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ABSTRACT

Using a two-dimensional nonlinear numerical simulation of a

(viscous) stratified shear layer, strong instabilities resulted from the

resonant interaction of a long linearly neutrally stable wave and the

corresponding fastest growing wave. This linearly fastest growing wave,

with optimal initial conditions, grows initially at a rate five times

that predicted by linear theory. With other initial conditions, the

linearly fastest growing wave may actually decay. The possibility of

this type of interaction is suggested by the weakly nonlinear theory

(cf. Maslowe, 1977). This coupled system of fourth order nonl inear

partial differential equations was solved using a modified pseudo­

spectral scheme for the spatial variables, incorporating the use of fast

Fourier transforms to calculate spatial derivatives, and a second order

Adams-Bashforth scheme for the temporal derivatives .
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RESUME

Dans cette etude, en utilisant une simulation numerique nonlineaire

a deux dimensions d'une couche stratifiee, decollee et visqueuse, on

obtint des resultats interessants a partir des cas correspondant a
l'interaction resonnante d'une onde longue a stabilite neutre et d'une

onde courte qui croit la plus rapidement selon la theorie lineaire. En

utilisant certaines conditions in it i ales, l'onde courte croit

initialement a un taux cinq fois superieur a celui predit par la theorie

lineaire. Avec d'autres conditions initiales l'onde courte
~ A

decroit.

La possibilite de ce genre d'interaction est predite par la theorie

faiblement nonlineaire (voir Maslowe, 1977). Ce systeme couple aux

•

equations nonlineaires du quatrieme ordre aux derivees partielles, est

resolu par une methode pseudo-spectrale modifiee, pour les variables

spatiales, et une methode Adams-Bashforth du second ordre pour les

derivees temporelles .

i i
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1.0 INTRODUCTION

Mixing layers develop in regions where the velocity varies (shear)

and/or the density varies (stratification). In particular, many

articles have appeared dealing with free shear layers, i.e. where the

domain is assumed to be of infinite extent in the positive and negative

vertical directions. This domain is used to approximate what happens in

the atmosphere, ocean and in some large scale laboratory experiments

away from the boundaries. The physical problems for v/hich such models

are used i nc 1ude what happens at the boundary between a warm and co 1d

front, mixing in the ocean, and combustion. Among other concerns, these

problems are important in weather prediction.

nutrients in the sea, and aviation.

the distribution of
1'/

Turbulence, sometimes defined as random eddy motion, is an impor-

tant phenomenon because drag forces and heat transfer rates are much

higher in turbulent fluids. Thus the ability to predict transition from

a laminar to turbulent flow is the most important goal in hydrodynamic

stabil ity theory.

One method of studying the stability of two-dimensional fluid flow

problems is the normal mode approach. This is the traditional approach

to studying the linear stability of a fluid. When using this method,

one assumes a mean flow with horizontal velocity u(y) and stratification

p(y), where y is the vertical coordinate. A perturbation, proportional

to exp(ia(x-ct)L is then added to the stream function and hence to the

density. The governing equations are linearized and an eigenvalue pro-

blem arises in terms of the wavenumber a. which is real, c=Cr+iCi, which

is complex and other parameters depending on the flow being considered.

1
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Thus cr is the phase speed of the wavelike perturbation and aCi is

termed the amplification factor. Instability corresponds to ci > 0 and

hence linear instability implies that a specified infinitesimal

perturbation will grow exponentially. This prediction is a consequence

of the linearization and is valid only as long as the perturbation

remains small. Ultimately, nonlinear effects become significant.

Initial growth rates, for small perturbations, however, agree well with

laboratory experiments. Also, weakly nonlinear theories using

perturbation methods use linear theory as a starting point.

A second approach to studying the stability of fluid flows is to

use large computer models to solve nonlinear viscous initial value pro­

blems corresponding to the Navier-Stokes Equations. These models re­

quire large amounts of computer time but their val idity, in general, is

for longer periods of time than perturbation methods. They also can be

a convenient way to study the stability of flows corresponding initially

to a flow given by the normal mode approach. Subsequent growth rates

obtained by these models agree very well initially with linear theory.

This type of approach is a logical method to study ideas and theories

based on the normal mode approach.

A third approach to studying the stability of fluid flows is the

use of vortex methods. These are used to simulate incompressible flows

at hi gh Reyno 1ds numbers whi ch, as often happens, are characteri zed by

regions of concentrated vorticity imbedded in irrotational fluid. This

is done by discretizing the regions containing vorticity and tracking

this discretization in a Lagrangian reference frame. The traditional

method of doing this is to use point vortices, i.e. the vorticity is

assumed to be a finite linear combination of Dirac delta functions.
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This method works well for solving the Euler (inviscid) equations but is

often inadequate to represent physically interesting vorticity fields.

The problem is that point vortices are singular (cf. Leonard, 1980). To

overcome this difficulty investigators have used vortices with finite

cores, otherwise known as vortex blobs (Leonard, 1980), in their simula­

tions, as first done by Chorin (1973). Vortex blobs yield more realis­

tic vorticity distributions and bounded induced velocities. Also. un­

like point vortices, they can be extended to three-dimensional models

where they are called vortex filaments.

In this study we wish to consider initial conditions which could

create 1arge hori zonta lly peri odic vorti cal structures whi ch have been

observed in the laboratory, in the ocean, and. at high altitudes in the

atmosphere by radar where none are observed visually (see Figure 1).

These structures involve large temperature gradients. It is the temper­

ature gradients which the radar observes. It has been suggested that

these types of structures are an important component of clear air tur­

bulence (cf. Maslowe, 1972).

If we consider the normal mode approach with a Holmboe mean flow,

u = tanh y and

p = exp(-Stanh y)

linear theory predicts that instability will occur only if the minimum

local Richardson number is less than~. The local Richardson number Ri

is given by Ri = _gp '/(pu ,2 ) and JO = gSL/V2 denotes the overall

Richardson number. Note that typically JO is greater than one for the

atmosphere and rarely is it less than 0.25. In fact, in order for such

large scale structures to grow within a reasonable time, linear theory

would require JO to be less than 0.15. Therefore a nonlinear
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theory is needed to explain the existence of large scale vortical struc­

tures in the atmos phere. One mech an ism wh i ch cou 1d create such 1ar ge

scale structures is the process of subharmonic resonance of linearly

neutra1 waves where one wave of wave 1ength )" and another of wave 1ength

2)" interact. This process canl be viewed as a model for vortex pairing
I

which has been observed in lamihar and turbulent stratified and unstrat-

ified flows.

Vortex pairing is the process where pairs of vortices coalesce to

form single vortical structures (see Figure 2). Note that in Figure 2,

as in most laboratory experiments, including the ones described below,

the waves are spatially growing. Figure 1 appears to depict a distur­

bance formed by temporally growing waves. Vortex pairing occurs with

both spatially growing and temporally growing waves. This process has

been recognized as a very important large scale feature of mixing

layers. It was first observed in laboratory experiments by Sato (1959).

Kelly (1967) gave the first analytical treatment of this phenomenon. In

1ab oratory exper iments, Wi nant and Browand (1974) injected dye between

two streams, each travelling at a different velocity, just before they

came together after a sp1itter plate. Un stab le waves were observed to

grow and coalesce into discrete vortical structures. Vortex pairing oc-

curred repeatedly and accordi ng to Wi nant and Browand was the most im­

portant factor controlling the growth of the mixing layer during its

transitional and later turbulent stages. The initial formation of

eddies is similar to the cat's eye structures that have been observed in

numerical studies of stratified shear layers with low Richardson numbers

in regions of nonlinear critical layers.

Maslowe (1977) considered the weakly nonlinear theory of a Holmboe
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flow with a perturbation consisting of a single neutral wave:

~ = fY u(s)ds + £(A(T)~(y)exp(ia(x-ct))+*) + 0(£2)

Thus ~ is an eigenfunction of the linearized viscous stratified two-

dimensional Boussinesq equations. Then by taking T to be the slow time

variable T = a£2t and solving to 0(£), a secularity condition then

implies

(1.1 )

where a2 is known as the Landau constant and ci corresponds to the ci

calculated according to linear theory. Maslowe calculated a2 for

various values of a with Re = 100 and Pr = 0.72. He found that a2

became unbounded when a tended to a value of about 0.31. This is due to

a second order resonance, wh i ch wi 11 be denoted by the term of subhar-

monic resonance, consisting of two linearly neutral waves. For a given

Reynolds number there is a JO such that the corresponding neutral waves

are given by a and 2a with the same c. Thus Maslowe was led to consider

~ = fY u(s)ds + £(A1(T)~1(y)expie + A2(T)~2(y)exp2ie + *)

+ 0(£2) (1. 2)

where e = a(x-ct). 'lHere T = a£t as opposed to T = a£t:.t for a single

wave and hence the instability occurs at a much faster rate. Variables

can be separated if

(1. 3)

•
where Y1 and Y2 are determi ned by impos i ng orthogona1ity conditions on

the 0(£2) terms. After some manipulation we find

(1.4 )

where aI, a2 are half the absolute value of the amplitude of the long
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and short waves respect i ve ly as a funct i on of Land Eis a constant.

Maslowe solved numerically for Yl' Y2 and found Yl/Y2 »0. Hence under

certain initial conditions, the amplitudes of both waves grow simultane-

ously by taking energy from the mean flow. This may seem surprising as

second order triad resonance usually results in Yl/Y2 < 0 and hence in­

volving a simple exchange of energy between the waves (cf. McGoldrick,

J.F.M., 1970). Furthermore, since this theory holds for neutral distur­

bances, JO is much larger than what linear theory would require in order

for large growth rates.

This thesis is the first numerical study of the fully nonlinear,

stratified, viscous, initial value problem using linearly neutral waves

as initial conditions. Previously, numerical studies of a Holmboe or

similar flow have used inviscid eigenfunctions as initial conditions.

For this reason only waves with large linear growth rates have been pre­

viously considered as initial conditions.

Patnaik, Sherman and Corcos (1976) considered a number of initial

and boundary value prob lems for stably strat ifi ed, viscous, free shear

layers. To basic laminar shear and stratification profiles consisting

of error functions, which result in a flow very close to Holmboe flow,

perturbations of unstable eigensolutions to the Taylor-Goldstein equa­

tion, which are the corresponding linearized inviscid equation, were

added. The x and y components of the Boussinesq equations were con-

sidered. Along with these equations, the equation for the temperature

state with density a linear function of temperature, which is consistent

with the Boussinesq approximation, was considered. The above equations

were solved using a finite difference scheme to numerically simulate the• growth of the di sturbances. Initial growth rates compared favorably
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with linear growth rates predicted using the linear viscous eigenvalue

problem (Maslowe and Thompson, 1971). A subharmonic resonant inter­

acti on was investi gated by i ntroduci ng two unstable perturbati ons cor­

responding to the fastest growing wave and its first subharmonic for a

Reynolds number of 50, an overall Richardson number of 0.07, a Prandtl

number of 0.72 and hence wavenumbers of 0.215 and 0.43. The qualitative

behavior of the interaction depended on the initial relative positions

of the waves but, regardless, the disturbance decayed after maximum

ampl itude was reached with the long wave eventually decaying but at a

slower rate than that of the short wave. Woods (1969) found in measure­

ments of the ocean in the presence of a thermocline that only distur­

bances that grew from a background Reyno 1ds number greater than about

300 had turbulent final states. Patnaik, Sherman and Corcos, due to

problems with their numerical scheme, obtained results only for Reynolds

numbers of 200 or less.

A similar problem has been studied by Peltier and Davis (1979). A

finite difference scheme was used to study a stratified two-dimensional

shear layer which was semi-infinite in the vertical direction with a

tanh y background horizontal velocity and a PO - Btanh y background den­

sity profile. The model used a numerical domain with length in the x

coordinate corresponding to the horizontal wavelength of the fastest

growing wave. All runs mentioned were made with JO = 0.07 except for a

resonant case with JO = 0.01. In this case, resonance was due to the

"ground" being an integral number of half-wavelengths nAz, where Az was

the vertical wavelength of the eigenfunction, from the region of small

local Richardson number. This is a completely different type of re­

sonant interaction from that discussed above.
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In this studYt the two-dimensional Boussinesq equations with heat

conduction were approximated numerically in a domain which is infinite

in the vertical direction. A pseudo-spectral scheme was used consisting

of double Fourier trigonometric series in space and finite difference in

time. Fast Fourier transforms were used to transfer back and forth be­

tween physical and Fourier space. It was anticipated that a pseudo­

spectral scheme would resolve higher Reynolds number cases than a com­

parable finite difference scheme as suggested by S. Orszag (private com­

munication). Such a scheme, it was considered, would be more accurate

and more efficient than a comparable finite difference scheme for model­

1ing wave phenomena as suggested by Abe and Inoue (1980). Abe and Inoue

solved the Korteweg-de Vries equation by a pseudo-spectral scheme,

finite difference schemes and by other methods. Each method was applied

to a common initial value problem and compared with the other methods.

The Fourier expansion (pseudo-spectral) m~thod was found to be the most

accurate and most efficient. The present study was initiated primarily

in order to attempt to determine whether the mechanism suggested by

weakly nonlinear theory of subharmonic resonance of neutral or nearly

neutral waves could result in much higher growth rates than linear

theory predicts and hence be a mechanism which could create large scale

vortical structures. The effect of flows having initial background

Reynolds numbers greater than 300 was thought to be of interest as sug­

gested by Woods' measurements and the calculations of Peltier and Davis.

Comparisons with the linear theory and the results of previous fully

nonlinear numerical calculations were used as a check for the numerical

scheme.

The results obtained are most dramatic for cases corresponding to
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the subharmonic resonant interaction between linearly neutral and

fastest growi ng waves at the same Ri chardson number. For example if

Re = 200 and Pr = 0.72, then ex = 0.225, 0.45 and JO = 0.174. With

suitable initial amplitudes and relative positioning the "fastest

growing" wave grows at an initial rate five times that predicted by

linear theory. Thus while linear theory predicts that this wave will

grow like exp(0.06t), initially it grows like exp(0.29t). For the same

case but with a different initial relative positioning the wave, which

linear theory predicts to be the fastest growing, for JO = 0.174, decays

initially like exp(-0.22t) .



• 2.0 MATHEMATICAL MODEL

In this chapter the mathematical model used for this study is des-

cribed. The governing equations are given in section 2.1. In the

•

second section, the mean flows used are considered and the concept of a

body force, which was used for some test cases, is explained. In the

third section the various initial conditions considered are described.

2.1 Governing Equations

The basic equations governing the time dependent motion in two

dimensions of an incompressible, viscous, heat-conducting fluid in a

gravitational field are

Du + L.QQ. = (a
2
u a

2
u) (2.1.1)\l - +Dt PO ax ax 2 ay2

Dv + L .QQ = (a
2v a

2
vj .QB. (2.1.2)

Ot PO ay \l ~ + ay2 - POax

au / ax + av / ay = 0 (2.1.3)

OT = 8(a2T
+ a2T) (2.1.4)

Ot ax 2 ay2

p = 1 - aoTo(T-1) (2.1.5)

where u, v are the x and y components of velocity, p the density, p the

pressure, \l the kinematic viscosity, g the gravitati.onal acceleration, T

the temperature, 8 the coefficient of thermal conductivity,

TO is a reference temperature, PO is a reference density and ao the co­

efficient of thermal expansion. Viscosity and thermal conductivity are

10
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assumed to be constant. The density variations of the fluid particles

are attributed to thermal diffusion and expansion alone and are neg­

lected except in the calculation of the buoyancy force (Boussinesq ap-

proximation). The equations were non-dimensionalized by setting

x = x*cO

y = y*cO

u = u*UO

v = v*UO

t = t*cO/UO

p = P*PO

* U
2

P = P Po 0

where Uo is one-half of the total change in the mean flow and Co is one­

half the initial shear layer thickness.

These were substituted into equations (2.1.1) to (2.1.5) and con-

verted into non-dimensional vorticity and density equations using equa­

tion (2.1.5) which, consistent with the Boussinesq approximation, gives

the dens ity as a 1i near funct i on of temperature. Hereafter we drop the

superscript Thus in terms of 1;;, P, I\J, u, v, and g the non-dimen-

sional vorticity, density, stream function, x and y components of velo-

city, and gravity, respectively, we have

01;; + JooP =L [021;; + 021;;)
Ot Sox Re ox2 oy2

Op _ 1 (02p ~)
ut - RePr ox2 + oy2

• 2 - ~r = -'iJ I\J, u - v., ay , ~- - ax

(2.1.6)

(2.1.7)

(2.1.8)
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The Reynolds number and the Prandtl number have the definitions

Re = POUOoO/J.I() and Pr = CpJ.l()/k where J.I() is the molecular viscosity, cp

the specific heat at constant pressure and k the coefficient of heat

conduction and Uo and 00 are as defined above (note that v = ~/PO).

Equations (2.1.6) to (2.1.8) are solved in a rectangular domain

with prescribed initial and boundary conditions.

2.2 Mean Flow

The mean flow velocity and density in dimensionless form, for the

most part, were chosen to be

u(y) = tanh y

p(y) = exp(-Btanh y)

(2.2.1)

(2.2.2)

which represent the flow resulting from molecular diffusion of earlier

coincident discontinuities (see Figure 3).

u(y) = erf(y)

p(y) = 1 - Berf(lPry)/~

Runs were also made with

(2.2.3)

(2.2.4)

to compare with results obtained by Patnaik (1973) and Patnaik, Sherman

and Carcos (1976). These profiles are similarity solutions of the

Boussinesq equations. However, as similarity solutions, they are time

dependent. Furthermore, results using these profiles differed very

•

little from using (2.2.1) and (2.2.2). Also weakly nonlinear theory has

not been developed for error function profiles for stratified free shear

layers while it has been for hyperbolic tangent profiles as the latter

are much more tractable to analytical analysis.

Frequently in perturbation analysis of fluid flows, a body force is

added explicitly or implicitly to the Navier-Stokes equations in order
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to make a background flow an exact steady solution of the corresponding

time dependent equat ions. Hence if we cons i der the case of a mean flow

u(y) and mean stratification p(y) and equations (2.1.6) to (2.1.8) ulll/Re

and -pll/(RePr) would be added to the right hand sides of equations

(2.1.6) and (2.1.7) respectively. This is very easy to implement in the

fully nonlinear calculations with the scheme used for this study as will

be explained in the next chapter. Thus this was done for particular

cases in order to make comparisons with previous results.

2.3 Initial Conditions

To a basic laminar flow perturbations were added whose y-dependent

component consists of viscous eigensolutions to the steady linear pro­

blem with heat conduction (cL Maslowe and Thompson, 1971). Previous

studies have used the corresponding inviscid equation, the Taylor-

Goldstein equation

with asymptotic boundary conditions

~ - a exp(-ay) as y + 00

~ - b exp(ay) as y + -00

(2.3.1)

(2.3.2)

where ~ is the perturbation stream function vertical eigenfunction, i.e.

~ = JY udy + E(~exp(ia(x-ct)) + *) (2.3.3)

•
However, this approach will not work if neutral waves or nearly neutral

waves are to be used as initial conditions since the eigenfunctions cor­

responding to neutral waves of the Taylor-Goldstein equation are

singular. Even for waves away from the neutral curve, this method in-
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troduces large initial errors for Reynolds numbers less than 600.

The computer program used by Maslowe and Thompson solves the cor­

responding problem with viscosity and heat conduction. This involves

solving the following sixth order ordinary differential equation boun­

dary value problem:

2 i - 1 4 _ gp I <p
ell-c) 'V2<p + (u-c)u"<p + aRe (u-c)(l + -pr)'V <p "P"

- 1 'V6~ i- Pr (aRe) 'I' - .....P-r(T"I'R.-e.......)

where the operator 'V2 = d2/dy2

follows

(2.3.4)

- 0.2• The boundary conditions are as

and

where

<p - a exp(ay) + b exp(ry) + C exp(qy) as y + _00

I III

<pr(O) = <p (0) = <pv(O) = 0r r

(2.3.5)

(2.3.6)

(2.3.7)

(2.3.8)

(2.3.9)

•

r = all - i c~e)~
q = a(l _iCR~pr)~

and <Pr, <Pi are the real and imaginary parts of <p respectively. This

boundary value problem was solved using a shooting method with a fourth

order Runge-Kutta scheme.

'"The initial perturbation vorticity ~ is then given by

(2.3.10)

'"and the initial perturbation density p is given by

p=f(u-c)(<p1I
- cx2<p) - u"<p+ Je (<piv - 2cx2<p" + dl<p)]~exPia.xL 0 (2.3.11)
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Thus this program was modified to set up the initial conditions,

changed to error function profiles for some test runs and changed to run

in extended precision for high Reynolds number cases. The eigenfunction

$, as was done by Maslowe (1977), was normalized by referring it to the

"standard solution" a. = 1, $ = sech y corresponds to the case JO = 0 and

Re = 00. Thus $ was adjusted so that

(2.3.12)

A(O) was taken to be 1178. Hence the perturbation kinetic energy in the

fundamental, E(t), is given by

(2.3.13)

As the phenomenon of most interest in th i s study was resonant i n­

teraction, for most runs ~ was initially of the form

~ = IY u(s)ds + E(Al $1 exp(io.x) + A2 $2 exp(i2o.x) + *) (2.3.14)

where $, $ are eigenfunctions of (2.3.4) corresponding to a. and 20. res­

pectively. Thus the initial conditions become

where

~ = -u' + (2 + 2*)

p =p + (p + p*)

(2.3.15)

(2.3.16)

(2.3.17)

•

'" 11 2 11 2
~ = -(($1 - a. $1) exp(io.x) + ($2 - 40. $2) exp(i2o.x))

p = ((u-c)($~ - 0.
2
$1) - U"$l + Je ($iv 2o.2$~ + 0.4$1)) -30 expio.x

(2.3.18)

Note that $1 and Al and $2 and A2 were normalized as in the single wave

case mentioned above.



• 3.0 NUMERICAL MODEL

In this chapter the numerical model used to approximate the mathe-

matical model described in the second chapter is examined. In the first

section the actual pseudo-spectral scheme used in this study is

described and its differences, advantages and disadvantages are con­

sidered. Comparisons with linear theory made with this numerical model

are described in the third section. In the final section of this

chapter the ranges of the various parameters used in the different

numerical simulations are given.

3.1 Numerical Method

Equations (2.1.1 to 2.1.5) have generally been solved by other in-

vestigators with finite difference methods. However, there are various

other possibilities for calculating the spatial derivatives. One is the

Galerkin method where n convenient, linearly independent functions (<l>j)

are chosen and if the differential equation is given by L(G) = 0 in a

region A, then we determine Cj such that

n
IAL( .E cj <l> j )<l>k dA = 0, k=I, 2, ... , n

J=1
(3.1.1)

•

Thus, in terms of the L2 inner product, the Cj are determined so that

the error is orthogona1 to all of the <l>k, k = 1, •.• , n. Hence the error

is minimized with respect to the L2 norm.

Another method, called collocation or the pseudo-spectral method,

involves choosing n linearly independent functions (<l>j) as above and

determining Cj by setting

16
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L(l: c-<I>-)=0. 1 J J

J=

17

(3.1.2)

•

at the n points xl,x2, ... ,xn· Hence, in a collocation scheme, the error

is minimized pointwise on a finite number of points.

In Galerkin schemes nonlinear terms are more difficult to handle

than in pseudo-spectral schemes. For instance, a simple quadratic non­

linearity involves calculating convolution sums in a Galerkin scheme

while in a pseudo-spectral scheme nonlinear terms are just calculated

pointwise in physical space making even very complicated nonlinear terms

easy to calculate. However, pseudo-spectral schemes generate aliasing

errors in the nonlinear terms. For example, in a quadratic nonlinear

term, the n-k spectral mode (for k < n/2), includes the energy from the

n+k mode as well as that from the n-k mode. The convolution sums used

in a corresponding Galerkin scheme avoid this. The importance of alia-

sing errors can be monitored by graphing the energy spectrum as a func-

tion of wavenumber. This was done as a part of all runs that were made.

A popular choice for the <l>j is a set of trigonometric polynomials.

These have the advantage of ease of calculation of derivatives and

result in practically no phase errors, i.e. if a system has a dominant

frequency as a solution, this solution will retain its shape and phase

using trigonometric polynomials while with finite difference methods the

solution may have its phase shifted, and in nonlinear problems, the

solution may lose its sharpness and form a wake. A trigonometric series

approximating a function f will converge at least as fast as link if the

first (k-l) derivatives of f are continuous (including at the end

points). Thus, this type of approximation converges very quickly for

II smoothly" periodic or almost periodic functions. Finally, what makes
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using trigonometric series economical is that fast Fourier transform

(FFT) methods may be employed.

Fast Fourier transforms consist of efficient algorithms for calcu-

lating the n sums

n-1
Cj = E fk exp(i2nkj/n)

k=O
j=0,1,2, .•. ,n-1 (3.1.3)

If fk is f(xO + dX*k), for instance, then the above n sums Cj under

suitable manipulation result in the coefficients dj such that

n/2-1
fk = . E dj exp(i2njk/n)

J=-n/2
k=0 , 1, •.. , n-1 (3.1.4)

i.e. dj are the coefficients of a trigonometric polynomial t such that

t(XO + k*dx) = f(xO + k*dx) and thus this is a pseudo-spectral scheme.

Similarly, the sums Cj can be viewed as approximations to the integrals

involved in a Galerkin scheme. The FFT, by the use of judicious book­

keeping, calculates these sums in o(nlogn) steps as compared to the

"naive" approach taking o(n2) steps. An FFT is most efficient when n is

a power of a small prime number or the product of powers of several

small prime numbers. Thus n = 2k would take o(nk) steps while if n was

a prime number there would be no saving at all. By suitable manipula-

tions the finite Fourier transform of a multi-dimensional array can be

calculated using a one-dimensional fast Fourier transform. In summary,

for smoothly periodic solutions, a pseudo-spectral scheme gives better

accuracy at a fraction of the cost for a corresponding finite difference

scheme (cf. Abe and Inoue, 1980).

•
Numerically, the following representation was used

1; = 1; + E E amn exp( i (mw< + llnY))
m n

p = p + E E bmn exp(i(max + llnY))
m n

(3.1.5)

(3.1.6)
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where ~ is the vorticity and p is the density. Also ~(y) = -ul(y) where

u is the initial laminar velocity (tanh y) and p(y) = exp(-Stanh(y)),

the initial laminar density (Holmboe's flow), a = n/Lx, ~n = nn/Ly where

Lx and Ly are half of the box size in the horizontal and vertical direc­

tions respectively. Thus if the wavelength of the initial disturbance

was A, Lx was chosen to be A/2. This is a collocation scheme with n1

points in the horizontal and n2 points in the vertical. Hence -n1/2 ~ n

< n1/2 and -n2/2 < m < n2/2 and 0 < x < A, -Ly ~ y ~ Ly• Some cases,

for comparison purposes were run with u = erf(y), p = 1 - Serf(lPry)/1Pr

(see section 3.1).

This method of handling ~, p is used in order to avoid Gibbs pheno-

menon by separating these functions into non-periodic and nearly

periodic parts. The idea is that for the integration times involved,

the mean flow distortion and the disturbance remain small close to the

y = ±Ly • With this method the boundary conditions are periodic in both

the x and y directions.

An alternate method would be to take

~ = E E amn exp(maX)cos(~y) (3.1.7)
m n

p = E E bmn exp(maX)sin(~y) (3.1.8)
m n

(cf. Riley and Metcalfe, 1980). This method is equivalent to imposing

asymptotic boundary conditions u = ±1, v = 0 at y = too, at the finite

distances of y = ±Ly and hence free slip boundary conditions are being

used. Finite difference schemes, as used by Patnaik, Sherman and Corcus

(1976) and by Peltier and Davis (1979) also use free slip boundary cond-

itions •

The above two types of boundary conditions, for short enough times
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and large enough Ly give the same results to reasonable accuracy. How­

ever some problems are to be expected in that the boundary conditions

for the initial conditions do not match those used for the time stepping

part of the scheme. Again, this along with the resolution problems can

be improved by using an appropriate y domain. See section 3.2 for more

details. Work is in progress to use asymptotic boundary conditions for

the whole scheme (Orszag and Metcalfe, private communication) which

appears promi sing. Th i s method i nvo 1ves us i ng the 1i near i zed equat ions

to obtain the asymptotic behavior and attempting to subtract out, near

the vertical boundaries, the part of the solution which does not act

like the asymptotic solution.

Spatial derivatives were calculated using term-by-term differentia­

tion. Taking, as in (3.1.5), we then have

~ = ~I + r r amn i~n exp(i(max + ~nY))
ay m n

~ was considered to be given as follows:

~ = Ib u(s)ds + r r cmn exp(i(max + ~nY))
m n

where

Cmn =

coo , m = n = 0

and where amn are the coefficients of , - , (equation 3.1.5) and coo is

an arbitrary constant of integration. This is consistent with, = -'iJ2~

and (a~/ay - u) - exp(-alyl) for y large. Differentiating with respect

to y (term-by-term) we obtain,
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(3.1.10)

The various other partial derivatives of 1;, p, 1jI, u and v were calcu-

lated in a similar fashion. These terms were calculated in Fourier

space and then transformed into phys i ca1 space where non 1i near terms

were calculated pointwise and where time differencing was done.

Time differencing was accomplished using a second order Adams-

Bashforth scheme which was started using Euler ' s method. Nystrom's

method was also tested but required smaller time steps than the Adams-

Bashforth scheme in order to be numerically stable. These methods are

common explicit fi nite difference methods. Thei r stabil ity has been

analysed with respect to various linear mixed problems as time differ-

encing methods for schemes using spectral methods in space, by Gottlieb

and Orszag (1977), with stability depending on the exact problem and

method being considered. It is likely that a semi-implicit scheme would

have less severe stability restrictions. However it is not clear how

that should be done nor what the overall improvement in efficiency would

be. Time differencing in a pseudo-spectral scheme can be done either in

physical space or in the transform space. In this study the time dif-

ferencing was done in physical space. Thus, if

NLl(I;,P,ljI) = - ~ ~ +~ ~ - ~~ +.L 'iJ 21;
oy ox ox oy 8 ox Re

NL2(p,1jI) = _ oljl op + oljl op + 1 'iJ2pry]X !X oy RePr

(3.1.11)

(3.1.12)

•
where 'iJ2 = o2jox2 + o2joy2 and if I; - ~ and p - p are denoted by 2 and P
respectively (note ~ = -u') then

1( ) 1( ,... ,... ,... -) (- + ~) ~ + ~ (--u 11 + ~)NL I;,P,ljI = NL I;,P,ljI,u = - u oy ox ox oy
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(3.1.13)

NL2(p,~) = NL2(P,$,u,p)

(3.1.14)

Note, from (3.1.5) and (3.1.6) that, for the scheme used, I;; and pare

separated into 2, ~ and P, P where

2 = E E amn exp(i(max + ~nY))
m n

"-

p = E E bmn exp(i(max + ~nY))

m n

(3.1.15)

(3.1.16)

respectively. The nonlinear operators NU, NL2 were evaluated at each

time step and every spatial grid point. NU(r,j,k) and NL2(r,j,k) will

denote NL1, NL2 respectively, evaluated at time t = to + r*dt and at the

grid point (x,y) = (xo + j*dx, yo + k*dy). Hence, if I;;(r,j,k) denotes

the approximation to I;;(to + rdt, xo + jdx, YO + kdy) and similarly for

p(r,j,k), 2(r,j,k), p(r,j,k), ~(r,j,k), u(k), p(k) then using an Adams-

Bashforth second order scheme would imply

l;;(r+1,j,k) = I;;(r,j,k) + dt(3*NL1(r,j,k) NL1(r-1,j,k))

p(r+1,j,k) = p(r,j,k) + dt(3*NL2(r,j,k) NL2(r-l,j,k))

(3.1.17)

(3.1.18)

•

Adding a body force to make U, P an exact steady solution of the result-

ing equations in terms of this numerical scheme is done simply by drop­

ping the ull term and the pll term from NU and NL2 respectively (i.e.

equations (3.1.13) and (3.1.14) respectively). Note that the ease of

adding this body force is due to the method of splitting 1;;, p and helped

by the fact that the time stepping was done in physical space.

Two factors would have resulted in savings of CPU time. The code

could have been run in IBM single precision instead of IBM double pre­

cision. This, however, would have degraded the results at a saving of
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only about ten percent. The other factor is that the FFT routines could

have been written in IBM Assembler. The routines used were modified

versions of FORTRAN subroutines written at MIT (by Greenberg). They

were switched to IBM double precision and compiled using an optimizing

compiler (FORTRAN H extended with opt = 2). At present there are no FFT

routines written in IBM Assembler. Writing such routines would require

an enormous effort. The resulting savings are estimated at only about

forty percent per time step (S. Orszag, private communication).

There are other methods which would provide a closer approximation

to the vert i ca 1 boundary conditi ons. One such method woul d be to use

Laguerre polynomials in the vertical coordinate. However this would in­

crease the amount of computation enormously. A less ambitious method

would be to use a finite element method in the vertical. However, this

would still involve much more computation and has given disappointing

results. Haidvogel, Robinson and Schulman (1980) considered several in­

viscid barotropic vorticity initial value problems and found that, for

these particular test problems, a finite element model and a pseudo­

spectral model, despite their complexity, were on the average 4 and 15

times more accurate, respectively, than a finite difference model. Thus

the pseudo-spectral scheme was almost 4 times more accurate than the

finite element model.

Tests were made to check the scheme. Aliasing was monitored, as

explained earlier in this section. The perturbation kinetic energy and

wave amplitudes were monitored (see sections 3.2, 4.1 and 4.2). The

Reynolds stress term was computed for several runs in order to check

conservation of energy. Also, vertical and temporal mesh sizes were

vari ed as a check of numeri ca1 convergence and stabil ity. Furthermore,



•
24

comparisons were made with results obtained in linear and weakly non­

linear theory (see the next section and section 4.1 respectively).

3.2 Comparisons with Linear Theory

Viscous linear theory (see Maslowe and Thompson, 1971) for a tanh y

velocity profile and an exp(-Btanh y) density profile (Holmboe flow)

results in a sixth order ordinary differential equation eigenvalue pro-

blem. According to inviscid theory, JO (the overall Richardson number)

has to fall to less than 0.25 in order for instability to occur. In

fact, for Holmboe flow JO = a(l-a), 0 ~ a ~ 1, defines the neutral curve

(see Figure 4). The viscous case shrinks the unstable region according

to Re the Reynolds number and Pr the Prandtl number. Since the linear

theory quoted above is a steady state theory, the best comparisons with

a nonlinear initial value problem numerical simulation would be expected

to occur for values of Re, Pr, JO and a away from the neutral curve,

with £ not too large.

The perturbation kinetic energy, E(t), given by

E(t) (3.2.1)

where

- fAUt(Y) = (l/A) 0 u(x,y,t)dx (3.2.2)

•
was used to estimate the growth of the eigenfunction (cf. Patnaik,

Sherman and Corcos, 1976) where these integrals were approximated by

sums over mesh points. This method does not give the energy of a single

wave as it includes the energy of excited harmonics. Moreover, to com-
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-pare with weakly nonlinear theory, we need to take Ut = u = uo.

However, then E(t) includes a cross term

1/(2A) I8 2u(u-u)dxdy (3.2.3)

due to u not being a steady state solution. This introduces a large

error when £ is small and/or Re is small.

When £ was very small, the growth rate, calculated using the per­

turbation kinetic energy (E(t)) with Ut = U, increased as the cross term

became of the same order as £. Even if the system is forced such that

the laminar flow is an exact steady solution of the Boussinesq form of

the Navier-Stokes equations, the mean flow is distorted by the distur-

bance so the cross term remains non-zero. This can be improved by tak­

ing Ut instead of Ut as in (3.2.1). A more satisfactory method consists

of the following. Suppose ~ is initially of the form

•

~ = IY u(s)ds + £(A(t)exp(iax)~(y) + *)

Then the perturbation kinetic energy to 0(£2) becomes

Thus if

N2/2-1
~ - r Pn exp(i~nY)

n=-N2/2

and

N1/2-1 N2/2-1
~ = IY u(s)ds + r r dmn(t) exp(i(arnx + ~nY))

m=-Nl/2 n=-N2/2

then

N2/2-1
A(t)~(y) - r dln(t) exp(i~nY)

n=-N2/2

(3.2.4)

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)

This is extremely easy to implement in a finite Fourier series pseudo-
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N2/2-l / N2/2-l
A(t) - r dIn (t)p* r IPnl 2

n=-N2/2 n=-N2/2
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(3.2.9)

The growth of A(t) was then used to compare with the linear growth

rates. Th is method gives the amp 1itude of the exc ited wave as a func-

tion of time which is the quantity for which linear theory makes its

predictions. However, it does not include distortion of the eigen-

function and includes higher order terms. As some runs were made with a

body force so that u and p are a steady state solution of the resulting

equations (see preceding section for more details) comparisons were made

between linear growth rates and those obtained from the (numerical) non­

linear initial value problem both with and without a body force. Ampli­

tudes of single waves with linear growth rates of about 0.1 or more and

for a wide range of E had growth rates, calculated in this manner,

within one percent of those predicted by the linear viscous theory even

for small E and small Re. Figures 5 and 6 compare the nonlinear growth

of the wave which is the fastest growing according to linear theory for

JO = 0.07, with and without a body force; E = 0.01, 0.05; and with

Re = 200 and Re = 50. Figure SA depicts A(t) compared with linear

•

theory with and without a body force where E = 0.01, JO = 0.07, ex =

0.45, Re = 200 and Pr = 0.72. In Figure 5B all the parameters are the

same except E = 0.05. In Figure 6A and 6B cases with and without a body

force are again depicted for E = 0.01, 0.05 respectively. For these

cases Re = 50, ex = 0.43, JO = 0.07 and Pr = 0.72. Other test runs were

made for a range of JO and a wider range of ex, E, Re and Pr. Away from

the neutral curves, the results were close to the linear viscous theory.

Near the neutral curve, of course, higher order effects become important
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and thus it is not surprising that growth rates in this region, even for

these single wave cases, differ from what linear theory predicts. All

of these results were dependent on an appropriate choice of the vertical

coordinate domain. When y ranged at least from -3 to +3 the 1inear

viscous eigenfunction routine would still converge to essentially the

same eigenvalues but the initial perturbation kinetic energy and A(t),

calculated using fast Fourier transforms, had sUbstantial errors when

the y domai n ranged on ly from -3 to +3. By i ncreas i ng the domai n these

errors decreased to a mi nimum and then started i ncreas i ng. It woul d

seem that the errors with a smaller domain are due to the different

boundary conditions in the y direction, i.e. whereas they are asymptotic

for the initial conditions (linear eigenfunctions), they are periodic

for the numerical model of the nonlinear initial value problem. For y

large the dominant term in the asymptotic expansion of the linear eigen­

functions is an 0(1) complex constant times exp(-ay). If, for instance,

a = 0.5 the eigenfunction routine will converge to the correct eigen­

function for, say, y = 3.2. Then 14>(3.2) I would be of the order of

0.27; similarly, for 14>(-3.2)1. Hence, representing 4> by a Fourier

series on this interval would result generally in poor convergence of

the series and significant Gibbs phenomenon at the end points. Increas­

ing the y dcxnain decreases this jump and improves the convergence. If

too large a domain is taken, then dy, the grid spacing in the y direc­

tion, becomes large. However, for a around 0.5, Reynolds numbers around

100, and Prandtl numbers of around 1.0, the eigenfunction routine would

not converge for a domain extending beyond 5.5. Thus, typically, the

domain would be calculated using the linear eigenfunction routine to ay

= 2.4 and extended to ay = 3.2 by using the asymptotic expansion for the
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eigenfunction and its derivatives.

In conclusion, it should also be noted that this method of calcula­

ting A(t) facilitates comparison with weakly nonlinear theory since much

of the information given by this theory is in terms of the wave ampli­

tude(s).

3.3 Numerical Parameters

The computing region was limited to one wavelength in x and roughly

one wavelength in y for the single mode runs. For the resonant inter­

action runs the length was the long wave's length and the height was

slightly less than that. For most runs 32 points were used in the x

direction and 64 in the y direction. For some resonant interaction

cases at high Reynolds numbers, a grid of 32 by 128 was used and for

large initial amplitude high Reynolds number cases, a grid of 64 by 128

was used. The time step size was usually 0.125. However for some runs

and parts of others 0.0625 was used. For si ngl e wave runs with ex close

to 1.0 a time step of 0.03125 was generally used. In order to calculate

the initial conditions, typically eight times as many grid points were

used.

The Reynolds numbers used varied between 50 and 600. JO varied

between about 0.01 and 0.25 except for the homogeneous runs which were

approximated by taking JO and B very small. For the resonant cases JO

was always greater than or equal to 0.07. E varied between 0.00001 and

0.2. The Prandtl number was varied only for the single mode cases (0.72

to 4.0). It was 0.72 for all the resonant cases; ex varied between 0.215

and 1. O.
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The computer time involved was about 30 seconds on an Amdahl 470 V7

for every 64 time steps. This included calculation of the amplitude(s)

of the wave(s) at each time step and various line printer graphs which

were produced every 64 time steps (or sometimes more frequently). These

graphs included energy versus wavenumber in the x and y directions for

the vorticity and density; disturbance amplitudes and E (see equation

4.2.8) versus time; and mean flow distortion versus y. Also line

printer contour graphs of the stream function, vorticity and density

were included .



• 4.0 COMPARISONS WITH OTHER NONLINEAR STUDIES AND RESULTS

This study presented an opportunity to compare fully nonlinear

initial value problem simulations with existing weakly nonlinear theory.

In section 4.1 of this chapter, the single wave weakly nonlinear theory

is reviewed in terms of the Landau constant. The method used to compare

the present study with this theory is then presented along with the re­

sults obtained. In the second section subharmonic interactions are con­

sidered. Again, the theory is first reviewed and then the results of

this study are presented. Finally, comparisons are made between this

and previous numerical simulations.

4.1 Calculation of the Equivalent Landau Constant

In weakly nonlinear or finite amplitude theory, ~ is assumed to be

of the form

~ = JY u(s)ds + E:(Aep(y) exp(ioo<) + *) (4.1.1)

•

where € is small, ep is a neutral or nearly neutral eigenfunction of the

corresponding linear problem and A is a function of T, some slow time

scale. Thus ep is an eigenfunction of an ordinary differential equation

which depends on the exact problem being considered. In this study

eigenfunctions of the linear viscous problem were generally used. A few

runs with inviscid eigenfunctions were made for comparison purposes. In

previous studies neutral or nearly neutral waves were not considered as

initial conditions because the inviscid eigenfunctions used were sing­

ular. On the other hand, the neutral eigenfunctions for the viscous

problems are nonsingular. If for instance T = Cl€2t, then we are

30



• actually approximating an amplitude equation of the form

(I/A)dA/dt = aCi + a2 a£21A12 + a4 a2£41A14 + 0(£6),

31

(4.1.2)

•

where aCi is the linear growth rate which is assumed to be small. Weak­

ly nonlinear theory has been developed (cL Brown, Rosen and Maslowe,

1981) for the case of a'single wave solution to a two-dimensional tanh y

shear layer with exp(-Btanh y) density profile. It was found that a2,

known as the Landau constant, was dependent on the Prandtl number as

we 11 as the wavenumber. However, these results have strong constraints

on the range of their validity due to the parallel flow approximation.

These conditions are

£-5/3 « Re « £-12/7

and

(Re)1/3 « t « £ Re.

Included in these asymptotic conditions is the condition that AC = 1/

(aRe£3p) » 1 where p = 1/(1.75 - J(yc)) if J(yd < 0.25 and p = 2/3 if

J(yc) > 0.25 where J(y) is the local Richardson number and Yc is the

critical point. Note that for this case J(yc) = J(O) = JO. (The quan­

tity AC is often denoted by A in the literature, and in order not to

confuse it with the wavelength A we adopt the notation AC used by some

researchers. The condition AC « 1 implies that the nonlinear critical

layer is much thicker than the diffusive critical layer (cf. Maslowe,

1973), whereas linear diffusive theory requires that AC »1. For

example, if £ = 1/16 then 101.6 « Re « 115.9, and if Re = 110 then

4.79 « t « 6.88.

Thus, it was not surprising that the calculated equivalent for the

Landau constant in the fully nonlinear simulations was not constant. In

these runs the Landau constant was approximated by using the values of
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A(t) at two adjacent time steps. This was done by considering (4.1.2)

to 0(£2). Integration of both sides yields

(4.1.3)

(4.1.4)

where cO is an arbitrary constant. From this two cases arise: ci = 0

and Cif O. If ci = 0 then

"2 =[IA( ; 1) 12 - IA(; 2) 12] / (2a£2 (t 2 - t 1)

where A was calculated using equation (3.2.9). Similarly, if ci f 0, we

have

-However, further runs were made using a body force so that u =

(4.1.5)

tanh y,

•

p = exp(-Stanh y) were exact solutions of the resulting equations (see

the preceding chapter for details). For these simulations, it was found

that the calculated equivalent to the Landau constant was close to being

a constant. Hence for Re = 110, Pr = 0.72, £ = 1/16, ci = 0, a = 0.46,

a2 was calculated to be approximately 4, while Brown, Rosen and Maslowe

found a2 < O. For the same case without a body force, a2 initially was

about 4 but quickly became negative and continued to decrease.

Comparisons were also made with Huerre's results (1980). Huerre

considered an unstratified flow with such a body force. For £ = o(l/Re)

et - ao = 0(£2), where 00 is the wavenumber of the linearly neutral wave,

he found a2 to be approximately 28.2/a. This would imply for Re = 100

that a2 is about 29.9 and for Re = 200 that a2 is approximately 29.l.

In this study, for £ = 0.005, et = 00, and for both Re = 100 (2£ = l/Re)

and Re = 200 (£ = l/Re) a good comparison with this result was obtained,

as shown in Figure 7. The value for a2 calculated from the fully non­

linear initial value problem is sensitive to £. For example, for Re =
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100 a higher value of a2 was found for £ = 0.0025, a lower value for £ =

0.01 and a negative value for £ = 0.04. However, if £ = 0.0025 it would

take a long time for the wave to double in amplitude, even if initial

growth rates were maintained. Huerre's results are for a steady state

theory while the present results are for the initial value problem. In

addition, Huerre's results are valid only for £ = o(l/Re). Furthermore,

higher order nonlinear and viscous effects distort ~ which in this study

is taken to be the initial viscous eigenfunction, while Huerre assumes ~

to be the inviscid eigenfunction (sech y). Higher order effects may

become important in the amplitude equation as well.

The mean flow distortion was also monitored. For the case of the

unstratified neutral wave with body force (Re = 100), the mean flow dis­

tortion Cu(t,y) - u(0,y))/£2 for all cases was antisymmetric within the

mixing layer and zero outside the mixing layer. The maximum value of

the distortion grows with time in agreement with weakly nonlinear

theory. For £ = 0.005 the maximum value is 0, 0.40, 0.61 and 0.73 at

the non-dimensional times t = 0, 4, 8 and 12, respectively. Huerre also

obtained an antisymmetric mean flow distortion. It is a consequence of

the model employed in his theory that the mean flow distortion remains

non-zero outside the mixing layer. His maximum distortion of about 1.2

is in reasonable agreement with our results.

4.2 Subharmonic Resonant Interaction

In this section, the weakly nonlinear theory for subharmonic

resonant interaction (Maslowe, 1977) will first be reviewed. Consider ~

of the form



• ~ = fy (u(s)ds + (Al(T)~II(Y) exp(ia(x-ct))

+ A2(T)~21(Y) exp(2ia(x-ct)) + *)
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(4.2.1)

where a, 2a are the wave numbers of waves which are neutrally stable ac­

cording to linear theory. Note that T = aE:t instead of the value aE:2t

obtained for the single wave case, implying that changes in the ampli-

tudes occur on a much faster time scale. For this problem c = 0.0. At

the next order in E, secular terms will arise due to the interactions

exp(iax) exp(iax) = exp(2iax)

exp(2iax) exp(-iax) = exp(iax)

Variables can be separated if Al and A2 satisfy the equations

(4.2.2)

(4.2.3)

where Yl and Y2 are constants consisting of ratios of integrals deter­

mined by imposing orthogonality conditions on the o(E:2) terms. After

detailed analysis and computational work, Maslowe found that both Y1 and

Y2 are real and have the same sign (negative). By setting A =

~aexp(-i~), a and ~ real functions, the above system becomes

da1/dT =~Ylala2cose

2da2/dT = ~Y2alcOSe

d~l/dT = -~la2sine

a2d~2/dT = ~Y2aisine

(4.2.4)

(4.2.5)

(4.2.6)

(4.2.7)

•
where e = 2~1 - ~2 is sometimes called the relative phase. This termin­

ology will be employed here. Note that from now on, a2 refers to twice

the absolute va 1ue of the amp 1itude of the short wave in a subh armon i c

interaction and not the Landau constant, as is obvious from its context .
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From equations (4.2.4) and (4.2.5), one can derive the energy in­

tegral

where E is a constant. Thus a1 and a2 may both grow at the same time by

extracting energy from the mean flow if Y1 and Y2 have the same sign, as

they do in this case.

From the above equations,

(4.2.9)

2By multiplying both sides of this equation by da1/dT and then integra-

ting we obtain

(4.2.10)

•

where C is a constant of integration. From this, the phase plane for ai

was plotted (Figure 8). For the case Re = 200 and Pr = 0.72 Maslowe

calculated Y1 = -35.9 and Y2 = -0.54. The phase plane depicted is for

this case with E = 1.1 which corresponds to a1(0) = 8.3 a2(0) =

8.3(2~). Note that the only possible trajectories correspond to

the ones where C is less than or equal to zero. Since the direction of

increasing T along these trajectories corresp'onds to the direction of

increasing da1/dT, the weakly nonlinear theory predicts that if the ini­

tial relative phase 6(0) is in the range rr/2 < (0) < 3rr/2 then, to this

order, a1 (and a2) can become unbounded in time. Note that since

2 2 2 _ 2 2
d a1/dT - ~Y1 Y2(a1 + 2Y1/Y2a2) (4.2.11)

the second derivative of at is always greater than zero if at least one

of aI, a2 is non-zero. Thus, even though da1/dT < 0 for some initial

relative phases, eventually da1/dT becomes greater than zero.
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I have worked out the governing equat ions when these are not neu­

tral modes. Assuming a = a(t,T) and that aCi is the linear growth rate,

(4.2.12)

with the equations for <1>1, <1>2 remaining unchanged. We then obtain the

following equations

Numerical simulations were conducted with initial conditions con-

sisting of subharmonic pairs of linearly neutral or nearly neutral waves

as suggested by the weak ly non 1inear theory. Along with the single

•

neutral wave runs mentioned in the preceding section, these are the main

new results of this study.

For the numerical simulations of subharmonic resonant interactions

IA2(0)1 = 10.375, matching the normalization of A(O) in the single wave

case. Some of the results obtained from these simulations are presented

in the three pairs of Figures 9&10, 11&12 and 13&14. Of each pair, one

figure is a plot of a1/2 versus t for the cases 8(0) =0, n/2 and n; IAI

versus t for a single wave is shown for comparison. The other figure is

a corresponding plot of a2/2, with IAI for some single wave cases .
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In Figures 9 to 12 are found the amplitudes of the waves from two

groups of runs consisting of the resonant interactions of waves which

are neutral according to linear theory, along with comparison runs of

(initially) single wave cases. Plotted in these figures are a1/2, a2/2,

the absolute values of the waves, with wavenumbers 0.321461, 0.642992

respectively, versus the non-dimensional time t with the one exception

in Figure 12. For these cases Re = 200, Pr = 0.72 and JO = 0.216516.

Figures 9 and 10 demonstrate the effect of varying the initial re­

lative phase when a2(0) = a1(0) (= 2/0.375) and e: = 0.01 and also com­

pares these cases with initially just one of the waves. Thus in Figure

9, a1 versus t is plotted for the cases when 6(0) = 0, TT/2, TT and also

when the long wave is initially alone (with the same initial amplitude).

Note that initially the a1(t) corresponding to 6(0) = TT grows fastest

and 6(0) = 0 the slowest; however, after about 3.5 non-dimensional time

units the opposite is true. In fact, for 6(0) = TT the amplitude decays.

For 6(0) = TT/2 a1(t)/2 is very close to the amplitude obtained when this

wave is started by itself. Thus, qualitatively, Figure 9 would imply

that the amplitude behaves as if Y1 < 0 initially, then at a later time

as if Y1 has become greater than zero. This is quite different from the

weakly non 1i near t~eory in wh i ch Y1 < o and is constant. However, the

weakly nonlinear theory predicts the importance of e( 0) . It also pre-

dicts that cases with 6(0) = TT/2 and with initi ally just the short wave

alone should result in amplitudes which remain close (for t < 0(1/e:2)),

as found in this study.

In Figure 10, a2/2 versus t was plotted for the cases corresponding

to Figure 9, e(O) = 0, TT/2, TT, and also for initially the short wave

alone (with the same initial amplitude). Note that a2(t) for the short
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wave alone and the resonant case with 6(0) = n/2 are almost exactly the

same. In fact there is little variation in a2(t) among all four cases.

An interesting point is that initially a2 increases slightly except for

the case 6(0) = n.

Figures 11 and 12 demonstrate that the initial relative phase is

much more important when a1 (0) = 30a2( 0) (e: = 0.004) than for the case

a1(0) = a2(0), which is reflected in the change in the scaling of the

graphs. In Figures 9 and 10 the a1/2, a2/2 axes have a total range of

0.025 while in Figures 11 and 12 the range is 1.2. For all four figures

the time t varies between 0 and 8.

In Figure 11 the cases depicted consist of a1/2 for the resonant

interaction cases with 8(0) = 0, n/2 and n and a reference case of ini­

tially just the long wave (same initial amplitude). These results are

similar to those obtained when a1(0) = a2(0) (Figure 9). However, the

interaction is stronger for a2(t) when a1(0) » a2(0) as can be seen by

comparing Figure 12 with Figure 10. The results qual itatively cor­

respond to a weakly nonlinear theory with Y2 small and positive. The

function a2(t) is plotted in Figure 12 for the resonant interaction

cases with 8(0) = 0, n/2, n, and for the three initially single wave

cases corresponding to a2(0) = 0, a1(0) = 0 and a1(0) = a2(0) = 0 along

with the corresponding linearly fastest growing wave. The last two have

the same initial amplitude as a2 in the resonant cases. For comparison

purposes, growth rates estimated by In(a(t)/a(t-dt))/dt, where dt is the

time step, were calculated for the initial value problems at various

times t for a(t) = a1(t) and a2(t). For this fastest growing wave,

1inear theory gives a growth rate ClCi of about 0.025. The computed

growth rate for the first time step of this initial value problem for e:
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= 0.004 was 0.026, and at t = 8 it was 0.020. The initial growth rate

for a2 when 8(0) = 0 was 0.222; for 8(0) = rr/2, 0.003; for 8(0) = rr,

-0.277. These rates, however, change quite rapidly. At t = 8 the

growth rate for a2 when 8(0) = 0 is -0.072; for 8(0) = rr/2, -0.051; and

for 8(0) = rr, 0.248. Although it is not clear whether a2(t) for 8(0) =

rr will eventually become larger than a2(t) for 8(0) = 0, it does seem

likely from Figure 12, that despite its large initial growth rate a2(t)

for 8(0) = 0 will eventually be overtaken by the wave which was initial­

ly the fastest growing of linear theory.

Various other resonant pairs were tried as initial conditions. As

well, variations in £, the initial amplitudes and the relative phase

were investigated. The greatest initial growth rates occurred when

a1(0) » a2(0), and the behavior was qualitatively similar to that shown

in Figures 11 and 12. The cases tried included the fastest growing wave

according to linear theory and a damped wave (a = 0.46, 0.23 respec­

tively, Re = 200, Pr = 0.72, JO = 0.20), two almost neutral but linearly

unstable waves, one neutral and one almost neutral but linearly unstable

wave, and a stable wave with the fastest growing wave at JO = 0.20. The

fastest initial growth (and decay) rates and most sustained growth for

a2(t) were obtained at lower Richardson numbers. These rates were quite

impressive for the case of a neutral wave and the linearly fastest grow­

ing wave. For example, cases for which a = 0.225, 0.45, Re = 200, Pr =

0.72, JO = 0.174154 are shown in Figures 13 and 14. Note that longer

times are involved, and except for one case with a maximum of 40, all

extend to t = 32. Also the a1/2 and a2/2 axes have a total range of 4.0 .

In Figure 13 a1(t)/2 and IAI are plotted for the four cases 8(0) =

0, rr/2, rr and initially just the neutral wave. As found for the two
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neutral wave cases in Figures 9 and 11, there is a cross over in the

amp 1itudes. Although the 8( 0) = IT cases begi n by growi ng the fastest,

the a1(t) corresponding to 8(0) = 0 cases eventually have the largest

amplitudes. Also for 8(0) = IT/2 and initially the (long) neutral wave

alone a1(t) is almost the same. Initial growth rates are of the order

of 0.001. These increase with time and then decrease. A maximum growth

rate of about 0.007 is obtained when 8(0) = 0 at about t = 7.

In Figure 14 a2(t) is plotted for the four cases in Figure 13, as

well as IAI of initially the short (fastest growing) wave alone.

Initial growth rates were 0.294 for 8(0) = 0; 0.004 for e(O) = IT/2;

-0.179 for 8(0) = IT. However, by t = 32 the amplitude of the fastest

growing wave alone, with an initial growth rate of 0.061, appears to be

overtaking that of the corresponding wave for 8(0) = 0 which has an

initial growth rate approximately five times greater. Note also that

for 8(0) = IT, the wave which is the one that linear theory predicts will

grow the fastest actually decays initially. Eventually it does start

growing, as predicted by equation (4.2.15), assuming Y1 small.

Figures 15 to 18 are contour graphs for two of the cases whose am­

plitudes are depicted in Figures 13 and 14. Figures 15 and 16 are den­

sity contour graphs for the cases 8(0) = 0 and 8(0) = IT respectively and

Figures 17 and 18 are vorticity contour graphs for the same cases. With

such a great difference between a1(0) and a2(0), there is not much of a

change in the contour graphs.

Other runs were made with higher Reynolds numbers with the fastest

growing wave and corresponding (long) neutral wave. It was found that a

lower Richardson number had a greater effect on initial growth rates
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than using the exact fastest growing wave. Thus for 8(0) = 0, ex =

0.225, 0.45, Re = 400, the initial growth rate for the short wave was

0.3142 while for ex = 0.2275, 0.455 and Re = 400 the initial growth rate

for the neutral (short) wave was 0.3201. Note from these results that

no sudden change in growth rates was found with increasing Re.

Patnaik, Sherman and Corcos (1976) found that the relative phase

was important although their runs did not consist of neutral waves but

of two unstable waves (ex = 0.215 and 0.43, Re = 50, Pr = 0.72, JO =

0.07). As a test for the resonant interaction scheme, runs were made

with initial conditions similar to those used by Patnaik (1973) and to

those used by Patnaik, Sherman and Corcos (1976). Figures 19, 20 and 21

consist of density contour graphs where the density is shown evolving

for three different initial conditions. These runs used viscous eigen­

functions at a smaller initial amplitude than those used by Patnaik who

used inviscid eigenfunctions. Other conditions (e.g. the initial ratio

of amplitudes) were identical. Other runs were made duplicating

Patnaik's runs, i.e. using error function profiles, inviscid eigenfunc­

tions, and the equivalent initial amplitudes. However these runs were

not taken out to maximum amplitude as it was felt the CPU time could be

better used for other cases. Figure 19 shows the development of the

density when Re = 50, Pr = 0.72, ex = 0.215, JO = 0.07, E = 0.0616 with

the disturbance centred at x = A/4. Figures 20 and 21 illustrate the

case when the same wave interacts with a wave having twice its wave­

length, which in this case is the fastest growing wave of linear theory.

This wave has a wavenumber of 0.43 and its initial amplitude was taken

to be E = 0.0326. In Figure 20 the long wave is initially centred at x

= A/4 as in Figure 19 and thus 8(0) = n. In Figure 21 it is initially
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• centred at x = A/2 and hence 6(0) = 0 initially. Note that the develop-

ment at first varies quite a bit among the cases corresponding to

Figures 20 and 21 whi 1e for 1arge dimensionless times t a "final" state

consisting of the long wave alone was the general result. Of course,

•

eventually the long wave disturbance will dissipate as well.

In Figures 22 and 23, a1 and a2, respectively, are given as a func­

tion of time for the three cases corresponding to Figures 19, 20, 21.

The linear growth fates for these two waves are 0.086 for the long wave

and 0.119 for the short wave. Initial growth rates for the short wave

are 0.093 for 6(0) = 1T; 0.091 for initially just the short wave; and

0.090 for 6(0) = O. For the long wave these become 0.116 for 6(0) = 1T

and 0.120 for 6(0) = O.

As in the other cases closer to the neutral curve, the graphs of

the amplitudes of the short wave cross over at a later time and the wave

for which 6(0) = 0 becomes the fastest growing and eventually the one

with the largest amplitude. For the case 6(0) = 0 the short wave goes

to zero, then 6 changes to 1T and the short wave grows, that is, there is

a time t where 6 jumps from 0 to 1T. However, considering the amplitude

A2 itself as a complex function, we see that A2 is continuous at this

va 1ue of t, i.e. the real and imagi nary parts of A2 are continuous but

change sign while the phase is discontinuous.

The fact that a2 becomes zero and then grows larger than its ini­

tial value could be explained by the weakly nonlinear theory, equation

(4.2.15), which implies that the second derivative of a2 is much greater

than zero. Thus, this behavior can be explained if Y2 < O. However,

the sign change in the real and imaginary parts of A2 implies that there

is a jump discontinuity in ~2 and in the first derivative of a2.
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A run was also made with two neutral waves, with Re = 200, Pr = 0.72 (JO

= 0.174154),8(0) = 0, e: = 0.08 and al(O) = 1.5 a2(0). This case

resulted in oscillatory behavior in A2 as well. For this case A2

oscillated between positive and negative real values. This suggests

that, at least for some cases, it is not completely valid to consider

AI, A2 in terms of their phases and amplitudes, and that perhaps AI, A2

should be considered in terms of their real and imaginary parts .



• 5. SUMMARY AND CONCLUSIONS

In this study the fully nonlinear, time dependent, two dimensional,

Boussinesq equations were solved for various initial conditions. The

primary motivation of this study was to investigate the subharmonic re­

sonance of two linearly neutral or nearly neutral waves. The weakly

nonlinear theory of Maslowe (1977) suggests that, under suitable initial

conditions (the initial relative phase 8(0) equal to n), that the sub­

harmonic resonant interaction of two neutral waves wi 11 result in the

growth of both of their amplitudes at the same time. The simultaneous

growth of both of these amp 1itudes also occurred in th i s study for

initial periods of time (see Figures 11 and 12) but for a different re­

lative phase (6(0) = 0) than predicted by the theory. Large growth

rates could result from this type of two wave interaction. This was

supported, ,in part, by the present study.

Large initial growth rates were obtained for the short wave when

its amplitude was inltially much smaller than the long wave with these

growth rates dependent on the initial relative phase as predicted by the

theory. However, growth rates obtained for the long neutral wave were

not as great as those predicted by the theory and the growth rates for

the short wave qu i ck ly dropped off. I n general the long neutral or

nearly neutral wave continued to grow after the short wave reached maxi­

mum amplitude. A possible explanation for this phenomenon is that it is

due to the growth of the shear layer. The non-dimensional wavenumber of

the disturbance is inversely proportional to the shear layer thickness.

Hence this has the effect of increasing the non-dimensional wavenumber.

A long neutral wave becomes stable while a short neutral wave becomes

44
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unstable before eventually becoming stable.

For example, for the cases with initial conditions consisting of a

short neutral wave and the fastest growing wave with E = 0.004, a1(0) =

30 a2(0), Re = 200, Pr = 0.72 and JO = 0.174, after 8 non-dimensional

time steps, i.e. at t = 8, the shear layer had increased in thickness by

9 percent. At t = 32, the shear layer thickness had increased by 24

percent for 6(0) = 0, TT/2 and 23 percent for 6(0) = TT. The 6(0) = 0

case was taken out to t = 40, at which time the shear layer thickness

had increased by 28 percent.

Similar results were obtained for cases corresponding to initially

two linearly neutral waves. At t = 8 for two neutral waves with Re =

200 (JO = 0.174154), Pr = 0.72, E = 0.004 and a1(0) = 30 a2(0) the shear

1ayer increased by about 12 percent. For a s imil ar case on ly with E =

0.08, a1(0) = 1.5 a2(0) and 6(0) = 0, implying the long wave has the

same initial amplitude as in the preceding case, at t = 8 there was a 19

percent increase in the shear layer. For this case, at t = 56, the

shear layer had increased by 47 percent. Figure 24 depicts the

distortion of the mean flow from its original profile, i.e. (u(40,y) ­

u(0,y))/E2, for this case at this time (t = 56).

Thus, as could be expected from these results, for a1(0), a2(0)

having approximately the same magnitude there was even less resemblance

with the theory. For these cases, for large enough E, the amplitude of

the short wave oscillated and that of the long wave grew to maximum am­

plitude and then decreased. For smaller values of E, e.g. E = 0.025,

the growth rates of the amplitudes of both the long and short waves os­

cillated. An oscillating amplitude with changes in the signs of its
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real and imaginary parts, as occurred for certain cases, would seem dif­

ficult, if not impossible, to model in terms of phase and amplitude as

done in the theory of Maslowe (1977).

When a1(O) was much smaller than a2(O) the results also were very

different from the theory. In general, small oscillations in the growth

rates of the amplitudes occurred.

Two effects control the growth of a shear layer. These are the

viscosity and the Reynolds stress. Without a disturbance, the shear

layer grows like 11+t/(2Re). A single wave disturbance causes an 0(E2)

distortion. It is possible that with much larger Reynolds numbers and

sma11 enough E closer agreement, at 1eas t for some cases, cou 1d be at­

tained with the resonant interaction theory of Maslowe (1977). Alter­

natively, if a theory could be developed which includes mean flow dis­

tort i on and is deri ved in terms of the real and imagi nary parts of the

amplitudes, perhaps it would predict results in closer agreement to

those of this study.

Comparisons were also made with the single wave theory. In un-

•

stratified flows linearly neutral waves with a body force grew at rates

which agree very well with Huerre's (1980) calculations of the cor-

responding Landau constant within a small range of E. In these numer­

ical simulations the mean flow distortion was in satisfactory agreement

with Huerre's results. Comparisons were also made with the low JO sub­

harmonic resonant interaction numerical simulations of Patnaik (1973)
,

and Patnaik, Sherman and Corcos (1976). These runs resulted in inter-

actions similar to vortex pairing; the outcome was a strong function of

the initial relative phase as found by Patnaik and Patnaik et al. For

these cases there were large increases in the shear layer thickness, as
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would be expected from the preceding remarks. At t = 64, for example,

with 6(0) = 0, £ = 0.0326, a1(0) = 1.89 a2(0), Re = 50, ~ = 0.215, 0.43,

JO = 0.07, it had increased 80 percent. The mean flow distortion for

these cases was qualitatively the same as those for the cases closer to

the neutral curve. This and the fact that the real and imaginary parts

of A2 changed sign in this case under similar conditions for which they

changed sign with two neutral waves is remarkable.

Finally, it should be reiterated, as mentioned indirectly in the

preceding chapter, for the cases considered, results were qualitatively

similar with no sudden changes for Re = 50 up to Re = 600. Thus, the

observations of Woods (1969) and the calculations of Peltier and Davis

(1979) are not supported by the present results .
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Figure 24: Mean flow distortion at t=56

for the case of two neutral woves with

Re=20~ Pr=0.72 eps=0.08 and 01(0)=1.502(0)




