
PRIMITIVE GROUP RINGS 

by J. Lawrenèe 

ABSTRACT 

This thesis concerns some problems in primitive group rings 

and related problems in primitive rings. The first two chap-

ters are an exposition of recently published work on primitive 

group r1n~s and the related problem, due to Kaplansky; does 

prime and regular ~mply primit1ve? 

Chapt ers III and IV extend results. due to E. Formanek, , 
i 

on group rings of fr~e/products of groups. In chapter IV prim-

itive group rings, where the coefficient ring is not assumed 

to be zero-div1sor-free, are cons1dered. 

The final chapter consists of an example of a primitive 

r1n~ with nonzero singular ideal. This answers a conjecture, 

due to C. Faith and B. Osofsky, on the existence of such rings. 
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ANNEAUX DE GROUPES PRIMITIFS ;' 

par J. Lawrence 

" / hESUr'11 

Cette thèse traite de problèmes dans les anneaux de groupes 

primitifs et de problèmes connexes dans les anneaux primitifs. 

Les deux premiers chapitres sont une exposition des travaux 
" . ,. 

recemment publies sur les anneaux de groupes primitifs et le 

problème connexe, dû à Kaplansky; est-ce que premier et 

régulier .implique primitif? " 

Les chapitres III et IV étendent des résultats, dus à 

E. ~ormanek, sur les anneaux de groupes de produit libre de 

~roupes. Dans le chapitre IV on considère des anneaux de 

groupes primitifs, o~ on n'assume pas que le anneau coefficient 

est avec diviseurs de zéro. 

Le dernier chapitre consiste en un example d'anneau prlm-
; / , 

itif avec un ideal singulier et non nul. Cela repond a la con-

'" jecture emlse par C. Faith et B. Osofsky, sur l'existence de 

tels anneaux. 
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PREFoACE 

Primitive rings have been studied for several decades. 

Recently, new techniques have evolved for dealing with problems 

in primitive rin~s. Examples of this technique are to be found 

in the Formanek and Snider proofs of the existence of primitive 

~roup rin~s and the Fisher-Snider proof that countable prime . 
re~lar rin~s are primitive. The aim of this thesis i8 to 

illustrate this technique - especially its applications to the 

study of primitive group rings, and to give an exposition pf the 
" 

~ 

work that has been done on primitive ~roup rings. 

Chapter l consists of basic definitions and theorems on 

rin~s, ~roups and ~roup rin~s, to be used in the thesis. 

The second chapter consists of a summary of recent results 

on Kaplansky's problem (does prime and regular lmply primitive?), 

and results on primitive group rings', due mainly to Fo.:rmanek, 

Passman and Snider. In this chapter we look at primitive group 

rin~s of locally finite groups LS], LB], Li?], and solvable 

groups Li?]. 

Chapter II l introduces a new class of prime rings, 'strongly 

prime', which are prime rings with a finiteness condition on 

zero-divi,sors. Properties of these rings areriscussed, for use 

in chapter IV. An extension of this chapter will appear in'a 

paper by D. Handelman and the author L22]. 

In chapter IV we ex~nd results, due to Formanek L7],'on 

group rings of free products. Formanek showed that group rings 

.'. 



of free products, with domains as coefficient rings, are 

primitive. We exhlbit at~arger class of prime rings which , -

are coefficient rings bf such primitive group rin§s. We also 

. look at the more general question of which prime rings are 

the coefficient rin~ of sorne primitive group ring. 
1 

Chapter V answers a conjecture due to Faith and Osofsky " , , 

L4] ,~15]; an ex~Ple of a primitive ring With nonzero sing-

ular ideal, 1 s constructed. 
1 

r, 
In chapt ers III - V aIl theorems are believed original 

\ 1 ~ 

to the author, unless stated otherwise. 
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NOTATION 

R an a~sociative ring with identity 

F a commu ta tivè fi eld 

a p-roup 1 

the p-roup rinp' of a group G, wi th coefficient ring R 

Module a unitary module 

J(R) the Jacobson radical of R r, 

the rin,! of n x n matrices wi-th entries from fi 

the c p.ntre of the rin~ R 

the free produc ~/...of the p-roups Gand H 

Z(R) the left sin~ular i,der l of R 

N the set of positive intep:ers 

Z2 the two-element field, or the two-element group 

(In each case, the meanlng will e i ther be expl}ci tly 

stated or will be obvious.) 

(r) the two s1ded ideal generated by r 

ISI the cardina11 ty of the set S 
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INTRODUCTION 

All rlnp;s ar~ rinp:s with unlty. 

.. 
THEOR.t:M Llo In a rlng R, the followlng are equivalent. 

. 
1 • For any elements a and b of R, aRb = 0 => a = 0 or b '= 

2. For any Ideals A a"nd B of R, AB = (0 ) => A = (0) ,or B 

J. The left annlhllator pf any nonzero left Ideal is zero. 

1 

Proof. See [12J p. 54. 

DEFIKITION A rln~ with the above propertles' ls sald to be 

prilte. 

THEORE~ 1.2. In a rinp: R, the following are equiv~lent. 

1. R has a faithful lrreducible left module. 

o. 

= (0 ) 

2. R has a maximal left Ideal in which (0) ls maximal as a two-

slded, Ideal. 
Il 

J. R has a proper left ideal l comaximal with every nonzero 
• 

two-slded ideal of R, i.e. if J ls a nonzero Ideal of R, th en r 
l + -3 = R. 

Proof. See [12J p. 52. 

DEFINITION A ring wlth the above propertles is said to be 

left primi tl ve. 

REMAR~ G. Bergman [lJ has shown that primitivity is a'one­

sided property. From now on we shall use the term 'primitive' 

to mean left primitive. 
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A simple but important result'is the following. 

TH~O~M' 1.3. Every prlmiti~e ring is prime. 

Proof. See [12], 54. 

, 
The ring of rational inte~ers i8 an example of a ring which 

1 

is prime but not primitive. In fact, a commutative ring is 

primitive if and Ohly if it is a field. ..-

THEOREM 1.4. Suppose R is 
" . a prime ring wi th minimal 1eft ideal 

1. Then the !ollowing hold: 

1. l == Re, where e 2 = e, and eRe is a division ring. 

') 
'-. R ls primitive. 

Proof. 1. See L12], 62-63. 
..... Il t'" ~ 1 

2. l i8 a faithful irreduclb1e 1eft R-moqu1e. 

THEOREM 1.5. Sup'pose. R is a prime ring with centre C(R). Then 

1. CJR) 1.s a'<'domain , 

,2., R can be ernbedded ln an a1gebra A over the quotient field 

l F of CfR). 

Proof. 1. Let a be a nonzero e1ement of C(R), and let b be a non-

zero element of R. Then 0 ~ aRb = RAb, hence ab ~ o. 

2. Loca1ize ,R at th~ mu1tlplicative1y clo8ed set C(R)-t01. This 
. 

i8 possible since C(R)-[d, is zero-divisor-free. If A 18 the loca1-

'ization, we see that there is a natural embedding of R lnto A. 

DEFINITION An a1gebra A over a field F ls said to satisfy a 
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the.free algebra over F in the nonc~rnuting variables Xl' ... 
X

n 
for sorne n, sùch that f(al,···,an ) = 0 for aIl al"" ,an in 

A. ~very prime rin~ can be embedded in an al~ebra over the 

quotient rinp; of its centre (thm. 1.5). We say that a'prime rime 

R satlsfies a polynomial identity if the algebra satlsfles the 

identlty. 

DEFINITIOKS Given a group G 
"­

we delïne 

~(G) = {g E G: g has finltely many conjugates J 
+ 

6 ( G) = {p; E b. ( G): ft, ha s :fi 1 n 1 te 0 rd e r 1 . ' 

Both ll( G) and ;'\-t-( r: ) ~ ~ are normal sub~roups of G, and G has 

+ 
no finlte normal sub;;sroups lf and only if 6(G) = <l}. 

D~FINITIONS\ A group is said to be polycyclic if it has a finite 
>( 

series of subp:roups <1) = GO CGc. ••• 
1 

c. Gn = G , where G
1 

is 

a normàl subp;roup of G1+1 and Gi +1/G 1 ls cycllc, for ea~h 1= 0, 

, n-l. If the latter condition is replaced by the condition 

that Gi +1 /G1 ls abelian, we say that G ls solvable. The ~ of 

a polycyclic group ls the number of lnflnite cyclic quotients 

in the series • This number is independent of the partlcular 

series and ls thus weIl defined. 

DEFINITION Suppose V is a vector space over the field F. The 

group of automorphisms of V over F ls called the general 11near 

group, denoted by GLF(V). 

We now look at a partlcular group. Let B be an lnfinlte 
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countable set, and let S 00 bp the p;roup of permutations o'n B 

which leave ali but a fini te 11lumber of elements ~ixed • .:3"" as 

. --called the infinite symetric group. It is lJcally fini te and 

p has no (non-trivial) finite normal subgroups. 
~ • 0 

," , 
DEFINITIONS ~uppose R ls a rln~ and G is a ~roup •. The group 

FinR; R[Gj is the R-alp;ebra wit"h basis {p;': ~ E C } and mult-

iplicatio?) defined distr,ibutively uSin'f: the R:roup"multiplication 

of G. There ls an embeddinp: of R lnto.R[G], r~,r1, and an 

eplrnorphism 

a: R[ e] > R 

defined by 

+ r p: ) == r
1 

+ ••• + r • 
n n . n , 

The kernel of a. ls the augmentation ideal of R[Cl. 

We wish to desclbe the rin~ propertles of Hl G] in terms 

of the p;roup properties of G and the ring properties of R. The 

followinp; four theorems will be used later in this thesis • 

. 
THEORE~ 1.6. The group ring R[ C] is simple lf and only if R i8 

simple and G = <1>. 

Proof. The aUp;'mentation ideal is trivial if and only i~ G = (1), 

and then R[G] is isomorphic to R. 

, 
THEOREM 1.7. If R i8 a commutative doma~~ and G ls ,a tors1~n-

free abelian,group, th en R[G]}S a commutative domaine 

Proof. See [16J, 110-114. 
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THEOREM 1.8. 'rhe group rlhg IfEGJ 18 reMar lf and only lf R 
1 

18 regular, G 18 locally fln1te, and the order of any flnlte 

subgroup of G 18 a unit in R. 

Proof. See [12J, 155. 
u 

THEOREM 1.9. The group ring R[G] ls'completely reducible 

(Artinian~nd J(R[GJ) = (o)} if and only if R i8 cornpletely 
"l 

reduclble, G 18 flnlte, and the order of G 18 a unlt ln R. 

Proof. See [12J, 156. 

; 

, 
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\ ~ PRIMITIVE GROUP RINGS 

In this chapter we survey the rather short history of 

pr.imi t i ve ~roup rings. 

Until recently no examples of primitive group rings were 

known,(except for the trivial case IGI = <1»), and it had ev en 

been conjectured that none existed. For this reason, the reader 

may be surprised when he sees how easily their existence can 

be proved. To sorne extent, this reflects the nature of primi-

tive rin~s. It has usually been difficult to link primitiV1ty 

with other properties of rings, and this has meant that in 

provin~ the primitivity or nonprimitivity of certain rin~s, 

one has had to use the Density Theorem (which is rather diff­

icult to apply) or go straight back to the definition. For 

this reason many problems in primitive ~ings have remained 

open for several years and tl-J.en been sn} veel 1 r a ra ther ea sy 

manner. 

~ 
The problem of the existence of nriwitive rings has been 

linked closely to other recent problems in primitive rings. 
, ~ 

An example of such a problem (and th~ -main example) is a 

problem of Kaplansky: Is every prime regular ring necessarily 

primitive? No counterexamples are known, although the impli-
~. 

cation has only been proved in special cases. One of these i8 

the following-. 

(). 

THEOREM 2.1. (Fisher-Snider [5J) Let R be a prime regular ring 
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with a countable ideal base (i.e. a countable set of nonzero 

ideals such that every nonzero ideal of R contalns an ideal 

in the set ). Then R is primitive. 

Proof." Let Il' 1
2

, ••• be the ideal base. By taking J k 
l' 1 

if necessary, we may assume that 1k+l c 1k. Since R is regular, 

every rlght ideal contains a nonzero idempotent. Suppose 

2 o ~ el = el E Il and let J 2 = elR n 1
2

• Since R is prime, J 2 , 
2 ls a nonzero rlght ideal and so we can choose 0 1- e

2 
= e

2 
E J

2
• 

Let J = e R nI. As before, J is a nonzero right ideal. 
J 2 J J 

Contlnulng ln thls manner, we obtaln a sequence of ldempotents 

el' e
2

, ••• , with elR ~ e 2J:i.=> ·1 •• , and so R(1-e
1

) c''ft(1-e
2

) C­

• Let ~ = ·URO-el). If 1 = 2 r i (l-e
i

), then we have 
1=1 n 

••• 

e = ~ r (l-e)e = 0, a contradiction. Hence M is proper 
n+l 1 1 n+l , 

as a left ideal. If J is any nonzero two sided ideal of R, then 

1k c. J, f~r somé k, and so e k E J. ':Since l-e
k 

E M, we get J + M 

= R, thus M 18 comaximal with 1deals. Since R has a proper left 

ideal comaxlmal with nonzero two sided ldeals, R ls primitive. 

COROLLARY A countable prime regular ring is prlmitive. 

Proof. The princlpal ldeals form .-an td'eal base. 

Attempts to extend the above proof to the uncountable case 

have been unsuccessful. 

Another interesting case of Kaplansky's problem is the 

following. 
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THEOREM 2.2. (Goodearl L9J) If R is a prime regular self-

injective ring, then R is primitive. ,\ 

The theorem is a corollary to some general structure theorems 

for regular qelf-lnjectlve rings, dlscovered by Goodearl. 

Since primitive rings are both prime and semiprimitlve, 

it would be useful to have necessary and sufficient condltions 

for a group ring to have the above two properties, before we 

gO on to look at primitive group rings. In the case of semi-

primitive, the problern ls unsolved and ls one of the classlc 

problems in ~roup rings. In the case of prime group rings we 

have the following. 

TEEORE~ 2.J.(Connell LJ]) R[G] is prlme if and only if R is 
+ 

prime and 6(G) = <1>. 

Before primltive group rings had been dlscovered, A. 

Rosenberg gave several conditions which the group G must satis­

fy in order for the ~roup al~ebra FLùJto be primitive. Perhaps 

the most interesting of these iSI 

, 
THEOREr. 2.4. (Rosenberg [21J) If F 15 a field and G i5 a finlte 

extension of an abellan group, then F[GJ ls not prlmltl~e. 

Rosenberg proved this by showlni that FeG] satlsfies a . 
polynomial identlty. A theorem of Kaplansky states that aIl 

primitive rings satisf ying a polynomial Identity are sImple. 
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Since FLG] is simple only when G is trivial, the theorem follows. 

In 1972 E. Formanek and R. Snider showed that primitive 

~roup rings do in fact eXist, with the following pair of theorems. 

THEOREM 2.5. (Formanek-Snider LB] Suppose G is a group and 

F ls a field. Then there exists a group H containing G such 

that F[H] is primitive. 

THEOBEM 2.6. (Formanek-Snider l8]) Suppose G is a countable 

locally flnite group and F ls a fleld of characterlstlc 0, or 

characteristlc p If G has no ele~ents of order p. Then F[G] ls 

primltive If and only lf lt'As prime. 

Proof of theorem 2.5. Deflne a sequence (G 1 of groups and a 
1 

sequence \ M J of modules Induc tl vely by 
1 ; 

G
1 

= G M = F[G1 J 
1 

••• • •• 

G = GL (M ) M = F[G ] e M • 
n+l F n n+l n+l n 

We have G CGC ••• and M C M
2 

c ••• • Let H - U Gand 
121 - 1 

M = U Mi' Sl~ce each Mi ls an F[Gi]-module, M 18 an F[H]-module. 

Each Ml 18 a falthful FLG
1

]-module, hence M ls a falthful F[HJ­

module. Each M Is an lrreduolble F[G i +1 J-module, hence M i8 an 
1 

i~reduclble F[H]-module. Since F[H] has a falthful lrreduclble 

module, it i8 primitive • 

Proof of theorem 2.6. Let \G
1
} be a sequence of flnlte groups, 

G CGC""-··· 
1 2 • 

UG
i 

= G. For each G
i

, F[G1]lS completely reduc-

lble. If we let • • • be an enumeration of the central 
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irreducible idempotents of aIl the F[G
1
], t~en the set 

~F[GJelF[GJ1 is a countable ideal base of F[G]. Since F[G] ls 

• ,regular, if it i8 prime, then it is primitive, by theorem 2.1. 

COROLLARY Suppose F ls a fleld of characteristlc 0 and S~ 18 

the countable symmetric ~roup. Then F[$~] is primitive • 

. 
Fisher and Snider extended the above results to certain 

uncountable locally fini te groups C5J. 

We now look at several theorems of Passman on primitive 

group rin~s. First, Passman gave necessary and sufflcient con-

ditions for the ~roup ring of a countable locally flnlte group 

to be primitive. 

THEOREM 2.7. (Passman L17J) Let G be a countable locally flnlte 

~roup and let F be any fleld. Then F[G] 18 primltive if and only 

1 f J (FL G J) = (0) and D (G) = < 1 >. 

Passman also found two lnterestlng theorems deallng wlth 

arbitrary group algebras. 

THEOREM 2.8. (Passman L17J) Suppose that F[G] is primitlve and 

let K be a fleld extension of F. Suppose that elther KIF ls 

algebraic or b.(G} = (1). IJ'hen K[G] ls primitive. 

THEOREM 2.9. (Passman L17J) Suppose F[GJ is primitive and 

IF\ > \G 1 • Then h(G) = (1). 

The latter theorem is interesting b~cause the condition 

• 
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.6 (G) 
J -t-

= <1) is similar to the condition, 6(G) =(1), for prime 

group rings. It does, however, depend on the cardinality cond-

ition IFI > \GI. Formanek has shown that there do exist prim-: 

ltlve group algebras F[G] in which Li(G) '" <1;. 

Proof of theorem 2.9. By theorem 2.R, we may assume that F i8 

al~ebraically closed. Suppose F[e] is primitive with M as a 

faithful irreducible module. Let D = EndF[G](M) be the commutlng 

ring, whlch, by Schur's lemma, 18 a division ring. By the Density' 

Theorem there exists a surjection from a subring of F[G] onto 

D, hence 

dim D < dim ~G] = IGI <\FI. F' = pJ, L , 

We show that D = F. Suppose dE D"-F. The set {(d-f)-l,fE F} has 

cardinallty greater than"dim D, and 50 we must have linear 
F' 

dependence, say 
-1 -1 

a (d-f) + ••• + a (d-f) = 0 • 
l, 1 k k 

This ~ives a non-trivial equation which d satisfies over F, and 

slnce F ls algebralcally closed, we conclude that dE F. Renee 

D = F. Suppose xE 6(G), and let y be the class sum of the 

conju~acy class of x in FlGJ. We have yE D = F, and so x = 1 

Thus 6 (':;) = < 1 ). 

In his paper, Passman also 100ked at primit1ve group r1ngs 

of solvable groups. Suppose F 15 a fleld and A 15 a tor510n-free 

abelian group. Then F[A] ls an integral domaine We denote the 
, -1 

quotient ring of F[A] by F[A] F[AJ. 

• 
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'0' 

THEOREM 2.10. (Papsman [1?) Let F be a field and let G be a 

~roup with a normal torsion-free abelian subgroup A. Let K be 
-1 ' 

isomorphic to F[AJ F[A]. If An6.(G) = < 1>, then K[G] has an 

irreducible module M on whlch F[A] acts falthfully. 

,-

Comblning this theorem wlth a theorem, due to A. Zalesskey, 

on group rinss of solvable groups, Passman was able to prove: 

'" THEOREM 2.11. (Passman L1?]) Let G be a polycyclic group with 
~ 

6(G) = <1) and let F be l:\ field with 

transcendence degree F > rank G • 

Then F[G] is primitlve. (The transcendence degree ls over the 

prime subfl eld. ) 

• Thus if a field is sufficiently 'large', the group ring 

18 prlmitive. On the other hand, J. Roseblade has shown that 

not aIl ~roup rings of pOlycyclic groups are primitlve. 

THEOREM 2.12. (Roseblade [20J) Suppose G ls a polycycllc group 

and F ls an algebraic extension of ~ flnite fleld. Then F[G] 

ls not prlmitive. 

The result for polycyclic groups can be extended to solvable 

groups. In this case we get a new embedding theorem. 

THEOREM 2.13. (Passman [l?J) Suppose G is a torsion-free 

solvable group with 6.(G) = < 11 and F is any field. Then there 

exists a field K contalning F J such that K[G] ls primltive. 
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~ t, 
E. Formanek continued the "investigation of primitive group 

rings ln [7J. In this paper 
, , 

he showed that if"G = A*B is the 

free product of non-trivial groups A and B, not both of order 

two, then R~GJ is primitive, where R ls a domain such that 

\ RI < \G \. In chapter 4 we generall ze these results. ' 

.. 
• 

\ 
1 2 
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STRONGLY PRIME RINGS 

We now look at a subclass of the class of prime rings. 

The results of this section will be used later in the 

chapter on group rings of free products. 

DEFINITION. A rln~ R Isisaid to be (left) strongly prime 
.. 

(denoted by S.P.) if \:! 0- f; rE R, there exists a finite' subset 

S(r) c. R such that Vo 1- tE R,we have tS(r)r 1- {ol. 

! Obviously all left S.P. rings are prime and all oomains 

are left,S.P. A less trivial example of a left S.P. ring 

is the matrix ring F over a field F. In this case the set 
n 

S(r) ls the set of matrlx unlts. 

In exarnple (1) (below) we show that left S.P. does not 

imply right S.P. Henceforth,whenever we do not explicitly 

state the side (left or right) for the property S.P., we 

shall assume it to be the left. 

DEFINITION A class a of rings i§ said to be inductive if 

it has the fOllowing propertyl Let I be a totally order,; 

set and suppose \Ri1iEICa.. Suppose further. that Ri c:. R j 

if i < j. Th en R = URE a. 
i 

One can quickly verify that the 'classes of prime rings, 

domains and fields are all inductiTe. We will later show 
~ 

that the class of primitive rings ~s not inductive. 

f 

.. 
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EXAMPLE 1. We show that left S.P. does not lmply right S.P. 

Let A = Z2LX1,X2,···J be the free Z2-algebra in noncommuting 

variables Xl ,X2,··· • Let l be the ideal generated by monomials 

of the form X1X jXk ' where i < j < k. Set R = Ail. We first 

show that R ls left S.P •• If 0 1: m = 
monomial in R, let S(m) = \x1xj1 • 

1 

x j X j ••• X j is a 
1 2 k 

It ls easily checked that 

if 0 1: m' is any monomial in R, then m'S(m)m 1: {ol. Suppose 

r m - + ••• = 1 + m is a sum of nonzero monomials in R and let 
n 

m~ be a monomial of maximal degree in this sumo We then set 

S(r) = S(m l ). This completes the proof that li is left S.P. 

If {ri} ls' a finlte set of elements of R, then {rilXnXn+l = tO} 

for sufficiently large n. Hence R is not right S.P. 

EXAMPLE 2. We show that the class of S.P. rings.ls not 

inductive. Take the set Sn = {Xl' ••• ,X 1 of variables and 
2n 

let An = Z2Ls
nJ be the free Z2-algebra in noncommuting 

variables. Let l 
n be the ideal generated by the set 

t I
n_1} tl {XiX j J i, j ~ 2n and 2n-l < i or 2n-l < j } , where 

Il = (0). This defines a sequence or ideals, inductively. 

Let R = A II . fi ls a S.P. ring 
n 'n n n 

wi th S (r) = {X ), for aIl 
2n 

lements r. Also, by construction, Rn c. Rn+l f;2.r al n. 

= U li ls not S.P., since there exists no f ite n 

nonzero 

However, 

set Sc R uch that X SX1 # (o} for aIl n. , n 

We will now prove several theorems which show that the 

class of S.P. rlngs is rather large. 
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THEOREM 3.1. 

1. If R ls S.P., then R is S.P. 
n 

16 

2. If R ls S.P. and e is a nonzero idempotent of R; then 
J 

eRe is S.P. 

Proof. 1. Let {e1j} be a set of matrix units of Rn' Suppose 

that r = i rijeij , rijE R, is a nonzero element of Rn' wi~~ 

r
km 

~ O. Let s(rkm ) be the finite set corresponding to r
km 

in R. (see the definition of S.P.). We deflne a new set, 

S' = fsle1;1 sI E s(rkm )l. Assume that t = ,[ t 1j eij is any 

nonzero element of R , with t ~ O. Then t slr
km 

occurs n uv UT 

as a component in tslevkr, and for some l, thls product ls 

nonzero. 

2. Let r = ere be a nonzero element of eRe, and let 
~ 

S(r) be the finite set corresponding to r in R. If 0 ~ t 

= ete E eRe, then teS(r)er = tS(r)r ~ {o1. Hence eRe i5 S.P. 

DEFINITION ,A ring R ls sald to be a (left) Goldle rlng 1f. 

1. R satisfies the ascending chain conditlon on left anni-

hilators. 

2. R contains no lnflnlte direct sum of left ideals. 

Clearly a left Noetherian ring is a left Goldie ring. 

THEOREM 3.2. A prime left Goldle ring ls a S.P. rlng. 

Proof. The proof uses two weIl known theoremsl 

1. Goldi~ theorem. This states that eTery prime left Goldie 

) 
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ring can be embedded as a left order in a matrix ring D , 
n 

where D fs a division ring. (See L 10J , 169-179 and L 12J , 

lOR-11).) 

2. The Falth-Utumi theorem. This theorem characterizes left 

orders in D • (See L12J , 114-116.) 
n 

Let R be a prime left Goldle ring. By the ~bove theorems, 

there exists a positive Integer n, a division ring D, a left 

order C of D, and a complete set of matrix unlts (eili1, such 

that 

E Cei j c. R ci Dei j • 

Let c be a nonzero element of C and let r = E r 1j e
ij 

E Rand 

t = ~ t ij e1j E H be nonzero elements, with ruv # 0 and t XY ~ O. 

Then t cr ~ 0 occurs as a component in tce r. We complete xy uv yu 

the proof by letting S(r) = {ceij } • 

. 
COROLLARY A prime left Noetherian ring Is S.P. 

Proof. A left Noetherlan ring ls a left Goldie ring. 

1 \ 

COROLLARY\ A prime ring whlch satisfles a polynomial identlty 

Is S.P. 

Proof. A theorem of Posner ( [10J, 179-186) shows that such 

a ring can be embedded as an order in a matrlx ring D , where 
n 

D i~ division ring. 

The proof of the followlng theorem depends on several 

theorems d~allng wlth the free product of rings. The theorem 
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has seTeral interesting consequences, although no subsequen~ 

theorems in this thesis depend on it. We outline the main ideas. 

, Let R be a prime ring whose centre i8 a field F and let 

FLX] be the polynomial ring with Tariable X. Take the set of 

formaI words r r Xr X'" Xr 1 ri E R 'J and define an L 1 2 n 

equlvalence relation ~ on these wordsl 

r
1
xr

2 
••• XfriX ••• r

n 
~ fr

1
Xr

2 
••• XriX ••• r

n 
' 

where f E F. Let R*FLX] denote the set of equiTalence classes. 

We can define a ring structure on this in an ObTious wayl 

multiplication of formaI words being (r1X ••• r
k
)(slX ••• sn) 

- r X'" r s X'" s This ring is called the fr~roduct 
-1 k1 n' ~~ 

of Rand F[X] over F. There ls an embeddlng of H into this 

free product. 

Remark. The f~ee product of two rings does not necessarily 

eXlst, al though i t does in the aboTe case •• For inform'ation 
. . 

on this, one should see [2J. 

~ THECREM 3.3. ETery prime ring can be embedded in a S.P. ring. 

Proof. Let R be a prime ring. We haTe proTed that a prime 

rin~ can be embedded in an algebra: hence we may assume that 

the centre of R is a field F. Let S = {ai liE l be a basis 

for R over F. \Then tai Xai X'" Xai 1 al E S 1 ls a basis 
1 2 k j 

for R*FlX] over F (see [2J and l14J ). Thus if u and v ~re 

nonzero elements of R*FLX] , then uXv # 0, an~the theorem 

follo"s by taklng S(v) ={x1 • 

• ,,.,,t 
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4 

We have shown that the class of S.P. rlngs 1s 'much 

larger' than the classes of domains or prime Noetherian r1ngs. 

Ne1ther of these classes has the above embedding property. 

We now prove two theorems wh1ch extend to S.P. rings 

results known for domains and prime Noetherlan r1ngs. 
~ ~ 

DEFINITIONS A left 1deal M of a ring R 1s said to be essential 

(or large) lf the 1nte-~~ion wlth ev~ry nonzero left 1deal ,If SE (ft'. 

'-~ 
ls non-trlvlal; 1.e. if J ~ (0) ls a left ldeal, then M n J 

~ (0). The (left) slngular 1deal , denoted by Z(R), ls the , 

set of elements of R whlch ann1h11ate essential left 1deals 

of R on the r1ghtl 

Z(R) = {x E R 1 Ex = (0), for some essential left ldeal E }. 

Th1s ls a two-slded 1deal of R ([12J; 106). 

The followlng theorem y due 

THEORE~ ).4. If R ls a ~. ~ng, 
to David Handelman. 

th en Z ( R l- = . ( 0 ) • 

Proof. If not, suppose O-~ x E Z(R) and let S(x) = (Y1' ••• y } 
n • 

Slnce Z(R) ls a two sided ideal, there exist essent1al left 
1 

ld eals El' • " , E n' such that E1Y1X = (0). 1 = l, ···,n. Now 

the lntersectlon of a flnlte number of ~ssential ldeals ls 

essential (L12J, 62), and hence, E = nE1 ~ (0). However, 

ES(x)x = tO) , a contradlction. We conclude that Z(R) = (0). 

THEOREM ).5. If R ls a regular S.P. ring, then R 15 slmple. 

t' 
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Proof. Let R be such a ring and suppose 0 ~ r € R. Let 

s(r) =-{sl' ••• ,sn} , and let l be the right ideal generated 

by aIl the si r·. Since l is fini tely generated and R is regular, 

(r) J l = eH, for sorne idempotent e. As (l-e)1 = (0), -we have 

(l-e)S(r)r = fo}. This implies that 1-e = 0, hence (r) = R, 

completing the proof of the theorem. 

As a flnal-remark, we look at two interesting connections 

between simple and S.P. rings, p'ointed out to the author by 

David Handelman. To begin wlth, theorem 3.5 gives us a complete 

solution to Kaplansky's problem i~ the case where the ring 

" is in fact simple. It is trivial to see that aIl simple rings 

are S.P. Also, ~e can sho~ that every prime ring can be 

embedded in a simple ring.,We sketch the proof. 

If R is a prime ring wlth centre F, then R ls a subring 

of S ~.H*FLxJ, by theorem J.J. Since Z(S) = (0), the complete 

ring of quotients of S satisfies the conditions of theorem 3.5 

(L 12], 94-107). 

c 
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GROUP RINGS OF FREE PRODUCTS 

While several papers have~been written on primitive 

~roup al~ebras, very little seems ta h~ve been done in lookin~ 

at the more ~eneral case, where the coefficient rin~ is not .. 
assumed ta be a field. In this section we pr~oe.a theorem 

due to E. Formanek: ~roup al~ebras of free pr ucts are primitive; 
\. 

we also look at s:veral "eneralizatlons. In o~er ta faelli tate 

further discussion, we ~ive two definitions. ~ 

DEFINITIONS Let Œ denote the class 5f rings R such that if 

G = A*B is a free product of non-trivial groups A and B (except 

\ A \ = 1 BI = 2) t and \ G 1 ~ 1 RI then R[Gl is primitive. 

Let S denate the class of rin~s R for which there exists 

a ~roup G, such that RlGl is primitive. 
1 

ClearlY,' ac. ~ and ~ contains aIl primitive rinQ;s. Formanek r 

.., 
showed that the class of domains is a subclass of a, and sa, 

a contalns certain nonprlmltive prime rings. We will show that 

a contains a lar~er class of prime rln~s, and, in fact,'every 

prime rin~ is a subrin~ of sorne elèment of a. Theorem 2.3 shows 

that the elements of ~ are prime. Examples wlll be give ta 

show, however, that ~ is a proper subclass of the class of 

prime rings. 

> 

THEOREM 4.1. (Formanek [7J). If R 15 a domain (not necessarl1y . 

commuta tl ve), then REa.. 
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We postpone the proof of this. for the moment. A more 

general result will be proved in theorem 4.3. We will now look 
. 

at several interestin~ corollaries, all due to Formanek. 

CORüLLARY 1. Let R be a domain and G a nonabelian free ~roup 

such that IG\ ~ IRI. Then R[Gl is primitlve. 

Proof. G = A*Z, where lAI ~ ~Hl. ( z = lnfinite cycllc group). 

CORCLLARY 2. Suppose F ls a field and G ls a group. Then there 

exists a ~roup H, contalnin~ G, 8uch that F[H] ls primitive. 

prootL Let H = G*A, where Ais a nonabelian free ~roup such 

tha t \ A 1 ~ 1 FI 

CORCLLARY J. RLGl can be primitive even if R is not primitive. 

Proof. Let fi = Z and G = Z*Z. 

COROLLARY 4. If F i8 a -field and G ::: A*B is a free product of 

non-trivial p:roups not both of order two, th en F[G] i8 primitive. 

Proof. Let K be the prime subfield of r. Since 6(G) =<l>(except 

for G = ~*Z2' the free product two groups of order 2), 
~ 

theorem u.l shows that KiG] is primitive, and theorem 2.8 

allows us to conclude that F[G] is prlmltive.. .. 

Remark. Let A and B be two-element groups generated by a and b 

respectively. Let H be the subgroup of A*B , conslstlng of 

those elements of'the forrn ab ••• b or bab ••• ba. Then H is an 
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ahp]ien ~roup, and the sequence 

l ---> H __ a_> A * B J!:::..> Z 2 --> 1 

18 exact, where a i8 the incluslon map and ~ is defined by 

lettin~ a = b. Since A*B 18 a finite extension of an abelian 

~roup, by theorem 2.4 ,F[A*BJ i8 ~ot primitive. 

Remark. The cardlnality condition, \G\ ~ \R\, is not necessary 

if R i8 a .field. ~xample 1 will show, however, that it i8 

necessary in the case where R i8 a commutative domaine 

COROLLARY 5. }(Gl can be primitive even if G has a non-trivial 

centre. 

Proof. Let F be a countable field, and let G ~ Z x (Z*Z( F[Z] 

i8 a domain, so (F[Z])[Z*Z] is primitive. Since 

<FtzJ)[z*z] = F[z x (z*Z)l, 

we see that F[Z x (z*Z)l is primitive even thou~h 

6(Z x (Z*Z» = Z = centre' (Z x (Z*Z». 

- COROLbARY 6. There exist ~roups such that F(G] 18 pr-imitive---------
, 

if and only if F is countable. 

Proof. Let G = Z x (Z*Z). If F is countabl&, then F[G] is 

primitive. On the other hand, if IFI > IGI , th en F[G] i8 n.ot 

primi ti ve, by theorem 2.9. 

THEO REM 4.2. The class of primitive rings is not inductive. 

Proof. Let d be a countable ordinal, and let S(d) = {Xt~ t < d}. 

, 
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Let Rd = Z2[SdJ . For each countable ordlnal d, Rd ls countable, 

and hence, Rd[Z*Zl ls primitive. If T is the set of countable 

ordinals, then R = U Rd ls a polynomial rin~ in uncountabJely 

many variables. We will show, in example 1 (p. JO), that 

R[ Z*Z] = U Rd[ Z*Z] 

is not 'priŒitlve, and thls ~ives the necessary counterexample. 

In provln~ theorems 4.3 and 4.4, we draw heavily from 

the methods used ln L7l. We start with sorne definltions. 

DEFlt--ITrONS If G ls a group, G' = G - fi}. Let G = A*13. We 

say that ft. E G is of type AA and has length 2n+l if 1 t has 

the form 

g = a 1b19 2b2 ••. 9 n bn9n+1 ,aiE A', biE B'. 

We define elements of types AB, BA and BB, and thelr len~ths, 

in a sirr,ll9r way. 

THEOREM 4.3. If Ris a strongly prime ring, th en REa.. 
"'\; 

Proof. Let G = A*B. We may assume, without loss of generality, 

that IAl ~ IBl > 1. / 

Case 1. A ls infinite. We obviously have IR(GJI= tGI = lAI = IA'\ • 

Let 

W : A' ---,;" (R[G] - {O}) x N 

* be 9 bijection , and let A = 
a(l)E A*, there corresp~nds a 

-1 - [J r -, ] W [CR G - \0 -1 xl. For each 
- ~ 

unique element in ~ {O}, 

which we denote by r
i

(s). Let a Cn ) denote the element m~ 
~-----
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on~o r 1 (a) x n. For a(l)E A*, let gl(a) be an element of 
~ 

maxlmal length in the support of r (a), and suppose that in 
1 

r 1 (a), ~1 (a) has coefficient r. Let b be a fixed element of 

B' , a.nd set- h (a) equal to 
1 

f [sibrl(a)a(l) + si r l(a)a(l)b] + 1, 

if' P;l(a) is of type AB or P;l(a) = 1, and where the sum is 

taken throuQ."h all sl E S(r). Since R is S.P., thls sum is finlte. 

Similarly ~e define h (a) equal to 
/" 1 

f [sibrl(a)ba(i) + si r 1(a)ba(1)bl + 1, lf P;l(a) ls of type AA, 

l: [s r ( a ) ba ( 1 ) b + S a ( 1 ) r (a) ba ( i ") ] + 1, i f ~ 1 (a) i s 0 f 
i i 1 1 1 

type BA ,and 

(i) (1) (1)J 
il: LS i ri (a)a b + sia ri (a)a ~ 1, if P;1 (a) ls of type 

BB. 

l f a.~ E R[ cl, then an element of maximal length ln the 

support of ah (a) ends ln either a(n)b or a(n), ln its reduced 
1 

forme Hence, an equatlon of the form 

0. 1 hl (al) + a. 2hi (a
2

) + ••• + a.kh~k) = 1 

ls impossible, sinee ~roup elements of maximal length ln the 

support of a.
1
h

1 
(ai)' end in either a~n)b or a~n), for sorne n. 

Let M be the left ldeal of R[ G], generated by aIl the hl (a). 

The above result shows that M ls a proper left ldeal. Also, 

by the definltion of h
1
(a), it is clear that M is comaxlmal 

with every two slded nonzero ideel of F{G]. Hence R[G] ls left 

prlmitive. 

Case 2. Ais fini te. In thi s case, R[ GJ ls countable, thus, l,'le 

o 
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have a bijection 

W: N -----» O{G] - {O~) x N. 

* each n :li< ~(1) E N there 

corresponds a unique element in R[G] - {O}, whlch we denote by 

r(n). Let n(k) denote the elernent of N mapped onto r(n) x k. 

* For n(1 )'E N , let g(n) be an element of maximal lenp:th in the 

support of r(n), and suppose that in r(n), g(n) has coefficient 

r. 

Let a and c be fixed distinct elements of AI, and let b be 

* 
.>- a fixed elernent of BI. Given n = n(l) EN, set h(n) "equal to 

~ n(i) n(i) t L sir (n) c (ba) b + si br (n) c (ba) J + 1, 1 f € (n) i s 0 f 

type AB, and where the sum is taken through all siE S(R). 

Slmilarly, we defln€ h(~) equal to 
n(1) n(i) 

~ [s r(n)bc(ba) b + slbr(n)bc(ba) J + 1, lf g(n) ls of 
i i 

type AA, 
. n(i) n(i) t [s i a r ( n ) b c ( ba ) + sir ( n ) b c ( ba ) b l + 1, i f g ( n ) i s 0 f 

type BA, .. 
- n(1) n(i) t Lslar(n)c(ba) + sir(n)c(ba) bJ + 1, if p;(n) is of 

type.BB. 

As ln case 1, the elements of maximal length in the support 

of nh(n) can be identlfied, since they e~d in (ba)n(i) or 
n(i) 

(ba) b, for sorne 1. Thus, if M ls the left ldeal of R[G], 

generated by all the h(n), then M 18 a proper left ideal 

comaximal with every nonzero two slded ldeal of B[G]. Hence 

B[G] 18 primitive. 

This completes the proof of the theorem~ 
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This theorern has several corollaries which follow frorn 

our knowledge of S.P. rings. 

\ 

COROLLARY If R is a domain, a prime Goldie rln~, or a prime 

rinp; satisfyinp; a polynomial id'entity, then RE a.. 

PrGof. Trivially, ail domains are S.P. By theorem ).2 and 

corollaries, prlme left Goldie rinp;s and prime P.I. rings are 

S. P. 

The converse of the above theorem is not true. The following 
, 

theorem proves that another class of prime rings makes up part , 
~ 

of Cl. 

THEORE~ 4.4. If R is a prime ring with a minimal left ideal, 

then REa.. 

Proof. Let G = A*B. We may assume, without 10ss of p;enerality, 

that lAI ~ IBI > 1. In proving 'th~s theorem, we will deal only 

with the case where A is lnfinite. The case where A is 

finite will follow easily, by modifying the proof, as we did 

in provin~ case 2 of the prevlous theorern. 

Since R is semiprime, the minimal left ldeal ls of the 

form Re, where e 2 = e # 0, and D = eRe ls a division ring 

([12J, 63). Thus, if b = be and a = eae are nonzero elements 

of Re and eRe, respectively, then ba ~ o. 
Let ~ 

r A' ---~> I{G] {o) 
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be a bijection. Flx b E B'·. For aE A', let g(a) be an element 

of maximal lenp:th in the support of r{a), and put h(a) equal to 

br(a)a + r(a)ab + 1, lf p:(a) is of type AB or l2:(a) = 1, 

br (a) ba + r (a) ba b + 1, 1 f p: (a) 1 s of ty pe AA, 

r (a) hab + ar (a) ba + 1, 1 f p: (a) 1 s of ty pe BA, 

r(a)ab + ar(a)a + 1, lf g(a) ls of type BB. 

If o.' == a.e ls a nonz~ero element of R( G], then an element 
, 

of maxlmal length in the support of ah (a) ends in ei ther 

ab or a. ~enee, an equation of the form 

+ ••• + 

i8 impossible, sinee an element of maximal length in the support 

of aï h(a
i

) ends in ei ther ai b ,or ai. Suppose we have an equation 

of the form 

0'1 h (a1 ) + a.
2
h(a 2 ) + ••• + o'kh(ak) = e, 

where ai E R[ G]. Then 

e = E a.ih(a i ) == E aih(ai)e = E [aie + o'i(l-e)]h(ai)e 

= E a.ièh(ai)e, 

whlch we have shown to be impossible. 

Let M be the left ideal of R[ G}, generated by aIl the h(a). 
k ~ 

We have shown that M is proper. we claim that it is comaximal 

wi th every nonzero two Si,ed ideal of R[ G]. suppos~ 

r == r
1

g
1 

+ ••• + rkgkEJ, \10, r
1

E R, glEG, J a nonzero two 

slded ideal. Since R ls prime, we can choose u,vE R such that 

eur1ve 1 0, so ° 1 eurveE Jn-D[R]. Thus h(a)-l E J, for sorne a, 

and so M is comaxlmal with J. 

Since R[ G] has a proper left 'ideal comaxlmal wi th every 



/ 

ideal, R[Glis primitive. 

" 
Embeddlng theorerns are of Interest in the study of 
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primitive ~roup rings. We have already seen two: the Formanek-

Snider theorem for ~roups, and the Paqsman theorem for fields . 

• We now ~ive a third embeddin~ theorem- one for prime rln~s. 

THEOREfv! 4 .~. Let R be a pri me ri nQ'. Then there exists a prime 

rin~ S contalninQ' R such that SE 0:.. 

Proof. We mayassume, without 10s8 of ~enerallty, that the 

centre of R 18 a field F. R ls a vector space over F and i t 

can be embedded into S == End (R) by definlng TES by 
F r 

T (v) = rv 
r 

and then mappin~ 

r > T • r 

S is a prime rin~ with a minimal left Ideal, sa, by the ,prevlous 

theorem, SE a. 

In examples 2 and 3 we will show that not every prime 

rin~ is the coefficient rin~ of sorne primitive ~roup rin~, 80 

the embedding theorem 18 the most we can hope for. 

We will now look at sorne rtecessary conditions which Rand 

G must 'satisfy if .R[GJ'i8 primitive. From now on, we will 
.... 

assume that G 1s arb1~rary and not necessarily a f~ product. 

" 
D~FINITION An ideal 1 is sald to be nilpotent on finite sets 

if, given a finite subset SCI, there exlsts an Intefser n, 

such tha t for any sequence s1' s 2' '., sn of n ternis from S 

" 
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(repetitions allowed), s s2 ·'·8 = o. 
1 n 

THEOREM 4.6. Let G be a ~roup and R be a rln~ with a nonzero 

ideA.l nilpotent on finite sets. Then R[G] ls not sernipri'mitive. 

Proof. It 18 enoup;h .• to show that R[G] ha8 a nonzero nil idea1. 

Let l be an \deal of R which i8 nilpotent on flnite sets. Using 

the above definition, we see that r[G] is a nil ideal of RCG]. 

EXAMPLE 1. We gi ve an exarnple of a domain R such tha t H[ G] 

primitive => IGI > IR\. 
'".. 

Let R = Z2[X
i
J, iE l, where l 18 an uncountable set. 

Thus, R 15 a commutatlve polynomial ring in uncountablely many 

variables. Suppose G is countable. We will derive a contra-

diction by assuming tha't R[G] i8 primitive. Let M be a left 

i deal comaxirnal wi th every nonzero two sided Ideal of R[ G]. 

If R(G] is primitive, we may assume that M is proper. For every 

Xi' there exists ai E (Xi) such that ai +1 E M. Since the set 

{ ai} 1 s ur:countable, wh1 le the set Usupp. (a i ) 1 s only 

countable, there exists an infinite sequence a11'9.12, ••• , such 

that \ 
( 1) al E (>1. ), ai +1 E M , j = 1,2, ••• f 

j j j 
(2) Xi does not occur in any coefficient of al , j< k, k= 1,· •• , 

~k " j 
(3) supp. (al

1
) = supP· (a

12
)= ' ••• 

By I1near dependence, there exists bER, i = 1, ••• , kt for 
1 

sorne kt b
k 

~ 0, such that b
1

a
11

+ ••• + bka
1k

= O. Choose k minimal 

wlth respect to these propertles. USlng (1) and (2) we see 
" 

o • 
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that b j E (X
1k

), j<k, and therefore, if we assume G.G.D. 

(b
1
,"',bk ) = 1, b = b1 + '" + bk ~ O. Then 

b = b1 (a
it

+ 1) + '., + bk(ai
k

+ 1) E Mt 

so (b) CM, a contradiction, since H cannot be comaxlmal with (b). 
" 

EXAMPLE 2. We p;i ve an example of a prime ring R such tha t R[ G] 

i8 not semiprimitive, where G i8 any group. 

Let F = Z2[X'Yi]' i = 1, 2, "', be the free Z2-algebra 

in noncommuting variables. Let 

m = ... 

repetitions allowed, be an arbi trary monomial in F. 

Let l be the ideal of F' generated by all monomials containinp; 

at least one Y terrn such that 

l: i
k > max [J k ) . (* ) 

Let R = FIL We claim that this is the desired example. 

If f
1 

and f 2 are nonzero elements of R, then, for suffi­

clently large n, f 1Ynf
2 

~ O. Hence R is prime. However, (XYi) 

is an idea; nilpotent on fini te sets, so, hy theorem 4.6, 

R[G] 1s not sem1primitlve. 

In the above example, we seem to be proving too much. 

For thls reason we give another, perhaps more lnterestlng, 

example. 

EXAMPLE J. We give an example of a prime semlprimitve ring R 

such that R[G] is not primitive, where G is any group. 
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Let us modify example 2 by replacin~ (*) by 

E lk > (max {j 1) (the number of t imes Y a ppears ) , 
k' max Jk 

everything else remalning the same. Let the resulting ring be R. 

Os'ofsky constructed thi s ring as an example of a semiprimi ti ve J 
rln~ with nonzero slngular ideal. 

THEOREM 4- .7. (Osofsky [15J) R ls a prime semlprlmitive ring. 
: ) 

Proof. If f 1 and f 2 are nonzero elements of R, then, for 

sufficiently lar~e n, flY f ~ O~ Thus 
n 2 

R is prime. Suppose 

• •• + mk E R, where the mi are nonzero distinct 

mono~lals of R. Choose h lar~e enou~h so that 

(1) if Y occurs in f, then h > i, 
i 

e( 2) h > 2 de gre e ( f) • 

We claim that l-fYh is not right invertible, and hence, 

Suppose 

[1 - (ml + ••• + ID ) Y J[ 1 + (M +... + M ) J = 1 
\ k h 1 n' 

where the Mi are distinct nonzero monomials of R, ail non-

constant. In the expansion of the product on the~right, ail the 

nonconstant monomlals will be zero or they will cancel tri-

vially. Thus 0 t ml Y
h 

must cancel. It cannot cancel wi th a' 

term of the forro m Y M , since Y 
i h j h 

latter monomial; therefore ID Y = 
1 h 

occurs ln the middle of the 

Mi ' for sorne 11 • Since 
1 

o ~ mlY m y (by our choice of h), rn1YhM = M ,for sorne i 2 • 
h 1 h 11 12 

Continuing in thls way, we get an ~nending sequence of distinct 

nonzero monomials in the product,-givlng a contradiction. 
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Q:e conclude that J(R) = (0). • 

THEOREM 4.8. Let G be a group. Then R[G] 1s not primitive. 

Proof. Proof by contradiction. Assume that R(G] is primitive, 
., 

and let M be a proper left ideal of RLG] comaximal with every 

nonzero two sided ideal. By hypothesis, there exi sts a E (X) 

suéh that a-1 E M. 

Then there exists . 
positive inteQ;er • 

Choose h so that if Yi occurs in a, h > i • 

b E (Y
h

) such that b-1E M. Let n be any 

n ' and consider a b. By our choice of h, 

(maxfj \)(the number of times Y . j appears) is independent of 
k' max k 

n in any ID@nomial of anb. However, in such a monomial, 'X .. 
occurs at least n times, and so for sufficiently lar~e n, 

" 
n-l-

-1 = a n (b_1) + [ E a i J(a-1) E M, 
i=O 

contradict1ng the fact that M 1s proper. In a similar way we 

can show that R[GJ is not right primitive. 

In examples 2 and 3 the rin~ R has a nonzero s1ngular 

1dea~. We"might therefore ask 1f this 1s a)criter10n for the 

nonpr1m1t1vity of R[GJ. In the next chapter, we answer this 

in the negat1ve. 
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SINGULAR PRIMITIVE RINGS 

There are few connections between this chapter and the 

previous chapt ers on primitive group rings. Rather, the 

continuity ls provlded by the method used in provlng the 

prlmitlvity of rings. 

~ 

DEFINITICN A ring wlth nonzero singular idêal i8 said to 

be singular. 

The existence of singular primltive rings has~een an , 
open problem for several years. In [15J, Osofsky gave ,an 

example of a singular semiprimitive (J(R) = (0)) rings 

howe'ver, as we have shown in examPJ-e J of the previous chapter, 

thls ring is not primitive. In [4J, Faith listed the problem 

in the final chapter on open problems. Since then, the problem 

has remained open. We give an affirmative answer to the ~roblem, 

in this chapter. 

Let F = Z2[X~YjJ , j = 1, 2, ••• , be the free z2-algebra 

in noncommuting variables. Let 

repet~lons allowed, be an arbltrary monomlal ln F. 

/ 
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Definel 

c(m) = E i k = degree of X in m 

d(m) = E i k + n-l = degree of m 

e (m) = max {jk times the number of times Y
jk 

appears} , 

if m has a Y term, 

= 0 , otherwlse • 

Let l be the ldeal generated by monomials m such that 
, 

\/-
c(m) > e(m) > 1. l is "homogeneous" in the sense that a sum 

of distinct monomials is in the ideal if and only if each 

monomial is. This allows us to speak of monomials in Fil. , 

Let R = FIL. We clalm that R ls a slngular prlmitive ring. 

This ring is very similar to Osofsky's ring, ,which we constructed 

in the last chapter. 

If o l- f = ml + m2 + • • • + mn E R i8 a sum of distinct 

nonzero monomials, we definel 

c(f) = max {c (mk )} 

d(f) = max [d(mk )] 

e(f ) = max {e(mk ) t. 

THEOREM 5.1 Z(R) # (0). 

Proof. Let 0 f. f = m + ••• + mER be a sum, of distinct 
1 n 

nonzero monomials, and let s = min tc(mk)}. Choose 

t > max {d(f), e(f)}. Then g = Xt - s 
y f ~ 0 and gX = O. Let 

t 

E be the 1eft ideal of R, generated by aIl the g, as f runs 

through aIl nonzero elements of R. We claim that E is'an essential 

r 
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left ldeal. If (0) # J ls a left ldeal, then let f be a nonzero 

element of J. Then 0 # g E J n E, hence, E 18 essentlal. But 

E.X = (0) , and so, 'XE Z(R). Thls completes the proof of the 

theorem. 

Slnce R ls countable, we can order the nonzero elements 

f 2 , f3' •••• We start the numberlng at 2 to simplify t~~ 

notation in certain subs~quent statements. Given f n ln s 

sequence, choose jn > 1 large enough so that Y
jn 

f n Y
jn 

# 0, 

and let 

~ 

where in > 2 max {d(fn ), e{fn )}. For convenlence c~oose 
(n) 

j 
1 

> j and i > 1 • Suppose q = al n+ n n+l n n 
where a~n) is a nonzero monomial in R, 1 = 

(n) 
+ ••• + a k ' 

n 
1, 2, • •• k n· 

A b th 7 bal bra of R generated by aIl the a
1
{n). e e LJ2-SU ge 

LEMl1A The following hold ln As 

Let 

( 1 ) If ml' any monomlals of' R and a (n ) (m) m2 are i ' a j are 

generators of A, then ° -# m1ain) 
(m) 

=> 1 = j, m n. = m2a j = 

(2 ) If al' ···,an are generat?rs of A, then ,n al # o. 
( 3) A ls a free Z2-algebra on the glven generators. 

(4) If aE A and bE Rand b 18 a sum of monomials, none of 

whlch ls in A, then baE A => ba = O. 

Proof. (1) Slnce a
1
(n) ends with Y and a(m) ends wlth Y , we 

n j ID 

conclude that m = n. Slnce the products are nonzero, they are 

equal if and only if they are identical. Now 

" 
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1 i 
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As i > d(b), we can 'decide' which generator oceurs at the 
n 

end of the product. 
lk 

(2) TI a k = TI Yi Yj 
k 

where lk > 2 max {d(bk ), e(bk)J • If thls product ls zero, 

some segment of lt must be a generator of I, say 
1 1 

m = Y j h Y j Y s y... Y t Y j b t y j • 
s s s 1 s 1 t t 

, 

If s # t, then c(m) < E e(b
k

) and e(m) ~ E lk and so 

e(m) > c(m), a contradiction. If the generator contains only 

one bk (or part of one bk ), the result ls obvlous. 

( 3) This follows from ( 1 ) and ( 2 ) • If al' ••• al = a j ••• 
1 k 1 

then ( 2 ) lmpll es that thls prod!lct ls nonzero and using (1 ) 

lnductively, we obtaln al = a
j 

etc. 
k n 

(4) Since both l and A are generated by monomials, we will 

have finlshed if we can prove the result assumlng both a and 

a
j 

, 
n 

b are monoIr,lals. Suppose a = a··· a and ba= a~ ••• a .:;. O. 
11 i k ji jn 

Now ba = bal • •• al' and so u81ng (1) induc tl vely, we get 
1 k 

al = a j , al = a j , for some 1 ~ s ~ n. We conclude that 
k n 1 s 

b E A, a contradlctlon. If a = 1, the result ls obvlous. 

THEOREM 5.2 R 18 left prlm~tive. 

Proof. Let r. be the left ldeal of R generated by {qn + 1J, 

n = 2, 3 • •••• We clalm that M 18 a proper left ideal comaxlmal 

wlth'every nonzerD two 81ded ideal of R. If J 18 a nonzero 
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ideal of R, then f E J, for some n, And hence, q E J. Thus, 
n n 

1 = q + 1 - q EN + J. If l*l 18 not proper, then for S:Dme n n 1ij 

tri] C R and sorne integer n, we'have 

r 2 (q2 + 1) + ••• + rn(qn + 1) = 1. 

Letü r 1 = b1 + Cl' where each monomlal ln b i ls ln A and Ci 

ls the sum cf monomials not in A. Then 

by the previous lemma, and 

E b1 (ql + 1) = 1. 

The latter equatlon glves a non-trivial relation in the free 

algebra A and hence ls impossible. Slnce we arrive at a 

\_ contradlction by assuming that l-1 18 not proper, we conclude 
, -

that M ls a proper left ldeal. We now use theorem 1.2 to complete 

the proof of the prlmitlvlty of R. 

/ 
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