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ABSTRACT

Persistent sodium conductances are important both in normal and pathological brain
states. In the first part of the present study we characterized a Type of persistent sodium
conductance (I.,) present in stellate cell neurons of the layer 11 medial entorhinal cortex
area of the rat brain. To accomplish this task, we used the whole-cell configuration of the
patch clamp technique to record sodium currents in dissociated entorhinal neurons. It was
found that Iy, represents 5 to 10% of the amplitude of the fast inactiuvating sodium
conductance (In,s). In addition, Insp activates at potentials 10mV more negative than In.r,
and this persistent conductance is present at potentials more positive than those expected
for a window current. These results show that Ix,, in entorhinal neurons is due to a distinct
subset of non-inactivating sodium channels, rather than a window current.

In the second part of the study, we carried out a pharmacological characterization of the
Type III sodium channel, which is a molecular model to study persistent conductances.
We tested the actions of phenytoin, carbamazepine, tetracaine and topiramate on these
channels when expressed in the Xenopus oocyte system using the two-electrode double-
voltage recording technique. It was found that all the drugs except topiramate, block the
Type III currents in a voltage dependent manner. The sensitivity of Type III currents to
drugs was not affected by coexpression of auxiliary sodium channel B subunits, and it was
similar to the sensitivity of fast-inactivating Type IIA sodium channels.



RESUME

Les conductances persistantes de sodium jouent un réle trés important dans des conditions
normales et pathologiques du cerveau. Dans la premiére partie de cette étude, nous avons
caracterisé un Type de conductance sodique persistante (Ix,,) dans des neurones étoilées
(niveau TT) du cortex entorhinal median du cerveau de rat. Pour accomplir ce travail, nous
avons utilisé des neurones entorhinauses dissociées et employé la technique dite du
“patch-clamp” sur cellule entiére. Les resultats montrent que 'amplitude de I’ Iy
represente entre 5 et 10% de I’amplitude de la courant transitoire de sodium dans les
mémes neurones (In.s). De plus, Iwp s’active & un potentiel qui est 10mV inferieur au
potentiel d’activation de I’ Inue .  Aussi, cette conductance persistente est presente a des
potentiels superieurs a ceux habituellement observés pour des courants “window”. Ces
resultats démontrent que 1’ Iy,, observée dans les neurones entorhinaux peut étre diie a
I’activation d’un ensemble distinct de canaux sodium.

Dans la deuxiéme partie de cet étude, nous avons caracterisé pharmacologiquement le
canal sodique de Type III. Ce canal est un modéle moléculaire d’ étude des conductances
persistantes de sodium. Nous avons testé les effets d’antiépileptiques tels que la phénytoin,
la carbamazepine et le topiramate, ainsi que les effets d’un anesthetique, la tetracaine.
Cette étude a été menée sur oocytes de Xenopus exprimant ce canal, et la technique
d’enregistrement a deux electrodes a été utilisé. Il a ainsi été demontré que tous les agents
pharmacologiques a I’exception du topiramate, inhibent ce canal de maniére voltage
dependante. Cette inhibition est depandent du potentiel de la membrane. La sensibilité du
canal de Type III aux drogues utilisés, n’est pas affecté par la coexpression des sous-

unités B. Cette sensitivité a ete similaire a celle des canaux sodium Type IIA.
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SUMMARY AND CONCLUSIONS

1. The occurrence of persistent sodium currents is ubiquitous in the mammalian
brain. In the present study, we characterized electrophysiologically a persistent sodium

conductance present in medial entorhinal cortex layer II neurons of the rat brain.

2. The study was performed by using the whole cell configuration of the patch clamp

technique on acutely dissociated neurons.

3. It was found that the persistent conductance activated at potentials 10 mV more
negative than the fast inactivating sodium current. The amplitude of the persistent
conductance ranged between 5 and 10% of the amplitude of the fast inactivating current.
Furthermore, the sustained nature of these currents was detected even after 16 seconds
after initiation of the pulse. This is in contrast to the fast inactivating sodium currents

which inactivate within 4 ms.

4. The activation range of the persistent conductance was compared with that of the fast-
inactivating current. It appears that persistent currents resuit from activation of a

different sodium channel subtype.



5. In the second part of the study, we characterized pharmacologically the Type II

sodium channel which produces persistent sodium currents.

6. We tested the actions of phenytoin, carbamazepine and topiramate which are widely

known anticonvulsants. We also tested the actions of the anesthetic tetracaine.

7. It was found that Type III channels are blocked by these pharmacological agents in a

voltage-dependent manner.

8. In contrast to our expectations, the newly developed anticonvulsant topiramate had no
effect on the magnitude of the currents, suggesting that its mode of action is not via block

of persistent sodium conductances.

9. When the Type III a subunit was coexpressed with its auxiliary subunits 81 and 2, the

sensitivity of the channels for the drugs was not altered.

10. As means of comparison, similar type of experiments were performed using the fast-
inactivating type of channel rIl. Despite differences in the kinetic properties of inactivation
between Type III and Type II channels, they both displayed similar sensitivities to local

anesthetics and anticonvulsant drugs.
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QOVERVIEW

Sodium channels are voltage sensitive ion channels needed for the generation of
action potentials in excitable cells (Catteral 1992). Sodium channels are also important
for the variety of responses that a cell can generate due to its intrinsic electrophysiological
properties (Llinas 1988). In the brain, sodium currents have diverse properties. For
example, non-inactivating persistent sodium currents mediate subthreshold oscillations and
amplification of synaptic potentials which alter cell firing frequency (Taylor 1993; Crill
1996). The present study has two parts. The first provides a basic characterization of a
persistent sodium current present in entorhinal neurons. The second gives an initial
pharmacological characterization of a model to study persistent sodium currents .
Background
Sodium Channel Function

In brain neurons, sodium channels lead to currents that are regulated by changes in
membrane potential (Gonoi and Hille 1987; Patlak 1991). Resting neurons have a
characteristic hyperpolarized membrane potential at which sodium channels are in a
closed conformational state. Upon depolarization of the membrane, channels convert
initially to an open state that allows influx of sodium ions, and then to a nonconductive
inactivated state (Bezanilla and Armstrong 1977; Stuhmer, Conti et al. 1989) ( FIG 1).
The ability of these channels to cycle very rapidly between closed, open and inactivated
states is critical for their ability to propagate the rapid trains of action potentials necessary

for information processing in the brain.
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Sodium Channel Structure

In the mammalian brain, sodium channels are formed by 3 subunits designated o,
B1 and B2 (Catteral 1995). The a subunit is the main structural component of the channel
and consists of four homologous structural domains (designated I, II, III, and IV).
Analysis of the peptide sequence suggests that each domain consists of six putative
transmembrane helices (S1-S6). The four domains associate in a square-like array to form

the ion-conducting pore as shown in FIG 2.

PART ONE

A _PERSISTENT NA" CURRENT PRESENT IN MEDIAL ENTORHINAL

CORTEX LAYER II NEURONS.
Structure of the Entorhinal Cortex

The entorhinal cortex (EC) is a seven layer structure that connects the
hippocampal formation with the rest of the cerebral cortex (Ramon y Cajal 1911; Lorente
de No 1933). Layers II and III receive input from a variety of associational cortices. The
output of these two layers constitutes the perforant path, which is the major cortical
afferent projection to the hippocampal formation (Steward 1976; Steward and Scoville
1976; Ruth, Collier et al. 1982). In turn, the hippocampal formation projects back on the
deep layers of the EC (V-VI) (Amaral and Insausti 1990; Jones 1993) as illustrated in
FIG 3A.

The entorhinal cortex is an important structure from several points of view. First,

it has been shown that its damage is responsible for many of the memory impairment
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characteristics of Alzheimer’s disease (Van Hoesen 1991). In fact, the EC is the earliest
and most severely damaged of all cortical structures in this disease (Hyman, Van Hosen et
al. 1990; Gomez-Isla, Price et al. 1996). Such degeneration is selective in terms of the
layers affected. Superficial layers, particularly layers II and IV are strongly affected.
Therefore, early memory changes characteristic of Alzheimer’s disease, such as confusion
and inability to recall new daily events, are probably related to the pathological changes
that take place in the entorhinal cortex (Hyman, Van Hoesen et al. 1986a; Hyman, Van
Hoesen et al. 1986b). Recent in-vitro studies suggest that the EC also can play an
important role in temporal lobe epilepsy (Dasheiff and McNamara 1982; Rutecki,
Grossman et al. 1989; Jones, Heinemmann et al. 1992; Pare, De Curtis et al. 1992;
Nagao, Alonso et al. 1996).

Two populations of cells can be distinguished in the EC, based on their intrinsic
electrophysiological properties: Stellate and non-stellate cells (Alonso and Klink 1993) .
Stellate cells display a rythmic subthreshold oscillatory activity that is dependent on a
persistent Na” conductance (Klink and Alonso 1993). Since it was our interest to
characterize the nature of this conductance, we used the stellate cell population as a
subject of study (see FIG 3B).

The Persistent Sodium Current (Iy.p) and its Role in Rythmicity.

The electrophysiological studies of EC layer II neurons have directly implicated
them in the genesis of limbic network rythmicities (Alonso and Garcia-Austt 1987;
Alonso and Llinas 1989; Alonso 1990). For example, field potential recordings show a

characteristic theta rhythmicity (4-12 Hz) in the EC (Alonso and Garcia-Austt 1987). This
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theta rhythm may be important for learning and memory (Gauthier, Destrade et al. 1982;
Murray and Mishkin 1986; Greenstein, Pavlides et al. 1988; Doyere and Laroche 1992).
A prominent theta activity is present in the hippocampus, the mammilary bodies, anterior
thalamus and cingulate cortex (Leung and Borst 1987; Kocsis and Vertes 1994; Jahnsen
and Llinas 1984). Up to date, the most widely accepted hypothesis for the generation of
theta rhythm states that the medial septum of the basal forebrain acts as a “pacemaker”
and that the rythmical firing of neurons in this nuclear structure drives “generators” in the
hippocampus, the EC or other structures of the limbic system (Gaztelu and Buno 1982,
Stewart and Fox 1990; Alonso et al 1996). However, recent electrophysiological
evidence suggest that EC neurons have the intrinsic capability of generating subthreshold
membrane potential oscillations that can contribute to theta and other rhythms
(Konopacki, Golebiewski et al. 1992). Alonso and Llinas (Alonso and Llinas 1992) found
that mammilary neurons possess an incredible autorhythmicity. Furthermore, these two
authors demonstrated that Iy,p is necessary for the generation of “theta” rythmicity in
single entorhinal layer II neurons (Alonso and Llinas 1989).

Given the close link between rythmicity and subthreshold oscillations, it is
important to understand the mechanism for the generation of these oscillations. This is
especially true for the EC “stellate cell” population, as it constitutes the main hippocampal
input. In previous studies, Klink and Alonso (Klink and Alonso 1993) have postulated
the existence of three currents that might be involved in subthreshold oscillatory behavior:
Iy, a non-specific cationic current; Ik, a low threshold delayed rectifier; and In.p, a

persistent Na* current. Initial work on the importance of Iy.p in oscillatory behavior was
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performed by Alonso and Llinas (Alonso and Llinas 1989). They used single-electrode
voltage clamp recordings to demonstrate that “theta-like” subthreshold oscillations in
stellate cells were dependent on Iy,p activation. More recently, various researchers have
investigated the origin of the persistent sodium current (Alzheimer et al 1993; Crill
1996, French et al 1990; Schwindt et al 1995; Stafstrom et al 1985; Ma, Catterall et al.
1996). Several hypothesis have been proposed for In,p. One hypothesis is that it
represents a “window” current produced by the region of overlap between the inactivation
and activation curves (FIG S) (Hodgkin and Huxley 1952; Keynes 1994). An alternative
hypothesis is that Iy,p is due to a subset of Na* channels with slowed or non-existant
inactivation (Sugimori, Kay et al. 1994).

In the present study, we tested these two hypothesis for In.p in stellate cells using
the whole-cell patch clamp technique on acutely dissociated neurons. The results of this
work were presented at the 1996 meeting of the Society for Neuroscience (Galue and
Alonso 1996) and will be part of a full paper.

Materials and Methods of the study
Tissue preparation

The brains of Long Evan male rats (90-110g) were removed following
decapitation and placed immediately in iced-cold oxygenated Kreb’s solution of the
following composition (in mM): 124 NaCl, 5 KCI, 1.2 KH,PO,, 2.4 CaCl,, 2.6 MgSO,,
26 NaHCQ;, and 10 glucose. The pH of the Ringer’s solution was maintained at 7.4 by
saturation with 95% O,- 5% CO,. Horizontal brain slices of the retrohippocampal area

were prepared as previously described (Alonso and Klink 1993). Briefly, horizontal slices
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were cut at 500 um using a vibratome and normally included the entorhinal cortex (medial
and lateral), the hippocampal formation and part of tiie perirhinal cortex. Following
sectioning, slices were incubated at room temperature in oxygenated Ringer solution for
at least two hours before proceeding to the cell dissociation procedure. For dissociation,
iayer II of the medial EC was identified and dissected out. The piece of tissue (1.5 mm
square) consisted of a dense band of cells that extends from the parasubiculum to the
transition zone with the lateral EC as defined by Blackstad (Blackstad 1956). The tissue
was incubated in a spinner flask filled with dissociation Ringer solution of the following
composition (in mM): NaCl 115, KC1 5, PIPES 20 (from Sigma), CaCl, 1, MgCl, 4,
glucose 25, and albumine 50mg/100ml. Proteinase K (from Sigma) was added to the
gassed dissociation Ringer for 5 minutes at 30° +/- 3° C (mean +/- SE). Following several
washouts, the tissue was treated for 30 minutes with Trypsine (1mg/ml from Sigma)
previously dissolved in dissociation Ringer. Following this treatment, the slices were
washed out and could be maintained for up to 7 hours (bubbled with 100% O, ). Prior to
recording, the neurons were isolated by mechanical dissociation performed with fire
polished pasteur pipettes. Cells obtained by dissociation varied in size and morphology.
Healthy cells were recognized by their shiny appearance under phase-contrast optics (Kay
1989). During the dissociation procedure, the neurons lost most of their dendritic tree.
However, the stellate cells were easily identifiable by their morphology which is clearly
different from that of the pyramidal cells (Alonso and Klink 1993). Stellate cells displayed

multiple primary dendrites whereas pyramidal cells had one or two major apical dendrites.
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Recording

Patch electrodes were pulled from borosilicate glass and filled with a solution with
the following composition (in mM): CsF 110, HEPES-(CsOH) 10, EGTA 11, CaCl; 1,
MgCl, 2. The extracellular recording solution had the following composition (in mM):
NaCl 100, TEA-C! 40, HEPES Free acid 10, CaCl; 3, MgCl; 2, 4-AP 5. Cd’ was added
to the extracellular solution at concentration of 400uM to block Ca"™ currents as well as
Ca™ activated K" currents. Also, the electrodes were filled with Cs" to minimize
contributions from K" currents.

Under visual control, the electrode tip was pressed against the surface of the cell
and suction was applied to the electrode interior to form an electrode-cell membrane seal
of several gigaohms’ resistance. Further suction and hyperpolarization of the patch
resulted in membrane rupture, giving low-resistance access to the cell interior. Electrode
resistance was kept low (2-3 MQ) in order to effectively clamp the sodium current.
Filtering was 2KHz for ramps and 10KHz for pulses. Tetrodotoxin (TTX) was perfused
by gravity flow to block Na" conductances.

Establishment and refining of the technique

In order to accomplish our objective of characterizing Iy, using the voltage clamp
approach, the technique of acute dissociation of neurons as well as the patch-clamp had
to be set up. It was found that several details are critical for the stability of a recording
while performing whole-cell voltage clamp in an acute dissociation preparation. First, it is

important that the side of the recording camera be tilted in the place where the suction is
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located. This tilting is essential to maintain a constant solution level in the camera even
while changing solutions during the experiment. This constant level in the solution of the
chamber is critical for the cell-pipette stability and quality of the patch. One lesson learned
for future experiments is that a rectangular shaped camera is not ideal for rapid perfusion
purposes. It took an average of 5 minutes for 300nM of TTX to block the currents.
Because the quality of the experiment depends on how rapidly the procedure is completed,
it is important to optimize the way drugs reach the cell. A perfusion system consisting on
a round shaped recording chamber would be best for whole cell experiments in dissociated
neurons, especially when drugs need to be applied.

It is also important to have some way of monitoring the level of suction applied to
the cell while patching it. I found that visual control helps in the quality of the patch.
Before applying suction, it was important that the pipette be lightly touching the cell
membrane. Also, it was essential to be able to distinguish healthy from unhealthy cells.
Healthy cells were the ones that showed no visible granules or nucleus when looked using
the contrast optics. Bright, shiny cells with clear morphology and a gray dark elastic type
of membrane were the best cells to patch.

Results
Activation

Voltage-dependent currents were recorded in acutely dissociated entorhinal cortex
layer II neurons using whole-cell tight-seal voltage-clamp technique. I performed the study
on 110 cells. Several criteria were chosen to judge the quality of the experiment. First, a

high current to noise ratio when filtering at 10KHz and following a 2 second ramp
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protocol had to be present. A typical current is shown in FIG 4. Second, the current
baseline over the course of the experiment had to remain constant with respect to the
initial value in control. Upon TTX perfusion, only a 2% variation of the baseline was
allowed. This was the main criteria chosen to judge the stability and quality of the patch
whose seals were usuaily greater than 2 G{2 (please refer to FIG 6). The cell had to
remain stable for the complete experiment which included 7 different protocols: 1, 2, 4
and 8 second ramps, an inactivation protocol from -80mV, 100ms and 500ms step
depolarization protocols for activation.

After screening of the acquired data, 15 neurons were chosen for the analysis of
Inp. We examined the properties of I in a low Na“ recording solution (see
METHODS), by ramping the membrane potential from -80mV to +20mV at a rate of
0.1mV/mS (as shown in FIG 4). This rate was considered slow enough to inactivate In.r
(Chao and Alzheimer 1995). To eliminate the possibility of contaminating currents, In.p
was taken as the difference between current evoked at the same potential in the absence
and presence of 300nM TTX (FIG 6) . Under these conditions we observed a TTX-
sensitive current with a threshold between -63 and -60 mV.

Inee Was not only quantified by means of ramp protocoles but also by using S00ms
step depolarizations to different potentials. As shown in FIG 7, it can be seen that the
Na” current increased in amplitude with membrane depolarization from approximately -60
to -35mV. In response to the step depolarizations, there was a relatively large, transient,
inward current followed by a persistent inward current that became evident at about -

60mV and reached maximum value at -34mV. Current-voltage relationships (IV’s) were
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obtained from the step depolarization measurements. FIG 8A shows the corresponding [V
relationship for the persistent component of currents displayed in FIG 7. From these IV
relations, a value for the reversal potential of the current was estimated. For the currents
displayed in FIG 7, the reversal potential obtained by linear extrapolation between -25
and OmV was 33 mV (see FIG 8A). This value was used to calculate activation curves,
that then were fit with a Boltzman relation as described below. Currents were converted
to conductance (g) for each cell, by using Omh’s law: g = [ / E - E,, where E is the
clamped membrane potential, E; is the reversal potential obtained by linear extrapolation,
and I is the recorded current. Conductances calculated from the persistent component of
the currents displayed in FIG 7 are plotted against clamp potential in FIG 8B. The solid
line through the data points is the Boltzman equation fit: g =gm./{1+ exp [(Vs-V)/K)]}
where gn.x is the maximal conductance; Vj, is the potential at which the conductance is
half-maximal, and k is the slope factor. The gm., Vi and k values for the curve in displayed
in FIG 8B were 3.1 nS, -44mV, and 7.7 respectively. Table 1 displays the average
values obtained for the 15 cells analyzed.

[ also examined In,r in 8 stellate cells. FIG 9 shows a typical activation
protocole used to study In.r. The family of currents were obtained by applying SmV step
depolarizations of 100ms in duration. The relationship of peak In,r as a function of test
potential is displayed in FIG 10A. Activation curves for Iy,;s were obtained in the same
way as descibed for In,p. A typical example is displayed in FIG 10B. The average values
obtained for the 8 cells analyzed are displayed in Table 1. In,r was found to activate

always at more positive potentials than Iy,p.
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Inactivation

The inactivation of the fast current was studied by examining the effects of varying
levels of conditioning depolarization, on the amplitude of currents elicited by a subsequent
test pulse. A 50ms test pulse to -20 mV was preceded by 100ms prepulses to 16 different
depolarizing potentials starting at -80mV. The results obtained in a typical experiment are
shown in FIG 11. The voltages indicated by the arrows correspond to the values of the
prepulse potentials used to inactivate the current. The amplitude of the normalized peak
current plotted against prepulse potential constitutes the inactivation curve displayed as
open circles in FIG 11. The line through the points follows the equation:
[=lma/ { 1+exp[(V- Vi)/k]}. The voltage for half-inactivation Vi, was -63.9 mV. As mean
of comparison, the plot also displays the activation curves for the fast and the persistent
sodium currents of the same cell. It can be seen that the persistent current activates at
more negative potentials than the fast current, in a region where window currents are not
present. The average results obtained for the 7 cells analyzed, are displayed in Table 1.
Discussion

In the present study we characterized a persistent conductance present in layer II
medial entorhinal cortex neurons. Previous work performed in our laboratory had implied
the presence of this conductance and some of its parameters were measured using the
current clamp technique (Klink and Alonso 1993). However, in order to appropriately
characterize this conductance, especially its voltage dependence, a voltage clamp analysis

was required.
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Quite impressive In,p is observed in acutely dissociated entorhinal cells derived
from either rat (Galue and Alonso 1996) or human brain tissue (Cummings, Xia et al.
1994) and typically measures between 50-500 pA in the rat. This represents about 5% of
the peak Na' current. In its properties, the Iy,p characterized in the present study, is similar
to other reported persistent sodium currents present in different parts of the central
nervous system (Taylor 1993) . However, our studies disagree with previous reported
results suggesting that I.p is a “window” current (Alzheimer, Schwindt et al. 1993;
Brown, Schwindt et al. 1994). Window currents result from an overlap between the
activation and inactivation curves of Iy,s . Two observations argue against a window
current as a mechanism of Iy.p in the stellate cells of medial entorhinal cortex layer II.

First, as shown in FIG 11, the activation curve of Iy,r occupies a more negative range of
potentials than Iy,r. This observation suggests that In.p and In.r result form activation of a

different set of channels with different voltages of activation. Second, we could detect
this conductance at potentials more positive than expected for a “window” current. While
these observations argue in favor of a specific noninactivating sodium current, we can not
completely rule out the possibility that some of the persistant Na" currents in our
experiments were dendritic currents that were poorly clamped. However, due to its large
amplitude, its activation and inactivation profiles, and the quality of our acute dissociation,
we believe that the persistent conductance present in the stellate cell population of the EC

layer II neurons has a different origin than Iy.r.
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The negative activation range of Iy,p is critical for its functional role in neurons
(Jefferys 1990). - Because Iy,p is activated about 10mV negative to spike threshold, it can
add with synaptic currents. The subthreshold activation range of Ly,p is also critical for its
ability to mediate the depolarizing phase of subthreshold membrane potential oscillations.
Furthermore, the demonstrated presence of In,p in dendrites (Crill 1996) also helps in the
amplification of distal synaptic excitation (Schwindt and Crill 1995). It has been shown
that In,p can give rise to bursting activity and the formation of very robust paroximal-like
depolarizations in entorhinal neurons (Klink and Alonso 1993), suggesting a contribution
of Iwr to epileptogenesis. Therefore, characterization of persistent currents and study of
their modulation by neurotransmitters and pharmacological agents constitute an important

step towards understanding epilepsy and its treatment.

PART TWO.
PHARMACOLOGY OF TYPE III NA" CHANNELS
Introduction

A growing body of evidence indicates that persistent Na® channels play a
significant role in epileptogenesis. Direct evidence comes from studies that use
electrophysiological recordings in solitary rat hippocampal neurons grown in microculture
(Segal 1994). In that preparation, spontaneous ictus-like plateau depolarizations due to
activation of a TTX-sensitive persistent Na" current, were frequently seen when calcium
currents and glutaminergic transmission were suppressed. Neurons in epileptic foci, with

a characteristic discharge pattern of rapid bursts of action potentials followed by interspike
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intervals as brief as 2ms, have been described in human epileptic foci and in experimental
animal models (Wyler et al). Intracellular recordings have shown that this pattern of
discharge is generated by an abrupt, abnormal depolarization of neuronal membranes,
which has been termed a “paroxysmal depolarization shift” or PDS (Matsumoto and
Ajmone-Marsan 1964). Bursts similar to a PDS can be generated by the intrinsic
membrane properties of the cell (Stafstrom et al 1984; Stafstrom, Schwindt et al. 1984).
Therefore, the study of “persistent” depolarizations, their origin and pharmacological
characterization, is an initial step towards the design of better anticonvulsant agents.

Persistent sodium channels may also be involved in chronic pain (Matzner and
Devor 1994; Waxman, Kocsis et al. 1994). When peripheral nerves are damaged, they
form a structure called a neuroma which is a source of chronic neuropathic pain (Devor
1994). Electrophysiological studies have shown that neuromas generate abnormal,
spontaneous action potentials (Wall and Gutnick 1974). It has been proposed that
persistent Na* currents contribute to the characteristic membrane depolarization that
triggers these action potentials in the neuroma.
Sodium Channels and Anticonvulsant Action

Sodium channels are molecular targets for some of the most widely used
anticonvulsant, antiarrhythmic and local anesthetic drugs, including phenytoin,
carbamazepine and tetracaine (Catteral 1987, Butterworth and Strichartz 1990; Willow,
Gonoi et al. 1985). It has been postulated that these drugs, although chemically diverse,
may act at the same receptor site or at overlapping receptor sites on the channel protein

(Ragsdale, McPhee et al. 1996). The drug receptor is believed to lie within the ion-



24

conducting pore (Ragsdale, McPhee et al. 1994) (see FIG 12), but its specific location
has yet to be found.

Anticonvulsant and local anesthetic drugs inhibit brain Na" channels with complex
voltage and activity-dependent properties (Starmer, Grant et al. 1984). Inhibition is weak
when channels are activated from hyperpolarized holding potentials, but block becomes
evident at more depolarized holding potentials (Ragsdale, Scheuer et al. 1991; Kuo and
Bean 1994; Galue and Ragsdale 1997) (refer to FIG 13). The dependency of drug
potency on membrane potential reflects the preferential drug binding to open and
inactivated states of the channel which predominate at depolarized potentials, over resting
states of the channel which predominate at hyperpolarized potentials (Cahalan 1980). The
state-dependence of block can be explained by an allosterically-regulated drug receptor
site that is in a low affinity conformation when channels are resting, and converts to a
high affinity conformation when channels are open or inactivated (Rogawski and Porter
1990; McDonald and Kelly 1993). State-dependent block results in a selective inhibition
of Na* currents during abnormal depolarization shifts (such as paroxysmal depolarization
shifts, PDS) (Schwarz and Grigat 1989; Kuo, Chen et al. 1997) and during rapid trains of
action potentials characteristic of abnormal cell activity such as those present in seizures.
Persistent Na* currents have been proposed to contribute to the PDS. Pharmacological
studies (Chao and Alzheimer 1995) have shown in fact that anticonvulsants such as

phenytoin are very effective at inhibiting persistent currents in hippocampal neurons.



25

Pattern of Na' Channel Expression

The four sodium channel subtypes expressed primarily in brain neurons (Types I,
II, III, VI) are differentially regulated during development in the central nervous system
(Beckh, Noda et al. 1989). In the rat brain, Type I sodium channels appear first, reach
peak mRNA levels late in embryonic life and decline to low levels by adulthood. Type I
channels cause persistent currents (Jojo, Moorman et al. 1990; Galue and Ragsdale
1997) (see FIG 14) similar to those recorded in brain neurons (Cummings, Xia et al.
1994). Thus this channel is a molecular model to study In.p and its properties.

As the incidence of seizures is much higher in children than in adults, and pediatric
seizure disorders are often unresponsive to conventional anticonvulsants (Shiner 1994), it
is important to understand the mechanisms by which anticonvulsants exert their action on
Na' channels expressed during development. Therapeutic agents that selectively inhibit
persistent currents through Type III channels are likely to be particularly effective in
treating childhood seizure disorders.

Type I channels may also be important for neuropathic pain. Studies using in situ
hybridization show that its mRNA is selectively upregulated in dorsal root ganglion cells
after peripheral nerve injury (Waxman, Kocsis et al. 1994). This abnormal expression of
Type II channels may be one of the factors that contribute to abnormal action potentials
in damaged nociceptive neurons. Despite the possible role of these channels in epilepsy
and chronic pain, the action of anticonvulsant and local anesthetic drugs on them has not

been investigated. Therefore, we performed an initial pharmacological characterization of
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Type III channels by testing the action of some anticonvulsant and local anesthetic drugs
when the channels are expressed alone, and when coexpressed with 8 subunits . These
results were presented at the 1997 Neuroscience meeting (Galue and Ragsdale, 1997) and
are currently in preparation for submission as a full paper.

Materials and Methods of the Study

Functional Expression in Xenopus Oocytes

For oocyte expression studies, olll, B1 and B2 cDNA’s were subcloned into the
plasmid vector pSP64T. This vector contains an SP6 promoter for in vitro RNA
transcription and oocyte B-globin 5°-3’-untranslated sequences (including the poly (A)
tract) which increase ion channel expression in cocytes . The pSP64T-BXN mRNA
expression vector was used to generate mRNA suitable for injection into the oocytes.
cRNA was transcribed from the pSP64T-BXN constructs using the comercially available
mMessage Machine kit (Ambion). Synthesis was verified by spectrophotometric analysis
and by gel electrophoresis. RNA was resuspended in 10mM Tris, ImM EDTA pH 8.0
for injection into the oocytes. Oocytes were isolated from pieces of ovary obtained from
female Xenopus frogs by treatment with collagenase and cultured in Barth’s medium with
the following composition in (mM): NaCl 88, KCl 1, CaCl, 0.41, MgS0O, 0.82, Ca(NOs).
0.33, NaHCO; 2.4, HEPES 10 (from sigma), pH 7.4. Healthy stage 5-6 oocytes were

pressure-injected with 50nl of wild Type « and 8 subunits RNA.

Recording
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The functional properties of the wild Type oIl sodium channel were examined 2
to 6 days after RNA injection, using the two-electrode voltage clamp recording
technique. Pulses were applied and data acquired using an IBM PC and p-Clamp software
(Axon Instruments). Capacity transients and series resistance were partially compensated
using the internal clamp circuitry. Remaining transients and leak currents were substracted
using the P/4 procedure (Bezanilla and Armstrong 1977). Microelectrodes were pulled
from borosilicate glass and broken to a resistance of < 0.5 MQ. They were filled with 3M
KCl and shielded during recording to prevent capacitive coupling. QOocytes were
continuously superfused with Ringer’s solution with the following composition in (mM):
NaCl 115, KCI 2.5, CaCl, 1.8, HEPES 10 (from sigma), pH 7.2 during recording.
Drugs were applied through the superfusate. We examined the sensitivity of wild Type
alll sodium channels to the anticonvulsants phenytoin (Yaari, Selzer et al. 1986;
Tunnicliff 1996), carbamazepine (Kuo, Chen et al. 1997; Schauf, Davis et al. 1974), and
topiramate (Walker and Sander 1996; Zona, Ciotti et al. 1996). Also, we looked at the
action of the anesthetic tetracaine (Butterworth and Strichartz 1990). Concentrations
varied from 1 to 400 uM. Steady state inactivation was determined by giving prepulses to
potentials ranging from -100 to -10 mV, followed by a test pulse to OmV. The voltage
dependence of block was assessed by varying the holding potential over a range from

-100 to -30mV.
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Results

Injection of oocytes with the rIII « subunit resulted in expression of functional Na*
channels with slow inactivation properties as shown in FIG 14. Our initial experiments
examined the effects of local anesthetics and anticonvulsant drugs on these currents using
the two electrode voltage clamp recording technique.

Action of Phenytoin, Carbamazepine, Topiramate and Tetracaine on _Sodium Channels
Formed by rIIT Alone.

Block by anticonvulsant and local anesthetic drugs is strongly dependent on
membrane potential. To investigate the voltage-dependence of drug block, we started our
experiments testing the effects of a given drug concentration on separate cells over a
broad range of potentials. A slow inactivation protocol was applied to the cell. This
consisted of a 10 second holding potential (HP) to 9 different depolarizing voltages, with
each HP followed by a test pulse to 0 mV to elicit current. Upon termination of the
protocol in control, the Na” current was allowed to recover at -90mV and then the drug
was washed on. FIG 13 shows the action of 100uM phenytoin at different depolarizing
potentials. It can be seen that current inhibition depends on the holding potential. The
more depolarized the HP, the greater the amount of block. The data over a range of
potentials was normalized with respect to the largest current in control and fit with a
Boltzman equation of the form: I ={1/[1+exp(X-Vy)/s]}, where I represents the current
values normalized, X is the holding potential, Vj is the half inactivation voltage and s is

the slope factor. An inactivation curve was obtained for each cell by plotting I values
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against conditioning potential, bothin control and in the presence of the drug. A typical
example is shown in FIG 15A. It can be seen that the drug caused a negative shift in the
voltage dependence of inactivation. From these inactivation curves, the voltage shift for
half inactivation due to the presence of the drug was determined (AV*s in Table 2). Panel
B shows the magnitude of AV?: over a range of phenytoin concentrations. We also
examined the shift in half inactivation produced by carbamazepine, topiramate and
tetracaine. As shown in panel C, carbamazepine displayed a similar degree of blocking
effectiveness when compared to phenytoin. In contrast, topiramate caused only small
shifts at very high drug concentrations. The local anesthetic tetracaine displayed a greater
degree of blocking effectiveness when compared to phenytoin. A typical tetracaine
experiment is shown in FIG 16.

We found that it was not possible to perform complete inactivation curves in the
same cell over a broad range of drug concentrations because Type III channels exhibit an
irreversible run down in current amplitude with repeated long depolarizations. To
counteract the build up of inactivation over the time course of the experiment, we
decided to perform complete dose response experiments on the same cell using a limited
number of holding potentials: -100, -70 and -40 mV. The blocking effect of phenytoin
and carbamazepine was highly dependent on holding potential as shown in the dose
response curves displayed in FIG 17. At very hyperpolarized potentials such as
-100mV, high concentrations of phenytoin (up to 200uM) exerted modest block of the

Na" current. At more depolarized potentials where Na" current inactivation is present,
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phenytoin had a stronger blocking action. The data displayed in FIG 17 were fitted by the
one to one binding curve: y= {1/(1+[Phenytoin]/K)}, where K is the concentration that
gives 50% block. Average K values obtained for all the experiments are displayed as a
bar graph in FIG 18. The highest affinity of block occurred at a holding potential of -
40mV, where the Na“ current was inactivated in a range between 30 and 80%. At that
potential, phenytoin blocked the current with a K value of 136uM. The weakest block
occurred at -100 mV where inactivation was less than 5%. The K value obtained for
phenytoin at -100mV was 991uM. Topiramate concentrations as high as 2mM exerted

virtually no block of the rlII currents as shown in FIG 17.
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rIIR,B, and rII Channels.

Functional sodium channels in the mammalian brain are a heterotrimer, formed by
the association of a with two auxiliary 8 subunits (Catteral 1995). Both 8; and B;
subunits have been shown to modulate Na™ channel activity (Isom, De Jong et al. 1992;
Isom, Scheuer et al. 1995; Meadows, Seltzer et al. 1997). Indeed, both subunits shift the
half voitage of activation to more hyperpolarized potentials and alter the channel kinetics
by accelerating both, activation and inactivation processes (Meadows, Seltzer et al. 1997).
Given the important modulatory actions that these subunits have on channel function, we
wanted to test how anticonvulsant and local anesthetic action was altered with
coexpression of these subunits with alll. For comparison, we performed the same kinds
of experiments using the rfI4 channel, a major isoform in the adult rat brain (Brysch,
Creutzfeldt et al. 1991). When expressed alone in oocytes rlIIA forms slow gating
channels, but when it is coexpressed with 8;and 8, it forms rapidly inactivating channels.
In contrast, coexpression of the auxiliary subunits with rIIl results in currents that rise
more rapidly to a peak, but still inactivate slowly. Previous studies have shown that
anticonvulsants and local anesthetics have strong effects on rlIA currents (Ragsdale,
Scheuer et al. 1991). Taking this into consideration, we decided to use the rIIA channel
as a way to compare the results obtained with the rIII slow inactivating type of channel.
Complete dose response experiments were performed on these two types of channels. The
data were fitted following the same method described for the rIII channel. K values are

displayed in Table 4. The results suggest that rIIA is considerably more sensitive to
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phenytoin than rIII at depolarized potentials. However for carbamazepine, tetracaine and
topiramate, there is no clear difference between these two channel subtypes.
Functional Considerations

In human and other mammals, development is characterized by an increased
susceptibility to seizures. This may be due, at least in part, to the functional properties of
the membrane ion channels that are expressed in developing brain neurons. It is known
that in immature rat brain, the Type III channels cause persistent currents that are likely to
increase neuronal excitability and therefore contribute to epileptogenesis. As predicted,
the anticonvulsant drugs tested in the present study have strong effects on these persistent
currents. However, in contrast to our expectations, fast inactivating sodium currents
exhibited similar sensitivities to the agents tested when compared with the slow
inactivating type. This could indicate that for both types of channels, the receptor site is
located in similar locations. Based on previous work, Ragsdale et al. 1996 have proposed
that highly conserved residues in the IVS6 transmembrane segment of the sodium channel
o subunit form part of the anticonvulsant/local anesthetic receptor site. It is likely that the
anticonvulsant/local anesthetic receptor site is formed by multiple regions of the channel
protein in addition to those already postulated. It would be interesting to test the Type III
channel for additional determinants of drug action, and to use site-directed mutagenesis to
study with precision the inactivation loop region of the channel and its relation with drug
action.

With respect to the topiramate studies, it would appear that its action is not

mediated via Type III channel block. The molecular basis of topiramate’s action is not
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known. It has been proposed to interact with excitatory amino acid receptors (Coulter et
al. 1993), GABAergic responses (Brown at al. 1993) and voltage-gated sodium channels.
The evidence for interaction with sodium channel includes inhibition of sustained
repetitive firing in cultured hippocampal neurons (Coulter et al 1993) and voltage-
dependent inhibition of sodium currents in voitage-clamp recordings from cuitured
cerebellar granule cells (Zona et al 1996). It might be the case that repetitive firing in
these neurons is mediated via persistent Na* currents that mechanistically differ from
those produced by Type III channels. As suggested in the introductory part of the present
work, high frequency repetitive firing can be “sustained” by persistent Na" currents that
result from fast inactivating Na* channel modal gating and not by persistent currents

resulting from activation of a different set of Na" channel subtype.
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CONCLUSION

This study has investigated persistent sodium currents using two approaches:
Voltage-clamp recording using acutely dissociated neurons from rat brain cortex, and
two-electrode voltage clamp analysis using the oocyte expression system.

The work presented here had two main findings: the first was the fact that medial
entorhinal cortex layer II stellate neurons do indeed possess a persistent sodium
conductance (Iy.p) that activates 10 mV more negative than the transient sodium
conductance (In.r). This property allows Iy, to sustain the oscillatory behavior
characteristic of the layer IT stellate population in the entorhinal cortex. The second was
that the rIfl channel expressed in Xenopus oocytes constitutes a good molecular model to
study persistent currents. Indeed, we demonstrated that this channel is sensitive to local
anesthetic and anticonvulsant drugs. An insight about the specificity of the interaction
between these drugs and the receptor site in the channel was also obtained. Topiramate, a
blocker of Na" currents in brain neurons, had almost no effect blocking the persistent
conductance generated by the rIII channel.

Given the important role that persistent currents play in normal brain activities
such as rythmicity, as well as in pathological states such as epilepsy and pain, their study
offers new insights about brain function and provides cues for new pharmacological

developments.
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FIG. 1.

Fast sodium current recorded from a rat
entorhinal neuron. 80% of inactivation
occurs within 3 ms. The current is in
response to a depolarizing pulse to 0mV
from a resting membrane potential of
-80mV. Most of the currents recorded
were 5-10 nA in amplitude.
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FIG. 2.

Diagramatic representation of the
sodium channel « subunit.

A. Each rectangle represents a _
transmembrane alpha helix. When the
three dimensional structure of the

channel is looked at from above, one

obtains fiqure B.
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FIG.3.A

Main connections of the entorhinal
cortex (shown as a shadow area).
Information flows from several cortical
areas into the enthorinal cortex. This
structure then sends projections to the
hippocampal formation. The information
retumns to the entorhinat area which then
projects back to other regions ofthe
cortex. Among subcortical inputs, only -
those coming from the septal and raphe
nuclei are displaved.
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FIG 3B.

Morphology of a medial entorhinal cortex layer II Stellate cell. The cell was injected
with biocytine after intracellular recording was performed.

The cell body is approximately 10um in diameter.
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FIG 4.

Persistent sodium current (Inap)
recorded in a stellate cell. The

200pA current resulted when a

gradual depolarization was applied
from a resting membrane potential

of -80mV. The protocole displayed

is a 2 sec ramp depolarization
(0.1mV/ms). TTX has been substracted
and the resultant Na* current activates
at approximately -65mV.
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FIG 5.

Activation and Inactivation curves

for the fast sodium current (Inar) of

a stellate cell. The points are the ave-
rage of 8 experiments. Window currents
are expected between —60 and -30mV.
The data were fitted with the Boltzman
distribution as described in the text.
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TTX 300nM

FIG. 6.

Perfusion of 300nM TTX for 4 minutes,
completely abolished the persistent Na*
current.
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FIG. 7.

Current evoked by 500mS long step depolarization in SmV increments. Maximal
current amplitudes were observed at -35mV. The figure displays both, the
transient and the persistent components of the Na* current; however at -45, -40,
and -35 mV the peaks of the transient currents are clipped because of the large
amplitude.
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A. Current-voitage relationship of the
current displayed in FIG 7.
B. Activation curve obtained from the

current-voltage relationship displayed in
panel A.
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FIG. 9.

Transient sodium current evoked by
100mS long depolarizations in 5mV
increments.
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A. Current-voltage relationship of the
current displayed in FIG 9.

B. Activation curve obtained from the

current-voltage relationship displayed in
panel A,
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A. Protocole used to study the inactivation of the transient sodium current (Ix.g).
100ms long prepulses were applied in SmV steps to inactivate sodium channels.

A test pulse to —20mV was then used to measure the percentage of current
remaining after inactivation.

B. Inactivation curve obtained for the transient sodium current displayed in panel
A. For comparison, activation curves for the transient and the persistent
components are also displayed.



FIG. 12

A. Subunit composition of brain sodium
channels. o Subunit constitutes the
pore, while 8 subunits modulate the
channels function.

B. Expanded view of the |VS6
transmembrane segment of the «
subunit. Two residues, a phenylalanine
and a tyrosine are critical molecular
determinants of anticonvuisant action.
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FIG. 13.

Voltage dependence of phenytoin block.
Currents are evoked by a depolarizing
step to 0 mv from the voltages indicated.
it is evident that phenytoin block is
strongly enhanced by depolarization, as
illustrated when the cell is held at
-40mV.
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FIG. 14.

Typical record of an RIlI current recorded from a
Xenopus oocyte using the two electrode voltage
clamp technique. Currents were evoked by
depolarization to different potentials. Maximal
currents were observed at OmV. Holding
membrane potential of the cell was -90mV.



Normatzed Current

A. Typical experiment illustrating the
shift in half inactivation voltage (AV %2)
produced by 100uM Phenytoin. The Y
axis represent availability of the
channels to conduct current.

B. Cumulative results showing AV ¥z as
a function of phenytoin concentration. n
represents the number of experiments
performed.

C. Shifts in AV Y2 produced by
carbamazepine, topiramate and
tetracaine. n is 5 for each data point.
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Voltage-dependence of tetracaine block
of Type Il sodium currents.
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FIG. 17.

Dose response curves for inhibition of
the RIll Na* currents by phenytoin,
carbamazepine and topiramate at
holding potentials of -100, -70 and
-40mV. The data are the average of 10
experiments for each drug. -
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Cumulative results of dose effect
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Table 1. Cumulative values for activation and inactivation experiments
carried out on the stellate cell population in the medial entorhinal cortex

layer Il.

Parameters INap InaF
Activation
Number of cells analyzed 15 8
Treshold for activation (mV) 6272* | 4973
Voltage value at which 3573 1872
maximal current occurs (MV)
Reversal potential (mV) 3374 | 3974
Maximal conductance gmax (nS) [ 2.8 7" 0.4| 2672
Voltage for half activation V,, 41775 | 2272
(m\V) ]
Slope factor (k) 6.771.2 | 51™.2
Inactivation of Iy
Number 7
of cells
analyzed
Voltage value required for -40 "2
complete inactivation (mV)
Voltage for half inactivationV, (mV) 5273

* Values are the average +/- Standard error.



Table 2. Effects of a given drug concentration on separate cells :
Voltage shift for half inactivation values.

Concentration (uM)
Phenytoin Number of |AV: (mV)| S.E Slope Factor
Experiments Control +/- SE Drug +/- SE
1 5 09 1.02 5.5/0.5 498/0.12
3 6 1.2 0.32 5.35/0.23 5.43/0.22
10 6 1.8 0.72 5.71/0.24 5.62/0.17
30 6 23 0.98 5.38/0.25 5.95/0.31
50 3 31 0.99 5.80/0.10 6.2/0.76
100 8 6.2 1.2 5.53/0.21 6.3/0.51
200 5 108 1 5.71/0.08 6.71/0.33
Carbamazepine
10 2 .33 1.13 6.01/1.1 7.46/1.34
30 3 217 0.67 6.17/0.8 7.08/0.96
100 4 9.25 0.34 7.21/0.88 7.90/0.32
Topiramate
100 4 0.1 1.3 5.04/0.14 5.4/0.32
200 3 1.1 1.2 5.01/0.24 5.1/0.32
400 2 1.59 1.1 6.45/1.1 6.23/1.3
Tetracaine
1 3 1.03 0.22 5.74/0.35 8.13/0.48
10 3 494 0.65 6.41/0.41 7.27/0.76
30 3 7.23 0.54 6.5/0.29 8.25/0.16
100 3 9.08 0.17 6.17/0.32 10.38/0.43
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Table 3. Complete dose-response experiments on the same cell. Cumulative values for
the dose-response curves and apparent dissociation constant when RIlll is expressed

alone.
Phenytoin
Concentration (uM) 1 3 10 30 50 100 200
Voltage : -100mV
ID/IC (+/- SE) | 1/0.014 0.977/0.015 | 0.969/0.015]0.934/0.023| 0.880/0.031 | 0.791/0.05 |0.691/0.063
K Value (+/- SE) 991/139
Voltage : -70mV
ID/IC (+/- SE) 1/0.01 0.969/0.01 {0.963/0.017 |0.933/0.024| 0.866/0.03 |0.805/0.038| 0.697/0.03
K Value (+/- SE) 553/44
Voltage : -40mV
ID/IC (+/- SE) [|0.96/0.01 | 0.879/0.05 | 0.890/0.09 | 0.812/0.04 { 0.700/0.04 | 0.454/0.07 | 0.285/0.06
K Value (+/- SE)  136/15
Voltage : -35mV
ID/IC (+/- SE) | .88/0.07 0.871/0.01 | 0.786/0.04 | 0.633/0.06 0.471/0.06 | 0.252/0.04
K Value (+/- SE) 53/7
Carbamazepine
Concentration (UM) 10 30 50 100 200 500
Voltage : -100mV
ID/IC (+/- SE) 0.99/0.01 | 0.97/0.02 | 0.96/0.015 [ 0.92/0.01 | 0.890/0.06 | 0.77/0.07
K Value (+/- SE) 1421/214
Voltage : -70mV
ID/IC (+/- SE) 0.98/0.02 | 0.97/0.03 | 0.96/0.05 | 091/0.04 | 0.88/0.043 | 0.71/0.09
K Value (+/- SE) 1122/183
Voltage : -40mV
ID/IC (+/- SE) 0.93/009 | 087/0.1 | 0.77/008 | 0.60/0.12 | 0.43/0.09 | 0.166/0.076
K Value (+/- SE) 169.4/31
Tetracaine
Concentration (M) 1 3 10 30 100 200 400
Voltage : -100mV
ID/IC (+/- SE) 0.972/0.02 | 0.972/0.03 | 0.934/0.03 | 0.830/0.031 | 0.609/0.03 | 0.453/0.037 | 0.343/0.06
K Value (+/- SE) 188.6/16
Voltage : -70mV
ID/IC (+/- SE) 0.969/0.02 | 0.974/0.02 | 0.928/0.01 { 0.781/0.01 | 0.487/0.03 | 0.313/0.03 | 0.25/0.04
K Value (+/- SE) 90.5/6
Voltage : -40mV
ID/IC (+/- SE) 0.952/0.03 | 0.937/0.03 | 0.803/0.03 | 0.550/0.02 | 0.237/0.04 | 0.135/0.02 | 0.119/0.032
K Value (+/- SE) 279/2.8




Table 4. Complete dose-response experiments on the same cell. Cumulative values for
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the dose-response curves and apparent dissociation constant for RIlI3 and RIIa.

Phenytoin
K Value uM (+/- S.E)
Voltage (mV) -100 -70 -40
RIIT B (n= 6) 1253 (186) 753.8 (68) 223.8 (51.4)
RIT 8 (n=7) 1210 (349) 231 (4) 60 (9)
Carbamazepine
RIIT B (n=5) 635 (255) 786 (74) 81 (16)
RIT 8 (n=4) 1369 (145) 740 (113) 108 (12)
Tetracaine
RIIT 8 (n= 8) 227 (67) 89 (26) 18 (3)
RII 8 (n=8) 127 (25) 82 (15) 19 (2)
Topiramate
RIII 8 (n= 3) 4098 (578) 2980 (943) 1131 (987)
RIIT (n=2) 7098 (2456) 6976 (1345) 4879 (2457)




