located farther from the boundary than when using the gradient alone. When using
the gradient plus pressure, a smaller number of iterations is required for open contours to
converge to the boundary.

For segmentation of thin structures such as the eardrum in our histological dataset, the
results indicated that the gradient is not a reliable technique, since in some of our selected
slices the contrast of the eardrum vaties along its length, so the active contour may jump

from one side to the other side of the structure.

7.2 Future work

- Digital colour images are composed of different (usually three) layers, each related to
specific colour information (e.g, red, blue and green). In grey-scale images that are
detived from colour images, the mmage layers are combined (eg, averaged) and
normalised. The colour histological images that we used for our experiments were
converted to grey-scale images. We suggest that it may be profitable to exploit the
colour information of the histological images, since the colour information may give
extra information for the external (image) force and improve the performance of the

active contouts.

- As discussed in Section 3.4, the internal force should not attempt to minimise the
curvature for areas with constant curvature. In order to satisfy the condition, a filter
was suggested (Lobregt & Viergever, 1995) to convolve with the internal force of
each vertex. We used the same simple filter as they have suggested in order to get a
more robust result. As Lobregt and Viergever (1995) mentioned, the filter can be
designed as an adaptive filter. We also propose to find a sophisticated design for the

filter in order to get a more robust result.
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We are interested in testing the petformance of active contours with other
modalities, such as x-ray CT and PET, and especially ultrasound images that contain

a larger amount of noise than other types of images.

In our Oxiana programme for discrete dynamic contours, all user manipulations of
the vertices must be performed using the Vertex List menu in the interface. It is
suggested to improve the interface to make the use of the programme easier for the
user, such as moving a vertex by explicitly using the mouse instead of using the
Vertex List. Also, left clicking the mouse on a vertex could open a menu of all the

manipulations possible for that vertex.

As we found in our expetiments with open contours for segmentation of thin
structures (e.g., eardrum), gradient cannot lead the active contours to rest on the
centre of the structure and the contour may leap from one side to the other side of
the structure. We propose to find an algorithm to detect the centre pixel, and it can

be used to generate the external force for the open contouts.
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