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ABSTRACT

The main objective of this thesis is to study the dynamics of slender cantilevered cylin-

ders subjected to internal, external, or simultaneous internal and external axial flows. The

motivation for further research on the dynamics of slender structures in contact with fluid

stems not only from their presence in some engineering and biological systems, but also be-

cause of the rich dynamics they display. In particular, the dynamics of three closely related

systems of slender tubular beams subjected to internal and external axial flows are investi-

gated experimentally and/or by developing an analytical fluid-structure interaction model.

System I is a slightly curved cantilevered pipe conveying fluid. A bench-top-size appa-

ratus consisting of a reservoir and a hanging straight or curved cantilevered pipe conveying

fluid was utilized. It was observed that for initially curved discharging pipes, due to the

exaggeration of the initial curvature of the pipe, increasing flow velocity gives rise to a large

flow-induced static deformation prior to the abrupt onset of a vigorous flutter. On the other

hand, aspirating curved pipes develop an anaemic (weak) flutter with increasing flow veloc-

ity, overlaid on a relatively large static deformation.

System II is an inverted cantilevered cylinder in axial flow, that is a cylinder with the

upstream end free and the downstream end clamped. Water-tunnel experiments were con-

ducted to investigate fluid-elastic instabilities. It was observed that, at relatively low flow

velocities the inverted cylinder undergoes small amplitude motion due to turbulent buffeting

before the onset of an unsteady flutter in the first mode. The amplitude of flutter increased

with flow, eventually resulting in an abrupt static divergence at sufficiently high flow rates.

The influence of various system parameters was examined. Results indicate that the dy-

namics is only slightly affected by the shape of the free end, which contrasts sharply with

its effect on the dynamics of conventional cylinders where flow is directed from the clamped

end towards the free end.
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System III involves a hanging fluid-discharging pipe subjected to a reverse external flow

over its upper portion through the annulus formed by a co-axial shorter outer rigid tube.

Using a bench-top-size apparatus, numerous experiments were conducted to investigate the

dynamical behaviour of the system, including post-instability dynamics. Specifically, for var-

ious external-to-internal flow velocity ratios, the influence of the following system parameters

on the dynamics was examined experimentally: (i) confined length of the pipe, (ii) degree

of confinement, (iii) pipe slenderness, (iv) pipe material, (v) placement of a constraint at

the annular flow inlet/outlet, (vi) eccentric positioning of the outer rigid tube relative to

the pipe. Varying the system parameters in some cases led to significantly different qual-

itative and/or quantitative dynamical behaviour. Increasing the external-to-internal flow

velocity ratio resulted in a lower critical flow velocity in all cases. Additionally, employing

the Newtonian approach and considering the presence of two different fluids in the container,

an analytical model for system III was derived. This idealized model can serve as a useful

tool for prediction of fluid-elastic instabilities of brine-strings during product retrieval in

salt-mined caverns, which are utilized for storage and subsequent retrieval of hydrocarbons

and hydrogen gas. The results obtained suggest that, depending on the system parameters,

the brine-string system may become unstable via static divergence or flutter. The results

demonstrate that simplifying the system by considering a single fluid in the cavern, and

thus for the flows within and around the brine-string, results in overestimating the critical

flow velocity. Extensive computations were conducted using parameters relevant to full-scale

brine-strings to explore the effect of the main system parameters on the dynamics.
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ABRÉGÉ

Cette thèse explore la dynamique des cylindres en porte-à-faux soumis à des écoulements

axiaux internes, externes ou combinés. La motivation découle de leur présence dans divers

systèmes et de leur riche dynamique. Trois systèmes de poutres tubulaires minces soumis à

des écoulements sont étudiés expérimentalement ou via des modèles analytiques d’interaction

fluide-structure.

Le système I est un tuyau en porte-à-faux légèrement incurvé transportant du fluide

dans un réservoir. Il a été observé expérimentalement que pour les tuyaux de décharge ini-

tialement courbées, en raison de l’exagération de la courbure initiale, l’augmentation de la

vitesse d’écoulement donne lieu à une déformation statique importante avant l’apparition

brusque d’un battement vigoureux. Par coutre, les tuyaux courbes aspirants développent un

flottement anémique avec une vitesse d’écoulement croissante, superposé à une déformation

statique relativement importante.

Le système II est un cylindre en porte-à-faux inversé soumis à flux axial, c’est-à-dire un

cylindre dont l’extrémité amont est libre et l’extrémité aval est serrée. Des expériences en

tunnel d’eau ont été menées pour étudier les instabilités fluide-élastiques. Il a été observé

qu’à des vitesses d’écoulement relativement faibles, le cylindre subit un mouvement de faible

amplitude induit par la turbulence avant l’apparition d’un flottement dans le premier mode.

L’amplitude du flottement augmente avec le débit, entraînant finalement une divergence sta-

tique abrupte à des débits suffisamment élevés. L’influence de divers paramètres du système

a été examinée. Les résultats indiquent que la dynamique n’est que légèrement affectée par

la forme de l’extrémité libre, ce qui contraste fortement avec son effet sur la dynamique des

cylindres conventionnels où le flux est dirigé de l’extrémité serrée vers l’extrémité libre.

Le système III implique un tuyau suspendu parcouru d’un fluide et soumis à un écoule-

ment externe inverse sur sa partie supérieure à travers l’anneau formé par un tube rigide
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externe coaxial plus court. À l’aide d’un appareil de laboratoire, de nombreuses expéri-

ences ont été menées pour étudier le comportement dynamique du système, y compris la

dynamique post-instabilité. Pour divers rapports de vitesse d’écoulement externe/interne,

l’influence des paramètres suivants sur la dynamique a été examinée expérimentalement: (i)

la longueur confinée du tuyau, (ii) le degré de confinement, (iii) l’élancement du tuyau, (iv)

matériau du tuyau, (v) placement d’une contrainte à l’entrée/sortie du flux annulaire, (vi)

positionnement excentré du tube rigide extérieur par rapport au tuyau. La variation des

paramètres du système a conduit dans certains cas à un comportement dynamique significa-

tivement différent. L’augmentation du rapport de vitesses d’écoulement externe/interne a

entraîné une vitesse d’écoulement critique plus faible dans tous les cas. De plus, en utilisant

l’approche newtonienne et en considérant la présence de deux fluides différents dans le réser-

voir, un modèle analytique idéalisé pour ce système a été dérivé qui peut servir d’outil pour

prédire les instabilités fluide-élastiques du tuyau lors de la récupération des produits dans les

cavernes d’extraction de sel, qui sont utilisées pour le stockage et la récupération ultérieure

des hydrocarbures et de l’hydrogène gazeux. Les résultats obtenus suggèrent que, en fonction

des paramètres du système, le tuyau peut devenir instable par divergence statique ou flotte-

ment. Les résultats démontrent que simplifier le système en considérant un seul fluide dans

la caverne conduit à surestimer la vitesse critique d’écoulement. Des calculs approfondis ont

été effectués en utilisant des paramètres pertinents pour les chaînes de saumure à grande

échelle afin d’explorer l’effet des principaux paramètres du système sur la dynamique.
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ORIGINAL CONTRIBUTIONS TO KNOWLEDGE

Several advancements have been achieved in enhancing the understanding of fluid-

structure interactions in slender cylinders subjected to axial flow. The main contributions

of the present thesis can be listed as follows.

1. Determining experimentally the effect of a slight initial curvature on the dynamical

behaviour of cantilevered pipes discharging/aspirating fluid.

2. Discovering experimentally the dynamics of a free-clamped cylinder in water flow, as

well as determining the effect of the main system parameters such as cylinder free-end

shape, slenderness, flexural rigidity, and planar or 3D motions.

3. Characterizing experimentally the dynamics of a hanging fluid-discharging pipe sub-

jected to partially confined counter-current external axial flow through an annular

region contained by a shorter rigid tube at the upper portion of the pipe.

4. For the system of item 3, characterizing the effect of the following system parameters

on the dynamical behaviour:

(a) annulus-to-pipe length ratio (confined length ratio)

(b) degree of confinement (size of the annular gap)

(c) pipe slenderness (pipe length-to-diameter ratio)

(d) pipe material properties

(e) placement of a constraint at the annular flow inlet/outlet (flow constriction at the

upstream or downstream end of the annular region)

(f) eccentric positioning of the outer rigid tube relative to the pipe
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5. For the the system of item 3, determining the influence of post-instability impacting

of the pipe on the outer rigid tube.

6. Developing an analytical model for the dynamics of a cantilevered pipe conveying fluid

and partially subjected to a confined reverse external axial flow of a different fluid,

serving as an idealized model for the dynamics of brine-strings in salt-mined caverns.

7. Discovering the influence of the main system parameters on the dynamics of the system

of item 6. In particular, using parameters relevant to full-scale brine-strings in salt-

mined caverns, discovering the influence of (i) brine-product interface level, (ii) the

ratio between brine and product densities and viscosities, (iii) the well-head pressure,

(iv) degree of confinement of the external flow, (v) confinement length ratio and (vi)

brine-string slenderness on the stability of the system.
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CHAPTER 1

Introduction

1.1 Introduction, motivation and general remarks

When the leaves of trees reconfigure and flutter in the wind, a heart beats, airplane

wings oscillate, or a fish swims, the motions of a structure and the surrounding fluid are

coupled; this is known as Fluid-Structure Interaction (FSI). FSI involves the deformation of

a structure caused by fluid forces, which, in turn, influences the fluid forces. The dynamics of

slender structures in contact with fluid, mainly cylindrical ones, namely cylinders subjected

to internal flow (pipes conveying fluid), external axial flow, and simultaneous internal and

external axial flows, have been studied quite extensively.

Not only do slender structures in contact with fluids arise in nature, but they also have

numerous practical applications. Industrial examples include pipelines, heat-exchangers,

nuclear reactor fuel elements, towed slender ships, and renewable energy harvesters. Physi-

ological instances of slender structures interacting with axial flow can be observed in blood

vessels and urinary tracts. Apart from many practical applications, studies on the dynamics

of these systems are often curiosity driven and fundamental [6, 7]. The rich dynamical be-

haviour that slender cantilevered cylinders subjected to internal and/or external axial flows

display, as well as their presence in many engineering systems, serves as the driving force

behind this manuscript-based thesis [1–5].

While certain flow-induced vibrations (FIV), such as those utilized in creating music

with woodwind instruments, propulsion of watercraft [8, 9], or energy harvesters [10], are

desirable, many others are undesirable and potentially dangerous [11]. This necessitates the

study of FIV in slender structures because beyond a critical flow velocity, these structures

undergo instability, which may lead to catastrophic failure. These instabilities are associated
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with Movement-Induced Vibrations (MIV), where the excitation arises from movements of

the structure [12]. Flutter, a dynamic instability, and divergence, a static instability, are

examples of MIV.

Pipes conveying fluid is a canonical FSI problem that has been studied extensively, with

research dating as far back as 1939 [13]. Applications of this system include Ocean Thermal

Energy Conversion (OTEC) [14], soft robots [15], renewable energy systems [16], ultra-

sensitive nanosensors [17], and long pipes used in ocean mining operations [18] as shown in

Fig. 1.1. The dynamical behaviour of the system of a pipe conveying fluid is very rich and

it provides a simple experimental and theoretical framework for better understanding and

explaining known dynamic behaviours and exploring new dynamical characteristics, thus

becoming a paradigm in the field of dynamics [6, 19]. The primary reason for the extensive

attention paid by researchers to the dynamics of this system is its capacity to exhibit a

diverse range of dynamic behaviuors, despite being relatively simple to analyze and easy to

realize physically. For instance, a pipe with both ends supported becomes unstable via static

divergence (buckling) at high-enough flow rates; since it is a gyroscopic conservative system,

it cannot flutter [20]. A cantilevered pipe, on the other hand, is a nonconservative system

and is subject to an oscillatory instability, i.e. flutter, at sufficiently high flow velocities [21–

23]. The complexity of the dynamics of fluid-conveying cantilevered pipes increases when a

mass is attached to its free end [24], or when its motion is restricted by motion-restraining

constraints [25]; in these cases, the existence of chaotic regions has been demonstrated.

Another canonical FSI problem involves the dynamics and stability of slender flexible

cylindrical structures under external axial flow, although have been extensively investigated

since the 1960s. Fluid-elastic instability in this system often occurs at flow velocities higher

than those typically encountered in usual engineering applications. Consequently, research

on flow-induced vibrations of cylinders in axial flow, similar to studies on fluid-conveying

pipes, has been primarily driven by curiosity, while some studies have been application-

oriented [26]. Examples of industrial applications of this system include heat-exchanger and

nuclear reactor internals, often configured as clusters of cylinders. In such arrangements, the

critical flow velocity for instability can be significantly lower than that for an isolated cylin-

der, potentially leading to undesirable FIV at flow velocities that are common under normal
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Figure 1.1: A long aspirating pipe utilized in ocean mining operations to extract manganese

nodules or diamonds from the seabed, after Ref. [18].

operating conditions. Slender cylindrical structures in axial flow may also be found in the

transportation industry, particularly trains, as well as quasi-cylindrical containers towed by

ships, e.g. the “Dracone”, and towed seismic arrays.

The “Dracone”, shown in Fig. 1.2, is a flexible sausage-shaped container that is towed,

mostly submerged, behind a small watercraft and is used for transporting lighter-than-

seawater fluids, including fresh water, by sea. The towed seismic arrays, shown in Fig.

1.3, consist of very long cylindrical structures aligned in parallel, partially or fully immersed

in seawater, and pulled by a watercraft across the sea-surface. These arrays are used in

sonar applications, in order to detect submarines, schools of fish, and underwater mineral

resources [27]. Equipped with sonar sensors, these arrays capture acoustic signals reflected

from the seabed layers. Analysis of these sonar signals enables the identification of resources

such as oil or gas deposits within the seabed.

The scope of the present thesis primarily involves investigating the dynamics of slender

cantilevered cylinders subjected to counter-current internal and external axial flows. This

may be considered as curiosity-driven research; yet a strong motivation for this study stems

from its industrial applications. A cantilevered pipe simultaneously subjected to counter-
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Figure 1.2: A 500 m3 Dracone, air-inflated after discharging fresh-water cargo, leaving the island

of Santorini, Greece (Dunlop Dracones 1965), after Ref. [27].

Figure 1.3: A schematic view of a typical seismic array survey, after Ref. [28].
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(a) (b)

Figure 1.4: (a) Schematic view of a typical drill-string with its internal flow-powered rotating drill

bit, from [30]; (b) An idealized drill string, with the drill bit entirely disregarded. The system can

be modelled as a hanging fluid-discharging cantilevered pipe, in which the fluid upon exiting the

pipe flows upwards as a confined axial flow [31].

current internal and external axial flows is an idealized model for engineering systems, such

as tubes in parallel-flow tubular heat-exchangers [29], the drill-string with a floating fluid-

powered drill-bit [30, 31] (neglecting the drill-bit, as shown in Fig. 1.4(b)), and brine-strings

in salt-mined caverns.

Salt-mined caverns are formed through the process of drilling a well into underground

salt deposits, followed by leaching the salt using fresh water pumped down through a very

long vertical cantilevered pipe, known as the “brine-string”, which is typically 1-2 km in

length and extends from the surface to near the base of the cavern. The injected fresh water

dissolves the minerals, resulting in brine. Then, by injecting additional fresh water, the brine

is brought to the surface through a shorter concentric annular region contained by a rigid

outer “casing”. The outer casing is cemented onto the overburden and caprock, with a small

portion of it extending into the cavern; thus, a significant portion of the brine-string extends

beyond the casing enclosure [32]. Hence, the brine-string (hanging cantilevered pipe) is sub-
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(a) (b)

Figure 1.5: Schematic view of the formation of salt-mined caverns formed by pumping fresh water

downwards: (a) through a vertical pipe, the “brine-string”, and brine flowing upwards through a

shorter concentric annular region formed by a rigid “casing” surrounding the pipe at its upper

portion, a flow configuration that favours expansion of the lower part of the cavern; (b) through the

outer casing, with brine flowing upwards through the aspirating brine-string, a flow configuration

that favours the expansion of the upper part of the cavern; from Ref. [33]

jected to counter-current internal and external axial flows, with the external flow partially

confined over the upper portion of the pipe, as shown in Fig. 1.5(a). This process leaves

behind a huge underground cavern filled with brine. It is also possible to form the caverns

via the opposite flow configuration: the outer casing discharges the fresh water downwards,

and the brine flows upwards through the brine-string, as shown in Fig. 1.5(b). The selection

of which flow configuration to implement is generally determined by the desired cavern shape

[33], as detailed in the caption of Fig. 1.5.

Salt-mined caverns, as shown in Figs. 1.6 and 1.7(a), can be utilized for storage and

subsequent retrieval of lighter-than-brine liquid and gaseous “products” [32, 34], including

hydrocarbons, such as crude oil, propane, natural gas and ethylene. Additionally, salt-mined
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Figure 1.6: Various utilizations of salt-mined caverns, after [35].

caverns can serve as storage facilities for hydrogen gas, carbon-dioxide or compressed air in

Compressed Air Energy Storage (CAES) plants [35]. In particular, CAESs assist in man-

aging and regulating energy consumption for peak shaving and valley filling in renewable

energy facilities, helping to cope with the intermittency and fluctuations in energy generated

from such sources [35].

Solution-mined caverns can be utilized in two different operational modes: the “stor-

age” and the “production” or “retrieval” modes, which involves two different flow configura-

tions [34, 36], the same configurations as those illustrated in Fig. 1.5. The retrieval modus

operandi, which is shown schematically in Fig. 1.7(b) is the primary focus of this thesis.

In the retrieval mode, brine is injected into the brine-string, while the lighter-than-brine

(hydrocarbon) product is extracted through the outer casing for sale during commercially

propitious times. Therefore, a fluid-discharging cantilevered flexible pipe subjected to a

partially-confined reverse annular flow through the upper portion of the pipe, with the whole

system within a container, serves as an idealized model for this mode of operation. In this

retrieval mode, achieving the highest possible extraction flow rate is advantageous. How-
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(a) (b)

Figure 1.7: (a) Schematic view of a salt-mined cavern in hydrocarbon storage applications, af-

ter [36]; (b) an idealized brine-string in retrieval mode modelled as a hanging fluid-discharging

cantilevered pipe subjected to a partially confined external axial flow.

ever, operating at high extraction rates poses a challenge: the potential for the brine-string

to undergo fluid-elastic instability at high flow velocities.

The repercussions of operating solution-mined caverns at flow velocities beyond the

critical for fluid-elastic instabilities are severe, potentially resulting in impacting of the brine-

string on the rigid casing. In extreme circumstances, the brine-string could suffer damage

or even fracture from repeated impacts. Engineers have struggled with the challenge of

mitigating flow-induced vibrations and suppressing fluid-elastic instabilities in brine-strings

for many years, as these phenomena have been identified as likely causes of breakages or

permanent deformations of brine-strings. In particular, once flutter is initiated, the ampli-

tude of the oscillation of the brine-string results in repeated impacts on the outer casing.

This can cause fretting wear and potential breakage of the brine-string, with parts of the

brine-string falling to the bottom of the cavern. If the brine-string develops static divergence

(buckling) rather than flutter, similar consequences may result. The brine-string intermit-
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tently contacts the outer casing, shifting from one side to the other. Alternatively, in cases

of “sticking”, the buckled brine-string “chatters” against the outer casing, leading to fretting

wear and potential damage. These incidents result in significant financial and environmental

damages. Consequently, research efforts are aimed at understanding the dynamics of brine-

strings, so as to prevent catastrophic accidents and determine safe ranges of flow velocities

in the brine-string, ensuring stability of the system [4, 9].

1.2 Literature review

The literature on the dynamics of cylinders subjected to internal, external, and si-

multaneous internal and external axial flows is very extensive. In this section, a selective,

rather than all-inclusive review is provided. Therefore, this review targets highlighting the

fundamental and the most important theoretical and experimental studies addressing the

dynamics of pipes conveying fluid, cylinders in axial flow, and pipes subjected to simultane-

ous internal and external axial flows. The interested reader is referred to Refs. [6, 9, 26, 27]

for a comprehensive discussion of studies on the dynamics of slender structures in axial flow.

1.2.1 Pipes conveying fluid

The dynamics of a pipe conveying fluid has extensively attracted scholars’ attention and

is referred to as a paradigm in dynamics [6, 19], as most of the so-called fluid-elastic insta-

bilities can be illustrated with this system. This system, despite being relatively simple to

analyse and easy to realize physically, displays a rich dynamical behaviour. Understanding

the FSI in pipes conveying fluids is essential, not only to avoid catastrophic accidents in

piping systems [11], but also to enable understanding of the dynamical behaviour of more

complex systems.

The first study on the dynamics of pipes conveying fluid is attributed to Bourrières [13],

who derived a general nonlinear equation of motion of a cantilevered pipe and conducted ex-

periments regarding the stability of the system. Studies on the dynamics of pipes conveying

fluid were continued by Ashley and Haviland [37], Housner [38], Feodos’ev [39] and Niordson

[40] for simply-supported pipes. Also, different boundary conditions were considered in Refs.

[41, 42].

Almost ten years later, the dynamics of a cantilevered articulated pipe made of N rigid
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and flexibly interconnected pipes was studied both theoretically and experimentally by Ben-

jamin [21, 43]; for N tending to infinity, the case of a continuous system would be approached.

Among its many achievements, formulating the appropriate form of the Lagrange equation

was the most significant for the aforementioned system, involving an energy transfer from

the fluid to the pipe. It was shown that, at sufficiently high flow velocities, the system

undergoes oscillatory instability. In addition, in the case of a vertically hung articulated

pipe conveying water, buckling was observed; for air-conveying pipes the static instability

never materialized. Benjamin’s work was followed by Gregory and Païdoussis [22]; the linear

equation of motion was derived via a Newtonian approach. Using an exact method as well

as an approximate one, the stability of a continuous tubular cantilever was examined. In

Ref. [44] the flutter of a cantilevered pipe conveying fluid was observed for the first time,

verifying the theoretical results in [22] and the flutter discussed by Benjamin [43].

Afterward, the dynamical behaviour of the articulated system of a cantilevered pipe con-

veying fluid was investigated by Païdoussis and Deksnis [45]; for an increasing number of

articulations, N, it was demonstrated that, for the continuous system (N → ∞) buckling

never takes place, in contrast to the findings by Benjamin [21, 43] for the articulated sys-

tem. Considering gravity forces, it was found by Païdoussis [46] that, in contrast to hanging

tubular cantilevers, “standing” ones may buckle under their own weight; however, the flow

directed from clamped to free end could stabilize the system within a range of flow velocities,

prior to the occurrence of flutter at high enough flow.

Following the pioneering research carried out between 1950 and 1970 on the dynamics of

fluid-conveying pipes, numerous researchers have explored several variations of this system,

both theoretically and experimentally. This includes investigating the effect of added sup-

ports, masses, springs, as well as other modifications [47–53]. For the sake of brevity, these

studies are not discussed here.

Stability of pipes subjected to either constant or harmonically time-varying flow velocity

was studied theoretically by by Païdoussis and Issid [54]. In the former case, they concluded

that, for pipes with supported ends, beyond a certain critical flow velocity, not only does

buckling occur, but also at higher flow velocities flutter arises. This constitutes a paradox

because, being a conservative system, pipes with supported ends are not expected to flutter.
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Indeed, as shown by Holmes [20], the predicted coupled-mode flutter is associated with a an

unstable, non-physical solution. In Ref. [54] the equation of motion was modified to model

a harmonically perturbed flow velocity, obtaining a rich array of parametric resonance oscil-

lations.

In the area of fluid-structure interaction, nonlinearity is important, and in many cir-

cumstances fundamental in the proper characterization of the phenomena. Extending some

prior studies, e.g., that of Bourrières [13], a nonlinear theoretical model for simply supported

pipes discharging fluid was obtained by Thurman and Mote Jr. [55]. In their work, it was

demonstrated that the linear study of the problem is totally insufficient. New research was

initiated on the dynamics of pipes conveying fluid, employing the modern nonlinear dynamics

methods. The two-dimensional motion of a two-segment articulated pipe was investigated

by Rousselet and Herrmann [56]. Krylov-Bogoliubov’s method was used in order to solve

the nonlinear equations of motion and the results highlighted the importance of taking non-

linearities into account.

Taking advantage of the center manifold theory, the onset of buckling and oscillatory

instability of a pipe conveying flow was investigated by Holmes [57]. The nonlinear equation

of motion was obtained, extending the linear one of Païdoussis and Issid [54] by includ-

ing the terms due to the deflection-induced axial tensile forces. Thereafter, Holmes and

Marsden [58] applied center manifold reduction to the problem of flow-induced vibrations.

Hence, the governing PDE was locally replaced by a vector field. Moreover, Holmes and

co-workers [20, 57, 58] demonstrated that a Hopf bifurcation is responsible for instability

of cantilevered pipes conveying fluid at sufficiently high flow velocities. They also proved

that the Païdoussis-type coupled-mode flutter in simply-supported pipes does not take place,

contrary to the linear theory predictions of Païdoussis and Issid [54]. Bajaj et al. [23] proved

that, depending on the system parameters, a sub- or supercritical Hopf bifurcation into a

periodic motion arises in the case of a cantilevered pipe conveying fluid.

Extending the work in Ref. [56], a nonlinear equation of motion of a continuous can-

tilevered tubular beam was derived by Rousselet and Herrmann [59], using both energy and

Newtonian approaches. The equation of motion of the fluid takes into account the pressure

loss caused by the fluid flow in the pipe.
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Considering nonlinear motion-restraining spring constraints, the fluid-elastic oscillation

of a constrained cantilevered pipe was examined both theoretically and experimentally by

Païdoussis and Moon [25], as first model to deal with a fluttering pipe impacting on sur-

rounding walls. By means of analytical and numerical methods, the existence of chaotic

regions was demonstrated. Research on the planar nonlinear dynamics and chaos of a pipe

conveying fluid was conducted by Semler [60]. The core of his work was to derive the nonlin-

ear equations of motion associated with either simply-supported or cantilevered pipes. Then,

the PDEs were compared to existing derivations. Results indicated that chaotic motions may

occur due to perturbations, or motion-limiting constraints.

The dynamics of a hanging pipe with a rigid end-mass was studied experimentally by

Copeland and Moon [61]. It was found that the system generally follows a quasi-periodic

route to chaos. Nonlinear dynamics and chaos of constrained cantilevers were investigated

further by Païdoussis and Semler [62]. In Semler et al. [63] it was demonstrated that their

proposed PDEs for pipes with both ends fixed are the most accurate and complete. In Semler

and Païdoussis [64] the nonlinear dynamics of a pipe with a mass defect at the free end was

investigated, showing that, for this system, chaos may arise via the intermittency route.

Making use of the proper orthogonal decomposition method, a reduced-order model was

established in Sarkar and Païdoussis [65] to investigate the 2-D nonlinear dynamics of a

cantilevered pipe conveying fluid.

In a three-part study, the 3-D nonlinear dynamics of cantilevered pipes conveying fluid

was examined by Païdoussis and co-workers. Firstly, modifying the nonlinear equation of

motion of Semler et al. [63], the three-dimensional nonlinear dynamics of unrestrained and

restrained cantilevered tubular beams was studied by Wadham-Gagnon et al. [66]. This

study was then extended by Païdoussis et al. [67] to investigate the dynamics of the same

system modified by arrays of two or four springs or one spring located at a specific distance

from the clamped end. Finally, Modarres-Sadeghi et al. [24] studied the 3-D nonlinear dy-

namics of a cantilevered pipe with a lumped mass mounted at the free end of the pipe.

Later on, research on the two- and three-dimensional dynamics of cantilevered pipes was

undertaken by Modarres-Sadeghi et al. [68] to investigate the post-flutter dynamics of both

horizontal and vertical pipes by increasing the flow velocity beyond the Hopf bifurcation. It
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was found that the post-flutter dynamics of the system depends on the mass parameter. See

also Wang et al. [69] and Duan et al. [70].

Pipes commonly used in real-world applications often suffer geometric imperfections, in-

cluding a curved shape. As discussed by Païdoussis [6], many experimental studies have

unintentionally employed slightly curved pipes, particularly in earlier research. For exam-

ple, in the study by Bishop and Fawzy [71], surgical-grade silicone rubber pipes with slight

initial bending were utilized. Prior to the onset of instability, a static deformation of the

pipe was observed. This led to the conclusion that the reason for the inconsistency between

the onset of instability observed in the experiments and that predicted by theoretical models

for a perfectly straight pipe is the absence of straightness and the residual internal stress in

the imperfect pipes. Using extensible and inextensible centreline theoretical models, Misra

et al. [72, 73] examined the dynamics of curved pipes with supported ends. It was shown

that inextensible centreline theory leads to the wrong conclusion that semi-circular pipes

conveying fluid develop buckling. This wrong conclusion is due to neglecting the effect of

steady-state forces; however, this effect was taken into account in the extensible theory of

Misra et al. [73]. The dynamics of cantilevered pipes conveying fluid subjected to different

slightly curved shapes was studied by Zhou et al. [74]. The conclusion drawn was that as the

flow velocity increases, the initial curvature of the pipe undergoes a significant amplification.

Ultimately, as flow rates reach a sufficiently high level, the pipe undergoes an oscillatory

instability. The onset of this instability depends on the static equilibrium position of the

pipe just before reaching the threshold of fluid-elastic instability. Zhou et al. [75] investi-

gated the free and forced vibration of L-shaped pipes. The findings revealed that this system

experiences significant static deformation before the initiation of self-excited limit-cycle os-

cillations. Moreover, under forced vibrations, period-n, quasi-periodic, and chaotic motions

were obtained, with variations depending on the flow velocity as well as the amplitude and

frequency of the excitation force.

Flow-induced oscillation of a cantilevered pipe conveying fluid with an inclined end-nozzle

was studied both theoretically and experimentally by Lundgren et al. [76]. They obtained

a group of integro-differential equations for the system, and an oscillatory instability was

predicted beyond a critical flow rate, either in the plane of static deformation or normal to
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it, depending on the system parameters. The bifurcations of fluid-conveying cantilevered

tubular beams with an end-nozzle were also examined by Jian and Yuying [77].

Later on, the dynamics of cantilevered pipes conveying fluid was studied by Rinaldi and

Païdoussis [78], both experimentally and theoretically for pipes fitted with a “stabilizing

end-piece”. For a straight-through axial discharge, the system was found to lose stability via

a Hopf bifurcation, but for radial discharge the system remains stable over the entire range

of the considered flow rates.

Modifying the centrifugal force term in the equation of motion in Païdoussis and Issid

[54], the effect of laminar and turbulent flow profiles was considered in Guo et al. [79].

For different so-called profile-modification factors, the critical flow velocity for the onset of

divergence was found to be higher in the laminar flow regime.

Nonlinear interactions between unstable oscillatory modes in a cantilevered pipe convey-

ing fluid was investigated by Yamashita et al. [80]. It was concluded that the instability

of a cantilevered pipe in one mode can trigger instability in another mode, leading to a

complex double Hopf bifurcation interaction. Zhou et al. [81] explored the planar and non-

planar oscillations of a cantilevered pipe subjected to axial base excitation, concluding that,

at supercritical flow rates, applying axial base excitation can mitigate instability for certain

specific system parameters. The dynamics of pipes conveying fluid has been studied by many

others. See for example Ni et al. [82], Dehrouyeh-Semnani et al.[83], Zhang et al. [84] and

Gu et al. [85].

The dynamics of fluid-aspirating cantilevered pipes, in which fluid flows in the opposite

direction to that of fluid-discharging cantilevered pipes (i.e., from the free end towards the

clamped one), has been a subject of controversy in FSI [6]. Over the past years, since the

1960s, some theoretical studies have suggested that a pipe aspirating fluid does not undergo

flutter, and some experimental studies have reported that this is so, at least within the range

of examined flow velocities. This includes experiments conducted at the Chalk River Nuclear

Laboratories and documented in [27], the study by Païdoussis [86], and more recently, by

Hisamatsu and Utsunomiya [87]. Conversely, Païdoussis and Luu [88] have concluded that

aspirating pipes are intrinsically unstable, suggesting that flutter occurs at relatively low,

rather than vanishing, flow velocities, and the difference might be attributed to dissipation
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caused by friction with the surrounding fluid medium. Some studies, including those con-

ducted by Kuiper and Metrikine [89, 90] and Païdoussis et al. [91], conclude that self-excited

flutter does occur, but not at vanishing flow rates, but rather at sufficiently high flow rates.

Upon reviewing the literature, one might conclude that perhaps pipes aspirating fluid do

indeed flutter at sufficiently high flow rates, but in the experiments flutter tends to be of a

weak and anaemic nature [9, 92–95].

While conducting experiments with very thin elastomer vertical cantilevered pipes, which

would normally expected to lose stability by flexural, beam-like dynamical instability, shell-

mode flutter was observed by Païdoussis and Denise [96]. This finding revealed another

aspect of the problem. Employing shell models, stability of the thin pipes conveying fluid

was studied by Païdoussis and Denise [97]. They found that both clamped-clamped and

cantilevered finite-length circular cylindrical shells, lose stability by flutter in their second

circumferential mode provided that the flow velocity, surpasses a certain critical value. Ap-

plying Galerkin-type solutions, a so-called “standing wave analysis” was conducted by Weaver

and Unny [98] and Weaver and Myklatun [99] for simply supported and clamped-clamped

shells, respectively. Beam and shell mode instabilities were also investigated in Shayo and

Ellen [100]. However, shell-mode instabilities are not the of interest in the present study.

For more details, the interested reader is referred to Refs. [6, 101].

1.2.2 Cylinders in axial flow

Although the dynamics of cylinders in axial flow is of interest for its industrial applica-

tions, e.g., in heat-exchangers, nuclear reactor fuel element bundles and steam generators,

some studies on this topic have also been “curiosity driven" [7]. From a historical point of

view, Hawthorne [102] was the first to study the stability of a “Dracone”, or generally towed

cylinders in axial flow. Païdoussis [103, 104] extended and generalized that work for different

boundary conditions and did experiments to validate the analysis. Later on, in Païdoussis

[105], the dynamics of towed totally submerged cylinders was examined. However, the most

accurate linear model for a slender cylinder in axial flow was established by Païdoussis [106]

in which an error caused by incorrect incorporation of the viscous forces into the equation

of motion in Païdoussis [103] was corrected. Moreover, the stability of a cluster of identical

cylinders was also investigated. Unfortunately, use of the incorrect version of the model by
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other researchers resulted in erroneous conclusions, as discussed by de Langre et al. [107].

The critical flow velocity for the onset of divergence of pinned-free cylinders in axial

flow was determined analytically by Triantafyllou and Chryssostomidis [108]. Modelling the

cylinder as a string, rather than a beam, stability analysis of a very long cylinder was exam-

ined by Triantafyllou and Chryssostomidis [109].

Further studies were conducted by Chen [110], Païdoussis [111], Gagnon and Païdoussis

[112, 113], and more recently by Wang et al. [114], on the dynamics of clustered cylinders in

axial flow. Additionally, to study the case of a cylinder in highly confined annular flow, some

modifications in the modelling have been made by Païdoussis et al. [115] and Mateescu et

al. [116–118].

Because of applications in oil exploration, a number of studies on the dynamics of very

long arrays of several towed cylinders have been conducted, by Païdoussis [46], Païdoussis

and Yu [119], Dowling [120, 121], and Triantafyllou and Chryssostomidis [122]. More re-

cently, using a modified linear theory, the stability of towed cylinders was revisited by Kheiri

and Païdoussis [123]. Later on, Kheiri et al. [124] derived the first nonlinear model for

the dynamics of a towed flexible cylinder, and Kheiri et al. [125] conducted an experimen-

tal study on this system. It was concluded that, increasing the flow velocity, for a towed

cylinder with more or less streamlined ends, rigid-body instability occurs first, followed by

flexural instabilities at higher towing speeds. However, a blunt tail end-piece can eliminate

all instabilities.

Post-divergence coupled-mode flutter has been observed in experiments by Païdoussis

[104] for cylinders in axial flow. In contrast, as mentioned in the previous section, nonlinear

theory proves that coupled-mode flutter never occurs in pipes conveying fluid with supported

ends [20]. This is one of the most important differences when comparing the internal and

external flow problems. From a nonlinear point of view, the dynamics of a cantilevered cylin-

der in axial flow was investigated by Païdoussis and co-workers. In Païdoussis et al. [126],

the physical dynamics of the system was studied. It was concluded that the stability of can-

tilevered cylinders is greatly dependent on the shape of the free end. Generally, cantilevered

cylinders lose stability by divergence at sufficiently high flow velocities and, at higher flow

velocities, single-mode flutter occurs, provided that the free end is well-streamlined; but,
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if the free end is blunt, neither buckling nor flutter materializes. The second part of that

study [127] is devoted to the derivation of the nonlinear equation of the motion and solution

methods. Finally, Semler et al. [128] obtain solutions of the nonlinear problem and discuss

the theoretical and experimental results.

Nonlinear dynamics of a cylinder with an extensible centerline subjected to axial flow was

investigated by Modarres-Sadeghi [129]. For cylinders with both ends supported, the weakly

nonlinear equations of motion were derived by Modarres-Sadeghi et al. [130]. The dynamics

of the system was predicted to be as follows: as the flow velocity increased, a supercriti-

cal pitchfork bifurcation occurs, leading to divergence. Then, a secondary Hopf bifurcation

which leads to flutter was predicted. At still higher flow velocities, the limit cycle was found

to evolve into chaos. In Païdoussis et al. [131] it was demonstrated that, for a pinned-pinned

cylinder in axial flow, post-divergence flutter does exist, as a Hopf bifurcation arising from

the divergence solution. For the nonlinear dynamics of cylinders with both ends pinned or

clamped, see also Refs. [132, 133]. More recently, using a linear model, for a pinned-free

cylinder in axial flow, the critical flow velocity for the onset of divergence and also conditions

for rigid body oscillations were determined by Kheiri and Païdoussis [134].

The first study on the dynamics of an inverted cantilevered cylinder in axial flow was

carried out by Rinaldi and Païdoussis [135], i.e., with the flow directed from the free end

toward the clamped one. At relatively low flow velocities, small-amplitude first-mode oscil-

lations, which could be interpreted as flutter, were observed in the experiments with air flow.

Increasing the flow velocity further, the oscillatory motion was diminished and a static diver-

gence developed. In this experiment, the free end of the cylinder was fitted with end-pieces

of different shapes. However, the only instability predicted by linear theory was buckling at

sufficiently high flow velocities; also the onset of instability was overestimated as compared

to the observations. Using the same parameters as in Ref. [135] and a nonlinear static

analysis, the stability of inverted cylinders was examined by Sader et al. [136]. It was found

that slender inverted cylinders are never globally unstable; a saddle-node bifurcation, which

is then followed by another statically stable solution at higher velocities, was predicted. As

compared to Rinaldi and Païdoussis [135], a lower critical velocity was obtained, in closer

agreement with experiment. Subsequently, Abdelbaki et al. [137] developed a nonlinear

17



model for the dynamics of inverted cylinders with ogival end-pieces, predicting a saddle-

node bifurcation at relatively low flow rates, and loss of stability for enough perturbations.

At higher flow velocities, static divergence in the first mode via a supercritical pitchfork

bifurcation was obtained. Moreover, by further increasing the flow velocity, post-divergence

flutter via a Hopf bifurcation was predicted. Recently, an improved linear model for the this

system was presented by Rinaldi and Païdoussis [138]. This model predicts the dynamics

of the system as follows: flutter at relatively low flow velocities and then buckling at higher

flow rates. The critical flow velocities obtained are in fairly good agreement with the exper-

imental results.

In this case also, the dynamics of cylindrical shells subjected to external axial flow has

been extensively studied; refer to Païdoussis [27].

1.2.3 Tubular beams subjected to both internal and external flows

For decades, studies on the dynamics of pipes simultaneously subjected to internal and

external axial flows have been conducted. Cesari and Curioni [139] predicted buckling in-

stability of pipes with different boundary conditions and subject to internal and external

axial flow, perhaps for the first time. Thereafter, the dynamics of vertical pipes conveying

fluid and concurrently subjected to an independent external axial flow was investigated by

Hannoyer and Païdoussis [29]. Taking into account the boundary-layer thickness of the ex-

ternal flow, internal dissipation and gravity, the equation of small motions was derived for

both clamped-clamped and cantilevered pipes. For clamped-clamped pipes, the effect of the

internal and external flows on the stability of the system was found to be additive, i.e., if

either internal or external flow velocity is just less than its critical value for instability, an

increase in the value of the velocity of the other flow would trigger instability. In contrast,

if because of either internal or external flow, a cantilevered tubular beam is right below the

threshold of instability , by further increasing the other flow, instability could be eliminated.

Generally, in the aforementioned case, the dynamics of the system greatly depends on the

shape of the free-end. For a blunt end, internal flow was found to be dominant and, al-

though flutter arises at sufficiently high flow velocities, increasing the external flow velocity

re-stabilizes the system. For a more or less streamlined end-piece, the dynamical behaviour

is more complex, i.e., both static and dynamic instabilities occur. Experimental observa-
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tions and theoretical predictions were found to be in good agreement. Also, the stability of

a nonuniform slender beam subjected to internal and/or external flow was investigated both

theoretically and experimentally in Hannoyer and Païdoussis [140, 141].

Motivated by some applications, such as modelling the internals of heat-exchangers and

boilers, the dynamics of clusters of cylinders subjected to concurrent internal and external

flows was examined in Païdoussis and Besançon [142].

Numerous studies have been conducted on the dynamics of a drill-string, e.g., by Bailey

and Finnie [143], Finnie and Bailey [144], Den Hartog [30] and Grigoriev [145]. Also, one of

the studies in Luu [146] is concerned with the stability of a long hanging cantilevered tubu-

lar beam conveying fluid which is also subjected to an external flow over its outer surface

through an annulus formed by an outer rigid channel.

The equation of motion of an inclined pipe conveying fluid which is partially subjected

to axial flow through a coaxial tubular beam was derived by Wang and Bloom [147]. In

this model, for small lateral deflections, gravity, fluid viscous forces, as well as the turbu-

lent boundary layer thickness of the external flow were taken into account. Using spatial

finite-difference schemes, discretized equations were obtained through which the critical pa-

rameters regarding stability of the system could be found.

Thereafter, aiming at modelling the dynamics of a drill-string with a floating fluid-

powered drill-bit, Païdoussis et al. [31] derived a mathematical formulation for of a hanging

cantilevered pipe discharging fluid downwards, which, after exiting from the free end, flows

upwards over an annular region confined by a rigid concentric cylindrical channel; i.e., for

two counter-current interdependent axial flows. For system parameters associated with a

drill-string system, as well as a bench-top-size experiment, computations were carried out.

For relatively low degrees of confinement by the outer rigid channel, the internal flow was

found to be dominant; at low flow rates, an increase in the damping caused by the exis-

tence of the annular flow was found to stabilize the system. On the other hand, for more

or less high degrees of confinement, the annular flow was found to be dominant, which leads

to destabilization of the system and precipitating flutter at relatively low internal flow ve-

locities. The dynamics of a system with reverse flow directions to those in Ref. [31] was

investigated by Qian et al. [148]; for a drill-string-like system, theoretical results demon-
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strated that divergence may take place in the case of relatively high degree of confinement.

Also, Fujita and Moriasa [149] studied the same system for both flow configurations, i.e., as

in Païdoussis et al. [31] and Qian et al. [148]. The stability of the system was examined by

implementing a separate analysis for internal and annular flow.

Later on, Moditis [150] investigated the dynamics of a hanging flexible cantilevered pipe,

coaxial with a shorter rigid outer tube, modelling a salt-cavern hydrocarbon storage system.

Two different flow configurations were considered: (i) the cantilevered pipe discharges fluid

downwards which, upon exiting the cantilever, flows upwards through the annular region

around the pipe [36]; (ii) with the flow directions reversed. Based on the formulation of

Ref. [31], a linear model was obtained. The Heaviside step function was used to model

the discontinuity in the external flow velocity. Moreover, a series of experiments were con-

ducted in a bench-top-sized system to validate the analytical results. It was found that the

full-scale system undergoes divergence rather than flutter. Also, an asymptotic behaviour

was obtained by increasing the length of the pipe. Subsequently, a numerical study on the

same system was carried out by Kontzialis et al. [151]. Results were in good agreement

with existing experimental data. A linear model was also derived by Minas et al. [152] to

investigate the dynamics of a system in which the flow discharges radially at the end of the

pipe through a special end-piece. See also Païdoussis et al. [153].

Dynamics of a cantilevered pipe subjected to concurrent internal and inverted external

flow was further investigated by Abdelbaki. First of all, a linear analysis was carried out

to examine the dynamics of a cantilevered pipe conveying fluid and subjected to a reverse

partially-confined external axial flow over its upper part [154]. Instead of a Heaviside step

function as in Ref. [150], a logistic function was used to model the discontinuity in the exter-

nal flow velocity. It was concluded that the proposed model could better predict the onset of

instability and the frequency of oscillations in comparison to Ref. [150]. Thereafter, a weakly

nonlinear model was derived by Abdelbaki et al. [155] to study the dynamics of a hanging

discharging cantilevered pipe simultaneously subjected to a fully confined external axial flow

in the reverse direction. For a slender elastomer pipe, bifurcation diagrams were presented

and the existence of limit-cycle oscillations, i.e., flutter in the first mode, was demonstrated.

In Abdelbaki et al. [156], the previous study was extended to the case of a cantilevered pipe
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discharging fluid and subjected to a partially-confined external axial flow. For different di-

mensions and material properties, the stability of the system was investigated for increasing

internal flow velocity, which also means an increase in the external flow velocity, by virtue

of continuity. An oscillatory instability, i.e., flutter in the second mode, was predicted at

sufficiently high flow velocities. Also, it was predicted that increasing flow velocity results in

increased amplitude and frequency of oscillations. Moreover, generally, a longer or a tighter

annulus destabilizes the system.

1.3 Limitations of the studies in the literature

The literature review in the foregoing allowed an assessment of the limitations, scarcity or

absence of pertinent studies, which motivated the research reported in this thesis. Based on

this literature review, to the best of the author’s knowledge, no experimental work had been

undertaken thus far to systematically investigate the dynamics of curved cantilevered pipes

conveying fluid. Experimental results would be valuable for validating theoretical models of

the problem and they can offer insights into the sensitivity of the dynamics of cantilevered

pipes conveying fluid to an initial curvature.

The foregoing review also made it evident that there has been no systematic experi-

mental study and characterization of the instability of free-clamped cylinders subjected to

unconfined axial water flow. Conducting water tunnel experiments on flexible cantilevered

cylinders in reverse axial flow provides the opportunity to investigate the onset of instability

and the post-instability behaviour of the system, including the large-amplitude post-critical

dynamics of the system. The experimental results would be useful for validating and de-

veloping analytical and numerical models. Also, the experimental results would shed some

light on the physical dynamics and the mechanisms of instabilities for the system of inverted

cantilevered cylinders.

The literature review in the previous section also highlights a noticeable scarcity of stud-

ies focusing on pipes simultaneously subjected to both internal and external axial flows,

especially as compared to research on pipes conveying fluid and cylinders in axial flow. In

particular, few studies have addressed cases where the internal and external flows are inter-

dependent with the two flows in opposite directions. Furthermore, experimental studies for

this specific system are very limited. Therefore, a systematic experimental investigation of
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Figure 1.8: Schematic view of the three systems of slender cantilevered cylinders subjected to

internal, external, or simultaneous internal and external axial flows; (a) system I: a slightly curved

cantilevered pipe discharging/aspirating fluid; (b) system II: an inverted cantilevered cylinder in

axial flow, i.e. a cylinder with the upstream end free and the downstream end clamped; (c) system

III: a hanging fluid-discharging pipe subjected to a reverse external flow over its upper portion

through the annulus formed by a co-axial shorter outer rigid tube.

the dynamics of a fluid-discharging cantilevered pipe simultaneously subjected to a reverse

annular axial flow over its upper portion is needed. The literature shows that, no experi-

mental investigation has been conducted to explore the dynamical behaviour of this system

with impacting. Experiments can be useful in characterizing the effect of some of the main

system parameters on its dynamics, including external flow confinement, confinement length,

pipe slenderness and material, eccentricity between the pipe and the outer rigid tube, and

external flow constriction at the inlet or outlet of the annulus. Moreover, the analytical

models found in the literature have struggled to accurately predict critical flow velocities

in real full-scale brine-string systems in salt-mined caverns as they do not account for the

presence of two different fluids in the cavern. To achieve more realistic predictions of critical

flow velocities for full-scale systems, it is imperative to eliminate these simplifications.

1.4 Thesis scope and objectives

The main objective of this thesis is to study the dynamics of slender cylindrical cantilevers

subjected to internal, external, or simultaneous counter-current internal and external axial

flows. In particular, the dynamics of three closely related systems of slender cylindrical

structures subjected to internal and/or external axial flows are examined experimentally
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and/or by developing analytical FSI models. These three systems are schematically shown

in Fig. 1.8. System I involves a slightly curved cantilevered pipe conveying fluid, system II

is a free-clamped cylinder in axial flow, and system III involves a hanging cantilevered pipe

discharging fluid and subjected to a reverse external flow over its upper portion through the

annulus formed by a co-axial shorter outer rigid tube. The motivation for this study stems

not only from curiosity and the lacunae mentioned in the previous section, but also from

the industrial applications of these systems. Especially, for system III, which is the main

part of this study, the most important motivation behind this investigation is to characterize

the dynamics of brine-strings in salt-mined caverns during the retrieval mode of operation.

Therefore, exploring the fluid-elastic instabilities and the dynamical behaviour of this system

as the internal and external flow velocities are varied and the effect of the main system

parameters is the primary concern of this thesis.

The aims and objectives of this thesis can be outlined as follows.

• Exploring experimentally the influence of a slight initial curvature on the dynamics of

cantilevered pipes discharging/aspirating fluid.

• Determining experimentally the dynamics of an inverted cantilevered cylinder in water

flow (system II), as well as investigating the influence of the main system parameters

including the free-end shape of the cylinder, its slenderness, flexural rigidity and planar

or 3D motions.

• Exploring experimentally the dynamics of system III, and investigating the effect of

post-instability impacting of the pipe on the outer rigid tube, as well the effect of the

main system parameters. These parameters include the (i) confined length ratio, (ii)

size of the annular gap, (iii) pipe slenderness, (iv) pipe material properties and shape,

(v) flow constriction at the upstream or downstream end of the annular region, and

(vi) eccentric positioning of the outer rigid tube relative to the central pipe.

• Developing an analytical model for an idealized brine-string in salt-mined caverns dur-

ing the retrieval mode of operation. This model represents the brine-string as a fluid-

discharging cantilevered pipe conveying fluid and subjected to a partially confined

reverse external axial flow of a different fluid.
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1.5 Thesis structure

The papers in this manuscript-based thesis, consisting of five manuscripts [1–5], have

been assembled in a logical rather than a chronological order. This thesis comprises seven

chapters, with this chapter serving as the introduction (Chapter 1). The remaining six chap-

ters are summarized as follows.

The first publication [1], presented in Chapter 2, discusses and analyzes experiments on

the dynamics of a slightly curved cantilevered pipe discharging/aspirating fluid (system I).

In this work, making use of a bench-top-size apparatus consisting of a hanging straight or

curved cantilevered pipe conveying fluid, four different cases were explored: (i) a straight

pipe discharging water in a reservoir filled with air, (ii) a curved pipe discharging water in a

reservoir filled with air, (iii) a straight pipe aspirating water in a reservoir filled with water,

and (iv) a curved pipe aspirating water in a reservoir filled with water.

In the second publication [2], presented in Chapter 3, the experimental results on the

dynamics of an inverted cantilevered cylinder in axial water flow (system II) are presented

and discussed. The effect of the main system parameters including the flexural rigidity of the

cylinder, its length-to-diameter ratio and free-end shape are explored and the mechanisms

underlying the onset of flutter and static divergence are discussed.

In the third and fourth publications [3, 4], presented in Chapters 4 and 5, a bench-top-

size apparatus was utilized to explore the dynamics of system III. This apparatus consists

of a pressure vessel filled with water, a hanging flexible cantilevered pipe conveying fluid

downwards, and a shorter outer rigid tube surrounding the upper portion of the pipe, which

contains an upwards flow. The primary focus of Chapter 4 (Ref. [3]) is to investigate the

influence of the confinement length on the dynamics of the system for various ratios of exter-

nal to internal flow velocity. Additionally, this study examines the post-instability dynamics

and the effect of impacting of the pipe on the coaxial shorter outer rigid tube. Chapter

5 (Reference [4]) discusses the experimental findings regarding the effect of external flow

confinement, pipe slenderness, pipe material, the positioning of a constraint at the external

annular flow inlet/outlet, and the eccentric positioning of the outer rigid tube relative to the

central pipe.

Chapter 6 is dedicated to the analytical model developed for the dynamics of system
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III, serving as an idealized model for brine-strings during product retrieval in full-scale salt-

mined caverns, presented in Ref. [5]. This paper, currently under review, utilizes a Newto-

nian approach to derive the equation of motion for system III. It considers the presence of

two different fluids (brine and product) in the cavern and a variable brine-product interface

level.

Chapter 7 provides a summary of the key findings from Chapters 2 to 6 and explores

potential avenues for future research.
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CHAPTER 2

Dynamics of Slightly Curved Cantilevered Pipes Conveying Fluid: An

Experimental Investigation

Preface

In this chapter the dynamics of system I is investigated, in the first manuscript pre-

sented in this thesis [1]. This system involves a slender cantilevered cylinder subjected to

internal flow, specifically a slightly curved clamped-free tubular beam conveying fluid. The

fluid-elastic system of a pipe conveying fluid exhibits a rich variety of dynamical behaviours,

including static divergence, Hopf bifurcation, and chaotic behaviour. A slight initial curva-

ture introduces another layer of complexity to this system.

As mentioned in the introduction, despite the fact that pipes in real-world applications

are often subject to imperfections, including initially curved shapes, research on pipes with

initial curvature, particularly experimental studies, remains relatively scarce. Addressing

this gap has led to the current investigation. This study was aimed at providing insights

into the sensitivity of the dynamics of discharging/aspirating cantilevered pipes to geometric

imperfections, in alignment with one of the objectives of the thesis stated in the Introduc-

tion.

In this work, four different cases were examined experimentally. Cases (i) and (ii) in-

volved fluid-discharging straight or curved pipes; while cases (iii) and (iv) fluid-aspirating

straight or curved pipes.

This study has revealed that, as the flow rate increases, discharging cantilevered curved

pipes undergo substantial static deformation due to the exaggeration of the initial curvature.

This static deformation is succeeded by a strong, abruptly occurring second-mode flutter at

sufficiently high flows. Depending on the static equilibrium position of the pipe just before
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instability occurs, the onset of this flutter could be higher or lower than that for a straight

discharging pipe. The oscillations were predominantly periodic and they occurred only in

the plane of the initial curvature.

Aspirating curved pipes, with increasing flow rate, exhibited a sequence of dynamical

states as follows. Initially, the pipe underwent a static deformation; subsequently, at suffi-

ciently high flows, a weak first-mode flutter was superimposed on the mean deflection. As the

flow rate was increased further, both the static deformation and the oscillations continued

to amplify. Since aspirating pipes were submerged in water, the oscillations were influenced

by the damping induced by the surrounding fluid, leading to relatively smaller amplitudes of

oscillations, as compared to discharging pipes (in air). Unlike the two-dimensional motions

observed in the case of discharging curved pipes, the motions of aspirating curved pipes were

not confined to the plane of initial curvature. The observed flutter was characterized by its

unsteady, near-intermittent, and weak nature, with a greater chaotic content, as compared

to straight aspirating pipes.
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Experimental investigation of the dynamics of slightly curved cantilevered

pipes conveying fluid

M. Chehreghani, A. Shaaban, A.K. Misra, M.P. Païdoussis∗

Department of Mechanical Engineering, McGill University,

817 Sherbrooke Street West, Montreal, QC, Canada H3A 0C3.

Abstract: The dynamics of slightly curved cantilevered tubular beams conveying fluid was

investigated experimentally. Apart from exhibiting a rich dynamical behaviour, interest

in the matter arises mostly because in real-world applications pipes conveying fluid are

often subject to geometric imperfections, rendering a straight pipe curved. A bench-top-

size apparatus consisting of a reservoir and a hanging straight or curved clamped-free pipe

conveying fluid was utilized. Four different cases were explored: (i) a water-discharging

straight pipe in air (in the reservoir filled with air), (ii) a water-discharging curved pipe

in air, (iii) an aspirating straight pipe submerged in quiescent water (in the reservoir filled

with water), and (iv) an aspirating curved pipe submerged in quiescent water. Making

use of a contactless optical technique, the displacement time-series signal was obtained and

analyzed to characterize the nature of the motions. It was found that curved cantilevered

pipes conveying fluid display quite interesting nonlinear fluid-structure interaction dynamics.

For initially curved discharging pipes, a large flow-induced static deformation materialized

prior to the onset of an oscillatory instability. Aspirating curved pipes, on the other hand,

are subjected to weak flutter superimposed on a static deformation.

Keywords :Fluid-structure interaction, Flow-induced instability, Hopf bifurcation, Flutter,

Static deformation.

2.1 Introduction

The dynamics of the fluid-elastic system of a pipe conveying fluid has been studied quite

extensively, since at least 1939 [1]. The main reason that the dynamics of this system has

attracted so much attention since then is perhaps its ability to display a rich dynamical

behaviour, despite being relatively simple to analyze and easy to realize physically [2].
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In addition to interest in the dynamics of pipes conveying fluid from a fundamental re-

search point of view, studies on the subject are also motivated by applications; for instance,

propulsion of watercraft [3, 4], submarine pipelines and risers [5, 6], Ocean Thermal Energy

Conversion (OTEC) [7], and pipes in solution-mined caverns [8, 9].

After the pioneering work conducted in 1950-1970 on the dynamics of pipes conveying

fluid [10–19], many researchers have examined numerous variations of this system, such as

pipes with added supports, masses, linear and nonlinear springs and dashpots, end-nozzles,

as well as pipes made of functionally graded materials, composite and soft active materials,

just to name a few [20–30].

Pipes discharging fluid offer a simple experimental and theoretical tool to explain known

dynamical behaviour and to explore new dynamical characteristics, thereby becoming a

paradigm in dynamics [31]. For instance, it has been demonstrated via a nonlinear model

that a pipe with supported ends is only subject to static divergence; being a gyroscopic con-

servative system, it cannot flutter [32, 33]. This invalidates the prediction of coupled-mode

flutter via an earlier linear model [34]. A cantilevered fluid-discharging pipe, on the other

hand, is a nonconservative system and develops an oscillatory instability via either a sub-

or supercritical Hopf bifurcation at high enough flow rates [35–37]. For a cantilevered pipe

with nonlinear motion-restraining constraints, beyond the Hopf bifurcation, the existence of

a period-doubling route to chaos was demonstrated [23, 38, 39]. Another interesting finding

is that the instability of a cantilevered pipe in a certain mode can give rise to instability of

another mode, resulting in a complicated double Hopf bifurcation interaction [40]. Also, for

a cantilevered pipe at a supercritical flow rate, an axial base excitation is able to eliminate

instability for some particular system parameters [41].

The dynamics of cantilevered pipes aspirating fluid, i.e. with fluid flowing from the free

end towards the clamped one (in the reverse direction to that of a discharging cantilever),

has been controversial [42] and perhaps is still not a fully resolved issue in Fluid-Structure

Interactions (FSI). Over the past 50 years, since the 1960s, some experimental and theoreti-

cal work has concluded that an aspirating pipe cannot flutter (at least over the range of flow

velocities tested in the experimental investigations), namely, experiments described in [42]

conducted at the Chalk River Nuclear Laboratories, and Ref. [43, 44]. In contrast, some
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studies have postulated that aspirating pipes are inherently unstable, and that the reason

they flutter at relatively small, rather than vanishing, flow velocities is due to dissipation

related to friction with the external fluid medium [45]. Some studies predict that self-excited

oscillations do indeed occur, but at relatively high, rather than vanishing, flow rates [46–48].

Perhaps, the conclusion is that pipes aspirating fluid do flutter at high enough flows, but

the flutter is of a rather weak and near-intermittent nature [2, 49–52].

Tubular slender structures used in real-world applications, as in soft robots [53], ocean

mining [54], deep-water risers used for oil or on-board Liquefied Natural Gas (LNG) produc-

tion [55] and renewable energy systems [56], are commonly subject to imperfections, often

resulting in a curved pipe shape. However, compared to straight pipes, research on ini-

tially curved pipes is relatively scarce, usually only theoretical, often only considering pipes

with supported ends. As discussed by [42], in many studies and particularly in early work,

experiments were conducted using slightly curved pipes unintentionally. On this note, the

important study by [57] is recalled where surgical quality silicone rubber pipes were used,

which suffer a slight bend. A static “distortion” of the pipe prior to instability was reported

and it was postulated that the reason for the prediction of lower instability boundaries using

a theoretical model for the perfectly straight pipe is due to the lack of straightness and

residual internal stress of the pipes.

The seminal work of Misra et al. [58, 59] investigates the dynamics of curved pipes

with supported extremities and compares the results obtained via extensible and inextensi-

ble centreline theoretical models, concluding that semi-circular pipes conveying fluid do not

buckle. Czerwiński and Łuczko [60] have studied the dynamics of curved pipes with fixed

ends conveying steady or pulsating flows, both theoretically and experimentally. A nonlinear

model for a clamped-clamped pipe discharging fluid with several initial curvature shapes was

derived by Yun-dong and Ze-gang [61]. It was found that imperfect clamped-clamped pipes,

with increasing flow velocity, are subjected to static deflection, but they do not lose stability.

Nonlinear dynamics of cantilevered fluid-discharging pipes with different slightly curved

shapes was explored by Zhou et al. [62]. It was found that, with increasing flow velocity,

the initial curvature of the pipe is dramatically magnified. Eventually, at high enough flows,

the pipe is subjected to an oscillatory instability, the onset of which mainly depends on the
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static equilibrium position of the system just before the threshold of the hydro-elastic insta-

bility. Chen et al. [63] derived a geometrically exact nonlinear model for large-deformations

of a vertical cantilevered pipe; in this work, the dynamics of a pipe with semi-circular initial

shape was examined, focusing on the effect of the mass ratio and a gravity parameter.

Free and forced vibration of a discharging L-shaped pipe was studied theoretically by

Zhou et al. [64]. It was found that the pipe develops a large static deformation prior to

the onset of limit-cycle oscillations. In the case of forced vibrations, depending on the flow

rate, the amplitude and frequency of the external force, period-n, quasi-periodic and chaotic

regimes were detected.

A fuller review of the extensive work on pipes conveying fluid is provided in the mono-

graph by Païdoussis [42] and in a recent review [2]. Nevertheless, the foregoing literature

survey shows that, to the authors’ best knowledge, there has been no experimental work to-

date exploring systematically the dynamics of curved cantilevered pipes conveying fluid. This

lacuna has motivated the present study, aiming to examine experimentally the dynamics of

cantilevered pipes with an initial curvature. The evolution with increasing flow of the initially

curved static equilibrium, as well as the onset of oscillatory instability of this hydro-elastic

system, is investigated. Specifically, the dynamics of curved fluid-discharging and aspirating

cantilevered pipes are compared to those of their straight counterparts. The experimental

results provided in this paper could be useful in validating analytical and numerical models of

the problem and they provide some insight on the sensitivity of the dynamics of cantilevered

pipes conveying fluid to a slight initial curvature.

The rest of this paper is structured as follows. The experimental apparatus and method-

ology are described in Sect. 2.2. In Sect. 2.3, the experimental results are presented and

discussed. Finally, Sect. 2.4 presents some concluding remarks.

2.2 Apparatus and methodology

The experiments were conducted in the SMRI-PRCI [Solution Mining Research Institute-

Pipeline Research Council International] apparatus, schematically shown in Fig. 2.1, located

in the FSI laboratory of McGill University. The experimental setup comprises a stainless steel

cylindrical pressure vessel of approximately 0.5 m inner diameter with four symmetrically

located glass windows, allowing viewing and access to the test-section, a flexible pipe hung
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Figure 2.1: Schematic view of the pressure vessel of the SMRI-PRCI apparatus used in the

experiments and the dual-camera system. (a) The hanging cantilevered pipe discharges water down

into the pressure vessel that is filled with air, with the discharged water from the pipe exiting

from the bottom of the pressure vessel; (b) zoomed view of the discharging pipe configuration. (c)

The pressure vessel is filled with water and the pipe aspirates the fluid (the fluid introduced into

the vessel from its top end flows upwards in the pipe); (d) zoomed view of the aspirating pipe

configuration.
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Table 2.1: Mechanical properties and dimensions of the pipes used in the experiments.

EI [Nm2] m[kg m−1] L [mm] do [mm] di [mm]

7.37 ×10−3 0.191 441 16.0 6.35

from its top end, a water storage tank, centrifugal pumps with digital controllers, a Bourdon

tube pressure gauge, and a synchronized dual-camera system.

Two flexible pipes utilized in these experiments are shown in Fig. 2.2, the first straight and

the second initially curved. Both pipes were made of RTV (Room-Temperature-Vulcanizing)

silicone-rubber, and they were cast straight in-house from a two-component silicone-rubber

liquid mixture in the manner described in Appendix D of Ref. [42]. They were both then

mounted in an oven for 24 hours at a temperature of 180°C, the first one totally straight and

the second one deformed using a semi-circular fixture, so that, when taken out from the oven,

the curved pipe shape depicted in Fig. 2.2(b) was obtained. The two pipes had the same

material properties and dimensions, given in Table 2.1, allowing us to compare the effect

of curvature on the dynamics. In Table 2.1, EI stands for the flexural rigidity, L length,

do outer diameter, di inner diameter and m mass per unit length of the pipe. The modal

logarithmic decrement of the pipe in the rth beam-eigenmode, based on a linear interpolation

of the measured first three mode decrements, can be expressed by δr = 0.0521r − 0.0151.

The initial curvature of the pipe when hung in air can be modelled with a linear

combination of cantilever beam eigenfunctions:

η0(ξ) = aϕ1(ξ) + bϕ2(ξ) + cϕ3(ξ) + ..., (2.1)

in which a, b, c,... are constants, ξ = x/L is the dimensionless axial coordinate along

the undeformed (straight) pipe axis, with origin located at the fixed end, η = w/L is the

dimensionless lateral pipe deflection, and

ϕr(ξ) = coshλrξ − cosλrξ

− σr (sinhλrξ − sinλrξ) , (2.2)
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(a) (b)

Figure 2.2: Photographs of the two pipes used in the experiments: (a) the straight pipe; (b) the

pipe with a semi-circular initial curvature.

Figure 2.3: Characterization of the pipe curvature with a combination of a cantilevered beam

mode shapes.
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Table 2.2: Multiplicative conversion factors from dimensionless flow velocity and frequency to

dimensional terms, and the dimensionless parameters for the pipes used in the experiments.

Flow configuration u → U [m/s] ω → f [Hz] ε β γ

Discharging pipe 1.095 0.1488 27.56 0.1417 25.38

Aspirating pipe 1.095 0.1080 27.56 0.07464 2.525

where

σr =
sinhλrL− sinλrL

coshλrL+ cosλrL
, (2.3)

in which λr is the rth eigenvalue of the dimensionless cantilever beam characteristic equation.

Fig. 2.3 shows the characterization of the curved pipe with a linear combination of the first

three cantilevered beam-modes, resulting in the following constant values: a = 0.967× 10−2,

b = −0.838 × 10−2 and c = 0.150 × 10−2. For the curved pipe used in this experiments,

combination of the first three modes can approximate the pipe curvature sufficiently well.

In this experimental study, four cases were examined: (i) a water-discharging straight

pipe in air, (ii) a water-discharging curved pipe in air, (iii) a water-aspirating straight pipe

submerged in water, and (iv) a water-aspirating curved pipe submerged in water. In what

follows, we shall simply refer to these cases as “discharging straight pipe”, “discharging curved

pipe”, “aspirating straight pipe” and “aspirating curved pipe”, respectively. For the experi-

ments with discharging pipes, a centrifugal pump supplied water from a storage tank to the

pipe and the pipe discharged water downwards. Water, upon exiting the pipe, was taken

out from the bottom of the pressure vessel. In this case, the pressure vessel was filled with

air, refer to Figs. 2.1(a, b). For the experiments with aspirating pipes, on the other hand,

the pressure vessel was filled with water. In particular, in cases (iii) and (iv), a centrifugal

pump supplied water from the storage tank to the pressure vessel top. The water was then

aspirated by the pipe, as shown in Figs. 2.1(c, d).

In both discharging and aspirating flow configurations, the flow velocity inside the pipe,

U , could be determined from the measured volumetric flow rate and the known value of

di. Note that for the aspirating flow configuration, by continuity, the volumetric flow rate
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entering the pressure vessel outside the pipe, Qo, equals the flow rate inside the aspirating

pipe, Qi; hence Uo/U = d2i /(d
2
ch − d2o), where Uo is the external flow velocity, and dch ≃

0.5 m is the pressure vessel inner diameter. Given the dimensions of the pipe used in the

experiments, Uo ≃ 1.6× 10−4U ; therefore, considering that the fluid outside the pipe is qui-

escent is quite reasonable. For the aspirating flow configuration, the static pressure inside

the pressure vessel was also measured (useful for eventual comparison with theory) via a

conventional Bourdon tube pressure gauge.

In each experiment, the flow velocity was gradually increased to instability, using a digital

controller. At each flow velocity step, the apparatus was kept running sufficiently long to

ensure reaching a steady state. Then, making use of a non-contacting optical displacement

follower, via two FLIR® Machine Vision synchronized colour cameras, the motion of the

pipe was tracked and recorded at a frame rate of 64 FPS for a duration of one minute at

each flow velocity step. More specifically, using a Grasshopper 3 USB 3.0 Vision perpen-

dicular dual-camera system with an external trigger via a function generator, the motion

of the centroid of a “red-spot” on the pipe, refer to Figs. 2.1 and 2.2, was recorded. The

red-spot was 38 mm long and its centroid was located at 2L/3 from the pipe clamped end.

The “front” and “side” cameras were focused on the red-spot and were identically levelled and

equidistant (with a distance of 1 m) from the front and side windows of the pressure vessel.

The optical errors due to changes in object distance and observation angle were neglected.

Subsequently, making use of a video processing Matlab (Mathworks, Inc.) script, each

recorded frame was converted into a binary image and once the red-spot was detected, the

centroid of the area in pixel units could be determined. Next, the centroid location in pixel

units was converted into millimeters using the known dimensions of the red-spot to obtain

the front and side displacement time-series from the recorded videos at each flow velocity.

The displacement time-series were then smoothed using a polynomial spline and further

processed to yield qualitative and quantitative measurements of the motion Power Spectral

Densities (PSDs), Probability Density Functions (PDFs), Lyapunov exponents, autocorrela-

tion functions, Poincaré maps and bifurcation diagrams, in order to determine the nature

of the pipe motions and its dynamics. In the displacement time-series analysis, the initial

undeformed state of the pipe at zero flow velocity served as a reference relative to which the
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motions were measured.

2.3 Results

2.3.1 Dimensionless terms

It is convenient to use the dimensionless parameters, habitually used in the FSI commu-

nity, to facilitate comparing the results obtained here with future analytical or subsequent

experimental work. The conventional dimensionless flow velocity and frequency [42] are as

follows:

u =

(
M

EI

)1/2

LU,

ω =

(
m+M +Ma

EI

)1/2

L2 (2πf) , (2.4)

in which M = ρifAi denotes the mass of the fluid inside the pipe per unit length flowing

with a steady velocity U , and Ma = ρefAo is the virtual (added) mass associated with the

surrounding fluid medium per unit length, where ρif is the density of the internal fluid (water

in this case), ρef is the density of the surrounding fluid (air for discharging pipes and water for

aspirating pipes); and Ai = (π/4)d2i and Ao = (π/4)d2o are the inner and outer cross-sectional

area of the pipe, respectively. For the pipe used in the experiments, for both discharging

and aspirating flow configurations, the conversion factors from dimensionless to dimensional

terms are presented in Table 2.2, which could provide a “feel” of the experimental results.

Also, shown in the table are:

ε =
L

D
, β =

M

m+M +Ma

,

γ =
(m+M −Ma)

EI
gL3, (2.5)

where ε is the pipe slenderness, β is a mass parameter and γ is a gravity parameter.

2.3.2 Results for fluid-discharging pipes

In this section, the dynamics of a fluid-discharging curved cantilevered pipe is compared

to that of a straight one. The experimental bifurcation diagrams showing the variation of

displacement rms amplitude versus flow velocity for the fluid-discharging straight and curved

pipes are presented in Fig. 2.4. In these bifurcation diagrams, the rms of the total displace-

ment and the mean pipe deflection are plotted against u in Fig. 2.4(a, b), whereas in Fig.
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(a) (b)

(c) (d)

Figure 2.4: Bifurcation diagrams showing the rms of total displacement, mean deflection and the

oscillatory displacement as a function of flow velocity for: (a, c) fluid-discharging straight pipe; (b,

d) fluid-discharging curved pipe. Rms amplitude: (•) pre-instability, (■) post-instability; (×) mean

deflection.

2.4(c, d) the variation of the oscillatory part of the displacement signal versus u is depicted.

Additionally, wavelet transform scalograms showing the frequency content of the discharging

straight and curved pipes at each flow step are shown in Fig. 2.5.

The bifurcation diagrams of Fig. 2.4 and scalograms of Fig. 2.5 indicate that both

the straight and curved pipes are subjected to a self-excited oscillatory instability, namely

second-mode flutter, at sufficiently high flow velocities; in Fig. 2.4(a, c) at u = 5.91, and

in Fig. 2.4(b, d) at u = 6.28. This self-excited flutter is a movement-induced instability in

Naudascher and Rockwell’s classification [65]. The main difference between the dynamics
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(a) (b)

Figure 2.5: Continuous wavelet transform scalogram with the vertical bands corresponding to the

flow velocity steps for (a) fluid-discharging straight pipe; (b) fluid-discharging curved pipe.

of the curved and straight pipes, however, is that the curved pipe developed a relatively

large amplitude static deformation prior to the threshold of flutter. More specifically, at

quite small flow velocities, u < 0.83, the curved pipe remained more or less stationary at its

initial curved shape. Increasing the flow velocity resulted in a gradual exaggeration of the

initial curvature towards one side, with the pipe deforming in a first-mode shape; and then

in the opposite side, with the pipe now deforming in a second-mode shape. In this range of

flow velocities, in addition to the large gradually increasing static deformation, very weak

random superimposed oscillations with a small amplitude were observed, most likely due to

turbulence buffeting. Eventually, increasing the flow velocity further to u = 6.28, resulted

in large amplitude flutter.

It should be stressed that the deformation of the curved pipe took place in the plane of

initial curvature and therefore both static deflection and oscillatory motions were 2D. The

onset of the oscillatory instability for the curved pipe was higher than that for a straight

pipe.

It is worth mentioning that another set of experiments was conducted making use of

a pipe with a relatively larger initial curvature than the pipe shown in Fig. 2.2(b). The

pre-instability static deformation of this pipe was so large that the middle portion of the

pipe became almost horizontal and the red spot used for tracking was no longer visible from
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Figure 2.6: Dynamics of the fluid-discharging straight pipe at u = 6.25 (U = 6.85 m/s). (a)

Displacement time traces; (b) polar trajectory of the motion; (c) phase plane contour plot of the

front displacement; (d) autocorrelation of oscillatory part of the front displacement; (e) PDF of

oscillatory part of the front displacement; (f) Poincaré map.
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Figure 2.7: Dynamics of the fluid-discharging curved pipe at u = 6.34 (U = 6.95 m/s). (a)

Displacement time traces; (b) polar trajectory of the motion; (c) phase plane contour plot of the front

displacement; (d) autocorrelation of the oscillatory front displacement; (e) PDF of the oscillatory

front displacement; (f) Poincaré map.
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the windows of the pressure vessel; this pipe became unstable by flutter at relatively lower

flow velocity than the straight pipe, namely at u ≃ 4.90 (U ≃ 5.37 m/s), as compared to

u = 5.91 for the straight pipe. Therefore, the onset of flutter for a curved pipe may or may

not be higher than that of a straight one, depending on the static equilibrium configuration

of the pipe just prior to the threshold of instability.

The nature of the oscillation of the fluttering pipe can be compared by means of the

analysis presented in Figs. 2.6 and 2.7 for the straight and curved pipe, respectively.

The time series of the displacement signals presented in Fig. 2.6(a) show a periodic 3D

oscillation, whereas those of Fig. 2.7(a) a 2D periodic oscillation of larger amplitude. Nev-

ertheless, both sets of time traces show that the oscillation is predominantly periodic. Also,

the scalograms shown in Fig. 2.5 indicate a clear dominant frequency of ω ≃ 16.5 (f ≃ 2.45

Hz), associated with the second-mode frequency of the pipe and its harmonic, 2ω ≃ 33.0

(2f ≃ 4.90 Hz). In the case of the straight pipe, as shown in Fig. 2.5(a), we see a rather

diffuse second mode, whereas for the curved pipe it is more focused, as seen in Fig. 2.5(b);

also, the frequency of 2ω is weaker for the curved pipe, probably due to the fact that the

curved pipe has fewer degrees of freedom because of its initial curvature, resulting in 2D mo-

tions. Additionally, the polar visualization of the pipe motion in Fig. 2.6(b) and Fig. 2.7(b),

confirm that the flutter observed for the curved pipe was a 2D periodic oscillation about

the static equilibrium position of the pipe. Comparing the phase plane plots of Fig. 2.6(c)

and Fig. 2.7(c) provides additional evidence of the periodic nature of the flutter observed

for both curved and straight discharging pipes. Taking the different scales of the two figures

into account, the phase portrait for the curved pipe displays relatively greater scatter; this

may reflect a stronger chaotic component in the flutter of the curved pipe.

The autocorrelations of the oscillatory part of the front displacement for both pipes are

characteristic of periodic motion, as they are both periodic and the autocorrelation of the

signal does not rapidly approach zero [39]. The stronger decay of the autocorrelation in the

case of the curved pipe, however, suggests that the weak chaotic component of the oscillation

is relatively stronger for the curved pipe.

The double-hump shape of the PDFs of the oscillatory part of the front displacement

shown in Fig. 2.6(e) and Fig. 2.7(e) is also characteristic of a periodic oscillation. Finally,

42



Figure 2.8: The largest Lyapunov exponent of the displacement time series for fluid-discharging

pipes: (•) straight pipe front, (■) straight pipe side, (▲) curved pipe front, (♦) curved pipe side.

the Poincaré maps of Fig. 2.6(f) and Fig. 2.7(f) confirm the previous conclusion: the flow-

induced instability results in a predominantly periodic oscillatory motion for both straight

and curved discharging cantilevered pipes. Nevertheless, there exists a weak chaotic compo-

nent, stronger in the curved pipe than in the straight one.

An effective version of the algorithm by Wolf et al. [66] was utilized to calculate the

the largest Lyapunov exponent, λ1, from the experimental time series. As seen in Fig. 2.8,

λ1 ≃ 0 in the range prior to the onset of flutter, as well as for u ≃ 6.3 where flutter occurs.

Nevertheless, just prior to the onset of flutter, namely for u =5 to 6, there are positive, albeit

small, values of λ1, indicating enhanced chaotic content of the oscillation. This behaviour

can be explained by the fact that the pipe undergoes a kind of “hesitation” just prior to flut-

ter. This hesitation behaviour has previously been observed in experiments in some other

FSI systems involving an oscillatory instability [42]. However, when flutter takes place, the

chaotic component becomes very weak and the periodic content is dominant.

2.3.3 Results for fluid-aspirating pipes

In this section, the dynamics of aspirating curved and straight cantilevered pipes are

compared. It is recalled that in this case the pipe is immersed in water. The experimental

bifurcation diagrams of the pipe displacement as a function of the flow velocity are plotted

in Fig. 2.9. The frequency content of the displacement signal for the straight and curved

pipe is presented in Fig. 2.10(a, b), respectively. Note that Fig. 2.9(a, b), shows the rms of
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(c) (d)

Figure 2.9: Bifurcation diagram showing the rms of total displacement and the difference between

the rms of the total displacement and the mean deflection for: (a, c) fluid-aspirating straight pipe;

(b, d) fluid-aspirating curved pipe. Rms amplitude: (•) pre-instability, (■) post-instability; (×)

mean deflection.

the total displacement versus u, as well as the pipe mean deflection at each flow step; the

oscillatory part of the displacement signal as a function of flow velocity is presented Fig. 2.9

(c, d).

We first discuss the dynamics of the straight aspirating pipe. The bifurcation dia-

grams of Fig. 2.9(a, c) and scalogram of Fig. 2.10(a), indicate that at relatively small

flow rates, namely u < 2.59, the straight pipe remained stationary with only very small

random motions, most likely due to turbulence in the flow. Increasing the flow velocity

further resulted in stronger oscillations involving an increase in the slope in the bifurcation
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(a) (b)

Figure 2.10: Continuous wavelet transform scalogram in which the vertical bands correspond to

the value of the flow velocity for (a) fluid-aspirating straight pipe; (b) fluid-aspirating curved pipe.

diagrams of Fig. 2.9(a, c) at u ≃ 2.85 and the appearance of a first-mode-like frequency

in the scalogram of Fig. 2.10(a), indicating the onset of an oscillatory instability via first-

mode flutter. Increasing the flow velocity further gave rise to oscillations of larger amplitude

and stronger first-mode frequency content. It should be remarked that, as compared to its

fluid-discharging counterpart, transition from the static equilibrium position to instability for

the aspirating straight pipe was rather gradual. Also, the instability observed was a rather

anaemic first-mode flutter, likely as a result of the damping from the surrounding quiescent

fluid (water) and influenced by the cross-flow component at the inclined pipe entrance.

The nature of this flutter is investigated further by means of the analysis shown in Fig.

2.11 for the post-instability oscillations of the straight aspirating pipe at a typical flow

velocity of u = 5.18. The time traces of Fig. 2.11(a) illustrate the unsteadiness and near-

intermittent nature of the flutter observed; however, one can still detect a strong periodic

component. The polar trajectory of the pipe shown in Fig. 2.11(b) depicts how the direction

and amplitude of the pipe oscillations varies. The phase plane plot of the front displace-

ment, the autocorrelation, and the PDF of the front oscillatory displacement, as well as

the Poincaré map presented in Fig. 2.11(c-f) provide further evidence of the unsteadiness

and near-intermittent nature of the flutter, suggesting that, eventually, at higher flows, this

system may follow the intermittency route to chaos.
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Now we turn our attention to the curved aspirating pipe. In this case, the system became

unstable via first-mode flutter at u ≃ 2.52, as shown in Fig. 2.9(b), i.e. at slightly lower

critical flow velocity than that for the straight pipe (u=2.85); however, prior and after the

onset of flutter, a relatively large gradual static deformation was observed as the flow velocity

was increased. More specifically, the oscillations due to the instability were superimposed on

the pipe mean deflection, as shown in Fig. 2.9(b, d). The bifurcation diagrams demonstrate

that, even though the amplitudes of the static divergence for the curved pipe was relatively

large, compared to the straight pipe, the amplitudes of the oscillatory part of the displace-

ments were more or less similar. Fig. 2.10(b) shows the frequency of the motion at each

flow velocity step: the first-mode oscillations superimposed on the mean deflection initiated

at u ≃ 2.59 and developed to more powerful oscillations at higher flows. The bifurcation

diagrams and the frequency scalograms suggest that, apart from the relatively large static

deformation of the curved aspirating pipe, the oscillatory part of the displacement for both

the curved and straight pipe, up to the maximum flow velocity investigated, were similar in

terms of amplitude and frequency. The oscillations for the curved pipe took place about the

mean deflected state, whereas for the straight pipe about the undeformed position. Similar

to the straight pipe, the oscillatory instability developed was an unsteady weak first-mode

flutter, influenced by the flow-induced damping due to the surrounding quiescent fluid and

perhaps by the unbalanced impacting of the surrounding fluid at the tip of the pipe due to

the cross-flow component of the fluid in the vicinity of the pipe inlet. As a result, the curved

pipe is subjected to flutter of a more unsteady nature than the straight one.

The post-flutter oscillations of the curved aspirating pipe are explored further, at u =

5.18, in Fig. 2.12. The time traces of Fig. 2.12(a) exhibit an unsteady flutter of a fitful na-

ture; yet, with substantial periodicity. The polar trajectory of the curved pipe presented in

Fig. 2.12(b) confirms the near-intermittent nature of the oscillations. The phase-plane plot

of Fig. 2.12(c) shows that the oscillations took place about the evolving static equilibrium

position of the pipe. Comparing the autocorrelation, the PDF, and the Poincaré map of Fig.

2.12(d-f) for the curved aspirating pipe to those of Fig. 2.11(d-f) for the straight aspirating

pipe demonstrates that the intermittency and unsteadiness of the motion is more pronounced

in the case of the curved pipe. Similar to the straight aspirating pipe, the analysis presented

46



0

/6

/3

/2

2 /3

5 /6

7 /6

4 /3

3 /2

5 /3

11 /6

 r= 3.262 (mm)

(a) (b)

(c) (d)

(e) (f)

Figure 2.11: Dynamics of the fluid-aspirating straight pipe at u = 5.18 (U = 5.68 m/s). (a)

Displacement time traces; (b) polar trajectory of the motion; (c) phase plane contour plot of the

front displacement; (d) autocorrelation of oscillatory part of the front displacement; (e) PDF of

oscillatory part of the front displacement; (f) Poincaré map.
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Figure 2.12: Dynamics of the fluid-aspirating curved pipe at u = 5.18 (U = 5.68 m/s). (a)

Displacement time traces; (b) polar trajectory of the motion; (c) phase plane contour plot of the

front displacement; (d) autocorrelation of oscillatory part of the front displacement; (e) PDF of

oscillatory part of the front displacement; (f) Poincaré map.
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Figure 2.13: Variation of the largest Lyapunov exponent of the displacement time series by

increasing u for fluid-aspirating pipes. (•) Straight pipe front displacement, (■) straight pipe side

displacement, (▲) curved pipe front displacement, (♦) curved pipe side displacement.

in Fig. 2.12 suggests that, eventually, at higher flows, the system may become chaotic via

the intermittency route to chaos.

Estimation of the largest Lyapunov exponent, λ1, for the aspirating pipe is shown in Fig.

2.13. We see that λ1 ≃ 0 up to u ≃ 2. Recalling that flutter occurs between u = 2 and u = 3

for both straight and curved pipes, the non-zero λ1 in this flow range may be attributed

to the fact that the oscillation, though predominantly periodic, inherently includes a rela-

tively small chaotic component — which nevertheless appears not to grow with u, up to the

maximum flow velocity attainable in the experiments.

2.3.4 Comparing the dynamics of discharging and aspirating curved pipes

One can compare the bifurcation diagrams and scalograms of Figs. 2.4(b, d) and 2.5(b),

as well as the analysis provided in Fig. 2.7 for the discharging pipe to those of its aspirating

counterpart presented in Figs. 2.9(b, d), 2.10(b) and 2.12. The curved discharging pipe is

subjected to progressively growing large 2D static deformation and, at sufficiently high flows,

abruptly to second-mode flutter in the plane of the initial curvature. The curved aspirating

pipe, on the other hand, is subjected to gradual static deformation, and at high-enough flows

to weak first-mode oscillations superimposed on the pipe mean deflection. For the aspirating

curved pipe, the oscillations did not take place just in the plane of initial curvature, and

they were of an anaemic intermittent nature.
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It should be pointed out that the discharging and aspirating pipes had significantly

different mass and gravity parameters (refer to Eq. (2.5)) because of the difference in the

surrounding fluid medium (air in one, water in the other), which could have impacted the

dynamics quite significantly.

2.4 Concluding remarks

The dynamics of fluid-conveying slightly curved cantilevered pipes was investigated ex-

perimentally and compared to that of straight pipes. Making use of a table-top-size ap-

paratus, four different cases were explored: (i) a fluid-discharging straight cantilever, (ii)

a fluid-discharging cantilever with an initial curvature, (iii) a fluid-aspirating straight can-

tilever submerged in water, and (iv) a fluid-aspirating curved cantilevered submerged in

water.

For the discharging curved pipe, it was found that increasing the flow velocity gives rise

to an exaggeration of the initial curvature of the pipe, resulting in a large static deformation

prior to the threshold of instability at sufficiently high flows. The instability observed was

a strong abruptly occurring flutter in the second mode, and it was predominantly periodic.

Depending on the static equilibrium position of the pipe just before the instability threshold,

the onset of flutter could be higher or lower than for the straight discharging pipe. Also, the

oscillations took place only in the plane of the pipe curvature.

For the aspirating curved pipe, on the other hand, it was found that, with increasing

flow velocity, the pipe first undergoes a relatively large static deformation; then, at high

enough flows, a weak first-mode flutter was superimposed on the mean deflection. At still

higher flow, the static deformation and the oscillations continued to grow. The pipe motions

were not limited to the plane of initial curvature, in contrast to the 2D motions observed

in the case of the discharging curved pipe. The observed flutter was rather unsteady, near-

intermittent and weak, with a larger chaotic content than for the straight aspirating pipe.

Being submerged in water, the oscillations of the aspirating pipes were influenced by the

damping induced by the surrounding fluid, which contributes to making the amplitude of

oscillations relatively small. Also, the oscillations were affected by the unbalanced impacting

of the cross-flow component of the fluid at the tip of the pipe just below the pipe inlet.
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Complementary discussion on system I

Further discussion is presented here to clarify and expand on some points, in addition

to what is included in the first manuscript presented in this thesis [1].

• The term “semi-circular” used in the caption of Fig. 2.2 to describe the curvature of

the pipe used in the experiments can be misleading and is a poor choice of word. It is

a generic term and does not mean that the pipe is exactly a part of a circle, nor does

it imply that the curvature can be described with a radius of curvature. As discussed,

the initial curvature of the pipe when hung in the air can be modeled with a linear

combination of cantilever beam eigenfunctions, as described in Eqs. (2.1)-(2.3).

• As discussed in the manuscript [1], additional experiments were conducted using a pipe

with a greater initial curvature than the one shown in Fig. 2.2(b), primarily in the

second mode. With increasing flow velocity, the pre-instability static deformation of

this pipe became so large that the middle section became nearly horizontal, causing

the red tracking spot to be obscured from view through the pressure vessel windows.

Consequently, it was impossible to monitor the pipe motion with the camera system,

making the measurement infeasible. Despite this, it was observed that this pipe became

unstable via flutter at a lower flow velocity as compared to the straight pipe, specifically

at u ≃ 4.90 (U ≃ 5.37 m/s), whereas the straight pipe experienced flutter at u = 5.91.

Therefore, the onset of flutter for a curved pipe may or may not be higher than that

for a straight pipe, depending on the static equilibrium configuration just prior to

instability. To explore this further, additional experiments using pipes with different

curvature shapes (modes) and varying degrees of curvature are needed.
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CHAPTER 3

Dynamics of Free-Clamped Cylinders in Axial Flow: An Experimental

Investigation

Preface

This chapter is devoted to the dynamics of system II, studied in the second manuscript

presented in this thesis. System II involves an inverted cantilevered cylinder in external

axial flow, with the flow directed from the free end towards the fixed one, as opposed to the

conventional flow direction in early studies on cantilevered systems in axial flow, where the

flow was directed from the clamped end towards the free one. This “reverse flow” configura-

tion has recently attracted attention due to its interesting dynamical behaviour (academic

interest) and its potential applications, such as control rods in nuclear reactors and energy

harvesting.

In alignment with the second objective of the present thesis stated in the Introduction

and aiming at conducting a systematic experimental investigation and characterization of

the instability of inverted cylinders in unconfined axial water flow, a series of water tunnel

experiments on system II were preformed. In this study, the onset of instability and the

post-instability behaviour of the system were explored and the mechanisms underlying the

instability was briefly discussed. The results revealed that, generally, the reverse flow direc-

tion in the inverted cylinder system reverses all the essential features of the dynamics, as

compared to the conventional flow configuration. In particular, with increasing flow velocity,

the inverted cylinder exhibited: turbulence buffeting, weak unsteady flutter-like first-mode

oscillations, and eventually, at high enough flow velocities, an abruptly occurring static di-

vergence of large amplitude.

Additionally, utilizing flexible cylinders of various lengths and end shapes with an em-
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bedded thin metal strip, as well as neutrally buoyant hollow cylinders of various materials,

the influence of the main system parameters were examined. Through these investigations,

it was found that the free-end shape plays almost no role in the dynamics of the inverted

cylinder, which sharply contrasts with the effect of this parameter for cylinders in the con-

ventional flow direction.
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Abstract: This paper describes and analyzes water-tunnel experiments involving flexible

cantilevered cylinders in reverse axial flow, i.e. flow directed from the free towards the fixed

end of the cylinder. It was found that the cylinder is subjected to small amplitude motion

due to turbulent buffeting prior to first-mode flutter at relatively low flow velocities, followed

eventually by an abrupt static divergence at higher flows. The observed flutter was quite

unsteady and sometimes near-intermittent. The flutter amplitude increased with flow, prior

to the onset of static divergence. The onset of static divergence displayed strong hystere-

sis, suggesting a subcritical bifurcation. The static divergence amplitude for very flexible

cylinders could be very large, such that the free end of the cylinder would face downstream.

The influence of some system parameters was investigated, such as cylinder flexural rigidity,

slenderness and free-end shape. The dynamics was found to be only marginally affected by

the free-end shape, in sharp contrast to the dynamics of cylinders subjected to flow directed

from the clamped towards the free end. Finally, the mechanisms underlying the onset of

flutter and static divergence are discussed briefly.

Keywords : Flutter; Static divergence; Saddle-node bifurcation; Free-clamped cylinders; Ax-

ial flow.

3.1 Introduction

Stability of slender flexible cylindrical bodies subjected to axial flow has been studied

for many years, not only because of applications, e.g. in heat-exchanger and nuclear reactor

internals, but also in view of the interesting dynamical features displayed [1, 2]. Hawthorne

[3] was the first to study the stability of a “Dracone”, a quasi-cylindrical container towed by

a ship. Païdoussis [4, 5] extended and generalized that work for cylinders in axial flow with

different boundary conditions and conducted experiments to validate the analysis.
∗Corresponding author.
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michael.paidoussis@mcgill.ca
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A more accurate linear model for pinned-pinned and cantilevered isolated/clustered slen-

der cylinders in axial flow was established a little later [6]. The dynamical behaviour for

isolated cylinders is as follows. For a sufficiently high flow velocity the cylinder becomes

unstable by static divergence (“buckling”) of moderate amplitude. At higher flow velocities

the cylinder develops flutter — single-mode flutter for cantilevered cylinders and coupled-

mode flutter for cylinders with supported ends. The existence of coupled-mode flutter for

cylinders with supported ends is associated with the peculiar viscous forces of the external

fluid flow, and it has been observed experimentally [1]. In the closely related problem of

pipes conveying fluid, although linear theory predicts coupled-mode flutter, it was shown by

Holmes [7] that it cannot occur; and, indeed, it has never been observed.

Focusing on the physical dynamics and the mechanism of instability, Païdoussis et al.

[8] further explored the stability of cantilevered cylinders subjected to axial flow in the con-

ventional direction, i.e. flow directed from the clamped towards the free end. It was found

that stability is greatly dependent on the shape of the free end. Generally, cantilevered

cylinders with a well-streamlined end-shape lose stability by divergence at sufficiently high

flow velocities, followed by a single-mode flutter at still higher flow rates, whereas cylinders

with a blunt free end remain stable. Further important work has been done more recently

by Kheiri and Païdoussis [9], Perets et al. [10] and Tabatabaei et al. [11].

Important related work on towed cylinders has been conducted by Païdoussis [12], Tri-

antafyllou and Chryssostomidis [13, 14] and Dowling [15, 16], on locomotion of slender fish

by Taylor [17], Lighthill [18, 19] and Triantafyllou et al. [20], on energy harvesting from

fluttering cylinders in axial flow by Singh et al. [21] — citing only some of the papers in

these areas.

We next consider the dynamics of cantilevered cylinders in reverse flow, i.e. with the

flow directed from the free towards the clamped end, often referred to as inverted cylinders,

or free-clamped cylinders, in axial flow. The stability of an inverted cantilevered vertical

cylinder in confined axial air-flow was investigated for the first time by Rinaldi and Paï-

doussis [22]. In the experiments, at relatively low flow velocities, small-amplitude first-mode

unsteady flutter-like oscillations were observed. At higher flow velocities, the oscillatory mo-

tion decreased and a static divergence (buckling) developed. However, the only instability
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(a) (b)

Figure 3.1: Schematic view of (a) the water tunnel; (b) the test-section with the data acquisition

systems.

predicted by linear theory was static divergence at sufficiently high flow velocities.

Using the same parameters as in Rinaldi and Païdoussis [22] and a nonlinear static anal-

ysis, the stability of inverted cylinders was examined by Sader et al. [23]. It was found

that slender inverted cylinders are never globally unstable; a saddle-node bifurcation, which

is followed by a statically stable solution at higher velocities, was predicted. As compared

to Rinaldi and Païdoussis [22], a critical velocity in closer agreement with experiment was

obtained. More recently, an improved linear model for this system was presented by Rinaldi

and Païdoussis [24]. This model predicts the dynamics of the system as follows: flutter at

relatively low flow velocities and then static divergence at higher flow rates. The critical flow

velocities obtained for both flutter and static divergence are in fairly good agreement with

the experimental results.

This “reverse flow” configuration has recently attracted attention, not only because

it displays interesting dynamical behaviour, but also because of potential applications in

green-energy harvesting [25]. Also, many studies have investigated the flapping dynamics of

inverted thin flexible plates or “flags” [23, 26–30]. Another significant engineering applica-

tion is related to reverse axial flow in “solution-mined caverns” utilized to store hydrocarbons

therein. In this application, a cantilevered pipe with an internal flow is subjected to an ex-

ternal annular flow in the reverse direction [31–33]. Additionally, some studies deal with the
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Table 3.1: Dimensions and material properties of the flexible cylinders used in the experiments.

Cylinder Material EI [N m2] m [kg m−1] D [mm] L [mm]

I Silicone–rubber with metal strip 9.29 ×10−3 0.185 16 140

II Silicone–rubber with metal strip 9.29 ×10−3 0.185 16 210

III Silicone–rubber with metal strip 9.29 ×10−3 0.185 16 280

IV Silicone–rubber without metal strip 4.54 ×10−3 0.134 16 140

V Santoprene without metal strip 4.04 ×10−3 0.068 13 140

dynamics of cantilevered rods in reverse flow in nuclear reactor applications [34–38].

A fuller literature review is provided by Païdoussis [2]. However, it is evident from the

foregoing literature survey that, up to now, to the best of authors’ knowledge, apart from

the Rinaldi and Païdoussis [22] rather limited set of experiments with cylinders in confined

air-flow, there has been no other experimental work on the dynamics of the inverted system.

Motivated by this lacuna, the main purpose of the present work is the systematic experi-

mental study and characterization of the instability of free-clamped cylinders subjected to

essentially unconfined axial water flow, in the facility shown in the schematics of Fig. 3.1

and in the photograph of Fig. 3.2. Conducting the experiments in a water tunnel with es-

sentially no confinement provides us with the opportunity to investigate the large-amplitude

post-instability dynamics of the system.

In this paper, the onset of instability as well as the post-critical behaviour of the sys-

tem is investigated for planar or three-dimensional motions of cylinders of various lengths,

end-piece shapes and material properties. The qualitative and quantitative effects of system

parameters on the threshold, amplitude and frequency of instabilities are examined. The ex-

perimental results presented are helpful for validating and developing 2D and 3D analytical,

as well as numerical models. Also, some insights explaining the physical dynamics and the

mechanisms of instability are provided.

The rest of the paper is structured as follows. In Section 3.2, the experimental set-up

and methodology are described. The experimental results are presented in Section 3.3. The

mechanisms underlying the onset of flutter and static divergence is discussed in Section 3.4.

Finally, Section 3.5 is devoted to concluding remarks.
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Figure 3.2: The water tunnel with a synchronized dual-camera system used to track the motion

of the cylinder.

3.2 Experimental set-up, data acquisition and methodology

The Kempf & Remmers water tunnel with a fairly large horizontal test-section, shown in

Fig. 3.2, was used in this experimental investigation. This tunnel spans two floors, with the

test-section and control units located in the upper level; refer to Fig. 3.1. The test-section

is about 1 m long with a 260 mm × 260 mm square cross-section. Rectangular plexiglas

windows on the four sides of the test-section allow access and viewing.

The test specimens were flexible cylinders with material properties and dimensions as

listed in Table 3.1. EI denotes the flexural rigidity of the cylinder, m its mass per unit

length, D its diameter and L its length. The silicone-rubber (silastic RTV) cylinders were

manufactured by casting a liquid silicone-rubber mixture in the manner described in Ap-

pendix D of Païdoussis [39]. Some of them integrally contained a thin metal strip, embedded

in them during casting; when mounting these cylinders in the test-section the blade was in

a vertical plane, ensuring that the cylinder is horizontal at equilibrium and forcing the os-

cillation to occur in 2D — also facilitating eventual comparison with a simple 2D analytical

model. Otherwise, the cylinder was made hollow, in a way that when submerged in water it

would be neutrally buoyant. Cylinder V was a commercial santoprene cylinder.

Three shapes of rigid ‘end-pieces’ of length l = 17.5 mm and almost the same density

as the cylinder were used to examine their effect on stability; the first had a sharp conical
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shape and the second one was of a well-streamlined ogival shape; the third was a blunt end.

The internal damping of the elastomer cylinders used in these experiments is considerable.

A two-parameter visco-hysteretic dissipative model was found to best describe the damping

characteristics of the elastomer cylinders. A description of this model and typical values of

the coefficients involved for cylinders with and without an embedded metal strip are given in

Rinaldi [40] and in Appendix D of Païdoussis [39]. An outline of the model and some typical

values of the two parameters involved are given in the Appendix A. However, it should be

remarked that damping of the cylinder in axial flow is overwhelmingly determined by fric-

tional flow effects, rather than material damping [41].

To guarantee a uniform axial flow stream in the test-section, screens and a large flow-area

contraction are utilized in the water tunnel upstream of the test-section. At flow velocities

for which fluid-elastic instabilities took place, the Reynolds number was high enough to be in

the turbulent flow regime, thereby allowing us to assume a flat velocity profile in the central

part of the test-section. The maximum flow velocity attained in the test section of the water

tunnel is 15 m/s, and the turbulence intensity does not exceed 0.5%.

Two different methods were used to measure the flow velocity in the test-section. For

very low flow velocities, i.e. U < 0.5 m/s, a high-speed camera system (80-200 frames per

second) was utilized to follow a small particle suspended in the water as it travelled a pre-

determined distance, measuring the travel time. For higher flow velocities, a differential

pressure transducer was employed, determining the static pressure difference between the

contraction area and a point just upstream of the test-section; refer to Fig. 3.1(b).

Non-contacting techniques have been used to capture cylinder motions. More specifi-

cally, through two transparent windows of the water tunnel perpendicular to each other, the

motion of the centroid of a ‘red-marked’ 36 mm long region was tracked and recorded, using

two synchronized identical FLIR® Grasshopper3 2.3 MP high-speed cameras. The centroid

of this red-marked region, referred to as the “tracked blob” in Fig. 3.1(b), was located at L/3

from the free-end of the cylinder. The two cameras were triggered via a function generator

to ensure synchronization.

In every experiment the flow velocity was increased step-wise to the first instability, and

beyond that to static divergence. At each increment, the water tunnel was kept running
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Table 3.2: Conversion factors between dimensional and dimensionless flow velocity and frequency.

Cylinder I II III IV V

U(m/s)/u 1.54 1.02 0.768 1.07 1.25

f(Hz)/ω 1.26 0.560 0.315 0.945 1.15

(a) (b)

Figure 3.3: Dynamics of cylinder I-C (cylinder I with a conical end-piece) illustrated by means of

(a) bifurcation diagram showing the rms amplitude of motions versus increasing flow velocity, (•)

pre-instability, (■) flutter, (▲) static divergence, and (×) with decreasing flow velocity; (b) Morse

wavelet scalogram in which the vertical strips correspond to discrete values of the flow velocity.

for a while to approach steady state. Then, using a dual-camera system, the motion of the

cylinder was tracked and recorded for a duration of 3 minutes. To guarantee validity and

consistency of the results, each experiment was repeated at least once.

Subsequently, an image-processing Matlab (Mathworks, Inc.) script was utilized to ex-

tract the displacement-time series from the recorded videos from both top and side cameras.

The initial undeformed location of the cylinder at zero flow velocity served as a reference.

More details on the image processing may be found in Chehreghani et al. [33]. The obtained

time series data were further processed. Specifically, the nature of the motions could be

determined by means of bifurcation diagrams, time traces, phase portraits, PSDs, PDFs and

position-triggered Poincaré maps.
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3.3 General observations and results

This being an experimental paper, it is considered important to give at least some of the

results in dimensional terms. However, to facilitate comparison with results to be obtained

in future by other researchers, most results are also given in dimensionless form. To this

end, we employ the dimensionless flow velocity, u, and frequency, ω, extensively utilized in

the past [1, 4], as follows:

u =

(
ρfA

EI

)1/2

LU, ω =

(
ρfA+m

EI

)1/2

L2Ω, (3.1)

where EI is the flexural rigidity of the cylinder and m its mass per length, U is the mean flow

velocity, ρf is the fluid density, A = 1
4
πD2, D being cylinder diameter and Ω = 2πf is the

radian frequency, with f in Hz. The conversion factors from dimensionless to dimensional

terms for the five cylinders of Table 3.1 are given in Table 3.2.

3.3.1 Dynamics of inverted cylinders with an embedded metal strip

Fig. 3.3(a) presents the experimental bifurcation diagram for cylinder I (refer to Table 3.1)

with a conical end-piece, displaying the rms of displacement amplitude as a function of the

flow velocity. At very low flow rates, i.e., u < 0.27 (U < 0.42 m/s), the cylinder stayed more

or less stationary at its initial undeformed position. At u = 0.27 m/s, however, very weak

small amplitude motions initiated. These weak motions were likely excited by turbulence in

the flow (turbulent buffeting). At u > 0.62 (U > 0.95 m/s), considerably stronger oscilla-

tions were observed, distinguishable by a change in the slope in the bifurcation diagram and

with a distinct dominant frequency of oscillations ω ≃ 1.87 (≃ 2.36 Hz), refer to Fig. 3.3(b),

demonstrating the onset of self-excited flutter in the first mode – a “movement-induced in-

stability” in the Naudascher and Rockwell [42] classification. It should be remarked that the

graphical determination of the onset of instability is in practice the best approach. Increasing

the flow velocity further gave rise to oscillations of higher amplitude with almost the same

dominant frequency. During these oscillations, the cylinder tended to slightly move towards

one side, which is attributed to imperfections in the clamping of the fixed end. Alternatively,

this could be a flow-induced biased oscillatory motion, as observed in numerical simulations

for inverted flags by Ryu et al. [43].
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(a) (b)

(c) (d)

Figure 3.4: Dynamics of cylinder I-C right after the threshold of flutter at u = 0.64 (U = 0.98

m/s), represented through (a) time traces of the front and top displacements, (b) PSD of motions,

(c) phase portraits of the top displacement, and (d) PDF of top displacement.

At still higher flow velocities, the cylinder suffered an abrupt static divergence in its

first mode at u = 0.93 (U > 1.43 m/s), and eventually it started impacting on the walls of

the water tunnel. As shown in Fig. 3.3, while decreasing the flow velocity down to u = 0.62

(U = 0.95 m/s), the cylinder remained in its buckled position, displaying a strong hystere-

sis; thus the onset of static divergence is associated with a subcritical bifurcation. Static

divergence is usually associated with a pitchfork bifurcation, implying that the system was

previously at equilibrium. This is not the case here, however, as there is no restabilization

between flutter and static divergence; the cylinder switches abruptly from large-amplitude

flutter to static divergence. Therefore, the alternative view of the observed behaviour by
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(a) (b)

Figure 3.5: Comparing the dynamics of cylinder I with (•) an ogival end-shape, I-O, (▶) conical

end-shape, I-C, and (■) blunt end-shape, I-B, by means of (a) bifurcation diagrams showing the

rms amplitude of motions versus flow velocity; (b) dominant dimensionless frequency of oscillations,

ω, at each flow velocity step.

Sader et al. [23] may be more appropriate: that the observed static divergence is generated

via a saddle-node bifurcation. This is discussed further in Section 3.4. In what follows we

shall simply refer to the phenomenon as static divergence.

Dynamics of the system at u = 0.64 (U = 0.98 m/s), right after the threshold of flutter, is

explored further by means of the sample results in Fig. 3.4. The time traces captured by the

front and top cameras in Fig. 3.4(a) display unsteady, near-intermittent planar oscillations

and suggest the existence of a chaotic component in the dynamics of the system. Fig. 3.4(b)

shows the power spectral density of the time series captured by the top camera. This PSD

indicates a dominant frequency of f = 2.36 Hz, which corresponds to first-mode oscillations.

Furthermore, the phase portrait and probability density function plots of the side displace-

ment presented in Fig. 3.4(c,d) indicate a periodic motion; but, given the unsteadiness and

chaotic component of the oscillations, intermittency may well be a possible route to chaos.

3.3.1.1 The effect of end-piece shape

As observed by [5] and discussed by [8] for the case of a clamped-free cylinder in axial

flow, with the flow directed from the clamped end towards the free end, the end-shape plays
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(a) (b)

Figure 3.6: Comparing the dynamics of cylinders with various lengths: (a) bifurcation diagram for

(▲) cylinder I-C, (•) cylinder II-C and (■) cylinder III-C, all with a conical end-shape; (b) critical

flow velocities for flutter (♦) and static divergence (◀).

a very significant role in the stability of the system. It was demonstrated that clamped-

free cylinders in axial flow lose stability by divergence at sufficiently high flow velocities

and, at still higher flow rates, single-mode flutter occurs, provided that the free end is well-

streamlined; but, if the free end is blunt, neither static divergence nor flutter materialize.

Fig. 3.5(a) compares the bifurcation diagrams for inverted (free-clamped) cylinder I with

an ogival end-shape, I-O, a conical end-shape, I-C, and a blunt end-shape, I-B. It is seen

that the effect of end-shape is marginal for inverted cantilevered cylinders, in contrast to the

system with the opposite flow direction; the qualitative behaviour displayed in Fig. 3.5(a) is

similar. Quantitatively, however, the onset of flutter changed to some extent from u = 0.52

(U = 0.80 m/s) for the ogival one and to u = 0.62 (0.96 m/s) for the conical one, and to

u = 0.62 (U = 0.96 m/s) for the blunt one; yet, the onset of static divergence was unaffected.

Fig. 3.5(b) compares the dominant frequency of motions, displaying a monotonically decreas-

ing trend with increasing flow velocity in all cases. Note that the lowest of the dominant

dimensionless frequencies, ω ≃ 1.5, correspond to f ≃ 1.89 Hz, which is not very small, again

suggesting that the observed static divergence does not develop via a pitchfork bifurcation,

the classical static-divergence route.
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(a) (b)

Figure 3.7: Morse wavelet scalograms representing the distribution of frequencies at each flow

velocity (a) for cylinder II-C and (b) for cylinder III-C.

3.3.1.2 The effect of slenderness

The influence of length-to-diameter ratio was examined by conducting experiments with

cylinders II and III. They both have the same characteristics as cylinder I, but different L/D.

In all cases, a conical end-piece was utilized. The rms amplitude of motions plotted against

the flow velocity for cylinders I-C, II-C and III-C is shown in Fig. 3.6(a). The qualitative

behaviour is similar: first flutter in the first mode at relatively low flow velocities, and static

divergence at higher flow velocities. Quantitatively, however, varying the L/D affects the

onset of both oscillatory and static fluid-elastic instabilities, especially the latter one, as

shown in Fig. 3.6(b). Thus, u is not a sufficient dimensionless parameter to collapse the

dynamical behaviour to constant values of u = ucr. This is discussed in Section 3.3.3.

The variation of frequency spectrum with flow velocity for cylinders II-C and III-C is

shown in Fig. 3.7. In the case of cylinder III-C, the longer one, strong high frequencies are

noticeable. These high frequencies vary approximately linearly with increasing flow velocity

and they could be attributed to vortex shedding. The post-divergence behaviour can be

further investigated, as there are enough post-divergence velocity steps in this case. The

dynamics of the system just after the initiation of static divergence, at u = 0.82 (U = 0.63

m/s), is illustrated in Fig. 3.8. The dominant frequencies in the PSD plot of Fig. 3.8(d) are

harmonics: f1 ≃ 2.8 Hz, f2 = 2f1 ≃ 5.6 Hz, f3 = 3f1 ≃ 8.4 Hz and f4 = 4f1 ≃ 11.2 Hz,
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Figure 3.8: The post-divergence dynamics of cylinder III-C at u = 0.82 (U = 0.63 m/s) illustrated

by means of (a) polar plot, (b) 3D trajectory of motion, (c) time traces of the front and top dis-

placements, (d) PSD of top displacements, (e,f) phase portraits of the top and front displacements,

respectively.
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Figure 3.9: Strouhal numbers calculated based on the frequency associated with vortex shedding,

fvs, versus flow velocity for post-divergence of cylinder III-C.

except for the odd one, fo = 8.97 Hz, which gives a Strouhal number St = 0.23, suggesting

the frequency in this case is associated with vortex shedding; thus, fo = fvs. It should be

highlighted that in the post-divergence state of the cylinder there is a considerable amount

of cross-flow. Therefore, the existence of vortex shedding is possible. However, having not

conducted flow visualization, it cannot be claimed that regular vortex shedding does in fact

occur. Comparing Fig. 3.8(e) to Fig. 3.8(f), the double loop in the former suggests a figure-

of-eight oscillation pattern. This pattern is visualized in the polar plot and 3D trajectories

of Fig. 3.8(a,b). Fig. 3.9 presents the Strouhal numbers calculated based on fvs at post-

divergence flow velocities. The values of St are not too far from 0.2, which is the Strouhal

number associated with vortex shedding for the ideal case of a long straight and immobile

cylinder in cross-flow.

3.3.2 Dynamics of inverted cylinders able to move in 3D

The 3D dynamics of the system with cylinders made of different materials was investi-

gated using cylinders IV-C and V-C, namely a silicone-rubber and a santoprene cylinder,

both with the conical end-shape and no embedded metal blade. The bifurcation diagrams

of rms amplitude versus flow velocity are shown in Fig. 3.10 for the two cylinders. Quali-

tatively, the same behaviour is displayed: the cylinder undergoes flutter at a relatively low
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(a) (b)

(c) (d)

Figure 3.10: (a,b) Bifurcation diagrams showing the rms amplitude versus flow velocity for a

silicone-rubber cylinder and a santoprene cylinder, respectively, both with a conical end-piece.

With increasing flow velocity: (•) pre-instability; (■) flutter; (▲) static divergence; and (×) with

decreasing flow velocity. (c,d) The corresponding Morse wavelet scalograms for the frequency of

oscillation.

flow velocity, and then static divergence at higher flow rates. The flutter-like oscillations in

the case of the santoprene cylinder are much weaker than those of the silicone-rubber one, as

can be seen in Fig. 3.10(b,d). Also, the santoprene cylinder displayed a stronger subcritical

behaviour compared to silicone-rubber cylinder.

Compared to cylinders I, II and III which had a metal strip embedded in them, cylin-

ders IV and V exhibited similar behaviour, with two differences. First, the pre-divergence

motions for cylinders IV and V were not planar anymore. Second, with the onset of static
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Figure 3.11: Dynamics of cylinder IV-C just after the onset of flutter at u = 0.65 (U = 0.7

m/s) illustrated by means of (a) polar plot, (b) position-triggered Poincaré map, (c) time traces

of the front and top displacements, (d) PSD of motions, (e,f) phase portraits of the top and front

displacements, respectively.
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Planar versus 3D

Figure 3.12: Summary of the results showing the critical flow velocities for instabilities. Blue

(the shorter) and red (the taller) columns at each case, correspond to the onset of flutter and static

divergence, respectively.

divergence, cylinders IV and V completely inverted themselves, with an angle of almost 180◦,

thus with the free-end pointing downstream. The dynamics of cylinder IV-C right after the

threshold of flutter is shown in Fig. 3.11; the plots therein can be compared to the similar

ones of Fig. 3.4. The polar trajectory of the motion of Fig. 3.11(a), the clustered points in the

Poincaré map of Fig. 3.11(b), the unsteadiness in the time traces shown in Fig. 3.11(c), the

dominant frequency of motion in Fig. 3.11(d), as well as the untidy limit cycle phase-space

plots of Fig. 3.11(e,f), indicate an unsteady, near-intermittent 3D motion, yet with a strong

harmonic component.

3.3.3 Critical flow velocities and frequencies

The dimensionless critical flow velocity and frequency associated with flutter and critical

flow velocity of static divergence for all scenarios investigated are presented in Table 3.3. As

can be seen, the dimensionless parameters do not completely coalesce to a single value for all

cases, because the dynamics of the system is also governed by other parameters such as the
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Table 3.3: Dimensionless critical flow velocities and frequencies.

Cylinder I-C I-O I-B II-C III-C IV-C V

ucf 0.62 0.52 0.62 0.54 0.40 0.62 0.41

ωcf 1.88 2.25 1.87 2.23 2.32 2.36 2.74

ucb 0.93 0.93 0.93 0.82 0.75 0.88 0.55

length-to-diameter ratio affecting the frictional flow effects, internal damping characteristics,

and sensitivity to initial imperfections.

The quantitative summary of the results in dimensional form is presented in Fig. 3.12.

In each pair of columns, the shorter one corresponds to the first instability (flutter) and

the taller one corresponds to the second instability (static divergence). Each pair can be

compared to its counterpart to analyze the influence of various system parameters.

3.4 The mechanisms of flutter and static divergence

We consider a simplified 2D form of the equation of motion to gain some insight into the

mechanisms of the two instabilities, neglecting the distributed flow-related frictional forces

along the cylinder and material damping forces to simplify the discussion. This form of the

equation of motion in dimensionless form is given by [24]:

∂4η

∂ξ4
+

(
1

2
cbu

2 + χαu2

)
∂2η

∂ξ2
− 2χβ

1
2u

∂2η

∂ξ∂τ
+

(
1 + β(χ− 1)

)
∂2η

∂τ 2

+

[
−
(
1

2
cbu

2 + fχu2

)
∂η

∂ξ
+ (f − 1)χβ

1
2u

∂η

∂τ

]
δ (ξ − 1)

+

(
1 + β (fχ− 1)

)
χe

∂2η

∂τ 2
δ (ξ − 1) = 0, (3.2)

in which the non-zero force at the upstream end of the cylinder has been embedded via

the Dirac delta function. In this equation ξ = x/L is the dimensionless axial coordinate,

running along the undeformed long cylinder axis, with origin at the clamped end, and τ is

the dimensionless time.

The other symbols in the equation stand for the following: η = w/L is the nonlinear

lateral deflection; cb is the base drag coefficient at the free end; χ = (D2
ch +D2)/(D2

ch −D2),

where Dch is the equivalent hydraulic diameter of the test-section; thus, in our case, χ ≃ 1;
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α = v/U is the ratio of the axial flow velocity just upstream of the cylinder to that over

the cylinder, in our case just less than unity; β = ρfA/(ρfA +m), the ratio of the virtual

mass to total mass per unit length, in our case in the range of 0.53-0.66; f is a streamline

parameter related to free-end shape: f → 1 for a well streamlined end and f → 0 for a blunt

one; χ is related to the fluid-flow momentum change at the free end and it is of the order of

unity; χe is a geometric parameter related to free-end shape, typically very small, O(10−2).

The negative Coriolis term, the third one in Eq. (3.2), is noted, which is destabilizing.

Considering a putative oscillation of the cylinder of period T , the work done by the fluid

flow on the cylinder, ∆W , can be computed from Eq. (3.2) in the manner described in

Appendix B, yielding

∆W =

∫ T

0

{[
(2− f)χβ

1
2u
]
η̇2 +

[
(f − α)χu2

]
η̇η′
}∣∣∣∣∣

ξ=1

dτ, (3.3)

where ˙( ) = ∂( )/∂τ and ( )′ = ∂( )/∂ξ.

It is recalled that in the experiments the dimensionless critical flow velocity for flutter

u = ucf < 1, and since f < 1, for such flow velocities the first term in Eq. (3.3) is dominant.

The second term can be either positive or negative depending on the value of f and α; since

f ranges from 0 to 1, while α is close to unity, f −α is generally negative, or if positive quite

small; also, η̇η′ > 0 for first-mode oscillations. Therefore, for sufficiently small u < 1, the

first term is dominant, with the second playing a very minor role.

The dominant first term in Eq. (3.3) is always positive, thus energy is transferred from

the fluid to the cylinder (∆W > 0) at small values of u, irrespective of f . Once u is high

enough, yet still small, to yield a ∆W large enough to overcome frictional and material

damping, amplified oscillations are generated, i.e. flutter. This happens irrespective of the

values of f , i.e. of the shape of the free end. In the experiments, flutter did materialize in

all cases with different end-shapes. The experimental values of ucf for cylinder I with ogival,

conical, and blunt end-shapes are fairly close (Table 3.3), although f for I-C and I-O is quite

different from that for I-B; here it should be remarked that even though the first term in Eq.

(3.3) is dominant, the onset of flutter is controlled by the combined effect of both terms in

Eq. (3.3).

Physically, the flutter is associated with the negative Coriolis term, the third term in Eq.
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(3.2), which gives rise to the first term in Eq. (3.3): any deflection of the pipe tends to be

exaggerated by this Coriolis effect, resisted by the flexural restoring force.

The static instability, divergence, is examined by ignoring all time-dependent terms in

Eq. (3.2), i.e. by considering

∂4η

∂ξ4
+
(
1
2
cb + χα

)
u2∂

2η

∂ξ2
−
(
1
2
cb + fχ

)
u2∂η

∂ξ
δ(ξ − 1) = 0. (3.4)

The second term represents a compressive load, and the third a shear force at the free

end. Both are proportional to u2 and therefore a static divergence is inevitable for high u,

irrespective of the specific values of f , cb, χ and α (all of which are positive), in agreement

with the experimental observations. For example, taking α = 0.9 and χ = 1 (unconfined),

for (f , cb)=(0.8, 0.2), (0.6, 0.4) and (0, 1.2), we obtain ucb = 2.25, 2.32 and 2.35, respectively.

Moreover, in the shear force, a higher f is associated with a lower cb, and vice versa, so that

ucb should not greatly depend on the shape of the free end. Indeed, in the experiments,

ucb = 0.93 in all cases (cases I-C, I-O and I-B) in Table 3.3 (Ucb = 1.43 m/s in Fig. 3.12). For

the case of cylinder III-C, Ucb = ranges from 1.73 m/s to 1.80 m/s, using the aforementioned

set of calculated ucb values, whereas in the experiments ucb = 0.75 and Ucb = 0.58 m/s.

Nevertheless, the discrepancy between the experimental ucb = 0.93 and 0.75 and the

theoretical ucb = 2.25 − 2.35 is unusually high. It can be explained by the fact that the

solutions of Eq. (3.4) presume that the system is at equilibrium prior to the onset of static

divergence, which was not the case in the experiments; static divergence developed directly

from an oscillatory state of the cylinder, which means that it is beyond the prediction

capabilities of linear theory. In this regard, it is interesting to note that agreement was

better for the [24] experiments, for a vertical system and confined air-flow, in which there

was a brief post-flutter stabilization of the system, prior to the onset of static divergence.

Of course, for our case here, as stated before, static divergence could have arisen via a

saddle-node bifurcation, the predication of which requires a nonlinear model. Utilizing the

[23] model, the dimensionless critical flow velocity for the saddle-node bifurcation is

u =

[
π

2εCD

κ′
]1/2

, (3.5)

where ε = L/D, CD = 1.1 is the normalized drag coefficient for a circular cylinder [17]; κ′ is

a normalized flow speed [23], a dimensionless constant, indicating the ratio of hydrodynamic
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Table 3.4: Qualitative dynamical characteristics of conventional and inverted cantilevered cylinders

in axial flow.

System Instabilities with increasing flow velocity Sensitivity to free-end shape

Conventional cylinder Weak static divergence, strong flutter Very strong

Inverted cylinder Weak flutter, strong static divergence Very weak

Figure 3.13: Graphical illustration of the qualitative dynamics observed with increasing flow

velocity: the cylinder is subjected to flutter, followed by an abrupt static divergence.

to elastic restoring forces. Taking κ′ =9.2, as for slender flags, we obtain u = 1.22 for systems

I-O, I-C and I-B of Table 3.3, which corresponds to Ucb = 1.88 m/s, not too far from the

experimental Ucb = 1.43 m/s of Fig. 3.12. For system III-C, Ucb = 0.94 m/s, less close to the

experimental Ucb = 0.58 m/s, but still closer that the results obtained via Eq. (3.4). We can

therefore conclude that the observed static divergence arose via a saddle-node bifurcation,

as suggested by [23], rather than pitchfork bifurcation.

The foregoing are in sharp contrast to the case of cylinders in axial flow directed from the

clamped end towards the free end. In that case, the free-end shape greatly affects stability.

Indeed, for a blunt end, neither flutter nor divergence occur [5].

3.5 Concluding remarks

The fluid-elastic instability of inverted cantilevered cylinders in axial flow, i.e. with flow

directed from the free end towards the clamped one, has been investigated. Study of this

reverse flow configuration is not only curiosity-driven because of the fascinating dynamical

behaviour it displays, but also because of real-world applications it is related to.

A series of water tunnel experiments were conducted to investigate the influence of vary-
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ing system parameters, namely, end-piece shape, cantilever length-to-diameter ratio, planar

versus 3D motions and material properties, on the dynamical behaviour and stability of this

fluid-elastic system. To this end, three lengths of silicone-rubber cylinders with an embedded

thin metal strip (cylinders I, II and III), a hollow silicone-rubber one (cylinder IV) and a

santoprene one (cylinder V) were utilized. Also, three different free-end shapes were used in

experiments with one of the cylinders, to investigate the effect of end-shape. In all cases, a

more or less similar behaviour was captured: the cylinder was found to undergo turbulence

buffeting, followed by weak movement-induced flutter-like oscillations in its first mode at rel-

atively low flow velocity. These motions were unsteady and near-intermittent, nevertheless

with a strong harmonic component; increasing flow velocity further, resulted in an increase in

the amplitude and a decrease in frequency of these oscillations. Eventually, the cylinder was

subjected to static divergence at high enough flow velocities. The sequence of flow-induced

instabilities with increasing flow velocity is shown in Fig. 3.13. The mechanisms underlying

these instabilities were briefly discussed. The static divergence was found to likely arise via

a saddle-node bifurcation, rather than via a pitchfork bifurcation.

Varying the free end-shape was found to have only a marginal effect on the onset of flutter

instability (refer to the first three pairs of columns in Fig. 3.12), and no effect on the onset

of static divergence. Thus, qualitatively, the end-shape is unimportant, and quantitatively

the effect is only marginal, as opposed to cylinders subjected to the opposite flow direction.

In general, the change in flow direction associated with the ‘inverted cylinder’ configura-

tion, reverses all the essential features of the dynamics, vis-à-vis the ‘conventional cylinder’

configuration, as shown in Table 3.4.

The onset of both instabilities dropped to quite low values for increasing cylinder length-

to-diameter ratio. The dynamical behaviour beyond the cylinder static divergence and im-

pacting on the test section wall was found to be very complex, depending on the end-shape,

the nonlinear impact forces and material of the cylinder. It was concluded that the frequency

of the observed post-divergence motions in the case of cylinder III-C can be attributed to

vortex shedding. The dominant frequency varied almost linearly with respect to flow veloc-

ity, with a Strouhal number in the range of 0.20-0.24. In the case of hollow cylinders with

no metal strip, i.e. cylinders IV and V, post-divergence, the cylinders underwent very harsh
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motions and completely inverted themselves.

In all cases, with decreasing flow velocity, a hysteresis effect was observed. This behaviour

was more pronounced in the case of the more flexible santoprene cylinder.
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Appendix A. Material damping of the elastomer cylinders

It was established long ago [44] that a two-parameter visco-hysteretic model captured

adequately the internal damping characteristics of elastomer cylinders. The experimental

methods used to determine the flexural rigidity and damping constants of elastomer cylinders

are described in Appendix D of [39]. In this model the flexural term EI(∂4w/∂x4) is replaced

by EI [1 + (α + µ/Ω) (∂/∂t)] (∂4w/∂x4). In dimensionless terms, (∂4η/∂ξ4) is replaced by

[1 + (ᾱ + µ/ω) ∂/∂τ ] (∂4η/∂ξ4), (A.1)

where ᾱ and µ are the dimensionless viscoelastic and hysteretic damping coefficients, and

the other parameters have been defined in Section 3.4.

Typical values for the Silastic A silicone-rubber cylinders used in these experiments are

ᾱ = 1.7×10−4 and µ = 3.9×10−2. For Silastic E cylinders, ᾱ = 3.0×10−4 and µ = 3.6×10−2.

Appendix B. Energy transfer considerations for flutter

Here we consider the transfer of energy from the fluid to the cylinder, underlying the

generation of flutter.

We first re-write Eq. (3.2) in the form∑
i

Fi(ξ, τ) = [...]
∂2η

∂τ 2
. (B.1)

We then multiply each of the Fi(ξ, τ) by ∂η/∂τ and integrate from ξ = 0 to ξ = 1 and from

τ = 0 to τ = T , where T is the period of a putative cycle of oscillation. This gives ∆W as in
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Eq. (3.3). Because the manipulations involved are not too straight-forward, the procedure

is given here in detail for the first and third terms.

For the first term, integrating by parts gives

∆W1 =

∫ T

0

∫ 1

0

[
−∂4η

∂ξ4

]
∂η

∂τ
dξdτ

= −
∫ T

0

[
∂3η

∂ξ3
∂η

∂τ

]1
0

dτ +

∫ T

0

[
∂2η

∂ξ2
∂2η

∂ξ∂τ

]1
0

dτ

−1

2

∫ T

0

∫ 1

0

∂

∂τ

(
∂2η

∂ξ2

)2

dξdτ. (B.2)

Having included the free-end shape force in the equation of motion, at the free end (ξ = 1),

both ∂2η/∂ξ2 and ∂3η/∂ξ3 are zero; also, η and ∂η/∂ξ are zero at ξ = 0. Hence, the first two

terms in Eq. (B.2) vanish. The last term gives −1
2

∫ 1

0
(∂2η/∂ξ2)

2
∣∣∣T
0
dξ, and it also vanishes

because of the periodicity assumption. Therefore, ∆W1 = 0, as it should be, because it

arises from a a conservative force, derivable from a potential.

The third term gives

∆W3 = 2χβ
1
2u

∫ T

0

∫ 1

0

[
∂2η

∂ξ∂τ

]
∂η

∂τ
dξdτ

= 2χβ
1
2u

∫ T

0

∫ 1

0

∂

∂ξ

(
∂η

∂τ

)2

dξdτ = 2χβ
1
2u

∫ T

0

1

2

(
∂η

∂τ

)2 ∣∣∣1
0
dτ

= χβ
1
2u

∫ T

0

(
∂η

∂τ

)2 ∣∣∣
ξ=1

dτ, (B.3)

which is part of the first term of Eq. (3.3).

The fifth term, involving the Dirac delta function, gives

∆W5 = − (f − 1)χβ
1
2u

∫ T

0

(
∂η

∂τ

)2 ∣∣∣
ξ=1

dτ, (B.4)

which, combined with Eq. (B.3), gives the first term in Eq. (3.3).
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CHAPTER 4

Dynamics of a Cantilevered Pipe Conveying Fluid and Counter-currently

Subjected to Partially Confined External Axial Flows: Experimental

Investigation I

Preface

The dynamics of system III, which involves a tubular beam subjected to simultaneous

counter-current internal and external axial flows, is the main scope of the present thesis.

This chapter deals with the first part of experiments on system III, using a bench-top-size

apparatus. This experimental set-up involves a pressure vessel filled with water, a hanging

flexible cantilevered pipe and a shorter concentric outer rigid tube. The fluid flows down-

ward through the pipe, exits into the pressure vessel, flows upwards through the annular

gap formed by the upper portion of the pipe and the outer rigid tube, and out of the pres-

sure vessel. To achieve higher ratios of external-to-internal flow velocity, additional fluid

may enter the pressure vessel at the bottom. Therefore, the system under study is a fluid-

discharging cantilevered pipe subjected to a partially confined annular external flow. Interest

in the matter mainly arises because this system replicates one of the modes of operation of

brine-strings in solution-mined caverns, the so-called “product retrieval mode”. The McGill

FSI research group has been engaged in comprehensive fundamental research on this system,

aiming to systematically explore various aspects of its dynamics. This chapter is a part of

this ongoing research.

In the manuscript presented in this chapter [3], for various external-to-internal flow veloc-

ity ratios, and various confined lengths of the pipe, experiments were conducted to explore

the dynamical behaviour of the system, including post-instability dynamics. The pipe loses

stability by flutter. The results indicated that beyond instability, at high-enough flow rates,
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the flexible pipe contacts the outer rigid tube, with the contact involving single- or double-

sided impacting, sticking and partial or complete circumferential rubbing.
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Abstract: The dynamics of a pipe conveying fluid and counter-currently subjected to a

partially confined external axial flow through a coaxial annular region over its upper portion

has been investigated experimentally. Apart from its fundamental aspects, this flow configu-

ration simulates one of the modi operandi of solution-mined caverns utilized for hydrocarbon

storage. Beyond the instability, at sufficiently high flow rates, the flexible pipe impacts the

rigid coaxial shorter outer tube. The effects of confinement length, i.e., the ratio of the

confined length of the pipe to its total length, L′/L, and the ratio of external to internal

flow velocities, Uo/Ui, on the onset of instability, as well as the dynamical behaviour of the

system with impacting, have been investigated. It was found that for all L′/L ratios and a

very small value of Uo/Ui, i.e., Uo/Ui = 0.055, the system loses stability via flutter in the sec-

ond mode. Increasing the confinement length ratio expedited the aforementioned flutter. At

higher Uo/Ui ratios, i.e., Uo/Ui ≥ 0.2, the pipe is subjected to a static deformation, followed

by more complex behaviour at higher flow velocities. The post-instability impact displays

a rich dynamical behaviour with both periodic and chaotic components. Depending on the

various system parameters, mainly the Uo/Ui and L′/L ratios and the internal flow velocity,

several types of impacting/sticking behaviour were observed. The pipe may undergo single-

sided or two-sided impacting, oscillation over the buckled position and partial or complete

rubbing or sticking on the outer rigid tube.

Keywords : Flutter; Cantilevered pipes; External/internal axial flows; Impact with motion

constraints; Chaos.
∗Corresponding author.

E-mail addresses: mahdi.chehreghani@mail.mcgill.ca, ahmed.abdelbaki@mail.mcgill.ca,

arun.misra@mcgill.ca, michael.paidoussis@mcgill.ca

91



4.1 Introduction

Applications of slender structures in contact with fluid are numerous. Pipelines, heat-

exchangers, steam generators and brine-strings used to store hydrocarbons in salt caverns

are among the many industrial applications of these systems. However, studies on this topic

are also “curiosity driven" [1] and fundamental.

The literature on the dynamics of pipes conveying fluid is very extensive. This system

has attracted scholars’ attention extensively and is referred to as a paradigm in dynamics [2],

as many of the so-called fluid-elastic instabilities can be illustrated with it. The literature

review in this paper is selective, rather than all-inclusive. The interested reader is referred

to [2] for a comprehensive discussion of studies on this subject.

It was demonstrated by Holmes and co-workers [3–5] that a Hopf bifurcation is respon-

sible for instability of cantilevered pipes conveying fluid at sufficiently high flow velocities.

Bajaj et al. [6] proved that the Hopf bifurcation can be either sub- or supercritical, depend-

ing on a parameter related to the pressure loss in the pipe.

The dynamics of a spring-constrained cantilevered pipe was examined both theoretically

and experimentally by Païdoussis and Moon [7]. By means of analytical and numerical meth-

ods, the existence of chaotic regions was demonstrated. This study was pursued further by

Païdoussis et al. [8]. Also, Semler [9] derived and solved the nonlinear equations of motion

of either simply-supported or cantilevered pipes, indicating that chaotic motions may occur

due to perturbations or motion-limiting constraints; refer to [10].

In a three-part study, the 3-D nonlinear dynamics of unrestrained and restrained can-

tilevered pipes conveying fluid was examined by Païdoussis an co-workers. Firstly, the pre-

existing nonlinear equation of motion for planar motion of the system [11] was modified

for three-dimensional motions of cantilevered tubular beams conveying fluid by Wadham-

Gagnon et al. [12]. This study was then extended by Païdoussis et al. [13] to investigate

the dynamics of the same system restrained by arrays of two or four springs or one spring

located at a specific distance from the clamped end, and by Modarres-Sadeghi et al. [14] for

a pipe with an end mass. Later on, research on the two- and three-dimensional dynamics of

cantilevered pipes was undertaken by Modarres-Sadeghi et al. [15] to investigate the post-

flutter dynamics of both horizontal and vertical pipes for flow velocities beyond the Hopf
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bifurcation; refer also to [16] and [17].

The first study on the dynamics of pipes simultaneously subjected to internal and exter-

nal axial flows was conducted by Cesari and Curioni [18], predicting buckling instability of

pipes with different boundary conditions. Thereafter, the dynamics of vertical pipes convey-

ing fluid and concurrently subjected to an independent external axial flow was investigated

by Hannoyer and Païdoussis [19]. For clamped-clamped pipes, the effect of the internal and

external flows on the stability of the system was found to be additive, i.e., if either internal

or external flow velocity is just less than the critical value for instability, an increase in the

value of the velocity of the other flow would trigger instability. In contrast, if because of

either internal or external flow a cantilevered pipe is just below the threshold of instability,

by further increasing the other flow, the instability could be avoided.

Numerous studies have been conducted on the dynamics of a drill-string, e.g., by Bailey

and Finnie [20], Finnie and Bailey [21], Den Hartog [22] and Grigoriev [23]. Also, Luu [24]

has studied the stability of a long hanging cantilevered tubular beam conveying fluid which

is also subjected to an external flow over its outer surface through an annular area formed

by an outer rigid channel.

Thereafter, aiming at modelling the dynamics of a drill-string with a floating fluid-

powered drill-bit, Païdoussis et al. [25] derived a mathematical formulation for a hanging

cantilevered pipe discharging fluid downwards, which, after exiting from the free end, flows

upwards over an annular region confined by a rigid concentric cylindrical channel; i.e., for

two counter-current interdependent axial flows. For system parameters associated with a

real drill-string system, as well as those for a bench-top-size experiment, computations were

carried out. For relatively low degrees of confinement by the outer rigid channel, the internal

flow was found to be dominant; at low flow rates, an increase in the damping caused by the

existence of the annular flow stabilized the system. On the other hand, for higher degrees of

confinement, the annular flow was found to be dominant, which leads to destabilization of

the system, precipitating flutter at relatively low internal flow velocities. The dynamics of a

system with reverse flow directions was investigated by Qian et al. [26]; for a drill-string-like

system, theoretical results demonstrated that divergence may take place in the case of rel-

atively high degree of confinement. Also, Fujita and Moriasa [27] studied the same system

93



for both flow configurations, i.e., as in [25] and [26].

Motivated by applications in salt-cavern hydrocarbon storage systems, Moditis et al.

[28, 29] investigated the dynamics of a hanging flexible cantilevered pipe, coaxial with a

shorter rigid outer tube, taking into account the discontinuity in the external flow veloc-

ity within and outside the annulus. Moreover, a series of experiments were conducted in a

bench-top-sized system to validate the analytical results. It was found that the full-scale sys-

tem undergoes divergence rather than flutter. Also, an asymptotic behaviour was obtained

as the length of the pipe was increased. Subsequently, a numerical study on the same system

was carried out by Kontzialis et al. [30]. Results were in good agreement with existing

experimental data. A linear model was also derived by Minas et al. [31] to investigate the

dynamics of a system in which the flow discharges radially at the end of the pipe through a

special end-piece; refer also to [32].

Later on, instead of a Heaviside step function as in [29], a logistic function was used

to model the discontinuity in the external flow velocity by Abdelbaki et al. [33]. It was

concluded that the proposed model could better predict the onset of instability and the fre-

quency of oscillations as compared to [29]. Thereafter, a weakly nonlinear model was derived

by Abdelbaki et al. [34] to study the dynamics of a hanging discharging cantilevered pipe

simultaneously subjected to a fully-confined external axial flow in the reverse direction. In

[35], the previous study was extended to the case of a cantilevered pipe discharging fluid and

subjected to a partially-confined external axial flow. An oscillatory instability, i.e., flutter

in the second mode, was predicted at sufficiently high flow velocities. Also, it was predicted

that increasing flow velocity results in increased amplitude and frequency of oscillations.

Moreover, generally, a longer or a tighter annulus destabilizes the system.

The foregoing literature survey demonstrates that, to the best of authors’ knowledge, so

far, no experimental study has been carried out to investigate the behaviour of the system

studied by Moditis [29] with impacting. Also, lack of experiments to investigate the effect

of some system parameters is evident. Therefore, the main purpose of the present study is

the systematic experimental investigation of the dynamics of a cantilevered pipe discharging

fluid and subjected to a reverse annular axial flow over its upper portion, as shown in Fig.

4.1. The pipe may impact on the coaxial shorter outer rigid tube at high enough flow veloc-
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ities.

Using a bench-top-size apparatus, the onset of instability as well as the dynamical be-

haviour of the system after occurrence of impact is investigated for various ratios of confine-

ment length, rann = L′/L, and various ratios of external to internal flow velocities, Uo/Ui;

refer to Fig. 4.1(a). Not only is this system of interest because it displays a rich dynamical

behaviour, but for its practical applications for hydrocarbon storage in salt-mined caverns;

the present study would be helpful in determining safe ranges of the flow velocities, so as to

prevent catastrophic damages.

In the present paper, experiments on the the dynamical behaviour of a hanging can-

(a) (b)

Figure 4.1: (a) Schematic view of the system under consideration; Qa denotes the additional

volume of the fluid into the tank to modify the Uo/Ui ratio; (b) the SMRI/PRCI apparatus with a

dual-camera system used to track the motion of the pipe tip.

tilevered pipe concurrently subjected to internal-discharging and annular-aspirating flows are
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described. In Section 2, a description of the apparatus, data acquisition system, experimen-

tal methodology and data analysis are described. In Section 3, the results of the experiments

conducted in this study are presented. Finally, Section 4 is devoted to a summary of the

results and conclusions.

4.2 Experimental apparatus and procedure

4.2.1 Test section

The bench-top-size apparatus used in this experimental investigation is shown in Fig.

4.1. The test-section consists of a cylindrical stainless steel pressure vessel filled with water,

with four symmetrically placed rectangular plexiglas windows for viewing and access to the

test chamber.

The test specimen is a flexible Silastic RTV pipe cast from silicone-rubber mixture. The

pipe material properties as well as its dimensions are summarized is Table 4.1. Surrounding

the pipe, a rigid coaxial plexiglas tube of diameter Dch =31.5 mm creates an annulus over

the upper portion of the pipe. Both the pipe and the outer plexiglas tube are cantilevered

from their top ends. To investigate the effect of confinement length fraction, i.e., the ratio

of the length of the confined region to the total length of the pipe, rann = L′/L — refer to

Fig. 4.1(a) — three different lengths of the plexiglas outer tube were used, namely, L′ = 109

mm, L′ = 206.5 mm and L′ = 304.5 mm, which correspond to rann = 0.253, rann = 0.478

and rann = 0.705, respectively. In what follows, these are referred to as rann ≃ 1/4, 1/2 and

3/4 experiments for brevity.

The pipe discharges fluid downwards, which, upon exiting the pipe, flows upwards, and

enters the surrounding annular region over the upper portion of the pipe. There is also an

additional inlet at the bottom of the pressure vessel, Qa — refer to Fig. 4.1(a). Two electric

centrifugal pumps are responsible for drawing water from the bottom of a storage tank which

is located beside the pressure vessel. The first pump provides the internal flow, i.e., flow in

the pipe, and the other one supplies additional flow to the pressure vessel from the bottom,

Qa, so that desired ratios of the external flow velocity to the internal one, Uo/Ui, can be

obtained. When Qa = 0, by continuity Uo = 0.055Ui, and thus Uo/Ui = 0.055. To achieve

Uo/Ui > 0.055, the second pump has to be used, providing Qa.
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This flow configuration is quite similar to one of the modi operandi for hydrocarbon

storage in salt-mined caverns.

Table 4.1: Material properties and dimensions of the flexible pipe used in the experiments.

Material EI [N m2] m [kg m−1] L [mm] Di [mm] Do [mm]

Silicone-rubber 7.37 ×10−3 0.191 441 6.35 16

4.2.2 Data acquisition

To determine the volumetric flow rates associated with each of the two pumps, two mag-

netic flow-meters are used, thereby determining the internal flow rate, Qi, and the additional

inlet flow, Qa. Hence the outlet flow rate, Qo, is determined by Qo = Qi + Qa. Therefore,

the internal flow velocity, Ui, and the external flow velocity, Uo, can be determined using the

known geometry of the system.

To ensure the integrity of the pressure vessel and avoid leakages, the mean pressure in

the test-section is measured via a conventional Bourdon tube pressure gauge. The gauge is

installed on the bleed line.

The motion of the centroid of the ‘red-marked’ area near the free-end of the pipe (refer to

Fig. 4.1(b)) is tracked, using two synchronized cameras perpendicular to each other . More

specifically, through two transparent windows of the pressure vessel at 90◦ to each other, the

motion of a point approximately located at 18 mm above the pipe free end is followed by

two identical FLIR Grasshopper3 2.3 MP cameras. These cameras are levelled and placed

at identical height and distance from the two windows. To ensure synchronization of the two

cameras, a function generator is used to trigger them.

These two cameras are focused on the red-marked part of the flexible cantilevered pipe

used to facilitate the post-processing of the recorded videos. The video recording system is

set to capture the videos at a frame rate of 64 fps. In each processed frame, the marker was

detected and was then tracked in the next frames. The pixel location of the centroid of the

marker in each frame was used to determine the displacements. The known width of the

marker, i.e., the outer diameter of the pipe, was used as reference.
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4.2.3 Experimental methodology

The experiments were designed to investigate the effects of the confinement length frac-

tion, rann = L′/L, and the ratio of external to internal flow velocity, Uo/Ui, ranging from

0.055 to 0.8, on the dynamics of the system. For this purpose, after installing the flexible

pipe, the outer plexiglas tube of the desired length, corresponding to rann ≃ 1/4, 1/2 or 3/4,

was installed. For specific values of Uo/Ui, the internal flow velocity was increased step-wise

to instability, and beyond to impacting. At each step, firstly the system was kept running

for a while to attain steady state. Then, the motion of the marked section of the pipe was

tracked and recorded for a duration of 300 seconds using the dual-camera system. To ensure

consistency and guarantee validity of the results, the experiments were repeated for at least

a second time.

4.2.4 Data analysis

The recorded videos were subsequently loaded into an image processing Matlab (Math-

works, Inc.) script to obtain the displacement-time series. The time series from both front

and side cameras, at each velocity step, were then smoothed using a polynomial spline.

These data were further processed to determine the nature of the motions by plotting phase

portraits, PSDs, bifurcation diagrams, etc.

It is worth mentioning that in the displacement analysis, for each experiment, the initial

location of the pipe at zero flow velocity, i.e., Ui = Uo = 0, that is, right prior to the first

velocity step, serves as a reference.

4.3 Results

4.3.1 Experimental results for rann ≃ 1/4

4.3.1.1 Results for Uo/Ui = 0.055

Fig. 4.2(a) shows the experimental bifurcation diagram for Uo/Ui = 0.055, presenting

the rms of displacement amplitude as a function of the internal flow velocity, Ui. The

relationship between the dimensional and dimensionless flow velocities is presented in the

Appendix. At low internal flow velocities, i.e., Ui < 2 m/s, the pipe remained almost

stationary without changing its original undeformed shape. However, very weak motions
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(a) (b)

(c) (d)

(e) (f)

Figure 4.2: Bifurcation diagrams showing the static and rms amplitude of oscillations versus the

internal flow velocity, Ui, for rann ≃ 1/4 and (a) Uo/Ui = 0.055; (b) Uo/Ui = 0.1; (c) Uo/Ui = 0.2;

(d) Uo/Ui = 0.4; (e) Uo/Ui = 0.6; (f) Uo/Ui = 0.8.
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initiated at Ui = 2.37 m/s. Increasing the flow velocity further, the amplitude of these

oscillations increased, reaching a plateau at Ui ≃ 4 m/s with a maximum amplitude of

approximately 3.3 mm. However, no dominant frequency could be determined, and therefore

these oscillations were likely excited by flow turbulence, or they resulted from accentuation of

imperfections in the pipe or in the clamping of the upper end. At Ui ≃ 5.5 m/s the oscillations

became considerably stronger, with a dominant frequency of f ≃ 1.45 Hz at Ui = 5.68 m/s,

indicating the onset of flutter in the second mode. Increasing the flow velocity further gave

rise to notably higher amplitude oscillations. Eventually, the pipe executed one- or two-sided

impacting with the outer rigid tube, starting at Ui = 6.63 m/s.

One important observation here is that during the experiments, the pipe always tended

to move towards one side of the surrounding channel. This behaviour might be attributed

to an initial curvature of the pipe or to accentuation of small initial eccentricity of the pipe

relative to the outer rigid tube.

Fig. 4.3 presents the average PSD, i.e., power spectral density of the average of the time

series signals that comes from each camera, at post-flutter flow velocities. In all cases, the

PSDs exhibit a more or less dominant frequency of oscillation which remains almost constant

with increasing flow velocity. The smaller peak in Fig. 4.3(b) corresponds to harmonic of the

second-mode frequency of ≃1.45 Hz. However, this smaller peak became weaker at higher

flow velocities, as can be seen in Fig. 4.3(c,d).

The dynamics of the system at the onset of impacting can be characterized further by

considering the sample results shown in Figs. 4.4 and 4.3(c). The time traces captured

by the front and side cameras shown in Fig. 4.4(a) and the polar trajectory of the pipe

tip in Fig. 4.4(b) demonstrate the unsteadiness, three-dimensionality and chaotic nature of

the oscillations. Moreover, phase portraits of the front, side and combined displacements

depicted in Fig. 4.4(c-e), respectively, indicate a 3D periodic motion; yet, due to the fact

that the motion is very unsteady and nearly intermittent according to the time traces in Fig.

4.4(a), they fill the phase space, all the way to the origin, thereby not resulting in a clean

limit cycle. Also, the Poincaré map in Fig. 4.4(f) is diffuse and suggests the existence of a

chaotic component in the dynamical behaviour of the system.
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(a) (b)

(c) (d)

Figure 4.3: PSD plots for Uo/Ui = 0.055 and rann ≃ 1/4 at (a) Ui = 5.68 m/s; (b) Ui = 6.16 m/s;

(c) Ui = 6.63 m/s; (d) Ui = 7.10 m/s.

4.3.1.2 Results for Uo/Ui > 0.055

For the velocity ratio of Uo/Ui = 0.1, qualitatively, the same behaviour as in Uo/Ui =

0.055 was observed — refer to Fig. 4.2(b); the system loses stability via flutter in the second

mode at Ui = 5.33 m/s. One- or two-sided impacting on the outer rigid tube began at Ui = 6

m/s.

In contrast, for Uo/Ui ≥ 0.2, as can be seen in Fig. 4.2(c-f) a different dynamical

behaviour was observed. For Uo/Ui = 0.2, two significant increases in the slope, at Ui =

2.17 m/s and Ui = 3.69 m/s, can be observed. However, before touching the annulus,
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deformations were static with a very weak superimposed oscillatory component. At Ui = 4.42

m/s the pipe stuck to the outer rigid and oscillated about its buckled position while it

partially rubbed around the rim of the outer tube, as can be seen in Fig. 4.5(a). In the

PSD plot shown in Fig. 4.5(b), there is no sharply defined frequency. The same behaviour

occurred at higher flow velocities. At Ui = 6.32 m/s, although the pipe was mostly stuck

on the rim of the outer tube, it could sometimes detach and completely rub around its

full circumference. At Ui = 7.26 m/s the oscillations were strong enough to determine a

frequency of f = 2.39 Hz; refer to Fig. 4.5(f).

For Uo/Ui = 0.4, the first instability at Ui = 0.72 m/s is static and the second one at

Ui = 1.72 is a static deformation with a weak superimposed oscillatory component; refer to

Fig. regarding impacting; that is, partial or complete rubbing with no dominant frequency

of oscillations. However, at Ui = 7.14 m/s the oscillations were strong enough to determine

a frequency of f = 2.26 Hz.

For Uo/Ui = 0.6, both instabilities at Ui = 0.51 m/s and Ui = 1.05 m/s were static; see

Fig. 4.2(e). The same applies in the case of Uo/Ui = 0.8, at Ui = 0.42 m/s and 0.88 m/s,

refer to Fig. 4.2(f). After the initiation of impacting, the pipe rubbed against a part of the

outer tube with weak oscillations about the buckled position.

One interesting observation here is the dynamical behaviour of the pipe when it is stuck

on the outer tube, as shown in Fig. 4.6(c). The Poincaré map in Fig. 4.6(d) and probability

density function of both front and side displacements in Fig. 4.6(e,f) indicate that the very

weak oscillations about the buckled position have a strong periodic component.

4.3.2 Experimental results for rann ≃ 1/2

The experimental bifurcation diagrams showing the rms of amplitude of displacement as

a function of the internal flow velocity, Ui, for Uo/Ui ranging from 0.055 to 0.8 are presented

in Fig. 4.7. Qualitatively, two distinct dynamical behaviours could be observed for Uo/Ui =

0.055 and Uo/Ui > 0.055. For Uo/Ui = 0.055, the system becomes unstable via flutter in

the second mode. On the other hand, for Uo/Ui > 0.055, the system undergoes a static

deformation followed by one or two oscillatory instabilities before initiation of impacting.

For Uo/Ui = 0.055, the pipe is subjected to one- or two-sided impacting with the outer

rigid tube at Ui ≥ 6.63 m/s. Increasing the flow velocity further, the harmonics become
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Figure 4.4: (a) Time series for Uo/Ui = 0.055 and rann ≃ 1/4 at Ui = 6.63 m/s; (b) polar plot;

(c)-(e) phase portraits of the front, side and combined displacements, respectively; (f) Poincaré map

of the oscillation.
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Figure 4.5: Impacting behaviour for Uo/Ui = 0.2 and rann ≃ 1/4, illustrated by means of polar

plots and PSDs, at (a) and (b) Ui = 4.42 m/s; (c) and (d) Ui = 6.32 m/s; (e) and (f) Ui = 7.26

m/s.
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Figure 4.6: (a) Time series at Ui = 1.74 m/s for Uo/Ui = 0.6 and rann ≃ 1/4; (b) PSD; (c) polar

plot; (d) Poincaré map; (e) PDF of front displacement; (f) PDF of side displacement.
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stronger, as shown in the PSD plots of Fig. 4.8. These plots can be compared with those

for rann ≃ 1/4 in Fig. 4.3 where the harmonics also disappear at higher flow velocities.

For Uo/Ui = 0.1, in contrast to rann ≃ 1/4, at first the pipe was subjected to a static

deformation, which can be interpreted as buckling in the first mode since the amplitude

increases with increasing flow velocity. This static instability developed at Ui = 1.19 m/s.

Increasing the flow velocity further, the pipe was subjected to second-mode flutter at Ui =

4.03 m/s. This flutter, however, was weak; the dominant frequency of f = 1.91 Hz in the

PSD plot at Ui = 4.42 m/s is not so strong. At higher flow rates, the pipe started to touch

the outer tube.

In agreement with the results for Uo/Ui = 0.1, for Uo/Ui > 0.1, as shown in Fig. 4.7(c-f)

the pipe undergoes more than one instability before it hits the outer rigid tube; the second

instability, however, is not always flutter in the second mode. For Uo/Ui = 0.2, first a static

instability developed at Ui = 1.06 m/s; then an oscillatory instability, i.e., flutter in the

second mode, materialized at Ui = 1.69 m/s. A frequency of f = 2.09 Hz was determined

for oscillations at Ui = 2.21 m/s. The pipe tended to move toward one side of the rigid tube,

and started to rub on it at Ui = 2.53 m/s.

For Uo/Ui = 0.4 (Fig. 4.7(d)), a static instability occurred at Ui = 0.47 m/s, followed by

another instability at Ui = 0.82 m/s in the form of very weak oscillations superimposed on

a static deformation. The same behaviour was observed at Ui = 1.07 m/s. The frequency of

oscillations was not steady; a spectrum of frequencies ranging from 0 to 3 Hz was measured.

At higher flow velocities, the pipe first rubbed against the outer rigid tube with a dominant

frequency of 1.63 Hz.

The dynamical behaviour of the pipe and the PSD plots at higher flow velocities are

presented in Fig. 4.9; a dominant frequency of f = 0.98 Hz was determined at Ui = 2.08

m/s, as shown in Fig. 4.9(b). The peaks observed at Ui = 2.34 m/s at f = 1.17 Hz and

f = 5.63 Hz correspond to the second and third modes of the pipe. At Ui = 2.59 m/s, the

peaks are around f = 0.93 Hz and f = 5.48 Hz.

For Uo/Ui = 0.6 the static instability at Ui = 0.26 m/s is followed by second mode

flutter. The onset of this oscillatory instability, according to the Fig. 4.7(e), was found to

be Ui = 0.55 m/s. The dominant frequency at Ui = 0.63 m/s and Ui = 0.79 m/s was found
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Figure 4.7: Bifurcation diagrams showing the static and rms amplitude of oscillations versus the

internal flow velocity, Ui, for rann ≃ 1/2 and (a) Uo/Ui = 0.055; (b) Uo/Ui = 0.1; (c) Uo/Ui = 0.2;

(d) Uo/Ui = 0.4; (e) Uo/Ui = 0.6; (f) Uo/Ui = 0.8.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: PSD plots for Uo/Ui = 0.055 and rann ≃ 1/2 at (a) Ui = 5.21 m/s; (b) Ui = 6.16 m/s;

(c) Ui = 6.63 m/s; (d) Ui = 7.10 m/s; (e) Ui = 7.58 m/s; (f) Ui = 8.05 m/s.
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Figure 4.9: High frequency oscillations for Uo/Ui = 0.4 and rann ≃ 1/2 shown by means of polar

plots and PSDs at high flow velocities: (a) and (b) Ui = 2.08 m/s; (c) and (d) Ui = 2.34 m/s; (e)

and (f) Ui = 2.59 m/s.
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to be f = 2.27 Hz and f = 2.40, respectively. In the latter, the oscillations were about an

inclined state of the pipe.

Increasing the flow rate further, ultimately, contact between the pipe and the outer rigid

tube in a form of partial rubbing was initiated. This impact mostly excited the frequency of

f = 1.34 Hz and its harmonic at f ≃ 2.88 Hz. At higher flow velocities, the frequency spectra

were rich but with frequency content mostly around the first and second mode frequencies,

at f ≃ 0.6 Hz and f ≃ 1.2 Hz, respectively. At the maximum attainable flow velocity in this

case, i.e., Ui = 1.58 m/s, however, oscillations were in the second and third modes; similar

to that of Uo/Ui = 0.4 and Ui = 2.59 m/s.

Interestingly, for Uo/Ui = 0.8, the static instability at Ui = 0.15 m/s is followed by two

oscillatory instabilities, namely, flutter in the first mode and in the second mode at higher

flow rates, as shown in Fig. 4.7(f). The pipe started to partially rub on the surrounding

tube at Ui = 0.54 m/s.

4.3.3 Experimental results for rann ≃ 3/4

In this section experimental results for the longest annulus, namely, rann = 0.705

are presented. Rms displacement as a function of the internal flow velocity, Ui, Uo/Ui =

0.055, 0.1, 0.2, 0.4, 0.6 and 0.8, are shown in Fig. 4.10. One significant difference, as com-

pared to the case of rann ≃ 1/2 is that the post-buckling oscillatory instability for Uo/Ui ≥ 0.1

never materialized, as the pipe developed a static deformation, touching the outer tube, and

remained in contact with it thereafter.

For Uo/Ui = 0.055, as shown in Fig. 4.11(a), the pre-instability weak oscillations are

not of a specific frequency, but a range of frequencies, mostly close to the first mode, as it

has the lowest internal damping. At Ui = 5.21 m/s, these oscillations became stronger and

at Ui = 5.68 m/s an oscillatory instability developed; refer to the PSDs of Fig. 4.11(b,c).

Although the dominant frequencies in these PSDs are not sharply defined, they are close to

the second-mode frequency. At Ui = 6.16 m/s, one-sided impacting occurred. At still higher

flow velocities one- or two-sided impacting was observed; see Fig. 4.11(d-f). By further in-

creasing the flow velocity, the pipe sticks to the outer tube and a kind of chattering behaviour

was observed. Eventually, at the maximum attainable flow velocity in this experiment, i.e.,

Ui = 9.95 m/s, the pipe detached and irregular oscillations around the annulus took place,
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(c) (d)

(e) (f)

Figure 4.10: Bifurcation diagrams showing the static and rms amplitude of oscillations versus the

internal flow velocity, Ui, for rann ≃ 3/4 and (a) Uo/Ui = 0.055; (b) Uo/Ui = 0.1; (c) Uo/Ui = 0.2;

(d) Uo/Ui = 0.4; (e) Uo/Ui = 0.6; (f) Uo/Ui = 0.8.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.11: PSD plots for Uo/Ui = 0.055 and rann ≃ 3/4 at (a) Ui = 4.47 m/s; (b) Ui = 5.21

m/s; (c) Ui = 5.68 m/s; (d) Ui = 6.16 m/s; (e) Ui = 6.63 m/s; (f) Ui = 7.10 m/s.
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as shown in Fig. 4.12(a-d).

For Uo/Ui = 0.1 (Fig. 4.10(b)), a static instability emerged at Ui = 1.81 m/s with
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Figure 4.12: (a) Polar plot of the system at Ui = 9.95 m/s for Uo/Ui = 0.055 and rann ≃ 3/4; (b)

PSD; (c) PDF of front displacement; (d) PDF of side displacement.

a weak oscillatory component superimposed. This oscillatory component developed further

at higher flow rates, but a flutter instability never arose prior to inititation of impacting.

At Ui = 3.16 m/s, the pipe partially, and at higher flows completely, rubbed against the

surrounding tube. Increasing the flow velocity to Ui = 7.58 m/s, a similar behaviour to

displayed in Fig. 4.12 was observed. At still higher flow, namely Ui = 8.84 m/s, the pipe

stuck on the outer tube, and only a chattering kind of motion was observed; however, it
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detached itself at higher flow velocities, as can be seen on the right hand side of Fig. 4.10(b).

For Uo/Ui = 0.2 (Fig. 4.10(c)), a static instability was detected at Ui = 0.85 m/s. Very

weak oscillations at Ui = 0.95 m/s and 1.26 m/s were mostly about an inclined position, with

no sharply defined frequency, but a range of frequencies close to the first-mode frequency.

The post-impacting dynamical behaviour is presented in Fig. 4.13; one-sided impacting and

rubbing at Ui = 1.58 m/s, rubbing at Ui = 1.89 m/s, which then changes to sticking at

Ui = 2.84 m/s. Fig. 4.13(f) indicates a dominant frequency of f = 1.95 Hz for the small

oscillations about the inclined state of the pipe when it is stuck on the outer rigid tube. The

pipe detached itself at higher flow rates and its behaviour was more or less similar to that

for Uo/Ui = 0.1. Therefore, the dynamics of the pipe at higher Uis are not discussed here

further for brevity.

For Uo/Ui = 0.4 (Fig. 4.10(d)), the sharp increase in the slope at Ui = 0.45 m/s is due to

the static deformation; the pipe was inclined and only very small motions about the buckled

position took place. At Ui = 0.82 m/s, the pipe chattered against the buckled position by

partially rubbing on the outer tube. At higher flows, first it got stuck and then detached

itself at Ui = 3.09 m/s. The frequency of oscillations about the buckled position was found

to be about 2 Hz.

Qualitatively, the same stability behaviour as for Uo/Ui = 0.4 was observed for Uo/Ui =

0.6: static instability followed by impacting. One important note is that, at Ui = 0.47 m/s,

the pipe only lightly touched the outer tube; therefore, one can specify it as the threshold

of flutter about the buckled position; see Figs. 4.10(e) and 4.14(b).

Finally, for Uo/Ui = 0.8 (Fig. 4.10(f)), the pipe became inclined at very small flow

velocities and a static instability at Ui = 0.17 m/s was indicated. Right after impacting

started, i.e., at Ui = 0.38 m/s, where slow one-sided impacting was observed, the oscillations

occurred with f = 0.38 Hz. However, at higher flow velocities, the dominant frequency of

the oscillations was found to be around 2 Hz.

4.4 Summary and conclusion

The dynamics of a pipe simultaneously subjected to internal and reverse, partially-

confined, external flows has been investigated experimentally in this study. The pipe is

cantilevered vertically and discharges fluid downwards in a large reservoir. The fluid exits
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Figure 4.13: Dynamical behaviour of the system for Uo/Ui = 0.2 and rann ≃ 3/4 illustrated by

means of polar plots and PSDs, at (a) and (b) Ui = 1.58 m/s; (c) and (d) Ui = 1.89 m/s; (e) and

(f) Ui = 2.84 m/s.
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Figure 4.14: Dynamical behaviour of the system for Uo/Ui = 0.6 and rann ≃ 3/4 right after the

pipe started lightly touching the annulus, at Ui = 0.47 m/s, (a) polar plot; (b) PSD.

Table 4.2: Summary of the results showing the critical internal flow velocities in m/s for instability.

rann ≃ 1/4 rann ≃ 1/2 rann ≃ 3/4

Uo/Ui Ucr,1 Ucr,2 Ucr,1 Ucr,2 Ucr

0.055 5.68 - 5.04 - 5.07

0.1 5.41 - 1.19 4.03 1.81

0.2 2.17 3.69 1.06 1.69 0.85

0.4 0.72 1.72 0.47 0.82 0.45

0.6 0.51 1.05 0.26 0.55 0.28

0.8 0.42 0.88 0.15 0.3 0.17

the reservoir through an annulus surrounding the upper part of the pipe. Three sets of

experiments were conducted to investigate the influence of varying the confinement ratio;

i.e., the length of the annulus to the length of the flexible pipe, rann = L′/L, on the dynamical

behaviour and stability of the system. For each L′/L, six ratios of external to internal flow

velocities were tested, namely Uo/Ui = 0.055, 0.1, 0.2, 0.4, 0.6, and 0.8. For the lowest ratio

of Uo/Ui tested, the pipe was found to undergo flutter in the second mode at relatively high
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Table 4.3: The dynamical behaviour of the system right after the initiation of impacting.

rann Uo/Ui Ui Observed dynamical behaviour of the pipe

1/4

0.055 6.63 Oscillations (f = 1.18 Hz)

0.1 6.32 Oscillations (f = 1.02 Hz)

0.2 4.42 Rubbing against part of the outer tube

0.4 2.34 Rubbing against part of the outer tube

0.6 1.58 Rubbing against part of the outer tube

0.8 1.2 Rubbing against part of the outer tube

1/2

0.055 6.63 Oscillations (f = 1.65 Hz)

0.1 4.74 Rubbing against part of the outer tube

0.2 2.53 Rubbing against part of the outer tube

0.4 1.33 Rubbing against part of the outer tube

0.6 0.95 Rubbing/chattering against part of the outer tube (f =1.6 Hz)

0.8 0.57 Rubbing/chattering against part of the outer tube (f =2.66 Hz)

3/4

0.055 6.16 Oscillations (f = 1.05 Hz)

0.1 3.16 Rubbing against part of the outer tube

0.2 1.58 Rubbing around the annulus

0.4 0.82 Rubbing/chattering against part of the outer tube (f = 0.80 Hz)

0.6 0.47 Oscillating while lightly touching and detaching (f = 0.79 Hz)

0.8 0.38 Oscillations about the buckled position (f = 0.37 Hz)

flow velocity. The amplitude of oscillations increased with increasing flow velocity and the

pipe eventually began to hit the rigid tube forming the annulus.

Increasing the ratio of external to internal flow velocities was found to have a significant

destabilizing effect on the system. The onset of instability drops to quite low values with

increasing Uo/Ui, as shown in Table 4.2. Moreover, in some cases, noticeably high amplitude

static deflections were observed before flutter instability, which suggests that the pipe may

undergo a static buckling at even lower flow velocities. Increasing the confinement ratio,

rann, to rann > 1/4, was also found to destabilize the pipe, as seen in Table 4.2. The static

deflections at low flow velocities were found to be more pronounced at higher rann, and

the pipe started to hit/rub against the outer rigid tube before any oscillatory motion was

117



observed. This can also be due to the narrowness of the annulus that prevents an oscillatory

instability from developing.

The dynamical behaviour beyond the pipe touching/hitting the rigid tube has also been

discussed in this study. A summary of the dynamical behaviour at flow velocities right

after the initiation of impacting is presented in Table 4.3. At lower ratios of Uo/Ui the pipe

continued to oscillate after hitting the rigid tube, and the oscillations seemed to be periodic

with a chaotic component. At higher Uo/Ui, the pipe generally rubbed itself against the

rigid outer tube; yet, at higher confinement ratios, the pipe was observed to detach itself

from the rigid channel at higher flow velocities, and display periodic oscillations.
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Appendix. Dimensionless parameters

Although in this study all the results have been described in terms of dimensional pa-

rameters, it is also common in the fluid-structure interaction community to use dimensionless

internal and external flow velocities as follows:

ui =

(
Mi

EI

)1/2

LUi, uo =

(
ρfAo

EI

)1/2

LUo, (A.1)

where Mi = ρfAf , ρf is the fluid density, Af = 1
4
πD2

i and Ao =
1
4
πD2

o, with Di and Do being

the internal and external pipe diameter, respectively. L is the length of the pipe and EI is

its flexural rigidity.

For the pipe used in the experiments in this paper, ui = 0.9142 × [Ui (m/s)] and

uo = 2.3034× [Uo (m/s)].

118



References

[1] M. Païdoussis, Calvin Rice Lecture: Some curiosity-driven research in fluid structure

interactions and its current applications, ASME J. Press. Vessel Technol. 115 (1) (1993)

2–14.

[2] M. Païdoussis, Fluid-Structure Interactions: Slender Structures and Axial Flow, Vol. 1,

2nd edition, Academic Press, 2014.

[3] P. Holmes, Bifurcations to divergence and flutter in flow-induced oscillations: a finite

dimensional analysis, J. Sound Vib. 53 (4) (1977) 471–503.

[4] P. Holmes, Pipes supported at both ends cannot flutter, J. Appl. Mech. 45 (3) (1978)

619–622.

[5] P. Holmes, J. Marsden, Bifurcation to divergence and flutter in flow-induced oscillations:

an infinite dimensional analysis, Automatica 14 (4) (1978) 367–384.

[6] A. Bajaj, P. Sethna, T. Lundgren, Hopf bifurcation phenomena in tubes carrying a

fluid, SIAM J. Appl. Math. 39 (2) (1980) 213–230.

[7] M. Païdoussis, F. Moon, Nonlinear and chaotic fluidelastic vibrations of a flexible pipe

conveying fluid, J. Fluids Struct. 2 (6) (1988) 567–591.

[8] M. Païdoussis, G. Li, R. Rand, Chaotic motions of a constrained pipe conveying fluid:

comparison between simulation, analysis, and experiment, J. Applied Mechanics 58

(1991) 559–565.

[9] C. Semler, Nonlinear dynamics and chaos of a pipe conveying fluid, Ph.D. thesis, De-

partment of Mechanical Engineering, McGill University (1991).

[10] M. Païdoussis, C. Semler, Nonlinear and chaotic oscillations of a constrained can-

tilevered pipe conveying fluid: a full nonlinear analysis, Nonlinear Dyn. 4 (6) (1993)

655–670.

[11] C. Semler, G. Li, M. Païdoussis, The non-linear equations of motion of pipes conveying

fluid, J. Sound Vib. 169 (5) (1994) 577–599.

119



[12] M. Wadham-Gagnon, M. Païdoussis, C. Semler, Dynamics of cantilevered pipes con-

veying fluid. Part 1: Nonlinear equations of three-dimensional motion, J. Fluids Struct.

23 (4) (2007) 545–567.

[13] M. Païdoussis, C. Semler, M. Wadham-Gagnon, S. Saaid, Dynamics of cantilevered pipes

conveying fluid. Part 2: dynamics of the system with intermediate spring support, J.

Fluids Struct. 23 (4) (2007) 569–587.

[14] Y. Modarres-Sadeghi, C. Semler, M. Wadham-Gagnon, M. Païdoussis, Dynamics of

cantilevered pipes conveying fluid. Part 3: Three-dimensional dynamics in the presence

of an end-mass, J. Fluids Struct. 23 (4) (2007) 589–603.

[15] Y. Modarres-Sadeghi, M. Païdoussis, C. Semler, Three-dimensional oscillations of a

cantilever pipe conveying fluid, Int. J. Non. Linear. Mech. 43 (1) (2008) 18–25.

[16] L. Wang, T. Jiang, H. Dai, Three-dimensional dynamics of supported pipes conveying

fluid, Acta Mech. Sin. 33 (6) (2017) 1065–1074.

[17] J. Duan, K. Chen, Y. You, R. Wang, J. Li, Three-dimensional dynamics of vortex-

induced vibration of a pipe with internal flow in the subcritical and supercritical regimes,

Int. J. Nav. Archit. Ocean Eng. 10 (6) (2018) 692–710.

[18] F. Cesari, S. Curioni, Buckling instability in tubes subject to internal and external axial

fluid flow, in: Proc. 4th Conf. Dimens., Hungarian Academy of Science, Budapest, 1971,

pp. 301–311.

[19] M. Hannoyer, M. Païdoussis, Instabilities of tubular beams simultaneously subjected to

internal and external axial flows, ASME J. Mech. Des. 100 (2) (1978) 328–336.

[20] J. Bailey, I. Finnie, An analytical study of drill-string vibration, ASME J. Eng. Ind.

82 (2) (1960) 122–127.

[21] I. Finnie, J. Bailey, An experimental study of drill-string vibration, ASME J. Eng. Ind.

82 (2) (1960) 129–135.

120



[22] J. Den Hartog, John Orr memorial lecture: recent cases of mechanical vibration, South

African Mech. Eng. 19 (3) (1969) 53–68.

[23] J. Grigoriev, Stability of a drill tube column with an initial curvature in the axial stream,

J. Bauman Moscow State Tech. Univ. Mashinostronye 5 (1978) 23–28.

[24] T. Luu, On the dynamics of three systems involving tubular beams conveying fluid,

Master’s thesis, Department of Mechanical Engineering, McGill University, Canada

(1983).

[25] M. Païdoussis, T. Luu, S. Prabhakar, Dynamics of a long tubular cantilever conveying

fluid downwards, which then flows upwards around the cantilever as a confined annular

flow, J. Fluids Struct. 24 (1) (2008) 111–128.

[26] Q. Qian, L. Wang, Q. Ni, Vibration and stability of vertical upward-fluid-conveying pipe

immersed in rigid cylindrical channel, Acta Mech. Solida Sin. 21 (5) (2008) 331–340.

[27] K. Fujita, A. Moriasa, Stability of cantilevered pipes subjected to internal flow and

external annular axial flow simultaneously, in: ASME 2015 Press. Vessel. Pip. Conf.,

Boston, MA, USA; PVP2015-45141, 2015.

[28] K. Moditis, The dynamics of hanging tubular cantilevers in axial flow: An experimental

and theoretical investigation, Master’s thesis, Department of Mechanical Engineering,

McGill University (2014).

[29] K. Moditis, M. Païdoussis, J. Ratigan, Dynamics of a partially confined, discharging,

cantilever pipe with reverse external flow, J. Fluids Struct. 63 (2016) 120–139.

[30] K. Kontzialis, K. Moditis, M. Païdoussis, Transient simulations of the fluid–structure

interaction response of a partially confined pipe under axial flows in opposite directions,

ASME J. Press. Vessel Technol. 139 (3) (2017).

[31] S. Minas, M. Païdoussis, F. Daneshmand, Experimental and analytical investigation of

hanging tubular cantilevers with discharging axial and radial flow, in: ASME 2017 Int.

Mech. Eng. Congr. Expo., Tampa, FL, USA; IMECE2017-70466, 2017.

121



[32] M. Païdoussis, A. Abdelbaki, M. Butt, K. Moditis, A. Misra, M. Nahon, Dynamics of

a pipe subjected to internal and confined external flow, in: ASME Press. Vessel. Pip.

Conf., San Antonio, TX, USA; PVP2019-93227, 2019.

[33] A. Abdelbaki, A. Misra, M. Païdoussis, Dynamics of a tubular cantilever simultane-

ously subjected to internal and partially-confined external axial flows, in: ASME 2018

Int. Des. Eng. Tech. Conf. and Comput. Inf. Eng. Conf., Québec City, QC, Canada;

DETC2018-86176, 2018.

[34] A. Abdelbaki, M. Païdoussis, A. Misra, A nonlinear model for a hanging tubular can-

tilever simultaneously subjected to internal and confined external axial flows, J. Sound

Vib. 449 (2019) 349–367.

[35] A. Abdelbaki, M. Païdoussis, A. Misra, A nonlinear model for a hanging cantilevered

pipe discharging fluid with a partially-confined external flow, Int. J. Non-Linear Mech.

118 (2020) 103290.

122



CHAPTER 5

Dynamics of a Cantilevered Pipe Conveying Fluid and Counter-currently

Subjected to Partially Confined External Axial Flows: Experimental

Investigation II

Preface

Following the work presented in the previous chapter, this chapter presents the second

part of the experiments on system III, using the same bench-top-size apparatus. In the

previous chapter, the effect of annulus-to-pipe length ratio, i.e. the ratio of the confined

length of the pipe to its total length, was studied. The manuscript presented in this chapter

[4], focuses on utilizing qualitative and quantitative nonlinear dynamics tools, to explore the

nature of the motions of the pipe, also investigating the influence of the other main system

parameters on the dynamics. These parameters involve the (i) external flow confinement

(annular gap size), (ii) pipe length-to-diameter ratio, (iii) pipe material, (iv) flow constric-

tion at the upstream or downstream end of the annular region, and (v) eccentric positioning

of the outer rigid tube relative to the central pipe.
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Dynamics of a hanging fluid-discharging pipe subjected to reverse external

flow: an experimental investigation

Mahdi Chehreghani, Ahmed Shaaban, Arun K. Misra, Michael P. Païdoussis∗

Department of Mechanical Engineering, McGill University,

817 Sherbrooke Street West, Montreal, QC, Canada H3A 0C3.

Abstract: The present paper discusses and analyzes experiments on the dynamics of hang-

ing cantilever tubular beams conveying fluid downwards and subjected to partially-confined

reverse external axial flow. A bench-top-size facility, consisting of a reservoir filled with

water, a hanging flexible pipe conveying fluid downwards and a shorter outer rigid tube

surrounding the pipe at its upper portion containing an upwards flow, was utilized. A non-

contacting optical approach was employed to obtain the displacement time-series of pipe

motions from which, using qualitative and quantitative nonlinear dynamics tools, the nature

of the motions was explored. The oscillatory motions observed were found to be unsteady

with both periodic and chaotic content. The influence of some system parameters on the

dynamics, namely, external flow confinement, pipe slenderness, pipe material, placement of

a constraint at the external annular flow inlet/outlet, and eccentric positioning of the outer

rigid tube relative to the central pipe, was examined. It was found that varying the system

parameters in some cases gives rise to quite interesting qualitative or quantitatively changes

in this Fluid-Structure Interaction (FSI) system.

Keywords : Pipes conveying fluid; Flutter; Static divergence; Annular confinement; Eccen-

tricity; Slenderness; Flow separation; Axial flow; Chaos.

5.1 Introduction

The dynamics of slender structures conveying fluid or subjected to external flow is an

enduring research topic, with the first paper published on the subject more than eighty years

ago [1]. Pipelines, high-speed trains, nuclear reactors and renewable energy harvesters are

among the many engineering applications in which a slender body interacts with fluid. Bio-

logical and physiological examples may be found in locomotion of slender fish, blood vessels
∗Corresponding author.

E-mail addresses: mahdi.chehreghani@mail.mcgill.ca, ahmed.shaaban@mail.mcgill.ca,

arun.misra@mcgill.ca, michael.paidoussis@mcgill.ca
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and vocal cords. In addition to many studies in this area being “application oriented”, several

are “curiosity-driven” and fundamental [2], focusing on understanding the underlying FSI of

the observed phenomena.

The fairly simple system of a pipe conveying fluid and its many variations, such as pipes

with added supports, masses, linear and nonlinear springs and dashpots and end-nozzles,

display a rich dynamical behaviour. Indeed, the fluid-elastic system of a pipe conveying fluid

has become a paradigm in dynamics [2, 3], serving as a model problem to illustrate known

dynamical concepts or as a tool to explore new classes of dynamical behaviour.

It is known that the gyroscopic conservative system of a pipe with supported ends can-

not flutter [4], despite the prediction of coupled-mode flutter by linear theory. Cantilevered

pipes, on the other hand do flutter [5]; they are subjected to either a sub- or supercritical

Hopf bifurcation into periodic motions (flutter) at sufficiently high flow velocities, depend-

ing on the system parameters [6]. When a fluttering cantilevered pipe is constrained by a

nonlinear motion-restraining spring, the existence of a period-doubling route to chaos was

demonstrated [7]. For an extensive review of the subject, the interested reader is referred to

[2, 8].

In parallel, work on the dynamics of cylindrical bodies immersed in axial flow has been

conducted quite extensively, for instance by Païdoussis [9], Triantafyllou and Chryssosto-

midis [10, 11], Dowling [12], Rinaldi and Païdoussis [13, 14], Sader et al. [15] and Perets et

al. [16], citing only some important studies on the subject. For the sake of brevity, these

studies are not discussed here; the interested reader is referred to [17].

We next consider the dynamics of cantilevered pipes simultaneously subjected to internal

and external axial flows. This system loses stability via flutter or static divergence, depend-

ing on the system parameters. Perhaps the first study on the dynamics of this system was by

Cesari and Curioni [18], who predicted buckling instability of pipes with different boundary

conditions. Hannoyer and Païdoussis [19] examined the dynamics of hanging tubular beams

subjected to independent concurrent internal and external axial flows. For clamped-clamped

pipes, the internal and external flows had a synergistic effect on instability of the system.

For cantilevered pipes, however, the effect of the two flows was antagonistic in some cases;

moreover, it was found that the onset of instability greatly depends on the shape of the free
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end. For example, for a blunt end, the internal flow is dominant and, although flutter arises

at sufficiently high flow velocities, increasing the external flow velocity may re-stabilize the

system. For a more or less streamlined end-piece, the dynamical behaviour is quite complex,

i.e. both static and dynamic instabilities occur. Later on, stability of internally/externally

tapered pipes subjected to internal and/or external flow was investigated both theoretically

and experimentally by Hannoyer and Païdoussis [20, 21].

Motivated by some applications, such as modelling the dynamics of heat-exchanger and

boiler internals, the dynamics of clusters of cylinders subjected to concurrent internal and

external flows was studied in [22]. Another engineering application-motivated research on

the dynamics of pipes subjected to both internal and external flows is that of drill-strings.

Some early work was carried out by Bailey and Finnie [23], Finnie and Bailey [24] and Den

Hartog [25]. Later on, Luu [26] investigated the dynamics of a long hanging cantilevered

pipe discharging fluid downwards, which upon exiting the pipe flows upwards through an

annulus formed by the pipe and a concentric outer rigid tube. Also, the case of an inclined

pipe with internal and annular flows was studied by Wang and Bloom [27].

A mathematical model associated with an idealized drill-string system with a floating

fluid-powered drill-bit was derived by Païdoussis et al. [28]. In this study, the flow configu-

ration was similar to that of Luu [26]; i.e., the internal and annular flows were counter-current

and interdependent. It was concluded that for a relatively slightly confined system, the in-

ternal flow is dominant in the dynamics; quite the reverse for a more confined system where

the annular flow is dominant, precipitating flutter at relatively low internal flow rates.

Qian et al. [29] studied a drill-string-like system, but with reverse flow directions, i.e.

with annulus discharging and the pipe aspirating fluid. For a relatively confined external

flow, they predicted theoretically that the system is subjected to static divergence, rather

than to an oscillatory instability. Fujita and Moriasa [30] examined the same system for both

conventional and reverse flow configurations. Recently, Abdollahi et al. [31] investigated the

stability of a rotating pipe conveying fluid in an annular fluid-filled channel, aiming at a

more realistic modelling of drill-strings. See also Ghasemloonia et al. [32] for a review on

this topic.

A pipe subjected to counter-current internal and external flows is an idealized model
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for the storage and subsequent retrieval of hydrocarbons in solution-mined caverns. These

caverns are formed by leaching underground salt deposits. Thereafter, a part of the brine is

replaced by liquid or gaseous hydrocarbons. In one of the modi operandi, one fluid is pushed

through a central long pipe of the order of a kilometer, while displacing the other fluid to

exit the cavern through a shorter annulus around the pipe. Motivated by this application,

Moditis et al. [33] extended the work of Païdoussis et al. [28] to the case of a pipe conveying

fluid and subjected to a partially confined external axial flow over its upper portion through

a concentric shorter outer rigid tube. The dynamics of the system was also examined exper-

imentally, using a bench-top-sized apparatus. The theoretical calculations predicted flutter

for parameters corresponding to the bench-top system, but static divergence (buckling) for

the full-scale system. Thereafter, Kontzialis et al. [34] conducted a numerical study on the

same system, obtaining results in good agreement with the available experiments.

Later on, Abdelbaki et al. [35] derived a weakly-nonlinear model to examine the dynamics

of a hanging tubular cantilevered beam counter-currently subjected to a partially-confined

annular flow. For the system parameters investigated, a Hopf bifurcation leading to limit-

cycle oscillations was predicted at high-enough flow velocities. Also, it was concluded that,

generally, a longer or a narrower annulus would precipitate the instability earlier.

Minas and Païdoussis [36] extended the work of Moditis et al. [33] to explore the dynam-

ics of a radially discharging pipe, as well as higher ratios of annular to internal flow velocity,

both theoretically and experimentally. Also, the dynamics of the system with the opposite

flow configuration (aspirating pipe, discharging annulus) was studied. Chehreghani et al.

[37] explored the influence of the confinement length on the dynamics of the same system.

The post-instability dynamics and impacting of the pipe on the coaxial shorter outer rigid

tube were also studied.

A more comprehensive literature survey on the dynamics of cantilevered pipe subjected

to internal and reverse external annular flows may be found in [38]. Nevertheless, it is man-

ifest from the foregoing that a systematic parametric experimental work is required to fully

investigate the dynamics of this system. This lacuna motivated us to conduct a system-

atic experimental work to characterize the influence of some of the main system parameters

on the dynamics of the system, namely external flow confinement (annular gap size), pipe
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slenderness, pipe material, eccentricity between the pipe and the surrounding cylindrical

channel, and external flow constriction at the inlet or outlet of the annulus. Some, but not

all, of the experimental results on the effect of external flow confinement reported here has

previously been presented in Chehreghani et al. [39].

The repercussions of operating solution-mined caverns at flow velocities beyond the crit-

ical for fluid-elastic instabilities are severe. Beyond the onset of flutter, the amplitude of

the central pipe oscillation grows, eventually resulting in repeated impact of the pipe on the

outer tube, causing fretting wear of the pipe and possible breakage, with part of the pipe

ending up at the bottom of the cavern. If the pipe is subject to static divergence (buckling)

instead of flutter, the outcome may be the same. The pipe only touches the outer tube

intermittently, switching from one side to the other; or, if “sticking” occurs, the buckled

pipe chatters against the outer tube at high frequency, again resulting in fretting wear and

possible damage.

Making use of the bench-top apparatus shown schematically in Fig. 5.1, the threshold of

instability as well as the post-instability behaviour of the system was explored, for various

ratios of the external (annular) to internal flow velocities, Uo/Ui. The flow configuration

studied here, besides being of interest for its fundamental aspects, simulates the mode of

retrieval of the hydrocarbon product stored in salt-mined caverns. Therefore, the present

study would be useful in diagnosing the cause of brine-string breakages [40, 41], as well as

delimiting the safe ranges of the flow velocities in practice.

The rest of the paper is organized as follows. The experimental apparatus and methodol-

ogy are described in Section 5.2. The main dimensionless parameters involved are provided

in Section 5.3. Experimental results on the effect of the external flow confinement are pre-

sented in Section 5.4. Section 5.5 gives a brief summary of the results on the effect of annular

confinement length ratio, and Section 5.6 on the effect of pipe slenderness. Experimental

results on the influence of external flow constriction are discussed in Section 5.7, on the

influence of pipe material properties in Section 5.8, and on the influence of an eccentricity

between the pipe and the surrounding annular region in Section 5.9. Finally, Section 5.10 is

devoted to the conclusions from the work reported in this paper.
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Figure 5.1: Schematic view of the SMRI-PRCI apparatus and the synchronized dual-camera

system. Internal flow with velocity Ui, and the flow in the surrounding annular region with velocity

Uo, as well as parameters related to the geometry are shown in the zoomed view. Qa denotes the

additional fluid entering the pressure vessel to achieve higher values of Uo/Ui. Approximate size of

the pressure vessel: 0.5 m in diameter; 1 m in height.

5.2 Apparatus and methodology

5.2.1 Experimental setup

The SMRI-PRCI apparatus in the FSI laboratory at McGill University, shown schemati-

cally in Fig. 5.1, was utilized. This set-up consists a pressure vessel, a flexible pipe, a coaxial

transparent shorter rigid plexiglas tube surrounding the upper portion of the pipe, two cen-

trifugal pumps with digital controllers, two magnetic flow meters, a conventional Bourdon

tube pressure gauge and a water storage tank. The pressure vessel has four rectangular

transparent windows, symmetrically placed, allowing access and viewing of the dynamics of

the flexible pipe.

Properties of the flexible pipes are presented in Table 5.1. EI denotes the flexural

rigidity, m mass per unit length, L length, Do outer diameter and Di inner diameter of the

pipe. The silicone-rubber (silastic RTV) pipes were cast in-house from a mixture of liquid

silicone-rubber. For details on casting the elastomer pipes the interested reader is referred
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Table 5.1: Properties of the flexible pipes used in the experiments.

Pipe Material EI [N m2] m [kg m−1] L [mm] Do [mm] Di [mm]

A Silicone–rubber 7.37 ×10−3 0.191 441 16.0 6.35

B Silicone–rubber 7.37 ×10−3 0.191 221 16.0 6.35

C Santoprene 37.3×10−3 0.086 443 13.0 9.50

to Appendix D of Païdoussis [2]. Pipe C was a commercial santoprene hose. The frequency

of first-mode oscillations of pipes A, B and C in air are 1.09 Hz, 2.63 Hz and 2.10 Hz,

respectively. Païdoussis and Des Trois Maisons [42] have postulated that a two-parameter

Kelvin-Voigt model is sufficient to capture the internal damping characteristics of elastomer

pipes. A description of the two-parameter visco-hysteretic Kelvin-Voigt model and typical

values of the associated coefficients may be found in Rinaldi [43] and Appendix D of Païdous-

sis [2]. The modal logarithmic decrements of the damping for the silicone-rubber pipes used

in these experiments for the nth beam-mode can be approximated by δn = 0.0521n− 0.0151,

based on a linear interpolation of the measured modal logarithmic decrement of the first

three modes. It should be stressed, however, that the flow-induced damping is overwhelm-

ingly more significant than the structural damping. Therefore, neither does the structural

damping model, nor the values of the coefficients involved play a significant role in the dy-

namics of the system [28, 44].

As shown in Fig. 5.1, the flexible cantilevered pipe discharges fluid downwards in the

pressure vessel with flow velocity, Ui. Upon exiting the pipe, the fluid is aspirated with

velocity Uo in the upwards direction, in the annulus between the upper portion of the pipe

and the surrounding cylindrical plexiglas tube. Therefore, the external flow around the pipe

is partially confined. To achieve higher Uo/Ui, additional flow, with volumetric rate Qa, was

added into the pressure vessel from the bottom. To this end, one pump pushed water from

the storage tank into the pipe, thereby providing the internal flow in the pipe, Qi, while the

other pump provided the additional water to the bottom of the pressure vessel from the stor-

age tank. Hence, the external flow rate is Qo = Qi +Qa, and therefore UoAch = UiAi +Qa,

where Ach = (π/4) (D2
ch −D2

o) is the cross-sectional area of the annulus between the outer

tube and the pipe and Ai = (π/4)D2
i is the internal cross-sectional area of the pipe.

The outer rigid tube had a diameter of Dch = 54 mm and a length of L′ = 206.5 mm for
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(a) (b) (c)

Figure 5.2: Schematic plot depicting (a) the placement of a flow-constricting rigid ring of inner

diameter Dir at the inlet (lower end) of the outer rigid tube and the cross-sectional view showing

the pipe, the rigid ring and the outer rigid tube; (b) the placement of the rigid ring at the outlet

(top end) of the outer rigid tube; (c) elevation and cross-sectional views of the off-centre placement

of the outer rigid tube with respect to the central pipe; e denotes the eccentricity.

experiments with pipe A and C, and a length of L′ = 109 mm for experiments with pipe B.

Therefore, for all the cases we have rann = L′/L ≃ 1/2 – refer to Fig. 5.1.

For experiments on the effect of annular flow constriction a constraint was placed at the

inlet or outlet of the annular region, namely a ring of thickness tr = 12 mm, outer diameter

Dor = Dch = 54 mm and various inner diameter sizes, Dir; it was pressure-fitted at the

bottom (entrance) or top (exit) of the annular region, as shown in Fig. 5.2(a,b), respectively.

More details are provided in Section 5.7.

For experiments on the eccentric system, the outer rigid tube was mounted with a pre-

determined eccentricity, e, with respect to the undeformed state of the pipe, as shown in

Fig. 5.2(c). Further details are provided in Section 5.9.

5.2.2 Data acquisition and processing

From the known geometry of the system and measurement of Qi and Qa, by means of

two magnetic flow meters, the internal and annular (external) flow velocities, Ui and Uo can

be determined.
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A conventional Bourdon tube pressure gauge was utilized to measure the static pressure

in the vessel. This pressure was monitored and recorded for ensuring the integrity of the

apparatus.

To measure the motion of the pipe, a non-contacting optical technique was used. To this

end, a 38 mm long region at the free-end of the pipe was marked in red. The motion of the

centroid of this “red-marked” region at the pipe tip was tracked and recorded via two syn-

chronized FLIR Grasshopper3 high-speed cameras from the two perpendicular windows of

the pressure vessel. These cameras are referred to as “front” and “side” cameras throughout

the paper, as shown in Fig. 5.1. The two cameras were triggered via a function generator,

thereby assuring synchronization.In each experiment, the undeformed state of the pipe sub-

merged in quiescent fluid served as a reference for measuring deformation.

The flow velocity was increased gradually to instability, and further on to impact on the

plexiglas tube. At each flow velocity increment, after waiting adequately to ensure a steady

state condition, the motion of the pipe tip was recorded.

A video-processing Matlab (Mathworks, Inc.) script was utilized to obtain displacement-

time series from the videos recorded via the dual-camera system. More specifically, the script

converts each recorded frame into a binary image. In each frame, when the red marker is

detected, the centroid of the red area in pixel units can also be determined. Thereafter, the

centroid location in pixel units can be converted into millimeters using the known dimen-

sions of the marker to obtain the displacement time-series signal. Eventually, the time series

signal was post-processed to identify the dynamics of the system, employing tools such as

bifurcation diagrams, wavelet transforms, Poincaré maps, PSDs, phase plane plots, and via

quantitative measures such as the PDF, auto-correlation function and Lyapunov exponents.

5.3 Dimensionless parameters

In this paper, the data is presented in terms of dimensionless parameters in order to

facilitating comparison of the results to existing or future work, and in this parametric study

enabling a more “apples to apples” comparison.

The conventional dimensionless internal and external (annular) flow velocities, ui and uo,
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Table 5.2: Multiplicative factors to convert the dimensionless to dimensional terms.

Pipe A B C

Ui(m/s)/ui 1.094 2.183 1.637

Uo(m/s)/uo 0.4341 0.866 1.197

(Uo/Ui) / (uo/ui) 0.397 0.397 0.731

f(Hz)/ω 0.108 0.430 0.291

and dimensionless frequency, ω, utilized in the past [28, 33], are as follows:

ui =

(
ρfAi

EI

)1/2

LUi, uo =

(
ρfAo

EI

)1/2

LUo, ω =

(
m+ ρfAi + ρfAo

EI

)1/2

L2Ω, (5.1)

where ρf is the density of the fluid, water in this case, Ai =
π
4
D2

i , Ao =
π
4
D2

o, and Ω = 2πf

is the radian frequency, f being in Hz. Other symbols are the same as in Table 5.1.

In order to provide a better “feel” for the reader, dimensional results are also presented in

some cases. The multiplicative factors for conversion from the dimensionless to dimensional

terms for the three pipes used in these experiments are provided in Table 5.2. Please note

that uo/ui = (Do/Di) (Uo/Ui).

Throughout the paper, some parameters related to the geometry of the system are also

used (see Figs. 5.1 and 5.2), namely

αch =
Dch

Do

, rann =
L′

L
, ε =

L

Do

, ḡr =
Dir −Do

Dh

, ē =
2e

Dh

, (5.2)

where αch is a dimensionless parameter associated with the annular confinement (annular

gap size), in which Dch is the inner diameter of the outer rigid tube. The confinement pa-

rameter, χ = (D2
ch +D2

o) / (D
2
ch −D2

o), may also be used; for a relatively unconfined pipe

χ → 1 and for a very narrow annulus χ → ∞. Also, rann is a parameter associated with

confinement length ratio, L′ being the confined length of the pipe. ε is pipe slenderness.

Furthermore, ḡr is a dimensionless parameter pertinent to the gap size between the rigid

ring and the pipe, in which Dir is the inner diameter of the ring used in experiments on

flow constriction, and Dh = Dch −Do is the hydraulic diameter of the annular region. ē is

a dimensionless parameter associated with eccentricity, e being the eccentricity between the
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(a) (b)

Figure 5.3: Bifurcation diagrams showing the rms amplitude of total displacement and the mean

deflection versus ui for interdependent internal and external flows (Qa =0) and (a) αch = 3.37

(Dch=54 mm and Uo/Ui =0.015); (b) αch = 1.97 (Dch =31.5 mm and Uo/Ui=0.055). Rms am-

plitude: (•) pre-instability, (■) instability, (▲) impact; (×) mean deflection; (∗) critical flow for

instability.

outer rigid tube and the undeformed state of the pipe in eccentric system experiments.

The linear equation of motion for a partially confined, vertical cantilevered pipe discharg-

ing water and subjected to reverse axial external flow in the dimensionless form as given by

Moditis et al. [33] is provided in Appendix A. To facilitate the discussion pertinent to the

influence of some parameters, the expressions for the mass, damping and stiffness matrices

of the discretized equation of motion are presented in Appendix B.

5.4 Results on the effect of external flow confinement

In this section, results on the influence of the size of the annular gap between the pipe

and the outer rigid tube are presented; i.e., the parameter varied is the annular confinement

ratio, αch, refer to Eq. (5.2) . Here, the results for a wider outer rigid tube with αch = 3.37

(Dch = 54 mm, χ = 1.19) are compared to those of Chehreghani et al. [37] for a narrower

outer rigid tube with αch = 1.97 (Dch = 31.5 mm, χ = 1.69) and the same other system

parameters. The fixed parameters are as follows: pipe A with slenderness ε = 27.56, and the

rigid outer tube with annular confinement length ratio, rann = 0.468 ≃ 1/2 (L′ = 206.5).
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5.4.1 Interdependent internal and external flow

In the first set of experiments, no additional flow was added into the pressure vessel from the

bottom; i.e., Qa = 0, and the internal and external flow were interdependent: UoAch = UiAi.

This means that by changing the confinement (annular gap size), Uo/Ui is also affected.

Here, for the wider gap (αch = 3.37, Dch = 54 mm, χ = 1.19), we have Uo/Ui = 0.015

(uo/ui = 0.038) and for the narrower one (αch = 1.97, Dch = 31.5 mm, χ = 1.69), we have

Uo/Ui = 0.055 (uo/ui = 0.138).

The experimental bifurcation diagrams for the wider (Uo/Ui =0.015) and the narrower

(Uo/Ui =0.055) annular gap size are presented in Fig. 5.3(a, b), respectively. [Note that in all

the bifurcation diagrams presented through the paper, the rms of (total displacement)/Do as

well as (pipe mean deflection)/Do are plotted as a function of ui.] The dynamical behaviour is

qualitatively similar. Quantitatively, however, increasing the size of the annular gap resulted

in an increase in the critical flow velocity, namely from ucr = 4.60 to ucr = 5.19, and also in

an increase in the amplitude of oscillations. The character of motion of the pipe changes at

ucr, as discussed in the two paragraphs that follow.

As seen in Fig. 5.3(a), for very small ui, the pipe remained almost stationary at its

undeformed initial shape. Increasing ui resulted in very weak random first-mode oscillations

in addition to a small static deformation (1.30 < ui < 5.19); these random motions with

a limited amplitude were likely excited by turbulence buffeting, or they may have arisen

partly from accentuation of initial imperfections. As can be seen in Fig. 5.4(a), no dominant

frequency can be determined in this range of ui. At ui = 5.19, weak small amplitude second-

mode oscillations initiated, as can be seen in Fig. 5.3(a) and Fig. 5.4(a). The determination

of ucr by the intersection of two linear fits of (i) small unsteady turbulence-induced motions

and (ii) more regular fast-rising oscillation amplitudes has been shown in practice to be the

best approach [44]. Increasing the internal flow velocity further to ui =5.63, resulted in

remarkably more powerful second-mode oscillations with a dominant frequency of ω = 14.3

(=1.54 Hz), as shown in Fig. 5.4(a), and a sharp increase in the rms amplitude, demonstrated

in the bifurcation diagram of Fig. 5.3(a). The self-excited second-mode flutter observed is a

“movement-induced instability” in the Naudascher and Rockwell [45] categorization in which

the fluctuating forces are associated with movements of the structure.
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(a) (b)

Figure 5.4: (a) Morse wavelet scalogram in which the vertical strips indicate values of the in-

ternal flow velocity; (b) variation of the largest Lyapunov exponent of the front (•) and side (■)

displacement time series as a function of internal flow velocity.

As seen in Fig.5.3(a), increasing flow velocity further to ui = 6.06 resulted in oscillations

of higher amplitude and the pipe impacted on one side of the surrounding rigid tube; then, at

still higher flows, a combination of two-sided impacting and rotational motions materialized.

The high amplitude oscillations observed at ui=5.63 (Fig. 5.3(a)) can be explored further

by means of the analysis in Fig. 5.5. The time traces of Fig. 5.5(a) and the front versus side

displacement plot of Fig. 5.5(b) suggest an unsteady and near-intermittent oscillation, in

which, albeit having a strong periodic component(ω = 14.3), the amplitude and the plane

of oscillations (direction of motions) vary in a chaotic manner. The pseudo-phase space plot

of the combined front and side motions shown in Fig. 5.5(c) provides more evidence on the

existence of both periodic and chaotic content in the oscillations. The double-hump shape of

the probability density function of the oscillatory part of the combined motion (Fig. 5.5(d)),

the scattered, albeit with some structure, shape of the Poincaré map ((Fig. 5.5(e))), and

the fairly rapid decay and unsteadiness of the autocorrelation function of the combined

oscillatory displacement (Fig. 5.5(f)) confirm the intermittent nature of the oscillations with

both periodic and chaotic content.

The largest Lyapunov exponent, λ1, from the experimental time-series was estimated

using an efficient version of the algorithm by Wolf et al. [46]. As shown in Fig. 5.4(b), λ1,
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Dynamics of the system at ui = 5.63 (Ui = 6.16 m/s) for the wider outer rigid tube

(αch = 3.37), with interdependent internal and external flows (Uo/Ui = 0.015) and the parameters

given in Section 5.4.1 by means of (a) time traces; (b) front versus side displacement; (c) pseudo-

phase space of the combined displacement; (d) PDF of the combined displacement; (e) Poincaré

map; (f) autocorrelation of the combined displacement.
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despite being small, increases with flow velocity. Remarkably, when the pipe impacts on the

outer rigid tube, λ1 increases with a greater slope. Therefore, with increasing flow velocity

the chaotic content of the oscillations is enhanced. This enhancement in the chaotic content

with flow velocity, in addition to the analysis provided in Fig. 5.5, suggests that the system

may follow the intermittency route to chaos; that is, long periods of periodic motion with

bursts of chaos [47].

Physically, careful investigation of Eqs. (A.1), (B.1), (B.2) and (B.3) reveals that varying

αch (and hence χ), affects the virtual mass, the Coriolis and the centrifugal forces in a

complicated manner. In addition, a more confined annulus means a higher uo. In agreement

with the experimental results provided in Fig. 5.3, based on the calculations conducted,

increasing the annular gap size (increasing αch, decreasing χ) tends to stabilize the system.

5.4.2 Independent internal and external flows

In this case, the influence of the parameter of interest, that is the annular confinement (solely

αch = Dch/Do), was isolated from variations in Uo/Ui. This requires having the same value of

Uo/Ui for both the wider and narrower outer tube via independently controlled internal and

external flows. To this end, the same pipe and outer rigid tube as in Section 5.4.1 were used,

but with appropriate amounts of additional fluid entering from the bottom of the pressure

vessel, Qa ̸= 0, to achieve higher values of Uo/Ui, namely 0.2, 0.4 and 0.8. Comparing the

results provided here for a wider annular gap size (Dch=54 mm, αch = 3.37) with those of

Chehreghani et al. [37] for a narrower annular gap size ( Dch=31.5 mm, αch = 1.97) allows

us to characterize solely the influence of external flow confinement.

Experimental bifurcation diagrams presenting the rms amplitude of displacement and

the mean deflection versus ui for αch= 3.37 (wider outer tube), and Uo/Ui=0.2, 0.4 and 0.8

are presented in Fig. 5.6(a, c, e), respectively. They are compared to their counterparts with

the same Uo/Ui but αch =1.97 (narrower outer tube) in Fig. 5.6(b,d, f).

Generally, for independent external and internal flows and αch =3.37, compared to

that of interdependent flows (Uo/Ui =0.015), two interesting dynamical features are noticed.

Firstly, at relatively small flows (ui = 0.87 − 1.73 for Uo/Ui = 0.2, ui = 0.43 − 0.98 for

Uo/Ui = 0.4, and ui = 0.23−0.58 for Uo/Ui = 0.8), fairly powerful first-mode oscillations took

place as shown in Fig. 5.7(a-c), followed by mixed first- and weak second-mode oscillations at

138



(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Bifurcation diagrams showing the rms amplitude of total displacement and the mean

deflection as a function of ui for independent internal and external flows (Qa ̸=0). For the wider

annulus, αch = 3.37 (Dch=54 mm): (a) Uo/Ui = 0.2; (c) 0.4; (e) 0.8. For the narrower annulus,

αch = 1.97 (Dch =31.5 mm): (b) Uo/Ui = 0.2; (d) 0.4; (f) 0.8. Rms amplitude: (•) pre-instability,

(■) instability, (▲) impact; (×) mean deflection; (∗) critical flow for instability.
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(a) (b)

(c) (d)

Figure 5.7: Morse wavelet scalogram in which the vertical strips indicate values of the internal

flow velocity for αch = 3.37 and Uo/Ui = (a) 0.2, (b) 0.4, and (c) 0.8. (d) Variation of the largest

Lyapunov exponent of the front and side displacement time series versus ui for αch = 3.37 and

Uo/Ui = 0.2: front (■) and side (+); Uo/Ui = 0.4: front (•) and side (×); Uo/Ui = 0.8: front (♦)

and side (∗).

higher ui prior to the onset of impacting on the outer rigid tube, whereas for interdependent

flows (Uo/Ui =0.015), prior to the onset of second mode flutter, the pipe was only subjected

to a static deformation (see Fig. 5.4(a)). Secondly, for Qa ̸= 0, at sufficiently high flow

velocities, the pipe partially or completely rubbed against the rim of the outer tube, rather

than undergoing the one- or two-sided impacting observed for interdependent flows. This

chattering behaviour resulted in powerful low frequency oscillations, shown in Fig. 5.7(a-c).

In terms of the effect of increasing the confinement, a stabilizing influence was observed,
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for all Uo/Ui investigated. For the wider outer tube and Uo/Ui =0.2, first-mode oscillations

at ui = 1.15 commenced. At ui =2.02 a weak second-mode component began to appear, as

shown in the scalogram of Fig. 5.7(a), resulting in mixed first- and second-mode oscillations

at higher ui (the PSDs are not shown for brevity). For the narrower annular region and

Uo/Ui=0.2, the dynamics is reported as follows: static deformation at relatively small flows,

followed by weak mixed-mode oscillations superimposed on the mean static deflection at

higher flow rates. For higher Uo/Ui, namely, 0.4 and 0.8, the trend is similar to that of

Uo/Ui =0.2, as shown in Fig. 5.6(c-f) and Fig. 5.7(b, c).

In terms of chaos, in the range of the flow velocities achievable in the experiment, the

chaotic component was very weak with the largest Lyapunov exponent, λ1 ≃ 0, as shown

in Fig. 5.7(d). The small non-zero λ1 suggests that the oscillation, although predominantly

periodic, inherently contains a rather weak chaotic component. Yet, λ1, even after touching

the outer tube, appears not to grow with flow velocity, as the pipe stuck on the outer

tube rather than impacting on it, and therefore the enhanced chaotic content observed in

Fig. 5.4(b) never materialized in this case.

For the physical explanation of the effect of the size of the annular gap on stability of the

system, a similar discussion to the case of interdependent flows can be made: with increasing

the annular gap confinement (a narrower gap size), the combined effect of the virtual mass,

the Coriolis and the centrifugal force is destabilizing. For higher Uo/Ui these effects multiply

with a larger uo, refer to Eq. (A.1). Hence, for higher Uo/Ui, the destabilizing effect of

confinement is more pronounced; see Fig. 5.6.

5.5 The effect of annulus-to-pipe length ratio

Using outer rigid tubes of different lengths, the influence of varying confinement length

ratio, rann = L′/L, was previously investigated by Chehreghani et al. [37]. The ratios of

rann ≃ 1/4, 1/2 and 3/4, all with the same annular gap size αch = 1.97 and using pipe A,

were investigated. Therefore, the effect of this parameter is not discussed at length here. In

general, it was concluded that increasing rann has a destabilizing effect on the pipe. Table 5.3

presents the critical flow velocities for various values of rann.

Increasing rann affects the added mass, Coriolis force, the viscous forces in the normal and

longitudinal directions, the centrifugal force as well as the terms related to the pressure at the
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Table 5.3: The effect of rann on the dimensionless critical internal flow velocities of pipe A with

αch = 1.97.

rann ≃ 1/4 rann ≃ 1/2 rann ≃ 3/4

Uo/Ui ucr,1 ucr,2 ucr,1 ucr,2 ucr

0.055 5.19 - 4.61 - 4.63

0.1 4.94 - 1.09 3.68 1.65

0.2 1.98 3.37 0.97 1.54 0.78

0.4 0.66 1.57 0.43 0.75 0.41

0.6 0.47 0.96 0.24 0.50 0.26

0.8 0.38 0.80 0.14 0.27 0.15

inlet of the annular region in a complicated manner, mainly by influencing the limits of the

integrals of Eq. (B.4) and the terms associated with the Heaviside step function and Dirac

delta function in Eq. (A.1). Based on the calculations conducted for the higher confinement

length, the destabilizing forces appear to be predominant, compared to the stabilizing ones.

5.6 The effect of pipe slenderness

To investigate the influence of pipe length-to-diameter ratio, ε = L/D, the dynamics of

pipe B, which has the same properties as pipe A but is shorter (see Table 5.1), is compared

to that of pipe A. To isolate the effect of pipe slenderness and facilitate comparison with the

experiments carried out with pipe A, a shorter outer rigid tube was used, so that the ratio

of the outer tube length to that of the pipe was kept approximately constant, i.e. rann =1/2.

In experiments with both pipes, a coaxial outer rigid tube (ē = 0) with the annular con-

finement αch = 3.37 (Dch = 54 mm) that corresponds to χ = 1.19 was used. The system

parameters for experiments with pipe B are as follows: slenderness ε = 13.81 and outer rigid

tube with rann = 0.493 ≃ 1/2 (L′ = 109); whereas for pipe A: slenderness ε = 27.56 and

rann = 0.468 ≃ 1/2 (L′ = 206.5).

The critical flow velocities for the onset of instability of pipe A and B are presented in

Table 5.4. It is noted that increasing ε has a very weak stabilizing effect for the cases with

Qa ̸= 0, i.e. higher Uo/Ui ratios. For interdependent internal and external flows, in which

Uo/Ui =0.015 is small, the effect is destabilizing.
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(a) (b)

Figure 5.8: Bifurcation diagrams showing the rms amplitude of total displacements as a function

of (a) ui; (b) uo; for pipe B (ε = 13.81) and Uo/Ui= 0.015: (•); 0.2: (■); 0.4: (▲); 0.8: ♦; (∗)

critical flow for instability.

Bifurcation diagrams showing the rms amplitude of displacement and the mean deflection

as a function of ui and uo are presented in Fig. 5.8(a, b), respectively. As can be seen, for

higher Uo/Ui, the dynamics is mostly external-flow dependent, as all the curves in Fig. 5.8(b)

approximately collapse into one curve, except for the small value of Uo/Ui =0.015.

The experimental results provided in this section reveal that, qualitatively, the dynamics

of pipe B is similar to that of pipe A, shown in Fig. 5.3(a) and Fig. 5.6(a,c,e). The critical

flow velocities are related to pipe slenderness in a complex manner, depending on the viscous

forces in the longitudinal and normal directions associated with the external flow. In partic-

ular, careful investigation of the Eq. (A.1) shows that all the terms including ε are multiplied

by cf , a dimensionless friction coefficient pertinent to the external-flow viscous forces, and

uo or u2
o. However, artificially multiplying all the terms involving ε by 10 was found to have

only a marginal stabilizing effect on the critical flow velocities, in agreement with the exper-

imental results for Uo/Ui = 0.2− 0.8. It is noted that in the case of Uo/Ui = 0.015, the value

of uo at the onset of instability is small and almost equal for the two pipes: uo = 0.20 for

pipe A and uo = 0.23 for pipe B, and thus the stabilizing influence of increasing ε may have

become very marginal due to the small values of uo. On the other hand, for Uo/Ui = 0.015,

the frequency-dependent κu term in Eq. (A.1) is smaller for pipe A than pipe B, because
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Table 5.4: Critical flow velocities of the instability of pipe A (ε = 27.56) and pipe B (ε =13.81).

Pipe A Pipe B

Uo/Ui ucr,1 ucr,2 ucr,1 ucr,2

0.015 5.19 6.15

0.2 1.04 1.92 0.97 1.59

0.4 0.48 0.91 0.43 0.76

0.8 0.24 0.51 0.23 0.44

the frequency is smaller, resulting in a smaller ucr for pipe A.

5.7 The effect of flow constriction at the upstream or downstream end of the

annular region

It is known that structures subjected to tightly confined annular external flow are ex-

posed to annular- and leakage-flow-induced instabilities. For leakage-flow-induced instability

to materialize, neither is the cylinder (pipe) required to be very flexible, nor the flow ve-

locities to be high. The system undergoes instability, provided that the geometry has the

potential to cause the phenomenon. Leakage-flow-induced instabilities are capable of caus-

ing catastrophic failures, giving rise to forces of the order of tens of tons [17]. As a ‘rule of

thumb’, it is believed that a constriction at the upstream end of a tightly-confined channel

tends to destabilize the system, whereas a constriction at the downstream end tends to pro-

mote stability.

In practical applications such as solution mining, sometimes ring-shaped stabilizers are

added on the brine-string in the annular region. In the light of the possible occurrence of

leakage-flow-induced instability, using such stabilizers may have a deleterious effect. There-

fore, for the system under study, the effect of inserting a ring-shaped obstruction at the inlet

or outlet of the annular region formed by the pipe and the outer rigid tube was explored, as

illustrated in Fig. 5.2(a, b).

5.7.1 Obstruction at the annular region inlet

The investigate the effect of the external flow constriction on the stability of the system

as well as the amplitude of oscillations, a ring of thickness tr = 12 mm, outer diameter

Dor = Dch = 54 mm and various inner diameter sizes, namely, Dir =41 , 32 or 25 mm was
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pressure-fitted at the bottom (inlet) of the annular region to constrain the annular flow, as

shown in Fig. 5.2(a); these ring sizes correspond to ḡr = (Dir −Do) /Dh =0.66, 0.42 and

0.24, respectively. The fixed system parameters were as follows: pipe A with ε = 27.56, rigid

outer tube with rann = 0.468 ≃ 1/2 (L′ = 206.5), αch = 3.37 (Dch = 54 mm) corresponding

to χ = 1.19, and ē = 0. The results can be compared to those of Section 5.4 with the same

pipe and outer rigid tube, but with no obstruction in the annular flow (ḡr =1).

Bifurcation diagrams illustrating the rms amplitude of displacement and the mean

Impacting

Sticking

(a) (b)

Figure 5.9: Bifurcation diagrams showing the rms amplitude of total displacement and the mean

deflection versus ui for investigating the effect of placement of an obstruction at the inlet of the

outer rigid tube for pipe A with αch = 3.37 (Dch=54 mm). (a) Interdependent internal and external

flows (Qa =0, Uo/Ui =0.015); (b) Uo/Ui=0.4. Filled markers show the rms amplitude and hollow

markers show the mean static deflection: ḡr =1 (no ring): (•), ḡr =0.66: (■), ḡr =0.42: (▲),

ḡr =0.24: (♦).

deflection versus ui for Uo/Ui = 0.015 (Qa = 0) and Uo/Ui = 0.4 (Qa ̸= 0) are presented

in Fig. 5.9(a, b), respectively. As can be seen, for interdependent flows (Qa = 0) and all

ring sizes, placement of the constraint at the inlet increases the deflection of the pipe by

exaggerating its static deformation, resulting in impacting of the pipe on the inner rim of

the ring. For higher Uo/Ui and tight enough rings, i.e. ḡr =0.42 and 0.25, both static

and oscillatory components of the deformation increase severely. This behaviour may well

be due to the leakage-flow-induced instability mechanism. Hence, the system may acquire
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energy from the flow giving rise to flutter, when the negative damping outweighs the positive

dissipation due to structural and flow-induced damping in the system.

5.7.2 Obstruction at the annular region outlet

(a) (b)

Figure 5.10: Bifurcation diagrams showing the rms amplitude of total displacement and the mean

deflection versus ui for investigating the effect of placement of an obstruction at the outlet of the

outer rigid tube for pipe A with αch = 3.37 (Dch=54 mm) and (a) interdependent internal and

external flows (Qa =0, Uo/Ui =0.015); (b) Uo/Ui=0.4. Rms amplitude: (•) pre-instability and no

ring, (♦) pre-instability and ḡr =0.05, (■) instability and no ring, (▶) instability and ḡr =0.05,

(▲) impact and no ring, (♢) data points for ḡr = 0.10; (×) mean deflection and no ring, (+) mean

deflection for the cases with a ring; (∗) critical flow for instability.

In this set of experiments, placement of an obstruction at the outlet of the annular region

was investigated. A ring of thickness tr = 12 mm, outer diameter Dor = Dch = 54 mm and

inner diameter, Dir =20 or 18 mm was pressure-fitted at the outlet (top) of the annular

region. These ring inner diameter sizes correspond to ḡr = (Dir −Do) /Dh =0.10 and 0.05,

respectively. Other system parameters are the same as Section 5.7.1. The results can be

compared to those of Section 5.4 with the same pipe and outer rigid tube, but with no

obstruction at the outer tube.

Fig. 5.10 compares the rms amplitude of total displacement and mean deflection as a

function of ui for the cases with and without a constraint at the outlet. It was observed that

obstruction of the external flow at the outlet increased the pressure inside the pressure vessel
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(a) (b)

Figure 5.11: Bifurcation diagrams showing the rms amplitude of total displacements and the mean

deflection versus ui for the pipe C and, (a) interdependent internal and external flows (Uo/Ui=0.033);

(b) independent internal and external flows (Uo/Ui =0.4). Rms amplitude: (•) pre-instability, (■)

instability, (▲) impact; (×) mean deflection; (∗) critical flow for instability.

considerably. This build-up of pressure may be responsible for the large amplitude static

deflection at relatively small flow velocities. As can be seen in Fig. 5.10(a), for Uo/Ui =

0.015 the increase in the slope of the bifurcation diagram is very severe, but the oscillatory

component is very weak. For Uo/Ui =0.4, the turbulence buffeting region for the case with

no ring is replaced by a bell-shaped curve, followed by a static divergence.

The instabilities in this case take place at relatively small flows, suggesting that the

increase in pressure resulting from placement of the obstruction at the downstream end of the

annulus may well be the mechanism for the static divergence observed: small perturbations

in the system are exaggerated severely because of the high-pressure.

5.8 The effect of pipe material

To examine the influence of material properties on the dynamics, experiments with pipe

C, which is a commercial santoprene pipe, were conducted. Pipe C is stiffer compared to pipe

A. The pipe stiffness as well as its geometry are given in Table 5.1. The system parameters

are as follows: pipe C with ε = 34.08, outer rigid tube with rann = 0.466 ≃ 1/2 (L′ = 206.5)

and αch = 4.15 (Dch = 54 mm) corresponding to χ = 1.12.

Bifurcation diagrams showing the rms displacement and mean deflection versus ui for
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interdependent internal and external flows (Uo/Ui =0.033 in this case), and for Uo/Ui =0.4

are presented in Fig. 5.11(a, b), respectively. The results can be compared to those for pipe

A and the same outer tube: in Fig. 5.3(a) for interdependent flows (Uo/Ui =0.015), and in

Fig. 5.6(c) for Uo/Ui =0.4. It is noted that pipe C, the stiffer pipe, has higher dimensionless

critical flow velocities, namely for interdependent internal and external flows ucr = 6.78 and

for Uo/Ui = 0.82, as compared to ucr = 5.19 and ucr = 0.48 for pipe A. This demonstrates

that ui is not a sufficient dimensionless parameter to collapse the dynamics. Note that EI,

is already included in the expression for ui, given in Eq. (5.1). However, the dynamics

of the system also depends on other parameters, such as internal damping characteristics,

frequency-dependent damping (κu in Eq. (A.1)), gravity parameter, γ, mass parameter

associated with the internal flow, βi, and mass parameter associated with the external flow,

βo, the latter three expressed as

γ =
(m+Mi −Mo)

EI
gL3, βi =

Mi

m+Mi +Mo

, βo =
Mo

m+Mi +Mo

, (5.3)

where m is the pipe mass, Mi = ρfAi denotes the mass of the internal fluid per unit length,

and Mo = ρfAo is the added mass associated with the external flow per unit length, in which

ρf is the density of the fluid (water in this case); Ai = (π/4)d2i and Ao = (π/4)d2o are the

inner and outer cross-sectional area of the pipe, respectively. For pipe A we have γ = 2.47,

βi = 0.07 and βo = 0.47; for pipe C, γ = 0.55, βi = 0.25 and βo = 0.46. Since the two pipes

have almost the same βo, we have investigated only the effect of γ and βi on ucr based on

the model of Eq. (A.1). The calculations revealed that ucr increases with increasing γ and

βi, the effect of increasing βi being more pronounced. Therefore, increasing ucr in the case of

experiments with pipe C might be attributed to the greater value of βi; alternatively, to the

higher values of frequency-dependent damping (the first mode frequency of pipe C measured

in air is 2.10 Hz, as compared to 1.09 Hz for pipe A).

Qualitatively, compared to pipe A, the oscillations were weaker and with a wider fre-

quency bandwidth in the PSDs for pipe C (not shown here, for brevity). The largest Lya-

punov exponent for pipe C at the onset of instability was λ1 ≃0.15 bits/s for Uo/Ui = 0.033,

compared to λ1 ≃ 0.05 for pipe A (shown in Fig. 5.4(b)), showing that pipe C had a stronger

chaotic component. For Uo/Ui =0.4, however, the chaotic component was similar for the
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two pipes, i.e. λ1 ≃ 0. It is noted that at the onset of instability the rms of displacement

of pipe C for Uo/Ui = 0.033 is greater than that of pipe A for Uo/Ui = 0.015, as shown

in Figs. 5.11(a) and 5.3(a), respectively. For Uo/Ui =0.4, however, the rms amplitude of

displacements for the two pipes are similar. The larger amplitude of oscillations results in

an increase in the contribution of nonlinearities in the system response. Comparing the am-

plitude of oscillations at the onset of instability for pipes A and C, suggests that the increase

in the chaotic component in the case of the interdependent flows may be attributed to the

larger amplitude of oscillations.

5.9 The effect of eccentricity

To explore the effect of an eccentric placement of the rigid outer tube with respect to the

central flexible pipe, the outer rigid tube was mounted with a predetermined eccentricity, e,

with respect to the pipe centreline, as in Fig. 5.2(c). In this case, other system parameters are

as follows: pipe A with ε = 27.56, the rigid outer tube with rann = 0.468 ≃ 1/2 (L′ = 206.5)

and αch = 3.37 (Dch = 54 mm) that corresponds to χ = 1.19.

5.9.1 Interdependent internal and external flow

In experiments with interdependent internal and external flows (Uo/Ui = 0.015), e = 4,

8 and 14 mm, corresponding to ē = 0.208, 0.416 and 0.727, respectively, were investigated.

The results are presented in Fig. 5.12. As seen, an eccentricity between the central pipe and

the outer rigid tube resulted in a remarkable increase in the static deflection of the pipe in

the bell-shaped region prior to any oscillatory instability.

Given the smaller gap between one side of the pipe and the surrounding channel, the

exaggerated static deflection gave rise to impacting at relatively smaller flows.

5.9.2 Independent internal and external flow

In these experiments for Uo/Ui=0.2, 0.4 and 0.8, e = 4 mm (ē = 0.208) and 8 mm (ē =

0.416) were tried. The bifurcation diagrams for ē = 0.416 and Uo/Ui =0.2 and 0.8 are shown

in Fig. 5.13. The bifurcation diagrams can be compared to those of Fig. 5.6(a, e) for the

same Uo/Ui, but for a concentric system. Also, the critical flow velocity for the onset of

instability for the concentric and eccentric systems (ē ≃ 0.208 and 0.416) are compared in

Table 5.5.

149



Impacting

Figure 5.12: Bifurcation diagram presenting the rms amplitude of total displacements and the

mean deflection as a function of ui showing the effect of eccentricity for pipe A, Uo/Ui= 0.015. (•)

Rms amplitude and (◦) mean deflection for concentric system. (■) Rms amplitude and (□) mean

deflection for ē = 0.208. (▲) Rms amplitude and (△) mean deflection for ē = 0.416. (♦) Rms

amplitude and (♢) mean deflection for ē = 0.727.

(a) (b)

Figure 5.13: Bifurcation diagrams showing the rms amplitude of total displacements as a function

of ui for the eccentrically located pipe A, ē = 0.416 and (a) Uo/Ui =0.2; (b) Uo/Ui =0.8. Rms

amplitude: (•) pre-instability, (■) instability, (▲) impact; (×) mean deflection; (∗) critical flow for

instability.
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Table 5.5: Comparing ucr,1 for pipe A with different values of dimensionless eccentricity with

respect to the outer tube.

Uo/Ui ē = 0 ē ≃ 0.208 ē ≃ 0.416

0.015 5.19 - -

0.2 1.04 0.94 0.9

0.4 0.48 0.48 0.46

0.8 0.24 0.28 0.19

Two important changes can be observed: (i) the second instability region in the bifurca-

tion diagrams of the concentric system disappeared in the case of the eccentric one, resulting

in impacting on the outer tube at relatively smaller flows; (ii) the amplitude of motions

increased for the eccentric system compared to those for concentric one.

5.10 Conclusion

In the present systematic experimental investigation, the dynamics of a hanging pipe

discharging fluid downwards into a reservoir and subjected to a partially confined reverse

external axial flow through a shorter annulus over the upper portion of the pipe was ex-

amined. Besides scientific curiosity in exploring the rich dynamical behaviour this system

displays, interest in the matter arises because of its engineering applications, specifically in

the retrieval mode of operation of the solution-mined hydrocarbon storage caverns.

For various ratios of the external to internal flow velocities, Uo/Ui, a series of experiments

were carried out to study and characterize the influence of the following system parameters:

(i) external flow confinement, (ii) pipe slenderness, (iii) placement of a constraint at the

inlet or outlet of the annular gap, (iv) pipe material, and (v) the eccentric mounting of the

surrounding annulus relative to the central pipe.

Generally, for interdependent external and internal flows, the pipe underwent turbulence

buffeting at low flow velocities, followed by second-mode flutter at higher flows. For inde-

pendent external and internal flows, the pipe was subjected to turbulence buffeting also,

followed by static deflection of the pipe or weak first-mode oscillations, and eventually by

second- or mixed-mode oscillations. These motions were quite unsteady, with a dominant
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periodic component and some chaotic content. Varying the system parameters in some

cases resulted in remarkably different dynamical behaviour, qualitatively and/or quantita-

tively. The underlying fluid-structure interaction mechanisms resulting in these variations

were briefly discussed.

In all cases, the onset of instabilities decreased to lower flows by increasing Uo/Ui. In-

creasing the annular gap size (decreasing the confinement) and pipe stiffness was found to

have a stabilizing effect in general. On the other hand, placement of a constraint at the inlet

of the annulus or eccentric positioning of the outer rigid tube with respect to the central

pipe had a destabilizing effect on the system. The destabilizing influence of placement of a

constraint at the annular gap outlet was significant, leading to very large static deformation

at relatively small flow velocities. Increasing pipe slenderness had a destabilizing effect for

the very small Uo/Ui = 0.015, and only a marginal stabilizing effect for higher Uo/Ui.
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Appendix A. The linear equation of motion of the basic system

The linear equation of motion for a cantilevered pipe discharging fluid downwards and si-

multaneously subjected to reverse axial external flow in dimensionless form was derived by
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Moditis et al. [33]; it is

η′′′′ +
{
γ − 1

2
εcfu

2
o(1 + h)

[
1−H(ξ − rann)

]
− 1

2
u2
o

(
1 +K1

)
δD(ξ − rann)

}
η′

+
{
− γ(1− ξ) +

1

2
εcfu

2
o(1 + h)(rann − ξ)

[
1−H(ξ − rann)

]
− (Γ− ΠiL +ΠoL)

+
1

2
u2
o

(
1 +K1

)[
1−H(ξ − rann)

]}
η′′ +

{
1 + βo(χ− 1)

[
1−H(ξ − rann)

]}
η̈

+
{
2ui

√
βi − 2uoχ

√
βo

[
1−H(ξ − rann)

]}
η̇′ +

{
u2
i + χu2

o

[
1−H(ξ − rann)

]}
η′′

+
1

2
cfεuo

√
βo

[
1−H(ξ − rann)

]
η̇ + κu

{
1 +

[
1−H(ξ − rann)

]( 1 + α−3
ch

(1− α−2
ch )

2

− 1
)}

η̇ = 0,

(A.1)

where ( )′ = ∂( )/∂ξ, ˙( ) = ∂( )/∂τ , and H denotes the Heaviside step function, and δD the

Dirac delta function. In this equation, in addition to some of the dimensionless parameters

introduced in Section 5.3, the following parameters are used: ξ = x/L is the dimensionless

axial coordinate, alongside the undeformed state of the central pipe, with origin at the

cantilever fixed end; η = w/L is the dimensionless lateral displacement of the pipe; τ =[
(EI)/(m+ρfAi+ρfAo)

]1/2
(t/L2) is the dimensionless time; βi = (ρfAi)/(m+ρfAi+ρfAo)

is the ratio of the internal fluid mass to the total mass; βo = (ρfAo)(m + ρfAi + ρfAo) is

the ratio of the virtual (added) mass associated with the external flow to the total mass;

γ =
[
(m + ρfAi − ρfAo)gL

3
]
/(EI) is a dimensionless parameter related to the gravity;

Γ =
[
T (L)L2

]
/(EI) is a dimensionless parameter relevant to the longitudinal tension at the

free end; α = Di/Do; h = Do/Dh; κu = (kuL
2)/[EI(Mt+ρfAi+ρfAo)]

1/2 is a dimensionless

parameter associated with the viscous-drag coefficient and cf = (4/π)Cf is a dimensionless

frictional coefficient associated with the external flow viscous forces in the longitudinal and

normal directions. Additionally, ΠiL = (Aipi(L)L
2)/(EI) and ΠoL = (Aopo(L)L

2)/(EI) are

dimensionless parameters related to the pressure measured at the pipe free end, just inside

and outside of the pipe, respectively. Also, ΠiL = α2ΠoL − (1/2)u2
i + (AiρfgheL

2)/(EI),

where ΠoL = (1/2)εcfhrannu
2
o+(1/2)u2

o

(
1+K1

)
+(AoρfgL

3)/(EI), in which 0.8 ⩽ K1 ⩽ 0.9

is a parameter related to the head-loss associated with the quiescent fluid aspirated into the

annular region at ξ = rann, and he is the head-loss due to the abrupt expansion of the flow

exiting the pipe into the pressure vessel at the free end.

Making use of Galerkin’s technique, the dimensionless equation of the motion, i.e. Eq.

153



(6.44), can be discretized to a set of N ordinary differential equations, represented in matrix

form as follows:

Mq̈ + Cq̇ + Kq = 0, (A.2)

where M, C and K are mass, damping and stiffness matrices, respectively. The expressions

of these matrices are given in Appendix B.

Appendix B. The expressions for mass, damping and stiffness matrices

M, C and K in Eq.(A.2), mass, damping and stiffness matrices, respectively, are as follows:

Mij = aij(0, 1) + βo(χ− 1)aij(0, rann), (B.1)

Cij = 2ui

√
βibij(0, 1)− 2uo

√
βoχbij(0, rann) +

1

2
cfεuo

√
βoaij(0, rann)

+ kuaij(0, 1) + ku
[ 1 + α−3

ch

(1− α−2
ch )

2
− 1
]
aij(0, rann),

(B.2)

Kij = Λ4
jaij(0, 1) + γbij(0, 1)−

1

2
εcfu

2
o

[
(1 + h)bij(0, rann)

]
+ χu2

ocij(0, rann)

+
1

2
εcfu

2
o(1 + h)

[
ranncij(0, rann)− dij(0, rann)

]
− γ
[
cij(0, 1)− dij(0, 1)

]
− 1

2
u2
o(1 +K1)ϕi|ξ=rannϕ

′
j|ξ=rann − (Γ− ΠiL +ΠoL)cij(0, 1)

+
1

2
u2
o(1 +K1)cij(0, rann) + u2

i cij(0, 1),

(B.3)

where Λj is the jth eigenvalue of the cantilevered Euler-Bernoulli beam characteristic equation

and the following integrals are defined in order to have a more compact notation:

aij(a, b) =

∫ b

a

ϕiϕjdξ, bij(a, b) =

∫ b

a

ϕiϕ
′
jdξ,

cij(a, b) =

∫ b

a

ϕiϕ
′′
jdξ, dij(a, b) =

∫ b

a

ξϕiϕ
′′
jdξ,

(B.4)

in which ϕj is the the jth normalized cantilevered Euler-Bernoulli beam eigenfunction.
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Complementary discussion on system III - experimental investigation

To clarify and expand on what is included in the manuscript presented in Chapter 5 [4],

further discussion is provided here.

As discussed, all bifurcation diagrams for various ratios of Uo/Ui in Fig. 5.8(b) collapse

into one curve, except for the small value of Uo/Ui = 0.015. This suggests that for higher

Uo/Ui, the dynamics mainly depends on the external flow, whereas for Uo/Ui = 0.015, it

depends mostly on the internal flow. The reason the behavior for Uo/Ui = 0.015 is different

from those of higher Uo/Ui ratios is likely related to the different flow configurations: for

Uo/Ui = 0.015, there is no additional fluid entering from the bottom of the pressure vessel,

resulting in interdependent internal and external flows (refer to Fig. 5.1). In contrast,

for higher Uo/Ui ratios, additional fluid enters the pressure vessel, making the internal and

external flows independent. It might also be related to the values of Uo/Ui themselves, as

Uo/Ui = 0.015 is much lower than the other values tested in the experiments. To confirm

this, further investigation may be necessary.
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CHAPTER 6

Dynamics of a Cantilevered Pipe Conveying Fluid and Partially Subjected to a

Confined Counter-current External Axial Flow of a Different Fluid: A

Theoretical Investigation

Preface

The manuscript presented in this chapter [5], focuses on developing a linear analytical

model for system III, representing an idealized brine-string in a salt-mined cavern. The

objective is to predict fluid-elastic instabilities of brine-strings during product retrieval in

salt-mined caverns, aligning with the final objective of the current thesis, which is to provide

the tools for preventing fluid-elastic instabilities causing catastrophic failures and thereby

avoiding the associated financial and ecological repercussions.

The earlier analytical models developed, have not successfully predicted the critical flow

velocities in full-scale brine-strings. Attempting to predict a more realistic range of critical

flow velocities for the full-scale system, the model developed in this manuscript has taken

the presence of two fluids of different densities (the brine and the product), as well as the

product pressure at the well-head into account. The system parameters used to obtain the

numerical results in this manuscript were carefully chosen in consultation with operators of

salt-caverns, ensuring their relevance.
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Abstract: A linear analytical model has been developed for prediction of fluid-elastic in-

stabilities of brine-strings during product retrieval in salt-mined caverns. These caverns are

utilized for storage and subsequent retrieval of hydrocarbons, hydrogen gas or compressed

air in Compressed Air Energy Storage (CAES) plants. The retrieval operation involves

pumping brine downwards through a long cantilevered pipe (“brine-string”) into the cavern,

causing the lighter-than-brine gaseous or liquid “product” stored in the cavern to flow up-

wards and out of the cavern through a shorter annular passage formed by a concentric casing

surrounding the upper portion of the pipe. The presence in the cavern of two different fluids

with a variable interface level is taken into account. Employing a Newtonian derivation of

the equation of motion solutions were obtained via the Galerkin modal decomposition tech-

nique, demonstrating that the brine-string may develop buckling or flutter at high-enough

flow rates, depending on the system parameters. Extensive computations investigated the

influence of system parameters on the dynamics. It is shown that simplifying the system by

considering a single fluid in the cavern, and so for the flows within and around the brine-

string, leads to unrealistically high critical flow velocity predictions.

Keywords : Flow-induced instability; Axial flow; Hanging tubular cantilever; Fluid-conveying

pipe; Brine-string in salt-mined caverns; Flutter; Static divergence.

6.1 Introduction

An alternative title for this paper could be “The fluid-elastic instabilities of an idealized

brine-string in salt-mined caverns”, as investigating the dynamics of this system is the mo-

tivation behind this study.

Salt caverns are formed by drilling a well into underground salt deposits, and then leach-

ing the salt by pumping fresh water down through a vertical pipe, the “brine-string”. The

injected fresh water dissolves the minerals, and the resulting brine is brought to the surface
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by injecting additional fresh water. A huge underground cavern is left behind, filled with

brine, which can be used for storage and subsequent retrieval of liquid and gaseous hydro-

carbons such as crude oil, natural gas, ethylene or hydrogen [1, 2]. These steps are shown

schematically in Fig. 6.1. Salt-mined caverns can also serve as storage facilities for hydrogen

gas or compressed air in CAES plants, aiding in the abatement of energy consumption peaks

and valleys [3].

A schematic view of the system under consideration is shown in Fig. 6.2(a). This sys-

tem consists of a long cantilevered pipe (the “brine-string”), typically thousands of meters

long (usually 1-2 km), extending from the ground all the way down to nearly the bottom of

the cavern, and a shorter concentric annular region formed by a rigid “casing” surrounding

the pipe at its upper portion. The outer rigid casing is cemented onto the overburden and

caprock, and extends slightly into the cavern. A substantial portion of the brine string lies

below the casing enclosure [1].

Solution-mined caverns can be used in two different modi operandi: the “storage” and

the “production” or “retrieval” modes [2, 4, 5]. The latter case, shown schematically in Fig.

6.2(b), is the focus of this paper. In this mode, which has a similar configuration as that

of drill-strings utilized for oil exploration [6], brine is pumped into the brine-string, and the

lighter-than-brine hydrocarbons are retrieved through the annulus for sale at a commercially

propitious time; for this, as high an extraction flow rate as possible is desirable. However,

the drawback of high extraction rates is that, at high flow velocities, the brine-string might

undergo fluid-elastic instability, potentially causing impacting on the rigid casing. In severe

cases, repeated impacting may lead to damage or even breakage of the brine-string. In fact,

operators and engineers have grappled with the challenge of limiting flow-induced vibrations

and suppressing fluid-elastic instabilities in brine-strings for many years, as these have been

identified as probable causes of the breakages or permanent deformation; see, for instance,

the damaged, permanently deformed brine string taken out from a gas and a liquid storage

cavern shown in Fig. 6.3(a,b). Over the past few decades, twenty-one accidents involving gas

and petroleum leaks have been documented in salt caverns [1, 7]. These incidents not only

have serious financial repercussions, as repair and replacement costs are very high, but also

cause serious environmental damage. Therefore, it is crucial to comprehend the dynamics
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Figure 6.1: Formation of salt caverns: site selection, leaching salt deposit through fresh water

injection, forming a cavern filled with brine, brine removal through gas or liquid injection in order

to store hydrocarbons therein (after Liu et al. [3]). For a clearer viewing, please refer to the coloured

online version.

of brine-strings, so as to prevent such catastrophic accidents. Hence, research is directed

towards determining the safe upper limit for the flow velocity in the brine-string, ensuring

that the system remains stable, avoiding divergence or flutter [8–10].

Extensive research has been conducted on the dynamics of the fluid-elastic system

of pipes conveying fluid since at least 1939 [11]. The great attention paid to the study of

this system is mainly due to its capacity of displaying a rich dynamical behaviour, despite

its relatively simple analytical modelling and ease of physical realization [9, 12]. Numerous

researchers have investigated a variety of configurations of this system. Examples include

pipes with additional supports and lumped masses, linear and nonlinear springs, motion-

restraining constraints, free-end nozzles, initially curved and imperfectly supported pipes,

among other variations [13–22]. A pipe with supported ends is a gyroscopic conservative

system and is only subject to static divergence at sufficiently high flow velocities [23, 24].

Cantilevered pipes, however, become unstable by flutter; they lose stability via a Hopf bifur-

cation into limit cycle oscillations. This bifurcation can be either subcritical or supercritical,

depending on the system parameters [25–27]. The book by Païdoussis [12], along with a more

recent review [9], provides a comprehensive overview of the extensive research conducted on
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Figure 6.2: Schematic view of the system under consideration: (a) a brine-string in a typical

solution-mined cavern; (b) an idealized model of the product retrieval operation. For a clearer

viewing, please refer to the coloured online version.

Figure 6.3: Brine string damage (after Ratigan [1]): (a) in a gas storage well; (b) in a liquid

storage cavern.
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the dynamics of pipes conveying fluid.

Next, we consider the dynamics of tubular beams subjected to simultaneous internal and

external axial flows. Cesari and Curioni [28] were perhaps the first to study the dynamics of

this system, predicting static divergence of pipes with different boundary conditions. Later

on, the dynamics of hanging fluid-conveying pipes subjected to an independent external axial

flow was examined by Hannoyer and Païdoussis [29]. For pipes with both ends clamped, the

influence of the internal and external flows on stability is synergistic, i..e. when the velocity

of either the internal or external flow is slightly below the critical threshold for instability,

an increase in the velocity of the other flow would induce instability. For cantilevered pipes,

on the other hand, in some cases, the effect of the internal and external flows on instability

is not additive; i.e. if the pipe is just at the threshold of instability due to either internal or

external flow, further increasing the other flow could prevent instability. It was also found

that stability is significantly affected by the shape of the free end. Particularly, with a blunt

end, internal flow is dominant, and although flutter occurs at high flow rates, increasing the

external flow velocity might potentially stabilize the system. In scenarios involving a more

streamlined end-piece, the dynamics becomes more complicated, involving both static and

dynamic instabilities.

Besides curiosity-driven research, research into the dynamics of pipes under concurrent in-

ternal and external axial flows has also been driven by specific engineering applications. This

includes attempts to model the dynamics of heat-exchangers and boiler internals [30, 31].

Also, some studies were conducted directed towards understanding the dynamics of the hy-

draulically powered drill-string system; some of the early work on this, by Bailey and Finnie

[32], Finnie and Bailey [33] and Den Hartog [34], dates back to the 1960s.

Later, the stability of long vertical cantilevered pipes subjected to counter-current inter-

nal and external axial flows was studied by Luu [35]. This study involved interdependent

internal and external axial flows, i.e. the fluid exiting the pipe flowed upwards through the

annular region between the pipe and a rigid outer tube surrounding the pipe.

Another important study, modelling the drill-string system with a floating fluid-powered

drill-bit, was conducted by Païdoussis et al. [6]. The pipe was subjected to counter-current

and interdependent internal and annular flows, a flow configuration similar to that of Luu
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[35]. It was shown that in a system with a slight or moderate degree of annular confinement,

internal flow governs the dynamics and the system loses stability via flutter. In relatively

more confined systems, the annular flow dominates the dynamics, leading to flutter at rela-

tively lower flow velocities.

Dynamics of a hanging pipe conveying fluid upwards and subjected to counter-current

and interdependent annular flow, i.e. the system studied in [6, 35] but with the reverse flow

configuration, was examined by Qian et al. [36]. It was concluded that, depending upon

the system parameters, both flutter or divergence may materialize. In particular, a system

with a relatively tightly confined external annular flow loses stability via static divergence

rather than flutter. Later on, the dynamics of the system with both conventional flow (as in

Païdoussis and et al. [6]) and reverse flow (as in Qian et al. [36]) was studied by Fujita and

Moriasa [37].

Another engineering application motivating research on pipes simultaneously subjected

to internal and external axial flows is that of brine-strings in salt-mined caverns. The McGill

Fluid-Structure Interactions research group has been conducting comprehensive fundamen-

tal research on this, in order to systematically explore the different aspects of the dynamics

of this system, theoretically, experimentally, and via Computational Fluid Dynamics (CFD)

models [4, 8, 10, 38–45]. It is evident from these studies that the complexity of the dynamics

of this system is considerable.

The model developed by Païdoussis et al. [6] was modified in Moditis [46] and Moditis et

al. [4] to take the discontinuity in the external flow confinement into account; thereby, devel-

oping a model for a system with confined external axial flow only over the upper segment of

the pipe through a co-axial shorter outer rigid cylindrical tube. Additionally, the dynamics

of the system was studied experimentally in a bench-top-sized apparatus. For parameters

corresponding to the bench-top system, numerical results predicted that the system under-

goes an oscillatory instability. For the full-scale system, however, attempts to tackle the

problem of a brine-string of length L > 450 m, using the conventional Galerkin technique,

were not successful. For L < 450, the model predicted static divergence (buckling) , but

at unrealistically high flow velocities. For L > 450, implementing an asymptotic analysis

based on the work of Doaré and de Langre [47] and of de Langre et al. [48] resulted again
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in estimating an unrealistically high critical flow velocity. Later, Kontzialis et al. [49] stud-

ied the same system via a numerical approach, obtaining results that closely align with the

bench-top experimental data.

Thereafter, Abdelbaki et al. [39] extended the model developed by Moditis et al. [4]

to derive a weakly-nonlinear model. For the parameters pertinent to the bench-top-scale

system, at sufficiently high flow rates, a Hopf bifurcation leading to limit-cycle oscillations

was predicted.

Minas and Païdoussis [8] examined the dynamics of the system studied by Moditis et

al. [4], but with independent internal and external flows, to investigate the effect of higher

external-to-internal flow velocity ratios. For the same system, Chehreghani et al. [43] ex-

amined the effect of the confinement length, as well as the post-instability dynamics and

impacting of the pipe on the shorter coaxial outer rigid tube. Later, Chehreghani et al. [10]

conducted a systematic experimental parametric study to explore the influence of the main

system parameters: annular confinement (annular gap size), slenderness and material of the

pipe, eccentricity between the pipe and the outer cylindrical rigid tube, and flow obstruction

at the inlet/outlet of the annular region, for various external-to-internal flow velocity ratios.

Other researchers have also studied the dynamics of the system involving a reversed flow

direction, where the pipe aspirates and the annulus discharges fluid [41, 44, 45]. These stud-

ies are not discussed here for the sake of brevity.

A fuller review of the studies on pipes subjected to counter-current external and internal

flows may be found in [9, 40]. Nevertheless, from the forgoing literature survey one can

conclude that the analytical model in these studies has not been successful in predicting

critical flow velocities in real, full-scale systems, despite being successful in predicting them

in the bench-top laboratory system. For instance, the results obtained by Moditis et al.

[4] via an asymptotic approach suggest a critical internal flow velocity greater than 20 m/s

(in some cases greater than 50 m/s), while the case histories presented in Ratigan (2008)

[1] for real-world applications indicate that several brine-strings have experienced failure at

considerably lower flows. Additionally, the Moditis [46] and Moditis et al. work [4] fails to

tackle the problem involving long pipes (L > 450), typically found in full-scale systems.

In the models developed to-date, the presence of fluids of different densities as well as
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the product pressure at the well-head were ignored. In an attempt to obtain a more realistic

prediction of critical flow velocities for full-scale systems, we eliminate these simplifications

in this paper, and develop a linear analytical model for the system shown in Fig. 6.2(b). The

system parameters used to obtain the numerical results obtained in the present paper, were

selected in consultation with salt-cavern operators, thus ensuring relevance. The purpose of

this study is to predict safe ranges of flow rates in brine-strings operating in the retrieval

mode, so as to prevent fluid-elastic instabilities causing catastrophic failures and thus avoid

the attendant financial and ecological repercussions.

The rest of the paper is structured as follows. Detailed derivation of the theoretical

model is presented in Section 6.2. Numerical results and pertinent discussion are presented

in Section 6.3. The influence of the main brine-string system parameters on the dynamics is

discussed in Section 6.4. Finally, Section 6.5 is devoted to the concluding remarks.

6.2 Model development

6.2.1 Derivation of the equation of motion

In the present study, following the formulations in [4] and [6] with modifications in

the external flow modelling, a linear theoretical model for the dynamics of the brine string

system, shown schematically in Fig. 6.2, is derived.

An idealized model of the brine-string in salt-mined caverns in the retrieval mode can

be described as follows. A flexible hanging cantilevered pipe of length L, inner diameter

Di, and outer diameter Do, is located at the centre of the cavern; refer to Fig. 6.2(b). The

pipe is confined at its upper portion by a rigid outer tube (cemented casing) of length L′

and diameter Dch. The pipe discharges brine with density ρb and viscosity µb downwards

into the cavern with velocity Ui. This generates a partially confined external axial flow of

the product (of density ρp, and viscosity µp) with flow velocity Uo upwards in the annulus.

Below the confined region, the pipe is immersed in the product down to a level L′′, below

which the pipe is immersed in brine.

Let the x-axis be the axial coordinate, along the undeformed state of the central pipe, as

shown in Fig. 6.2(b), with origin at its fixed end, while the z-axis is in the lateral direction.

Considering small deflections, a balance of forces acting on an element of the deformed pipe
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shown in Fig. 6.4(a) yields

∂T

∂x
− ∂

∂x

(
Q
∂w

∂x

)
+Mtg − (Fin + Fen)

∂w

∂x
+ Fit − Fet = 0, (6.1)

∂

∂x

(
T
∂w

∂x

)
+

∂Q

∂x
−Mt

∂2w

∂t2
+ Fin + Fen + (Fit − Fet)

∂w

∂x
= 0, (6.2)

where T is the tension in the pipe, Q denotes the transverse shear force, w is the lateral

displacement of the pipe, Mt is the pipe mass per unit length, g is the gravitational acceler-

ation, and t is the time; Fit and Fin are the tangential and normal hydrodynamic forces on

the pipe due to the internal flow, while Fet and Fen are those due to the external flow.

Making use of the classical Euler-Bernoulli beam theory, denoting the flexural rigidity of

the central pipe by EI, the transverse shear force is given by

Q = − ∂

∂x

(
EI

∂2w

∂x2

)
. (6.3)

In Eq. (6.3), the material damping in the pipe has been neglected, as the flow-induced

damping is considerably more significant [6, 50, 51].

The normal and tangential forces associated with the internal flow, Fin and Fit, can be

obtained via Païdoussis’ approach [52], by a balance of the forces acting on an element δx

of the internal fluid, shown in Fig. 6.4(b), in the x- and z-directions, yielding

Fit − Fet
∂w

∂x
= Mfig −

∂

∂x
(Aipi), (6.4)

−
(
Fin + Fit

∂w

∂x

)
= Mfi

( ∂

∂t
+ Ui

∂

∂x

)2
w +

∂

∂x
(Aipi

∂w

∂x
), (6.5)

where Mfi = ρbAi, in which ρb is the density of the fluid in the pipe (brine) and Ai = (π/4)D2
i .

Also, pi is the pipe internal pressure, and
(

∂
∂t
+Ui

∂
∂x

)2 stands for repeated application of the

operator in the parentheses.

170



Figure 6.4: Schematic views showing (a) forces acting on an element δx of the deformed pipe; (b)

forces acting on an element δx of the internally flowing fluid; (c) forces acting on an element δx of

the externally flowing fluid; (d) forces acting on an annular fluid element of length δx.

Substitution of Eqs. (6.4) and (6.5) into Eqs. (6.1) and (6.2) and using Eq. (6.3) results

in the following expressions for the forces in the x- and z-directions:

∂T

∂x
+Mtg +

[
Mfig −

∂

∂x
(Aipi)

]
− Fen

∂w

∂x
− Fet = 0, (6.6)

EI
∂4w

∂x4
− ∂

∂x
(T

∂w

∂x
) +Mt

∂2w

∂t2
+
[
Mfi(

∂

∂t
+ Ui

∂

∂x
)2w +

∂

∂x
(Aipi

∂w

∂x
)
]
− Fen

+ Fet
∂w

∂x
= 0.

(6.7)

For small lateral displacements, it is presumed that the inviscid hydrodynamic forces are

171



predominant. Hence, the external flow-field can be simplified: the inviscid and viscous hy-

drodynamic forces associated with the external flow can be obtained separately, rather than

by direct usage of the Navier-Stokes equations. To this end, (i) the inviscid hydrodynamic

forces are derived by modelling the flow as the superposition of the perturbations caused

by lateral vibrations of the pipe in the mean inviscid axial flow [53], and (ii) the viscosity-

related forces are added to the system separately. This approach has been proven to provide

acceptable results. For a detailed discussion on this, the interested reader in referred to [52].

Fig. 6.4(c) shows the external flow-related forces acting on an element of the pipe: the

lateral inviscid hydrodynamic force, FA, the frictional normal and longitudinal viscous forces,

FN and FL, respectively, and the hydrostatic forces in the x- and z-direction, Fpx and Fpz,

respectively. Projection of these forces in the x- and z-direction, while retaining terms up to

first-order, leads to

−Fen
∂w

∂x
− Fet = −FL − Fpx, (6.8)

−Fen + Fet
∂w

∂x
= (FA + FN)− Fpz + FL

∂w

∂x
. (6.9)

For a thin boundary layer and by means of potential flow theory, the added mass per

unit length associated with the acceleration of the external flow due to pipe motion can be

expressed [54] as follows: Mo = χρpA0, for 0 < x < L′, Mo = ρpA0, for L′ < x < L′′ and

Mo = ρbA0, for L′′ < x < L; where Ao = πD2
o/4, χ = (D2

ch +D2
o)/(D

2
ch −D2

o) is a parameter

associated with the degree of confinement of the flow passing through the annular gap, and

ρp is the density of the product. Denoting by rρ = ρb/ρp the brine/product density ratio,

the following expression is obtained for the added mass:

Mo = ρpAo

[
χ+ (1− χ)H(x− L′) + (rρ − 1)H(x− L′′)

]
, (6.10)

where H(x− L′) and H(x− L′′) are the Heaviside step functions.

The relative fluid-body velocity is defined as follows:

Vrel =
(∂u
∂t

− Uo(x)
)̂
i+

∂w

∂t
ĵ, (6.11)
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where u and w are displacements in the x- and z-direction, respectively. The two components

of velocity in the longitudinal and normal directions are

uL =
[∂u
∂t

− Uo(x)
]
cos(θ) +

∂w

∂t
sin(θ) ≈ ∂u

∂t
− Uo(x), (6.12)

uN = −
[∂u
∂t

− Uo(x)
]
sin(θ) +

∂w

∂t
cos(θ) ≈ Uo(x)

∂w

∂x
+

∂w

∂t
. (6.13)

The inviscid force per unit length in the transverse direction can be written as [55]

FA = Mo

[∂uN

∂t
− ∂

∂x
(uNuL)

]
. (6.14)

Substituting Eqs. (6.12) and (6.13) into Eq. (6.14), retaining only first-order terms, and

assuming that the external flow velocity vanishes over the unconfined portion of the pipe,

x > L′, hence Uo(x) = −Uo

[
1−H(x− L′)

]
, results in

FA = ρpAo

[
χ+ (1− χ)H(x− L′) + (rρ − 1)H(x− L′′)ρ

]∂2w

∂t2

+ 2UoχρpAo

[
H(x− L′)− 1

] ∂2w

∂x∂t
+ χρpAoU

2
o

[
1−H(x− L′)

]∂2w

∂x2
,

(6.15)

where the terms on the right-hand side are associated with inertia, Coriolis and centrifugal

forces, respectively.

Based on the semi-empirical formulas of Taylor [56], further developed in [54], the viscous

forces in the longitudinal and normal directions, as modified for the problem at hand, are

FL =
1

2
ρpDoCTU

2
o

[
1−H(x− L′)

]
, (6.16)

FN =
1

2
ρpDoCNUo

{[
1−H(x− L′)

]∂w
∂t

− Uo

[
1−H(x− L′)

]∂w
∂x

}
+ k

∂w

∂t
, (6.17)

where CT and CN are the friction coefficients in the longitudinal and normal direction, re-

spectively. The viscous-drag coefficient, k, is associated to lateral motion of the cylinder in

quiescent fluid (with no mean external flow).

Supposing that the assumption of a thin boundary layer holds, based on a two-dimensional
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flow analysis, the expression for k in Eq. (6.17) can be adopted from Chen et al. [50],

Sinyavskii et al. [57] and Moditis et al. [4], yielding

k = kup

{ 1 + γ̄3

(1− γ̄2)2
[
1−H(x− L′)

]
+
[
H(x− L′)−H(x− L′′)

]
+ rρ

√
νb
νp
H(x− L′′)

}
,

(6.18)

where, νb and νp are the kinematic viscosities of the brine and product, respectively. As in

Ref. [57], kup = 2
√
2ρpA0Re(Ω)/

√
s̃, in which Re(Ω) denotes the real part of the radian

frequency of oscillations, s̃ = Re(Ω)D2
o/(4νp), and γ̄ = Do/Dch.

For the hydrostatic forces, we adopt the expressions derived in [54]. The hydrostatic

forces in the x- and z-directions are given as follows:

Fpx = − ∂

∂x
(Aopo) + Ao

∂po
∂x

, (6.19)

Fpz = Ao
∂

∂x
(po

∂w

∂x
). (6.20)

Inside the annulus, the pressure variation is associated with friction and gravity. Below

the annulus, the pressure loss due to friction is negligible. Therefore, the pressure distribution

below the annulus is assumed to be hydrostatic. Also, for the fluid entering the annular

region, the influence of the entrance is assumed to be confined to an infinitesimally short

region in the vicinity of L′− < x < L′+.

Considering the forces acting on an annular fluid element, as shown in Fig. 6.4(d), for

0 < x < L′ one can write

−Ach
∂p

(1)
o

∂x
+ Ff + Achρpg = 0, (6.21)

in which p
(1)
o is the pressure distribution within the annulus, and Ff is the total annular

friction force acting on the annular flow element of cross-sectional area Ach = π
(
D2

ch−D2
o

)
/4.

It can be presumed that the wall shear stresses acting on the inner and outer annular

surfaces are equal. Consequently, Ff/Stot = F
(1)
L /So, where Stot = π(Dch +Do) and F

(1)
L =

1

2
ρpDoCTU

2
o . Hence,

Ff =
Stot

So

F
(1)
L . (6.22)
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Substituting Eq. (6.22) into Eq. (6.21), one obtains

−Ach
∂p

(1)
o

∂x
+

Stot

So

F
(1)
L + Achρpg = 0.

Denoting the hydraulic diameter by Dh = Dch−Do, the pressure gradient within the annulus

(0 ≤ x < L′) simplifies to

Ao
∂p

(1)
o

∂x
= F

(1)
L

(Do

Dh

)
+ Aoρpg. (6.23)

Integrating Eq. (6.23) yields

p
(1)
o (x) =

[F (1)
L

Ao

(Do

Dh

)
+ ρpg

]
x+ po|x=0, (6.24)

which is the external pressure distribution for 0 < x < L′, where po|x=0 is the product

pressure at the well-head (x = 0).

Since it is assumed that the pressure distribution below the annulus is hydrostatic, for

L′ < x < L′′ one can write

∂p
(2)
o

∂x
= ρpg, (6.25)

where p
(2)
o is the external pressure distribution in the region below the annulus and above

the interface level. Integrating Eq. (6.25) yields

p
(2)
o (x) = ρpgx+ c1. (6.26)

The constant of integration, c1, is determined next. Considering the head loss associated

with the fluid entering the annular region at x = L′, one can write

p
(2)
o |x=L′+ = 1

2
ρU2

o + p
(1)
o |x=L′− + ρgh1, (6.27)

where h1 = (K1U
2
o )/(2g) is the head-loss due to the sudden contraction for the fluid entering

the annular region, in which K1 is 0.8-0.9 for the problem at hand [58].

Combining Eqs. (6.24), (6.26) and (6.27), the constant c1 is found to be

c1 =
1
2
ρpU

2
o +

F
(1)
L

Ao

(Do

Dh

)
L′ + ρpgh1 + po|x=0. (6.28)
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Substituting Eq. (6.28) into Eq. (6.26), the pressure in the region L′ < x < L′′ can be

written as follows:

p
(2)
o (x) = ρpgx+ 1

2
ρU2

o +
F

(1)
L

Ao

(Do

Dh

)
L′ + ρpgh1 + po|x=0. (6.29)

The hydrostatic pressure distribution for L′′ < x < L is governed by

∂p
(3)
o

∂x
= ρbg, (6.30)

where p
(3)
o is the external pressure distribution below the interface level, which upon inte-

gration yields

p
(3)
o (x) = ρbgx+ c2. (6.31)

The constant c2 can be found by equating the pressure obtained at the interface level (x = L′′)

using Eqs. (6.29) and (6.31). This leads to the following expression for the pressure in the

region L′′ < x ≤ L:

p(3)o (x) =ρpgx+ ρp(rρ − 1)g(x− L′′) +
F

(1)
L

Ao

(Do

Dh

)
L′ +

1

2
ρpU

2
o + ρpgh1 + po|x=0. (6.32)

Hence, in view of Eqs. (6.24), (6.29) and (6.32), the external pressure can be written as

po(x) =
F

(1)
L

Ao

(Do

Dh

)
x− F

(1)
L

Ao

(Do

Dh

)
(x− L′)H(x− L′)

+
[1
2
ρpU

2
o + ρpgh1

]
H(x− L′) + po|x=0

+ ρpgx+ ρp(rρ − 1)g(x− L′′)H(x− L′′).

(6.33)

The external pressure gradient is

∂po
∂x

=
F

(1)
L

Ao

(Do

Dh

)
(1−H(x− L′)) +

[1
2
ρU2

o + ρpgh1

]
δD(x− L′)

+ ρpg +
[
ρp(rρ − 1)g

]
H(x− L′′),

(6.34)

where δD(x− L′) is the Dirac delta function.

Note that the well-head pressure, po|x=0, is governed by regulation, assuring that the

product will not hydraulically fracture the salt formation right below the casing shoe [59].

More specifically, regulations restrict the product pressure at the casing shoe depth, po|x=L′ ,
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to not exceed a value, cr, times L′. Hence, po|x=L′ ≤ crL′. Typically, cr = 0.7 − 0.9 psi/ft

(≃ 16,000-20,000 Pa/m). Evaluating the right-hand side of Eq. (6.29), one can obtain the

maximum allowable pressure at the well-head, po,max|x=0. An upper bound for the maximum

allowable pressure is obtained at zero external flow velocity, and therefore, from Eq. (6.29):

po,max|x=0 ≤ (cr − ρpg)L
′. (6.35)

Substituting Eqs. (6.16) and (6.19) into Eq. (6.8) and subsequently Eq. (6.8) into Eq.

(6.6) results in

∂

∂x
(T − Aipi + Aopo) +Mtg +Mfig − Ao

∂po
∂x

− 1

2
ρpDoCTU

2
o

[
1−H(x− L′)

]
= 0. (6.36)

The tensioning and pressurization term, (T −Aipi+Aopo), can be determined by integrating

Eq. (6.36) from x to L, yielding

(T − Aipi + Aopo) =(Mt +Mfi − ρpAo)g(L− x)

− 1

2
ρpDoCTU

2
o

(Do

Dh

+ 1
)
(L′ − x)

[
1−H(x− L′)

]
− Ao

(1
2
ρpU

2
o + ρpgh1

)[
1−H(x− L′)

]
+ Aoρp(rρ − 1)g(x− L′′)H(x− L′′)

− Aoρp(rρ − 1)g(L− L′′) + (T − Aipi + Aopo)|x=L,

(6.37)

in which, via an energy balance for the fluid at x = L, the external pressure at the tip of the

pipe, po|x=L, and the internal pressure at the tip, pi|x=L, are related to each other through

pi|x=L = po|x=L − ρbU
2
i

2
+ ρbgh2, (6.38)

where h2 = (K2U
2
i )/(2g), with K2 = 1, is the head-loss associated with the sudden enlarge-

ment (expansion) of the internal flow into the surrounding fluid [58]. Also, po|x=L can be

computed by evaluating Eq. (6.33) at x = L, which yields

po|x=L =
1

2Ao

CTρpDoU
2
o

(Do

Dh

)
L′ +

1

2
ρpU

2
o + ρpgh1 + po|x=0 + ρpgrρL

+ ρpgL
′′(1− rρ).

(6.39)
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6.2.2 The equation of motion

Substitution of Eqs. (6.15), (6.16), (6.17) and (6.20) into Eq. (6.9), subsequent substi-

tution of the result into Eq. (6.7) and use of Eq. (6.37) results in the equation of motion in

the z-direction:

EIw′′′′ +
{(

Mt +Mfi − ρpAo

)
g − 1

2
ρpDoCTU

2
o

(Do

Dh

+ 1
)[

1−H(x− L′)
]

− Ao

(1
2
ρpU

2
o + ρpgh1

)
δD(x− L′)− Aoρp(rρ − 1)gH(x− L′′)

}
w′

+
{(

−Mt −Mfi + ρpAo

)
g(L− x) +

1

2
ρpDoCTU

2
o

(Do

Dh

+ 1
)
(L′ − x)

[
1−H(x− L′)

]
+ Ao

(1
2
ρpU

2
o + ρpgh1

)[
1−H(x− L′)

]
− Aoρp(rρ − 1)g(x− L′′)H(x− L′′)

+ Aoρp(rρ − 1)g(L− L′′)− (T − Aipi + Aopo)|x=L

}
w′′ +Mtẅ +Mfiẅ

+ 2UiMfiẇ
′ +MfiU

2
i w

′′ + ρpAo

[
χ+ (1− χ)H(x− L′) + (rρ − 1)H(x− L′′)

]
ẅ

− 2UoχρpAo

[
1−H(x− L′)

]
ẇ′ + U2

oχρpAo

[
1−H(x− L′)

]
w′′

+
1

2
ρpDoCNUo

[
1−H(x− L′)

]
ẇ − 1

2
ρpDoCNU

2
o

[
1−H(x− L′)

]
w′

+ kup

{ 1 + γ̄3

(1− γ̄2)2
[
1−H(x− L′)

]
+
[
H(x− L′)−H(x− L′′)

]
+ rρ

√
νb
νp
H(x− L′′)

}
ẇ

+
1

2
ρpDoCTU

2
o

[
1−H(x− L′)

]
w′ = 0,

(6.40)

where ( )′ = ∂( )/∂x, ˙( ) = ∂( )/∂t, and pi|x=L and p0|x=L can be found using Eqs. (6.38)

and (6.39).

The associated boundary conditions are the classical ones for a clamped-free beam:

w|x=0 = w′|x=0 = w′′|x=L = w′′′|x=L = 0. (6.41)

The relationship between the internal and external flow velocities can be obtained through

conservation of mass, that is

Uo =
D2

i

D2
ch −D2

o

rρUi. (6.42)
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6.2.3 The non-dimensional equation of the motion

Eq. (6.40) may be rendered dimensionless through the use of the following dimensionless

parameters:

ξ =
x

L
, η =

w

L
, τ =

( EI

Mt +Mfi + ρpAo

)1/2 t

L2
, ui =

(Mfi

EI

)1/2
LUi,

uo =
(ρpAo

EI

)1/2
LUo, βi =

Mfi

Mt +Mfi + ρpAo

, βo =
ρpAo

Mt +Mfi + ρpAo

,

γ =
(Mt +Mfi − ρpAo)gL

3

EI
, Γ =

T |x=LL
2

EI
, cN =

4

π
CN , cT =

4

π
CT ,

γp =
AoρpgL

3

EI
, rann =

L′

L
, rif =

L′′

L
, α =

Di

Do

, αch =
Dch

Do

,

ΠiL =
Aipi|x=LL

2

EI
, ΠoL =

Aopo|x=LL
2

EI
, h =

Do

Dh

,

κup =
kupL

2

[EI(Mt +Mfi + ρAo)]1/2
, ε =

L

Do

, ω =
(Mt +Mfi + ρpAo

EI

)1/2
L2Ω.

(6.43)

The dimensionless equation of motion is

η′′′′ +
{
γ − 1

2
εcTu

2
o(1 + h)

[
1−H(ξ − rann)

]
−
[1
2
u2
o(1 +K1)

]
δD(ξ − rann)

− γp(rρ − 1)H(ξ − rif )
}
η′ +

{
− γ(1− ξ) +

1

2
εcTu

2
o(1 + h)(rann − ξ)

[
1−H(ξ − rann)

]
+

1

2
u2
o(K1 + 1)

[
1−H(ξ − rann)

]
+ γp(rρ − 1)(rif − ξ)H(ξ − rif )

+ γp(rρ − 1)(1− rif )− (Γ− ΠiL +ΠoL)
}
η′′ +

{
1 + βo(χ− 1)

[
1−H(ξ − rann)

]
+ βo(rρ − 1)H(ξ − rif )

}
η̈ + 2

{
ui

√
βi − uo

√
βoχ
[
1−H(ξ − rann)

]}
η̇′ +

{
u2
i

+ χu2
o

[
1−H(ξ − rann

]}
η′′ +

1

2
cNεuo

√
βo

[
1−H(ξ − rann)

]
η̇

+ κup

{ 1 + α−3
ch

(1− α−2
ch )

2

[
1−H(x− L′)

]
+
[
H(x− L′)−H(x− L′′)

]
+ rρ

√
νb
νp
H(x− L′′)

}
η̇ − 1

2
(cN − cT )εu

2
o

[
1−H(ξ − rann)

]
η′ = 0,

(6.44)

where ( )′ = ∂( )/∂ξ, ˙( ) = ∂( )/∂τ . Also, making use of Eqs. (6.38), (6.39) and (6.43), the

values ΠiL and ΠoL can be related to each other as follows:

ΠiL = α2ΠoL − 1

2
u2
i +

Aiρbgh2L
2

EI
, (6.45)

179



where

ΠoL =
1

2
cThrannεu

2
o +Πo0 +

1

2
u2
o(1 +K1) + γprρ +

Aoρp(1− rρ)gL
′′L2

EI
, (6.46)

in which Πo0 = (Aopo|x=0L
2)/EI.

The associated clamped-free boundary conditions in dimensionless form are

η|ξ=0 = η′|ξ=0 = η′′|ξ=1 = η′′′|ξ=1 = 0. (6.47)

Finally, the relationship between the internal and external flow velocities in dimensionless

form is

uo =
α

α2
ch − 1

√
rρui. (6.48)

6.2.4 Solution procedure

Making use of Galerkin’s modal decomposition technique, the dimensionless equation of

the motion, i.e. Eq. (6.44), can be discretized. Let η̃(ξ, τ) be an approximate solution, and

one can write

η(ξ, τ) ≈ η̃(ξ, τ) =
N∑
j=1

ϕj(ξ)qj(τ), (6.49)

in which ϕj(ξ) are appropriate comparison functions satisfying both essential and natural

boundary conditions of the problem, in this case the normalized cantilevered Euler-Bernoulli

beam eigenfunctions; qj(τ) are the corresponding generalized coordinates. N in the truncated

series denotes the number of modes in the Galerkin scheme approximation. Substituting Eq.

(6.49) into Eq. (6.44), multiplying by ϕi(ξ) and subsequently integrating over the normalized

domain, i.e. from ξ = 0 to ξ = 1, a set of N ordinary differential equations are obtained,

which may be written in matrix form as follows:

Mq̈ + Cq̇ + Kq = 0, (6.50)

where M, C and K are the mass, damping and stiffness matrices, respectively, expressions

for which are given in the Appendix; q={q1, q2, ..., qN}T , q̇=dq/dτ and q̈=dq̇/dτ .

Eq. (6.50), involves the following integrals:

aij(a, b) =

∫ b

a

ϕiϕjdξ, bij(a, b) =

∫ b

a

ϕiϕ
′
jdξ,

cij(a, b) =

∫ b

a

ϕiϕ
′′
jdξ, dij(a, b) =

∫ b

a

ξϕiϕ
′′
jdξ.

(6.51)
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These integrals may be evaluated in closed form if the limits of integration are 0 and 1, and

the values for cantilevered beams may be found for instance in [12]. For other sets of integral

limits, however, numerical integration needs to be employed. In this study, the numerical

integration was perfumed using the seventh degree Newton–Cotes formula.

Seeking oscillatory solutions, let

q = AeΛτ , (6.52)

where A is a time-independent complex vector and Λ is a complex number. Substituting Eq.

(6.52) in Eq. (6.50) and rearranging the resulting equations yields to the following eigenvalue

problem for the state vector of Z =

{
q

Λq

}
, that is

[
0 I

M−1K −M−1C

]
Z = ΛZ. (6.53)

We express Λj = iωj, where ωj is complex eigenfrequency and i =
√
−1. Solving the

eigenvalue problem for incremental internal flow velocities, the stability of the system may

be investigated. The imaginary part of the eigenfrequency is associated with damping of the

system. If, for a specific ui, all Im(ωj) > 0, the system is stable. If for some value of ui we

obtain Im(ωj) < 0, the system is unstable. Thus, at the critical flow velocity ui = ui,cr, we

have Im(ωj) = 0. The real part of the eigenfrequency is related to the frequency of oscilla-

tions. Therefore, if Im(ωj) < 0 while Re(ωj) = 0, the system undergoes a static divergence

(buckling), and if Im(ωj) < 0 while Re(ωj) ̸= 0, the system undergoes flutter (an oscillatory

instability), which is associated with a Hopf bifurcation.

To ensure convergence, an increasing number of modes were used in the Galerkin approx-

imation, N = 20 up to 26, to achieve convergence in the first ten eigenfrequencies for flow

velocities up to the critical, within a margin of less than 2%.

In Section 4, for each set of system parameters, the eigenvalue problem of Eq. (6.53) is

solved for incremental flow velocities, and the critical flow velocity obtained is based on the

first-detected instability.
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Table 6.1: Dimensionless critical flow velocity, ui,cr and the mode of instability for the bench-

scale-system parameters. F2: flutter in the second mode

rann Ref. [4] Ref. [39] Present

≃ 1/4 6.69 (F2) 6.69 (F2) 6.68 (F2)

≃ 1/2 6.47 (F2) 6.44 (F2) 6.44 (F2)

≃ 3/4 6.44 (F2) 6.42 (F2) 6.45 (F2)

6.3 Numerical results and discussion

6.3.1 Validation

The model developed underwent validation against simpler systems available in the literature

in which a single fluid in the cavern was considered: (a) a bench-top-scale system subjected

to internal and external flow of water; (b) relatively short brine-strings in caverns with water.

6.3.1.1 Bench-top-scale system

Results were obtained for the bench top-scale system parameters as in Moditis et al. [4]

and Abdelbaki et al. [39]. The properties and dimensions of this system are as follows. A

flexible pipe of length L = 431 mm, inner diameter Di = 6.35 mm, outer diameter Do = 16

mm, flexural rigidity EI = 7.37 × 10−3 N m2 and mass per unit length Mt = 0.191 kg/m.

Surrounding the upper portion of the flexible pipe, a rigid outer tube of inner diameter

Dch = 31.5 mm, and three different lengths, namely L′ = 109 mm, 206.5 mm and 304.5

mm (corresponding to rann = 0.253, 0.479 and 0.706, respectively) were considered. The

associated dimensionless parameters are: α = 0.397, αch = 1.97, βi = 7.41×10−2, βo = 0.470,

γ = 2.69, ε = 26.9 and h = 1.03.

The critical dimensionless internal flow velocities and the mode of instability predicted

by this model are presented in Table 6.1 and they are compared to those reported in [4] and

[39]. The results obtained by the present model are in excellent agreement with those of

[4, 39].

Fig. 6.5 shows a typical Argand diagram obtained via the present model for the bench-
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Figure 6.5: A typical Argand diagram for the system parameters associated with the bench-top-

scale system with rann ≃ 1/2, given in Section 6.3.1.1 undergoing second mode flutter at ui = 6.44.

Mode 1 (◦◦◦), Mode 2 (□□□), Mode 3 (△△△), Mode 4 (⋄⋄⋄).

top-scale system with rann ≃ 1/2. In this diagram, the first four modes of the system are

shown for incremental values of ui from 0 to ui,cr and beyond, wherein the imaginary part

of the dimensionless eigenfrequencies, Im(ω), is plotted against its real part, Re(ω). With

increasing ui, at ui,cr = 6.44 the second mode crosses the real axis at a non-zero real value,

indicating a Hopf bifurcation and loss of stability by second mode flutter, in agreement with

previous work.

6.3.1.2 Relatively short brine-strings in caverns with single fluid

Another set of calculations was conducted using the parameters of a relatively short brine-

string system analyzed in Ref. [4]. This enables validation of the current model using system

parameters that more closely resemble those of a full-scale brine-string system, while still

utilizing a single-fluid (water). The properties and dimensions of this system are as follows:

Brine-string length L = 200 m, inner diameter Di = 0.159 m, outer diameter Do = 0.1778 m,

flexural rigidity EI = 3.47× 106 N m2 and mass per unit length Mt = 38.7 kg/m; length of

the outer rigid casing L′ = 100 m. The results are compared to those obtained by Moditis et

al. [4] for three values of confinement, namely αch = Dch/Do = 1.6, 2 and 2.8; corresponding
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to the inner diameter of the outer casing Dch = αchDo = 0.284 m, 0.356 m and 0.498 m. As

per Ref. [4], the well-head pressure is given a value of po|x=0 = 0, and the friction coefficients

in the normal and longitudinal direction are CN = CT = 0.0125. The other associated

dimensionless parameters are: α = 0.894, βi = 0.238, βo = 0.298, γ = 763.6, ε = 1.125×103.

In what follows, this system is referred to as “A-water-water system” for brevity.

The dimensionless critical flow velocities and the mode of instability predicted by this

model for the A-water-water system are presented in Table 6.2 and they are in excellent

agreement with those obtained in Ref. [4].

Another comparison was carried out for a water-filled brine-string system with the same

dimensions as in A-water-water system, but this time, for a constant αch = 1.676, the brine-

string length was varied from L = 10 m to 300 m, accordingly so was ε = L/Do, while

keeping rann = L′/L constant. The results are compared in Fig. 6.6, showing an excellent

agreement to those reported in Ref. [4]. It should be noted that the cantilever length, L,

has been used in the non-dimensionalization of the internal flow velocity, ui, provided in Eq.

(6.43). Consequently, ui is not an appropriate dimensionless term for studying the influence

of length on the dynamics of the system. More suitable dimensionless terms have been

employed by Doaré and de Langre [47] for hanging fluid-conveying pipes, and by de Langre

et al. [48] for cylinders in axial flow. In this investigation, however, we have not redefined

the dimensionless quantities. Instead, we have used a new dimensionless flow velocity, ui/ε,

to study the influence of length on the dynamics of the system. This new dimensionless

parameter allows investigating the effect of the length (slenderness).

6.3.2 Results of the present model for system parameters associated with typical full-scale

systems

This section presents theoretical results pertinent to long brine-string-like systems.

The properties and dimensions of a sample system, hereafter referred to as system B, are

as follows: Brine-string length L = 1283 m, inner diameter Di = 0.159 m, outer diameter

Do = 0.1778 m, flexural rigidity EI = 3.47× 106 N m2 and mass per unit length Mt = 38.7

kg/m; length of the outer rigid casing L′ = 1085 m and inner diameter Dch = 0.298 m. These

values are similar to those for the A-water-water system, but the length is considerably longer
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Table 6.2: Dimensionless critical flow velocity, ui,cr and the mode of instability for the system

introduced in Section 6.3.1.2 with L = 200 m and various αch. Di: static divergence in the ith

mode, Fi: flutter in the ith mode

αch Ref. [4] Present

1.6 14.0* (D1) 14.3 (D1)

2 23.3* (F1) 23.6 (F1)

2.8 25.0* (F5) 25.0 (F5)

*These values are obtained from Fig.11 in Ref. [4] by a plot digitizer, and they might not be exact to three

significant figures.

(more appropriate for a real brine-string). The density of brine is ρb = 1200 kg/m3, and

its viscosity µb = 3.6 cP. Taking the product in the cavern to be propane, ρp = 508 kg/m3

and µp = 0.095 cP. The friction coefficients in the normal and longitudinal direction are

CN = 0.5CT = 0.0125, which is appropriate for rough cylinders [52]. The interface level

is given a value of L′′ = 1281 m, 1213 m, and 1145 m, for the greatest, intermediate and

smallest value of interface level, respectively. The well-head pressure is po|x=0 = 1000 psi

(≃ 6.895 MPa).

The associated dimensionless parameters are as follows: rann = 0.846, rif = 0.998, 0.945

or 0.892, α = 0.894, βi = 0.317, βo = 0.168, γ = 2.983 × 105, ε = 7.216 × 103. For

this system, the conversion factor between the dimensional and dimensionless internal flow

velocity is Ui (m/s)/ui = 0.297, and the frequencies is Ω (rad/s)/ω = 1.305× 10−4.

To highlight the importance of taking the presence of two different fluids in the cavern,

results are compared for two cases: the B-brine-propane system (in which the two fluids are

brine and propane) and the B-brine-brine system (in which it is assumed that the cavern is

filled only with brine). In the latter case, the well-head pressure, po|x=0, can be neglected.

The Argand diagrams for the two cases are shown in Fig. 6.7(a,b). It is noted that both

systems lose stability by static divergence; the B-brine-propane system in the second mode

at ui,cr = 44.10 (Ui,cr = 13.12 m/s), and the B-brine-brine system in the first mode at

ui,cr = 60.07 (Ui,cr = 17.87 m/s). Thus, both the critical flow velocity and the mode of
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Figure 6.6: Variation of ui,cr/ε with increasing ε for the system parameters as in Section 6.3.1.2

with rann = 0.85 and αch = 1.676.

instability change, highlighting the significant influence of considering the presence of two

distinct fluids within the cavern.

Further calculations were conducted using several other typical brine-string systems,

namely systems I-V, given in Table 6.3. Taking the product in the cavern to be propane, and

for brine-strings made of steel with E = 206 GPa, the associated dimensionless parameters

are given in Table 6.4, with the conversion factor between the dimensionless and dimensional

terms and the relationship between internal and/or external flow velocities given in Table

6.5. The value of well-head pressure in the calculations for all cases was taken to be po|x=0 =

0.5po,max|x=0; refer to Eq. (6.35).

The critical flow velocity and the mode of instability for systems I-V are provided in

Table 6.6, in which results are given for CN = CT = 0.0125 and CN = 0.5CT = 0.0125,

the latter being pertinent for rough cylinders. One can conclude that, generally, a cylinder

with more roughness would have a lower critical flow velocity than a smoother one. It is

evident that the critical flow velocity and mode of instability varies from one case to another,

depending on the system parameters.

It can be concluded from the results presented in Table 6.6 that, the effect of interface

level ratio, rif on the critical flow velocity is not monotonic; in any case, the effect is minor.
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Figure 6.7: Argand diagram for system B, defined in Section 6.3.2, in which the two fluids in

the cavern are: (a) brine-propane (greatest rif ); (b) brine-brine. The first one undergoes static

divergence in the second mode at ui = 44.10, and the second static divergence in the first mode at

ui = 60.07. Mode 1 (◦◦◦), Mode 2 (□□□), Mode 3 (△△△), Mode 4 (⋄⋄⋄).

Table 6.3: Dimensions of some typical brine-string systems.

Case
Brine-string Production casing Interface level (m)

L (m) Di (m) Do (m) Mt (kg/m) L′ (m) Dch (m) Greatest rif
* Moderate rif

* Smallest rif
*

I 1315 0.224 0.244 60 1070 0.318 1313 1222 1131

II 1062 0.225 0.244 60 600 0.321 1061 861 660

III 812 0.381 0.406 125 411 0.508 810 641 472

IV 1038 0.373 0.406 163 614 0.578 1036 855 674

V 257 0.124 0.140 25 198 0.206 256 235 213
* At its greatest value for interface level, the cavern would hold nearly the maximum product capacity

possible, whereas for the smallest value of interface level, the cavern is full of brine and the product would

be present only at the level of the annular region between the brine-string and outer casing. The moderate

interface level is the average situation.
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Table 6.4: Dimensionless parameters associated with the systems of Table 6.3. In these calcula-

tions, the two fluids in the brine-string and storage cavern are brine and propane.

Case α αch βi βo γ ε h rann

I 0.918 1.303 0.361 0.181 1.796 ×105 5.389×103 3.297 0.814

II 0.922 1.316 0.363 0.181 0.995 ×105 4.352×103 3.169 0.565

III 0.938 1.251 0.418 0.201 0.084 ×105 2.000 ×103 3.980 0.506

IV 0.919 1.424 0.364 0.183 0.317 ×105 2.557 ×103 2.360 0.591

V 0.886 1.471 0.306 0.165 0.035 ×105 1.836 ×103 2.121 0.770

Table 6.5: Multiplicative factors to convert the dimensionless to dimensional terms and the rela-

tionship between internal and/or external flow velocities associated with the systems of Table 6.3.

In these calculations, the two fluids in the brine-string and storage cavern are brine and propane.

Case Ui (m/s)/ui Uo (m/s) /uo uo/ui Uo/Ui (Uo/Ui)/(uo/ui) Ω (rad/s)/ω

I 0.356 0.503 2.020 2.850 1.411 1.628 ×10−4

II 0.429 0.609 1.939 2.749 1.417 2.436 ×10−4

III 1.169 1.687 2.550 3.671 1.442 9.307 ×10−4

IV 0.748 1.056 1.375 1.942 1.412 4.349× 10−4

V 1.249 1.701 1.168 1.590 1.361 26.90×10−4
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Table 6.6: Critical flow velocity, ui,cr, and the mode of instability for the systems of Table 6.3.

Di: static divergence in the ith mode, Fi: flutter in the ith mode. The dimensional values of Ui,cr

(m/s) are given in parentheses.

Case
CN = CT = 0.0125 CN = 0.5CT = 0.0125

Greatest rif Moderate rif Smallest rif Greatest rif Moderate rif Smallest rif

I
16.66 (5.93 m/s) 16.24 (5.78 m/s) 16.94 (6.03 m/s) 11.91 (4.24 m/s) 11.63 (4.14 m/s) 12.11 (4.31 m/s)

D1 F1 D1 D1 F1 D1

II
18.25 (7.83 m/s) 18.23 (7.82 m/s) 18.41 (7.90 m/s) 13.19 (5.66 m/s) 13.12 (5.63 m/s) 13.29 (5.70 m/s)

D1 F4 F2 D1 F4 F2

III
6.00 (7.02 m/s) 5.80 (6.78 m/s) 5.55 (6.49 m/s) 4.42 (5.17 m/s) 4.32 (5.05 m/s) 4.14 (4.84 m/s)

D1 D1 D1 F1 D1 D1

IV
20.73 (15.51 m/s) 20.75 (15.52 m/s) 20.76 (15.53 m/s) 15.16 (11.34 m/s) 15.12 (11.31 m/s) 15.20 (11.37 m/s)

D1 F4 D1 D1 F4 D1

V
9.65 (12.05 m/s) 9.54 (11.91 m/s) 9.44 (11.79 m/s) 7.21 (9.01 m/s) 7.13 (8.90 m/s) 7.06 (8.82 m/s)

D1 D1 D1 D1 D1 D1

For instance, for case I and CN = 0.5CT = 0.0125, the values of critical flow velocity are

fairly close, ranging between 11.63 to 12.11.

Fig. 6.8 shows Argand diagrams for two cases: (i) case I with CN = 0.5CT = 0.0125

and the greatest rif , where a static divergence in the first mode takes place at ui = 11.91

(Ui = 4.24 m/s); (ii) case IV with CN = 0.5CT = 0.0125 and the moderate rif , predicting

flutter in the fourth mode at ui = 15.12 (Ui = 11.31 m/s).

6.4 Parametric study

In this parametric study, the reference system against which the results are compared is

the B-brine-propane system, introduced in Section 6.3.2. The influence of the main sys-

tem parameters on the dynamics of the brine-string system was studied, focusing on the

effect of well-head pressure, the ratio between brine and product densities, the annular flow

confinement (αch), the confinement length ratio (rann), and the brine-string length (or its

slenderness, ε).
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Figure 6.8: Argand diagram for (a) Case I with CN = 0.5CT = 0.0125 and the greatest rif subject

to static divergence in the first mode at ui = 11.91; (b) Case IV with CN = 0.5CT = 0.0125 and

the moderate rif subject to flutter in the fourth mode at ui = 15.12. Mode 1 (◦◦◦), Mode 2 (□□□),

Mode 3 (△△△), Mode 4 (⋄⋄⋄).

6.4.1 The effect of well-head pressure

The effect of external pressure being stabilizing is well known for pipes with supported ends.

Also, it is known that a pipe with supported ends will buckle if the internal pressure exceeds

the external one sufficiently, independently of internal flow velocity [12]. However, for a

cantilevered pipe subjected to external flow of different density, the influence of pressure is

not obvious.

To assess the potential impact of pressure on the dynamics of the system under inves-

tigation, calculations were carried out for three different values of the well-head pressure,

namely po|x=0 = 0, po|x=0 = 0.5po,max|x=0 or po|x=0 = po,max|x=0; refer to Eq. (6.35). The

results are presented in Table 6.7. It can be concluded that, in general, the effect of the

well-head pressure, albeit marginal, is stabilizing. For instance, the critical flow velocity for

the greatest rif increases from ui,cr = 42.53 for po|x=0 = 0 to 45.52 for po|x=0 = po,max|x=0.

6.4.2 The effect of brine-to-product density ratio

Next, the influence of the product density was investigated. To this end, calculations were

conducted for the B-brine-propane system, the B-crude-oil-brine system and the B-brine-

brine system. The results are presented in Table 6.8. It can be concluded that, the lower the

density of the product is, the lower the critical flow velocity would be. For instance, compar-
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Table 6.7: Dimensionless critical flow velocity, ui,cr and the mode of instability for B-brine-propane

system with different values of well-head-pressure. Di: static divergence in the ith mode, Fi: flutter

in the ith mode
po|x=0 = 0 po|x=0 = 0.5po,max|x=0 po|x=0 = po,max|x=0

Greatest rif Moderate rif Smallest rif Greatest rif Moderate rif Smallest rif Greatest rif Moderate rif Smallest rif

42.53 (D2) 42.56 (B2) 44.07 (F1) 44.10 (D2) 44.10 (F1) 45.72 (F1) 45.52 (F1) 45.59 (F1) 47.30 (D2)

Table 6.8: Dimensionless critical flow velocity, ui,cr and the mode of instability for system B with

three different brine-to-product density and viscosity ratios. Di: static divergence in the ith mode,

Fi: flutter in the ith mode
Propane with SG = 0.508 and µp = 0.095 cP Crude oil with SG = 0.800 and µp = 3.5 cP Brine with SG = 1.2 and µb = 3.6 cP

Greatest rif Moderate rif Smallest rif Greatest rif Moderate rif Smallest rif Only brine in the cavern

44.10 (D2) 44.10 (F1) 45.72 (F1) 53.25 (F1) 53.29 (F1) 54.43 (D1) 60.07 (D1)

ing the results obtained for propane and crude oil, one can conclude that an approximately

57% increase in the density of the product has resulted in an approximately 21% increase in

the critical flow velocity. Therefore, for very light liquid products, it is crucial to consider

the presence of two different fluids within the cavern.

6.4.3 The effect of external flow confinement

The influence of αch on the brine-string system was also examined. A higher value of αch is

associated with a less confined system, leading to a lower annular flow velocity, uo, as can

be concluded from Eq. (6.48).

Calculations were carried out for various values of αch = Dch/Do by changing the value

of Dch, while the remaining parameters are as in the B-brine-propane system. The results

are presented in Fig. 6.9, in which the dimensionless internal critical flow velocity is plotted

against αch. Additionally, the associated type of instability at each value of αch is indicated.

As shown, in the case of a highly confined or effectively unconfined brine string system

(αch < 1.7 or αch > 3.6), the system becomes unstable via flutter, whereas it loses stability

by static divergence for moderately confined systems (1.7 < αch < 3.6). Quantitatively, as

shown in Fig. 6.9, ui,cr increases continuously and significantly with increasing αch (i.e., for

less confinement) up to αch = 3.6. Thereafter, the critical flow velocity reaches a plateau,

indicating that the system is effectively unconfined, and αch has a negligible influence on the

191



✶ ✶�✁ ✷ ✷�✁ ✸ ✸�✁ ✹ ✹�✁ ✁ ✁�✁ ✻
✵

✁✵

✶✵✵

✶✁✵

✷✵✵

✷✁✵

✸✵✵

✸✁✵
❉❋ ❋

Increasing annular gap size

Figure 6.9: Variation of ui,cr with the annular gap confinement, αch = Dch/Do. To achieve

various values of αch, the parameter that is varied is the diameter of the outer casing, Dch, while

the remaining parameters are as in B-brine-propane system defined in Section 6.3.2

critical flow velocity.

6.4.4 The effect of confinement length ratio

The influence of the confinement length ratio, rann = L′/L on the critical velocity was ex-

plored next. To this end, calculations were carried out for various values of L′, while the

remaining parameters are as in the B-brine-propane system defined in Section 6.3.2. The

higher the value of rann, the larger is the upper portion of the brine-string subjected to

annular flow.

Figure 6.10 presents the results, where the dimensionless internal critical flow velocity is

plotted against rann. Additionally, the corresponding type of instability at each value of rann

is indicated. As shown, increasing the confined length portion of the brine-string (or equiva-

lently increasing the production casing length) destabilizes the system. This destabilization

is quite significant and monotonic. In particular, ui,cr decreases from approximately 260 for

an unconfined brine-string to about 42 for a brine-string that is almost entirely confined.

Increasing rann influences the dynamics qualitatively as well. A brine-string immersed

in fluid, effectively without any annular flow (rann ≤ 0.05), undergoes flutter in the eighth
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Figure 6.10: Variation of ui,cr with the annular confinement length, rann = L′/L. To achieve

various values of rann, the parameter that is varied is the length of the outer casing, L′, while the

remaining parameters are as in the B-brine-propane system defined in Section 6.3.2.

mode; this oscillatory instability is succeeded by a static divergence for higher values of con-

finement length ratio, 0.05 < rann < 0.65. For still higher rann the instability type becomes

more sensitive to rann, alternating between divergence and flutter in the first mode.

6.4.5 The effect of pipe slenderness

The influence of the brine-string slenderness, ε = L/Do, on the onset of instability was in-

vestigated via calculations with various values of brine-string length, L, while the remaining

parameters are as in the B-brine-propane system, defined in Section 6.3.2. As discussed in

Section 6.3.1.2, the brine-string length, L, appears in the relationship between the dimen-

sional and dimensionless internal flow velocities, given in Eq. (6.43); therefore, ui is not a

suitable dimensionless parameter to investigate the influence of length on the onset of in-

stability. Hence, a modified dimensionless velocity is used, that is ui/ε. The relationship

between the dimensional Ui and this modified dimensionless velocity is independent from L,

thereby allowing the exploration of the effect of the length (slenderness).

As shown in Fig. 6.11, increasing the brine-string slenderness results initially in a very

significant reduction of the onset of instability. However, for sufficiently slender (long) brine-
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Figure 6.11: Variation of ui,cr/ε with the brine-string slenderness, ε = L/Do. To achieve various

values of ε, the parameter that is varied is the brine-string length, L, while the remaining parameters

are as in B-brine-propane system introduced in Section 6.3.2

strings, the onset of instability becomes almost independent of ε; an asymptotic behaviour

is observed, where as ε approaches a near-plateau, and a further increase in L has no in-

fluence on the dynamics. This asymptotic behaviour has been reported before by Doaré

and de Langre [47] for a similar simpler system, namely for long hanging fluid-conveying

pipes. The predominant effect of gravity-induced tension, which results in stabilizing the

upper portion of very long pipes has been identified as the cause of this asymptotic system

behaviour. In other words, the gravity-induced tension makes the upper portion of very long

pipes effectively rigid, and therefore above a critical length, the flow velocity required to

induce instability becomes independent of the pipe length. It is also noted that for a long

enough brine-string, the system is subjected to static divergence, rather than flutter.

6.5 Conclusion

A linear theoretical model has been developed to predict fluid-elastic instabilities in brine-

strings during product retrieval in salt-mined caverns. The fluid mechanics and dynamics of

the system are simplified, and the model consists of a fluid-discharging cantilevered flexible

pipe subjected to a partially-confined reverse annular flow. Specifically, it is assumed that
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the entire system is immersed in a container containing two different fluids with a variable

interface level and that the cantilevered pipe is subjected to an external flow through an

annular region over its upper portion, formed by concentric cantilevered outer rigid casing.

The model developed was first validated against similar simpler systems.Theoretical re-

sults were obtained for system parameters pertinent to long brine-string-like systems. The

results indicate that the brine-string system becomes subject to either buckling or flutter at

sufficiently high flow velocities, depending on the system parameters. The analysis reveals

that simplifying the system by considering only a single fluid in the cavern (brine) is non-

conservative, resulting in significant overestimation of the critical flow velocity.

Next, the impact of key system parameters on the dynamics was explored, namely the

influence of the brine-product interface level, the well-head pressure, the ratio between brine

and product densities, external flow confinement (annular gap size), confined length portion,

and brine-string slenderness.

The results have shown that the effect of interface level is marginal, and that the well-head

pressure has a stabilizing effect. Moreover, the lighter the product, the lower the critical flow

velocity. The results regarding the effect of confinement indicate that with an increase in the

annular gap size, leading to a decrease in the annular flow velocity, the system becomes more

stable. However, the effect of confinement reaches a threshold, beyond which its influence

on the dynamics becomes marginal. Increasing the length of the outer casing (increasing the

confinement length) leads to significantly lower critical flow velocities. The effect of increas-

ing the brine-string length was also found to be destabilizing, but in an asymptotic manner;

the critical flow velocity approaches a limiting value for sufficiently long systems, and any

additional increase in L does not impact the dynamics.
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Appendix

The mass, damping and stiffness matrices in Eq.(6.50), M, C and K, are given here, as

follows:

Mij = aij(0, 1) + βo(χ− 1)aij(0, rann)− βo(rρ − 1)
[
aij(0, rif )− aij(0, 1)

]
, (A.1)

Cij = 2ui

√
βibij(0, 1)− 2uo

√
βoχbij(0, rann) +

1

2
cNεuo

√
βoaij(0, rann)

+ kup
1 + α−3

ch

(1− α−2
ch )

2
aij(0, rann) + kup

[
aij(0, rif )− aij(0, rann)

]
+ rρ

√
νb
νp

[
aij(0, 1)− aij(0, rif )

]
,

(A.2)
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Kij = λ4
jaij(0, 1) + γbij(0, 1)−

1

2
εcTu

2
o(1 + h)bij(0, rann)

−
[1
2
u2
o(1 +K1)

]
ϕi|ξ=rannϕ

′
j|ξ=rann − γp(rρ − 1)

[
bij(0, 1)− bij(0, rif )

]
− γ
[
cij(0, 1)− dij(0, 1)

]
+

1

2
εcTu

2
o

[
(1 + h)

[
ranncij(0, rann)− dij(0, rann)

]
+
[1
2
u2
o(1 +K1)

]
cij(0, rann) + γp(rρ − 1)

[
rifcij(0, 1)− dij(0, 1)

− rifcij(0, rif ) + dij(0, rif ) + (1− rif )ci,j(0, 1)
]
− (Γ− ΠiL +ΠoL)cij(0, 1)

+ u2
i cij(0, 1) + χu2

ocij(0, rann)−
1

2
εu2

obi,j(0, rann)
[
cN − cT

]
,

(A.3)

where λj is the jth eigenvalue of the characteristic equation of a cantilevered Euler-Bernoulli

beam.
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Complementary discussion on system III - theoretical investigation

To clarify and expand on what is included in the manuscript presented in Chapter 6 [5],

further discussion is provided here.

The idealized model for stability of brine-strings in salt-mined caverns presented in the

preceding chapter predicts more realistic critical flow velocities compared to previous models.

Previous models ignored the presence of fluids with different densities. By incorporating the

two-fluid model, we were able to achieve more realistic predictions of critical flow velocities

for full-scale systems. This is because: (i) the brine/product density ratio, rρ, appears in

many terms in the equation of motion; (ii) rρ indirectly affects the Uo/Ui ratio, allowing for

relatively high Uo/Ui in the case of interdependent internal and external flows, refer to Eq.

(6.42).
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CHAPTER 7

Conclusions and Suggested Future Work

The focus of this thesis lies in investigating the FSI dynamics of slender cantilevered

cylinders subjected to internal, external, or simultaneous internal and external axial flows.

It specifically examines the dynamics of three closely related systems of slender tubular

beams under internal and external axial flows through experimental exploration and/or the

construction of an analytical fluid-structure interaction model. System I involves a slightly

curved cantilevered pipe discharging/aspirating fluid. System II is an inverted cantilevered

cylinder subjected to external axial flow, i.e. with the flow directed from the free end to-

wards the clamped one. System III constitutes the primary focus of this study spanning

three thesis chapters; it involves a hanging cantilevered pipe discharging fluid and subjected

simultaneously to a partially-confined inverted axial flow along its upper portion, through

the annulus created by a coaxial shorter outer rigid tube.

In the experimental studies, the flow velocity was incremented gradually until reach-

ing instability and beyond. A non-contacting optical technique utilizing a perpendicular

synchronized dual-camera system was employed to track and record the motion of the flex-

ible cylinder at each flow velocity increment. Subsequently, the recorded videos underwent

processing to extract the displacement time series signals. These signal were further an-

alyzed to identify the nature of the dynamics, employing both qualitative and quantita-

tive measurements. Analysis techniques included bifurcation diagrams, wavelet transforms,

Poincaré maps, power spectral densities (PSDs), phase plane plots, probability density func-

tions (PDFs), auto-correlation functions, and Lyapunov exponents.

An analytical model was developed for system III via a Newtonian derivation of the partial

differential equations of motion. Employing the Galerkin modal decomposition technique,
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the equation of motion was discretized to yield a set of ordinary differential equations. Con-

ducting numerical integration using the seventh degree Newton–Cotes formula and recasting

the ordinary differential equations using the state-space vector resulted in an eigenvalue

problem. Solving the eigenvalue problem for incremental flow velocities, the stability of the

system was investigated and Argand diagrams for various system parameters were obtained.

In what follows, a summary of the findings for each system is provided, along with sug-

gestions for future research.

7.1 Summary of findings

7.1.1 System I

In Chapter 2, the dynamics of a slightly curved clamped-free tubular beam conveying

fluid, presented in Chehreghani et al. [1], was studied. Using a bench-top-size apparatus,

four different cases were examined experimentally: (i), (ii) a water-discharging straight or

curved pipe in a reservoir filled with air; (iii), (iv) a water-aspirating straight or curved pipe

in a reservoir filled with water.

The results showed that both curved and straight discharging pipes undergo a self-excited

oscillatory instability, namely flutter in the second mode, at high-enough flow rates. Ana-

lyzing the displacement signal revealed that the oscillation was predominantly periodic. The

main difference between the dynamics of the slightly curved and straight discharging pipes

was that the curved pipe was subject to a relatively large amplitude static deformation prior

to the onset of the oscillatory instability. More specifically, prior to the onset of flutter,

with increasing flow velocity, the initial curvature of the curved discharging pipe gradually

amplified, with the pipe deforming in a first-mode and then in a second-mode shape. The

deformation of the curved pipe took place in the plane of the initial curvature and therefore,

it was 2D.

The aspirating curved pipe developed first-mode flutter at sufficiently high flow veloc-

ities. Prior and after the threshold of flutter, with increasing flow velocity, the aspirating

curved pipe was subject to a gradually increasing static deformation. The amplitude of the

static deformation for the curved pipe was relatively large; however, the amplitudes of the

oscillatory part of the displacements were rather small, and were superimposed on the mean
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deflection of the pipe. The first-mode flutter-like oscillations took place about the mean

deflected state and they were of a weak, unsteady, near-intermittent nature, with a larger

chaotic content than for the straight aspirating pipe.

7.1.2 System II

In Chapter 3, which presents the study by Chehreghani et al. [2], water-tunnel ex-

periments on inverted cantilevered cylinders in axial flow, i.e. cylinder subjected to flow

directed from the free towards the fixed one, were described and analyzed. Utilizing sili-

cone–rubber cylinders of three different lengths with an embedded thin metal strip, a hollow

silicone–rubber and a santoprene one, as well as three different free-end shapes, the influence

of the main system parameters was examined.

The sequence of qualitative dynamics observed in the experiments, with increasing flow

velocity, was as follows: the inverted cylinder underwent turbulence buffeting, followed

by weak unsteady and near-intermittent first-mode flutter-like oscillations at relatively low

flows. At still higher flows, the amplitude of oscillations increased and eventually, at suffi-

ciently high flows, abruptly, a large-amplitude static divergence materialized. By discussing

the mechanisms underlying these instabilities, it was concluded that the static divergence

likely resulted from a saddle–node bifurcation, rather than a pitchfork bifurcation. The onset

of static divergence displayed notable hysteresis, suggesting a subcritical bifurcation. In the

case of highly-pliable cylinders, the static divergence amplitude could be extremely large,

such that the cylinder would invert itself, so that the free end of the cylinder would face

downstream.

Increasing the cylinder slenderness resulted in a decrease of the critical flow velocities for

the onset of both instabilities. It was found that the free end-shape has only a negligible

effect on the onset of flutter instability, and no effect on the threshold of static divergence,

in sharp contrast to the effect of this parameter for a cylinder subjected to flow in the

conventional flow direction, i.e. flow directed from the fixed end towards the free one.

7.1.3 System III

System III was studied in Chapters 4-6, corresponding to manuscripts [3–5], respectively.

These studies were motivated by applications in brine-strings in salt-mined caverns utilized
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for storage and subsequent retrieval of hydrocarbons, hydrogen gas or compressed air.

In the experiments, a bench-top-size apparatus, consisting of a pressure vessel filled with

water, a hanging flexible pipe, discharging water downwards, and a shorter outer rigid tube

surrounding the upper portion of the pipe and containing an upward flow, was utilized. To

achieve higher external-to-internal flow velocity ratios, additional flow, could enter the pres-

sure vessel from the bottom. To examine the influence of the principal system parameters,

flexible pipes of two different lengths and materials, as well as the outer rigid tubes of vari-

ous lengths and inner diameters were employed. Additionally, for experiments on the effect

of annular flow obstruction, a constraint (a ring) was placed at the inlet or outlet of the

annulus. To investigate the effect of eccentricity between the pipe and the outer rigid tube,

the rigid tube was placed with a predetermined eccentricity with respect to the undeformed

position of the pipe. Various external-to-internal flow velocity ratios were tested. It was ob-

served that for interdependent external and internal flows, generally, the pipe was subjected

to turbulence buffeting at low flows, followed by flutter in the second-mode at sufficiently

high flow velocities. For independent external and internal flows the pipe underwent the

following sequence of dynamical states: turbulence buffeting, followed by static deflection

or weak first-mode oscillations, and eventually second- or mixed-mode oscillations. The ob-

served flutter was quite unsteady, but predominantly periodic with some chaotic content.

Generally, increasing the external-to-internal flow velocity ratio, confinement length, annular

flow obstruction or eccentric positioning of the outer rigid tube with respect to the central

pipe were all found to have a destabilizing effect. On the other hand, increasing the annu-

lar gap size (less confinement) and using a stiffer pipe were all found to have a stabilizing

effect. Increasing pipe length-to-diameter ratio had a destabilizing effect for the very small

external-to-internal flow velocity ratio of 0.015, and a rather negligible stabilizing effect for

higher external-to-internal flow velocity ratios.

The analytical model developed for system III, which was obtained by simplifying the

fluid mechanics and dynamics of the brine-string system, was utilized to predict fluid-elastic

instabilities in this system. Numerical results indicated that, depending on the system pa-

rameters, the full-scale brine-string system may undergo buckling or flutter at sufficiently

high flow velocities. It was shown that simplifying the system by considering only a single
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fluid (brine) in the cavern resulted in a significant overestimation of the critical flow velocity.

The analysis revealed that well-head pressure has a stabilizing effect, while the influence of

the brine-product interface level on dynamics is negligible. It was also concluded that de-

creasing the density of the product destabilizes the system. Increasing the annular gap size,

which decreases the external-to-internal flow velocity ratio, stabilized the system; however,

this effect approached a threshold, beyond which its influence on dynamics became essen-

tially negligible. Increasing the confined length portion of the brine-string had a destabilizing

influence. Extending the length of the brine-string was found to induce destabilization, albeit

in an asymptotic manner; the critical flow velocity approached a limiting value for sufficiently

long brine-strings, beyond which further increases in length had no effect on the dynamics.

The analytical model developed in Chapter 6 can be used for the simpler bench-top-scale

experimental system considered in Chapters 4 and 5 with very little modification. Theoreti-

cal results for the bench-top-scale system parameters are in good qualitative and quantitative

agreement with experimental observations in terms of the critical flow velocity and the mode

of instability. Also, both the theory and the experiments are in agreement in terms of the

effect of the principal system parameters on the dynamics of system III.

7.2 Future work

For system I, it would be interesting to conduct more experiments on pipes of various

initially curved shapes. It may be possible to 3D print pipes with a first, second or higher

mode curved shapes. Also, other types of geometric imperfections can be explored, for in-

stance twisted pipes. Additionally, for aspirating pipes, it would be interesting to conduct

experiments using a suction pump instead of experiments on pipes immersed in a pressurized

vessel. To improve the flow-intake model for aspirating pipes, flow visualization would be

insightful. Moreover, since curved pipes undergo large static deformation prior to an oscil-

latory instability, developing a geometrically exact nonlinear analytical model of the system

would be interesting.

For system II, further investigation could provide insights on the mechanisms underly-

ing the FSI dynamics of the system; specifically, to determine whether the observed static

divergence arises via a saddle–node or a pitchfork bifurcation. Also, it would be interesting

to apply external perturbations to the inverted cantilevered cylinder at relatively low flow
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velocities, to examine if a saddle-node bifurcation would materialize at low flows. Addition-

ally, the effect of imperfections, such as an initially curved shape and imperfect clamping can

be explored. Moreover, developing a geometrically exact nonlinear model of a free-clamped

cylinder in axial flow with improved free-end boundary conditions and an initial curvature

would be useful.

For system III, the effect of friction coefficients needs to be explored further. Specifically,

it is necessary to investigate if the values of these coefficients, now routinely used, are appro-

priate. Additionally, developing an analytical model taking into account the impact forces

and initial curvature of the pipe would be interesting. Also, for the system with reverse flow

directions, i.e. the storage mode of operation with the annulus discharging the product into

the cavern and the brine-string aspirating brine, it is needed to develop a similar analytical

model to that for system III, in which the existence of two fluids in the cavern as well as the

wellhead pressure are taken into account.

There are also some interesting systems of slender structures subjected to axial flow

that can be further investigated. For instance, revisiting the system of a cantilevered pipe

conveying fluid and subjected to motion-restraining spring constraints could involve the de-

velopment of a geometrically exact nonlinear model for this system. Also, conducting fresh

experiments on this system would be interesting. Additionally, wind and water tunnel ex-

periments can be conducted to examine the influence of surface ridges on the dynamics of a

cantilevered plate subjected to axial flow.
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