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Abstract 

 
In the past few decades, complexity and operating frequency of microelectronic circuits have 

considerably increased and their sizes have shrunk. As a result, EDA simulations for complex 

systems have become difficult tasks for two main reasons. One is that their actual physical 

models are, sometimes, impossible to obtain. The other reason is that some characteristics of 

component are modified under high-frequency operation. In this case, the bottleneck problem 

of macromodeling is to develop the accurate analytical model under high frequency 

environment. To solve the problems for passive linear systems, frequency-domain S or Y-

parameter data can be obtained at first through measurements or full-wave simulation.  

 To deal with the frequency-domain measurements, fitting methods (Vector Fitting or 

Loewner Matrix method) are applied to obtain the mathematical macromodel. They all can 

handle high complexity system, but generate different macromodels for the results. For 

example, VF method generates results in pole-residue approximation model; and LM method 

generates results in state space matrices model.  

 From these macromodels above, this thesis proposes several approaches to derive 

SPICE level simulation model (or SPICE netlist) when inputting measurements for fitting 

methods are Y-parameter. SPICE netlist is in format of components list (resistors, capacitors, 

inductors and etc.); so it is convenient for EDA simulation. The ideas of these approaches are 

based on properties of MNA equation and reactance theorem. They are proven to generate 

accurate results and they can greatly accelerate the macromodeling process in this thesis. 

 This thesis also provides an open discussion on SPICE netlist generation from 

frequency-domain data. Within the development of new or optimized fitting methods, we 

always can invent or optimize the corresponding macromodeling methods to better adapt 

characteristics of those fitting methods. On the other hand, the best solution for different 

problems (or systems), is not fixed. Adopting the method based on the properties of the 

system would achieve better efficiency. 
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Résumé 

 
Au cours des dernières décennies, la complexité et la fréquence de fonctionnement des 

circuits microélectroniques ont considérablement augmenté et leurs tailles ont diminué. En 

conséquence, les simulations d’ACE (l'automatisation de la conception électronique) de 

systèmes complexes sont devenues des tâches difficiles pour deux raisons principales. La 

première raison est que leurs modèles physiques réels étaient impossibles à obtenir parfois. 

L'autre raison est que certaines caractéristiques du composant étaient modifiées en 

fonctionnement à haute fréquence. Dans ce cas, le problème de la macro- modélisation est le 

développement  le modèle d’une analytique précise dans un environnement à haute fréquence. 

Pour résoudre les problèmes pour les systèmes linéaires passifs, S ou Y-paramètre dans le 

domaine fréquentiel peuvent être obtenus premièrement par des mesures ou par la simulation 

d’onde-entière.  

 Pour traiter les mesures de domaine de fréquence, les méthodes d'ajustement 

(méthodes "Vector Fitting " ou "Loewner Matrix") sont appliquées pour obtenir la macro-

modèle mathématique. Tous peuvent gérer les systèmes de complexité élevée, mais ils 

génèrent macro-modèles différentes pour les résultats. Par exemple, la méthode VF génère 

des résultats dans le modèle d’approximation de pôle-résidus; et la méthode LM génère des 

résultats dans le modèle de matrices de l'espace d'état. 

 Selon ces macro-modèles, cette thèse propose plusieurs approches pour tirer modèle 

de la simulation au niveau SPICE (ou la netliste SPICE) lorsque les mesures d'entrée pour des 

méthodes d'ajustement sont Y-paramètre. La netliste SPICE est au format de la liste des 

composants (résistances, condensateurs, inductances et etc.); il est si commode pour la 

simulation de l’ACE. Les idées de ces approches sont basées sur les caractéristiques de 

l'équation MNA et sur le théorème de la réactance. Ils sont prouvés de générer des résultats 

précis et ils peuvent considérablement accélérer le processus de la macro-modélisation dans 

cette thèse. 

 Cette thèse fournit également une discussion ouverte sur la génération de la netlist 

SPICE à des données de domaine de fréquence. Dans le développement de nouvelles 

méthodes d'ajustement, nous pouvons toujours inventer ou optimiser les méthodes de macro-

modélisation afin de mieux adapter les caractéristiques de ces méthodes d'ajustement. De 

l'autre côté, la meilleure solution pour différents problèmes (ou systèmes), n’est pas fixe. 

L'adoption de la méthode sur la base des caractéristiques du système pourrait atteindre une 

meilleure efficacité. 
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Chapter 1 Introduction 
 

 

 

1.1 Background and motivation 
 

 In the past few decades, electronic components have become ubiquitous, appearing in 

diverse systems from computers to cars, smartphones, TV and other small and large 

appliances. This was partially facilitated by lower costs due to manufacturing process as well 

as systematic design automation of electronic systems. Such electronic design automation 

(EDA) tools have therefore been one of the key enablers of the current digital revolution that 

has seen microelectronics integrated in almost every product. However, at the same time the 

complexity of microelectronic circuit has considerably increased. It is partially due to 

increased system complexity due to higher integration and partially due to more complex 

models required for high frequency operation reaching well into the GHz range. It has put a 

considerable strain on the EDA tools used for design. In fact EDA tools have now become 

one of the key bottlenecks limiting the performance and complexity of modern designs [1, 2].   

 One of the key requirements for accurate simulation and design automation is an 

accurate and efficient model for the circuit components. However, for many complex 

components, especially those operate at high frequency, such as transmission lines, 

Microelectromechanical systems (MEMS), interconnectors and vias, accurate physics based 

models are not easily obtained. In this case, the bottleneck problem is to develop the accurate 

analytical time domain models [3] under high frequency environment. However, for passive 

linear structures, we can fully characterize their behavior by the frequency domain S- or Y-

parameter data, which can be obtained from measurement or full-wave simulation. The key 

challenge is how to include frequency domain data into a linear time domain simulation. This 

is the main focus of this thesis. 

 Throughout all present analytical models, SPICE level simulation models [10] show 

superior behavior for complicated high-frequency circuits or networks. Simulation Program 

with Integrated Circuit (SPICE) is a typical analog electronic circuit simulator. It directly 

describes the integrated circuit structures and is convenient for time domain and frequency 
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domain analysis.  In later part of this thesis, this model will be called as ‘SPICE netlist’, 

which indicate the virtual components of the circuit and their connection data between nodes 

in the circuit. This thesis will focus on the circuits or networks which have large number of 

ports and work under high frequency ( 1GHz).  

 Macromodeling for high frequency simple components, such as a capacitor, can be 

achieved through analyzing the physical structures. But for high frequency components, such 

as transmission lines, physical structures are very hard to obtain. In this case, frequency 

domain measurements are considered as an assistance of macromodeling. Starting from these 

measurements, there are usually three approaches to perform a transient time domain 

simulation: Direct convolution method, Recursive convolution method and SPICE compatible 

Macromodel method. They will be mentioned in Section 2.1. 
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1.2 Thesis Contributions 
 

 In this thesis, a number of macromodeling methods are developed for frequency 

measurement data (Y- parameter) of arbitrary system. These methods extend the capability on 

complicated applications and improve the efficiency on simulation; they are listed as follow. 

1. “Sparse Matrices Algorithm” for state-space matrices from Loewner Matrix Method 

(see Section 4.2): state-space matrices of an arbitrary system could be fast generated 

from frequency response through SMA method. Since these matrices are usually full 

matrices, utilizing them efficiently became another issue. Sparse Matrices Algorithm 

analyzes the properties of these state-space matrices; provides a quick way to obtain 

the sparsified matrices and then fits them to MNA equation to obtain the SPICE 

compatible macromodel. As demonstrated in examples, this proposed algorithm 

significantly reduced the complexity of SPICE compatible model. 

 

2. Modified Foster’s Method (see Section 5.3, Appendix II): When Vector Fitting 

Method is applied on frequency response of an arbitrary system; the results would be 

in pole-residues format. Chapter 5 mainly discusses algorithms which could generate 

SPICE compatible models from these pole-residue rational approximations.  

Modified Foster’s Method, proposed in Section 5.3, is a method using Foster-like 

circuit or Foster’s Reactance theorem [58] to derive the virtual components for a 

frequency response. Several prototypes are acclaimed so that rational approximation 

of a frequency response can quickly address to different modes. MFM method has 

very low time cost to generate SPICE compatible macromodel from rational 

approximations.  

 

3. Foster-Brune Method (see Section 5.5): One drawback of Modified Foster’s Method 

is that the number of components of final result would be massive when the number 

of gussed poles used in VF method is large. To optimize Modified Foster’s Method, 

reduction for the number of components is the key point. After having reviewed 

Brune’s method, Section 5.5 has proposed “Foster-Brune Method”. This method has 

first established a selecting algorithm on all pole-residues rational approximations, 

then has extracted, as many as possible, single pole-residue parts and has grouped 

them into high-order positive-real rational approximations. The next step is to apply 

Brune’s method on these grouped ones and MFM on those ungrouped ones. 
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4. Positive-real (PR) conditions for pole-residue components (see Appendix IV): For a 

frequency response function     , this function is PR if and only if          is 

always positive in the right-half plane of the complex plane and      has real value 

for real  .  This section has considered pole-residue rational function as component, 

has sought the PR conditions for the sum of any two components. After analysis and 

proof, all conditions are summarized into format of pseudo code so they could be 

easily presented in programming. 
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1.3 Thesis Organization 
 

 In Chapter 2, we have introduced three approaches for performing transient analysis 

for the multiport system at first, and then we have formulated the problem in Section 2.1.In 

later sections, we have introduced background knowledge, such as direct convolution and 

various fitting methods. Modified Nodal Analysis and linear subsection are very important for 

understanding proposed algorithm (SMA) in Chapter 4. They are discussed in section 2.4 and 

2.5. 

 

 In Chapter 3, we have summarized some fitting techniques for generating time-

domain macromodels. They are least squares method (LS)[12], Strictly positive 

approximation [36-37], Convex programming method [38-39], Vector Fitting method(VF) 

and Loewner Matrix method(LM). For VF method, we have analyzed basic algorithm on 

single response, and its application on multiport systems. For introducing LM method, the 

original method claimed in 2008[54] has been reviewed first. Additionally, several modified 

methods [47-48, 50], claimed by my supervisor Roni Khazaka and his students, have been 

reviewed later for providing accurate time-domain models for examples. 

 

 Chapter 4 focuses on SPICE netlist generation from state-space matrices. At first, the 

general method to generate SPICE netlist from state-space matrices have been introduced in 

Section 4.1. In Section 4.2, I have proposed “Sparse Matrices Algorithm”, which can 

generate SPICE netlist from state-space matrices obtained through LM method. This method, 

utilized the properties of LM method, allows SPICE netlist generation fast and accurate. This 

method has also already been published in [55], and has been detailedly described in this 

section.  

 

 Chapter 5 focuses on SPICE netlist generation from rational function (or pole-residue 

rational approximation). Section 5.1 has also reviewed positive-real (PR) property of rational 

function, which is necessary for generating positive-real component (real world component) 

in the netlist. Section 5.2 has described the idea to divide Y-parameter into individual 

component. Section 5.3 has first reviewed Foster-Like circuit [58], which can generate RLC 

circuits from frequency responses. Then we have made some optimizations and have 

proposed “Modified Foster method” for SPICE netlist generation. Furthermore, we have 

established several stamps, which allow us to directly generate RLC model from poles-

residue sets of multiport network. In Section 5.4, we have reviewed Brune’s method [57]; 

however, this method has some fatal drawbacks on dealing with complex systems.  
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In Section 5.5, we have combined Brune’s method and Modified Foster method and have 

proposed a new method, “Foster-Brune method”, which absorbs the advantages of both 

methods and avoids their drawbacks.  

 

 Chapter 6 is the simulation part of this thesis. Two examples are presented, one is 

single transmission line and the other one is an 8-port network. We have first applied VF and 

LM method on these examples to obtain numerical macromodels. Then we have applied 

Sparse Matrices Algorithm (SMA), Modified Foster method (MFM) and Foster-Brune 

method (FBM) on these macromodels. The parameters for the comparison between these 

methods include: accuracy (error), reality (real-world components in netlist) and time 

consumption. For observing the accuracy for these methods, we have applied Backward Euler 

method for transient analysis.  

 

 Chapter 7 provides the summary of current work. The goal of this thesis is the 

research on most efficient method generate SPICE compatible model (netlist) from frequency 

response data. To achieve this goal, some directions of future work are given in the end. 
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Chapter 2 Problem Formulation and Background 

Knowledge  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As it mentioned in the first chapter, there are three macromodeling methods for dealing with 

frequency data of an unknown system. After formulating the problem for presenting these 

methods, it is very necessary to introduce the background knowledge for these methods. They 

are direct convolution method for Y-parameter, various fitting methods, Modified Nodal 

Analysis (MNA) and linear subsection.  
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2.1 General Approaches and Problem Formulation 
  

 As it mentioned in end of introduction, there are three approaches to perform a 

transient time domain simulation from frequency-domain measurements. Their flowcharts are 

shown in Figure 2.1. 

Unkown

System

Direct Convolution

Various Fitting/Optimization Method:

Vector Fitting,Loewner 

Matrix,AWE,LS,…...

Frequency-

domain Data

Y- or S- 

Parameters

SPICE netlist 

generation

SPICE 

Compatible

MacroModel

Recursive

Convolution

Macromodel

Method 2:

Recursive 

Conolution for 

time-domain 

transient 

simulation;

Hard to apply on  

Mutiport system

Method 3:

SPICE Netlist 

generation;

Main Algorithms in 

this thesis

Method 1:

Direct Conolution 

for Time-domain 

transient 

simulation;

Hard to apply on  

complicated 

system

EDA software 

Transient 

Simulation

 

Figure 2.1 Current methods for time-domain transient simulation 
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1. Direct convolution method can solve time domain models from frequency domain 

measurements. This method will be introduced in Section 2.2. It works for simple 

cases; but for systems which work under high frequency and have large number of 

ports, its performance is poor in terms of stability, CPU cost and memory 

requirements [67]. 

 

2. Recursive convolution method: This approach is divided into two steps: The first step 

is to generate mathematic macromodel by some fitting techniques. In recent years, 

numerous algorithms to automatically generate this model are invented and massive 

work on improving the accuracy and the efficiency of these algorithms had been done. 

The most appealing ones, among these new algorithms, are vector fitting method (VF) 

[20] and Loewner matrix method (LM) [43]. Compare to their predecessors, such as 

least squares method (LS) [12] and asymptotic waveform evaluation method (AWE) 

[14], these new algorithms are robust enough to handle a complex multi-port system 

with a large number of ports and with a high bandwidth; they also have many 

techniques to reduce the CPU cost. Depend on these methods; results can be in format 

of rational approximation, poles and residues pairs, state matrices and others. These 

methods will be briefly introduced in Section 2.3 and detailedly mentioned in 

literature survey part (Chapter 3). When the complicated system would be broke into 

various less complicated components; and then the second step is to apply recursive 

convolution on these components for transient analysis. The idea of this method is to 

simplify the complicate system into numbers of less complicated systems and then 

apply convolution on them; so this method is much more superior on handling 

complicated systems comparing to the first approach. However, when the system has 

a large number of ports and work under high frequency environment, this method 

would generate huge number of components (systems) and the convolution on each 

component would be very inefficient. 

 

3. SPICE compatible macromodel is the last the approach, and it is also the main 

method discussed in this thesis. It obtains mathematic macromodel at first; then in the 

second step, these results are fitted to the MNA model to generate SPICE netlist. 

Modified nodal analysis (MNA) equation is a common analytical model for transient 

analysis and it will be introduced in Section 2.4. After the MNA equation is fitted, 

SPICE netlist can be obtained through some techniques. So the final simulation result 

of the unknown system would be list of components of capacitors, resistors, inductors 

and others. This prototype is very clear and can be easily embedded into other 

simulation. 
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However, if the MNA model is directly applied to simulate a complicated system, 

matrices would have huge-size [6]. It also would generate massive components in the 

SPICE netlist. An example for this result is given in Section 4.1. To avoid difficulty, 

we utilize the properties of MNA equation and time-domain macromodels (from VF 

and LM method) to create optimized methods which can quickly fit macromodels to 

MNA equation; so the process can be accelerated. These methods are acclaimed in 

Chapter 4 and 5.  

 

 The main purposes of this thesis are to describe these algorithms, to compare their 

capabilities and to conclude their advantages and disadvantages. As well, the core parts of this 

thesis are the proposed methods (in Chapter 4 and 5), which can efficiently generate SPICE 

netlist from time-domain macromodel. 

 

 To formulate the problem for the thesis, the left part of Figure 2.2 shows a linear 

multi-port linear network and simulation method on this network. To solve the network, we 

can treat it as a black box, as it shows on the right part of Figure 2.2. By looking at the 

voltages and currents data through their ports, we can ‘guess’ the internal components of the 

black box. To achieve this goal, or to establish the analytical time domain macromodel, the 

first step is to obtain the frequency response data, Y-parameter. These data can be measured 

through several equipments, such as Network Analyzer, or can be generated through full 

wave simulation of software, such as HFSS or HFWorks. The data, in frequency domain, can 

be represented as 

 

                             (2.1) 

 

Where    is the complex frequency and   is the number of frequency points.              

are the Y-parameter matrices at   ,   is the number of the ports. To guarantee the availability 

of the data,    must cover the bandwidth of the signal. Increasing the density of frequency 

points improves the accuracy, but also increases the complexity of the simulation. 
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Figure 2.2 Multiport system in frequency domain and Blackbox simulation  

  

 The following sections of this chapter introduce background knowledge, based on 

Figure 2.1, will be introduced in this order: Direct convolution method is introduced in 

Section 2.2. Various fitting methods are introduced in Section 2.3. It also mentions the state 

space matrice model and pole-residue approximation model, which are two very important 

models in the thesis. Their details are given in Appendix I. MNA model will be introduced in 

Section 2.4. In Section 2.5, linear subsection is discussed to show that the MNA model of this 

system can be embedded into other systems. 
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2.2 Direct Convolution Method on Y-parameter 
 

 In [34-35, 51], a convolution based approach for the transient analysis of transmission 

lines described by S-Parameters is presented. In [67], author summarizes these techniques and 

adapts them on Y-parameter. It uses Inverse Fourier Transform to switch Y-parameter to time 

domain; Fast Fourier Transform (FFT) or Fast Matrix-Vector Multiplication (FMM) [68, 69] 

methods can be applied at this step. 

 Suppose the voltages of all   port of network in Figure 2.2 are              , the 

current of an arbitrary port   ,       , can be described by the definition of Y-parameter, in 

frequency domain [11]: 

                   
       (2.2) 

 

Apply Fourier transform on this equation, and solve it by FFT or FMM: 

 

                       
                      

 
     

                
                      

 

 
 
      (2.3) 

 

     is the Green’s function of this system and its detail is mentioned in [73]. For the 

transient analysis, suppose      ,        and is the step time, then derive (2.3) from     

to   : 

 

                                 
    

 
       (2.4) 

 

 (2.4) states the result through direct convolution approach; however this approach has 

two fatal drawbacks for system has large number of ports. First, the convolution and inverse 

Fourier Transform is very expensive on CPU cost, especially for a long time period 

simulation; extra memories are also required for storing the time domain signals. With the 

increase of number of ports, both CPU and memory are rapidly exhausted.  The other 

drawback is that inverse Fourier Transform decreases the accuracy when port number 

increases, since this algorithm cause aliasing and other problems [67]. For these reasons, 

direct transient method on multiport system is inefficient for system with a large number of 

ports; it is also the reason that the current approaches for time-domain analysis is focus on the 

macromodelling or system identification. 

  



13 

 

2.3 Various Fitting methods on time-domain simulation 
 

 Starting from measured data of frequency points of a multiport system, there are quite 

a few methods to obtain the time-domain macromodel: 

 Standard Least Square (LS) Method [12-13] is one of the oldest methods. It assumes 

the fitting parameter as an approximation of a rational function, and then use iteration to 

obtain the approximation. The whole process is time consuming and speed to increase 

accuracy is slow. It is seldom used at present but it provides background knowledge for later 

method, such as VF method. This method is detailedly introduced in Chapter 3.1. 

 Strictly positive real (SPR) approximation [32,36-37]  also assumes the fitting 

parameter as an approximation of a rational function, but use Vandermonde matrix to adapt 

the approximations into state space matrices model.  Convex Programming method [38-39] 

was proposed based on SPR method. It optimizes the state space matrices model by adding 

more matrices part, so that the accuracy of approximation has been improved. These two 

methods are introduced in Chapter 3.2. 

 Asymptotic Waveform Evaluation (AWE) method [14-16] use moment matching 

techniques to solve the rational approximation function. It expands rational approximation 

into Maclarurin series and expands moments in Taylor series; then matches the approximation 

and moments to obtain coefficients of approximation. Since AWE method’s results are also in 

format of rational approximations, we skip this method in this thesis. 

 Vector Fitting Method is one of most popular fitting method. It derives the rational 

approximation into numbers of pole-residue groups and fit these coefficients recursively to 

improve the accuracy of approximation, compare to previous methods, VF method presents 

high efficiency. This method is introduced in Chapter 3.3. 

 Loewner Matrix Method applies, at first, tangential interpolations on original data to 

construct Loewner matrix and shifted Loewner Matrix. Then the state space matrices can be 

calculated. LM method is very simple and fast. It is also one of most appealing fitting method 

at present. It is introduced in Chapter 3.4. 

 Throughout out all these methods, the results various into two formats: State Space 

Matrices Model and Pole-residue Rational Approximation Model. These two formats are 

necessary before starting the fitting methods. They are introduced in Appendix I. 
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2.4 MNA Formulated Circuit Model 
 

MNA formulated circuit model is based on Modified Nodal Analysis (MNA) circuit equation 

and the formulation of this equation is according to Kirchoff’s Current Law (KCL) and 

Kirchoff’s Voltage Law (KVL) at the circuit nodes. The MNA equation for a non-linear 

system in time domain is: 

 

                          (2.5) 

 

Where 

         is the vector of voltage nodes, voltage source, short circuits, linear 

inductor currents and other non-linear unknown elements. 

          are matrices stores the circuit information of linear memoryless and 

memory elements. 

            is a vector of scalar function of non-linear components. 

                               (2.6) 

         is a vector stores independent voltage source and current source. 

   is the total number of unknown variables in this system. 

Transfer (2.1) into frequency domain: 

                (2.7) 

 MNA equations for linear system doesn’t contain component        . To construct 

(2.7) from an electronic circuit design, all linear components in this design must be written 

into the matrices through component stamps, which are list in table 2-1. Conversely, 

equivalent circuit components can be extracted through MNA equations [71-72]. Table 2-1 

below has given some important stamps for electronic components. 
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Table 2-1 MNA Stamps for ideal circuit components [71] 

Element Symbol Stamp on Matrices in MNA equaiton Equation 

Voltage 

source 

i 

 

j 

                  
     
     

       
 

    
    

     
 

     

 
 
 
 

 

       
       

         

 

Current 

source 

i 

 

j 

  
     
     

 
  
 

 

        
       

Resistor i 

 

j 

            
     
     

 
       

       
 

                

               

Capacitor i 

 

j 

            
     
     

 
   

   
 

                  

               

Inductor i 

 

 

j 

                  
     
     

       
 

    
    

      
 

         
        

              

  

Open 

circuit 

i 

 

 

j 

No change  

Short 

circuit 

i 

 

j 

                  
     
     

       
 

    
    

     
 

        
       

         

VCCS i                    j 

 

 

i’                    j’ 

             
     

      
 

     
      

                 

                 

 

  

The key advantage of MNA Formulated Circuit Model is that the concept of component 

stamps allows computer automatically switch between MNA equation and equivalent circuit. 

Other properties are that   and   are sparse matrices and their sizes depend on the number of 

voltage nodes and source component. To clearly demonstrate the MNA Circuit Model, an 

example is given below: 

  

V

I

R

C

L

I=gm V
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Figure 2.3 Example Circuit for Modified Nodal Analysis 

 

Figure 2.3 gives an example for MNA equation analysis on linear circuit. In this circuit, there 

are 4 nodes, the voltages on for nodes are      . Applying KCL at each node, we obtain: 

     
     

  
       

     
     

  
       

     

  
    

     
     

  
       

     

  
    

     
     

  
              

              (2.8) 

We use conductance   instead of resistance  . Reformat (2.8) into matrices equation, we can 

obtain MNA equation in matrices format: 

 
 
 
 
 

         
                 
                 
            
      

 
 
 
 

 
 
 
 
 
  

  

  

  

   
 
 
 
 

 

 
 
 
 
 
 
 
 
 
  

 
 
 
 

  (2.9)  

Separate imaginary part, we can obtain: 

 
 
 
 
 

         
             
             
        
      

 
 
 
 

 
 
 
 
 
  

  

  

  

   
 
 
 
 

  

 
 
 
 
 
     
      
      
      
      

 
 
 
 

 
 
 
 
 
  

  

  

  

   
 
 
 
 

 

 
 
 
 
 
 
 
 
 
  

 
 
 
 

  (2.10) 

Compare (2.10) to the rules in table 2-1, we observe that components match their values in 

matrices   and  . 
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2.5 Linear Subsection  
 

 In previous section, we have introduced MNA equations and MNA circuit model 

(stamps). At dealing complexity of modelled circuit, MNA matrices are sometimes huge. One 

way to simplify the matrices is to use linear multi-port subsection, which is considered in this 

section. To illustrate the concept briefly, we have used the example from previous section to 

observe the effect of linear subsection.  If we see the components in the block as a circuit 

subsection, then a new circuit is generated as below: 

 

Figure 2.4 Example Circuit for Linear Lump circuit 

There are 3 nodes in the new circuit, we rename them to      . On the right side, we draw 

the internal circuit of the block (lump). At first step, we consider Y-parameter of the lump 

circuit on the bottom right, it would give: 

 

 
  
 

  
    

      

      
  

  
 

  
    

      

      
  

  

  
  

    
          

         
         

     

         
     

          

         
  (2.11) 
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Insert equations into the MNA equation, we obtain: 

 

       
                 
            
    

  

  

  

  

  

   

 
 
 
 

  (2.12) 

 Compare (2.12) to (2.9), we have observed that the order and complexity of MNA 

equation has decreased. If the lump is not a simple circuit, but a transmission line or an 

interconnector; this step would give significant impact on circuit simulation since all Y-

parameters become frequency-dependent and have imaginary part in most cases. In this case, 

macromodelling on the lump is necessary.  

  Any linear subsection can be completely described in the frequency domain by its 

network parameters (e.g. Y, Z or S-Parambers). Here we use the Y-parameters to show how a 

linear subsection can be easily stamped in frequency domain MNA equations.  

 Generally speaking, this thesis observes the problem in Figure 2.4 reversely. From the 

frequency measurements of unknown system or subsection, it analyzes different algorithms to 

predict the inside components for them. 
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Chapter 3 Literature Survey 
 

 

 

 

As can be seen in Figure 2.1, one of the key steps in the generation of  a spice compatible 

macromodel are the algorithms that start from frequency domain measurements and construct 

a numerical macromodel by fitting methods. In this Chapter we review several fitting 

methods of generating time-domain or frequency-domain marcomodels from tabulate Y-

parameter data.  

 

3.1 Standard Least Square Method  
 

 Standard Least Square (LS) Method obtains the rational approximation model of Y-

parameter from its data [12, 13]. In [33], the author has described the formation of pure-real 

matrices equation through this method. (3.1) is a rational approximation for an element in Y-

matrix and   is a guessed order for the rational approximation:  

 

       
    

    
 

                  

                                   (3.1) 

The first step is to separate real part and imaginary part of        and     : 

   
    

     
    

 
           

 
  (3.2) 

   
    

      
    

              (3.3) 

Expand equation (3.3) with   and   parameter: 

 

   
                             

              
          

        
                   (3.4) 

 



20 

 

Separate the real part and imaginary part on both sides of (3.4): 

 

   is even 

The real part is: 

   
    

     
    

       
    

   
       

    
                    (3.5) 

The imaginary part is: 

    
    

    
    

        
    

   
        

    
                         

(3.6) 

 

   is odd 

The real part is: 

   
    

     
    

       
    

   
       

    
                      (3.7) 

The imaginary part is: 

    
    

    
    

        
    

   
        

    
                     (3.8) 

 

Next step is to formulate matrix equation      from equation (3.5) to (3.7). In this step, all 

the Y-parameter and frequency points must be considered; suppose   is an even number, 

substitute       to (3.5) and (3.6): 

 

                   
 

           
    

    
    

       
    

       

    
 

    
    

           (3.9) 

                     
 

 
   

              
    

    
    

       
    

       

    
 

    
    

            (3.10) 

 

(3.9) and (3.10) are elementary equations for construct     , to avoid the Null solution, 

   
    

 and    
    

 can be moved to the right side of the matrix.  

To avoid floating-points overflow for the problem of Figure 2.3,   data must first be curved 

by a normalized frequency      where 

 

                       
           (3.11) 

 

Then frequency points and Y-data for constructing matrices equation are: 
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                    (3.12) 

 

Then the matrices equation      are:  

   

 
 
 
 
 
 
 
 
 
 
 
 
     

      
 
   

          
    

       
    

    
           

 
   

    
    

     

    
      

 
   

          
    

       
    

    
           

 
   

    
    

     

            

    
      

 
   

          
    

       
    

    
           

 
   

    
    

     

         
       

 
 

   
  

         
    

       
    

    
           

 
   

    
    

     

         
       

 
 

   
  

         
    

       
    

    
           

 
   

    
    

     

            

         
       

 
 

   
  

         
    

       
    

    
           

 
   

    
    

      
 
 
 
 
 
 
 
 
 
 
 
 

 

                               

      
    

       
    

        
    

       
    

       
    

        
    

     
 
  (3.13) 

 

While   is the angular frequency, all   and   matrices are real.   contains data of rational 

approximation and can be solved from     . To avoid ill-condition result, matrices 

equation (3.13) must be an overdetermined system [68].   must be overdetermined to satisfy 

the overdetermined condition: 

                           (3.14) 

So the guessed order   must be smaller than the number of frequency samples  : 

 

Then the overdetermined equation can be solved by: 

         

                    (3.15) 

Once de-normalized   is obtain,   parameters are taken to calculate poles of    ; unstable 

poles are removed and leave effective poles               . With these poles, revised   

parameters               can be obtained. When true approximation of       is known,    

parameters (    ) can be calculated through a similar process, which:  

                                    
   (3.16) 

Assume    is even, then 

                               
  

    
     

                                
 
  

 
   

             (3.17) 

The corresponding matrices equation for (3.17) is: 
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 (3.18) 

Since        , (3.18) is also an overdetermined matrices equation. When   parameters 

can be solved through (3.15);  the rational approximation in (3.1) is obtained. 

From effective poles set             , the pole-residue format of     also can be calculated. 

Suppose poles set have α real poles and β complex conjugate pole pairs. Rewrite     as: 

           
  

    

  

       
  

    

α
      

  

    
 

  
 

    
  

α β
  α   (3.19) 

Then (3.17) becomes: 

                  
 

    
   

α

   
  

           
 

    
 

 

    
            

 

    
  

 

    
  

α β

  α  
 

                
 

    
   

α

   
  

           
 

    
 

 

    
            

 

    
  

 

    
  

α β
  α    (3.20) 

 

Formulate (3.20) into      format: 
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    α  
 

 

    α  
     

 

    α  
  

 

    α  
  

       

    
 

     
     

 

    α

    
 

    α  
 

 

    α  
     

 

    α  
  

 

    α  
  

    
 

     
     

 

    α

    
 

    α  
 

 

    α  
     

 

    α  
  

 

    α  
  

       

    
 

     
     

 

    α

    
 

    α  
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   α  
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     (3.21) 
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 Above introduces LS method to obtain the rational approximation for one port data, 

the advantages are that this method simply formulates real matrices and different initial 

guessed order   results only small difference on final order. LS method has two major 

drawbacks: the first is poorness for handling the noise from measured data; a sudden pulse 

results incorrect or inefficient fitting process [13]. The other drawback is that LS method 

solve only one entry of data each time, marcomodeling time for a system with a large number 

of ports is extremely long. For these reasons, LS method usually is applied for low order 

system. However this method has expanded the ideas for later fitting methods. 
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3.2 Strictly positive real approximation and Convex Programming 

method 
 

 This section will introduce two methods to generate state space model from Y-

parameter. The first one uses strictly positive real (SPR) approximation to generated stable 

real models and SPR method is given in [32, 36-37]. The second one, Convex programming 

method, is based on the first one, but develops the superior models on improving stability and 

passivity [38-39].   

 

 Strictly positive real approximation method gives a general method to extract time-

domain model in (2.1) from Y-parameter by using rational approximation. SPR method is 

based on a modified version of a standard nonlinear optimization algorithm [32]. It uses, at 

first, Levenberg-Marquardt algorithm or LS method to find rational approximation parameter 

   and   , and then uses orthonormal polynomial basis       to provide a numerical 

approximation.  

            
       

    
 

          
   

          
   

                          (3.22) 

Where       is a polynomial basis of order   satisfies (3.23), and      can be obtained 

through Arnoldi process [32]: 

                     
   
      (3.23) 

If         represents the first     columns of Vandermonde matrix[69]: 

        

 
 
 
 
     

    
 

     
    

 

     
     

    
  

 
 
 

  (3.24) 

Rewrite (3.23) to adapt format of state space model: 

                   
               

                         (3.25) 

 

State space matrices for ports are constructed as: 

    
    

                      

    
                

                

           (3.26)  

Where    is a     upper Hessenberg matrix [32, 69] and    is  th column of identity 

matrix. 
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For a multiport system with   inputs and   inputs that        ,        .(3.25) can be 

rewritten into 

               
              

             (3.27) 

Where        ,          and they are the collection of all    and   . In this case, state 

spaces are aggregated with Kronecker product    [32, 69]: 

    
                      

      
       

         

                  
         

                  

         (3.28)    

This method directly extracts stable state space matrices from Y-parameter and provides 

strictly positive real (SPR) approximations on time-domain model; it also can handle high 

order case which rational approximation has more than 100 poles [32]. The drawback is that 

SPR method assumes state space matrix   is 0, and then actual time-domain model becomes: 

           

       (3.29)  

Here   is absorbed by the approximation  , so it requires extra number of poles to provide 

model’s accuracy [32]. After [32], a few paper provided optimization method based on this 

model. In [36], a convex programming approach was proposed to obtain the non-zero 

approximation for   matrix and    matrix. 

 

 Convex Programming approach takes the approximations of   and   matrices from 

(3.28), then use them to calculate  ,   and    matrices so that these state space matrices 

could form a guaranteed passive stable model. Similar to (3.25), the approximation formula 

for a single element          can be derived as: 

                                   
   (3.30) 

Construct   matrix that 

         
             

     
    (3.31) 

And    is  th column of  

   
  

  

     
    (3.32) 

Since   and   are already known from last process,   matrix is a known matrix.   contains 

rest of unknown state space matrices. To calculate  , the weighted least-squares error of the 

approximation is used: 

                     
 

  
          (3.33) 
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Separate real and imaginary part of      and original data      and input all frequency data, two 

new matrices   and   can be constructed: 

         
                         

                         
    

         
                         

                         
   (3.34)  

Then weighted least-squares error function (3.33) transforms into 

                     
 

  
                             (3.35) 

If there is a QR decomposition for   that 

               (3.36) 

 

Least-squares error function further transforms to 

                           
 
              

             
      

 
            

           
            

       

     
          

        (3.37)  

Finally least constrains (3.35) becomes: 

    
          

        (3.38) 

Where  

                
          

      
            

       (3.39) 

To solve  ,   and    matrices, the author has used Structure-Exploiting Formulation (SEF) 

method, which has proposed in [36,39]. Compare to SPR method, convex programming 

method provides better approximation for   and adds approximations for   and   ; which 

improves model’s accuracy. Furthermore, it provides a guaranteed passive stable 

approximation. From the simulation, it provides extraordinary result for single-input single-

output system; however, this method only handle small problem. For system with a large 

number of ports (    ), accumulation of      would cause inefficiency and inaccuracy of 

the approximation [39]. 
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3.3 Vector Fitting Method 
 

 Vector Fitting (VF) method is developed by Bjɸrn Gustavsen and Adam Semlyen in 

1996 [20-24]. VF algorithm is based on Sanathanan-Keorner method [22]; it estimates and 

iteratively refines poles and residues until desired accuracy is achieved. It is also capable to 

handle large system (over 100ports). After original algorithm is proposed in [20], several new 

modified VF algorithms are invented that gigantically accelerates the speed and improve the 

capacity [25-31].  

 

3.3.1 Algorithm implementation 

 

 As it mentioned in [20-24], VF method generates poles and residues for rational 

approximation, where is 

     
                  

                    (3.40) 

With measure data 

                           (3.41) 

If (3.61) is written into pole-residue format: 

      
  

    

 
          (3.42) 

Then VF method defines a weight function: 

      
   

     

 
       (3.43) 

Weight function   is from our guess; in other words,     and     are known parameters. If      

is introduced to     : 

                      
  

     

 
          (3.44) 

Thus 

     
        

    
   (3.45) 

If all the parameter in (3.66) are written into pole-zero format [20]: 

      
          

   

        
   

           
          

   

         
   

      
         

   

         
   

  (3.46) 

 

Substitute all equations in (3.46) to (3.45): 

     
        

    
  

          
   

        
   

  
          

   

         
   

         (3.47) 
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To explain the transformation in (3.46) and (3.47): 

          has unknown zeros of      as numerator and known poles of      as 

denominator; 

      has known zeros as numerator and known poles as denominator. 

 

When divided          by     , the known poles of      cancel out and leave      equals to 

unknown zeros of      as numerator and known zeros of      as denominator. So unknown 

poles of      is found. 

 

 Therefore, VF method can be divided into 4 steps. The flowchart for the process is 

given in Figure 3.1. The description for each step is followed after the flowchart. 

 

1.Starting poles 

identification

2.Weighted 

residues 

calculation

3.Zeros (New 

Poles) calculation

Are errors between new 

poles and current poles 

acceptable

4.Final residues 

caculation

Update New poles 

as current poles

Rational 

approximation 

achieved   

Figure 3.1 Flowchart of Vector fitting method 
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1) Starting poles identification 

At first, number of the guessed poles   must be determined, larger   increase the 

accuracy of the result but highly increase the amount of calculation, or computation time. 

Constraints of   will be discussed later in this chapter. 

The author of vector fitting algorithm gives some notices for starting poles: 

- If the all starting poles are real, the linear problem Ax = b during the calculation will 

be ill-conditioned and will result inaccurate solution [20]. 

- A large difference between the starting poles and correct poles may result a poor 

fitting [20]. It will increase the iteration times to obtain the satisfied result. 

The authors also recommend a solution for determining the starting poles. The starting 

poles are all complex conjugate pairs that [20]: 

                           (3.48) 

Where 

              (3.49) 

And   is linearly distributed over the frequency range     that 

         
     

   
        ,   is even   (3.50) 

 

2) Weighted residues calculation 

Expand (3.44) and reformat the formula: 

      
  

     

 
              

   

     

 
    (3.51) 

Write (3.51) into into      format: 

   
 

     
 

 

     
       

     

     
 

     

     
                                   (3.52) 

Apply measured data in (3.41) into matrices equation: 

 

 
 
 
 

 

      
 

 

      

   
 

      
 

 

      

    

   
      

      

   

   
      

      

     

 
      

      

  

 
      

       
 
 
 

 
 
 
 
 
 
 
 
   
 

   
 
 
   
 

    
 
 
 
 
 
 
 

  
     

 
     

 (3.53) 

 

The size of matrix   is            ,   must be satisfy  

        (3.54) 

So (3.74) becomes an overderterminated equation and   will not be ill-conditioned. 

Solving overderterminated equation by 
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              (3.55) 

           can be obtained for the next step.  

 

For a complex system, solving (3.53) could be very complicated. A simple method is 

proposed to transform it into a real matrices equation. Since conjugate complex poles-

residues pairs are used, (3.52) can be written as: 

     
 

     
 

 

     
   

 

     
 

 

     
    

 

     
 

 

     
   

 

     
 

 

     
         

     

     
 

     

     
    

      

     
 

      

     
    

     

     
 

     

     
    

      

     
 

      

     
    

                                                                          

        (3.56) 

Now    becomes a real column, separate real part and imaginary part of   and   so that a 

real matrices equation is obtained: 

    
      

      
      

     
     

           (3.57) 

Where                              

 

3) Zero calculation: 

Calculate zeros of weight function     in (3.57), the definition of eigenvalue are used. 

      
   

     

 
      

         
   

         
   

 (3.58) 

[20] has given this process as 

             (3.59) 

 Where     
  
   

      
 
  

           

If         are real,                   . 

If         are complex, or     and       are complex conjugate pairs that          

                ; then 

    
              

               
   

    

     
      

 
 
                         

In simulation, sometimes unstable poles are generated in this step, to guarantee the 

process is stable. The sign of unstable poles are switched to be stable: 

    
               

                            
  (3.60) 

The rms error between old poles     and new poles    is 

    
 

 
       

 
 
  

    (3.61) 
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4) Final residues calculation 

When satisfied results of    are obtained above, the last step is to calculate true value of 

  . Similarly,      matrices equation is constructed as: 

 

 

     
 

 

     

   
 

     
 

 

     

   
   

  
   

      

 
 
 
 
 
   
 

   
 
  

 
 
 
 

  
     

 
     

  (3.62) 

It also can be transformed into real matrices equation by following the method in (3.56-

37). 

 

 Above parts explain the full algorithm for VF method, the rms error of this 

approximation is given as [21]: 

     

 
    

  

      

 
                   

 
 
     (3.63) 

 

 Although VF is a robust method to obtain accurate approximation, its drawbacks 

include convergence and sparse results.  

From (3.59), new poles are calculated from             . However, this function would 

return the eigen values in an ascending order, which may change the original order of residue 

sequence [20]. If the problem is shown graphically: 

             

For this reason, convergence can’t be determined since a guessed pole is not guaranteed to 

generate the same pole during the process. In [21], the authors suggested two conditions to 

stop the iteration: 

1) Set the iteration time a significant number.(Normally 20) 

2) Compare the difference of old poles and new poles, if the difference (RMS error) is small, 

stop the iteration. 

Another important drawback of VF method is that the state space matrices generated from 

VF method are very sparse and with huge size. Using the example in 3.74, state space matrix 

             is very sparse that all values are at diagonal block. These sparse matrices 

occur because of overestimation properties of VF method.  
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3.3.2 VF method on Y-parameter of multiport system 

 

 Back to formulated problem in Section 2.3, VF method is applied on   port system. 

This section has reviewed VF method on Y-parameter of a multiport system. If Y-parameter 

of a   port system is given in 

      

                   
                   

    
                   

  (3.64) 

The rational approximation of any Y-parameter is: 

        
  

    

    

 
                           (3.65) 

By following four steps in the flowchart, the method of starting poles and weight function 

don’t change. With the measured data in (2.1);       matrices equation can be constructed 

as: 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

      
 

 

      
              

        

      
 

        

      
                   
 

      
 

 

      
              

        

      
 

        

      

     
 

      
 

 

      
         

        

      
 

        

      
                   

     
 

      
 

 

      
         

        

      
 

        

      
                   

           
 

      
 

 

      
   

        

      
 

        

      
                   

           
 

      
 

 

      
   

        

      
 

        

       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

     
    

   
    

            
    

   
    

             
    

   
    

                  
 
 

                                                                         

(3.66) 

Similarly, real matrices equation         can be derived from (3.66). Same process is 

followed that     is obtained to calculate zeros until satisfied    are obtained. To determine the 

final residues, equation (3.62) will be repeated for    times for all the parameters in Y-matrix. 

In most case, Y-matrix is symmetric, so    times can be reduced to 
    

 
  if upper triangle 

matrix is considered. 
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3.4 Loewner Matrix Method 
 

 Loewner Matrix (LM) method is a data fitting method which uses tangential 

interpolation under the Loewner matrix pencil framework [43-46]. LM method is proposed by 

Sanda Lefteriu and Athanasios C. Antoulas in 2008. As a very recent algorithm, the goal of 

LM method is to handle high-complexity system. Compare to VF, who overestimates the 

problem to achieve the accuracy, LM construct models with less complexity with selectable 

level of accuracy. Another important property of LM is that LM method directly generates 

state space matrices for time-domain model. Although LM method only has been proposed 

from few years, it becomes one of most appealing algorithm in macromodelling.  

 

3.5.1 Algorithm implementation 

  

 While most of present algorithms are using least-square approximations; Loewner 

matrix method uses tangential interpolation and the Loewner matrix pencil. 

At First, tangential interpolation is applied on original data to construct Loewner matrix and 

shifted Loewner Matrix [43]. 

  port system with data                            are separated into left and right 

tangential interpolation. Right tangential interpolation is: 

                                           

                                                       (3.68) 

And left tangential interpolation is: 

                                          

                          
      

  
 

           
      

  
 

      (3.69) 

In these interpolations,          are frequency points and 

                             (3.70) 

       are tangential direction vectors;    and    are tangential vector data and they define the 

constrains: 

                             

                             (3.71) 

Author suggests a selection that  

                                                        , 

              
       

                                      (3.72) 
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The Loewner matrix   and Shifted Loewner matrix    can be constructed by: 

  

 
 
 
 
         

     
 

         

     

   
         

     
 

         

      
 
 
 
 and    

 
 
 
 
             

     
 

             

     

   
             

     
 

             

      
 
 
 

 (3.73) 

They satisfy two Sylvester equations 

           , and 

                (3.74) 

Assume     and                   , then state space matrices equal to 

                   and    . 

In [43], authors gave the solution of the rational interpolation problem and recursive 

interpolation in the Loewner framework to obtain results.  

 

Later, they give detailed algorithm for guaranteed real implementation in [44] that 

                                                     (3.75) 

   is even.Correspondingly, 

                                      

                            

                                                   (3.76) 

Left interpolations are 

                                                             (3.77) 

Construct transformation matrix   : 

                      
 

  
 
   
  

      
 

  
 
  
   

   (3.78) 

Apply these transformations to obtain all real Loewner matrix pencils: 

                                     

                          and               (3.79) 

 

The next step is to extract the regular part of Loewner matrices since pencil becomes singular 

while the measurements are too much. This step also reduces the order of all state space 

matrices, consider obtained from singular value decomposing (SVD) of 

                                  (3.80) 

The rank    of  , defines the dimension of regular part of         

The realized state space matrices are: 

     
          

          
         and     (3.81) 
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  Compare to VF method, which also treats system as a black box; Loewner matrix 

method doesn’t require a good estimation of starting poles or any extra input data. The state 

space matrices have stable size which depends on the input data, while the sizes of those 

generated from VF method depend on number of guessed poles. The drawback of LM method 

is that this model requires original data cover full bandwidth.  For some systems like 

transmission lines or distributed systems, low frequency data are hard to achieve and are, 

sometimes, incorrect. In the next section, a modified algorithm is introduced to solve 

distributed networks. 

 

3.5.2 Modified Loewner Matrix Method on multiport system 

 

 As it mention above, LM method, proposed in [47], provide modified LM method for 

distributed transmission line networks. From method in previous section,   is zero. At lower 

bandwidth system,   is embedded in       so that system generates very large instable poles. 

LM method extract      matrix for maintaining the stability of the model. It follows these 

steps: 

1) Input interpolation data to obtain   and   . 

                                    

                                            (3.114) 

Where             and       is the conjugate complex value of     . 

2) Obtain the rank   from SVD and calculate         state space matrices from (3.115). 

3) From remained values from    and   , construct eigenvectors as    and   . From these 

two eigenvectors, obtain the orthnormal bases    and    

                                             .  (3.116) 

4) Calculate modified state space matrices:  

     
          

          
         . (3.117) 

5) Extract      

                                    . (3.118) 

This proposed algorithm shows significant improvement on distributed network and it 

simulation obtains low errors on low frequencies bandwidth. With     , both the stability 

and passivity of time-domain model are improved.  
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Chapter 4 SPICE Compatible Model from State Space 

Matrices Model 

 

 

 

This Chapter proposes “Sparse Matrices Algorithm” that can generate the minimum SPICE 

compatible models from Y-parameter using LM method.  During the process of LM method, 

time-domain model or state space matrices are firstly obtained, which are mentioned in 

Section 3.4. This Chapter will introduce rest of this algorithm. Section 4.1 introduced the 

general method to extract SPICE compatible model from state space matrices. Section 4.2 

proposes Sparse Matrices Algorithm.  

 

4.1 General method to extract SPICE Netlist from State-space 

matrices 

 

 In Appendix I, we have introduced state space matrices model for some fitting 

method. They can be obtained from Loewner matrix method and other fitting system. This 

section would present the method which directly generates SPICE compatible netlist from 

these matrices. We remember expression of state space matrices model in (4.1). 

                   

                            (4.1) 

In (4.1),      is the vector of port voltages;      is the vector of port current;      is the 

vector of internal statement of this system.            are state space matrices. Suppose    

is the port number and   is the number of statement; sizes of these matrices are 

                                    (4.2) 
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Some fitting methods would generate approximation model with      or     . It has 

little effect on generation of netlist but might influence the accuracy of the model. It would be 

proven in later sections.  

If Loewner Matrices method is applied, then             are full matrices and      are 

usually positive definite matrices [47]. 

As it mentioned in Figure 2.1, the next process is to write these matrices into MNA equation. 

To demonstrate this process, the example in Section 2.5 is reused here. Figure 4.1represents 

the circuit; we suppose that the state space matrices            for this circuit are obtained 

through Y-parameter of the block part.  

 

Figure 4.1 Examples for embedding state space matrices into MNA equation 

 

Review the Section 2.5, the MNA equation for this circuit without regarding the internal 

structure of block part is: 

 

       
       
    
    

  

  

  

  

  

    

    
     
     
    

  

  

  

  

  

   

 
    

    

 

  (4.3) 

Now we assume some particular data for state space matrices for better explaining the 

embedding process. Suppose there are   elements in     , so in frequency domain: 

             (4.4) 

The block circuit in this circuit is clearly a 2-port system, thus equations in (4.1) can be 

rewritten as (4.5) and (4.6): 

  

  

 
  

   

       

   
       

  

  

 
  

   
      

  
      

  
  

  
  (4.5) 

 
   

   
   

       

       
  

  

 
  

   
      

      
  

  

  
    

   
    

 

   
    

   
  

  
  (4.6) 



38 

 

To embed equations (4.5) and (4.6) into (4.4), we first substitute (4.6) into     and     in (4.3). 

If we move all the parts on the right side, except  , into the left side, we obtain an equation 

with parameter  : 

 

          
                    

               

       

 

 
 
 
 
 
 
 
  

  

  

  
  

 
   

 
 
 
 
 
 

   

       
       

    
     

    
       

     
       

 

 
 
 
 
 
 
 
  

  

  

  
  

 
   

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

  (4.7) 

The next step is to complete the equation for parameters in  . We add (4.6) to the bottom of  

matrices in (4.7). Now we obtain an integrated MNA equation for whole circuit in Figure 4.1. 

 
 
 
 
 
 
 

          
                    

               

       
                   

       
                    

 
 
 
 
 
 

 
 
 
 
 
 
 
  

  

  

  
  

 
   

 
 
 
 
 
 

  

 
 
 
 
 
 
 
       
       

    
     

    
       

     
       
       
       
        

 
 
 
 
 
 

 
 
 
 
 
 
 
  

  

  

  
  

 
   

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

 (4.8) 

This MNA equation is quite simple and direct includes the contents in the block system. 

 

To establish the prototype for this process, we conclude the MNA equation in (4.9), which 

only contains the nodes voltage and   statements in  : 

 
       
         
     

  
 
 
 
    

       
          
    

  
 
 
 
   

  

  

 
 ; 

             . (4.9) 

In equations (4.9),   is a vector of port voltages of block system;   is a vector of statements 

inside block or a vector of voltages of nodes inside the block;   is a vector of voltages of 

nodes which are belonged to the system but rather than those in  . So   plus   are the 

voltages of all nodes in the circuit.    and   present the relationships for the whole circuit 

without block.   present sources on circuit nodes. 

To generate SPICE netlist from MNA equation in (4.9), stamps in Table 2-1 are used to 

quickly address the components to the data in    matrices. In order to quickly adapt stamp, 

we slightly modify some stamps in table 4-1. This table only consider the generation for state 

space matrices; since   and   are generated from existing components of original circuit. 
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I=gm V

C

R

Table 4-1Modified Stamps for MNA equation 

Element Symbol Stamp in MNA equaiton Equation 

Resistor R to 

ground 

              i 

 

 

 

       
          

         
 

Capacitor C 

to ground 

              i 

 

 

       
        

         
 

VCCS to 

ground 

i                          j 

 

 

 

       
         

         

 

 

 

To generate the SPICE netlist from    and   , we can follow the rules below:  

1) Netlist Generation for    

Components from    are divided into two types: 

 Each data on the diagonal entry,     , would form a resistor from node   to the 

ground 

 Each data not on the diagonal entry,          , would form a VCCS between 

node   and   to the ground. 

 

2) Netlist Generation for    

   is a sparse matrix; netlist generation for    is divided into two parts: 

 If    part is not null matrix, it would generate capacitors. Detailed algorithm 

refers to the “netlist generation for   ” in Section 4.2 part b) . 

 The rest part of    is an identity matrix I, so they would generate capacitors with 

value of 1Farad between corresponding nodes to ground.  

  

For better understanding this method, the example in is used here, pole-residue approximation 

can be transferred into state space matrices through methods in Appendix I. 

 

     
 

   
 

   

     
 

   

     
     

   
    
     
    

     
 
 
 
                       (4.10) 
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Then matrices for MNA equations can be constructed based on (4.9) : 

    
  

    
   

    
     
     
     

      
   
  

   

    
    
    
    

     (4.11) 

 

Equivalent circuit can be constructed through components in Table 4-1 and is given in Figure 

4.2. 

 

Figure 4.2 Admittance Equivalent Model from General method for state space matrices 

 

 From this result, we figure that this method is very complicated and generate so many 

VCCS components. The example is compared with those generated from Sparse Matrices 

Algorithm, which would be introduced in the next section. 

 This section described direct netlist generation method for state space matrices. 

However, this method would generate a large number of components for complex systems. 

From previous Chapters, we have noticed that state space matrices from a certain fitting 

method often share some properties. For example, matrix   through VF method is always a 

sparse symmetric large matrix; matrix   through VF method is a sparse matrix with value 0, 1 

and 2 (refer to Section 3.4.1). State space matrices though LM method are always full 

matrices [43]. If we could apply some optimization, based on these properties, to these 

matrices before arranging them into MNA equation; then number of components in the result 

(netlist) could be significantly reduced and accuracy also could be improved. Section 4.2 will 

introduce the optimized algorithm on state space matrices generated from LM method.  
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4.2 Sparse Matrices Algorithm for State Space Matrices from LM 

method 
 

 State space matrices generated from LM method are shown in (4.12), the equations 

are in frequency domain and   is the expression of Y-parameter.   is the port number of   . 

  is the state number generated by Loewner Matrix method. We could find these equations 

are slightly different to (4.1). If we multiple     to both side of first equation, then they 

would be same. 

           

             ; 

                    

                                               (4.12) 

These matrices have these properties: 

         have high density (or are full matrices) . 

   , sometimes, is close to singular [55]. 

      are usually positive definite [47].  

If we embed these two equations into an MNA equation, it would be (4.13), similar to (4.9): 

 
       
         
     

  
 
 
 
    

       

          
   

  
 
 
 
   

  

  

 
  (4.13) 

If we apply direct netlist generation method in last section to (4.13); it would resulted a large 

number of components, since all state space matrices are full matrices. Furthermore, SPICE 

netlist generation for   is very difficult. 

In this case, we can apply an algorithm to sparsify these state space matrices so that would 

generate fewer components in netlist. The idea of this algorithm is from PRIMA [8]. We 

acclaimed this algorithm as Sparse Matrices Algorithm. It can be divided into two steps: 

Sparse matrices generation and Netlist generation. They are introduced in the later part of this 

section. 
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a) Sparse matrices generation: 

The goal of this step is to sparsify state space matrices; it would start from equations in 

(4.12). 

1) Multiple     on both sides of first equation, the other one remains unchanged: 

                    

               (4.14) 

 

2) Sparsification of      : 

Find eigenvectors and eigenvalues for     , we assume that 

                    . (4.15) 

Where   is eigenvectors and   is square matrix where eigenvalues are organized in 

diagonal order. Due to the properties of LM algorithm, elements in   are always 

negative for their real parts. There is an important property for netlist generation part. 

Suppose      , then orthogonal projection is applied on (4.15): 

                    

                 (4.16) 

 

3) Realization of equations: 

After the sparsification, (4.16) are complex equations. To transform them to real 

equations, a transformation matrix   is used.        is a diagonal matrix 

constructed as: 

If    is real,         .  

If          and           ,          , are conjugate complex  

 
          

              
   

  
   

   (4.17) 

Since 

 
          

              
 
  

  
        
       

  (4.18) 

It would transform the complex part into real part by: 

 
  
   

  
      

      
  

        
       

   
    
   

  (4.19) 

In this case, we assume: 

         (4.20) 

will be a real block diagonal matrix. 
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In   matrix, the corresponding eigenvectors for conjugate complex    and      are 

     
  , since 

     
   

        
       

                 (4.21) 

Then 

        (4.22) 

will be a real matrix. 

 

Suppose        , substitute     to (4.16) we obtain: 

 

                  ; 

                  (4.23) 

 

Now all matrices in (4.23) are sparse real matrices; rewrite them into format of (4.12): 

                

                 (4.24) 

Where                                  

   is real sparse matrix with diagonal block values.    is an identity matrix. Compare 

them to   and   in (4.13), they have achieved excellent simplification.The matrices    

and    are still dense; however, they are the multiplers for   and   ; so their sparsities are 

less concerned. The matrices   and    are unchanged. 

 

 

b) Netlist generation 

Before fitting state space matrices in (4.24) into MNA equation, a slight transformation 

need to be applied on     so transformed MNA equation can better adapt to capacitor 

stamp in later part of this section. 

 

Construct diagonal matrix        as a transformation matrix: 

If          is not part of diagonal block,         . 

If  
     

       

       
         

   
    
   

 ,  
          

              
   

   
  

 . (4.19) 

 

Multiple   to the first equation of (4.18), we obtain new equations: 

                 

                (4.20) 
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Write (4.20) into MNA equation we can obtain (4.21), since the diagonal element in    is 

always negative(see (4.19)). This equation is slightly different to (4.13). 

 

       
          

     
  

 
 
  
    

       
          
      

  
 
 
  
   

  

  

 
 ; 

             . (4.21) 

Now we can start to extract components to form SPICE netlist. Similar to Section 4.1, 

only state space matrices are discussed here. The processes are again divided into two 

parts: Netlist Generation for    and Netlist Generation for   . The stamps for this method 

are resistors, capacitors and VCCS stamps, which are reviewed in Table 2-1 and 4-1. 

 

1) Netlist Generation for   

There are four parts in  :           . 

i.    is diagonal matrix contains only    and   . The netlist for this part will 

be resistors from corresponding node to ground. 

ii. Matrices     and    are full matrices and data in each entry are different. 

VCCS stamp to ground (Table 4-1) is used so that every value in them 

represents a VCCS in SPICE netlist. 

iii. Matrix   is a positive definite; it can be divided into          resistor 

stamps between ports and   resistor stamps between port and ground. 

An example is given for    : 

        

   
   
   

   
    
    
   

   
    
   
    

   

 

   
    
    

   

       
       
       

   (4.22) 

The capacitors are: 

      between port 1 and 2;       between port 1 and 3;       

between port 2 and 3. 

         between port 1 and ground;          between port 2 

and ground;          between port 3 and ground. 
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2) Netlist Generation for   

There are two parts in  :        . 

i. Similar to matrix  , matrix    can be decomposed into          

capacitor stamps between the ports and   capacitor stamps between port and 

ground. 

ii. Matrix      is combination of diagonal entries, which corresponding to 

real eigenvalue, and block diagonal entries which corresponding to complex 

conjugate eigenvalues. 

 

 For non-zero diagonal entries, capacitor stamp between port to ground 

is used. 

 For block diagonal entries, this block can be divided into three capacitor 

stamps: 

 
       

         

         
           

   
    
   

  

  
   

   
   

     
  

   
  
    

  (4.23) 

So      between node   and    ;         between node   

and ground;        between node     and ground. 

 

If Matrix     was used instead of      here, the netlist would be much 

more complicated. 

 

Sparse Matrices Algorithm is presented above to generate SPICE compatible model (netlist) 

from state space matrices. Compare to the method in previous section, this method uses the 

properties of state space matrices and create a new approach to achieve fewer components 

and better efficiency. The larger number of ports system has, the more superiority on 

macromodelling method would present. The result would be shown in the rest in Chapter 6.  

 

To demonstrate this algorithm, the example in last section is reused. At first, we input       

into sparse matrices generation (part a) to obtain sparsified matrices (we use   as a rank 3 

identity matrix).    and    don’t change. sparsified matrices are shown below: 

    
         
        
    

      
  

  
  

       
  

 
 

  

 
   (4.24) 
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Based on   , transformation matrix   is  

   
    
   
   

   (4.25) 

Thus matrices for MNA equations are in (4.26): 

    
   

      
  

 
 
 
 
 
   

  

 
 

  

 
 

       

     
      

 
 
 
 
 

  

    
   
     

    

    
          
         
    

    (4.26) 

 

The matrix    can be transferred into (4.27) so it generates 4 capacitors: 

    

    
         
         
    

   

    
     
    
    

  (4.27) 

The equivalent model is given in Figure 4.3. 

 

 

Figure 4.3 Admittance Equivalent Model from Sparse matrices algorithm 
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 To comment two methods in this chapter, method from Section 4.1 generates large 

number of components, compared to Sparse Matrices Algorithm (SMA). In the simulation 

part in Chapter 6, we will further analyze the efficiency and accuracy of SMA. 

The drawback of SMA is that there are some negative components, such as -1Ω resistors or -

1F capacitors, in the netlists. Since these components don’t exist in real application, they 

might have uncertain effects on simulation stability. Several methods are reviewed and 

proposed in next chapter to minimize the number of negative components. 
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Chapter 5 SPICE Compatible Model from Pole-Residue 

Model 

 

 

 

 

 

 

 

 

 

 

In this chapter, Foster’s network synthesis [59] and Otto Brune’s method [56-58] on transfer 

impedance are reviewed. Their ideas provide a new approach for deriving networks based on 

transfer functions, which could be pole-residue or rational approximations. Section 5.1 

introduces Positive-real (PR) property of function of frequency. Its property is a very 

important concept on SPICE netlist macromodeling for rational functions. Section 5.2 

describes Equivalent admittance model on Y-parameter, this step divides the multiport system 

into numbers of one-port admittance problems. Section 5.3 reviews Foster’s network 

synthesis and proposes Modified Foster’s Method based on Foster-like circuit. Section 5.4 

reviews Brune’s method. Section 5.5 proposes Foster-Brune Method, which combines 

Modified Foster’s Method and Brune’s method. The detailed analysis and proof for these 

methods are recored in Appendix II~IV. 
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5.1 Positive Real property on frequency transfer functions 
 

 Before starting the algorithms, Positive-real (PR) rational functions, an important 

property for deriving transfer networks, must be introduced at first.  Suppose a function of 

frequency: 

                          . (5.1) 

 

     is a Positive-real (PR) function if [69]: 

A.      is analytic in the right half plane. 

B. Its real part        is nonnegative on the j-axis. 

C. Any j-axis poles are simple and have nonnegative residues 

One testing method for PR function is given in [56]: 

     
                           

                           
 

    

    
 

     

     
 (5.2) 

Where   denotes the real part of      or     ,   denotes the imaginary part of      or     , 

suppose   is an even number and also for below: 

                               

                                     (5.3) 

 Then real part        of      is: 

           
         

  
    

  
    

 (5.4) 

Condition B can transfer to (5.5): 

                        (5.5) 

Condition A and C can transfer to           is Hurwitz [56].   

In [56], simple testing conditions for (5.2) are introduced as: 

 All              and              are positive real numbers, only 

            can be zero. 

 All poles and zeros of      lie on left half plane or on imaginary axis of s-plane 

In [70], some others theorems are introduced for testing PR property of the function. 

Appendix IV has discussed PR conditions of some specific rational functions used in later 

sections.   
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5.2 Equivalent admittance model from Y parameter 
  

 This section introduced method to separate Y-parameter into number of one-port 

systems. After having applying VF method on these one-port systems, we could apply 

Brune’s method and other methods, proposed in this chapter, on pole-residue set. Figure 5.1 

introduces flowchart of the whole process, from Y-parameter to SPICE compatible 

macromodel, and we can figure out that this process is the first step of whole method. 

 

Equivalent 

Admittance Model 

for Y-parameter

Y-parameter

Data at Frequency 

Points

Numbers of 1port 

admittances at 

Frequency Points

SPICE 

Compatible

Macromodel

Vector Fitting 

Method on 

admittances with 

shared poles

Brune’s Method

Pole-residue sets 

for 1port 

admittances

Foster-Brune 

Method

Modified Foster’s 

Method

SPICE 

Compatible

Macromodel

SPICE 

Compatible

Macromodel

 

Figure 5.1 Flowchart for SPICE netlist Generation by VF method 

 Here we start equivalent admittance model for Y-parameter. Based on the definition 

of Y-parameter, port-to-port admittances of an  -port system can be calculated from its Y-

matrix: 
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            (5.6) 

 

For an example, the equivalent model of a 4-port system       is given in Figure 5.1: 

1+
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y24

y34
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Figure 5.2 Equivalent admittance model of a 4-port system 

 

From pole-residue model generated from VF method or LM method, the transfer function for 

admittance can be derived as:  

        
  

     

    
 

  
     

    
   

    
     

      
 

  
     

    
                (5.7) 

In this case, SPICE compatible model for a large system are divided into number of 

equivalent circuits of 1-port system, which significantly reduce the complexity of modelling. 

For deriving equivalent circuit from 1-port system (5.7), Foster’s method and Brune’s method 

can be applied.  

 Later on, Section 5.3 will introduce Modified Foster’s method, which generates 

Foster-like circuit based on Foster’s network synthesis technique. Section 5.4 will review 

Brune’s method. Section 5.5 will propose a new algorithm that combines Foster’s and 

Brune’s method.  
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5.3 Foster’s network synthesis and Modified Foster’s Method 
 

 In this section, Foster’s network synthesis[58] for admittance function is used to 

create Foster-like circuit. This process also works for impedance function through Z-

parameter of the system, but with different circuit prototypes.   

 Suppose (5.8) is the sum of pole-residue format rational function. Our algorithm is to 

write a small part       of      at each round.        usually consists of 1 or 2 individual 

rational functions and can generate a Foster-like circuit through “a reactance theorem”[58]. 

The rest of      would have less components. We acclaim this method as “Modified Foster’s 

method” and this method can be implemented as: 

     
  

    
                   (5.8) 

Since VF method gives all poles on left-half of s-planes,       can be divided into real poles 

case and complex-conjugate poles case. The stamps for different cases and models are shown 

in Table 5-1 and Table 5-2. The detailed values for each component and proof for positivity 

see Appendix II. 

a. If     is real, suppose : 

      
  

    
 

 

   
  (5.9) 

 

 We can obtain different pattern of models from checking PR property of 

     . All possible cases are given in Table 5-1, each case derive a model stamp 

which contain several components. There are one PR case, one non PR case and one 

limit case. If       is PR, then the process will be P.R. case. If       is non PR, then 

the process will be non PR case. Limit case only happens when some parameters in 

      is zero (or smaller than tolerance value). Limit cases would generate some 

components with negative values; however, they rarely happen in real-world 

simulation. Their function is to handle the critical values in simulation or to prevent 

the component with 0 or   value. 

 For non PR and of limit cases, this algorithm sometimes generates a resistor 

   parallelized the model. This resistor    can switch a non PR.       to a PR    
     

by: 

  
                                

     is PR (5.10) 
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If resistor    happens in the process, then it will be absorbed by parameter   of      

in (5.7) that 

         (5.11) 

 

b.    is a complex pole , then         are conjugate poles pairs. Suppose: 

      
  

    
 

  
 

    
  

      

         
 (5.12) 

There are one PR case, two non PR cases and one four limit cases for this expression. 

They are given in Table 5-2. 

 

Table 5-1 Cases and Model Stamps for Modified Foster’s Method (Real Pole) 

Case Condition    Model 

Case 1: PR case           

      is P.R. 

y’(s)

L

R

 

Case 2:non PR case             

      is non P.R. 

    
 

 
 . 

 

y’(s)

C

R

 

Case 3: Limit Case      . 

y’(s)
L
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Table 5-2 Cases and Model Stamps for Modified Foster’s Method (Complex Poles) 

Case Condition    Model 

PR case             

       is P.R. 

y’(s)
L

R

Rp Cp

 

non PR case 1             .  

       is non P.R. 

   
       

  
  . 

y’(s)

R1

C1p
L1p

L2

C2p

R2p

 

non PR case 2     . 

       is non P.R. 

Situation 1: 

            
       

  
   ; 

   
   

  
 . 

Otherwise, 

Situation 2: 

   
          

  
 .  

 

y’(s)

R

Rp

C

Lp

Sit. 1 

y’(s)

R1

C1p
L1p

R2p

C2

L2p

Sit. 2 

Limit Case 1           . 

    
  

  
. 

y’(s)

L

R
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Limit Case 2             

    . 

    
  

  
. y’(s)

Rp

C

Lp
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Limit Case 3             

    . 

    
  

  
. y’(s)

Rp

C

Lp

R

 

Limit Case 4             

     . 

    
  

  
. y’(s)

R2p

C2

L2p

R2

L1

C1

 

 

 

 All cases for Modified Foster Method are given above; MFM algorithm generates all 

positive value components for PR cases and non PR cases. For limit cases, some negative 

values component might be generated. Since limit cases rarely occurs, their effects can be 

neglect and MFM algorithm can guarantee that most of components in the model have 

positive value. The inference and proof are in Appendix II. The advantages for MFM 

algorithm are fast speed of simulation and simple circuit model. 

The drawback is that     sometimes results a negative for PR     .  The reason is that    is a 

parameter to insure a positive   
     in (5.10), it will not break PR property of      if   

                     (5.13) 

In our algorithm, the chosen    is greater or equal to this value. It means when positive   

extract too much large value of   ,    cannot be guaranteed to be positive.  

 

 To present an example for this method, example in Chapter 4 is used again: 

     
 

   
 

   

     
 

   

     
     (5.14) 

The first step is to form ration function parts: 

 

                              
 

   
        

    

       
 (5.15) 

 

        is real pole PR case, equivalent circuit refers to case 1 in Table 5-1. 

       
 

   
 

 

      
 (5.16) 
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        is complex poles PR case, equivalent circuit refers to case 1 in Table 5-2. 

       
 

      
 

       

    
 

 

 
  

 

   
     

 

        
 (5.17) 

 

The rest parts are ending resistor and capacitor. The equivalent circuit is in Figure 5.3. 

 

Figure 5.3 Admittance Equivalent Model from Modified Foster’s method 

Compare to previous methods in Section 4.1 and 4.2, Modified Foster’s method could handle 

non PR case and generate less components for the equivalent model.  

  

Node

C1

1

L1

1

R1

1

L2

0.5

R3

1

C2

1

R2

0.5



57 

 

5.4 Brune’s Process 
 

 Brune’s method has been proposed by Otto Brune in 1931[57]. This classical method 

works on PR character of rational function, generates minimum and positive-value 

components for a driving-point impedance or admittance. Brune method treat a whole rational 

function as (5.18), generate circuit components from a separated small part of this function in 

one process and leave the rest with less order for the next. In [62-65], Brune’s process is 

concluded into 8 cases; these cases for driving point admittance are reviewed here. Start from 

a PR rational function for admittance with a same order of  : 

     
                           

                           
 

    

    
 

     

     
 (5.18) 

Similar to Modified Foster’s method, this algorithm writes models for       at each process 

and leave       a rational function with less order: 

           
  

        
 

  
        

              (5.19) 

The models for each case are listed in Table 5-3. More details, such as component values, are  

given in Appendix III. 

 

Table 5-3 Cases and Model Stamps for Brune’s Process 

Case  Condition    Model  

Case 0         

R

 

Case 1       

y’(s)
C

 

Case 2       

y’(s)

L
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Case 3       

y’(s)
L

 

Case 4       

y’(s)

C

 

Case 5             
  , 

     has poles on 

 imaginary axis y’(s)

L

C

 

Case 6             
  , 

     has zeros on  

imaginary axis y’(s)

C

L

 

Case 7                     
               

Situation 1:      

 y’(s)

L

R

 

Situation 2:      

 

y’(s)

C

R
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Situation 3: 

        

               

Type 1:              

 

y’(s)

C

R

L

L2L1

n:1

 

Type 3:              

y’(s)R

L2L1

n:1

C

 

 

 

  All the cases for Brune’s method are introduced above. Case 0 is the end case; Case 1 

to 6 is usually used only in the beginning or near the end of whole process in real world 

simulation. If the order n is large, most of time Brune’s method are running case 7. The key 

advantage for Brune’s method is that it generates minimum reactive elements. The drawback 

is that is method is only applicable for PR case. In real world simulation for n-port system, the 

transfer functions, sometimes, are not PR. Then Brune’s method is very limited for handling 

them.  

Another drawback of Brune’s method is the overflow of limits. Simulation under high 

frequency must use curved data to avoid the overflow so that values of     will not be over 

simulation limits. However, the overflow still would happen when order is high (   ). In 

this case, simulation cannot be completed. 

 

We present the example by Brune’s method here, to compare with the result from MFM in 

previous section. Since the example is positive real, we can apply Brune’s method to it. The 

whole rational equation is firstly calculated. Based on cases in Table 5-3, the process is: 

Step 1, case 1: 

     
                 

           
   

            

           
                (5.20) 

Step 2, case 7 situation 1: 

       
            

           
   

        

           
   

 

 

 
  

 
        

        

   
 

 

 
  

 

       

 (5.21) 

Step 3, case 7 situation 2: 

        
        
 

 
       

   
      

 

 
       

   
 

 

 
 

 
  

    

   
 

 

 
 

 

       

 (5.22) 
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Step 4, case 3: 

        
    

 

 
 

 
 

 
   

 

 
         (5.23) 

Step 5, case 0 and process is end here: 

            (5.24) 

So the equivalent circuit, based on stamps in Table 5-3, is given in Figure 5.4. 

 

Figure 5.4 Admittance Equivalent Model from Brune’s method 

 

In the next section, a new method based on Modified Foster’s method and Brune’s method is 

proposed. This method combines Foster’s method and Brune’s method, shares their 

advantages and avoids their drawbacks. 
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5.5 Foster-Brune Method 
 

 In previous sections, we notice that Modified Foster’s Method deals with admittance 

     as a number of small parts and Brune’s process treats      as a whole part (rational 

function).In this section, a method based on Modified Foster’s method and Brune’s method is 

proposed and it can be called “Foster-Brune method”. This method absorbs the advantages 

and avoids the disadvantages of both methods. Design purpose is shown in Figure 5.3. 

 

Brune’s Process
Modified Foster’s 

Process

Advantages

-Minimum components 

in models

-Guaranteed all-positive 

components

Advantages

-Handle all positive 

negative real y(s)

-Fast

-Low order

Disadvantages

-Negative-value 

components may 

happen

-Limit cases

Disadvantages

-Only work with positive 

real y(s)

-Overflow with high order

Foster-Brune 

Method+

-Handle all cases of y(s)

-Simple models

-Improvement on 

probability on negative-

value components and 

component number

 

Figure 5.5 Desired properties of Foster-Brune Method 

 In Brune-Foster method,  several pole-residue components are chosen to form a low-

order PR rational function and apply Brune process on them, the rest of components are 

proceed by Foster process.  In another word, we use Modified Foster process for general cases, 

but we seek the PR component for Non PR component to form a PR low-order rational 

function and use Brune process for these low-order functions. It follows steps below and the 

follow chart for FBM algorithm is shown in Figure 5.4. 

1. Start from pole-residue format for admittance, separate PR and non PR parts. 

2. Seek the partner for non PR parts to form low-order PR rational functions  

3. Apply Brune’s process on these rational functions 

4. Apply Foster’s process on rest pole-residue components 
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Figure 5.6 Flowchart of Foster-Brune method 

 

For Figure 5.4, it is not difficult to observe that the core part of this algorithm is the second 

step. Establishing the grouping method efficiently has become the key. A fast grouping 

algorithm method is given below. Its flowchart is proposed in Figure 5.7.
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Figure 5.7 Flowchart for fast Grouping Algorithm (step 2) in Foster-Brune method
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In real world simulation when number of poles is greater than 20, the results of admittance 

usually have more non PR components than PR components. Therefore the algorithm seeks 

the best matching non PR. component for every PR component; it will be more efficient than 

verse. The most important part for FBM method is in step 2 or the conditions for seeking the 

partners.  

 

To explain the selection algorithm in Figure 5.6, the selection (or grouping) process is divided 

into three process 2.1~2.3. From previous step, we separate       into four groups: PR 

components with real poles        , PR component with complex poles        ; Non PR 

components with real poles          and non PR component with complex poles       .  

When we are search components for grouping        and       , there are four combinations:  

New components for Brune’s process:  

-   
                        

 

   
 

 

   
 

-   
                         

 

   
 

      

         
 

-   
                        

      

         
 

 

   
 

-   
    

                    
      

         
 

      

         
   (5.16) 

 

were separated and we start from these data.  

a.  Process 2.1: Find minimum real part of all Non PR components                 . 

Then sort these components in descending order by value of                 

(SIDO). 

1) For real poles group         
 

   
; then 

            
  

     ,                                 
    

 
 

 
 (5.17) 

The reorganized data will be: 

      
                  

          
   

       
                  

          
   

     (5.18) 

The first one has the largest value on                 , or has smallest 

absolute value. So it has largest possibility to form group with       . 

 

2) For complex poles group         
      

         
; then 

                           
    

 
      

         
 (5.19) 

where                         
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To find                 , we calculate       

     
      

           
   

  
          (5.20) 

If    or    is negative, we remove it since   is a real number. 

Compare three values:               
   

 
  

  
  and                

      

, the 

smaller one is                 or                . 

The reorganized data will be: 

      
                  

          
   

       
                  

          
   

     (5.21) 

 

b. Process 2.2: Find the best potential choice for potential grouping by judging the 

summation of                            . 

There are 4 possible combinations; their processing order is referred to (5.16). The 

reason will be explained in Process 5.3. Here we use the first combination   

                as an example. 

 

 Suppose          components are      
   

          
   

    , reorganized         

components from previous step are      
             

       . 

We start from the first component of        , it contains these information: 

     
          

    
          

          
   

   (5.22) 

 

From   
   

, we can calculate             value for all P.R. components at this 

frequency and we can form this expression: 

         
   

    
   

          
   

    
   

              
   

    
   

          
   

    
   

     (5.23) 

 

Suppose the smallest positive value happens at  th component of         

        
   

    
   

              
   

    (5.24) 

then         and         are the best potentials for grouping. We need a quick 

method to prove their sum PR; this method is mention in Appendix IV. If PR 

condition is not satisfied here, the second smallest positive result in (5.23) become the 

best potential matching and PR check is applied again until the sum is PR. In most 

cases, the PR condition can satisfy for first time attempt of this process. 
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When     
   

    and     
   

 are form a group, these two components will be removed 

from original groups and proceed to Process 2.3. Then we seek the partner for the 

second component of        , or     
   

   . 

 

For  th component     
   

     if all values in (5.23) are negatives, then     
   

    can’t be 

grouped with any PR component.  

Since            
     

                
   

    , the next component     
     

    has 

tiny chance to find a partner. We stop this process here and move to next combination. 

 

c. Process 2.3: Collect the components for Brune’s method 

When PR and non PR component are grouped, they are removed from their original 

groups and saved in this process for step 3.  

There is a special case in Process 2.3. If two components are from         and 

       , their sum is PR and can form a new component in        . 

                
 

   
 

 

   
 

              

            
             (5.25) 

For this reason, combination for          and         should be firstly executed in 

Process 2.2 and grouped components are added into         as a new components. 

 When all four combinations are done in Process 2.2, Process 2.3 will transfer 

the sum of all saved grouped components into a rational function. It will be the output 

for Brune’s Method in Step 3. The ungrouped components are outputs for Modified 

Foster’s Method in Step 4. 

 

 

In some cases, there are very few or no PR components in primary data. In these cases, result 

of Foster-Brune method would be similar to that of Modified Foster’s Method. Compare all 

three methods, the result of Foster-Brune method has less number of components than results 

of Foster’s method and more accurate data than results of Brune’s method. Their simulation 

results will be given in the next chapter to support the analysis. 
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Chapter 6 Examples and Simulations 
 

 

 

 

 In this Chapter, two examples are used for simulation. They are applied VF and LM 

method to obtain time-domain macromodels at first. The time cost and accuracy are recorded 

for these simulations. Then Sparse Matrices Algorithm (SMA), Modified Foster’s Method 

(MFM) and Foster-Brune Method (FBM) are applied on them. Number of components and 

transient analysis are recorded for comparison. To observe their accuracy, we use Backward 

Euler method on original data for transient analysis. 

 

6.1 2-port transmission line simulation 

 

  The first example is a 2-port single transmission line, shown in Figure 6.1. Y-

parameter is generated from full-wave simulator. The frequency points for this example are 

100 points linearly from 0Hz to 10GHz. When VF method is applied, 20 guessed poles are 

used and iteration times are maximum 10. The code used for simulation is matrix_fitting 

_toolbox, which is provided by [74].  The code for LM method is based on [48]. Figure 6.2 

and 6.3.also record their results of       and rms error. Comparison of their data is in       

Table 6-1.  

 

Figure 6.1 Parameters for single transmission line 
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Figure 6.2       Comparison between Original, VF and LM data on 2-port network  

 

Figure 6.3 Y-paramter rms error Vs. frequency on 2-port network 
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Table 6-1 Comparison between VF and LM method on 2-port network 

 Overall RMS 

error 

Time cost(s) Order of state 

space matrices 

Number of 

pole-residues 

VF            0.1276 40 20 

LM             0.6105 25 25 

 

After we obtain the time-domain macromodels from VF and LM methods, data are used to 

generate SPICE netlist through the following method: Sparse Matrices Algorithm (SMA), 

Modified Foster’s method (MFM), Foster and Brune method(FBM).  The comparisons of 

netlists components are stored in table 6-2. 

Table 6-2 SPICE netlist generation from different methods for 2-port network 

Method Resistors Capacitors Inductors VCVS Trans. Total Time(s) 

SMA 25 36 0 100 0 161 0.0620 

MFM 63 49 46 0 0 158 0.0433 

FBM 63 49 46 0 0 158 0.0667 

 

From table 6-2, we can figure that components from SMA, MFM and FBM are very close. 

MFM is faster than SMA. The results of MFM and FBM are same; the reason is that number 

of non PR components is limited in this simple example, so grouping components are not 

generated.   

To apply the transient analysis to netlist, we suppose a step input voltage           

                                       connected to port 1 with 50Ω resistor,  

then connect another 50Ω  resistor  between port 2 and ground. To test accuracy of each 

method, Backward Euler method (BEM) [2] is used. BEM uses the global G and C matrices 

of MNA equation in process of full-wave simulation. Simulation software for SPICE netlist 

transient analysis is CADENCE Allegro AMS Simulator, and results are shown in Figure 6.4-

6.5. Due to FBM and MFM have exactly same results, FBM are not repeated in this example. 
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Figure 6.4 Transient Analysis For 2-port network from SMA method 

 

Figure 6.5 Transient Analysis For 2-port network from MFM method 
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To observe the accuracy of SMA and MFM, we plot the data of output port (port 2) for 

different methods in Figure 6.6. In Table 6-3, the rms error for SMA and MFM  are recorded, 

compared to results of Backward Euler method. We can comment both methods have 

excellent accuracy. However, MFM has better accuracy for this example. 

 

Figure 6.6 Comparison at port 2(output) for 2-port network  

 

Table 6-3 RMS error data for 2-port network 

Method Rms error for    Rms error for    
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6.2 8-port network simulation 
  

 An 8-port network is simulated in this section,. Its structure and parameters are given 

in Figure 6.7. Port 1~4 are input ports, port 5~8 are output ports. There are totally 18 

transmission lines in this network. Transmission lines       are coupled transmission line, its 

parameter RLC per meter will be given in (6.1) in a matrix format. Transmission lines 

        are single transmission lines. 

. 

Figure 6.7 Parameters for 8-port network 

Parameters for coupled transmission line      : Length = 10cm;  

   

 
 
 
 
 
 
 
 
 

                                                         
                                   
                                              
                              
                                   
                                   
                                              
                              
                                    

 
 
 
 
 
 
 
 

      

 

  

 
 
 
 
 
 
 
 
 
                                   
                       
                             
                    
                       
                       
                             
                    
                        

 
 
 
 
 
 
 
 

       

 
 
 
 
 
 
 
 
 
         
         
         
         
         
         
         
         
          

 
 
 
 
 
 
 
 

     (6.1) 
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Similarly to previous section, we apply VF and LM method to this example at first. The 

frequency points are 40 points from 1to 4GHz. For VF method, we again use 20 guessed 

poles and maximum 10 iteration times. The results of VF and LM method are recorded in 

Figure 6.8 and 6.9, also in Table 6-4.  

 

Figure 6.8        Comparison between Original, VF and LM data on 8-port network 

 

Figure 6.9 Y-paramter rms error Vs. frequency on 8-port network 
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Table 6-4 Comparison between VF and LM method on 8-port network 

 Overall RMS 

error 

Time cost(s) Order of state 

space matrices 

Number of 

pole-residues 

VF            0.3479 160 20 

LM             0.7820 44 44 

 

Similar to previous example, these data are used to generate SPICE netlist.  The comparisons 

of netlists components are stored in table 6-5. 

Table 6-5 SPICE netlist generation from different methods for 8-port network 

Method Resistors Capacitors Inductors VCVS Trans. Total Time(s) 

SMA 80 100 0 704 0 884 0.0882 

MFM 756 691 665 0 0 2112 0.2794 

FBM 703 620 623 0 24 1970 0.4580 

 

From this result, we can conclude that SMA method is much more robust than Modified 

Foster’s method and Foster-Brune method on dealing with complex systems. It has superior 

behaviors on both components numbers and time-cost. Compare MFM and FBM, they are a 

few component groups are generated for Brune’s method, thus generate some transformers. 

However, the optimization number of components is not much (    ) and time cost is 

significant. For more complex system, this method would show better performance. 

To prove their accuracy, we again apply this simulation like previous example. Simulation 

results of BEM, SMA, MFM and FBM are plotted in Figure 6.10-6.11 below. 
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Figure 6.10 Transient Analysis For 8-port network from SMA method 

 

Figure 6.11 Transient Analysis For 8-port network from MFM method 
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To analyze the accuracy of these methods on this example, we record output data at port 5 

from different methods in Figure 6.12 and the rms error for each method in Table 6-6. From 

the figure, we comment that these data are acceptable. From Table 6-6, we figure that errors 

of MFM and FBM are very similar since their SPICE netlists don’t vary much. Compare 

these results to that of SMA, they have less errors.  

 

Figure 6.12 Transient Analysis For 8-port network at port 5(output)  

 

Table 6-6 RMS error data for 8-port network 
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Chapter 7 Conclusion and Future Research 
 

 

7.1 Conclusions 
 

 In this thesis, we have described the methods of generating SPICE-compatible 

macromodels from Y-parameter of unknown systems. These methods are divided into two 

steps, generating numerical macromodels from Y-parameter and generating SPICE 

compatible macromodels (SPICE netlist) from numerical macromodels. Chapter 4 focuses on 

SPICE netlist generation from state space matrices and Chapter 5 focuses on SPICE netlist 

generation from pole-residue macromodels. There are three important methods proposed in 

this thesis: Sparse Matrices Algorithm (SMA), Modified Foster’s method (MFM) and 

Foster-Brune method (FBM). Compare to other methods in literature survey and 

background knowledge, these methods have these key advantages: 

 

1. These are all easy to implement. They use the numerical macromodel generated from 

VF and LM method, which have already had available code. As well, the 

implementation for Foster’s method and Brune’s method are not complicated, since 

they were published a long time ago. 

 

2. All three methods have acceptable accuracy. VF and LM methods are most popular 

fitting method recently for simulation and they are proven to be accurate.  

In Section 6.1, superiorities of these methods are proven on component numbers and 

stability.  

 

3. The efficiency of these methods has been proven in the examples. Comparing SMA 

and MFM, Sparse Matrices Algorithm has fewer components on dealing with 

complicated network. 
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4. Both of MFM and FBM can handle various cases in simulation. They are proved to 

generate minimum negative-value components; although this period is time costy. For 

simple system macromodeling, MFM are preferred because of time consummation. 

 

5. All these methods have their own advantages; selection through them based on 

conditions of simulated system would provide better performance. 

 

 This thesis is not only focus on how to generate SPICE-compatible marcomodel 

efficiently, but also provide an overview of all possible methods on macromodeling of 

unknown system. Section 4.3 provides the sparse model method based on state-space matrices 

of vector fitting results, although this method has some drawbacks on massive number of 

components. When the idea of Figure 1.1 is established; all possible methods are acceptable 

for a trial, although some of them could not give satisfied simulation results. To qualify the 

final results (SPICE netlist), there parameters can be taken into account: Accuracy of 

macromeodel (netlist), complexity (number of the components) and stability (minimize 

negative-value and imaginary components). For different inputting system, the most efficient 

method might be different. Within the creation of new fitting methods, more algorithms will 

be invented based their characteristics. Maintaining an open-mind on all possible simulation 

method is another main idea of this thesis. 
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7.2 Future Research 

 

 As it mentioned above, this macromodeling problem does not have the only one 

solution. The further researches of these methods include three parts: optimizing the existing 

method, seeking new possible algorithms and alternating frequency-domain data.  

 We also can apply sparse model algorithm on VF method; however, the result is not 

always stable when port number of unknown system is large (>20).  Due to these reasons, we 

skip this method in simulation. Possible optimizations can be made to Sparse Model Method 

to adapt the state-space matrices from vector fitting method. Moreover, for complicated 

systems(over 100ports), both passivity violation and stability violation sometime occur. 

Further optimizations on all proposed methods may further increase the accuracy and stability 

on large-system simulations. 

 The second part involves other fitting methods, such as those mentioned in literature 

survey or the new methods in the future. Based on the properties of these fitting methods, new 

algorithms can be investigated.  

 The last part is to derive SPICE netlist from frequency-domain data in other formats. 

For instance, S-parameter is an alternative choice. The methods to generate SPICE netlist 

from S-parameter are very different to those discussed in this thesis. It would be another topic. 
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APPENDX I Transformation between state space matrices and rational approximation 

 

 This section would introduce the transformation methods between two model patterns: 

state space matrices and pole-residue approximation. Before we start the algorithms, it is very 

necessary to introduce these two models: 

1. State space matrices model 

 

 State space time-domain model has similar formulation pattern to MNA 

equation; however, this model describes the port relationship. Its form for the black-

box system in Figure 2.3 is given in (2.9). 

                   

                   (1) 

where 

      is the vector of port voltages,   is the port number. 

                        . (2) 

      is the vector of port current:   

                        .  (3) 

      is the vector of internal statement of this system,   is the number of 

statement 

                            .  (4) 

 

Matrices       and   are called state-space variable and their sizes are: 

                            and    is usually larger than  .   

In frequency domain, (2.9) will be: 

              

               (5) 

  matrix can be solved through flowing algorithm: 

Solve    in first equation of (2.18): 

                   (6) 

Then substitute (2.19) into the second equation of (2.18)  

                       (7) 

Since   are port currents and   are port voltages, (2.20) transforms into 

 

                (8) 
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In some algorithms [23, 37], the results have state space matrix   equals to 0. 

For better fitting in Loewner Matrix Method, term proportional to   can be included 

in transfer function. [47]  

 

Matrix    is added into time-domain model and (1) becomes  

                   

                                 (9) 

 

Where    is a positive real matrix with size equals to    [47], 

                     (10) 

There are a few ways to extract state space model in (7) or (10), such as Asymptotic 

Waveform Evaluation and Loewner Matrix Method. 

 

 

2. Pole-residue Rational Approximation Model 

 

 This model uses the concept of Pade approximation to approximate our 

desired data [17], the transfer function H for a response can be expressed with 

number of its moments: 

                     (11) 

Pade approximation fits a rational approximate transfer function to     : 

     
                  

                          (12) 

Where     equals to the order of     . 

For Y-parameter, the approximation of         can be defined as a numerator      

divided by a denominator      with a same order. 

       
    

    
 

                  

                            (13) 

Equation (13) states the rational function format of the approximation; several other 

formats can be derived from this function: 

Pole-residue format: 

       
                  

                    
  

    

 
                     (14) 

Pole-zeros format: 

       
                  

                    
        

   

        
   

          (15) 
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Now we can introduce the transformation algorithms between these two models. At first, we 

suppose a  -port system has Y-parameter     : 

               
     

 
     

   
             

   
             

  
     

 
     

  (16) 

If we apply VF method (Section 3.3.2) on     , and   guessed poles are used; then the result 

would be sets of pole-reisdues parameters: 

      
    

                                     and 

 
             

   
             

  

 
 
 
 
   

  
    

    

 
                    

  
    

    

 
                 

   

  
  

    

    

 
                    

  
    

    

 
                  

 
 
 
 

 (17) 

If we apply LM method (Section 3.4.2) on      and   internal statement is generated through 

the process; then the results would be several state space matrices: 

                                                 

                        

      
             

   
             

                   (18) 

In later part, algorithms are given for transformation between       
    

              and 

              .  In [23], some clues are given for state space realization; and more details 

would be given in this section. 

 

A. Transformation from pole-residue model to state space matrices model 

 At first we compress the      of (17) and (18): 

 
 
 
 
   

  
    

    

 
                    

  
    

    

 
                 

   

  
  

    

    

 
                    

  
    

    

 
                  

 
 
 
 

                  (19) 

 

The next step to extract   and   part on the left side: 

 
 
 
 
  

  
    

    

 
     

  
    

    

 
   

   

 
  

    

    

 
     

  
    

    

 
    

 
 
 
 

  
           

   
           

    
           

   
           

         
  

       
  (20) 
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  and    can be easily identified: 

   
           

   
           

  and     
           

   
           

 (21) 

 

The rest part leaves: 

           

 
 
 
 
  

  
    

    

 
     

  
    

    

 
   

   

 
  

    

    

 
     

  
    

    

 
    

 
 
 
 

 (22) 

 

To derive       and   matrices, definition of Jordan-canonical[68] is applied, 

 

   

       
       
    
       

          ; 

                     

   
  

    
   

    
   

    
   

    

       

  
    

   
    

   
    

   
    

                    

        (23) 

 

Where    is an identity matrix with size    .   is an identity matrix with size 

     .  

In this model,   and   are complex matrices; a transformation matrix   is introduced 

to transform them into real matrices: 

   
    

       
       

 

 
  

  

 
  

 

 
  

 

 
  

  (24) 

Suppose    and      are complex conjugate pole pairs;    is a real pole, construct 

overall transformation matrix    as 

  

 
 
 
 
 
 
      
         

      
         
           
       

 
 
 
 
 

    

 
 
 
 
 
     
      
     
     
      

 
 
 
 

 (25) 

Use the equations in (3) to apply realization transformation,   is omitted because of 

identity matrix. Suppose        : 
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                            (26) 

 

In new model,   ,    and    are real matrices. 

           

 
 
 
 
 
 
      
         

      
                    

                     
       

 
 
 
 
 

         ; 

                           ; 

                                     (27) 

Therefore, state space matrices transformed from       
    

              are 

                 , their expressions are in (21) and (27). 

 

B. Transformation from state space matrices model to pole-residue model 

Start from the state space matrices equation: 

                        (28) 

Rational approximation for   ports system  

          
 

 
           (29) 

To obtain     , we have to modify (28). Since   is often close to singular[55], we 

multiply     on both sides of  the first equation of (28), then it becomes 

                             (30) 

Then find eigenvectors and eigenvalues for     , assume that 

                      (31) 

 

Where   is eigenvectors and   is square matrix where eigenvalues are on diagonal 

entry. Suppose      , then (30) is transformed into 

                                      

                     ; 

              . (32) 

 

In this case, substitute    into   and obtain     : 

     
 

 
                                             

                                  (33) 
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From the definition of eigenvalues,                   . To calculate poles and 

residues sets, we suppose a set of parameter   that: 

                               
    

      
         (34) 

Then substitute   into (33) 

                  

         

   
         

  

    
   
    

  
         

   
         

  

 
       

   
       

    
   

     
 

   
   

     
 

  (35) 

 

Since       are full matrices, expand      into individual component: 

    
           

      
 

           

      
   

           

      
         

                  (36) 

 

Now all elements in   has same expression format to the rational approximation of 

Y-parameter. Compare (36) to equation (17), we can obtain: 

       
  

    

    
 

  
    

    
   

  
    

    
               

   
 

  
   

     
        

  
            

        
                     (37) 

Expression for       
    

              are all given in (37); and pole sets are 

                   . Since all eigenvalues of      are negative on its real part; all 

poles are on the left side of complex-real plane, in another word, they are all stable. 
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APPENDX II All the cases for Modified Foster Method 

 

 To show all the cases of Modified Foster Method, we start from the admittance on 1-

port system of   poles-residue format 

      
  

    
 

  

    
   

    

      
 

  

    
       (1) 

For every step, MFM considers      , and write the components of       to the netlist. 

     
  

    
                   (2) 

If    is real, then 

      
  

    
                    . (3) 

Assign                         , Then 

      
 

   
 (4) 

There are three cases for    is a real pole, one PR case (      is PR), one non PR case and 

one limit case (some value is 0). 

1. Case PR:         

      
 

   
 

 
 

 
 

 

 

 
 

    
   

   
 

 
   

 

 
   (5)  

 

2. Case non PR:         

In this case, negative values will be generated if we follow method in previous case. 

The solution is to add a positive admittance     to       .    will be absorbed by 

    , or the value of   in (1) changes to 

       . (6) 

then 

                
 

   
    

           

   
 (7) 

Let     
 

 
      

       
   

   
 

 
 

  
 

 

   

 
 

  
 

 

   

  
  

 
  

 

      
 

 
  (8) 
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3. Case Limit:          

In this case, negative values may occur when a<0. However, limit case happens rarely 

in real world simulation. So 

      
 

 
   

 

 
  (9) 

 

 

If    is not real, then 

      
  

    
 

    

      
 

  

    
 

  
 

    
  (10) 

Suppose 

                                                  (11) 

Then 

      
      

         
 (12) 

Where 

                                 (13) 

 

From (13), we also can infer that 

                          (14) 

In the first chapter of [56], the PR condition for (12) is given: 

                   or           or 
 

   
 

 

 
 (15) 

 

There are totally seven cases for    is not a real pole, one PR case (      is PR), two non PR 

cases and four limit cases (some value is 0). The possible limit cases happens when      

or      or      ,    and    cannot be zero at the same time. However, limit cases 

happens very rare in real world simulation that they almost can be neglect. In PR case and 

non PR cases, we assume                    . 

1. Case PR:           

      
 

     
 

         

      
 

 

  
 

    
  
  

     

      
 

 

  
 

    
  
  

 

  
 

       
  
  

 
  
  

      
  

 
 

  
  

       

  
   

      
       

  
  

      
      

 

        
  (16) 

So the components are: 
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  (17) 

To prove all these values are non-negative: 

Form           and     , we obtain     . So     

From          , we obtain      

Substitute condition of    in (13) to   
             

 : 

  
             

    
                    

   

    
             

     
                

       (18) 

So        , and all the components are non-negative. 

 

When        , the value of components are: 

  
 

  
        

  

  
    

  

  
 (19) 

 

2. Case non PR case a:              

Similar to non PR case of real pole, we add a positive admittance     to        

                 
      

         
    

                         

         
 

Now there are two situations:      and     , we discuss       in case a and 

     in case b. 

       
         

         
 

             

         
                  (20) 

To decide the value of   , we consider PR condition of         . Similar to PR 

condition of      , the condition is: 

                 (21) 

 since     , so    
       

  
 ,  

If we choose    
       

  
 , so         

  

  
 and      

Branch 1: 

        
 

       
 

         

         
 

 

  
 

   

         
 

 

  
 

 
   

  
 

    
   

 (22) 

Branch 2: 

         
 

        
 

         
  
  

    
 

   

  
 

  
  
  

    
 

   

  
 

 
  

    
  

  
  

 (23) 

The components are: 

   
 

  
     

  

  
     

  

    
    

  

  
     

  

    
     

  

  
  (24) 

It is very easy to prove all of them have non-negative values. 
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3. Case non PR case b:      

       
 
  
  

           

         
 

  
  
  

              

         
                   (25) 

PR condition of        : 

  

  
      or    

   

  
 (26) 

PR condition of         : 

        and    
          

  
  (27) 

Although    can be numerically positive or negative, the appropriate value of    will 

be determined by the stronger ones of two conditions: 

   
   

  
   or    

          

  
  (28) 

This results in two choice of   . 

 

Situation 1:    
   

  
  

Then it must satisfy 

   

  
 

          

  
  or                 

    (29) 

If we assign a new parameter               ; then the condition of this situation 

become: 

   
       

  
   (30) 

Then 

         
  

  
  

        
    

  
  

         
 

   
  
  

 

         
 (31) 

To decompose the equation: 

  
     

 

  
    

 
 

 
 
         

  
  
  

   
  
  

 
  

 

  
 
 

 
 

      
    

  
 

  
  
  

   
  
  

  

 
  

 

  
 

 

 
 

             

  
  

 
  
               

  
 

  
  
  

   
  
  

 
 

  
   

 

        
 (32) 

 

The values of components are: 

  
  

  
    

             

  
     

     
           

    

  
     

     
           

    

       
  (33) 

To prove their values are non-negative: 

Since     ,   
  

  
   . 

Since    
       

  
, then            .   
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For    and   , condition of    and     in (13) are used again: 

  
           

        
    

 
 

 
   

      
  

 
 

 
   

     
    

 
 

 
   

         
  

 
 

 
      

    

 
 

 
   

      (33) 

So         

 

Situation 2:    
          

  
   

The condition is 
   

  
 

          

  
  or    

  

  
   

Then  

       
 
  
  

           

         
 

  
  
  

      
  
  

  

         
                    

 

       
 

         

 
  
  

           
 

 

 
  
  

    
 

   

 
  
  

           
 

  

       
 

 
          

    
 

       
   

   

 

        
 

 

 
 

         

  
  
  

     
  
  

 
 

    

     
 
 

 
 

 

  
  
  

     
  
  

 
 

    

     
 
 

 
 

 

  
  
  

    
  
  

  
 

 

   

   
  

       
     

       

    
     

  

       
   

   
     

    
     

  

     
     

  

     
  (34) 
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APPENDX III All the cases for Brune’s Method 

 

We start again from the admittance on 1-port system of poles-residue format 

      
  

    
 

  

    
   

    

      
 

  

    
       (1) 

Brune process find the sum of all parameters at first: 

     
                           

                           
    (2) 

And then decide 

                   (3) 

where       is a component parallel to the port and       is a less order rational function.  

There are totally 8 cases for different patterns of       and      . 

 

Case 0:         

When      equals to a constant, an admittance   is added and it is the end of the process.  

 

Case 1:     ,      has a pole at     

      
    

          
          

 

                      
 

  

    
             

  
   

                 
     

    
  

    
    (4) 

 

Case 2:     ,      has a zero at     

 

    
 

    
          

          
 

              
        

 
  

    
  

 

     
    

So       
                      

    
          

          
    

  

    
   

   
                 

     
   (5) 

  

 Case 3:     ,      has a pole at     
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    (6) 

 

Case 4:      ,      has a zero at     

 

    
 

  
          

          
          

 

                             
 

  

   
 

 

     
 

 

 
  

  
  

  
    

   
                 

     
     (7) 

 

Case 5:             
  ,      has poles on imaginary axis 

In this case,       
   are separated from      at first: 

           
       

          
          

     
    (8) 

The next step is to find residue of   for       : 

   
    

     
 
      

  
  

  
  

      

  
  

  
  

      

 

     
    

           
           

      
  

    
          

          
     

  
   

     
        

 

 

  
 

  
 

  
 
 

 

 .  (9) 

 

Case 6:             
  ,      has zeros on imaginary axis 

Similar to case 5, 

           
       

          
          

     
    (10) 

And residue can be gotten through 
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  (11) 

 

Case 7: When      doesn’t fit to other cases, it will be in case 7. 

This case involves two steps; the first step is to find: 

                    
              (12) 

The second step is to substrate        from     : 

                   (13) 

Depends on different   ,       can be applied methods from case 2,4,6. 

1)             
  

  
 

            
                           

                           
 

  

  
 

    
          

          
 

                  
  

  
   

   
  

  
           

    

   (14) 

Then the format is same to case 2. 

 

2)             
  

  
 

            
                           

                           
 

  

  
 

  
        

          
  

                  
  

  
   

   
  

  
         

    

   (15) 

Then the format is same to case 4. 

 

 

3)                        
   

              

Type 1:              

         
              

          

  
               (16) 

            
                           

                           
         

 
    

        
        

     
 

                  
 

     

    
 .  (17) 

Now        must have zero pairs at       , it matches case 6 that: 



- 15 - 

 

            
       

           
           

      
     (18) 

 

           
 

    

     
 

    
           

           
      

  

    
           

           
      

   
   

     
   (19) 

      
    

           
           

      
  

    
           

           
      

   
    

            
            

       
   

    
           

           
      

               

(20) 

So the total transformation for       in this case is: 

 

         
 

 

         
 

 

 

  
 

  
 

  
 
 

 

 (21) 

And components are: 

  
 

 
      

          

  
    

 

  
   

  

  
       

     

     
   

          
  

     
  

     

     
   (22) 

 

Type 2:              

         
           

   
  

              

 
   

 

 
          (23) 

Instead of            , we do 

 

      
 

 
 

 

 
    

        
        

     
 

  
        

          
  

      
       

           
           

      
   

  
        

          
   (24) 

 
 

      
 

 
 
 

 
   

     
  

    
           

           
      

  

    
           

           
      

   
   

     
  

 
 

     
   

  (25) 

Then components are 

  
 

 
    

 

 
 

 

              

    
 

  
   

  

  
   

     
     

     
   

  

               
   

          
          (26) 

  



- 16 - 

 

APPENDX IV PR property check for pole-residue components 

 

 This appendix will check the PR property for sum of two pole-residue components 

             , where        is non PR and        is PR. Since each of them has two 

possible cases: real case and complex conjugate case. Their sum is divided into three patterns: 

A.        and        are all real case,                               

        
 

   
        ;         

 

   
          (1) 

                
 

   
 

 

   
 

              

            
 

      

         
  (2) 

Based on [70], RR conditions for                 are: 

               and           (3) 

Since 

         and         (4) 

Then 

           (5) 

To satisfy the rest conditions: 

     and         (6) 

Substitute         to (6), they become: 

        and                  (7) 

Simplify the first equation: 

                   
 

   
 

 

 
 (8) 

Simplify the second equation: 

                                      (9) 

 

   
 

 

 
  (10) 

The final conditions for case A are: 

1)        

2) 
 

   
 

 

 
 

3) 
 

   
 

 

 
 

   

B. One of        and        is real, the other is complex conjugate. Then 

               
 

   
 and                 

      

         
 ; 

or                
      

         
 and               

 

   
   (11) 

These two are similar to each other, and their sum: 
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 (12) 

Based on [70], if      
    

    
 is PR it must satisfy two conditions: 

a)           has no roots in ORHP 

                                                

                                       (13) 

The condition that            has no roots in ORHP are: 

             (14) 

 

b)             

Based on Chapter 1 of [56],      can be transformed into: 

     
    

    
 

           

           
 

               

                  
 (15) 

Then  

                                

              
    

 (16) 

To prove denominator of           is positive: 

                                          

                             (17) 

 

Seek conditions for divider, we suppose a parameter       : 

                             

              
           

        

                     
                   

    

           
                           

           
                   

        

                          
         

                 
  

       
    

        

              (18) 

 

The condition for               and     are: 

    ,      and             (19) 

 

Conclude the final conditions for case B: 

1) Calculate: 

                                              

   ; 
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Then   must satisfy                 and         

 

2) Calculate: 

                         
                         

     
         

   

Then, then   must satisfy     ,      and            

 

When these conditions are satisfied, then  

              
                                     

                            
 (20) 

is PR. 

 

C. The last case is that        and        are all complex conjugate. Then suppose 

               
      

         
  and                

      

         
 (21) 

Their sum, 

              
                                                                

                                             
  

 
                

                   
 

    

    
 ; (22) 

                                      

                              

                                             

 

Based on [70], if      
    

    
 is PR it must satisfy two conditions: 

a.           has no roots in ORHP 

                                                   

                     (23) 

The condition that           has no roots in ORHP are: 

    ,           
    

  and   
      (24) 

 

b.             

Transform      based on [56]: 

     
                

                   
 

    

    
 

           

           
 

                    

                       
   

                                

              
    

 (25) 

To prove the denominator is positive 
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                              .  (26) 

Seek conditions for the                        , we suppose a parameter 

      : 

                             

     
            

          
          

        

     
       

       
            

              
       

       
       

    

           
                      

                           

           
                      

                   
        

    
              .  (27) 

Based on [70], the condition for                    are: 

I)                                 (28) 

II)           and two conditions holds: 

     and            

Or   
        and    

                
      

        
    

(29) 

Conclude the final conditions for case C: 

1) Calculate: 

                 ; 

                                 ; 

                              ; 

               ; 

Then   must satisfy: 

                                
    

  and   
     . 

 

2) Calculate: 

         
    

     ; 

          
    

            
    

                        
    

    
  ; 

                                   
              

       

  
        

  ; 

                  ; 

Then, then   must satisfy i) and ii) 

a)                              ; 

b)           and two conditions holds: 
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Or   
        and    

                
      

        
   . 

 

When these conditions are satisfied, then  

              
                                                                

                                             
 

(30) 

is PR. 
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