
 

 

Development of a functional magnetic resonance 

imaging simulator: Deterministic simulation of the 

transverse magnetization in microvasculature 

 

Avery J. L. Berman, B.Sc. 

 

Medical Physics Unit 

McGill University, Montreal 

 

July 2012 

 

 

A thesis submitted to McGill University in partial fulfillment of the requirements 

of the degree of Master of Science 

 

© Avery Berman, 2012 

  



ii 
 

 

  



iii 
 

Abstract 

Numerical simulations are invaluable in the development and understanding of magnetic 

resonance imaging (MRI) techniques. Motivated by the goal of understanding the 

behaviour of the functional MRI (fMRI) signal in brain tissue, this thesis employs a 

deterministic simulation technique in which the transverse magnetization and B0 

inhomogeneity within a voxel are spatially discretized and the stochastic self-diffusion of 

water molecules is modelled as a Gaussian isotropic blurring of the transverse 

magnetization. While this simulation technique has existed since fMRI was in its infancy, 

its use has increased recently as investigators have attempted to quantitatively interpret 

the measured signal. Despite its recent popularity, thorough quantitative validation of the 

technique is lacking in the literature. 

 With the development of quantitative fMRI techniques being the driving force, 

this thesis validates three-dimensional deterministic simulations of the MR signal with a 

focus on their application in cerebral microvasculature. Individual blood vessels are 

modelled by infinite cylinders with a realistic distribution of radii. Using a spin echo 

sequence, the effects of several simulation parameters are investigated. 

 Validations ignoring the effect of diffusion show that the discretization of the 

voxel into subvoxels can be very coarse – up to 10 μm subvoxel widths – without 

adversely affecting the simulation outcomes. Simulations including diffusion are 

validated using an analytical solution to the Bloch-Torrey equation for comparison. In the 

presence of diffusion, subvoxel size is a key factor and it needs to be sufficiently small (~ 

2 μm), depending on the rest of the simulation parameters, in order for the simulations to 

be accurate. Finally, as a proof-of-concept, it is shown that larger subvoxels can be used 

and still produce accurate simulations if the diffusion coefficient is scaled by a correction 

factor to produce the desired time series. 
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Résumé 

Les simulations numériques sont d’une valeur inestimable pour le développement 

et la compréhension des techniques d’imagerie par résonance magnétique (IRM). Cette 

thèse, motivée par le but de comprendre le comportement du signal de l'IRM 

fonctionnelle (IRMf) dans le tissu cérébral, utilise une technique de simulation 

déterministe dans laquelle la magnétisation transversale et l’inhomogénéité B0 au sein 

d'un voxel sont spatialement discrétisées et l’auto-diffusion stochastique des molécules 

d'eau est modélisée par un flou gaussien isotrope de la magnétisation transversale. Bien 

que cette technique de simulation existe depuis les débuts de l’IRMf, son utilisation a 

augmenté récemment par des chercheurs tentant d’interpréter quantitativement le signal 

mesuré. Malgré sa popularité récente, une validation quantitative approfondie de cette 

technique est absente de la littérature. 

Ayant pour force motrice le développement de techniques d'IRMf quantitatives, 

cette thèse valide des simulations tridimensionnelles déterministes du signal IRM en 

mettant l’emphase sur leur application dans la microvascularisation cérébrale. Les 

vaisseaux sanguins individuels sont modélisés par des cylindres infinis avec une 

distribution de rayons réaliste. Les effets de plusieurs paramètres de simulation sont 

étudiées en utilisant une séquence écho de spin. 

Des validations ignorant l'effet de diffusion montrent que la discrétisation des 

voxel en sous-voxels peut être très grossière - jusqu'à des tailles de sous-voxels de 10 μm 

- sans détériorer les résultats de la simulation. Des simulations tenant compte de la 

diffusion sont validées à l'aide d'une solution analytique à l'équation de Bloch-Torrey. En 
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présence de diffusion, la taille des sous-voxels est un facteur clé et doit être petite (~ 2 

μm, dépendamment des autres  paramètres de simulation) pour que les simulations soient 

précises. Enfin, comme preuve de concept, il est démontré que des simulations précises 

peuvent être obtenues avec des sous-voxels plus grands pourvu que le coefficient de 

diffusion soit multiplié par un facteur de correction pour produire la série temporelle 

désirée. 
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Chapter 1 Introduction 

agnetic resonance imaging (MRI) has revolutionized the way we look at the 

human body and, in particular, the brain. With its seemingly infinite number of 

potential contrast mechanisms, it has given us the ability to non-invasively image 

structural, functional, and metabolic features of the body without the risks associated with 

using ionizing radiation. Its ability to provide exquisite contrast of the body’s soft tissues 

has made it an invaluable tool in medicine; this is one of the reasons a poll in 2001 of 

over 200 of the leading internists in the U.S. revealed that MRI and x-ray computed 

tomography (CT) scanning were considered the most important medical innovations for 

patients [1] and that the pioneers of MRI were awarded the Nobel Prize in Physiology or 

Medicine in 2003. 

Despite MRI’s widespread acceptance and use, it is far from being a completely 

understood system and there still are vast amounts of research being conducted on it as a 

technology and on its applications to health and life sciences. One such application is in 

M 
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systems neuroscience, whose principal aim is to reveal how neural circuits and networks 

in the brain lead to perception, thought, and behaviour [2]. The work-horse of this field 

has been blood oxygenation level-dependent functional MRI (BOLD fMRI) [3-5]. 

Variations in the concentration of paramagnetic deoxyhemoglobin (dHb) in blood distort 

the local magnetic field, leading to an altered MR signal in the surrounding tissue. These 

variations in the concentration of dHb arise from a complex combination of 

hemodynamic and metabolic changes in the brain which themselves are triggered by 

neural activity (a process known as neurovascular coupling) [6-13]. BOLD imaging can 

therefore be used to infer changes in neural activity and localize it, allowing researchers 

to non-invasively map functional regions of the brain.  

The ubiquity that functional MRI has seen in neuroscience has, unfortunately, still 

not been achieved in the clinic. A major reason for this being that BOLD fMRI is a 

largely qualitative imaging modality; it has the excellent ability to localize brain activity 

but its ability to quantify is severely limited.  This is because, as mentioned above, the 

BOLD signal depends on the concentration of dHb, which is determined by both 

hemodynamic and metabolic changes, therefore preventing the independent measurement 

of either of these quantities. Consequently, in the clinic, where quantification of 

hemodynamic and metabolic responses in neurological diseases would be of significant 

value, fMRI has not been widely adopted. 

To account for this, a wide array of functional imaging techniques has been 

developed to measure quantifiable physiological properties, such as cerebral blood flow 

(CBF) and blood volume (CBV), blood oxygen saturation (the fraction of hemoglobin in 

blood in the oxygenated state), oxygen extraction fraction (OEF; the ratio of O2 used by 

the brain to the amount delivered by flowing blood), and the cerebral metabolic rate of 

oxygen (CMRO2). Knowledge of these properties in a patient could significantly impact 

the patient’s diagnosis and course of treatment. Additionally, certain neuropathologies, 

such as Alzheimer’s disease [14] and stroke [15, 16], or pharmacological agents [17, 18] 

may dramatically alter neurovascular coupling such that BOLD images alone could 

suggest activation, deactivation, or nothing for a given functional response. By measuring 

CMRO2 and CBF in the brain, the metabolic and hemodynamic changes can be 
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disentangled, allowing for an accurate assessment of the hemodynamic and 

neuroenergetic responses. 

To gain further insights into the quantitative fMRI sequences developed for 

measuring the various physiological parameters, researchers often resort to computer 

simulations. Simulations permit the investigator to build a model of their system and then 

determine how the components of that model will behave under the circumstances of 

interest. In fMRI simulations, the cerebrovasculature is naturally the system to model due 

to its intimate connection with the BOLD signal. Most frequently, it is modelled as a 

collection of randomly oriented, infinitely long cylinders, where each cylinder represents 

a blood vessel [19-27], but it is also possible to use a real vascular map obtained from 

experimental data [28]. Each of the vessels perturbs the static magnetic field in both the 

intravascular (IV) and extravascular (EV) space. Using these models, the MR signal is 

typically derived using either Monte Carlo (MC) methods [19-21, 24, 25, 27], analytical 

equations [9, 29], or deterministic simulations [22, 23, 26, 28]. The MC method 

stochastically simulates the diffusion of individual protons distributed throughout the 

cerebrovasculature and calculates the phase accrued throughout each proton’s history. 

Analytical models do not directly model the cerebrovasculature; instead, they attempt to 

reduce the predicted MR signal to an equation or set of equations that depend on several 

factors, including signal contributions from IV and EV space. Finally, deterministic 

simulations discretize both the cerebrovasculature and the time increment over which the 

system of transverse magnetization evolves.  The process of diffusion, which is 

inherently stochastic, also gets modelled deterministically. 

Deterministic simulations appear to provide an attractive alternative for 

simulating the MR signal due to the potential speed increases over MC simulations and 

the greater level of control and variability over analytical equations; however, to date, 

validation of the method has been lacking in the literature, especially when including 

diffusion. This thesis presents a thorough investigation into the effects of various model 

parameters on the accuracy of the simulations. Validation is performed on a 

homogeneous system void of any blood vessels and also using a realistic distribution of 

blood vessels in a voxel, both with and without diffusion. The thesis breakdown is as 

follows: 



4 
 

Chapter 2 covers the requisite background material for describing the 

deterministic simulations: this includes basic MR theory and brain physiology; building 

from these two topics, the origins of the BOLD signal are described; and finally, other 

numerical and analytical models of the BOLD signal are described for comparison with 

the deterministic model. Chapter 3 gives a detailed description of the deterministic model 

and describes all of the simulations that were run for validating the model. The later 

chapters include the traditional Results, Discussion, and Conclusion sections. 
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Chapter 2 Background 

2.1 MR Theory 

This section covers the basics of MR physics, describing the precession and relaxation of 

nuclear magnetization in the presence of a static magnetic field. Nuclear magnetic 

resonance (NMR) is fundamentally a quantum mechanical process but in most 

applications is adequately characterized using classical mechanics. In this section, a 

largely classical approach is taken to describe the basics of MR theory, however, 

unavoidable quantum mechanical concepts are used as well. 

2.1.1 Nuclear Spin 

For every nucleus with an odd number of nucleons (the total number of protons and 

neutrons), there exists an intrinsic angular momentum known as the spin angular 

momentum, S. Since the nucleus is charged and has an angular momentum, it also has a 

magnetic moment, 𝝁, given by 
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 𝝁 = 𝛾S (2.1) 
 

where 𝛾 is the gyromagnetic ratio of the nucleus. A list of the gyromagnetic ratios of 

some commonly imaged nuclei is given in Table 2.1. The spin angular momentum and 

the magnetic moment can be pictured classically as arising from a charged sphere 

spinning about an axis through its centre. 

Table 2.1: List of the gyromagnetic ratios of commonly imaged nuclear species. 

Nucleus 𝛾
2𝜋

 [MHz/T] 
1H 42.577 
13C 10.705 
19F 40.054 

23Na 11.262 
31P 17.235 

 

2.1.2 Nuclear Spins in a Static Magnetic Field 

When nuclear spins are subjected to a static magnetic field, B0, two things happen: a 

majority of the spins will tend to align with the field and the spins will precess about the 

direction of the field. The former process can be described quantum mechanically by 

considering that the nuclei will preferentially populate the lowest energy state, which in 

this case is when 𝝁 and B0 are parallel. The latter process of precession can be described 

classically by considering the torque acting on a single nucleus due to the static magnetic 

field. This torque, 𝝉, is equal to the time rate of change of the angular momentum and is 

also given by 

Since 𝝁 and S are related by Eq.(2.1), multiplying Eq. (2.2) by 𝛾 results in the following 

 
𝝉 =

𝑑S
𝑑𝑡

= 𝝁 × B0 (2.2) 

 𝑑𝝁
𝑑𝑡

= 𝝁 × 𝛾B0 (2.3) 
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This tells us that the magnetic moment will follow a trajectory that is perpendicular to 

both the direction it and B0 point in and its magnitude will remain constant over time. 

This solution of motion describes precession of 𝝁 about B0 at a frequency given by 

𝜔0 is known as the Larmor frequency, it clearly depends on the nuclear species being 

studied and it is dependent on the field strength. 

When considering a system of nuclei in a volume V, as is the case when imaging 

an object, the sum of the individual magnetic moments per unit volume gives the net 

magnetization 𝑴 of the system: 

Due to the linearity of Eq. (2.3), the net magnetization follows the same relation as the 

individual magnetic moments, that is 

Therefore, the net magnetization also precesses about B𝟎 at the Larmor frequency. 

In comparison to the magnitude of the static magnetic field, the field produced by 

the net magnetization in the direction of B𝟎 is negligible and very difficult to measure 

directly. In order to detect this magnetization, it first gets excited from the longitudinal 

direction (parallel to B0) into the transverse plane (perpendicular to B0) by applying 

another magnetic field, B1, for a short duration of time along the transverse direction and 

rotating at the Larmor frequency. At this stage, the magnetization will precess about B0 at 

the Larmor frequency and it can be easily detected by electromagnetic induction. 

 𝜔0 = 𝛾𝐵0     in rad ⋅ s−1 

𝑓0 =
𝛾

2𝜋
𝐵0  in Hz (2.4) 

 𝑴 =
1
𝑉

� 𝝁𝒊
nuclei in 𝑉

 (2.5) 

 𝑑𝑴
𝑑𝑡

= 𝑴 × 𝛾B𝟎. (2.6) 
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2.1.3 Relaxation 

In addition to precession about B0, once excited into the transverse plane by the B1 field, 

the net magnetization will return to equilibrium along the longitudinal direction via 

relaxation by two different mechanisms: spin-lattice relaxation causes the longitudinal 

magnetization, 𝑀𝑧 , to regrow until it reaches its equilibrium value 𝑀0 ; spin-spin 

relaxation causes the transverse magnetization, 𝑀𝑥𝑦, to decay away to zero. 

Longitudinal relaxation is caused by the extra energy imparted to the proton spin 

system 1

(2.7)

 by the radiofrequency (RF) excitation being dissipated into the surrounding 

tissue’s molecular lattice (hence the term spin-lattice relaxation). Phenomenologically, 

longitudinal magnetization regrows exponentially to the equilibrium magnetization with a 

time constant 𝑇1 and can be described by Eq. . 

which, for start time 𝑡0, has the solution 

The decay of the transverse magnetization is the result of dephasing of the 

individual magnetic moments. This dephasing is caused by the interactions of 

neighbouring spins that create microscopic inhomogeneities in the static field, which 

therefore alter the local Larmor frequency of precession. Transverse relaxation can be 

described phenomenologically by exponential decay with a time constant 𝑇2: 

which, for start time 𝑡0, has the solution 

                                                 
1 Hydrogen nucleus or proton will be used instead of the generic term nuclear species since this 

thesis focuses on hydrogen imaging. 

 𝑑𝑀𝑧

𝑑𝑡
= −

𝑀𝑧 −𝑀0

𝑇1
, (2.7) 

 𝑀𝑧(𝑡) = 𝑀0�1 − 𝑒−(𝑡−𝑡0) 𝑇1⁄ � + 𝑀𝑧(𝑡0)𝑒−(𝑡−𝑡0) 𝑇1⁄ . (2.8) 

 𝑑𝑀𝑥𝑦

𝑑𝑡
= −

𝑀𝑥𝑦

𝑇2
, (2.9) 

 𝑀𝑥𝑦(𝑡) = 𝑀𝑥𝑦(𝑡0)𝑒−(𝑡−𝑡0) 𝑇2⁄  (2.10) 
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In reality, 𝐵0 is never completely homogeneous due to hardware limitations and 

variations in tissue susceptibilities. Static field inhomogeneities lead to a distribution of 

precessional frequencies in the tissue, which in turn leads to quicker dephasing of the 

transverse magnetization. This can also be described by exponential decay with an 

apparent transverse decay time constant 𝑇2∗  given by intrinsic (𝑇2) and extrinsic (𝑇2′) 

contributions: 

where 𝑅2∗ is the apparent transverse relaxation rate, 𝑅2 is the irreversible component of 

the transverse relaxation rate, and 𝑅2′  is the reversible component of the transverse 

relaxation rate2

2.1.4 Bloch Equations 

. 

By combining Eqs. (2.6), (2.7), and (2.9), the time evolution of the magnetization can be 

described in what are known as the Bloch equations (represented here in vector form as a 

single equation): 

where 𝑀𝑥 and 𝑀𝑦 are the x- and y-components of 𝑴, respectively. Note that B0 in Eq. 

(2.6) is replaced in the equation above by B since multiple fields can be applied in 

addition to B0. Therefore, the Bloch equations describe both the precession of the nuclear 

magnetization about any arbitrary magnetic field – represented by the cross-product – and 

the relaxation of the longitudinal and transverse nuclear magnetization—represented by 

the 𝑇1  and 𝑇2  terms. To simplify the analysis greatly, typically the equations are 

                                                 
2 It is referred to as the reversible component because it is possible with a spin echo sequence to 

refocus the dephasing that occurs due to the static field inhomogeneities. 

 1
𝑇2∗

=
1
𝑇2

+
1
𝑇2′

 

1
𝑇2∗

= 𝑅2∗ = 𝑅2 + 𝑅2′  

or (2.11) 

 𝑑𝑴
𝑑𝑡

= 𝑴 × 𝛾B−
𝑀𝑥𝒙� + 𝑀𝑦𝒚�

𝑇2
−
𝑀𝑧 −𝑀0

𝑇1
𝒛� , (2.12) 
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evaluated from a frame of reference rotating at the Larmor frequency, such that the B0 

field disappears. 
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2.2 Brain Physiology 

Neurons are the primary cells of all animals’ nervous systems. They are uniquely shaped 

cells whose role is to transmit and receive electrical signals across the body in order to 

control the body’s functions. A model neuron is illustrated in Figure 2.1. Incoming 

electrical signals are first received by dendrites – thin, branched processes that carry the 

signal to the cell body. The incoming signals are then processed in the cell body where 

they will either be propagated or they will die. Neurons also have a single branching axon 

extending outward from the cell body that carries outgoing signals. Finally, at the ends of 

the axon branches are axon terminals, which contact dendrites or cell bodies of other cells 

(neurons or otherwise) forming synapses. In the brain, the cell bodies and synapses are 

primarily concentrated in grey matter (GM) but their axons can pass through white matter 

connecting remote regions of GM and forming complex neural networks. 

 

Figure 2.1: Schematic of a neuron containing a cell body that processes incoming signals, 
multiple dendrites that receive incoming graded potentials, a single axon that transmits action 
potentials, and axon terminals that transmit the electrical signal. Adapted from [30]. 

2.2.1 Membrane Potential, Graded Potentials, and Action Potentials 

In all neurons, a potential difference exists across the cell membrane; it is produced by an 

unequal distribution of ions in the intra- and extra-cellular spaces. The principal ions 

involved in this are Na+, K+, Cl-, and Ca2+. In the basal state, the membrane potential is 

approximately  -70 mV (where the inside of the cell is at the more negative potential) and 
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it is influenced by the concentration gradient of ions across the membrane and the 

permeability of the membrane to the ions. 

When a neuron receives a signal from another neuron, the membrane potential is 

the physiological property that gets altered. Ion channels across the membrane open and 

close in a coordinated fashion allowing ions to flow in or out of the cell depending on the 

concentration and electrical gradients of the ions. The input signals arrive in the dendrites 

or cell body and they can be depolarizing (potential difference becomes less negative) or 

hyperpolarizing (potential difference becomes more negative). The amplitudes of such 

polarizations, known as graded potentials, are dependent on the strength of the triggering 

event and they diminish with distance. When a graded potential is produced, a wave of 

polarization travels through the cell and reaches the trigger zone near the origin of the 

axon. At the trigger zone, if a polarization threshold is reached (approximately -55 mV), 

an action potential (described in the next paragraph) is produced in the cell; otherwise, 

the graded potential dies away. Graded potentials are additive, therefore the cell can 

integrate multiple inputs simultaneously. 

Signal transmission from a neuron starts at the trigger zone – where an action 

potential is first produced – and travels down the axon. Action potentials, also known as 

spikes, are rapid depolarizing events of approximately 100 mV amplitude that differ from 

graded potentials in two major ways: action potentials are identical to each other for each 

neuron and they do not diminish in strength as they travel through the cell. Referring to 

Figure 2.2, the typical steps in an action potential are [31]: 

1. A depolarizing stimulus reaches the trigger zone. 

2. The membrane potential depolarizes to threshold, voltage-gated Na+ 

channels open causing Na+ ions to enter the cell. Voltage-gated K+ 

channels begin to open slowly. 

3. Rapid Na+ entry depolarizes the cell. 

4. Na+ channels close and slower K+ channels open. 

5. K+ exits the cell. 

6. K+ channels remain open and K+ continues to leave the cell leading to a 

hyperpolarization. 
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7. As K+ channels close, some K+ leaks back into the cell. 

8. The region returns to its resting ion permeability and membrane potential. 

 

Figure 2.2: The evolution of an action potential over time. The steps are described in the text. 
Adapted from [30]. 

The onset of the action potential at the trigger zone raises the membrane potential 

where the axon originates and initiates a cascade of action potentials that travels down the 

axon towards the axon terminal. Unlike graded potentials, the magnitude and form of an 

action potential is the same regardless of the strength or duration of the stimulus. To 

encode the stimulus strength and duration, the spiking frequency is modulated in 

proportion to the two, i.e., a stronger or longer duration input will produce a train of more 

closely packed action potentials. 

When the action potential arrives at the axon terminal, the signal can either be 

transmitted directly across the synapse at an electrical synapse or it can be transmitted to 

the next cell using neurotransmitters at a chemical synapse. In a chemical synapse, 

voltage-gated Ca2+ ion channels open up when the action potential arrives, creating an 

influx of Ca2+ ions. The influx of Ca2+ triggers the release of neurotransmitters into the 

synaptic cleft. The neurotransmitters then bind to receptors on the post-synaptic cell, 

where a response is initiated. 
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2.2.2 Neurovascular Coupling 

From a thermodynamic perspective, neural signalling is an energetically downhill process 

[32] since the system is maintained far from equilibrium and allowed to approach closer 

to equilibrium during signalling. Returning the neuronal ionic gradients to their basal 

levels requires energy metabolism, this is fueled by adenosine triphosphate (ATP) 

consumption and the ATP is replenished by oxidative metabolism of glucose. 

 The brain does not have large reserves of glucose or oxygen however, requiring 

the two to be constantly delivered to the brain through the blood supply. Glucose is 

dissolved in plasma and it diffuses down its gradient from blood into tissue when it enters 

the capillary bed. Oxygen, on the other hand, has very low solubility in plasma; to 

compensate, the vast majority of O2 is transported bound to hemoglobin in red blood 

cells. Although the amount of O2 dissolved in plasma is negligible compared to the 

amount bound to hemoglobin, it is the source of O2 for tissue. Once in the capillary bed, 

the O2 dissolved in plasma diffuses out of the vessel into the tissue. This diffusion is 

driven by the partial pressure of O2 gradient between plasma and tissue. The O2 

molecules diffusing out of plasma are rapidly replenished by hemoglobin-bound O2, 

allowing for a substantial amount of O2 transfer from blood to tissue. It has been found 

using positron emission tomography (PET) studies that the oxygen extraction fraction in 

humans is approximately 40% in the resting state and is fairly constant across the healthy 

brain [33]. With the use of a variety of imaging techniques, it has been well established 

that cerebral blood flow (CBF), the cerebral metabolic rate of glucose (CMRGlc), and the 

cerebral metabolic rate of oxygen (CMRO2) all increase in activated regions of the 

healthy brain [34, 35]. 

Given the neuronal demands for glucose and O2, there must be a mechanism for 

affecting the vasculature when neural activity is increased. In addition to neuronal cells, 

the brain is populated by a large number of support cells called glial cells. These cells 

account for almost half of the cells in the brain and were originally thought to serve as a 

structural scaffold [36]. Astrocytes are a type of glial cell that have numerous processes in 

contact with both neuronal synapses and blood vessels and may transfer nutrients 

between the two [31]. There is now significant evidence that astrocytes play a pivotal role 
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in coupling the control of cerebral blood flow (CBF) with neuronal activity [37]. Upon 

neuronal activation, neurotransmitters can bind to receptors on the astrocyte leading to 

ion transfers within the astrocyte and at its processes near arterioles. Upon interaction 

with the ions, the smooth muscle surrounding the arteriole can relax or contract, therefore 

controlling the CBF by controlling the arteriolar diameter. This relationship between 

neuronal activity, energy metabolism, and CBF is known as neurovascular coupling and 

it provides the physiological foundation for most functional neuroimaging.  
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2.3 Origins of the BOLD Signal 

So far, much of the discussion has focussed on the basis of MRI and the physiological 

changes occurring during neural signalling, but how can the former be made sensitive to 

the latter? For this to be clear, it is important that the physiological properties and their 

relationships be formally defined. 

2.3.1 CBF, CBV, and CMRO2 

CBF is defined as the rate of delivery of arterial blood to the capillary beds of a particular 

mass of tissue. Its units are mL blood per 100 g of tissue per min but since in imaging it 

is easier to determine the tissue volume rather than mass, CBF is often given in units of 

mL blood per 100 mL tissue per min. CBF and CMRO2 are fundamentally linked through 

the Fick Principle expressing the conservation of mass: 

where OEF is the oxygen extraction fraction and [O2]𝑎 is the arterial concentration of O2. 

The product CBF ⋅ [O2]𝑎  gives the rate of O2 delivery to the capillary bed; therefore, 

CMRO2 represents the rate of O2 extraction from the capillary bed. The units of CMRO2 

are moles of O2 per 100 g (or 100 mL) per min. 

 The cerebral blood volume (CBV) is the fraction of tissue volume occupied by 

blood vessels and it is a dimensionless quantity (mL blood per mL tissue). The typical 

CBV in GM is approximately 4% [38]. CBV can be further broken down into the 

different vascular components: arterial (CBVa), capillary (CBVc), and venous (CBVv), 

where CBVa has been estimated to be about 20% and CBVc and CBVv being in the range 

of 30% – 50%  (such that the total of the three adds up to 100%) [39-41]. 

The flow of blood through vessels is chiefly dependent on two things: the 

pressure difference between arterial and venous blood and the blood’s resistance to flow, 

such that 

 CMRO2 = OEF ⋅ CBF ⋅ [O2]𝑎, (2.13) 
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where Δ𝑃  is the pressure difference and CVR is the cerebrovascular resistance. For 

purely laminar flow, CVR is given by the Hagen-Poiseuille law, which states that 

where 𝑟 is the vessel radius [42]. Combining Eqs. (2.14) and (2.15) and noting that CBV 

is proportional to 𝑟2, it can be shown that CBV and CBF have a power-law relationship: 

The exponent 𝛼  is used because in reality the flow is not perfectly laminar and also 

because vessel dilations and contractions are not constant along the entire vascular tree3

43

. 

As a result of all these factors, determining 𝛼 from first principles is not straightforward, 

however it has been determined empirically from PET studies with monkeys to be 0.38 

[ ]. 

2.3.2 Modelling the BOLD Signal 

As described in Section 2.2.2, most O2 is transported by blood and bound to hemoglobin. 

More precisely, hemoglobin is a large protein complex, which can carry up to four O2 

molecules. It consists of four polypeptide chains, each one with a prosthetic heme group 

bound to it [44]. At the centre of each heme group is an iron ion in the ferrous oxidation 

state (Fe2+) that is capable of binding O2.  The binding of O2 to iron substantially 

rearranges the electrons in the ion leading to a conformational change of the hemoglobin 

molecule. This electronic rearrangement is paralleled by a change in the volume 

susceptibility of hemoglobin, switching from being paramagnetic in the deoxygenated 

state to diamagnetic in the oxygenated state [45] (with a similar volume susceptibility as 

tissue [46]). Thus, depending on the blood oxygenation level, the susceptibility of blood 

will be different than the surrounding tissue’s. Where susceptibilities differ, offsets in the 
                                                 
3 When the arteriole diameter increases, a stronger driving pressure on the downstream vessels 

causes the capillaries and venules to passively dilate. 

 
CBF =

Δ𝑃
CVR

, (2.14) 

  CVR ∝ 1 𝑟4⁄  (2.15) 

 CBV
CBV0

= �
CBF

CBF0
�
𝛼

. (2.16) 
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B0 field arise and lead to quicker dephasing of the transverse magnetization, as described 

in Section 2.1.3. 

Intuitively, one might imagine that if CMRO2 and CBF both increased to meet the 

increased metabolic demands during neural signalling, that either the venous 

concentration of dHb ([dHb]v) would remain constant or it would increase due to 

increased O2 consumption. If [dHb]v remained constant, there would be no change in 𝑅2∗ 

and therefore no BOLD effect. If [dHb]v increased, 𝑅2∗ would increase and therefore the 

signal would decrease. Contrary to intuition, there is a significantly larger increase in 

CBF than in CMRO2 resulting in a decrease in [dHb]v, a decrease in 𝑅2∗, and, therefore, 

an increase in the measured BOLD signal [3-5]. 

These changes in 𝑅2∗  can be modelled by considering 𝑅2∗  to be composed of a 

component that includes all the effects due to dHb (𝑅2∗dHb) and another component that 

accounts for all other effects (𝑅2∗other) [11]: 

It was found using Monte Carlo simulations that 𝑅2∗dHb  was dependent on CBV and 

[dHb]v [35]: 

where 𝑘  is a field strength and sample-specific constant of proportionality and 𝛽  is a 

factor that accounts for the IV and EV contributions to the BOLD signal. 𝛽  is field 

strength-dependent and was determined by Monte Carlo simulations at 1.5 T to be 1.5 

[20] and more recently, studies at 3 T have empirically determined it is 1.3 [47]. If the 

“other” sources contributing to 𝑅2∗  remain constant under activation, the change in 𝑅2∗ 

away from baseline can be expressed as 

where the subscript ‘0’ represents the value at baseline. 

 𝑅2∗ = 𝑅2∗dHb + 𝑅2∗other. (2.17) 

 𝑅2∗dHb = 𝑘 ⋅ CBV ⋅ [dHb]𝑣
𝛽 , (2.18) 

 Δ𝑅2∗ = 𝑘�CBV ⋅ [dHb]𝑣
𝛽 − CBV0 ⋅ [dHb]𝑣,0

𝛽 �, (2.19) 
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This model of transverse relaxation can be incorporated into the basic signal 

equation that applies during gradient echo imaging: 

where A is a catch-all constant that depends on spin density, flip angle, field strength, 

receiver sensitivity, etc. and TE is the echo time. Under neuronal activation, small signal 

changes occur and by taking up to the first order term in the Taylor expansion of Eq. 

(2.20), the relative signal change can be approximated as 

The factor M out front of Eq. (2.21) is known as the BOLD calibration constant. 

Under the assumption that all O2 in blood is bound to hemoglobin with four O2 

molecules per molecule of hemoglobin, [dHb]v can be approximated as [dHb]𝑣 ≈

OEF ⋅ [O2]𝑎 4⁄ . Combining this with the Fick Principle in Eq. (2.13) and the fact that 

[O2]a is essentially a constant, the ratio of [dHb] in the activated state to baseline is given 

by 

Combining this last result with Eq. (2.21) gives the biophysical model of the BOLD 

equation: 

 𝑆 = 𝐴𝑒−TE⋅𝑅2∗ , (2.20) 

 Δ𝑆
𝑆
≅ −TE ⋅ Δ𝑅2∗ 

= 𝑘 ⋅ TE�CBV0 ⋅ [dHb]𝑣,0
𝛽 − CBV ⋅ [𝑑𝐻𝑏]𝑣

𝛽� 

= 𝑘 ⋅ TE ⋅ CBV0 ⋅ [dHb]𝑣,0
𝛽 �1 −

CBV
CBV0

�
[dHb]𝑣

[dHb]𝑣,0
�
𝛽

� 

= 𝑀�1 −
CBV
CBV0

�
[dHb]𝑣

[dHb]𝑣,0
�
𝛽

� . 

 

(2.21) 

 𝑀 ≡ 𝑘 ⋅ TE ⋅ CBV0 ⋅ [dHb]𝑣,0
𝛽  (2.22) 

 [dHb]𝑣
[dHb]𝑣,0

=
CMRO2

CMRO2,0

CBF0
CBF

.  (2.23) 

 Δ𝑆
𝑆

= 𝑀�1 −
CBV
CBV0

�
CBF
CBF0

�
−𝛽

�
CMRO2

CMRO2,0
�
𝛽

�. (2.24) 
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Finally, this Eq. (2.24) can be further simplified using the power-law relationship 

between CBF and CBV in Eq. (2.16): 

 It was mentioned above that 𝛼 was determined by PET imaging to be 0.38 [43], 

however, this value was measured for changes in CBV and CBF throughout the entire 

microvascular tree (arterioles, capillaries, and venules) but since BOLD imaging depends 

on the concentration of dHb, this makes it much more sensitive to the changes occurring 

in the venules and capillaries (and in the arterioles to a much lesser extent since arterial 

blood is almost completely oxygenated). As a result of this, 𝛼 was measured again using 

MR methods that are sensitive to the deoxygenated CBV (dCBV) and a new value of 

approximately 0.2 was found [48, 49].  

 By reordering the terms in Eqs. (2.24) or (2.25), it is possible to express the 

relative change in CMRO2 in terms of the relative BOLD signal changes, CBF and/or 

CBV changes, and the calibration constant M. Several techniques have been proposed for 

measuring the calibration constant and this was the motivating factor for investigating 

computer simulations of BOLD fMRI. By knowing the physiological ground truth 

defined by the simulation parameters, it would be possible to perform an absolute 

comparison of the different calibration techniques under a variety of circumstances. 

Calibration techniques have employed hypercapnic and/or hyperoxic gas challenges to 

modulate [dHb]v or CBF without affecting CMRO2 [11, 35, 50, 51]. This can be both 

cumbersome for the technicians/researchers and uncomfortable for the subjects but a 

recently proposed technique removes the necessity of gas challenges by using a baseline 

measurement of 𝑅2′  to estimate M [52]. It was specifically this latter technique that 

motivated the use of the simulations, therefore measurement of 𝑅2′  is often used 

throughout this thesis as a metric for comparison.  

 Δ𝑆
𝑆

= 𝑀�1 − �
CBF
CBF0

�
𝛼−𝛽

�
CMRO2

CMRO2,0
�
𝛽

�. (2.25) 



21 
 

2.4 Numerical Simulations of BOLD fMRI 

Since the early days of BOLD imaging, researchers have been using simulations to probe 

the origins of the effect [19, 20] and many of the advances in fMRI have been made 

because of the results obtained from simulations. For numerically modelling the BOLD 

signal, there have been three major methods employed: Monte Carlo (MC) simulations, 

analytical models, and deterministic simulations. Analytical models are unique from the 

other two techniques in that they do not calculate the history of the transverse 

magnetization, instead they can directly compute the BOLD signal at any time from a 

pre-determined functional form of the signal. MC and deterministic simulations, on the 

other hand, compute the transverse magnetization’s history throughout time. 

MC methods and some analytical models of the BOLD signal are briefly 

presented here while deterministic simulations are described in more detail in Chapter 3. 

But first, molecular diffusion is described since it is a fundamental factor contributing to 

the decay of transverse magnetization. By the process of diffusion through an 

inhomogeneous B0 field, protons accrue irreversible phase over time that results in 

additional loss of signal. 

2.4.1 Molecular Diffusion Theory 

The original theory of molecular diffusion was developed by Fick in 1855 and was used 

to describe the flux of molecules (J) in a molecular concentration gradient (∇𝐶); Fick’s 

first law of diffusion is [53] 

where the diffusion coefficient, D, is a constant of proportionality. By combining Eq. 

(2.26) with the conservation of mass law, 

 J = −𝐷∇𝐶, (2.26) 

 𝜕𝐶
𝜕𝑡

= ∇ ⋅ J, (2.27) 
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and assuming D is constant, we get Fick’s second law of diffusion: 

Eq. (2.28) has many solutions depending on the initial conditions and the boundary 

conditions. For particles satisfying the boundary condition 𝐶(|r| → ∞, 𝑡) = 0 and the 

initial condition 𝐶(r, 𝑡 = 0) = 𝛿(r − r0), known as free self-diffusion since there are no 

boundaries and no concentration gradient driving the diffusion, the solution for the 

evolution of the concentration over time and space in three dimensions is 

From this expression, one can see that the distribution of the concentration due to self-

diffusion is a normalized Gaussian function with a variance 𝜎2 = 2𝐷𝑡, meaning its width 

increases in time. 

When interested in the movement of individual molecules, it was Einstein who 

made the connection between the concentration distribution and the probability of a 

molecule diffusing a particular distance [54]. The probability P of a molecule starting at 

position r0 and moving to an infinitesimal volume dV located at r obeys the same rules as 

the concentration distribution above and is therefore given by 

It can be seen that the probability only depends on the net displacement, R = r − r0, of 

the molecule, so it is convenient to define 

 One can also determine the probability distribution along a single dimension by 

rewriting Eq. (2.30) in Cartesian coordinates and by integrating out two of the 

dimensions. The probability, therefore, of self-diffusion a distance X along the x-axis, is 

 𝜕𝐶
𝜕𝑡

= −𝐷∇2𝐶. (2.28) 

 
𝐶(r, 𝑡) =

1

 (4𝐷𝑡)3 2�
exp �−

(r− r0) ⋅ (r− r0)
4𝐷𝑡

�. (2.29) 

 
𝑃(r|r0, 𝑡)𝑑𝑉 =

𝑑𝑉

 (4𝐷𝑡)3 2�
exp �−

(r− r0) ⋅ (r − r0)
4𝐷𝑡

�. (2.30) 

 𝑃(R, 𝑡) ≡ 𝑃(r|r0, 𝑡). (2.31) 
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Given the probability for a molecule’s displacement, it is possible to determine 

the different moments of the distribution. Clearly, the first moment is zero, which 

represents the fact that the molecule is equally likely to diffuse in all directions since this 

is free self-diffusion. However, the second moment, the mean square diffusion distance, 

is 

This dependence of the mean square diffusion distance on D suggests a method 

for directly probing the diffusivity of a medium and is in fact the basis for diffusion MRI 

[53]. In vivo, diffusion is restricted, so the measured diffusion coefficient is referred to as 

the apparent diffusion coefficient (ADC). Table 2.2 gives a list of some typical ADCs of 

different brain tissues measured by diffusion MRI. 

Table 2.2: Apparent diffusion coefficient (ADC) values for brain tissues. Values from [55]. 

Tissue Type ADC (mm2/ms) 
   Cerebrospinal fluid 2.94 ± 0.05 
   Grey matter 0.76 ± 0.03 
White matter  
   corpus callosum 0.22 ± 0.22 
   axial fibres 1.07 ± 0.06 
   transverse fibres 0.64 ± 0.05 

 

 

 The theory above described the probability of a single molecule’s diffusion; when 

considering an ensemble of molecules, the total probability, Ψ(r, 𝑡) , of finding a 

molecule with position r after time interval t, is given by the integral of each individual 

particle’s probability of self-diffusion weighted by the initial distribution of particles, 

𝜌(r) [56]: 

 
𝑃(𝑋, 𝑡)𝑑𝑥 =

𝑑𝑥

 (4𝐷𝑡)1 2�
exp �−

𝑋2

4𝐷𝑡
�. (2.32) 

 〈𝑋2〉 = 2𝐷𝑡    in 1D 
〈R𝟐〉 = 6𝐷𝑡    in 3D. (2.33) 
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Using 𝜌(r) = 𝛿(r− r𝟎) like above, Ψ(r, 𝑡) reduces to 𝑃(r|r𝟎, 𝑡). Therefore, the ensemble 

moments are exactly the same as the individual molecules’ moments. 

The Bloch-Torrey Equation 

The phenomenological Bloch equations, described in Section 2.1.4, can be extended to 

include the effects of diffusion. This modification, suggested by Torrey, adds a diffusion 

term to the description of the transverse magnetization after a 90o excitation and is known 

as the Bloch-Torrey equation [57]: 

In this form, Eq. (2.35) looks slightly different from the Bloch equations presented in Eq. 

(2.12): the first term in parentheses represents the precession of Mxy in the static field B0 

as well due to any additional gradients (G) in the z-component of the magnetic field 

experienced by a spin at position r; the second term is the T2 decay; and the third term 

describes the diffusion. 

2.4.2 Monte Carlo Simulations 

MC simulations are the gold standard for MRI simulations because they provide low-

level control of the underlying physics including the temporal and spatial dynamics of the 

system. The physics for modelling the BOLD effect is simple: protons diffusing through 

an inhomogeneous magnetic field acquire phase differences relative to each other leading 

to a reduced macroscopic transverse magnetization and signal. 

The model for producing the field perturbations varies from study to study but the 

vast majority of studies use an infinite cylinder model [19-27]. In this model, blood 

vessels are represented as infinite cylinders of uniform volume susceptibility, which is 

dependent on the blood oxygen saturation (SbO2) and the hematocrit (Hct) – the fractional 

volume of blood occupied by hemoglobin. Assuming that the volume susceptibility of 

 Ψ(r, 𝑡) = �𝜌(r′)𝑃(r|r′, 𝑡)𝑑r′. (2.34) 

 𝜕𝑀𝑥𝑦

𝜕𝑡
= −𝑖(𝜔0 + 𝛾G ⋅ r)𝑀𝑥𝑦 −

𝑀𝑥𝑦

𝑇2
+ 𝐷∇2𝑀𝑥𝑦 (2.35) 
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fully oxygenated blood is the same as tissue’s, then the susceptibility difference between 

the cylinder and the surrounding medium (tissue) is equal to Δ𝜒𝑑𝑜⋅Hct⋅(1− S𝑏O2) , 

where Δ𝜒𝑑𝑜 is the susceptibility difference between fully deoxygenated blood and fully 

oxygenated blood. Based on the orientation of the blood vessel relative to B0 and the 

susceptibility difference between the vessel and the surrounding medium (tissue), the 

field offset, Δ𝐵𝑧, in the z-direction is given by [19] 

 

 

Figure 2.3: Geometry used to describe the field offsets produced by an infinite cylinder 
susceptibility variation (a) (adapted from [22]). Field offset produced by a cylinder oriented 
perpendicularly to the B0 field (b), where grey to black is increasingly negative and grey to white 
is increasingly positive. 

Referring to Figure 2.3a, the angle between the cylinder and B0 is 𝜃, the radius of 

the cylinder is a, and the perpendicular distance from the cylinder axis to the point of 

interest is r. 𝜙 is the angle between the vector from the cylinder axis to the point of 

interest and the component of B0 on the plane perpendicular to the cylinder. A 

characteristic dipole-like field offset is produced by the cylinder (see Figure 2.3b). Due to 

 
Δ𝐵𝑧 = Δ𝐵𝑧′ × �

�
𝑎
𝑟
�
2

sin2(𝜃) cos(2𝜙)   outside cylinder

cos2(𝜃) − 1 3⁄  inside cylinder

� (2.36) 

 where   Δ𝐵𝑧′ ≡ 2𝜋Δ𝜒𝑑𝑜Hct(1 − S𝑏O2)𝐵0.  

     (a)              (b) 
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the property of superposition, the net field offset at a given point is the sum of the field 

offsets at that point from all vessels. 

 The typical steps of a 3D MC simulation are briefly summarized here [21, 24, 58]: 

 1. On the order of 104 protons are randomly placed throughout a voxel filled with 

homogeneously and randomly oriented blood vessels (cylinders) occupying a fractional 

volume CBV. Protons can be seeded in both the EV and IV space, however, vessels are 

typically considered impenetrable. The magnetic moments of all the protons are initially 

coherent and of unit magnitude. 

2. In short time steps (𝛿𝑡 ~ 0.2 ms) the position of each proton is displaced in the 

x-, y-, and z-directions. The diffusion distance is randomly sampled in each direction 

from independent, 1D, zero-mean Gaussian distributions with 𝜎2 = 2𝐷𝛿𝑡  (as in Eq. 

(2.32)). 

3. At each step in the proton’s diffusion, the net field offset is calculated using Eq. 

(2.36) for each vessel. The phase accumulated by the n-th proton during each step is 

given by 

4. By expressing the transverse component of each proton’s magnetic moment as 

a rotation in the complex plane (𝑒−𝑖Δ𝜙𝑛), the total signal at each step, S(t), is computed by 

summing over all N protons’ moments: 

5. Steps 1-4 are repeated up to the echo time (TE). 

6. In the case of a spin echo (SE) sequence, the sign of the phase is flipped for 

each proton after the 180o excitation step at TE/2. 

Note that in this model, the magnitudes of the individual protons’ magnetic 

moments remain constant (i.e. T2 decay is ignored), the attenuation is due solely to the 

susceptibility-induced dephasing. 

 Δ𝜙𝑛(𝑡) = 𝛾Δ𝐵𝑧𝛿𝑡. (2.37) 

 
𝑆(𝑡) =

1
𝑁
�𝑒−𝑖𝜙𝑛(𝑡)
𝑁

𝑛=1

. (2.38) 
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2.4.3 Analytical Models of the BOLD Signal 

The results from the array of MC simulations performed have led to the development of 

different analytical models of the BOLD signal and they have also been helpful in 

validating newly proposed models. This is exemplified in a recent model of the BOLD 

signal equation by Griffeth and Buxton [9] in which the signal is composed of separate 

contributions from IV and EV compartments and the IV component is further broken 

down into arterial, capillary, and venous contributions. Empirically derived equations for 

the EV transverse relaxation rates were taken from the MC results of Ogawa, et al. [19] 

and empirically derived equations for the IV transverse relaxation rates were taken from 

experimental measurements [59]. 

 This model and others like it can oversimplify the signal behaviour by, for 

example, considering only the signal magnitude or assuming mono-exponential decay for 

each component. By tackling the problem from a more theoretical approach, it can be 

possible to reproduce more of the intricacies of the signal behaviour. 

The Yablonskiy & Haacke Model of NMR Signal Behaviour 

By considering only the attenuation due to sources of susceptibility variation, like in the 

MC simulations, Yablonskiy and Haacke undertook a rigorous theoretical study of the 

NMR signal [60]. This seminal work explored the theoretical NMR signal behaviour in 

the presence of tissue inhomogeneities, including blood vessels. Using a statistical 

approach, they were able to derive analytical solutions for 𝑅2′  resulting from a variety of 

sources/geometries of susceptibility perturbations occupying an otherwise homogeneous 

volume of tissue. All analysis was performed where the NMR signal was in the static 

dephasing regime (SDR). This is where magnetic moment dephasing due to local 

differences in nuclear frequencies is much faster than the time it takes for diffusion to 

average out the phases of the different nuclei [60]. This regime can be formally defined 

by 

 𝛿𝜔 ⋅ 𝜏𝐷 ≫ 1, (2.39) 
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where the characteristic frequency, 𝛿𝜔 , is the frequency offset resulting from the 

magnetic field at the “equator” of the field-creating particle4

Figure 2.3

, i.e., at the surface of the 

cylinder where 𝑟 = 𝑎 and 𝜙 = 0° in . The diffusive correlation time, 𝜏𝐷, is the 

approximate time a water molecule would take to diffuse past the field perturber: 

In the SDR, spins are subjected to a constant frequency offset determined by Eq. 

(2.36). By assuming that the number of cylinders was ≫ 1 and by averaging over all 

possible cylinder orientations and then averaging over the voxel volume (assuming the 

volume of the cylinders was negligible), Yablonskiy and Haacke derived the following 

signal equation: 

In Eq. (2.41), k a catch-all factor, 

and the characteristic frequency is given by 

In Eq. (2.42), 𝐽0 is the zeroth order Bessel function. 

Asymptotic and numerical calculations suggested two separate behaviours for Eq. 

(2.41) under short and long time scales: 

                                                 
4 The term “particle” is used here because the theory was originally developed for sources of 

inhomogeneity that were spherical particles. 

 
𝜏𝐷 =

𝑎2

𝐷
. (2.40) 

 𝑆(𝑡) = 𝑘(1 − dCBV)⋅exp�−dCBV ⋅ 𝑓𝑐�(𝛿𝜔 ⋅ 𝑡)�, (2.41) 

 
𝑓𝑐�(𝑥) =

1
3
� 𝑑𝑢 ⋅ (2 + 𝑢) ⋅ √1 − 𝑢 ⋅

1 − 𝐽0 �
3
2 𝑥 ⋅ 𝑢�
𝑢2

,
1

0
 (2.42) 

 
𝛿𝜔 =

4
3
𝛾𝜋Δ𝜒𝑑𝑜Hct(1 − S𝑏O2)𝐵0. (2.43) 

 𝑆(𝑡)

= �
𝑘(1 − dCBV) ⋅ exp[−0.3 ⋅ dCBV ⋅ (𝛿𝜔 ⋅ 𝑡)2],    𝛿𝜔 ⋅ 𝑡 < 1.5

𝑘(1 − dCBV) ⋅ exp[−𝑅2′ ⋅ |𝑡 − 1 𝛿𝜔⁄ |],    𝛿𝜔 ⋅ 𝑡 > 1.5
�  (2.44) 
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where 

In a SE sequence, the long time scale signal can be broken down into three time 

domains: (A) the free induction decay (FID) prior to the 180o RF pulse, (B) the rephasing 

between the 180o and the SE, and (C) the resumed FID after the SE. This is illustrated in 

Figure 2.4 and is mathematically described by 

where 𝑡𝑐 = 1 𝛿𝜔⁄  is the characteristic time and 𝑆(0) and 𝑆′(0) both represent the initial 

signal, however, the prime is included to account for imperfect RF refocusing [23]. In 

simulations, RF refocusing is typically assumed to be perfect so 𝑆(0) = 𝑆′(0). Intrinsic 

T2 decay can be accounted for by simply multiplying Eqs. (2.41), (2.44), and (2.46) by 

𝑒−𝑡 𝑇2⁄ . 

 Looking at Eq. (2.46), it is evident that both dCBV and 𝑅2′  can be determined by 

fitting a spin echo time series in either the (A) and (B) time domains (i.e. about the 

refocusing pulse) or the (B) and (C) time domains (i.e. about the SE). If in each time 

domain the log of the signal is linearly fit by an equation of the form 𝑚†𝑡 + 𝑏†, where † 

is a place holder for A, B, or C, then 𝑅2′  is given by 

and dCBV is given by 

 

 
𝑅2′ = dCBV ⋅ 𝛾

4
3
𝜋Δ𝜒𝑑𝑜Hct(1− S𝑏O2)𝐵0. (2.45) 

 𝑆(𝑡)

=

⎩
⎪
⎨

⎪
⎧𝑆(0)𝑒dCBV𝑒−𝑅2′ ⋅𝑡 (A) for 1.5𝑡𝑐 < 𝑡 <

𝑇𝐸
2

𝑆′(0)𝑒dCBV𝑒−𝑅2′ ⋅(𝑇𝐸−𝑡) (B) for 
𝑇𝐸
2

< 𝑡 < 𝑇𝐸 − 1.5𝑡𝑐

𝑆′(0)𝑒dCBV𝑒−𝑅2′ ⋅(𝑡−𝑇𝐸) (C) for  𝑡 > 𝑇𝐸 + 1.5𝑡𝑐

� (2.46) 

 

𝑅2′ = �

𝑚B −𝑚A

2
if domains (A) & (B) are fit

𝑚B −𝑚C

2
if domains (B) & (C) are fit

� (2.47) 
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Figure 2.4: Plot of the natural logarithm of the analytical SE signal (open circles) with linear fits 
included for the long time scale in the three time domains (A), (B), and (C). 

These results hold regardless of whether or not T2 decay is present. 

 This theory has been validated in a phantom study using fishing line immersed in 

distilled water doped with NiSO4•6H2O and NaC1 and the measured signals matched 

very closely with theory [61]. Given this agreement between theory and experiment, it 

should be possible to use this model to validate simulations using cylindrical field 

perturbers and conversely, to use simulations to test the predictions made by the theory. 

  

dCBV

= �
(𝑚A ⋅ TE + 𝑏A) − ln�𝑆(𝑡 = 0)� if domain (A) is fit

[(𝑚B + 𝑚C) ⋅ TE + (𝑏B + 𝑏C)]− ln�𝑆(𝑡 = TE)� if domains (B) & (C) are fit.
� (2.48) 
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Chapter 3 Methods 

3.1 3D Model for Deterministic Simulation of Mxy 

The model of deterministic simulation of Mxy investigated in this thesis was originally 

developed by Bandettini and Wong [22] in two-dimensions (2D) and was later extended 

to 3D by Klassen and Menon [23]. In 3D, just like in MC simulations, cylinders were 

homogeneously distributed with random orientations throughout a voxel of tissue. Each 

vessel was defined through the following steps: 

1. The cylinder’s azimuth5

2. The polar angle, 𝜃 , was assigned from a sin(𝜃) 2⁄  distribution. This was 

implemented by setting 𝜃 equal to cos−1(2𝑢 − 1), where u was randomly selected from a 

uniform distribution ranging from 0 to 1. 

, 𝜙, was randomly assigned from a uniform distribution 

ranging from 0 to 2𝜋. 

3. The position of the cylinder was determined by randomly selecting a single 

point within the voxel through which the cylinder’s central axis would pass. This point 

                                                 
5This azimuthal angle 𝜙 is not the same as the 𝜙 in Eq. (2.36). Incidentally, the polar angle 𝜃 is 

the same as the one in Eq. (2.36) because B0 points along the z-direction by convention. 
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was selected from a uniform distribution ranging from -W/2 to +W/2 for each dimension, 

where W was the voxel width. 

4. In this thesis, cylinder diameters were assigned from a realistic distribution of 

microvascular diameters obtained by confocal laser microscopy of Indian ink injected 

human cerebral cortex [41]. In this study, the frequency of one over the square root of the 

vessel diameters was found to follow an approximately Gaussian probability distribution 

with mean 𝜇 = 0.38 μm-1/2 and standard deviation 𝜎 = 0.07 μm-1/2. The cut-off points for 

the distribution were 0.1 μm-1/2 and 0.6 μm-1/2, corresponding to a maximum diameter of 

100 μm and minimum diameter of 2.78 μm. The distributions are shown in Figure 3.1. 

5. Steps 1-4 were repeated until the desired fractional dCBV was reached. All of 

this was performed on a voxel with 0.5 cm of padding on all faces (i.e. W ′ = W + 1. 0 cm) 

in order to (a) ensure that the effect of distant vessels could still be felt within the voxel 

and (b) reduce the scarcity of vessels at the edges of the voxel [21]. 

 

Figure 3.1: Probability density function (pdf) used for assigning the vessel diameters. The pdf is 
a Gaussian distribution in terms of 1 √diameter⁄  (a) and skewed when plotted in terms of the 
diameter (b) with a peak at approximately 7 μm. 

Unlike in MC simulations, the voxel was discretized isotropically into 𝑁 × 𝑁 × 𝑁 

subvoxels. For each voxel, two maps were created: one was a vessel map, V, defined to 

(a)      (b) 
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be 1 for each subvoxel occupied by a blood vessel and 0 everywhere else; the other was a 

frequency offset map, 𝚫𝝎, which was given by the product of the gyromagnetic ratio, 𝛾, 

and the field offset for a cylinder given by Eq. (2.36). V and 𝚫𝝎 were computed using 

the centre coordinate of each subvoxel, not by averaging over each subvoxel. dCBV can 

be determined from V by summing over all of its elements: 

This value of dCBV was usually not equal to the value of dCBV requested because the 

vessels were never completely homogeneously distributed; therefore, the requested 

dCBV is referred to as the nominal dCBV. An example vessel network and its frequency 

offset map are shown in Figure 3.2. 

 

Figure 3.2: 3D rendering of a vessel network (a) and its corresponding frequency offset map (b). 
A 2D slice of the frequency offset map in the yz-plane is shown in (c). The colour bars in (b) and 
(c) are both in units of Hz and were produced using the standard physiological settings in Table 
3.1. 

In both the 2D and 3D models of deterministic simulation, the complex valued 

transverse magnetization matrix, M, is operated on in discrete time steps, 𝛿𝑡 , by a 

diffusion kernel D and a relaxation and precession matrix R. At the j-th time step, M is 

given by 

 
dCBV =

1
𝑁3 � 𝑉𝑙𝑚𝑛

𝑙,𝑚,𝑛

. 
(3) 

(3.1) 

 M𝑗 = �M𝑗−1 ∗ D� ⋅ R, (3.2) 

(a)    (b)    (c) 
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where ∗  represents convolution and ⋅  represents element-wise multiplication. Like in 

most MC simulations, the transverse magnetization is simulated immediately following 

the 90o excitation and it is initially coherent and of unit magnitude, i.e., 𝑀𝑙𝑚𝑛,0 =

1 ∀ (𝑙,𝑚,𝑛) ∈ [1,𝑁] , where l, m, and n represent the 3D matrix indices and the 0 

indicates the initial time point. Each subvoxel of R is given by 

where T2,t is the T2 of tissue (specifically GM) and T2,b is the T2 of blood. In this thesis, T2 

decay was ignored in order to only examine susceptibility-related effects; however, 

although not used, finite T2 values were incorporated into the simulations, where a T2 of 

110 ms was used for GM [62] and the T2 of blood was calculated using an empirically 

determined quadratic relationship between R2 and SbO2 at 3 T [59]: 

A, B, and C in Eq. (3.4) are dependent on the Hct value, so they were linearly interpolated 

from the experimental values in [59] for the values of Hct used in the simulations. 

 Bandettini and Wong [22] chose to represent diffusion as a smoothing process by 

convolving M with a Gaussian kernel. In light of the theory presented in Section 2.4.1 on 

molecular diffusion, this makes sense since the diffusion of an ensemble of spins will be 

Gaussian distributed and one can consider the transverse magnetization of each subvoxel 

to represent an ensemble of spins. For a subvoxel with indices l, m, and n and 

corresponding coordinates (𝑥𝑙,𝑦𝑚, 𝑧𝑛), the diffusion kernel was given by 

where D is the diffusion coefficient and Δ𝑥 = 𝑊/𝑁 is the subvoxel width. Furthermore, 

D is separable into three identical 1D kernels allowing independent convolution along 

each dimension, making the convolution much more efficient. The 1D kernel was given 

by 

 
𝑅𝑙𝑚𝑛 = 𝑒−𝑖Δ𝜔𝑙𝑚𝑛𝛿𝑡 × �

𝑒−𝛿𝑡 𝑇2,𝑡⁄ in tissue (𝑉𝑙𝑚𝑛 = 0)

𝑒−𝛿𝑡 𝑇2,𝑏⁄ in blood (𝑉𝑙𝑚𝑛 = 1)
� (3.3) 

 𝑇2,𝑏
−1 = 𝑅2,𝑏 = 𝐴 + 𝐵(1 − S𝑏O2) + 𝐶(1 − S𝑏O2)2. (3.4) 

 
𝐷𝑙𝑚𝑛 = �

Δ𝑥
√4𝜋𝐷𝛿𝑡

�
3

exp �−
𝑥𝑙2 + 𝑦𝑚2 + 𝑧𝑛2

4𝐷𝛿𝑡
�, (3.5) 
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To make the convolution even more efficient, the kernel size was cut off at a half-width 

of 5𝜎 (rounded up to the nearest subvoxel). At this size, over 99.9999% of the area under 

the Gaussian was accounted for and the kernel length was typically ≪ 𝑁. Depending on 

the particular combination of D, 𝛿𝑡, and Δ𝑥, the kernel could be greater than 1 at its 

origin, which would lead to an increase in the signal. To counter this, the kernel was 

always normalized by the sum of all of its elements. 

 Finally, the signal magnitude at the j-th time point was given by 

The operations of convolution and multiplication in Eq. (3.2) were repeated up to the 

desired duration of time for simulating the signal time course. To simulate a spin echo 

sequence, M was replaced by its complex conjugate at the step corresponding to the 180o 

pulse. 

 All simulations were run in MATLAB (MathWorks, Natick, MA) with the slower 

running functions for creating the vessel and frequency offset maps programmed in C 

with the MEX library such that they could be run much more quickly but still as 

MATLAB functions. 

3.2 Simulations without Diffusion 

The predictions made by Yablonskiy and Haacke [60] regarding the SDR signal equation 

should be verifiable using these deterministic simulations with no diffusion. Specifically, 

measurements of 𝑅2′  and dCBV obtained by fitting the simulated signals and using Eqs. 

(2.47) and (2.48), respectively, can be compared with the theoretically predicted values of 

𝑅2′  given by Eq. (2.45) and the known values of dCBV given by (3.1). The standard 

settings used in most simulations are summarized in Table 3.1. 

 
𝐷𝑙 =

Δ𝑥
√4𝜋𝐷𝛿𝑡

exp �−
𝑥𝑙2

4𝐷𝛿𝑡
�. (3.6) 

 
𝑆𝑗 =

1
𝑁3 �� 𝑀𝑙𝑚𝑛,𝑗

𝑙,𝑚,𝑛

�. (3.7) 
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Effect of Subvoxel Size 

Before verifying the Yablonskiy and Haacke predictions, the effect of subvoxel size was 

examined by simulating the SE signal using a variety of sizes for the same vessel 

network. Eight different vessel networks with a nominal dCBV of 3% were created and 

subvoxel sizes were varied for each network from 1 μm to 10 μm. In order to simulate the 

signal with smaller subvoxels while remaining within memory constraints, all simulations 

used a relatively small voxel size of 0.5 mm isotropic. The simulations used mostly the 

same parameters as listed in Table 3.1 except for SbO2, which was varied from 0.2 to 0.8, 

not because it is necessarily a realistic range, but in order to also examine the effect of the 

perturber strength. 

 The effect of subvoxel size was quantified by comparing the fits of 𝑅2′  and dCBV 

at the lower resolutions to the fits with 1 μm subvoxels. Additionally, the entire time 

series at lower resolutions were compared to the 1 μm resolution time series using the 

root mean square error (RMSE) defined as 

where 𝑆𝑡ref  is the reference signal obtained in the 1 μm simulation. All signals were 

initially normalized to 1. 

The timing parameters – 𝛿𝑡, TE, and 𝑡𝑓𝑖𝑛𝑎𝑙 (the final time point to be simulated) – 

were chosen to provide a sufficient number of time points for fitting the different time 

domains of the signal and so that an equal number of time points could be used in each 

domain. Fitting was done only about the SE since, in the absence of diffusion, fitting 

around the refocusing pulse and fitting around the SE gave roughly the same values for 

𝑅2′  and dCBV and since, in practice, this method would be insensitive to refocusing pulse 

imperfections and the EV contribution to the signal would be less significant. To fit only 

the linear exponential region of the signal time series, fitting was done from TE/2 to TE - 

2tc and from TE + 2tc to 𝑡𝑓𝑖𝑛𝑎𝑙. 

 
RMSE = �

1
𝑁
��𝑆𝑡 − 𝑆𝑡ref�

2

𝑡

, (3.8) 
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Effect of dCBV 

To test the theoretical predictions of Yablonskiy and Haacke, simulations were performed 

on voxels with increasing values of dCBV and with no IV signal. The nominal values of 

dCBV used were 0.2%, 0.5%, 1%, 3%, 5%, and 7%. A 1.5 mm voxel with 2563 

subvoxels was used (∴ subvoxel width Δ𝑥 = 3.9 μm). 

For each value of dCBV, eight different vessel networks were constructed and the 

average relative errors in the estimated 𝑅2′  and dCBV with respect to theory were 

calculated. 

Table 3.1: Standard simulation parameters (unless stated otherwise in the text). 

Simulation parameter Standard value 
Gyromagnetic ratio of 1H (𝛾) 2.67513×108 rad ∙ s-1 ∙ T-1 
Field strength (B0) 3 T 
Time increment (𝛿𝑡) 1.0 ms 
Echo time (TE) 80 ms 
Total simulation time (𝑡𝑓𝑖𝑛𝑎𝑙) 120 ms 
Susceptibility difference between fully deoxygenated and fully 
oxygenated blood (Δ𝜒𝑑𝑜) 0.264 ppm [63] 

Blood oxygen saturation (SbO2) 0.60 
Hematocrit (Hct) 0.42 

 

 

Large Numbers Assumption 

A consequence of the large numbers condition that the Yablonskiy and Haacke theory is 

dependent on is that the relative precision of the estimates of 𝑅2′  and dCBV should be 

proportional to 1/�𝑁𝑣𝑒𝑠 , where Nves is the number of vessels in the voxel. This was 

examined by calculating the standard deviations of the relative errors on 𝑅2′  and dCBV 

obtained in the previous section where dCBV was systematically increased (and therefore 

Nves too). These standard deviations were then plotted against 1/�𝑁𝑣𝑒𝑠. 
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3.3 Simulations with Diffusion 

Given the complex nature of the simulations when incorporating diffusion with the 

vascular effects, more basic validations were first performed on a completely 

homogeneous voxel in a linear gradient. Afterwards, simulations were done on vascular 

networks to see how their results compared to the homogeneous voxel case and how they 

could potentially be improved. 

3.3.1 Homogeneous 1D Voxel in a Linear Gradient 

The theory for the spin echo signal in the presence of a linear gradient was rigorously 

explored by Carr and Purcell [64]. A decade later, by solving the Bloch-Torrey equation, 

Stejskal and Tanner [65] derived a solution for the transverse magnetization that extended 

the theory of Carr and Purcell to the use of arbitrary gradients. Using this general 

solution, it can be shown that under a constant linear gradient G applied along one 

dimension, the time series of a spin echo sequence is described by 

where W is the voxel width and D is the diffusion coefficient. At the SE, Eq. (3.9) 

simplifies to 

the same equation derived by Carr and Purcell [64]. Eqs. (3.9) and (3.10) provide a direct 

method for validating the simulations in their entirety or at just the SE. In the case of free 

induction decay, the signal just follows the first line of Eq. (3.9) for all time. An example 

theoretical time series is plotted in Figure 3.3 with two different gradient strengths. 

𝑆(𝑡)

=

⎩
⎪⎪
⎨

⎪⎪
⎧𝑒−𝛾2𝐺2𝐷𝑡3 3⁄ �sinc �𝛾𝐺
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𝑡3 − TE �𝑡2 −
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� + TE2 �𝑡 −

TE
2
���

                 × �sinc �𝛾𝐺
𝑊
2

(𝑇𝐸 − 𝑡)�� 𝑒−𝑡 𝑇2⁄ , 𝑡 ≥
TE
2

� (3.9) 

 𝑆(𝑡 = TE) = 𝑒−𝛾2𝐺2𝐷TE3 12⁄ 𝑒−𝑇𝐸 𝑇2⁄ , (3.10) 
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Figure 3.3: Plots of Eq. (3.9) for a 1.0 mm voxel with TE equal to 80 ms, D equal to 0.8 μm2/ms, 
and the linear gradient equal to 5 mT/m (black line) and 10 mT/m (grey line). 

To immediately simplify and accelerate the simulations, they were conducted in 1D 

instead of 3D. This was possible since the voxels were homogeneous and a linear 

gradient was applied along one direction. Both 1D and 3D simulations produced the exact 

same results (results not shown). The diffusion kernel stayed the same as in Eq. (3.6) but, 

ignoring T2 effects, the relaxation and precession matrix/vector R was given by [23] 

where 𝑥𝑙 is the subvoxel coordinate of the l-th subvoxel. 

Signal Analysis 

In the following sections, simulations were compared with the theoretical time series 

given by Eq. (3.9) using the RMSE (see Eq. (3.8)). Additionally, it was observed that 

often the simulated and theoretical time series were in excellent agreement except for at 

the SE. For this reason, the error at the SE was also used as a metric of comparison. 

Convolution Edge Effects 

For convolving M with D, both the explicit formula for convolution (summation and 

multiplication) and Fourier transform-based circular convolution were tested and the 

explicit method was found to run more quickly than the Fourier-based method in both 1D 

 𝑅𝑙 = exp[−𝑖𝛾𝐺𝑥𝑙𝛿𝑡] (3.11) 
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and 3D due to the need to take both the forward and inverse Fourier transform of M at 

every iteration (results not shown). Since convolution assumes zero transverse 

magnetization outside of the voxel and it will produce non-zero values outside of the 

voxel, edge effects had to be mitigated by sampling only an inner, central subset of M. 

Therefore, for a voxel width W and an unsampled edge width of w, the new sampled 

voxel size was W’ = W - 2w. Note that the width W’ replaces W in Eq. (3.9). 

The required unsampled edge width was determined by using a constant sampled 

voxel size of 1.0 mm (i.e. W’ = 1.0 mm) and constant subvoxel size of 1.0 μm and 

incrementally augmenting the unsampled edge width. The other simulation parameters 

were the same as the standard parameters in Table 3.1 (the first five were applicable) plus 

two different values for D and multiple gradient strengths were used. 

 The results from this (see section 4.2.1) showed that an unsampled edge width of 

0.1 mm was more than adequate for the simulation parameters used and the range of D in 

GM. 

Effect of the Diffusion Coefficient and Time Increment 

The range of D values needed in simulations is clearly dictated by biology. In the case of 

GM, the approximate minimum and maximum values stated in the literature are 0.7 

μm2/ms and 1.2 μm2/ms with an average ~ 0.8 μm2/ms [66-69]. To evaluate this range of 

values, simulations were performed from D = 0 μm2/ms up to 2 μm2/ms with several 

subvoxel sizes and gradient strengths using the standard simulation parameters in Table 

3.1. As described in the previous section, an unsampled edge width of 0.1 mm per edge 

was used with a total voxel width of 0.5 mm (i.e. the central 0.3 mm were sampled). 

To examine the combined relationship of D and the time increment, 𝛿𝑡, on the 

diffusion kernel width (see Eq. (3.5) or (3.6)), the two of them were independently 

doubled and halved. Thus, using D = 0.7 μm2/ms and 𝛿𝑡 = 1.0 ms as the common setting, 

D was set to 0.35 μm2/ms and 1.4 μm2/ms while 𝛿𝑡  remained fixed at 1.0 ms and, 

similarly, 𝛿𝑡  was set to 0.5 ms and 2.0 ms while D remained fixed at 0.7 μm2/ms. 

Simulations using the standard parameters were performed on a 0.5 mm voxel using a 
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broad range of subvoxel sizes and gradient strengths (see the next subsection for more 

details on the exact values used). 

Effect of Subvoxel Size and Gradient Strength 

Clearly, the subvoxel size will have a significant impact on the simulation accuracy; if it 

is too large, the Gaussian distribution for the diffusion kernel will be undersampled, 

making it behave more like a delta function such that the smoothing of M at each step 

will be negligible. Figure 3.4 illustrates this. 

 To investigate the effect of subvoxel size on the accuracy of the simulations, the 

subvoxel size and the linear gradient strength were independently varied from 5 μm down 

to 0.5 μm and from 0 mT/m up to 700 mT/m, respectively. Although a gradient as large 

as 700 mT/m across an entire voxel is unrealistic, the local gradients around the smallest 

blood vessels can be as large as up to 1200 mT/m, therefore a wide range of gradient 

strengths was tested6

3.3.2 Simulations with Vessel Networks 

. The total voxel width was 0.5 mm and simulations were done with 

𝛿𝑡 = 1 ms, SE TE = 20 ms, 40 ms, 60 ms, and 80 ms, and with D set to 0.7 μm2/ms and 

1.2 μm2/ms. 

When adding diffusion into vessel network simulations, the issues of IV signal and vessel 

permeability must be carefully considered. To simplify matters, the simulations included 

IV signal, assumed free permeability at the vessel walls, and T2 decay was ignored. 

Including IV signal and assuming free permeability permitted convolution of M with D 

without any special consideration for IV/EV contributions.  

 Without any general theoretical signal equation against which the simulations 

could be compared, simulations were run in vessel networks using successively smaller 

subvoxel sizes with the goal of observing a convergence in the signals. This was done 

using the same eight 3D vessel networks that were used for the earlier evaluation of the 
                                                 
6 This gradient strength was estimated by finding the change in Δ𝐵 in Eq. (2.36) experienced by a 

proton diffusing its root mean diffusion distance �〈𝑟2〉 = √2𝐷𝛿𝑡 outside the smallest vessel (radius = 1.39 
μm) with the standard settings from Table 3.1 and D ~ 0.8 μm2/ms. 
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Figure 3.4: Effect of subvoxel size on the diffusion kernel. Subvoxel size equals 5.9 μm (a), 3 μm 
(b), and 1 μm (c). In each plot, the solid curve shows the theoretical Gaussian probability 
distribution given by Eq. (2.32) and the data points and stems show the sampled kernel given by 
Eq. (3.6) divided by the subvoxel width. The examples shown use D = 0.8 μm2/ms and 𝛿𝑡 = 1 ms. 

effect of subvoxel size in Section 3.2. These networks were 0.5 mm wide, therefore only 

the central 0.3×0.3×0.3 mm3 were sampled. D was set to 0.7 µm2/ms and the standard 

simulation settings in Table 3.1 applied except for SbO2, which was varied from 0.2 up to 

0.8 in 0.2 increments. As before, subvoxel size was varied from 1 µm to 10 µm and all 

signals were compared to the 1 µm signal using the RMSE and the error at the SE. 

Furthermore, two different solutions for 𝑅2′  were obtained for each simulated signal by 

fitting about the refocusing pulse and about the SE assuming linear exponential decay on 

long time scales. 

3.3.3 Scaling the Diffusion Coefficient for Signal Optimization 

As mentioned above, if the subvoxel size is too large, the diffusion kernel loses its ability 

to sufficiently blur M. One might therefore still attribute the less substantial signal loss to 

diffusion but with a lower effective D. This observation, combined with the constant 

desire to increase simulation speed, led to the investigation of finding a diffusion scaling 

factor, 𝜓𝐷, for low resolution simulations that, when multiplied with D in the diffusion 

kernel, would best simulate the desired signal. Therefore, all instances of D in the 

diffusion kernel were replaced by 𝐷′ = 𝜓𝐷𝐷, with 𝜓𝐷  expected to be greater than or 

equal to 1. 

 (a)    (b)             (c) 
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 In the homogeneous 1D voxel, 𝜓𝐷  was determined by minimizing the RMSE 

between the simulated signal and the theoretical signal, with fixed diffusion coefficient D 

and gradient G, using the fminbnd function in MATLAB to vary 𝜓𝐷 based on golden 

section search and parabolic interpolation. 𝜓𝐷 was allowed to vary between 0.9 and 5.0. 

This was performed with a SE TE of 80 ms and D equal to 0.7 μm2/ms while the 

subvoxel size and gradient strength were independently varied. An example optimization 

for one set of simulation parameters is shown in Figure 3.5, where a marked 

improvement in the simulation accuracy can be seen. 

 

Figure 3.5: Example time series for a non-optimized diffusion scaling factor 𝜓𝐷  (a) and an 
optimized 𝜓𝐷 (b). The theoretical and simulated time series are represented by the solid line and 
the circles, respectively. Optimization was done with D equal to 0.7 μm2/ms, a gradient strength 
of 15 mT/m, and a subvoxel size of 3.33 μm. The optimized 𝜓𝐷  was 1.51 and improved the 
RMSE from 5.24 × 10–2 to 2.60 × 10–4. 

 Unlike the 1D case, determining the optimal 𝜓𝐷 for 3D vessel networks had to be 

performed manually since the simulations took much longer. As a result, optimization 

was only tested on a single vessel network with one particular set of simulation 

parameters: SE TE = 80 ms, SbO2 = 0.6, and target D = 0.7 μm2/ms. The reference signal 

used was from a 0.5 mm voxel with 1.0 μm subvoxels and 𝜓𝐷 = 1.0 and the optimization 

was performed by incrementally increasing 𝜓𝐷  from 1.0 to 2.0 on the same vessel 

network but using 2.5 μm subvoxels. The RMSE, absolute error at the SE, percent error 

   (a)          (b) 
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in 𝑅2′ , and percent error in dCBV were all used for comparison with the 1.0 μm subvoxel 

size simulation.  
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Chapter 4 Results 

As detailed in the previous chapter, simulations with and without diffusion were 

separately analyzed since the convolution operation required for diffusion added 

considerable complexity to the simulations.  

4.1 Simulations without Diffusion 

4.1.1 Subvoxel Size 

In the absence of diffusion, the effect of subvoxel size is fairly insignificant. Figure 4.1a 

illustrates this through a plot of the differences in the time series at low resolution to the 

time series obtained at 1 μm for a single vessel network. As one can see, these differences 

are on the order of 10-4 for signals initially normalized to 1, making them essentially too 

small to see when examining the actual time series themselves. Similar time series were 

simulated for eight different vessel networks at multiple resolutions and multiple values 
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of SbO2. When averaged over the eight different networks, the RMSE increased 

approximately exponentially from a subvoxel size of 1 μm to 5 μm (see Figure 4.1b). 

Beyond 5 μm, the RMSE appeared to increase more linearly. For all subvoxel sizes, the 

RMSE almost invariably increased as the oxygen saturation decreased, or, looked at 

another way, it increased as the perturber strength increased (since the perturber strength 

is proportional to 1 - SbO2). 

 From Figure 4.1c and d, the average relative errors in 𝑅2′  and dCBV did not vary 

greatly up to a subvoxel size of 2.5 μm but beyond that, they started to show perhaps 

some systematic error. Unlike the RMSE, the relative errors in 𝑅2′  and dCBV did not 

show a clear monotonic relationship with oxygen saturation; they both seemed to increase 

up to a point as SbO2 increased and then proceeded to decrease. 

4.1.2 dCBV and the Number of Vessels 

The effect of increasing dCBV on the estimates of 𝑅2′  and dCBV are shown in Figure 

4.2a and b. Overall, for all values of SbO2, the relative errors on 𝑅2′  and dCBV were 

relatively constant (within uncertainties) with respect to dCBV except for outliers at 

dCBV ≈ 0.6 %. As a verification of the Yablonskiy and Haacke theory, the linearity 

between the precision of the estimates of 𝑅2′  and dCBV versus the number of vessels was 

tested. Figure 4.2c and d show plots of the standard deviations of the relative errors in 𝑅2′  

and dCBV versus 1/�𝑁𝑣𝑒𝑠 and their corresponding linear fits that pass through the origin 

are also plotted. The data points follow a fairly linear trend except for outliers located 

near 0.014 (corresponding to an average dCBV of 6%). The results from those fittings are 

summarized in Table 4.1. 

 Furthermore, by plotting the analytical time series given in Eq. (2.41) with the 

known dCBV for each vessel network and then solving for 𝑅2′  and dCBV by fitting the 

linear exponential time domains in the same manner as for the simulated time series, the 

fitted values still did not give the analytically expected results for 𝑅2′  (Eq. (2.45)) and the 

known dCBV (see Figure 4.3). However, for a given SbO2, every vessel network had the 

exact same relative error in the fitted values of 𝑅2′  and dCBV, indicating a degree of bias 
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Figure 4.1: Effect of subvoxel size on simulations with vessel networks with no diffusion. An 
example of the actual differences in time series is plotted in (a) for a vessel network simlulated at 
an SbO2 of 0.6 at five different subvoxel sizes (signal differences are relative to the simulated 
signal at 1.0 μm). As a function of subvoxel size, the average RMSE (b), average percent 
difference in 𝑅2′  (c), and average percent difference in the estimated dCBV (d) are plotted for four 
different values of SbO2 (all share the same legend as (b)). All of the plots, (a) – (d), are relative to 
their respective results at 1 μm resolution. 

             (a)      (b) 

             (c)      (d) 
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Figure 4.2: The effect of increasing dCBV (or the number of vessels) on the accuracy and 
precision of the estimates of 𝑅2′  and dCBV at various blood oxygen saturation levels. The average 
relative errors in 𝑅2′  (a) and dCBV (b) are plotted as functions of the known dCBVs and their 
standard deviations are plotted as functions of one over the square root of the number of vessels 
(Nves) ((c) and (d), respectively). Linear fits are included at each SbO2 level in (c) and (d) (dash-
dot curves). Since the exact number of vessels varies from one network to the next, horizontal 
error bars with widths equal to the standard deviations are included and represented as horizontal 
bars through the markers. In (a) and (b), the standard deviations on the dCBV are smaller than the 
marker widths and hence not visible, also, the data for SbO2 = 0.4 is hardly visible since it is 
nearly equal to the data at SbO2 = 0.2. All figures share the same legend as (a). 

             (a)      (b) 

             (c)      (d) 
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in the results. This bias was quite small for 𝑅2′  but fairly large for dCBV. 

Table 4.1: Results of the linear fits of the form 𝑦 = 𝑚𝑥, where y is either the standard deviation 
of the percent error on 𝑅2′  or on dCBV and x is 1/�𝑁𝑣𝑒𝑠. R2 is the coefficient of determination. 

SbO2 
Linear fits for 𝑅2′  Linear fits for dCBV 

m [%] R2 m [%] R2 
0.2 102 ± 9 0.848 81 ± 7 0.848 
0.4 104 ± 9 0.832 83 ± 7 0.893 
0.6 110 ± 10 0.806 95 ± 9 0.877 
0.8 120 ± 10 0.677 110 ± 10 0.812 

    

 

 

Figure 4.3: Relative error in 𝑅2′  (circles) and dCBV (triangles) obtained by fitting the analytical 
time series from Eq. (2.41) when compared to the analytical solution for 𝑅2′  in Eq. (2.45) and the 
known dCBV. These relative errors were exactly the same for all vessel networks, they only 
varied with perturber strength (SbO2 in this case). 
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4.2 Simulations with Diffusion 

4.2.1 Simulations with a Homogeneous 1D Voxel 

Convolution Edge Effects 

As mentioned in the Methods section, the act of convolution of M with the diffusion 

kernel leads to corruption of the edge voxels due to the assumption of zero transverse 

magnetization outside of the voxel. To mitigate this effect, only a central subset of M was 

sampled when diffusion was added to the simulations. The minimum required unsampled 

edge width was determined by incrementally increasing the edge width and comparing 

the simulated time series to the theoretically predicted time series from Eq. (3.9) using 

the RMSE. Shown in Figure 4.4, these simulations were performed for various 

combinations of gradient strength and D; for each combination, the RMSE converged at 

some width and this would be considered an appropriate unsampled edge width. Since the 

width of the diffusion kernel increases with increasing D, a larger unsampled edge width 

is needed for a high D. For D = 1.0 µm2/ms, the RMSE converged to within five 

significant figures by an edge width of 0.08 mm and for D = 2.0 µm2/ms, it converged by 

an edge width of 0.1 mm. D = 2.0 µm2/ms is larger than observed in GM [66-69], 

therefore, an unsampled edge width of 0.1 mm was used to ensure the edge width was 

sufficiently large. 

One can consider the repeated convolution of M with the kernel D n times as a 

single convolution of M with an effective kernel Deff(n). From linear systems theory, 

convolution of normally distributed functions with the same mean results in a net 

function that is also normally distributed with the same mean but with a variance given 

by the sum of the individual variances. This means that Deff(n) is also normally 

distributed with zero mean but with a variance equal to  

 𝜎𝑒𝑓𝑓2 (𝑛) = 𝑛𝜎2 
= 𝑛2𝐷𝛿𝑡 
= 2𝐷𝑡𝑓𝑖𝑛𝑎𝑙 

(4) 
(4.1) 
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Figure 4.4: Convergence of the RMSE with increasing unsampled edge width for various 
gradient strength-D combinations. The dashed box in (a) is magnified in (b). 

The effective 5𝜎 widths for D = 1.0 µm2/ms and D = 2.0 µm2/ms when 𝛿𝑡 = 1.0 

ms and n = 120 are 0.077 mm and 0.110 mm, respectively. These values are in excellent 

agreement with what was found experimentally although the 2.0 µm2/ms width is slightly 

larger than found and this is most likely because between 4𝜎 and 5𝜎, the kernel values 

are very small (~10-6 to 10-4), therefore lessening the need for a larger edge width. 

Effect of the Diffusion Coefficient and the Time Increment 

The effect of D was examined by varying it from 0 to 2 µm2/ms and simulating the signal 

with a range of gradient strengths and subvoxel sizes. The RMSE was then calculated for 

all simulation parameters and they are shown plotted in Figure 4.5. For all sets of 

simulation parameters, the RMSE is 0 when there is no diffusion; as D increases away 

from zero, so too does the RMSE; eventually the RMSE peaks and it returns back down 

to some lower value as D continues to increase. 

 This behaviour can be understood by comparing the three different diffusion 

kernels in Figure 4.6. These kernels were created with the exact same parameters except 

for D, which went from 0.01 μm2/ms to 0.1 μm2/ms to 1.0 μm2/ms. The kernel in (a) is 

almost a delta function, so it will underestimate the effect of diffusion; however, at 0.01  

(a)      (b) 
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Figure 4.5: Effect of increasing the value of D on the RMSE for a range of subvoxel sizes and 
gradient strengths (indicated by the subfigure titles). All figures share the same legend as (a). The 
shaded region in each figure delineates the approximate range of D in grey matter (0.7 – 1.2 
μm2/ms). The plot obtained at 0.56 μm subvoxel size is only visible as the very small hump in the 
bottom left of (d). 

   (a)             (b) 

       (c)                 (d) 
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Figure 4.6: Three different diffusion kernels with a subvoxel size of 1.0 μm and time increment 
of 1.0 ms. D was 0.01 μm2/ms (a), 0.1 μm2/ms (b), and 1.0 μm2/ms (c). In each plot, the solid 
curve shows the theoretical Gaussian probability distribution given by Eq. (2.32) and the data 
points and stems show the sampled kernel given by Eq. (3.6) divided by the subvoxel width 

μm2/ms, diffusion will not have much of an effect, therefore, the RMSE will be low. In 

(b), the kernel is not quite a delta function but it will still do very little smoothing of the 

transverse magnetization. At this level of diffusion, however, the effect of diffusion in 

reality will be even stronger, so the RMSE gets even higher. Eventually, the kernel starts 

to get wide enough (see (c)) such that the Gaussian distribution gets sufficiently sampled 

and the RMSE proceeds to decrease. 

 Although not shown, visual agreement between the theoretical and simulated time 

series did not occur until the RMSE was ≲ 10-3. One can see from Figure 4.5 that for this 

to be possible with the applicable range of values for D, the subvoxel size must be less 

than 5 μm. In this case, the RMSE has already peaked and it is decreasing by the time D 

= 0.7 μm2/ms is reached. Therefore, to put the most stringent requirements on the 

validations, all further simulations were done at D = 0.7 μm2/ms since its RMSE was 

greatest of all the values of D in the range 0.7 – 1.2 μm2/ms. 

 In addition to the individual effects of D on the simulations, the combined effects 

of D and the time increment, 𝛿𝑡, were explored by examining the error at the SE. The 

error at the SE was used, as opposed to the RMSE, because changing 𝛿𝑡 changed the 

number of data points in the time series and therefore also affected the normalization in 

the RMSE, whereas changing D did not change the number of data points. Therefore, to 

   (a)    (b)             (c) 
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compare all of the time series without the additional data points confounding the results, 

the error at a single point was used. 

 The results from these simulations are shown in Figure 4.7. By comparing the 

shapes and positions of the isolines in the subfigures, it is obvious that halving D or 

halving 𝛿𝑡 produced qualitatively very similar results on the error at the SE: both shifted 

the isolines down to smaller subvoxel sizes. Conversely, when the parameters were 

doubled, the isolines shifted up to larger subvoxel sizes. 

 

Figure 4.7: The interplay between D and time increment (𝛿𝑡) on the error in the simulations as 
the gradient strength and subvoxel size are independently varied. Displayed is the log-10 absolute 
error at the SE and the isolines -1 through -5. In (c), the errors at the SE are shown for the 
common simulation parameters D = 0.7 μm2/ms, 𝛿𝑡 = 1.0 ms. In (a), D was halved and in (b), it 
was doubled, both while 𝛿𝑡 remained fixed at 1.0 ms. Conversely, in (d), 𝛿𝑡 was halved and in 
(e), it was doubled, both while D remained fixed at 0.7 μm2/ms. 

 

(a) (b) 

(c) 

(d) (e) 
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Effect of Subvoxel Size and Gradient Strength 

The final parameters for which the 1D simulations were characterized were the subvoxel 

size and the gradient strength. These two were independently varied for a range of echo 

times and with D = 0.7 μm2/ms, the results of which are shown in Figure 4.8. The 

simulations were also done with D = 1.2 μm2/ms but since the RMSE was always greatest 

for D = 0.7 μm2/ms, the results are not included. 

 It is evident from Figure 4.8 that the RMSE isolines have common shapes for all 

TEs. These shapes gets scaled horizontally (along the gradient strength direction) in 

proportion to TE. Using Figure 4.8c as a reference, the characteristic features of the 

isolines include a dip towards smaller subvoxel size from G = 0 mT/m up to some 

gradient strength (~ 50 mT/m); this is followed by a rise in the subvoxel size until it 

almost reaches an asymptote (~ 200 mT/m); beyond this, the asymptote moves slightly 

towards smaller subvoxel size with pseudo-periodic noise added on top of that. The 

results in the asymptotic region are of little use because at such large gradient strengths, 

the signal decays away so quickly that it would not even be detectable. Therefore, the 

most important area to focus on is from zero gradient up to the aymptotic region and, 

most crucially, the smallest subvoxel sizes that the isolines dip down to within this 

region. For the four echo times in Figure 4.8, the 10-3 isolines all dip down to 

approximately 2 μm. 

 These dips in the isolines were further investigated by plotting profiles of the 

RMSE and the absolute error at the SE at the gradient strengths where the isolines dipped 

down the lowest (see Figure 4.9). For TE = 20 ms, the gradient strength was 175 mT/m; 

for TE = 40 ms, the gradient strength was 55 mT/m; for TE = 60 ms, the gradient strength 

was 30 mT/m; and for TE = 80 ms, the gradient strength was 25 mT/m. On a semi-log 

scale, both shapes are sigmoidal with plateaus at small and large subvoxel sizes but since 

the absolute error at the SE is plotted, that curve displays a minimum where the simulated 

and theoretical signals cross. What is important to note here is that even though the 

RMSE for all TEs reached 10-3 by 2 μm, the error at the SE was an order of magnitude 
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Figure 4.8: 2D colour plots of the RMSE with isolines (blue lines + labels) for four different 
echo times as the gradient strength and subvoxel size are independently varied. Note that it is 
actually log10(RMSE) that is plotted and the isolines therefore represent the base-10 exponent of 
the RMSE. 

             (a)      (b) 

             (c)      (d) 
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Figure 4.9: RMSE (solid lines) and the absolute error at the SE (dashed lines) plotted against 
subvoxel size using the gradient strengths where the RMSE isolines in Figure 4.8 dipped the 
lowest for each TE. 

         (a)       (b) 

       (c)               (d) 
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larger. For all TEs, the RMSE reached its lower plateau by approximately 1.7 μm, at 

which point the error at the SE was then below 10-3 (except for TE = 20 ms which 

plateaued at approximately 2×10-3). 

4.2.2 Simulations with Vessel Networks 

To observe the effects of diffusion on 3D simulations with vessels, a similar set of 

simulations was run as before when diffusion was not included. This time, D was fixed at 

0.7 μm2/ms and the simulation results were averaged over eight vessel networks at 

multiple subvoxel sizes and blood oxygen saturations. The subvoxel size now plays a 

much more significant role in the simulations; this is illustrated in Figure 4.10a where the 

simulations from a single vessel network are plotted. Below 2 μm, the time series were 

essentially indistinguishable from the 1 μm time series. The averages of the simulations 

are summarized using the RMSE (Figure 4.10b), the absolute percent difference in 𝑅2′  

when fit about the SE (Figure 4.10c), and the absolute percent difference in 𝑅2′  when fit 

about the refocusing pulse (Figure 4.10d). The 1 μm simulation time series were used as 

the reference signals for the RMSE and the fitted values of 𝑅2′  at 1 μm were used for 

finding the relative errors in 𝑅2′  for the larger subvoxel sizes. 

 The convergence of the RMSE and 𝑅2′  percent errors with decreasing subvoxel 

size were largely independent of the blood oxygen saturation. As in the case of no 

diffusion, the RMSE decreased as the oxygen saturation increased but, somewhat counter 

intuitively, the 𝑅2′  percent errors increased with the oxygen saturation, particularly for 𝑅2′  

fit about the refocusing pulse. Above 2 μm, the 𝑅2′  percent errors for both fitting methods 

were biased towards overestimated values since their means plus standard deviations did 

not cross zero percent. These results are not surprising given that the homogeneous 1D 

voxel simulations from the previous section showed convergence of the RMSE at 

approximately 1.7 μm. 
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Figure 4.10: Effect of subvoxel size on simulations run with D = 0.7 μm2/ms in vessel networks. 
Examples of the actual time series are plotted in (a) for a vessel network simlulated wtih an SbO2 
of 0.6 at five different subvoxel sizes. As a function of subvoxel size, the average RMSE (b), 
average percent difference in 𝑅2′  when fit about the SE (c), and average percent difference in 𝑅2′  
when fit about the refocusing pulse (d) are plotted for four different values of SbO2 (all share the 
same legend as (b)). The plots (b) – (d) are relative to their respective results at 1 μm resolution. 
In (a), the plots from 1.0 μm and 1.67 μm are overlapping. In (c) and (d), the absolute values of 
the average errors are plotted in order to plot them on a logarithmic scale, negative values are 
indicated by the arrows. As a result of this, where the lower bounds of the error bars went 
negative, only the upper halfs were plotted. 

         (a)       (b) 

         (c)       (d) 
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4.2.3 Scaling the Diffusion Coefficient 

Signal Optimization in 1D 

Non-linear signal optimization using a diffusion scaling factor was tested on a 0.5 mm 

1D voxel over a range of subvoxel sizes and gradient strengths with D equal to 0.7 

μm2/ms. The optimized diffusion scaling factors, 𝜓𝐷, and the resultant RMSEs are shown 

in Figure 4.11. 𝜓𝐷 typically increased with subvoxel size and gradient strength but there 

were also areas where it would jump. The optimized RMSE was relatively constant for a 

given subvoxel size but it was largely dependent on the subvoxel size, resulting in 

horizontal banding in the figure. The width of the banding appears to decrease as the 

subvoxel size decreases but this is only because it was actually the number of subvoxels 

that was explicitly varied (from 100 to 1000 in increments of 10) and the subvoxel size is 

inversely proportional to this so the data points get closer together as the subvoxel size 

decreases. 

 Comparing the optimized and non-optimized RMSE (where 𝜓𝐷 was held constant 

at 1.0), one can see that, overall, optimization significantly decreased the RMSE; 

however, for particular subvoxel sizes, the optimization failed. This is most easily seen in 

Figure 4.11d since the blue to red colour map shows where the optimized RMSE was 

better than the non-optimized RMSE and the figure is clearly dominated by blue to red, 

not black to tan. 

Optimization in 3D 

Optimization in 3D was performed manually on a single vessel network with 2.5 μm 

subvoxels and with a target signal produced with 1.0 μm subvoxels, D = 0.7 μm2/ms, 

SbO2 = 0.6, and SE TE = 80 ms. The target signal and some example test signals along 

with the comparison results are shown in Figure 4.12. From these results there was no 

single value of 𝜓𝐷 that optimized all metrics simultaneously since 1.23 minimized the 

RMSE to 0.002 but the errors in 𝑅2′  and dCBV were both approximately -5%, while 1.14 
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minimized the percent error in 𝑅2′  and dCBV to within ± 0.5% but the RMSE was 

approximately 0.003. 

 

Figure 4.11: The minimized RMSE when the diffusion scaling factor, 𝜓𝐷, was optimized (a) and 
the corresponding RMSE obtained with no scaling (b) for D = 0.7 μm2/ms. The map of 𝜓𝐷 which 
minimized the RMSE in (a) is shown in (c). The difference (b) – (a) is shown in (d). Negative 
values in (d) are displayed in black to tan colours (where optimization failed) and positive values 
are displayed in blue to red colours (where optimization succeeded). Note that it is actually 
log10(RMSE) that is plotted in (a) and (b) and that difference in (d). 

         (a)       (b) 

         (c)       (d) 
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Figure 4.12: 3D optimization of 𝜓𝐷 at 2.5 μm subvoxel size. Example time series of the target 
signal (D = 0.7 μm2/ms, 𝜓𝐷 = 1.0, and 1.0 μm subvoxels) and test signals with varying values of 
𝜓𝐷 (a). The RMSE and absolute error at the SE are shown in (b) for varying values of 𝜓𝐷. The 
percent difference in 𝑅2′  and dCBV are shown in (c) and (d) for varying values of 𝜓𝐷  and fit 
either about the SE or about the refocusing pulse. The arrows and text in (b) – (d) indicate the 
particular values of 𝜓𝐷 that minimized the metrics of interest. 

(a) 

(b) 

(c) 

(d) 
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Chapter 5 Discussion 

Simulations in MRI have been invaluable for furthering our understanding of the 

technology and the biophysical principles underlying its contrast mechanisms. 

Throughout this thesis, one such method – deterministic simulation of the transverse 

magnetization – has been thoroughly validated for 3D simulations of a voxel. Validation 

experiments consisted of simulations with and without the modelling of molecular 

diffusion and with and without blood vessels present in the voxel. In all cases, the effect 

of the simulation subvoxel size was investigated. 

When not including diffusion, the analytical theory of signal behaviour of blood 

vessel networks in the static dephasing regime from Yablonskiy and Haacke [60] was 

tested. This was done by checking the accuracy of the predictions made by the 

Yablonskiy and Haacke theory and examining how those predictions depended on the 

number of vessels present in the voxel.  

More emphasis, however, was put on assessing simulations including diffusion. 

The model of diffusion as a blurring process, proposed by Bandettini and Wong [22], was 
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validated in 1D using a solution from Stejskal and Tanner [65] to the Bloch-Torrey 

equation with a constant linear gradient applied along one dimension.  Using the RMSE 

and the error at the SE as the metrics of comparison, the simulated signals were compared 

with theory as D, time increment, TE, subvoxel size, and gradient strength were varied. 

Afterwards, the effects of subvoxel size and blood oxygen saturation were examined on 

3D microvascular networks with simulations including diffusion. Finally, efforts to scale 

the diffusion coefficient in order to optimize simulations with large subvoxel sizes were 

carried out in 1D and tested in 3D. 

The results from the simulations without diffusion are discussed here first 

followed by a discussion of the results including diffusion as well as general comments 

on the vascular model used with these deterministic simulations. 

5.1 Simulations with Diffusion 

5.1.1 Effect of Subvoxel Size 

Varying the subvoxel size of eight different microvascular networks revealed very little 

dependence on the resolution for the simulations even up to a subvoxel size of 10 μm. 

This was for networks with a minimum vessel diameter of 2.78 μm. This, combined with 

the fact that the RMSE increased as the perturber strength increased (or as SbO2 

decreased; Figure 4.1b), suggests that changing the subvoxel size only subtly altered the 

frequency spectrum but enough so that the higher degree of dispersion at increased 

perturber strength was less reliably reproduced. Considering this and that the perturber 

strength is also linearly proportional to B0, one can extrapolate these results to predict that 

higher field strengths would require smaller subvoxel sizes. 

5.1.2 Yablonskiy and Haacke Theory 

Although not necessarily physically realistic, neglecting diffusion can be desirable 

because it can greatly simplify the analysis of complex systems. This was how 
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Yablonskiy and Haacke [60] approached the problem of signal behaviour from a network 

of blood vessels. Deterministic simulations provided an ideal method for validating this 

theory since, without diffusion, the simulations could easily satisfy the conditions 

required by it, including infinitely long, randomly oriented and homogeneously 

distributed vessels modelled as cylinders, no IV signal, system in the SDR (i.e. no 

diffusion), and large numbers of vessels. 

 The simulations without diffusion were found to be in very good agreement with 

the theoretically predicted 𝑅2′  and dCBV (Figure 4.2). For any given dCBV, the relative 

errors in 𝑅2′  and dCBV both followed a similar trend where they first increased with SbO2 

and then proceeded to decrease. One explanation for this behaviour is that the perturber 

strength was affecting the simulation accuracy, as described in the previous section, but, 

simultaneously, the number of data points included in the linear fits to the time series 

changed as the perturber strength changed since the characteristic time, tc, required to 

reach the asymptotic behaviour is inversely proportional to the perturber strength (see 

Eqs. (2.43) and (2.44)). Put another way, although the simulation accuracy increased as 

the perturber strength decreased, the window of time during which the simulation 

exhibited linear exponential behaviour shrunk, resulting in fewer data points for fitting 

the decay and a less accurate fit. 

 Furthermore, some of the error in the estimates of 𝑅2′  and dCBV would be 

attributable to systematic error that was shown to exist when fitting the analytical time 

series (Figure 4.3). The root cause of this error should be further explored but could be 

due to the assumption of the shift from quadratic exponential decay to linear exponential 

decay after 1.5tc (Eq. (2.44)). Presumably, if more time points were included in the fits by 

increasing TE and the simulation time period, the fitted values would more closely match 

theory. 

 Another test of the Yablonskiy and Haacke theory was performed by Klassen and 

Menon [23] also using 3D deterministic simulations. They performed the same linearity 

test between the standard deviations of the relative errors of 𝑅2′  and dCBV vs. 1/�𝑁𝑣𝑒𝑠. 

For 𝑅2′  they found a constant of proportionality of (54 ± 3)% with a coefficient of 
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determination R2 = 0.85 and for dCBV they found a constant of proportionality of (35 ± 

2)% with R2 = 0.85. These were for simulations at 4 T with an SbO2 of 0.50 and Hct of 

0.4, which at 3 T, using Eq.(2.43), corresponded to an SbO2 of 0.33 when Hct was 0.42 

(the same B0 and Hct used in this study). Their constants of proportionality were still 

much lower than the ones found in this study (Table 4.1), however, this was not too 

surprising since their TE was 90 ms compared to 80 ms here. Nevertheless, both studies 

found high R2 values (0.85 for Klassen and Menon and 0.68 to 0.89 here), showing 

agreement with the strong assumption of large numbers of vessels underpinning the 

theory. 

 The applicability of the Yablonskiy and Haacke theory is limited though since it 

is strongly dependent on there being a large number of vessels occupying a negligible 

volume of tissue, that the vessels are completely randomly oriented, and perhaps most 

importantly, that the system is in the static dephasing regime. The only factor over which 

we, the experimenter, have control for determining whether or not the static dephasing 

regime applies is the field strength7

5.2 Simulations with Diffusion 

 since moving to higher field strengths increases 𝛿𝜔 

and therefore so too the likelihood that 𝛿𝜔 ⋅ 𝜏𝐷 ≫ 1. 

5.2.1 Effect of Subvoxel Size 

For a given value of D, the subvoxel size and time step must be judiciously chosen in 

order for the diffusion kernel not to behave like a delta function and not to span too large 

a distance such that edge effects start to occur even with an unsampled boundary. By 

performing SE simulations on a homogeneous 1D voxel that were independent of field 

strength, these simulation parameters were controlled for and assessed using primarily 

the RMSE but also the error at the SE. The error at the SE was of particular interest for 

several reasons: i) refocusing the spins allowed for a larger dynamic range of signal 

                                                 
7 To a lesser extent, one could also try to pharmacologically decrease SbO2; however, when kept 

within physically safe limits, this decrease would be much less significant than increasing the field strength. 
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amplitudes to be simulated, ii) residual errors that propagated and added throughout the 

simulation were amplified and thus more apparent, and iii) practically speaking, the SE is 

typically the time point of interest in SE sequences. 

 It was found using the 1D simulations (Figure 4.9) and corroborated in 3D (Figure 

4.10), that for a D equal to 0.7 μm2/ms, the subvoxel size should be less than 2 μm. Using 

D = 0.7 μm2/ms was found to put the strictest constraints on the simulation accuracy 

(Figure 4.5) so using a larger value for D would allow for marginally larger subvoxels to 

be used considering the typical range of diffusion coefficients in GM is ~ 0.7 – 1.2 

μm2/ms [66-69]. In the 2D vessel network simulations originally performed by Bandettini 

and Wong [22], they made the subvoxel size vary in proportion to the vessel diameter and 

dCBV being used. This technique allowed for the smallest capillaries to be sampled with 

relatively small subvoxels and the larger vessels to be sampled at lower resolutions. Since 

the simulation accuracy depends on both the subvoxel size and the gradient strength, this 

technique works very well since capillaries produce the largest gradients and are also 

sampled at higher resolution. On the other hand, Klassen and Menon’s 3D simulations 

used values of D ranging from 0 up to 2.5 μm2/ms with a 5.85 μm subvoxel size and 1.0 

ms time step [23]. The 1D and 3D simulations performed here showed that greater than 5 

μm is far too large to accurately model the diffusion process – even at 4 T – and could 

result in relative errors for 𝑅2′  on the order of 100% (Figure 4.10). 

 Requiring such small subvoxels places exponentially larger demands on processor 

time and memory. For this reason, simulations were performed with 0.5 mm voxels in 

order to decrease the total matrix size; however, typical voxel dimensions in functional 

imaging are on the order of 1 – 3 mm. Christen, et al. [28] approached this issue by 

simulating multiple 0.2 mm voxel units and combining the complex MR signals from 

each of them into a larger composite voxel as if all of the voxel units had been arranged 

in a grid. Although this does not necessarily decrease the simulation time it does alleviate 

the memory demands. It is not clear though if their simulation validations were done on a 

single voxel unit or on a composite voxel. Having seen the boundary effects resulting 

from the convolution operations (Figure 4.4), this would be an important issue needing to 

be addressed when combining signals from multiple, supposedly neighbouring, voxel 
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units. Due to the random nature of the vessels and field offsets, it is possible that the edge 

effects would be negligible but in the case of an applied linear gradient, continuity of the 

gradient would be essential.  

5.2.2 Scaling the Diffusion Coefficient 

In the homogeneous 1D voxels, optimization of the diffusion scaling factor, 𝜓𝐷, proved 

capable of improving the RMSE by close to three orders of magnitude in some cases 

(Figure 4.11). In other cases, optimization failed, indicating that the optimization 

constraints and/or algorithm could be improved. As expected, the optimized 𝜓𝐷 increased 

with increasing subvoxel size to compensate for the delta function-like behaviour that 

emerged as the subvoxel size was increased. 

 The optimized 𝜓𝐷  was also dependent on the gradient strength – generally 

increasing as the gradient strength increased. This makes transitioning the optimized 

value from 1D to 3D simulations more challenging as there are non-linear gradients 

present in vessel networks which are themselves dependent on physiological factors such 

as Hct and SbO2. It may, however, be possible to obtain a characteristic gradient strength, 

similar to the characteristic frequency (Eq. (2.43)), which characterizes the vessel 

gradients. This gradient strength would presumably be dependent somehow on the 

distribution of vessel diameters and would, therefore, be easier to study using voxels 

composed of vessels with identical diameters. Determining this dependence would be 

very useful and, in addition to furthering our understanding of MR-vascular network 

interactions, it would eliminate the need to semi-manually seek out the best value for 𝜓𝐷 

in 3D. 

 Which metric will end up being the most useful for optimizing 𝜓𝐷 in 3D vessel 

networks is still not clear. From the results presented in Figure 4.12, minimization of the 

error in 𝑅2′  and dCBV seems promising because, while optimizing the physical 

parameters of interest, it also produced an RMSE that was not significantly worse than 

the absolute minimized RMSE (0.003 vs. 0.002, respectively). On the contrary, 

minimizing the RMSE resulted in significantly worse errors on the estimates of 𝑅2′  and 
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dCBV (~ -5% vs. ± 0.5%, respectively). These results hold for only a single vessel 

network with a single set of simulation parameters, necessitating a more thorough 

investigation into the general applicability of the method. 

 If, ultimately, optimizing 𝜓𝐷  is not practicable with microvascular networks, it 

may still find value in applications with linear or near-linear gradients, such as with 

larger blood vessels. 

5.2.3 Vessel Models 

In this thesis, as in most studies using deterministic simulations, vessel networks were 

modelled as randomly oriented cylinders of infinite extent with free permeability to 

water. Clearly these assumptions are not entirely realistic but it was not a goal of this 

thesis to assess their validity. Nevertheless, determining what effect these assumptions 

have on the simulation outcomes compared to more realistic models will be necessary for 

the simulations to gain widespread acceptance. 

The Effect of Vascular Permeability 

Boxerman, et al. [21] examined the effects of vessel permeability to water on MC 

simulations, varying it between zero permeability, physiological permeability, and free 

permeability. While the resulting differences between impermeable vessels and 

physiological permeability were negligible, simulations performed with free permeability 

displayed some marked differences from the others: changes in Δ𝑅2  peaked at 

approximately +20% for vessels with 6 µm radii and changes in Δ𝑅2∗ dipped down to as 

low as -33% for vessels with 1 µm radii. While these relative differences may seem quite 

high, the absolute differences were very low, being on the order of 0.25 s-1; furthermore, 

for a realistic distribution of vessels with a range of vessel radii, the net differences would 

be even less. Their studies were done at 1.5 T with an IV-EV susceptibility difference of 

1.0 × 10-7 arising from a vascular concentration of 3.6 mM Gd-DTPA. As a result, the 

product 𝐵0 ⋅ Δ𝜒 from their studies and from the simulations performed here at 3 T using 

SbO2 = 0.6 and Hct = 0.42 were very similar (1.5 × 10-7 T vs. 1.3 × 10-7 T, respectively). 
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Sources of Intravascular Susceptibility Perturbation 

Another shortcoming of the infinite cylinder model is that it does not accurately depict 

the sources of susceptibility inhomogeneity in the IV space, i.e. red blood cells and 

plasma. Using MC simulations, Martindale, et al. [24] modelled the IV perturbations 

from red blood cells by randomly distributing spherical perturbers within cylindrical 

vessels to a desired Hct. They found that for a single vessel, the IV signal phase as a 

function of vessel angle was very similar for the infinite cylinder and spherical perturber 

models; however, the normalized IV signal magnitude varied significantly as a function 

of vessel angle for the spherical perturber model with the simulation settings tested 

whereas the infinite cylinder model produces no deviation from unity since it generates a 

uniform phase shift throughout (Eq. (2.36)). Although their work did not show the 

discrepancy that may exist in the signal for an entire vessel network (IV + EV), the 

minimal volume occupied by the vessels would ensure that the effect is not too 

pronounced plus the long-range perturbations caused by neighbouring vessels would lead 

to some decay of the IV signal, although not to the extent observed with spherical 

perturbers. This could lead one to introduce a modulation factor to the IV signal for each 

vessel or, instead, directly model spherical perturbers, which would be feasible in 

deterministic simulations and more accurate. It’s not clear though if the computational 

cost of including spherical perturbers would be worth the improvements in signal 

accuracy. 

Infinite Cylinder Model vs. Realistic Vascular Model 

Finally, modelling vessels as infinite cylinders is extremely convenient and efficient but 

not necessarily realistic (especially depending on the voxel size). Marques and Bowtell 

[70] examined this by comparing the infinite cylinder model to a realistic vascular model 

obtained from scanning electron microscopy measurements of the terminal vascular bed 

in the superficial cortex of the rat. In the realistic vascular model, vessel segments were 

still modelled as cylinders, however, the model gave the coordinates of the different 

nodes of the vasculature and the radii of the cylinders connecting those nodes. Field 

offsets for the realistic vascular model could no longer be computed analytically by Eq. 

(2.36) since the cylinders were of finite length, instead, Fourier-based method based on 
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the susceptibility map were used [71]. Simulations of the transverse magnetization were 

performed by numerically solving the Bloch-Torrey equation using finite element 

methods. They found no significant differences between the infinite cylinder model and 

the realistic vascular model in terms of the frequency offset histograms, Δ𝑅2, and Δ𝑅2∗. 

Their studies were performed using voxel widths of only 150 μm, so it remains to be seen 

how significant the differences are when larger voxels are used. 

 While it is important to understand that the models used in the simulations are 

only approximations of what occurs in reality, when performed within the proper bounds, 

the trends that are observed in the simulations are still very similar between different 

models; hence, one can still gain a great deal of information from the simulations and 

apply them to realistic physiology regardless of whether or not what they model is a 

perfect representation of nature. 
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Chapter 6 Conclusion 

6.1 Summary 

In an effort to fill in the existing gap in the MR literature, this thesis has extensively 

studied the fundamental properties and assumptions underpinning 3D deterministic 

simulations of the MRI signal. Analysis was divided into those simulations including 

molecular diffusion and those not including diffusion due to the leap in complexity 

between the two. 

 There were three principal findings from this study: 1) in the absence of diffusion, 

subvoxel size was not such a crucial factor and it could even be larger than the smallest 

field perturber size without significantly affecting the results; 2) in the presence of 

diffusion, subvoxel size was a crucial factor and it needed to be sufficiently high 

depending on the rest of the simulation parameters in order for the simulations to be 

accurate; and 3) optimization of a diffusion scaling factor for simulating with larger 

subvoxels was feasible when careful attention was paid to the simulation parameters. 
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 The first finding, that the subvoxel size can be relatively large in the absence of 

diffusion, was determined by simulating the SE time series for different microvascular 

networks while progressively increasing the subvoxel size. Using up to 10 μm subvoxels 

showed no significant adverse effects compared to 1 μm subvoxels. Implications of this 

result are that larger, more realistic voxel sizes can be used without significantly 

increasing CPU time and memory demands, allowing for a wide range of phenomena in 

the static dephasing regime to be investigated. These simulations permitted the 

verification of the Yablonskiy and Haacke [60] theory of signal behaviour from a 

vascular network in the SDR, where good agreement between theory and simulation was 

found. 

 The second finding, that the subvoxel size had a major impact on the simulation 

outcomes when including molecular diffusion, was established first in 1D simulations 

that were independent of the field strength and vasculature and later verified in 3D 

microvascular simulations. The subvoxel size must therefore be meticulously chosen; one 

way of doing this is to perform the 1D simulations described in Sect. 3.3.1 with the 

desired simulation parameters while independently varying the subvoxel size and linear 

gradient strength. The RMSE and the error at the SE then provide quantitative tools for 

determining a sufficient subvoxel size for simulating to a desired accuracy. 

 Lastly, decreasing simulation time by using larger subvoxels showed promise 

when the diffusion coefficient was corrected for by an optimized scaling factor, 𝜓𝐷. By 

optimizing 𝜓𝐷 for large subvoxel simulations in 1D, the RMSE could be improved by 

orders of magnitude over non-optimized simulations. The optimized 𝜓𝐷  was both 

subvoxel size and gradient strength-dependent and therefore not so readily transferable to 

3D vascular simulations; however, further investigation into optimization in 3D would be 

warranted since the potential benefits are vast. 

6.2 Future Work 

Many different properties of deterministic simulations were examined here but before the 

simulations can be put to meaningful use to gain insights into quantitative fMRI, some 
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more validation is required and the addition of some minor changes would make the 

simulations even more powerful. 

 In the simulations performed here, IV signal was always included when diffusion 

was being modelled. However, in some fMRI applications, it is advantageous to null the 

IV signal using flow dephasing gradients since IV signal can decrease the overall spatial 

specificity of the signal [72-74]. Modelling IV nulling in deterministic simulations is not 

as trivial as it is for MC simulations or analytical equations. The reason for this is that the 

model of free permeability inherent in isotropic blurring leads to increased signal loss in 

the EV areas surrounding vessels since EV signal is irretrievably lost to the IV space 

when convolved with the diffusion kernel. For this reason, the effect of IV nulling on the 

EV signal needs to be characterized. If EV signal losses become too pronounced, 

additional measures will have to be taken to reverse them, such as using a mask that 

would cause the diffusion kernel to spatially vary in the presence of vessels. 

 The power of the simulations and the range of their applications could be 

extended by incorporating some minor adjustments into them. First, as discussed in Sect. 

5.2.3, the IV signal is not properly modelled by the infinite cylinder model and would be 

better modelled by a spherical perturber model [24]. This change would add time to the 

initial calculation of the field offset maps since more perturbation sources would be 

added, however, the runtime of the subsequent time series simulations would not be 

affected. Second, to create a less restricted picture of the vasculature, instead of applying 

a single oxygen saturation, a range of oxygen saturations could be applied to the vessel 

network, with each vessel or class of vessels (arterioles, capillaries, venules) taking on a 

unique value. 

 Finally, it is envisaged that the simulations will be applied to the evaluation of 

fMRI calibration techniques. Previous comparisons of calibration techniques have been 

in vivo, where only the precision of the techniques can be quantitatively compared since 

the ground truth calibration constants cannot be known [47, 75]. Simulations provide an 

excellent test bed for calibration since the physiological ground truth is already known 

and, therefore, the accuracy of the calibration methods can be quantitatively assessed. 

Blockley, et al. [29] conducted a comparison of hypercapnic, hyperoxic, and 𝑅2′ -based 
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calibration using an analytical model of the BOLD signal but, as previously discussed, 

analytical models need to incorporate many approximations and are therefore not as 

accurate. It is expected that deterministic simulations will be able to put better constraints 

on the calibration techniques than analytical models due to their low level control over 

physiological parameters. 

 Overall, deterministic simulations have great potential for use in MR studies: they 

provide accurate simulations of the MR signal in the microvasculature while delivering 

output variability that analytical solutions cannot produce and reducing the runtime 

required by MC simulations.  



76 
 

 

 

Bibliography 

 

[1] V. R. Fuchs and H. C. Sox, Jr., "Physicians' views of the relative importance of 
thirty medical innovations," Health Aff (Millwood), vol. 20, pp. 30-42, Sep-Oct 
2001. 

[2] M. Carandini, "From circuits to behavior: a bridge too far?," Nat Neurosci, vol. 
15, pp. 507-9, Apr 2012. 

[3] S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, and K. 
Ugurbil, "Intrinsic signal changes accompanying sensory stimulation: functional 
brain mapping with magnetic resonance imaging," Proc Natl Acad Sci U S A, vol. 
89, pp. 5951-5, Jul 1 1992. 

[4] K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. 
P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, and et al., 
"Dynamic magnetic resonance imaging of human brain activity during primary 
sensory stimulation," Proc Natl Acad Sci U S A, vol. 89, pp. 5675-9, Jun 15 1992. 

[5] P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky, and J. S. Hyde, "Time 
course EPI of human brain function during task activation," Magn Reson Med, 
vol. 25, pp. 390-7, Jun 1992. 

[6] R. B. Buxton, "Interpreting oxygenation-based neuroimaging signals: the 
importance and the challenge of understanding brain oxygen metabolism," Front 
Neuroenergetics, vol. 2, pp. 1-16, 2010. 

[7] R. B. Buxton, K. Uludag, D. J. Dubowitz, and T. T. Liu, "Modeling the 
hemodynamic response to brain activation," Neuroimage, vol. 23 Suppl 1, pp. 
S220-33, 2004. 

[8] M. J. Donahue, J. U. Blicher, L. Ostergaard, D. A. Feinberg, B. J. MacIntosh, K. 
L. Miller, M. Gunther, and P. Jezzard, "Cerebral blood flow, blood volume, and 
oxygen metabolism dynamics in human visual and motor cortex as measured by 
whole-brain multi-modal magnetic resonance imaging," J Cereb Blood Flow 
Metab, vol. 29, pp. 1856-66, Nov 2009. 

[9] V. E. Griffeth and R. B. Buxton, "A theoretical framework for estimating cerebral 
oxygen metabolism changes using the calibrated-BOLD method: modeling the 
effects of blood volume distribution, hematocrit, oxygen extraction fraction, and 
tissue signal properties on the BOLD signal," Neuroimage, vol. 58, pp. 198-212, 
Sep 1 2011. 



77 
 

[10] X. He and D. A. Yablonskiy, "Quantitative BOLD: mapping of human cerebral 
deoxygenated blood volume and oxygen extraction fraction: default state," Magn 
Reson Med, vol. 57, pp. 115-26, Jan 2007. 

[11] R. D. Hoge, J. Atkinson, B. Gill, G. R. Crelier, S. Marrett, and G. B. Pike, 
"Investigation of BOLD signal dependence on cerebral blood flow and oxygen 
consumption: the deoxyhemoglobin dilution model," Magn Reson Med, vol. 42, 
pp. 849-63, Nov 1999. 

[12] P. Tian, I. C. Teng, L. D. May, R. Kurz, K. Lu, M. Scadeng, E. M. Hillman, A. J. 
De Crespigny, H. E. D'Arceuil, J. B. Mandeville, J. J. Marota, B. R. Rosen, T. T. 
Liu, D. A. Boas, R. B. Buxton, A. M. Dale, and A. Devor, "Cortical depth-
specific microvascular dilation underlies laminar differences in blood oxygenation 
level-dependent functional MRI signal," Proc Natl Acad Sci USA, vol. 107, pp. 
15246-51, Aug 24 2010. 

[13] K. Uludag, D. J. Dubowitz, E. J. Yoder, K. Restom, T. T. Liu, and R. B. Buxton, 
"Coupling of cerebral blood flow and oxygen consumption during physiological 
activation and deactivation measured with fMRI," Neuroimage, vol. 23, pp. 148-
55, Sep 2004. 

[14] S. A. Rombouts, R. Goekoop, C. J. Stam, F. Barkhof, and P. Scheltens, "Delayed 
rather than decreased BOLD response as a marker for early Alzheimer's disease," 
Neuroimage, vol. 26, pp. 1078-85, Jul 15 2005. 

[15] S. Amemiya, A. Kunimatsu, N. Saito, and K. Ohtomo, "Impaired hemodynamic 
response in the ischemic brain assessed with BOLD fMRI," Neuroimage, vol. 61, 
pp. 579-90, Jul 2 2012. 

[16] K. C. Mazzetto-Betti, R. F. Leoni, O. M. Pontes-Neto, A. C. Santos, J. P. Leite, 
A. C. Silva, and D. B. de Araujo, "The stability of the blood oxygenation level-
dependent functional MRI response to motor tasks is altered in patients with 
chronic ischemic stroke," Stroke, vol. 41, pp. 1921-6, Sep 2010. 

[17] C. J. Gauthier, C. Madjar, F. B. Tancredi, B. Stefanovic, and R. D. Hoge, 
"Elimination of visually evoked BOLD responses during carbogen inhalation: 
implications for calibrated MRI," Neuroimage, vol. 54, pp. 1001-11, Jan 15 2011. 

[18] E. Kraft, W. Loichinger, M. Diepers, D. Lule, J. Schwarz, A. C. Ludolph, and A. 
Storch, "Levodopa-induced striatal activation in Parkinson's disease: a functional 
MRI study," Parkinsonism Relat Disord, vol. 15, pp. 558-63, Sep 2009. 

[19] S. Ogawa, R. S. Menon, D. W. Tank, S. G. Kim, H. Merkle, J. M. Ellermann, and 
K. Ugurbil, "Functional brain mapping by blood oxygenation level-dependent 
contrast magnetic resonance imaging. A comparison of signal characteristics with 
a biophysical model," Biophys J, vol. 64, pp. 803-12, Mar 1993. 

[20] J. L. Boxerman, P. A. Bandettini, K. K. Kwong, J. R. Baker, T. L. Davis, B. R. 
Rosen, and R. M. Weisskoff, "The intravascular contribution to fMRI signal 
change: Monte Carlo modeling and diffusion-weighted studies in vivo," Magn 
Reson Med, vol. 34, pp. 4-10, Jul 1995. 

[21] J. L. Boxerman, L. M. Hamberg, B. R. Rosen, and R. M. Weisskoff, "MR 
Contrast Due to Intravascular Magnetic-Susceptibility Perturbations," Magn 
Reson Med, vol. 34, pp. 555-566, Oct 1995. 

[22] P. A. Bandettini and E. C. Wong, "Effects of biophysical and physiologic 
parameters on brain activation-induced R2* and R2 changes: Simulations using a 



78 
 

deterministic diffusion model," Int J Imaging Syst Technol, vol. 6, pp. 133-152, 
1995. 

[23] L. M. Klassen and R. S. Menon, "NMR simulation analysis of statistical effects 
on quantifying cerebrovascular parameters," Biophys J, vol. 92, pp. 1014-21, Feb 
1 2007. 

[24] J. Martindale, A. J. Kennerley, D. Johnston, Y. Zheng, and J. E. Mayhew, 
"Theory and generalization of Monte Carlo models of the BOLD signal source," 
Magn Reson Med, vol. 59, pp. 607-18, Mar 2008. 

[25] J. D. Dickson, T. W. Ash, G. B. Williams, S. G. Harding, T. A. Carpenter, D. K. 
Menon, and R. E. Ansorge, "Quantitative BOLD: the effect of diffusion," J Magn 
Reson Imaging, vol. 32, pp. 953-61, Oct 2010. 

[26] T. Christen, B. Lemasson, N. Pannetier, R. Farion, C. Segebarth, C. Remy, and E. 
L. Barbier, "Evaluation of a quantitative blood oxygenation level-dependent 
(qBOLD) approach to map local blood oxygen saturation," NMR Biomed, vol. 24, 
pp. 393-403, Oct 19 2010. 

[27] D. Pflugfelder, K. Vahedipour, K. Uludag, N. J. Shah, and T. Stocker, "On the 
numerically predicted spatial BOLD fMRI specificity for spin echo sequences," 
Magn Reson Imaging, vol. 29, pp. 1195-204, Nov 2011. 

[28] T. Christen, G. Zaharchuk, N. Pannetier, R. Serduc, N. Joudiou, J. C. Vial, C. 
Remy, and E. L. Barbier, "Quantitative MR estimates of blood oxygenation based 
on T(2) *: A numerical study of the impact of model assumptions," Magn Reson 
Med, vol. 67, pp. 1458-68, May 2012. 

[29] N. P. Blockley, V. E. Griffeth, and R. B. Buxton, "A general analysis of calibrated 
BOLD methodology for measuring CMRO2 responses: comparison of a new 
approach with existing methods," Neuroimage, vol. 60, pp. 279-89, Mar 2012. 

[30] S. G. Waxman, "Chapter 2. Development and Cellular Constituents of the 
Nervous System," in Clinical Neuroanatomy, S. G. Waxman, Ed., 26 ed. New 
York: McGraw-Hill, 2010. 

[31] D. U. Silverthorn, "Chapter 8: The Nervous System," in Human physiology : an 
integrated approach, 1 ed Upper Saddle River, N.J.: Prentice Hall, 1998. 

[32] R. B. Buxton, Introduction to functional magnetic resonance imaging : principles 
and techniques, 2nd ed. Cambridge ; New York: Cambridge University Press, 
2009. 

[33] M. E. Raichle, A. M. MacLeod, A. Z. Snyder, W. J. Powers, D. A. Gusnard, and 
G. L. Shulman, "A default mode of brain function," Proc Natl Acad Sci USA, vol. 
98, pp. 676-82, Jan 16 2001. 

[34] P. T. Fox, M. E. Raichle, M. A. Mintun, and C. Dence, "Nonoxidative glucose 
consumption during focal physiologic neural activity," Science, vol. 241, pp. 462-
4, Jul 22 1988. 

[35] T. L. Davis, K. K. Kwong, R. M. Weisskoff, and B. R. Rosen, "Calibrated 
functional MRI: mapping the dynamics of oxidative metabolism," Proc Natl Acad 
Sci USA, vol. 95, pp. 1834-9, Feb 17 1998. 

[36] R. B. Buxton, "Chapter 2: Cerebral blood flow and brain activation," in 
Introduction to functional magnetic resonance imaging : principles and 
techniques, 2nd ed Cambridge ; New York: Cambridge University Press, 2009. 



79 
 

[37] J. Andresen, N. I. Shafi, and R. M. Bryan, Jr., "Endothelial influences on 
cerebrovascular tone," J Appl Physiol, vol. 100, pp. 318-27, Jan 2006. 

[38] H. Ito, I. Kanno, C. Kato, T. Sasaki, K. Ishii, Y. Ouchi, A. Iida, H. Okazawa, K. 
Hayashida, N. Tsuyuguchi, K. Ishii, Y. Kuwabara, and M. Senda, "Database of 
normal human cerebral blood flow, cerebral blood volume, cerebral oxygen 
extraction fraction and cerebral metabolic rate of oxygen measured by positron 
emission tomography with 15O-labelled carbon dioxide or water, carbon 
monoxide and oxygen: a multicentre study in Japan," Eur J Nucl Med Mol 
Imaging, vol. 31, pp. 635-43, May 2004. 

[39] P. C. van Zijl, S. M. Eleff, J. A. Ulatowski, J. M. Oja, A. M. Ulug, R. J. 
Traystman, and R. A. Kauppinen, "Quantitative assessment of blood flow, blood 
volume and blood oxygenation effects in functional magnetic resonance 
imaging," Nat Med, vol. 4, pp. 159-67, Feb 1998. 

[40] B. Weber, A. L. Keller, J. Reichold, and N. K. Logothetis, "The microvascular 
system of the striate and extrastriate visual cortex of the macaque," Cereb Cortex, 
vol. 18, pp. 2318-30, Oct 2008. 

[41] F. Lauwers, F. Cassot, V. Lauwers-Cances, P. Puwanarajah, and H. Duvernoy, 
"Morphometry of the human cerebral cortex microcirculation: general 
characteristics and space-related profiles," Neuroimage, vol. 39, pp. 936-48, Feb 1 
2008. 

[42] S. Hirsch, J. Reichold, M. Schneider, G. Szekely, and B. Weber, "Topology and 
hemodynamics of the cortical cerebrovascular system," J Cereb Blood Flow 
Metab, Apr 4 2012. 

[43] R. L. Grubb, Jr., M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, "The 
effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular 
mean transit time," Stroke, vol. 5, pp. 630-9, Sep-Oct 1974. 

[44] M. F. Perutz, "Relation between structure and sequence of haemoglobin," Nature, 
vol. 194, pp. 914-7, Jun 9 1962. 

[45] L. Pauling and C. D. Coryell, "The Magnetic Properties and Structure of 
Hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin," Proc Natl Acad 
Sci USA, vol. 22, pp. 210-6, Apr 1936. 

[46] C. Schwarzbauer and R. Deichmann, "Vascular component analysis of hyperoxic 
and hypercapnic BOLD contrast," Neuroimage, vol. 59, pp. 2401-12, Feb 1 2012. 

[47] C. I. Mark, J. A. Fisher, and G. B. Pike, "Improved fMRI calibration: precisely 
controlled hyperoxic versus hypercapnic stimuli," Neuroimage, vol. 54, pp. 1102-
11, Jan 15 2011. 

[48] J. J. Chen and G. B. Pike, "BOLD-specific cerebral blood volume and blood flow 
changes during neuronal activation in humans," NMR Biomed, vol. 22, pp. 1054-
62, Dec 2009. 

[49] C. I. Mark and G. B. Pike, "Indication of BOLD-specific venous flow-volume 
changes from precisely controlled hyperoxic vs. hypercapnic calibration," J Cereb 
Blood Flow Metab, vol. 32, pp. 709-19, Apr 2012. 

[50] P. A. Chiarelli, D. P. Bulte, R. Wise, D. Gallichan, and P. Jezzard, "A calibration 
method for quantitative BOLD fMRI based on hyperoxia," Neuroimage, vol. 37, 
pp. 808-20, Sep 1 2007. 



80 
 

[51] C. J. Gauthier and R. D. Hoge, "A generalized procedure for calibrated fMRI 
incorporating hyperoxia and hypercapnia," in Intl Soc Mag Reson Med 19, 
Montreal, 2011, p. 772. 

[52] N. P. Blockley, V. E. Griffeth, and R. B. Buxton, "Can the calibrated BOLD 
scaling factor M be estimated just from R2' in the baseline state without 
administering gases," in Intl Soc Mag Reson Med 19, Montreal, 2011, p. 768. 

[53] D. Le Bihan and P. J. Basser, "Chapter 1: Molecular Diffusion and Nuclear 
Magnetic Resonance," in Diffusion and perfusion magnetic resonance imaging 
applications to functional MRI, D. Le Bihan, Ed., ed New York: Raven Press, 
1995, pp. xxi, 374 p. 

[54] A. Einstein, Investigations on the theory of the Brownian movement. New York: 
Dover Publications, 1956. 

[55] D. Le Bihan, R. Turner, and N. Patronas, "Chapter 8: Diffusion MR imaging in 
normal brain and in brain tumors," in Diffusion and perfusion magnetic resonance 
imaging applications to functional MRI, D. Le Bihan, Ed., ed New York: Raven 
Press, 1995, pp. xxi, 374 p. 

[56] P. T. Callaghan, "Chapter 6: The measurement of motion using spin echoes," in 
Principles of nuclear magnetic resonance microscopy, ed Oxford [England] ; 
New York: Oxford University Press, 1991, p. 492 p. 

[57] H. Torrey, "Bloch Equations with Diffusion Terms," Physical Review, vol. 104, 
pp. 563-565, 1956. 

[58] R. M. Weisskoff, C. S. Zuo, J. L. Boxerman, and B. R. Rosen, "Microscopic 
susceptibility variation and transverse relaxation: theory and experiment," Magn 
Reson Med, vol. 31, pp. 601-10, Jun 1994. 

[59] J. M. Zhao, C. S. Clingman, M. J. Narvainen, R. A. Kauppinen, and P. C. van 
Zijl, "Oxygenation and hematocrit dependence of transverse relaxation rates of 
blood at 3T," Magn Reson Med, vol. 58, pp. 592-7, Sep 2007. 

[60] D. A. Yablonskiy and E. M. Haacke, "Theory of NMR signal behavior in 
magnetically inhomogeneous tissues: the static dephasing regime," Magn Reson 
Med, vol. 32, pp. 749-63, Dec 1994. 

[61] D. A. Yablonskiy, "Quantitation of intrinsic magnetic susceptibility-related 
effects in a tissue matrix. Phantom study," Magn Reson Med, vol. 39, pp. 417-28, 
Mar 1998. 

[62] J. P. Wansapura, S. K. Holland, R. S. Dunn, and W. S. Ball, "NMR relaxation 
times in the human brain at 3.0 tesla," J Magn Reson Imaging, vol. 9, pp. 531-
538, Apr 1999. 

[63] W. M. Spees, D. A. Yablonskiy, M. C. Oswood, and J. J. H. Ackerman, "Water 
proton MR properties of human blood at 1.5 Tesla: magnetic susceptibility, T1, 
T2, T2*, and non-Lorentzian signal behavior," Magn Reson Med, vol. 45, pp. 
533-542, 2001. 

[64] H. Y. Carr and E. M. Purcell, "Effects of Diffusion on Free Precession in Nuclear 
Magnetic Resonance Experiments," Physical Review, vol. 94, pp. 630-638, 1954. 

[65] E. O. Stejskal and J. E. Tanner, "Spin Diffusion Measurements: Spin Echoes in 
the Presence of a Time-Dependent Field Gradient," Journal of Chemical Physics, 
vol. 42, pp. 288-+, 1965. 



81 
 

[66] J. M. Ni, S. Chen, J. J. Liu, G. Huang, T. Z. Shen, and X. R. Chen, "Regional 
diffusion changes of cerebral grey matter during normal aging--a fluid-inversion 
prepared diffusion imaging study," Eur J Radiol, vol. 75, pp. 134-8, Aug 2010. 

[67] R. J. Fox, K. Sakaie, J. C. Lee, J. P. Debbins, Y. Liu, D. L. Arnold, E. R. Melhem, 
C. H. Smith, M. D. Philips, M. Lowe, and E. Fisher, "A validation study of 
multicenter diffusion tensor imaging: reliability of fractional anisotropy and 
diffusivity values," AJNR Am J Neuroradiol, vol. 33, pp. 695-700, Apr 2012. 

[68] J. F. Jansen, M. E. Kooi, A. G. Kessels, K. Nicolay, and W. H. Backes, 
"Reproducibility of quantitative cerebral T2 relaxometry, diffusion tensor 
imaging, and 1H magnetic resonance spectroscopy at 3.0 Tesla," Invest Radiol, 
vol. 42, pp. 327-37, Jun 2007. 

[69] B. Benedetti, A. Charil, M. Rovaris, E. Judica, P. Valsasina, M. P. Sormani, and 
M. Filippi, "Influence of aging on brain gray and white matter changes assessed 
by conventional, MT, and DT MRI," Neurology, vol. 66, pp. 535-9, Feb 28 2006. 

[70] J. P. Marques and R. W. Bowtell, "Using forward calculations of the magnetic 
field perturbation due to a realistic vascular model to explore the BOLD effect," 
NMR Biomed, vol. 21, pp. 553-65, Jul 2008. 

[71] J. P. Marques and R. Bowtell, "Application of a fourier-based method for rapid 
calculation of field inhomogeneity due to spatial variation of magnetic 
susceptibility," Concepts in Magnetic Resonance Part B-Magnetic Resonance 
Engineering, vol. 25B, pp. 65-78, Apr 2005. 

[72] H. An and W. Lin, "Impact of intravascular signal on quantitative measures of 
cerebral oxygen extraction and blood volume under normo- and hypercapnic 
conditions using an asymmetric spin echo approach," Magn Reson Med, vol. 50, 
pp. 708-16, Oct 2003. 

[73] M. J. Donahue, H. Hoogduin, P. C. van Zijl, P. Jezzard, P. R. Luijten, and J. 
Hendrikse, "Blood oxygenation level-dependent (BOLD) total and extravascular 
signal changes and DeltaR2* in human visual cortex at 1.5, 3.0 and 7.0 T," NMR 
Biomed, vol. 24, pp. 25-34, Jan 2011. 

[74] T. Q. Duong, E. Yacoub, G. Adriany, X. P. Hu, K. Ugurbil, and S. G. Kim, 
"Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient-
echo and spin-echo fMRI with suppression of blood effects," Magn Reson Med, 
vol. 49, pp. 1019-1027, Jun 2003. 

[75] C. J. Gauthier and R. D. Hoge, "Magnetic resonance imaging of resting OEF and 
CMRO(2) using a generalized calibration model for hypercapnia and hyperoxia," 
Neuroimage, vol. 60, pp. 1212-25, Apr 2 2012. 

 
 


	Chapter 1 Introduction
	Chapter 2 Background
	2.1 MR Theory
	2.1.1 Nuclear Spin
	2.1.2 Nuclear Spins in a Static Magnetic Field
	2.1.3 Relaxation
	2.1.4 Bloch Equations

	2.2 Brain Physiology
	2.2.1 Membrane Potential, Graded Potentials, and Action Potentials
	2.2.2 Neurovascular Coupling

	2.3 Origins of the BOLD Signal
	2.3.1 CBF, CBV, and CMRO2
	2.3.2 Modelling the BOLD Signal

	2.4 Numerical Simulations of BOLD fMRI
	2.4.1 Molecular Diffusion Theory
	The Bloch-Torrey Equation

	2.4.2 Monte Carlo Simulations
	2.4.3 Analytical Models of the BOLD Signal
	The Yablonskiy & Haacke Model of NMR Signal Behaviour



	Chapter 3 Methods
	3.1 3D Model for Deterministic Simulation of Mxy
	3.2 Simulations without Diffusion
	Effect of Subvoxel Size
	Effect of dCBV
	Large Numbers Assumption

	3.3 Simulations with Diffusion
	3.3.1 Homogeneous 1D Voxel in a Linear Gradient
	Signal Analysis
	Convolution Edge Effects
	Effect of the Diffusion Coefficient and Time Increment
	Effect of Subvoxel Size and Gradient Strength

	3.3.2 Simulations with Vessel Networks
	3.3.3 Scaling the Diffusion Coefficient for Signal Optimization


	Chapter 4 Results
	4.1 Simulations without Diffusion
	4.1.1 Subvoxel Size
	4.1.2 dCBV and the Number of Vessels

	4.2 Simulations with Diffusion
	4.2.1 Simulations with a Homogeneous 1D Voxel
	Convolution Edge Effects
	Effect of the Diffusion Coefficient and the Time Increment
	Effect of Subvoxel Size and Gradient Strength

	4.2.2 Simulations with Vessel Networks
	4.2.3 Scaling the Diffusion Coefficient
	Signal Optimization in 1D
	Optimization in 3D



	Chapter 5 Discussion
	5.1 Simulations with Diffusion
	5.1.1 Effect of Subvoxel Size
	5.1.2 Yablonskiy and Haacke Theory

	5.2 Simulations with Diffusion
	5.2.1 Effect of Subvoxel Size
	5.2.2 Scaling the Diffusion Coefficient
	5.2.3 Vessel Models
	The Effect of Vascular Permeability
	Sources of Intravascular Susceptibility Perturbation
	Infinite Cylinder Model vs. Realistic Vascular Model



	Chapter 6 Conclusion
	6.1 Summary
	6.2 Future Work


