

Designing High-Bits ΔΣ Oscillator with

Reduced Hardware Resource using

Segmentation

 Wenkang Zhou

 (B.Eng. 2020)

Department of Electrical Engineering

McGill University, Montreal

November 2023

A thesis submitted to the Faculty of Graduate Studies and Research in partial

fulfillment of the requirements for the degree of Master of Engineering

© Wenkang Zhou, 2023

I

Abstract

This thesis explores the integration of segmentation in ΔΣ oscillators to enhance

performance and reduce hardware costs. ΔΣ modulation has been a vital component of

mixed-signal systems, delivering high-resolution analog-to-digital and digital-to-

analog conversion. However, the need for cost-effective oscillator designs has

prompted a reevaluation of traditional approaches. Therefore, the technique of

segmentation has been proposed.

The thesis commences with the analysis and designs of ΔΣ modulators and

oscillators. The mathematical foundations were first built for the design process,

followed by simulations performed in MATLAB and Simulink to back them up. Then

segmentation is introduced to the traditional ΔΣ modulators and oscillators, followed

by simulations in Simulink to reach the same signal-to-noise (SNR) specification as the

single paths. The core of the thesis lies in FPGA implementation. By implementing

single-path and segmented ΔΣ modulators and oscillators within an FPGA, the research

provides strong evidence of the benefits of segmentation, particularly in hardware cost

reduction.

In summary, this thesis advances ΔΣ oscillator's practical implementation, with a

specific focus on segmentation. The technique of segmentation contributes to the

evolution of mixed-signal systems, enabling creative and cost-effective solutions for

signal processing.

II

Résumé

Cette thèse explore l'intégration de la segmentation dans les oscillateurs ΔΣ pour

améliorer les performances et réduire les coûts matériels. La modulation ΔΣ a été un

élément essentiel des systèmes mixtes, permettant une conversion analogique-

numérique et numérique-analogique de haute résolution. Cependant, la nécessité de

concevoir des oscillateurs économiques a incité à réévaluer les approches

traditionnelles. Par conséquent, la technique de segmentation a été proposée.

La thèse commence par l'analyse et la conception de modulateurs et d'oscillateurs

ΔΣ. Les fondements mathématiques ont d'abord été posés pour le processus de

conception, suivi de simulations réalisées dans MATLAB et Simulink pour étayer la

théorie. Ensuite, la segmentation est introduite dans les modulateurs et les oscillateurs

ΔΣ traditionnels, suivie de simulations dans Simulink visant à atteindre les mêmes

spécifications de rapport signal/bruit (SNR) que les voies uniques. Le cœur de la thèse

réside dans la mise en œuvre sur FPGA. En mettant en œuvre des modulateurs et des

oscillateurs ΔΣ à voie unique et segmentés au sein d'un FPGA, la recherche apporte des

preuves solides des avantages de la segmentation, en particulier en ce qui concerne la

réduction des coûts matériels.

En résumé, cette thèse fait progresser de manière significative la mise en œuvre

pratique des oscillateurs ΔΣ, en mettant particulièrement l'accent sur la technique

innovante de la segmentation. L'adoption de la segmentation apporte des contributions

importantes à l'évolution des systèmes mixtes, ouvrant la voie au développement de

solutions de traitement du signal créatives et économiques.

III

Acknowledgments

First and foremost, I am deeply thankful to my supervisor, Professor Gordon

Roberts, whose expertise and mentorship were instrumental in shaping this research.

His patient guidance, encouragement, and unwavering support have been invaluable.

I would also like to acknowledge the invaluable contributions of Denis Romanov,

a senior at McGill University. With his previous contribution to the research, I could

catch up on with the concepts quicker and his insight really inspired me.

My heartfelt thanks extend to my colleagues and friends who provided me with a

network of support and stimulating discussions. I would like to thank Muhammad Bilal

Babar, Shaun Bradley, Jean-Christophe Couture and other staff in microelectronics

laboratory. Their company gave me the courage to carry on with my study.

To my family, particularly my mom, Yan Zhou, who would support me financially

and emotionally no matter where and when. I owe a debt of gratitude for her dedicated

encouragement, love, and patience.

Finally, I am thankful for Mcgill University, which gives me the opportunity to

conduct my research study these years. It is an amazing journey indeed.

IV

Table of Contents

Abstract ... I

Résumé ... II

Acknowledgments .. III

Table of Contents...IV

List of Tables ... VII

List of Figures ...VIII

List of Acronyms ...XI

Chapter 1: Introduction .. 1

1.1 Mixed-Signal Systems .. 1

1.1.1 Definition and Applications .. 1

1.1.2 Mixed-Signal Testing ... 2

1.2 Analog Sinewave Generation .. 3

1.2.1 Discrete Analog Oscillators ... 3

1.2.2 Digital Signal Generation .. 5

1.3 ΔΣ Modulation ... 6

1.3.1 History and Benefits of ΔΣ Modulation ... 7

1.3.2 ΔΣ Oscillators ... 8

1.3.3 Principles and Benefits of Segmentation .. 9

1.4 Thesis Objective ... 11

Chapter 2: Literature Review ... 13

2.1 Principles of D/A conversion .. 13

2.2 DAC Performance Metrics .. 15

2.2.1 Gain and Offset Error ... 16

2.2.2 Monotonicity... 18

2.2.3 Differential Non-Linearity (DNL) ... 18

2.2.4 Integral Non-Linearity (INL) .. 19

2.3 DAC Architectures .. 19

2.3.1 String DACs and Thermometer DACs ... 20

2.3.2 Binary-Weighted DACs ... 22

V

2.3.3 Pulse-Width Modulation DACs ... 22

2.3.4 ΔΣ DACs ... 24

2.3.5 Segmented DACs... 25

2.4 Applications of Oscillators .. 27

2.5 Summary .. 29

Chapter 3: ΔΣ Modulators .. 30

3.1 Theory of ΔΣ Modulation .. 30

3.1.1 Structures of One-Bit ΔΣ modulators.. 30

3.1.2 Performance Characteristics of ΔΣ modulation .. 34

3.2 Design of an N-bit ΔΣ Modulator .. 35

3.2.1 Feasibility Study .. 36

3.2.2 Noise Transfer Function Structure ... 37

3.2.3 Transfer Function Design Method ... 38

3.3 One-Bit ΔΣ Modulator Simulation .. 40

3.4 Summary .. 45

Chapter 4: ΔΣ Oscillators ... 46

4.1 Theory and Design of ΔΣ oscillators ... 46

4.1.1 Digital Oscillator Analysis .. 46

4.1.2 ΔΣ Oscillator Structure ... 51

4.1.3 Noise Constraints ... 53

4.2 ΔΣ Oscillator Simulation ... 54

4.3 Summary .. 57

Chapter 5: Segmented ΔΣ Modulators ... 58

5.1 Segmentation introduction background .. 58

5.2 Design of Two-Segmented ΔΣ Modulators ... 59

5.2.1 Two-Segment ΔΣ Modulators Structure... 59

5.2.2 Noise Constraints ... 62

5.2.3 Data Partition Impact .. 64

5.3 Two-Segment ΔΣ Modulator Simulation ... 66

5.4 Summary .. 69

Chapter 6: Segmented ΔΣ Oscillators .. 70

VI

6.1 Segmented ΔΣ Oscillator Design ... 70

6.1.1 Segmented ΔΣ Oscillator Structure ... 70

6.1.2 Noise Constraints ... 72

6.2 Segmented ΔΣ Oscillator Simulation .. 73

6.3 Summary .. 78

Chapter 7: Experimental Validation ... 79

7.1 FPGA setup ... 79

7.1.1 Device Setup ... 79

7.1.2 Number System Setup .. 80

7.1.3 Arithmetic Operation .. 84

7.2 ΔΣ Modulator implementation.. 87

7.3 ΔΣ Oscillator Implementation... 90

7.3.1 Single Path ΔΣ Oscillator... 90

7.3.2 ΔΣ Oscillator with Segmentation ... 93

7.4 Hardware Costs .. 96

7.5 Summary .. 97

Chapter 8: Conclusion .. 98

8.1 Discussion of Results .. 98

8.2 Future Direction ... 99

Appendix ... 100

Verilog Source Code .. 100

Bibliography .. 108

VII

List of Tables

Table. 3.1: The parameters for an N-bit unsigned ΔΣ modulator simulation example 41

Table. 4.1: Amplitude versus initial value of registers under different conditions 50
Table. 4.2: Amplitude versus initial value of registers under different conditions 55

Table. 5.1: Parameter settings for the two-segment modulator 66
Table. 5.2: SNR results of unsegmented ΔΣ modulator and two-segment ΔΣ modulator

 .. 69

Table. 6.1: Parameters of two-segment ΔΣ oscillator under 16-bits number system .. 74
Table. 6.2: Parameters of two-segment ΔΣ oscillator under 32-bits number system .. 76
Table. 6.3: System SNR and oscillation frequency under different circumstances 78

Table. 7.1: Theory, Simulink and FPGA results of SNR of the two-segment ΔΣ

modulator .. 88
Table. 7.2: Theory, Simulink and FPGA results of oscillation frequency, amplitude and

system SNR of the one-path ΔΣ Oscillator... 92
Table. 7.3: Theory, Simulink and FPGA results of oscillation frequency, amplitude and

system SNR of the one-path ΔΣ oscillator ... 95
Table. 7.4: Hardware costs for single path and two-segment ΔΣ modulator 96
Table. 7.5: Hardware costs for single path and two-segment ΔΣ oscillator 96

VIII

List of Figures

Fig. 1.1: The example of test set-up of a mixed signal device..................................... 2
Fig. 1.2: Configuration of the Colpitts oscillator .. 4
Fig. 1.3: Block diagram of a general direct digital frequency synthesis 5
Fig. 1.4: The structure of a lossless discrete resonator .. 6
Fig. 1.5: A comparison of the distance between the frequency band in green and the

imaging ... 8
Fig. 1.6: The structure of a ΔΣ oscillator .. 9

Fig. 1.7: The structure of a K-segment DAC ... 11

Fig. 2.1: Diagram of an N-bit DAC ... 13
Fig. 2.2: Transfer curve for a 4-bit DAC .. 15
Fig. 2.3: Transfer curve of 4-bit DACs with gain error and offset error 16
Fig. 2.4: Example of best-fit line for a 4-bit DAC .. 17
Fig .2.5: Example of Endpoint-to-endpoint line for a 4-bit DAC 17
Fig. 2.6: Example of a 3-bit string DAC .. 20
Fig. 2.7: Example of a 3-bit Thermometer DAC .. 21
Fig. 2.8: Example of an 8-bit Binary-Weighted DAC ... 22
Fig. 2.9: Structure of a PWM DAC .. 23
Fig. 2.10: Structure of a ΔΣ DAC .. 24
Fig. 2.11: Noise distribution across frequency (left: a typical DAC; right: a ΔΣ DAC)

 .. 25
Fig. 2.12: An example of segmented DAC architecture .. 26
Fig. 2.13: Some applications of oscillators in DACs .. 28

Fig. 3.1: Block diagram of the general 1-bit delta-sigma modulator 31
Fig. 3.2: Linear model of the general 1-bit delta-sigma modulator 31
Fig. 3.3: Modified signal flow graph of the general delta-sigma modulator 32
Fig. 3.4: Structure of the general delta-sigma modulator with a unity STF 33
Fig. 3.5: Structure of 1-bit ΔΣ DAC... 34
Fig. 3.6: Structure of DF-II for H(z) implementation ... 40
Fig. 3.7: The structure of a 1-bit unsigned ΔΣ modulator ... 40
Fig. 3.8: Magnitude response of the noise transfer function 42
Fig. 3.9: PSD of the outputs for sinusoidal inputs given the 3rd order inverse Chebyshev

loop filter (without windowing) (a): Nyquist frequency (b): zoom in for in-band

frequency .. 43
Fig. 3.10: PSD of the outputs for sinusoidal inputs given the 3rd order inverse

IX

Chebyshev loop filter with Dolph–Chebyshev window (a): Nyquist frequency (b):

zoom in for in-band frequency ... 44

Fig. 4.1: Block diagram of the lossless discrete resonator (LDR) 46
Fig. 4.2: Relationship between the oscillation frequency and the coefficients a1*a2 48
Fig. 4.3: Relationship between the amplitude and the initial value of the registers. Graph

(a) illustrates the amplitude as a function of the register 1 given the other is 0. Graph

(b) illustrates the amplitude as a function of the register 1 given the other is 1. Graph

(c) and (d) illustrate the opposite situation of graph (a) and (b). 51
Fig. 4.4: The general structure of a ΔΣ oscillator ... 51
Fig. 4.5: The configuration of the ΔΣ oscillator (a): A general ΔΣ oscillator structure

 .. 52
Fig. 4.6: PSD of the outputs of ΔΣ Oscillator. (a): whole frequency; (b): in-band

frequency .. 56

Fig. 5.1: Partition of the input signal .. 59
Fig. 5.2: Realization of partition of the input signal ... 60
Fig. 5.3 Overall structure of two-segment ΔΣ modulator ... 61
Fig. 5.4: An example of data partition: (a) full-scale input; (b) coarse path input; (c) fine

path input .. 65
Fig. 5.5: Magnitude response of the fine path noise transfer function 67
Fig. 5.6: Theoretical and Simulink simulation output PSD of two-segment ΔΣ

modulator .. 68

Fig. 6.1: General block diagram of a segmented ΔΣ oscillator 71
Fig. 6.2: Block diagram of a two-segment ΔΣ modulator ... 71
Fig. 6.3: Block diagram of two-segment ΔΣ modulator .. 73
Fig. 6.4: Theoretical and Simulink simulation output PSD of two-segment ΔΣ oscillator

under 16 bits number system (a): Nyquist frequency (b): in-band frequency 75
Fig. 6.5: Theoretical and Simulink simulation output PSD of two-segment ΔΣ oscillator

under 32 bits system (a): Nyquist frequency (b): in-band frequency 77

Fig. 7.1: Ideal (Theory, Simulink) and 4-bits fractional part realization (Theory,

Simulink, FPGA implementation) of output PSD for a single path ΔΣ modulator 82
Fig. 7.2: Ideal (Theory, Simulink) and 16-bits fractional part realization (Theory,

Simulink, FPGA implementation) of output PSD for a single path ΔΣ modulator 83
Fig. 7.3: Number representation in FPGA format ... 83
Fig. 7.4: Arithmetic operation structure ... 84
Fig. 7.5: Schematic view of the 1-bit modulator provided by QuartusII 87
Fig. 7.6: Schematic view of the two-segment ΔΣ modulator provided by QuartusII . 88
Fig. 7.7: Output PSD of Simulink simulation and FPGA implementation of two-

segment ΔΣ modulator (a): Nyquist frequency (b): in-band frequency 89
Fig. 7.8: Schematic view of the single path ΔΣ oscillator provided by QuartusII 90
Fig. 7.9: Output PSD of Simulink simulation and FPGA implementation of the single

X

path ΔΣ oscillator (a): Nyquist frequency (b): in-band frequency 91
Fig. 7.10: Simulink and FPGA sinewave output of the single path ΔΣ oscillator 92
Fig. 7.11: Schematic view of the two-segment ΔΣ oscillator provided by QuartusII . 93

Fig. 7.12: Output PSD of Simulink simulation and FPGA implementation of the two-

segment ΔΣ oscillator (a): Nyquist frequency (b): early frequency 94
Fig. 7.13: Simulink and FPGA sinewave output of the two-segment ΔΣ oscillator ... 95

XI

List of Acronyms

ADC Analog-to-Digital Converter

ADM Adaptive Delta Modulation

CAD Computer Aided Design

DAC Digital-to-Analog Converter

DDFS Direct Digital Frequency Synthesis

DNS Differential Non-Linearity

DSP Digital Signal Processing

INL Integral Non-Linearity

LDR Lossless Discrete Resonator

LPF Low-Pass Filter

LSB Least Significant Bit

TLE Total Logical Elements

BIST Built-In-Self-Test

MSB Most Significant Bit

NTF Noise Transfer Function

PSD Power Spectral Density

PWM Pulse-Width Modulator

SNR Signal-to-Noise Ratio

STF Signal Transfer Function

1

Chapter 1: Introduction

In this chapter, the main concepts in relation to this thesis are introduced,

including mixed signal testing, analog sinewave generation, ΔΣ modulation and

the technique of segmentation. Additionally, the motivation behind this thesis is

explored and elaborated upon.

1.1 Mixed-Signal Systems

1.1.1 Definition and Applications

In the field of electronics, one can classify circuits and signals as digital or

analog in general. A mixed-signal circuit is a circuit that has both analog and

digital components [1]. Mixed-signal integrated circuits (IC) are often used to

convert analog signals to digital signals so that digital devices can process them

or vice versa. Such devices are defined as the analog-to-digital converters (ADCs)

or digital-to-analog converters (DACs).

The usage of mixed-signal circuits has experienced a significant increase due

to the widespread use of smartphones, telecommunications, and vehicles

equipped with digital sensors. Mixed-signal circuits or systems are commonly

used as cost-efficient solutions in various domains, including industrial, medical,

measurement, and space-related applications.

Due to the utilization of both digital signal processing and analog circuitry,

mixed-signal ICs are generally designed for a specific purpose. The design

demands significant proficiency and careful use of computer aided design (CAD)

tools. Furthermore, specific design tools, such as mixed-signal simulators, and

2

description simulation languages, like VHDL-AMS, are employed during the

design process. The testing process for the final chips can also be complex and

challenging, as we will explore in the next subsection.

1.1.2 Mixed-Signal Testing

Nowadays, the testing techniques and procedures for digital chips have

become well-established. However, the same cannot be said for mixed-signal ICs

[2]. The cost associated with high-volume production of mixed-signal ICs is

significantly impacted by their testing costs. The test cost associated with testing

the analog portion of a mixed-signal device can cost up to 50% of the total

product cost. With new technologies, the cost of analog testing in mixed-signal

devices may become the predominant factor.

Fig. 1.1 depicts a typical arrangement used to perform analog measurements.

The measurement process involves a sinusoidal signal generator with variable

amplitude and frequency control, which excites the analog portion of the mixed-

signal circuit. A true-RMS power meter operating over a very narrow, but tunable,

frequency band can be used to extract the circuit response.

Fig. 1.1: The example of test set-up of a mixed signal device

3

To decrease testing costs, IC designers have put in considerable effort to

produce circuits that can self-test, known as Built-In-Self-Test (BIST) [3]. BIST

can significantly simplify the testing of digital ICs. However, the test challenge

with BIST for analog circuits is far more complicated. Mixed signal BIST

requires a high-precision analog signal source that needs to be fabricated on the

same IC as the circuit-under-test. For practical purposes, realizing a high-

precision analog test source on an IC without external calibration or trimming

remains a challenge to this day.

In this thesis, a high-precision analog signal source for BIST application is

to be investigated. This source is to exceed present day performance levels and

silicon area requirements through the application of hardware resource reduction

using segmentation.

1.2 Analog Sinewave Generation

In this section, different methods of analog signal generation are discussed

with an emphasis on IC fabrication.

1.2.1 Discrete Analog Oscillators

Tuned oscillator circuits are traditional methods to produce oscillation using

discrete components. They are also known as LC oscillators or resonant circuit

oscillators [4].

According to the Barkhausen stability criteria [4], a circuit will sustain

steady-state oscillations only when the loop gain 𝐴𝛽 meets the following

conditions:

4

∣ 𝐴𝛽 ∣= 1 (1.1)

and

∠𝐴𝛽 = 0 ± 2𝜋𝑘; 𝑘 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (1.2)

Here we take the Colpitts Oscillator as an example. The configuration is shown

in Fig. 1.2.

Fig. 1.2: Configuration of the Colpitts oscillator

The oscillation frequency of this structure is given as

𝜔𝑜 = √
1

𝐿2

(
1

𝐶1

+
1

𝐶3

) (1.3)

However, purely analog oscillators are not suitable for mixed-signal BIST,

as argued in [5]. The reasons are listed as followed:

▪ Integrated inductors needed in passive implementations have poor

quality factors and are prohibitively large.

▪ Active implementations of analog oscillators using opamps are

vulnerable to variations in the fabrication process and temperature

drift.

▪ Integrated precision analog components require trimming, which adds

to the fabrication cost.

5

In comparison, the operation of digital circuits is much less affected by these

factors. Therefore, digital circuits with digital-to-analog converter are the

preferred approach to realize an oscillating source in a mixed signal BIST.

1.2.2 Digital Signal Generation

Advancements in Digital-to-Analog and Analog-to-Digital converter

technology have enabled IC designers to utilize Digital Signal Processing (DSP)

techniques for processing analog signals. Here we will discuss three methods of

digital signal generation: Direct digital frequency synthesis (DDFS), Lossless

discrete resonator (LDR) and ΔΣ oscillator.

Direct digital frequency synthesis (DDFS) is a method generating analog

sinusoidal signals using digital hardware and a DAC. As discussed in [4], the

principle behind DDFS is to sequentially access the addresses of a ROM

containing the sample points of a sinewave. The block diagram of DDFS is

shown in Fig. 1.3. The phase accumulator enables the user to scan the ROM with

different increments, denoted as F, to change the frequency. A multi-bit DAC and

a low-pass filter (LPF) then transform the digital words from the ROM into an

analog signal. The precision of the synthesizer will be dictated by this DAC.

Fig. 1.3: Block diagram of a general direct digital frequency synthesis

6

 Fig. 1.4: The structure of a lossless discrete resonator

However, the multi-bit DAC and the ROM could take too much area

resources as described in [4]. A more area-efficient method to generate a digital

sinusoidal signal is the LDR approach. The passive LC ladder filters have

exceptional sensitivity properties [6] and the LDR is based on this structure.

Additionally, the multi-bit DAC can be replaced with a ΔΣ DAC to save more

space. The general structure of the LDR approach is shown in Fig. 1.4.

To further reduce area usage, a ΔΣ oscillator is proposed [5]. The ΔΣ

oscillator is the core of this thesis and the history and benefits will be discussed

in detail in the next section.

1.3 ΔΣ Modulation

In addition to compatibility with VLSI technology, ΔΣ converters provide a

high level of reliability and functionality and reduced chip cost. In this thesis,

ΔΣ modulators are utilized for partial DAC realization. This section will explain

the history and benefits of ΔΣ modulation. Moreover, a brief description of

segmentation is introduced. The details of the performance characteristics and

topologies of ΔΣ Modulation will be discussed in Chapter 3.

7

1.3.1 History and Benefits of ΔΣ Modulation

Delta-Sigma (ΔΣ) modulation is a technique for converting analog or digital

signals into digital data that finds wide applications in all electronic systems. ΔΣ

modulation provides high-resolution digital representations of analog signals,

which makes it suitable for applications where fine details and precision are

required. It represents an enhancement over the Delta Modulation (DM) [7]. DM

is an analog-to-digital modulation technique widely employed in electronic

systems, including digital telephony over the Internet (VoIP), digital wireless

communication, and mobile communications. DM suffers from two significant

drawbacks, namely slope overload distortion and granular noise [8]. To

overcome these disadvantages, two approaches are commonly employed,

namely the adaptive delta modulation (ADM) [9] and the ΔΣ modulation [7].

Utilizing ΔΣ DACs offers a significant advantage because they are

predominantly digital, requiring only an LPF as the sole analog component. This

attribute contributes to their compactness when implemented on a silicon chip.

In addition, ΔΣ modulation exhibits highly favorable characteristics in terms

of noise-shaping. This is achieved by employing a clock with a sampling

frequency that is at least twice the maximum signal frequency. An example using

different sampling frequency is depicted in Fig. 1.5. As can be seen, the imaging

frequencies are shifted away from the signal band using high sampling frequency,

which minimizes interference caused by aliasing in the input spectrum and

allows for a simpler LPF with less need for a sharp roll-off.

Moreover, ΔΣ modulators typically consume less power than other high-

resolution analog-to-digital techniques, making them suitable for battery-

powered or low-power applications.

8

(a) (b)

Fig. 1.5: A comparison of the distance between the frequency band in green and the imaging

frequencies in red for (a) a low sampling frequency (b) a high sampling frequency

1.3.2 ΔΣ Oscillators

Different from other digital signal generation methods, ΔΣ oscillators stand

at the crossroads of precision signal generation and advanced modulation

techniques. Rooted in the principles of ΔΣ modulation, ΔΣ oscillators offer an

innovative approach to achieving high-precision analog sinusoidal signals.

The history of ΔΣ oscillators is closely linked with the evolution of sigma-

delta modulation. While ΔΣ modulation was first introduced for use in ADC,

engineers recognized the potential to adapt these techniques for signal generation

over time, paving the way for the development of ΔΣ oscillators [7]. These

concepts therefore have reshaped the field of oscillator design and signal

processing. ΔΣ oscillators can be seen as an improvement of the LDR approach

as one multiplier is replaced by a two-input multiplexer, which further reduces

area usage. The structure of a ΔΣ oscillator is shown in Fig. 1.6. Here, the only

analog components are the 1-bit DAC and the low-pass filter (LPF), as all other

components are digital.

9

Fig. 1.6: The structure of a ΔΣ oscillator

ΔΣ oscillators also have many advantages. Because of the ΔΣ modulator

inside the structure, they can deliver high-resolution output and inherent linearity,

thus eliminating the need for complex calibration procedures. As a result, ΔΣ

oscillators are used in applications where minimizing noise and achieving high

signal-to-noise ratio (SNR) is vital [10].

The theories and topologies of ΔΣ oscillators will be covered in Chapter 4.

1.3.3 Principles and Benefits of Segmentation

When we are required to design a DAC to meet the specific performance

requirement, it may well be that no single architecture is ideal. In such cases, two

or more DACs may be combined to form a single DAC to achieve the required

performance. In principle, the process of segmentation in DACs typically

involves the partitioning of the input digital data into K segments, and each

segment is processed individually, then all combined into a single output signal.

The first path handles the N1 most significant bits (MSB), the next path handles

the N2 MSBs, etc. The pattern continues for all K segments. The outputs of the

individuals DACs are then combined to reconstruct the final converted signal.

10

The structure of a K-segment DAC is shown in Fig. 1.7.

Segmentation produces important benefits. First, segmentation can enhance

resolution and reduce mismatch errors. By dividing the modulator into K

segments, each segment will deal with a smaller range of input signals, thus

reducing the weight mismatch between the MSBs and LSBs. This results in an

improvement in resolution and accuracy, making segmentation a useful strategy

for achieving high-resolution ΔΣ modulators.

The second advantage segmentation brings is that it also optimizes the power

efficiency and area usage in ΔΣ modulators. Segmentation divides the processing

task among multiple smaller units or segments, each working on a narrower input

range. This approach can significantly reduce the power consumption and silicon

area required for the modulator, making it more practical for integrated circuit

design [11]. This thesis focuses on the realization of a ΔΣ oscillator with a two-

segment ΔΣ modulator. The segmentation utilization will be covered in Chapter

5 for segmented ΔΣ modulators and Chapter 6 for segmented ΔΣ oscillators.

11

Fig. 1.7: The structure of a K-segment DAC

1.4 Thesis Objective

This thesis focuses on the development of a high-precision analog signal

source using segmentation. The analog signal source shall follow the constraints

below:

▪ The generation of high-precision test signals that meets a desired

signal-to-noise ratio (SNR).

▪ Programmability should be supported by the source.

▪ External calibration or trimming is to be avoided, necessitating the

source to be insensitive to process variations.

▪ The circuit should occupy less silicon area and be mostly digital.

▪ Segmentation shall be introduced to reduce hardware costs.

12

To achieve a high SNR for ΔΣ modulation, there is a significant trade-off in

terms of increased hardware complexity and area costs. A higher order modulator

will require far more hardware when compared to one with the same data path

width but a lower loop filter order. Similarly, expanding the width of the data

path also leads to increased hardware requirements. Therefore, by introducing

segmentation into ΔΣ modulation, less silicon area is required. Notably, Ahmed

Emara's previous research [12] introduced segmentation into ΔΣ modulation and

realized segmented ΔΣ modulators through IC implementation. Moreover, Denis

Romanov [11] demonstrated the mapping of segmented modulators into a digital

realization using FPGA.

In the context of generating high-precision analog signals, Albert Lu's work

[13] has also made substantial contributions by developing the concept of ΔΣ

oscillators. With the benefits of segmentation in mind, this thesis aims to

investigate the incorporation of segmentation into ΔΣ oscillators using digital

realization via FPGA.

13

Chapter 2: Literature Review

As has been stated in the previous chapter, the Digital-to-Analog Converter

(DAC) is a vital component of analog signal generation. Within this chapter,

fundamental principles and characteristics of DACs are elucidated, alongside an

exploration of the various DAC architectures documented in existing literature.

Finally, the use of segmentation and its application is presented.

2.1 Principles of D/A conversion

This section will provide background information of DACs, including the

principle of D/A conversion and the key metrics used to evaluate their

performance.

The Digital-to-Analog Converter (DAC) is a system that converts a digital

signal into an analog signal. A DAC can reconstruct the original signal from the

sampled data provided that its bandwidth meets the requirements of the Nyquist

sampling theorem [14].

Fig. 2.1 shows the structure of a typical N-bit DAC. It can be characterized

as a decoding device that takes an integer input value and generates an output in

the form of an analog quantity such as voltage or current.

Fig. 2.1: Diagram of an N-bit DAC

14

The operation of the DAC can be expressed as an approximation of

multiplying by a factor 𝐺 to convert between analog and digital equivalents.

Assume the input is 𝐷𝐼𝑁 and the output is 𝑉𝑜, we can write:

𝑉𝑜 = 𝐺 ∙ 𝐷𝐼𝑁 (2.1)

where the factor 𝐺 is a real-valued constant. Since 𝐷𝐼𝑁 corresponds to data

originating from a digital system, it is commonly represented as an N-bit wide

base-2 unsigned integer. Therefore, the value of 𝐷𝐼𝑁 ranges from 0 to 2𝑁 − 1 and

its expression can be given as:

𝐷𝐼𝑁 = 𝐷0 + 21 ∙ 𝐷1 + 22 ∙ 𝐷2 + ⋯ + 2𝑁−1 ∙ 𝐷𝑁−1 (2.2)

where the coefficients 𝐷0, 𝐷1,…, 𝐷𝑁−1 have either a 0 or 1 value. Coefficient 𝐷0

is referred to as the least significant bit (LSB) because it exerts the least influence

on 𝐷𝐼𝑁, whereas 𝐷𝑁−1 is regarded as the most significant bit (MSB) since it has

the greatest impact.

From Eqn. (2.1), we can deduce the smallest change at the input as 1 𝐿𝑆𝐵.

Thus, the smallest voltage change at the output is given as:

𝑉𝐿𝑆𝐵 = 𝐺 ∙ 1 𝐿𝑆𝐵 (2.3)

Fig. 2.2 demonstrates an example of transfer curve of a 4-bit DAC, where the

factor 𝐺 is set to 0.2 V. For each input digital word, we could see there is one-to-

one mapping and the LSB step size 𝑉𝐿𝑆𝐵 = 0.2 V.

15

Fig. 2.2: Transfer curve for a 4-bit DAC

Alternatively, one can design the gain of the DAC (𝐺) as the ratio of the

range of output values to the range of input values as:

𝐺 =
𝑉𝐹𝑆+ − 𝑉𝐹𝑆−

𝐷𝐼𝑁,𝑀𝐴𝑋 − 𝐷𝐼𝑁,𝑀𝐼𝑁

 (2.4)

where 𝑉𝐹𝑆+ and 𝑉𝐹𝑆− represents the maximum and minimum output voltage

values, respectively. If we define the difference between 𝑉𝐹𝑆+ and 𝑉𝐹𝑆− as 𝑉𝐹𝑆𝑅

and denote the input integer range as 2𝑁 − 1. Thus, the DAC gain and the LSB

step size are given as follows

𝐺 =
𝑉𝐹𝑆𝑅

2𝑁 − 1
 (2.5)

and

𝑉𝐿𝑆𝐵 =
𝑉𝐹𝑆𝑅

2𝑁 − 1
 (2.6)

2.2 DAC Performance Metrics

Within the realm of DACs, various metrics are utilized to assess their

operation. In this section, we introduce DAC errors and elaborate on three

16

linearity metrics: Monotonicity, Differential Non-Linearity (DNL), and Integral

Non-Linearity (INL). These characteristics are previously discussed in [15].

2.2.1 Gain and Offset Error

The transfer curve for the ideal 4-bit DAC provided earlier, as shown in Fig.

1.7, assumed that the DAC is ideal, which means gain error and offset error do

not exist. We denote the ideal gain as 𝐺𝑖𝑑𝑒𝑎𝑙. In practical terms, however, the gain

𝐺𝑎𝑐𝑡𝑢𝑎𝑙 is not necessarily equal to the ideal gain and thus introduces a gain error.

Gain error percentage can be expressed as:

𝐺𝑎𝑖𝑟𝐸𝑟𝑟𝑜𝑟% =
𝐺𝑎𝑐𝑡𝑢𝑎𝑙 − 𝐺𝑖𝑑𝑒𝑎𝑙

𝐺𝑖𝑑𝑒𝑎𝑙

× 100% (2.7)

Moreover, the value of 𝑉𝐹𝑆− is not always equal to zero, leading to the presence

of offset error. Fig. 2.3 represents the transfer curves of two DACs with a gain

error and an offset error, respectively, when comparing to the ideal DAC.

To compensate for the gain and offset error, two reference lines were

introduced, namely best-fit line and endpoint-to-endpoint line [16].

Fig. 2.3: Transfer curve of 4-bit DACs with gain error and offset error

17

The best-fit line is obtained by applying linear regression to the data points

of a DAC transfer curve, ensuring the line closely matches the data. The

endpoint-to-endpoint reference line is simply drawn by connecting the two

endpoints. Figure 2.4 illustrates a best-fit line for a 4-bit DAC. On the other hand,

the endpoint-to-endpoint reference line is simply drawn by connecting the two

endpoints of the transfer curve, which is demonstrated in Fig 2.5. These two

reference lines serve as a basis for calculating the linearity metrics DNL and INL.

Fig. 2.4: Example of best-fit line for a 4-bit DAC

Fig .2.5: Example of Endpoint-to-endpoint line for a 4-bit DAC

18

2.2.2 Monotonicity

In an ideal DAC, the output voltage obtained from a specific code is always

greater than the output voltage generated by the preceding input code. This

property, known as monotonicity, can be assessed by calculating the discrete first

derivative of the transfer curve. The output voltage for a given code is denoted

as 𝑆(𝑖), while the output for the next code is denoted as 𝑆(𝑖 + 1). To test for

monotonicity, we analyze the discrete first derivative of the transfer curve,

denoted as 𝑆′(𝑖) in this context:

𝑆′(𝑖) = 𝑆(𝑖 + 1) − 𝑆(𝑖) (2.8)

If all the derivatives are positive when the input is a rising ramp or negative when

the input is a falling ramp, it indicates that the DAC is monotonic.

2.2.3 Differential Non-Linearity (DNL)

In an ideal DAC, 𝑉𝐿𝑆𝐵 represents the difference between two adjacent output

levels. DNL measures the deviation from the ideal step size between two

adjacent output levels. It indicates the DAC's ability to accurately reproduce

small changes in the input signal. The DNL curve illustrates the error in each

step size, expressed as fractions of an LSB. DNL is computed in a similar manner

to the discrete first derivative, using the following formula:

𝐷𝑁𝐿(𝑖) =
𝑆(𝑖 + 1) − 𝑆(𝑖) − 𝑉𝐿𝑆𝐵

𝑉𝐿𝑆𝐵

𝐿𝑆𝐵 (2.9)

The determination of LSB calculations depends on the reference line

employed, whether it is the ideal line, the best-fit line, or the endpoint-to-

endpoint reference line [16]. Consequently, the 𝑉𝐿𝑆𝐵 values derived from each

reference line differ from one another, while despite the variations, the results

19

obtained from these different reference lines will be relatively similar.

2.2.4 Integral Non-Linearity (INL)

The INL curve, very similar to DNL, quantifies the deviation of the DAC's

output from a reference line. It provides information about the overall linearity

performance of the DAC. The INL curve is normalized to the LSB step size. The

INL curve is calculated by subtracting the reference DAC line from the actual

DAC curve then normalized to be expressed as a fraction of the average LSB

step:

𝐼𝑁𝐿(𝑖) =
𝑆(𝑖) − 𝑆𝑅𝐸𝐹(𝑖)

𝑉𝐿𝑆𝐵

𝐿𝑆𝐵 (2.10)

If the absolute maximum value of the INL is less than 1 LSB, it indicates

that the DAC has achieved the desired resolution. The calculation of INL relies

on the choice of reference line used [16]. It is also worth mentioning that the

INL curve is the integral of the DNL curve. While DNL quantifies the error in

step sizes between consecutive codes, INL represents the accumulated error

across all the step sizes.

2.3 DAC Architectures

In this section, introduction of the commonly used DAC architectures is

provided, followed by the advantages and disadvantages associated with each

architecture. The information of these architectures was mainly taken from [17].

20

Fig. 2.6: Example of a 3-bit string DAC

2.3.1 String DACs and Thermometer DACs

The simplest DAC structure of all is the Kelvin divider or string DAC [17].

Fig. 2.6 presents the structure of a 3-bit string DAC. As can be seen, an N-bit

string DAC consists of three parts, including a 𝑁 − 𝑡𝑜 − 2𝑁 decoder, 2𝑁

switches (mostly CMOS) and 2𝑁 equal resistors. The switches and resistors are

allocated such that there is one for each node of the chain and output. The

decoder takes the N bit input and converts it into 2𝑁 separate signals of which

only one is active. The output is taken from the appropriate tap by closing just

one of the switches.

The architecture itself is quite simple, and the digital circuitry involved in

the decoder is quite cheap to implement. In addition, the voltage output is

inherently monotonic, as even a short-circuit in one of the resistors cannot cause

any output code’s voltage to exceed the output of the following code.

21

The major downside lies in the heavy use of analog components. For a linear

increase in resolution, one must incur an exponential cost in components. Analog

components such as resistors can take up a considerable amount of space and

generate a non-negligible amount of heat if they become numerous.

Thermometer-coded DACs [17] use 2𝑁−1 equal size number of elements

(current sources, resistors, or capacitors). There is a current-output DAC

analogous to a string DAC that consists of 2𝑁−1 switchable current source

(which may be resistors and a voltage reference or may be active current sources)

connected to an output terminal, which must be at, or close to, ground. This

architecture is commonly referred to as a "thermometer" or "fully decoded" DAC.

Fig. 2.7: Example of a 3-bit Thermometer DAC

22

Fig. 2.8: Example of an 8-bit Binary-Weighted DAC

2.3.2 Binary-Weighted DACs

Binary-weighted DACs use binary-weighted number of elements [17],

which are employed to generate the desired analog value by selectively switching

these sources on or off based on the digital input code. Fig. 2.8 presents an 8-bit

current mode binary-weighted DAC.

Compared to thermometer-coded architecture as shown in Fig. 2.7, binary-

weighted DAC is significantly more area efficient as it has much higher

resolution with the same number of current sources being used.

However, this architecture faces a notable drawback when aiming for

resolutions of 10 bits or higher. The weights of the most significant bits (MSBs)

and least significant bits (LSBs) exhibit a substantial difference, resulting in high

sensitivity of the output to mismatch errors. To address this issue, various

calibration circuits and techniques [17] are required for error correction.

2.3.3 Pulse-Width Modulation DACs

Fig. 2.9 illustrates the configuration of a pulse-width modulated (PWM)

23

DAC. The circuit operates based on a sampling clock, causing an N-bit counter

to iterate through its complete range of possible values, in comparison to the

digital input. When the input exceeds the counter's value, the output produces a

high voltage; otherwise, it generates a low voltage. As a result, a rectangular

wave is generated with 2N sampling periods and a duty cycle corresponding to

the input. To obtain the desired analog output, this output bitstream needs to

undergo reconstruction by passing it through a low-pass filter (LPF).

PWM DACs offer a notable advantage in the form of high-linearity achieved

using a 1-bit DAC. Single-bit DACs exhibit perfect linearity and can be regarded

as ideal DACs. Consequently, PWM DACs eliminate the need for calibration,

making them highly suitable for testing purposes. Furthermore, PWM

implementation predominantly relies on cost-effective digital components,

which are efficient in terms of their area utilization.

However, a significant drawback arises from the analog LPF employed in

PWM DACs, particularly when designing high-resolution DACs. The LPF

consumes a substantial amount of silicon area, which becomes more pronounced

as higher resolution is desired. As the output always repeats at intervals of 2N

sampling periods, the LPF must be capable of attenuating frequencies that are

increasingly closer to twice the input frequency range with each additional bit of

resolution.

Fig. 2.9: Structure of a PWM DAC

24

Fig. 2.10: Structure of a ΔΣ DAC

2.3.4 ΔΣ DACs

Much like PWM DACs, ΔΣ DACs [17] produce a bitstream at the output of

a digital circuit which is then passed through a LPF to produce the intended

signal. Since the only two analog component are the 1-bit DAC and the LPF, ΔΣ

DAC is considered as an almost all-digital DAC. The structure of a typical ΔΣ

DAC is shown in Fig. 2.10.

In a typical DAC which operates at a sampling frequency 𝑓𝑠, the quantization

noise tends to be concentrated in the lower frequencies, making it challenging to

adequately address using a low pass filter. However, when oversampling is

employed, this same quantization noise gets spread out across a wider frequency

range up to 𝐾𝐹𝑠/2, (𝐾 > 1) , resulting in a significant reduction of the noise

observed within the input signal band. Additionally, the noise-shaping

characteristics of the ΔΣ modulator, facilitated by the filter in its feedback loop,

further push the noise towards higher frequencies, effectively moving it outside

of the input signal band. The quantization noise distribution across frequencies

of the typical DAC and ΔΣ DAC are shown in Fig. 2.11.

25

Fig. 2.11: Noise distribution across frequency (left: a typical DAC; right: a ΔΣ DAC)

These unique properties make the ΔΣ modulator an excellent choice for

achieving high-resolution results at a lower cost. Furthermore, its low power

consumption and bandwidth make it well-suited for applications involving

voiceband and general audio signal processing.

Nonetheless, the size of the filter remains a primary factor determining the

amount of silicon area utilized by the ΔΣ DAC. Consequently, additional efforts

are necessary to further reduce the size of the filter. Moreover, the substantial

number of memory elements needed to store a single DAC input code poses a

limitation in memory-based ΔΣ DACs, particularly when developing high-

resolution DACs.

2.3.5 Segmented DACs

To enhance DAC resolution and minimize hardware costs, the concept of

segmentation is introduced, which is the core idea of this thesis. A segmented

DAC [17] refers to a type of Digital-to-Analog converter that divides the digital

input word into distinct "segments" and processes them individually. This

approach may involve utilizing specific DAC architectures for each segment,

26

leveraging their individual strengths and mitigating their respective weaknesses

to optimize overall performance.

Fig. 2.12 depicts a segmented string DAC architecture [18], illustrating a 6-

bit configuration composed of two 3-bit string DACs. The voltages at each tap

within the DAC are labeled for clarity. In this design, the resistors within the two

strings must be identical, except for the top resistor in the MSB string, which

should be smaller (1/2𝑘 of the others). Furthermore, the Least Significant Bit

(LSB) string comprises 2𝑘 − 1 resistors instead of the standard 2𝑘. Notably, as

there are no buffers, the LSB string is connected in parallel with the resistor in

the MSB string it is switched across, thus introducing a load. This results in a

voltage drop of precisely 1 LSB from the LSB DAC, as required by the design.

Fig. 2.12: An example of segmented DAC architecture

27

A designer might opt to utilize a segmented DAC for various reasons. One

possible reason is that the specific performance criteria they need to meet may

not be achievable with a single architecture alone. In such cases, a segmented

DAC can offer the necessary flexibility to meet those requirements. Another

consideration is the hardware complexity associated with achieving a linear

increase in the number of bits. As the number of bits increases, the hardware

required to implement a DAC grows exponentially. To mitigate this hardware

complexity and save on resources, segmenting the DAC may be a viable solution.

Hence, the decision to employ a segmented DAC can stem from the need to

address specific performance metrics and optimize hardware utilization.

2.4 Applications of Oscillators

Recent literature underscores the significance of both digital and analog

oscillators due to advances in integrated circuit technologies. Digital oscillators,

often in the form of numerically controlled oscillators (NCOs), are gaining

attention for their accuracy, programmability, and compatibility with digital

signal processing (DSP) algorithms. Research focuses on improving NCO

resolution and spectral purity for applications such as software-defined radios

and radar systems [19].

Analog oscillators remain vital in scenarios where precision, phase noise,

and rapid response are paramount. Recent studies explore novel architectures

and topologies to address challenges like power efficiency, phase noise

mitigation, and integration with analog functions [20]. Integrating analog

oscillators with digital compensation techniques also aims to achieve superior

28

performance [21].

Moreover, oscillators are intimately linked with DACs in various

applications [4]. Some ideas of how they are connected are shown in Fig. 2.13.

In summary, oscillators are vital components in various DAC applications,

providing clock signals, driving ΔΣ modulators, serving as references for PLLs,

and enabling precise frequency synthesis. The stability, precision, and spectral

purity of the oscillators have a direct impact on the performance of DACs and

DDFS systems. A high-quality oscillator can significantly enhance the overall

performance.

Fig. 2.13: Some applications of oscillators in DACs

29

2.5 Summary

Within this chapter, an extensive literature review relevant to the thesis has

been conducted. Initially, the principle of digital-to-analog (D/A) conversion is

elucidated, followed by the introduction of DACs and their associated

performance metrics. Subsequently, various DAC architectures documented in

the literature are presented, accompanied by a comprehensive examination of

their respective advantages and disadvantages.

30

Chapter 3: ΔΣ Modulators

This chapter provides an introduction to the theory of ΔΣ modulation,

including the structure and performance characteristics of ΔΣ modulators. The

chapter then delves into a detailed design of a one-bit ΔΣ modulator, followed

by a comprehensive discussion of a MATLAB/Simulink simulation.

3.1 Theory of ΔΣ Modulation

3.1.1 Structures of One-Bit ΔΣ modulators

Assuming no loss of generality, the block diagram shown in Fig. 3.1 can

represent any high-order one-bit ΔΣ modulator. A linear model is shown in Fig.

3.2.

The input 𝑥 could be a digital or analog signal while the output 𝑦 of the

modulator is a 1-bit digital signal. There are three main blocks: Two linear filters,

𝐻1 and 𝐻2, and a one-bit quantizer. A delta-sigma modulator employs a feedback

loop where the band-limited input signal, 𝑥, undergoes filtering via 𝐻1, and the

resulting signal is then subtracted by the feedback signal from 𝐻2, resulting in 𝑒,

the input signal to the quantizer. The quantizer output is utilized directly as the

modulator output, 𝑦, while also being filtered by 𝐻2 to generate the feedback

signal. This configuration creates a non-linear system with feedback, which

characterizes a delta-sigma modulator.

31

Fig. 3.1: Block diagram of the general 1-bit delta-sigma modulator

Fig. 3.2: Linear model of the general 1-bit delta-sigma modulator

The quantizer can be modelled as a source of noise as shown in Fig. 3.2.

Therefore, the output of the quantizer 𝑦 can be expressed as the sum of the initial

quantizer input, 𝑒 , and the quantization noise, 𝑞 , generated by the additional

adder. Using this noise model, it is possible to perform a z-transform on the

system, resulting in the equation

 𝑌(𝑧) =
𝐻1(𝑧)

1 + 𝐻2(𝑧)
⋅ 𝑋(𝑧) +

1

1 + 𝐻2(𝑧)
⋅ 𝑄(𝑧) (3.1)

We can deduce that the signal transfer function is the factor multiplied by 𝑋(𝑧),

given as

𝑆𝑇𝐹(𝑧) =
𝐻1(𝑧)

1 + 𝐻2(𝑧)
 (3.2)

while the noise transfer function is the factor multiplied by 𝑄(𝑧), given as

𝑁𝑇𝐹(𝑧) =
1

1 + 𝐻2(𝑧)
 (3.3)

32

The two transfer functions can fully describe the spectral characteristics of

the sigma-delta modulator. Therefore, the z-transform of the output signal y can

be expressed using these two transfer functions as follow:

𝑌(𝑧) = 𝑆𝑇𝐹(𝑧) ⋅ 𝑋(𝑧) + 𝑁𝑇𝐹(𝑧) ⋅ 𝑄(𝑧) (3.4)

The noise source 𝑄(𝑧) can be assumed as white noise, which is reasonably

precise for modulators that are higher than the first order.

From the noise transfer function expressed in Eqn. (3.3), we can conclude

that 𝐻2(𝑧) must have a significant value in the relevant bandwidth to minimize

the noise at the output. However, considering the signal transfer function

presented in Eqn. (3.2), we must ensure that 𝐻1(𝑧) has a large value to offset the

effect of 𝐻2(𝑧). Ultimately, in the ideal scenario, 𝑆𝑇𝐹(𝑧) should equal one, and

𝑁𝑇𝐹(𝑧) should be zero.

Therefore, in this thesis, we will utilize a modified model different from the

linear model shown in Fig. 3.2 to achieve a unity gain, while also simplifying

the overall topology. Given the definition of 𝑆𝑇𝐹 in Eqn. (3.2), if the 𝑆𝑇𝐹 is

unity, we can derive that:

𝐻1(𝑧) = 1 + 𝐻2(𝑧) (3.5)

Since we derived a quite simple relation between the two filters 𝐻1 and 𝐻2.

We could use one single filter 𝐻(𝑧) instead of 𝐻2(𝑧). The modified topology [1]

is shown in Fig. 3.3. We could further simplify the modulator structure as shown

in Fig. 3.4.

Fig. 3.3: Modified signal flow graph of the general delta-sigma modulator

33

Fig. 3.4: Structure of the general delta-sigma modulator with a unity STF

Substituting the quantizer with its linear model results in a direct path from

the input signal to the output, which then loops back to the filter input.

Additionally, the input signal is fed forward to the filter input, effectively

canceling out the signal feedback. Therefore, we have a unity gain 𝑆𝑇𝐹 ,

expressed as:

𝑆𝑇𝐹 =
1

(1 + 𝐻) − 𝐻
= 1 (3.6)

The 𝑁𝑇𝐹 now is as follow:

𝑁𝑇𝐹(𝑧) =
1

1 + 𝐻(𝑧)
 (3.7)

As a result, Fig. 3.3 shows the structure of a unity gain ΔΣ modulator which we

will use in the later chapters.

Based on different needs, ΔΣ modulator can take digital or analog inputs

while producing a 1-bit digital output stream containing all the information of

the input signal. We can fulfil A/D and D/A conversion by using a ΔΣ modulator.

Fig. 3.4 shows the structure of a ΔΣ modulator if the input signal is analog.

As for ΔΣ DAC, we could feed the 1-bit output stream into a 1-bit DAC and a

low pass filter. The structure of a 1-bit ΔΣ DAC is shown in Fig. 3.5.

34

Fig. 3.5: Structure of 1-bit ΔΣ DAC

In this thesis, the focus is on analog oscillators with segmentation. Thus, the

input of the ΔΣ modulator will be a digital input.

3.1.2 Performance Characteristics of ΔΣ modulation

The performance characteristics of a ΔΣ modulator are heavily influenced

by several factors: the order, the amount of quantization noise generated by the

quantizer, and the LPF's bandwidth and its order. An error source is introduced

due to the quantization process carried out by the quantizer, which has a

significant impact on the output signal quality after passing through the LPF.

To estimate the quantization noise, the Power Spectral Density (PSD) is

taken to be a white noise with an average power as

P𝑄 =
Δ2

12
 (3.8)

where Δ is the interval of quantization. Assume the PSD of the input 𝑋(𝑧) is

defined as 𝑆𝑋(𝑓), and the sampling frequency is denoted as 𝑓𝑠. According to Eqn.

(3.4), we can derive the PSD of the output 𝑌(𝑧) as

𝑆𝑌(𝑓) = 𝑆𝑋(𝑓) ∣ 𝑆𝑇𝐹 (𝑒
𝑗2𝜋(

𝑓
𝑓𝑠

)
) ∣2+ 𝑆𝑄 ∣ 𝑁𝑇𝐹 (𝑒

𝑗2𝜋(
𝑓
𝑓𝑠

)
) ∣2 (3.9)

Since the magnitude of the STF is equal to one and the quantizer's PSD is

equal to the average power P𝑄 spread across the sampling frequency 𝑓𝑠, we could

simplify the previous equation as

35

𝑆𝑌(𝑓) = 𝑆𝑋(𝑓)+∣ 𝑁𝑇𝐹 (𝑒
𝑗2𝜋(

𝑓
𝑓𝑠

)
) ∣2⋅

1

𝑓𝑠

Δ2

12
 (3.10)

Assume that the incoming bandwidth of the signal 𝑥(𝑡) is denoted as 𝐵𝑊.

Further, as the sampling rate 𝑓𝑠 is significantly higher than 𝐵𝑊, we can define

the ratio of the Nyquist frequency of the sampling process to input signal

bandwidth as the “oversampling ratio” (OSR), which is expressed as

𝑂𝑆𝑅 =
𝑓𝑠/2

𝐵𝑊
 (3.11)

The output of the system consists of both noise and signal components, and

hence the output signal-to-noise ratio (SNR) calculated over the LPF bandwidth

can be expressed as

𝑆𝑁𝑅𝑀𝑜𝑑 =
∫ 𝑆𝑋(𝑓)𝑑𝑓

𝐵𝑊

0

Δ2

12𝑓𝑠
∫ ∣ 𝑁𝑇𝐹(𝑓) ∣2 𝑑𝑓

𝐵𝑊

0

 (3.12)

SNR is a rather important characteristic in the design of a ΔΣ modulator. It

evaluates the quality of a modulator. Assume the amplitude of the input signal is

𝐴 , the power spectral density for the input signal would be

𝑆𝑋(𝑓) =
1

4
 𝐴2(𝛿(𝑓 − 𝜔) + 𝛿(𝑓 + 𝜔)) (3.13)

Now by combining Eqn. (3.12) and (3.13), one can state the output SNR defined

over the bandwidth LPF as

𝑆𝑁𝑅𝑀𝑜𝑑 =
6𝑓𝑠𝐴2

Δ2 ∫ ∣ 𝑁𝑇𝐹(𝑓) ∣2 𝑑𝑓
𝐵𝑊

0

 (3.14)

3.2 Design of a One-bit ΔΣ Modulator

Figure 3.3 presents the general topology of a ΔΣ modulator. The essence of

this design centers around the loop filter 𝐻(𝑧), which significantly influences

36

the noise shaping at the output stage. The subsequent section will delve into an

in-depth exploration of the design process.

3.2.1 Feasibility Study

The primary constraint of the ΔΣ modulators is stability. Due to the presence

of the one-bit quantizer, which is a highly non-linear element, the stability of

these circuits cannot be predicted solely using methods applicable to linear

systems. Nevertheless, according to an essential stability requirement outlined in

[22], we can achieve absolute stability for the modulator by ensuring that the

magnitude of the Noise Transfer Function remains below 2.0 across all

frequencies, i.e.,

max (∣ 𝑁𝑇𝐹(𝑒𝑗2𝜋𝑓) ∣
0<𝑓<

1
2

) < 2.0 (3.15)

It's also important to note that the stability criterion for discrete-time linear

systems is a fundamental consideration in system analysis and design. This

criterion dictates that the poles of the system must lie within the unit circle in the

z-plane.

Besides the stability issue, for an N-bit ΔΣ modulator to be realizable, each

feedback loop within it must include a minimum of one unit delay. As shown in

Figure 3.3, the transfer function 𝐻(𝑧) must be causal, the zeros of 𝐻(𝑧) are

fewer than its poles, which means the coefficient of the denominator of 𝐻(𝑧) is

0. This constraint can be stated as

𝑁𝑇𝐹(𝑧)|𝑧=∞ = 1 (3.16)

37

3.2.2 Noise Transfer Function Structure

Given a desired SNR, designing the 𝑁𝑇𝐹 is generally prioritized to fulfill

the noise requirements according to Eqn. (3.14). One can obtain the constraints

on NTF as

∫ ∣ 𝑁𝑇𝐹(𝑓) ∣2 𝑑𝑓
𝐵𝑊

0

≤
6𝑓𝑠𝐴2

Δ2𝑆𝑁𝑅𝑀𝑜𝑑,𝑚𝑎𝑥

 (3.17)

Assume the 𝑁𝑇𝐹 to be of the general form

𝑁𝑇𝐹(𝑧) =
𝑏𝑁𝑧𝑁 + 𝑏𝑁−1𝑧𝑁−1 + ⋯ + 𝑏1𝑧 + 𝑏0

𝑧𝑁 + 𝑎𝑁−1𝑧𝑁−1 + ⋯ + 𝑎1𝑧 + 𝑎0

 (3.18)

For the 1-bit ΔΣ modulator to be realizable, the constraint described in Eqn. (3.16)

suggest that 𝑏𝑁 = 1. Thus, the 𝑁𝑇𝐹 is written as

𝑁𝑇𝐹(𝑧) =
𝑧𝑁 + 𝑏𝑁−1𝑧𝑁−1 + ⋯ + 𝑏1𝑧 + 𝑏0

𝑧𝑁 + 𝑎𝑁−1𝑧𝑁−1 + ⋯ + 𝑎1𝑧 + 𝑎0

 (3.19)

Now we will proceed to the design and selection of loop filter 𝐻(𝑧). Based

on Eqn. (3.7), we can derive the filter block transfer function, according to

𝐻(𝑧) =
1

𝑁𝑇𝐹(𝑧)
− 1 (3.20)

By plugging this into Eqn. (3.13), the filter transfer function becomes

𝐻(𝑧) =
(𝑎𝑁−1 − 𝑏𝑁−1)𝑧𝑁−1 + ⋯ + (𝑎1 − 𝑏1)𝑧 + (𝑎0 − 𝑏0)

𝑏𝑁𝑧𝑁 + 𝑏𝑁−1𝑧𝑁−1 + ⋯ + 𝑏1𝑧 + 𝑏0

 (3.21)

Additionally, to optimize SNR, it is crucial for the zeros of NTF, which

correspond to the poles of 𝐻(𝑧) to be positioned precisely on the unit circle

within the denoted bandwidth. The design of the poles of the NTF can be

accomplished using dedicated tools such as DSMOD, which are documented in

prior works [23].

38

3.2.3 Transfer Function Design Method

As stated in the previous section, we could derive the NTF given a specific

SNR. In this section, we will address the methods of implementing a modulator

with a given NTF. The task of realizing a modulator involves determining the

structure coefficients that realize the intended NTF. To achieve this, each term in

the numerator and denominator of the NTF is formulated as a function of the

structure coefficients. With most simulation tools, floating-point formats are

employed for coefficients, accumulators, and output variables of the loop filter.

However, when transitioning to a physical implementation, such as an FPGA,

fixed-point representation becomes essential. This transition from simulation to

hardware introduces quantization challenges. Specifically, the reduction in

precision for loop filter coefficients can lead to deviations from the intended

operational behavior. Thus, the topology of mapping the transfer function needs

to be carefully chosen to minimize quantization error.

Given the format of Eqn. (3.20), an IIR filter needs to be implemented. In

prior work, the Resonator Cascade topology (RC) was used [11][23]. Another

common digital filter topology that can be used is the Direct Form II (DF-II)

structure.

The RC structure requires additional delay elements for each second-order

section, which can increase memory requirements compared to DF-II structures.

In addition, the modular nature of cascade structures can introduce some

additional complexity in managing and processing the various filter sections. On

the other hand, DF-II structure can be numerically sensitive [11], especially

when dealing with high-order filters or very small filter coefficients. This

sensitivity can lead to issues such as coefficient quantization errors and round-

39

off noise, affecting the overall filter performance.

In this thesis, DF-II structures for 𝐻(𝑧) is chosen. A prominent advantage of

the DF-II structure lies in its ease of implementation, making it more FPGA-

friendly. The RC structure often involves multiple stages with intricate

interconnections, which can present challenges in its design and analysis,

whereas DF-II exhibits a more straightforward and efficient mapping to FPGA

hardware. Secondly, our specific FPGA implementation allocates high precision

in coefficient mapping, which significantly mitigates the quantization errors

associated with the DF-II structure. Moreover, FPGA devices have been

advancing, providing more resources and better precision for fixed-point

arithmetic. Newer FPGAs often have improved DSP slices and fixed-point

arithmetic units, which can result in better numerical accuracy [25]. The overall

effectiveness of this choice is evident in Chapter 7.1, where we demonstrate that

the implementation of DF-II structures in FPGA can yield accurate results.

The structure is simply based on the difference equation by using inverse z-

transform of 𝐻(𝑧). Eqn. (3.20) can be rewritten as:

𝑦(𝑛 − 𝑁) + 𝑏𝑁−1𝑦(𝑛 − (𝑁 − 1)) + ⋯ + 𝑏1𝑦(𝑛 − 1) + 𝑏0𝑦(𝑛) = (𝑎𝑁−1 −

𝑏𝑁−1)𝑥(𝑛 − (𝑁 − 1)) + ⋯ + (𝑎1 − 𝑏1)𝑥(𝑛 − 1) + (𝑎0 − 𝑏0)𝑥(𝑛) (3.22)

The diagram of DF-II structure for the loop filter is shown in Fig. 3.6.

40

Fig. 3.6: Structure of DF-II for H(z) implementation

3.3 One-Bit ΔΣ Modulator Simulation

In this section, the one-bit delta-sigma modulator is designed and simulated

in MATLAB/Simulink, assuming unsigned integer number precision. A given

modulator design can be simulated at various signal levels to determine the

maximum SNR and the corresponding input level, as well as the available

dynamic range. The structure of the ΔΣ modulator is given in Fig. 3.7, where the

input is a digital sinusoidal signal ranging from −𝐴 to 𝐴, with a frequency of 𝑓0.

Fig. 3.7: The structure of a 1-bit unsigned ΔΣ modulator

41

The parameters for ΔΣ modulator simulation are summarized in Table 3.1.

They are to be implemented under a 32 bits number system.

Parameters 𝑨 𝒇𝟎 𝒇𝒔 𝜟/𝟐 𝑵 𝑶𝑺𝑹

Values 28 0.0017𝐻𝑧 1𝐻𝑧 29 32 256

Table. 3.1: The parameters for an N-bit unsigned ΔΣ modulator simulation example

Assume the desired maximum SNR is greater than 80 dB. Given the

parameters shown in Table. 3.1, we can derive the inequality for the noise power

according to Eqn. (3.17)

∫ ∣ 𝑁𝑇𝐹(𝑓) ∣2 𝑑𝑓
𝐵𝑊

0

≤ 4.7434 × 10−10 (3.23)

To meet this specification shown in Eqn. (3.23), we choose a 3rd order

inverse-Chebyshev NTF with a stopband of 0.005 Hz and a stopband attenuation

of -75 dB, assuming the sampling frequency is 1 Hz. The transfer function of

NTF is found using MATLAB, which is given by

𝑁𝑇𝐹(𝑧) =
𝑧3 − 2.9993𝑧2 + 2.9993𝑧 − 1

𝑧3 − 2.1659𝑧2 + 1.6460𝑧 − 0.4295
 (3.24)

The magnitude response of 𝑁𝑇𝐹(𝑓) is shown in Fig. 3.8.

42

 Fig. 3.8: Magnitude response of the noise transfer function

By integrating ∣ 𝑁𝑇𝐹(𝑓) ∣2 from 0 Hz to 𝐵𝑊 , we can calculate that

∫ ∣ 𝑁𝑇𝐹(𝑓) ∣2 𝑑𝑓
𝐵𝑊

0
= 9.0805 × 10−11 , which satisfies our 80 dB SNR

specifications. Using Eqn. (3.12), the theoretical SNR is then calculated to be

96.1592 dB.

The loop filter transfer function of the modulator can be calculated using

Eqn. (3.22) and (3.26), which leads to

𝐻(𝑧) =
0.8334𝑧2 − 1.3533𝑧 + 0.5705

𝑧3 − 2.9993𝑧2 + 2.9993𝑧 − 1
 (3.27)

By utilizing the parameters shown in Table. 3.1 and the loop filter transfer

function from Eqn. (3.27), the power spectral density (PSD) of the modulator

output in Simulink versus theoretical results are shown in Fig. 3.9. In

consideration of comparison in the future, the amplitude and quantizer threshold

are scaled up by 216. We could see the simulation output is very close to the

43

theoretical one. The output contains the information of a sinusoidal signal with

a frequency of 0.0017 Hz and an amplitude of 224. However, we could also spot

a slight spectral leakage near the side lobe.

(a)

(b)

Fig. 3.9: PSD of the outputs for sinusoidal inputs given the 3rd order inverse Chebyshev loop filter

(without windowing) (a): Nyquist frequency (b): zoom in for in-band frequency

44

To mitigate against spectral leakage during transform functions and reduces

the frequency smearing due to the unavoidable incoherence of the delta-sigma

modulator output [23], the resulting output was processed using the Dolph–

Chebyshev window described in [26]. This window has sidelobes that decay

rapidly in the frequency domain. The PSD of modulator output with windowing

is then shown in Fig. 3.10.

(a)

(b)

Fig. 3.10: PSD of the outputs for sinusoidal inputs given the 3rd order inverse Chebyshev loop

filter with Dolph–Chebyshev window (a): Nyquist frequency (b): zoom in for in-band frequency

45

As can be seen in Fig. 3.10, windowing improves the overall performance

and gives better noise shaping. The in-band SNR is calculated to be 96.90 dB,

which is much greater than the desired SNR of 80 dB.

3.4 Summary

This chapter mainly presents three parts. To start with, the ΔΣ modulator

topology with a unity Signal Transfer Function (STF) is presented and the

performance characteristics are described, which is crucial for its application in

delta-sigma oscillators. Next, the noise constraints and design for the modulator

is discussed and various transfer function topology are provided. Due to ease of

implementation, more FPGA resources and high accuracy, DF-II structure is

chosen for transfer function mapping. Finally, simulations using

MATLAB/Simulink are provided and the validity of these designs are confirmed.

46

Chapter 4: ΔΣ Oscillators

In this chapter, a ΔΣ oscillator is introduced that is designed to generate high-

precision analog sinusoidal signals. The chapter begins by explaining the

principle of oscillation and providing a mathematical analysis. Following that,

the structure of a ΔΣ oscillator is explained and presented, followed by a detailed

MATLAB/Simulink simulation.

4.1 Theory and Design of ΔΣ oscillators

4.1.1 Digital Oscillator Analysis

The Lossless Discrete Resonator (LDR) introduced in Section 1.2.2 can be

available for designing digital filters using LC ladder networks [14]. Typically,

the resulting structure of the digital filter comprises a group of coupled first-

order integrators, forming a second-order resonator. These resonators are created

by looping two integrators in a cascade. The block diagram of the LDR is shown

in Fig. 4.1.

Fig. 4.1: Block diagram of the lossless discrete resonator (LDR)

47

Eliminating damping in the filter can lead to the realization of a digital

oscillator. By employing this method, the resonant circuit depicted in Figure 4.1

can be utilized as a digital oscillator. The analog counterpart of this circuit is an

LC-tank circuit [14]. There are two characteristics about LC-tank circuit: (1)

Capacitor and inductor values shift the oscillation frequency while they cannot

stop the circuit from oscillating; (2) Initial conditions imposed on the capacitor

and inductor decide the oscillation amplitude.

Similarly in Fig. 4.1, the oscillation frequency can be controlled by

parameters 𝑎1 and 𝑎2 while the oscillation amplitude can be adjusted by

changing the initial values in the registers.

Assume the values in registers 1 and 2 in Fig 4.1 are 𝑥1(𝑛) and 𝑥2(𝑛) at time

𝑡 = 𝑛𝑇. We can derive the two difference equations as

𝑥1(𝑛 + 1) = 𝑥1(𝑛) + 𝑎1𝑥2(𝑛 + 1) (4.1)

and

𝑥2(𝑛 + 1) = −𝑎2𝑥1(𝑛) + 𝑥2(𝑛) (4.2)

Applying z-transform to Eqn. (4.1) and Eqn. (4.2), we can eliminate 𝑋2(𝑧)

and derive one single equation as

𝑧2𝑋1(𝑧) + (𝑎1𝑎2 − 2)𝑧𝑋1(𝑧) + 𝑋1(𝑧) = 0 (4.3)

then the characteristic equation is

𝑧2 + (𝑎1𝑎2 − 2)𝑧 + 1 = 0 (4.4)

The roots of the quadratic equation can determine the circuit poles as

𝑧1,2 = (1 −
𝑎1𝑎2

2
) ±

1

2
√𝑎1𝑎2(𝑎1𝑎2 − 4) (4.5)

According to Eqn. (4.5), if the product 𝑎1𝑎2 is larger than 4, the system can no

longer oscillate because the two roots are real. Therefore, the circuit only

oscillates when 0 < 𝑎1𝑎2 ≤ 4. We could rewrite the equation as

48

𝑧1,2 = (1 −
𝑎1𝑎2

2
) ± 𝑗√1 − (1 −

𝑎1𝑎2

2
) 2 (4.6)

If 0 < 𝑎1𝑎2 ≤ 2, the two roots are in the right-half plane, as for 2 < 𝑎1𝑎2 <

4, the two roots are in the left-half plane, which could be all written as

𝑧1,2 = 𝑒±𝑗𝑐𝑜𝑠−1(1−
𝑎1𝑎2

2) (4.7)

Thus, the oscillation frequency 𝜔𝑜 can be derived from Eqn. (4.7). Assume the

sampling frequency is 𝑓𝑠 = 1/𝑇, one finds

𝑓𝑜 = 𝑓𝑠cos−1 (1 −
𝑎1𝑎2

2
) for 0 < 𝑎1𝑎2 ≤ 4 (4.8)

Fig. 4.2 illustrates the relationship between the coefficients 𝑎1𝑎2 and the

oscillation frequency. For values of 𝑎1𝑎2 between 0 and 4, the oscillation

frequency varies continuously between 0 and 𝑓𝑠/2 . Nevertheless, due to the

coefficients being restricted to discrete values (as is the case in a finite precision

implementation), the available selectable oscillation frequencies are also limited

to discrete values. However, it is important to note that since the poles of the

circuit always remain on the unit circle for all values of 𝑎1𝑎2 between 0 and 4,

the circuit is guaranteed to oscillate even in a finite precision implementation.

Fig. 4.2: Relationship between the oscillation frequency and the coefficients a1*a2

49

As for the oscillation amplitude, one can refer to the LC-tank analogy, where

the amplitude of oscillation can be regulated by the initial conditions of the

capacitor and inductor. Similarly, the initial values for the registers, 𝑥1(0) and

𝑥2(0) control the oscillation amplitude. Take another look at Eqn. (4.1) and (4.2),

from the analysis in the previous section, it is evident that the solution to these

equations is a pure tone with a frequency of 𝜔𝑜. We could assume the solution is

of the form

𝑥1(𝑛) = 𝐴 sin(𝜔𝑜𝑛𝑇 + 𝜙) (4.9)

According to Eqn. (4.9), by setting the sampling instants 𝑛 = 0, one can obtain

the relationship of the initial register value 𝑥1(0) and the signal amplitude and

initial phase as

𝑥1(0) = 𝐴 sin 𝜙 (4.10)

And by setting 𝑛 = 1, one can write that

𝑥1(1) = 𝐴 sin(𝜔𝑜𝑇 + 𝜙) (4.11)

To get rid of 𝑥1(1) in Eqn. (4.11), one can combining Eqn. (4.1) and (4.2) and

express 𝑥1(1) in terms of the known parameters 𝑎1, 𝑎2 and register initial values

𝑥1(0), 𝑥2(0), which can be written as

𝑥1(1) = (1 − 𝑎1𝑎2)𝑥1(0) + 𝑎1𝑥2(0) (4.12)

By merging Eqn. (4.10), (4.11), and (4.12), we can determine the values of the

two unspecified constants 𝐴 and 𝜙. The resulting equations are presented as

𝐴 =
𝑥1(0)

sin 𝜙
 (4.13)

and

𝜙 = tan−1 (
𝑥1(0) sin(2𝜋𝑓𝑜𝑇)

(1 − 𝑎1𝑎2 − cos(2𝜋𝑓𝑜𝑇))𝑥1(0) + 𝑎1𝑥2(0)
) (4.14)

50

Here we denote the amplitude of the signal as a positive value, then we can

rewrite the amplitude of the signal as

𝐴 = √1 +
1

tan2 𝜙
 (4.15)

By merging Eqn. (4.14), and (4.15), we can get rid of the parameter 𝜙. The

resulting amplitude is

𝐴 = √𝑥1(0)2 +
((1 − 𝑎1𝑎2 − cos(2𝜋𝑓𝑜𝑇))𝑥1(0) + 𝑎1𝑥2(0))2

sin2(2𝜋𝑓𝑜𝑇)
 (4.16)

Amplitude vs 𝒙𝟐(𝟎) 𝒙𝟏(𝟎) = 𝟎 𝒙𝟏(𝟎) ≠ 𝟎

𝑨 𝐴 = |𝐶1𝑥2(0)| 𝐴 = √𝐶2 + 𝐶3𝑥2(0)2

Amplitude vs 𝒙𝟏(𝟎) 𝑥2(0) = 0 𝑥2(0) ≠ 0

𝑨 𝐴 = |𝐶4𝑥1(0)| 𝐴 = √𝐶5𝑥1(0)2 + 𝐶6𝑥1(0) + 𝐶7

Table. 4.1: Amplitude versus initial value of registers under different conditions

Eqn. (4.16) showcases the oscillation amplitude. To better demonstrate the

amplitude versus the initial value of registers, Table. 4.1 simplifies Eqn. (4.16)

under different conditions. Here 𝐶𝑘(𝑘 = 1,2, … ,7) are constant values. To

demonstrate more vividly, Fig. 4.3 shows the relationship between the amplitude

and the initial value of one register given other parameters are set, i.e., 𝑎1 =

2−3, 𝑎2 = 2−13, 𝐹𝑠 = 1. We could conclude that when the initial value of one

register is set to 0, the amplitude is strictly linear in relation to the initial value

of the other register, as also shown in Fig. 4.3 (a) and (c). However, if the initial

value of one register is not zero, the oscillation amplitude is nearly linear when

the initial value of the other register is high, however, it may be nonlinear when

the value is low, as also shown in Fig. 4.3 (b) and (d).

51

(a) (b)

(c) (d)

Fig. 4.3: Relationship between the amplitude and the initial value of the registers. Graph (a)

illustrates the amplitude as a function of the register 1 given the other is 0. Graph (b) illustrates the

amplitude as a function of the register 1 given the other is 1. Graph (c) and (d) illustrate the

opposite situation of graph (a) and (b).

4.1.2 ΔΣ Oscillator Structure

As stated in Chapter 3, we could configure a ΔΣ DAC using a ΔΣ modulator,

a 1-bit DAC and an LPF. By passing the output of the digital oscillator into a ΔΣ

modulator and an LPF, the general structure of a ΔΣ oscillator can be shown in

Fig. 4.4.

Fig. 4.4: The general structure of a ΔΣ oscillator

52

The configuration of a ΔΣ oscillator is shown in Fig. 4.5 (a). Additionally, as

can be seen in Eqn. (4.8), the oscillation frequency is decided by the product

𝑎1𝑎2. Since the ΔΣ modulator produces an output of ±∆/2, the multiplication

by 𝑎2 can be achieved using a two-input multiplexer. Therefore, by placing the

delta-sigma modulator inside the resonator loop and replacing the two multi-bit

multiplications with a two-to-one multiplexer, a more area-efficient

implementation of the ΔΣ oscillator is shown in Fig. 4.5 (b).

(a)

(b)

Fig. 4.5: The configuration of the ΔΣ oscillator (a): A general ΔΣ oscillator structure

(b): A more area efficient design of the ΔΣ oscillator

53

4.1.3 Noise Constraints

As can be seen from Fig. 4.5, the dominant source of noise at the output level

is the quantization error originating from the ΔΣ modulator. That being said, to

generate a sinewave given the specific number of bits, the loop filter 𝐻(𝑧) inside

the ΔΣ modulator needs to be properly designed. Similarly in Chapter 3 and as

given in Eqn. (3.14), (3.15) and (3.16), we have the constraints as follows for an

N-bit oscillator as

∫ ∣ 𝑁𝑇𝐹(𝑓) ∣2 𝑑𝑓
𝐵𝑊

0

=
12𝑓𝑠 ∫ 𝑆𝑋(𝑓)𝑑𝑓

𝐵𝑊

0

Δ2𝑆𝑁𝑅𝑂𝑠𝑐

 (4.17)

and

𝐻(𝑧) =
1

𝑁𝑇𝐹(𝑧)
− 1 (4.18)

In consideration of the FPGA implementation in the future, fractional

numbers will introduce more calculation complexity into the system. Thus, we

can adjust the value of the quantizer output of the ΔΣ modulator to ∆/2 instead

of 1. The change of quantizer output brings changes to Eqn. (4.8), (4.14) and

(4.16), and we could rewrite the oscillation frequency and amplitude as

𝑓𝑜 = 𝑓𝑠cos−1 (1 −
𝑎1𝑎2

∆
) for 0 <

𝑎1𝑎2

∆
≤ 4 (4.19)

and

𝐴 = √𝑥1(0)2 +
((1 −

2𝑎1𝑎2

∆
− cos(2𝜋𝑓𝑜𝑇)) 𝑥1(0) + 𝑎1𝑥2(0))2

sin2(2𝜋𝑓𝑜𝑇)
 (4.20)

The initial phase is calculated as

𝜙 = sin−1
𝑥1(0)

𝐴
 (4.21)

54

Therefore, given a desired SNR, oscillation frequency 𝜔𝑜 and amplitude 𝐴,

we need to properly choose the parameters to meet these 3 specifications. The

unknown parameters are 𝐹𝑠 , 𝑎1, 𝑎2, ∆, 𝑥1(0), 𝑥2(0) and the NTF. Based on Eqn.

(4.17), (4.19) and (4.20), we now have 7 unknown parameters and 3 equations,

which result in a degree of design freedom of 4 (i.e., if parameters can be set

arbitrarily).

4.2 ΔΣ Oscillator Simulation

In this chapter, the delta-sigma oscillator presented in Fig. 4.5 (b) is

simulated in MATLAB/Simulink, assuming signed integer number precision.

Throughout this thesis unless otherwise stated, the Simulink simulations will be

performed with 32-bit precision.

Assume we need to meet the following specifications: a sinewave signal is

required to be generated by the oscillator with an amplitude of 𝐴 = 5181.5 and

oscillation frequency of 𝑓𝑜 = 7.8641 Hz. The desired maximum SNR shall be

higher than 80 dB. The bandwidth is set to 𝐵𝑊 = 10 𝐻𝑧 .

By setting 𝐹𝑠 = 2000𝐻𝑧, 𝑎1 = 1, 𝑎2 = 5, Table. 4.2 gives all the parameters

for the oscillator. The first row is the desired performance characteristics, the

second row is defined by the designer and the third row is calculated using Eqn.

(4.17), (4.19) and (4.20).

55

Required

specifications

𝑨 𝒇𝒐 𝑺𝑵𝑹

5181.5 7.8641 Hz ≥ 80𝑑𝐵

Parameters

choose

𝒂𝟏 𝒂𝟐 𝑭𝒔 𝒙𝟏(𝟎)

1 5 2000 Hz 128

Parameters

calculated

∆/𝟐 𝒙𝟐(𝟎) ∫ ∣ 𝑁𝑇𝐹(𝑓) ∣2 𝑑𝑓
𝐵𝑊

0

213 128 ≤ 6.0009 × 10−9

Table. 4.2: Amplitude versus initial value of registers under different conditions

As we know from Chapter 3, the in-band noise integral for the 3rd order

inverse-Chebyshev NTF produce a noise power of 9.0805 × 10−11, while the

stopband normalized frequency is 0.005 Hz, which in this case would be

calculated as 10 Hz given the sampling frequency is set to 2000 Hz. This meets

the noise power constraints listed in Table. 4.2. As reported in Chapter 3, the loop

filter transfer function is given as:

𝐻(𝑧) =
0.8334𝑧2 − 1.3533𝑧 + 0.5705

𝑧3 − 2.9993𝑧2 + 2.9993𝑧 − 1
 (4.22)

The resulting modulator output was processed using the Dolph–Chebyshev

window and the power spectral density of the simulation outputs is shown in Fig.

4.6. We could see the simulation closely aligns with the theoretical expectations.

56

(a)

(b)

Fig. 4.6: PSD of the outputs of ΔΣ Oscillator. (a): whole frequency; (b): in-band frequency

The results of the simulation are shown in Table. 4.2 in comparison with the

theoretical values. Note that there is some drop in the actual maximum SNR but

the desired SNR requirement is still satisfied. Also, the oscillation frequency is

identical to that predicted by the theory. Likewise, the oscillation amplitude is

also really close to what theory predicts.

57

 𝑨 𝒇𝒐 𝑺𝑵𝑹

Theoretical 5181.5 7.8641 Hz 91.2114 𝑑𝐵

Simulation 5158.6 7.8641 Hz 86.9023 𝑑𝐵

Table. 4.2: Theoretical and simulation results of oscillation frequency, amplitude and system SNR

4.3 Summary

This chapter commences by introducing the concept of a second-order

resonator, primarily employed in digital filter design. Building upon this

foundation, the resonator's potential for use as a digital oscillator is explored. By

diving into the mathematical background and making necessary adaptations, an

improved and area-efficient circuit known as the ΔΣ oscillator is described. The

chapter further substantiates the proposed design by providing

MATLAB/Simulink simulations that confirm its validity and practicality in

generating high-precision analog signals.

58

Chapter 5: Segmented ΔΣ Modulators

In this chapter, the fundamental concepts of segmentation and its integration

into ΔΣ modulation are outlined. Additionally, the principles of a two-segment

ΔΣ design are discussed in detail. Finally, the equation for attaining maximum

SNR is derived in the concluding subsection, followed by a detailed

MATLAB/Simulink simulation.

5.1 Segmentation introduction background

Most single-stage multibit modulators typically employ quantizers with six

bits of resolution or less [24]. Increasing the number of quantizer bits enhances

the SNR by 6 dB and improves modulator stability, allowing for more effective

noise shaping. However, in certain cases, the performance requirements of high-

resolution modulators cannot be met by a single modulator design.

To address this challenge, a possible solution is to use segmentation. As

covered in the previous work by Emara Ahmed [12], by dividing the ΔΣ DAC

into multiple segments, each handling a portion of the digital input, segmentation

enables higher precision without causing an exponential increase in resources.

The ΔΣ DACs used for different paths can be of different types and may not have

matching resolutions. Hence, the properties influencing the coarse (MSB) and

fine (LSB) sections need not to be identical or correlated.

59

5.2 Design of Two-Segment ΔΣ Modulators

5.2.1 Two-Segment ΔΣ Modulators Structure

The majority of segmented DACs typically consist of two sub-DACs,

specifically the coarse and fine components. Assume that the input signal is 𝑥(𝑡),

which has a total of 𝑁 bits. The most significant bits (MSB) of the signal are

allocated to the coarse input signal, denoted as 𝑥𝑐(𝑡). The least significant bits

(LSB) of the input signal are allocated to the fine signal, denoted as 𝑥𝑓(𝑡) .

Assume that the digital input of the coarse word is 𝑁𝐶 bits wide and the fine

word is 𝑁𝐹 bits wide, so that

𝑁 = 𝑁𝐶 + 𝑁𝐹 (5.1)

Therefore, the input signal ranges from 0 to 2𝑁𝐶+𝑁𝐹 − 1, while the coarse signal

and the fine signal have ranges of from 0 to 2𝑁𝐶 − 1 , and 0 to 2𝑁𝐹 − 1 ,

respectively. The bit partition of the input signal 𝑥(𝑡) into components 𝑥𝑐(𝑡) and

𝑥𝑓(𝑡) is demonstrated in Fig. 5.1.

Fig. 5.1: Partition of the input signal

The coarse signal 𝑥𝑐(𝑡) can be described as:

𝑥𝑐(𝑡) = ⌊
𝑥(𝑡)

2𝑁𝐹
⌋ (5.2)

60

where ⌊𝑤⌋ is the function that takes a real number 𝑤 as input and gives the

greatest integer less than or equal to 𝑤 as output. Consequently, the fine signal

can be denoted as:

𝑥𝑓(𝑡) = 𝑥(𝑡) − 2𝑁𝐹 ⌊
𝑥(𝑡)

2𝑁𝐹
⌋ (5.3)

By using a quantizer, the structure of the partition operation used to generate

the coarse and fine components of the input signal is shown in Fig. 5.2. The

digital input 𝑥(𝑡) is segmented into the coarse input 𝑥𝑐(𝑡) and the fine input

𝑥𝑓(𝑡).

The general structure of two-segment ΔΣ modulator is shown in Fig. 5.3. As

can be seen, data partition is utilized in the structure. The coarse and fine input

are then fed into two different ΔΣ modulators. Subsequently, the coarse

modulator output is scaled by 2𝑁𝐹 while the fine modulator output remains

unscaled. By combining the scaled outputs together and feeding it through the 1-

bit DAC and a reconstruction LPF, the output analog signal is formed.

Fig. 5.2: Realization of partition of the input signal

61

Fig. 5.3 Overall structure of two-segment ΔΣ modulator

62

5.2.2 Noise Constraints

As shown in Fig. 5.3, the two-segment ΔΣ modulator is segmented into two

paths, the coarse and the fine. Denote the output before the reconstruction LPF

as 𝑦(𝑡), the output of the coarse and fine modulator is 𝑦𝑐(𝑡) and 𝑦𝑓(𝑡). Δ𝑐 and

Δ𝑓 is the interval of quantization for coarse and fine modulator. We can derive

that

𝑦(𝑡) = 2𝑁𝐹𝑦𝑐(𝑡) + 𝑦𝑓(𝑡) (5.4)

Assume the PSD of the input 𝑋(𝑧) is defined as 𝑆𝑋(𝑓), and the sampling

frequency is 𝑓𝑠. Similarly, as in Section 3.1.2, as the STF of both the coarse and

fine path is unity, the power spectral density of the coarse and fine output are

𝑆𝑌𝑐
(𝑓) = 𝑆𝑋𝑐

(𝑓)+∣ 𝑁𝑇𝐹𝐶(𝑓) ∣2
1

𝑓𝑠

Δ𝑐
2

12
 (5.5)

and

𝑆𝑌𝑓
(𝑓) = 𝑆𝑋𝑓

(𝑓)+∣ 𝑁𝑇𝐹𝑓(𝑓) ∣2
1

𝑓𝑠

Δ𝑓
2

12
 (5.6)

From Eqn. (5.2) and (5.3), we can derive that

𝑆𝑋(𝑓) = 22𝑁𝐹𝑆𝑋𝑐
(𝑓) + 𝑆𝑋𝑓

(𝑓) (5.7)

by combining Eqn. (5.4), (5.5), (5.6) and (5.7), the power spectral density of the

output can be shown to be

𝑆𝑌(𝑓) = 𝑆𝑋(𝑓) + 22𝑁𝐹 ∣ 𝑁𝑇𝐹𝐶(𝑓) ∣2
1

𝑓𝑠

Δ𝑐
2

12
+∣ 𝑁𝑇𝐹𝑓(𝑓) ∣2

1

𝑓𝑠

Δ𝑓
2

12
 (5.8)

Here Δ𝑐 = 2𝑁𝐶 − 1 ≈ 2𝑁𝐶 and Δ𝑓 = 2𝑁𝐹 − 1 ≈ 2𝑁𝐹.

From Eqn. (5.1) and (5.8), the power spectral density of the output can be

simplified as

𝑆𝑌(𝑓) = 𝑆𝑋(𝑓)+∣ 𝑁𝑇𝐹𝑐(𝑓) ∣2
1

𝑓𝑠

22𝑁

12
+∣ 𝑁𝑇𝐹𝑓(𝑓) ∣2

1

𝑓𝑠

22𝑁𝐹

12
 (5.9)

63

Therefore, the SNR over the bandwidth of the LPF can be expressed as

𝑆𝑁𝑅𝑀𝑜𝑑,2−𝑆𝑒𝑔 =
∫ 𝑆𝑋(𝑓)𝑑𝑓

𝐵𝑊

0

22𝑁𝐹

12𝑓𝑠
∫ 22𝑁𝐶 ∣ 𝑁𝑇𝐹𝑐(𝑓) ∣2 +∣ 𝑁𝑇𝐹𝑓(𝑓) ∣2 𝑑𝑓

𝐵𝑊

0

 (5.10)

As can be seen from Eqn. (5.10), the total noise is associated with both the coarse

and fine path. However, if the number of coarse path bit resolution 𝑁𝐶 is high,

we can generally write

22𝑁𝐶 ∣ 𝑁𝑇𝐹𝑐(𝑓) ∣2≫∣ 𝑁𝑇𝐹𝑓(𝑓) ∣2 (5.11)

Eqn. (5.10) can then be further simplified to

𝑆𝑁𝑅𝑀𝑜𝑑,2−𝑆𝑒𝑔 ≈
∫ 𝑆𝑋(𝑓)𝑑𝑓

𝐵𝑊

0

1
12𝑓𝑠

∫ 22𝑁 ∣ 𝑁𝑇𝐹𝑐(𝑓) ∣2 𝑑𝑓
𝐵𝑊

0

 (5.12)

Denote the input amplitude as 𝐴 , we could rewrite Eqn. (5.12) as

𝑆𝑁𝑅𝑀𝑜𝑑,2−𝑆𝑒𝑔 =
6𝑓𝑠𝐴2

22𝑁 ∫ ∣ 𝑁𝑇𝐹𝑐(𝑓) ∣2 𝑑𝑓
𝐵𝑊

0

 (5.13)

For an unsegmented ΔΣ modulator with an input of 𝑁 bits wide, the

quantization interval square would be Δ2 = 22𝑁. If the coarse modulator in the

two-segment modulator has the same loop filter as the unsegmented modulator,

Eqn. (5.13) would be almost identical to Eqn. (3.14), namely

𝑆𝑁𝑅𝑀𝑜𝑑,2−𝑆𝑒𝑔 ≈ 𝑆𝑁𝑅𝑀𝑜𝑑,𝑈𝑛𝑆𝑒𝑔 (5.14)

Eqn. (5.13) implies that in a segmented design, the overall output SNR may

remain the same as the unsegmented design, although it may degrade slightly

due to the extra noise power introduced by the fine segment.

For the design of noise transfer function, we could simply follow the design

procedure as in the unsegmented ΔΣ modulator. The constraint on the NTF can

be obtained if the required SNR is given. By simply rearrange Eqn. (5.13), we

can impose the design constraint:

64

∫ ∣ 𝑁𝑇𝐹𝑐(𝑓) ∣2 𝑑𝑓
𝐵𝑊

0

≤
6𝑓𝑠𝐴2

22𝑁 ∙ 𝑆𝑁𝑅2−𝑆𝑒𝑔𝑀𝑜𝑑,𝑚𝑎𝑥

 (5.15)

As we know that the coarse term is dominant as it as it contributes 22𝑁𝐶

times the power of its fine counterpart. For dominance, assuming a k-times

magnitude change

∣ 𝑁𝑇𝐹𝑐(𝑓) ∣2≥ 𝑘 ∣ 𝑁𝑇𝐹𝑓(𝑓) ∣2 (5.16)

where 𝑘 ≪ 22𝑁𝐶.

Now given the sampling frequency and target SNR, by combining Eqn. (5.15)

and (5.16), the fine segment constraint is given by

∫ ∣ 𝑁𝑇𝐹𝑓(𝑓) ∣2 𝑑𝑓
𝐵𝑊

0

 ≤
6

𝑘

𝑓𝑠𝐴2

22𝑁 ∙ 𝑆𝑁𝑅2−𝑆𝑒𝑔𝑀𝑜𝑑,𝑚𝑎𝑥

 (5.17)

5.2.3 Data Partition Impact

As can be seen in Fig. 5.3, the input signal 𝑥(𝑡) is divided into 𝑥𝑐(𝑡) and

𝑥𝑓(𝑡), denoted as the coarse input and the fine input separately. However, the

partition of input signal might introduce extra noise into the system and may

even cause the system to go unstable. In this subsection, we will investigate the

impact of data partition on the operation of two-segment ΔΣ modulators and try

to minimize these side effects.

Fig. 5.5 presents an example of data partition simulated in

MATLAB/Simulink. The 32-bits digital input signal 𝑥(𝑡) is segmented into two

16-bits signal, the coarse input 𝑥𝑐(𝑡) and the fine input 𝑥𝑓(𝑡), as shown in Fig.

5.5. Note that the amplitude of 𝑥(𝑡) is set to 𝐴 = 229
. As can be seen, although

the coarse path and fine path are both 16 bits wide, the fine path input signal

occupies almost 100% of the input range of 16 bits while it’s not the case for the

65

coarse path. Note that this is always the case unless the full-scale signal

amplitude can be represented using 16 bits or less.

Therefore, the fine modulator needs to be properly designed so that the fine

path is stable. According to Eqn. (5.11), the first segment path is the dominant

part of the noise contribution. The fine segment noise contribution is 2𝑁𝐶 times

less significant than the noise contribution from the coarse path. As a result, a

high order modulator in the fine path is unnecessary. Contrarily, a low order

modulator should be used to ensure stability.

(a)

(b)

(c)

Fig. 5.4: An example of data partition: (a) full-scale input; (b) coarse path input; (c) fine path input

66

In the previous study carried out by Romanov [11], at least four or more bits

should be allocated to the coarse path for proper operation. Additionally, it was

shown [11] that the maximum SNR of the segmented modulator approaches the

maximum SNR of the unsegmented modulator as more bits are allocated to the

coarse path. Thus, segmentation sacrifices some SNR for the benefit of less

resource usage. The hardware cost and the advantages of segmentation will be

later discussed in Chapter 7.

5.3 Two-Segment ΔΣ Modulator Simulation

The two-segment ΔΣ modulator is simulated using MATLAB/Simulink in

this section. The parameter settings for the simulation are provided in Table. 5.1.

Total bits 𝑵 𝑵𝒄 𝑵𝒇 𝑨 𝑭𝒔 𝒇𝟎 𝑺𝑵𝑹𝒎𝒂𝒙

32 16 16 2𝑁−3 1 Hz 0.0017 ≥ 80 𝑑𝐵

Table. 5.1: Parameter settings for the two-segment modulator

The ΔΣ modulator is designed for a maximum SNR greater than 80 dB. As

given in Eqn. (5.14) and (5.15), the previous section's conclusion highlights that

the maximum SNR of a two-segment modulator closely approximates that of the

unsegmented modulator, with the coarse path primarily determining the overall

noise level. By setting the normalized bandwidth to 0.005 Hz, we can employ

the same 3rd-order inverse-Chebyshev Noise Transfer Function (NTF) in the

coarse path, as previously described in Section 3.3 as

𝐻𝑐(𝑧) =
0.8334𝑧2 − 1.3533𝑧 + 0.5705

𝑧3 − 2.9993𝑧2 + 2.9993𝑧 − 1
 (5.18)

67

Regarding the fine path filter design, following Eqn. (5.17), we choose the

value that 𝑘 = 600 , which satisfies 𝑘 ≪ 22𝑁𝐶 . This enables us to impose the

noise constraint for the fine modulator as

∫ ∣ 𝑁𝑇𝐹𝑓(𝑓) ∣2 𝑑𝑓
𝐵𝑊

0

 ≤ 6.711 × 10−3 (5.19)

As we discussed in Section 5.2.3, the loop filter in the fine path should be of

first order to ensure stability, i.e.

𝐻𝑓(𝑧) =
1

𝑧 − 1
 (5.20)

The noise transfer function of the fine path is calculated as

𝑁𝑇𝐹𝑓(𝑓) =
z − 1

𝑧
 (5.21)

The magnitude response of 𝑁𝑇𝐹𝑓(𝑓) is shown in Fig. 5.5. The integral of

|𝑁𝑇𝐹𝑓(𝑓)|2 from zero to the edge of its bandwidth is calculated to be

2.7761 × 10−6, which meets the constraint calculated in Eqn. (5.19).

Fig. 5.5: Magnitude response of the fine path noise transfer function

68

By using the coarse filter described in Eqn. (5.18) and the fine filter

described in Eqn. (5.20), the PSD results of the output before the LPF predicted

by theory and that generated by a MATLAB/Simulink simulation are shown in

Fig. 5.6. Note that the resulting output was processed using the Dolph–

Chebyshev window, which is the same window as we used in Chapter 3.

(a)

(b)

Fig. 5.6: Theoretical and Simulink simulation output PSD of two-segment ΔΣ modulator

(a): whole frequency (b): in-band frequency

69

For the two-segment simulation, the SNR is calculated to be 96.05 dB

theoretically and the Simulink simulation SNR is measured at 96.56 dB. Since

we are using the same NTF for the coarse path as we did for single path

modulator in Section 3.3, one can compare the SNR results of the unsegmented

ΔΣ modulator to the two-segment ΔΣ modulator. This is done in Table. 5.2. We

could see that by using a two-segment, the overall SNR of the ΔΣ modulator

dropped slightly. Fortunately, this decrease can be tolerated in most cases.

 Theoretical Simulink

Unsegment 96.1592 dB 96.8973 dB

two-segment 96.0508 dB 96.5575 dB

Table. 5.2: SNR results of unsegmented ΔΣ modulator and two-segment ΔΣ modulator

5.4 Summary

This chapter delves into the design and simulation of segmented ΔΣ

modulators. It begins by introducing the segmentation concept and its

background. The chapter then dissects two-segmented ΔΣ modulators, outlining

the structure and noise constraints equations. Finally, the chapter concludes with

MATLAB/Simulink simulation of a two-segment ΔΣ modulators and compared

to a single path ΔΣ modulator. The results were comparable. This chapter offers

a comprehensive understanding of the segmented ΔΣ modulator design and

simulation, which provides a foundation for the segmented ΔΣ oscillators of the

next chapter.

70

Chapter 6: Segmented ΔΣ Oscillators

In this chapter, the oscillator circuit established in Chapter 4 is repurposed

with the aim of producing highly accurate analog sinusoidal signals using the

segmented ΔΣ modulator developed in Chapter 5. The chapter begins by

explaining the motivation and principle of the segmented ΔΣ oscillator design.

Following that, the circuit's structure is presented, followed by a detailed

MATLAB/Simulink simulation.

6.1 Segmented ΔΣ Oscillator Design

The analog signal source plays a vital part in a mixed-signal BIST scheme.

Chapter 4 presents the design and simulation of ΔΣ oscillators. To further

enhance the high-resolution performance and efficiency of an oscillator, we will

map the two-segment ΔΣ modulator into the ΔΣ oscillator design and test its

feasibility.

6.1.1 Segmented ΔΣ Oscillator Structure

To further reduce the hardware resources use of the ΔΣ oscillator, the goal

of this chapter is to replace the unsegmented modulator with a two-segment

modulator realization in the ΔΣ oscillator design. Thus, we can derive the

structure of the segmented ΔΣ Oscillator in Fig. 6.1. For the general case of two-

segment modulator, the subsystem of the segmented modulator is shown in Fig.

6.2.

71

Fig. 6.1: General block diagram of a segmented ΔΣ oscillator

Fig. 6.2: Block diagram of a two-segment ΔΣ modulator

Since the modulator does not affect the oscillation amplitude and frequency,

the output sinewave takes on the general format:

𝑥1(𝑛) = 𝐴 sin(𝜔𝑜𝑛𝑇 + 𝜙) (6.1)

In consideration of the fractional numbers’ implementation in the FPGA, the

amplitude of the output signal, denoted as OUT in Fig. 6.1 is adjusted to ∆/2,

where ∆ is the quantization interval, equal to 2𝑁.

 Thus, the oscillation amplitude, frequency and phase are given as

𝑓𝑜 = 𝑓𝑠cos−1 (1 −
𝑎1𝑎2

∆
) for 0 <

𝑎1𝑎2

∆
≤ 4 (6.2)

72

and

𝐴 = √𝑥1(0)2 +
((1 −

2𝑎1𝑎2

∆
− cos(2𝜋𝑓𝑜𝑇)) 𝑥1(0) + 𝑎1𝑥2(0))2

sin2(2𝜋𝑓𝑜𝑇)
 (6.3)

The initial phase is presented as

𝜙 = sin−1
𝑥1(0)

𝐴
 (6.4)

6.1.2 Noise Constraints

The noise constraints on a segmented ΔΣ oscillator could be combined with

the constraints we described in Chapter 4 and Chapter 5. Given a desired SNR,

the design process is the same as we described in Section 5.3.2.

As concluded in Section 4.1.3, the dominant source of noise at the output of

the oscillator is the quantization error originating from the ΔΣ modulator.

Therefore, for a two-segment ΔΣ oscillator within 𝑁 bits number system, with

the coarse path having 𝑁𝐶 bits and the fine path having 𝑁𝐹 bits, where

𝑁 = 𝑁𝐶 + 𝑁𝐹 (6.5)

The noise power of coarse path is given as

∫ ∣ 𝑁𝑇𝐹𝑐(𝑓) ∣2 𝑑𝑓 ≈
12𝑓𝑠 ∫ 𝑆𝑋(𝑓)𝑑𝑓

𝐵𝑊

0

22𝑁𝑆𝑁𝑅𝑂𝑠𝑐,2−𝑆𝑒𝑔,𝑚𝑎𝑥

𝐵𝑊

0

 (6.6)

And noise power associated with the fine path is given as

∣ 𝑁𝑇𝐹𝑓(𝑓) ∣2 𝑑𝑓 ≤
1

𝑘
∣ 𝑁𝑇𝐹𝑐(𝑓) ∣2 (6.7)

where 𝑘 ≪ 22𝑁𝐶.

The loop filter transfer function is given as

𝐻𝐿(𝑧) =
1

𝑁𝑇𝐹𝐿(𝑧)
− 1 𝐿 ∈ {𝑐, 𝑓} (6.8)

73

Since there is more than one signal path in the modulator, the loop filter

design should follow Eqn. (6.6), (6.7) and (6.8) as described above given a

desired SNR. To realize a specific oscillation frequency 𝑓𝑜 and amplitude 𝐴, we

need to properly choose the parameters. The unknown parameters are

𝑓𝑠, 𝑎1, 𝑎2, 𝑥1(0), 𝑥2(0) . Based on Eqn. (6.2), (6.3), we now have 5 unknown

parameters and 2 equations, which result in a degree of design freedom of 3 to

realize the oscillator.

6.2 Segmented ΔΣ Oscillator Simulation

In this section, we follow the same simulation procedure as we did in the

previous chapters. To maintain coherency, we will use the two-segment ΔΣ

modulator as we did in Section 5.4.2 inside of the oscillator.

Specifically, the diagram of the two-segment ΔΣ modulator, which is the

subsystem described in Fig. 6.1 is presented in Fig. 6.3.

Fig. 6.3: Block diagram of two-segment ΔΣ modulator

74

Assuming 32-bit signed integer number precision, the system is simulated

using Matlab/Simulink. The SNR requirement is the same as we desired in

Section 5.4, which is made greater than 80 dB. Assume the design specification

is the same as we performed in Section 4.2, the two-segment ΔΣ oscillator needs

to generate a sinewave signal with an amplitude of 𝐴 = 5181.5 and oscillation

frequency of 𝑓𝑜 = 7.8641 Hz . The parameters we designed to meet the

amplitude and frequency are shown in Table. 6.1.

Required

specifications

𝑨 𝒇𝒐 𝑺𝑵𝑹

5181.5 7.8641 Hz ≥ 80𝑑𝐵

Parameters

choose

𝒂𝟏 𝑵𝑭 = 𝑵𝑪 𝑭𝒔 𝒙𝟏(𝟎)

1 8 2000 Hz 128

Parameters

calculated

𝒂𝟐 𝒙𝟐(𝟎)
∫ (22𝑁 ∣ 𝑁𝑇𝐹𝑐(𝑓) ∣2+ 22𝑁𝐹

𝐵𝑊

0

∣ 𝑁𝑇𝐹𝑐(𝑓) ∣2)𝑑𝑓

20 128 ≤ 1.1070 × 1011

Table. 6.1: Parameters of two-segment ΔΣ oscillator under 16-bits number system

The loop filter in the fine path should be of low order to ensure stability. We

reuse the first-order filter for the fine path in Chapter 5, represented as

𝐻𝑓(𝑧) =
1

𝑧 − 1
 (6.9)

As for the coarse filter, we reuse the 3rd inverse-Chebyshev filter in Chapter

3 as the coarse NTF. The transfer function of the coarse loop filter is given as

𝐻𝑐(𝑧) =
0.8334𝑧2 − 1.3533𝑧 + 0.5705

𝑧3 − 2.9993𝑧2 + 2.9993𝑧 − 1
 (6.10)

By using the parameters in Table. 6.1, the fine filter in Eqn. (6.9), and the

coarse filter in Eqn. (6.10), the PSD results of the output before the LPF predicted

75

by theory and that generated by a MATLAB/Simulink simulation are depicted in

Fig. 6.5. Note that the resulting output was processed using the Dolph–

Chebyshev window. As we can see, the noise level of the simulation results

remains high. One way to suppress the noise would be to increase the number of

bits we use, to generate a signal with the same frequency but a higher amplitude.

(a)

(b)

Fig. 6.4: Theoretical and Simulink simulation output PSD of two-segment ΔΣ oscillator under 16

bits number system (a): Nyquist frequency (b): in-band frequency

76

To improve the noise shape and bring down the SNR, we increase the

number system to 32 bits. This requires that 𝑁𝐹 = 𝑁𝐶 = 16 . Meanwhile, to

maintain coherency, the new design has the same oscillation frequency as the

previous one. The parameters for the two-segment oscillator under 32-bits

number system are shown in Table. 6.2. Note that the oscillation amplitude

𝐴 may vary, but the final output signal amplitude can be adjusted with analog

signal processing (using proper LPF).

Required

specifications

𝑵𝑭 = 𝑵𝑪 𝒇𝒐 𝑺𝑵𝑹

16 7.8641 Hz ≥ 80𝑑𝐵

Parameters

choose

𝒂𝟏 𝒙𝟐(𝟎) 𝑭𝒔 𝒙𝟏(𝟎)

1 8 2000 Hz 128

Parameters

calculated

𝒂𝟐 𝑨
∫ (22𝑁 ∣ 𝑁𝑇𝐹𝑐(𝑓) ∣2+ 22𝑁𝐹

𝐵𝑊

0

∣ 𝑁𝑇𝐹𝑐(𝑓) ∣2)𝑑𝑓

1310720 3.3957 × 108 ≤ 1.1070 × 1011

Table. 6.2: Parameters of two-segment ΔΣ oscillator under 32-bits number system

By using the parameters provided in Table. 6.2, we repeat the simulation

with the fine filter described in Eqn. (6.9), and the coarse filter described in

Eqn. (6.10). Fig. 6.6 provides the PSD results of the output before the LPF

predicted by theory and that generated by a MATLAB/Simulink simulation

under the 32 bits number system.

77

(a)

(b)

Fig. 6.5: Theoretical and Simulink simulation output PSD of two-segment ΔΣ oscillator under 32

bits system (a): Nyquist frequency (b): in-band frequency

 Due to more bits being used in the new system, the simulation result achieves

a better noise shaping. The system SNR under different circumstances are

displayed in Table. 6.3. We could see the two-segment ΔΣ oscillator under 32

bits system has an SNR of 81.62 dB, which meets the SNR requirement.

78

Comparing the result with the single path simulation as shown in Table. 5.3, it

can be noted that there is a slight drop of SNR for the two-segment oscillator

comparing to the single path ΔΣ oscillator. This is due to the introduction of fine

segments. The oscillation frequency of the simulation results closely aligns with

that predicted by theory.

 𝑺𝑵𝑹 𝒇𝒐

Theory of two-segment 91.0075 dB 7.8641 Hz

Two-segment (Total: 16-bits) 58.1208 dB 7.8641 Hz

Two-segment (Total: 32-bits) 81.6227 dB 7.8641 Hz

Table. 6.3: System SNR and oscillation frequency under different circumstances

6.3 Summary

This chapter explores the design and simulation of segmented ΔΣ oscillators.

The segmented ΔΣ oscillators design process is explained first and then a

MATLAB/Simulink simulation is conducted. Simulation results indicate that

using the same parameter settings, the two-segment ΔΣ oscillator produces a

signal with the same frequency as the single path oscillator. Furthermore, the

SNR of the two-segment ΔΣ oscillator simulation is higher when more bits are

used in the number system. By using a 32 bits number system, the two-segment

ΔΣ oscillator simulation meets the maximum SNR requirements.

79

Chapter 7: Experimental Validation

In the previous chapters, we established the theoretical foundations of ΔΣ

modulators and ΔΣ oscillators, along with the introduction of segmentation into

ΔΣ modulators and ΔΣ oscillators. Furthermore, we developed the necessary

design principles crucial for their implementation, followed by building them in

MATLAB/Simulink and conducting the simulations to evaluate their

performance.

In this chapter, we will map the previous simulation examples into hardware

implementation to validate the previous findings and further enhance the

principles of the designs.

Finally, we will evaluate and compare the hardware costs associated with the

design, considering both segmented and non-segmented configurations.

7.1 FPGA setup

7.1.1 Device Setup

Synthesizing an HDL description of a circuit to a Field-Programmable-Gate-

Array (FPGA) can enable prototyping, where the register lengths can be adjusted

until a prototype with minimal hardware and desired SNR performance is

achieved.

In this chapter, an ALTERA DE1 Board is utilized [25]. Verilog was chosen

as the HDL description language. The Verilog code for each module to

implement the modulator is provided in the Appendix.

In ΔΣ modulators and ΔΣ oscillators, the output of the modulator, namely

80

the 1-bit data stream contains all the information of the analog signal. They were

sampled using DPO 3032 Digital Phosphor oscilloscope. The data collected is

then processed using Matlab to compare with the results from simulation in the

previous chapters. Finally, for the ΔΣ oscillator implementation, the sinewave

that the oscillator generates is displayed by running the testbench file in Quartus

II, which is also provided in Appendix.

7.1.2 Number System Setup

FPGA configuration utilizes the binary number system, which uses two

symbols, 0 and 1, to represent numerical values. For this thesis, we built up four

different systems. First, we studied the ΔΣ modulators and ΔΣ modulators with

segmentation. Then we switched the topic to ΔΣ oscillator then studied the

behavior of ΔΣ oscillators with segmentation. For ΔΣ modulators and ΔΣ

oscillators, the output of the modulator contains all the information of the input

signal, which is a 1-bit word wide signal. Thus, we use one pin on the FPGA to

represent it.

 In the previous study covered by Romanov [11], a 1-bit two-segment ΔΣ

DAC was implemented in FPGA. It employed an unsigned digital input within

the range of 0 to 2𝑁 − 1 and the system was built using the unsigned number

system. However, when it comes to the oscillator implementation, the input

signal generated by the oscillator ranges from −2𝑁−1 to 2𝑁−1. This poses a

challenge for our design. If we want to apply the use of segmented ΔΣ

modulator into an oscillator, we could either change the design of the oscillator

by introducing a DC bias or build the implementation based on signed number

system. The former approach would involve massive mathematical calculations

81

for the oscillators. As a result, we opted for the implementation of segmented

ΔΣ oscillators under a signed number system.

Since the loop filter inside of the modulator is based on floating point

numbers, we must represent them properly in an FPGA. Every floating number

can be divided into the integer part and fractional part. The integer part can be

easily represented using a binary number system and the arithmetic operation

simply follows the rules of integer number arithmetic operations. However, the

arithmetic operation of fractional part could cause overflow and therefore needs

to be carefully taken care of, which will be discussed in the next subsection.

Moreover, a slight error in the fractional part could bring a catastrophic effect on

the modulator’s output.

Take the ΔΣ modulator in Fig. 3.4 as an example. Assume there are 32 bits

available for use. The input sinewave amplitude is set to 28 and the input

frequency is 0.0017 Hz. The loop filter transfer function is given as

𝐻(𝑧) =
0.8334𝑧2 − 1.3533𝑧 + 0.5705

𝑧3 − 2.9993𝑧2 + 2.9993𝑧 − 1
 (7.1)

If there are 4 bits allocated for the fractional part representation, the loop filter

transfer function will be represented as

𝐻4−𝑏𝑖𝑡(𝑧) =

13
16

𝑧2 − (1 +
5

16
)𝑧 +

9
16

𝑧3 − (2 +
15
16

)𝑧2 + (2 +
15
16

)𝑧 − 1
 (7.2)

As we can see in Eqn. (7.2), the fractional part representation is a bit different

from the floating representation in Eqn. (7.1). The output power spectral density

of ideal realization (Theory, Simulink) and 4 bits allocated for fractional part

representation (Theory, Simulink, FPGA implementation) is plotted in Fig. 7.1.

Note that the output of the modulator is scaled up by 216.

82

Fig. 7.1: Ideal (Theory, Simulink) and 4-bits fractional part realization (Theory, Simulink, FPGA

implementation) of output PSD for a single path ΔΣ modulator

There are a few things we could conclude from Fig. 7.1. The FPGA result

correlates well with the Simulink simulation. However, only 4 bit allocation for

the fractional part significantly increases the in-band noise level by about 40 dB.

Therefore, more bit precision is needed to achieve a higher SNR.

Similarly, if there are 16 bits allocated for fractional part representation, the

loop filter transfer function will be represented as

𝐻16−𝑏𝑖𝑡(𝑧) =

54617
65536

𝑧2 − (1 +
23153
65536

)𝑧 +
37388
65536

𝑧3 − (2 +
65490
65536

)𝑧2 + (2 +
65490
65536

)𝑧 − 1
 (7.3)

As can be seen in Eqn. (7.3), the fractional part representation using 16 bits

is close to the floating representation shown in Eqn. (7.1). The output PSD of

ideal realization (Theory, Simulink) and 16 bits allocated for fractional part

representation (Theory, Simulink, FPGA implementation) is shown in Fig. 7.2.

83

Fig. 7.2: Ideal (Theory, Simulink) and 16-bits fractional part realization (Theory, Simulink,

FPGA implementation) of output PSD for a single path ΔΣ modulator

Here, we can see with 16-bits precision for fractional number gives a PSD

curve close to floating point resolution. With this result in mind, the systems

implemented in FPGA will adopt 16 bits-precision for the fractional numbers,

which will be further discussed in later sections. Take the parameter 2.9993 in

the denominator in Eqn. (7.1) as an example. The binary number representation

can be shown in Fig. 7.3.

Fig. 7.3: Number representation in FPGA format

84

Fig. 7.4: Arithmetic operation structure

7.1.3 Arithmetic Operation

As interpreted in Fig. 7.3, every number we mapped to FPGA has an integer

part and a fractional part, which makes the arithmetic operation different from

that in decimal number system.

The arithmetic operation includes addition, subtraction, multiplication, and

division. Assume we are doing one operation on Number 1 and Number 2, and

the output is Result. Fig. 7.4 shows the structure of this operation while using

symbols to demonstrate each number. I1, I2 and I represent the integer part of

Number 1, Number 2 and Result, respectively. Contrarily, F1, F2 and F denote

the fractional part of Number 1, Number 2 and Result, respectively. Generally,

one can see a number as the combination of the integer and fractional part. For

example, the result can be written as 𝑅𝑒𝑠𝑢𝑙𝑡 = (𝐼𝐹).

 For addition and subtraction, the operation could be performed separately.

The fractional part of the result can be simply calculated as

𝐹± = 𝐹1 ± 𝐹2 (7.4)

The integer part of the result therefore is given as

85

𝐼± = {
𝐼1 ± 𝐼2, 𝑖𝑓 𝑛𝑜 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 𝑖𝑛 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑡

𝐼1 ± 𝐼2 ± 1, 𝑖𝑓 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 𝑖𝑛 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑎𝑟𝑡
 (7.5)

where the result of addition or subtraction can be denoted as

𝑅𝑒𝑠𝑢𝑙𝑡± = (𝐼𝐹)± (7.6)

When it comes to division, Number 2 is always an integer, which would

simplify our calculation. However, different from addition or subtraction,

division involves 32-bits calculation. One can use Number 1 as a 32-bits

number as a whole. Number 2 is a 16-bits number while the result shall be a

32-bits number with both the integer part and fractional part. The division

Result can be calculated as

𝑅𝑒𝑠𝑢𝑙𝑡÷ = (𝐼𝐹)÷ = ⌊(𝐼1𝐹1)32𝑏𝑖𝑡𝑠 ÷ (0000000000000000𝐼2)32𝑏𝑖𝑡𝑠⌋ (7.7)

where ⌊𝑤⌋ is the function that takes a real number 𝑤 as input and gives the

greatest integer less than or equal to 𝑤 as output.

Multiplication is the most complicated arithmetic operation and could

easily cause register overflow which needs to be taken more care of. Number 1

times Number 2 can be simply written as

 𝐼1 × 𝐼2 + 𝐼1 × 𝐹2 + 𝐹1 × 𝐼2 + 𝐹1 × 𝐹2 (7.8)

The first term 𝐼1 × 𝐼2 is a 16-bits times 16-bits integer multiplication. The

result should also be a 16-bits integer which only contribute to the integer part

of Result. Thus, only one 16-bits register is needed.

The last term 𝐹1 × 𝐹2 is a 16-bits times 16-bits number multiplication, the

result is a 32-bits number which only contribute to the fractional part of the

multiplication Result. Both 𝐹1 and 𝐹2 are fractional numbers, however, the

result of this term should be a 16-bits fractional number. Thus, we need one 32-

86

bits register to store this term. By right shifting 16 bits, we could obtain the

result of 𝐹1 × 𝐹2. Note that the redundant terms after shifting will be discarded

due to 16-bits precision. Denote this result as 𝐹𝐹, one can write that

𝐹𝐹 = ⌊(𝐹1 × 𝐹2)32𝑏𝑖𝑡𝑠/216⌋ (7.9)

 The outcome of two terms in the middle involve both integers and

fractional parts. Therefore, we need two 32-bits registers to store the value of

𝐼1 × 𝐹2 and 𝐹1 × 𝐼2. The first 16 bits of 𝐼1 × 𝐹2 and 𝐹1 × 𝐼2 are integer

results while the later 16 bits are fractional results.

 By adding the integer parts and fractional parts individually of the four

terms, we can derive the integer 𝐼× and fractional part 𝐹× of Result, which is

the result of Number 1 times Number 2

𝐹× = 𝐹𝐹 + ⌊(𝐼1 × 𝐹2)⌋32𝑏𝑖𝑡𝑠[15: 0] + ⌊(𝐼1 × 𝐹2)⌋32𝑏𝑖𝑡𝑠[15: 0] (7.10)

and

𝐼× = ⌊(𝐼1 × 𝐼2)⌋16𝑏𝑖𝑡𝑠 + ⌊(𝐼1 × 𝐹2)⌋32𝑏𝑖𝑡𝑠[31: 16]

+⌊(𝐼1 × 𝐹2)⌋32𝑏𝑖𝑡𝑠[31: 16] (7.11)

the result is given as

𝑅𝑒𝑠𝑢𝑙𝑡× = (𝐼𝐹)× (7.12)

 The arithmetic operation rules described above would be strictly performed

under 32 bits number system setup in FPGA. All the implementation in the

later sections utilize this setup.

87

Fig. 7.5: Schematic view of the 1-bit modulator provided by QuartusII

7.2 ΔΣ Modulator implementation

Firstly, we map the 1-bit ΔΣ modulator in Chapter 3.4 into hardware. As can

be seen from Fig. 3.5, the structure of a 1-bit unsigned ΔΣ modulator consist of

two adders, the transfer function module and a relay module. The schematic view

of the 1-bit modulator provided by QuartusII is shown in Fig. 7.5.

To avoid quantization error caused by the input sinewave, the input for the

modulator implemented with FPGA is directly taken from Simulink. By building

up the arithmetic operation in Section 7.1.3, the in-band PSD of the modulator

output of the FPGA implementation and Simulink simulation are displayed in

Fig. 7.2. As we are using 16 bits precision for fractional number representation,

it is evident that the modulator output generated from FPGA strongly matches

the one from MATLAB/Simulink generation.

Given the same signal amplitude and frequency, we further moved forward

to two-segment ΔΣ modulator implementation. To maintain coherency in Section

5.4, we use the same parameters we used there as the ones in the FPGA. The

schematic view of the two-segment ΔΣ modulator provided by QuartusII is

shown in Fig. 7.6. Note that the coarsemod and finemod module is reusing the

single path ΔΣ modulator we built up in Fig. 7.5.

88

Fig. 7.6: Schematic view of the two-segment ΔΣ modulator provided by QuartusII

 By using the third order inverse-Chebyshev filter given in Eqn. (7.3) as the

coarse filter and the first order filter given in Eqn. (6.9) as the fine filter, the

output PSD of the FPGA implementation and Simulink simulation are shown in

Fig. 7.7.

For this given input signal with an amplitude of 𝐴 = 28 and a frequency of

0.0017 Hz, the SNR generated based on theory, Simulink, and FPGA are shown

in Table. 7.1. We could see we meet the SNR requirements by using the 3rd order

inverse Chebyshev filter as the noise transfer function despite a slight drop.

 𝑺𝑵𝑹

Theoretical 96.0508 dB

Simulink 96.5575 dB

FPGA 90.0379 dB

Table. 7.1: Theory, Simulink and FPGA results of SNR of the two-segment ΔΣ modulator

89

(a)

(b)

Fig. 7.7: Output PSD of Simulink simulation and FPGA implementation of two-segment ΔΣ

modulator (a): Nyquist frequency (b): in-band frequency

90

7.3 ΔΣ Oscillator Implementation

7.3.1 Single Path ΔΣ Oscillator

In this section, we move on to map the ΔΣ oscillator without segmentation

into the FPGA. All the parameters in Table. 4.2 are reused.

Followed by the ΔΣ oscillator structure depicted in Fig. 4.3, we build it up

in FPGA. The schematic view of the single path ΔΣ oscillator provided by

QuartusII is shown in Fig. 7.8. We collect two outputs out of the system, one is

the modulator output which is declared as out, the other is the sinewave the

oscillator generates, declared as 𝑥1.

Fig. 7.8: Schematic view of the single path ΔΣ oscillator provided by QuartusII

By using the third order inverse-Chebyshev filter given in Eqn. (7.3) as the

loop filter, the output PSD in Simulink simulation and the FPGA implementation

is shown in Fig. 7.9.

91

(a)

(b)

Fig. 7.9: Output PSD of Simulink simulation and FPGA implementation of the single path ΔΣ

oscillator (a): Nyquist frequency (b): in-band frequency

Note that 𝑥1 is the output of the first register. The Simulink simulation result

and the testbench file result from FPGA implementation of 𝑥1 are plotted in Fig.

7.10. It is evident that the signal is a sinewave and the testbench file result from

FPGA implementation closely aligns with that of MATLAB/Simulink

simulation.

92

Fig. 7.10: Simulink and FPGA sinewave output of the single path ΔΣ oscillator

As seen from Fig. 7.9, the noise shape of the FPGA implementation closely

matches with the MATLAB/Simulink simulation. Table 7.2 presents the

amplitude, frequency, and system SNR results derived from theory, Simulink,

and FPGA based on the modulator's output. We could see that the FPGA

implementation demonstrates the generation of a sinewave with a frequency

matching that of the Simulink simulation and theoretical expectations. The

amplitude closely approximates the values observed in Simulink and theory,

with only a minor decrease in SNR, which still meets our specified requirements.

 𝑨 𝒇𝒐 𝑺𝑵𝑹

Theoretical 5181.5 7.8641 Hz 91.2114 𝑑𝐵

Simulink 5158.6 7.8641 Hz 86.9023 𝑑𝐵

FPGA 5259.3 7.8641 Hz 84.0895 dB

Table. 7.2: Theory, Simulink and FPGA results of oscillation frequency, amplitude and system

SNR of the one-path ΔΣ Oscillator

93

Fig. 7.11: Schematic view of the two-segment ΔΣ oscillator provided by QuartusII

7.3.2 ΔΣ Oscillator with Segmentation

Proceeding with ΔΣ oscillator with segmentation, we built the system in

FPGA according to Fig. 6.1 and Fig. 6.2. Following the simulations we

performed in Section 6.2, all the parameters are reused and implemented in the

FPGA. Fig. 7.11 presents the schematic view of the two-segment ΔΣ oscillator

provided by QuartusII. Same as the previous subsection, the modulator output is

declared as out and the sinewave the oscillator generates is declared as 𝑥1. Note

that the SegMod module is the two-segment modulator we built up in Chapter

7.2.

By using the third order inverse-Chebyshev filter given in Eqn. (7.3) as the

coarse filter and the first order filter given in Eqn. (6.9) as the fine filter, the

output power spectral density from the Simulink simulation and the FPGA

implementation of two-segment ΔΣ oscillator are shown in Fig. 7.12.

94

(a)

(b)

Fig. 7.12: Output PSD of Simulink simulation and FPGA implementation of the two-segment ΔΣ

oscillator (a): Nyquist frequency (b): early frequency

Note that 𝑥1 represents the output of the initial register. The results of the

Simulink simulation and the testbench file from the FPGA implementation of 𝑥1

are plotted in Fig. 7.13. It is clear that the signal demonstrates a sinusoidal

waveform and the outcomes from the FPGA implementation's testbench file

closely mirror those derived from the MATLAB/Simulink simulation.

95

Fig. 7.13: Simulink and FPGA sinewave output of the two-segment ΔΣ oscillator

As evident in Fig. 7.12 and Fig. 7.13, the FPGA performance closely aligns

with the Simulink results. Table. 7.3 shows the value of oscillation frequency,

amplitude and system SNR derived from theory, Simulink, and FPGA, based on

the modulator output.

 𝑨 𝒇𝒐 𝑺𝑵𝑹

Theoretical 3.3957 × 108 7.8641 Hz 91.0075 dB

Simulink 3.5366 × 108 7.8641 Hz 81.6227 dB

FPGA 3.3592 × 108 7.8641 Hz 81.6089 dB

Table. 7.3: Theory, Simulink and FPGA results of oscillation frequency, amplitude and system

SNR of the one-path ΔΣ oscillator

The results presented in Table. 7.3 further proves the validity of the two-

segment ΔΣ oscillator implementation in FPGA. The oscillation frequency in the

FPGA implementation precisely matches the values from theory and Simulink.

There is some variance in amplitude and SNR when compared to Simulink, but

it is small and falls within the specified requirements.

96

7.4 Hardware Costs

In this section, we conduct a comprehensive assessment of the hardware

costs associated with single-path ΔΣ modulators and ΔΣ oscillators, as well as

their two-segment counterparts.

 For each FPGA implementation, Quartus II facilitates the generation of a

resource utilization report. This report provides detailed information about the

FPGA resources used in the design. This includes total logic elements (TLE),

total registers, I/O pins and phase locked loops (PLL) used in the design.

 The outcomes pertaining to hardware costs for both 32-bits single-path and

two-segment ΔΣ modulators, as presented in Chapter 7.2, are shown in Table.

7.4. The results of hardware costs for single path and two-segment ΔΣ oscillator

implemented in Chapter 7.3 are shown in Table. 7.5.

ΔΣ modulator Total logic elements Total registers Total pins

Single path 2002 411 114

Two-segment 1093 273 114

Table. 7.4: Hardware costs for single path and two-segment ΔΣ modulator

ΔΣ oscillator Total logic elements Total registers Total pins

Single path 3868 463 130

Two-segment 1320 401 130

Table. 7.5: Hardware costs for single path and two-segment ΔΣ oscillator

97

 As can be seen from Table. 7.4 and 7.5, TLEs are significantly reduced due

to segmentation. Specifically, for the 32-bit ΔΣ modulator, segmentation leads

to a noteworthy 45.4% reduction in TLEs, while the 32-bit ΔΣ oscillator

experiences an even more significant 65.9% reduction in TLEs due to

segmentation. This effect extends to the number of registers utilized, which is

also notably lower in comparison to single-path implementations.

In conclusion, the use of segmentation relaxes the hardware costs

excessively for a relatively small decrease in SNR. This outcome underscores

the practicality and resource-efficiency of segmentation in enhancing the

performance of ΔΣ modulators and oscillators on hardware implementation.

7.5 Summary

This chapter delves into the hardware implementation of single-path and

two-segment ΔΣ modulators and ΔΣ oscillators. It begins by introducing the

FPGA setup and how number system is implemented within the FPGA.

Subsequently, the FPGA implementation of ΔΣ modulators and ΔΣ oscillators is

conducted. The outputs we obtained from FPGA are then analyzed and compared

to the previous MATLAB/Simulink simulation. Result shows that the oscillation

frequency and SNR of the ΔΣ oscillators are close to that of Simulink simulations.

Finally, the hardware costs are calculated, revealing that utilizing segmentation

can alleviate hardware resources by employing fewer TLEs.

98

Chapter 8: Conclusion

8.1 Discussion of Results

The pursuit of high-resolution, high-precision analog oscillators is a critical

task in the field of mixed-signal testing and digital-to-analog conversion. The

aim of this thesis is to explore the application of segmentation in ΔΣ oscillators,

an approach that offers promising solutions for achieving the desired

performance metrics while addressing hardware cost and resource utilization

constraints.

The thesis begins with the introduction of analog signal generation and ΔΣ

modulation. Then an extensive literature review of DAC performance metrics

and structures is provided. In the first two chapters, use of segmentation in DACs

and oscillators is introduced and will be the main topic we explore in the later

chapters.

The third and fourth chapter provide the structures and designs of ΔΣ

modulators and ΔΣ oscillators. Stability research is studied, and different transfer

function mapping topologies are offered and compared. Then simulations in

MATLAB and Simulink are conducted. Given a specific SNR, proper NTF

designs of ΔΣ modulators and ΔΣ oscillators are provided to meet the targeted

SNR.

The concept of segmentation is introduced in ΔΣ modulators in Chapter 5

and in ΔΣ oscillators in Chapter 6. The segmentation principle and how data is

partitioned is introduced. Then simulations in Simulink are conducted. First and

foremost, it became evident that segmentation does not affect the noise shaping

if the coarse modulator remains the same. Simulation results show that the SNR

99

generated in two-segment ΔΣ modulators and ΔΣ oscillators are slightly lower

than that of the single path, which strongly proves the theory.

Finally in Chapter 7, FPGA implementation is conducted. By comparing the

outcomes of FPGA and implementation, we can conclude that segmentation has

the potential to dramatically reduce hardware costs while maintaining the high

SNR. By partitioning the oscillator into smaller, manageable segments, resource

allocation is optimized, thereby relaxing the resource constraints on the FPGA.

This, in turn, translates into cost savings, making the design and deployment of

high-precision oscillators more economically viable.

8.2 Future Direction

As we conclude this exploration, it is evident that segmentation is a strategy

worth pursuing for the design of high-resolution sigma-delta oscillators.

However, there are some future works that can be conducted.

Future research in this field could delve deeper into the optimization of

segmentation techniques, and the exploration of novel applications for high-

precision oscillators in diverse domains. What’s more, a tool like DSMOD built

by Haurie [23] could be developed to generate Verilog coed for FPGA

implementation of segmented ΔΣ oscillators according to different designs of

loop filters.

In closing, this thesis has shed light on the potential of segmentation in ΔΣ

oscillators. Hopefully the insights gained here will inspire further innovations

and discoveries, leading to the realization of high-precision segmented ΔΣ

oscillators meeting the demands of electronic world.

100

Appendix

Verilog Source Code

SegOsc

// Segmented Oscillator

// Author: Wenkang Zhou

// McGill University

// Monteal, QC

module SegOsc(rstn,clk,out,x1);

//Define inputs and outputs

input wire signed [31:0]x1;

output wire signed [31:0]out;

input clk;

input rstn;

wire signed [31:0]x2;

//Define x1(n+1) and x2(n+1) as well as wire after multiplication

wire signed [31:0]x11;

wire signed [31:0]x22;

wire signed [31:0]mul;

wire signed [31:0]muxout;

Dflip1 dff1(x11,rstn,clk,x1);

Dflip2 dff2(x22,rstn,clk,x2);

SegMod SegMod1(x1,rstn,clk,out);

mux2_1 mux(-32'd20,32'd20,out,muxout); //Parameter a2=20

add add1(x22,muxout,x2);

multiplier multi2(mul,x22,32'd1); // Parameter a1=1

add add2(x11,mul,x1);

endmodule

// Module of Register 1

101

module Dflip1 (d,rstn,clk,q);

input signed [31:0]d;

input rstn;

input clk;

output signed [31:0]q;

reg signed [31:0]q;

 always @ (posedge clk or negedge rstn)

 if (!rstn)

 q <= 64'd128; // Parameter x1=128

 else

 q <= d;

endmodule

// Module of Register 2

module Dflip2 (d,rstn,clk,q);

input signed [31:0]d;

input rstn;

input clk;

output signed [31:0]q;

reg signed [31:0]q;

 always @ (posedge clk or negedge rstn)

 if (!rstn)

 q <= 64'd128; // Parameter x2=128

 else

 q <= d;

endmodule

//Module of add

module add(sum,a,b);

output signed [31:0]sum;

input signed [31:0]a;

input signed [31:0]b;

reg signed [31:0] sum;

 always@(a or b)

 begin

 sum<=a+b;

 end

endmodule

102

// Segmented Modulator Module

module SegMod (signal,rstn,clk,Segout);

output signed [31:0]Segout;

input signed [31:0]signal;

input clk;

input rstn;

wire signed [31:0]Segout;

wire signed [31:0]signal;

wire signed [31:0]coarsein;

wire signed [31:0]coarseout;

wire signed [31:0]beforefinein;

wire signed [31:0]finein;

wire signed [31:0]fineout;

wire signed [31:0]aftercoarseout;

div div1(coarsein,signal,32'd256);

mul mul1(beforefinein,coarsein,32'd256);

subtract sub1(finein,signal,beforefinein);

modulator coarsemod(coarsein,coarseout,rstn,clk);

modulatorfine finemod(finein,fineout,rstn,clk);

mul mul2(aftercoarseout,coarseout,32'd256);

add add1(Segout,aftercoarseout,fineout);

endmodule

//Multiplier Module

module mul(

 input wire [15:0] integerPart1,

 input wire [15:0] fractionalPart1,

 input wire [15:0] integerPart2,

 input wire [15:0] fractionalPart2,

 output wire [31:0] result

);

wire [31:0] product1;

wire [31:0] product2;

wire [31:0] intermediateResult;

assign product1 = integerPart1 * integerPart2; // Integer multiplication

assign product2 = fractionalPart1 * fractionalPart2; // Fractional multiplication

// Combine integer and fractional products

assign intermediateResult = {product1[31:16], product2[31:16]}; // Combine the 16 MSBs

103

always @* begin

 if (product1 >= 2'b01_0000_0000_0000_0000) // Check for positive integer overflow

 result = 32'b01_1111_1111_1111_1111_1111_1111;

 else if (product1 <= -2'b01_0000_0000_0000_0000) // Check for negative integer overflow

 result = -32'b01_1111_1111_1111_1111_1111_1111;

 else

 result = intermediateResult;

 // The fractional part should be handled separately to maintain precision

 if (product2 >= 32'b10_0000_0000_0000_0000_0000_0000)

 result[15:0] = 16'b1111_1111_1111_1111; // Saturate to the maximum positive value

 else if (product2 <= -32'b10_0000_0000_0000_0000_0000_0000)

 result[15:0] = -16'b1111_1111_1111_1111; // Saturate to the maximum negative value

 else

 result[15:0] = product2[15:0]; // No fractional overflow, use the product2 value

end

endmodule

// Modulator Module

module modulator(signal,out,rstn,clk);

output signed [31:0]out;

input signed [31:0]signal;

input clk;

input rstn;

wire signed [31:0]out;

wire signed [31:0]signal;

wire signed [31:0]TFin;

wire signed [31:0]TFout;

wire signed [31:0]TFDout;

wire signed [31:0]relayin;

subtract sub1(TFin,signal,out);

TF TF1(TFin,rstn,clk,TFout);

add add2(relayin,signal,TFout);

relay relay1(relayin,out);

endmodule

//Fine Modulator Module

module modulatorfine(signal,out,rstn,clk);

104

output signed [31:0]out;

input signed [31:0]signal;

input clk;

input rstn;

wire signed [31:0]out;

wire signed [31:0]signal;

wire signed [31:0]TFin;

wire signed [31:0]TFout;

wire signed [31:0]relayin;

subtract sub11(TFin,signal,out);

TFfine TF11(TFin,rstn,clk,TFout);

add add22(relayin,signal,TFout);

relay relay11(relayin,out);

endmodule

// TFcoarse Module

module TF (TFin,rstn,clk,TFout);

output signed [31:0]TFout;

input signed [31:0]TFin;

input clk;

input rstn;

wire signed [31:0] TFout;

wire signed [31:0] TFin;

wire signed [31:0] x1,y1,x2,y2,x3,y3; // shift registers for delay

parameter b0 = 54617; // 0.8334 in 32-bit fixed-point

parameter b1 = -88689; // -1.3533 in 32-bit fixed-point

parameter b2 = 37388; // 0.5705 in 32-bit fixed-point

parameter a0 = 65536; // 1 in 32-bit fixed-point

parameter a1 = -196562; // -2.9993 in 32-bit fixed-point

parameter a2 = 196562; // 2.9993 in 32-bit fixed-point

parameter a3 = -65536; // 1 in 32-bit fixed-point

Dflip d11 (TFin,rstn,clk,x1);//x(n-1)

Dflip d12 (x1,rstn,clk,x2);//x(n-2)

Dflip d13 (x2,rstn,clk,x3);//x(n-3)

Dflip d21 (TFout,rstn,clk,y1);//y(n-1)

Dflip d22 (y1,rstn,clk,y2);//y(n-2)

Dflip d23 (y2,rstn,clk,y3);//y(n-3)

105

assign TFout = (b0*x1+b1*x2+b2*x3-a1*y1-a2*y2-a3*y3)/a0;

endmodule

//TFfine Module

module TFfine (TFin,rstn,clk,TFout);

output signed [31:0]TFout;

input signed [31:0]TFin;

input clk;

input rstn;

wire signed [31:0] TFout;

wire signed [31:0] TFin;

wire signed [31:0] x1,y1,x2,y2; // shift registers for delay

Dflip d111 (TFin,rstn,clk,x1);//x(n-1)

Dflip d211 (TFout,rstn,clk,y1);//y(n-1)

assign TFout = x1+y1;

endmodule

//Relay Module

module relay (relayin,relayout);

output signed [31:0]relayout;

input signed [31:0]relayin;

reg signed [31:0] relayout;

// Threshold is defined to be 0

always @(relayin)

begin

 if(relayin>=0)

 relayout<=64'd128;

 else

 relayout<=-64'd128;

end

endmodule

//Multiplexer Module

106

module mux2_1(A,B,X,muxout);

output signed [31:0] muxout;

input signed [31:0] A;

input signed [31:0] B;

input signed [31:0] X;

reg signed [31:0] muxout;

always@(X,A,B)

begin

 if(X>=0)

 muxout<=A;

 else

 begin

 muxout<=B;

 end

end

endmodule

//Testbench file

// Verilog Test Bench template for design : SegOsc

//

// Simulation tool : ModelSim-Altera (Verilog)

//

`timescale 1 ps/ 1 ps

module SegOsc_vlg_tst();

// constants

// general purpose registers

reg eachvec;

// test vector input registers

reg clk;

reg rstn;

// wires

wire [31:0] muxin;

wire [31:0] x1;

//Generated sinewave data will be saved in a text file

integer filew1;

integer filew2;

107

// assign statements (if any)

SegOsc i1 (

// port map - connection between master ports and signals/registers

 .clk(clk),

 .muxin(muxin),

 .x1(x1),

 .rstn(rstn)

);

initial

begin

// code that executes only once

// insert code here --> begin

 clk=0;

 forever #50 clk = ~clk;

// --> end

$display("Running testbench");

end

initial

// optional sensitivity list

// @(event1 or event2 or eventn)

begin

// code executes for every event on sensitivity list

// insert code here --> begin

 filew2=$fopen("D:\\Matlab_files\\Segmented_Oscillator\\sigoscsineout.txt","w");

 filew1=$fopen("D:\\Matlab_files\\Segmented_Oscillator\\sigoscsinex1.txt","w");

 rstn=0;

 #10 rstn=1;

 #101000000 $stop;

@eachvec;

// --> end

end

 always@ (posedge(clk))

 begin

 $fwrite(filew2,"%d",$signed(muxin));

 $fwrite(filew1,"%d",$signed(x1));

 end

endmodule

108

Bibliography

[1] Mark Burns and Gordon W. Roberts, "An Introduction to Mixed-Signal IC Test and

Measurement", 2001.

[2] L. Burst and M-S. Tsey, "Mixing Signals and Voltages on Chip", IEEE Spectrum, New York,

NY, Aug. 1993, pp. 40-43.

[3] M. F. Toner and G.W. Roberts, “A BIST Scheme for an SNR, Gain Tracking, and Frequency

Response Test of a Sigma-Delta ADC," IEEE Trans. on Circuits and Systems -II: Analog

and Digital Signal Processing, Vol. 41, No. 12, pp. 1-15, Jan.1995.

[4] H. T. Nicholas and H. Samueli, “A 150MHz Direct Digital Frequency Synthesizer in 1.25

mm CMOS with 90dBc Spurious Performance”, IEEE Journal of Solid-State Circuits, vol.

26, pp. 1959-1969, Dec. 1991.

[5] A. K. Lu, G. W. Roberts, and D. Johns, “A high-quality analog oscillator using

oversampling D/A conversion techniques," IEEE Trans. on Circuits and Systems - II:

Analog and Digital Signal Processing, Vol. 41, No. 7, pp. 437-444, July 1994.

[6] M.L. Blostein, "Sensitivity Analysis of Parasitic Effects in Resistance-Terminated LC Two-

Ports," IEEE Trans. Circuits and Systems., vol. 14, pp. 21-25, Mar.1967.

[7] Schreier, R., & Temes, G. C. (2005). Understanding Delta-Sigma Data Converters. New

York: IEEE Press.

[8] Schindler, H. R. "Delta modulation." IEEE spectrum 7.10 (1970): 69-78.

[9] Abate, John Edward. "Linear and adaptive delta modulation." Proceedings of the IEEE 55.3

(1967): 298-308.

[10] Temes, Gabor C., Steven R. Norsworthy, and Richard Schreier, eds. Delta-Sigma Data

Converters: Theory, Design, and Simulation. ieee Press, 1997.

[11] Romanov, Denis Evguenievitch. ΔΣ digital-to-analog converter with reduced hardware

requirements using segmentation. McGill University (Canada), 2022.

[12] Emara, Ahmed S., et al. "An Area-Efficient High-Resolution Segmented ΣΔ-DAC for

Built-In Self-Test Applications." IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 29.11 (2021): 1861-1874.

[13] Lu, Albert K., Gordon W. Roberts, and David A. Johns. "A high-quality analog oscillator

using oversampling D/A conversion techniques." IEEE Transactions on Circuits and

Systems II: Analog and Digital Signal Processing 41.7 (1994): 437-444.

[14] A. S. Sedra and K. C. Smith, Microelectronics Circuits, 3rd ed., HRW-Saunders, Florida,

1991.

[15] G. Roberts and M. Burns, "An Introduction to Mixed-Signal IC Test and Measurement",

Oxford University Press, 2005.

[16] M. Burns and G. Roberts, An Introduction to Mixed-Signal IC Test and Measurement, 2nd

ed., Oxford University Press, 2005.

[17] J. Bryant and W. Kester, “Data converter architectures,” in The Data Conversion

sHandbook, W. Kester, 3rd Edition. Oxford, U.K.: Elsevier/Newness, 2005, pp. 147-s174.

September 2006

[18] Dennis Dempsey and Christopher Gorman, "Digital-to-Analog Converter," U.S. Patent

5,969,657, filed July 27, 1997, issued October 19, 1999. (describes an elegant solution for

109

segmented unbuffered string DACs).

[19] T. Wang et al., "High-resolution digital frequency synthesis for software-defined radio,"

IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 9, pp. 2719-2731,

2014.

[20] R. Han et al., "A 9 GHz CMOS Quadrature VCO With 29.4% Tuning Range," IEEE

Journal of Solid-State Circuits, vol. 49, no. 10, pp. 2267-2278, 2014.

[21] J. Wang et al., "A CMOS high-Q LC oscillator with digital compensation technique," IEEE

Journal of Solid-State Circuits, vol. 44, no. 9, pp. 2609-2616, 2009.L.E.

[22] R. Schreier, An empirical study of high-order single-bit delta-sigma modulators,” IEEE

Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 40, no.

8, pp. 461–466, Aug. 1993.

[23] X. Haurie, "Signal Generation using High-Order Delta-Sigma Modulation," Master’s

Thesis, McGill University, November, 1996.

[24] M. R. Miller and C. S. Petrie, “A multibit sigma-delta ADC for multimode receivers,”

IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 475–482, Mar. 2003.

[25] Jien-Chung L. Modern digital designs with EDA, VHDL and FPGA[M]. Terasic, 2015.

[26] A. H. Nuttall, “Some Windows with Very Good Sidelobe Behavior”, IEEE Trans. Acc.

Speech Sig. Proc, Vol. ASSP-29, No. 1, February 1981.

