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Abstract

Fluid mechanics simulation is a crucial domain in real-world simulation, addressing a

wide range of scenarios, including pouring liquids and vast ocean views, often becoming

an indispensable tool for directors and artists. The Eulerian methodology stands as a sig-

nificant approach in fluid simulation, segmenting the simulation space into grid cells to

monitor fluid properties like velocity, pressure, and temperature. To ensure fluid incom-

pressibility, the Eulerian technique engages in solving the Poisson equation, generating

a sparse, symmetric, and positive definite linear system during projection, which can be

solved iteratively; however, the iterative method, reliant on conventional numerical pro-

cedures, proves computationally intensive, particularly compared to other stages of the

simulation.

In enhancing simulation speed, one avenue involves employing deep learning tech-

niques to handle pressure projection, circumventing the need for analytical solutions via

linear equations. In our present endeavor, we introduce a machine learning solution,

distinct from traditional numerical approaches, training our model to comprehend fluid

system behavior, thereby expediting the determination of fluid pressure values.
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Abrégé

La simulation de la mécanique des fluides constitue un domaine vital au sein de la simu-

lation du monde réel, répondant à des scénarios divers, de l’écoulement de liquides aux

vastes vues océaniques, devenant souvent un outil indispensable pour les réalisateurs

et les artistes. La méthodologie eulérienne se présente comme une approche significative

dans la simulation de fluides, segmentant l’espace de simulation en cellules de grille pour

surveiller les propriétés du fluide telles que la vitesse, la pression et la température. Pour

garantir l’incompressibilité du fluide, la technique eulérienne résout l’équation de Pois-

son, générant un système linéaire, symétrique et défini positif lors de la projection, qui

peut être résolu de manière itérative. Cependant, la méthode itérative, reposant sur des

procédures numériques conventionnelles, se révèle intensément en termes de puissance

de calcul, notamment par rapport aux autres étapes de la simulation.

Pour améliorer la vitesse de simulation, une voie consiste à utiliser des techniques

d’apprentissage profond pour gérer la projection de la pression, contournant ainsi le be-

soin de solutions analytiques via des équations linéaires complexes. Dans notre effort

actuel, nous introduisons une solution d’apprentissage automatique, distincte des ap-

proches numériques traditionnelles, formant notre modèle à comprendre le comporte-

ment du système de fluide, accélérant ainsi la détermination des valeurs de pression du

fluide.
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Chapter 1

Introduction

Fluids are incredibly pervasive in our lives. They envelop our planet, with approximately

70% of its surface covered in water [1]. Even within our own bodies, fluids play a crucial

role, particularly within our circulatory system, acting as biological fluid engines; how-

ever, it is easy to overlook the fact that we ourselves reside within a fluid environment:

the atmosphere. This mixture of gases, essential for creating a habitable environment, is

perhaps the fluid that subconsciously captures our attention the most on a daily basis.

It influences the weather phenomena we witness, ranging from the formation of fluffy

cumulus clouds to the powerful spectacle of thunderstorms. Undoubtedly, our existence

is deeply intertwined with the dominance of fluids in our world.

Real-time simulation of fluid flow has posed a longstanding challenge in various fields

of application. It finds relevance in computational fluid dynamics, where it serves indus-

trial purposes, as well as in computer graphics and animation, particularly in the creation

of realistic smoke and fluid effects. In the realm of computer graphics research, physi-

cally based fluid simulation has emerged as a highly significant area of exploration. The

simulation process involves solving the Navier-Stokes equations, which are nonlinear

partial differential equations. To discretize these equations, numerous numerical simu-

lation methods have been employed, including Lagrangian methods [33] and Eulerian
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methods [5]. In the domain of high-resolution fluid simulation, Eulerian methods have

gained wide adoption due to their enhanced accuracy in reconstructing and rendering

fluid surfaces.

Figure 1.1: In 1998, the animated movie “Antz” by Dreamworks marked a significant

milestone as the first film to feature fluid animations generated through simulation.

Nevertheless, the process of animating the fluids in the movie was complex and time-

consuming. The subsequent year, Jos Stam introduced a groundbreaking paper that

streamlined the simulation procedure, making it more accessible and efficient for prac-

tical use [43].

The behavior of numerous physical phenomena is dictated by the incompressible

Navier-Stokes equations, a set of partial differential equations that govern the fluid veloc-

ity field over time. To simulate these equations, two primary computational approaches

are employed. The first is the use of Lagrangian methods, which approximate continu-

ous quantities by employing discrete moving particles [21]. The second approach is the
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adoption of Eulerian methods, which approximate quantities on a fixed grid [17]. In the

context of this work, we have chosen to utilize the latter approach.

In order to ensure the incompressibility of fluids, Eulerian methods tackle the Poisson

equation, which gives rise to a widely recognized sparse, symmetric, and positive-definite

linear system during the projection step. Due to the iterative nature of solving the Poisson

equation using traditional numerical methods, the projection step often consumes more

time compared to other stages of the simulation process. This can significantly tax com-

putational resources [53] and pose challenges when minor adjustments are required in

fluid simulation.

To enhance the efficiency of the projection step, numerous effective numerical meth-

ods have been proposed in the field of fluid simulation. Notably, traditional convex opti-

mization techniques, such as the Preconditioned Conjugate Gradient (PCG) algorithm, or

stationary iterative methods, like the Jacobi or Gauss-Seidel methods can yield exact solu-

tions; however, PCG is limited by high time-constants and is generally not well-suited for

GPU hardware. On the other hand, stationary iterative methods like the Jacobi or Gauss-

Seidel methods are commonly employed in real-time applications, although the Jacobi

method exhibits suboptimal asymptotic convergence. Furthermore, both of these algo-

rithms have a computational complexity that strongly depends on the data (e.g., bound-

ary conditions), and in real-time scenarios, iterative methods are often truncated to ac-

commodate computational constraints.

In recent years, machine learning techniques have gained significant prominence in

fluid simulation. Some researchers have approached the fluid simulation process as a

supervised regression problem, training blackbox machine learning systems to predict

outputs using random regression forests or neural networks for Lagrangian and Eule-

rian methods, respectively. Ladick´y et al. (2015) proposed an adaptation of regres-
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Figure 1.2: To flood New York City in the film “The Day After Tomorrow”, the team at

Digital Domain had to create software capable of seamlessly combining foam and mists,

conducting extensive simulations, and presenting the results in a user-friendly manner

even for artists without prior experience in fluid animation. The outcome was the lat-

est iteration of their FSIM software, earning prestigious SciTech Oscars for Doug Roble,

Nafees Bin Zafar, and Ryo Sakaguchi [3].

sion forests for smoothed particle hydrodynamics, training a regressor to predict particle

states based on handcrafted features [27]. Yang et al. (2016) trained a patch-based neural

network to forecast ground truth pressure using local information from previous-frame

pressure, voxel occupancy, and velocity divergence [61]. These machine learning-based

approaches offer alternative strategies for efficient fluid simulation by harnessing the pre-

dictive power of blackbox models.

Some prior studies have utilized learning-based approaches in fluid simulation, which

have shown their potential; however, these approaches have certain limitations. They

typically rely on a dataset of linear system solutions obtained from an exact solver, which

restricts their ability to compute targets during training. As a result, models trained in
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Figure 1.3: “Sea of Thieves” released in 2018 for Xbox Series X and Series S, Xbox One, and

Microsoft Windows, is a game that revolves around old-fashioned piracy and maritime

adventures. Its standout feature is the remarkably realistic water graphics that dominate

the gameplay. The water visuals in the game are so well-animated and simulated that they

outshine the rest of the game’s graphics. Notably, the water’s appearance dynamically

changes based on light sources, offering various shades from turquoise depths to deep

cobalt [44].

this manner can predict ground-truth outputs effectively when provided with an initial

frame generated by the exact solver. During testing, the initial frame is typically gener-

ated by the model itself, introducing a difference between the training and simulation

phases. This difference can potentially lead to discrepancies and errors that accumulate

throughout the generated sequence.

These challenges have some parallels with the difficulties faced when generating se-

quences using recurrent neural networks, as discussed in earlier research [4]. Moreover,

while Yang et al. (2016) introduced a ConvNet architecture that demonstrated promising

results and offered significant speed improvements compared to the PCG baseline [61], it

is important to note that their approach is tailored to specific training conditions. This
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specialization limits its ability to accurately simulate long-range phenomena, such as

gravity or buoyancy, which may be essential for more general use-cases.

1.1 Notation

From its earliest proposal stage, our approach aimed at a deep understanding of the un-

derlying mathematical model in Eulerian fluid modeling while also addressing challeng-

ing software engineering aspects. We dedicated considerable effort to comprehending

how different components of a fluid simulator function and how to construct and inte-

grate them efficiently and elegantly.

Our primary source of guidance during development was Robert Bridson’s “Fluid

Simulation for Computer Graphics (Second Edition)” [5]. This textbook served as the

foundation for our algorithms and the overall structure of the simulator. Building upon

this knowledge, we propose a machine learning-based approach, inspired by the work

done by Tompson et al. (2017), to accelerate the linear projection process [48]. Our ap-

proach is fast, exhibits data-independent complexity, and is suitable for general cases,

harnessing the capabilities of deep learning to derive an approximate linear projection.

In this thesis, we provide background information in Chapter 2, review related works

in Chapter 3, introduce the fluid simulation technique used and present our proposed

model with implementation details in Chapter 4. Experimental results are detailed in

Chapter 5, and we draw conclusions in Chapter 6.
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Common symbols used in this thesis

xG Eulerian grid position at G

un
i,j,k Velocity vector field. Located on the grid at time step n and position (i, j, k)

u Velocity component in the x direction

v Velocity component in the y direction

w Velocity component in the z direction

pi,j,k Pressure in grid at position (i, j, k)

∆t Time step between two frames

f External force
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Chapter 2

Background

2.1 Fluid Equations

Fluids are all around us, from the air we breathe to the vast oceans covering two-thirds of

Earth. They play a central role in some of the most captivating natural phenomena. Com-

puter animation often focuses on Newtonian fluid dynamics, which are primarily de-

scribed by the incompressible Navier-Stokes equations, a set of partial differential equa-

tions:

∂u

∂t
+ (u · ∇)u+

1

ρ
∇p =

µ

ρ
∇2u+ f , (2.1)

∇ · (u) = 0. (2.2)

In the given equations ρ represents the density, u is the velocity vector, p stands for

pressure, µ is dynamic viscosity, and f denotes the external force acting on the fluid. It’s

important to notice that in specific cases, especially when dealing with fluids of low vis-

cosity, we can eliminate the viscosity term without significantly compromising the accu-

racy of our simulations. Notably, this applies to fluids like water and air, often considered

inviscid in computer animation, despite their real-world non-ideal behavior. Neverthe-
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less, it’s worth noting that even when we exclude the viscosity term, certain numerical

methods used to approximate fluid equations can introduce a slight degree of artificial

viscosity into the simulation.

In the context of the current project, our focus is on solving the Euler equations with-

out the viscosity term. By disregarding viscosity, the computational complexity can be

reduced while the essential behavior of the fluid flow is captured.

2.1.1 The Momentum Equation

Equation (2.1) is commonly referred to as the momentum equation, and within the realm

of fluid dynamics, it represents Newton’s Second Law of motion, expressed as F = ma.

This equation elucidates the acceleration of the fluid resulting from the combined effects

of internal and external forces acting upon it. While not immediately evident, it is worth

noting that the terms present in the Euler equations closely parallel those encountered in

Newton’s Second Law, which will be further explained in the upcoming discussion.

To facilitate our exposition, let us consider a particle-based fluid simulation where

individual particles symbolize discrete fluid entities characterized by mass m, volume V ,

and velocity u. According to Newton’s Second Law, the force F exerted on each particle

is determined by its mass m and its acceleration a:

F = ma

although the exact value of acceleration is unknown, we do have knowledge of the parti-

cle’s velocity. Since acceleration is the derivative of velocity, we can express the equation

in the following form:

F = m
Du

Dt
(2.3)
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the expression Du
Dt

represents the Material Derivative, which will be explained in detail

later; however, for now, it can be understood as a standard derivative. Moving forward,

the analysis involves identifying the forces acting on the particle. The primary force to

consider is the force of gravity. It is essential to distinguish this force from simple acceler-

ation due to gravity, as it takes into account the mass of the particle:

Fgravity = mg

it is evident that gravity uniformly influences all fluid particles as an external force. On

the other hand, the internal forces within the fluid, which include viscosity and pressure,

are more intricate. For the purposes of this project, we disregard viscosity, leaving pres-

sure as the primary internal force of significance. In essence, fluid flows from regions of

high pressure to regions of low pressure. To compute the pressure force at a specific parti-

cle position, we determine the gradient of the pressure field, denoted as ∇p. This gradient

indicates the direction of the steepest pressure increase and is then inverted, resulting in

−∇p, to signify movement away from high-pressure areas towards low-pressure regions.

Note that ∇p essentially converts the scalar function (collection of partial derivatives) into

a vector format:

−∇p = −


∂/∂x

∂/∂y

∂/∂z

 p = −


∂p/∂x

∂p/∂y

∂p/∂z

 .

In order to obtain the pressure force, the aforementioned vector should be integrated

across the volume of the fluid particle; however, as a straightforward approximation,

it suffices to multiply the vector by the volume, represented by V , associated with the

particle blob:

Fpressure = −V∇p.
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Figure 2.1: The force driving currents caused by the difference in pressure between the

high-pressure region and low-pressure region is called the pressure gradient.

Currently, the exact role of pressure in the simulation may not be fully apparent; how-

ever, grasping the fundamental concept that high-pressure regions push the fluid away

in the direction indicated by the negative pressure gradient is crucial (further elaboration

on this in section 2.2.5). With this understanding, equation (2.3) can now be reformulated

to incorporate the additional insights as follows:

mg − V∇p = m
Du

Dt

and by rearranging the equation slightly, we obtain the equation of motion for a fluid blob

as follows:

m
Du

Dt
= −V∇p+mg. (2.4)
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When performing fluid calculations using a finite number of particles (eq. 2.4), there

will be approximation errors since the values obtained from sampled particles cannot

fully capture the values of unsampled ones. To overcome this limitation, a large number

of particles, approaching infinity, is used to describe the fluid, forming what is known as

a continuum model. According to Bridson [5], this continuum model has been experi-

mentally proven to closely align with reality across a wide range of scenarios; however, a

drawback of this approach arises when the number of particles tends to infinity, causing

the mass and volume of each particle to approach zero and rendering the equations of

motion meaningless. To address this, the momentum equation is divided by the volume

prior to taking the limit as the number of particles approaches infinity,

m

V

Du

Dt
= −V

V
∇p+

m

V
g

and by recognizing that the ratio of mass to volume is equivalent to density, denoted as ρ

(rho), the expression m/V can be substituted with ρ, resulting in the following formula-

tion:

ρ
Du

Dt
= −∇p+ ρg

and, ultimately, by dividing the equation by ρ, the material derivative can be isolated,

leading to the final version of the momentum equation. This form of the equation is

particularly useful for numerical solvers in order to facilitate the computational solution

process:

Du

Dt
= −1

ρ
∇p+ g.

12



Figure 2.2: Comparing Lagrangian and Eulerian perspectives in fluid dynamics.
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2.1.2 Material Derivative

Thus far, the acceleration of the particle has been treated as a regular derivative of veloc-

ity; however, in a continuum model such as fluids or deformable solids, there are different

methods to track motion. Figure 2.2 illustrates two of such methods:

The first method is known as the Lagrangian method, named after Joseph-Louis La-

grange [58], which is commonly used in particle systems. In this method, points in space

have a position x and velocity u. By representing the fluid body with numerous particles

and considering the active forces acting on them, the fluid’s behavior can be simulated

over time. Smoothed Particle Hydrodynamics (SPH) is an example of an approach that

utilizes the Lagrangian method.

On the other hand, the Eulerian method, named after Leonhard Euler [57], takes a

different approach. It focuses on fixed locations in space and measures the changes in

various quantities (such as velocity, density, temperature) at those specific locations to

determine how the fluid flows through the analyzed region. While this approach may

not be as intuitive, it offers the advantage of facilitating easier approximation of spatial

derivatives, such as pressure and temperature.

The link between these two approaches is established through the Material Deriva-

tive, which takes into account changes observed from both the Lagrangian and Eulerian

perspectives. Figure 2.3 illustrates this connection by presenting two overlapping fields

on the left: a velocity field u(x) and a scalar field q(x). The trajectory of a particle is rep-

resented by the blue line. To provide an analogy, we can envision the particle moving

through a river characterized by the velocity field u, while traversing a smoke cloud (re-

sulting from a nearby source) described by the scalar field q. The smoke cloud represents

a scalar field, enabling the extraction of scalar measurements, such as smoke density, at

14



Figure 2.3: The material derivative.

various spatial locations.

The challenge lies in determining the rate of change of the scalar field q not at a fixed

point in space, denoted by x, but rather for a particle whose position is defined as a func-

tion of time, represented by x(t). Let’s consider point P along the particle’s trajectory at

time t, denoted as x(t). At this point, the particle has a velocity u(P). The maximum rate at

which q can change from point P is determined by its gradient, represented as ∇q, which

is a vector pointing from point P towards the region of q with the highest increase in value.

Therefore, the rate of change of q is primarily influenced by the alignment and mag-

nitude of the velocity vector and the gradient vector. If the velocity vector aligns closely

with the gradient vector, the change in q will be significant. To quantify the alignment, we

can compute their dot product: (u · ∇q) (equivalently represented as |u||∇q| cos(θ)). This
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addresses one aspect of the problem. Additionally, we need to consider Eulerian changes

in q, which are not dependent on particles. These changes are captured by the term ∂q/∂t.

Combining both components, we obtain the following equation for the derivative of q at

the position of a moving particle:

Dq

Dt
=

∂q

∂t
+ u · ∇q

and the expanded form of the Material Derivative is:

Dq

Dt
=

∂q

∂t
+ u

∂q

∂x
+ v

∂q

∂y
+ w

∂q

∂z

where u, v, and w are the there components of the velocity field, u, in the Cartesian coor-

dinate system.

In closing this section, we delve into applying the Material Derivative to vector func-

tions, specifically the velocity field, which self-advects (as discussed in section 2.2.3). This

involves merging the Eulerian and Lagrangian viewpoints to calculate a comprehensive

derivative for each vector component:

Du

Dt
=

∂u

∂t
+ u · ∇u =


Du
Dt

Dv
Dt

Dw
Dt

 =


∂u
∂t

∂v
∂t

∂w
∂t

+


u · ∇u

u · ∇v

u · ∇w

 .

16



2.1.3 Fluid Incompressibility

In the real world, fluids generally exhibit some degree of compressibility, although this

is often imperceptible to the human eye; however, in the context of computer animation,

fluid compressibility can be disregarded, and all fluids can be assumed to be incompress-

ible. Incompressible fluids do not change their volume, and mathematically speaking,

this implies that there is no net inflow or outflow across the fluid’s surface. The normal

component of velocity along the fluid surface (∂Ω) must be zero in order to maintain this

condition:

d

dt
volume(Ω) =

∫∫
∂Ω

u · n̂ = 0

and by applying the divergence theorem, the integral can be transformed into a volume

integral:

d

dt
volume(Ω) =

∫∫∫
Ω

∇ · u = 0.

This condition must hold true for any Ω region within the fluid. And the only con-

tinuous function that integrates to zero regardless of the integration region is zero itself.

Hence, the integrand must be zero everywhere (Bridson, 2015):

∇ · u = 0

this is known as the incompressibility condition, which is the second part of the incom-

pressible Navier-Stokes equations (2.2). To effectively satisfy this condition, the fluid’s

velocity field must be divergence-free. Enforcing this requirement involves utilizing the

pressure term from the momentum equation, as will be demonstrated later.
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2.1.4 Helmholtz-Hodge Decomposition

As Stam states in his paper [43], any vector field w can be expressed uniquely as a sum of

a mass-conserving field and a gradient field, as shown bellow:

w = u +∇q (2.5)

where u is the mass-conserving vector field: ∇ · u = 0 and q is the scalar field. In other

words, u is the divergence-free component and ∇q is the gradient field component. Ap-

plying to both sides of the equation 2.5 the operator (∇·), we get:

∇ · w = ∇2q

since ∇ · u = 0. This is a Poisson equation that can be solved to get the scalar field q.

There are different ways of solving a Poisson’s equation, i.e., analytical or finite-difference

solutions. Then q can be used to calculate u as follows:

u = w −∇q

and this result allows us to define an operator P which projects any vector w onto its

divergence free part u = Pw,

u = Pw = w −∇q.

Applying this projection operator on both sides of the (momentum) equation 2.1 we

obtain an equation for the velocity:

∂u

∂t
= P(−(u · ∇)u+

µ

ρ
∇2u+ f) (2.6)

where we have used the fact that u = Pw and P∇q = 0. This is our fundamental equation

from which we will develop a stable solver.
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2.1.5 Boundary Conditions

The behavior of fluid at its boundaries and free surface is crucial for accurate simulations.

Firstly, the fluid must be confined within the solid walls of its container, preventing it

from flowing through. Secondly, a boundary between the fluid and its surrounding envi-

ronment, known as the free surface, needs to be established. When dealing with a static

solid boundary, the velocity component perpendicular to the solid surface should be set

to zero, denoted by n̂ as the normal to the solid boundary:

u · n̂ = 0.

On the other hand, tangential (denoted by t̂) velocity along the solid surface can either

be zero for viscous fluids (known as the no-slip condition) or left unchanged for inviscid

fluids (the no-stick condition). In the current project, the latter condition is adopted.

Figure 2.4: Fluid’s velocity components at the boundaries (wall).

Lastly, the free surface condition is handled by setting the pressure outside the fluid to

zero, without imposing any control on the velocity. Through numerical implementations
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we can explore how velocities from the fluid are extrapolated in the free space, aiding in

the accurate interpolation of velocities at the fluid boundary. This approach enables two

essential processes: 1. interpolating missing data within data range and 2. extrapolating

future data outside data range.

2.2 Solution Methodologies

Once the mathematical representation of fluid motion has been established, the subse-

quent phase in developing a fluid simulation involves solving the equations or, more

precisely, approximating their solutions with a high level of accuracy. In this section, we

provide a comprehensive explanation of the methods employed to achieve the aforemen-

tioned objective.

2.2.1 Fluid Mechanics Equations

Splitting is a methodology that involves solving individual components of a complex

equation sequentially and then combining their effects to obtain the overall solution. This

technique not only simplifies the solving process but also allows for the utilization of

diverse numerical methods for different parts based on their suitability:

advection :
Du

Dt
,

body force :
∂u

∂t
,

pressure projection :
∂u

∂t
+

1

ρ
∇p = 0, while ∇ · u = 0.

For instance, gravity, being a constant force, can be effectively handled with a forward

Euler scheme, while advection often necessitates a more accurate method like Runge-
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Kutta 2nd order or higher. As a result, instead of solving the Euler equations in a single

step, they are divided into distinct parts to be solved independently (Algorithm 1).

Algorithm 1: Basic Fluid Solver
Step 1: Start with an initial divergence-free velocity field u0;
Step 2: for n ∈ N do

Determine an appropriate timestep ∆t to transition from time tn to time tn+1;
Advect the velocity field u0 to obtain uA;
Apply external forces g to uA to obtain uB;
Make uB divergence-free and enforce incompressibility;

2.2.2 MAC Grid

Before simulating fluid behavior by solving the equations, we must discretize fluid prop-

erties and quantities in space. In this project, our focus is on discretizing the velocity and

pressure fields for mapping onto a two-dimensional grid.

The Marker-and-Cell (MAC) method, introduced by Harlow and Welch (1965), is em-

ployed for solving incompressible fluid flow [23]. This method involves creating a spatial

grid where variables are stored at different locations in a staggered arrangement. The

rationale behind this arrangement may not be immediately apparent, but as we will see,

it greatly simplifies the calculation of pressure to enforce incompressibility. Fig. 2.5a de-

picts a two-dimensional MAC grid, illustrating the arrangement of variables.

In the MAC grid, the pressure values pi,j are stored at the centers of each cell (i, j). On

the other hand, the velocity components are not stored at the cell centers, but rather split

into horizontal and vertical components, which are then stored at the centers of the cell

faces. Each face is shared by two neighboring cells: the horizontal velocity component is

stored at the centers of vertical faces, and the vertical velocity component is stored at the
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(a) 2D cell. (b) 3D cell.

Figure 2.5: Staggered MAC grids. Images by Bridson (2015).

centers of horizontal faces. A similar arrangement holds in three dimensions (Fig. 2.5b).

The rationale behind the staggered arrangement of pressure and velocity, as exten-

sively discussed by Bridson (2015), can be attributed to its ability to facilitate precise cen-

tral differences during the computation of spatial derivatives, such as calculating deriva-

tives of the u-component at a specific point i:

(
∂u

∂x

)
i

≈
ui+1/2 − ui−1/2

∆x
. (2.7)

The use of half indices in the staggered arrangement simply indicates that the velocity

positions are located halfway between the cell centers. While in actual code these veloc-

ities are referred to using integer indices, using half indices when describing algorithms

and formulas provides a more intuitive understanding.
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One downside of the staggered arrangement is the increased complexity when inter-

polating velocity. Since no velocity vectors are actually stored, interpolations for all veloc-

ity components are needed whenever the actual velocity vector is required at a known or

arbitrary point within the grid. For arbitrary points, a bilinear interpolation (in 2D) or tri-

linear interpolation (in 3D) is always necessary; however, at grid points (where pressure

is stored) and cell face centers (where the velocity components themselves are stored),

simple averaging is sufficient:

ui,j,k =

(
ui−1/2,j,k + ui+1/2,j,k

2
,
vi,j−1/2,k + vi,j+1/2,k

2
,
wi,j,k−1/2 + wi,j,k+1/2

2

)
,

ui+1/2,j,k =


ui+1/2,j,k,

vi,j−1/2,k + vi,j+1/2,k

+vi+1,j−1/2,k + vi+1,j+1/2,k

4
,

wi,j,k−1/2 + wi,j,k+1/2

+wi+1,j,k−1/2 + wi+1,j,k+1/2

4


.

2.2.3 Advection

Advection refers to the movement of fluid particles or blobs with the velocity field u.

In the context of fluid dynamics, the advection equation states that the quantities being

advected remain constant in the Lagrangian viewpoint and only change their position as

they are transported by the flow:

Dq

Dt
=

∂q

∂t
+ u · ∇q = 0.

In the context of fluid simulation, consider the scenario where each fluid particle has a

corresponding temperature value. According to the advection equation, as these particles
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are transported by the velocity field, their temperature values remain unchanged. This

concept is further elaborated upon by Bridson (2015) in Section 1.3.2 of “Fluid Simulation

for Computer Graphics”.

To solve the advection equation, the Semi-Lagrangian method introduced by Stam

[1999] is used. This method is chosen for its simplicity, ease of implementation, and un-

conditional stability. The idea behind semi-Lagrangian advection is to trace the particle’s

path backward in time from the point of interest, rather than using forward integration

for the time derivative ∂q/∂t and an accurate central difference for the spatial derivative

u · ∇q.

Figure 2.6: The Semi-Lagrangian Method.

In a practical illustration, Fig. 2.6 showcases to determine the value of velocity com-

ponents of a particular point at position xG in the new timestep, a hypothetical particle

(hence the term “semi” in “semi-Lagrangian”) is traced back one timestep using the re-

versed velocity field to its previous position xP. At that location, an interpolation be-
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tween the two nearest u-components and v-components are conducted to retrieve the old

u value, which is then directly assigned to xG. The advection algorithm for velocity in a

3D scenario is outlined in Algorithm 2 below:

Algorithm 2: The Advection Algorithm
for every cell (i, j, k) do

for each velocity component (u, v, w) do
Process for the u-component is outlined as follows:
Perform interpolation at xG where uG is stored to find the full velocity
vector;

Reverse the velocity vector;
Integrate one timestep: xP = xG + uG∆t;
At xP, interpolate the velocity component uP;
Use the old value at the old position as the new value at the new position:
uG = uP;

2.2.4 Boundary Conditions and Extrapolation

When performing advection, it is possible for the imaginary particle to trace back to a

position outside the boundaries of the fluid, such as within a solid wall or in open air. To

ensure correct velocity interpolation in these areas, a technique called velocity extrapola-

tion is employed.

In the case where the particle ends up inside a solid, based on the rationale explained

in section 2.1.5, tangential velocities within solids must be set to values that do not im-

pede fluid movement along the solid walls. The natural choice is to mirror the velocity

values inside the fluid, as illustrated in Fig. 2.7. This ensures that there is no change in

tangential velocity during interpolation at the boundary, as interpolation between two

identical values results in the same value.
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Extrapolating velocity from the fluid to the surrounding air is more complex and

won’t be discussed in this work (numerous extrapolation algorithms can be found through

online sources). Essentially, it involves averaging velocities starting from the fluid surface

and extending outward into the surrounding air.

Figure 2.7: Extrapolating fluid velocities to solid walls (the no-stick condition).

2.2.5 Pressure Equation

To ensure that the velocity field is divergence-free and preserves fluid volume, an addi-

tional force must be introduced. This force acts to eliminate any divergence, enforcing

incompressibility and maintaining boundary conditions.
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As explained in section 2.1.1, regions of high pressure exert a force that pushes the

fluid away, in the direction opposite to the negative pressure gradient. Therefore, during

the velocity update at time n+1, according to the momentum equation, the gradient of

pressure should be subtracted (or equivalently, the negative gradient of pressure can be

added) from the intermediate velocity field u obtained from the advection step:

un+1 = u−∆t
∇p

ρ
(2.8)

the resulting velocity field fulfills the requirement of incompressibility:

∇ · un+1 = 0 (2.9)

in addition, solid wall boundary conditions are imposed as un+1 · n̂ = 0 and a free surface

condition is enforced where p = 0.

The staggered arrangement of variables becomes evident in the context of subtracting

a component, ∂p/∂x, ∂p/∂y, or ∂p/∂z of the pressure gradient ∇p from the corresponding

component of velocity u. This arrangement ensures that there are two neighboring pres-

sure values on either side of the velocity component, allowing us to approximate equation

2.8 using central differences for ∇p as follows:

un+1
i+ 1

2
,j,k

= ui+ 1
2
,j,k −

∆t

ρ

(
pi+1,j,k − pi,j,k

∆x

)
vn+1
i,j+ 1

2
,k
= vi,j+ 1

2
,k −

∆t

ρ

(
pi,j+1,k − pi,j,k

∆x

)
wn+1

i,j,k+ 1
2

= wi,j,k+ 1
2
− ∆t

ρ

(
pi,j,k+1 − pi,j,k

∆x

) (2.10)

however, it is not necessary to update all velocities in the grid using the pressure gradi-

ent. Air regions that do not border any fluid, for instance, do not require updating since

preserving the volume of air is not a concern. Similarly, velocities at solid walls do not

need to be updated with the pressure gradient as they are set directly according to the
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specified boundary conditions (zero for perpendicular flow and unchanged for tangen-

tial flow). The velocities that need to be updated with the pressure gradient are only those

within the fluid and those located at the free surface of the fluid, which are adjacent to air

cells as shown in Fig. 2.8.

Figure 2.8: Velocities affected by the pressure gradient update in voxelized domain.

Up until now, we have discussed the pressure update (equation 2.8), but we still need

to ensure the satisfaction of the incompressibility condition (equation 2.9). Fortunately,

because velocity is conveniently stored on the (MAC) grid, calculating the divergence

becomes a straightforward procedure. The three-dimensional expression for divergence

can be stated as follows:
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∇ · u = ∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

and approximating it for cell (i, j, k) using central finite differences results in:

(∇ · u)i,j,k ≈
u
i+1

2 ,j,k
−u

i− 1
2 ,j,k

∆x
+

v
i,j+1

2 ,k
−v

i,j− 1
2 ,k

∆x
+

w
i,j,k+1

2
−w

i,j,k− 1
2

∆x
. (2.11)

Similar to the pressure update, the calculation of the divergence is only necessary for

cells identified as fluid, while it is not crucial for air or solid objects to undergo volume

changes.

Although we have established how to update velocity using the pressure gradient,

there is an important missing piece: the pressure itself. The pressure update only ad-

dresses velocity, without providing any immediate information about the pressure val-

ues. We already know that pressures in the air are set to a constant value of zero (Dirichlet

boundary condition).

Additionally, within solid objects, the solid boundary condition specifies the normal

derivative of pressure instead of storing an explicit pressure value (Neumann boundary

condition); however, these boundary conditions are not a concern since velocities at fluid-

solid boundaries are manually set at each timestep. Thus, the remaining challenge is to

determine the pressure values inside the fluid to achieve incompressibility when updat-

ing velocity.

To solve this problem, we elaborate on two important pieces of information that we

know: how the pressure updates velocity and the condition that the resulting velocity

must satisfy. This combination is achieved by formulating a linear system of equations,
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with one equation for each fluid cell. Specifically, equation (2.10) is substituted into equa-

tion (2.11) as follows:

(∇ · u)i,j,k ≈
u
i+1

2 ,j,k
−u

i− 1
2 ,j,k

∆x
+

v
i,j+1

2 ,k
−v

i,j− 1
2 ,k

∆x
+

w
i,j,k+1

2
−w

i,j,k− 1
2

∆x
= 0,

1

∆x

[(
ui+ 1

2
,j,k −

∆t

ρ

pi+1,j,k − pi,j,k
∆x

)
−
(
ui− 1

2
,j,k −

∆t

ρ

pi,j,k − pi−1,j,k

∆x

)
+

(
vi,j+ 1

2
,k −

∆t

ρ

pi,j+1,k − pi,j,k
∆x

)
−
(
vi,j− 1

2
,k −

∆t

ρ

pi,j,k − pi,j−1,k

∆x

)
+

(
wi,j,k+ 1

2
− ∆t

ρ

pi,j,k+1 − pi,j,k
∆x

)
−
(
wi,j,k− 1

2
− ∆t

ρ

pi,j,k − pi,j,k−1

∆x

)]
= 0

(2.12)

and by performing algebraic simplifications, we can obtain a numerical approximation to

the Poisson problem −∆t
ρ ∇ · ∇p = −∇ · u for a fluid cell (i, j, k):

−∆t

ρ


−6pi,j,k + pi+1,j,k + pi,j+1,k + pi,j,k+1

∆x2

+
pi−1,j,k + pi,j−1,k + pi,j,k−1

∆x2

 = −



ui+ 1
2
,j,k − ui− 1

2
,j,k

∆x

+
vi,j+ 1

2
,k − vi,j− 1

2
,k

∆x

+
wi,j,k+ 1

2
− wi,j,k− 1

2

∆x

 . (2.13)

The equation presented above (equation 2.12) represents the general formula for cal-

culating pressure in each fluid cell of the grid; however, when a cell is located at the

boundary of the fluid, there are predefined pressure values based on the boundary con-

ditions. These known pressure values can be substituted into equation (2.12) to derive a
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slightly modified version of equation (2.13).

Although the resulting differences are minimal, it is important to note the adjustments

without rewriting the entire equation. Specifically:

• when neighboring cells are filled with air, their corresponding pressure terms are

simply set to zero, and

• when neighboring cells are solid, their corresponding pressure terms are removed,

and the coefficient preceding the pi,j,k term is decreased by one.

2.2.6 Finding and Applying Pressure

Once equation (2.13) is derived for each fluid cell in the grid, it gives rise to a substan-

tial system of linear equations that must be solved to determine the unknown variables,

which are the pressures p. This system can be represented as a coefficient matrix, A, mul-

tiplied by a vector containing all the unknown pressures, denoted as x, which is equal

to a vector consisting of the negative divergence of the velocity field for each fluid cell,

represented as b:

Ax = b. (2.14)

There exist numerous methods for solving linear systems, and in the following sec-

tion we briefly analyze some of these methods that are dominantly used in the animation

field. Once the linear system solver returns the computed pressures for each cell, the fluid

velocities can be updated using equation (2.10). The resulting velocity field, denoted as

un+1, is divergence-free and satisfies the specified boundary conditions. This updated ve-

locity field can then be utilized to advect the marker particles, serving as the final step in

the entire fluid calculation process.
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Before concluding this section, let’s provide an outline of the steps involved in the

pressure update routine (∆t,u):

• calculate the negative divergence for each fluid cell, taking into account modifica-

tions at solid boundaries,

• construct the coefficient matrix A by iterating over each fluid cell and determining

the types of neighboring cells (fluid, air, or solid),

• solve the linear system Ax = b using a linear system solver, which provides the

vector of solved pressures x, and

• compute the new velocity field un+1 by applying the pressure gradient update for-

mula, equation (2.10), to the existing ( non-divergent) velocity field u and the solved

pressure vector x.

By following this routine, the pressure update process ensures that the velocity field

is adjusted in accordance with the pressure changes, leading to a more accurate and con-

sistent simulation of the fluid behavior.

32



Chapter 3

Literature Review

Eulerian-based fluid simulation is a widely used approach for modeling and simulating

fluid dynamics. It relies on dividing the simulation domain into a fixed grid or mesh,

where fluid properties, such as velocity, pressure, and density, are computed at each grid

cell. This approach has been foundational in the field of computer graphics and compu-

tational fluid dynamics (CFD). In this literature review, we highlight some key develop-

ments and contributions.

3.1 Comparison of Numerical Methods

3.1.1 Navier-Stokes Equations

The Navier-Stokes equation is a fundamental partial differential equation in fluid me-

chanics [34], employed to describe the behavior of incompressible fluids [54]. This equa-

tion represents an extension of Leonhard Euler’s 18th-century equation [20], which orig-

inally described the motion of frictionless and incompressible fluids. In 1821, French en-

gineer Claude-Louis Navier [25] introduced the crucial concept of viscosity, accounting

for fluid friction and making it applicable to a broader range of real-world scenarios, par-

ticularly for viscous fluids. Subsequently, during the mid-19th century, British physicist

and mathematician Sir George Gabriel Stokes further refined this framework [30], though
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the exact solutions were only achievable for simple two-dimensional flows. The complex

dynamics involving vortices, turbulence, and chaos in three-dimensional fluid systems,

including gases, as velocities increase, have remained challenging to fully analyze, with

practical solutions mainly relying on numerical approximations. Euler’s original equa-

tion is:

∂u

∂t
+ u · ∇u = −∇p

ρ
(3.1)

where u is the fluid velocity vector, p is the fluid pressure, ρ is the fluid density, and

∇ indicates the gradient differential operator. The Navier-Stokes equation, on the other

hand, has the form:

∂u

∂t
+ u · ∇u = −∇p

ρ
+ ν∇2u (3.2)

where all the terms are identical to the Euler’s equation with the addition of ν (kinematic

viscosity) and ∇2 (Laplacian operator).

3.1.2 Finite Differences

Finite difference methods are one of the earliest numerical techniques used to solve partial

differential equations, including the Navier-Stokes equations. In 1922, Lewis Fry Richard-

son published a paper titled “Weather Prediction by Numerical Process” in which he ap-

plied finite difference methods to approximate solutions to the primitive equations of

atmospheric motion, a simplified form of the Navier-Stokes equations for atmospheric

flow [38]. Richardson’s work laid the foundation for numerical weather prediction and

can be considered an early example of using finite differences for fluid dynamics simula-

tions.
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When it comes to solving large-scale fluid simulations, especially in three dimensions,

directly applying finite difference methods can be computationally expensive and may

not be efficient. This is where iterative solvers come into play. Iterative solvers are used

to solve linear systems of equations efficiently, which is a common step in solving fluid

flow problems.

Below, we present a concise overview of the key iterative methods employed for solv-

ing the linear system of equation (also called the Poisson Equation) in fluid simulation.

For more comprehensive information on these methods, we highly recommend consult-

ing Saad’s book [41].

Jacobi

In the context of an n×n real matrix A and a real n-vector b, the problem at hand involves

seeking a solution x within Rn, satisfying the following:

Ax = b.

Let Ax = b be a square system of n linear equations, where:

A =


a11 a12 a13 · · · a1n

...
...

... . . . ...

an1 an2 an3 · · · ann

 , x =


x1

...

xn

 , and b =


b1
...

bn

 . (3.3)

The formula, based on elements and applicable to each row indexed by i, can be ex-

pressed as follows:

x
(k+1)
i =

1

aii

(
bi −

∑
j ̸=i

aijx
(k)
j

)
, i = 1, 2, ..., n

and as shown in the equation 3.3, in this context, we use aij to represent the element of

matrix A at row i and column j, and x
(k)
j refers to the jth component of vector of un-
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knowns p at time step k.

It’s worth noting that the positive definiteness of A ensures its invertibility, with all

diagonal elements aii being positive, thus validating our update rule. Additionally, ev-

ery element of x(k+1) is reliant on known values x
(k)
j , which inherently lends Jacobi to

parallelization. This characteristic makes it straightforward to implement and efficient to

execute on a GPU.

However, this method tends to exhibit a slow convergence rate, often necessitating a

substantial number of iterations before achieving a satisfactory solution. This side effect

would bring us to the next method.

Gauss-Seidel (GS)

Let’s contemplate adjusting the Jacobi update rule to incorporate the newly available val-

ues x(k+1)
j . By doing so, we arrive at the definition of the Gauss-Seidel method as follows:

x
(k+1)
i =

1

aii

(
bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

)
, i = 1, 2, ..., n

and to be more specific, when calculating the ith component of x(k+1), we update the

matrix-vector product by substituting x
(k)
j with x

(k+1)
j for j < i, while leaving everything

else unchanged for j > i. The procedure is generally continued until the changes made

during an iteration fall below a specified tolerance, such as a sufficiently small residual.

Unlike the Jacobi method, when implementing GS method, only one storage vector

is required as elements can be overwritten as they are computed, which can be advan-

tageous for very large problems. The Gauss-Seidel method often demonstrates a swifter

convergence rate, albeit at the expense of relinquishing Jacobi’s parallel nature, trans-

forming into a sequential algorithm.
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Conjugate Gradient (CG)

The Conjugate Gradient algorithm stands out as a highly effective iterative approach

for solving linear systems with sparse symmetric positive definite matrices. In essence,

this method embodies the concept of orthogonal projection onto the Krylov subspace

Km(r0, A), where r0 denotes the initial residual. Notably, when dealing with a symmetric

matrix A, leveraging certain simplifications derived from the three-term Lanczos recur-

rence results in more elegant and efficient algorithms.

We can define two non-zero vectors u and v as conjugate with respect to A if:

uTAv = 0.

As A exhibits the properties of symmetry and positive definiteness, the expression on

the left-hand side defines an inner product:

uTAv = ⟨u,v⟩A := ⟨Au,v⟩ = ⟨u, ATv⟩ = ⟨u, Av⟩.

Two vectors are considered conjugate if and only if they are orthogonal with respect to

this inner product. The concept of conjugacy is symmetric, meaning that if u is conjugate

to v, then v is also conjugate to u. Let’s assume:

P = {p1, . . . , pn}

is a collection of n mutually conjugate vectors concerning A, which means that pTi Apj = 0

for all i ̸= j. In this scenario, P serves as a basis for Rn, allowing us to represent the solu-

tion x∗ of Ax = b using this basis:

x∗ =
n∑

i=1

αipi ⇒ Ax∗ =
n∑

i=1

αiApi (3.4)

and when we left-multiply the equation Ax = b by the vector pTk , we obtain:
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pTk b = pTkAx∗ =
n∑

i=1

αip
T
kApi =

n∑
i=1

αi ⟨pk, pi⟩A = αk ⟨pk, pk⟩A (3.5)

and so

αk =
⟨pk, b⟩

⟨pk, pk⟩A
. (3.6)

According to the method described in [36], the approach for solving the equation Ax =

b involves discovering a series of n conjugate directions and subsequently determining

the coefficients αk.

Concluding Thoughts

Based on the data provided by [51] an in-depth analysis of three different methods was

undertaken. The findings revealed that the Conjugate Gradient Method exhibits faster

convergence and requires fewer iterations to attain its final solutions compared to the

other two methods (Table 3.1). Additionally, it was observed that the Conjugate Gradient

Method yields lower computational errors in the process. Consequently, the Conjugate

Gradient Method is deemed to be a more reliable and accurate approach, making it the

preferred choice among these methods.

Method x1 x2 x3 x4 x5 Iteration
Jacobi 7.8957 0.5406 0.4229 0.0736 0.0106 91

Gauss-Seidel 7.8945 0.5316 0.4239 0.0745 0.0107 31
Conjugate Gradient 7.8975 0.54326 0.4249 0.0737 0.07105 5

Table 3.1: Comparison of Numerical Methods.

3.1.3 Real-Time and Interactive Fluids

Over the years, the field of fluid simulation has witnessed significant advancements. In

1996, Foster and Metaxas made substantial progress in enhancing the realism of liquid

simulations by addressing the limitations of prior computer graphics fluid models and
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introducing more complex behaviors. This marked the foundation for more realistic liq-

uid animations [17]. In 1999, Jos Stam’s “Stable Fluid” paper was a pivotal moment in

animation, introducing an unconditionally stable model for fluid flow, enabling real-time

interaction and faster simulations [43]. This model allowed animators to effortlessly gen-

erate intricate fluid-like behaviors. Shortly thereafter, Fedkiw et al. (2001) proposed an

innovative approach to numerical smoke simulation in 2001 [16]. Their method demon-

strated remarkable speed and efficiency, particularly for inviscid Euler equations.

Grid-based Eulerian methods are powerful but can face challenges in handling com-

plex fluid behaviors. Grid-free techniques, like Smoothed Particle Hydrodynamics (SPH),

offer an alternative. Enright and colleagues introduced a “particle level set method” in

2002, presenting a new perspective on achieving visually realistic water surface behav-

iors [15]. Their method also introduced velocity extrapolation techniques. Additionally,

Bargteil et al. (2005) presented a semi-Lagrangian surface tracking method for fluid sim-

ulations in 2005, maintaining an explicit polygonal mesh and octree data structure for

tracking surface characteristics [2].

In 2006, Min and Gibou introduced a second-order accurate projection method for in-

compressible Navier-Stokes equations, achieving stability on non-uniform adaptive Carte-

sian grids [31]. A year later, “Real-time Breaking Waves for Shallow Water Simulations”

brought a new approach to enhancing shallow water simulations, including the effects of

overturning waves [46].

Three years later, Thürey and Rüde made a substantial contribution in fluid simula-

tion by developing an algorithm based on the lattice Boltzmann method (LBM) for free

surface flow simulations [47]. Their work reduced computational time by over threefold

for simulations with large volumes of fluid.
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Figure 3.1: Disney’s ’Moana’ was a watershed moment for the studio, featuring over 900

scenes with complex ocean interactions. To meet the film’s demands efficiently, Disney

introduced a versatile authoring system based on a lightweight implicit ocean represen-

tation [35]. 40



Advancements in graphics hardware and algorithms have led to real-time Eulerian

fluid simulations for use in video games and interactive applications where they play a

crucial role in crafting lifelike fluid animations and effects. These simulations have be-

come integral components of gaming engines, enabling game developers to seamlessly

integrate fluid dynamics into gameplay. In 2009, Nvidia introduced an efficient method

for tracking fluid surfaces, employing triangle meshes [32]. This approach emphasizes

computational efficiency and memory conservation, offering direct control over volume

and feature preservation. It mitigates memory usage by preventing grid stretching, dis-

tinguishing itself from traditional implicit methods. Another noteworthy contribution

was in 2010, when Chentanez and Müller introduced a hybrid water simulation method

that integrates grid-based and particle-based approaches [8]. This innovation enables

real-time simulations of large-scale water bodies while preserving intricate small-scale

details. Implemented within the CUDA framework, the method leverages modern GPUs

for real-time performance.

In the same year, another paper addressed PDE solvers for fluid simulations on large

grids. This approach introduced an efficient numerical solver tailored for the Poisson

equation, accommodating Neumann and Dirichlet boundary conditions on irregular vox-

elized domains [29].

Nvidia’s more recent work in real-time Eulerian simulation introduced an innovative

grid-based method capable of simulating fully three-dimensional large-scale scenes in

real time [9]. This method facilitates real-time flood simulations, incorporating physics

and rendering elements while maintaining performance.

In the realm of fluid simulation, these contributions collectively form a rich tapestry

of techniques and methods that have advanced the field over the years.
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Figure 3.2: Released on December 14, 2006, this demo was originally designed for

NVIDIA GeForce 8-Series Graphics Cards and is aptly named ’A Box Full of Smoke.

3.2 Machine Learning Integration

The pursuit of realism in fluid dynamics simulations has led to numerous challenges,

particularly in addressing complex physical phenomena efficiently. The emergence of

machine learning and deep learning techniques has revolutionized fluid simulation, of-

fering innovative solutions to these challenges [55], [10]. In this section we investigate the

integration of machine learning in fluid simulation, exploring the core concepts and ap-

plications. The review comprises four key subsections that discuss the potential of neural

networks for solving partial differential equations (PDEs), the popular neural network

architectures tailored for fluid simulation, the manifold advantages of employing neural

networks, and finally, the existing challenges in the field.
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In the interest of transparency, we will offer a high-level description of the meth-

ods and techniques utilized in the subsequent papers; the operational intricacies of these

methods fall outside the scope of this thesis.

Figure 3.3: AI generated water simulation. Image by Pixabay.

3.2.1 Partial Differential Equations Solvers

Deep learning has been a prominent player in commercial applications for a considerable

period, with recent notable advancements. Its growing potential is evident in scientific

computing, where it demonstrates the ability to forecast solutions to complex partial dif-

ferential equations (PDEs). Traditionally, these equations posed significant computational

challenges due to their expensive numerical solutions. Data-driven deep learning tech-

niques hold the promise of transforming scientific and engineering applications, encom-

passing fields like aerodynamics, oceanography, climatology, and reservoir modeling.
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In the realm of PDE solving, Holl et al. (2020) introduce a deep learning approach that

controls complex physical systems over extended periods through an end-to-end train-

able system [24]. This method combines a predictor network for trajectory planning and a

control network for parameter inference, leading to rapid and real-time interactions with

intricate physical systems, including the incompressible Navier-Stokes equations. Simi-

larly, Um et al. (2021) present the concept of differentiable physics networks, enhancing

PDE solutions by accounting for factors unrepresented by discretized PDEs [49]. This ap-

proach is effective for a range of PDEs, including non-linear advection-diffusion systems

and three-dimensional Navier-Stokes flows, ultimately improving solution accuracy and

accommodating diverse physical behaviors.

In a different approach, Cai et al. (2020) introduce an unsupervised deep learning

method for solving PDEs using deep neural networks and least-squares functionals as

loss functions, focusing on the first-order system least-squares functional for partial dif-

ferential equations in one dimension [6].

Furthermore, Cheng et al. (2021) delve into the utilization of deep neural networks to

solve the 2D Poisson equation for electric field computation in plasma fluid simulations.

Their findings offer insights into optimal neural network configurations and boundary

conditions, paving the way for novel computational strategies to address unsteady prob-

lems involving the Poisson equation [7].

Recent developments from AWS AI Labs explore the challenges of incorporating phys-

ical constraints into machine learning models when solving PDEs: The ICML paper by

Hansen et al. (2023) emphasizes the enforcement of conservation laws, resulting in im-

proved accuracy [22]. The ICLR paper by Saad et al. (2023) highlights the enforcement of

physics through boundary conditions, demonstrating significant performance enhance-
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ments in solving PDEs [40]. These advancements signify the growing synergy between

deep learning and scientific computing, promising to revolutionize various industries.

3.2.2 Neural Networks’ Architectures

By replacing the computationally intensive components of simulations with machine

learning algorithms, data-driven models can achieve real-time simulation speeds [14, 19,

26,27,50,59]. In this section, we will explore state-of-the-art neural architectures that cap-

ture fine-grained details and behaviors of fluid simulations, highlighting their potential

to enhance the realism and efficiency of fluid animation [11, 48].

UNet

The U-Net architecture is a deep learning model originally designed for biomedical im-

age segmentation but has found applications in various fields, including fluid simulation.

It consists of a U-shaped neural network with a contracting path to capture context and

an expansive path for precise localization. The key innovation is skip connections that

concatenate feature maps from the contracting path to the expanding path [39]. In fluid

simulation, U-Net can be employed to predict fluid behavior, such as velocity or pressure

fields, from input data like boundary conditions and obstacles. By training on simulation

data, it learns to capture complex fluid dynamics, making it useful for real-time or data-

driven fluid simulations, where it can replace traditional numerical solvers for certain

tasks, offering speed and accuracy benefits.
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Figure 3.4: U-net architecture. Blue boxes correspond to a multi-channel feature map.

The number of channels associated to each box is written above it. The arrows denote

the different operations. The x-y-size is provided at the lower left edge of the box. White

boxes represent copied feature maps. Image by [39].

FluidNet

FluidNet is a convolutional neural network (CNN) architecture specifically designed and

tailored to simulate the behavior of fluid flow. It captures intricate fluid dynamics at vari-

ous scales. FluidNet takes as input the current state of a fluid simulation and predicts the

velocity and pressure fields for the next time step. By training on large datasets of fluid

simulations, the model learns to generalize fluid behavior, making it capable of produc-

ing accurate predictions [48].
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Figure 3.5: FluidNet: Convolutional network for pressure solve by Tompson et al. (2017).

This model employs five stages of convolution and ReLU layers, capturing local interac-

tions that reflect the sparsity structure of the linear system. To handle long-range physical

phenomena, it incorporates multi-resolution features by downsampling the initial layer,

processing each resolution in parallel, and then upsampling the results. Image by [48].

In practice, FluidNet can be used to speed up fluid simulations by replacing or aug-

menting traditional numerical solvers. It accomplishes this by providing quick estimates

of velocity and pressure fields, making it suitable for real-time applications such as video

games, simulations, and scientific visualizations, where computational efficiency is cru-

cial while maintaining realism and detail in fluid behavior.

MSNet

MSNet (Multi-Scale Neural Network) is an extension of UNet that addresses the limita-

tion of UNet in capturing long-range dependencies. It is a neural network architecture

designed for video prediction. This model leverages a multi-scale approach to capture

hierarchical information across multiple levels of abstraction in video sequences. MSNet

consists of an encoder-decoder structure with skip connections, allowing it to predict fu-
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Figure 3.6: Plume simulation with neural network, by Tompson et al. [48].

ture frames at different resolutions simultaneously [28].

By training on sequences of large-scale fluid simulations, the model learns to under-

stand the intricate dynamics of fluids, enabling it to generate accurate predictions of fluid

motion, velocity fields, or pressure distributions. This approach can significantly accel-

erate fluid simulations, making them suitable for real-time applications like gaming, sci-

entific visualization, and engineering simulations, while maintaining high-quality results.

GANs

The application of Generative Adversarial Networks (GANs) in fluid simulation has opened

up new avenues for generating highly realistic fluid behaviors and improving visual fi-

delity in simulations. [18], [12].

For instance, TempoGAN is a GAN-based method that upscales fluid velocity fields

in real-time, providing high-resolution fluid simulations without the need for computa-

tionally expensive grid refinements. This approach is particularly useful for interactive

applications, such as computer games and virtual reality, where real-time fluid animation
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is essential [60].

Figure 3.7: This illustration provides a broad perspective of tempoGAN’s methodology:

during training, a generator on the left is instructed by two discriminator networks on

the right. One of these networks concentrates on spatial elements (Ds), while the other

emphasizes temporal aspects (Dt); however, at runtime, both discriminator networks are

disregarded, and only the generator network is put to use for evaluation. Image by [60].

In a related context, another study by Werhahn in 2019 [52] presents the concept of

a “multi-pass GAN” volumetric training pipeline. This innovative approach simplifies

the training process, making it possible to employ more complex networks. The pa-

per demonstrates the effectiveness of the multi-pass GAN in enhancing the resolution

of fluid flow, particularly buoyant smoke, utilizing tempoGAN and progressive GAN ar-

chitectures. Additionally, the paper introduces a unique multi-pass method for training

networks with time sequences of 3D volume data, combining progressive training and

temporal discriminators. This novel approach enables an 8x upscaling of 3D fluid simu-

lations through deep neural networks. Fig. 3.8 provides an illustration of the proposed

multi-pass GAN pipeline.
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Figure 3.8: Multi-Pass GAN: Following an upsampling operation in the z-direction, the

data is subjected to two distinct directions using two generator networks, G1 and G2,

which have been trained adversarially. The initial upsampling step ensures that all the

unknowns within the data are uniformly handled by these networks. Image by [52].

3.2.3 Advantages of Using Neural Networks

Machine learning integration in fluid simulation brings a multitude of advantages to the

table, as discussed in this section. The application of neural networks offers real-time,

high-fidelity simulations, overcoming limitations associated with traditional methods.

These advantages include the ability to handle complex geometries, achieve visual real-

ism, and reduce computational costs. The utilization of neural networks has redefined the

landscape of fluid simulation, making it accessible for applications ranging from video

games to scientific research.

Recently, several works have showcased the capabilities of neural network architec-

tures in fluid simulation. For instance Wiewel et al. (202) proposed a deep learning ap-

proach that infers physical functions based on data, enabling neural networks to provide

predictive capabilities for complex inverse problems, potentially leading to faster forward

simulations [56]. Thüerey et al. (2020) demonstrated deep learning models for inferring

Reynolds-Averaged Navier-Stokes solutions for airfoil flows, introducing a modernized

Unet architecture and publicly available source code to facilitate research in deep learning

methods for physics problems [45].
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Figure 3.9: A temporally coherent generative model addressing the superresolution prob-

lem for fluid flows. Image by [60].

Another noteworthy example is Smart-fluidnet, as proposed by Dong et al. (2019),

which automates model generation and application, providing significant speedup and

improved simulation quality compared to state-of-the-art models [13]. Rao et al. (2020)

leveraged physics-informed deep learning to reconstruct dynamic fluid phenomena from

sparse multiview RGB videos, handling both synthetic and real scenes flexibly [37].

Other works, such as [48], showcased how data-driven approaches utilizing convolu-

tional networks can efficiently solve the incompressible Euler equations and obtain highly

realistic fluid simulations. [63] presented a hierarchical region proposal network for nat-

ural disaster damage assessment in aerial videos, while [39] proposed a network and

training strategy for biomedical image segmentation using convolutional networks.

These works collectively demonstrate the remarkable potential of neural network ar-

chitectures in fluid animation, as they continue to revolutionize the field with their ability
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to learn from data, optimize complex problems, and offer more efficient and accurate

solutions.

3.2.4 Challenges and Limitations

Neural networks hold tremendous promise, yet they are accompanied by inherent limi-

tations. These challenges encompass the quality of training data, the ability to general-

ize across diverse scenarios, and the risk of overfitting. In certain cases, neural network

models lack interpretability, raising concerns about the physical consistency of their pre-

dictions.

For instance, a fundamental issue arises as deep learning models trained on physical

data can often produce predictions that ignore essential physical principles. These mod-

els may violate conservation laws, resulting in solutions to heat transfer and fluid flow

problems that fail to maintain energy or mass conservation. They may also disregard

boundary conditions, allowing heat transfer through insulating boundaries, even in the

absence of such violations in the training data. These inaccuracies can occur because the

models illegitimately extrapolate from patterns during inference.

Future research directions are poised to address these limitations. One avenue in-

volves the development of hybrid methods that blend conventional numerical techniques

with neural networks, leveraging the strengths of both approaches. This integration holds

the potential to yield more accurate and adaptable predictions. Another important area

for exploration is to enhance the interpretability and ensure the physical consistency of

neural network predictions. This means advancing our capacity to comprehend and trust

the decisions made by these models, particularly in fields where the precision of pre-

dictions has substantial real-world implications. Further elaboration and exploration of

these research directions fall outside the scope of this thesis.
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Chapter 4

Implementation

In this chapter, we will delve into two key aspects of our implementation. The first part of

the chapter will focus on Software Architecture and Coding Analysis, where we will elab-

orate on the underlying structure and codebase of our software system. This examination

is crucial for understanding how our solution is engineered and functions. The second

part of the chapter will center around data creation and model design. We will discuss the

processes involved in generating the datasets used for training and evaluation, as well as

the design and architecture of the deep learning model employed in our research.

4.1 Software Architecture and Coding Analysis

Here, we aim to provide a comprehensive examination of the core structure of our soft-

ware system. This involves a detailed exploration of the software’s architecture, which

encompasses the arrangement of components, modules, and their interactions. Moreover,

we will delve into the coding aspects of our solution. This involves a thorough code re-

view, where we scrutinize the implementation details, coding standards, and practices

followed during the software development process.
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4.1.1 Method of Solution

In this implementation, we consider a fluid in a 2 dimensional setting that has zero viscos-

ity and is incompressible. Given that the velocity and pressure are known for some initial

time t = 0, such fluid can be modeled by the Euler equations as previously discussed in

section 2.1:

∂u

∂t
= −u · ∇u− 1

ρ
∇p+ f , (4.1)

∇ · u = 0. (4.2)

In the equation 4.1 above, f is the summation of external forces applied to the fluid

body such as gravity and buoyancy. The boundary condition type we consider here is the

fixed boundary condition when the fluid lies in some bounded domain D.

We numerically solve all the spatial partial derivatives using finite difference (FD)

methods on MAC grid [23]. As discussed in section 2.2.2, MAC grid representation sam-

ples velocity components on the face of the voxel cells, and the scalar quantities (e.g.

pressure or density) at the voxel center. For simplicity, we set density (ρ) to a constant

value of one. This representation resolves the non-trivial nullspace of central differencing

on the standard uniformly sampled grid and it simplifies boundary condition handling,

since solid-cell boundaries are collocated with the velocity samples [5].

To solve equation 4.1 we use the splitting method that involves adding external force,

advection update, and pressure projection step. The process proceeds through three units

of time, each with a duration of ∆t. We initiate this sequence by utilizing the solution

u0(x), which corresponds to u(x, t) from the previous time step. We then sequentially

address each term present on the right side of equation 4.1, followed by a projection onto

fields that are divergence-free. The overall procedure is illustrated in the figure below:
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Figure 4.1: Sequence of fluid animating operations.

The solution at time t + ∆t is subsequently determined based on the most recent ve-

locity field: u(x, t + ∆t) = u3(x). Our simulation evolves through a series of iterations

involving these steps. An outline of the algorithm for updating velocity at each time step

is presented in Algorithm 3, inspired by the work on accelerating Eulerian fluid simula-

tion by Tompson and colleagues [48].

Algorithm 3: Euler Equation Velocity Update Algorithm
Step 1: Advection and force update to calculate u∗

t ;
Step 1.1: Add external forces fbody;
Step 1.2: Self-advect velocity field ut−1;
Step 1.3: Set normal component of solid-cell velocities;

Step 2: Pressure projection to calculate ut;
Step 2.1: Solve the Poisson equation: ∇2pt =

1
∆t
∇ · u∗

t to find pt;
Step 2.2: Apply velocity update: ut = ut−1 − 1

ρ
∇pt;

At a macroscopic level, the algorithm depicted in Algorithm 3 deliberately excludes

the pressure term (−∇p) from equation 4.1. This omission leads to the generation of an

advected velocity field, denoted as u∗
t , which contains undesired divergence quantity. At

step 2, the algorithm resolves for the pressure, p, ensuring compliance with the incom-

pressibility constraint outlined in equation 4.2. This results in the emergence of a velocity

field, ut, which is indeed divergence-free.

To solve the advection component in step 1.2, we employ a semi-Lagrangian advec-

tion procedure inspired by the Maccormack method [42]. In this approach, we trace each
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point of the field back in time. Consequently, the new velocity at a given position, x, is

determined as the velocity the particle possessed at its former location a time interval of

∆t ago.

Figure 4.2: Semi-Lagrangian advection scheme.

In Algorithm 3, step 2.1 is by far the most computationally demanding component. It

involves solving the following Poisson equation:

∇2pt =
1

∆t
∇ · u∗

t , (4.3)

the equation described above gives rise to a large sparse system of linear equations, de-

noted as Apt = b, where matrix A encompasses the coefficients of pressure fields, b repre-

sents the right-hand side of equation 4.3, and x signifies the pressure field, the solution to

this equation.
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While matrix A exhibits the properties of symmetry and positive semi-definiteness,

the associated linear system often has a significant quantity of free parameters. Conse-

quently, employing conventional iterative solvers requires a substantial number of itera-

tions to achieve a sufficiently low residual. Since the required iteration count is strongly

data-dependent, our implementation opts to replace the precise analytical solver in step

2.1 with a learned alternative.

At this stage, we aim to harness the capabilities of deep neural networks for the pur-

pose of predicting the pressure values derived from the Poisson equation. Specifically, we

design a multilayer perceptron (MLP) model with an activation function to estimate pt.

The intricacies of this model will be comprehensively discussed in the following sections.

Figure 4.3: A visual representation of a multilayer perceptron model.
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Following the pressure solution, we employ step 2.2 to determine the divergence-free

velocity field, denoted as ut. In order to fulfill the slip-condition boundaries (Fig. 4.4) at

the interfaces between the fluid and solid cells, we establish the velocity of MAC (Marker-

and-Cell) cells in a manner that ensures the component aligned with the normal of the

boundary face is identical to the normal component of the object’s velocity (i.e., n̂ ·ufluid =

n̂ ·usolid). The representation provided by the MAC grid simplifies this process, given that

each solid cell boundary aligns with the sampling location of the velocity grid.

Figure 4.4: Slip and no-slip boundary conditions: in no-slip boundary conditions, the

speed of the fluid at the wall is zero, whereas in slip boundary conditions there is relative

movement between the wall and the fluid. Image by [62].

58



4.1.2 Classes and Functions

The code for this Master’s thesis was written in the Pytorch framework on macOS 13.4.1

Ventura operating system. The project was written and tested on a laptop with an Apple

M2 Pro chip and 16 GB RAM.

Below you can find the classes and functions used in the code, along with their de-

scriptions and correspondence to the fluid simulation theory presented earlier in this

document.

Classes

• FluidNet: This class defines the architecture of the neural network called Fluid-

Net. It inherits from the nn.Module class, which is a base class for all PyTorch neu-

ral network modules. The FluidNet class contains the neural network layers and

defines the forward pass through the network.

• FluidDataset: This is a custom dataset class. It inherits from torch.utils.data.Dataset

and is responsible for loading the input and target data for training or validation. It

overrides the ’ init ’, ’ len ’, and ’ getitem ’ methods.

• FluidTestDataset: This class is a custom dataset class, similar to the FluidDataset

class mentioned above. It inherits from torch.utils.data.Dataset and is responsible

for loading the test input and target data for evaluation. It overrides the ’ init ’,

’ len ’, and ’ getitem ’ methods.

Functions

• test model: This function is defined to evaluate the model on the test dataset. It

calculates the test loss, mean squared error (MSE), and predictions.

• calculate mse: This function is defined to calculate the mean squared error.
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• forcing function(time, point): This function defines the forcing function

that applies forces to specific points in the domain. The function calculates the

forced value based on time and point location.

• partial derivative x(field): This function calculates the partial derivative

of a field with respect to the x-coordinate using central differences.

• partial derivative y(field): This function calculates the partial derivative

of a field with respect to the y-coordinate using central differences.

• laplace(field): This function calculates the discrete Laplacian of a field using

central differences.

• divergence(vector field): This function calculates the divergence of a vector

field by taking the sum of its partial derivatives with respect to x and y coordinates.

• gradient(field): This function calculates the gradient of a scalar field by com-

puting its partial derivatives with respect to x and y coordinates.

• advect(field, vector field): This function performs the advection of a field

using backward tracing and interpolation to calculate the new field values.

• poisson operator(field flattened): This function applies the discrete Pois-

son operator to a flattened scalar field.

• Utility Functions: There are some utility functions like count parameters (which

counts the number of trainable parameters in a model) and main() (which is the

entry point of the script and where the main training loop is implemented).

• Visualization: The code also includes plotting and visualization of training and val-

idation loss over epochs using Matplotlib.
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4.2 Dataset Creation and Model Design

In this section we discuss the various steps taken to ensure data integrity, including data

collection, preprocessing, and data formatting to suit the requirements of the model.

4.2.1 Generating Dataset

In the process of constructing our dataset, we have employed the conjugate gradient

method to solve the Poisson equation, as outlined in Section 4.1.1 of this study. In this

endeavor, we have utilized the independent variable of the equation, which encapsulates

the divergence of the velocity field. Subsequently, we have utilized the final solution of

the equation, represented as the corresponding pressure, as our output data. Both the

input and output data components manifest as scalar fields, and they assume a struc-

tured format, specifically a shape of (num samples, num points, num points). In

this context, num points signifies the spatial coordinates of individual points within the

grid space, while num samples alludes to the overall count of such points.

Our dataset creation process has led to the formulation of three distinct datasets, each

thoroughly curated for the purpose of training, validation, and testing. Each dataset is

inherently accompanied by its own pair of input and output data.

Providing a more detailed perspective on each dataset:

1. Training Set: This dataset exhibits a shape of (40080, 51, 51), effectively comprising

668 distinct simulations, each encompassing 600 sequential time steps. Notably,

every simulation is distinguished by its unique initial force, characterized by both

magnitude and direction.

2. Validation Set: With dimensions of (11005, 51, 51), this dataset encompasses a di-

verse array of simulations. It includes 25 simulations, each spanning 120 time steps,

along with 30 simulations covering 100 time steps, 26 simulations spanning 115 time
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steps, and finally, 27 simulations involving 110 time steps. It’s worth emphasizing

that each simulation within this set has a distinct initial force, varying in terms of

both location and direction.

3. Testing Set: Concluding our dataset ensemble, the testing set exhibits dimensions

of (18120, 51, 51). It consists of 302 simulations, each characterized by 60 time steps.

Notably, the variations across these simulations depends on the initial force’s mag-

nitude and its associated location.

In summary, our dataset creation process is underpinned by the utilization of the

conjugate gradient method for solving the Poisson equation, and we have meticulously

compiled separate datasets for training, validation, and testing. These datasets showcase

distinctive characteristics in terms of simulation count, time steps, initial force configura-

tions, and associated spatial coordinates.
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4.2.2 Design and Training of Model

Given the nature of our dataset and problem set, we decided to create a multi-layer

perceptron (MLP) architecture, as our initial attempt. This feedforward neural network

model, named FluidNet, has multiple linear layers and activation functions, and is con-

structed using the PyTorch library.

Figure 4.5: Our convolutional network for pressure solve.

The architecture consists of several key components. The input layer receives flattened

input data representing features of the fluid simulation. This data is then passed through

three hidden layers, two of which comprising a linear transformation followed by a hy-

perbolic tangent (Tanh) activation function. These layers introduce non-linearity and help

the network learn complex patterns within the input data. Additionally, a dropout layer

is applied to the outputs of the two last hidden layers, preventing overfitting by randomly
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deactivating certain neurons during training. A comprehensive depiction of the neural

network, including detailed information, is illustrated in Figure 4.5.

Figure 4.6: Here, our approach closely aligns with the methodology employed by Yang

et al. (2016) Specifically, our data-driven projection method seamlessly integrates into

the established framework of traditional grid-based fluid simulations. By using a basic

dataset for training, our data-driven projection method significantly speeds up solving

the Poisson equation compared to traditional methods. Image by [61].

The architecture’s output layer produces predictions that correspond to the solution

of the fluid simulation in our supervised learning approach. The entire network is de-

signed to capture the relationship between the given input data and the corresponding

fluid pressure output. Weight initialization for the linear layers is performed using a nor-

mal distribution, ensuring a proper starting point for training. The neural network’s de-

sign allows it to learn and represent the dynamics of fluid behavior. Through a sequence

of linear transformations and activation functions, our FluidNet architecture effectively

translates input data into accurate predictions of fluid pressure, making it well-suited for

our specific fluid simulation tasks. We will elaborate more on the performance of our

neural network in chapter 5.
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Moving on to the training process of our neural network model, we divide the code

into several sections, each serving a specific purpose.

Training Setup

1. Data Preparation: The code starts by setting up various parameters such as de-

vice choice (GPU or CPU), the number of training epochs, batch size, and dimen-

sions of the input grid (N POINTS). The input data, represented as input train and

target train, are loaded from .npy files. These files contain simulation data in the

form of independent variable inputs and corresponding output data, which are both

scalar fields with dimensions (num samples, num points, num points).

2. Preprocessing: The loaded data is reshaped to a (num samples, num features) for-

mat to prepare it for model input. The input and target data undergo min-max scal-

ing normalization to ensure consistency in the range of values. This helps stabilize

the training process and improve convergence.

3. Dataset Creation and Loading: A custom FluidDataset class is defined, which

inherits from PyTorch’s Dataset class. This class is responsible for encapsulating

the input and target data, facilitating easier loading during training. Training and

validation datasets are created using instances of this class and loaded into PyTorch

DataLoader objects. This helps manage data loading efficiently, applying batch pro-

cessing and shuffling during training.

4. Model Definition and Training: The FluidNet model architecture is created. The

architecture facilitates learning the complex relationships between input data and

the corresponding fluid pressure output. The neural network is then trained using a

mean squared error loss function (MSELoss) and stochastic gradient descent (SGD)

optimizer. The training loop iterates through epochs, backpropagating errors and

updating the model’s parameters.
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5. Training Progress Visualization: During training, the code logs and prints the train-

ing and validation losses for each epoch, providing insight into the model’s per-

formance. These loss values are stored and plotted against the number of epochs,

allowing for easy visualization of the training process. The log scale on the y-axis is

used to better visualize changes in loss values over time.

6. Saving the Model and Loss Plot: After training, the trained model’s state dictionary

is saved to a .pth file. Additionally, a loss plot is generated and saved as an image

file, aiding in analyzing the model’s learning progress.

Testing Setup

The final code segment involves the testing and evaluation of our trained neural

network model. It starts by preparing the testing input data, reshaping it into a suit-

able format, and performing min-max scaling normalization. The same preprocessing

steps are applied to the testing output data. Subsequently, a custom dataset class named

FluidTestDataset is defined for organizing the testing data, and a DataLoader is cre-

ated for batching and loading the data efficiently.

The code then defines utility functions to calculate the Mean Squared Error (MSE)

and test the model’s performance on the testing dataset. The trained FluidNet model is

loaded, and the loss function (MSE) is defined using PyTorch’s nn.MSELoss. The model

is tested on the testing data using the test model function, which calculates the test loss,

computes the MSE, and obtains predictions for pressure values.

At the end, we visualize the predicted and calculated pressure values over time for a

specific point (x, y) in the fluid simulation grid. We plot the pressure values using time as

the x-axis and pressure as the y-axis, displaying both predicted and calculated pressure

curves. This visualization aids in assessing the model’s performance in predicting fluid
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pressure dynamics. The resulting plot, as well as a 2D simulation comparison, is saved as

an image file for further analysis.
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Chapter 5

Results and Analysis

We employ GPU-accelerated solvers, including conjugate gradient and neural network

solvers, in Python using NVIDIA’s CUDA (version 11.7). These computations utilize

the Scipy and Torch libraries. All experimentation took place on an Apple M2 Pro CPU

equipped with 16 GB of RAM, while the external (Mila) cluster features an NVIDIA UNIX

x86 64 Kernel Module 535.86.10.

5.1 Test Scene and Parameters

In this study, we designate the outcome obtained from the conjugate gradient (CG) solver

as the ground truth. For the visual representation of the outputs, we employ a color-

coded depiction of the motion of plumes, accompanied by their velocity field path. To

enhance the assessment of the Neural solver’s performance relative to the ground truth,

we distinguish the color-coded representation from the vector field path. We then exam-

ine the results at three distinct stages, spanning from the initiation to the conclusion of

the simulation.
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(a) Flow motion at time step 10. (b) Flow motion at time step 50.

Figure 5.1: Ground truth: sample fluid simulation with velocity field.

Fig. 5.2 illustrates the testing scenario we devised to assess the performance and con-

vergence of our neural network solver in comparison to this ground truth. The visually

striking scene portrays the emission of two neighboring plumes, one in gold and the other

in purple, while the grayscale rendition of the scenes in Fig. 5.3 depicts the trajectory of

the plumes’ velocity field within the frame. Our experiments maintain fixed boundary

conditions and an initial buoyancy force, without the inclusion of vorticity confinement

or gravity. To ensure the consistency and persuasiveness of our findings, we maintained

identical test environment parameters across all experiments, aligning them with those

of the ground truth.
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(a) Neural solver at time step 20. (b) Ground truth at time step 20.

(c) Neural solver at time step 40. (d) Ground truth at time step 40.

(e) Neural solver at time step 60. (f) Ground truth at time step 60.

Figure 5.2: Contour representation of neural solver (left) vs ground truth (right): Fluid

motion for a total of 60 time steps with a step size of 0.1 seconds. There are a total of

51x51 cell points containing the properties of the fluid.
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(a) Neural solver at time step 20. (b) Ground truth at time step 20.

(c) Neural solver at time step 40. (d) Ground truth at time step 40.

(e) Neural solver at time step 60. (f) Ground truth at time step 60.

Figure 5.3: Quiver representation of neural solver (left) vs ground truth (right): Vector

field trajectory for a total of 60 time steps with a step size of 0.1 seconds. There are a total

of 51x51 cell points containing the properties of the fluid.
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In the context of our analysis, when examining both Fig. 5.2 and Fig. 5.3, it becomes

evident that our neural solver exhibits a notably high degree of accuracy in predicting

fluid motion.

Note that in the neural solver’s results, the initial position of fluid motion appears

slightly elevated (starting point at y ≈ 2.8) when compared to the ground truth (start-

ing point at y ≈ 2.0); however, it is crucial to emphasize that the direction of the fluid

flow aligns closely with the ground truth result, signifying the neural solver’s proficiency

in replicating the actual behavior of fluid dynamics. This observation underscores the

neural solver’s effectiveness in accurately modeling fluid motion, despite the initial dis-

crepancy in starting positions.

Furthermore, an additional noteworthy observation arises when comparing paired

Figures (5.2c, 5.2d) and (5.2e, 5.2f). These comparisons reveal that the flow pattern gen-

erated by the neural solver exhibits a tendency to fold up, whereas the ground truth

illustrates a more expansive and diffused fluid behavior. This discrepancy further under-

scores the distinct characteristics of the neural solver’s predictions in capturing specific

intricacies of fluid dynamics compared to the ground truth.
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5.2 Model Performance

5.2.1 Parameter Tuning and Loss Functions

After extensive experimentation and a series of trial-and-error iterations, we determined

that the model achieves its highest level of stability when employing the Tanh activation

function with Mean Squared Error loss function and Stochastic Gradient Descent (SGD)

optimizer. Furthermore, we initialized the weights of all the linear layers with random

values drawn from a normal distribution with mean = 0 and std = 0.1 (standard devi-

ation). We found that setting appropriate initial values for weights can help improve

convergence and avoid issues such as vanishing or exploding gradients during training;

however, this approach was coupled with the right choice of activation function in order

to guarantee the convergence of our model.

We initially opted for the ReLU activation function, as it is widely acknowledged to

exhibit better performance across a broad spectrum of problems, but encountered issues

with system divergence and instability. For our second trial, we made the more suitable

choice of activation function, which significantly improved our model’s performance and

resolved the issues. Here are the formulas for the activation functions we used in our

experiments:

First trial: ReLU(x) =


x, x < 0

0, otherwise

,

Second trial: tanh(x) =
ex − e−x

ex + e−x
if x < 0.
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Figure 5.4: Evaluated activation functions.

Fine-tuning the learning rate proved to be a tricky task. Through multiple test cases,

we observed three discernible patterns in our model’s performance. For our experimental

purposes, we established that in the majority of instances, the model achieved proficiency

in learning from the data within 100 epochs. In the following analysis, we clarify the

behavior of each loss graph and present our best pick. To enhance the visibility of the

relatively small loss values in our scenario, we opted to employ a logarithmic scale for

visualizing the loss functions:

• Scenario One:

In this scenario, we are examining a loss function graph that indicates underfitting.

Despite the model being trained for an extended period, the training loss consis-

tently decreases throughout the training process. This observation is indicative of

a learning rate that may be too small (in this case, set at 0.0001), causing the model

to learn very slowly and potentially struggle to capture the underlying patterns in

the data. As a result, even with prolonged training, the model fails to fit the train-
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ing data adequately, leading to underfitting where it cannot generalize well to un-

seen data despite the low training loss. This situation highlights the importance of

finding an appropriate learning rate that balances the trade-off between fast conver-

gence and effective learning.

Figure 5.5: Training and validation loss over epochs (learning rate = 0.0001).

• Scenario Two:

In this scenario, the model exhibits clear signs of overfitting. Shortly after the train-

ing begins, the training loss drops to a very low value, indicating that the model

is fitting the training data almost perfectly; however, the validation loss remains

relatively constant and larger than the training loss. This discrepancy between the

training and validation losses suggests that the model has memorized the training

data but struggles to generalize to unseen data, which is typical of overfitting.
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The choice of a very high learning rate (0.99 in this case) likely contributes to this

overfitting behavior. A high learning rate can cause the model to quickly adjust its

parameters to minimize the training loss, potentially leading to fitting noise or out-

liers in the training data. Consequently, the model’s performance on the validation

data suffers, as it fails to generalize beyond the specifics of the training set. We have

noted that this situation brings up the importance of selecting an appropriate learn-

ing rate and implementing techniques like regularization to mitigate overfitting.

Figure 5.6: Training and validation loss over epochs (learning rate = 0.99).

• Scenario Three:

In this scenario, we observe a good fit learning curve, characterized by both the

training and validation loss decreasing to points of stability. The learning rate of

0.01 appears to be appropriate for this model, as it allows for a gradual convergence

to an optimal solution without the issues of rapid overfitting or slow convergence.
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The training loss decreases steadily and eventually stabilizes, indicating that the

model effectively learns from the training data without overfitting. Similarly, the

validation loss also decreases steadily and converges to a stable value. The small

gap between the training and validation loss suggests that the model generalizes

well to unseen data, as the validation loss closely tracks the training loss. Over-

all, this scenario demonstrates a well-balanced learning curve where the model

achieves good performance on both the training and validation datasets, highlight-

ing again the importance of an appropriate learning rate choice. Therefore, we opted

for the final scenario with a learning rate of 0.01.

Figure 5.7: Training and validation loss over epochs (learning rate = 0.01).
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5.2.2 Resolution

• Without Regularization:

In our initial approach, we designed a model without any regularization methods,

compounding with a high number of parameters exceeding 400 million. We utilized

CUDA version 11.7, and the simulation runtime remained consistent at approxi-

mately 5.3 seconds for both traditional and neural solver methods; however, when

it comes to computation time, the neural solver took about 6.19 seconds, while the

traditional numerical solver (ground truth) required approximately 11.89 seconds.

Figure 5.8: Contrasting ground truth simulation and unregularized model performance.

Despite the similar simulation runtimes, our neural network method produced vi-

sually noisy results, as illustrated in Fig. 5.8. When examining the pressure pre-

diction graph shown in Fig. 5.9, where we compare the calculated (green) and pre-

dicted (blue) results, we observe that our supervised model was able to capture

some aspects of the ground truth pattern; however, there were noticeable spikes

and considerable fluctuations, contributing to the observed noise in our simulation.

It is worth to mention; however, the overall fluid movement was reasonably cap-

tured by our neural solver approach, as the model provided predictions within the

range of pressure values (0.5-0.61), which did not significantly exceed the bounded
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limits of the ground truth range (0.5-0.562).

Figure 5.9: Comparison of predicted pressure and calculated pressure (unregularized

model).

Lastly, we need to highlight that the calculated pressure data combines results from

separate simulations, each characterized by unique fluid properties and spanning

approximately 60 timeframes. This explains the presence of abrupt, spiky lines in

the green calculated pressure graph.

• With Regularization:

As pointed out earlier, in our simulation results we encountered a situation where

the number of parameters in our model appeared excessively large relative to the

size of our training dataset. As an initial step to address this, we decided to sig-
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nificantly reduce the number of parameters, scaling it down by a factor of 1000 to a

more manageable number 4,280,851; however, even with this reduction, the number

of parameters remained relatively high for the dataset’s scale. This led us to suspect

that overfitting might be a concern with our model.

To mitigate the potential overfitting issue arising from our model with many param-

eters and limited data, we opted to employ regularization techniques. Specifically,

we applied Dropout to the hidden layers, which serves to prevent the model from

fitting noise within the dataset. The impact of this regularization can be observed

in Fig. 5.10, where we can see a notable improvement in the model’s performance.

The results on the right closely resemble those of the benchmark on the left. Our

supervised model successfully captured the fluid properties and produced accurate

pressure values.

Figure 5.10: Contrasting ground truth simulation and regularized model performance.
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Fig. 5.11 provides further insights into the outcomes of our regularization efforts.

Notably, the predicted pressure plot (depicted in blue) exhibits reduced amplitude

compared to the non-regularized approach discussed earlier. Despite this reduction

in amplitude, it yields visually accurate results. This observation aligns with the

Helmholtz-Hodge decomposition theorem, which suggests that in the simulation,

we primarily require an updated divergence-free velocity field, which depends on

the gradient of pressure rather than its magnitude. As a result, the dampened pres-

sure values yield the same updated velocity field as those with higher amplitudes,

thus contributing to the overall success of our model.

Figure 5.11: Comparison of predicted pressure and calculated pressure (regularized

model).
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Figure 5.12: Comparison of training loss functions.

• All Together:

Let’s conduct a comprehensive comparison of our two distinct approaches. In Fig.

5.12 we place side-by-side the training loss functions of our model with Dropout

(depicted in green) and without Dropout (in red). The striking observation here

is that with the incorporation of Dropout, our model rapidly converges to a sta-

ble point, and the loss consistently remains lower than that of the non-regularized

approach. This signifies that applying Dropout as a regularization technique has

a substantial impact on the training process, enhancing its efficiency and effective-

ness.

Moving beyond the training results, Fig. 5.13 delves into the model’s performance

on unseen data for both approaches. Interestingly, it reveals that our model excels

in terms of generalization; the validation losses for both approaches are remark-

ably low and exhibit minimal divergence after just five epochs. This suggests that,

regardless of the regularization technique applied, our model demonstrates strong

generalization capabilities, indicating its ability to perform well on previously un-
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Figure 5.13: Comparison of validation loss functions.

Table 5.1: Testing result of models with different resolutions.

Model Test Loss MSE
No Dropout 1.021e-3 1.022e-3

With Dropout 0.959e-3 0.961e-3

seen data.

When we delve into the evaluation of testing results, as documented in Table 5.1 a

noteworthy trend emerges. The model without Dropout, which yielded relatively

poorer training results and exhibited less accuracy during the training phase, expe-

riences a higher testing error in comparison to the model with applied regulariza-

tion. This finding supports the importance of using regularization techniques, such

as Dropout, in improving a model’s ability to generalize seamlessly well to unseen

data, ultimately leading to better overall performance and accuracy.
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Chapter 6

Conclusion

6.1 Limitations and Future Work

In this thesis, our primary objective was to develop a simplified 2D grid-based fluid simu-

lation that substitutes the most computationally intensive calculation step used in it with

a neural network. In essence, the core of this project involved addressing a partial differ-

ential equation through the framework of supervised learning. The significance of this

PDE lies in its application for creating realistic animations of natural phenomena. To ac-

complish this, we designed a straightforward feedforward neural network as our PDE

solver.

As we delved into animation for this thesis, we encountered substantial challenges.

The demand for high computing power surpassed our current setup, prompting us to

explore alternative solutions. Choosing the appropriate platform and coding language

proved critical, introducing complexity, particularly when features necessitated unfamil-

iar languages. Moreover, acquiring high-quality datasets for training deep learning mod-

els posed a significant challenge. To mitigate this, we opted for a simpler dataset that

we created ourselves, albeit at the cost of sacrificing the complexity of test scenes. De-

spite these hurdles the results were successful, not only in terms of visual quality, which
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closely matched the outcomes of traditional numerical approaches, but also in terms of

computational efficiency when dealing with unknown variables.

It’s also essential to note that mathematical methodologies underpin the foundations

of machine learning models, providing structured pathways and formulas to decipher

the behavior of our world. These traditional methods, with centuries of application, will

continue to be pivotal in advancing research. However, the ascent of artificial intelligence

presents an equally compelling trajectory. We believe that the integration of deep learn-

ing models will open new horizons in the field of animation, pushing the boundaries of

human imagination to achieve what was once deemed unattainable. While our project

has concluded successfully, the journey need not end here.

Numerous promising avenues await exploration and expansion. Some potential direc-

tions for future work and collaborations include implementing the results in a 3D setting,

utilizing more complex or real-world datasets, exploring Physics-Informed Neural Net-

works (PINN) as a more advanced model, and experimenting with unsupervised learning

for PDE solving networks.
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[32] MÜLLER, M. Fast and robust tracking of fluid surfaces. In Proceedings of the 2009

ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2009), pp. 237–

245.
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