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ABSTRACT 

Bulk nanostructured silver components were fabricated from nano-sized powder 

using a shockwave consolidation technique. The grain size evolution during 

compaction, the mechanical properties of the bulk components, and the effect of 

surface finish on the mechanical behavior were studied. X-Ray diffraction, 

transmission electron microscopy (TEM), atomic force microscopy (AFM), 

microhardness, compression testing and shear punch testing at room 

temperature were used to characterize the materials. Upon consolidation, the 

average grain size calculated from image analysis of the TEM micrographs was 

49±22 nm, showing the feasibility of maintaining a nanostructure upon dynamic 

consolidation. The hardness of the bulk nanostructured components was 

constant across the diameter with an average of 83±1 HV. Compression results 

showed strength about 390±10 MPa and ductility of 23±2%, which is weil above 

strength level obtainable from strain hardened Ag components. The AFM results 

show that samples possessing a surface roughness of 267 nm exhibited a brittle 

behavior and a reduction in strength of 35% when compared to the smoother 

surfaces. Dimples were observed for the samples exhibiting plasticity, while an 

intergranular pattern was identified for the brittle materials. Fracture toughness 

of 0.2 MPa.JIll. was calculated, which confirms the strong relationship between 

fracture toughness and defects observed in nanomaterials. 

i 



RESUME 

Des pièces massives d'argent nanostructurées ont été fabriquées à partir de 

poudres nanométriques à l'aide d'une technique de consolidation par ondes de 

choc. L'évolution de la taille des grains pendant la compaction, les propriétés 

mécaniques des pièces massives ainsi que l'effet du fini de surface sur le 

comportement mécanique ont été étudiés. La diffraction par rayons-X, la 

microscopie électronique à transmission (MET), la microscopie à force atomique 

(AFM), la microdureté, les essais en compression ainsi que le poinçon de 

cisaillement à température ambiante ont été les outils utilisés pour la 

caractérisation de ces matériaux. Après la consolidation, la taille moyenne des 

grains calculée à partir d'analyses d'images provenant du MET était de 49±22 

nm, démontrant la possibilité de maintenir la nanostructure des poudres après 

une consolidation dynamique. La dureté des pièces nanostructurées était 

constante sur tout le diamètre avec une valeur moyenne de 83±1 HV. Les 

résultats en compression ont démontré une résistance mécanique d'environ 

390±10 Mpa et une ductilité de 23±2%, ce qui est supérieur au niveau 

atteignable avec des pièces d'Ag écrouies. "a été démontré à partir des 

résultats d'échantillons analysés à l'AFM que ceux qui possèdent une rugosité 

de 267 nm ont un comportement fragile ainsi qu'une réduction de 35% de leur 

résistance mécanique par rapport aux échantillons ayant une surface plus lisse. 

Un faciès de rupture ductile a été observé sur les échantillons déformés 
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plastiquement alors qu'une rupture intergranulaire a été observé sur les 

matériaux fragiles. Une ténacité de 0.2 MPa Fm a été calculée, ce qui confirme 

la relation évidente entre les défauts observés dans les nanomatériaux et leur 

ténacité. 
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CHAPTER 1 

INTRODUCTION 

The word "Nano" is derived from the Greek word Dwarf. It means "one billionth". 

For example, a nanometer (nm) is one billionth of a meter. To facilitate 

comparison, a single human hair is about 80,000 nm wide, a red blood cell is 

approximately 7,000 nm wide and a water molecule is almost 0.3 nm across. 

The name "nanocrystalline" has become increasingly popular since Herbert 

Gleiter published the landmark paper Structure and properties of mycrocrystalline 

materials [1.1] in 1983. In that paper, Gleiter discussed the outstanding 

possibilities of what he ca lied th en "microcrystalline materials". Eric Drexler 

popularized the word "nanotechnology" in the 1980's in his book Engines of 

Creation: The Coming Era of Nanotechnology [1.2], which first introduced the 

basic concepts of nanotechnology to a general audience. Drexler's book 

described Nanosystems, Molecular Machinery, Manufacturing, and Computation, 

an applied-physics analysis of advanced productive nanosystems in terms that 

were widely comprehensible. Since then, a significant portion of the global 

research efforts in materials science have been redirected to nanomaterials. The 

U.S. National Nanotechnology Initiative defines "nanomaterial" as anything 

possessing in at least 1 dimension a length scale smaller than 100 nanometers. 

1 



Materials technology research is fundamental to fields such as information 

processing, environ mental protection, living environment safety and energy. 

Nanomaterials are expected to revolutionize materials technology. To do so, 

improvements in the functions, properties and characteristics of materials as weil 

as the creation of new functions through controlling materials structure on a 

super-fine scale need to continue to be developed. 

Siegel [1.3] has classified nanostructured materials into four categories according 

to their dimensionality: OD - nanoclusters; 1 D - multilayers; 2D - nanograined 

layers; 3D - equiaxed bulk solids. 

On the other hand, Figure 1.1 iIIustrates the classification system for 

nanostructured materials established by Gleiter [1.4]. Gleiter's taxonomy orders 

nanostructured materials into families according to composition, morphology, and 

distribution of the nanocrystalline components. He used three shapes: rods, 

layers, and equiaxed grains. His classification includes many possible 

permutations of materials and is quite broad. The boundary regions of the first 

and second families are indicated in black in Figure 1.1 which emphasizes the 

different atomic arrangements in the crystallites and their boundaries [1.4]. 
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Figure 1.1. Classification scheme for nanostructured materials according to their 
chemical composition and the dimensionality (shape) of the crystallites (structural 
e/ements) forming the nanostructure [1.4J. 

Properties in nanocrystalline materials are altered by the large volume fraction of 

grain boundaries. This attribute leads to the requirement of new mechanisms to 

explain the novel mechanical, physical, and chemical properties that occur in 

nanocrystalline materials [1.5-1.7]. Figure 1.2 shows a schematic depiction of a 

nanocrystalline material. The grain-boundary atoms are white and are not clearly 

associated with crystalline symmetry [1.4]. 
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Figure 1.2. Two-dimensional model of a nanostructured material. The atoms in the 
centers of the crystals are indicated in black. The ones in the boundary core 
regions are represented as open circles [1.4J. 

Nanomaterials show very different properties compared to what they exhibit at 

the macroscale, for instance, the melting point reduces when the particle size 

becomes small. Figure 1.3 shows the relationship between the size of gold 

particles and their melting point [1.8]. It can be seen that the melting points of 

gold particles are obviously affected by the particle size, particularly as it 

approaches the sm aller end of the nanoscale. 

o 1 2 3 4 5 6 7 e 9 m ~ 
Parlide Radius [l'lm] 

Figure 1.3. Relation between the size of gold particles and melting point [1.8J. 
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Two factors cause the properties of nanomaterials to differ significantly from 

those of conventional materials: an increased surface area to volume ratio and 

the quantum effects [1.9]. Firstly, at the nanoscale, an increasing fraction of 

atoms can be ascribed to the grain boundaries as the grain size decreases. 

Figure 1.4 shows the change of the volume fraction of intercrystal regions and 

triple-junctions as a function of grain size [1.10]. Because the nanocrystalline 

material contains a high density of interfaces, a substantial fraction of atoms lie in 

the interfaces. The volume fraction of interfaces can be as much as 50% for 

5 nm grains, 30% for 10 nm grains, and about 3% for 100 nm grains [1.11]. The 

atoms on the surface tend to be more reactive than those at the center, which 

can make materials more chemically reactive and can affect their strength or 

electrical properties [1.9]. For example, Weertman and coworkers [1.12] 

observed that nanocrystalline Cu and Pd samples were remarkably stronger than 

their coarse-grained counterparts. 

I~~~-----------------------------' 

Il'lte'rcrystal 
Region 

/ 

IO~ ~----------------~~----------~ . lU" fOl ·1r1 ,al 
Gr.'nSlze(nm} 

Figure 1.4. The effect of grain size on calculated volume fractions of intercrystal 
regions and triple junctions, assuming a grain-boundary thickness of 1 nm [1.1 OJ. 
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Secondly, quantum effects can begin to dominate the properties of matter as 

their size is reduced to the nanoscale. Quantum mechanics are used as a 

mathematical tool for predicting the behaviors of microscopic particles; quantum 

effects include wave-particle duality and the Uncertainty Principle. Quantum 

effects are not noticeable in the macro world, they only become important as one 

approaches the dimensions of the atom. Nevertheless, their effects are 

important in ail branches of science. Quantum effects can affect the optical, 

electrical and magnetic behaviour of materials, particularly as the structure or 

particle size approaches the smaller end of the nanoscale. Much of the 

fascination with nanotechnology stems from the unique quantum and surface 

phenomena that matter exhibits at the nanoscale [1.9]. 

Markets for bulk nanostructured materials appear to exist in every product sector 

where superior mechanical and physical properties (in particular, high strength, 

good strength-to-weight ratio, and excellent fatigue life) are critical. The 

developments of scientists from ail over the world have made it attractive to apply 

nanomaterials in various industries including aerospace, transportation, medical 

devices, sports products, food and chemical processing, electronics, and 

conventional defense. 
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CHAPTER2 

STRUCTURE & OBJECTIVES OF THESIS 

This thesis has been written as a series of manuscripts. The introduction and 

review sections give background and basic knowledge of bulk nanomaterials. 

Chapters 4 and 5 contain two paper manuscripts, each of them containing 

independent experimental procedures, results, discussion, and reference 

sections. Chapter 4, Fabrication of Bulk Nanostructured Silver Material from 

Nanopowders Using Shockwave Consolidation Technique, focuses on the 

fabrication and characterization of shock consolidated bulk nanostructured silver 

components from nano-size powder. In that manuscript, the grain size evolution 

during compaction and the mechanical properties of the bulk components have 

been characterized. Micron scale powders were also consolidated for 

comparison purposes. Chapter 5, The Influence of Surface Roughness on 

Strength and Ductility of Shockwave Consolidated Bulk Nanostructured Si/ver, 

focuses on the relationship between room temperature tensile properties, surface 

roughness and fracture toughness for shock consolidated nanocrystalline Ag 

samples. Chapters 6 and 7 contain the general discussion and summary, which 

link the previous chapters. 
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CHAPTER3 

REVIEW OF BULK NANOMA TERIALS 

3.1. Processing of Bulk Nanomaterials 

Some people talk about a "nanotechnology revolution" as if this was the start of 

something radically new. However, people have exploited the properties of 

nanoparticles for centuries. Gold and silver nanoparticles are responsible for 

some coloured pigments and have been used in stained glass and ceramics 

since the 10th century [1.9]. Nevertheless,nanomaterials become of interest as a 

major field in modern materials science in 1981 when Gleiter synthesized 

nanostructured metals using inert gas condensation (IGe) and in situ 

consolidation [3.1]. Since it was demonstrated that the synthesis method has a 

direct and important effect on the mechanical properties of materials, a number of 

techniques have been developed for producing nanostructured materials, ranging 

from nanoscale particles to bulk nanostructured materials. 

There is one hindrance in the production of nanostructured materials. 

Unfortunately, while it is relatively easy to synthesize powders and to produce 

small samples, it is much more difficult to obtain the same materials in forms 
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large enough for structural applications. The reason for this complication is that 

the large surface to volume ratio causes nanomaterials to be metastable because 

the surface energy component of the total free energy of the system cannot be 

neglected. Therefore, due to the significant disordered grain boundary regions, 

nanomaterials are thermally unstable and are subjected to a strong driving force 

for grain growth [3.2, 3.3]. In comparison to their micron-scale counter parts, 

recrystallisation and grain growth in nanomaterials occurs at a much lower 

temperature, which can interfere with the processing temperature. The unique 

properties of nanomaterials are related to fine grain size and the large volume 

fraction of grain boundaries. Therefore, optimizing the fabrication processes while 

maintaining the microstructure at a nanometer scale during consolidation is one 

of the major challenges in fabricating large scale nano-structured components. 

[3.4]. 

Various methods for processing bulk nanostructured materials have been 

developed. Based on the approaches, they can be classified into one-step or 

two-step methods. The five most common methods used for processing bulk 

nanostructured materials are summarized below. 

3.1.1. Electrodeposition 

Electrodeposition has long been used to create coatings (electroplating) and to 

create free-standing entities (electroforming) [3.5]. Erb et al. [3.6] have studied 
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the synthesis, structure and properties of nanocrystalline nickel synthesized by 

pulse electrodeposition. They have demonstrated that conventional or modified 

electroplating baths and conditions could be used to produce nanocrystalline 

nickel with a grain size as small as 11 nm. The basic components required to 

form a cell for electrodeposition are an anode, cathode, electrolyte, and direct-

current source. Figure 3.1 shows the pulse electrodeposition sequence 

schematically. 

Time Time Time 

Figure 3.1. Pulsed e/ectrodeposition set-up for synthesizing nanocrystalline 
materials [1. 11J. 

The main processing parameters for obtaining nanocrystalline materials include 

the basic composition of the electrolyte, addition of grain nucleators, stress 

relievers and grain-growth inhibitors, the PH value, the deposition temperature, 

the current density, and the type of current cycles such as continuous direct-

current plating, pulsed direct-current plating, or periodic current-reversal plating 

[3.6-3.8]. This technique can yield porosity-free finished products that do not 

require subsequent consolidation processing. Furthermore, this process requires 
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low capital investment and provides high production rates with few shape and 

size limitations [1.11]. 

3.1.2. Severe Plastic Deformation (SPD) 

The basic principle behind severe plastic deformation is to impose an extremely 

high strain deformation on the material of interest such that structural refinement 

occurs both by the shearing and fracturing of phases and is followed by 

recrystallization processes [3.9]. The final microstructure is determined by 

balancing of the rate of work and the rate of recovery. The commonly used 

severe plastic deformation processes are: (a) equal-channel-angular pressing 

(ECAP) [3.10-3.17], (b) high-pressure torsion (HPT) [3.18-3.22], and (c) 

accumulative roll-bonding (ARS) [3.23-3.24]. A schematic of these three 

processes is shown in Figure 3.2. 

ln order to process homogeneous structures while minimizing grain size, the 

major parameters to control include: temperature, strain rate, imposed pressure, 

IUbrication, the intersecting angle (if any) and strain [3.18-3.24]. SPD allows 

lower contamination in comparison to the powder synthesis approaches, since 

ingots are the starting materials. SPD is also capable of fabricating bulk 

materials with no porosities which is a significant advantage over the powder 

metallurgy route [1.11, 3.9]. The main disadvantage of SPD is the high residual 
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internai stresses that can result in an unstable microstructure and properties 

[1.11, 3.9]. 

Figure 3.2. Schematic of severe plastic deformation process with (a) equal­
channe/-angular pressing [3. 19J, (b) high-pressure torsion [3. 19J, and (c) 
accumulative roll-bonding [3. 24J. 

3.1.3. Mechanical Milling 

Mechanical milling produces nanostructured materials by the structural 

disintegration of coarse-grained structures resulting from of severe plastic 

13 



deformation [3.25-3.28]. Mechanical milling consists of repeated deformation 

(welding, fracturing and rewelding) of powder particles in a bail mill until the 

desired composition is achieved [1.11]. In this process either elemental powder 

and/or reactive compounds are violently mixed and milled under a protective 

atmosphere, thereby resulting in chemical homogenization, structural refinement, 

and even chemical reactions occurring in-situ during milling [3.29, 3.30]. Figure 

3.3 shows the set-up for bail milling process. 

Figure 3.3. Mechanical milling as a means of synthesis of nanostructured material 
[3. 31J. 

The main processing parameters used to control grain sizes during mechanical 

milling are continuous or discontinuous milling, the additives, the ball-to-powder 

weight ratio, bail sizes, milling speed, temperature, and time [3.32-3.34]. The 

main advantage of mechanical milling is that nanometer-sized grains can be 

obtained in almost any material after sufficient milling time. However, there are 

three major shortcomings of this method. These weaknesses include the 

contamination of the products by either the milling media or the mill atmosphere, 

possible non-uniform formation of the products within the powder charge of the 
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mill and partial transformation of the reactants to the products unless a prolonged 

milling time is used [3.9]. 

3.1.4. Crystallization of Amorphous Solids 

The basic concept behind the crystallization of amorphous solids is the ability to 

control the crystallization kinetics by optimizing the heat treatment conditions so 

that the amorphous phase crystallizes completely into a polycrystalline material 

with ultrafine crystallites [3.35]. Amorphous solids are thermodynamically 

metastable and will transform into more stable states under appropriate 

conditions. The driving force for the crystallization is the Gibbs free-energy 

difference between the amorphous and the crystalline states [3.9]. The 

amorphous solids can be prepared by a variety of processing routes, such as 

melt-spinning, splat-quenching, mechanical alloying, vapor deposition, or 

electrodeposition [3.36]. Crystallization of amorphous solids can be induced by 

heat treatment [3.37], irradiation [3.38], or mechanical attrition [3.39]. The size of 

crystallites is strongly dependent on the chemical composition of the amorphous 

phase and annealing conditions [3.9]. 

The crystallization of amorphous solids method is easy to control during 

processing. A wide range of grain sizes can be obtained in the as-crystallized 

nanocrystalline specimens by simply modifying the heat treatment conditions 

[3.40]. The main advantage of this method is that it is an efficient way to produce 
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porosity-free nanocrystalline materials [3.35]. Furthermore, controlled 

crystallization can be used to obtain partially-crystallized materials with nano­

sized precipitates in an amorphous matrix [3.9]. 

3.1.5. Shock Consolidation 

ln many applications, nanostructured materials cannot be used in powder form. 

Thus, powder consolidation is required. The powder consolidation techniques 

that have been investigated for the consolidation of nanostructured materials are: 

conventional pressureless sintering [3.41], hot isostsatic pressing [3.42], high­

pressure/low temperature sintering [3.43, 3.44], plasma activated sintering [3.45, 

3.46], and the shock consolidation process [3.47-3.50]. 

Herring's scaling laws predicted that nanosized particles can be sintered at 

temperatures several hundred degrees lower than their coarse-grained 

counterparts because of the short diffusion distance from the contact area to the 

neck zone of the particles [3.51]. This has been demonstrated in many systems 

such as nanosized SbN4, Ti02, and TiAI [3.52-3.54]. However, compaction of 

nanoparticles is known to be difficult because of large specifie surface areas and 

strong friction forces between the particles [3.52]. Typically, pressures as high as 

several GPa are needed during powder compaction to obtain high green 

densities [3.43, 3.44]. 
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Most nanomaterials are currently consolidated with non-traditional methods. In 

the plasma activated sintering process, powders are placed in a graphite die, 

which is subsequently subjected to on/off electrical discharge pulses for about 

one minute, which causes sintering [3.45, 3.46]. In the high-pressure/low 

temperature sintering process, pressures generated via mechanical pressing are 

often used from 1 GPa to 5 GPa [3.43, 3.44]. 

Consolidation of powders using high-pressure shock waves is a potentially 

important method for the synthesis and processing of bulk nanomaterials. This 

method has been studied since the 1960's and intensively investigated since the 

1980's [3.55]. Shock consolidation commonly uses explosives or the impact of 

high speed projectiles to initiate a shockwave that travels through a confined 

porous bed of powder. The resulting densification occurs at an extremely high 

strain rate (107-108 
S·1) due to pressure levels exceeding 1 GPa imposed in less 

than a few microseconds [3.47, 3.48, 3.50, 3.56-3.59). The extremely short 

processing time is advantageous for the consolidation of nano-particles since no 

significant heating of the powder bed occurs, allowing fabrication of bulk samples 

without the loss of their inherent special characteristics, i.e. no recrystallisation or 

grain growth [3.56, 3.60). 

The advantage of shockwave compaction over conventional routes is the 

absence of a pressure gradient during compaction, which are common in any 

regular pressing method. One can expect the possibility of fabricating larger-
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scale nanomaterials using dynamic consolidation. The rate at which the pressure 

is applied on the powder bed might also have an effect on the coalescence of the 

nanoparticles [3.41-3.46, 3.61-3.63]. 

Microstructures of materials can be significantly modified and chemical reactivity 

can be substantially enhanced during shock consolidation. The reaction process 

can be controlled by altering the starting material characteristics and processing 

conditions to obtain the desired amount of energy released [3.50]. Figure 3.4 

presents an illustration of some of the unique characteristics or effects that occur 

during shock consolidation of powders [3.50]. 

SHOCK 
COMPRESSION 
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MICRO-SECOND 
DURATION 

HIGH STRAIN 
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VOID COLLAPSE 

VISCOUS AND P-V HEATING 

PARTICLE DEFORMATION AND 
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ATOMIC RESTRUCTURING AND 
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CRYSTALLOGRAPHIC DEFECTS 
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Figure 3.4. Schematic iIIustrating various processes and their associated effects 
occurring during shock consolidation of powders [3.50J. 
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Many studies have been performed to estimate the tota\ energy needed to 

consolidate a powder bed and to determine the shock parameters required to 

alter consolidation. Meyers et al. [3.481 identified and performed a quantitative 

evaluation of the various phenomena that occur during the propagation of a 

shock wave through a powder. They deem this a necessary step to estimate the 

overall energy requirements for this process. Figure 3.5 presents a schematic 

representation of these phenomena. The total shock energy is dissipated by the 

following mechanisms: (1) plastic deformation, (2) microkinetic, (3) melting at 

interparticle regions, (4) defect formation, (5) friction, (6) fracture, (7) gas 

compression, and (8) shock initiated chemical reactions. 

m.·.· w 
rutAC'IlON 1I0N'OlNO ENtROY DEFEcrËNiŒGY 

Figure 3.5. Various modes of energy dissipation in shock compression of powders 
[3.48J. 

Meyers et al. [3.48] analyzed the shockwave transferred energy which is 

associated with the void collapse, microkinetic energy and frictional energy that 
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leads to melting at the powder surfaces, defects (point, line, and interfacial), 

fractured particles (for brittle materials) and energy release. They indicated that 

while the energy for shock consolidating a material increases with its strength, ail 

other factors remain constant. It has been observed that larger particles tend to 

fracture whereas small partieles preferentially undergo plastic deformation. It can 

be seen that the most important energy dissipation processes are: void collapse 

energy, microkinetic energy, and frictional energy. 

Cracking of the compacts at both the microscopic and macroscopic levels due to 

tensile reflected stresses and residual stresses is a very significant problem in 

shock consolidation. Meyers and Wang [3.47] described the most common types 

of cracks as including: (1) circumferential cracks, (2) radial cracks, (3) transverse 

cracks, (4) mach stem formation, and (5) helicoidal cracks. Figure 3.6 shows the 

most common types of cracks observed in shock consolidated materials. 

As the shock wave propagates through the powders, it generates tensile 

stresses. These tensile stresses, at the parti cie level, are accommodated by 

plastic deformation in ductile materials; cracks are generated within the partieles 

by the activation of existing flaws in brittle materials [3.48]. Kondo and co­

workers [3.64-3.66] have successfully implemented an approach in which the 

reduction of partiele size (e.g. nanocrystalline) is used to reduce the flaw size, 

thereby enabling the application of higher tensile stresses without opening 

cracks. In addition, Meyers et al. [3.48] recommended a few techniques to 
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improve shock consolidation including: reduction of tensile stresses by optimized 

design geometry systems; reduction of shock energy in an effort to improve 

compact quality; post-shock heat treatments to heal existing flaws and improve 

the performance of shock compacted powders; and shock densification followed 

by diffusion bonding. 

Helicoïdal· 
Cracks 

Circumferential 
Cracks Radial.·Cracks 

Figure 3.6. Cracks and flaws encounfered in shock consolidafed cylinders [3.47J. 

There are several forms of shockwave consolidation processes. The principal 

methods that have gained acceptance are: explosive shockwave consolidation 

[3.61, 3.62], dynamic magnetic consolidation [3.63], and gun impact 

consolidation. Figure 3.7 shows pictures of the three shockwave consolidation 

processes. In the explosive consolidation process, the powder compact is 

subjected to very high, shock-generated pressures and deforms adiabatically 
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locally at particle interfaces in a very short time « 1 ilS) [3.61, 3.62]. In the 

dynamic magnetic compaction process, powder is placed into a conductive tube 

and then pressed by magnetic force [3.63]. The high currents are pulsed in the 

coil to produce magnetic fields in the bore. The magnetic fields generated induce 

current in the armature, which interacts with the magnetic fields to produce an 

inwardly magnetic force on the tube, consolidating the powder. Pressure up to 

2.2 GPa, in a IJsec range are obtained. The forces can be applied with great 

precision. In gun impact compaction, the gun is used to accelerate a fiat nose 

projectile that will impact the specimen. 

(a) (b) (c) 

Figure 3.7. Pictures of shockwave consolidation: (a) explosive shockwave 
consolidation, (b) dynamic magnetic consolidation, and (c) gun impact 
consolidation 

Several experimental fixtures are provided for explosive shockwave 

consolidation. The CETRISawaoka twelve-capsule plate-impact shock recovery 

system [3.67, 3.68] utilizes an explosively accelerated flyer plate to impact the 

powders contained in stainless steel capsules. A schematic of the fixture 

configuration and explosive loading assembly is shown in Figure 3.8 (a). Figure 
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3.8 (b) shows the cylindrical modified double tube system used by Szewczak et 

al. [3.69]. After mechanical alloying the powders were cold compacted in 

cylindrical copper containers and closed with copper plugs. 

~::::::::::~ 

HilllExplosive Charge 

"~-Mild Steel Capsule Holder 
~~~~~~~~~~ 

(a) 

primer 
plane-wave generator 

explosive 

PVC tube 

steel plugs 

coppertube 
water 
steel tube 

containers with compacted material 

copper bar 

steel plugs 

momentum trap 

(b) 

Figure 3.8. (a) Schematic of the CETRISawaoka 12-capsule shock recovery fixture 
configuration and explosive loading system [3.67, 3.68J, (b) Cylindrical modified 
double tube system [3.69J. 

A typical single-tube experimental fixture is shown in Figure 3.9 (a). The 

explosion was initiated at the top and the detonation wave propagated 

downwards, generating high pressures in the capsules, which impacted the metal 

container. Figure 3.9 (b) shows a symmetrical explosive configuration at 

longitudinal sections, and a symmetrical loading configuration at cross-sections is 

shown in Figure 3.9 (c). 
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Figure 3.9. (a) Experimental setup, (b) symmetrical explosive configuration 
(longitudinal sections), and (c) symmetricalloading configuration (cross-sections) 

3.2. Properties of Bulk Nanomaterials 

Metallic materials may be strong or ductile, but rarely both at once. Strength and 

ductility are the central mechanical properties of structural materials. The 

strength and ductility relationship is governed by the physical nature of plastic 

deformation and artifacts. . Nanocrystalline materials exhibit increased 

strength/hardness [3.70-3.72], reduced toughness, reduced elastic modulus and 

ductility, enhanced diffusivity [3.73], higher specifie heat, an enhanced thermal 

expansion coefficient, and superior soft magnetic properties in comparison with 

conventional polycrystalline materials [1.11]. 

The fo"owing sections present a brief description of the previously listed 

properties. 
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3.2.1. Elastic Properties 

Early measurements of the Young's modulus, E, on nanocrystalline materials 

prepared by the inert gas condensation method gave lower values than the 

previously measured values for conventional grain size materials [3.74]. Figure 

3.10 shows the Young's modulus as a function of porosity for nanocrystalline Pd 

and Cu as shown by Weertman et al. [1.12]. Krstic et al. [3.75] have suggested 

that the presence of extrinsic defects (pores and cracks) was responsible for the 

reduction of Young's modulus. Subsequent work on porosity-free materials has 

supported these conclusions. 
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Figure 3.10. Young's modulus as a function of porosity for nanocrystalline Pd and 
Cu [1. 12J. 

Wachtman and MacKenzie [3.76, 3.77] expressed the relationship between 

Young's modulus E, and porosity p, in Eq. 3.1: 
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E = Eo(1-1.9p + O.9p2) (Eq.3.1) 

For relatively low porosity materials, p2 can be neglected. The yield stress and 

tensile ductility are simultaneously affected [1.11]. 

It is now believed that the intrinsic elastic modulus of nanostructured materials 

are essentially the same as those for conventional grain size materials until the 

grain size becomes < 20 nm, when the number of atoms associated with the 

grain boundaries and triple junctions becomes very large [3.74]. As described in 

Figure 3.11, Shen et al. [3.78] have demonstrated the relationship between 

Young's modulus and grain size using nanocrystalline Fe prepared by 

mechanical attrition and measured by a nano-indentation technique. 
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Figure 3.11. Ratio of the Young's modulus ofnanocrystalline materials to those of 
conventional grain size materials as a function of grain size [3. 78J. 
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The dashed and solid lines correspond to a grain boundary thickness of 0.5 and 

1 nm, respectively. The open circles show the E/Eo values. The horizontal 

dotted-dashed line represents the E/Eo ratio for materials having an infinite grain 

size [3.78]. Thus, for most nanostructured materials for which grain size > 10 nm, 

the elastic modulus does not possess unique properties [3.74]. 

3.2.2. Hardness and Strength 

Grain size has a significant effect on the mechanical behaviour of materials, 

especially hardness and strength. For ductile polycrystalline materials, the Hall -

Petch equation has been found to express the grain-size dependence of flow 

stress on grain size, as shown by equation 3.2 [1.11]. 

(Eq.3.2) 

ln the above equation, Oy is yield stress, d is grain diameter, 00 is a materials 

constant for the starting stress for dislocation movement, and k is a material 

constant for the fitting parameter. This is indeed an approximation, and a more 

general formulation can be achieved by using a power expression with exponent 

-n, where 0.3 S n S 0.7 [1.11]. To explain the empirical observations, several 

models have been proposed, which involve either dislocation pileups at grain 

boundaries or grain boundary dislocation networks as dislocation sources. In ail 

cases the Hall - Petch effect is due to dislocation motion/generation in materials 

that exhibit plastic deformation [3.74]. 
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The relation of yield stress on grain size in metals is weil established in 

micrometer and larger sized grains. The yield strength of nanocrystalline 

materials has been measured and there is a consensus that the Hall - Petch 

relationship breaks down with a decrease in slope in the 1 ~m - 100 nm range. 

However, experimental results on materials show there is ambiguity in the trend 

of the plot for grain sizes of 100 nm or lower (d-1/2 > 0.1 nm-1/2
). Some results 

show a decrease in the yield stress (negative Hall- Petch slope), some show an 

increase (positive Hall - Petch slope), and others show a plateau [1.11]. The 

scatter reports can be seen in Figure 3.12, which shows the Hall - Petch plot for 

Cu taken from different sources [1.11]. Most data [3.79-3.82] exhibit the negative 

Hall - Petch effect at sm ail grain sizes. It is suggested that the procedure used to 

study the grain size dependence may result in changes in the structure such as 

densification, stress relief, phase transformations, or grain boundary structure, ail 

of which may be artifacts and could explain the observed negative Hall - Petch 

behavior [3.79]. 

For ail strain rates, the stress first increased and then decreased as the grain 

size was reduced. The total strain rate of the crystallite was calculated by 

considering contributions from the dislocation, the boundary diffusion and the 

lattice diffusion mechanisms [1.11]. The dominant deformation mechanisms for 

the crystallite phase as a function of grain size are depicted in Figure 3.13. The 

deformation mechanisms of the grain-boundary phase were modeled as a 

diffusional flow of matter through the grain boundary. 
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Figure 3.12. Compi/ed yield stress versus grain size plot for Cu from various 
sources ranging from coarse to nanograin size. The plots show different trends 
as the grain size falls below a critical size [1. 11J. 
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Figure 3.13. Grain size dependence of ail three contributions to the total imposed 
strain (dislocation mechanism, grain-boundary diffusion and lattice diffusion 
mechanism) in Cu for the total imposed strain rates of 10'3 S·1 [3. 83J. 
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Meyers et al. [3.84] have summarized the major mechanisms for the four grain 

domains. In the region of 1 !lm - 100 nm, the described models are based on 

dislocation generation at or adjacent to grain boundaries and on the formation of 

work-hardened grain boundary layers. In the range of 100 nm - 20 nm, the 

dislocations emitted from grain boundaries have an increasingly reduced 

probability of cross-slipping and multiplying in grains, which leads to shear 

localization. In the regime of 20 nm - 1 nm, the grain boundary effects dominate 

the deformation process. In the regime of 1 nm - 0 nm, deformation is 

dominated by regions of intense shear [3.84]. 

Most of the mechanical property data on nanocrystalline mate rials have pertained 

to hardness. The experimental results of hardness measurements can be 

summarized as follows. In general, grain size is reduced through the nanoscale 

regime « 100 nm), hardness typically increases with decreasing grain size and 

can be factors of 2 to 7 times harder for pure nanocrystalline metals (10 nm grain 

size) than for large-grained (> 1 !-lm) metals [3.79-3.82]. 

3.2.3. Ductility and Toughness 

It is known that grain size has a strong effect on the ductility and toughness of 

conventional grain size (> 1 !lm) materials, usually a reduction in grain size leads 

to an increase in ductility and toughness. Koch et al. [3.85] have reported that 

materials processing elongation of 40-60% in the conventional grain size range 

is reduced to nearly nil when grain size is smaller than 25 nm. Unfortunately, the 
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low ductility of nanomaterials is an artifact caused by the presence of defect. 

Figure 3.14 illustrates the elongation to failure rate in tension vs. grain size for 

some nanocrystalline metals and alloys [3.74]. It has been observed that pure 

nanocrystalline metals exhibit essentially brittle behaviour for grain sizes < 30 nm, 

while displaying significant ductility for conventional grain sizes. The results of 

ductility measurements on nanocrystalline metals [3.86-3.93] are contradictory 

and directly related to flaws and porosity, surface finish, and method of testing 

(e.g., tension or compression testing). Also, deformation mechanisms 

significantly affect the ductility of nanocrystalline metals. 
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Figure 3.14. Elongation to fai/ure in tension vs. grain size for some nanocrystalline 
metals and alloys [3. 74J. 

Figure 3.15 shows data on normalized yield strength (strength/strength of 

conventional polycrystalline) versus percentage elongation in tension for metals. 

Figure 3.15(a) exhibits a clear decrease in ductility as strength is increased with 

grain sizes in the nanocrystalline range. In comparison, Figure 3.15(b) exhibits 
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the increased yield strength along with good ductility in the ultrafine grained 

materials (100-500 nm) range [3.94]. 

1& 

Zn • 
o~~~~~~~~=u~~~~~ 

(Ji "tiO mt' 3D 40 150 '&I!I 70 

.fl, .lElongatfori 

<al 

:1 
15 

1 • Cu 

• • Cu 

1 10 •• 
~~ 

1 
.tii • • ·n 

1 !S • 
Al a:tloy 

• • • • .. 
0 

0 10 :20 30 40 50 ID :ro 
~ 1I0000gs!Ijion 

itb) 

Figure 3.15. Compilation of yield stress versus % elongation of (a) nanocrystalline 
metals, (b) ultrafine grained metals [3.94). 

Unfortunately, it is difficult to process nanostructured materials free from the 

artifacts that mask their inherent mechanical properties. Ma [3.95] reviewed 
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various routes to improve the tensile ductility of bulk nanostructured metals and 

alloys. The methods identified by Ma are as follows : (1) creating a bimodal grain 

size distribution [3.96-3.98]; (2) a mixture of two or multiple phases with varying 

size scales and properties [3.99, 3.100]; (3) using nanoscale growth twins in lieu 

of the nanograins for strengthening [3.101, 3.102]; (4) dispersions of 

nanoparticles and nano-precipitates [3.94]; (5) using transformation-induced 

plasticity [3.103]; (6) lowering of dynamic recovery at low-temperature and/or 

dynamic strain rates [3.104-3.106]; (7) improving strain rate hardening [3.105]; 

and (8) fabrication of flawless materials [3.107-3.109]. 

ln consolidated nanostructured materials, porosity reduces strength and helps to 

initiate shear localization. Therefore, processing truly flaw-free materials is the 

requirement that is paramount for consolidated nanostructured materials. A 

breakthrough has been achieved for obtaining a full density consolidated 

nanostructured Cu [3.107-3.109], which is remarkably strong and ductile. Figure 

3.16 shows a typical tensile stress-strain curve for the bulk in situ consolidated 

nanocrystalline Cu sample, with a relatively narrow log normal grain size 

distribution with an average grain size of 23 nm [3.108]. In comparison to Figure 

3.16, a coarse-grained polycrystalline Cu sample with an average grain size 

larger than 80 ~m and a curve representative of previous nanocrystalline Cu 

samples prepared by an inert-gas condensation with a mean grain size of 26 nm 

[3.110] have also been included for comparison. 
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Figure 3.16. A typical tensile stress-strain curve [3.108J for the bulk in situ 
consolidated nanocrystalline Cu sample, in comparison with that of a coarse­
grained polycrystalline Cu sample and a nanocrystalline Cu sample prepared by 
an inert-gas condensation and compaction technique [3.11 OJ. 

For polycrystalline materials (grain sizes >1 JJm) toughness and strength are 

superior in microstructures with finer grain size [3.111, 3.112]. Grain refinement 

increases the yield and fracture strength simultaneously and reduces the ductile 

to brittle transition temperature, thus improving toughness. However, for the 

nanocrystalline and ultrafine-grained materials, Erb et al. [3.113] have reported 

that they did not observe the positive effects of grain size reduction on impact 

toughness for the Co materials with grain sizes between 18 nm to 10 JJm. Their 

work shows that the modulus of toughness values derived from thin tensile 

specimens tested under quasi-static conditions are not comparable with 

toughness values obtained from impact testing on thicker material [3.113-3.115]. 

34 



3.3. References 

[3.1] Gleiter H., Materials with ultrafine grain size. In: Hansen N, editor. Deformation of 
polycrystals: mechanisms and microstructures. Roskilde: Ris0 National Laboratory 1981; 
p.15. 

[3.2] Nieh T.G., Luo P., Nellis W., Lesuer D., Benson D., Acta muter 1996;44:3781 

[3.3] Verhoeven J., Fundamentals of Physical Metallurgy. New York (NY): John Wiley & 
Sons, 1975. p.204. 

[3.4] Lee J., lhou F., Chung K.H., Kim N.J., Lavernia E.J., Metallurgical and Materials 
Transactions A 2001 ;32:3109 

[3.5] Lowenheim F.A., Electroplating, New York: McGraw-HiII Book Co., 1978. 

[3.6] Erb U., Nanostruct Mater 1995;6:533-8. 

[3.7] Cheungetal C., Nanostruct. Mater., 5(5) (1995), p. 513-523. 

[3.8] Wang N. et aL, Mater. Sci. Eng., A237 (1997), p. 150-158. 

[3.9] Shaw L.L., JOM; Oec 2000; 52,12; p. 41 

[3.10] Iwahashi Y., Wang J.T., Horita l., Nemoto M., Langdon T.G., Scripta Mater 1996; 
35:143-6. 

[3.11] Iwahashi Y., Horita l., Nemoto M., Langdon T.G., Acta Mater 1998;46:3317-31. 

[3.12] Nemoto M., Horita l., Furukawa M., Langdon T.G., Met Mater Inti 1998;4:1181-90. 

[3.13] Langdon T.G., Furukawa M., Nemoto M., Horita l., J Miner Metals Mater Soc 
2000;52:30-3. 

[3.14] Furukawa M., Horita l., Nemoto M., Langdon T.G., J Mater Sci 2001; 36:2835-43. 

35 



[3.15] Horita l., Fujinami T, Langdon TG., Mater Sci Eng A-Struct Mater Properties 
Mierostruet Proeess 2001 ;318:34-41. 

[3.16] Horita l., Lee S., Ota S., Neishi K., Langdon T.G., Superplast Adv Mater, lesam-
20002001 ;357:471-6. 

[3.17] Furukawa M., Horita l., Nemoto M., Valiev Rl., Langdon TG., Mater Charaeteriz 
1996;37:277-83. 

[3.18] Popov A.A. et aL, Ser. Mater., 37(7) (1997), p. 1089-1094. 

[3.19] Valiev Rl., Mater. SeLEng., A234-236 (1997), p. 59-66. 

[3.20] Ferrasse S. et aL, Metal. Mater. Trans., 28A (1997), p. 1047. 

[3.21] Kawazoe M. et aL, Ser. Mater., 36(6) (1997), p. 699-705. 

[3.22] Valiev Rl. et aL, Acta MetalL Mater., 42(1994), p. 2467. 

[3.23] Tsuji N. et aL, Ser. Mater., 40(7) (1999), p. 795-800. 

[3.24] Saito Y. et aL, Ser. Mater., 39(9) (1998), p. 1221-1227. 

[3.25] Suryanarayana C., Prog Mater Sei 2001 ;46:1-184. 

[3.26] Feeht H.J., Hellstern E., Fu l., Johnson W.L., Metall Trans A 1990;21 :2333. 

[3.27] Eckert J., Holzer J.C., Krill III C.E., Johnson W.L., J Mater Res 1992;7:1751. 

[3.28] Fecht H.J., Nanophase materials. In: Hadjipanayis Ge, Siegel RW, editors. vol. 
260; 1994. p. 125. 

[3.29] Schaffer G.B., MeCormiek P.G., MetalL Trans., 21A (1990), p. 2789-2794. 

[3.30] Davis RM., McDermott B., Koch C.C., MetalL Trans., 19A (1988), p. 2867-2874. 

36 



[3.31] Zhou F., Liao X.Z., Zhu Y.T., Oallek S., Lavernia E.J., Acta Mater 2003;51 :2777-
91. 

[3.32] Sehaffer G.B., MeCormiek P.G., Metal!. Trans., 22A (1991), p. 3019-3024. 

[3.33] Sehaffer G.B., MeCormiek P.G., Metall. Trans., 23A (1992), p. 1285-1290. 

[3.34] Yang Z.G., Shaw L., Nanostruet. Mater., 7(8) (1996), p. 873-886. 

[3.35] Lu K., Mater. Sei. Eng., 1996;R16(4):161-221. 

[3.36] Liebermann H.H., Amorphous metallie alloys. In: Luborsky, FE, editor; 1988. p. 26. 

[3.37] Scott M.G., Amorphous Metallie Alloys. In: Luborsky FE; 1988. p. 144. 

[3.38] Azam N., Lenaour L., Rivera S., Grosjean P., Saeovy P., Oelaplaee J., J Nuel 
Mater 1979;83:298. 

[3.39] Luborsky F.E. et aL, Amorphous Metallie Alloys, London: Butterworth, 1983. 

[3.40] Lu K., Wang J.T., Wei W.O., J. AppL Phys., 69(1) (1991), p. 522-524. 

[3.41] UngarT. et al., Nanostruet. Mater., 11(1) (1999), p. 103-113. 

[3.42] Hojo J. et aL, Key Engineering Materials, 161-163 (1999), p. 465-468. 

[3.43] Liao S.C., Mayo W.E., Pae K.O., Acta Mater., 45(10) (1997), p. 4027-4040. 

[3.44] Gutmanas E.Y., Rabinkin A, Seripta MetaL, 13(1979), p. 11-15. 

[3.45] Risbud S.H., Shan C.H., Mater. Sei. Eng., A204 (1995), p. 146-151. 

[3.46] Yoo S.H. et aL, Nanostruet. Mater., 12(1-4) (1999), p. 23-28. 

37 



[3.47] Meyers M.A, Wang S.L., Acto metall. Vol. 36, No. 4, p. 925-936, 1988. 

[3.48] Meyers M.A, Benson D.J., Olevsky E.A, Acta Mater. Vol. 47, No. 7, p. 2089-2108, 
1999. 

[3.49] Meyers M.A, Batsanov S.S., Gavrilkin S.M., Chen H.C., LaSalvia J.C., Marquis 
F.D.S., Materials Science and Engineering A201 (1995), p. 150-158. 

[3.50] Thadhani N.N., Progress in Materials Science 1993, Vol. 37, p. 117-226. 

[3.51] Herring C., J. Appl. Phys., 21(1950), p. 301-303. 

[3.52] Pechenik A, Piermarini G.J., Danforth S.C., J. Am. Ceram. Soc., 75(12) (1992), p. 
3283-3288. 

[3.53] Hofler H.J., Averback RS., Scripta Metall. Mater., 24(1990), p. 2401-2406. 

[3.54] Froes F.H. et aL, JOM, 44(5) (1992), p. 26-28. 

[3.55] Prummer R, Explosivverdichtung Pulveriger Substanzen. Springer, Berlin, 1987. 

[3.56] Korth G.E., Williamson RL., Metallurgical and Materials Transactions - Series A 
1995;26:2571 ' 

[3.57] Nesternko V.F., Cornbust. Explos. Shock Waves 1986;21:730 

[3.58] Gourdin W.F., J. appl. Phys. 1984;55:172 

[3.59] Sivakumar K., Raj P.S., Bhat T.B., Hokamoto K., J. Mater. Process. Technol. 
2001;115:396 

[3.60] Stuadhammer K.P., Johnson K.A, Controlled powder morphology experiments in 
megabar 304L stainless steel compaction. In: Murr LE, Stuadhammer KP, Meyers MA, 
editors. Metallurgical Application of Shock-wave and High-strain-rate phenomena, 
Marcel Dekker (NY): 1986. p. 149. 

[3.61] Morris D.G., Mater. Sci. Eng., 57(1983), p. 187. 

38 



[3.62] Cline C.F., Hopper R.W., Scr. Metall., 11(1977), p. 1137. 

[3.63] Chelluri B., Barber J.P., JOM, 51 (7) (1999), p. 36-37. 

[3.64] Kondo, K.I., Soga, S., Sawaoka, A, Araki M., J. Mater. Sci., 1985,20, p. 1033. 

[3.65] Kondo, K.I., Sawai, S., J. Am. Ceram. Soc .. 1990,73(7), 1983. 

[3.66] Kondo, K.I., Sawai, S., in Science and Technology of New Diamond, ed. S. Saito, 
O. Fukunaga and M. Yoshikawa. K. T. K. Science, Tokyo, 1990, p. 245. 

[3.67] Akashi, T.K., Sawaoka, AB., U.S. Patent 4,655,830, April 7, 1987. 

[3.68] Thadhani, N.N., The CETRISawaoka 12-Capsule Shock Impact Recovery Fixture: 
Design and Experimentation, CETR Report, New Mexico Tech, Socorro, New Mexico, 
July 1990. 

[3.69] Szewczak E., Paszula J., Leonov AV., Matyja H., Materials Science and 
Engineering A226-228 (1997) p. 115-118 

[3.70] Hall E.O., Proc Phys Soc B 1951 ;64:747. 

[3.71] Petch N.J., J Iron Steellnst 1953;174:25. 

[3.72] Ashby M.F., Philos Mag A 1982;46:737. 

[3.73] Wurschum R., Herth S., Brossmann U., Adv Eng Mater 2003;5:365-72. 

[3.74] Koch C., Bulk Behavior of Nanostructured Materials, North Carolina State 
University 

[3.75] Krstic, V., Erb U., Palumbo G., 1993. Scripta Metall. et Mater. 29:1501. 

[3.76] Wachtman J.B., ln: Wachtman JB, editor. Mechanical and thermal properties of 
ceramics. NBS Washington: NBS Special Publication; 1963. p. 139. 

39 



[3.77] MacKenzie J.K., Proc Phys Soc B 1950;63:2. 

[3.78] Shen, T.D., Koch C.C., Tsui T.Y., Pharr G.M., 1995. J. Mater. Res. 10:2892. 

[3.79] Siegel RW., Fougere G.E., 1994. In Nanophase materials, ed. G.C. Hadjipanayis 
and RW. Siegel. Netherlands: Kluwer Acad. Publ., 233-261. 

[3.80] Weertman, J.R, Averback RS., 1996. In Nanomaterials: Synthesis, properties, 
and applications, ed. AS. Edlestein and RC. Cammarata. Bristol: Institute of Physics 
Publ., 323-345. 

[3.81] Morris D.G., Morris M.A, 1997. Materials Science Forum 235-238:861. 

[3.82] Siegel. RW., 1997. Materials Science Forum 235-238:851. 

[3.83] Kim H.S., Estrin Y., Bush M.B., Acta Mater 2000;48:493-504. 

[3.84] Meyers M.A, Mishra A, Benson D.J., JOM, 2006 , v. 58 , n. 4 , p. 41. 

[3.85] Koch C.C., Morris D.G., Lu K., Inoue A, MRS Bull 1999;24:54. 

[3.86] Günther, Baalmann B.A, Weiss. H., 1990. Mater. Res. Soc. Symp. Proc. 195:611-
615. 

[3.87] Nieman, G.W., Weertman J.R., Siegel. RW., 1991. Mater. Res. Soc. Symp. Proc. 
206:581-586. 

[3.88] Nieman, G.W., Weertman J.R, Siegel. RW., 1991. J. Mater. Res. 6:1012-1027. 

[3.89] Sanders, P.G., Eastman J.A, Weertman J.R., 1996. In Processing and properties 
of nanocrystalline materials, ed. Suryanarayana et al. 1996, 379-386 

[3.90] Gertsman, V.Y., Hoffman M., Gleiter H., Birringer R, 1994. Acta Metall. Mater. 
42:3539-3544. 

40 



[3.91] Eastman, J.A., Choudry M., Rittner M.N., Youngdahl C.J., Dollar M., Weertman 
J.R, DiMelfi RJ., Thompson L.J., ln Chemistry and physics of nanostructures, ed. Ma et 
al. 1997, 173-182 

[3.92] Morris D.G., Morris. M.A., 1991. Acta Metall. Mater. 39:1763-1779. 

[3.93] Liang, G., Li Z., Wang. E., 1996. J. Mater. Sei. 

[3.94] Koch C.C., Scripta Mater 2003;49:657-62. 

[3.95] Ma E., JOM, 2006 , v. 58, n. 4 , p. 49. 

[3.96] Zhang X., Wang H., Scattergood RO., Narayan J., Koch C.C., Acta Mater 
2002;50:3995. 

[3.97] Zhang X., Wang H., Scattergood RO., Narayan J., Koch C.C., Acta Mater 
2002;50:3527. 

[3.98] Zhang X., Wang H., Scattergood R.O., Narayan J., Koch C.C., Acta Mater 
2002;50:4823. 

[3.99] Dai Q.L. et aL, Mater.Res., 19 (2004), p. 2557. 

[3.100] Sun B.B. et aL, Acta Mater., 54 (2006), p. 1349. 

[3.101] Lu L. et aL, Science, 304 (2004), p. 422. 

[3.102] Ma E. et aL, Appl. Phys. Lett., 85 (2004), p. 4932. 

[3.103] Wu X. et aL, Scripta mater., 52 (2005), p. 547. 

[3.104] Wang Y.M., Ma E., Acta Mater., 52 (2004), p. 1699. 

[3.105] Wang Y.M., Ma E., Appl. Phys. Lett., 83 (2003), p. 3165. 

[3.106] Wang Y.M., Ma E., Advanced Mater., 16 (2004), p. 328. 

41 



[3.107] Cheng S. et al., Acta Mater., 53 (2005), p. 1521. 

[3.108] Youssef K.M., Scattergood RO., Murty K.L., Horton J.A., Koch C.C., Appl. Phys. 
Lett. Vol. 87, 091904, (2005) 

[3.109] Youssef K.M. et aL, Appl. Phys. Lett., 85 (2004), p. 929. 

[3.110] Legros M., Elliott B.R, Rittner M.N., Weertman J.R, Hemker K.J., Philos. Mag. A 
80, 1017 (2000). 

[3.111] Hertzberg RW., Deformation and Fracture Mechanics of Engineering Materials, 
second ed., Wiley, New York, 1976, p. 325. 

[3.112] Dieter G.E., Mechanical Metallurgy, third ed., McGraw Hill, New York, 1987, p. 
471. 

[3.113] Karimpoor A.A., Aust KT., Erb U., Scripta Materialia, V 56, Issue 3, February 
2007, p. 201-204 

[3.114] Karimpoor A. A. , Erb U., Aust K.T., Palumbo G., Scripta Mater. 49 (2003) p. 651. 

[3.115] Karimpoor A. A. , Erb U., Aust K.T., Wang Z., Palumbo G., Mater. Sci. Forum 
386-388 (2002), p. 415. 

42 



CHAPTER4 

FABRICA TION OF BULK 

NANOSTRUCTURED SIL VER MA TERIAL 

FROM NANOPOWDERS USING 

SHOCKWAVE CONSOLIDA TION TECHNIQUE 

4.1. Introduction 

One of the major challenges in fabricating large scale nano-structured 

components is to optimize fabrication processes while maintaining the 

microstructure at a nanometer scale during consolidation [3.4]. The powder 

metallurgy route is one of the viable processes that have been identified for 

fabricating bulk nanostructure materials. With this approach, two sources of raw 

materials are available, specifically nano-sized and nanostructured powder. 

Nano-sized powder consists of a single crystal with nano-scale particle size 

distribution while nanostructured powder is composed of micron-scale particles 

possessing a nanograin structure. The following discussion will be oriented 

towards the nano-sized powder. Transport processes responsible for sintering 

are significantly altered by the nano-scale size since the grain size is similar to 
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the characteristic length of the transfer process [4.1]. The short diffusion 

distances within nano-sized powders are beneficial as they enhance the 

processing kinetics. Nevertheless, the short diffusion distances can also be 

detrimental since the driving force and rate of grain growth is increased [4.1]. 

Consequently, the optimization of traditional consolidation processes is essential 

in order to obtain a fully densified sample and the desired nanostructure [4.2]. 

Shock consolidation of nano-size powders is an approach that has the potential 

to process large-scale bulk nanomaterials [4.3]. Shock consolidation commonly 

uses explosives or the impact of high speed projectiles to initiate a shockwave 

that is travels through a confined porous bed of powder. The resultant 

densification occurs at an extremely high strain rate (107-108 
S·1) due to pressure 

levels exceeding 1 GPa imposed in less than a few microseconds [3.47, 3.48, 

3.50, 3.56-3.59]. The extremely short processing time is advantageous for 

consolidating nano-particles as no significant heating of the powder bed occurs, 

allowing fabrication of bulk samples without the loss of their inherent special 

characteristics, i.e. no recristallisation or grain growth [3.56, 3.60]. Inspection of 

the available literature uncovered limited information available on the few 

systems tested. Nieh et al. [3.2] investigated the shock-compaction behavior of 

aluminum nanocrystals possessing an average particle size of about 50-70 nm, 

and where, after shock consolidation, the average grain size ranged between 80-

200 nm. Unfortunately, no investigation of the mechanical properties was 

reported. 
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The present work focuses on the fabrication and characterization of shock 

consolidation bulk nanostructured silver components from nano-size powder. 

The silver system was selected because it possesses a nearly-native metallic 

surface, which allows the study of the effects of the behaviour of a small scale 

particle under the Gibbs-Thomson effect on the compaction process. The grain 

size evolution during compaction and the mechanical properties of the bulk 

components have been also been characterized. Micron scale powders were 

also consolidated for comparison purposes. 

4.2. Experimental procedures 

4.2.1 Starting Materials 

Two different powders were used throughout this work: i) nano-Ag and ii) micro­

Ag, used as a reference. The respective characteristics of the starting powders 

are shown in Table 4.1. 

Table 4.1. Characteristics of the starting powders 

Purity Average Particle Morphology Supplier 

Size (APS) 

Nana-Ag 99.9% 30-50 nm spherical Nanostructured & 

Amorphous Materials Inc 

Micro-Ag 99.9% -325 mesh «44 J..Lm) spherical Alfa Aesar 
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4.2.2 Consolidation Process 

The shock compaction experiments were carried out at the Energetic Materials 

Research and Testing Center (EMRTC, Socorro, NM) according to their standard 

procedures [3.47]. The single tube set-up, where the explosives are in direct 

contact with the test tube, was used. This experimental arrangement was 

selected because the pressures applied on the powder bed are smaller than for 

the flyer tube assembly. The starting powders were cold pressed in a seamless 

powder container steel tube (12 mm inside diameter; 2.3mm of wall thickness) 

under a pressure of 325 MPa. The end plugs were welded using the tungsten 

inert gas welding process. The tests tubes were centered in a 15 cm diameter by 

40 cm cardboard tube and subsequently filled with ANFO explosive (detonation 

velocity 2.6km/s). A sheet of C3 was used as the booster to initiate the 

detonation. Upon initiation of the explosive, a detonation wave propagated 

vertically downward, producing a calculated implosion pressure of -1.5 GPa, 

which was transmitted to the powders. After the compaction, the enclosed 

containers where recovered and the Ag samples were extracted by machining 

the initial enclosed container. 

4.2.3 Characterization of Consolidated Specimens 
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4.2.3.1 Density 

Density was measured with a Gas Pycnometer (Micromeritics model AccuPyc 

1330 Pycnometer). The reported values represent an average of 10 

measurements. 

4.2.3.2 Microstructure Analysis 

The micron-scale materials were prepared using a standard metallographic 

procedure. The preparation of the specimens involved mounting them in bakelite 

followed by grinding and polishing them down to 0.02 Jlm diamond suspensions 

with an alcohol-based lubricant. The specimens were chemically etched (100 ml 

95-98% H2S04 and 2.5g Cr03) to reveal the microstructure and were examined 

using a Nikkon light optical microscope equipped with a Clemex Vision System. 

The same system was used to perform the image analysis of the various 

micrographs. A Hitachi S-4700 field emission gun scanning electron microscope 

(FE-SEM) was used to study the fracture surface of ail specimens. Transmission 

electron microscopy (TEM) investigations were performed on a Hitachi H-9000 

NAR, operating at 300 kV. Sample preparation was do ne by cryotomy. XRD 

patterns were acquired with a Philips PW1710 diffractometer using a 

monochromatized Cu Ka radiation (À= 0.15405 nm). The full width at maximum 

height analysis was used to calculate the grain size and lattice microstrain from 

the broadening [4.4]. Annealed micron-scale powder was used as a reference to 

remove the instrumental broadening contribution. 
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4.2.3.3 Hardness Testing 

Hardness was measured across the specimen diameter with a Clark 

Microhardness Tester (model CM-100AT) using a 200 9 load. Each of the 

reported values represents an average of 3 indents. 

4.2.3.4 Compression Testing 

Cubic specimens of 3x3x3mm were used for compression tests. The analysis of 

these specimens was performed on a Materials Testing System (MTS Model 

810) machine equipped with a hydraulic actuator that generated the force and 

Iinear displacement. During compression testing, thin sheets of mica (50 to 80 

f.Lm thick), separated by a layer of boron nitride powder were placed between the 

face of the compression specimens and the anvils in order to maintain uniform 

deformation. The specimens were deformed at a strain rate 0.01/s up to fracture. 

4.3. Results 

4.3.1 Starting Materials 

Figure 4.1 (a) shows the morphology of the nana -Ag starting powder. It can be 

seen that the particles have mostly a spherical morphology, with a narrow size 

distribution of -30-50 nm. The micrographs validate the average particle size 

(APS) presented in Table 4.1. Figure 4.1 (b) depicts the spherical morphology of 

the micron-scale powders. 
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(a) (b) 

Figure 4.1. Scanning e/ectron micrographs of two starling powders (a) nano-Ag 
powder, and (b) micro-Ag powder. 

4.3.2 Macrostructure of Bars 

After consolidation, the bulk samples had final dimensions of 12 mm in diameter 

and approximately 30 mm in length. Figures 4.2(a) and (b) show the cross 

section of the nano-Ag specimen and micro-Ag specimen, respectively. As 

depicted, no typical macro-scale defects, which are often observed in shock 

compacted samples, such as circumferential or transversal cracks or mach 

steam, were observed. 

(a) (b) 

Figure 4.2. Cross section of the (a) nano-Ag specimen, and (b) micro-Ag specimen. 
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4.3.3 Density 

The average density of the micro-Ag specimens was 9.6981 ± 0.0289 g/cm3
, 

which corresponds to 92.5% of the theoretical density (TD) of silver. On the 

other hand, the nano-Ag specimen possessed an average density of 10.4425 ± 

0.0603 g/cm3
, which translates to 99.5% TD. 

4.3.4 X-ray Diffraction 

Figure 4.3 shows a collection of XRD patterns for the conso\idated nano-Ag 

specimens, the bulk micro-Ag specimens and the starting nano- and micro-Ag 

powders, respectively. It can be seen that the consolidated process causes the 

XRD peaks to broaden slightly due to the nano-scale grain size and the creation 

of lattice strain. The respective grain sizes and \attice strains o~ the conso\\dated 

specimens and starting powders were calculated using the full width at maximum 

height and the numerical results are presented in Table 4.2. It can be remarked 

in that table that the calculated average particle size of the nano-scale powder 

using this technique is in agreement with the reported value from the 

manufacturer (see Table 4.1) and the micrograph presented in Figure 4.1 (a). 

The average grain size of consolidated nano-Ag specimen was 56 ± 5 nm and 

the lattice strain was 0.22%. In comparison, the micron-scale samples show a 

significant increase in lattice strain caused by the intense plastic deformation of 

the process. 
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Figure 4.3. Collection of X-ray diffraction patterns from the consolidated nano-Ag 
specimen, micro-Ag specimen and the starting nano-Ag and micro-Ag powders, 
respectively. 

Table 4.2. Comparison of the average grain size and lattice strain of the 
consolidated bars and starting powders specimens. 

Grain Size (nm) Lattice Strain (%) 

Nana-Ag Pawder 34±5 NIA 

Nana-Ag Bar 56±5 0.22 

Micro-Ag Bar NIA 0.93 

4.3.5 Microstructure 

Figure 4.4(a) shows a typical TEM image of the center and side of the nano-Ag 

bar. Similar micrographs were obtained at the periphery of the samples. The 

spotted rings in the selected area diffraction pattern, illustrated in Figure 4.4(a), 

confirms the polycrystalline nature of the consolidated material. There is no 
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apparent evidence of melting of the silver particles fram adiabatic heating during 

the compaction. Figure 4.4(b) displays the grain size distribution obtained by the 

average diameter method fram the TEM micragraphs, indicating an average 

grain size of 49±22nm in the consolidated samples. The average grain size is 

consistent with the grain size calculated fram XRD line-broadening analysis. 

(a) 

45 
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Grain Size (nm) 

(b) 

Figure 4.4. (a) TEM bright-field image of nana-Ag specimen including selected 
area diffraction pattern and (b) grain size distribution measured from TEM images. 
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Figure 4.5 shows an optical micrograph of an etched specimen made out of 

micro-scale powder. The micrographs revealed that after consolidation, the 

shape of the particles changed from spherical to polygonal, as depicted in Figure 

4.5 where the arrows are pointing at the particle boundary. The change in shape 

occurred from the material flow into the interparticle voids that were present prior 

to the consolidation process. Few voids are shown to be present at the triple 

junctions, indicating insufficient compaction energy to obtain pore-free samples. 

The observation of residual pores is in agreement with the density measurements 

obtained. The grain size range was between 5.27±2.00 ~m. 

Figure 4.5. Optical micrograph of micro-Ag specimen 

Mechanical properties 

4.3.6 Hardness 

The microhardness profiles through the diameter of the specimen are presented 

in Figure 4.6. In the case of the nano-Ag specimen, the average hardness was 
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83±1 HV. The profile shows no major variation in hardness across the diameter. 

For the micron-scale sample, the initial hardness of the micro-Ag powder (as 

starting material) was - 85 HV. When compared to the starting powder, the 

consolidation process increased the hardness of the consolidated bar by 33% 

(average of 113±1 0 HV in zone 1). The increase in hardness can be explained by 

the strain hardening during the plastic deformation undergone by the Ag powders 

during consolidation, as previously shown in Figure 4.5. A drop in hardness is 

also observed near the center of the specimen. It is believed that recovery 

occurred in this zone due to the interaction of the concentric shock front. The 

average grain size in the zone possessing a reduced hardness was 6.01±1.91 

mm, which is not significantly different than for the grains in the periphery, 

illustrating that the inside temperature was insufficient to cause recrystallisation. 
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Figure 4.6. Microhardness of nano-Ag and micro-Ag specimens 
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4.3.7 Compression Testing 

Figure 4.7 presents the compression stress strain curves obtained for nano-Ag 

and micro-Ag specimens for tests performed at a strain rate of 0.01/s and a 

summary of ail mechanical properties is presented in Table 4.3. It can be seen 

that there is a significant difference between the flow behaviours of the nana - Ag 

and micro - Ag specimens, where the nano-Ag specimens exhibited a higher flow 

stress and good ductility. The nanostructured samples possessed an average 

compressive yield strength of 320 MPa, an average ultimate tensile strength of 

390 MPa and an average strain fracture was 0.25. In comparison, the sample 

fabricated using the micron-scale powders exhibited a brittle behaviour with a 

strength level approaching 100 MPa. 
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Table 4.3. Comparison of the Mechanical Properties of nano-Ag and micro-Ag 
Specimens 

GS YS UTS El Hardness 

(MPa) (MPa) (%) (HV) 

Nana-Ag Bar -60nm 320±10 390±10 23±2 83±1 

Micro-Ag Bar 5.27±2.00 !lm 100 100 0 113±10 

Figure 4.8 presents law and high magnification micrographs of the fracture 

surfaces. 

(a) (b) 

(c) (d) 

Figure 4.8. SEM of the broken specimens, with low magnification (a) nana -Ag, (b) 
micro -Ag, and with high magnification (c) nana -Ag, (d) micro -Ag. 
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No significant difference in the fracture surface was observed between both 

specimens at low magnification (see Figure 4.8(a) and (b)). However, at higher 

magnification, the fracture pattern was different. Figure 4.8(c) shows the surface 

fracture of the nano-Ag sample. No significant interparticle crack pattern or 

dimples was observed. On the other hand, Figure 4.8(d) shows c1early that the 

crack propagated along grain boundaries (arrow), for the micron-Ag samples. 

The intergranular aspect of the fracture surface is a sign of a lack of bonding 

between the original Ag particles, which also explains the low strength obtained. 

4.4. Discussion 

Several studies have shown that the densification of nano-sized powder is harder 

than for that of their micron-scale counterparts mostly because of the friction 

forces between particles and agglomeration problems [4.1]. For these reasons, 

the fabrication of nanotructured components using nanostructured powder as a 

starting material is sometimes preferred. On the other hand, the nano-sized 

powder has the advantage of a very high surface energy caused by the high 

surface area to volume ratio. In particular, several studies have shown that the 

melting temperature of nano-particles reduces nearly linearly with the inverse of 

the particle diameter [4.5]. It is also weil known, under the Gibbs-Thomson 

effect, that nano-particles have a tendency to sinter or to Ostwald ripen, which 

reduces the total free energy of the system [4.6]. Jackschath et al [4.7] reported 
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that under the beam energy of a TEM (TEM vacuum level), coalescence of Ag 

clusters occurs spontaneously until the particle reaches a threshold diameter of 

30nm, and where agglomeration rather than coalescence occurs for larger 

particles. During the coalescence stage, melting and formation of metallurgical 

bonds· between particles occurs. The spontaneous coalescence to 

agglomeration transition explains why most commercially available Ag nano­

particles are available in an agglomerated form with average particle sizes of 30-

50nm, like the ones used in this study. The results obtained in this study 

demonstrate that the formation of metallic bonds between the Ag particles of the 

aggregates is possible by solely applying a high pressure level. In terms of 

reactivity of nano-particles, the Ag parti cie has the advantage of being one of the 

more stable and is therefore less prone to having a surface oxide scale found, for 

example, on aluminum nano-particles. Nieh et al [3.2] studied the dynamic 

compaction of nano-AI crystal under pressure levels of 2-3 GPa and nearly fully 

dense compacts were obtained. However, TEM observations showed pores at 

the triple junctions, which were associated with the surface oxide layer that 

corresponded to approximately 20% of the diameter of the AI crystals. The 

presence of this oxide layer prevented the formation of metallurgical bonds, 

which was not the case in the present study. 

There are seven agreed upon modes of energy dissipation performed by the 

powder bed in the shock compression of powders: void collapse energy, melting 

at the particle surface, defect energy, reaction bonding energy, fracture energy, 
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friction energy and microkinetic energy [3.48]. An evaluation of the contributing 

phenomena during the consolidation of the porous body is necessary in order to 

estimate the overall energy requirements of the shock pressure. Our results 

showed that a pressure level of -2 GPa was sufficient to compact the porous bed 

and to form metallurgical bonds within an agglomerate of Ag nano-particles. The 

experimental results suggest that the shock energy was dissipated by void 

collapse since full dense compacts were obtained. In addition, friction energy to 

overcome the reported high friction force between nanoparticle displacement, 

microkinetic energy and possibly the formation of defects also may have 

contributed to the dissipation of the shock energy. These last criteria are difficult 

to evaluate since work hardening in nanomaterials possessing similar grain size 

is generally very low [1.11]. It is worth mentioning that because no evidence of 

melting between the different particles was observed on the TEM micrographs, 

we believe that the increase in temperature caused by the friction between the 

various particles was limited to negligible. The mechanism of particle-bonding is 

believed to be similar to the clustering effect observed in nanoparticles. 

Therefore, the combination of the oxide-free surface, the ultra-fine particle size 

(Gibbs-Thomson effect) and the intimate contact created by the pressure front is 

believed to have been sufficient to create metallurgical bonds throughout the 

compact. Similar pressures to the one used in this study were used to hot press 

Cu and Pd nano-powder fabricated by inert gas condensation [4.8]. The reported 

densities of bulk nanocrystalline materials consolidated under a pressure of 1.4 

GPa in a heated die are 95.3-98.5% of TD for palladium, and 92.5-98.4% of TD 
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for Cu, respectively. Despite the fact that similar compaction pressure was used 

during hot pressing, a certain level of porosity remained in the samples and likely 

can be associated with possible contamination of the starting powder. In such 

cases the surface energy is lowered and insufficient coalescence of the 

nanoparticles occurrs. Results by Ide [4.6] showed that under a pressure of 5 

MPa and temperature of 300°C, Ag nanoparticles of 5 nm will self sinter to create 

a dense interlayer. This experimental evidence shows that both techniques are 

viable for fabricating nanomaterials from nano-powders. The advantage of 

shockwave compaction over the more conventional routes is the absence of a 

pressure gradient during compaction, while pressure gradients are common in 

any convention al pressing route. One can expect the possibility of fabricating 

larger-scale nanomaterials using dynamic consolidation. The rate at which the 

pressure is applied on the powder bed might also have an effect on the 

coalescence of the nanoparticles. 

The presented results obtained for the micron powder were expected since the 

contribution of the surface energy of these powders is negligible compared to the 

total energy of the particle. Since no experimental results on the shockwave 

consolidation of Ag micron powders was found in the literature, the empirical 

relationship between the hardness and the shock pressure presented by Meyers 

and Thadani [4.9] was used to approximate the necessary compaction pressure. 

The results show that for a starting powder possessing a hardness of 85 HV, a 

required shock pressure of -2.5-3 GPa is necessary to obtain weil compacted 
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samples. Since the applied pressure was lower than the approximated pressure 

levels required for shock compaction of micron-scale powders, no strong bonds 

between the particles was created and an incomplete densification of the porous 

media was observed. In addition, the lack of bonding caused by the absence of 

surface melting, which is the known mechanism to achieve bonding between 

micron-scale particles [3.48], explains the very weak properties of the micron 

scale Ag samples. The reason for this explanation is that mechanical integrity is 

solely attributed to the mechanical interlocking between the particles. Results 

presented by Ide et al. [4.6] demonstrated that the contribution of the surface 

energy of particles of 100nm is insufficient to obtain a full density compact during 

low-temperature, low-pressure hot pressing and is in agreement with the results 

obtained in this study. 

The nanostructure samples present an interesting combination of high strength 

and ductility, which is not available in wrought Ag material. Imposing a cold work 

level of 75% on commercial silver wires increases the ultimate tensile strength to 

335 MPa but decreases the ductility level to nearly 0% [4.10]. For the same wire, 

in order to obtain ductility levels similar to those of the nanostructured materials 

used in this study, the wrought material must have a maximum tensile strength of 

205 MPa [4.10]. The stress-strain curves presented in Figure 4.7 show an 

appreciable level of ductility without strain-hardening. The ductility in 

nanomaterials is function of the grain size, where numerous mechanisms 

significantly affect the ductility. Wadsworth and Nieh [4.11] reported that the Hall-
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Petch relation would breakdown at a certain grain size (le), i.e. the critical grain 

size at which a dislocation pile-up will not be effective. From Eq. 4.1 and the 

following data (G: 30 GPa, b: 0.289 nm, u: 0.39, and H: 0.814 GPa), the critical 

grain size at which the Hall-Petch relation will break down was calculated for Ag 

and a critical grain size of 16.7 nm was determined. 

1 3Gb 
C n{l-v)*H 

(Eq.4.1) 

Since the measured average grain size for the shock consolidated sam pie is 

larger than the critical grain size (49 nm vs 16.7 nm), it is assumed that a 

dislocation pile-up will be effective for the nanostructured materials of this study. 

The literature shows that for these materials, the compressive yield strength of 

nanocrystalline materials is approximately equal to HV/3 [4.8, 4.12]. The results 

obtained in this study are in agreement with these values: compressive yield 

strength: 0.31 GPa and Vickers Harndess/3: 0.27 GPa. Nanomaterials are also 

known to possess an inverse proportionality between the yield strength and the 

elongation [3.94, 4.13]. Despite the fact that the plot consists of a compilation of 

results from tensile tests, the point corresponding to our compressive test results 

is in agreement with the yield strength/elongation relationship of other 

nanostructured systems. The fiat compression curve obtained was also 

observed in other nanocrystalline systems [4.14, 4.15]. The absence of strain-

hardening is caused by the room temperature dynamic recovery known to 

nanomaterials [1.11]. A steady state dislocation density was obtained by the 

competition of dislocation generation at the grain boundaries and the dislocation 
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annihilation at the grain boundaries (the boundaries act as a dislocation sink) 

during plastic deformation. 
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CHAPTER5 

THE INFLUENCE OF SURFACE ROUGHNESS 

ON STRENGTH AND DUCTILITY OF 

SHOCKWAVE CONSOLIDA TED BULK 

NANOSTRUCTURED SIL VER 

5.1. Introduction 

The mechanical properties of nanomaterials vary significantly from those of their 

micron-scale counterparts. Several studies comparing characteristics such as 

hardness or tensile properties can be found in the literature and are summarized 

by Meyers et al. [1.11]. The relationship between an increase in strength and 

hardness at the expense of ductility is generally accepted by the materials 

science community [1.11]. However the review article by Meyers et al. [1.11] 

reported molecular dynamic simulations that were performed to try to explain the 

reduction in ductility observed. At the nanoscale, conventional deformation 

techniques based on dislocation and hardening have reduced efficiency because 

as the size of dislocation approaches grain size, grain boundary sliding and 

twinning is more likely to occur during the deformation process [1.11]. Despite 
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recent advances in deformation techniques, a process to effectively deform 

materials with a grain size between 10-100 nm has yet to be found although 

progress has been made in pursuit of this goal. Koch [5.1] has shown that 

artifacts from processing, such as pores and cracks, tensile instabilities and crack 

nucleation significantly contribute to the reduction in ductility in the resulting 

materials. In addition, Ma [3.95] reported eight approaches used to improve the 

ductility without significantly sacrificing the increased strength in nanomaterials. 

ln that study, the fabrication of flawless materials figured among the proposed 

mechanisms. Ma et al. [3.108] have also produced flawless nanocrystalline 

copper using a proprietary in-situ consolidation, which possesses a strength level 

above 1100 MPa with a true strain of 0.15. 

Conventional materials possessing high strength and high ductility also possess 

high fracture toughness. Thus, the lower ductility behavior for materials 

possessing a grain size between 10-100 nm would infer reduced toughness. 

Studies examining Charpy impact testing are currently emerging, but limited 

results on few systems are available. Stolyarov et al. [5.2] reported that for ultra 

fine grain (UFG) Ti prepared by Equal Channel Angular Pressing (ECAP), a 7-8% 

increase in toughness was observed in comparison to the conventional materials. 

Unfortunately, no grain size distribution was reported. Karimpoor et al. [3.113] 

reported a room temperature impact energy 4 times lower in electrodeposited 

nanocrystalline Co samples (grain size -18 nm), as compared to the annealed 

micron-scale Co. In another study, Karimpoor et al. [3.114] reported a 
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comparison of tensile strength properties for nanocrystalline and polycrystalline 

Co. The results of that study show that despite a more than twofold increase in 

strength, (yield strength: 421 MPa vs. 972 MPa and UTS: 869 MPa vs 1820 

MPa) a 50% reduction in ductility (12% vs. 6.5%) was observed. These results 

could be an indication of a connection between the stress-strain behaviour and 

the previously mentioned lower impact resistance reported by Karimpoor [3.113]. 

The emergence of defect-free fabrication processes, such as electrodeposition 

and in-situ consolidation, is raising other concerns. Since no internai defects are 

to be present in the bulk nanomaterials, how surface defects, such as poor 

surface finish or surface scratches caused by regular wear, will influence the 

fracture properties is an important question. In this paper, the relationship 

between room temperature tensile properties, surface roughness and fracture 

toughness for shock consolidated nanocrystalline Ag samples will be reported. 

5.2. Experimental procedures 

Bulk nanostructured Ag rods were fabricated using dynamic compaction of 

spherical nano-Ag powders (99.9% purity) possessing an average particle size of 

30-50 nm. A similar shock consolidation procedure to the one previously 

presented by Brochu et al. was used [5.3]. After consolidation, bars 30 mm in 

length and 11.5 mm in diameter were recovered and the density was measured 

with a Gas Pycnometer (Micromeritics model AccuPyc 1330 Pycnometer). 
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The microstructure of the nano-Ag samples was examined by transmission 

electron microscopy (TEM) (Hitachi H-9000 NAR), operating at 300 kV. Sample 

preparation was done by cryotomy. A Hitachi S-4700 field emission gun scanning 

electron microscope (FE-SEM) was used to study the microstructure and fracture 

surface of ail specimens. 

The different surface finishes were obtained using various stages of 

grinding/polishing. Three surface conditions were investigated, specifically 600 

grit, 800 grit and 3 !-lm diamond surface finishes. The roughness average (Ra) 

and root-mean-square average (Rq) were measured to determine surface 

roughness characteristics for each sam pie with a Dimension 3100 Scanning 

Probe Microscope (SPM) using contact mode. The scanned areas were 100 !-lm 

x 100 !-lm. 

Shear punch testing is a small-specimen testing technique that enables the 

characterization of the flow behavior of the material, in particular: yield, ultimate 

tensile strength and ductility. A complete description of the procedure and 

analysis of the load/extension curve can be found in Wanjara et al. [5.4]. 
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5.3. Results and Discussion 

The consolidation process employed in this study resulted in defect-free samples. 

The consolidated bars examined possessed an average density of 10.4425 ± 

0.0603 g/cm3
, which is equivalent to 99.5-100% of the theoretical density (TD) of 

bulk silver. The density of bulk nanostructured materials is slightly lower than that 

of their micron-scale counterparts [5.5]. Therefore, the density measurements 

obtained confirm the integrity of the compacted sam pie, in particular the lack of 

defects, such as porosity. In addition, no cracks or pores were observed using 

scanning electron microscopy. 

5.3.1. Microstructure 

Figure 5.1 shows a typical TEM image of the nano-Ag bar with spotted rings in 

the selected area diffraction pattern. The spotted rings confirm the polycrystalline 

nature of the consolidated material. The microstructures are indicative of a 

uniform and narrow grain size distribution and the image analysis measurement 

indicates an average grain size 49 ± 22 nm. 
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Figure 5.1. TEM bright-field image of nana-Ag specimen including selected area 
diffraction pattern 

5.3.2. AFM 

The measured values of roughness average (Ra) and root Mean Square 

Average (Rq) as a function of the last stage of grinding/polishing are presented in 

Table 5.1 and the corresponding 3-D AFM micrographs are presented in Figure 

5.2. As shown, a significant difference in roughness was observed between the 

600 grit surface finish and the finer 3 !-lm polishing stage. With respect to the 

grain size of the material, the grooves left from the 600 grit paper were several 

times deeper than the average diameter of the nanograin, while the asperities 

remaining after the polishing stage were smaller than the average grain. From 

this point on, roughness average values will be used to identify the different 

surface finishes. 
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Table 5.1. Values of roughness average (Ra) and root Mean Square Average (Rq) 
as a function of surface finish. 

Final grinding stage Roughness average Root Mean Square 

(Ra) (Rq) 

600 grit SiC 266.7 ± 90 nm 340.3 ± 100 nm 

800 grit SiC 30.3 ± 0.7 nm 40.2 ± 1.2 nm 

3J.lm diamond suspension 12.1 ± 1.3 nm 16.8 ± 0.7 nm 

(a) (b) 

(c) 

Figure 5.2. AFM micrograph of sample with (a) 600 grit, (b) 800 grit and (c) 3 J.lm 
surface finish. 
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5.3.3. Shear Punch Testing 

The homogeneity of the mechanical responses of the nano-Ag samples after 

multiple tests is iIIustrated by the superimposition of the load-displacement 

curves in Figure 5.3, which were acquired using the shear punch testing method. 

The four samples presented had a roughness average of 30.3 nm. No significant 

strain hardening was observed for any of the samples, which is in agreement with 

tensile results obtained for other nanomaterials [5.1, 5.6, 5.7]. Comparable 

reproducibility in the load-displacement curves was observed for the other 

surface finishes that were tested. The samples exhibited the same mechanical 

responses for a particular surface finish which were independent from the area 

the samples were taken from in the consolidated bar. These results indicate the 

degree of consistency in the material where a direct correlation was observed 

between the surface roughness and strength as weil as ductility. 

Figure 5.4 shows representative load-displacement curves acquired for the three 

surface roughness stages studied. A drastic change in load-displacement 

behavior can be observed between the samples with a roughness average of 

267 nm compared with the samples possessing roughness averages of 30 and 

12 nm, respectively. The rougher samples exhibited a brittle behavior while the 

samples possessing a smoother surface displayed a certain level of ductility. A 

summary of the converted yield, ultimate tensile strength (UTS) and ductility as a 

function of the surface roughness is presented in Figure 5.5. The samples 
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possessing a surface roughness of 267 nm exhibited no plasticity and a fracture 

strength of 200 MPa. However, a reduction in the roughness to 30 and 12 nm, 

respectively, led to an increase in strength to 300-310 MPa and caused the 

appearance of plastic behavior ranging between 12-15%. The rougher surface 

therefore resulted in a 35% reduction in strength and a complete disappearance 

in ductility in comparison to the smoother samples. In addition, no statistical 

distinction between yield strength and UTS could be made as no significant work 

hardening was observed for the samples exhibiting ductility. Similarly, no 

statistical difference in ductility was observed for the samples with a roughness of 

30 and 12 nm. By comparison, polycrystalline Ag possesses yield strength of 76 

MPa, UTS of 140 MPa and elongation of 50% [4.10]. 
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Figure 5.3. Load-displacement curves for samples possessing a roughness 
average of 30 nm. 
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Figure 5.5. Comparison of strength (UTS and yie/d strength (YS)) and EL of shear 
punch testing as a function of surface finish. 
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5.3.4. SEM of Fracture Surface 

ln an attempt to explain the primary difference in ductility observed during the 

shear punch tests, close analysis of the fracture surface was carried out. Figure 

5.6 presents the fracture surfaces for (a) 267 nm, (b) 30 nm and (c) 12 nm 

surface finishes, respectively. A significant difference in the morphology of the 

fracture can be seen between the samples with no ductility and the other 

samples. This change in fracture morphology correlates with the level of ductility 

observed. The fracture surface of the samples exhibiting no ductility shows a 

morphology resembling intergranular fracture, where some of the curvature fits 

with the pull-out of a single grain. On the other hand, dimples were observed for 

the samples exhibiting ductile behavior. Xiao et al. [5.8] and Mirshams et al. [5.9] 

have observed similar morphology and have classified the fracture as being 

transgranular ductile. For both ductile fracture surfaces, the sizes of the dimples, 

which range from 100nm to 2-3 microns, are larger than the grain size of 49 ± 22 

nm. Since dimples are formed from internai defects, the mechanisms responsible 

for void initiation in flawless materials are: existing voids at grain boundaries and 

triple points, voids created by dislocation emission from grain boundaries, voids 

created by grain-boundary sliding which leaves wedges at triple junctions and 

cavities created by the action of grain boundary sliding on the ledges [5.10]. The 

size of the dimples is a function of the spacing between the created initiation 

sites. The wide distribution of dimple size in the ductile samples suggests a non­

uniform distribution of the site of initiation. 
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(a) (b) 

(c) 

Figure 5.6. SEM of fracture Surface for (a) 267 nm, (b) 30 nm and (c) 12 nm surface 
finishes, respective/y. 

To quantify the fracture resistance of the bulk Ag nanomaterials, a classical 

fracture mechanics approach was used to calculate fracture toughness (Kc) from 

the critical stress (Of) for crack propagation and critical crack length (ac) (Eq.5.1). 

The critical stress considered was the fracture strength obtained during the shear 

punch experiments and the critical crack length used was that of the surface 

roughness, as the theory that the material was flawless was assumed. 

(Eq.5.1) 
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The shape factor (Y) of the crack was 1.1, which presumes that the defect 

causing the catastrophic fractures of the material was due solely to the surface 

roughness. In this calculation, the critical crack length (ac) was assumed to be the 

roughness average and the calculated fracture toughness of bulk nanostructured 

Ag was found to be 0.2 MPa rm. By performing back-calculations, the critical 

fracture strength for the materials with a critical crack length of 30 nm and 12 nm 

was shown to be above the fracture strength measured, which indicates that 

ductility would be observed prior to catastrophic fracture and is thus in agreement 

with our aforementioned observations. The low fracture toughness detected 

conforms to empirical observations of the strong association between the 

strength and ductility and the presence of flaws [1.11]. Because no fracture 

toughness values for nanomaterials are available in the literature, no comparison 

can be made to previous studies. However, if fracture toughness is as low in 

other systems, this would correlate with the low Charpy impact results for 

nanocrystalline Co reported by Karimpoor et al. [3.113]. It is worth mentioning 

that Karimpoor reported dimples on the fracture surface, indicating plasticity 

despite the low impact strength. 
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CHAPTER6 

GENERAL DISCUSSION 

The two manuscripts present the results from projects investigating the 

fabrication and the characterization of shock consolidated bulk nanostructured 

silver components fram nano-sized powder. Primarily, the work focuses on the 

grain size evolution during consolidation, the mechanical properties of the bulk 

components, and the effect of surface finish on the mechanical and fracture 

behavior. 

The nano-sized powders possess a very high surface energy caused by the high 

surface area/volume ratio, which is large advantage when attempting to improve 

consolidation [4.5]. An example of this high surface energy is the drastically 

reduced melting point attributed to nanoparticles in comparison to their micron­

scale counterparts. In addition, sm ail particles have greater vapor pressure, 

caused by their high radius of curvature, ca lied the Gibbs-Thomson effect [4.6]. 

The Gibbs-Thomson effect is known to favor the bonding and coalescence of fine 

nanoparticles until the critical particle diameter is obtained. At this critical 

diameter, the driving force rising from the high vapor pressure is insufficient to 

allow self-sintering, which results in agglomeration. Another notable example of 
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the Gibbs-Thomson effect is Ostwald ripening, in which concentration gradients 

cause small precipitates to dissolve and larger ones to grow. 

The results presented in this thesis show that a pressure level of 1.9-2 GPa 

applied on nanoparticles at room temperature is sufficient to generate 

metallurgical bonds within the compacted body of a sample and consolidation of 

the nano-Ag powders occurs at the same time. However, the pressure level 

required to create metallurgical bonds and consolidation in nanomaterials is 

lower than the necessary pressure to consolidate micron-scale materials where 

only future compaction was observed. Empirical analysis performed by Meyers 

et al. [3.48] showed that for a powder possessing a hardness of 85 HV, a shock 

pressure of -2.5-3 GPa is necessary to fully consolidate the porous body. The 

lack of consolidation of the micro samples suggests that the applied pressure is 

lower than the required pressure for the consolidation of micron-scale powders. 

As presented in chapter 4, no strong bonds between the particles were formed 

and an incomplete densification of the porous body was observed. 

Nieh et al [3.2] investigated the shock-compaction of aluminum nanocrystals 

possessing an average particle size of about 50-70 nm, under pressure levels of 

2-3 GPa. After consolidation, the average grain size ranged between 80-200 nm 

and almost fully dense compacts were obtained. However, TEM observations 

showed pores at the triple junctions and incomplete bonding between particles, 

which was associated with the presence of the oxide layer at the surface of the 
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particle. The oxide layer corresponded to approximately 20% of the diameter of 

the AI crystals. It is the presence of this oxide layer that prevents the formation of 

metallurgical bonds between particles. In this work, no significant oxide layer 

was present on the Ag nana powders, thus consolidation was permitted and 

defect free samples were created. 

The ductility of nanomaterials is a function of the grain size, as mechanisms for 

plastic deformation are always a function of grain size. In the conventional grain 

size regime it is usual for a reduction in grain size to result in an increase in 

ductility, therefore one should expect a ductility increase as the grain size is 

reduced to nanoscale. Figure 6.1 illustrates normalized yield strength versus 

percentage elongation for metals with grain sizes in the nanocrystalline range 

[3.94]. There is a clear reduction in ductility as strength is increased. In order for 

nanostructured materials to be used for structural applications, pracesses where 

no reduction in ductility will occur when strength is increased need to be 

developed. Superposing the results obtained in this study on Figure 6.1 

demonstrates that the nano-Ag obtained fram the shockwave consolidation 

process presents an interesting combination of high strength and ductility, and 

thus is a step forward in the creation of structural applications. 
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Figure 6.1. Compilation of yield stress versus % e/ongation of nanocrystalline 
metals [3.94J. 

The shear punch testing results indicate that there was a degree of consistency 

in the material, where a direct correlation was observed between the surface 

roughness and strength as weil as ductility. The rougher samples exhibited a 

brittle behaviour as weil as a reduction in strength and ductility. In comparison, 

the samples possessing a smoother surface displayed a certain level of ductility. 

The results reporting the effects of surface finish on the mechanical behaviour of 

shock consolidated nano-Ag demonstrate a strong connection between the 

presence of flaws and mechanical behavior. The fracture toughness measured 

for the nano-Ag samples (0.2 MPa rm) is a strong indication of the influence of 

defects on the fracture behaviour of the material. 

The major goal of this project was to fabricate nanostructured components from 

nano powder, with moderate applied pressure, in order to take advantage of the 

Gibbs-Thomson effect. The long-term goal is to produce bulk materials from 
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nano-powders in order to exploit the Gibbs-Thomson effect. In this initial project, 

silver was selected because of the nearly native metallic surface and relatively 

low cost compared to noble metals su ch as go Id and platinum. Since this first 

step is a success, future work will be directed at shock consolidation of Cu, Ni, 

and Fe. 
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CHAPTER7 

SUMMARY 

• Full dense bulk nanostructured silver components were fabricated from 

nano-size powder using a shockwave consolidation technique, and the 

samples demonstrate a strong connection between the presence of flaws 

and mechanical behavior. 

• The average grain size is 49±22 nm, which remained in the nanometer 

range. 

• The average hardness of the bulk nanostructured component is 83±1 HV. 

• Compression results show strength of 390±10 MPa, and ductility of 

23±2%, which is weil above strength level obtainable from strain hardened 

Ag components. 

• The fracture toughness calculated is 0.2 MPa.Jill., which indicates a 

strong correlation between defects and fracture toughness. 

• The surface finish alone can inhibit plastic deformation and consequently, 

surface finish or surface wear will have to be carefully controlled to avoid 

catastrophic failure in the use of bulk nanomaterials in structural 

applications. 
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