PRIMITIVE GROUP RINGS
by J. Lawrence

ABSTRACT

This theslis concerns some problems in primitive group rings

and related problems in primitive rings. The first two chap-
ters are an exposition of recently published work on primitive
group rings and the related problem, due to Kaplansky; does
prime and regular 4dmply primitive?

Chapters 111 and ¥V extend results, due to E. Formanek,
on group ringsvof frgejproducts of groups. In chapter 1V prim~
itive group rings, where the coefficient ring is not assumed
to be zero-divisor-free, are considered,

The final chapter consists of an example of a primitive
ring with nonzero singular 1deal. Thls answers a conjecture,

due to C, Faith and B. Osofsky, on the existence of such rings.,
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ANNEAUX DE GROUPES PRIMITIFS S
par J. Lawrence
7 rd
HESUME

Cette these tralte de problémes dans les anneaux de groupes
primitifs et de problémes connexes dans les anneaux primitifs,
Les deux premiers chapitres sont une exposition des travaux
récémment publiés sur les anneaux de groupes primitifs et le
probléme connexe, du a Kaplansky; est-ce que premier et
régulier implique primitif? k

Les chapitres III et IV étendent des résultats, dus a
E. Formanek, sur les anneaux de groupes de produit libre de
groupes. Dans le chapitre IV on considere des anneaux dé
groupes primitifs, od on n'assume pas que le anneau coefficient
est avec diviseurs de zero.

Le dernier chapitre consiste en un example d'anneau prim-
1tif avec un idéal singuller et non nul, Cela rébond a la con-

Jecture émise par C. Falth et B, Osofsky, sur 1l'exlstence de

tels anneaux,
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PREFACE

Primiti&e rings have been studied for several decades,
Recently, new techniques have evolved for éealing with problems
in primitive rings. Examples of this technique are to be found
in the Formanek and Snider proofs of the existence of primitive
group rings and the Fisher-Snidﬁr proof that countable prime
regular rings are primlitive. The aim of this thesis is to
111lustrate this technlique - especially 1ts applicatiobns to the
study of primitive group rings, and to glve an exposition of the
wofk that has been done on primitive group rings.

Chaptéi I consists of basic definitions and theorems on
rings, groups and group rings, to be used in the thesis,

The seégnd chapter consists of a summary of recent results
on Kaplansky's probtlem (does prime and regular imply primitive?),
and results on primitive group rings, due mailnly to Formanek,
Passqfn and Snider. In this chapter we look at pfimitive group
rings of locally finite groups [ 5], 8], (17], and solvable
groups [ 17].

Chapter 111 introduces a new class of prime rings, 'strongly
prime', which are prime rings with a finiteness condition on
zero-divisors. Properties of %hese rings arﬁ_discussed, for use
in chapter 1V. An extension of this chapter will appear in a
paper by D. Handelman and the author | 22]. '

In chapter IV we exg%nd results, due to Formanek L?].'on

group rings of free products., Formanek showed that group rings

Al
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of free products, with démains as coefficlent rings, are
primitive, We ethﬁit aﬁlarger class of prime rings which
are coefficlient rings 6f such primitive group rin%s. We also
- look at the more general question of which prime rings are
the coefficient rin%/of some primitive group ring.

Chapter V answers a conjecture due to Falth and Osofsky

N

L4], £15]; an example of a primitive Tring with nonzero sing-

ular ideal, is constructed,
/

In chapteré III - V all theorems are believed original
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NOTATION

-

N

R an assoclative ring with 1dentity
F a commutative field
G- 8 fToup /.

R[G] - the sroup ring of a group G, with céefficiené ring R
Module a unitary module
J(R)‘ the Jacobson radical of R : f.
Rn the rine of n x n matrices with entries from R
C(R) the centre of the rine R
G*H the free product-of the groups G and H
Z(R)  the left singular ;degl of R
N the set of positive intepers
22 the two-element fleld, o the two-element group
(In each case, the meaning will either be explicitly
stated or will be obvious.)
(r) the two sided ideal generated by r

{Si the cardinality of the set S



‘ INTRODUCTICN

s

All rings are rings with unity.

L]

THECOREM 1.1. In a ring R, the following are equivalent.

1. For any elements a and b of R, aRb = 0 => a =0 or b = 0.

2. For any ideals A and B of R, 4B = (0) => A = (0) .or B = (0)

3. The left annihlilator of any nonzero left ideal 1is zero.
v/ ° \
Proof. See [12] p. 54. s

DEFINITION A ring with the above properties is said to Le

Erime.

THEOREVM 1.2, In a ring R, the following are equinlent.
1. R has a faithful 1rreduc151e left module.
2. R has a maximal left ideal in which (0) is maximal as & two-
sided.ideal.
N f»
3. R has a proper left ideal I comaximal with every nonzero
two-sided ideal of R, i.e. if J is a nonzero 1ideal of R, then

I +J = R.

Proof. See [12] p. 52.

DEFINITION A ring with the above properties is said to be

left primitive,

-

REMARK G. Bergman [ 1] has shown that primitivity is a’ one-
sided property. From now on we shall use the term *primitive’

to mean left primitive. “

\

-
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A simple but important resuit'is the following.

THEOREM' 1.3. Every prlmitlée ring is prime.

4

Proof. See [12], 54,

The ring of rational integers is an example of a ring which
is prime but not primitive. In fact, a commutative ring 1is

primitive if and only if it is a field.
P

THECREM 1.4. Suppose R is a prime ring with minimal left ideal

I. Then the following hold:

1. I = Re, where e? = e, and eRe is a division ring.

n

2. R is primitive. {

Proof., 1. See [12], 62-€3.

2. T'is a faithful irreducible left R-module.

THEOREM 1.5. Suppose R 1gpa prime ring with centre C(R). Then
1. C(R) is S"domain ;

2. R can be epbedded in an algebra A over the quotient field
. F of C(R).

Proof, 1. Let a be a nonzero element of C(R), and let b be a non-
zero element of R: Then 0 # aRb = Rab, hence ab # 0.

2. Localize R at the multiplicatively closed set C(R)-{0}. This

is poésiblersince C(R)-{&. is zero-divisor-free. If A is the locai_

‘ization, we see that there is a natural embedding of R into A.

DEFINITION An algebra A over a field F is said to satisfy a




polynomial identity if there is an lf*# 0 in F[Xl,Xz,"°,Xn]ﬁ

the, free algebra over F in the noncammuting variables X,, *°* ,

8, 1in

Xn for some n, such that f(al,---,an) = 0 for all a n

1’0..
A. kvery prime ring can be embedded in an algebra over the
quotient ring of its centre (thm. 1.5). We say that a prime ring
R satisfies a polynomial identity if the algebra satisfies the

identity.

*
DEFINITIONS Given a group G we deﬂgne

A(G) = {g € G: g has finitely many conjugates% ’

AN(G) = (g € £(G): g has finite order }..

Both 2A(G) and 4&(G) are normal subgroups of G, and G has

4
no finite normal subgroups if and only if A(G) = {1).

DEFINITIONS\ A group is said to be polycyclic if it has a finite
series of subgroups (1) = GO CIG1C: R <:Gn = G , Where G1 15

a nérmdl subgroup of Gi+1 and Gi+1/G1 is cyclic, for each i= 0,
**¢, n-1, If the latter condition is replaced by the condition
that G1+1/Gi is abelian, we say that G i1s solvable. The rank of
a polycyclic group is the number of infinite cyclic quotients

in the series . This number 1s independent of the particular'

series and is thus well defined.

DEFINITION Suppose V is a vector space over the field F. The

group of automorphisms of V over F is called the general linear

roup, denoted by GLF(V).

We now look at a particular group. Let B be an infinite
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o

countablé set, and let S Bp the group of Eermutations on B

3

-

which leave all but a finite number of elements fixed. 5, 4s

. . e,
called the infinite symetric group. It is 1locally finite and

has nog(non-trivial) finité normal subgroups.

o

DEFINITIONS Suppose R is & ring and G is a group. The group
ring RG] is the R-algebra with basis {g: g € G} and mult-
iplicatiop defined distributively using the group multiplication
of G. There is an embedding of R into.R[G], r» rl, and an
epimorphism

a: W:G]
defined by

> R

+ e + = T 4+ e 4 .
OL(rlgl rnqn) 1 In

The kernel of a is the augmentation ideal of R G].

v

We wish to descibe the riné properties of B[G] in terms
of the group properties of G and the ring properties of R. The

following four theorems will be used later in this thesis,

THECREM 1.6. The group ring R G| is simple if and only if R 1s

simple and G = <{1>.

Proof. The augmentation ideal is trivial if and only 1f G = <1D,

and then R[G] 1is isomorphic to R.

THEOREM 1.7. If R is a commutative doﬁa%n and G is a torsion-

free abelian group, then R[G] is a commutative domain.

Proof. See [16], 110-114, :

@




THEOREM 1.8. The group rihg B[ G] is reglar 1f and only if R
;

is regular, G is locally finite, and the order of any finite

subgrodp of G 1s a unit in R. o

Proof. See [12], 155.

o

THEOREM 1.9. The group ring R[G] is completely reducible
(Artinian @nd J(R.G]) = (0)) if and only if R is completely
3

reducible, G is finite, and the order of G is a unit in R.

Proof. See [12], 156.

3
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\\ Q « PRIMITIVE GROUP RINGS

In this chapter we survey the rather short history of
primitive group rings.

Until recently no examples of primitive group rings were
known. (except for the trivial case |G]/= <{1)), and it had even
been conjectured that none existed. For this reason, the reader
may be surprised when he sees how easily their éxistence can
be proved. To some extent, this reflects the nature of primi-
tive rings. It has usually been difficult to link primitivity
with other properties of rings, and this has meant that in
pro&inz the primitivity or nonprimitivity of certain rings,
one has had to use the Density Theorem (which is rather diff-
icult to apply) or go straight back to the definition. For
this reason many problems in primitive xings have remained
open for several years and then been solved ir a rather easy
manner.

The problem of the existence of primitive rings has been
linked closely to other recgnt prob{ems in érimitive rings.
An example of such a problem (and the -main example) is a
problem of Kaplansky: Is evefy prime regular ring necessarily
primitive? No pounterexamples are known, although the impli-

cation has only been proved in special cases. One of these is

the following.

o
THEOREM 2.1. (Fisher-&nider [5]) Let R be a prime regular ring




with a countable ideal base (i.e. a countable set of nonzero
ideals such that every nonzero ideal of R contains an ideal

in the set )., Then R is primitive.

K
Proof.” Let Il' 12. *** be the ideal base, By taking Jk = Iy,
(Sl |

1f necessary, we may assume that Ik+1(: Ik' Since R 1s regular,

every right ideal contains a nonzéro idempotent. Suppose

- &2 -
0 # e, = € € I1 and let J2 = elR(\IZ. Since R is prime, J2
2

is a nonzero right i1deal and so weé can choose 0 # e2 = e26 JZ'

Let J3 = eZRr1IB. As before, J3 is a nonzero right ideal.

Continuing in thls manner, we obtaln a sequence of ldempotents

»

el, €yttt with elR :)eZH.Z>°w- , and so R(l—el) ClR(l-ez) =
. n
¢*v _ Let ¥ = UR(1-e, )., If 1 = 2 r,(1-e,), then we have
1 1=1 1 1 o
e = r (1- =0 contradiction. Hence M 1
net L 1( ei)en_'_1 , & on ence S proper

’

as a left ideal. If J 1s any nonzero two sided 1deal of K, then

Ik<: J, for somé k, and so e_€J. Since 1-ekaM, we get J + M

k
= R, thus M is comaximal with Ideals. Since R has a proper left

ideal comaximal with nonzero two sided ideals, R 1s primitive.

COROLLARY A countable prime regular ring is primitive,
Proof, The principal ideals form .an ldeal base.

Attempts to extend the above proof to the uncountable case
have been unsuccessful,
Another interesting case of Kaplansky's problem is the

following.



8

THEOREM 2.2. (Goodearl L9]) If R is a prime regular self-

injective ring, then R is primitive. A

The theorem is a corollary to some general structure theorems

for regular self-injective rings, discovered by Goodearl.

Since primlitive rings are both prime and semiprimitive,
it would be useful to have necessary and sufficlent condltions
for a group ring to have the above two propertlies, before we
g0 on to look at primitive group rings. In the case of semi-

" primitive, the problem is unsolved and is one of the classic
problems in group rings. In the case of prime group rings we

have the following.

TEEOREM 2.3.(Connell { 3]) R[G] is prime if and only if R is

prime and A(G) = (1.

Before primitive group rings had been discovered, A.
Rosenberg gave several conditions which the group G must satls-
fy in order for the group algebra Fngto be primitive. Perhaps

the most Interesting of these 18:

1

THEOREM 2.4, (Rosenberg [21]) If F is a field and G 1s a finite

extension of an abellan group, then F[G] 1s not primitive,

Rosenberg proved this by showing that F[G] satlsfies a
polynomial identity. A theorem of Kaplansky states that all

primitive rings satisf ying a polynomial identity are simple,

]




Since FLG] 1s simple only when G is trivial, the theorem follows.
In 1972 E. Formanek and R. Snider showed that primitive

group rings do 1n fact exist, with the following palir of theorems,

THEOREM 2.5. (Formanek-Snider [8] ) Suppose G is a group ard
F 1s a fileld. Then there exists a group H contalning G such

that F{H] is primitive.

THEOHEM 2.6. (Formanek-Snider [8] ) Suppose G 1s a countable
locally finite group and ¥ is a field of charaeteristic 0, or
characteristic p 1if G has no elements of order p. Then F[G] is

'primltive 1f and only if it+#s prime,

Proof of theorem 2.5. Defline a sequence {G{} of groups and a

o~

sequence {Mi} of modules inductively by

— 3 r
Gy =G Ml FLGIJ
G = GL_(M M = F{G |
‘ n+i F( n) ‘n+l L n+1] ® ‘n
_ C_. eeoe () C. oo =
We have G1 G2 and Ml Mz . Let H UG1 and

M= LJMi. Sigce each M1 is an F[Gij-module, M is an F[{H]-module,

Each K, 1s a falithful FLGij-moduIe. hence M is a failthful F[H]-

module., Each Mi 1s an irreduclble F[Gi+1]-modu1e, hence M 1s an

irreducible F[H]-module. Since F[H] has a faithful irreducible

, module, 1t 1s primitive,

Proof of theorem 2,6. Let {Gl} be é sequence of finite groups,

G S G e, UGy = G. For each G,, F(G,]1s completely reduc-
ible, If we let e e *** be an enumeration of the centrsal

ll 2'
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~

irreducible idempotents of all the FEGlj' then the set
{F(cJe,F[G]} s a countable ideal base of F[G]. Since F[G] 1s

regular, if it 1is prime, then'it is primitive, by theorem 2,1.

COROLLARY Suppose F 1s a fleld of characteristic 0 and S, 1s

the countable symmetric group. Then F[S..] is primitive,

Fisher and Snider extended the above results to certain
uncountable locally finite groups [5].

We now look at several theorems of Passman on primitive
group rings, First, Passman gave necessary and sufficient con-
ditlons for the group ring of a countable locally finite group

to be primitive.

THEOREM 2,7. (Passman [17]) Let G be a countable locally finite
]
group and let F be any field., Then F[G] is primitive if and only

if J(FLG]) = (0) and A(G) = <1).

Passman also found two interesting theorems dealing with

arbitrary group algebras,

\

-

THEOREM 2.8. (Passman [ 17]) Suppose that F[G] is primitive and
let K be a field extension of F, Suppose that either K/F is

algebraic or A(G) ={1). Then K[G] 1s primitive,. ,

THEOREM 2.9. (Passman [[17]) Suppose F[G] is primitive and
{FI > |G| + Then A(G) = (1>.

The latter theorem 1s interesting because the condition

-
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J d
A(G) =<1) 1s similar to the condition K A(G) =<{1), for prime
group rings. It does, however, depend on the cardinality cond-
ition |F| > |G|, Formanek has shown that there do exist prim-

itive group algebras F[G] in which A(G) # <1).

Proof of theorem 2.9, By theorem 2,8, we may assume that F 1is
algebraically closed. Suppose F[G] 1s primitive with M as a

faithful irreducible module, Let D = End be the commuting

o™
ring, which, by Schur's lemma, is a dlvision ring. By the Density
Theorem there exists a surjection from a subring of F G] onto
D, hence

dim D < dimPFfG] = |G| <|F].
We show that D = F, Suppose d€ D\ F. The set {(d-f)-l:fe F} has
cardinality greater than'dimFD. and so we must have linear
dependence, say

aL(d-fl)_l + v 4 zatk(d-—fk)-1 =0 .

This glves a non-trivial equation which d satisflies over F, and
since F is algebraically closed, we conclude that d€ F. Hence
D = F, Suppose x€ &(G), and let y be the class sum of the
conjugacy class of x in F G]., We have ye D = F, and so x =1 .

Thus A(3) =<1,

In his paper, Passman also locked at primitive group rings

of solvable groups. Suppose F is a fleld and A is a torsion-free

2

e

abelian group. Then F[A] is an integral domain. We denote the

quotient ring of F[A] by F[A]"IF[A].
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! (o4

THEOREM 2.10., (Passman [17]) Let F be a fleld and let G be a
group with a normal torslon-free abellan subgroup A. Let K be
isomorphic to F[A]_IF[A]. If ANA(G) =<1>, then K[G] has an
irreducible module M on which F[A] acts faithfully.,

LN

Combining thié theorem with a theorem, due to A. Zalesskey,

on group rings of solvable groups, Passman was able to prove:

*

THEORENM 2.11, (PaSSJZn L17]) Let G be a polycyclic group with
A(G) = <1 and let F be g fleld with
transcendence degree F > rank G .
Then F{G] 1s primitive. (The transcendence degree 1s over the

prime subfield.)

Thus 1f a fiéld 1s sufficlently 'large', the group ring
1s primitive. On the other hand, J. Roseblade has shown that

not all group rings of polycyclic groups are primitive.

THECREM 2.12, (Roseblade [20]) Suppose G 1s a polycyclic group
and F 1s an algebraic extension of g finite field. Then F[G]

is not primitive.

The result for polycyclic groups can be extended to solvable

groups. In this case we get a new embedding theorem.

»

THEOREM 2.13. (Passman [17]) Suppose G is a torsion-free
solvable group with A(G) ={1yand F is any field. Then there

exists a fleld K contalning F such that K[G] 1s primitive,

IS
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)

E. Formanek continued the investigation of primitive group
rings in [7?]. In this paper he showed that if G = A*B is the
free product of non-trivial groups A and B, not both of order
two, then REG] is primitive, where R 1s a domain such that

- | Rr| < |G|. In chapter 4 we generalize these results. '

o
b

~
=
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STRONGLY PRIME RINGS

e 4

We now look at a subclass of the class of prime rings.
The results of this section will be used later 1in the

chapter on group rings of free products.

DEFINITION. A ring R 18 said to be (left) strongly prime

(denoted by S.P.) 1f WO # r€ R, there exists a finite subset

S(r) < R such that YO0 # te R, we have tS(r)r # {0}.

. Obviously all left S.P. rings are prime and all domains
are left S.P. A less trivial example of a left S.P. ring
i1s the matrlix ring Fn over a‘field F. In this case the set
S(r) is the set of matrix units.
In example (1) (below) we show that left S.P. does not
imply right S.P. Henceforth,whenever we do not explicitly
state the side (left or right) for the property S.P., we

shall assume it to be the left.,

DEFINITION A class a of rings 1§ saild to be inductive 1if
it has the following property: Let I be a totally order,

set and suppose {Ri} Ca . Suppose further _ that Ri<: RJ

lel

if1< j. Then R =1U Ri € a.,
.

One can quickly verify that the classes of prime rings,
domalns and flelds are all 1nduct}ve. We will later show

that the class of primitive flngs is not inductlve,

{
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EXAMPLE 1., We show that left S.P. does not imply right S.P.

Let A = ZZLXI,X2,°--] be the free Z -algebra in noncommuting

2

variables Xl.XZ,"- « Let T be the ideal generated by monomials

of the form X,X X, + where 1< j<k. Set B = A/I. We first
show that R is left S.P.. If 0 #m = X, X eee X 1
3172 Ik
j} . It 1s easily checked that
1
if 0 # m*' 1s any monomial in kK, then m'S(m)m # {0}. Suppose

5 a

monomial in R, let S(m) = {XIX

T = mi + " 4 mn 1s a sum of nonzero monomlals in R and let
ml be a monomial of maximal degree in this sum. We then set

S(r) = S(ml). This completes the proof that K is left S.P.

= {0}

If {rl} is a finite set of elements of R, then {ri}xnxn+1

for sufficlently large n. Hence R is not right S.P.

EXAMPLE 2, We show that the class of S.P. rings is not

inductive, Take the set S = {X;, *** ,X n} of variables and

let An = ZZLSn] be the free Z,-algebra 1§ noncommuting
variables. Let In be the ideal generated by the set

{In_ik u {Xixj } 1,j<£2n and 2"l <1 or 271« 3 V. where

I1 = (0). This defines a sequence of ideals, inductively,

Let R = A, /1 . R 1is a S.P. ring with s(r) = {xzn} , for all
nonzero e¢lements r. Also, by construction, RnC'Rn+1 for all n,

However, = U Hn is not S.P., since there ex1§ts no f¥hite

set SSR such that X SX; # {0} for all n,

We will now prove several theorems which show that the

class of S.P. rings 1s rather large,

-




THEOREM 3.1,
1. If R is S.P., éhen Rn is S.P.
2, If R 1s S.P. and e 1s a nonzero idempotent of R, then
eRe 1s S.P,.
Proof. 1. Let {eij} be a set of matrig units of Rn. Suppose
that r = » rijeij ' riJE R, 1s a nonzero element of Rn' with
r.  # 0., Let S(r,,) be the finite set corresponding to r

km
in R

km

, (see the definition of S.P.). We define a new set,

[ J— ’ € =
S {sleijz 54 s(rkm)}. Assume that t = g t

nonzero element of Rn' with t o # 0. Then tu

1Je1J is any
vslrkm occurs

as a component in tslev r, and for some 1, this product is

k
nonzero,
2. Let r = ere be a nonzero element of eRe, and let

/‘\
S(r) be the finite set corresponding to r in R. If 0 # t

= ete € eRe, then teS(r)er = tS(r)r # {0}. Hence eRe is S.P.

DEFINITION ‘A ring R 1s said to be a (left) Goldlie ring if:

1. R satisfies the ascending chain condition on left anni-
hilators.

2. R contains no infinite direct sum of left 1deals,

Clearly a left Noetherian ring 1s a left Goldie ring.

L3

THEOREM 3.2, A prime left Goldie ring is a S.P. ring.

Proof. The proof uses two well known theorems:

1, Goldies theorem. Thls states that every prime left Goldie
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ring can be embedded as a left order in a matrix ring Dn’
where D is a division ring. (See | 10] , 169-179 and | 12] ,
108-113.)

2. Thé Falth-Utumi theorem. This theorem characterizes left

orders in D . (see [ [12] , 114-116.)

Let R be a prime left Goldle ring. By the ?bove theorems,
there exists a positive integer n, a division ring D, a left
order C of D, and a complete set of matrix units {eiﬂ}, such
that

Let ¢ be a nonzero element of C and let r = € R and

X rije1J
t = & tijeij € R be nonzero elements, with r £ 0 and txy £ 0.
Then txycruv # 0 occurs as a component 1n tceyur. We complete

the proof by letting S(r) = {ceij} .
COROLLARY A prime left Noetherian ring is S.P.
Proof. A left Noetherlan ring 1s a left Goldle ring.

COROLLARY' A prime ring which satisfies a polynomial identity
i1s S.P.

Proof. A theorem of Posner ( [10], 179-186) shows that such
a ring can be embedded as an order ln a matrix ring Dn' where

D 1£ > division ring.

The proof of the following theorem depends 6n several

theorems dealing with the free product of rlnés. The theorem
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1

has sevéral interesting consequences, although no subsequents

theorems in this thesis depend on it. We outline the main ideas,
LLet R be a prime ring whose centre is a field F and let

FLX] be the polynomial Ting with varlable X. Take the set of

formal words {r,Xr,X *** Xr + r, € R Y and define an

2 1
equivalence relation = on these words:

rIsz s e Xfrix eo rn = fr1Xr2

where f € F, Let R*F| X] denote the set of equivalence classes.

ve Xrix T, o

We can define a ring structure on this in an obvious way:
multiplication of formal words being (rlx s rk)(slx se sn)
= rlx v rkslx s Sy ¢ This riné i1s called the fregggroduct
of R and F[X] over F. There is an embedding of R into this

free product,

Remark. The free product of two rings does not necessarily
exist, although 1t does in the above case, - For information -

on this, one should see L2].

Ve

THECREM 3.3. Every prime ring can be embedded in a S.P. ring,

Proof. Let R be a prime ring. We have proved that a prime
ring can be embedded in an algebra; hence we may assume that
the centre of R is a field F. Let S = {a13'161 be a basis

for R over F, “Then {ai Xa1 X *** Xa t a4 € S}' i1s a basls

1
k 3

for R*F| X] over F (see [2] and {14] ). Thus if u and v are

nonzero elements of R*F X] , then uXv # 0, and the theorem

follows by taking S(v) = {x}.
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4
We have shown that the class of S.P. rings 1s 'much ¢

larger! than the classes of domalns or prime Noetherian rings.
Nelther of these classes has the above embedding property.
We now prove two theorems which extend to S.P. rings

results known for domains and prime Noetheriag rings.

DEFINITIONS A left 1deal M of a ring R 1s sald to be essential

(or large) if the 1nte#§2&§}on with e&gry nonzero left ideal
4

3 23

is non-trivial; i.e. if J # (0) 1s a left ideal, then M J

# (0)., The (left) singular ideal , denoted by Z(R), is the

set of elements of R which annihilate essential left ideals

»

of R on the right:

Z(R) = {x € R :+ Ex = (0), for some essential left ideal E }.

This is a two-sided ideal of R ([12]; 106).

The following theorem 1 due to David Handelman.,

THEOREM 3.4, If R 1s a S.P. #fng, then Z(R) = .(0).

Proof, If not, suppose 0-# x € Z(R) and let S(x) = {yq, *++ y,}.

Since Z(R) 1s a two sided ideal, there exist essential left

ideals E coe 'En' such that Eiyix = (0), + =1, *++,n, Now

1'
the intersection of a finite number of «ssential ideals 1is
essential (| 12], 62), and hence, E = ﬂE1 # (0)., However,

ES(x)x = {O} , a contradiction., We conclude that Z(R) = (0).

THEOREM 3.5. If R is a regular S.P. ring, then R is simple.
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Proof. Let R be such a ring and suppose 0 # r €R. Let
S(r) ='{sl. oo .sn} , and let I be the right ideal generated

by all the s,r. Since I 1s finitely generated and R is regular,

i
(r) ® I = eR, for some idempotent e, As (1-e)I = (0), we have
(1-e)S(r)r = {0}. This implies that 1-e = 0, hence (r) = R,

completing the proof of the theorem.

o -

As a final -remark, we look at two interesting connections
between simple and S.P. rings, pointed out to the author by
David Handelman., To begin with, theorem 3.5 gives us a complete
solution to Kaplansky's problem 1in the case where the ring
is in fact simple, It 1s trivial to see that all simﬁle rinés
are S,P. Also, we can show that every prime ring can be

embedded in a simple ring,  We sketch the proof.

If R 1s a prime ring with centre F, then R 1s a subring

‘of S A‘R*FLXJ, by theorem 3.3. Since Z(S) = (0), the complete

ring of quotients of S satisfles the conditions of theorem 3.5
(L12], 94-107).
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GROUP RINGS OF FREE PRODUCTS

While severél papers haveybeen written on primitive
group algebras, very little seems to have been done in lookinge

at the more general case, where the coefficient finq is not
~

.

assumed to be a fileld. In this section we provera theorem
due\to E. Formanek: group algebras of free prqéﬁlts are primitive;
we also look at several generalizations. In onrder to facilitate

further discussi&h, we give two definitions.

DEFINITIONS Let a denote the class Bf rings R such that if
G = A*B 1is a free product of non-trivial groups A and B (except
tal = |1Bl = 2), and |G| 2 |R| , then R[G] 1is primitive.

Let 8 denote the class of rings R for which there exists

a group G, such that R G] is primitive.
t

Clea;ly,'ac:ﬁ and B contains all primitive rings. Formanek
showed that the class of domains 1is a subclass of a, and so:”
o contains certain nonprimitive prime rings. We will show that
a contains a larger class of prime rings, and, in fact, every
prime ring is a subring of some element of a. Theorem 2,3 shows
that the elements of B are prime. Examples will be give to
show, however, that 8 1s a proper subclass of the class of

Y

prime rings.

THEOREM U4.1.(Formanek [7 ]). If R is a domain (not necessarily -

commutative), then R€a.
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We postpone the proof of this, for the moment. A more
general result will be proved in theorem 4.3, We will now look

at several interesting corollaries, all due to Formanek.

COROLLARY 1. Let R be a domain and G a nonabelian free group

such that {G| 2 |R|. Then R[G] 1s primitive.
Proof. G = A*Z, where |A] 2 |R]. ( Z = infinite cyclic group).

CORCLLARY 2. Suppose F is a fleld and G is a group. Then there .

exists a group H, containing G, such that F H] is primitive.

’
>

Proofl. Let H = G*A, where A 1s & nonabelian free group such

that [A]l2 lF|.

CORCLLARY 3. R[G] can be primitive even if R is not primitive.

~

Proof. Let R = Z2 and G = Z*Z,

COROLLARY 4. If F is a field and G = A*B 1s a free product of

non-trivial groups not both of order two, then H G] 1is primitive.

Proof. Let K be the prime subfield of F. Since A(G) ={l)(except
for G = 22*22, the free product two groups of order 2),

}
theorem L.1 shows that K_G] is primitive, and theorem 2.8

allows us to conclude that F.G] is primitive,

’

Remark. Let A and B be two-element groups generated by a and b
respectively. Let H be the subgroup of A#B , consisting of

those elements of the form ab **+ b or bab s+« ba. Then H is an



23

‘ abelian e¢roup, and the sequence

1 —_—> 1

1s exact, where a 1s the inclusion map and B8 is defined by
letting a = b, Since A*¥B is a finite extension of an abelian
eroup, by theorem 2,4 , I A*B] is not primitive.

h Remark. The cérdinality condition, (G| > [R|, is not necessary
if R 1s a.field. kxample 1 will show, however, that it is

necessary in the case where R is a commutative domain.

CORCLLARY 5. H G| can be primitive even if G has a non-trivial

centre,

Proof. Let F be a countable field, and let G = Z x (Z*Z){F{Z]
is a domain, so (F 2])[Z*Z] is primitive. Since

(FLz]){z*z] = H 2 x (z#2)], ) g
we see that P[Z X (Z*Z)] is primitive even though

O(Z x (2*2)) = Z = centre (Z x (Z2*Z)).

COROLLARY 6. There exist groups such that H G] is primitive - —..

if and only if F 1is countable,

Proof. Let 6 = 2 x (Z*Z). If F is countable, then H G] is
primitive. On the other hand, if |F| > |G| , then H G] is npt

primitive, by theorem 2.9,
THEOREM 4.2. The class of primitive rings 1s not inductive.

Proof. Let 4 be a countable ordinal, and let S(d) = {Xt; t < d}.

~
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Let Rd = 22[Sd]. For each countable ordinal 4, Ry 1s countable,
and hence, Rd[Z*Z] 1s primitive. If T is the set of countable
ordinals, then R = U Rd is & polynomial ring in uncountablely
many variables. We will show, in example 1 (p. 30), that
R Z2*Z] = U R | 2*2]

1s not primitive, and this gives the necessary counterexample.

3

In proving theorems 4.3 and 4.4, we draw heavily from

the methods used in [ 7]. We start with some definitions.

DEFINITIONS If G is a group, G' = G - {1}. Let G = A*B. We
say that 2€ G 1is of type AA and has length 2n+l if it has
the form
—_ ¢ o0 1 ]
o = alblazbZ anbnan+1 , aie Aty bie B'.
We define elements of types AB, BA and BB, and their lengths,

in a similar way.

THEOREM 4 .3. If R is a strongly prime ring, then Re¢ q,
R 7

Proof. Let G = A*B, We may assume, without loss of generality,

that |Al > |B] > 1. p
Case 1. A is infinite., We obviously have ‘H[G] = |G| = |A]l = |A*] .
Let
WA ——> (RG] - {0o}) x N
be a bijection , andilet A" = w'l[(R[G] - §01l\§ 1]. For each

* ) L]
allle a , there corresponds a unique element in Etcﬁ\<\{o},

which we denote by rl(a). Let a(n) denote the element mapped
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~

onto rl(a) X n. For a(l)e A*, let gl(a) be an element of
L]
maximal length in the support of rl(a), and suppose that in

rl(a), gl(a) has coefficient r. Let b be a fixed element of

B', and set‘hl(a) equal to

O [s,br, (a)alt) + sirl( 2t 4 1,

1f‘g1(a) is of type AB or gl(a) = 1, and where the sum is

taken throush all sie S(r). Since R is S.P., this sum is finite.

Similarlzﬂﬂe define hl(a) egqual to

1) (1)

Z [s br (a)ba( + s rl(a)ba

1 1
E LS r (a) ba(i)b + sia(i)rl(a)ba(i)] + 1, if gl(a) is of

b] + 1, if g, (8) 1s of type AA,

type BA,and

1)y 4+ o a(i)r (a)a(i)] + 1, 1f g (a) is of type

r, (a)a N 1

Z Ls r,

BB.

If a’¢ R(G], then an element of maximal length in the
(n) (n)

support of dhl(a) ends in either a‘'"'b or a , In its reduced
form. Hence, an equation of the form
+ LI B -—
ayhy(8y) +ayh (a)) + * akh1f7k 1

is impossible, since group elements of maximal length in the

(n) (n)
N b or ai ’

Let M be the left ideal of R.G], generated by all the h

support of aihl(ai), end in either a for some n.

1(a).

The above result shows that M 1s a proper left ideal. Also,

by the definition of h,{(a), it is clear that M is comaximal

1 .
with every two sided nonzero ideal of R[G]. Hence R[G] 1s left
primitive. »

Case 2. A is finite. In this case, R[G] is countable, thus, we
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have a bijection

W: N > (RG] - {o}) x n.

* -1
Let N =W L(H[G] - o}) x 1]. To each n = n(1)¢ N*, there

corresponds a unique element in R G] - {0}, which we denote by
r(n). Let n(k) denote the element of N mapped onto r(n) x k.
For n(1)e€ N*, let g(n) be an element of maximal length in the
support of r(n), and suppose that in r(n), g(n) has coefficient
T.

Let a and ¢ be fixed distinct elements of A', and let b be

#*
~ a fixed element of B3'. Given n = n(1)ée N , set h(n) "equal to
n(i) n(i

§ [sir(n)c(ba) b + sibr(n)c(ba) )] + 1, if é(n) is of

type AB, and where the sum is taken through all s ,€ S(R).

‘ i
Similarly, we define h(%) equal to

n(i) (1)

n
§ [sir(n)bc(ba) b + sibr(n)bc(ba) ] + 1, if g(n) 1is of
type AA,
’ n(i n(i
§ [siar(n)bc(ba) (1) + sir(n)bc(ba) )bT + 1, if g(n) 1s of
type BA, .
B n(i) n(i)
) § lear(n)c(ba) + sir(n)c(ba) b] + 1, if a(n) is of
type. BB.
As in case 1, the elements of maximal length in the support

n(

of d%(n) can be identified, since they exd in (ba) 1) or

(ba)n(i)b, for some i. Thus, if M is the left ideal of R[G],
generated by all the h(n), then M is a proper left ideal
comaximal with evefy nonzero two sided ideal of BR[G]. Hence
R[G] is primitive. .

This completes the proof of the theorem,
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This theorem has several corollaries which follow from

our knowledge of S.P. rings.

\
COROLLARY If R is a domain, a prime Goldie ring, or a prime

ring satisfying a polynomial identity, then R€ q.

LY

Proof. Trivially, all domains are S.P. By theorem 3.2 and

corollaries, prime left Goldie rings and prime P.I. rings are

S.P.

The converse of the above theorem is not true., The following
theorem proves that another class of prime rings makes up ﬁert

N
of a.

THEOREM 4.4, If R is a prime ring with a minimal left ideal,

then Re€ .

Proof. Let G = A*B. We may assume, without loss of generality,
that [A} > |Bl > 1. In proving this theorem, we will deal only
with the case where A 1is infinite. The case where A 1is
finite will follow easily, by modifying the proof, as we did
in proving case 2 of the previous theorem.

Since R is semiprime, the minimal left ideal 15 of the
form Re, Qhere e = e # 0, and D = eRe is a division ring
((12], 63). Thus, if b = be and a = eae are nonzero elements
of Re and eRe, respectively, then ba # 0.

Let ¥

ro: A > oG] - {03}
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be a bijection. Fix b€ B". For a€ A', let g(a) be an element
of maximal length in the support of r(a), and put h(a) equal to
br(a)a + r(a)ab + 1, if g(a) is of type AB or g(a) =1,
br(a)ba + r(a)bab + 1, if g(a) is of type AA,
r(a)bab + ar(a)ba + 1, if g(a) is of type BA,
r(a)ab + ar(a)a + 1, if g(a) is of type B3.
If ' = ae 1s a nonzero element of RG], then an element
of maximal length in the support of dﬁ(a) ends in either
ab or a. ldence, an equation of the form
) + s +aen(a) =e, 0£ay =a

aleh(al) + a.eh(a e,

2 2 i
is 1impossible, since an element of maximal length in the support

. Suppose WwWe have an egquation

of a h(ai) ends in either aib or ai

i
of the form

alh(al) + azh(az) + °° 4 akh(ak) = e,

where a, € R_G]. Then ‘
e = L aih(ai) = g aih(ai)e =z [aie + ai(l-e)]h(al)e
= aieh(ai)e,
which we have shown to be impossible.
Let M be the left ideal of H G], generated by all the h(a).
We have shown that M 1s proper; we claim that it is comaximal

with every nonzero two siged ideal of R[G]. Suppose

r=rg +cttT g €T, ii;éo, r €R, g €G, J a nonzero two

sided i1deal. Since R is prime, we can choose u,vé€ R such that

eur,ve # 0, so 0 # eurvee€ J(W{[R]. Thus h(a)-1 €J, for some a,

1
and so M is comaximal with J.

Since R[G] has a proper left:ideal comaximal with every




ideal, R[G]'is primitive.
i /
Embedding theorems are of interest in the study of

primitive group rings. We have already seen two: the Formanek-
Snider theorem for groups, and the Pagssman theorem for fields.

. ]
We now give a third embedding theorem- one for prime rines.

THEOREML#JZ.Iﬁt R be a prime rineg. Then there exists a prime

ring 5 containinege R such that 5S¢ 2.

Proof. We may assume, without loss of generality, that the
centre of R is a field F. R is a vector space over F and it
can be embedded into S = EndP(R) by defining T € S Dby
' ) T
T (v) = rv
r

and then mappineg

r —> Tr'
S is a prime ring with a minimal left ideal, so, by the previous

theorem, S€ q.

IH examples 2 and 3 we will show that not every prime
ring is the coefficient ring of some primitive group ring, so
the embeddiﬁg theorem is the most we can hope for.

We will now look at some riecessary conditions which R and
G must 'satisfy if R[G]'is primitive., From now on, we will

~
assume that G 1s arbitrary and not necessarily a f;ee-product.

/’
DEFINITION An ideal I is saild to be nilpotent on finite gets

if, given a finite subset S I, there exists an 1nteger n,

S,» "%y 5, of n terms from S

O

such that for any sequence sl,
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(repetitions allowed), sls2 tee s = 0.

THEOREM 4 .6. Let G be a group and R be a ring with a nonzero

1deal nilpotent on finite sets., Then R[G] is not semiprimitive.

Proof. It is enough _to show that R[G] has a nonzero nil ideal.
Let T be an jdeal of R which 1s nllpotent on finite sets. Using

the above definition, we see that I[G] is a nil ideal of R[G].

-

EXAMPLE 1. We glve an example of a domain R such that R[G]
pr1m1t1v§ => |G| 2 |R1.

Let R = Zz[xi], 1€ I, where I is an uncountable set.
Thus, R is a commutative polynomial ring in uncountablely many
variables. Suppose G 1s countable. We will derive a contra-
diction by assuming that R{G] is primltive. Let M be a left
ideal comaximal with every nonzero two sided ideal of R[ G].

If R(G] is primitive we may assume that M is proper. For every
Xi' there exists 316 (Xi) such that ai+1€ M. Since the set
{ai} is uqcountable, whnile the set Usupp.(ai) is only

countable, there exists an infinite sequence all,alz,"' , such

that \

(1) aiJE (Xi )'ai +]1 €M . J: 1'2' see
N

(2) X does not occur 1n any coefficient of aij,J<‘k, k= 1,°e0y

;\b a = su (a = eos ,
(3) P ( 11 pp. 2)
By linear dependence, there exists bi € Ry 1 =1, ***, k, for

some k, bk # 0, such that b a11+ ves 4 bka1k= 0. Choose k minimal

1
with respect to these properties. Using (1) and (2) we see
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that bjE (xik)' j<k, and therefore, if we assume G.C.D.

(bl,...yb)=19b=b +-.-+bk#o' Then

1
+ 1) + «v. + b

k

b = b, (a ay +1) €N,

(
11 k
so (b)<M, a contradiction, since M cannot be comaximal with (b).
EXAMPLE 2. We give an example of a prime ring R such that R[G]

is not semiprimitive, where G is any group.

-algebra

Let F = Zz[X,Yij, i1 =1, 2, *+*+, be the free 22
in noncommuting variables, Let
b i 1
1 2 n -
m = X Y X I & X s 1y >0, 3, > 1,
J1 Jn-1 k= k= ‘

repetitions allowed, be an arbitrary monomial in F,
Let I be the ideal of F generated by all monomials containing
at least one Y term such that
z ik > max {jk} . (*)
Let R = F/I. We claim that this is the desired example.
If fl and fz are nonzero elements of R, then, for suffi-

ciently large n, flynfz # 0. Hence R is prime. However, (XY.)

1
is an ideal nilpotent on finite sets, so, by theorem 4.6,

R[G] is not semiprimitive.

In the above example, we seem to be proving too much.
For this reason we give another, perhaps more interesting,

example.,

|

EXAMPLE 3. We give an example of a prime semiprimitve ring R

such that R[G] is not primitive, where G is any group.
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Let us modify example 2 by replacing (*) by

1 t b f
iy > (max{JkD( he number of times Yma appears),

Xjk

everything else remaining the same. Let the resulting ring be R.
Osofsky constructed this ring as an example of a semiprimitive\)

ring with nonzero singular ideal.
THEOREM 4 .7. (Osofsky [15]) R is a prime semiprimitive ring.
Uy

Proof. If fl and f2 are nonzero elements of R, then, for

sufficiently large n, lean # 0. Thus R 1is prime. Suppose

0 # f = m, + e o+ m, € R, where the my

monohwials of R. Choose h large enough so that

are nonzero distinct

(1) if Yi occurs in f, then h > 1,

éZ) h > 2 degree (f) .

We claim that l-th is not right invertible, and hence,
fg JR).

Suppose
[1 - (m1 + e +‘mk)Yh][1 + (M1 + e +Mn)] =1,

where the M1 are distinct nonzero monomials of H, all non-

constant. In the expansion of the product on the.,right, all the
nonconstant monomials will be zero or they will cancel tri-

vially; Thus 0 # leh must cancel., It cannot cancel with a:
- ™

term of the form miYhMJ, since Yh occurs in the middle of the

latter monomial; therefore leh = Ml , for some 11. Since
1

0 # lehleh (by our choice of h), lehmll = M12’ for some 12.
Continuing in this way, we get an unending sequence of distinct

nonzero monomials in the product, giving a contradiction.
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We conclude that J(R) = (0).
THEOREM 4.8. Let G be a group. Then R[G] is not primitive.

Proof. Proof by contradiction. Assume that RG] is primitive,
and let ﬁ be a proper left ideal of RLG] comaximal with every
nonzero two sided ideal. By hypothesis, there gxists aeg (X)
such that a-1€¢ M. Choose h so that if Y, occurs in &, h > i,
Then there exists be (Yh) such that b-1€¢ M. Let n be any
pggitive integer and consider anb. By our choice of h,

(max{jQ)(the number of times Ym appears) 1s independent of

ax Jk
n in any menomial of ab, However, in such a monomial, "X
occurs at least n times, and so for sufficiently large n,

~

a = 0. Then )
n n-1

-1 = a™(b-1) + [1§Oa1](a-1) € M,
contradicting the fact that M is proper. In a similar way we

can show that R[G] 1is not right primitive.

In examples 2 and 3 the ring R has a nonzero singular
ideal. We'might therefore ask if this is a)criterion for the
nonprimitivity of R[G]. In the next chapter, we answer this

in the negative,
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SINGULAR PRIMITIVE RINGS

There are few connections between thls chapter and the
previous chapters on primitive group rings. Rather, the
continuity 1s provided by the method used 1in proving the

primitivity of rings.

»
DEFINITICN A ring with nonzero singular ideal 1s sald to

be singular,

*

Thorme The existence of singular primitive rings haswgeen an
open problem for several years, In [15], Osofsky gave an
example of a singular semiprimitive (J(R) = (0)) ring;
¢ however, as we haQe shown in examp}e 3 of the previous chapter,
this ring is not primitive. In [4], Faith listed the problem
in the final chapter on open problems. Since then, the problem
has remained open, We give an affirmative answer to the sproblem,

in this chapter,

Let F = zz[x.ij] , J =1, 2, *** , be the free Zz-algebra

in noncommuting variables., Let
i i 1
lsz---yj x%, 1, >0,
1 n-1 -

repetitions allowed, be an arbitrary monomial in F,
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Define:
c(m) =& 1k = degree of X in m
d(m) =& 1k + n-1 = degree of m
e(m) = max {Jk times the number of times ij appears} .

if m has a ¥ term,

0 , otherwise .

Let I be the ldeal generated by monomials m such that
c(m) > e(m) > 1. I is "hSﬁBgeneous" in the segse that a sum
of distinct monomials is in the i1deal if and only if each
monomial is. This allows us to speak of mpnomials in F/I.

Let R = F/I, We claim that R 1s a singular primitive ring.
This ring 1s very simllar to Osofsky's ring, which we constructed
in the last chapter,

It 0 £#f = my +m, + e +m € R is a sum of distinct

2
nonzero monomials, we define:
c(f) = max {c(mk)}

d(f)

max {d(mk)}

e(f)

max {e(mk)}.

THEOREN 5.1 Z(R) # (0).

Proof., Let 0 # f = m + cee 4+ m € R be a sum of distinct

nonzero monomials, and let s = min {c(mk)}. Choose
t > max {da(f), e(f)}. Then g = Xt-s Yt f # 0 and gX = 0, Let
E be the left 1deal of R, generated by all the g, as f runs

through all nonzero elements of R. We claim that E is an essential
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|
left ideal. If (0) # J is a left ideal, then let f be a nonzero
element of J. Then 0 # g€ JN E, hence, E is essential, But
EX = (0) , and so, X€ Z(R). This completes the proof of the

theorem.

Since R 1s countable, we can order the nonzero elements

-

f ¢++ . We start the numbering at 2 to simplify th -

2’ f39
notation in certain subsequent statements. Given fn in S

sequence, choose j_ > 1 1large enough so that Y ) S £ 0,
n Jn "1 TJp

e

and let

13
where 1 > 2 max {d(fn), e(fn)}. For convenience choose

n
_ g ln) (n)
Joer = 9, and 1 .. > 1 . Suppose q = aj + cee + akn ,
(n
1

where a ) s a nonzero monomial in R, 1 =1, 2, *.. kn‘ Let

(n)

A be the Zz-subalgebra of H generated by all the a1 .

LEMMA The following hold in A:
(n) _(m)

(1) 1f my, m, are any monomials of R and a,” ', a are
generators of A, then 0 # mlain) = mzagm) = 1=J),m=n.
(2) 1If a,, ***,a, are generators of A, then.m 8, £ 0,

(3) A is a ffee Zz-algebra on the given generators,

(4) If a€ A and b€ R and b is a sum of monomials, none of

which 1s in A, then ba€ A => ba = 0.

(m)
J

conclude that m = n, Since the products are nonzero, they are

Proof. (1) Since ai“) ends with ¥ and a ends with Y . we

equal if qnd only if they are identical. Now
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i i
(n) _ n “n
m,a = ee Y Y bY Yl Yn , N £ 1, Jn £ 1, o

1) 1 In In
As 1n > d(b), we can 'decide! which generator occurs at the

end of the product,

1y by

(2) ma, =mnY Y, b, Y, Y Y. - .

k 1 Jk k 73 1 k
where 1, > 2 max {a(b,), e(b,)} . If this product 1is zero,
some segment of it must be a generator of I, say

bl 1
s t
m=7Y b Y Y Y ¢ Y Y b, Y .
JS s ‘jS 1 S 1 Jt t Jt

If s #t, thenc(m) < & C(bk) and e(m) > Z 1k and so .

e(m) > c(m), a contradiction., If the generator contains only

one bk (or part of one bk)' the result is obvious.
(3) This follows from (1) and (2), If a, *++ a = a ees &,
' 11 1k J1 Jn
then (2) implies that this product is nonzero and using (1)
inductively, we obtaln a = a etc,
1k Jn

(4) Since both I and A are generated by monomials, we will
have finished if we can prove the result assuming both a and

t are monomials. Suppose a = a *** a, and ba= a-, °*°*° a # 0.

1 1y J1 n
Now ba .—.'ba1 *+* a,, and so using (1) inductively, we get
1 k
a = a , & =a, , for some 1< s < n., We conclude that
by In 14 Js' .- =

b€ A, a contradiction., If a = 1, the result is obvious,

THEOREM 5.2 R 1s left primitive.

-

Proof, Let M be the left ideal of R generated by {qn + 1},
n=2, 3, *** ., We claim that M is a proper left ideal comaximal

with ‘every nonzerop two sided ideal of R, If J is a nonzero
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ideal of R, then fne J, for some n, and hence, qne J. Thus,
1l = Q, + 1 - quem +J, If ¥ 1s not proper, then for égme
{I&}(: R and some integer n, we’have

rz(q2 + 1) + o0 + rn(qn +1) =1,
Letfr, = b1 + c

i i
ls the sum of monomlals not in A, Then

, Where each monomial in bi is in A and Cy

by Ci(qi +1) =0 ,
by the previous lemma, and

z bi(q1 +1) =1,
The latter equation gives a non-trivial relation in the free
algebra A and hence 1s impossible., Since we arrive at a
contradiction by assuming that M is not proper, we conclude

fhat M is a proper left ideal., We now use theorem 1,2 to complete

the proof of the primitivity of R.
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