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Abstract

We discuss an explicit construction of a four-dimensional de Sitter spacetime as a coherent
(Glauber-Sudarshan) state. The path integrals approach is used to calculate the scalar field
expectation value on a coherent state. A special diagrammatic technique is introduced to
simplify and visualize the calculations. The perturbative computations lead to an asymptotic
series which are then analyzed by means of the Borel resummation technique. This proce-
dure reveals the non-perturbative structure of the system. The analysis of our simplified
toy model suggests the possible construction of a stable four-dimensional de Sitter space-
time as a Glauber-Sudarshan coherent state. The non-perturbative data gleaned from the
Borel resummation of the asymptotic series strongly points towards a positive cosmological

constant.

Abrege

Nous discutons une construction explicite d'un espace de Sitter en quatre dimensions comme
état cohérent (Glauber-Sudarshan). L’approche des intégrales de chemin est utilisée pour
calculer la valeur d’attente du champ scalaire sur un état cohérent. Une technique graphique
spéciale est introduite pour simplifier et visualiser les calculs. Les calculs perturbateurs con-
duisent a une série asymptotique qui est ensuite analysée au moyen de la technique de reprise
de Borel. Cette procédure révele la structure non-perturbative du systeme. L’analyse de
notre modele simplifié suggere la construction possible d’un espace de Sitter stable en quatre
dimensions comme un état cohérent. Les données non-perturbatives glanées a partir de la
reprise de Borel de la série asymptotique pointe fortement vers une constante cosmologique

positive.
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Chapter 1

Introduction: de Sitter space and

coherent states

It is a truth universally acknowledged that any respected theory of physics audacious enough
to claim to be a theory of everything must reproduce our Universe. Since its birth in the
middle of the 1970s, string theory underwent a lightning development from a theory of
strong interactions to a theory of quantum gravity, eventually developing, arguably, into a
theory of everything, dealing with fundamental questions of the Universe and its underlying
laws. According to our current knowledge, we live in de Sitter (dS) spacetime, and so string
theory must contain de Sitter spacetime. The problem here is that not a single rigorous

4-dimensional de Sitter vacuum has been built in string theory so far [1].

The recent spectral and photometric observations of Ia supernovae suggest an eternally
expanding Universe which is accelerated by a positive vacuum energy density [2]. These
experimental results motivate the desire to find de Sitter vacua of supergravity and string
theory and to construct models for late-time cosmology. The no-go theorem ensures that a
solution with a positive cosmological constant cannot be obtained in string or M-theory by
using only supergravity fluxes or branes and anti-branes [3] [4] [5]. The most recent findings
point out that even the contributions from the O-planes cannot save the day, suggesting that

the only hope comes from the quantum corrections in string theory [6] [7] [8] [9]. But the
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no-go theorem is only the tip of the iceberg, and the main challenges in building dS spacetime
come from the very fundamental aspects of quantum gravity, such as trans-Planckian issues,
which threaten the notion of Wilsonian effective action for accelerating backgrounds [10]
[11] [11]. One of the promising solutions is the introduction of time-dependent degrees of

freedom and to view de Sitter spacetime as a state instead of a vacuum [12] [13].

It turns out that it is possible to realize a quantum mechanically stable coherent state
in the full string theory, which would replace the usual classical configuration. The coherent
state representation of the dS vacuum solves the problems of zero point energy cancellations
from the bosonic and the fermionic degrees of freedom, the spontaneous supersymmetry
braking, and the finite entropy of the dS spacetime. The expectation value of the graviton
operator, represented in our analysis by a scalar field, is calculated as an asymptotic series
in powers of the coupling constant with a factorial growth. One of the fruitful techniques

for extracting information from the asymptotic series is the Borel resummation method.

It is a well know fact, first pointed out by Dyson [14], that the perturbative expansions
of quantum field theories are asymptotic. The asymptotic nature of the theory is due to
the factorial growth of the number of Feynman diagrams. There is no observed cancellation
from different diagrams of the same order, and the growth of the perturbative coefficients
has the form ¢, ~ n!, leading to the vanishing radius of convergence for the small expansion
parameter [15] [16]. Despite its unsatisfying divergent nature, asymptotic perturbative ex-
pansions provide us with some impressive results, such as high-precision computation of the
anomalous magnetic moment of the electron in quantum field theory. The reason is that the
asymptotic nature becomes evident only at very high loop orders (around the 137th loop in

the case of perturbative quantum electrodynamics).

At the same time, it can be argued that asymptotic series hide some information about the
exact answer that they approximate. The Borel summation uses the analytic continuation
of a divergent asymptotic series by means of the Borel transform with a subsequent contour
integration in the complex plane [17]. This procedure has its limits, giving rise to ambiguities

in the final result related to the presence of poles in the Borel transform and different choices
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1.1. COHERENT STATES OF THE SIMPLE HARMONIC OSCILLATOR 11

of integration contours [18]. There is a conjecture that the poles of the Borel transform of the
perturbative asymptotic series are associated with new non-perturbative physics and non-
perturbative objects, such as instantons, D-branes etc. Although in certain cases, we are
still lacking a decent physical explanation for the structures emerging from the resummation

procedure [19].

1.1 Coherent states of the simple harmonic oscillator

Here we want to give a very brief introduction to the notion of a coherent state using a
simple harmonic oscillator as a toy example. Coherent states are quantum systems that
exhibit some sort of classical behaviour [20]. We start our discussion with the simplest
example of a coherent state |Zy) of a simple harmonic oscillator.

A coherent state in the real space R can be introduced via the notion of a translation
operator T, . Unitary translation operator act on quantum states by moving them by a

distance xg:
i
T,, = exp (—pro) . (1.1)
We note that the translation operator forms a group:
Tﬂco Tyo = Tro—l—yoa

there exist a unit element : 7Ty =1, (1.2)

the inverse is given by T_,,.
The coherent state is then defined as

|Z0) = exp <—%z§xo> 0) , (1.3)

where |0) is the ground state of the harmonic oscillator.
The physical interpretation of the coherent state is the translation of the ground state

by a distance xg.
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1.1. COHERENT STATES OF THE SIMPLE HARMONIC OSCILLATOR 12

To find the representation of the coherent states in the energy basis, we first rewrite the

momentum operator in terms of creation and annihilation operators:

ﬁ:i\/m;dh (aT—a) :i\/hﬁd (aT—a), (1.4)

where we defined d = % Now the coherent state |zg) is given by

—iip i)
e P20 |0) = exp [ —— (a' —a) ] |0). 1.5
o) =exp (2 (@ =) (15)
The previous analysis allows us to make further generalizations. We rewrite the coherent

state in the following suggestive way:
ja) = e*@ =)o), (1.6)

with a = % = xg4/ 57 As anext level of generalization, we take a to be a complex number,
a € C, keeping in mind that the operators in the exponential should remain anti-hermitian,

making the exponential unitary. We than define
la) = D(a) |0) = exp (aal — a*a) |0), (1.7)
where we introduced the unitary displacement operator
D(a) = exp (aa’ — a*a) . (1.8)

The unitarity of D(«) assures that («|a) = 1. We also note that the action of the annihilation

operator a on the coherent states |a) generates its eigenstates:
a o) =a e |0) = [a, aa’ — a*a] |a) = aa). (1.9)

To prove these identities we can use some variation of Baker-Campbell-Hausdorff expansion

for any matrices A and B:
1 1
ef Ae™P = A+ [B, Al + 5[A, [A, B]] + §[A, [A,[A, B]]] + ... (1.10)

In a special case, when [A, [A, B]] = 0 we have a simple version of this expansion which will

prove to be useful in our case

ef Ae™P = A+ B, Al (1.11)
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1.1. COHERENT STATES OF THE SIMPLE HARMONIC OSCILLATOR 13

Rearranging some elements of the identity, we obtain very useful result
[A, eP] = [A, B]eP. (1.12)
In our example we identify A = a, B = aa’ — a*a and use all the previous results. First note
a e =7 |0) = [a, eaat’a*“] |0), (1.13)

since a annihilates the vacuum |0). Then we prove that the simple version of identity can
be used. Indeed,
[A,[A, B]] = [[a, aa’ — a*a]] = [a,a] = 0. (1.14)

Finally, we find
[a, eaata*“] 0) = [a, aal — a*a et om0y = la,aa’ — a*a] |a) = ala). (1.15)

Thus, we found the eigenstates of the non-hermitian operator a. Since operator a is non-
hermitian, its eigenvalues can be complex, the eigenvectors cannot be orthogonal, and co-
herent states cannot generate a complete basis.

Here we introduce some comments related to generalization of this construction for the
toy model discussed later. The problem arises when we move from a non-interacting theory,
like simple harmonic oscillator to a highly interacting theory, like M-theory. In this last
case, we have no choice, but shift the interacting vacuum |Q2) by a displacement operator
and check if the new state still has the features of the vacuum-shifted coherent state. If we

denote the new coherent state by |o) then it can be constructed as
lo) = Dins(0) [$2) (1.16)

where now Djy(0) is a displacement operator of an interacting theory. We can still formally

construct it in terms of annihilation and creation operators
Dini(0) |2) = exp <aalﬁ — a*aeﬁ) 1), (1.17)

where a.¢ annihilates the interacting vacuum. We also note that the general form of the

displacement operator D;, that fixes the form of a.g and reproduces the background metric
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1.1. COHERENT STATES OF THE SIMPLE HARMONIC OSCILLATOR 14

of our theory can be written down for any time ¢ in terms of the non-unitary version of the

same free-vacuum displacement operator DI (o)

t

Din(0,) = D (o) exp ( /

d"x Him> , (1.18)
-7

where H;,; is a full interacting part of the M-theory Hamiltonian and T" — oo in a slightly
imaginary direction. We can that now the norm of the coherent state in the interacting
theory is not one, and the expectation value of any operator ¢ in this theory requires a

division by a denominator of the form

[ 1261 Ds(0) Do), (1.19)

where S is the total M-theory action.

To simplify the form of the coherent state o, we use the commutator identity

XY X Y —3IX Y] (1.20)

We then rearrange the exponential to obtain
o) = ezl ol ) (1.21)

To gain some insights into the nature of the complex eigenvalue «, we note that real « is
equivalent to the expectation value of the position operator z in the coherent state at time
t = 0, that is the initial position xy of the coherent state. If we allow « to be complex, we
find

. d
(a| & |a) = 7 (af (a+d') = V2d Re{a}, (1.22)

and

. ih V2h
(a|pla) = NGE (af (a—d') = Td Im{a}. (1.23)

Thus we find the following insightful interpretation of the coherent state eigenvalues:

_ 8 ) (1.24)

“Ta T Van

In the next section, we will extend these fundamental ideas of the coherent states and

displacement operator to the case of scalar fields.
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Chapter 2

Path integral toolkit

2.1 Path integral formalism for the displaced vacuum:

a toy model

Our first attempt to implement a path integral approach for the displaced vacuum will be

based on free massive scalar field theory in 341 dimensions with the Lagrangian of the form:
1 2 1 5.
L= 5(0u0) — 5me?. (2.1)

In particular, we want to compute the expectation value of the scalar field ¢ on a coherent
state |a). The general procedure invites us to find the vacuum solutions of the theory in the
first place. Luckily, the vacuum of this theory is simply given by ¢ = 0.

Using the most minus signature for the rest of this subsection, the off-shell Fourier rep-
resentation of the fields could be written as

o(z) = /( Bk (akeik-x_i_a;r(e—ik-z) _ /d4k by, €7 (2.2)

27)3 2wy

where ky and k are not related in any way since the fields are off-shell.
We need to do some extra work to find the written form for the creation and annihilation

operators in Fourier modes. We are looking for a replacement for the original definition in

15



2.1. PATH INTEGRAL FORMALISM FOR THE DISPLACED VACUUM: A TOY
MODEL 16

terms of operators

o= 2 (s ). 23)

by its analog in terms of fields. We invert the Fourier integrals for the field and its conjugate

momenta ™ = g—‘i = ¢:

/d4m p(z)e™* = — (ak + aLesz°t> : (2.4)

- 2wk

/d4x ﬂ_(I)eik-w _ _% (ak _ a;f(e%kot) '

From the last set of equations, we find the definition of the creation and annihilation operators

as fields:

o= [ b (ole) + in@) e = (o + o) 2.5)
ol = [ e (ola) - inle)) €7 = + ko) 0

where the Fourier mode of the conjugate momentum m;, = —ikg¢, and wyx = Vk? + m?2.
In the next step, we want to implement our creation/annihilation operators field represen-
tation into the definition of displacement operators. We recall that we defined the coherent

state as an action of the displacement operator Dy(«) over the free vacuum as

|of®

Do(a) |0) = exp (aaT — 7) 0), (2.6)

where |0) is the free vacuum, and Dy(«) is a non-unitary version of the displacement operator.

Now we use the field representation of a,a’ to write down

e = exp (/ d*k af ak> = exp {/d4k (wk + k:)gbZo?k} . (2.7)

where to make the last expression Lorentz invariant, we have redefined o4, to be

Qg
= )
ko + wi

677

(2.8)
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with a;(k) = 0. Similarly, the conjugate operator

<e°‘“T>Jf =¥ % = exp {/d4k (wi + k)qbkd};} : (2.9)

.
Xk
ko+wy *

where o), =
Now we are almost ready to write down the expectation value of the scalar field ¢ on
the coherent state |a). We just note that since we chose the displacement operator to be

non-unitary, we need to normalize the expectation value by the (a|a) factor:

al () |a DpeSoD] () ¢(x) Do(e)
<¢($))a=< o) o) _ ] e el (2.10)
{aa) J Deisoly(er) Do(cv)
where Sy is a free scalar field action:
I TR b 2 1 9
So= [ dzL= | dz 5 (0u0)” — 3m o7 . (2.11)
In momentum space, this action becomes
So = /d4k: (k> —m?) |on . (2.12)

The continual path integral can be approximated by a finite one. The integral measure is

discretized as

D¢ = [ [ do(:), (2.13)
and the field values ¢(z;) can be represented by a discrete Fourier series:
1 —tkp x4
O(we) = 7 D_e o (kn), (2.14)

n

where kb = %, with n* an integer and V = L* a volume of 4 dimensional space. The
Fourier coefficient ¢(k) is complex with the constraint ¢*(k) = ¢(—k), which expresses the
fact that ¢(x) is real. We want to consider the real and imaginary parts of ¢(k,) with

k2 > 0 as independent variables. Since this is a unitary transformation, the integral measure

becomes

Do(z) = [[ dRed(k,) dImg(k,,). (2.15)

ki >0
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2.1. PATH INTEGRAL FORMALISM FOR THE DISPLACED VACUUM: A TOY
MODEL 18

With these preliminary notes on the path integral democratization procedure, we are ready
to write down the expression for the expectation value of the field ¢. The discretized free
theory action becomes

6150 :exp{‘z/z (k,Q _ m2) |¢k|2}

= exp {—% > (m® = k?) [(Regr)” + (Imey)?] } (2.16)

The rest of the numerator integrand is

o] o]

Df(a) p(x) Do(ar) = > ™2 G() e 2

1 ~ *
- exp{ > (e + k) az/m/} exp {v D> (wg +q6)aqf¢q/}
k!

1 . ik 1 «
X V Z (Re¢k// + /L]:m¢k//) e k exXp <_V Z (697 Ckk/> s (217)

k//

where in the second and the third lines we used the Fourier representation and the definition

of creation and annihilation operators in terms of fields ¢. We note, that

1 s s 2

v ; (Gr0x + andy) = o ; (Re o Re ¢y, + Im oy, Im ¢y,) . (2.18)
With all the aforementioned rearrangements, we obtain the following expression for the
nominator of the expectation value

| PocBi(a) ét) Bo(a) = T dRess dimo exy { 73 (k2 =) W}
k

kg >0

2
X exp {V Z (Wk/ + ké) (Re Qg Re Qbk’ + Im (65% Im (ﬁ]g)}

k./

o // 1
et v Z (Regyr + ilmeyr) exp (—— Zak/@k,) : (2.19)

k//
From this analysis, we conclude that the displacement operator lﬁ)o(a) shifts the center of
the Gaussian, giving a non-zero value for the integral.
The denominator can be also calculated to give us the similar expression

(a]a) /D¢ezSoDT( ) DO H dRe¢y, dIme¢y, exp { V Z (k2 _ m2) |¢k|2}

kg >0 k
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2
X exp {V Z (we + k) (Re ap Re ¢ + Im o Im ¢k/)}

1
exp (—V Zak/a,’;) . (2.20)
k/

To simplify our calculations, we assume that all a; are real. We also slightly change the
notation to make the discrete nature of momenta more conspicuous. The denominator takes
the form of a product of Gaussian integrals and can be easily computed. We only need to
pay attention to the additional exponential piece linear in ¢y.

(o) = H /dIm@L exp {_V Z (m? — k2) (Im¢n)2}

kg >0 k

dRed, exp {—i (m? - k2) (Reg,) } exp {é (wn + k%) Re a, Re qbn}

—z7rV —imV i (wn + ko) Rea?
= \/ Ry eXp v 12 . (2.21)
k">0 n

The nominator calculations reproduce the previous steps with only one very important dif-

ference: the presence of the source field in the integrand makes the shift in the field visible.
(o] o(x) |a) =
2 2 0 2
ikjx (m —k ) (wn + kn)Rean
_Z ! H /dRengn Reg, exp{ v <R On + e i

kg >0

i (wn+ k)?* Rea?
S B

— — 0\ Re 0 2
_Z ik H mV i(wn + k))Rea, " exp{ ‘z/(wn%—k 02 Rean}' (2.29)

2 2 2
m2 —k k
kn>0 n n

We have almost reached our goals. We note that a, = To convert discrete, finite

_a
k%"l‘wn '

sums over k, to continuous integrals over k, we take the limit L — oo:

d'h
v Z / (2.23)

We obtain the result for the field ¢(z) expectation value

d*k —i Reay, |
(9), = / 2 mzz _e]jf e’*e, (2.24)
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2.2. PATH INTEGRAL APPROACH IN M-THEORY: NODAL DIAGRAMS 20

The standard contour integration over the dky gives us the final result:

d’k :
((b)a/z—kaea el Hx (2.25)

This result suggests the form of the expectation value for the graviton field g,,,, which replaces
the scalar field and introduces the general Schrodinger wave function ¢y representing the

solitonic solutions instead of the simple plane-wave e~ %*.

2.2 Path integral approach in M-theory: nodal dia-
grams

We will attempt to include in our analysis of the Glauber-Sudarshan state the full interacting
action with all the quantum corrections. At the same time, to make the following computa-
tions tractable, we restrict our attention to only scalar degrees of freedom. The three scalar
fields (¢1, @2, ¢3) will represent the three sets of degrees of freedom from the full M-theory

description:
{gul/}a {CABD}7 {\IJA}7

representing metric, fluxes, and gravitino fields. The path-integral structure that we are

looking for here may be represented by:

[ Dp1DpsDeps 'St D (@ B, 7)1 (x,y,2)D(@, B,7)
[ D1 Dy Dy €S D (@, B,7)D(@, B, ’

QI

{p1)7 = (2.26)

<|

where & = (@, 3,7) is associated with ({g..},{Casp}, {®¥a}) degrees of freedom , D(7)
is a non-unitary displacement operator, i.e. DI(7)D(7) # D(7)D!(7) # 1 and the total
action Siot = Skin + Sint + Sghost + Sgr Where the perturbative part of Si;; comes from an
interaction term and S, is the gauge-fixing term. As a reminder, we also mention here that
@, 3,7 represent the coherent states of the three respective scalar fields of our toy model or,
equivalently, the three sets of degrees of freedom from the full M-theory: metric, fluxes and

gravitino fields.
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2.2. PATH INTEGRAL APPROACH IN M-THEORY: NODAL DIAGRAMS 21

Ignoring the complex parts of the various fields, we can write down the simplified version
of the numerator of the path integral in the following form

Num[{¢1)5] = C(@;, a;, V, H/dgpl exp — a, (g@l(k)+ )2] (2.27)

aj

1 [ 420.) exo| - bu(3100) +ﬁ— | T1 [ 421t exo = eu(Bi000 + )

X (@1%1)%{1 (X7 Y, Z)eiikmlt + 951(/?2)7#@ (X7 Y, Z)eiikogt + al(ki’))wkg (X7 Y, Z)eiikoﬁt + )

. _ p _
X (1 +0) V  Cumpgrs(—1)" (Kug + Eug oo Ko )T Ly A+ Ly oo A Ly, )P0
S

X 61(kjm)@l(k:w)“'&l(kuq)$2(lvl)‘:52(lvz)'"&2(lvr)&f%(fwl)&3(]611)2)"'@3(fwsf1)$3(fws)>

where the ¢p,,pqers coefficients are the coupling constants for each contribution of the pertur-
bative series. Note, that we have ignored the contributions coming from the local, non-local,
and fermionic action.

Since it will be advantages for our computations to have some factors dimensionless,
such as coefficients ¢,pqrs, Fourier transforms qgl(k;) and so on, we need to define the Fourier
transforms in powers of M,,. As a result, the perturbative series of the field expectation value
is ordered in powers of M,. Keeping this in mind, we see that the tree-level contribution
can be calculated in the limit M,, — oo when all the interaction terms become subdominant.
The tree level contributions appear when we take vanishing coupling constants, i.e. we take
Cnmpgrs = 0. In the limit M, — oo and g, < 1, the numerator has the following form

D I/ rwrml oty e
J#i aj _

<1 [ @t ool - (7 + )’

X H/d903 fo) e [ <903 fo) + %)2-

Co/ |

(%

X /dfﬁl(ki) exp[ - ai<§51(ki) + %)2} G (i)t (%, 9, 2)e— ot
- _ H <7Tg>1/2 H (Z—Z)l/z 1:[ (Z—j)m <%)¢ki(x’y72)e—iko,it

2
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2.2. PATH INTEGRAL APPROACH IN M-THEORY: NODAL DIAGRAMS 22

where m; = m, = m, = 7 and the overall minus sign is due to our choice of convention for
the displacement operator D(7). The above diagram is only for the momentum mode ;.

An equivalent tree-level diagram for the denominator has the form
7Tj>1/2 <7Tu>1/2 <7rv>1/2
= — — — . 2.29
1;[ (aj ];[ bu ]‘U_‘[ Cy ( )

In the continuum limit, V — 0o, and therefore we can sum over all i from (2.28), to get the

following result:

%f; \) = ® (— /d”k’ % Yi(x,y, z)e""“ﬂt) . (2.30)

It is time to move to the calculations involving interactions parameterized by non-zero

Crnmpgrs-

2.2.1 Contributions from the ¢, fields

In the following computation we will introduce and extensively use the so called nodal
diagrams. Nodal diagrams are a pictorial representation of the momenta distribution in
the perturbative path integral calculations. They help to visualize a particular momenta
configuration and also accentuate the presence or absence of the source field. Each nodal
diagram is made up of small dot points group together a particular set of coinciding momenta.
The bigger size nodes make this set of momenta more visual, representing one, two or greater
number of the matching momenta. The presence of the source field is made conspicuous by
a node with a letter ¢ inside it.

The scalar field 5 is a representative field for the three-form flux components that have
84 massless degrees of freedom in M-theory. To make the following calculations manageable,
we use only one representative component taken with arbitrary copies in r in the coupling
constant Cpmpqrs- 1t means that each of these copies can have different momenta integrated

over to provide the correct final result.

Case 1: [,, =1,, =1, = ..... =1l,, =1; for ¢, field
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Since the momentum modes k,,, l,;, and f,, are all independent, we can fix the k,, and
Juw, values and concentrate our attention for now on the [/, modes. This first interactive case

is relatively simple and can be represented diagrammatically as

\L: =T J d2a(1) exp| = b (a0 + f—ﬂ (2.31)
L.

< J dza(t) espl b (Balt) + 2] (e

The value of this diagram is made up of the products of two distinct integrals. The first

one is a simple variation of the Gaussian integral

[ty exv[ =, (70 + %‘)2] - (Z—)/ (232)

The second integral is more involved. To solve it we introduce a new integration variable

W = os(l;) + %)T and obtain the following integral

/ AW e=bW? () mtp—eo <W - %) (2.33)
J

The value of this integral we can look up in the Table of integrals by Gradhstein and Ryzhik

(integral 3.461.4, page 364). The result is

i r (_@)’“‘ep (rl)™ 7= (e, = ! (234

. \ep/2
e b; (2b;)er/

Here the e, is an even integer, otherwise, the integrals become zero.

In the next step, we some over the discrete momenta /;:

(2.35)

1 — rl;
v
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The sum is straightforward, and in the continuum limit, when V' <— oo, it turns into an

integral
()" / gy 3 (_@) =D g 36)
;b v \e,) N D (@)

Case 2: [, =1,, =l,;, = ..... =1y, = Ui, 1, =1;,1 # j for p, field

In this case, we have two different momenta, which vary, and the final result contains two
sums over two different indices. This already suggests that the final result should contain
the nested integrals.

Now our nodal diagram has an additional extension due to the presence of the [;,¢ # j.

To understand the general picture, we take a particular example of the case (1, ls):

ly
PRI Z//./.ll. (2.37)
\'e

To understand how to write down the integral for the diagram, we need to come back to the

initial formula for the Numerator. It contains the sum of the momenta [, , l,,, ...:

(Lyy + Lyy 4 oo 1y, )™ P70 = [(1 — 1)1y + L] TP (2.38)
m-+p—eq m-p—e
= > PO 10— e agrrreomen (2.39)
el €1

Then the diagram represents the following integral

[T [ azatt) exo] =1y (20 + )] (2.40)

i
m+p—eg m + P — €o 1 . _ Bl 2 ~(r—1)
x ) . [(r = DL [ doa(lr) eXp[ — b (%2(51) + E> } ¢y ()
el 1
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Wt / (12 exp[— by (@(zz) N %)2] 35 (1)

N1/2
The integration of the first line gives the standard answer (%) . The second integral is
J

very similar to case 2 with r power being replaced by r — 1:

[ dzatt) exo[ b (F0) + 51) ] 0 w) (2.41)
P\ i) BT e
-G) 2L )R G )

And the integral on the last line is simply calculated to be

/ Aa(la) exp| — ba(alla) + %)Q] Galla) = (b%.)m (_f—j> | (2.43)

After collecting all the results, we obtain the final value of the case 3 diagram with [; = I3

and lz = l2:
— \ (r—1—e2)
T\ 1/2 map—co—er) | TP — €0 r—1
T1(2)" S - wytgromeoen (-
J J e1,e2 €1 €2 !
32 (62 — 1)”
—— | = 2.44
X ( b2 (261)62/2 ( )

Now we want to generalize this particular case for all possible values ([;, ;) and then sum
over all 7 and j. We begin our analysis with the case (l,[;), summing over all values of j

except 7 =1

el é " 1 mi _@ mi _@ mi _&
5 (_bl> Ok [52 ( b2)+13 ( b3>+l4 ( b4)+..} (2.45)

The similar case (I3, 1,7 # 2) gives us

e1 _@ Tl; mi _& my _@ 1 _é
l2 ( bg) (b2)62/2 |:ll ( b1> ‘|—l3 ( b3> + l4 < b4) + :| (246)

And the next term (l3,1;,j # 3) becomes

el _& T1 1 m _& m _@ - _@
l3 ( b3> (b3)62/2 |:l1 ( bl>+l2 ( b2)+l4 < b4)+} (247)
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Now we can observe a certain pattern by combining the summation terms in a particular

order. First, we take all the sums over ¢ and j with j > ¢:

el _ﬁ " 1 mi _& mi _&
11( m) TR [52 ( 62)+13 ( b3>+..}
el @ " 1 mi _@ mi _é
i (_b) .y {z ( b3)+z4 ( b4)+...]
1
+I3 _f_j> (b )62/2 |:lm1 (—f—j) —l—] + ... (2.48)

i=1 j=i+1

The two last nested sums in the continuum limit are replaced by the nested integrals:

L e (B 1 — o (B
w2 () e 20 (45) 20

i1 j—it1
Ve / dnlbezl/e;(l) (_i((zl))) 1 /l Tt (—%) B (2.51)

It is evident that the previous nested integral structure does not contain all the elements

of the double sums over (7, 7). The terms left behind form a nested sum on their own with

j€Z+,Z>j

m _& l;l _@ 1 l§1 _& r1

h ( bl> [(52)62/2 ( b2) + (bs)<2/2 ( bg) + ] (2.52)
mi 61 I _& 1 lzl _é T

+ ( b1> |:(b3)3€2/2 ( bg) + —<b4)€2/2 ( b4> + :| + ... (253)

£ () S (8

i=j+1

Again the last sum in the continuum limit translates into a nested integral structure:

L (LB o 0 Bi\"
w2t (5) X (0) 2

i=j+1
—vem [ (5) [ (i) @

Case 3: Iy, =1, = lp, = ..ly_, = i1y, #1i,1, #1; for ¢, field
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Our first task is to understand this more involved case in the simplest situation: [; = [y

and [ =1 = ly. The respective diagram has the following form

VUr—2 Ur—1

We start the analysis from the original sum over all values of [,,:

(Lyy + Lyy 4 oo 1y, )P0 = [(1 — 2)1y + 20,70 (2.57)
m~+p—eo m+p—e
-y P70 (0t — 200y (@) mepeoea), (2.58)
es €3

Then the integral represented by the diagram looks like this one

I1 [ a6t exp] -1, (3at9 + 2) ] (2.59)

J#i
m-+p—eo m+p—eo _ _ B\2 r—
X Z (Tll — 2[1)63 /ngQ(ll) GXp|: — b1 <302(l1> + %) ] Qpé 2)<ll)
e3 €3 !

X (2ly)(m+p=co=es / 35 (12) eXp[—[b(gOg(lg) fj)] P2(1y).

The first two integrals bring the expected results:

[ @zt e[ (200 + )] = (1) " (2.60)

and

/ 4Za(ls) exp — br (Za(0) + fl )2] (1) (2.61)
M\ 2 [r- 1 (r=2=es) eq — DN
- (b_1> e4€ZQZ+ 642 ( gl) ((251)8‘1‘2;‘. (262

The last integral from the diagram representation generates an additional term coming from

the second power of the field variable. As usual we introduce a dummy variable W = o+ f—:
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Then

2
@:WQ—QW@nLBZ

—. 2.
bR (2:63)

The Gaussian integral over the second term is zero, but the two terms give us slightly different

non-trivial results:

2 2 1/2
%/dWebW z% (%) , (2.64)

and

/ awervyr = L () (2.65)
7)) .

We are left only to collect all the pieces of our calculations to find the following value of

the diagram

1/2m+p760 m+ —e
I(r) X ("7 " en-amreymeas oo
J J e3 €3

2 fr=2\/ BT (e - 1)1
‘2 (%) G 267

eq€27 €4

The next natural step would be to take different momenta values: I; = 13,1, , = l3,1,, =
[3. In this case, sum over momenta gives additional combinatorial elements, but the integrals
are simpler.

The diagram becomes

“_, ”é.:-
o

The sum over the momenta

(Lo, F Ly 4 oo 1, )™ P70 = [(r = 2)1y + (Iy + I3)] P70 (2.68)
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m-+p—eqg
m-+p—e
-y Uty = 200)%7 (1 + 1) (mteco—es), (2.69)
es €5
where
m-+p—ey—e
(I + ty)mpmeomen) = 5 [T E T TR e ymep-comesen) (2.70)

eg €Cg
The integral structure of the diagram is very similar to the previous one with the difference

that now we have three different Gaussian integrals over the momenta [, ls, [3:

H/dgog eXp —b (gog(l) §J> } (2.71)

m~+p—eo

y Z m+p-—eg—e€s (rly — 20,)° /d@(ll) exp[ — b (@2@1) 511)2} @g—2)(l1)

€6

X (I3) /d(pQ(ZQ) exp[ — by (@2(12) Z )2} o(la).
y (13)m+p760765*66 /dgpQ(lg,) exp[ — by ((,02([3) i )2] o(l3).

It can be seen that all the present integrals have been calculated several times already, and
so we can just easily state the final result:

1/2 m+p—eo _ _ _
77 m+p— e . m+p—e—es\
H (E) E (7"11 — 2[1) ° E l26 (272)

es €5 e €6

r—2 r—9 B (r—2—e7) ﬂ 5 (e B 1)”
E 1 2 b3 (er I
h by b be (2ber2 2.73

er er ( b > by by (2b1)c7/2 ( )

So far, this was the easy part of our analysis of case 4. In the next step, we need to
sum over all possible values of ¢ and j. The first diagram (I;,[;) can be summed relatively
straightforwardly. The summation technique is exactly the same as we used for case 3. We
divide the terms in the sum in such a way that they contain nested sums inside. The only

difference comes from the presence of other variable coefficients

1 & [é3 BZ r2 00 . 1 BQ
_22(@)64/2 (_?> .0 (@ﬂ)—;) (2.74)

j=i+1
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w1 (CBON® [ oy e (L B
— [ gy () [ (26(1/) bmf))’ 27)

and in the same manner

1 =,
WZW<

i=j

)5 (D) o

j+1
—2

v (1 B0 [T, 0 (BN
— [ (W) 52(l)>/z M e () @

To discover the final result, we just need to add these two different nested integral terms

and multiply the sum by the combinatorial coefficients summing over all the permutation
indices.

Now we turn to the case where both side legs can be different. Again we are going to
move step by step, trying to figure out the general tendencies.

Let’s take the case (I; = l3,(1, ;) which is given by the following diagram

(2.78)

and sum over the j indices.
From our previous knowledge, we can write down the integral structure of this diagram

without much ado:

1 [ a2att) e[ b, (7ati + 2] (2.79)

k#j

mp—eo m+p—e€y— es5 B5\*] ~r-
< 3 (rty = 20) [ dZalle) exp| by (Batt) + 52) ] B0
es €6

) [ a) e b (F0) + 2 a0

< yyrmeee [ dz() exp| - ba(Za(0) + %)2] B(L).
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All the integrals present here have already been calculated many times, so we give the answer

straight away, which is again very similar to the previous case:

7_{_)I/QWH’peO m+p—60

m-+p—ey—e
11 (g ) ro(rly —213)° ) PrO7% ) e 20
k J

es €5 €6 €6
< (r=2\ (B s (e 1
3 1 ] 7 .
—— -— 2.81
X Z < ) bl b (2b3)e7/2 ( 8 )

er €7
Then we need to sum over all j indices. We will write the first several terms to figure out

the general picture:

ﬁl 52 ﬁ4 55
[PP—= 5P —=+ 1P — + ;" — : 2.82
1 bl b2 + 4 b4 + b5 + ( )

The main noticeable peculiarity of this sum is the absence of the j = 3 term, which is
expected as the [3 is already occupied in the different parts of the diagram. To restore
the nested structure of the sum (and the subsequent integral), we add and subtract an I3

containing the term:

b1 B2 B3 | myPa Bs B3
€6 m3 ms3 ms . m3 2
g (B0 + By F R ) S (2.83)

This trick will allow us to use the already standard technique to move from discrete sum-
mation to continuous integration:
by ( Bi ﬂ) Byls (/Oo 1y B /” 1y BU )l’”3)
176 — [ —= — 3" — — d-l dl . (2.84
Ly Z Toby P b by I () s b(l’) (2.84)

Since the step between different values of momenta in the infinite volume goes to zero, we

can safely suggest that the last integral evaluates to zero:

I3 n U llmg
/Z d"r B(b()l,) — 0, (2.85)

as well as any other integral from a specific value of the momentum to its next allowed value.
The next step is to add the sum over the second branch of the side momenta, which is,
for now, fixed to the [; value. We can write down the following formal sum

1 1 1
ng:[zlﬂj, <r—2)z3]+v2[z2+zj, <r—2>13]+VZ[z4+zj, (r—2)ls] + ... (2.86)

J J
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where we sum over the different values of [, omitting, of course, the I3 momentum which is
already occupied.

We also note that as soon as we start summing over the second index k # 3, an additional
term needs to be introduced into the general sum structure. Then the generic term of the
total sum looks like this one

B (e [Ty BN [y, BU)
1) = 3! <zk/lk = /lk S ) (2.87)

Omitting the combinatorial coefficients and using the introduces conventions, we can write

the double sum over 7, k£ indices

ble%jg (—f—jyg [T(1) + I(I2) + I(Ia) + I(I5) + ..] (2.88)

The final destination of our analysis of this case is the sum over all three indices i, j, k where

each of them takes only the allowed values. The diagram for this case is given by

I |
1 .\ L+l (r—2)1
Vi —

4,5,k
o{

As expected, the total sum over the discrete momenta should include the nested structure,

and the continuum variation of the sum contains the following nested integral structure:

/d”l 11,1 AOO d“_l” bwl/";(:ﬂ) (_E((;,/,,)))TS (2.89)
+ / d'l bef/e; 0 (—583 ) /l Ty I, 0", (2.90)

We can continue our analysis by introducing new, more complicated nodal diagrams. At

the same time, it would be more and more difficult to find the values of these well-branched
constructions without a possibility of gaining additional incites beyond what we’ve already

discovered. It seems that now is a good time to introduce a structure of the @3 field.
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2.2.2 Contributions from the 3 fields

Before we start the analysis of each particular case for the 3 field, it would be instructive
to understand how the momentum conservation affects the calculations. The first important
fact is that the f,, momentum is not independent and is fully determined by the values of

all other momenta:
q T S
D kY byt fu =0, (2.91)
k=1 j=1 t=1
and thus

q T s—1
~far =D kA D oy D fure (2.92)
k=1 j=1 t=1

Since the f,, is not independent, the result of the Gaussian integration over such a
momentum depended on all the momenta is going to be slightly unusual. The general case

looks something like this

[zt e -a(fn)+ Z) Jrw ~ (2) = 20 ey

s Cs Ws
where we suggested that ¢, ~ f2 .
Now, we need to find a general form of the f_ 2no - coming from the momenta conservation.

We I taking several steps, involving some approximations:

1 1
2no r s—1
Wso ZZ:I kuz + Zj:l lvj + Zt:l fwt

r 2n9
1 Tk, +>0_ 1,
= (1 - == 21 ) : (2.94)

(et )™ .

where we have assumed that ) ;| fu, > > i_ ku, + D Ly, which is always possible in

the limit when all the momenta f,, are larger than k,, and [,,. Then we find the following

general result:

1 2n0 D et Py 200 by m .
2no Z
Ws ni n (

s—1 2 s—1 2ng—n1
1 ( t=1 fwt) t=1 fwt)

-3y 2no | [ m (zq:k:) <Zl> _nl( ! o (2.95)

s—1
n1 en; n €nq t=1 fwt
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We also need to find the v, is affected by the momentum conservation

V(fur) = ( Zk:u Zlv] wat>. (2.96)

Using the previous assumption that all f,, have the largest values of the moment, we can

expand y(f,,) into the Taylor series:

s—1 Q_ kul + f: lv-
fwé = ( wat< Zk_l slfzj : J)) (297)
t=1 J Wt

k=1 j=1 k=1 J=1
q r k
O™y
= BLIEDS lw) —(=¢) (2.99)
. (kzl i=1 oc
en r ng—eny
(=)™ LANES ' "y
= ko, Ly, —(), 2.100
Nk €ny, Nk = J
where we introduced a new notation
s—1
= fur (2.101)
t=1
In the last step, we find the formula for the general case of any power ng:
no+2
7<fws)n0 :7<fws> (fOJs fws H Z Z (2'102)

Eny,
where the product starts from the case when the nodal diagrams have k£ > 2.
Combining all the accumulated knowledge about the case with dependent momentum
fu., we come to the conclusion that the related Gaussian integral introduces an additional

term of the form
1 0™y(—=()
C2no+n1 o™ )

(2.103)

The integration over the rest of independent momenta f,, follows the same rules as for all

previous cases.

Case 1: fu, = fuo = fus = oo = fuss = fo» foir = frs fus # (fg, fn) for @3 field
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We begin with a case similar to the diagram

fi i
1 i s/ ;’. (2.104)

The simplest possible case for the ¢3 field is when all the momenta k,,,,;, and f,, are
equally distributed:
_fws = qkl + le + (8 — 1)fk (2105)

The diagram describing this case is the following

“’7.
s 1) /LT
o .Y f/?b (2.106)

The integral representation of it is

H/dsos fe) eXp ( /dsoz fi) eXp — ¢ (wa(fz) Z) } 257V

t#£i

< [ gt exp ~ (Bt + )] (2.107)

The first two integrals were calculated previously and give the standard result

s 1/2 1 B " ‘ s—l_e,
H Tt s (es— DI 1 Vi
T 9es/2 es/2 \ 2.1
<Ct> Z 9¢s/2 ngs/z o ; (2.108)

t=1 es€2Z4 €s

and the last integral will provide additional powers:

1 0my(=Q) _ 1 1 1 O™y(—(s—1)f)
C2no+n1 ag‘nk B (5 _ 1)2n0+n1 fz’2n0+nl (S _ 1)7% 8flnk ; (2.109)

where we noted the fact that
¢ = wat = (s—1)f (2.110)
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Taking into account all the previous results and also noting that

ng = 1, (2.111)
in this case, and also assuming that
1 1

we come up with the following final result

S 1/2 — 1 — I A~ \s—1—es Ani . . A
Tt S (68 ].) ]_ ( 77,) a ’Y( (S 1)]2)
H <c_t> Z 9¢es/2 (8 _ 1)n1+nk+2 ffs—es—i-nl aflnk . (2113)

t=1 es€27+ €s

In the last step, we sum over all values of f; and move to the continuum introducing inte-

gration instead of discrete summation:

s e 1/2 s—1 (es — 1)” " (_ﬁ(f))s—l—es ankﬁ(—(s _ 1)f)
H <C_t> Z 26S/2<S - 1)n1+nk+2 /d f f25—es+n1 . 8fnk .

t=1 es€27Z+ €s

(2.114)

Case 2: fwl = fwg - fw3 = e = fw572 - fgvfwsf1 - fh’fw.s 7é (fg7fh) for ©3 field

This case is summarized by the nodal diagram

In
fq
LZ Q--Ji“f---= -2 fg-/f/./?b (2.115)
VQ
g,h Ef.

and the integral

[T [ azat exv] = (@i + 2)] [ dzath) exo] — eo(a(5) + 2) ] 87205
t=£h,g 9
X /d@3(fh) eXP[ - Ch<§53(fg) + Z;Z>2] @3(/fr) /d(ﬁ:s(fws) eXP[ - Cs<§53(fws) + %:)2]

(2.116)

Chapter 2



2.2. PATH INTEGRAL APPROACH IN M-THEORY: NODAL DIAGRAMS 37

The integral over the @3(f,) generates the term

s=2\ (e, — 1D 1 Yo TRl
> g n (—C—) . (2.117)
g g

83622+ es
The integral over the p3(f) gives us the simple term

_n (2.118)
Ch

The last integral is substituted with the following term

L o™y (=) 1 < 1 0 0

<2n0+n1 aan o ((S . 2)fg + fh)n1+2 (S _ 2) a_fg + 8_fh> 7(_(8 - Z)fg - fh)

(2.119)
The last identity is based on the fact that
¢ = Z for = (5= 2)fy + fu, (2.120)
and thus
9"y (—¢) 10  0\™
= — t+ = —(s=2)f, — fn)- 2.121
¢ (s —2) of, +afh Y(—=(s )fg fn) ( )
Again we collect all the results to obtain
5—2 1 (—ny )S—2—es
Z (6826 /i_)( ;ny)fe /2 (_%) 1 n1+2 (2122)
es €27 I ’ Cqg ° cn) ((s — 2)fg + fn)
1 0 o\
X — t = —(s—=2)f, — fn)-
(wmag *og) "l 26-m

The summations procedure over the indices g and h is the same as described for the
previous cases, including the nested structure of the sums and the subsequent integrals. The

final result is expressed as the construction of the nested integrals

()P s—1) (e, — 1)
t[[l (q) EZ%( i} ) ( 265/2) (2.123)
ny AT ) Lo o\
[/d e, (f’)((s—Z)erf’)”l“(S—? 8f+6f’> T
e ) [ g1 (=) 10 09 " (s ) f _
/d f f § f 5 2— e/2((s_2)f/+f)n1+2 <s—2 8f’+8f> ’Y( ( 2)f f)]
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Case 3: fw1 = .. = fwsfg, = fgafw572 - fh»fwsfl - fmvfws ;A (fgvfhafm) for ©3 field
There are two possible variations of this case. The first one is slightly simpler

: fm =
fn # fy and is represented by the diagram

In Tn

(2.124)

There are several differences here from the previous case, the major of which is the second

power of the field @3(fr). The Gaussian integral of this case was calculated in case 4, with
the following result

i 2
[ a7t exv] = an(Bath) + LY B =+ 2= jh% (2.125)

The rest of the calculations follow the same line of reasoning including the process of the
summation with the final nested integration structure:

S

1) s ()5

(2.126)
es €27
gip CTEN™ [ elf) +27°(f) oot
[/ / (e(f)* /f af 2¢2(f)((s — )f+f)n1+2<53 8f+23f/> F(=(s=3)f = [

v (D2 [Z a1y CTEDT ) 19
+/d f( 22(f) >/f A TPy (s

where we used the fact that

(= wat = (s = 3)fg + 2/n,

The second variation of this case is slightly more involved: f,, # fi # f; . The diagram-
matic representation of the situation is given by

(2.128)
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The integral structure seems to be simpler, since we don’t have a second powers, but the

main difficulty is related to the presence of the third sum over the momenta indices. We

expect to have the triple nested integral structure and the mechanism of how to built such

sums and integrals were in much detail explored in the case 4. The derivatives and powers

of the other terms remains the same except in places where the second powers are replaced

S

by the first powers. The result is
1/2
Tt
) >

s—=3) (es — 1N
es/2
t—1 es€2Z4 \ €s 20/

x l/dllf (_’Y(W)/foodllf/ (")

(e(f))™

xvh@—@f—f—f@+./wv

1 9 98 9
s—3 0f" " af " of

c(f')

(/)

c(f)

(")

(2.129)

2.2.3 Contributions from the ¢; fields

(s =3)r+ 5+ 57)"
[orig o

++)mv<@®ﬂffﬂ

1+2

Lo 00
s—3 of of  of"

(=3

.

Case 1: ky, = ky, = ky; = .. = k, and k; for the ¢, fields

We will start with the simplest case where all the k,, momenta take the same value. The

(e(f)

(-3 +p40)""

(2.130)

presence of the extra field ¢, in the outer leg of the nodal diagram means that there are two

possible cases now: one, with the field momenta aligned with the momenta of the ¢ fields,

and two, with the field momenta not aligned with the ¢ fields. Note also that the powers

of both the k,, momenta as well as the [,, momenta have to be changed to account for the

momentum conservation.

D

<\ V2
113 =
= €q +

q+1

€q

|

qk;

2€q/2

(eg — Dllgs /dllk‘

(—a(k)* e

k2q+2—eq —Nng

where we have taken a(k) o< k? and n, =n +e, + €n,, With ¢' > 1.

wk(xyyvz)e_ik0t7 (2131)

On the other hand, for the non-aligned field momenta, the nodal diagram gives us:
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1 3 qk; s k;
. J J.
V2 £ \) )
i

q 1/2 n
B m q ) (eq—1)lg™a
-] (cn) 3 ( ) e (2.132)
eq€27Z 4 eq

x [/d“k TE) e (xpeito /koo d''K 7(76(,@)% +/d11k 7(*2(;2))% /koo d''E *L]ifj) i (X)e ot ||

where ¢; = q — €4, ¢2 = 2q — e, — n, with n, as defined above, and X = (x,y,2). It is
important to note here that the nested integral structure of the second term involves an

integral over the wave-function ¥y (X)e_ikét leading to possible temporal dependence.

Case 2: ky, = ku, = ... = ku,_, = ku,, (ku,_,, ku,) # ky, for o field

We can use the same approach as in the previous cases and move from the simplest less
general case to the most involved and the most general case. But it makes sense to take a
slightly different approach here and start the computations from the most general case. The
idea here is that the case with all the momenta differences does not depend on the way we
re-assign the momenta indices. This general case should include all the cases with some of

the momenta coinciding and all the possible momenta re-distributions.

The general case diagram for the case of the ¢; field looks something like this one

kj

k

/:> o kj\) o =2k /{.:.% (2.133)
m kL.

In the end, we will need to sum over all the four indices 1, j, k, [.

We will divide the total integral representing the diagram into four independent pieces

and calculate them separately. The integrations over the external field momenta k; of the
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1 field are given by

/ 41 (k) exp| — ai(B1(k) + 3)2} Gy (k) i, (X )ik (2.134)
= (-j-) i, (X)e ik, (2.135)

where we ignore the terms coming from the Gaussian integration and are going to be included
in the final total integral with all the three fields present.

The integral over the k; internal momenta evaluates to

a o
/dgpl (k) exp[—al (gpl (k) + al> } o1 2(k‘l) (2.136)
!
B q—=2Y (e, — 1! a )47
6q€22+ eq l

The two last integrals give the same simple result:
dpr (k) eXp[—aj (sol(ker - ) ] er(ky) ==, (2.138)
J

and

/ 431 (k) x| — s (B (k) + 0‘—’")2} G (k) = (—O‘—m) | (2.139)

m a'm

We also need to remember the term with the momenta to the power n,:
(k1 +ko+ ...+ k)" = (¢ — 2)k; + kb, + Ej)™, (2.140)

which we need to include in the result for the total integral.

Taking into account our previous experience with the summation of nodal diagrams of
this kind, we expect to have here a sum structure with a total of 4 nested sums with all
possible permutations in the summation indices. As an example of one of the nested sums,
we will look at the following nested term:

q 1/2 _ (q 2—eq)
m q eq — 1
()" s (") s () an

aj

=1 eq€27 4 eq l
C % S _ g [ Gm - % —ik0t
XZ( aj) Z((q ki + ko + kj) ( am)z ( ai>¢ki<X)e
j=l+1 m=j+1 i=m+1
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The other three terms are just the permutations of the terms and the indices. We also need
to be aware of the problem related to the absence of one of the terms in each nested sum.
This issue was encountered and discussed in one of the previous cases. It is common to all
nested sums (and integrals) with a number of nested parted more than two.

Now, we can argue that the current general solutions should contain all the other varia-

tions, including coincided indices in all possible permutations.

2.2.4 Combining nodal diagrams

The next natural step is to combine all the nodal diagrams for the three scalar fields and

calculate the expectation value (¢1)5 from the path integral

f D¢1D¢2D903 eiStOt DT (67 Ba 7)901 (xa Y, Z)]D)<a7 B? 7)
f DS01D902D903 eiStOt DT (57 B? W)D(a7 ﬁv 7)

It is expected that the overall form of the nominator and the denominator of the path integral

(p1)7 (2.142)

will have a very complicated structure due to the contributions from each scalar field sector.
The complexity comes from the fact that, in general, changing the nodal diagrams in the
(¢1, =) sectors changes the entire series of diagrams from the ¢3 sector, as some preliminary
analysis shows.

On the other hand, we can ignore all these difficulties by using a product structure to the
nodal diagrams as a first approximation. In our case, it means that we can independently

sum the nodal diagrams of the tree fields in the limit

s—1 q r
C=D fue> D kY by (2.143)
t=1 i=1 j=1

This simplifying condition is valid since all the momenta are lower than the M, and we are
allowed to choose a limit when all f,, are larger than both k,, and [, .

Taking all these approximations into consideration, we write down the nominator and
the denominator of the path integral in the following suggestive way:

Num = i)+ + D CumparsNiiy (k0) @ N (11:7) @ NG (155.8) + O(Corpers ) (2:144)

n,...,s
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Den =

+chmpqrs/v£mp<k 0) © N (1:7) @ N (115 8) + O(Chypgre)- (2:145)

In each case, the series is represented as a sum of the tree-level term and the quantum
contributions in powers of the coupling constants c,mpers. We see our approximate imple-
mentation of the quantum contributions as a product structure of the diagrammatic series
(NS (ks q), NS (ks g)) with momenta k and (N2 (1), Niowy(11; 8)) with the momenta
integrated to the scale p o< M, related to the tree scalar fields (¢1, @2, ¢3) respectively.

To better visualize contributions from each field sector, we explicitly write down several
terms for each series which were in detail analyzed in the previous sections. The set of nodal

diagrams contributing to /\/}%p(k; q) is given by

k% + & Z 9 = % (2.146)

By .\ %\i) <qz>k;A LY .\’“"”JJ a- 2>m% .

V4
V igLm ./

wg T -
e
—e

The last nodal diagram becomes the dominant one when we move to the continuous limit,

replacing sums with integrals:

VJHXU: - / (2.147)

Then we can easily see that the last nodal diagram is not suppressed by any volume factor
and contributes (¢ — 1)! terms to the path integral.
The similar term in the denominator /\/’é%,(k, q) differs by the absence of the source field

¢1i
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P
(2.148)
" 4

Ky k”r+i
. Ky 1 |
+ L .\ km + kj (g —2)k; A + + LZ ._ _.
kur . . q
._. .

r

, where U' = (ky,, kuy -, ku, ). The main contribution comes from the ¢! terms, the last most
dominant nodal diagram.

The ./\/}Ez,zp(u; r) sector is very like the last one, except that we need to keep in mind the [,,
momenta have different powers and the outermost integrals in the nested integral structures
are all integrated up to the energy scale p oc M,,.

The last Néfﬁp(u; s) sector is somewhat unique since it contains additional momentum
constraints. It is appropriate to note that it was our initial choice to put the momentum
constraints on the ¢3 field. The answer should not change if all previous calculations are
rearranged with the momenta limits imposed on ¢, of ¢3 fields. This been said, the nodal

diagrams contributing to Néf’,lp(u; s) are the following:

—e
Joo
Again, from this representation, we deduce that the most dominant diagram is with all the

momenta different f,, # fu, # ... # fu., # fuw. and contributing (s —1)! terms with (s —1)

nested integrals.
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Chapter 3

Resurgence and positivity of

cosmological constant

3.1 Introduction to Resurgence in Quantum theory

The great majority of problems in quantum field theory and string theory cannot be solved in
closed form. As a result, the main tool of theoretical physicists for handling such problems is
some form of approximation scheme in the powers of a small parameter of the theory. Quite

often, the result of the approximate solution is some divergent power series.

The presence of the divergent series in physical theories demands a mathematical concept
allowing making sense of the infinities. Such a tool was developed by mathematicians more
than a century ago, long before physicists realized its usefulness in their own research. This
technique is known as the theory of resurgence and was first introduced in the works of Emile
Borel. The beauty and power of the theory of resurgence are that it allows us to deduce some
knowledge about the non-perturbative effects of the theory using only information coming
from the perturbative studies of the theory.

Before discussing the main toolkit of the resurgence theory, i.e. Borel resummation, we
briefly review the definition and main features of the asymptotic series. In its most general

definition, a power series Y  a,z" can be seen as not a function but as an asymptotic
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approximation to some function f(z), such that
1 N
li_rg o~ (f(z) — Zoanz"> = 0. (3.1)
In other words, for any N > 0, the remainder after (N+41) terms of the series is much smaller
than the last controlled term. We also note that an asymptotic series remains well-defined
even for cases when the remainder does not go to zero for large values of N and fixed values
of z. The defining feature of an asymptotic expansion is that the N-dependent partial sums
N
Z a,z" (3.2)
n=0
first, converge to the value of its approximated function f(z), but then they eventually
diverge for sufficiently big values of N. To find the partial sum that is closest to the function
value f(z), we need to know the optimal value of N. The usual method is to keep all the
convergent terms of the asymptotic series up to the smallest one and then eliminate the rest
of the series. This technique is called the optimal truncation and can be easily understood

in the case of the coefficients a,, with a factorial growth at large n,
a, = cA™n!, n>1. (3.3)

We want to find the smallest term in the series, for a fixed value of z, by minimizing it with

respect to N:
N N 1
layz"| = eN|Az| :cexp{NlogN—N—Nlog’A—’}, (3.4)
z

where in the last step, we used the Stirling approximation. The saddle point at large NV is

1

N, = |—
Az

| (3.5)

As we can see, for |z| small, the truncated series contains many terms, but as the value of
|z| grows, the optimal truncation provides us with a meagre number of terms.

The next (N, 4 1) term in the series represents the error made by the optimal truncation

Netd (3.6)

error = Cy, 1]z

Chapter 3



3.1. INTRODUCTION TO RESURGENCE IN QUANTUM THEORY 47

= Civonexp { (N + Dlog(N. +1) = (V. + 1) = (N, + 1)log

1 |
;‘} ~elE=l @
To summarize, an asymptotic expansion does not uniquely determine the function f(z) since
the optimal truncation simply ignores the remaining terms of the truncated series. On the
contrary, Borel’s resummation procedure considers the information contained in all the terms
of the series.

The Borel transform B of the power series

Z anz" (3.8)

n=0
Cn
[

n!’

BZanz” = Zan%. (3.9)

n=0 n=0

is a transformation in the complex plane z"

We define the power series ¢(z) to be Gevrey-1 if its coefficients have some factorial growth
la,| < Mnlp", (3.10)

for some constants M,p > 0. Then, the Borel transform of a Gevrey-1 series is analytic
in a neighbourhood of ( = 0. The power of the Borel transform resides in the fact the
singularities of the Borel transform contain information about other sectors of the theory.

The theory of Borel’s resummation applies to the case of the resurgent functions. A
Gevrey-1 series ¢(z) is a resurgent function if, on any line starting from the origin, there is
a finite number of the singularities of the Borel transform B¢(z). The Borel transform can
be analytically continued along the line, avoiding the singularity points.

In case of a resurgent function ¢(z) with a logarithmic and a pole singularity at { = (,,
the local expansion of its Borel transform ¢(z) = Bé(z) has the form

G(Co+6) = o —log (&) ; ¢n€" + regular. (3.11)

The series which appears in this expansion around the singularity point

Gu(6) =) al” (3.12)

n=0
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has a finite radius of convergence. The explicit introduction of a so-called Stokes constant S
allows us to choose a specific gauge for normalization of q§w(£ ). Now we can interpret qﬁAw(f )
as the Borel transform of another, divergent, series of the form
— a n
dul2) =~ + ;cnz , (3.13)
with the new coeflicients ¢, = n!¢,. We conclude that the expansion of the Borel transform

Bo(z) of a formal power series ¢(z) around its singularities (,,,w € Q{set of singular points}:

$(2) = {0w(2)}eq - (3.14)

We see that each singularity originating from the Borel transform generates a new power
series. These new series reappear, "resurge” in the original series ¢(z) = Y ja,2" due to
the asymptotic behaviour of the a; coefficients.

Now it is time to move from the Borel transform to the Borel resummation. Under certain
conditions, Borel resummation produces an actual function reproducing the original power
series. We define a Stokes ray, a ray in the Borel plane that starts at the origin and passes
through a singularity &, of the Borel transform qg(f ). This ray in the complex plane can be
formally represented as R, with 6 = arg(&,). The Borel resummation of the power series

#(2) is a Laplace transform along the ray C% = R, :
0 1 R
@) = [ dterecac = [ dcretac (315)
0 Co

where (ﬁ is analytically continued along the ray Cs.

3.2 Borel resummation: real-life calculation

3.2.1 The beauty of Hermite polynomials

We introduce simplifying assumptions that will make the following calculations less messy
but allow us to obtain some results. We do not introduce any IR cut-offs in the system and

insert them later, ensuring that all the nodal diagrams in the three distinct sectors have
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different momenta. Next, eleven-dimensional momenta may be divided into the radial and

the temporal parts as

k= <k07k) = <k07 |k|7 kQ)v (316)

where kg represents all the angular degrees of freedom.

And finally, to make progress in the calculations, we need to introduce explicit functional

forms for a(ky, )B(lo, 1), and 7( fo, f):

ko) =3 D comt () (ko)
= caoHu(®) + > comHu(ko) + Y cunHu(k) Hy(ko), (3.17)

n>0 m>0 (n,m)>0

B(lo,1) Z D Ho (1) H,u (L),

an Zdan m(fO)-

As a reminder, we also mention here that @, 5,7 represent the coherent states of the three
respective scalar fields of our toy model or, equivalently, the three sets of degrees of freedom
from the full M-theory: metric, fluxes and gravitino fields.

Since we are taking the momenta to be dimensionless, the Hermite polynomials are well-
defined through the dimensionless parameters. The coefficients ¢, bum, dpm used in the
definition of the coherent state eigenvalues incorporate all the angular dependencies coming
from our initial decomposition of the momenta into the radial and the angular parts.

The Hermite polynomials’ choice for the explicit calculations is not random and makes
some sense. Hermite polynomials belong to the class of classical orthogonal polynomials and

are defined by

d" 22 d\" _z2
H,(z) = (—1)”6362% e =7 (x - %) e 7. (3.18)
They also satisfy the orthogonality condition:
+o0 )
/ de H, () H,,(z) e = 2"nI/T . (3.19)
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One of the most appreciated features of Hermite polynomials is that they form a complete

orthogonal basis of the Hilbert space of functions satisfying

/ i | f@)Pe < oo, (3.20)

o0

and with the inner product defined by the integral

oo
(f.g) = / do f(2)g"(x) . (3.21)

o0

Another reason for making use of Hermite polynomials for these particular calculations is that
they allow replacing derivatives over the powers of the arguments of the Hermite polynomials

in terms of a series of Hermite polynomials themselves:

OPH,(x) = H (k) = 2m! [ | H, o (x). (3.22)
m

We also introduce here some useful identities which will be useful for the explicit calcu-

lations of the amplitudes:

" [n

H, (k) = H,(~ ki + k") =27*> H, ,(—V2k3)H,(V2k?),
p=0 \P
o Li H, o (K) .
~2n = ml(n —2m)! '

Another interesting result to note is the value of the H:

n
H™ (k) = 2"m! H,_,(k) = 2"n! (3.24)
n

Now we are ready to commence our total amplitude calculation. We will do it in several
small steps, taking each sector at a time and then combining all the results. In all the
calculations, we assume the slice over the angular directions and use only radial components

of momenta.
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3.2.2 Explicit calculations of the nodal diagrams’ amplitudes

We start with the ¢, sector with a set of momenta ly; and the dominant nodal diagram to
N®™ order in coupling. Note that the computations for ¢, and ¢3 sectors will be very similar.
The presence of the derivatives of J(f) in the ¢3 sector is compensated by the fact that
derivatives of the Hermite polynomials can be replaced by other Hermite polynomials with

the final structure almost identical to the ¢, sector.

The general form of the order g)¥ dominant nodal diagram is given by

._ ¢1 = j§1 v Cpt1 = j:p§7v+1 v _.
G2 = 22 lo; Cpt2 = Pg Luj
._ j=r41 j=pF2r+1 _.
o— ' ' —o
1 1
1 1
1 1
p= 3 lu; | 1SN = gﬁ ) Lo
.— ji=p | | j=(N—-1)r —.

(3.25)

We can see that each order in the coupling constant adds its own set of 7 momenta [,; to
the total structure of the nodal diagram, eventually realizing N copies of {l,, } sets containing

r momenta. The amplitude of this complex diagram is given by the nested integral structure

Nr T 1/2 " ﬁ(l )lml
gQNSl:[l(b_s) ZC(ml,...,mNr)/k a1, b(lml (3.26)

IR

g Bl [ EIC L
X d™M i, Nr—1 / d" i, LNe 4o 3.27
/lNr_z M b(le) w7 b(ny) (3:27)

where the combinatoric coefficients are defined as C (my, ...mx;).

Taking into account the explicit form of the propagator

V)= =117 =—1? ( — 1—2) : (3.28)

and the Hermite polynomial in terms of its arguments
("
H,()=nlY ————— (21)"", (3.29)

= ml(n —2m)!
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we can integrate over the temporal and radial part of momenta.

It makes sense to make all the steps in the following computation very explicit with all
the intermediate algebraic manipulations since we will need to perform similar calculations
several times.

The integral we are interested in is the following one:
e
z) . (3.30)

I (l
d'l, .
/kaR b( 7')

We take into account the explicit form of all the integrand parts in terms of the Hermite

polynomials:
myp—2
l;nr l;n»,» my—2 my—2 T — l2 2

(—=1)? o (=1) .
_ (—1)Pta o -
- %qn!m!p!q!(n o) — 2 2 )" (3.32)

We also can rewrite the integration measure in the temporal and the radial part as we

@ o © Ko |l
/ di, :/ le/ dlol:/ le/ dl lg/dQ, (3.33)
kir kIR kir kir kir

where 1 is the radial part of the momenta, and [ df2 integration takes care of all the implicit

mentioned before:

angular dependencies.
We make a choice to do the [ dly integration first:

mp—2

1o Z(Q] . 2
/ dly (21p)™ % <1 - 1—2) : (3.34)

kiR

The value of this integral is given by some special functions, such as the gamma function,

which will be difficult to analyze. Fortunately, we are interested only in the approximate
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results which can be obtained following only the highest powers of the energy scale. We open

up brackets and evaluate only the first term in the resulting series:

" dly @i = 2 2q+1
2)" N = —————— . 3.35
= (3.35)

kiR

Similarly, the integral over the radial part gives us the result:

2n72p

|l
/ dl 19172 (21)" % =

kIR

n+my—2m-+8
r ) 3.36
n+mr—2m+8|ﬂ| ( )

Combining all these nice simple results, we obtain the following expression for our generic

term from the amplitude:

M l lmr 14
/ d*l, (b(l)) _/ dl,o d 110" anpH m(lo)
kir r

kiR
o= gl (n—2p)(m —29)0 (m—2¢+1)(n— 2p+ m, +8)

where the [ b,,,,,d2 part takes into account the integration over the still unknown part of the
bnm angular dependence. It would also be interesting to see the behaviour over the energy

scale p = (o, |p|) by isolating one term in the whole expansion for the values m =0,¢ =0

2 3 mr
/ d"l, AT (3.37)
kiR l

972 (_1)Pp)
( ) n /bnon Iu0|’u‘n—2p+mr+8 4o
pl(n —2p)(n —2p + m, + 8)

n=0 p=0
Since our main interest lies in the factorial growth of the particular amplitude configuration,
we note that the individual term in the amplitude of the ¢, sector does not have an expected
(Nr)! growth. From the previous analysis, we know that there are in total (Nr)! terms
contributing to the nodal diagram in the ¢y sector. At the same time, our analysis shows
that each term in this diagram is suppressed by at least ﬁ numerical coefficient such that
the system as a whole does not contain an exponential growth.

The ¢3 sector, in many respects, reflects the previous case with one essential difference:
the amplitudes involve expressions with the derivatives of J(f). Potentially, it could make

the computations more involved. But, at the very beginning of our analysis, we have made
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a smart choice for the orthogonal basis of the Hilbert space of functions. The Hermite
polynomials allow replacing derivatives of the Hermite polynomials in terms of a series of

Hermite polynomials themselves:

O"H,(x) = H™ (k) = 2"m! " H, (k). (3.38)
m
As a result, the full analysis of the ¢35 sector would take almost exactly the same steps as
we made for the case of the ¢, sector. The conclusions about the amplitude growth are the
same: the number of diagrams increase as (N (s — 1))!, the individual term does not show
the (N(s — 1))! growth, confirming that the amplitudes of the nodal diagrams do not grow
according to (N(s — 1))! law.

The presence of the source field in the ¢; sector makes the computations here slightly
more involved. And the most prominent difference between the two other sectors is the
presence of the wave function of the source field. First, we define the amplitude of the most
dominant nodal diagram as

T(ky, ko) = g f[ (”8)1 Z]D) M, ..., Mixg) a(k(llzf)m /k A"k, %

Iz a MNg - ep (1

/ dnqu a(qu>qu / A K e (X)eﬂ'k(}ta(k )
qu,1 a<qu> k:Nq

To make this expression more palpable, we also draw the respective nodal diagram, which,

as expected, is very similar to the other cases:

q pt2q
= 3 kuy Ept1 = 2 ku
j=1 j=p+q+1

2q p+3q

B @ e ™ (3.39)

Ng
N = > o
j=(N-1)q

J
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Once again, one main goal is to prove or disprove the naive expectation that the amplitude
grows as (Ng + 1)! since there are (Ng + 1)! different nested integrals.
To find the total value of the amplitude, we need to integrate over all k; momenta:

"
/ d" ki Dk, Ky o).

kIR

The set of integrals without the source wave-function follows the same computation algorithm
which has been done for other cases. There is nothing new here.

On the other hand, the integral with the source term present needs additional attention.
First, we need to choose a more specific form of the wave function ¢ (X). The idea is to

obtain only a temporal dependence at some specific limiting case. We make a definition

et = F o, (—u - kt) F(k.X),

- mlw|k? w?

where in the limit w < 0 we have a delta function

—k2/w2
lim & = 5(k),

w—0 TW

which leads to the following simplification:

lim ' d"k ¢k(X)6_ik°t _a—(k, ko) =

w—0 Eir a(k‘)
I (] 2 2
R oalk) k —(k — krr) —ikot
= }JIL% . dko dk k 2 o P ) e F (k,X)

M .
_ / dko 5(k — krp)e ™' F (k,X).

kIR

The other ingredient for the successful integration is the use of the Riemann-Lebesgue

lemma:
b ' N-1 ' (n) b
/ dk ™ f(k) = Z (—1)™ ™ {zx)’gﬂ + O <ﬁ) : (3.40)
a n=0 a

where £ (k) = %S{) and (k) = f(k). A sufficient, but not necessary, condition is that
f(k) is continuously differentiable for a« < k < b and ff |f(k)| dk < oco. In the limit of
x — 00, the factor e oscillates faster and faster such that e™**f(k) averages out to zero

over any finite region of k inside the interval.
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We move back to the most dominant diagram of the ¢; sector and calculate the integral,

which contains the wave-function part:

o kot (K)o o —ikot
/ d* ki (X)e "o = lim d"k Re (¢y(X)e )
kNng a(k) w—0 kNg

Z/dQ Con, mH2n ]C]R) / dk?() Hm(k?()) (e_ikot —|— €ik0t) . (341)

krr
We note here that, since at the very beginning of our path-integral analysis, we decided to
ignore the complex parts of the present fields, the Fourier representation of the real field
components and only positive momenta is given by
b(x) = / "k Re (i(X)e ™) . (3.42)
0

To find the integral over the temporal domain, we use the Riemann-Lebesgue lemma:

'u . .
/ dko Hyp (ko) (e~ + e™ot)

krr
- _ 1 dPH, (k) & 1 dPH,, (ko)
ik t 0 p ik t m 0

; S dkp ! pz G ang (3:49)

Ho
—i - n\ H,,_ (kO) i - n\ Hy,— (kO)
= e Z(_l)pzpp! (_itgpﬂ + e’ Z(_l)p2pp! (it)l;url
p=0 m p=0 m

RIR

Now we can integrate the total amplitude of the ¢, sector following the same technique used
for the sectors without the source term. Since we are interested only in the energy-dependent

part of the amplitude, we combine all the spacial dependencies into some coefficients:

Ng+1 1/2
T
c = ]I (b:) > D (my, ma,ma, .., MNg-1, MiNg) D, (NF)Dy, (N(s — 1)) (3.44)
t=1 {mi}
p alk k™ [+ ko) k2 p ko )k p Koy ko2
x / d”/ﬁ%/ Ay &/ d"'k, alky)ky " / A" ks, Alk2q)kay™
kr a’(kl) kir a’(kQ) kir ( ) kir (kQQ)
” a(qu—l)k;;N—qu " a(qu)ngq >
X d"Vkngog ——— 070 A"k 7(1 (/dQc m Hop (k )
kr N a(kNQ*l) kir N a(qu) n—1 Znm 2”( IR)

where D (my, ma, ma, ..., Mng—1, Mny) is @ combinatorial factor that has been defined earlier.
The coefficients coming from the two other sectors are incorporated into the D, (Nr)D,, (N(s—
1)) combinatoric factors. Each of them contains an N! growth inside, which suggests at least

(N!)2 growth for the C) factor. We can see that our combinatoric factor C'y’ has only N
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and m as free parameters since the final result should not depend on which sector we impose

the momentum conservation condition.

3.2.3 The amplitude of the nodal diagrams to Nth order

We begin our investigation of the nodal diagrams to the Nth order by taking a product

of the three diagrams from the previous subsection representing each of the sectors.

overall coupling constant g

We define S™

representation of this combined amplitude is given by the following product

The

combines all the coupling constants g2, g¥, g’ for each sector.

() to be the amplitude of the nodal diagrams to O(N) order. The graphical

o e o -9
.:_ &1 p+1 _. ._ X1 Xp+1 _.
o -® . -
o 0 o -0
S(N) (t) = gN ._ &2 _\1)_ Ep+2 _. &® ._ X2 Xp+2 _.
o S < o -@
._ &p EN _. ._ Xp XN _.
S —1e o @
t n1 Np+1 3
e o®
by ._: 72 ' . Mp+2 3_. (345)
| 2n ; : @
o e
.—6—_— P . . N —_—.——.
o -»

The amplitude of each subbranch is given by the generic expression calculated in the

previous subsection

m

m

- p2p(c m p(kO) ikot

gN Z Zt)p—O—l

p= kir

m ()
N <_1)p2p(cm Hm—p(k0> —ikot
EEAD D T

(3.46)
p=0 kir

To write down the expression for the total amplitude, we need to consider that we have

an infinite series since all the Hermite polynomials contribute. At the same time, we have a

Chapter 3



3.2. BOREL RESUMMATION: REAL-LIFE CALCULATION 58

divergent asymptotic series with at least (N?)! growth. The defining feature of the asymptotic
series is that the partial sums S™(¢) will first approach the true value of the function that
they approximate, and then, for N sufficiently big, they will diverge. We arbitrarily divide

the series into decreasing and increasing parts:
1

SM(t) = gN Z (—=1)r2rCVHL (ko) + 22: pQPQ'C(N H,_p (ko)

= (1 — p)!(at)p+t o ) (it)p+1
3 p (N) 4 (N)
2p3'(C H;_ (ko) p2p4'C H,_,(ko)
Py Ul 3 SR bl
p= =0
+ i (-1 >p2pN'C(N Hy (ko) Ni 1)P2P(N + )‘Cl(\INllHNJrlfp(kO)
= (N — p)!(at)r+1 — (N +1—p)!(it)r+!

N+s N+4s—p\ 0 .
3 RO O 0y | es|
3 P 0 kIR kIR

Next, we want to rearrange the terms in the infinite sum to make possible the Borel resum-
mation. From the definition of the Hermite polynomial, we find that H,,(u) ~ ™ and thus
H,, (1) > H,,—(1)). The following form gives us more intuition about how to proceed:

1 N N
SO = T CVHL (ko) 2- TNV H, (ko)
a=0 it (it)Q
+<cgN>H2(ko) 2.2V H, (ko) | 22 - 2105V Ho (ko)
it (i) 07
LG5V M (k) 2-31C Hy(ko) | 2 3ICS Hy (ko) 2°-3ICT Ho(ko)
B H
% eikot + gN —ikot [C C.] (348)
kIR kIR

From this representation, it is easy to extract the dominant contributions at every O(N) for

i > 1 and finite ¢. For instance, the dominant contribution for the N-th piece of the infinite

sum
CYVHn (ko) 2 NIC{"Hn_1(ko) | 22 NICYHy_s(ko) - (—1)N2N . NICQV H (ko) kot
it (N — 1)!(it)2 (N — 2)1(it)? (it)NT1
N CY Hn(ko) 2 NICEHn_1(ko) | 22 NICYHy_»(ko) . (—1)N2N . NICQV H (ko) kot
it (N — D)l(—it)2 (N — 2)1(—it)3 (—it)N+1
c® o sinut
~ e NI Hx (k) = (349)

The dominant contribution gathered from all the terms of the infinite sum is given by

N-1 ™ c o ) a
Siom = 9" [Z[ (N = )" B (ko) + i (N B (ko) + 3 7o (O 9)1° HN+s<ko>L
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sinput

. 1s given. Now we can see that a generalized case

, where only the coefficient for the
of the Gevrey-a series captures the asymptotic growth. To apply the Borel resummation
procedure, we use the Stirling approximation

(aN)!

aaN

(N)* = ~ (aN)!, (3.50)

which works for the case @ << N. Now our dominant coefficient has the following form,
which can be resumed

N _ N |N= e, & = 1<\1N4zs '
Sdom =9 Tz::l N =) (a(N =) Hx—p (ko) + (@ N)' (aN)! Hy (ko) + Z N +9)! (a(N + s))! Hyys (ko) )

Now it is time to recall that denominator of our path integral formulation of the Glauber-

Sudarshan state

[ De1DpsDps €St Di(@, B,7) g1 (,y, 2)D(@, B, 7)
[ De1DpaDeps €S Di (@, B,7)D(a, B,7)

is independent of the source and thus should be convergent. This fact gives us an additional

, (3.51)

<901>E

very useful piece of information, i.e. a constrain condition on the coefficients (Cl(\I )

ZQN Z 1)P2P m) cNH,, _p(ko) — ). (3.52)

— (m—p)-

kIR

for all p € Z, starting with p = 0. To make this condition useful, we find the momentum
representation of f(p) using the Fourier cosine transform and the Riemann-Lebesgue lemma.
The cosine Fourier transform is more appropriate here since we need to take into account
our simplification condition that all the functions are real and the Fourier transform range
should contain only positive momentum modes. We also note that the left-hand side of the

last equation is the expectation value of the graviton field on a coherent state. Thus, we

8
need to find the cosine Fourier transform of g, = ( T > ’ (\/_ t)

We start by introducing a generic cosine Fourier transform

Feos( \/>/ dt f(t) cos wt. (3.53)

In our case w = ko and f(t) = (ft) , where pn — 1 = —8/3. We also need the value of
the definite integral

o 1
/0 dt t"cos wt = JF([L) (:08“77T (3.54)
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for w > 0 and 0 < Rep < 1. In our particular case
11
kT (3.55)

2 w1 [ 2 w1
Feos(ko) = \/;A;/o dt t*~1 cos kot = \/;A 2 k:”F( )COS;,

where = —5/3. We find

2 (5 57\ s [3 1 5\ s
Fcos(kO) = \/;A 3] (——) COS (—F) ]{?0 = — %wr (—g) ]{?0 . (356)

3
In the next step, we take to use the Riemann-Lebesgue lemma to write this result back in

the finite range kg < kg < . We need to add the complex conjugate part to extract the

sin and cos parts of the series.
g ikot 1.5/3 : ikot 1.5/3
/ dko ™'k + / e (3.57)
K KRIR
ikot —ikot
‘ ) . (3.58)

= i(—l)pg (g — 1) (g —p) k3/3_p ((;)pﬂ + (—at)ptt

p=0

cos ut .
! and STt

The expression in brackets generates a series in J5£7

N eikot e~ tkot kot ikot 1 ikot ikot

_ 0 —tko 0 o

pZ(ZtP-H it)p+1)_(e me) g (e 5
(

+ ( ikot + e*lkot) t14 + .

ikot —ikot
) 3
sinkgt coskgt sinkgt coskgt
=2 -2 -2 2 3.59
t 12 t3 + t4 * ( )
Now we are ready to write down a generic coefficient of the f(p) series
(3.60)

KRIR

/3 1 515 (5 5 _p|H
= (-1l (=2 )2 (Z—1) . (S—p)K/*T
From our previous discussion, we know that C'’ combinatoric factors have at least (N

growth. We generalize this case to include all possible cases

b= ANY ( / dQan.m H%(EIR)> (N)* (3.61)
n=1
with a > 2 and where coefficients A are given by
A = A({{ma}, {ni}, {f:}) (3.62)
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k km7 s nj s—1

’ H B . w ~ Pt
= Bi(mi,..,mq)B2(n1,..,nr)Bs(f1, .., fs— 1)1_[/]€Rd11 o )Z l_Il/deulj (bg)])] II/ICRdllftiv(cf(t}j;t ,
i ks j= I e I t

To streamline the following calculations, we will consider the simpler case A®N ~ AN. In

this case, the combinatoric factors c) grows as

CN = AN(ND"a,,, (3.63)
with a,, = ( f dQdcon m Hgn(kIR)). The Borel resummation of this asymptotic series gives
us the followmg result

NN ) ' >[5~ o aN

m=0
= Ji7a /0 dS exp <_g1/a> [~ ASe , (3.64)

To make the last result more clear, we will go over the calculations step by step and will
concentrate on the case a = 1. First, we take outside the N dependence from the sum over
m:

[i cc§§>Hm<ko)] = AN(ND i am [Hy (1) — Hy (k)] = cAY (aNY). (3.65)

m=0 kiR

where ¢ = > °_ a,, [H,,(1) — H,,(kr)] is a constant independent of N and we take av = 1.

We have a formal divergent asymptotic series with N! growth

=> gNcAVNL (3.66)
N
To remove this asymptotic growth, we make a Borel transform on the series by redefinition
gV — 52 and obtain a new infinite series
SNeAN = 3.67
Z AT =1 SA (3.67)

The last series is convergent only for the case |SA| < 1. In the next step, we analytically con-
tinue the result for all values of S.A and resume the new series using the Borel resummation

procedure

s@)o) - | s d(gS) e = / " asd(S)e s = L / ” 45e-S

Chapter 3



3.3. THE POSITIVITY OF THE COSMOLOGICAL CONSTANT 62

There is one additional subtle point about the off-shell contributions, coming from the

ko = 0 modes. We introduce them by making small modifications to the source wave function:

Y (X)e ot = K exp (—(k_wl;m)Q - ik0t> [1 - Lexp (_582>] F (k,X), (3.69)

7 |w|k® |wl

where F (k, X) solves the Schrodinger equation constructed over the solitonic configuration.
In the limit w — 0 it satisfies F (k =Kkig, X) =1.

Since the presence of the delta function 0(kg) removes the necessity of the Riemann-
Lebesgue integral, we obtain the following result after moving to the Fourier space, which
contains only one equation:

> g% CVH,,(0) = ﬁ (3.70)
N=0  m=0

We also note that the coefficients C& undergo some modifications:

Ng+1 1/2
s
cV o= JI (t> > D (mr, ma,ma, ..y mxg-1, MNg) D, (NF) Dy, (N(s — 1)) (3.71)
o1 \be {m;}
y /H A\ al(ky) k" /M Ak a(kNQ)k;\In;I 3 (/dQ Ha, (k )>
7N N - /7 N & e m 7 IR
- 1 a(kl) hi q a(qu) 2n,2m 2n

We observe, that we still have the same factorial growth for these coefficients, which gives

us, after the Borel resummation procedure of the left-hand side, the following equation
1 [ S\ = (a,,Hy,,(0) 1

Where A, = i (f dQCangm Hgn (E[R))

n=1

3.3 The positivity of the cosmological constant

The analysis from the previous subsection suggests that under some conditions, we can
obtain the positive value for the cosmological constant. By absorbing all the constants and
redefining cosmological constant, we find that cosmological constant may be expressed in

terms of a non-perturbative series in the coupling constant g in the following nice way:

> S 1 1
/0 dS exp (—gl/a) = ASe — N5 (3.73)
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We require the left-hand side of the equation to be a positive definite quantity for all positive
integer values of «, and all values of A. Under such conditions, the cosmological constant
remains positive. We also note that the last expression is based on specific conditions, which
demand a positive cosmological constant background. Thus, although the right-hand side
remains positive independently of the sign if A, the obtained result is only possible for the
case of A > 0.

Another very satisfying outcome of the last expression is that there are no perturbative
limits to the value of the A, suggesting that perturbative corrections are never enough to
change the sign of the cosmological constant. It seems, that the cosmological constant can

only be realized non-perturbatively.

The analysis of the left-hand side suggests that there is a trivial case with A < 0, which
makes the whole integral positive independently of the values of . In case when A > 0 the
integral develops poles on the Borel axis, which makes the analysis less trivial but also more

interesting. The general solution of the integral, in this case, is given by some expression in

terms of the Exponential integral Ei(z) = — f:i % e~! in the following way
S 1 - 1 aj aj —S
d 2 7:757 ——_|Ei| L— tant 74
/ S exP( gl/a) L=AS® i adaf™! exP( gl/“) 1( gl/e ) - constant, (3.74)

where a; are the roots of the polynomial

(S —ai), (3.75)

1

1
S* — — =
A -

[e3%
1=
implying that the value of the integral may be expressed in terms of the sum over the roots
of this polynomial. We note that only one positive real root contributes since S' lies in the
range S € [0,00]. The problem comes from the fact that we need to compute the principal

value of the integral to extract a real answer. It can be rigorously proved using complex

analysis that the integral

PV / i (3.76)
V. _ 3.76
. T Ase

is positive definite.
To make things more visually attractive, we will analyze in some detail the tree-level con-

tribution to the equation determining the cosmological constant and introduce some figures
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showing the possibility of the A being positive and small. In this tree-level approximation,
we can write down the expectation value of the scalar field ¢, in the following suggestive
way

(p1)7 = T1 + 4T, (3.77)

where the value of the small contribution due to the presence of all the remaining diagrams

can be deduced from our previous analysis of the nodal diagrams

e o[B8 (5 ) o () o

where O (VQ) indicates the contribution of the higher order nodal diagrams. We are inter-

ested in the values of @(k) for which the integrand vanishes,

a(k) = ;L/f;i) (v LV, [1- %) , (3.79)

without the higher-level contributions. The potential solution which would make 6T very

small is

1

a(k) = v (k"% + x(k)) + O <\}2) (3.80)

with the suggested scaling m* = % We will use the last result slightly later.
Right now, we move back to the equation that determines the possible values of the

cosmological constant and make some further analysis.

> S 1 1 1 [2Vgl/e
PV/O dS €exXp (_gl/a) 1 _ Asa + O (v) == w (T) s (381)

where b, = k:IRkIR)

The volume V appears because the denominator of the path-integral
eliminates all nodal diagrams in which the source does not couple with the interactions.

From here, we find the expression for the cosmological constant

/4
Vgl ® A
A—( ; ) — ° T (3.82)
¢ P.V. [dSexp|— S — (x)
(P s e (—530) i
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where Ay = a,? with ag takes care of the dimensions. We can rewrite (3.82) in a slightly

simpler and suggestive way by using the parameter ¢ = (Ag)l/ “ as:

ALY AAN 3/ VAV o\
A= 0 =7 = 0 ( ) : (3.83)
ba ( eu/c> / ba Lea

P.V. [du ==
0

1—u®

where I, is the principal value integral from the LHS. Looking at Figure 3.1 and Figure
3.2, where we plot the behaviour of ﬁ from (3.83) for o = 2,3, 4 respectively, we see that
in the limit ¢ — 0, ;= — 1 irrespective of the choice of . This suggests that A takes a

definite value of:

A:(m?0> +0 (e, (3.84)

which may be made small. There is also a possibility that the cosmological constant A may
be determined for a given choice of o by the minima of the curves. These numerical plots

suggest that the minima approach smaller values as we increase the values for a.

1.05 — a=2
— a=3
— a=4
1.00
— a=5
— a=6
0.95 — a=7
0.1 0.2 0.3 04 05

3/4
Figure 3.1: Plot of (ﬁ) versus ¢ = (g.A)'/3 where I3 is the principal value integral given
in (3.83) for a = 3. Again, observe that for ¢ — 0, =~ — 1 and the cosmological constant

A from (3.83) takes the specific value of (3.84).

The vanishing of the perturbative contributions led us to impose the vanishing of the
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integrand in (3.78). This gave us the following constraint:

féllg B k:;k) @((:)) * 2;;{)) O (%) =0 (3.85)

Such a constraint immediately fixes @(k) as in (3.80), which we may re-express in a slightly

more suggestive way as a scaling relation of the form:

~(k k) o]
where the Glauber-Sudarshan states associated with a(k) = k;ﬁg are shown in Figure 3.2.

kir / f<1[ k; ks k 7

Figure 3.2: The Glauber-Sudarshan states associated with y = 2Va(k) = k''/3 with ki <

k < p in the configuration space. This is part of the full form for @(k) given in (3.86) with

—_

v(k) = 3
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Chapter 4

Heterotic strings, fermions, and

M-theory uplift

This chapter includes some computations only tangentially related to the main theme of the
work but is included as an example of possible extensions of the basic toy model presented
in the thesis. In this sense, this part is very incomplete and unsatisfactory. At the same

time, it may provide some insights into the future developments.

4.1 Conformally related metric

The question that we want to ask here is that whether a generic background of the form:

[—dt* + gijda'da? + ga3(dx®)?] + H2(y) [Fa(t)gmndy™dy™ + F1(t)gapdt®dy”] (4.1)

can also be realized as a Glauber-Sudarshan state. Here F;(t) captures the dominant
temporal scalings, and in what sense they do will be elaborated when we lift this configuration
to M-theory. Note that a?(t), with ¢ being the dimensionful conformal time, is kept arbitrary,
with the only condition being that it becomes large at a late time. This means the background
(4.1) naturally exzpands at late time. The other factors, g;;(x),g33(X), gmn(¥y), gas(y) and

H?(y) are the unwarped spatial metric components and the warp-factor respectively. The
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coordinate y = (y™, y*) € My x My and x = (t,x) € R*!, so that nothing depends on the
third spatial direction parametrized by 3 here. We will soon make a further restriction by
converting gog = 0q3, S0 that My = g—z where Zy will be an orientifolding operation. Such
a choice will give us a way to reach the heterotic background by making a series of duality
transformations. In that case y = y™ € My.

For various choices of (a*(t),F;(t)) and the internal sub-manifolds, we can study the
possibilities of realizing de Sitter state in various string theories (including also in M-theory).
As was discussed previously, it is possible to realize a four-dimensional type IIB superstring
background containing dS isometries as a coherent Glauber-Sudarshan state. We want to
study a generic background with some temporal dynamics incorporated into the F;(t) scaling

functions:
ds® =a*(t)/H*(—dt* + da? + da3 + dx3)
(4.2)
+H?(Fy(t)gasdy®dy” + Fo(t)gmndy™dy")

where H? = H?(y) is a warp-factor , and (y™,y*) are coordinates of internal six-manifold
ME = M, x M,. Here y™ parameterize M, and y® parameterize M, such that M5 =
My x My. F(t) for i = 1,2 are some time-dependent functions that satisfy FyFy = 1. The
time variable is, as usual, the dimensionful conformal time. The expansion of the back-
ground is generated by an arbitrary parameter a®(t), which grows in time. The factors
9ap(y) and gmn,(y) represent the unwarped spatial metric components. The restriction of the
two-manifold M to a special case My = g—z with Z, being responsible for an orientiefold-
ing operation, and a respective conversion g,g = 43 Will help to change to the heterotic
background by means of duality transformations.

The ultimate task of this section is to compute Einstein’s tensors G, Gin, Gag etc., for
this generic metric on the Type IIB side.

Following some suggestions, I can change the original metric (4.2) to a more simple

conformally related metric

1
ds? 2 (guwda® dz” + H* Fi(t)gasdy“dy” + H* F5(t)gmndy™dy") , (4.3)

Chapter 4



4.1. CONFORMALLY RELATED METRIC 69

where g,,, the Friedmann isotropic and homogeneous universe
Gudaz” dz¥ = —dn* + a®(t) dy;da’ da? (4.4)
and 7 is the conformal time

bodt
0= 25 (4.5)

The relation between the Ricci tensors of the conformally related metrics is relatively

easy to find. We define two metrics as

L
ds*(typel IB) = 72 ds? (4.6)
where d3? is given by
d3? = g, dat dz” + H* Fy(t)gapdy®dy’ + H* Fy(t)gmndy™dy" (4.7)

Then the Christoffel connection for d3? is calculated to be

oH
H

OH 5y uH

After some algebra, we find the conformally related Ricci tensor to be

~ V. VyH V2H (VH)?
_ — 4.
Rab Rab +8 H + ( H 9 H2 Gab, ( 9)
where V is a covariant derivative, such that
V.H =0,H,
(4.10)

VoVoH = Vo (0,H) = 0, OpH — T¢, 9.H.

We first need to find Christoffel connection on d32. To reduce the clutter, it is beneficial

to incorporate all the details of the inner metric on M° into a single metric tensor h;;:
hij(y, t)dy" dy’ = H* Fy(t)gagdy®dy” + H* Fy(t)gmndy™dy". (4.11)
The non-vanishing components of the Christoffel connection for the total metric

ds? = g da dz” + hydy' dy’ (4.12)
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are

. 1
I = =59 0hij,

FZV = FZI/ (gw/)a

N . (4.13)
r,= §h178uhkj,
f‘j‘k - Fé’k(hij)'
Now the components of the Riemann tensor can be calculated
Rl =R,
- 1
Zij = ) (Vi O7hj, — V; 07hiy)
Do 1 kl o kl o
Rﬂj = Z (h 87—h,lj 8 h’zk’ - h 8Thl,- 8 h]k> y (414)
~ 1 1
Ry = Ry (hij + 7 /mi0 hi d,h" — 7 /i B d,h",
. 1 1
R?iu = Zgﬂphkla‘uhﬂ 8phzk — ég"paﬂaphij.

We first compute the Ricci tensors of the conformally related metric by contracting the

relevant indices in the components of the Riemann tensors (4.14):

~ 1 . 1. ..

Ruu = R/ﬂ,(guy - Zﬁuh” &,hij - Eh”@ (%hij,

N 1 1 1

Rij = Rij(hij) — 59”8,) Ophij — §hik8"hjl d,h* + thlaph” d,h* (4.15)
~ 1

Ry, = 3 (haVi0,h™ — 1y V,0,hM) .

To obtain the Ricci tensors for our original metric (4.27) we need to move back to the hidden
variables of the h;; metric tensor and recalculate all derivatives with respect to them as well

as add a term coming from the conformal factor. After some computation, we have the
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following results for Ricci tensors for the metric in type IIB string theory

LR OR | 0P 0F  0,0,F 0, d.F

R;IL?/ = RW(QW) +

P F3 F Fy
VZH  (VH)?
+ guu ( H -9 H2 3

. 1F, B F Vo VsH
RO = Rus(gag) — | == + 22 | H*Fygo5 + 8 ~2 -2

V2H VH)?

H H?

. 16, 1F2 K E Vo Vo H
RO — R (o) — |22 +-2 412\ ipg gm0
mn (9mn) <2F2+2F22+F1 2} 29mn + H

V2H VH)?

H H?

- 0, F1 0,H

RlO —4 [ @

an R H'’

~ o, Fy 0, H

10 Pt 2 Ym
B F, H'’

VoV H

Rin = Rom(h) + 82—

(4.16)

From the know values of the Ricci tensors of our metric in 10 dimensions, we can compute

the Ricci curvature scalar

RIO — RMNQMN — R}LO g/,Ll/ + Rioﬁ gaﬂH—4F1—1 4 Rir?n gmnH_4F2_1.

v

Some algebraic manipulations provide the following result

12 B F2  F, FF 2H H)?
po_giif BB B AR NVH (VA

Now we have all the ingredients to evaluate the Einstein tensors

Gun = Run — §gMN R.

First we write down the different components of G,y in terms of both F; and F3:

(4.17)

(4.18)

(4.19)
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- 0,0, F 10,RO,F _0,0,F 0,F0,F
GlOZGV— 2 - Zp ) [ o
w = Cn £ 2 B PR
1 F2 By 1 F% 28 0y
s o240 20222 g, ,
i ( IR 2B °R TCRER) ™ (4.20)
(VH)? _ V?H
+ (36 77 8 ) 9w
- 1B 1 F 1F _F RE (VH)? _ V?H
GO — Gogtos =2 2L -2 4,972, 7172 _
o Wﬂﬁ@ﬂ4@+2@+ RTRR O Tm g (421)
Vo VsH
8
+ TR
GO — Gt E_EF_E §§ §5§+36(VH)2_8V2H
mn T EmnEIm \ B 4 F2 T2 B, 2 BB, H? H (4.22)
g Vn Vol
e

Next, we can introduce the condition on Fi, F,

F1F22 == 1,

(4.23)

which generates the additional two relations between the derivatives of F; and F5:

F F
Lo 29
R

F
2-2=0
25

B
Fy

F3
F3

(4.24)

(4.25)

These constraints on the derivatives of the time-dependent F; allow substantial simplifica-
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tions of the 10-dimensional Einstein tensors:

T s ]
G = Gup + (% %z + % + 36 (V;?Q ~8 V;[H) H*Figas

L Ve ZBH,. | (4.26)
Gl = G + (2 %2 - % % + 36 (VHIi)Q ~8 Z—H> H'Fygyn

g Vn Vol

4.2  From type IIB to heterotic SO(32) superstrings

The question about the possible realizations of dS coherent state in other string theories
besides Type IIB heavily relies on our ability to move between different string theories using
duality transformations. Thus, an appropriate T-duality transformation with a subsequent
orientifolding operation would help us to investigate the prospects of dS states in Type
I theory. An additional S-duality transformation would bring us to the SO(32) heterotic
theory.

T-duality acts on the background fields present in a string theory.

For the type IIB superstring theory, the massless bosonic sector consists of the gravi-
ton g,,, the dilaton ¢, and the Kalb-Ramond field B,,,, for the NS — NS sector and the
antisymmetric gauge fields C'(©, C’ﬁ), C,ii)w, for the R — R sector.

On the other hand, the massless bosonic sector of the type I superstring theory in 10
dimensions consists of the graviton g, the dilaton ¢, the R — R two-form Cj and the
SO(32) Yang-Mills gauge field A,,.

In our particular case, the metric on the type IIB side has the form

a*(t)

2
ds® = VB

(—dt? + dz} + da3 + da3) + H?(Fi(t)dapdy®dy” + Fo(t) gmndy™dy")  (4.27)

where H = H(y), and (y™,y®) = coordinates of internal six-manifold M°®. y™ parametrizes
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M, and y® parametrizes T? such that M® = T2 x M,. F(t) for i = 1,2 are some time-
dependent functions.

The non-zero gauge fields are NS — NS B, gauge field and R — R Cpg,, 2-form. The
dilaton has the value of zero: ¢p = 0.

To obtain a type I solution, we perform a T-duality transformation along both sides of

the torus T2. Let’s introduce the torus coordinates x,y
z=x+ .

Then we use Buscher’s duality rules adapted to our situation. The metric terms of the form
Gzm, Gyn are zero and can be ignored in the duality mapping. We also remember that we are
doing a double transformation which generates additional terms. The type I metric changes

to

1 1 1 1
gql;mn = Gmn + _B;tanm + _BynBym - H2F2.gmn + —Ba:nBacm + —B nBymu

- vy H2F, H2F Y
1 1
I
- _an = —any

Jan Gxa H2F1

L (4.28)
gyn - gyy yn — H2F1 yn» .

rxr gxx H2 Fl Y Yy gyy H2F1 .

Then the T-dualized part of the metric can be written as

Ghm dy"dy™ + gb, dx'dy" + gl dy'dy" + gL, (dx')? + g], (dy”)?

1 (4.29)
= H’Fy gl dy™dy"™ + T (de + Bmcly”)2 + (dyI + Byndy”)2.
1
The type I dilaton is given by
oP 1
gt _ _ € _
e? = = ) 4.30
AV g:wc gyy H2F1 ( )
S-duality has the effect of sending the dilaton to minus itself

o = —o. (4.31)

The dilaton in heterotic theory is given by
e = =" S Gyy = H?F. (4.32)
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Finally, our original type IIB solutions become a new, heterotic superstring solution which

in a string frame has the form

ds%., = et ds? (4.33)

= Fya®(t) (—df + gy;da‘da’) + H*F\Fy gnda™da" + (da’ + Bundy™)” + (dy’ + Byndy™)”.

Using similar Buscher’s duality rules for the gauge fields, we can calculate the 2-form fields
on the Heterotic side from the original NS — NS B,, gauge field and R — R Cpg,, 2-form
field.

4.3 Fermionic bilinear series in terms of the general-
ized metric

A possible extension of the G-flux components, by incorporating eleven-dimensional grav-
itino, by generalizing the picture further by first introducing a the matrix-valued operator

of the form:
Dy = Dy + 41 M, 0y, (4.34)

with the imaginary part scaling as the vielbein (and thus would have the corresponding Hg—ﬁo
scaling), where the real part would simply be the derivative (but not the covariant derivative
as the latter would be automatically generated from the curvature and the flux terms in
the series (?7)). This distinction between the real and the imaginary parts comes from the
purely imaginary representations of the eleven-dimensional Gamma matrices because of the
presence of Majorana gravitino.

Let us start by defining the following Majorana Rarita-Schwinger field Ay as:

A= Ot =Y (aklRe D1 4 by, Tm D?*2 + d, Re |D|?** + ¢, Im \D|2’“4)MA\I/A7 (4.35)
{k:}

with the Gamma-matrices in the Majorana representation and Wy, being the eleven-dimensional

gravitino.
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By noting that I'** is a curved space Gamma-matrix and therefore I'** = I+ by using

A

eleven-dimensional vielbeins e;*. Using this, one could replace the metric gcp, which is

symmetric in C and D, by the following:
gcp) — Ecp = e‘ée% [nab]l + 1l ) + CQF[ab}], (4.36)

for some constants (¢, ce) and I is the identity matrix in the same representations as the
Gamma-matrices ((a,b) are the internal coordinates and should not be confused with the
toroidal coordinates (w®, w®). Choosing the coefficients in (4.35) appropriately, we can mod-

ify the metric (4.36) by adding fermionic contributions as:
gun = ek [l + 2y | + 5 (AON) (4.37)

Where the Lorentz indices over the Rarita-Schwinger fermion as well as the operator O will
have to be inserted in, and c3 is a dimensionless parameter.

The fermionic bilinear series
Qmet = Zc(n) tI'(;\O)\)n (438)

can also be represented using the generalized metric gep.
First, we use the notation X = MO\ to make the calculations more tractable. Then we

recall the definition of the generalized metric gop:
gcp = €& ey [Nl + colay] + c3(AOX)ep = gep + esXep. (4.39)

In the following calculations, we set c3 = 1 to reduce the clutter. It will not affect the final
results.

Next, we note that
trX == g“?(AON)ep = g“" (8cp — gop)
trX? = gCDgMN (S\OMCM (S\OA)DN = gCDgMN (&om — 8om) (&b — 8DN)
and so on. It allows us to write down Q,,; using only the metric:

Quet = Y (o) tTX" £2X" - - £1X° = 1) 877 (8cp — gep) (4.40)

n
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+ c) g°PgMN (&cm — gom) (Epy — 8oN) + -

(4.41)

Since this quantum series does not contain all possible elements, such as (trX)?, we
introduce another variation of the quantum series, which includes the previous one but also
generates an additional variety of the quantum terms:

o0
Q2 =3 o [[65X7 = 3 X7 £X" - X0 (4.42)
{pi} i=1 m,n,..,S
This expression is not very easy to handle, so we rewrite it in a more wieldy form as a series

in powers of trX™:

Q=> (Z Y er(1+X)7)* ) (4.43)

kp p

To make sure that this new quantum series contains all the elements of the previous variation
of it, we explicitly calculate several first terms. For p = 1 we have the following
Z ¢, [tr(1+ X)) Z ¢, [trl 4 trX)] Z ¢, [D+ trX))" (4.44)
k1 k1
where we have used the fact that trl = D, the dimension of the space-time.
In the case of p = 2 we have a slightly more complicated term coming from the trace

part:

tr(1+X)? = tr(1 + 2X + X?) = D + 2trX + trX>,
and thus the sum term is

Z czi (D + 2trX + trXQ)kQ

ko

In a very similar way, we generate the third term of the series

tr(1+X)? = D + 3trX + 3trX® + trX?,
and

SO (D + 3txX + 34rX? + X
ko
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We can see that all the powers of the trX appear in this version of the series and much
more.
An additional benefit of using this particular form of the quantum series is that we can

easily rewrite it in terms of the powers of the generalized metric. We note that

CD(

trX = g Xeop = g (8cp — gop) = g°P8ep — D. (4.45)

Then
D+trX=D+g“"gcp — D =g"Pgep,
and

D+ 2trX + trX* = D +2g“Pgcp — 2D + g“Pg™" gongpy — 28“"8cp + D
= gCDgMN gcmEDN,
and so on. Thus, we observe that a generic fermionic interaction of written as a quantum

series Q%t cab be completely expressed in terms of the generalized metric.

To bring the quantum series ngj into a trans-series form, we rewrite the coeflicients c,(f; )

in the following form

d(P) (_l)kp
=3 R (4.46)
>1 p:

Next, write down the first term of the Q,ﬁt quantum series in a suggestive way

> ) [D+ X)) = V(D +trX) + (D + £rX)? + (D + trX)P ., (447)
k1

where the coefficients cfcll), in their turn, are given by the following series

-3 ) S G VN R )
ko ky! N Ky kq! Ey!

+ o (4.48)

1>1
In the next step, we combine the two series to find
(1)(_ ) (1)(_2) (1)

d 1 d ds’ (=3
c(ll)(D +trX) = IT(D +trX) + QT(D + trX) + %(D +trX) + ...
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(1)(

dy’(—1)?

(1)<

dy’ (—2)?
22—‘)(1) +trX)? +

&y (=3)°

YD + trX)? i

(D + trX)? +
Summing all these infinite series terms by term, we obtain the following interesting result

> ) D+ X)) = diV [exp (=D — trX) — 1] + dy [ exp (—2D — 2trX) — 1]

k1

—|—d:(,)1) [exp (—=3D — 3trX) — 1] + Z d [ exp ( — 1trX) — 1].

>1

The rest of the terms of the original Qmet quantum series can be rewritten similarly. At
the same time, we can write all the above computations in a very condensed formal way,
ignoring some mathematical subtleties but giving the written result anyway. For instance,

the second term can be formally manipulated as

Z ) (D +2trX + trX?) = Y Z (D + 2¢rX + trX?)"

ko 1>1

= Z d Z Dl (D + 2trX + trX2 Z d exp —ID —2[trX — ltrXQ) — 1} .

1>1 ka=0 k! I>1
The beauty of these series comes from the fact that they are all convergent due to the

ltrX2p

presence of the e™P and e~ suppression.

4.4 M-theory uplift and Riemann tensor scalings.

Interestingly, the form of the M-theory metric always remains the same for any type IIB
cosmology expressed using conformal coordinates as in (4.1). The only change is the value
g = a(t) which is sensitive to the functional form of a(t).

Clearly, and as mentioned earlier, for expanding cosmologies, the ITA coupling can be made

small. Demanding - < 1 provides the temporal domain in which controlled quantum

computations may be performed in M-theory. For the usual de Sitter case, irrespective
of the choice of the de Sitter slicings, this temporal domain remains perfectly consistent
with the so-called Trans-Planckian Cosmic Censorship (TCC) [11]. The question is, what

happens now? We must find the functional form of a(t) that provides a de Sitter metric on
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the dual side to answer this. We will return to the issue soon, but not before we elucidate
the consistency of the IIB background (4.1) from M-theory. In M-theory, the uplifted metric

takes the following standard form:

-8/3 o —2/3
ds® = (HS;SI > (—goodt® + gijda'da’) + (HgI—SI > {Fl <I!4]Ij) Jopdy®dy’ + Fs (éi) ﬁmndymdy"}
4/3
+ <Hg}SI ) Gapdw®du®, (4.49)

where H;(x,y) = H(y)H,(x), which means F;(g;/H;) depends on the temporal factor a(t),
and we shall discuss their functional form soon. The other metric components may be related
to the metric components in (4.1) in the following way:

4/3
} Jab(X, )

Jab(X,y) = [H(y)Ho(X)
G (X)
[HY (), (0|

where we have taken (M, N) € M, x Ms. We have taken the un-warped metric components

2/3
Guv(X,y) = 75 dun(X,y) = { } gnn(y) (4.50)

along the toroidal direction depending on both (2%, y™). In fact, for the computations of the
curvature scaling, we will take both the un-warped and the warped metric components to
depend on all the coordinates (except of course, the toroidal direction). Once we go to the
heterotic side, we will see that the dependence on the coordinates of My has to be removed.

Let us now come to the functional form for the temporal factors F;(gs/H;). These factors
did not change the dominant scalings of the metric components as they were constrained
by F;(gs/Hi) — 1,95 — 0 and F1F5 = 1 to preserve the Newton’s constant and to avoid
late-time singularities. Both of these conditions are not essential now if we want to dualize to
any of the other string and M-theories because only in the dual landscape do we want a time-
independent Newton’s constant with no late time singularities. This means the dominant
scalings of the internal metric could, in principle change; we can then propose the following

dominant scalings:

) g Bo+2k/3 oo g ao+2k/3 9 g [eS) g Yo+2k/3
F, = A 2 F, = B u =)= u 4.51
! ;} k<HHO) ro ];) k(HH()) Tot <HH) kzc’“ (HH) (451)
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where (Ag, Bi, Ci) are all integers, positive or negative with (v, 5,,7,) being the dominant
scalings. Note that, as we demonstrated rigorously, when v, < 0, EFT breaks down along
with a violation of the four-dimensional NEC. Here, in the generic setting, we will see
whether this continues to hold. On the other hand, («,, 3,) are not a-priori required to be
positive definite. An interesting question would be to find whether there is a connection
between the three dominant scalings. If there is one, then it would lead to an even deeper
connection between the three disparate facts: the existence of EF'T from M-theory, preserving
four-dimensional NEC from IIB, and temporal dependence of the internal six-dimensional
manifold.

We analyze the perturbative series of quantum effects that include both local and non-
local terms embedded in the eleven-dimensional action. We write down only the quantum

term of the action

li7 7
S, = Z/dnx\/%—(@( n : (4.52)
]\4U(lZ
li,m; p
where the quantum term Qr(l;,n;) may be expressed as
A 3 Cn, \ M5 2 he T/ b
QSI‘{li}yni) = [g—l] H [8]nI (g8;g8§ """ gCIL4) H (RAkBkcka> H (GArBrchr> ) (4.53)
=0 k=1 r=42

which includes the generalized metric gcp as well as generalized curvature RABCD and
generalized G-flux components G ABcp Which include the fermionic contribution discussed
previously. Our aim is to understand how the quantum series influences the dynamics in

the configuration spaces of both the gravitons and the G-flux components by analyzing the

9s

i, scaling of the quantum series. Since the scaling calculations are relatively simple but

somewhat tedious and take a good deal of space, they are relegated to the Appendix. Here
we only provide the final answer in the form of Table 1.

All the fermionic contributions, from both the curvature and the G-flux components,

are sub-dominant. Despite this, and as mentioned above, the Hgflo scaling is not simple.
Additionally, looking at the form of the % scaling, we see that there are too many relative
minus signs now. This is not good, as uncontrolled relative signs would signify a breakdown

of the EFT description. The scalings of the curvature and the derivative terms put the
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following bounds on the values of «,, 5, and ~,:

2 2 1
o < o o < o) o > —= 454
W<tz Fo<tgz 7 3 (4.54)

implying that the dominant scalings of F; and Fy cannot exceed the aforementioned bounds,
and 7, > 0 because the scalings jump as j:%. The latter is consistent with NEC violation.
Assuming (a,, 5,) > (0,0), this means that two and the four-manifolds, My and M, respec-
tively, cannot shrink to zero sizes at a late time when g, — 0. While this is good for the
four-manifold My, the non-shrinking of My would mean that the system cannot dynami-
cally go to either the Type I or the heterotic side. In fact, at the late time (when g, — 0),
the two-manifold My would blow up, leading to a heterotic manifold with extremely high
curvature. This leads to our first trouble realizing a de Sitter Glauber-Sudarshan state in
the heterotic landscape.

There are, however, a couple of ways out of this. One, by demanding the metric compo-
nents to be independent of the coordinates of My, , i.e. independent of the («a, ) directions.
One may easily see that imposing the derivative constraint removes all the scalings with —f,
in the curvature and the derivative terms. The —f, terms survive in the G-flux scalings
but do not pose any immediate problems. The above considerations lead us to conclude
that EFT on the heterotic side is only valid if the metric components are independent of the
coordinates of Ms. Any non-trivial dependence on the coordinates of My will rule out an

EFT description in the dual heterotic side.
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Riemann tensors

gs scalings

Rnnpqg

dom (—% + ay, —% + 20, + 27,, % + 2, —% + 2c, — Bo)

Rmna B

dom (_§+aoa_§+ﬂoa_§+ao+ﬁo+2’}/oa%+ao+ﬁo)

RaBiO ) RmaﬁO ) *ROQQB

_§+50+70

Ropas dom (=2 + o, =2 + 26, + 276, —2 + 28, — 0, 3 +203,)
Rinio, Romnpo, *Rinnao —% + o+ %

Rnab dom (% + 27, + o, % + a, — B, % + v, %)
R08is *Ricass *Rimaas —% + 6,
Ronpi, *Ronpas *Rimnai —% +
Ronavi, *Raabi, *Rmaab 3

Ra,@ab dom (%7 % + Bo + 2707 % + 60 — Qo, % + /Bo)
Rabab dom (% + 2’707 % — Qo % - Mo, 136)
Romab, Ravio, *Roaab 5+ %
Rn0ij, Rijko, ¥*Raoij —13—1 + %
R.n0i0, Rinijis *Roaio - %
*Raijk> *Rmaij7 *R(]mOa —g

Rijij» Roioj

dom (_gu _13_4 + 2707 _% — Qp, _1_34 - Bo)

Reaij; Roaos

dOIIl (%, _§ + 2707 _§ — Oy, _g - BO)

Rmm’j ) ROmOn

dom (=%, =24+ a,, — 5+ ap + 27, — 3 + 2o — 5,)

Rsij, Roaos

8
3
dom (_ga —§ + ﬁoa _g + ﬁo + 2707 —§ + 60 - ao)

Table 4.1: The %~ expansions of the components of the curvature tensors associated with the

M-theory metric. The warp factor H(y) is the universal warp factor, whereas H, = H,(z, y)
depends on the choice of the de Sitter slicings. The components of the Riemann tensors
are defined in the usual way: (m,n) € My, (a,5) € Mo, (a,b) € %2 and (u,v) € R*Y;
with z = (2,27) and y™ € My x Ms. The modes of the curvature tensor are defined as

k k 2
Rgl)A2A3A4 = R23A2A3A4(:c,y) where A; € R*! x M, x My x % and k € Z.



Chapter 5

Conclusion

It is very a very hard and non-trivial problem to construct the de Sitter space cosmological
solution in string theory. It is still an open question whether it is possible to realize de Sitter
spacetime in string theory. Classical de Sitter vacuum fails to be obtained due to various
no-go theorems. The effective field theory version of the de Sitter vacuum is ruled out by
the ill-defined Wilsonian action over an accelerating background. And yet there is still some
hope.

This work investigates some aspects of the string theory realization of de Sitter space as
a coherent state. This almost classical solution demands a fully quantum analysis, making
it more involved and, simultaneously, more satisfactory. There was made effort to simplify
the model by working with the limited set of scalar fields instead of going to the whole
theory containing the set of 44 gravitons, 84 fluxes and 128 Rarita-Schwinger fermions. This
interpretation allowed us to reveal the main features of the construct and avoid unnecessary
complexity. We started with the general definition of a coherent state in a straightforward
set-up for a non-interacting vacuum with a brief discussion on how to transition to a more

elaborate case of a coherent state on an interacting vacuum.

Next, we introduced a path-integral formalism for doing quantum field theory for a shifted
interacting vacuum, known as the Glauber-Sudarshan state. A toy model of free massive

scalar field theory in 341 dimensions was introduced and solved using the abovementioned
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formalism. At the next level of complexity, we attempted to include the full interacting
action with all the quantum corrections in our analysis of the Glauber-Sudarshan state. As
was mentioned previously, to make our computations tractable, we included only three scalar
fields representing different components of the graviton, flux, and fermionic fields. A geo-
metric tool named nodal diagrams was introduced, as a slightly modified version of Feynman
diagrams, to keep track of the path-integral calculations. As a consequence of the analysis,
it was shown that the path-integral structure for the three fields over the shifted vacuum
breaks down as a collection of nodal diagrams. The nodal diagrams representation helps

significantly deal with the integrating diagrams’ momenta and momentum conservation.

In the second part of our work, we introduce another mathematical tool known as the
Borel resummation technique and the resurgent trans-series. The necessity of such an ap-
proach was dictated by the fact that the path-integral calculations of the expectation value
of the metric lead to the answer in the form of asymptotic series. And although it is common
knowledge that perturbative analyses in quantum field theory generate asymptotic solutions,
the non-perturbative part of such investigation is usually lost. We tried to recover some ad-
ditional knowledge by resuming the divergent series and thus making statements about the

non-perturbative nature of the calculations.

The expectation value of the metric generates the divergent asymptotic series because
of the factorial growth coming from the nodal diagrams for higher orders in the coupling
constant. The metric computation only makes sense if we can summarise all the informa-
tion contained in the asymptotic series in some meaningful way. The Borel resummation
technique is the very tool which allows us to boost our results with the knowledge of the
non-perturbative part of the series. It is very natural to suggest that we need to include

non-perturbative physics in our solution to construct de Sitter space in string theory.

We show that for the simplified case of 3 scalar fields, the expectation value of the
metric produces the factorial growth of the generalized Gevrey-a series. In particular, we
found at least the result a = 2, which is expected to be much higher for the complete

solution in M-theory—the correct Borel resummation of the Gevrey-a series results in a
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closed-form expression for the cosmological constant. One of our analysis’s conclusions is
that the cosmological constant’s value in our model can be small. It is based on the fact
that the displacement generated by the Glauber-Sudarshan state from the vacuum in the
configuration space is inversely proportional to the spacetime volume and, thus, minimal.
This means that coherent de Sitter space is close to its vacuum configuration. Another
important outcome of our analysis is a positive value of the cosmological constant.

We also included some results from our investigation of the possibility of realizing de
Sitter space as a Glauber-Sudarshan state for the case of a generic background. This gener-
alization allows us to construct the de Sitter state in various string theories through duality
transformations such as T-dualities and S-dualities. We explicitly show one such transition
from type IIB background to heterotic SO(32) theory.

The results of this work add some new perspectives to the quest of finding a valid de Sitter
space construction from the string theory point of view. Although the fundamental analysis
is based on a toy model and does not consider the complexity of the full realization, at least
it shows some potential original direction that has never been considered before. Besides, the
asymptotic series resummation technique proved helpful in this set-up and thus, arguably,

might find its application in other related physical problems.

Chapter



Appendix A

Riemann tensor scalings

In M-theory, the uplifted metric takes the following standard form:

—8/3
ds2 = (—gs ) (—f]()()dlf2 + fjwd:p’daﬂ) + (

HH,

g \*?
HH,

f]abdwadwb

—2/3
Ys s
Fi | = dy®dy® + F dy" dy"™

We introduce the following dominant scalings:

ZA’“ (HHU
a (HHO) > (7

) Bo+2k/3

«/o+2k/3
HO) |

Then we have the following scalings for the metrics:

Guv ™~ 9;8/37

Imn ~ g5

2/3+a
)

Gap ™~ Gs

ZB’“ (HHO

-2 /3+B

) a0+2k/3

Jab ~ g1,

The time derivative of any of the metric components generates the scaling

ags

0

&gMN

v
~ YGss

0 4
~ —gd ~ g gA
atgs gsgs

Now we are ready to find the scalings of the Riemann tensors.

We need to find all the possible permutations of the tensor indices:

— [ ]

_|_

1
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+

1

(A.2)

(A.3)

(A4)
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Each particular index permutation generates the unique contractions of the first and second

derivatives of the metric tensor:

— [ ]

m n p q: Ymn,pq 9pg,mn
RS
9Imn,R 9pq,S 9
RS
9GRmn 9Sp,q 9

Now we can easily compute the scalings for each combination of the metric tensors and their

derivatives:

2
mn ~gsy—5 T )
Gmnpg ~ 9 { 3 0}

9Imn,R 9pq,S gRS = 9mn,0 Gpq,0 900 + 9Imni 9pq,j gij + Imn,a 9pq,p gaﬁ + Gmn,r Gpq,s grs
2 4 2 2
~ Gs —§—|—2Oéo—|—2’}/0 _'_gs §—|—20&0 +gs _§+2O‘0_50 +gs _§+a0 )

. 2
9Rm.n 9Sp,q gRS = Grm,n Ysp,q 9 ¥~ gs {_g + Oé()} ,

Both the second and the third permutation of indices generates the same g, scalings:

T - Y

m m p q m n p q
1 1 [

gsqym m p g ~ gsym n p (g

Finally, we find the scalings of the R,,,,, Riemann tensor to be

2 4 2 2
Rympg ~ 9s {—g + ay, 3 + 2ay), —3 + 20 + 29, —3 + 20 — 50} :

Rumnas | ﬂ ﬂ + m m «a f + m m o [ (A.D)

The first permutation of indices generates

1 [

m n « 53 Imn,op GoB,mn
9mn,R JapB,s gRS

9Rmn 9Sa,p gRS
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The scalings of the metric tensor combinations are

25 oy
mn,af ™~ Ys \ TS « ) aBmn ™~ Ys Y TS
Imn,ag ~ g 3 0 Jap, g 3 0

9Imn,R 9ap,s gRS = Gmn,0 9a8,0 900 + Imni gaﬁ,j gij + Imn,a 9aB,B gaﬁ + Imn,r Gap,s grs

2 4 2 2
Ngs{——+ao+@o+2%}+gs{—+Oéo+5o}+gs{—§+5o}+gs{——+ao

3 3 3

9GRm,n 9Sp,q gRS ~ 0.
The second permutation of indices gives similar scalings:
m m « ﬂ : gma,n,B gnﬁ,ma

gma,R gnﬁ,S gRS

9Rm,a 9Sn.p QRS
with the following scalings

Ima,ns ™~ 07 InBma ™ 07
9Ima,R 9npB,S QRS ~ 07

2
9Rm,a 9Sn.p gRS = Gpm,a Yqn.,3 gpq ~ Gs {_g + 50}

And the last index permutation is the same as the second one:

{ } { |
gsqym m o f ~  gsam m a (.

The full set of scaling is

3 3 3

2 4 2 2
anaﬂNgs{__+O‘0+50+2’707_+040+B07_§+ﬁ07__+a0}'

— 7 N R m—
Ruso|: ¢+ 0 oo 8+ 70 a p + 10 a pB

b
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The first permutation of indices generates

t 0 a f: Ji0,a8 Gap,io
9io,R Yop,S QRS
9Ri0 9Sa,p QRS
9R0,i 9Sa,p QRS

The scalings of the metric tensor combinations are

5
Jap,io ™~ Gs {_g + ﬁO + ’Y} 3 gio,ap ™~ 0

Gio.r Gop.s 970 ~ 0,
9Ro,i 9Sa,B gRS ~ 07
9Ri,0 9Sa,8 QRS ~ 0.

The second permutation of indices:

— ]
t 0 o B Giaos 90B,ia
Jia,R 908,58 g™
9Ri,a 950,8 g™
with the following scalings

Gia,08 ~ 0, 9os,ia ~ 0,
Gia,R 908,85 gRS ~ 07

JRia 950 97> ~ 0.
And the last index permutation is the same as the second one:
— 1 —t—
gs{i 0 « ﬁ} ~ gs{i 0 « ﬁ}NO.

The full set of scalings is

)
RaﬁiO ~ Gs {_g +B0+’Y} .
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The first permutation of indices generates

1 D]
mo o B 0: 9ma,B0 980,ma

9ma,R 980,S gRS
9Rm,a 9SB,0 QRS
9JRa,m 9SB,0 gRS

The scalings of the metric tensor combinations are
Ima,B0 ™ 07 9B0,ma ™~ 07

Gma,k Ypo,s 97> ~ 0,
ng,a gS,B,O gRS ~ 07

o 5
9JRa,m 958,0 gRS = 9Ba,m YaB,0 9 RN gs {_g + BO + 7}

The second index permutation is the same as the third one:

gs{m a [ 0} ~ gs{m a f 0}.

The last permutation of indices generates the scaling

I
m a [ 0: Imo0,08 9aB,mo

9mo.R Gap,s 90
9Rm.,0 9Sa,p gRS

with the following scalings

5
Imo,a8 ™~ 07 GaB,mo ~ Ys {_g + 50 + ’Y} )

9mo,R 9ap,s gRS ~ 07

1 ] 0
Rmapo|: m o B 0 + m o B 0 + m a [ 0

(A7)
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9GRrRm.,0 9Sa,p gRS ~ 0.

The full set of scalings is

5
Rmaﬁo ~ Gs {_g +/60 +7} :

:ﬂﬂ+0aa,@+0aaﬁ

The first permutation of indices generates

]
0 o a f: 9oa,08 9aB,0a
9Ra,0 9Sa.B QRS

The scalings of the metric tensor combinations are

5
Joa,a8 ™~ 07 GapB,0a ™~ Gs {_g + 50 + 7} )

9oa,R YaB,s gRS ~ Oa

5
9Ra,0 9Sa,pB QRS = 9Ba,0 9Ba,3 gﬂﬂ ~ gs {_§ + 5o + 7} )

The second index permutation is the same as the first one:

95{0 a « 6} ~ gs{ﬂ ﬂ}’\’gs{_§+ﬁo+7}'

3

The last permutation of indices generates the scaling

— 1
0 a a B: 908,aa Jaa,08
9mp,R Goa,S QRS
9r,0 9Sa,a gRS
with the following scalings

gos,aa ™~ Oa Jaa,08 ™~ 07
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9mpB,R Gaa,S gRS ~ 07
RS afs 3
9RB,0 9Sa,a 9 = Ga8,0 98,0 9 ~ (s _5 + BO +70s

The full set of scalings is

5
ROaaﬁ ~ (s {_§+50+’7} .

Rosas | : a B a + a B a + a B o fB (A.9)

The first permutation of indices generates

ﬁ [ ]
« 6 « B : 9oos,a8 Jap,aa

JaB,R GaB,S QRS
RS
9Ra,B 9Sa,B8 9

The scalings of the metric tensor combinations are
2
JoaB,aB ~ {—g + 50} ;
9ob.R 9op.5 9"° = Gop0 Gap, 9 + Gasi Gasj 97 + Gapa 9os.s 9°° + Gapm Gapn 9
2 4 2 2
~ s —§+250+2’7 +9s §+25O + 9s —§+/@0 + gs —§+250—Oé
RS af 2
IR 9508 9 = Gap Jpas 97 ~ s T35 T Bo ¢

The second and the third index permutations are the same as the first one:

gs{a B o B} ~ gs{m ﬂ}
gs{a 6 « B} ~ gs{ﬂ H}

The full set of scalings is

2 4 2 2
Rogas ~ s {—5 + 20 +2%§ +2507—§ +50;—§ + 20 —a}.
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—1 [ — 1 ] 1
Rinpo | : m n p 0 + m m p 0 + m m p 0 (A.10)

Each particular index permutation generates the unique contractions of the first and second

derivatives of the metric tensor:

— [ ]

m mn p 0 . gmn,pO ng,mn
RS
gmn,R ng,S g

ng,n gSp,O gRS
Now we can easily compute the scalings for each combination of the metric tensors and their

derivatives:

5
Imn,po ™~ Gs {_§ + g + 'Y} s
gp(),mn ~ 07

9mn,R ng,S gRS ~ 0

5
GRmn 9590 97° = Gomn Gapo 970 ~ s {—g + ap + 7} ,

Both the second and the third permutation of indices generates the same g4 scalings:
R RN
gsym m p 0 ~ gsym n p 0
1 —1 ]
gsqm m p 0 ~ gssm n p 0
Finally, we find the scalings of the R,,,, Riemann tensor to be

5)
anpO ~ Gs {_g + ap +7} .

is equivalent to R,gi0 and has the same g, scaling:

5
RmnpO ~ Raﬁi(] ~ Gs {_g + o + ’Y} . (All)
is equivalent to R,,,s0 and has the same g, scaling:
5
RmnaO ~ Rmaﬁ(] ~ s {_g + ap + ’7} . <A12>
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3
S
S
S8

—1 ] 1 ] 1
: + m n a b + m n a b (A.13)

Each particular index permutation generates the unique contractions of the first and second

derivatives of the metric tensor:

m n a b: Gmn,ab Gab,mn
RS
9mn,R Gab,S 9
RS
9Rmmn 9Sab 9

Now we can easily compute the scalings for each combination of the metric tensors and their

derivatives:

9mn,ab ™~ 07

4
Gabmn ™~ Js § )

9mn,R gab,S QRS = gmn,(] Gab,0 900 + 9mn,i gab,j gij + gmn,a gab,ﬂ gaﬁ + gmn,r gab,s grs

4 10 4 4
~ s §+Oéo+270 + gs 34-040 + gs §+Oéo—ﬁo + gs 3(°

9Rm.n 9Sab QRS ~ 0.

The second index permutation gives

7 ]

m n a b: Gma,nb Gnb,ma
9Ima,R 9nb,S gRS
9Rm,a 9Sn,b gRS
9Ra,m 9Sbn gRS

Then

Imanb ™~ Gnbma ™ 07
RS
9ma,R Ynb,S 9 ~ 07

RS
9Rm,a 9Sn,b 9 ~ Oa
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4
9Ra,m 9Sbn gRS = Gba,m YGabn gab ~ Js {g} .

The third permutation is equivalent to the second one:

— —F7 4
gs{m n a b} ~ gs{m n o a b}wgs{g}.

Finally, we find the scalings of the R,,,, Riemann tensor to be

4 10 4 4
anabNgs{g+040+270>?+040a§+040_607§}'

Roesil: m a B i + ma B i + mad i (Ald)

The first permutation of indices generates

—— 1
m « 5 [ 9ma,Bi 9B0,ma

9ma,R 986i,S QRS

9Rm,a 958,i gRS

gRa,m gSﬁ,i gRS

The scalings of the metric tensor combinations are

Ima,pi ™~ 07 9pi,ma ™ 07

9Ima,R 98i,5 gRS ~ 07
Grma 9spi g0 ~ 0,

o 2
9JRa,m 9S8,i gRS = 9Ba,m YaB,i 9 f s {_g + 50}

The second index permutation is the same as the first one:

m o [ i m a [ i

fTY Ty
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The last permutation of indices generates the scaling

.
m o« 6 (2 9mi,ap Jap,mi

9mi,R JaB,S QRS
ng,i gSa,B QRS

with the following scalings

2
Imi,aB ™~ 07 GaB,mi ™~ Js _g + BO 5

9Imi,R JaB,S gRS ~ 07

9Rm,i 9Sa,B gRS ~ 0.

The full set of scalings is

2
Rynapi ~ gs {—g +ﬁ0} .

The |Riqap| is very similar to Rpaap with the difference that since there is no time

differentiation, we don’t have a = scale dependence and thus

2
Riaaﬁ ~ ROaaﬁ ~ s {_§ =+ 50} .

Very similarly, the | Rmaags | gives similar scaling as Roaqp without time derivatives and

changes in the main metric scaling:

2
Rmaa,@ ~ ROaaﬁ ~ s {_g + BO} .

The scaling of | Rmnpi | We can find by comparing to the previously computed scaling of

Rynpo again taking into account that the absence of the time derivative will remove the «y

dependence and lift up the total scaling by +1:

2
Rmnpi ~ Rmﬂpﬁ ~ Gs {_g + BO} .
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The scaling of | Rimnpa | is absolutely the same since in this case ¢ and a are equivalent:

2
Rmnpa ~ Rmnpi ~ s {_§ + 60} .

The scaling of can be deduced in a similar manner from the R,,,.o scaling:

2
Rmnai ~ RmnaO ~ s {_g + 60} .

1 1] 1

: m a b i + m a b i + m a b i (A.15)

Each particular index permutation generates the unique contractions of the first and second

derivatives of the metric tensor:

m a b i: Ima,bi 9bi,ma
RS
9ma,R 9bi,s 9

RS
9Rm,a 9Sb,i 9

9Ra,m 9Sb,i QRS
Now we can easily compute the scalings for each combination of the metric tensors and their

derivatives:

Imabi ™~ 07 Gbi,ma ™~ 07

RS
9ma,R 9bi,s 9 ~ 07

9Rm,a 9Sb,i QRS ~ 07
RS ab 4
9Ra,m 95b,i 9 = Gbam Gabi § ™~ s 5 .

The second permutation of indices generates the same g, scaling as the first one:

e by R
gsam a b 1 ~ gssm a b i
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The third permutation again gives the same scaling:

—

m a b i: Gab,mi 9mi,ab
RS
9ab,R 9mi,S 9
RS
9Rab 9Sm,i 9

The only non-zero scaling comes from

4
Gabmi ™~ Ys g .

Finally, we find the scaling of the R,,.; Riemann tensor to be

4
Rmabi ~ s {g}

The scaling of the , in this case, is the same as the scaling of the above tensor

Rapi since a and m are interchangeable in the previous calculations:

4

Raabi ~ Rmabi ~ Gs {g} .

After some thinking, we agree that the scaling of the , in this case, is also the
same as the scaling of the two above tensors since only the indices a and b play the crucial

role in the calculations when the other two indices are different and not 0:

4
Rmaab ~ Raabi ~ Rmabi ~ s {g} .

R,gab | a [ a b + a [ a b + a [ a b (A.16)

Each particular index permutation generates the unique contractions of the first and second

derivatives of the metric tensor:

— [
« ﬁ a b: Jap,ab Gab,a

gaB,R gab,S gRS

9Ra,8 9Sa,b gRS
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Now we can easily compute the scalings for each combination of the metric tensors and their

derivatives:

4
JaB,ab ™~ 07 Gab,af ™~ Ys g .

mn

9aB,R Yab,S g = 9aB,0 Yab,0 g% + GaB,i Gab,j g7 + 9aB,a Gab,B g°? + 9aB,m Gabn 9

gs{§+6O+27}+gs{¥+ﬁ0}+gs{§}+gs{§+50_a0}7

9Ra,8 9Sab gRS ~ 0.

The second permutation of indices generates only one non-zero scaling:

a [ a b:

4

IRae 9565 §°° = Gbarer Gabp 9°° ~ s {g} :

The third permutation again gives the same scaling as the second:
——— —F= 4
gsaﬂab Ngsaﬁabf\“gsg‘
Finally, we find the scaling of the R,g, Riemann tensor to be

10

4 4 4
RaﬁabNgs{§+B0+277§+507§a§+50_a0}-

— [ —F —F—t—
Rababl: a b ab + abab + abadkb (A.17)

Each particular index permutation generates the unique contractions of the first and second
derivatives of the metric tensor:

ﬁ [ ]
a b a b: Yab,ab Yab,ab

RS

9ab,R Yab,S 9
RS

9Rab 9Sab 9

Now we can easily compute the scalings for each combination of the metric tensors and their

derivatives:

YGab,ab ™ 07
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mn

Gab R Gab.s 9°° = Gabo Gabo 9°° + Gabi Gabj 97 + Gaba Gabs 9°° + Gabm Gabm g

10+2 n 16 n 10 b+ 10
sy o R s\ o sy 5 T« )
g 3 Y g 3 g 3 0 g 3 0

9Ra,B 9Sa,b gRS ~ 0.

The rest of the permutations generate the same scaling dependence. Thus, we find the

scaling of the R, Riemann tensor to be

10 16 10 10
Rapab ~ 9s {3 +2%§>§ —5073 —Oéo}-

Romm]: 0 mab + 0 ombb + 0mab (A8

Each particular index permutation generates the unique contractions of the first and second

derivatives of the metric tensor:

—
0 m a b: 9om,ab 9ab,om

RS
gom,R Yab,s 9

RS
9Ro,m Y9Sab 9

The only meaningful combination is

1y -
Gab,0om Js 3 v gs 3 Y-

The second permutation generates the same scaling dependence:

0 m a b: 9oa,mb Gmb,0a
RS
9oa,R 9mb,S 9
RS
9Ra,0 9Sb,m 9

with the only fruitful combination

1
IRa0 Gsbim G5 = Gbao Gabm 9 ~ s {5 + 7} :

The last possible permutation is the same as the second one.
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Thus, we find the scaling of the Ry, Riemann tensor to be

1
ROmab ~ gs {g +/7}

The scaling of the can be easily obtained from the scaling of the above calculated

Romap tensor by the simple replacement ¢ into m:

1
Rapio ~ Romab ~ gs {g +’Y}-

The next scaling of the is obtained from the scaling of the above calculated Ronap

tensor by the replacement « into m:

1
ROocab ~ ROmab ~ Gs {g + ’Y} .

Rioij | m 0 @ j + m 0 @ j + m 0 @ j (A.19)

The first permutation of indices generates

—
m 0 ¢ j: 9m0,ij Gijmo

RS
9mo,R 9ij,s 9

RS
9Rm,0 9sij 9

The non-zero scaling of the metric tensor combinations is
11
Gijmo ~ Js Y + v
The second index permutation gives the same scaling as the first one:

m 0 @ j: 9mi,0j 90j,mi
RS
9mi,R 905,85 9

RS
9Rm, 9505 9
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The only survived scaling is

; 11
Grim 9530 9" = Gkim Gis0 9" ~ s {_3 + 7}

The last permutation of indices is the same as the second.

The full set of scalings is simply

11
Rumoij ~ gs {—? + 7} :

As long as we keep the pair ij and 0 among the indices and the last index different from

the above, we obtain the same scaling. Thus, we have the same scaling dependence for

RijkO :

11
Rijko ~ Rmoij ~ gs {—E + ’Y} :

As well as for the | Rqoj5 |

11
Raoij ~ Romoij ~ s {—g + 7} .

The first permutation of indices generates

m
m 0 ¢ O0: Jmo0,i0 3i0,m0

RS
9mo,R 9i0,5 9
RS
9RrRm,0 95i,0 9
The non-zero scaling of the metric tensor combinations is

8

IRO.m 9505 9 = Goom Go0s G ~ Gs {_5} .
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The second index permutation gives the same scaling as the first one:

m 0 ¢ O: 9mi,00 900,mi
RS
9mi,R 900,8 4

RS
9RrRm,i 950,0 9

. 8
gOO,m'L Js 3

The last permutation of indices is the same as the first one.

The only surviving scaling is

The scaling of the Riemann tensor is

8
RmOiO ~ Js {_g} .

The variation of the last tensor is which has the same scaling:

8
Roaio ~ Rmoio ~ Gs {—g} .

The scaling of R,,;;, coincides with the two previous ones:

Rmijk: m 1 j k + m 1 J k + m 1 j k <A21)

The first permutation of indices generates

o
m i j k: 9mi jk 9ik,mi

RS
9mi,R 9jk,S 4

RS
9rRm,i 9Sjk g

The non-zero scaling of the metric tensor combinations are

8 . 8
ieami ™~ Js {—g} C Rim 9sik 97 = Gkim Gigk 9 ~ 9 {—5} .

Both the second and the third index permutations give the same scaling as the first one.

The scaling of the Riemann tensor is

8
Rpiji ~ gs {—g} .
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The next Riemann tensor,

Rk

be easily figured out by interchanging o and m:

8

Roiji ~ Rmiji ~ Gs { 3

b

, has the same scaling dependence as the R,,;;x, as can

If we look closely, we find that the next Riemann tensor,

Rmaij

, has the same scaling

dependence as the R, since the contribution to the scaling comes from the ij couple and

the ma index contribution does not influence the final result:

b

8

Rmaij ~ Rmijk ~ s { 3

The final Riemann tensor in this family, , is actually secretly the R,,p;0 Riemann

tensor (at least it has the same scaling) which can be seen from their index content:

8

Romoa ~ Rmoio ~ s { 3

b

— [ —t 1
Rijij . 1 j 1 ] + 1 j 1 j +
The first permutation of indices generates
— 0l
VA Gij,ij Yijij

RS
9ij,r 9i5,8 9
RS
9Ri,j 9sij 9
The non-zero scaling of the metric tensor combinations are

Gijij ~ s { } .

8

3

(A.22)

9ij,R 9i5,8 g% = 9i5,0 9ij,0 " + Gijk Gij.j g% + Jija 9ij,B g*% + Gijom Gijm G

e

4
" 3

3

]

9Ri,j 9Si.j QRS = Gki,j Gji,j gkj ~ Js {

SRRV

8

3

b

14

3

b
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Both the second and the third index permutations give the same scaling as the first one.

The scaling of the Riemann tensor is

14 8 14 14
RijijNgS{_g—I—Z’y’_gv_?_607_?_040}~
— [ —— 1 —
Roggl: 0 i 0j + 04i 034 + 040 j (A.23)

The first permutation of indices generates

— ﬁ_
0 ¢« 0 7: 90i,05 904,06

RS
9oi,r 905,58 9
RS
9Ri0 9sj0 9
RS
9Rro,i 9so,j 9

The non-zero scaling of the metric tensor combinations are

i 14
9Ri,0 9S5,0 QRS = 9ki,0 95,0 gk ~ gs {_3 + 27} ,

8
9Ro,i 950,5 QRS = goo,i 9oo,; 900 ~ s {—g} .

The second index permutation is the most prolific here:

ﬁfﬁﬁ'
0 ¢« 0 7: 900,ij Gij,00

RS

goo,R Yij,S 9
RS

9Rro,0 9si,5 9

The non-zero scaling of the metric tensor combinations are

8 14
Goo,ij ~ s “3( Gij,00 ~ s Y + 27,
goo,R Yij,5 QRS

14 4+ 2y + 8 + 14 Bo ¢ + 14
~ (s s S -5 S s S - — « I
g 3 vy g 3 g 3 0 g 3 0
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The last permutation coincides with the first one.

The scaling of the Riemann tensor is

14 8 14 14
ROin ~ Gs {_E + 27, —57 —g — Bo, —g - ao} .

Rabij | a b i j + a b i j + a b i j (A.24)

The first permutation of indices generates

—
a b i j: Gab,ij Gij,ab

RS
9ab,R Y9ij,8 9

RS
9Rab 9Si; 9 -

The non-zero scaling of the metric tensor combinations are

4
Gab,ij ™~ YGs 5 )

Jav.r 9ij.5 97 = Gavo 9i0 9% + Gabi Gijk 9+ Gava Gijs 9°° + Gabam Gijm 9"

2 5 4 2 2
Ngs{_§+ ’7}+gs{§}+gs{_§_60}+gs{_§_a)}~

The second and the third index permutations are the same and give the non-zero scaling:

Uy b )
gsa'ijNgsabZ]Ngs§~

The scaling of the Riemann tensor is

2 4 2 2
Rabij ~ Gs {__ + 277 g: _g - 507 _g - Oé)} .

The Riemann tensor has almost the same index structure as the R, tensor.

The only elements which can potentially generate unexpected scaling are the following :

2 2
gab,ooNgs{—§+27}> Gab,R 9ij,S QRSNQS{—g—l-QW},
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which are included in the main dependence sequence. Thus we have the same scaling struc-

ture:
R 2+2 4 2 3 2
alb ™~ 4s§ T 5 Yy o o y T T« .
0a0b ™~ g 3 Y 3'73 0,73 )
Rynnij | : m n i j + m n i j + m n i j (A.25)

The first permutation of indices generates

monotoJi Gmngj Gijmn
RS
9mn,R gij,S g
RS
ng,n gSi,j g .

The non-zero scaling of the metric tensor combinations are

2 4
Gmnyij ™~ s 3 +ap ¢, Gijmn ~ Js 3(

Gk 9i3.5 97° = Grno Gijo 9+ G Gijk G + Gmmer Gizp 9°° + Gmmp Gijug 9

8—|— + 2 + 2+ + 8+ Bo ¢ + 8
~gsq—=t«o sy — 5 t« sy —5 T Qo — s9—= ¢ -
g 3 0 Y g 3 0 g 3 0 0 g 3

The second index permutations give the non-zero scalings:
L
gsqm n 1 ] : gmi,nj gnj,mi
9mi,R 9nj,S QRS,
ng,i gSn,j gRS'

The non-zero scaling of the metric tensor combinations are

2

A 8
Grmi 95nj 97 = Gpmi Gqnj 9™ ~ gs {—g + ao} L Gikm Gijn 97 ~ gy {_5} :

The third possible permutation is the same as the second and has the scale dependence.

The scaling of the Riemann tensor is

8 2 8 8
Ronij ~ g {—5 +ap +2%—§ +040>—§ + ap —ﬁoy—g}-
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Using the analogy with the previous tensors, we conclude that the Riemann tensor

has the same scalings as the R,,,;; tensor: The scaling of the Riemann tensor

18

8 2 8 8
Romon ~ Rmnij ~ s {—g + ap + 27, 3 + ), ~3 + o9 — fo, —g} :

The scalings for the last couple of Riemann tensors can be guessed from the following

considerations. The scale dependence of the | Rgij| should not be very different from the

Rynnij tensor. The only difference would come from the g,,, versus g.s scalings. Thus, we

need to interchange the ag and Sy to obtain the right g, scale dependence:

8 2 8 8
Rogij ~ s {-5 +50+2%—§ +ﬁo,—§ + Bo —Oéo,—g}-

The scale dependence of the | Roa0ps | can be found following our reasoning from a penul-

timate couple of Riemann tensors. It the same as the scalings of the Rgpnqepi; tensor:

8 2 8 8
Roaos ~ Rapij ~ Gs {—g + Bo + 27, ~3 + Bo, 3 + Bo — ao, —g} .
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