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Abstract 

Magnetic resonance (MR) imaging is often used to characterize and quantify multiple sclerosis (MS) 

lesions in the brain and spinal cord. The number and volume of lesions have been used to evaluate MS 

disease burden, to track the progression of the disease and to evaluate the effect of new pharmaceuticals 

in clinical trials. Accurate identification of MS lesions in MR images is extremely difficult due to 

variability in lesion location, size and shape in addition to anatomical variability between subjects. Since 

manual segmentation requires expert knowledge, is time consuming and is subject to intra- and inter-

expert variability, many methods have been proposed to automatically segment lesions. 

The objective of this study was to carry out a systematic review of the literature to evaluate the state of 

the art in automated multiple sclerosis lesion segmentation. From 1240 hits found initially with PubMed 

and Google scholar, our selection criteria identified 80 papers that described an automatic lesion 

segmentation procedure applied to MS.  Only 47 of these included quantitative validation with at least 

one realistic image.  In this paper, we describe the complexity of lesion segmentation, classify the 

automatic MS lesion segmentation methods found, and review the validation methods applied in each of 

the papers reviewed.  Although many segmentation solutions have been proposed, including some with 

promising results using MRI data obtained on small groups of patients, no single method is widely 

employed due to performance issues related to the high variability of MS lesion appearance and 

differences in image acquisition. The challenge remains to provide segmentation techniques that work in 

all cases regardless of the type of MS, duration of the disease, or MRI protocol, and this within a 

comprehensive, standardized validation framework.  MS lesion segmentation remains an open problem. 

  

1. Introduction 

Multiple sclerosis (MS) is a chronic disease that affects the central nervous system with great 

variability in clinical manifestation. The disease usually begins with a relapsing remitting course in which 

patients have “attacks” characterized by transient symptoms of focal central nervous system (CNS) 

dysfunction, such as numbness or weakness of a limb, incoordination, vertigo or visual dysfunction 

(McAlpine, 1973). These clinical attacks, or relapses, are due to focal inflammation in the CNS directed 

against myelin, the insulation around nerve fibers (axons). The inflammation results in focal “MS 

lesions”, which are characterized by demyelination, axonal injury and axonal conduction block, and are 

the hallmark of MS. These classically-described white matter (WM) lesions are visible in conventional 

magnetic resonance imaging (cMRI), appearing hyperintense in T2-weighted (T2w) images and 

hypointense in T1-weighted (T1w) images. A useful tool for noninvasive monitoring of the disease, cMRI 

is used widely in clinical practice, research, and clinical trials (Fazekas et al., 1999; Simon et al., 2006). 
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The presence and spatial pattern of focal WM lesions on MRI (dissemination in space) and the 

appearance of new WM lesions (dissemination in time) are key components of current diagnostic criteria 

for MS (Polman et al., 2011). In clinical trials, the impact of treatment on the accrual of WM lesions is an 

important measure of efficacy. While more specialized MRI techniques such as magnetization transfer 

imaging, diffusion tensor imaging, and magnetic resonance spectroscopy (Bakshi et al., 2008; Zivadinov 

et al., 2008) demonstrate diffuse MS pathology outside of focal WM lesions, these techniques are 

complicated to implement and interpret, and are not yet widely used clinically. Also, it is not clear to what 

degree this diffuse damage is secondary to damage within focal lesions (in WM or grey matter (GM)), 

and to what extent this diffuse injury represents a primary degenerative process. Identifying and 

segmenting the focal WM lesions is an essential first step in characterizing the MS disease burden in MS, 

and in calculating and interpreting more specialized measures of damage. 

Over the last decade, a number of immunomodulatory and immunosuppressive therapies have been 

approved for clinical use based primarily on demonstration of their ability to suppress focal inflammatory 

activity, i.e., lesion formation, and clinical relapses (Comi et al., 2001; Leary et al., 2003; Li and Paty, 

1999; Li et al., 2001; Miller et al., 1999; Paty and Li, 1993; Simon et al., 1998; Simon et al., 2000; Zhao 

et al., 2000). Development of these therapies has been critically dependent on MRI because of the ability 

of MRI to visualize lesion formation with an order of magnitude greater sensitivity than clinical 

observation is able to detect relapses The number and volume of MS lesions represent the “burden of 

disease” and are predictive of patients’ clinical course over the long term (O'Riordan et al., 1998). 

Before the advent of computers in radiology, lesions were visually identified on film by experts and 

counted. With the integration of digital images in radiology departments, it became possible to manually 

segment the lesions and estimate total lesion load (TLL). However, manual segmentation of MS lesions is 

time consuming and suffers from large intra- and interexpert variability. Several authors (Filippi et al., 

1995a; Grimaud et al., 1996; Udupa et al., 1997) have proposed semiautomatic segmentation methods 

whereby the computer aids the expert to reduce both segmentation time and rater variability. Ultimately, 

the objectives are to obtain an automatic segmentation method that is completely reproducible and that 

enables the efficient processing of hundreds or thousands of images acquired for research studies and in 

clinical trials. Although many automatic methods have been proposed in the last 15 years, no single 

method is widely employed, for a variety of reasons to be discussed below. 

Due to the heterogeneity of lesions and variability in the magnetic resonance (MR) acquisitions, no 

perfect solution has yet been found. There has been only limited validation on multicenter data, which is 

crucial to proving the utility of the automatic methods. As we will show in this paper, much work has 

been done to improve the quality of the segmentation, and newer methods provide more complex 

approaches to deal with the variability. Validation is still limited though, probably due to the difficulty of 

providing a good validation framework. With the exception of the MS Lesion Segmentation Challenge at 

MICCAI 2008 (Styner et al., 2008), few comparisons have been made of the different methods, and only 

a limited number of methods are freely available to the community. Recently, a review paper was 

presented where some semi-automatic and automatic segmentation methods were compared (Mortazavi et 

al., 2011). While they give an extensive description of different methods, the two main limitations of this 

paper are that semi-automatic and automatic methods are mixed, and numerical results for each method 

are compared even though they were obtained with different sets of images. We do not compare semi-

automatic and automatic methods in this review because these methods have different objectives: 

Automatic methods try to be as accurate as possible compared to a expert’s segmentation. On the 

contrary, when using semi-automatic methods the expert can always modify the segmentation until 

satisfied. The objective of semi-automatic methods is more to reduce the processing time and the intra- 

and inter-variability while automatic methods are evaluated for accuracy and precision. Because of these 

different goals, we review only automatic methods here. 
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In this paper, we review the automatic segmentation of MS lesions, with a focus on three main aspects: 

the complexity of MS lesion segmentation; the existing literature on automatic segmentation methods of 

MS lesions (and their validation); and the current challenges facing those methods. 

2. Segmentation of MS lesions 

We first describe the appearance of MS lesions in cMRI and then focus on the aspects that render their 

segmentation complex, thereby resulting in high variability. 

2.1. Definition of MS lesions on cMRI 

The classic inflammatory demyelinating MS lesion in the WM of patients with MS, and is well 

visualized on cMRI. However, recent advances in neuropathological techniques have revealed that there 

is significant demyelination occurring in the GM of patients with MS (Peterson et al., 2001). These GM 

lesions are not detected on cMRI because the pathological processes responsible for these lesions do not 

appear to alter the MR tissue properties of T2 and T1 sufficiently to be imaged with conventional 

sequences. Newer sequences have been developed (Geurts et al., 2005; Nelson et al., 2007) that improve 

the detection of some types of GM lesion, but these sequences are not employed routinely and are out of 

the scope of this paper. Therefore, we focus on WM lesions (WML) only. 

As yet, there exists no well-established, precise definition of a WML on MRI. In general, MS lesions 

are brighter than the surrounding WM in T2w, proton density-weighted (PDw), and FLAIR images, 

although, in the case of severely destructive lesions, the lesion center can be darker in FLAIR images. 

Lesions usually have an ovoid or round shape and are centered on small blood vessels. They are most 

likely to occur in the periventricular WM and the juxtacortical and infratentorial regions (Fazekas et al., 

1999). 

Lesions are often classified into three main groups (Figure 1) based on their intensity under different 

MR sequences: 

- T2w lesions: These lesions appear hyperintense compared with normal-appearing WM in T2w, 

PDw, and FLAIR images. They may be iso- or hypointense in T1w images. T2w lesions are not 

pathologically specific and can result from inflammation, edema, demyelination, or axonal loss. 

- Gadolinium (Gd)-enhanced lesions: These lesions show an increase in intensity on T1w images 

after injection with gadolinium, and are usually associated with hyperintensity in T2w, PDw, and FLAIR 

images. Some lesions that appear hypointense in comparison to normal-appearing WM on T1w images 

before gadolinium injection may only become isointense with NAWM after entry of Gd in the lesion. 

These lesions can often be missed if a pre-injection T1w image is not acquired for comparison. 

Gadolinium enhancement is associated with active inflammatory activity and breakdown of the blood-

brain barrier (BBB). 

- Black holes: This term is usually used to refer to chronic T1w hypointense lesions. These lesions 

usually appear hyperintense in T2w, PDw, and FLAIR images. Since transient inflammation may be 

associated with hypointensity in T1w images, some hypointensities in T1w images may disappear after a 

month or two. Thus, to qualify as a “black hole”, a T1w lesion should not enhance with gadolinium and 

should generally have been present for at least several months. Such lesions are usually associated with 

relatively more severe tissue injury and axonal loss. 

Inflammation and atrophy also occur outside of the focal lesions throughout the whole brain (both 

WM and GM). This aspect of the disease is often referred to as diffuse disease or nonlesional pathology. 

For this reason, WM and GM in MS patients are often referred to as “normal-appearing white matter” 

(NAWM) and “normal-appearing grey matter”, respectively, to distinguish them from normal WM and 

GM in healthy subjects. In cMRI, some of the nonlesional pathology may be visible as a diffuse increase 
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in the intensity of WM, which is usually referred to as dirty white matter (Figure 2). This dirty white 

matter often surrounds lesions and can complicate the segmentation of the focal lesions.  

In summary, there is a relative consensus in the literature regarding the imaging characteristics of 

lesions that enables accurate lesion detection and counting.  However, the actual level of how hypo-

intense or how hyper-intense a lesion should be results in subtle differences between groups working in 

the field when determining the lesion boundaries and thus limits agreement in metrics of total lesion 

volume and lesion overlap. 

2.2. Description of the segmentation 

Manual segmentation of WML can be separated into two processes: detection of lesions and 

segmentation of the lesion border. 

2.2.1. Challenges in the detection of WML 

The main characteristic of a WML is that its intensity is brighter than the NAWM on T2-w, PD and 

FLAIR, a definition that lacks precision. For example, the specific threshold of intensity increase depends 

on the imaging sequence parameters and can vary between different experts working in the field. Hence, 

detection of WML in manual segmentation methods requires a good knowledge of neuroanatomy and 

experience with MRI to correctly identify all WML in an image and avoid false positives. The following 

challenges are faced in manual detection of WML. 

First, the radiologist (or other expert) must combine the information from the different MRI sequences 

and identify the three-dimensional (3D) structures of the brain that are shown in only two dimensions on 

coronal, sagittal, or transverse slices. Second, healthy tissues (e.g., the choroid plexus, blood vessels, tail 

of the caudate nucleus), which may resemble lesions in their intensity depending on the image modality 

and the amount of partial-volume, must be correctly identified as such to avoid misidentification as 

lesion. Similarly, lesions around the frontal or posterior horns of the lateral ventricles can be difficult to 

differentiate from the phenomenon of hyperintense periventricular caps found in normal subjects (Neema 

et al., 2009). In addition, when mixed with partial volume effects due to relatively large slice thickness, 

Virchow-Robin spaces can sometimes be mistaken for lesions. Third, any non-MS pathology that 

may occur in patients with confirmed MS, such as lesions of vascular origin or, particularly in patients 

treated with very strong immune modulating therapies, progressive multifocal leukoencephalopathy 

(PML) lesions must be identified. Fourth, the MR protocol employed to acquire the images influences the 

number of lesions detected for the same patient. Using thinner slices or higher magnet strength increases 

the number of detected lesions (Filippi et al., 1995b), while using FLAIR contrast results in more lesions 

detected in the supratentorial region when compared with dual-echo (T2w, PDw) images (Simon et al., 

2006). Finally, juxtascortical lesions can be difficult to detect because of their resemblance to the 

surrounding tissues in T2w and T1w images (Figure 3). 
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Figure 1. Example of MS lesions on MRI. From left to right: FLAIR, PDw, Gd-enhanced T1w, T1w, and 

T2w images. Several types of MS lesions can be observed: Enhancing lesions (blue), lesions visible only 

on T2w (green), black holes (red). In Gd-enhanced T1w and FLAIR images, multiple bright regions are 

observed that may be mislabeled as lesions.  

 

 

 
Figure 2. Difference between focal lesions (red) and diffuse regions of visible-abnormal WM (green). 

From left to right: FLAIR, PDw, and T1w images.  

 

 

 
Figure 3. Example of juxtacortical lesion. From left to right: PDw, T1w, T2w, and FLAIR images. The 

detection of juxtacortical lesions (red) requires a good understanding of the brain anatomy and the 

simultaneous use of several sequences.  

 

2.2.2. Segmentation of WML 

Once a lesion is identified, its boundaries must be determined, even if its boundaries are not clear. 

Segmentation is the process whereby a reader decides which voxels belong to the lesion and which do 

not.  

Segmentation is complicated for several reasons. Histologically, lesions may have sharp or fuzzy 

borders. When imaged with MRI at standard, clinically feasible resolutions, delineation of the lesion 

borders is further complicated by partial volume effects, where several tissue types may contribute to the 

image intensity of the border voxels. Manual segmentation of lesion borders is affected because the eye 

detects local contrast better than absolute intensities. Further, this contrast is much more convincing if a 

lesion is surrounded by NAWM as opposed to “dirty” white matter. Similarly, intensity contrast is seen 

more easily between two regions separated by a clear boundary than by two diffusely separated regions. 

Consistency in lesion segmentation throughout slices is therefore hard to achieve, and consistency 
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between different reading sessions is made difficult because the reader sets the overall contrast of an 

image, which influences the relative appearance of tissues. Many studies have investigated the wide 

variability inherent to manual lesion segmentation by neuroradiologists or other trained experts and have 

reported volume differences ranging from 10% to 68% (Grimaud et al., 1996; Styner et al., 2008; 

Zijdenbos et al., 2002). 

Lesion borders also differ depending on the MRI protocol employed. Segmented lesions on FLAIR 

images have been shown to provide larger volumes than T2w images, although the correlation with the 

disease is similar for the two sequences (Ciccarelli et al., 2002). Thinner slices enable more accurate 

estimation, and may yield larger total lesion volumes (Filippi et al., 1995b). In addition, images acquired 

with 3T scanners show more lesions than images acquired with a 1.5T (Sicotte et al., 2003). 

To reduce the variability inherent in manual lesion segmentation and improve consistency, many 

semiautomatic methods have been proposed to aid the reader. Many of these methods rely on the reader to 

detect the lesion, and then performs the segmentation (under user control) based on a local threshold 

(Filippi et al., 1995a), region growing (Ashton et al., 2003; Parodi et al., 2002), fuzzy connectedness 

(Udupa et al., 1997), or the intensity gradient (Grimaud et al., 1996). All of these methods have 

demonstrated reduced variability in comparison to manual segmentation for lesion quantification. 

Manual detection of lesions is a complicated task, and the intra- and inter-reader agreement when 

reporting new and enlarging lesions is moderate, at best (Molyneux et al., 1999). Other semiautomatic 

methods exist to assist in both the detection and segmentation of lesions (Ashton et al., 2003; Johnston et 

al., 1996). Depending on the method, these may require, for example, manual segmentation of one lesion 

(Ashton et al., 2003) or seed points for different tissues (Johnston et al., 1996). 

Although semiautomatic methods reduce intrareader variability, their use in large clinical trials is time 

consuming and deals incompletely with inter-rater differences. The development of automatic methods is 

thus necessary to avoid human interaction, reduce the corresponding rater variability, and enable efficient 

segmentation of many images. However, automatic methods require an exhaustive validation of their 

performance before they can be employed in clinical trials. 

 

3. Methodology of the review 

To capture all segmentation methods for this review, a search was performed on two main search 

engines, PubMed and Google Scholar, on September 29, 2011. Our criteria included both peer-reviewed 

journal papers and conference papers, but abstracts and theses were excluded. If both a journal and a 

conference paper were found for the same method, then the conference paper was discarded and the 

journal version was cited. 

The vocabulary used to describe WML segmentation is very heterogeneous, and many related terms 

are employed (e.g., classification, detection or delineation). The search expressions included this 

heterogeneity (cf., Table 1). 

Additional selection criteria were used to further focus our search. The methods described in the 

papers had to be: 

- completely automatic (no interaction); 

- employed on clinical or realistic MR images of MS patients; and 

- evaluated with some quantitative measure on clinical images. 
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Table 2: Selection criteria 

Selection Rejected Remaining 

Initial search: PubMed  533 

Initial search Google Scholar  707 

Selection by title/abstract 1108 132 

 - Rejected: No segmentation 12  

 - Rejected: No MS 15  

 - Rejected: Semiautomatic 25  

Automatic methods  80 

- Rejected: Abstract only 8  

- Rejected: Conf./Journal copy 5  

- Rejected: No quantitative validation 20  

Included in the review  47 

- BrainWeb only  5 

- Monocenter validation  29 

- Multicenter validation  13 

 

 

Table 1: Search expressions used to identify potential papers for review 

Search Engine Search Expression 

PubMed (“Multiple sclerosis” [Title/abstract] or “MS” [Title/abstract]) AND 

(classif*[Title] OR segment*[Title] OR delineat*[Title] or detect*[title]) AND 

(MR[title/abstract] or MRI[title/abstract] or Magnetic[title/abstract])  

Google Scholar (“Multiple sclerosis”) and (MRI OR MR OR “Magnetic resonance”) and 

(intitle:~classify OR intitle:~segmentation OR intitle:~delineation) AND lesions 
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3.1. Results of the search 

Our search (PubMed + Google Scholar) resulted in 1240 hits (Table 2). During an initial parsing 

phase, a first selection from these papers was performed by reading the title and abstract wherein 

duplicated entries and papers not referring to automatic segmentation were removed, reducing our list to 

132 papers. From this list, we found 10 papers that did not apply to MS, 11 papers that did not deal with 

segmentation, and 25 papers that described semiautomatic methods. 

We were thus left with 80 papers that described an automatic method of segmenting WML in MS. Of 

these, 8 conference abstracts were rejected as there was no associate paper, and 20 papers had no 

validation or only a qualitative validation. Five conference papers were removed as a journal paper 

describing the method was found.  In the end, 47 papers met our criteria and are the object of this review. 

Of these, 5 papers used only synthetic images for validation, 29 used monocenter data, and 13 used 

multicenter data. 

 

4. Review of segmentation methods 

4.1. Automatic segmentation pipeline 

We define a segmentation pipeline as the entire ensemble of image processing steps necessary to 

accomplish the segmentation of lesions from the raw images. This pipeline can be further divided into 

preprocessing steps and the segmentation method itself. Preprocessing refers to all the changes made to 

the image prior to segmentation. For the most part, the goal of preprocessing is to minimize the effect of 

imaging artefacts and align the different sequences in the same space.   

The majority of the papers in our review focuses on the segmentation methods, with little or no 

description of the segmentation pipeline. All methods that use more than one sequence (i.e., multiple 

modalities such as T1w, T2w, and FLAIR) assume that the images have been previously registered into a 

common space. In addition, some methods involve some kind of image enhancement, and the 

segmentation is usually restricted to the region of the brain only, after application of some kind of skull-

stripping or brain extraction procedure.  

The following is a brief summary of the preprocessing steps often applied prior to the segmentation 

procedure: 

 Registration: MR sequences of the same patient are registered into the same space (patient 

space or stereotaxic space) (Collins et al., 1994; Maes et al., 1997). Registration might also be 

employed to align an atlas to the brain to provide some initial estimates of the brain tissues. 

 Brain extraction: The brain is extracted from the image, and the segmentation takes place 

only on the remaining brain voxels (Fennema-Notestine et al., 2006; Smith, 2002). 

 Intensity inhomogeneity (IIH) correction: The intensity of the same tissue can vary across 

the image due to inhomogeneity of the static or applied magnetic fields within the scanner 

(Sled and Pike, 1998). IIH correction methods (Vovk et al., 2007) reduce the smooth variation 

of intensity of the tissues to simplify subsequent segmentation, although some segmentation 

methods take this effect into account (Ashburner and Friston, 2005; Van Leemput et al., 1999; 

Wells III et al., 1996). 

 Noise reduction: The acquisition process can induce some noise in the image (Dietrich et al., 

2008). Several noise reduction methods in the literature (Bao and Zhang, 2003; Coupé et al., 

2008; Gerig et al., 1992) have been applied to MR data from patients with MS. The negative 
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effect of noise in the image can also be reduced by incorporating spatial information in the 

segmentation (i.e., Markov random fields (MRF) (Ahmed et al., 2002; Zhang et al., 2001)). 

 Intensity normalization: Some segmentation methods require the intensity of the image to be 

similar to the intensity of the training images and thus depend on an intensity normalization 

step. Intensity normalization methods modify the intensity range of the target image and map 

them into a predefined intensity range (Nyul et al., 2000). 

The effect of image pre-processing on segmentation is important, and not often mentioned in the 

papers. However, the effects of each preprocessing step might affect each method differently making 

difficult any generalizations. A few authors (García-Lorenzo et al., 2008c; Kikinis et al., 1999; Wei et al., 

2002) have evaluated their methods under different preprocessing pipelines. The comparison of 

preprocessing steps and their interaction is complex and is beyond the scope of the paper. 

As described above, WML can be further classified into different groups using the information 

provided by other sequences. Most automatic methods consider all lesions in the same class of WML, 

although there are methods that model each lesion type independently (Subbanna et al., 2009). From this 

generic WML class, a second classification step can be performed to segment separately T2w lesions, 

black holes (Datta et al., 2006), and Gd-enhanced lesions (Datta et al., 2007; He and Narayana, 2002; 

Karimaghaloo et al., 2010; Khayati et al., 2008b). 

 

4.2. Classification of methods 

Several reviews of segmentation methods have classified the techniques according to the mathematical 

algorithms behind them (Clarke et al., 1995; Suri et al., 2002). In our review, we divide the methods into 

two groups according to the following classification: 

 Supervised learning methods: These methods “learn” the definition of lesions from example 

images that have been previously segmented by another method, usually manual 

segmentation. Example images usually come from a “training database” and must be available 

before this class of methods can be used on other data. 

 Unsupervised methods: These methods do not require labeled training data to perform the 

segmentation. Most employ clustering techniques to separate the voxels into different classes 

(or clusters) based on, for example, voxel intensity. Typically, these classes are then assigned 

to WM, GM, cerebrospinal fluid (CSF), or WML according to some a priori information.   

Supervised learning methods have been widely employed and are very efficient in tasks where the 

training database covers all possible cases. In MS, because the heterogeneity of the disease and the 

potential variability of MR acquisitions are large, the training database must be chosen carefully. In 

addition, the training database has to be segmented; as mentioned above, manual segmentation is time 

consuming, and high intra- and inter-rater variability may induce errors in the training database. By 

contrast, unsupervised methods do not rely on a training database and segment each image independently. 

Unsupervised methods are strongly based on a priori information in order to perform the segmentation. 

The a priori information is extracted and simplified from the expert’s knowledge and combined with 

unsupervised segmentation or classification algorithms. The complexity comes from the translation of the 

expert’s knowledge into an algorithm that can be implemented. 

In MS, clinicians are interested not only in the lesions, but also in the whole brain, as MS patients 

develop progressive atrophy (Figure 4) that is regionally heterogeneous. Some methods are focused only 

on the segmentation of WML, while others also provide classification of the normal-appearing brain 

tissues (NABT), thereby providing information on brain atrophy. These techniques will be identified in 

the review below. 
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Figure 4. Patient with high lesion load and atrophy. From left to right: FLAIR, T1w, and T2w images. In 

patients with severe MS, the atrophy becomes more visible and the lesion load becomes very high and 

includes most of the white matter.  

 

4.2.1. Supervised learning methods  

The primary objective of these methods is to segment MS lesions using a database of previously 

segmented images. To compare any incoming image with those in the database, a set of image features 

must be selected to enable the discrimination of WML from other tissues. A feature is any characteristic 

of an image that can be employed to discriminate tissue classes (e.g., the intensity of the voxel, the local 

gradient of the intensity). The set of selected features is employed in one of the many available supervised 

learning methods to perform the segmentation (e.g., k-nearest neighbours (k-NN), artificial neural 

networks (ANN), Bayesian framework, or support vector machine (SVM)). For a detailed description of 

these methods, the reader should refer to the classic book by Duda et al. (Duda et al., 2000). A 

comparison of the performance of different methods can be found in Caruana and Niculescu-Mizil 

(Caruana and Niculescu-Mizil, 2006). The standard pipeline of supervised methods consists in four steps: 

preprocessing to normalize the data and reduce the effect of artefacts, feature generation, classifier 

training/application and post processing.  

The normalization is the step whereby all the features are set in the same space in order to make the 

images comparable to each other. As cMRI is not quantitative, differences in brightness and contrast can 

be found between images, especially when they come from different scanners, and can be reduced by 

intensity normalization algorithms (Nyul et al., 2000). Depending on the algorithm employed, all features 

might also need to be normalized to have the same variance or zero mean. Some authors have proposed a 

segmentation method based on the normalization of images, which is in turn based on the intensity of the 

training datasets (Alfano et al., 2000; Erickson and Avula, 1998).   For example, one normalization 

approach employed tissue that is constant across the images and not affected by the disease (i.e., 

subcutaneous fat) (Erickson and Avula, 1998). Another approach used spin-echo sequences with specific 

parameters to generate T1, T2, and PD relaxometry maps (Alfano et al., 2000). Once all images have the 

same intensity range, tissues can be classified using fixed intensity rules for all patients in the normalized 

multidimensional intensity feature space. Similarly, other methods employed a Parzen window density 

estimation for the segmentation (Datta et al., 2006) after performing histogram-based intensity 

normalization (Nyul et al., 2000). Yet another approach (Tomas-Fernandez and Warfield, 2011) proposed 

a method whereby the image is segmented by comparing its intensities on a voxel-by-voxel basis to a 
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group of images of healthy subjects. The WML voxels will have a large Mahalanobis distance compared 

to the intensities of healthy patients when using T1w, T2w and FLAIR images. This comparison requires 

that all images be registered to the same space using non-linear registration and normalized in terms of 

intensity to avoid scanner-related differences. The main advantage of this technique is that it compares the 

same anatomical regions in MS patients and normal controls instead of using a global (non spatial) 

approach. 

 

The selection of features employed in the classifier is one of the aspects that differentiate the 

supervised methods. In the case of MS lesion segmentation, the classical features are the intensity of each 

voxel in the T1w, T2w, and PDw images, which reflects the a priori knowledge of lesion characteristics, 

namely, that lesions appear brighter than WM in T2w and PDw images. These sets of features were first 

employed in a supervised algorithm in a semiautomatic fashion using a Bayesian approach (Johnston et 

al., 1996), ANN (Zijdenbos et al., 1994), and k-NN (Vinitski et al., 1999), and in a decision tree classifier 

(Kamber et al., 1995). In these methods, the user had to select voxels from each class to train the 

supervised algorithm, but they could have easily been automated using a database of previously 

segmented datasets.  

The use of intensity information enables the detection of lesions, but it is necessary to incorporate 

more information to improve the segmentation. Some authors proposed to combine an initial supervised 

intensity-based segmentation with other methods to reduce false positives (i.e., voxels incorrectly 

identified as lesion). For example, the automatic k-NN segmentation technique (based on image 

intensities) was combined with a template-driven segmentation method (Warfield et al., 2000) to include 

anatomical spatial information in the segmentation (Wu et al., 2006).  

Other methods proposed to include spatial features directly in the segmentation method to improve its 

specificity. To include anatomical information in the ANN, Zijdenbos et al. (Zijdenbos et al., 2002) 

included the probability of the voxel belonging to a tissue class based on information derived from an 

atlas.  Hadjiprocopis and Tofts (Hadjiprocopis and Tofts, 2003) included the Cartesian and polar 

coordinates of the voxel in addition to its intensity information. Younis et al. (Younis et al., 2007) added 

the intensity of the six neighbor voxels into the ANN to include local spatial information in the 

segmentation, thus avoiding a noisy segmentation. They employed the ANN twice, first to classify the 

brain tissue in the T1w image and, after removing the CSF, to segment the T2w image and obtain the 

WML. Anbeek et al. (Anbeek et al., 2008) also employed both the intensity and spatial features in a k-NN 

algorithm using FLAIR images. One important aspect of their method is that the intensities and spatial 

coordinates must be normalized such that the distance between spatial and intensity features is 

comparable. A recent paper (Cerasa et al., 2012) employed the Cellular Neural Networks (CNN) to 

segment MS lesions on 2D images. The advantage of this approach compared to the classical ANN is that 

neighboring cells interact with each other, providing local spatial information to the segmentation.  

More recent methods rely on a large set of features, selecting the more discriminant ones and thus 

reducing the bias given by previous methods where ‘a priori’ features were selected by the authors. These 

methods (Morra et al., 2008; Wels et al., 2008) introduced more than 10,000 features in the supervised 

classification algorithm using an Adaboost approach (Freund and Schapire, 1995) with a probabilistic 

boosting tree to improve the training process. These features included Haar-like filters of various shapes 

and sizes, intensity values, and curvature filters. From the five modalities employed in the segmentation 

(T1w, T2w, FLAIR, mean diffusivity (MD), and fractional anisotropy (FA)) (Morra et al., 2008), the 

method selected a number of FLAIR features as those that most contributed to lesion classification. 

Another method employed principal component analysis (PCA), whereby the data is transformed to a 

new orthogonal coordinate system in which the first dimension (or component) “covers” the greatest 

variance in the data. The classification can be performed more easily in this new coordinate system using 

only the first components of the PCA with a simple threshold. In addition to the voxel intensity, up to 
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225 features were used in a PCA to segment MS lesions (Kroon et al., 2008). These features included 

intensity of the neighbor voxels in T1w, T2w, FLAIR, MD, and FA, intensity derivatives, spatial 

coordinates and atlas probabilities. A threshold was then computed using training data in this new 

coordinate system to perform the segmentation. 

The random decision forest (RDF) method (Menze et al., 2009) has also been employed to segment 

MS lesions (Geremia et al., 2011) using two types of features simultaneously: local and context-rich 

features. Local features are similar to those employed in other methods, while the context-rich features 

compare the intensities of the voxel of interest with distant regions either in an extended neighborhood or 

in the symmetric counterpart with respect to the midsagittal plane. The advantage of RDF over other 

methods is that it enables interpretation of the decisions made by the algorithm. In this particular case, the 

results showed that the FLAIR image intensity was the most discriminative feature, followed by the 

information of the atlas, which rejected voxels that do not belong to WM.  

The Bayesian framework has also been employed in the segmentation of MS lesions. In this context, 

the training dataset was used to compute the prior probability model of the segmentation, which was then 

combined with the observed data using Bayes’ theorem. An extension of this framework considers that 

the intensity of the voxels of each tissue follow a Gaussian distribution, and the training data is employed 

to determine the parameters of the Gaussian distribution for each tissue. This idea was improved upon by 

Harmouche et al. (Harmouche et al., 2006), who observed that different parts of the brain had different 

intensities and that these differences were particularly important in the posterior fossa. Their method 

proposed to model each region of the brain with a different Gaussian distribution to refine the 

segmentation. The resulting prior probability depended on the intensity and region of the voxel. They also 

incorporated MRF into their method to take advantage of local spatial information. 

Another method (Subbanna et al., 2009) proposed to solve the MRF minimization using a simulated 

annealing algorithm that modeled black holes and T2w lesions as different Gaussian classes. Errors in the 

center of the lesions were corrected using b-spline smoothing. Scully et al. (Scully et al., 2008) proposed 

to employ a naïve Bayesian classifier to segment MS lesions in T1w, T2w, and FLAIR images by 

constructing a nonparametric model for the lesions using the training data in the form of a joint histogram. 

They then combined this information with the result of a k-means classification of the T1w image to 

obtain a rough classification of WM, GM, and CSF and merged the results to obtain the final lesion 

segmentation.  

Other methods use the supervised classification not at the voxel level but at a lesion level. The image 

is partitioned into homogeneous regions and each region is classified by the method as a lesion or not. In 

this case, the supervised method is only used as classification algorithm because the region was detected 

by other means. Goldberg-Zimring et al. (Goldberg-Zimring et al., 1998) employed an adaptive 

thresholding technique to obtain candidate lesions, which included both lesions and other artefacts that 

resembled lesions. The artefacts were then discarded in a second stage by the ANN using as input the 

shape and intensity of the candidate lesion. Yamamoto et al. (Yamamoto et al., 2010) employed a 

multithreshold technique to detect candidate lesions and then a level set to improve the border of the 

candidate WML. Finally, false positives were rejected with an SVM that used shape and intensity 

features. Another approach (Akselrod-Ballin et al., 2009) proposed to first partition the image into 

homogeneous regions using the segmentation-by-weighted-aggregations (SWA) algorithm (Sharon et al., 

2006). Each region was then classified using a decision forest classifier that used multiple features. Some 

of these features were given directly by the SWA (saliency, average intensity), while other features were 

calculated within each segmented region and included shape moments, neighborhood statistics, and 

anatomical probabilities. 
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4.2.2. Unsupervised methods 

Unsupervised methods do not require a training database to perform the segmentation and are instead 

based on a parametric definition of lesions and the anatomy of the brain. They employ clustering 

methods, that is, unsupervised classification methods that regroup similar voxels into clusters or classes.  

For healthy subjects, these methods have been employed to classify brain voxels into WM, GM, and 

CSF using tissue contrast in T1w images. For example, voxels have been classified into three classes (or 

clusters) according to their intensity using a fuzzy C-means (FCM) (Pham and Prince, 1999) and a finite 

Gaussian mixture model with the expectation-maximization (EM) algorithm (Wells III et al., 1996). The 

Gaussian mixture model assumes that each class of the model follows a Gaussian distribution and the 

parameters of each Gaussian can be easily estimated using an EM algorithm (Dempster et al., 1977). The 

fuzzy C-means(Bezdek, 1981) provides a fuzzy clustering of the voxels estimating the center of each 

class and has the advantage of removing the Gaussian assumption of the EM algorithm but the clusters 

should have and spherical shape to be accurate.   

For MS lesion segmentation, methods take into account that lesions appear brighter than NAWM in 

FLAIR, T2w, and PD images and are usually located in the NAWM. The majority of methods will 

consider that every voxel of the brain can be classified into four classes: WM, GM, CSF and lesions. 

Combining the information of the T1-w image, which has a good contrast for healthy tissues, with T2-w, 

PD and/or FLAIR, which have a good sensibility for lesions. These methods have the advantage to 

segment the whole brain providing information about volume of the normal appearing healthy tissues in 

addition to the lesions segmentation.  

Some authors extended the previous methods for healthy brains to use several sequences at the same 

time and added an extra class to include the WML in their classification (Forbes et al., 2010; Guttmann et 

al., 1999; Kawa and Pietka, 2007; Kikinis et al., 1999; Shahar and Greenspan, 2004; Shiee et al., 2009). 

An EM approach (Wells III et al., 1996) employed with an extra class for WML (Guttmann et al., 

1999; Kikinis et al., 1999) was later improved by being combined with a template-driven segmentation 

and a partial volume correction (Wei et al., 2002). In another approach, the Gaussian mixture model used 

multiple Gaussians (Dugas-Phocion et al., 2004) to include partial volumes; this method provided a more 

accurate estimation of the mean and variance of each tissue and, hence, a more accurate segmentation of 

WML (Souplet et al., 2008). Forbes et al. (Forbes et al., 2010) provided a model wherein the weight of 

each sequence differed for each class estimated using an EM algorithm. Their technique is related to the 

idea that FLAIR images should be more important than T1w images in the classification of WML, 

although T1w images provide a better distinction between the GM and WM classes. Bijar et al. (Bijar et 

al., 2011) proposed a monomodal EM-approach using the entropy instead of the likelihood as cost 

function using only FLAIR images for the segmentation. 

Two approaches included longitudinal data from the same patient in their models. Shahar et al. 

(Shahar and Greenspan, 2004) proposed a Gaussian mixture model that incorporated the time dimension 

to follow the evolution of the lesions. Another option was to combine the voxels of all time points in the 

same joint histogram to have more samples to perfom the Gaussian mixture model estimation (Aït-Ali et 

al., 2005). In both cases, it was important that all images were acquired with the same parameters on the 

same scanner to avoid variations in the image contrast, which could lead to misclassifications. 

Because the use of only one Gaussian to model the intensity of a tissue oversimplifies the problem, 

some authors have proposed to include many Gaussians in their models to overcome this limitation 

(Freifeld et al., 2009; Khayati et al., 2008a). In one case, a constrained Gaussian mixture model was 

proposed in which each Gaussian simultaneously included spatial and intensity features, thereby 

providing a much more complex model of the brain (Freifeld et al., 2009). In another case, an adaptive 

mixture model was proposed in which the final number of Gaussians of the model was computed 

automatically (Khayati et al., 2008a). 
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Other authors proposed not to model the lesions, but to consider them as outliers to the normal 

appearing brain tissues model. The advantages of this approach are that it avoids the need to model the 

intensity of the heterogeneous lesions and also provides a more robust estimation in the presence of other 

tissues (e.g., vessels) or artefacts. Van Leemput et al. (Van Leemput et al., 2001) proposed a weighted 

EM algorithm in which the voxels situated far from the model were weighted less in the estimation and 

considered potential lesions. The trimmed-likelihood estimator (Neykov et al., 2007) has also been used 

to avoid outliers in the estimation (Aït-Ali et al., 2005; Bricq et al., 2008b; Garcia-Lorenzo et al., 2011). 

Recently, the integrated square estimation (Scott, 2001) was employed as a cost function because it is a 

robust estimation method that has the advantage of not having any parameters to tune (Liu et al., 2009). 

Prastawa and Gerig (Prastawa and Gerig, 2008) also employed a robust estimator, called the minimum 

covariance determinant, using an atlas to initialize the estimation of the model. Given that the probability 

of a voxel being lesion is very low, the a contrario framework (Desolneux et al., 2003) was employed to 

segment the lesions as outliers to the normal appearing brain tissues model (Rousseau et al., 2008). The 

WML were segmented from the outliers using heuristic rules (e.g., the intensity of WML is brighter than 

the mean intensity of the WM on T2w images).   

Most segmentation models are based only on intensity information, which is insufficient because of 

the presence of noise and other artefacts. The inclusion of spatial information is necessary to improve 

lesion segmentation. As in the case of the supervised models described above, several authors using 

unsupervised methods have proposed to apply MRF to include the local neighborhood in the estimation 

(Khayati et al., 2008a; Van Leemput et al., 2001). Bricq et al. (Bricq et al., 2008b) proposed a double 

Markov chain that couples information from the neighbor voxels with information from an atlas to 

improve the segmentation.  

With the goal of including spatial information, other authors combined segmentation methods with the 

intensity model estimation. Some authors first performed a parcellation of the brain and then used the 

model to classify each local region of the brain, for example, using the mean shift (García-Lorenzo et al., 

2008a; Rousseau et al., 2008) or the watershed algorithm (Prastawa and Gerig, 2008). Other authors 

proposed to employ boundary-based methods to improve the contour performed by a robust EM that uses 

the graph-cut algorithm (García-Lorenzo et al., 2009) or active contours (Freifeld et al., 2009). 

Some authors remove the Gaussian assumption used in the EM method, replacing it with the fuzzy C-

means.  A hierarchical segmentation method was proposed whereby the fuzzy C-means is used twice in 

PDw images: first, to detect the lesion+CSF cluster with respect to the GM and WM and, second, to 

differentiate lesions from CSF (Boudraa et al., 2000). Kawa and Pietka (Kawa and Pietka, 2007) proposed 

to include spatial information in the clustering using the kernel fuzzy C-means combined with fuzzy 

connectedness theory (Udupa et al., 1997). Shiee et al. (Shiee et al., 2009) modified the fuzzy C-means 

algorithm to include anatomical information using both anatomical and topological atlases. The 

anatomical atlas provided information on where a given tissue is more likely to be present, while the 

topological atlas provided information about the topology of the structures (e.g., all WM must be 

connected in a healthy brain). 

Finally, because the definition of lesions is not precise, some authors proposed to employ the fuzzy 

Dempster-Shafer theory of evidential reasoning (Zhu and Basir, 2003). After each sequence was 

classified using k-means to obtain a coarse tissue segmentation, each voxel was defined using fuzzy 

values (small, medium, and large), according to its intensity. Then, fuzzy rules were defined for each 

tissue: “If T1w intensity is medium, T2w intensity is large, and PD intensity is large, then the voxel is 

WML.” The advantage of this method is that the fuzzy rules resemble the verbal description of lesions. 

However, the definition of the fuzzy values is still complex, and it is not obvious how to maintain 

consistency across subjects. 
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5. Review of validation 

Validation of a segmentation method should evaluate both the performance and limitations of the 

algorithm as well as clarify the context of applicability of the method (Jannin et al., 2006). In medical 

image processing, complete validation of a method is a necessary step before it can be applied in a 

clinical setting. In this review, we examine the validation methods used in the literature, including the 

data employed and measures performed. Finally, we describe the MS Lesion Segmentation challenge as 

an example of automatic segmentation method validation. 

5.1. Validation data 

Any validation method requires data to evaluate the performance of the algorithm. Here, we 

differentiate between synthetic data and real clinical data. 

5.1.1. Synthetic images 

Synthetic images are created by a computer without using a real scanner. The advantages of these 

images are that the user can fully control all the parameters in the image and the ground truth is available. 

Different levels of image complexity range from piecewise constant images (Kamber et al., 1995) to 

realistic images generated by an MRI simulator (Kwan et al., 1999). 

In WML segmentation, the images most widely employed for validation are those from BrainWeb 

(www.bic.mni.mcgill.ca/ServicesBrainWeb), an online database of synthetic MR images (Cocosco et al., 

1997; Collins et al., 1998). A healthy subject was scanned 20 times to obtain a high-SNR image (Holmes 

et al., 1998). From this image, a healthy anatomical phantom was created in which each voxel belongs to 

a specific tissue class. Simulated MR images are created using this phantom and an MRI simulator (Kwan 

et al., 1999). The simulator allows the choice of MR parameters (TE, TR, resolution, sequence, etc.) and 

certain artefact parameters (noise and intensity inhomogeneity) to generate three conventional imaging 

sequences: T1w, T2w, and PDw. 

From the healthy phantom, three different MS phantoms (Zijdenbos et al., 2002) were created using 

manually segmented lesions from real patients with different levels of lesion load: mild, moderate, and 

severe. There are three main advantages to using BrainWeb images to evaluate WML segmentation 

algorithms: 

- Ground truth: The existence of a ground truth simplifies the validation in comparison to using 

clinical images. 

- Different inhomogeneity and noise levels: Synthetic images allow the evaluation of noise and 

inhomogeneity robustness. 

- Freely available: All authors use the same images, simplifying the comparison of methods within 

the literature. 

These phantoms have been employed to evaluate WML segmentation algorithms because of the 

simplicity of the evaluation. Yet, despite being a good method for comparing different techniques, it 

suffers from serious limitations: 

1. Only one phantom: Only one brain model means no anatomical variability. Efforts have been 

made to address this issue (Aubert-Broche et al., 2006). 

2. Too simple: Despite being based on real data, the final image is not completely realistic, and 

is much easier to segment than clinical images. 

3. Limited to T1w, T2w, and PDw: Other useful MRI sequences such as FLAIR or Gd-

enhanced T1w are not available, limiting the validation of certain methods. In addition, T2-w 
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and PD-w images are based on conventional spin echo, while fast spin echo is more common 

in actual protocols. 

4. Reduced lesion load range: Only one type of lesion is included, and the lesion load range is 

very limited. The severe lesion load phantom has only 10 cm
3
 of lesions, yet it is not 

uncommon to have lesion loads of more than 100 cm
3
 in patients with severe disease. 

In our review, only 12 methods were evaluated using BrainWeb (Aït-Ali et al., 2005; Akselrod-Ballin 

et al., 2009; Bricq et al., 2008a; Forbes et al., 2010; Freifeld et al., 2009; García-Lorenzo et al., 2009; 

García-Lorenzo et al., 2008a; Rousseau et al., 2008; Shiee et al., 2009; Younis et al., 2007; Zhu and Basir, 

2003; Zijdenbos et al., 2002). Within these 12 publications, 5 had no quantitative validation with real 

clinical data (Aït-Ali et al., 2005; Freifeld et al., 2009; Rousseau et al., 2008; Younis et al., 2007; Zhu and 

Basir, 2003). In two cases, a conference paper contained only BrainWeb information, but a later paper did 

include clinical validation (Akselrod-Ballin et al., 2006; Bricq et al., 2008b).   

Although the BrainWeb database should enable good comparison across methods, direct comparison is 

limited by several factors: 

- Intensity inhomogeneity and noise: Almost every paper employs different levels of IIH and noise. 

Four papers used only one level of noise and IIH, and only three methods varied both noise and 

IIH to provide information about the robustness of the method to both (García-Lorenzo et al., 

2009; Shiee et al., 2009; Zijdenbos et al., 2002). In addition, only five methods employed the 

three available phantoms with different lesion loads (Akselrod-Ballin et al., 2006; Forbes et al., 

2010; García-Lorenzo et al., 2009; Rousseau et al., 2008; Zijdenbos et al., 2002).  

- Validation metric: Most methods employed either kappa, or the related Dice similarity coefficient 

(DSC) (Dice, 1945; Zijdenbos et al., 1994), but three methods selected only certain slices to 

perform the segmentation (Akselrod-Ballin et al., 2006; Freifeld et al., 2009; Zhu and Basir, 

2003). This selection biases the results and prevents comparison of their results with those of 

other published methods.  

- Supervised methods: The lack of a training database has limited the use of BrainWeb in validating 

supervised methods. Three different options have been employed to validate supervised methods 

using BrainWeb although they suffer from different limitations: 

o Use a clinical database: The ANN were trained using clinical data and then applied to the 

BrainWeb images (Zijdenbos et al., 2002). This validation is only possible when the 

clinical images are acquired with similar MR parameters (TE/TR/IR) compared to those 

from BrainWeb. 

o Use part of the image for testing: One hemisphere was employed as training data, while 

the other hemisphere was used for testing (Akselrod-Ballin et al., 2006). This method 

prevents direct comparison of results with those of other methods and overestimates 

generalization, as the exact same image is used for both testing and training. 

o Use a noiseless image for training: The noiseless BrainWeb image was employed as the 

training data (Younis et al., 2007), then the same image with noise was used for testing. 

This validation also employs the same image to test and train, thus limiting the 

comparison of their results to those of other methods. 

5.1.2. Clinical images 

Segmenting real clinical images is a necessary step in the evaluation of a segmentation method. There 

are two main aspects to describe for validation using clinical images: the characteristics of the database 

and the ground truth. 

5.1.2.1. Characteristics of the database 
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The validation database should be representative of the heterogeneity of the disease. It is important to 

have a sufficient number of patients to cover this heterogeneity. Epidemiological and clinical information 

is helpful to better describe the results. 

In the literature reviewed, the databases used for validation varied in size from one patient with 

longitudinal data (Shahar and Greenspan, 2004) to 41 patients (Akselrod-Ballin et al., 2009). Ten methods 

were evaluated with MRI data from fewer than 10 patients, and less than half of the papers (19 methods) 

were evaluated using at least 20 patients.   

Clinical information can help in judging the applicability of a method to a particular class of patients.  

For example, lesions in patients with relapsing-remitting MS have slightly different imaging 

characteristics than lesions in patients with secondary progressive MS, and these differences might affect 

segmentation quality. The evolution of the disease also includes other factors that can complicate the 

segmentation of lesions such as atrophy and dirty white matter that should be taken into account.  Thus it 

is easier to segment single new punctate lesions in early relapsing remitting MS compared to the 

segmentation of enlarging lesions in regions of dirty white matter in secondary progressive MS.  In 

addition, the interpretation of sensitivity and specificity is very different when the total lesion load is very 

low or very high. Of the 47 papers that used clinical MRI data for validation, 28 papers (60%) contained 

no information regarding the form (relapsing-remitting, secondary progressive, etc.), duration, or severity 

of the disease, or the sex or age of the patients.  

Another important issue to consider is lesion load. The number and volume of lesions can vary greatly 

across patients, and an algorithm’s performance can differ depending on whether lesion load is low or 

high. In addition, some metrics are sensitive to the surface-to-volume ratio of the structures segmented; 

therefore, it may be important to take lesion size into account to correctly understand the results. Only 

14 papers included the lesion load of the patients, and the range varied greatly among the papers; the 

lowest lesion loads ranged from approximately 1 cm
3
 (Alfano et al., 2000; García-Lorenzo et al., 2009; 

Harmouche et al., 2006) to 8 cm
3
 (Shiee et al., 2009), and the highest, from 20.0 cm

3 
(Guttmann et al., 

1999) to 130 cm
3
 (Alfano et al., 2000). Some authors divided the patients according to lesion load 

(Khayati et al., 2008a; Sajja et al., 2006), although no consensus exists on how to achieve this division. 

One of the main limitations on comparing segmentation methods is evaluating the differences between 

the MR protocols employed. A detailed description of the MRI protocol is important to understand the 

differences between the approaches and make it possible to choose the method that best matches the 

protocol. Only 19 papers (40%) provided a description of the MRI acquisition protocol.  

Finally, and importantly, clinical trials used for drug development usually include data from many 

centers, acquired using different scanners. Standardization of MRI acquisition sequences is generally 

attempted, but, even with standardization, differences between scanners will always exist. Automatic 

segmentation methods should be able to address this residual variability to enable their use in clinical 

trials. In our review, only 13 papers used images from more than one scanner. Of these, 11 papers used 

data from two sites, provided by the MS Lesion Segmentation Challenge described in section 5.3, and 

only two papers used multisite data. 

5.1.2.2. The ground truth 

A very important limitation on the validation of segmentation methods when using clinical data is the 

lack of a ground truth for the WML. Although an estimate of ground truth is not necessary to measure the 

reproducibility of a method, it is required to measure the accuracy of the segmentation. Although manual 

segmentation of lesions is often considered the gold standard validation technique for the segmentation of 

WML, manual methods can suffer from large variability. In practice, semiautomatic techniques are 

employed in the segmentation of WML, as they reduce both the variability of the segmentation and the 

processing time (Grimaud et al., 1996; Udupa et al., 1997). 
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Of the publications reviewed, 20 papers compared the results of their automatic segmentation with the 

segmentation of one expert using manual or semiautomatic segmentation, which was considered to be the 

gold standard. Although this evaluation provides an indication of the similarity of the segmentations, the 

significance of the results obtained with this evaluation is limited by the well-known intra- and interexpert 

variability that plagues manual segmentation (Grimaud et al., 1996). When results are compared against a 

single rater, it is not possible to distinguish the dissimilarities between manual and automatic 

segmentation methods caused by errors in the algorithm from those caused by variability in the manual 

segmentation. 

For this reason, some authors have compared their methods with segmentations by more than one 

expert. In the MS Lesion Segmentation Challenge (Styner et al., 2008), automatic segmentations were 

compared independently with two expert segmentations. Then, the results of those comparisons were 

themselves compared to evaluate if there was a bias towards one of the experts.  

As no real ground truth is available, the objective of some methods was to show that their results lie 

within the variability of the experts by using total lesion load (TLL) measures (Wei et al., 2002; 

Zijdenbos et al., 2002). Other approaches considered the manual segmentation imperfect and merged 

several manual segmentations to create a silver standard and reduce the variability of each expert 

individually (García-Lorenzo et al., 2009; Harmouche et al., 2006; Subbanna et al., 2009). This silver 

standard has been created both by using a consensus approach, whereby each voxel is considered lesion 

only if most experts considered it lesion, and by using the STAPLE algorithm (Warfield et al., 2004), 

whereby sensitivity and specificity are computed simultaneously with the silver standard. The objective is 

to understand whether the results of the automatic method vary at a magnitude similar to the variability in 

the results of the experts. 

5.2. Validation measures 

Two main aspects characterize the validation of a segmentation method: accuracy and reproducibility. 

5.2.1. Accuracy 

Accuracy refers to the degree of closeness of the estimated measure to the true measure. Figure 5 

shows a diagram of the segmentation comparison. In binary segmentation, four scenarios are possible: 

true positives (TP) and true negatives (TN), wherein the segmentation is correct, and false positives (FP) 

and false negatives (FN), wherein there is disagreement between the two segmentations. 

Several measures have been employed to evaluate the accuracy of automatic segmentation methods. In 

general, no single measure is capable of giving all the information desired regarding the quality of the 

segmentation. 

 

TN 

TP 

FP 

FN 
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Figure 5. Diagram of the comparison between to segmentation. If we consider the blue region as our 

reference and the red region the segmentation, the intersection of the two regions divide the space into 

four regions: true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN).  

 

Figure 6. Example of problem in a lesion-based metric. When two manually segmented lesions (blue) 

overlap with only one large automatic lesion (red). Should we consider that the two lesions were detected, 

or should we consider that one lesion was detected but the other one was missed? 

 

- Lesion load:  

As the TLL is often used as a biomarker in clinical trials, the total volume of lesion voxels has been 

employed to evaluate the validity of the segmentation using different metrics, for example, the volume 

difference between the automatic and the expert’s manual segmentations (Liu et al., 2009; Shahar and 

Greenspan, 2004; Styner et al., 2008; Van Leemput et al., 2001). To ensure that no bias is introduced 

when segmenting patients with different lesion load, authors have employed Pearson’s correlation 

(Harmouche et al., 2006; Khayati et al., 2008a; Shiee et al., 2009; Wels et al., 2008; Wu et al., 2006; 

Zijdenbos et al., 2002) and Bland–Altman plots (Datta et al., 2007; Datta et al., 2006; He and Narayana, 

2002).  

To compare the automatic segmentation with several experts, some authors used the intraclass 

correlation (ICC) (Garcia-Lorenzo et al., 2011; Wu et al., 2006), while other authors used Z-scores (Wei 

et al., 2002). In the latter case, the Z-scores for the automatic segmentation were computed using the 

mean of and variance between experts, which give information about the bias of the automatic 

segmentation: toward either over-segmentation (positive Z-scores) or under-segmentation (negative Z-

scores). Another option, considering that the error follows a Gaussian distribution, was to employ an 

analysis of variance to test if the TLL of the automatic method was significantly different from that 

computed by the experts (Zijdenbos et al., 2002). 

The main limitation of using lesion volume as a measure is that there is no information regarding the 

overlap of the segmentation. In the extreme case, the automatic segmentation method could obtain the 

same TLL as the true segmentation and have no voxels in common. 

- Overlap measures: 

Many overlap measures have been used in the literature, but the most widely employed with respect to 

segmentation is the similarity index or Dice similarity coefficient (DSC) (Dice, 1945): 
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The value of the index varies between 0 and 1 (perfect segmentation), with 0.7 normally considered a 

good segmentation. Derived from Cohen’s kappa under the assumption that  (Zijdenbos et al., 

1994), this metric, unfortunately, does not give information about whether lesions are being under-

segmented and is also sensitive to the TLL and size distribution of lesions. 

Other authors employed sensitivity (Sens), specificity (Spec) and accuracy (Acc) (Akselrod-Ballin et 

al., 2009; Alfano et al., 2000; Hadjiprocopis and Tofts, 2003; Liu et al., 2009; Sajja et al., 2006; Tomas-

Fernandez and Warfield, 2011; Wels et al., 2008; Wu et al., 2006): 

 

 
These measures should be considered carefully, as TP (lesions) are much smaller than TN (normal 

appearing brain tissues). An automatic segmentation in which the TLL is 10 times greater than the ground 

truth can still result in Sens = 100%, Spec = 99.3%, and Acc = 99.3% when the TLL is around 1 cm
3
 and 

brain size is 1,500 cm
3
.  

Other methods provide fuzzy (or probabilistic) segmentations (Anbeek et al., 2008; Datta et al., 2007; 

Datta et al., 2006); therefore, fuzzy metrics were adapted to measure the accuracy of the segmentation, 

such as the probabilistic similarity index (PSI) 

 

where Ps is the probabilistic segmentation, and R is the binary reference.  

- Lesion-based measures: 

Number of lesions is also often used in diagnosis and as an output measure in clinical trials. Due to the 

problems faced in obtaining the true boundaries of WML, some authors have proposed to validate the 

automatic detection of lesions by counting them (Goldberg-Zimring et al., 1998; Sajja et al., 2006; Styner 

et al., 2008). 

First, the number of lesions given by the automatic segmentation was compared with the number of 

lesions estimated manually (Goldberg-Zimring et al., 1998). Other authors computed the sensitivity and 

specificity, but used the lesion counts instead of the voxel labels (Sajja et al., 2006; Styner et al., 2008; 

Yamamoto et al., 2010). 

The advantage of these lesion-based measures is that they are less sensitive to the variability of the 

manual segmentation. However, they do not give information about the accuracy of the boundary of the 

  

TN >> TP

   

Acc =
TP +TN

TP + FP + FN +TN

   

DSC =
2× TP

FP + FN + 2× TP

   

Sens =
TP

TP + FN

   

Spec =
TN

FP +TN
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lesion, or its over- or under-segmentation. In addition, the definition of true positives and false positives 

can be ambiguous, for example, when a lesion identified manually as a single connected lesion but 

overlaps with two distinct automatically segmented lesions, or vice versa. Two definitions are possible: 

the two automatic lesions are true positives, or only one of the lesions is considered to be a true positive 

and the other a false positive.  (Figure 6).  

5.2.2. Reproducibility 

Reproducibility measures the degree of agreement between several identical experiments. 

Reproducibility is crucial for longitudinal trials to ensure that differences in segmentations obtained over 

time result from changes in the pathology and not from the variability of the automatic method.   

To test reproducibility, MS patients may undergo MR imaging several times within a short period 

ranging from half an hour to several days in scan-reposition-rescan experiments. As the images are 

obtained within a short space of time, it is assumed that the disease has not evolved during this period. 

Two sources of variability are possible in the segmentation: variability of the method and interscan 

variability. 

- Variability of the method refers to the differences in the segmentation when the same method is 

applied to the same acquisition. In manual and semiautomatic methods, this variability is mainly 

due to the human interaction and is termed intra- and inter-rater variability. Automatic methods 

that employ random processes (e.g., genetic algorithms, multiple random initializations in k-

means or EM algorithms) can obtain different segmentation results for the same image. Normally, 

the results are similar, but there can be slight differences due to the random process during the 

segmentation. By contrast, deterministic segmentation methods always produce the same 

segmentation for the same image because there is no methodological variability. This is an 

important advantage of the automatic deterministic methods.   

 

- Interscan variability refers to the differences in the segmentation when the same method is 

applied to two different scans of the same patient, where the two scans have been acquired in a 

sufficiently short period so that there is no real change in the disease. In practice, patients are 

required to exit the scanner after the first acquisition and then re-enter to undergo a second, 

independent acquisition. Interscan variability is affected by the acquisition protocol employed 

(e.g., resolution, slice thickness, etc.) and can be used to estimate the minimum change in lesion 

load that can be measured in longitudinal exams for a given acquisition protocol. 

In our review, only four methods (Alfano et al., 2000; Erickson and Avula, 1998; Guttmann et al., 

1999; Wei et al., 2002) employed scan-rescan images to evaluate the reproducibility of the segmentation. 

Reproducibility was measured using the coefficient of variation (CV) on the TLL 

 

where µ is the mean σ and is the standard deviation of the different measures of TLL. The smaller the 

value of CV, the more reproducible the method is. The CV on the TLL has the same limitations as 

mentioned for TLL as accuracy measure as there is no overlap information. For a method, CV can be low 

but segmentations can have low overlap. New metrics need to be defined to integrate the overlap in 

reproducibility metrics.   

From the practical point of view, measuring reproducibility has the advantage of not requiring a 

ground truth; one only needs to show that the method obtains a similar result when applied to similar 

input , for example, from scan-rescan images.  Thus, reproducibility is a necessary but not sufficient part 

of validation.  One still needs to show that the method is accurate and sensitive to changes in input data.  
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Measuring accuracy requires an independent estimate of the ground truth, an often difficult task when 

using clinical data. 

5.3.  Example validation framework: MS Lesion Segmentation Challenge 

At MICCAI 2008, a workshop was organized with the objective of comparing different segmentation 

algorithms in the form of a competition (Van Ginneken et al., 2007). One of the segmentation challenges 

was the segmentation of WML in MS (Styner et al., 2008), and nine methods were compared (Anbeek et 

al., 2008; Bricq et al., 2008b; García-Lorenzo et al., 2008b; Kroon et al., 2008; Morra et al., 2008; 

Prastawa and Gerig, 2008; Scully et al., 2008; Shiee et al., 2008; Souplet et al., 2008). 

The validation database consisted of T1w, T2w, FLAIR, and diffusion-weighted images from two 

different sites. The acquisition protocol was not described, and the images were registered and upsampled 

to an isotropic 0.5 mm by the organizers. No information about the clinical characteristics of the patients 

was available. The database was divided into three sets: 

- Training set: Participants were given 20 images along with their manual segmentations to adapt 

each algorithm to the MR protocol and the experts’ definition of lesion. Supervised methods used 

this dataset to train their methods. 

- Off-site test set: Participants were given 25 images, without the manual segmentations, to be 

processed in their own laboratories. The automatic segmentation results had to be sent to the 

organizers for evaluation. 

- On-site test set: Participants were given 7 images during the workshop to be processed within a 

limited amount of time. 

Four metrics were employed in the evaluation of the competing methods: 

- Relative volume difference: Difference of total volumes divided by the reference volume; 

- Mean surface distance: Distance between borders of the reference volume and the segmentation; 

- True positives: Number of lesions in the segmentation that correspond to a lesion in the reference 

volume divided by total number of lesions in the reference volume; and 

- False negatives: Number of lesions in the segmentation that do not correspond to a lesion in the 

reference volume divided by total number of lesions in the segmentation. 

To compare the different metrics, the organizers normalized metric values between 0 and 100, where 

100 was a perfect score and 90 was the typical score of an independent observer (Van Ginneken et al., 

2007). Setting the experts’ values to 90 allows the automatic methods to obtain better scores than the 

agreement between experts. The typical score was measured by comparing the manual segmentation of 

two experts, and scaling was done linearly using these two points (negative values were set to 0). The 

typical scores obtained for the two experts were:  

- Relative volume difference: 68% 

- Mean surface distance: 4.85 mm 

- Overlap error: 75% 

- True positives: 68% 

- False negatives: 32%. 

Despite the relatively low agreement between the two raters, it is important to underline the value of 

the MS Lesion Segmentation Challenge database.  It represents the first publicly available clinical 

database for validation of WML lesions.  It includes 52 sets of images from two different centers and 
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provides two expert manual segmentations in order to account for manual segmentation variability. 

Compared with many other papers, the MICCAI MS Lesion Segmentation Challenge contains a larger 

number of subjects. Finally, the organizers provide for an objective comparison between methods since 

the manual labels from the testing set are not made public.  Segmentations of the testing data have to be 

sent to the organizers, and segmentation quality metrics are sent back to the users.  This prevents users 

training on the testing data and facilitates comparison between methods. 

It is important that future papers using this database report their results for both the training and 

testing datasets, as this is the only way to make a fair comparison with previously published papers. 

Reporting only on the testing data enables potential over learning of the training database, while results 

on the testing database are objective and perhaps better reflect real-world performance.  

Three limitations of the MS Lesion Segmentation Challenge database must be discussed: the quality of 

the images, the preprocessing steps, and the manual segmentations performed by the experts. First, 

multiple artefacts were found in several images due to patient movement during acquisition (García-

Lorenzo et al., 2008b). While these artefacts represent the reality of clinical data, they can greatly affect 

the quality of the automatic segmentations. A quality control step should have removed any poor quality 

images, a common practice in clinical studies. Another option would be to characterize the images 

according to their quality to assess the robustness of the automatic methods. Second, the segmentation is 

usually performed after preprocessing steps, such as inhomogeneity correction and denoising. The MS 

Lesion Segmentation Challenge proposed data that was already registered and upsampled, which reduced 

the effectiveness of denoising methods, as the assumption of voxel-to-voxel independence of the noise 

was no longer valid. Such preprocessing steps could reduce the performance of algorithms where 

denoising is necessary for the segmentation. Third, the manual segmentations were performed by two 

experts from different centers and showed great variability. For example, the two experts only agreed on 

68% of the lesions, which puts a low ceiling on the maximum possible accuracy of methods, as they 

cannot agree with both raters simultaneously. 

 

6. Discussion 

The automatic segmentation of MS lesions has been an active research topic for more than 15 years. 

Although many improvements have been achieved, many challenges remain.  

Definition of WML 

“WML are areas that are hyperintense with respect to normal-appearing white matter on T2w or 

FLAIR images that are not due to normal structures.” Although this statement is widely accepted, its 

interpretation produces high variability in the value of segmented MS lesions, mainly due to variability in 

deciding how much of an elevated intensity is required for a hyperintensity to be called a lesion. The 

definition of WML depends on the MRI sequence employed and even the contrast of the screen used for 

the segmentation. Variations of 40% (Zijdenbos et al., 2002) and 68% (Styner et al., 2008) were reported 

across different centers, demonstrating a large variability in the definition of WML. Because automatic 

methods rely (explicitly or not) on the definition of WML, a more precise definition of lesions would 

provide a better starting point for automatic methods and thus result in a better segmentation. 

The diagnosis of MS (McDonald et al., 2001) is defined by a panel of experts and updated every few 

years (Polman et al., 2011; Polman et al., 2005); the definition of WML should be revised in a similar 

way to give a more accurate and precise definition of MS lesions than the qualitative visual rule above. 

The definition should also include recommendations for a standard MRI protocol for MS that is more 

specific that the MRI guidelines proposed by Simon et al. (Simon et al., 2006) to simplify the 

segmentation of lesions between centers.  
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There have been efforts in order to reduce the inter-rater variability in the detection of lesions. A 

reduction of these variabilities was shown after more precise guidelines were given for the different types 

of lesions (Barkhof et al., 1997; Filippi and Rocca, 2007). Similar efforts would also be interesting for the 

segmentation of lesions. 

Segmentation methods 

We proposed a classification of methods and described the methodological differences between them. 

Instead of considering each method independently, we looked for similarities between techniques, thus 

yielding a better overview of the methodologies and strategies employed. 

When methods are compared, the conclusions remain limited because the methods are considered 

black boxes. For example, a supervised method (SM) can be roughly defined by its feature space (FS) and 

classification algorithm (CA). When two methods, SM1 and SM2, are compared, to understand the results, 

a mixed method (FS1+CA2 and FS2+CA1) should also be evaluated to determine the improvement 

provided by each part of each algorithm.  

In our review, we decided not to compare numerical results because each paper used very different 

databases and metrics. To address this issue, the MICCAI MS Lesion Segmentation Challenge offered the 

first objective comparison of methods where 9 methods were employed in the same multicenter database..  

The winner was (Souplet et al., 2008) and 4 out 5 best algorithms included unsupervised methods. New 

methods can still be evaluated using the same images and the results are publicly available 

(http://www.ia.unc.edu/MSseg/).  

From our review, we can extract several conclusions from the methodological point of view: 

 A robust, accurate, fully-automated lesion segmentation method suitable for use in 

clinical trials is still not available: While there is abundant literature on the topic of fully-

automated lesion segmentation and some important advances have been made, it is clear that 

the problem is far from solved, and more work is needed in this area.  

 Multimodal information is necessary: Although some lesions are obvious in only one 

sequence (especially in FLAIR), the lesion should be confirmed in other sequences (T2-w or 

PD) to avoid false positives. T1w images, although not necessary in manual segmentation, 

provide very good tissue contrast for automatic segmentation techniques and improve the 

segmentation. 

 Spatial information is necessary: Intensity information is not sufficient for a good 

segmentation, as other tissues have similar intensities, and noise can reduce the performance 

of the algorithm. Spatial information needs to be included in the segmentation algorithms at 

two different spatial levels: the local neighborhood level and the anatomical level. The former 

refers to the information provided by neighboring voxels to reduce the impact of noise and to 

improve coherence of the results (i.e. MRF models, Graph Cut or kernel features). The latter 

refers to the particular anatomical location within the brain could include information from 

specific anatomical templates for MS patients, lesion probability templates or topological 

atlases (Shiee et al., 2009). 
 Unsupervised vs. Supervised: Unsupervised methods have the advantage of not requiring a 

ground truth and makes them more easily adaptable to new acquisition protocols (as in the MS 

Lesion Segmentation Challenge). Still, once the supervised methods are well trained results 

can be comparable (Geremia et al., 2011). 

 Supervised methods: The newer algorithms selects at the same time the optimal number of 

features between thousands of possible features. The challenge remains in the creation of the 

database were all the possible lesions are integrated and in the preprocessing of the data to 

reduce the variability of the images between centers and scanners.  
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 Unsupervised methods: The majority of methods are based in global clustering techniques 

such us Fuzzy-C means or a Gaussian mixture model. The intensity of the tissues and lesions 

vary across the image. New methods should take into account these local variations in order to 

improve the sensibility of the methods in some parts of the brain.  

 Availability of methods: The majority of methods are not publicly available making their use 

by other centers hard, and making their comparison and improvement difficult. The methods 

that are available can be found in Table 3. 

  

Table 3. Freely available automatic segmentation methods 

Paper Website 

(Van Leemput et al., 1999) http://mirc.uzleuven.be/MedicalImageComputing/downloads/ems.php 

(Souplet et al., 2008) http://med.inria.fr 

(Garcia-Lorenzo et al., 2011) https://www.irisa.fr/visages/benchmarks/ 

(Shiee et al., 2008) http://www.nitrc.org/projects/toads-cruise/ 

 

Other remaining challenges that the literature has not yet addressed include: 

 Partial volumes: The border of lesions is fuzzy in part because of the limited resolution of 

MR images that causes the partial volume effects (Choi et al., 1991). Although partial volume 

effects have mainly been studied for healthy tissues (Santago and Gage, 1993; Shattuck et al., 

2001) or applied in MS but only for the normal appearing healthy tissues (Dugas-Phocion et 

al., 2004). Accounting for partial volume effects should also improve the reproducibility of 

WML segmentation. Of course, the validation of such techniques will become even more 

complicated than the evaluation of binary lesions. 

 Multicenter datasets: Images from different scanners have different contrasts or intensities, 

even when same protocol is employed. Methods should be designed specifically to deal with 

this variation without biasing the posterior clinical studies. 

 Spinal cord imaging: Spinal cord lesions correlate with motor disability. Automatic methods 

are almost always focused on the brain and, to our knowledge, little effort has been performed 

to segment lesions in the spinal cord.  

 Diffuse disease: Automatic methods have concentrated on the focal lesions caused by the 

disease, but in some cases it is impossible to find the border between lesions and the 

neighboring diffuse dirty white matter. No method has attempted to address these issues with 

the dirty white matter yet.  

Validation and results  

The final goal of an automatic segmentation method is its use in a clinical setting; therefore, a 

complete validation of the method in real conditions is mandatory. In our initial search, we rejected 

20 papers (more than 20%) because no quantitative validation had been performed of the method 

proposed.  

Multiple sclerosis is a heterogeneous disease, and this fact needs to be taken into account in the 

validation of segmentation methods. Many papers included no description of the clinical information of 

the patients, nor any details of the MRI protocol employed in the validation. Including information about 

patient age, clinical type, and MRI protocol will be helpful to determine the applicability of methods and 

simplify their comparison. 
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In clinical images, no ground truth is available; therefore, simple frameworks are insufficient to 

provide a good validation. The “best” approximation to a ground truth is manual segmentation, but, as 

mentioned previously, there is a great variability among experts. As a result, the objective of the 

validation cannot be to obtain the “exact” same segmentation as an expert (e.g., DSC = 1), as we know 

the manual segmentation includes errors. The validation framework should also consider that the manual 

segmentation is imperfect. In this sense, the use of several manual segmentations can improve the 

validation by the creation of an improved silver standard. STAPLE (Commowick and Warfield, 2009; 

Warfield et al., 2004) provides a framework to compare the accuracy of multiple experts and create a 

silver standard. While this has been a major contribution, there still is work needed to define the number 

of experts required and how to integrate the automatic methods and manual experts in the algorithm. As 

we mentioned, new metrics are also required to measure the reproducibility beyond that of the total lesion 

load. 

The majority of the papers published on WML segmentation only use one metric to evaluate the 

accuracy of their method, in particular the DSC. This has the advantage of simplifying the results to one 

number, but reduces the information we can extract from the evaluation. For example, the DSC does not 

give information about over- or under-segmentation, nor does it provide any notion about the consistency 

across disease severity, as does the volume correlation. In addition, lesions in some anatomical regions 

are more complicated to segment than others, an issue not addressed by these global measures. Multiple 

complementary metrics are needed, and reporting the location of errors would provide a better 

understanding of the performance of the proposed methods. 

Although accuracy is the most widely performed type of validation, clinical studies are very concerned 

with the precision/reproducibility of measures over time, and this is rarely evaluated in the literature. The 

validation of reproducibility is partially dealt with using a scan-reposition-rescan protocol. Although this 

has the advantage of not requiring a ground truth, it still does not deal with real-world variability due to 

hardware drift over time. The three papers that evaluated reproducibility reported it using only volumetric 

measures. New metrics should be developed to include the overlap into the reproducibility measures.  

In order to provide a good validation of methods, we propose four validation steps: 

1) BrainWeb:  

This step should be considered optional, but every method that employs BrainWeb should use the 

same validation framework: use the whole brain (not selected slices) and the three different phantoms, 

and vary the levels of noise and inhomogeneity using the predefined values on the website.  

Using BrainWeb should provide a proof of concept for new methods and evaluate the robustness to 

noise and IIH. BrainWeb is a good database to compare methods–although clinical validation is more 

important; hence, validation with BrainWeb is a necessary, but not sufficient, condition for validation. 

2) Small group with several manual segmentations (10–20 patients):  

The main objective of using a small group is to measure the accuracy of the segmentation method. 

Patients should have a wide range of TLL to measure the different stages of the disease. Several manual 

segmentations should be used for comparison to provide an accurate silver standard. Several metrics 

should be used to provide a complete validation and should include ICC, Hausdorff distance and lesion-

based metrics such as rates of false positives and false negatives. 

3) Small group with scan-reposition-rescan acquisitions (5–10 patients): 

The objective is to measure the reproducibility of the method in the presence of data where no change 

is expected. No ground truth is required, but metrics other than the CV should be employed to evaluate 

the consistency of lesion label overlap. The reproducibility is very important complementary information 

that will give an idea of how many patients are required in large clinical trials.  

4) Large multicenter validation (50–100+ patients):  
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The objective is to show the robustness of the method within a large database containing data from 

multiple scanners. Semiautomatic segmentation (or automatic segmentation with manual correction) 

should provide a rough estimate of the ground truth. Robustness should be evaluated both in terms of 

volume and number of lesions. 

The creation of these databases cannot be the effort of only one center if we want to create an 

agreement in the validation. An international initiative should be proposed to study the Multiple Sclerosis 

in a similar way to the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Jack et al., 2008). The main 

objective of this initiative should not be, of course, the validation of automatic methods, but the 

standardization of scanners and acquisition and the creation of a public database will provide the 

necessary environment to provide a better and complete framework of validation. 

 

Conclusions 

We presented a comprehensive review of the automatic methods for MS lesion segmentation. We 

described the complexity of the lesion segmentation problem and identified solutions that have been 

proposed in the literature. In addition to describing the techniques, we focused on the strengths and 

weaknesses of the validation methods used to characterize the published methods. 

Although many papers have been published on the subject, automatic segmentation of lesions in MS 

remains an open problem. Many methods provide limited solutions where they deal with only one type of 

MR protocol or identify only one type of MS lesion, and they rarely address the complexity of the 

disease. Nevertheless, many advances have been made over the years, and many methods have 

demonstrated promising results with MRI data from small groups of patients. The challenge remains to 

provide segmentation techniques that can work in all cases regardless of the type of MS, duration of the 

disease, or MRI protocol, and this within a comprehensive, standardized validation framework. 
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