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Abstract

We discuss an explicit construction of a four-dimensional de Sitter spacetime as a coherent

(Glauber-Sudarshan) state. The path integrals approach is used to calculate the scalar field

expectation value on a coherent state. A special diagrammatic technique is introduced to

simplify and visualize the calculations. The perturbative computations lead to an asymptotic

series which are then analyzed by means of the Borel resummation technique. This proce-

dure reveals the non-perturbative structure of the system. The analysis of our simplified

toy model suggests the possible construction of a stable four-dimensional de Sitter space-

time as a Glauber-Sudarshan coherent state. The non-perturbative data gleaned from the

Borel resummation of the asymptotic series strongly points towards a positive cosmological

constant.

Abrègè

Nous discutons une construction explicite d’un espace de Sitter en quatre dimensions comme

état cohérent (Glauber-Sudarshan). L’approche des intégrales de chemin est utilisée pour

calculer la valeur d’attente du champ scalaire sur un état cohérent. Une technique graphique

spéciale est introduite pour simplifier et visualiser les calculs. Les calculs perturbateurs con-

duisent à une série asymptotique qui est ensuite analysée au moyen de la technique de reprise

de Borel. Cette procédure révèle la structure non-perturbative du système. L’analyse de

notre modèle simplifié suggère la construction possible d’un espace de Sitter stable en quatre

dimensions comme un état cohérent. Les données non-perturbatives glanées à partir de la

reprise de Borel de la série asymptotique pointe fortement vers une constante cosmologique

positive.
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Chapter 1

Introduction: de Sitter space and

coherent states

It is a truth universally acknowledged that any respected theory of physics audacious enough

to claim to be a theory of everything must reproduce our Universe. Since its birth in the

middle of the 1970s, string theory underwent a lightning development from a theory of

strong interactions to a theory of quantum gravity, eventually developing, arguably, into a

theory of everything, dealing with fundamental questions of the Universe and its underlying

laws. According to our current knowledge, we live in de Sitter (dS) spacetime, and so string

theory must contain de Sitter spacetime. The problem here is that not a single rigorous

4-dimensional de Sitter vacuum has been built in string theory so far [1].

The recent spectral and photometric observations of Ia supernovae suggest an eternally

expanding Universe which is accelerated by a positive vacuum energy density [2]. These

experimental results motivate the desire to find de Sitter vacua of supergravity and string

theory and to construct models for late-time cosmology. The no-go theorem ensures that a

solution with a positive cosmological constant cannot be obtained in string or M-theory by

using only supergravity fluxes or branes and anti-branes [3] [4] [5]. The most recent findings

point out that even the contributions from the O-planes cannot save the day, suggesting that

the only hope comes from the quantum corrections in string theory [6] [7] [8] [9]. But the
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no-go theorem is only the tip of the iceberg, and the main challenges in building dS spacetime

come from the very fundamental aspects of quantum gravity, such as trans-Planckian issues,

which threaten the notion of Wilsonian effective action for accelerating backgrounds [10]

[11] [11]. One of the promising solutions is the introduction of time-dependent degrees of

freedom and to view de Sitter spacetime as a state instead of a vacuum [12] [13].

It turns out that it is possible to realize a quantum mechanically stable coherent state

in the full string theory, which would replace the usual classical configuration. The coherent

state representation of the dS vacuum solves the problems of zero point energy cancellations

from the bosonic and the fermionic degrees of freedom, the spontaneous supersymmetry

braking, and the finite entropy of the dS spacetime. The expectation value of the graviton

operator, represented in our analysis by a scalar field, is calculated as an asymptotic series

in powers of the coupling constant with a factorial growth. One of the fruitful techniques

for extracting information from the asymptotic series is the Borel resummation method.

It is a well know fact, first pointed out by Dyson [14], that the perturbative expansions

of quantum field theories are asymptotic. The asymptotic nature of the theory is due to

the factorial growth of the number of Feynman diagrams. There is no observed cancellation

from different diagrams of the same order, and the growth of the perturbative coefficients

has the form cn ∼ n!, leading to the vanishing radius of convergence for the small expansion

parameter [15] [16]. Despite its unsatisfying divergent nature, asymptotic perturbative ex-

pansions provide us with some impressive results, such as high-precision computation of the

anomalous magnetic moment of the electron in quantum field theory. The reason is that the

asymptotic nature becomes evident only at very high loop orders (around the 137th loop in

the case of perturbative quantum electrodynamics).

At the same time, it can be argued that asymptotic series hide some information about the

exact answer that they approximate. The Borel summation uses the analytic continuation

of a divergent asymptotic series by means of the Borel transform with a subsequent contour

integration in the complex plane [17]. This procedure has its limits, giving rise to ambiguities

in the final result related to the presence of poles in the Borel transform and different choices
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1.1. COHERENT STATES OF THE SIMPLE HARMONIC OSCILLATOR 11

of integration contours [18]. There is a conjecture that the poles of the Borel transform of the

perturbative asymptotic series are associated with new non-perturbative physics and non-

perturbative objects, such as instantons, D-branes etc. Although in certain cases, we are

still lacking a decent physical explanation for the structures emerging from the resummation

procedure [19].

1.1 Coherent states of the simple harmonic oscillator

Here we want to give a very brief introduction to the notion of a coherent state using a

simple harmonic oscillator as a toy example. Coherent states are quantum systems that

exhibit some sort of classical behaviour [20]. We start our discussion with the simplest

example of a coherent state |x̂0⟩ of a simple harmonic oscillator.

A coherent state in the real space R can be introduced via the notion of a translation

operator Tx0 . Unitary translation operator act on quantum states by moving them by a

distance x0:

Tx0 = exp

(
− i
ℏ
p̂x0

)
. (1.1)

We note that the translation operator forms a group:

Tx0 Ty0 = Tx0+y0 ,

there exist a unit element : T0 = I, (1.2)

the inverse is given by T−x0 .

The coherent state is then defined as

|x̂0⟩ ≡ exp

(
− i
ℏ
p̂x0

)
|0⟩ , (1.3)

where |0⟩ is the ground state of the harmonic oscillator.

The physical interpretation of the coherent state is the translation of the ground state

by a distance x0.

Chapter 1



1.1. COHERENT STATES OF THE SIMPLE HARMONIC OSCILLATOR 12

To find the representation of the coherent states in the energy basis, we first rewrite the

momentum operator in terms of creation and annihilation operators:

p̂ = i

√
mωℏ
2

(
a† − a

)
= i

ℏ√
2d

(
a† − a

)
, (1.4)

where we defined d =
√

ℏ
mω

. Now the coherent state |x0⟩ is given by

e−i iℏ p̂x0 |0⟩ = exp

(
x0√
2d

(
a† − a

))
|0⟩ . (1.5)

The previous analysis allows us to make further generalizations. We rewrite the coherent

state in the following suggestive way:

|α⟩ ≡ eα(a
†−a) |0⟩ , (1.6)

with α = x0√
2d

= x0
√

mω
2ℏ . As a next level of generalization, we take α to be a complex number,

α ∈ C, keeping in mind that the operators in the exponential should remain anti-hermitian,

making the exponential unitary. We than define

|α⟩ ≡ D(α) |0⟩ = exp
(
αa† − α∗a

)
|0⟩ , (1.7)

where we introduced the unitary displacement operator

D(α) ≡ exp
(
αa† − α∗a

)
. (1.8)

The unitarity ofD(α) assures that ⟨α|α⟩ = 1. We also note that the action of the annihilation

operator a on the coherent states |α⟩ generates its eigenstates:

a |α⟩ = a eαa
†−α∗a |0⟩ =

[
a, αa† − α∗a

]
|α⟩ = α |α⟩ . (1.9)

To prove these identities we can use some variation of Baker-Campbell-Hausdorff expansion

for any matrices A and B:

eB Ae−B = A+ [B,A] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]] + ... (1.10)

In a special case, when [A, [A,B]] = 0 we have a simple version of this expansion which will

prove to be useful in our case

eB Ae−B = A+ [B,A]. (1.11)

Chapter 1



1.1. COHERENT STATES OF THE SIMPLE HARMONIC OSCILLATOR 13

Rearranging some elements of the identity, we obtain very useful result

[A, eB] = [A,B]eB. (1.12)

In our example we identify A = a,B = αa†−α∗a and use all the previous results. First note

a eαa
†−α∗a |0⟩ =

[
a, eαa

†−α∗a
]
|0⟩ , (1.13)

since a annihilates the vacuum |0⟩. Then we prove that the simple version of identity can

be used. Indeed,

[A, [A,B]] =
[[
a, αa† − α∗a

]]
= [a, α] = 0. (1.14)

Finally, we find[
a, eαa

†−α∗a
]
|0⟩ =

[
a, αa† − α∗a

]
eαa

†−α∗a |0⟩ =
[
a, αa† − α∗a

]
|α⟩ = α |α⟩ . (1.15)

Thus, we found the eigenstates of the non-hermitian operator a. Since operator a is non-

hermitian, its eigenvalues can be complex, the eigenvectors cannot be orthogonal, and co-

herent states cannot generate a complete basis.

Here we introduce some comments related to generalization of this construction for the

toy model discussed later. The problem arises when we move from a non-interacting theory,

like simple harmonic oscillator to a highly interacting theory, like M-theory. In this last

case, we have no choice, but shift the interacting vacuum |Ω⟩ by a displacement operator

and check if the new state still has the features of the vacuum-shifted coherent state. If we

denote the new coherent state by |σ⟩ then it can be constructed as

|σ⟩ = Dint(σ) |Ω⟩ , (1.16)

where now Dint(σ) is a displacement operator of an interacting theory. We can still formally

construct it in terms of annihilation and creation operators

Dint(σ) |Ω⟩ = exp
(
αa†eff − α

∗aeff

)
|Ω⟩ , (1.17)

where aeff annihilates the interacting vacuum. We also note that the general form of the

displacement operator Dint that fixes the form of aeff and reproduces the background metric
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1.1. COHERENT STATES OF THE SIMPLE HARMONIC OSCILLATOR 14

of our theory can be written down for any time t in terms of the non-unitary version of the

same free-vacuum displacement operator Dint
0 (σ)

Dint(σ, t) = Dint
0 (σ) exp

(
i

∫ t

−T

d11x Hint

)
, (1.18)

where Hint is a full interacting part of the M-theory Hamiltonian and T → ∞ in a slightly

imaginary direction. We can that now the norm of the coherent state in the interacting

theory is not one, and the expectation value of any operator ϕ in this theory requires a

division by a denominator of the form∫
[Dϕ] eiSDint(σ)

†Dint(σ), (1.19)

where S is the total M-theory action.

To simplify the form of the coherent state α, we use the commutator identity

eX+Y = eX eY e−
1
2
[X,Y ]. (1.20)

We then rearrange the exponential to obtain

|α⟩ = e−
1
2
|α|2 eαa

† |0⟩ . (1.21)

To gain some insights into the nature of the complex eigenvalue α, we note that real α is

equivalent to the expectation value of the position operator x̂ in the coherent state at time

t = 0, that is the initial position x0 of the coherent state. If we allow α to be complex, we

find

⟨α| x̂ |α⟩ = d√
2
⟨α|
(
a+ a†

)
=
√
2d Re{α}, (1.22)

and

⟨α| p̂ |α⟩ = iℏ√
2d
⟨α|
(
a− a†

)
=

√
2ℏ
d

d Im{α}. (1.23)

Thus we find the following insightful interpretation of the coherent state eigenvalues:

α =
⟨x̂⟩√
2d

+ i
⟨p̂⟩d√
2ℏ
. (1.24)

In the next section, we will extend these fundamental ideas of the coherent states and

displacement operator to the case of scalar fields.

Chapter 1



Chapter 2

Path integral toolkit

2.1 Path integral formalism for the displaced vacuum:

a toy model

Our first attempt to implement a path integral approach for the displaced vacuum will be

based on free massive scalar field theory in 3+1 dimensions with the Lagrangian of the form:

L =
1

2
(∂µϕ)

2 − 1

2
m2ϕ2. (2.1)

In particular, we want to compute the expectation value of the scalar field ϕ on a coherent

state |α⟩. The general procedure invites us to find the vacuum solutions of the theory in the

first place. Luckily, the vacuum of this theory is simply given by ϕ = 0.

Using the most minus signature for the rest of this subsection, the off-shell Fourier rep-

resentation of the fields could be written as

ϕ(x) =

∫
d3k

(2π)3 2ωk

(
ake

ik·x + a†ke
−ik·x

)
=

∫
d4k ϕk e

ik·x, (2.2)

where k0 and k are not related in any way since the fields are off-shell.

We need to do some extra work to find the written form for the creation and annihilation

operators in Fourier modes. We are looking for a replacement for the original definition in

15
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terms of operators

ak =

√
ωk

2

(
ϕ̂k +

iπ̂k
ωk

)
, (2.3)

a†k =

√
ωk

2

(
ϕ̂∗
k −

iπ̂∗
k

ωk

)
,

by its analog in terms of fields. We invert the Fourier integrals for the field and its conjugate

momenta π = ∂L
∂ϕ̇

= ϕ̇: ∫
d4x ϕ(x)eik·x =

1

2ωk

(
ak + a†ke

2ik0t
)
, (2.4)∫

d4x π(x)eik·x = − i
2

(
ak − a†ke

2ik0t
)
.

From the last set of equations, we find the definition of the creation and annihilation operators

as fields:

ak =

∫
d4x (ωkϕ(x) + iπ(x)) e−ik·x = (ωk + k0)ϕk, (2.5)

a†k =

∫
d4x (ωkϕ(x)− iπ(x)) eik·x = (ωk + k0)ϕ

∗
k,

where the Fourier mode of the conjugate momentum πk = −ik0ϕk, and ωk =
√
k2 +m2.

In the next step, we want to implement our creation/annihilation operators field represen-

tation into the definition of displacement operators. We recall that we defined the coherent

state as an action of the displacement operator D0(α) over the free vacuum as

D0(α) |0⟩ = exp

(
αa† − |α|

2

2

)
|0⟩ , (2.6)

where |0⟩ is the free vacuum, and D0(α) is a non-unitary version of the displacement operator.

Now we use the field representation of a, a† to write down

eαa
†
= exp

(∫
d4k a†k αk

)
= exp

{∫
d4k (ωk + k)ϕ∗

kα̃k

}
. (2.7)

where to make the last expression Lorentz invariant, we have redefined αk to be

α̃k =
αk

k0 + ωk

, (2.8)
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2.1. PATH INTEGRAL FORMALISM FOR THE DISPLACED VACUUM: A TOY
MODEL 17

with α1(k) = 0. Similarly, the conjugate operator(
eαa

†
)†

= eα
∗a = exp

{∫
d4k (ωk + k)ϕkα̃

∗
k

}
, (2.9)

where α̃∗
k =

α∗
k

k0+ωk
.

Now we are almost ready to write down the expectation value of the scalar field ϕ on

the coherent state |α⟩. We just note that since we chose the displacement operator to be

non-unitary, we need to normalize the expectation value by the ⟨α|α⟩ factor:

⟨ϕ(x)⟩α =
⟨α|ϕ(x) |α⟩
⟨α|α⟩

=

∫
DϕeiS0D̂†

0(α) ϕ(x) D̂0(α)∫
DϕeiS0D̂†

0(α) D̂0(α)
, (2.10)

where S0 is a free scalar field action:

S0 =

∫
d4xL =

∫
d4x

[
1

2
(∂µϕ)

2 − 1

2
m2ϕ2

]
. (2.11)

In momentum space, this action becomes

S0 =

∫
d4k

(
k2 −m2

)
|ϕk|2 . (2.12)

The continual path integral can be approximated by a finite one. The integral measure is

discretized as

Dϕ =
∏
i

dϕ(xi), (2.13)

and the field values ϕ(xi) can be represented by a discrete Fourier series:

ϕ(xi) =
1

V

∑
n

e−ikn·xiϕ(kn), (2.14)

where kµn = 2πnµ

L
, with nµ an integer and V = L4 a volume of 4 dimensional space. The

Fourier coefficient ϕ(k) is complex with the constraint ϕ∗(k) = ϕ(−k), which expresses the

fact that ϕ(x) is real. We want to consider the real and imaginary parts of ϕ(kn) with

k0n > 0 as independent variables. Since this is a unitary transformation, the integral measure

becomes

Dϕ(x) =
∏
kn0>0

dReϕ(kn) dImϕ(kn). (2.15)
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With these preliminary notes on the path integral democratization procedure, we are ready

to write down the expression for the expectation value of the field ϕ. The discretized free

theory action becomes

eiS0 =exp

{
i

V

∑
k

(
k2 −m2

)
|ϕk|2

}

= exp

{
− i

V

∑
k

(
m2 − k2

) [
(Reϕk)

2 + (Imϕk)
2]} (2.16)

The rest of the numerator integrand is

D̂†
0(α) ϕ(x) D̂0(α) = eα

∗ae−
|α|2
2 ϕ(x) eαa

†
e−

|α|2
2

→ exp

{
1

V

∑
k′

(ωk′ + k′0) α̃
∗
k′ϕk′

}
exp

{
1

V

∑
q′

(ωq′ + q′0) α̃q′ϕ
∗
q′

}

× 1

V

∑
k′′

(Reϕk′′ + iImϕk′′) e
ik′′x exp

(
− 1

V

∑
k′

αk′ α
∗
k′

)
, (2.17)

where in the second and the third lines we used the Fourier representation and the definition

of creation and annihilation operators in terms of fields ϕk. We note, that

1

V

∑
k

(α̃∗
kϕk + α̃kϕ

∗
k) =

2

V

∑
k

(Re αk Re ϕk + Im αk Im ϕk) . (2.18)

With all the aforementioned rearrangements, we obtain the following expression for the

nominator of the expectation value∫
DϕeiS0D̂†

0(α) ϕ(x) D̂0(α) =
∏
kn0>0

dReϕk dImϕk exp

{
i

V

∑
k

(
k2 −m2

)
|ϕk|2

}

× exp

{
2

V

∑
k′

(ωk′ + k′0) (Re αk′ Re ϕk′ + Im αk′ Im ϕk′)

}

× eik
′′x 1

V

∑
k′′

(Reϕk′′ + iImϕk′′) exp

(
− 1

V

∑
k′

αk′α
∗
k′

)
. (2.19)

From this analysis, we conclude that the displacement operator D̂0(α) shifts the center of

the Gaussian, giving a non-zero value for the integral.

The denominator can be also calculated to give us the similar expression

⟨α|α⟩ =
∫
DϕeiS0D̂†

0(α) D̂0(α) =
∏
kn0>0

dReϕk dImϕk exp

{
i

V

∑
k

(
k2 −m2

)
|ϕk|2

}
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× exp

{
2

V

∑
k′

(ωk′ + k′0) (Re αk′ Re ϕk′ + Im αk′ Im ϕk′)

}

exp

(
− 1

V

∑
k′

αk′α
∗
k′

)
. (2.20)

To simplify our calculations, we assume that all α̃k are real. We also slightly change the

notation to make the discrete nature of momenta more conspicuous. The denominator takes

the form of a product of Gaussian integrals and can be easily computed. We only need to

pay attention to the additional exponential piece linear in ϕk.

⟨α|α⟩ =
∏
kn0>0

∫
dImϕn exp

{
− i

V

∑
k

(
m2 − k2n

)
(Imϕn)

2

}

dReϕn exp

{
− i

V

(
m2 − k2n

)
(Reϕn)

2

}
exp

{
2

V

(
ωn + k0n

)
Re αn Re ϕn

}
=
∏
kn0>0

√
−iπV
m2 − k2n

√
−iπV
m2 − k2n

exp

{
− i

V

(ωn + k0n)
2 Reα2

n

m2 − k2n

}
. (2.21)

The nominator calculations reproduce the previous steps with only one very important dif-

ference: the presence of the source field in the integrand makes the shift in the field visible.

⟨α|ϕ(x) |α⟩ =

1

V

∑
l

eiklx
∏
kn0>0

∫
dReϕn Reϕl exp

{
−i (m

2 − k2n)
V

(
Reϕn +

i(ωn + k0n)Reαn

m2 − k2n

)2
}

× exp

{
− i

V

(ωn + k0n)
2 Reα2

n

m2 − k2n

}
1

V

∑
l

eiklx
∏
kn0>0

√
−iπV
m2 − k2n

−i(ωn + k0n)
˜Reαn

m2 − k2n
× exp

{
− i

V

(ωn + k0n)
2 Reα2

n

m2 − k2n

}
. (2.22)

We have almost reached our goals. We note that α̃n = α
k0n+ωn

. To convert discrete, finite

sums over kn to continuous integrals over k, we take the limit L→∞:

1

V

∑
n

→
∫

d4k

(2π)4
. (2.23)

We obtain the result for the field ϕ(x) expectation value

⟨ϕ⟩α =

∫
d4k

(2π)4
−i Reαk

m2 − k2
eikx. (2.24)
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The standard contour integration over the dk0 gives us the final result:

⟨ϕ⟩α =

∫
d3k

2ωk

Reαk e
iωkte−ik·x. (2.25)

This result suggests the form of the expectation value for the graviton field gµν , which replaces

the scalar field and introduces the general Schrodinger wave function ϕk representing the

solitonic solutions instead of the simple plane-wave e−ik·x.

2.2 Path integral approach in M-theory: nodal dia-

grams

We will attempt to include in our analysis of the Glauber-Sudarshan state the full interacting

action with all the quantum corrections. At the same time, to make the following computa-

tions tractable, we restrict our attention to only scalar degrees of freedom. The three scalar

fields (ϕ1, ϕ2, ϕ3) will represent the three sets of degrees of freedom from the full M-theory

description:

{gµν}, {CABD}, {ΨA},

representing metric, fluxes, and gravitino fields. The path-integral structure that we are

looking for here may be represented by:

⟨φ1⟩σ ≡
∫
Dφ1Dφ2Dφ3 e

iStot D†(α, β, γ)φ1(x, y, z)D(α, β, γ)∫
Dφ1Dφ2Dφ3 eiStot D†(α, β, γ)D(α, β, γ)

, (2.26)

where σ = (α, β, γ) is associated with ({gµν}, {CABD}, {ΨA}) degrees of freedom , D(σ)

is a non-unitary displacement operator, i.e. D†(σ)D(σ) ̸= D(σ)D†(σ) ̸= 1 and the total

action Stot ≡ Skin + Sint + Sghost + Sgf where the perturbative part of Sint comes from an

interaction term and Sgf is the gauge-fixing term. As a reminder, we also mention here that

α, β, γ represent the coherent states of the three respective scalar fields of our toy model or,

equivalently, the three sets of degrees of freedom from the full M-theory: metric, fluxes and

gravitino fields.
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Ignoring the complex parts of the various fields, we can write down the simplified version

of the numerator of the path integral in the following form

Num[⟨φ1⟩σ] = C(αi, aj,V, ..)
∏
j

∫
dφ̃1(kj) exp

[
− aj

(
φ̃1(kj) +

ᾱj

aj

)2]
(2.27)

∏
u

∫
dφ̃1(lu) exp

[
− bu

(
φ̃1(lu) +

β̄u
au

)2] ∏
v

∫
dφ̃1(fv) exp

[
− cv

(
φ̃1(fv) +

γ̄v
cv

)2]
×
(
φ̃1(k1)ψk1(x, y, z)e

−ik0,1t + φ̃1(k2)ψk2(x, y, z)e
−ik0,2t + φ̃1(k3)ψk3(x, y, z)e

−ik0,3t + ..
)

×
(
1 + i

∑
S

V−ucnmpqrs(−1)v
 p

eo

 (ku1 + ku2 + ...+ kuq)
n+eo(lv1 + lv2 + ...+ lvr)

m+p−eo

× φ̃1(ku1)φ̃1(ku2)...φ̃1(kuq)φ̃2(lv1)φ̃2(lv2)...φ̃2(lvr)φ̃3(fw1)φ̃3(fw2)...φ̃3(fws−1)φ̃3(fws),

where the cmnpqrs coefficients are the coupling constants for each contribution of the pertur-

bative series. Note, that we have ignored the contributions coming from the local, non-local,

and fermionic action.

Since it will be advantages for our computations to have some factors dimensionless,

such as coefficients cnmpqrs, Fourier transforms ϕ̃i(k) and so on, we need to define the Fourier

transforms in powers of Mp. As a result, the perturbative series of the field expectation value

is ordered in powers of Mp. Keeping this in mind, we see that the tree-level contribution

can be calculated in the limit Mp →∞ when all the interaction terms become subdominant.

The tree level contributions appear when we take vanishing coupling constants, i.e. we take

cnmpqrs = 0. In the limit Mp →∞ and gs ≪ 1, the numerator has the following form

i =
∏
j ̸=i

∫
dφ̃1(kj) exp

[
− aj

(
φ̃1(kj) +

αj

aj

)2]
(2.28)

×
∏
u

∫
dφ̃2(lu) exp

[
− bu

(
φ̃2(lu) +

βu

bu

)2]
×
∏
v

∫
dφ̃3(fv) exp

[
− cv

(
φ̃3(fv) +

γv
cv

)2]
×
∫
dφ̃1(ki) exp

[
− ai

(
φ̃1(ki) +

αi

ai

)2]
φ̃1(ki)ψki

(x, y, z)e−ik0,it

= −
∏
j

(πj
aj

)1/2∏
u

(πu
bu

)1/2∏
v

(πv
cv

)1/2(αi

ai

)
ψki

(x, y, z)e−ik0,it
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where πj = πu = πv = π and the overall minus sign is due to our choice of convention for

the displacement operator D(σ). The above diagram is only for the momentum mode ki.

An equivalent tree-level diagram for the denominator has the form

=
∏
j

(πj
aj

)1/2∏
u

(πu
bu

)1/2∏
v

(πv
cv

)1/2
. (2.29)

In the continuum limit, V→∞, and therefore we can sum over all i from (2.28), to get the

following result:

1

V

∞∑
i=1

i = ⊗
(
−
∫
d11k

α(k)

a(k)
ψk(x, y, z)e

−ik0t

)
. (2.30)

It is time to move to the calculations involving interactions parameterized by non-zero

cnmpqrs.

2.2.1 Contributions from the φ2 fields

In the following computation we will introduce and extensively use the so called nodal

diagrams. Nodal diagrams are a pictorial representation of the momenta distribution in

the perturbative path integral calculations. They help to visualize a particular momenta

configuration and also accentuate the presence or absence of the source field. Each nodal

diagram is made up of small dot points group together a particular set of coinciding momenta.

The bigger size nodes make this set of momenta more visual, representing one, two or greater

number of the matching momenta. The presence of the source field is made conspicuous by

a node with a letter i inside it.

The scalar field φ2 is a representative field for the three-form flux components that have

84 massless degrees of freedom in M-theory. To make the following calculations manageable,

we use only one representative component taken with arbitrary copies in r in the coupling

constant cnmpqrs. It means that each of these copies can have different momenta integrated

over to provide the correct final result.

Case 1: lv1 = lv2 = lv3 = ..... = lvr ≡ li for φ2 field
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Since the momentum modes kui
, lvj , and fwt are all independent, we can fix the kui

and

fwt values and concentrate our attention for now on the lvj modes. This first interactive case

is relatively simple and can be represented diagrammatically as

rli
li li li

li
li

=
∏

j ̸=i

∫
dφ̃2(lj) exp

[
− bj

(
φ̃2(lj) +

β̄j

bj

)2]
(2.31)

×
∫
dφ̃2(li) exp

[
− bi

(
φ̃2(li) +

βi

bi

)2]
(rli)

m+p−eoφ̃r
2(li)

The value of this diagram is made up of the products of two distinct integrals. The first

one is a simple variation of the Gaussian integral∫
dφ̃2(lj) exp

[
− bj

(
φ̃2(lj) +

β̄j
bj

)2]
=

(
πj
bj
.

)1/2

(2.32)

The second integral is more involved. To solve it we introduce a new integration variable

W = φ̃2(lj) +
β̄j

bj
)r and obtain the following integral∫

dWe−bjW
2

(rli)
m+p−e0

(
W − β̄j

bj

)r

(2.33)

The value of this integral we can look up in the Table of integrals by Gradhstein and Ryzhik

(integral 3.461.4, page 364). The result is

r∑
ep∈2Z+

 r

ep

(−βi

bi

)r−ep
(rli)

m+p−eo(ep − 1)!!

(2bi)ep/2
. (2.34)

Here the ep is an even integer, otherwise, the integrals become zero.

In the next step, we some over the discrete momenta li:

1

V

∞∑
i=1

rli

li li
li
li

li

(2.35)
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The sum is straightforward, and in the continuum limit, when V ←−∞, it turns into an

integral ∏
j

(πj
bj

)1/2 ∫
d11l (rl)m+p−eo

r∑
ep∈2Z+

 r

ep

(−β(l)
b(l)

)r−ep
(ep − 1)!!

(2b(l))ep/2
. (2.36)

Case 2: lv1 = lv2 = lv3 = ..... = lvr−1 = li, lvr = lj, i ̸= j for φ2 field

In this case, we have two different momenta, which vary, and the final result contains two

sums over two different indices. This already suggests that the final result should contain

the nested integrals.

Now our nodal diagram has an additional extension due to the presence of the lj, i ̸= j.

To understand the general picture, we take a particular example of the case (l1, l2):

l2 (r − 1) l1
l1
l1 l1

l1
l1

(2.37)

To understand how to write down the integral for the diagram, we need to come back to the

initial formula for the Numerator. It contains the sum of the momenta lv1 , lv2 , ...:

(lv1 + lv2 + ...+ lvr)
m+p−e0 = [(r − 1)l1 + l2]

m+p−e0 (2.38)

=

m+p−e0∑
e1

m+ p− e0

e1

 [(r − 1)l1]
e1 l

(m+p−e0−e1)
2 (2.39)

Then the diagram represents the following integral

∏
j ̸=i

∫
dφ̃2(lj) exp

[
− bj

(
φ̃2(lj) +

β̄j
bj

)2]
(2.40)

×
m+p−e0∑

e1

m+ p− e0

e1

 [(r − 1)l1]
e1

∫
dφ̃2(l1) exp

[
− b1

(
φ̃2(l1) +

β1

b1

)2]
φ̃
(r−1)
2 (l1)
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× l(m+p−eo−e1)
2

∫
dφ̃2(l2) exp

[
− b2

(
φ̃2(l2) +

β2

b2

)2]
φ̃2(l2)

The integration of the first line gives the standard answer
(

πj

bj
.
)1/2

. The second integral is

very similar to case 2 with r power being replaced by r − 1:∫
dφ̃2(l1) exp

[
− b1

(
φ̃2(l1) +

β1

b1

)2]
φ̃
(r−1)
2 (l1) (2.41)

=

(
π

b1
.

)1/2 r−1∑
e2∈2Z+

r − 1

e2

(−β1

b1

)(r−1−e2)
(e2 − 1)!!

(2b1)e2/2
. (2.42)

And the integral on the last line is simply calculated to be∫
dφ̃2(l2) exp

[
− b2

(
φ̃2(l2) +

β2

b2

)2]
φ̃2(l2) =

(
π

b2
.

)1/2(
−β2
b2

)
. (2.43)

After collecting all the results, we obtain the final value of the case 3 diagram with lj = l1

and li = l2:

∏
j

(πj
bj

)1/2∑
e1,e2

r (rl1 − l1)e1l(m+p−e0−e1)
2

m+ p− e0

e1

r − 1

e2

(−β1

b1

)(r−1−e2)

×
(
−β2

b2

)
(e2 − 1)!!

(2b1)e2/2
. (2.44)

Now we want to generalize this particular case for all possible values (li, lj) and then sum

over all i and j. We begin our analysis with the case (l1, lj), summing over all values of j

except j = 1

le11

(
−β1
b1

)r1 1

(b1)e2/2

[
lm1
2

(
−β2
b2

)
+ lm1

3

(
−β3
b3

)
+ lm1

4

(
−β4
b4

)
+ ...

]
(2.45)

The similar case (l2, lj, j ̸= 2) gives us

le12

(
−β2
b2

)r1 1

(b2)e2/2

[
lm1
1

(
−β1
b1

)
+ lm1

3

(
−β3
b3

)
+ lm1

4

(
−β4
b4

)
+ ...

]
(2.46)

And the next term (l3, lj, j ̸= 3) becomes

le13

(
−β3
b3

)r1 1

(b3)e2/2

[
lm1
1

(
−β1
b1

)
+ lm1

2

(
−β2
b2

)
+ lm1

4

(
−β4
b4

)
+ ...

]
(2.47)
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Now we can observe a certain pattern by combining the summation terms in a particular

order. First, we take all the sums over i and j with j > i:

le11

(
−β1
b1

)r1 1

(b1)e2/2

[
lm1
2

(
−β2
b2

)
+ lm1

3

(
−β3
b3

)
+ ...

]
+ le12

(
−β2
b2

)r1 1

(b2)e2/2

[
lm1
3

(
−β3
b3

)
+ lm1

4

(
−β4
b4

)
+ ...

]
+le13

(
−β3
b3

)r1 1

(b3)e2/2

[
lm1
4

(
−β4
b4

)
+ ...

]
+ ... (2.48)

=
∞∑
i=1

le1i

(
−βi
bi

)
1

(bi)e2/2

∞∑
j=i+1

lm1
j

(
−βj
bj

)
(2.49)

The two last nested sums in the continuum limit are replaced by the nested integrals:

1

V 2

∞∑
i=1

le1i

(
−βi
bi

)
1

(bi)e2/2

∞∑
j=i+1

lm1
j

(
−βj
bj

)
(2.50)

−→V→∞

∫
d11l

le1

be2/2(l)

(
−β(l)
b(l)

)r1 ∫ ∞

l

d11 l′l′m1

(
−β(l

′)

b(l′)

)r1

. (2.51)

It is evident that the previous nested integral structure does not contain all the elements

of the double sums over (i, j). The terms left behind form a nested sum on their own with

j ∈ Z+, i > j:

lm1
1

(
−β1
b1

) [
le12

(b2)e2/2

(
−β2
b2

)r1

+
le13

(b3)e2/2

(
−β3
b3

)r1

+ ...

]
(2.52)

+ lm1
2

(
−β1
b1

) [
le13

(b3)e2/2

(
−β3
b3

)r1

+
le14

(b4)e2/2

(
−β4
b4

)r1

+ ...

]
+ ... (2.53)

=
∞∑
j=1

lm1
j

(
−βj
bj

) ∞∑
i=j+1

le1i
(bi)e2/2

(
−βi
bi

)r1

(2.54)

Again the last sum in the continuum limit translates into a nested integral structure:

1

V 2

∞∑
j=1

lm1
j

(
−βj
bj

) ∞∑
i=j+1

le1i
(bi)e2/2

(
−βi
bi

)r1

(2.55)

−→V→∞

∫
d11 lm1

(
−β(l)
b(l)

)∫ ∞

l

d11l′
l′e1

(b(l′))e2/2

(
−β(l

′)

b(l′)

)r1

. (2.56)

Case 3: lv1 = lv2 = lv3 = ...lvr−2 = li, lvr−1 ̸= li, lvr ̸= li for φ2 field
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Our first task is to understand this more involved case in the simplest situation: li = l1

and lvr−2 = lvr−1 = l2. The respective diagram has the following form

l2

l2

2 l2 (r − 2) l1
l1
l1 l1

l1
l1

We start the analysis from the original sum over all values of lvi :

(lv1 + lv2 + ...+ lvr)
m+p−e0 = [(r − 2)l1 + 2l2]

m+p−e0 (2.57)

=

m+p−e0∑
e3

m+ p− e0

e3

 ((rl1 − 2l1)
e3 (2l2)

(m+p−e0−e3). (2.58)

Then the integral represented by the diagram looks like this one

∏
j ̸=i

∫
dφ̃2(lj) exp

[
− bj

(
φ̃2(lj) +

β̄j
bj

)2]
(2.59)

×
m+p−e0∑

e3

m+ p− e0

e3

 (rl1 − 2l1)
e3

∫
dφ̃2(l1) exp

[
− b1

(
φ̃2(l1) +

β1

b1

)2]
φ̃
(r−2)
2 (l1)

× (2l2)
(m+p−eo−e3)

∫
dφ̃2(l2) exp

[
− b2

(
φ̃2(l2) +

β2

b2

)2]
φ̃2
2(l2).

The first two integrals bring the expected results:∫
dφ̃2(lj) exp

[
− bj

(
φ̃2(lj) +

β̄j
bj

)2]
=

(
π

bj

)1/2

, (2.60)

and ∫
dφ̃2(l1) exp

[
− b1

(
φ̃2(l1) +

β1

b1

)2]
φ̃
(r−2)
2 (l1) (2.61)

=

(
π

b1

)1/2 r−2∑
e4∈2Z+

r − 2

e4

(−β1

b1

)(r−2−e4)
(e4 − 1)!!

(2b1)e4/2
. (2.62)

The last integral from the diagram representation generates an additional term coming from

the second power of the field variable. As usual we introduce a dummy variableW = φ̃2+
β2

b2
.

Chapter 2



2.2. PATH INTEGRAL APPROACH IN M-THEORY: NODAL DIAGRAMS 28

Then

φ̃2
2 = W 2 − 2W

β2
b2

+
β2
2

b22
. (2.63)

The Gaussian integral over the second term is zero, but the two terms give us slightly different

non-trivial results:

β2
2

b22

∫
dWe−b2W =

β2
2

b22

(
π

b2

)1/2

, (2.64)

and ∫
dWe−b2WW 2 =

1

b2

(
π

b2

)1/2

. (2.65)

We are left only to collect all the pieces of our calculations to find the following value of

the diagram

∏
j

(
π

bj

)1/2 m+p−e0∑
e3

m+ p− e0

e3

 (rl1 − 2l1)
e3 (2l1)

(m+p−e0−e3) (2.66)

×
r−2∑

e4∈2Z+

r − 2

e4

(−β1

b1

)(r−2−e4)
(e4 − 1)!!

(2b1)e4/2
. (2.67)

The next natural step would be to take different momenta values: li = l1, lvr−1 = l3, lvr =

l3. In this case, sum over momenta gives additional combinatorial elements, but the integrals

are simpler.

The diagram becomes

l3

l2

2 l2 (r − 2) l1
l1
l1 l1

l1
l1

The sum over the momenta

(lv1 + lv2 + ...+ lvr)
m+p−e0 = [(r − 2)l1 + (l2 + l3)]

m+p−e0 (2.68)
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=

m+p−e0∑
e5

m+ p− e0

e5

 (rl1 − 2l1)
e5 (l2 + l3)

(m+p−e0−e3), (2.69)

where

(l2 + l3)
(m+p−e0−e3) =

∑
e6

m+ p− e0 − e5

e6

 le62 l
(m+p−e0−e5−e6)
3 . (2.70)

The integral structure of the diagram is very similar to the previous one with the difference

that now we have three different Gaussian integrals over the momenta l1, l2, l3:∏
j ̸=i

∫
dφ̃2(lj) exp

[
− bj

(
φ̃2(lj) +

β̄j
bj

)2]
(2.71)

×
m+p−e0∑

e3

m+ p− e0 − e5

e6

 (rl1 − 2l1)
e5

∫
dφ̃2(l1) exp

[
− b1

(
φ̃2(l1) +

β1

b1

)2]
φ̃
(r−2)
2 (l1)

× (l2)
e6

∫
dφ̃2(l2) exp

[
− b2

(
φ̃2(l2) +

β2

b2

)2]
φ̃(l2).

× (l3)
m+p−e0−e5−e6

∫
dφ̃2(l3) exp

[
− b2

(
φ̃2(l3) +

β3

b3

)2]
φ̃(l3).

It can be seen that all the present integrals have been calculated several times already, and

so we can just easily state the final result:

∏
j

(
π

bj

)1/2 m+p−e0∑
e5

m+ p− e0

e5

 (rl1 − 2l1)
e5
∑
e6

m+ p− e0 − e5

e6

 le62 (2.72)

×
r−2∑
e7

r − 2

e7

(−β1

b1

)(r−2−e7)
β2
b2

β3
b3

(e7 − 1)!!

(2b1)e7/2
. (2.73)

So far, this was the easy part of our analysis of case 4. In the next step, we need to

sum over all possible values of i and j. The first diagram (li, li) can be summed relatively

straightforwardly. The summation technique is exactly the same as we used for case 3. We

divide the terms in the sum in such a way that they contain nested sums inside. The only

difference comes from the presence of other variable coefficients

1

V 2

∞∑
i=1

le3

(bi)e4/2

(
−βi

bi

)r2 ∞∑
j=i+1

lm2
j

(
1

2bj
+
β
2

j

b2j

)
(2.74)

Chapter 2



2.2. PATH INTEGRAL APPROACH IN M-THEORY: NODAL DIAGRAMS 30

−→
∫
d11l

le3

(b(l))e4/2

(
−β(l)
b(l)

)r2 ∫ ∞

l

d11l′ l
′m2

(
1

2b(l′)
+
β
2
(l′)

b2(l′)

)
, (2.75)

and in the same manner

1

V 2

∞∑
i=j

lm2
j

(
1

2bj
+
β
2

j

b2j

)
∞∑

i=j+1

le3

(bi)e4/2

(
−βi

bi

)r2

(2.76)

−→
∫
d11l lm2

(
1

2b(l)
+
β
2
(l)

b2(l)

)∫ ∞

l

d11l′
l
′e3

(b(l′))e4/2

(
−β(l

′)

b(l′)

)r2

. (2.77)

To discover the final result, we just need to add these two different nested integral terms

and multiply the sum by the combinatorial coefficients summing over all the permutation

indices.

Now we turn to the case where both side legs can be different. Again we are going to

move step by step, trying to figure out the general tendencies.

Let’s take the case (li = l3, l1, lj) which is given by the following diagram

l1

lj

l1 + lj (r − 2) l3
l3
l3 l3

l3
l3

(2.78)

and sum over the j indices.

From our previous knowledge, we can write down the integral structure of this diagram

without much ado:

∏
k ̸=j

∫
dφ̃2(lk) exp

[
− bj

(
φ̃2(lk) +

β̄k
bk

)2]
(2.79)

×
m+p−e0∑

e3

m+ p− e0 − e5

e6

 (rl3 − 2l3)
e5

∫
dφ̃2(l3) exp

[
− b1

(
φ̃2(l3) +

β3

b3

)2]
φ̃
(r−2)
2 (l3)

× (l1)
e6

∫
dφ̃2(l1) exp

[
− b2

(
φ̃2(l1) +

β1

b1

)2]
φ̃(l1)

× (lj)
m+p−e0−e5−e6

∫
dφ̃2(lj) exp

[
− b2

(
φ̃2(lj) +

βj

bj

)2]
φ̃(lj).

Chapter 2



2.2. PATH INTEGRAL APPROACH IN M-THEORY: NODAL DIAGRAMS 31

All the integrals present here have already been calculated many times, so we give the answer

straight away, which is again very similar to the previous case:

∏
k

(
π

bj

)1/2 m+p−e0∑
e5

m+ p− e0

e5

 r (rl3 − 2l3)
e5
∑
e6

m+ p− e0 − e5

e6

 le61 (2.80)

×
r−2∑
e7

r − 2

e7

(−β3

b3

)(r−2−e7)
β1
b1

βj
bj

(e7 − 1)!!

(2b3)e7/2
. (2.81)

Then we need to sum over all j indices. We will write the first several terms to figure out

the general picture:

le61
β1
b1

(
lm3
2

β2
b2

+ lm3
4

β4
b4

+ lm3
5

β5
b5

+ ...

)
. (2.82)

The main noticeable peculiarity of this sum is the absence of the j = 3 term, which is

expected as the l3 is already occupied in the different parts of the diagram. To restore

the nested structure of the sum (and the subsequent integral), we add and subtract an l3

containing the term:

le61
β1
b1

(
lm3
2

β2
b2

+ lm3
3

β3
b3

+ lm3
4

β4
b4

+ lm3
5

β5
b5

+ ...

)
− lm3

3

β3
b3
. (2.83)

This trick will allow us to use the already standard technique to move from discrete sum-

mation to continuous integration:

le61
β1
b1

∞∑
j=2

(
lm3
j

βj
bj
− lm3

3

β3
b3

)
−→ β1l

e6
1

b1

(∫ ∞

l1

d11l′
β(l′)l

′m3

b(l′)
−
∫ l3

l2

d11l′
β(l′)l

′m3

b(l′)

)
. (2.84)

Since the step between different values of momenta in the infinite volume goes to zero, we

can safely suggest that the last integral evaluates to zero:∫ l3

l2

d11l′
β(l′)l

′m3

b(l′)
−→ 0, (2.85)

as well as any other integral from a specific value of the momentum to its next allowed value.

The next step is to add the sum over the second branch of the side momenta, which is,

for now, fixed to the l1 value. We can write down the following formal sum

1

V

∑
j

[l1 + lj, (r − 2)l3] +
1

V

∑
j

[l2 + lj, (r − 2)l3] +
1

V

∑
j

[l4 + lj, (r − 2)l3] + ... (2.86)
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where we sum over the different values of lk, omitting, of course, the l3 momentum which is

already occupied.

We also note that as soon as we start summing over the second index k ̸= 3, an additional

term needs to be introduced into the general sum structure. Then the generic term of the

total sum looks like this one

I(lk) =
βk

bk

(
le6k

∫ ∞

lk

d11l′
β(l′)l

′m3

b(l′)
+ lm3

k

∫ ∞

lk

d11l′
β(l′)l

′e6

b(l′)

)
. (2.87)

Omitting the combinatorial coefficients and using the introduces conventions, we can write

the double sum over j, k indices

le53
b
e7/2
3

(
−β3
b3

)r3

[I(l1) + I(l2) + I(l4) + I(l5) + ...] . (2.88)

The final destination of our analysis of this case is the sum over all three indices i, j, k where

each of them takes only the allowed values. The diagram for this case is given by

1

V3

∑
i,j,k

lj

lk

lj + lk (r − 2) li
li
li li

li
li

As expected, the total sum over the discrete momenta should include the nested structure,

and the continuum variation of the sum contains the following nested integral structure:

∫
d11l I(l, l′)

∫ ∞

l′
d11l′′

l
′′e5

be7/2(l′′)

(
−β(l

′′)

b(l′′)

)r3

(2.89)

+

∫
d11l

le5

be7/2(l)

(
−β(l)
b(l)

)r3 ∫ ∞

l

d11l′ I(l′, l′′). (2.90)

We can continue our analysis by introducing new, more complicated nodal diagrams. At

the same time, it would be more and more difficult to find the values of these well-branched

constructions without a possibility of gaining additional incites beyond what we’ve already

discovered. It seems that now is a good time to introduce a structure of the φ̃3 field.
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2.2.2 Contributions from the φ3 fields

Before we start the analysis of each particular case for the φ3 field, it would be instructive

to understand how the momentum conservation affects the calculations. The first important

fact is that the fωs momentum is not independent and is fully determined by the values of

all other momenta:
q∑

k=1

kui
+

r∑
j=1

lvj +
s∑

t=1

fωt = 0, (2.91)

and thus

−fωs =

q∑
k=1

kui
+

r∑
j=1

lvj +
s−1∑
t=1

fωt . (2.92)

Since the fωs is not independent, the result of the Gaussian integration over such a

momentum depended on all the momenta is going to be slightly unusual. The general case

looks something like this∫
dφ̃3(fωs) exp

[
− cs

(
φ̃3(fωs) +

γ̄s
cs

)2]
φ̃n0
3 (fωs) ∼

(
γs
cs

)n0

=
γs
f 2
ωs

, (2.93)

where we suggested that cs ∼ f 2
ωs
.

Now, we need to find a general form of the f−2n0
ωs

, coming from the momenta conservation.

We I taking several steps, involving some approximations:

1

f 2n0
ωs

=
1∑q

k=1 kui
+
∑r

j=1 lvj +
∑s−1

t=1 fωt

=
1(∑s−1

t=1 fωt

)2n0

(
1−

∑q
k=1 kui

+
∑r

j=1 lvj∑s−1
t=1 fωt

)2n0

, (2.94)

where we have assumed that
∑s

t=1 fωt >
∑q

k=1 kui
+
∑r

j=1 lvj , which is always possible in

the limit when all the momenta fωt are larger than kui
and lvj . Then we find the following

general result:

1

f 2n0
ωs

=
∑
n1

2n0

n1

(∑q
k=1 kui

+
∑r

j=1 lvj(∑s−1
t=1 fωt

)2
)n1

1(∑s−1
t=1 fωt

)2n0−n1

=
∑
n1

∑
en1

2n0

n1

n1

en1

( q∑
k=1

kui

)n1
(

r∑
j=1

lvj

)n1−en1
1(∑s−1

t=1 fωt

)2n0+n1
(2.95)
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We also need to find the γs is affected by the momentum conservation

γ(fωs) = γ

(
−

q∑
k=1

kui
−

r∑
j=1

lvj −
s−1∑
t=1

fωt

)
. (2.96)

Using the previous assumption that all fωt have the largest values of the moment, we can

expand γ(fωs) into the Taylor series:

γ(fωs) = γ

(
−

s−1∑
t=1

fωt

(
1 +

∑q
k=1 kui

+
∑r

j=1 lvj∑s−1
t=1 fωt

))
(2.97)

= γ(−ζ)−

(
q∑

k=1

kui
+

r∑
j=1

lvj

)
∂γ

∂ζ
(−ζ) + (−1)2

2!

(
q∑

k=1

kui
+

r∑
j=1

lvj

)2
∂2γ

∂ζ2
(−ζ) + ... (2.98)

=
∑
nk

(−1)nk

nk!

(
q∑

k=1

kui
+

r∑
j=1

lvj

)nk

∂nkγ

∂ζnk
(−ζ) (2.99)

=
∑
nk

(−1)nk

nk!

∑
enk

nk

enk

( q∑
k=1

kui

)enk
(

r∑
j=1

lvj

)nk−enk
∂nkγ

∂ζnk
(−ζ), (2.100)

where we introduced a new notation

ζ =
s−1∑
t=1

fωt . (2.101)

In the last step, we find the formula for the general case of any power n0:

γ(fωs)
n0 = γ(fωs) γ(fωs)...γ(fωs) =

n0+2∏
k=2

∑
nk

∑
enk

(...) , (2.102)

where the product starts from the case when the nodal diagrams have k > 2.

Combining all the accumulated knowledge about the case with dependent momentum

fωs , we come to the conclusion that the related Gaussian integral introduces an additional

term of the form

1

ζ2n0+n1

∂nkγ(−ζ)
∂ζnk

. (2.103)

The integration over the rest of independent momenta fωt follows the same rules as for all

previous cases.

Case 1: fw1 = fw2 = fw3 = .... = fws−2 = fg, fws−1 = fh, fws ̸= (fg, fh) for φ3 field
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We begin with a case similar to the diagram

1

V

∞∑
i=1

sfi

fi fi
fi
fi

fi

(2.104)

The simplest possible case for the φ3 field is when all the momenta kui
, lvj , and fωt are

equally distributed:

−fωs = qki + rlj + (s− 1)fk. (2.105)

The diagram describing this case is the following

fωs
(s− 1) fi

fi
fi fi

fi
fi

(2.106)

The integral representation of it is∏
t̸=i

∫
dφ̃3(ft) exp

[
− ct

(
φ̃3(ft) +

γ̄t
ct

)2] ∫
dφ̃3(fi) exp

[
− ci

(
φ̃3(fi) +

γ̄i
ci

)2]
φ̃
(s−1)
3 (fi)

×
∫
dφ̃3(fωs) exp

[
− ct

(
φ̃3(fωs) +

γ̄s
cs

)2]
. (2.107)

The first two integrals were calculated previously and give the standard result

s∏
t=1

(
πt
ct

)1/2 ∑
es∈2Z+

s− 1

es

 (es − 1)!!

2es/2
1

c
es/2
i

(
−γi
ci

)s−1−es

, (2.108)

and the last integral will provide additional powers:

1

ζ2n0+n1

∂nkγ(−ζ)
∂ζnk

=
1

(s− 1)2n0+n1

1

f 2n0+n1
i

1

(s− 1)nk

∂nkγ(−(s− 1)fi)

∂fnk
i

, (2.109)

where we noted the fact that

ζ =
s−1∑
t=1

fωt = (s− 1)fi. (2.110)
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Taking into account all the previous results and also noting that

n0 = 1, (2.111)

in this case, and also assuming that

1

ci
∼ 1

f 2
i

, (2.112)

we come up with the following final result

s∏
t=1

(
πt
ct

)1/2 ∑
es∈2Z+

s− 1

es

 (es − 1)!!

2es/2
1

(s− 1)n1+nk+2

(−γi)s−1−es

f 2s−es+n1
i

∂nkγ(−(s− 1)fi)

∂fnk
i

. (2.113)

In the last step, we sum over all values of fi and move to the continuum introducing inte-

gration instead of discrete summation:

s∏
t=1

(
πt
ct

)1/2 ∑
es∈2Z+

s− 1

es

 (es − 1)!!

2es/2(s− 1)n1+nk+2

∫
d11f

(−γ(f))s−1−es

f 2s−es+n1
· ∂

nkγ(−(s− 1)f)

∂fnk
.

(2.114)

Case 2: fw1 = fw2 = fw3 = .... = fws−2 = fg, fws−1 = fh, fws ̸= (fg, fh) for φ3 field

This case is summarized by the nodal diagram

1

V2

∑
g,h

fωs
(s− 2) fg

fh

fg
fg fg

fg
fg

(2.115)

and the integral

∏
t̸=h,g

∫
dφ̃3(ft) exp

[
− ct

(
φ̃3(ft) +

γ̄t
ct

)2] ∫
dφ̃3(fg) exp

[
− cg

(
φ̃3(fg) +

γ̄g
cg

)2]
φ̃
(s−2)
3 (fg)

×
∫
dφ̃3(fh) exp

[
− ch

(
φ̃3(fg) +

γ̄g
cg

)2]
φ̃3(fh)

∫
dφ̃3(fωs) exp

[
− cs

(
φ̃3(fωs) +

γ̄s
cs

)2]
.

(2.116)
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The integral over the φ̃3(fg) generates the term

∑
es∈2Z+

s− 2

es

 (es − 1)!!

2es/2
1

c
es/2
g

(
−γg
cg

)s−2−es

. (2.117)

The integral over the φ̃3(fh) gives us the simple term

−γh
ch
. (2.118)

The last integral is substituted with the following term

1

ζ2n0+n1

∂nkγ(−ζ)
∂ζnk

=
1

((s− 2)fg + fh)
n1+2

(
1

(s− 2)

∂

∂fg
+

∂

∂fh

)nk

γ(−(s− 2)fg − fh).

(2.119)

The last identity is based on the fact that

ζ =
s−1∑
t=1

fωt = (s− 2)fg + fh, (2.120)

and thus

∂nkγ(−ζ)
∂ζnk

=

(
1

(s− 2)

∂

∂fg
+

∂

∂fh

)nk

γ(−(s− 2)fg − fh). (2.121)

Again we collect all the results to obtain

∑
es∈2Z+

s− 2

es

 (es − 1)!!

2es/2
(−γg)s−2−es

c
s−2−es/2
g

(
−γh
ch

)
1

((s− 2)fg + fh)
n1+2 (2.122)

×
(

1

(s− 2)

∂

∂fg
+

∂

∂fh

)nk

γ(−(s− 2)fg − fh).

The summations procedure over the indices g and h is the same as described for the

previous cases, including the nested structure of the sums and the subsequent integrals. The

final result is expressed as the construction of the nested integrals

s∏
t=1

(
πt
ct

)1/2 ∑
es∈2Z+

s− 1

es

 (es − 1)!!

2es/2
(2.123)

×

[∫
d11f

(−γ(f))s−2−es

(c(f))
s−2−es/2

∫ ∞

f

d11f ′
γ(f ′)

c(f ′)((s− 2)f + f ′)n1+2

(
1

s− 2

∂

∂f
+

∂

∂f ′

)nk

γ (−(s− 2)f − f ′)

+

∫
d11f

γ(f)

c(f)

∫ ∞

f

d11f ′
(−γ(f ′))s−2−es

(c(f ′))
s−2−es/2 ((s− 2)f ′ + f)

n1+2

(
1

s− 2

∂

∂f ′
+

∂

∂f

)nk

γ (−(s− 2)f ′ − f)

]
.
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Case 3: fw1 = .. = fws−3 = fg, fws−2 = fh, fws−1 = fm, fws ̸= (fg, fh, fm) for φ3 field

There are two possible variations of this case. The first one is slightly simpler: fm =

fh ̸= fg and is represented by the diagram

1

V2

∑
g,h

fωs
(s− 3) fg

2fh
fg
fg fg

fg
fg

fhfh

(2.124)

There are several differences here from the previous case, the major of which is the second

power of the field φ̃3(fh). The Gaussian integral of this case was calculated in case 4, with

the following result∫
dφ̃3(fh) exp

[
− ch

(
φ̃3(fg) +

γ̄g
cg

)2]
φ̃2
3(fh) =

1

ch
+
γ2h
c2h

=
ch + γ2h
c2h

. (2.125)

The rest of the calculations follow the same line of reasoning including the process of the

summation with the final nested integration structure:

s∏
t=1

(
πt
ct

)1/2 ∑
es∈2Z+

s− 3

es

 (es − 1)!!

2es/2
(2.126)

×

[∫
d11f

(−γ(f))so

(c(f))
s′o

∫ ∞

f

d11f ′
c(f ′) + 2γ2(f ′)

2c2(f ′)((s− 3)f + f ′)n1+2

(
1

s− 3

∂

∂f
+

1

2

∂

∂f ′

)nk

γ (−(s− 3)f − f ′)

+

∫
d11f

(
c(f) + 2γ2(f)

2c2(f)

)∫ ∞

f

d11f ′
(−γ(f ′))so (c(f ′))−s′o

((s− 3)f ′ + 2f)
n1+2

(
1

s− 3

∂

∂f ′
+

1

2

∂

∂f

)nk

γ (−(s− 3)f ′ − f)

]
,

where we used the fact that

ζ =

s−1∑
t=1

fωt = (s− 3)fg + 2fh, (2.127)

The second variation of this case is slightly more involved: fm ̸= fh ̸= fg . The diagram-

matic representation of the situation is given by

1

V3

∑
g,h,m

fωs
(s− 3) fg

fh + fm
fg
fg fg

fg
fg

fmfh

(2.128)

Chapter 2



2.2. PATH INTEGRAL APPROACH IN M-THEORY: NODAL DIAGRAMS 39

The integral structure seems to be simpler, since we don’t have a second powers, but the

main difficulty is related to the presence of the third sum over the momenta indices. We

expect to have the triple nested integral structure and the mechanism of how to built such

sums and integrals were in much detail explored in the case 4. The derivatives and powers

of the other terms remains the same except in places where the second powers are replaced

by the first powers. The result is

s∏
t=1

(
πt
ct

)1/2 ∑
es∈2Z+

s− 3

es

 (es − 1)!!

2es/2
(2.129)

×

[∫
d11f

(−γ(f))so

(c(f))
s′o

∫ ∞

f

d11f ′
γ(f ′)

c(f ′)

∫ ∞

f ′
d11f ′

γ(f ′′)

c(f ′′)
(
(s− 3)f + f ′ + f ′′

)n1+2

(
1

s− 3

∂

∂f
+

∂

∂f ′
+

∂

∂f ′′

)nk

× γ(−(s− 3)f − f ′ − f ′′) +

∫
d11f

γ(f)

c(f)

∫ ∞

f

d11f ′
γ(f ′)

c(f ′)

∫ ∞

f ′
d11f ′′

(−γ(f ′′))so

(c(f ′′))
s′o
(
(s− 3)f ′′ + f ′ + f

)n1+2

×
(

1

s− 3

∂

∂f ′′
+

∂

∂f ′
+

∂

∂f

)nk

γ(−(s− 3)f ′′ − f ′ − f)

]
(2.130)

2.2.3 Contributions from the φ1 fields

Case 1: ku1 = ku2 = ku3 = .. = kuq and ki for the φ1 fields

We will start with the simplest case where all the kui
momenta take the same value. The

presence of the extra field φ1 in the outer leg of the nodal diagram means that there are two

possible cases now: one, with the field momenta aligned with the momenta of the q fields,

and two, with the field momenta not aligned with the q fields. Note also that the powers

of both the kui
momenta as well as the lvj momenta have to be changed to account for the

momentum conservation.

1

V

∑
i

i
qki

ki
ki

ki

ki
ki

=

q∏
l=1

(
πl
al

)1/2 ∑
eq∈2Z+

q + 1

eq

 (eq − 1)!!qnq

2eq/2

∫
d11k

(−α(k))q+1−eq

k2q+2−eq−nq
ψk(x, y, z)e

−ik0t, (2.131)

where we have taken a(k) ∝ k2 and nq ≡ n+ eo + enq′
with q′ ≥ 1.

On the other hand, for the non-aligned field momenta, the nodal diagram gives us:
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1

V2

∑
i,j

i
qkj

kj
kj kj

kj
kj

= −
q∏

l=1

(
πl
al

)1/2 ∑
eq∈2Z+

 q

eq

 (eq − 1)!!qnq

2eq/2
(2.132)

×

[∫
d11k

α(k)

k2
ψk(X)e−ik0t

∫ ∞

k

d11k′
(−α(k′))q1

k′q2
+

∫
d11k

(−α(k))q1

kq2

∫ ∞

k

d11k′
α(k′)

k′2
ψk′(X)e−ik′

0t

]
,

where q1 ≡ q − eq, q2 ≡ 2q − eq − nq with nq as defined above, and X ≡ (x, y, z). It is

important to note here that the nested integral structure of the second term involves an

integral over the wave-function ψk′(X)e−ik′0t leading to possible temporal dependence.

Case 2: ku1 = ku2 = ... = kuq−2 = kui
, (kuq−1 , kuq) ̸= kui

for φ1 field

We can use the same approach as in the previous cases and move from the simplest less

general case to the most involved and the most general case. But it makes sense to take a

slightly different approach here and start the computations from the most general case. The

idea here is that the case with all the momenta differences does not depend on the way we

re-assign the momenta indices. This general case should include all the cases with some of

the momenta coinciding and all the possible momenta re-distributions.

The general case diagram for the case of the φ1 field looks something like this one

i
km + kj

kj

km

(q − 2)kl
kl kl kl

kl
kl

(2.133)

In the end, we will need to sum over all the four indices i, j, k, l.

We will divide the total integral representing the diagram into four independent pieces

and calculate them separately. The integrations over the external field momenta ki of the
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φ1 field are given by∫
dφ̃1(ki) exp

[
− ai

(
φ̃1(ki) +

ᾱi

ai

)2]
φ̃1(ki) ψki(X)e−ik0i t (2.134)

=

(
−αi

ai

)
ψki(X)e−ik0i t, (2.135)

where we ignore the terms coming from the Gaussian integration and are going to be included

in the final total integral with all the three fields present.

The integral over the kl internal momenta evaluates to∫
dφ̃1(kl) exp

[
− al

(
φ̃1(kl) +

ᾱl

al

)2]
φ̃q−2
1 (kl) (2.136)

=
∑

eq∈2Z+

q − 2

eq

 (eq − 1)!!

2eq/2

(
−αl

al

)(q−2−eq) 1

a
eq/2
l

(2.137)

The two last integrals give the same simple result:∫
dφ̃1(kl) exp

[
− aj

(
φ̃1(kj) +

ᾱj

aj

)2]
φ̃1(kj) =

(
−αj

aj

)
, (2.138)

and ∫
dφ̃1(km) exp

[
− am

(
φ̃1(km) +

ᾱm

am

)2]
φ̃1(km) =

(
−αm

am

)
. (2.139)

We also need to remember the term with the momenta to the power nq:

(k1 + k2 + ...+ kq)
nq = ((q − 2)kl + km + kj)

nq , (2.140)

which we need to include in the result for the total integral.

Taking into account our previous experience with the summation of nodal diagrams of

this kind, we expect to have here a sum structure with a total of 4 nested sums with all

possible permutations in the summation indices. As an example of one of the nested sums,

we will look at the following nested term:

q∏
l=1

(
πl
al

)1/2 ∑
eq∈2Z+

q − 2

eq

 (eq − 1)!!

2eq/2

∞∑
l

(
− α

(q−2−eq)
l

a
(q−2−eq/2)
l

)
(2.141)

×
∞∑

j=l+1

(
−αj

aj

) ∞∑
m=j+1

((q − 2)kl + km + kj)
nq

(
−αm

am

) ∞∑
i=m+1

(
−αi

ai

)
ψki(X)e−ik0i t
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The other three terms are just the permutations of the terms and the indices. We also need

to be aware of the problem related to the absence of one of the terms in each nested sum.

This issue was encountered and discussed in one of the previous cases. It is common to all

nested sums (and integrals) with a number of nested parted more than two.

Now, we can argue that the current general solutions should contain all the other varia-

tions, including coincided indices in all possible permutations.

2.2.4 Combining nodal diagrams

The next natural step is to combine all the nodal diagrams for the three scalar fields and

calculate the expectation value ⟨φ1⟩σ from the path integral

⟨φ1⟩σ ≡
∫
Dφ1Dφ2Dφ3 e

iStot D†(α, β, γ)φ1(x, y, z)D(α, β, γ)∫
Dφ1Dφ2Dφ3 eiStot D†(α, β, γ)D(α, β, γ)

. (2.142)

It is expected that the overall form of the nominator and the denominator of the path integral

will have a very complicated structure due to the contributions from each scalar field sector.

The complexity comes from the fact that, in general, changing the nodal diagrams in the

(ϕ1, ϕ2) sectors changes the entire series of diagrams from the ϕ3 sector, as some preliminary

analysis shows.

On the other hand, we can ignore all these difficulties by using a product structure to the

nodal diagrams as a first approximation. In our case, it means that we can independently

sum the nodal diagrams of the tree fields in the limit

ζ ≡
s−1∑
t=1

fwt >

q∑
i=1

kui
+

r∑
j=1

lvj . (2.143)

This simplifying condition is valid since all the momenta are lower than the Mp, and we are

allowed to choose a limit when all fωt are larger than both kui
and lvj .

Taking all these approximations into consideration, we write down the nominator and

the denominator of the path integral in the following suggestive way:

Num = i +
∑
n,...,s

cnmpqrsN (1)
nmp(k; q)⊗N (2)

nmp(µ; r)⊗N (3)
nmp(µ; s) +O(c2nmpqrs), (2.144)
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Den = +
∑
n,...,s

cnmpqrsN (1)′

nmp(k; q)⊗N (2)
nmp(µ; r)⊗N (3)

nmp(µ; s) +O(c2nmpqrs). (2.145)

In each case, the series is represented as a sum of the tree-level term and the quantum

contributions in powers of the coupling constants cnmpqrs. We see our approximate imple-

mentation of the quantum contributions as a product structure of the diagrammatic series

(N (1)
nmp(k; q),N (1)′

nmp(k; q)) with momenta k and (N (2)
nmp(µ; r),N (3)

nmp(µ; s)) with the momenta

integrated to the scale µ ∝ Mp related to the tree scalar fields (ϕ1, ϕ2, ϕ3) respectively.

To better visualize contributions from each field sector, we explicitly write down several

terms for each series which were in detail analyzed in the previous sections. The set of nodal

diagrams contributing to N (1)
nmp(k; q) is given by

N (1)
nmp(k; q) = 1

V

∑
i

i
qki

+ 1
V2

∑
i,j

i
qkj

(2.146)

1
V2

∑
i,j

i
(q − 2)ki2kj

+ 1
V4

∑
i,j,l,m

i
(q − 2)klkm + kj

+ ...

+ 1
Vq+1

∑
u

i

kur+1

kuq

ku2

ku1

kur

The last nodal diagram becomes the dominant one when we move to the continuous limit,

replacing sums with integrals:

1

Vq+1

∑
u

=

∫
(2.147)

Then we can easily see that the last nodal diagram is not suppressed by any volume factor

and contributes (q − 1)! terms to the path integral.

The similar term in the denominator N (1)′
nmp(k; q) differs by the absence of the source field

ϕ1:
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N (1)′
nmp(k; q) = 1

V

∑
i

qki

+ 1
V2

∑
i,j

(q − 2)ki2kj

(2.148)

+ 1
V3

∑
m,j,l

(q − 2)klkm + kj

+ ...+ 1
Vq

∑
u

kur+1

kuq

ku2

ku1

kur

, where U′ ≡ (ku1 , ku2 , ..., kuq). The main contribution comes from the q! terms, the last most

dominant nodal diagram.

The N (2)
nmp(µ; r) sector is very like the last one, except that we need to keep in mind the lvj

momenta have different powers and the outermost integrals in the nested integral structures

are all integrated up to the energy scale µ ∝ Mp.

The last N (3)
nmp(µ; s) sector is somewhat unique since it contains additional momentum

constraints. It is appropriate to note that it was our initial choice to put the momentum

constraints on the ϕ3 field. The answer should not change if all previous calculations are

rearranged with the momenta limits imposed on ϕ2 of ϕ3 fields. This been said, the nodal

diagrams contributing to N (3)
nmp(µ; s) are the following:

N (3)
nmp(µ; s) =

1
V

∑
i

(s− 1)fifωs

+ 1
V2

∑
g,h

(s− 2)fgfωs

fh

+ 1
V3

∑
g,h,m

(s− 3)fg

fωs

fh + fm

+ ..... + 1
Vs−1

∑
U

fωs
fω3

fω2

fω1

fωs−1

(2.149)

Again, from this representation, we deduce that the most dominant diagram is with all the

momenta different fw1 ̸= fw2 ̸= .... ̸= fws1
̸= fws and contributing (s− 1)! terms with (s− 1)

nested integrals.
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Chapter 3

Resurgence and positivity of

cosmological constant

3.1 Introduction to Resurgence in Quantum theory

The great majority of problems in quantum field theory and string theory cannot be solved in

closed form. As a result, the main tool of theoretical physicists for handling such problems is

some form of approximation scheme in the powers of a small parameter of the theory. Quite

often, the result of the approximate solution is some divergent power series.

The presence of the divergent series in physical theories demands a mathematical concept

allowing making sense of the infinities. Such a tool was developed by mathematicians more

than a century ago, long before physicists realized its usefulness in their own research. This

technique is known as the theory of resurgence and was first introduced in the works of Emile

Borel. The beauty and power of the theory of resurgence are that it allows us to deduce some

knowledge about the non-perturbative effects of the theory using only information coming

from the perturbative studies of the theory.

Before discussing the main toolkit of the resurgence theory, i.e. Borel resummation, we

briefly review the definition and main features of the asymptotic series. In its most general

definition, a power series
∑∞

n=0 anz
n can be seen as not a function but as an asymptotic
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approximation to some function f(z), such that

lim
z→0

1

zN

(
f(z)−

N∑
n=0

anz
n

)
= 0. (3.1)

In other words, for any N > 0, the remainder after (N+1) terms of the series is much smaller

than the last controlled term. We also note that an asymptotic series remains well-defined

even for cases when the remainder does not go to zero for large values of N and fixed values

of z. The defining feature of an asymptotic expansion is that the N-dependent partial sums

N∑
n=0

anz
n (3.2)

first, converge to the value of its approximated function f(z), but then they eventually

diverge for sufficiently big values of N. To find the partial sum that is closest to the function

value f(z), we need to know the optimal value of N. The usual method is to keep all the

convergent terms of the asymptotic series up to the smallest one and then eliminate the rest

of the series. This technique is called the optimal truncation and can be easily understood

in the case of the coefficients an with a factorial growth at large n,

an = cAnn!, n≫ 1. (3.3)

We want to find the smallest term in the series, for a fixed value of z, by minimizing it with

respect to N :

|aNzN | = cN !|Az|N = c exp

{
N logN −N −N log

∣∣∣∣ 1Az
∣∣∣∣} , (3.4)

where in the last step, we used the Stirling approximation. The saddle point at large N is

N∗ =

∣∣∣∣ 1Az
∣∣∣∣ . (3.5)

As we can see, for |z| small, the truncated series contains many terms, but as the value of

|z| grows, the optimal truncation provides us with a meagre number of terms.

The next (N∗+1) term in the series represents the error made by the optimal truncation

error = CN∗+1|z|N∗+1 (3.6)
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= CN∗+1 exp

{
(N∗ + 1)log(N∗ + 1)− (N∗ + 1)− (N∗ + 1)log

∣∣∣∣1z
∣∣∣∣} ∼ e−|

1
Az |. (3.7)

To summarize, an asymptotic expansion does not uniquely determine the function f(z) since

the optimal truncation simply ignores the remaining terms of the truncated series. On the

contrary, Borel’s resummation procedure considers the information contained in all the terms

of the series.

The Borel transform B of the power series∑
n⩾0

anz
n (3.8)

is a transformation in the complex plane zn 7→ ζn

n!
:

B
∑
n⩾0

anz
n =

∑
n⩾0

an
ζn

n!
. (3.9)

We define the power series ϕ(z) to be Gevrey-1 if its coefficients have some factorial growth

|an| < Mn!ρn, (3.10)

for some constants M,ρ > 0. Then, the Borel transform of a Gevrey-1 series is analytic

in a neighbourhood of ζ = 0. The power of the Borel transform resides in the fact the

singularities of the Borel transform contain information about other sectors of the theory.

The theory of Borel’s resummation applies to the case of the resurgent functions. A

Gevrey-1 series ϕ(z) is a resurgent function if, on any line starting from the origin, there is

a finite number of the singularities of the Borel transform Bϕ(z). The Borel transform can

be analytically continued along the line, avoiding the singularity points.

In case of a resurgent function ϕ(z) with a logarithmic and a pole singularity at ζ = ζω,

the local expansion of its Borel transform ϕ̂(z) ≡ Bϕ(z) has the form

ϕ̂(ζω + ξ) = −Sa

2π
− Sa

2π
log(ξ)

∑
n⩾0

ĉnξ
n + regular. (3.11)

The series which appears in this expansion around the singularity point

ϕ̂ω(ξ) =
∑
n⩾0

ĉnξ
n (3.12)
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has a finite radius of convergence. The explicit introduction of a so-called Stokes constant S

allows us to choose a specific gauge for normalization of ϕ̂ω(ξ). Now we can interpret ϕ̂ω(ξ)

as the Borel transform of another, divergent, series of the form

ϕω(z) =
a

z
+
∑
n⩾0

cnz
n, (3.13)

with the new coefficients cn = n!ĉn. We conclude that the expansion of the Borel transform

Bϕ(z) of a formal power series ϕ(z) around its singularities ζω, ω ∈ Ω{set of singular points}:

ϕ(z)→ {ϕω(z)}ω∈Ω . (3.14)

We see that each singularity originating from the Borel transform generates a new power

series. These new series reappear, ”resurge” in the original series ϕ(z) =
∑∞

n=0 anz
n due to

the asymptotic behaviour of the ak coefficients.

Now it is time to move from the Borel transform to the Borel resummation. Under certain

conditions, Borel resummation produces an actual function reproducing the original power

series. We define a Stokes ray, a ray in the Borel plane that starts at the origin and passes

through a singularity ξω of the Borel transform ϕ̂(ξ). This ray in the complex plane can be

formally represented as eiθR+ with θ = arg(ξω). The Borel resummation of the power series

ϕ(z) is a Laplace transform along the ray Cθ = eiθR+:

s(ϕ)(z) =

∫ ∞

0

ϕ̂(zζ)e−ζdζ =
1

z

∫
Cθ
ϕ̂(ζ)e−

ζ
z dζ, (3.15)

where ϕ̂ is analytically continued along the ray Cθ.

3.2 Borel resummation: real-life calculation

3.2.1 The beauty of Hermite polynomials

We introduce simplifying assumptions that will make the following calculations less messy

but allow us to obtain some results. We do not introduce any IR cut-offs in the system and

insert them later, ensuring that all the nodal diagrams in the three distinct sectors have
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different momenta. Next, eleven-dimensional momenta may be divided into the radial and

the temporal parts as

k = (k0,k) = (k0, |k|, kΩ), (3.16)

where kΩ represents all the angular degrees of freedom.

And finally, to make progress in the calculations, we need to introduce explicit functional

forms for α(k0,k), β(l0, l), and γ(f0, f):

α(k0,k) ≡
∑
n

∑
m

cnmHn(k)Hm(k0)

=
∑
n>0

cn0Hn(k) +
∑
m>0

c0mHm(k0) +
∑

(n,m)>0

cnmHn(k) Hm(k0), (3.17)

β(l0, l) ≡
∑
n,m

bnmHn(l)Hm(l0),

γ(f0, f) ≡
∑
n,m

dnmHn(f)Hm(f0).

As a reminder, we also mention here that α, β, γ represent the coherent states of the three

respective scalar fields of our toy model or, equivalently, the three sets of degrees of freedom

from the full M-theory: metric, fluxes and gravitino fields.

Since we are taking the momenta to be dimensionless, the Hermite polynomials are well-

defined through the dimensionless parameters. The coefficients cnm, bnm, dnm used in the

definition of the coherent state eigenvalues incorporate all the angular dependencies coming

from our initial decomposition of the momenta into the radial and the angular parts.

The Hermite polynomials’ choice for the explicit calculations is not random and makes

some sense. Hermite polynomials belong to the class of classical orthogonal polynomials and

are defined by

Hn(x) = (−1)nex2 dn

dxn
e−x2

= e
x2

2

(
x− d

dx

)n

e−
x2

2 . (3.18)

They also satisfy the orthogonality condition:∫ +∞

−∞
dx Hn(x) Hm(x) e

−x2

= 2nn!
√
πδmn. (3.19)
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One of the most appreciated features of Hermite polynomials is that they form a complete

orthogonal basis of the Hilbert space of functions satisfying

∫ +∞

−∞
dx |f(x)|2e−x2

<∞, (3.20)

and with the inner product defined by the integral

⟨f, g⟩ =
∫ +∞

−∞
dx f(x)g∗(x) e−x2

. (3.21)

Another reason for making use of Hermite polynomials for these particular calculations is that

they allow replacing derivatives over the powers of the arguments of the Hermite polynomials

in terms of a series of Hermite polynomials themselves:

∂mk Hn(k) ≡ H(m)
n (k) = 2nm!

n

m

Hn−m(k). (3.22)

We also introduce here some useful identities which will be useful for the explicit calcu-

lations of the amplitudes:

Hn(k
2) = Hn(−k20 + |k|2) = 2−n/2

n∑
p=0

n
p

Hn−p(−
√
2k20)Hp(

√
2k2),

kn ≡ n!

2n

⌊n
2
⌋∑

m=0

Hn−2m(k)

m!(n− 2m)!
. (3.23)

Another interesting result to note is the value of the H
(n)
n :

H(n)
n (k) = 2nm!

n
n

Hn−n(k) = 2nn! (3.24)

Now we are ready to commence our total amplitude calculation. We will do it in several

small steps, taking each sector at a time and then combining all the results. In all the

calculations, we assume the slice over the angular directions and use only radial components

of momenta.
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3.2.2 Explicit calculations of the nodal diagrams’ amplitudes

We start with the ϕ2 sector with a set of momenta lvj and the dominant nodal diagram to

Nth order in coupling. Note that the computations for ϕ2 and ϕ3 sectors will be very similar.

The presence of the derivatives of γ(f) in the ϕ3 sector is compensated by the fact that

derivatives of the Hermite polynomials can be replaced by other Hermite polynomials with

the final structure almost identical to the ϕ2 sector.

The general form of the order gN2 dominant nodal diagram is given by

ζN =
Nr∑

j=(N−1)r
lvj

ζp+1 =
p+2r∑

j=p+r+1
lvj

ζp+2 =
p+3r∑

j=p+2r+1
lvj

ζ1 =
r∑

j=1
lvj

ζ2 =
2r∑

j=r+1
lvj

ζp =
p+r∑
j=p

lvj

(3.25)

We can see that each order in the coupling constant adds its own set of r momenta lvj to

the total structure of the nodal diagram, eventually realizing N copies of {lvj} sets containing

r momenta. The amplitude of this complex diagram is given by the nested integral structure

gN2

Nr∏
s=1

(
πs
bs

)1/2 ∑
{mi}

C (m1, ...,mNr)

∫ µ

kIR

d11l1
β(l1)l

m1
1

b(l1)
... (3.26)

×
∫ µ

lNr−2

d11lNr−1

β(lNr−1)l
mNr−1

Nr−1

b(lNr−1)

∫ µ

lNr−1

d11lNr
β(lNr)l

mNr
Nr

b(lNr)
+ ... (3.27)

where the combinatoric coefficients are defined as C (m1, ...mNr).

Taking into account the explicit form of the propagator

b(l) = l2 = l20 − l2 = −l2
(
1− l20

l2

)
. (3.28)

and the Hermite polynomial in terms of its arguments

Hn(l) ≡ n!

⌊n
2
⌋∑

m=0

(−1)m

m!(n− 2m)!
(2l)n−2m, (3.29)
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we can integrate over the temporal and radial part of momenta.

It makes sense to make all the steps in the following computation very explicit with all

the intermediate algebraic manipulations since we will need to perform similar calculations

several times.

The integral we are interested in is the following one:∫ µ

kIR

d11lr
β(lr)l

mr
r

b(lr)
. (3.30)

We take into account the explicit form of all the integrand parts in terms of the Hermite

polynomials:

lmr
r

b(lr)
=
lmr
r

l2r
= (l2r)

mr−2
2 = (−1)

mr−2
2 lmr−2

r

(
1−

l20,r
l2r

)mr−2
2

, (3.31)

β̄(l) =
∑
n

∑
m

bnmHn(l)Hm(l0)

=
∑
n

⌊n
2
⌋∑

p=0

(−1)p

p!(n− 2p)!
(2l)n−2p

∑
m

⌊m
2
⌋∑

q=0

(−1)q

q!(m− 2q)!
(2l0)

m−2q

=
∑
nmpq

n!m!
(−1)p+q

p!q!(n− 2p)!(m− 2q)!
(2l)n−2p(2l0)

m−2q. (3.32)

We also can rewrite the integration measure in the temporal and the radial part as we

mentioned before:∫ µ

kIR

d11lr =

∫ µ0

kIR

dl0

∫ µ

kIR

d10l =

∫ µ0

kIR

dl0

∫ |µ|

kIR

dl l9
∫
dΩ, (3.33)

where l is the radial part of the momenta, and
∫
dΩ integration takes care of all the implicit

angular dependencies.

We make a choice to do the
∫
dl0 integration first:

∫ µ0

kIR

dl0 (2l0)
m−2q

(
1−

l20,r
l2r

)mr−2
2

. (3.34)

The value of this integral is given by some special functions, such as the gamma function,

which will be difficult to analyze. Fortunately, we are interested only in the approximate
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results which can be obtained following only the highest powers of the energy scale. We open

up brackets and evaluate only the first term in the resulting series:∫ µ0

kIR

dl0 (2l0)
m−2q =

2m−2q

m− 2q + 1
µm−2q+1
0 . (3.35)

Similarly, the integral over the radial part gives us the result:∫ |µ|

kIR

dl l9lmr−2 (2l)n−2p =
2n−2p

n+mr − 2m+ 8
|µ|n+mr−2m+8. (3.36)

Combining all these nice simple results, we obtain the following expression for our generic

term from the amplitude:∫ µ

kIR

d11lr
β(lr)l

mr
r

b(lr)
=

∫ µ

kIR

dlr,0 dl
10
r

lmr
r

l2r

∑
n,m

bnpHn(l)Hm(l0)

=
∑

n,m,p,q

(−1)p+q+12n+m−2p−2qn!m!

p!q!(n− 2p)!(m− 2q)!
· |µ|n−2p+mr+8µm−2q+1

0

(m− 2q + 1)(n− 2p+mr + 8)

(∫
bnmdΩ

)
,

where the
∫
bnmdΩ part takes into account the integration over the still unknown part of the

bnm angular dependence. It would also be interesting to see the behaviour over the energy

scale µ ≡ (µ0, |µ|) by isolating one term in the whole expansion for the values m = 0, q = 0∫ µ

kIR

d11lr
β(lr)l

mr
r

b(lr)
= (3.37)

∞∑
n=0

⌊n
2
⌋∑

p=0

2n−2p(−1)pn!
p!(n− 2p)!(n− 2p+mr + 8)

(∫
bn0dΩ

)
µ0|µ|n−2p+mr+8 + ...

Since our main interest lies in the factorial growth of the particular amplitude configuration,

we note that the individual term in the amplitude of the ϕ2 sector does not have an expected

(Nr)! growth. From the previous analysis, we know that there are in total (Nr)! terms

contributing to the nodal diagram in the ϕ2 sector. At the same time, our analysis shows

that each term in this diagram is suppressed by at least 1
(Nr)!

numerical coefficient such that

the system as a whole does not contain an exponential growth.

The ϕ3 sector, in many respects, reflects the previous case with one essential difference:

the amplitudes involve expressions with the derivatives of γ̄(f). Potentially, it could make

the computations more involved. But, at the very beginning of our analysis, we have made
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a smart choice for the orthogonal basis of the Hilbert space of functions. The Hermite

polynomials allow replacing derivatives of the Hermite polynomials in terms of a series of

Hermite polynomials themselves:

∂mk Hn(k) ≡ H(m)
n (k) = 2nm!

n

m

Hn−m(k). (3.38)

As a result, the full analysis of the ϕ3 sector would take almost exactly the same steps as

we made for the case of the ϕ2 sector. The conclusions about the amplitude growth are the

same: the number of diagrams increase as (N(s − 1))!, the individual term does not show

the (N(s− 1))! growth, confirming that the amplitudes of the nodal diagrams do not grow

according to (N(s− 1))! law.

The presence of the source field in the ϕ1 sector makes the computations here slightly

more involved. And the most prominent difference between the two other sectors is the

presence of the wave function of the source field. First, we define the amplitude of the most

dominant nodal diagram as

Γ(k1, k1,0) ≡ gN1

Nq+1∏
s=1

(
πs
bs

)1/2 ∑
{mi}

D (m1, ...,mNq)
α(k1)k

m1
1

a(k1)

∫ µ

k1

d11k2
α(k2)k

m2
2

a(k2)
....

∫ µ

kNq−1

d11kNq

α(kNq)k
mNq

Nq

a(kNq)

∫ µ

kNq

d11k′ψk′(X)e−ik′0t
α(k′)

a(k′)
.

To make this expression more palpable, we also draw the respective nodal diagram, which,

as expected, is very similar to the other cases:

i

ξN =
Nq∑

j=(N−1)q
kuj

ξp+1 =
p+2q∑

j=p+q+1
kuj

ξp+2 =
p+3q∑

j=p+2q+1
kuj

ξ1 =
q∑

j=1
kuj

ξ2 =
2q∑

j=q+1
kuj

ξp =
p+q∑
j=p

kuj

(3.39)
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Once again, one main goal is to prove or disprove the naive expectation that the amplitude

grows as (Nq + 1)! since there are (Nq + 1)! different nested integrals.

To find the total value of the amplitude, we need to integrate over all k1 momenta:∫ µ

kIR

d11k1Γ(k1, k1,0).

The set of integrals without the source wave-function follows the same computation algorithm

which has been done for other cases. There is nothing new here.

On the other hand, the integral with the source term present needs additional attention.

First, we need to choose a more specific form of the wave function ψk(X). The idea is to

obtain only a temporal dependence at some specific limiting case. We make a definition

ψk(X)e
−ik0t ≡ k2

π|ω|k9
exp

(
−(k− kIR)

2

ω2
− ik0t

)
F (k,X) ,

where in the limit ω ← 0 we have a delta function

lim
ω→0

e−k2/ω2

πω
= δ(k),

which leads to the following simplification:

lim
ω→0

∫ µ

kIR

d11k ψk(X)e
−ik0t

α(k, k0)

a(k)
=

= lim
ω→0

∫ µ

kIR

dk0 dk k
9

¯α(k)

k2
k2

πωk9
exp

(
−(k− kIR)2

ω2

)
e−ik0tF (k,X)

=

∫ µ

kIR

dk0 δ(k− kIR)e−ik0tF (k,X) .

The other ingredient for the successful integration is the use of the Riemann-Lebesgue

lemma: ∫ b

a

dk eikxf(k) =
N−1∑
n=0

(−1)n eikx f
(n)(k)

(ix)n+1

∣∣∣∣∣
b

a

+ O
(

1

xN+1

)
, (3.40)

where f (n)(k) = dnf(k)
dkn

and f (0)(k) = f(k). A sufficient, but not necessary, condition is that

f(k) is continuously differentiable for a ≤ k ≤ b and
∫ b

a
|f(k)| dk < ∞. In the limit of

x → ∞, the factor eikx oscillates faster and faster such that eikxf(k) averages out to zero

over any finite region of k inside the interval.
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We move back to the most dominant diagram of the ϕ1 sector and calculate the integral,

which contains the wave-function part:∫ µ

kNq

d11kψk(X)e
−ik0t

α(k)

a(k)
= lim

ω→0

∫ µ

kNq

d11k Re
(
ψk(X)e

−ik0t
)

∑
n,m

∫
dΩ c2n,mH2n(kIR)

∫ µ

kIR

dk0 Hm(k0)
(
e−ik0t + eik0t

)
. (3.41)

We note here that, since at the very beginning of our path-integral analysis, we decided to

ignore the complex parts of the present fields, the Fourier representation of the real field

components and only positive momenta is given by

ϕ(x) =

∫ ∞

0

d11k Re
(
ψk(X)e

−ik0t
)
. (3.42)

To find the integral over the temporal domain, we use the Riemann-Lebesgue lemma:∫ µ

kIR

dk0 Hm(k0)
(
e−ik0t + eik0t

)
=

m∑
p=0

(−1)pe−ik0t
1

(−it)p+1

dpHm(k0)

dkp0
+

m∑
p=0

(−1)peik0t 1

(it)p+1

dpHm(k0)

dkp0
(3.43)

=

e−ik0t

m∑
p=0

(−1)p2pp!

n

m

Hm−p(k0)

(−it)p+1
+ eik0t

m∑
p=0

(−1)p2pp!

n

m

Hm−p(k0)

(it)p+1

µ0

κIR

.

Now we can integrate the total amplitude of the ϕ1 sector following the same technique used

for the sectors without the source term. Since we are interested only in the energy-dependent

part of the amplitude, we combine all the spacial dependencies into some coefficients:

C(N)
m ≡

Nq+1∏
t=1

(
πt
bt

)1/2 ∑
{mi}

D (m1,m2,m3, ...,mNq−1,mNq)Dφ2
(Nr)Dφ3

(N(s− 1)) (3.44)

×
∫ µ

kIR

d11k1
α(k1)k

m1
1

a(k1)

∫ µ

kIR

d11k2
α(k2)k

m2
2

a(k2)
....

∫ µ

kIR

d11kq
α(kq)k

mq
q

a(kq)
....

∫ µ

kIR

d11k2q
α(k2q)k

m2q

2q

a(k2q)
....

×
∫ µ

kIR

d11kNq−1

α(kNq−1)k
mNq−1

Nq−1

a(kNq−1)

∫ µ

kIR

d11kNq

α(kNq)k
mNq

Nq

a(kNq)

∞∑
n=1

(∫
dΩ c2n,m H2n(kIR)

)
,

where D (m1,m2,m3, ...,mNq−1,mNq) is a combinatorial factor that has been defined earlier.

The coefficients coming from the two other sectors are incorporated into the Dφ2(Nr)Dφ3(N(s−

1)) combinatoric factors. Each of them contains an N! growth inside, which suggests at least

(N!)2 growth for the C(N)
m factor. We can see that our combinatoric factor C(N)

m has only N
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and m as free parameters since the final result should not depend on which sector we impose

the momentum conservation condition.

3.2.3 The amplitude of the nodal diagrams to Nth order

We begin our investigation of the nodal diagrams to the Nth order by taking a product

of the three diagrams from the previous subsection representing each of the sectors. The

overall coupling constant gN combines all the coupling constants gN1 , g
N
2 , g

N
3 for each sector.

We define S(N)(t) to be the amplitude of the nodal diagrams to O(N) order. The graphical

representation of this combined amplitude is given by the following product

S(N)(t) = gN



i

ξN

ξp+1

ξp+2

ξ1

ξ2

ξp



⊗

 χN

χp+1

χp+2

χ1

χ2

χp



⊗

 ηN

ηp+1

ηp+2

η1

η2

ηp



(3.45)

The amplitude of each subbranch is given by the generic expression calculated in the

previous subsection

gN
m∑
p=0

(−1)p2pC(N)
m Hm−p(k0)

(m− p)!(it)p+1
eik0t

∣∣∣∣∣
µ

kIR

+ gN
m∑
p=0

(−1)p2pC(N)
m Hm−p(k0)

(m− p)!(−it)p+1
e−ik0t

∣∣∣∣∣
µ

kIR

(3.46)

To write down the expression for the total amplitude, we need to consider that we have

an infinite series since all the Hermite polynomials contribute. At the same time, we have a
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divergent asymptotic series with at least (N2)! growth. The defining feature of the asymptotic

series is that the partial sums S(N)(t) will first approach the true value of the function that

they approximate, and then, for N sufficiently big, they will diverge. We arbitrarily divide

the series into decreasing and increasing parts:

S(N)(t) = gN

[
1∑

p=0

(−1)p2pC(N)
1 H1−p(k0)

(1− p)!(it)p+1
+

2∑
p=0

(−1)p2p2!C(N)
2 H2−p(k0)

(2− p)!(it)p+1

+
3∑

p=0

(−1)p2p3!C(N)
3 H3−p(k0)

(3− p)!(it)p+1
+

4∑
p=0

(−1)p2p4!C(N)
4 H4−p(k0)

(4− p)!(it)p+1
+ ...

+
N∑

p=0

(−1)p2pN!C(N)
N HN−p(k0)

(N− p)!(it)p+1
+

N+1∑
p=0

(−1)p2p(N + 1)!C(N)
N+1HN+1−p(k0)

(N + 1− p)!(it)p+1

+
∞∑
s=2

N+s∑
p=0

(−1)p2p(N + s)!C(N)
N+sHN+s−p(k0)

(N + s− p)!(it)p+1

]
exp (ik0t)

∣∣∣∣∣
µ

kIR

+ c.c.

∣∣∣∣∣
µ

kIR

(3.47)

Next, we want to rearrange the terms in the infinite sum to make possible the Borel resum-

mation. From the definition of the Hermite polynomial, we find that Hm(µ) ∼ µm and thus

Hm(µ) > Hm−r(µ)). The following form gives us more intuition about how to proceed:

S(N)(t) = gN

[
1∑

a=0

C(N)
a Ha(k0)

it
− 2 · 1!C(N)

1 H0(k0)

(it)2

+
C(N)

2 H2(k0)

it
− 2 · 2!C(N)

2 H1(k0)

(it)2
+

22 · 2!C(N)
2 H0(k0)

(it)3

+
C(N)

3 H3(k0)

it
− 2 · 3!C(N)

3 H2(k0)

2!(it)2
+

22 · 3!C(N)
3 H1(k0)

(it)3
− 23 · 3!C(N)

3 H0(k0)

(it)4
+ ...+

]

× eik0t

∣∣∣∣∣
µ

kIR

+ gNe−ik0t [c.c.]

∣∣∣∣∣
µ

kIR

(3.48)

From this representation, it is easy to extract the dominant contributions at every O(N) for
µ > 1 and finite t. For instance, the dominant contribution for the N-th piece of the infinite

sum[
C(N)

N HN(k0)

it
−

2 ·N!C(N)
N HN−1(k0)

(N− 1)!(it)2
+

22 ·N!C(N)
N HN−2(k0)

(N− 2)!(it)3
+ ....+

(−1)N2N ·N!C(N)
N H0(k0)

(it)N+1

]
eik0t

+

[
C(N)

N HN(k0)

−it
−

2 ·N!C(N)
N HN−1(k0)

(N− 1)!(−it)2
+

22 ·N!C(N)
N HN−2(k0)

(N− 2)!(−it)3
+ ....+

(−1)N2N ·N!C(N)
N H0(k0)

(−it)N+1

]
e−ik0t

∼
C(N)

N

[N!]
α [N!]

α
HN(k0)

sinµt

t
. (3.49)

The dominant contribution gathered from all the terms of the infinite sum is given by

S(N)
dom = gN

N−1∑
r=1

C(N)
N−r

[(N− r)!]α
[(N− r)!]α HN−r(k0) +

C(N)
N

[N!]α
[N!]α HN(k0) +

∞∑
s=1

C(N)
N+s

[(N + s)!]α
[(N + s)!]α HN+s(k0)

µ

kIR

,
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, where only the coefficient for the sinµt
t

is given. Now we can see that a generalized case

of the Gevrey-α series captures the asymptotic growth. To apply the Borel resummation

procedure, we use the Stirling approximation

(N!)α =
(αN)!

ααN
≈ (αN)!, (3.50)

which works for the case α << N. Now our dominant coefficient has the following form,

which can be resumed

S(N)
dom = gN

N−1∑
r=1

C(N)
N−r

(α(N− r))!
(α(N− r))! HN−r(k0) +

C(N)
N

(αN)!
(αN)! HN(k0) +

∞∑
s=1

C(N)
N+s

(α(N + s))!
(α(N + s))! HN+s(k0)

µ

kIR

.

Now it is time to recall that denominator of our path integral formulation of the Glauber-

Sudarshan state

⟨φ1⟩σ ≡
∫
Dφ1Dφ2Dφ3 e

iStot D†(α, β, γ)φ1(x, y, z)D(α, β, γ)∫
Dφ1Dφ2Dφ3 eiStot D†(α, β, γ)D(α, β, γ)

, (3.51)

is independent of the source and thus should be convergent. This fact gives us an additional

very useful piece of information, i.e. a constrain condition on the coefficients C(N)
N :

∞∑
N=0

gN
∞∑

m=0

(−1)p2p m! C(N)
m Hm−p(k0)

(m− p)!

∣∣∣∣∣
µ

kIR

= f(p), (3.52)

for all p ∈ Z+ starting with p = 0. To make this condition useful, we find the momentum

representation of f(p) using the Fourier cosine transform and the Riemann-Lebesgue lemma.

The cosine Fourier transform is more appropriate here since we need to take into account

our simplification condition that all the functions are real and the Fourier transform range

should contain only positive momentum modes. We also note that the left-hand side of the

last equation is the expectation value of the graviton field on a coherent state. Thus, we

need to find the cosine Fourier transform of gµν ≡
(

gs
HHo

)− 8
3
=
(√

Λt
)− 8

3
.

We start by introducing a generic cosine Fourier transform

Fcos(ω) =

√
2

π

∫ ∞

0

dt f(t) cos ωt. (3.53)

In our case ω = k0 and f(t) =
(

1√
Λt

)µ−1

, where µ − 1 = −8/3. We also need the value of

the definite integral ∫ ∞

0

dt tµ−1cos ωt =
1

ωµ
Γ(µ) cos

µπ

2
(3.54)
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for ω > 0 and 0 < Reµ < 1. In our particular case

Fcos(k0) =

√
2

π
Λ

µ−1
2

∫ ∞

0

dt tµ−1 cos k0t =

√
2

π
Λ

µ−1
2

1

kµ0
Γ(µ)cos

µπ

2
, (3.55)

where µ = −5/3. We find

Fcos(k0) =

√
2

π
Λ− 4

3Γ

(
−5

3

)
cos

(
−5π

6

)
k

5
3
0 = −

√
3

2π

1

Λ4/3
Γ

(
−5

3

)
k

5
3
0 . (3.56)

In the next step, we take to use the Riemann-Lebesgue lemma to write this result back in

the finite range κIR ≤ k0 ≤ µ. We need to add the complex conjugate part to extract the

sin and cos parts of the series.∫ µ

κIR

dk0 e
ik0tk

5/3
0 +

∫ µ

κIR

dk0 e
−ik0tk

5/3
0 (3.57)

=
N∑
p=0

(−1)p5
3

(
5

3
− 1

)
...

(
5

3
− p
)
k
5/3−p
0

(
eik0t

(it)p+1
+

e−ik0t

(−it)p+1

)
. (3.58)

The expression in brackets generates a series in sin µt
t2p+1 and cos µt

t2p
:

N∑
p=0

(
eik0t

(it)p+1
+

e−ik0t

(−it)p+1

)
=
(
eik0t − e−ik0t

) 1

it
−
(
eik0t + e−ik0t

) 1

t2

−
(
eik0t − e−ik0t

) 1

it3
+
(
eik0t + e−ik0t

) 1

t4
+ ...

= 2
sink0t

t
− 2

cosk0t

t2
− 2

sink0t

t3
+ 2

cosk0t

t4
+ ... (3.59)

Now we are ready to write down a generic coefficient of the f(p) series

f(p) = (−1)p+12

√
3

2π

1

Λ4/3
Γ

(
−5

3

)
5

3

(
5

3
− 1

)
...

(
5

3
− p
)
k
5/3−p
0

∣∣∣µ
κIR

. (3.60)

From our previous discussion, we know that C(N)
m combinatoric factors have at least (N!)2

growth. We generalize this case to include all possible cases:

C(N)
m = A⊗N

∞∑
n=1

(∫
dΩc2n,m H2n(kIR)

)
(N!)α , (3.61)

with α ≥ 2 and where coefficients A are given by

A ≡ A({mi}, {ni}, {fi}) (3.62)
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= B1(m1, ..,mq)B2(n1, .., nr)B3(f1, .., fs−1)

q∏
i=1

∫ µ

kIR

d11ki
α(ki)k

mi
i

a(ki)

r∏
j=1

∫ µ

kIR

d11lj
β(lj)l

nj

j

b(lj)

s−1∏
t=1

∫ µ

kIR

d11ft
γ(ft)f

pt
t

c(ft)
,

To streamline the following calculations, we will consider the simpler case A⊗N ≈ AN. In

this case, the combinatoric factors C(N)
m grows as

C(N)
m = AN (N!)α am, (3.63)

with am =
∞∑
n=1

(∫
dΩc2n,m H2n(kIR)

)
. The Borel resummation of this asymptotic series gives

us the following result

∞∑
N=0

gN

[ ∞∑
m=0

C(N)
m Hm(k0)

]µ
kIR

=
1

g1/α

∫ ∞

0

dS exp

(
− S

g1/α

) ∞∑
N=0

[ ∞∑
m=0

C(N)
m

(αN!)

(
Hm(µ)−Hm(kIR)

)
SαN

]

=
1

g1/α

∫ ∞

0

dS exp

(
− S

g1/α

)
∞∑

m=0
am

(
Hm(µ)−Hm(kIR)

)
1−ASα

 , (3.64)

To make the last result more clear, we will go over the calculations step by step and will

concentrate on the case α = 1. First, we take outside the N dependence from the sum over

m: [
∞∑

m=0

C(N)
m Hm(k0)

]µ
kIR

= AN(N !)α
∞∑

m=0

am [Hm(µ)−Hm(kIR)] ≃ cAN(αN !). (3.65)

where c =
∑∞

m=0 am [Hm(µ)−Hm(kIR)] is a constant independent of N and we take α = 1.

We have a formal divergent asymptotic series with N ! growth

ϕ(g) =
∞∑
N

gNcANN !. (3.66)

To remove this asymptotic growth, we make a Borel transform on the series by redefinition

gN → SN

N !
and obtain a new infinite series

ϕ̂(S) =
∞∑
N

SNcAN =
c

1− SA
. (3.67)

The last series is convergent only for the case |SA| < 1. In the next step, we analytically con-

tinue the result for all values of SA and resume the new series using the Borel resummation

procedure

s(ϕ)(g) =

∫ ∞

0

dS ϕ̂(gS) e−S =
1

g

∫ ∞

0

dSϕ̂(S)e−
S
g =

1

g

∫ ∞

0

dSe−
S
g

c

1− SA
. (3.68)
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There is one additional subtle point about the off-shell contributions, coming from the

k0 = 0 modes. We introduce them by making small modifications to the source wave function:

ψk(X)e−ik0t ≡ k2

π|ω|k9
exp

(
− (k− kIR)

2

ω2
− ik0t

)[
1− 1

π|ω|
exp

(
− k

2
0

ω2

)]
F (k,X) , (3.69)

where F (k,X) solves the Schrödinger equation constructed over the solitonic configuration.

In the limit ω → 0 it satisfies F
(
k = kIR,X

)
= 1.

Since the presence of the delta function δ(k0) removes the necessity of the Riemann-

Lebesgue integral, we obtain the following result after moving to the Fourier space, which

contains only one equation:

∞∑
N=0

gN
∞∑

m=0

C(N)
m H2m(0) =

1

Λ4/3
. (3.70)

We also note that the coefficients C(N)
m undergo some modifications:

C(N)
m ≡

Nq+1∏
t=1

(
πt
bt

)1/2 ∑
{mi}

D (m1,m2,m3, ...,mNq−1,mNq)Dφ2
(Nr)Dφ3

(N(s− 1)) (3.71)

×
∫ µ

kIR

d11k1
α(k1)k

m1
1

a(k1)

∫ µ

kIR

d11kNq

α(kNq)k
mNq

Nq

a(kNq)

∞∑
n=1

(∫
dΩ c2n,2m H2n(kIR)

)
,

We observe, that we still have the same factorial growth for these coefficients, which gives

us, after the Borel resummation procedure of the left-hand side, the following equation

1

g1/α

∫ ∞

0

dS exp

(
− S

g1/α

) ∞∑
m=0

(
amH2m(0)

1−ASα

)
=

1

Λ4/3
, (3.72)

where am =
∞∑
n=1

(∫
dΩc2n,2m H2n(kIR)

)
.

3.3 The positivity of the cosmological constant

The analysis from the previous subsection suggests that under some conditions, we can

obtain the positive value for the cosmological constant. By absorbing all the constants and

redefining cosmological constant, we find that cosmological constant may be expressed in

terms of a non-perturbative series in the coupling constant g in the following nice way:∫ ∞

0

dS exp

(
− S

g1/α

)
1

1−ASα
=

1

Λ4/3
. (3.73)

Chapter 3



3.3. THE POSITIVITY OF THE COSMOLOGICAL CONSTANT 63

We require the left-hand side of the equation to be a positive definite quantity for all positive

integer values of α, and all values of A. Under such conditions, the cosmological constant

remains positive. We also note that the last expression is based on specific conditions, which

demand a positive cosmological constant background. Thus, although the right-hand side

remains positive independently of the sign if Λ, the obtained result is only possible for the

case of Λ > 0.

Another very satisfying outcome of the last expression is that there are no perturbative

limits to the value of the Λ, suggesting that perturbative corrections are never enough to

change the sign of the cosmological constant. It seems, that the cosmological constant can

only be realized non-perturbatively.

The analysis of the left-hand side suggests that there is a trivial case with A < 0, which

makes the whole integral positive independently of the values of α. In case when A > 0 the

integral develops poles on the Borel axis, which makes the analysis less trivial but also more

interesting. The general solution of the integral, in this case, is given by some expression in

terms of the Exponential integral Ei(x) ≡ −
∫∞
−x

dt
t
e−t in the following way∫

dS exp

(
− S

g1/α

)
1

1−ASα
= −

α∑
j=1

1

αAaα−1
j

exp

(
− aj
g1/α

)
Ei

(
aj − S

g1/α

)
+ constant, (3.74)

where aj are the roots of the polynomial

Sα − 1

A
≡

α∏
i=1

(S− ai) , (3.75)

implying that the value of the integral may be expressed in terms of the sum over the roots

of this polynomial. We note that only one positive real root contributes since S lies in the

range S ∈ [0,∞]. The problem comes from the fact that we need to compute the principal

value of the integral to extract a real answer. It can be rigorously proved using complex

analysis that the integral

P.V.

∫ ∞

0

dS
e−S/g1/α

1−ASα
(3.76)

is positive definite.

To make things more visually attractive, we will analyze in some detail the tree-level con-

tribution to the equation determining the cosmological constant and introduce some figures
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showing the possibility of the Λ being positive and small. In this tree-level approximation,

we can write down the expectation value of the scalar field ϕ1 in the following suggestive

way

⟨φ1⟩σ = T1 + δT, (3.77)

where the value of the small contribution due to the presence of all the remaining diagrams

can be deduced from our previous analysis of the nodal diagrams

δT =

∫
d11k

[
α(k)

a(k)
− km

∗

V

(
α2(k)

a2(k)
+

1

2a(k)

)
+O

(
1

V2

)]
ψk(X)e

−i(k0−κIR)t, (3.78)

where O
(

1
V2

)
indicates the contribution of the higher order nodal diagrams. We are inter-

ested in the values of α(k) for which the integrand vanishes,

α(k) =
a(k)

2km∗

(
V ± V

√
1− 2k2m∗

a(k)V2

)
, (3.79)

without the higher-level contributions. The potential solution which would make δT very

small is

α(k) =
1

2V

(
k11/3 + χ(k)

)
+O

(
1

V2

)
, (3.80)

with the suggested scaling m∗ = 11
3
. We will use the last result slightly later.

Right now, we move back to the equation that determines the possible values of the

cosmological constant and make some further analysis.

P.V.

∫ ∞

0

dS exp

(
− S

g1/α

)
1

1−ASα
+O

(
1

V

)
=

1

Λ4/3

(
2Vg1/α

ba

)
, (3.81)

where ba = k
ν(kIR)−2

IR . The volume V appears because the denominator of the path-integral

eliminates all nodal diagrams in which the source does not couple with the interactions.

From here, we find the expression for the cosmological constant

Λ =

(
2Vg1/α

ba

)3/4
Λ0(

P.V.
∞∫
0

dS exp
(
− S

g1/α

)
1

1−ASα

)3/4
, (3.82)
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where Λ0 ≡ a−2
0 with a0 takes care of the dimensions. We can rewrite (3.82) in a slightly

simpler and suggestive way by using the parameter c ≡ (Ag)1/α as:

Λ =

(
2VΛ

4/3
0

ba

)3/4
c3/4(

P.V.
∞∫
0

du e−u/c

1−uα

)3/4
=

(
2VΛ

4/3
0

ba

)3/4(
c

Ic,α

)3/4

, (3.83)

where Ic,α is the principal value integral from the LHS. Looking at Figure 3.1 and Figure

3.2, where we plot the behaviour of c
Ic,α from (3.83) for α = 2, 3, 4 respectively, we see that

in the limit c → 0, c
Ic,α → 1 irrespective of the choice of α. This suggests that Λ takes a

definite value of:

Λ =

(
2VΛ

4/3
0

ba

)3/4

+O
(
e−1/c

)
, (3.84)

which may be made small. There is also a possibility that the cosmological constant Λ may

be determined for a given choice of α by the minima of the curves. These numerical plots

suggest that the minima approach smaller values as we increase the values for α.

Figure 3.1: Plot of
(

c
Ic,3

)3/4
versus c ≡ (gA)1/3 where Ic,3 is the principal value integral given

in (3.83) for α = 3. Again, observe that for c → 0, c
Ic,3 → 1 and the cosmological constant

Λ from (3.83) takes the specific value of (3.84).

The vanishing of the perturbative contributions led us to impose the vanishing of the
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integrand in (3.78). This gave us the following constraint:

α(k)

a(k)
− kν(k)

V

(
α2(k)

a2(k)
+

1

2a(k)

)
+O

(
1

V2

)
= 0, (3.85)

Such a constraint immediately fixes α(k) as in (3.80), which we may re-express in a slightly

more suggestive way as a scaling relation of the form:

α(k) =
kν(k)

2V
+O

(
1

V2

)
(3.86)

where the Glauber-Sudarshan states associated with α(k) = k11/3

2V
are shown in Figure 3.2.

Figure 3.2: The Glauber-Sudarshan states associated with y ≡ 2Vα(k) = k11/3 with kIR ≤

k ≤ µ in the configuration space. This is part of the full form for α(k) given in (3.86) with

ν(k) ≈ 11
3
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Chapter 4

Heterotic strings, fermions, and

M-theory uplift

This chapter includes some computations only tangentially related to the main theme of the

work but is included as an example of possible extensions of the basic toy model presented

in the thesis. In this sense, this part is very incomplete and unsatisfactory. At the same

time, it may provide some insights into the future developments.

4.1 Conformally related metric

The question that we want to ask here is that whether a generic background of the form:

ds2 =
a2(t)

H2(y)

[
−dt2 + gijdx

idxj + g33(dx
3)2
]
+H2(y)

[
F2(t)gmndy

mdyn + F1(t)gαβdt
αdyβ

]
, (4.1)

can also be realized as a Glauber-Sudarshan state. Here Fi(t) captures the dominant

temporal scalings, and in what sense they do will be elaborated when we lift this configuration

to M-theory. Note that a2(t), with t being the dimensionful conformal time, is kept arbitrary,

with the only condition being that it becomes large at a late time. This means the background

(4.1) naturally expands at late time. The other factors, gij(x), g33(x), gmn(y), gαβ(y) and

H2(y) are the unwarped spatial metric components and the warp-factor respectively. The
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coordinate y ≡ (ym, yα) ∈ M4 ×M2 and x = (t,x) ∈ R2,1, so that nothing depends on the

third spatial direction parametrized by x3 here. We will soon make a further restriction by

converting gαβ = δαβ, so thatM2 = T2

Z2
where Z2 will be an orientifolding operation. Such

a choice will give us a way to reach the heterotic background by making a series of duality

transformations. In that case y ≡ ym ∈M4.

For various choices of (a2(t),Fi(t)) and the internal sub-manifolds, we can study the

possibilities of realizing de Sitter state in various string theories (including also in M-theory).

As was discussed previously, it is possible to realize a four-dimensional type IIB superstring

background containing dS isometries as a coherent Glauber-Sudarshan state. We want to

study a generic background with some temporal dynamics incorporated into the Fi(t) scaling

functions:

ds2 =a2(t)/H2(−dt2 + dx21 + dx22 + dx23)

+H2(F1(t)gαβdy
αdyβ + F2(t)gmndy

mdyn)
(4.2)

where H2 = H2(y) is a warp-factor , and (ym, yα) are coordinates of internal six-manifold

M6 = M4 ×M2. Here ym parameterize M4 and yα parameterize M2 such that M6 =

M2 ×M4. Fi(t) for i = 1, 2 are some time-dependent functions that satisfy F1F
2
2 = 1. The

time variable is, as usual, the dimensionful conformal time. The expansion of the back-

ground is generated by an arbitrary parameter a2(t), which grows in time. The factors

gαβ(y) and gmn(y) represent the unwarped spatial metric components. The restriction of the

two-manifoldM2 to a special caseM2 = T2

Z2
with Z2 being responsible for an orientiefold-

ing operation, and a respective conversion gαβ = δαβ will help to change to the heterotic

background by means of duality transformations.

The ultimate task of this section is to compute Einstein’s tensors Gµν , Gmn, Gαβ etc., for

this generic metric on the Type IIB side.

Following some suggestions, I can change the original metric (4.2) to a more simple

conformally related metric

ds2 =
1

H2

(
gµνdx

µ dxν +H4 F1(t)gαβdy
αdyβ +H4 F2(t)gmndy

mdyn
)
, (4.3)

Chapter 4



4.1. CONFORMALLY RELATED METRIC 69

where gµν the Friedmann isotropic and homogeneous universe

gµνdx
µ dxν = −dη2 + a2(t) δijdx

i dxj (4.4)

and η is the conformal time

η =

∫ t dt

a(t)
(4.5)

The relation between the Ricci tensors of the conformally related metrics is relatively

easy to find. We define two metrics as

ds2(typeIIB) =
1

H2
ds̃2 (4.6)

where ds̃2 is given by

ds̃2 = gµνdx
µ dxν +H4 F1(t)gαβdy

αdyβ +H4 F2(t)gmndy
mdyn (4.7)

Then the Christoffel connection for ds̃2 is calculated to be

Γd
ab = Γ̃d

ab −
∂bH

H
δda −

∂aH

H
δdb +

∂cH

H
gcd gab. (4.8)

After some algebra, we find the conformally related Ricci tensor to be

R̃ab = Rab + 8
∇a ∇bH

H
+

(
∇2H

H
− 9

(∇H)2

H2

)
gab, (4.9)

where ∇ is a covariant derivative, such that

∇aH = ∂aH,

∇a∇bH = ∇a(∂bH) = ∂a ∂bH − Γc
ab ∂cH.

(4.10)

We first need to find Christoffel connection on ds̃2. To reduce the clutter, it is beneficial

to incorporate all the details of the inner metric onM6 into a single metric tensor hij:

hij(y, t)dy
i dyj = H4 F1(t)gαβdy

αdyβ +H4 F2(t)gmndy
mdyn. (4.11)

The non-vanishing components of the Christoffel connection for the total metric

ds̃2 = gµνdx
µ dxν + hijdy

i dyj (4.12)
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are

Γ̃µ
ij = −

1

2
gµν∂νhij,

Γ̃σ
µν = Γσ

µν(gµν),

Γ̃i
µj =

1

2
hij∂µhkj,

Γ̃i
jk = Γi

jk(hij).

(4.13)

Now the components of the Riemann tensor can be calculated

R̃σ
τµν = Rσ

τµν ,

R̃σ
kij =

1

2
(∇i ∂

σhjk −∇j ∂
σhik) ,

R̃σ
τij =

1

4

(
hkl∂τhlj ∂

σhik − hkl∂τhli ∂σhjk
)
,

R̃l
kij = Rl

kij(hij +
1

4
hnj∂

ρhik ∂ρh
ln − 1

4
hni∂

ρhjk ∂ρh
ln,

R̃σ
jiµ =

1

4
gσρhkl∂µhjl ∂ρhik −

1

2
gσρ∂µ∂ρhij.

(4.14)

We first compute the Ricci tensors of the conformally related metric by contracting the

relevant indices in the components of the Riemann tensors (4.14):

R̃µν = Rµν(gµν −
1

4
∂µh

ij ∂νhij −
1

2
hij∂µ ∂νhij,

R̃ij = Rij(hij)−
1

2
gρσ∂ρ ∂σhij −

1

2
hik∂

ρhjl ∂ρh
kl +

1

4
hkl∂

ρhij ∂ρh
kl,

R̃iµ =
1

2

(
hkl∇i∂µh

kl − hki∇l∂µh
kl
)
.

(4.15)

To obtain the Ricci tensors for our original metric (4.27) we need to move back to the hidden

variables of the hij metric tensor and recalculate all derivatives with respect to them as well

as add a term coming from the conformal factor. After some computation, we have the
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following results for Ricci tensors for the metric in type IIB string theory

R̃10
µν = Rµν(gµν) +

1

2

∂µF1 ∂νF1

F 2
1

+
∂µF2 ∂νF2

F 2
2

− ∂µ ∂νF1

F1

− 2
∂µ ∂νF2

F2

+ gµν

(
∇2H

H
− 9

(∇H)2

H2

)
,

R̃10
αβ = Rαβ(gαβ)−

(
1

2

F̈1

F1

+
Ḟ1 Ḟ2

F1 F2

)
H4F1gαβ + 8

∇α ∇βH

H

+

(
∇2H

H
− 9

(∇H)2

H2

)
gαβ,

R̃10
mn = Rmn(gmn)−

(
1

2

F̈2

F2

+
1

2

Ḟ 2
2

F 2
2

+
Ḟ1 Ḟ2

F1 F2

)
H4F2gmn + 8

∇m ∇nH

H

+

(
∇2H

H
− 9

(∇H)2

H2

)
gmn,

R̃10
αµ = −4∂µF1

F1

∂αH

H
,

R̃10
mµ = −4∂µF2

F2

∂mH

H
,

R̃10
αm = Rαm(h) + 8

∇α∇mH

H
.

(4.16)

From the know values of the Ricci tensors of our metric in 10 dimensions, we can compute

the Ricci curvature scalar

R10 = RMNg
MN = R10

µν g
µν +R10

αβ g
αβH−4F−1

1 +R10
mn g

mnH−4F−1
2 . (4.17)

Some algebraic manipulations provide the following result

R10 = R +
1

2

Ḟ 2
1

F 2
1

− 2
F̈1

F1

− Ḟ 2
2

F 2
2

− 4
F̈2

F2

− 4
Ḟ1 Ḟ2

F1 F2

+ 18
∇2H

H
− 90

(∇H)2

H2
. (4.18)

Now we have all the ingredients to evaluate the Einstein tensors

GMN = RMN −
1

2
gMN R. (4.19)

First we write down the different components of GMN in terms of both F1 and F2:
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G10
µν = G̃µν −

∂µ ∂ν F1

F1

+
1

2

∂µ F1 ∂ν F1

F 2
1

− 2
∂µ ∂ν F2

F2

+
∂µ F2 ∂ν F2

F 2
2

+

(
−1

4

Ḟ 2
1

F 2
1

+
F̈1

F1

+
1

2

Ḟ 2
2

F 2
2

+ 2
F̈2

F2

+ 2
Ḟ1

F1

Ḟ2

F2

)
gµν

+

(
36

(∇H)2

H2
− 8
∇2H

H

)
gµν ,

(4.20)

G10
αβ = G̃αβ+ĝαβ

(
1

2

F̈1

F1

− 1

4

Ḟ 2
1

F 1
2

+
1

2

Ḟ 2
2

F 2
2

+ 2
F̈2

F2

+
Ḟ1

F1

Ḟ2

F2

+ 36
(∇H)2

H2
− 8
∇2H

H

)
+ 8
∇α ∇βH

H
,

(4.21)

G10
mn = G̃mn+ĝmn

(
F̈1

F1

− 1

4

Ḟ 2
1

F 2
1

+
3

2

F̈2

F2

+
3

2

Ḟ1

F1

Ḟ2

F2

+ 36
(∇H)2

H2
− 8
∇2H

H

)
+ 8
∇m ∇nH

H
.

(4.22)

Next, we can introduce the condition on F1, F2

F1F
2
2 = 1, (4.23)

which generates the additional two relations between the derivatives of F1 and F2:

Ḟ1

F1

+ 2
Ḟ2

F2

= 0, (4.24)

F̈1

F1

− 6
Ḟ 2
2

F 2
2

+ 2
F̈2

F2

= 0 (4.25)

These constraints on the derivatives of the time-dependent Fi allow substantial simplifica-
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tions of the 10-dimensional Einstein tensors:

G10
µν = G̃µν + gµν

(
9

2

Ḟ 2
2

F 2
2

+ 36
(∇H)2

H2
− 8
∇2H

H

)
,

G10
αβ = G̃αβ +

(
1

2

Ḟ 2
2

F 2
2

+
F̈2

F2

+ 36
(∇H)2

H2
− 8
∇2H

H

)
H4F1gαβ

+ 8
∇α ∇βH

H
,

G10
mn = G̃mn +

(
2
Ḟ 2
2

F 2
2

− 1

2

F̈2

F2

+ 36
(∇H)2

H2
− 8
∇2H

H

)
H4F1gmn

+ 8
∇m ∇nH

H
.

(4.26)

4.2 From type IIB to heterotic SO(32) superstrings

The question about the possible realizations of dS coherent state in other string theories

besides Type IIB heavily relies on our ability to move between different string theories using

duality transformations. Thus, an appropriate T-duality transformation with a subsequent

orientifolding operation would help us to investigate the prospects of dS states in Type

I theory. An additional S-duality transformation would bring us to the SO(32) heterotic

theory.

T-duality acts on the background fields present in a string theory.

For the type IIB superstring theory, the massless bosonic sector consists of the gravi-

ton gµν , the dilaton ϕ, and the Kalb-Ramond field Bµν , for the NS − NS sector and the

antisymmetric gauge fields C(0), C
(2)
µν , C

(4)
κλµν , for the R−R sector.

On the other hand, the massless bosonic sector of the type I superstring theory in 10

dimensions consists of the graviton gIµν , the dilaton ϕI , the R − R two-form CI
2 and the

SO(32) Yang-Mills gauge field Aµ.

In our particular case, the metric on the type IIB side has the form

ds2 =
a2(t)

H2
(−dt2 + dx21 + dx22 + dx23) +H2(F1(t)δαβdy

αdyβ + F2(t)gmndy
mdyn) (4.27)

where H = H(y), and (ym, yα) = coordinates of internal six-manifoldM6. ym parametrizes
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M4 and yα parametrizes T 2 such that M6 = T 2 ×M4. Fi(t) for i = 1, 2 are some time-

dependent functions.

The non-zero gauge fields are NS − NS Bαn gauge field and R − R Cβm 2-form. The

dilaton has the value of zero: ϕB = 0.

To obtain a type I solution, we perform a T-duality transformation along both sides of

the torus T 2. Let’s introduce the torus coordinates x, y

z = x+ iy.

Then we use Buscher’s duality rules adapted to our situation. The metric terms of the form

gxm, gyn are zero and can be ignored in the duality mapping. We also remember that we are

doing a double transformation which generates additional terms. The type I metric changes

to

gImn = gmn +
1

gxx
BxnBxm +

1

gyy
BynBym = H2F2gmn +

1

H2F1

BxnBxm +
1

H2F1

BynBym,

gIxn =
1

gxx
Bxn =

1

H2F1

Bxn,

gIyn =
1

gyy
Byn =

1

H2F1

Byn, (4.28)

gIxx =
1

gxx
=

1

H2F1

, gIyy =
1

gyy
=

1

H2F1

.

Then the T-dualized part of the metric can be written as

gImn dy
mdyn + gIxn dx

Idyn + gIyn dy
Idyn + gIxx (dxI)2 + gIyy (dy

I)2

= H2F2 g
I
mndy

mdyn +
1

H2F1

(
dxI +Bxndy

n
)2

+
(
dyI +Byndy

n
)2
.

(4.29)

The type I dilaton is given by

eϕ
I

=
eϕ

B

√
gxx gyy

=
1

H2F1

. (4.30)

S-duality has the effect of sending the dilaton to minus itself

ϕH = −ϕI . (4.31)

The dilaton in heterotic theory is given by

eϕ
H

= e−ϕI

= e−ϕB√
gxx gyy = H2F1. (4.32)
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Finally, our original type IIB solutions become a new, heterotic superstring solution which

in a string frame has the form

ds2Het = eϕH ds2I (4.33)

= F1a
2(t)

(
−dt2 + gijdx

idxj
)
+H4F1F2 gmndx

mdxn +
(
dxI +Bxndy

n
)2

+
(
dyI +Byndy

n
)2
.

Using similar Buscher’s duality rules for the gauge fields, we can calculate the 2-form fields

on the Heterotic side from the original NS − NS Bαn gauge field and R − R Cβm 2-form

field.

4.3 Fermionic bilinear series in terms of the general-

ized metric

A possible extension of the G-flux components, by incorporating eleven-dimensional grav-

itino, by generalizing the picture further by first introducing a the matrix-valued operator

of the form:

DM ≡ ΓM + iI M−1
p ∂M, (4.34)

with the imaginary part scaling as the vielbein (and thus would have the corresponding gs
HHo

scaling), where the real part would simply be the derivative (but not the covariant derivative

as the latter would be automatically generated from the curvature and the flux terms in

the series (??)). This distinction between the real and the imaginary parts comes from the

purely imaginary representations of the eleven-dimensional Gamma matrices because of the

presence of Majorana gravitino.

Let us start by defining the following Majorana Rarita-Schwinger field λM as:

λM = O(1)
MAΨ

A ≡
∑
{ki}

(
ak1Re D2k1 + bk2Im D2k2 + dk3Re |D|2k3 + ek4Im |D|2k4

)
MA

ΨA, (4.35)

with the Gamma-matrices in the Majorana representation and ΨM being the eleven-dimensional

gravitino.
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By noting that ΓAk is a curved space Gamma-matrix and therefore ΓAk ≡ ΓaeAk
a by using

eleven-dimensional vielbeins eAk
a . Using this, one could replace the metric gCD, which is

symmetric in C and D, by the following:

g(CD) → ĝCD ≡ eaCe
b
D

[
ηabI+ c1Γ(ab) + c2Γ[ab]

]
, (4.36)

for some constants (c1, c2) and I is the identity matrix in the same representations as the

Gamma-matrices ((a, b) are the internal coordinates and should not be confused with the

toroidal coordinates (wa, wb). Choosing the coefficients in (4.35) appropriately, we can mod-

ify the metric (4.36) by adding fermionic contributions as:

ĝMN ≡ eaMe
b
N

[
ηabI+ c2Γ[ab]

]
+ c3

(
λ̄Oλ

)
MN

, (4.37)

Where the Lorentz indices over the Rarita-Schwinger fermion as well as the operator O will

have to be inserted in, and c3 is a dimensionless parameter.

The fermionic bilinear series

Qmet =
∑
n

c(n) tr(λ̄Oλ)n (4.38)

can also be represented using the generalized metric ĝCD.

First, we use the notation X = λ̄Oλ to make the calculations more tractable. Then we

recall the definition of the generalized metric ĝCD:

ĝCD = eaC e
b
D

[
ηab1+ c2Γ[ab]

]
+ c3(λ̄Oλ)CD = gCD + c3XCD. (4.39)

In the following calculations, we set c3 = 1 to reduce the clutter. It will not affect the final

results.

Next, we note that

trX == gCD(λ̄Oλ)CD = gCD (ĝCD − gCD) ,

trX2 = gCDgMN (λ̄Oλ)CM (λ̄Oλ)DN = gCDgMN (ĝCM − gCM) (ĝDN − gDN) ,

and so on. It allows us to write down Qmet using only the metric:

Qmet =
∑
n

c(n) trXm trXn · · · trXs = c(1) g
CD (ĝCD − gCD) (4.40)
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+ c(2) g
CDgMN (ĝCM − gCM) (ĝDN − gDN) + ...

(4.41)

Since this quantum series does not contain all possible elements, such as (trX)p, we

introduce another variation of the quantum series, which includes the previous one but also

generates an additional variety of the quantum terms:

Q(2)
met =

∑
{pi}

cp1p2...p∞

∞∏
i=1

trXpi =
∑

m,n,..,s

trXm trXn · · · trXs. (4.42)

This expression is not very easy to handle, so we rewrite it in a more wieldy form as a series

in powers of trXn:

Q(2)
met =

∑
kp

(∑
p

c
(p)
kp

[tr(1 + X)p]kp
)
. (4.43)

To make sure that this new quantum series contains all the elements of the previous variation

of it, we explicitly calculate several first terms. For p = 1 we have the following

∑
k1

c
(1)
k1

[tr(1 + X)]k1 =
∑
k1

c
(1)
k1

[tr1+ trX)]k1 =
∑
k1

c
(1)
k1

[D + trX)]k1 , (4.44)

where we have used the fact that tr1 = D, the dimension of the space-time.

In the case of p = 2 we have a slightly more complicated term coming from the trace

part:

tr(1 + X)2 = tr(1 + 2X+ X2) = D + 2trX+ trX2,

and thus the sum term is∑
k2

c
2)
k2

(
D + 2trX+ trX2

)k2 .
In a very similar way, we generate the third term of the series

tr(1 + X)3 = D + 3trX+ 3trX2 + trX3,

and∑
k2

c
2)
k2

(
D + 3trX+ 3trX2 + trX3

)k3 .
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We can see that all the powers of the trX appear in this version of the series and much

more.

An additional benefit of using this particular form of the quantum series is that we can

easily rewrite it in terms of the powers of the generalized metric. We note that

trX = gCD XCD = gCD(ĝCD − gCD) = gCDĝCD −D. (4.45)

Then

D + trX = D + gCDĝCD −D = gCDĝCD,

and

D + 2trX+ trX2 = D + 2gCDĝCD − 2D + gCDgMN ĝCM ĝDN − 2gCDĝCD +D

= gCDgMN ĝCM ĝDN ,

and so on. Thus, we observe that a generic fermionic interaction of written as a quantum

series Q(2)
met cab be completely expressed in terms of the generalized metric.

To bring the quantum series Q(2)
met into a trans-series form, we rewrite the coefficients c

(p)
kp

in the following form

c
(p)
kp

=
∑
l≥1

d
(p)
l (−l)kp
kp!

. (4.46)

Next, write down the first term of the Q(2)
met quantum series in a suggestive way

∑
k1

c
(1)
k1

[D + trX)]k1 = c
(1)
1 (D + trX) + c

(1)
2 (D + trX)2 + c

(1)
3 (D + trX)3 + ..., (4.47)

where the coefficients c
(1)
k1
, in their turn, are given by the following series

c
(1)
k1

=
∑
l≥1

d
(1)
l (−l)k1
k1!

=
d
(1)
1 (−1)k1
k1!

+
d
(1)
2 (−2)k1
k1!

+
d
(1)
3 (−3)k1
k1!

+ ... (4.48)

In the next step, we combine the two series to find

c
(1)
1 (D + trX) =

d
(1)
1 (−1)
1!

(D + trX) +
d
(1)
2 (−2)
1!

(D + trX) +
d
(1)
3 (−3)
1!

(D + trX) + ...

Chapter 4



4.4. M-THEORY UPLIFT AND RIEMANN TENSOR SCALINGS. 79

c
(1)
2 (D + trX)2 =

d
(1)
1 (−1)2

2!
(D + trX)2 +

d
(1)
2 (−2)2

2!
(D + trX)2 +

d
(1)
3 (−3)2

2!
(D + trX)2 + ...

Summing all these infinite series terms by term, we obtain the following interesting result

∑
k1

c
(1)
k1

[D + trX)]k1 = d
(1)
1 [ exp (−D − trX)− 1] + d

(1)
2 [ exp (−2D − 2trX)− 1]

+d
(1)
3 [ exp (−3D − 3trX)− 1] + ... =

∑
l≥1

d
(1)
l [ exp (−lD − ltrX)− 1] .

The rest of the terms of the original Q(2)
met quantum series can be rewritten similarly. At

the same time, we can write all the above computations in a very condensed formal way,

ignoring some mathematical subtleties but giving the written result anyway. For instance,

the second term can be formally manipulated as

∑
k2

c
2)
k2

(
D + 2trX+ trX2

)
=
∑
k2

∑
l≥1

d
(2)
l (−l)k2
k2!

(
D + 2trX+ trX2

)k2
=
∑
l≥1

d
(2)
l

∞∑
k2=0

(−l)k2
k2!

(
D + 2trX+ trX2

)k2 =∑
l≥1

d
(2)
l

[
exp

(
−lD − 2ltrX− ltrX2

)
− 1
]
.

The beauty of these series comes from the fact that they are all convergent due to the

presence of the e−lD and e−ltrX2p
suppression.

4.4 M-theory uplift and Riemann tensor scalings.

Interestingly, the form of the M-theory metric always remains the same for any type IIB

cosmology expressed using conformal coordinates as in (4.1). The only change is the value

of the dual IIA string coupling: gs
HHo

= 1
a(t)

which is sensitive to the functional form of a(t).

Clearly, and as mentioned earlier, for expanding cosmologies, the IIA coupling can be made

small. Demanding gs
HHo

< 1 provides the temporal domain in which controlled quantum

computations may be performed in M-theory. For the usual de Sitter case, irrespective

of the choice of the de Sitter slicings, this temporal domain remains perfectly consistent

with the so-called Trans-Planckian Cosmic Censorship (TCC) [11]. The question is, what

happens now? We must find the functional form of a(t) that provides a de Sitter metric on
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the dual side to answer this. We will return to the issue soon, but not before we elucidate

the consistency of the IIB background (4.1) from M-theory. In M-theory, the uplifted metric

takes the following standard form:

ds2 =

(
gs

HHo

)−8/3 (
−g̃00dt2 + g̃ijdx

idxj
)
+

(
gs

HHo

)−2/3 [
F1

(
gs
H1

)
g̃αβdy

αdyβ + F2

(
gs
H1

)
g̃mndy

mdyn
]

+

(
gs

HHo

)4/3

g̃abdw
adwb, (4.49)

where H1(x, y) ≡ H(y)Ho(x), which means Fi(gs/H1) depends on the temporal factor a(t),

and we shall discuss their functional form soon. The other metric components may be related

to the metric components in (4.1) in the following way:

g̃ab(x, y) ≡
[
H(y)Ho(x)

]4/3
gab(x, y)

g̃µν(x, y) ≡
gµν(x)[

H4(y)Ho(x)
]2/3 , g̃MN(x, y) ≡

[
H2(y)

Ho(x)

]2/3
gMN(y) (4.50)

where we have taken (M,N) ∈M4×M2. We have taken the un-warped metric components

along the toroidal direction depending on both (xi, yM). In fact, for the computations of the

curvature scaling, we will take both the un-warped and the warped metric components to

depend on all the coordinates (except of course, the toroidal direction). Once we go to the

heterotic side, we will see that the dependence on the coordinates ofM2 has to be removed.

Let us now come to the functional form for the temporal factors Fi(gs/H1). These factors

did not change the dominant scalings of the metric components as they were constrained

by Fi(gs/H1) → 1, gs → 0 and F1F
2
2 = 1 to preserve the Newton’s constant and to avoid

late-time singularities. Both of these conditions are not essential now if we want to dualize to

any of the other string and M-theories because only in the dual landscape do we want a time-

independent Newton’s constant with no late time singularities. This means the dominant

scalings of the internal metric could, in principle change; we can then propose the following

dominant scalings:

F1 ≡
∞∑
k=0

Ak

(
gs

HHo

)βo+2k/3

, F2 ≡
∞∑
k=0

Bk

(
gs

HHo

)αo+2k/3

,
∂

∂t

(
gs

HHo

)
≡

∞∑
k=0

Ck

(
gs

HHo

)γo+2k/3

,(4.51)
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where (Ak,Bk,Ck) are all integers, positive or negative with (αo, βo, γo) being the dominant

scalings. Note that, as we demonstrated rigorously, when γo < 0, EFT breaks down along

with a violation of the four-dimensional NEC. Here, in the generic setting, we will see

whether this continues to hold. On the other hand, (αo, βo) are not a-priori required to be

positive definite. An interesting question would be to find whether there is a connection

between the three dominant scalings. If there is one, then it would lead to an even deeper

connection between the three disparate facts: the existence of EFT fromM-theory, preserving

four-dimensional NEC from IIB, and temporal dependence of the internal six-dimensional

manifold.

We analyze the perturbative series of quantum effects that include both local and non-

local terms embedded in the eleven-dimensional action. We write down only the quantum

term of the action

S1 =
∑
li,ni

∫
d11x
√
−g11

Q(li, ni

M
σ(li
p

, (4.52)

where the quantum term QT (li, ni) may be expressed as

Q̂({li},ni)
T =

[
ĝ−1

] 3∏
i=0

[∂]
ni

(
ĝC1

C2
ĝC2

C3
.....ĝ

Cn4

C1

)n5
41∏
k=1

(
R̂AkBkCkDk

)lk 81∏
r=42

(
ĜArBrCrDr

)lr
, (4.53)

which includes the generalized metric ĝCD as well as generalized curvature R̂ABCD and

generalized G-flux components ĜABCD which include the fermionic contribution discussed

previously. Our aim is to understand how the quantum series influences the dynamics in

the configuration spaces of both the gravitons and the G-flux components by analyzing the

gs
HHo

scaling of the quantum series. Since the scaling calculations are relatively simple but

somewhat tedious and take a good deal of space, they are relegated to the Appendix. Here

we only provide the final answer in the form of Table 1.

All the fermionic contributions, from both the curvature and the G-flux components,

are sub-dominant. Despite this, and as mentioned above, the gs
HHo

scaling is not simple.

Additionally, looking at the form of the gs
HHo

scaling, we see that there are too many relative

minus signs now. This is not good, as uncontrolled relative signs would signify a breakdown

of the EFT description. The scalings of the curvature and the derivative terms put the
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following bounds on the values of αo, βo and γo:

αo < +
2

3
, βo < +

2

3
, γo > −

1

3
(4.54)

implying that the dominant scalings of F1 and F2 cannot exceed the aforementioned bounds,

and γo ≥ 0 because the scalings jump as ±Z
3
. The latter is consistent with NEC violation.

Assuming (αo, βo) ≥ (0, 0), this means that two and the four-manifolds,M2 andM4 respec-

tively, cannot shrink to zero sizes at a late time when gs → 0. While this is good for the

four-manifold M4, the non-shrinking of M2 would mean that the system cannot dynami-

cally go to either the Type I or the heterotic side. In fact, at the late time (when gs → 0),

the two-manifold M2 would blow up, leading to a heterotic manifold with extremely high

curvature. This leads to our first trouble realizing a de Sitter Glauber-Sudarshan state in

the heterotic landscape.

There are, however, a couple of ways out of this. One, by demanding the metric compo-

nents to be independent of the coordinates ofM2, , i.e. independent of the (α, β) directions.

One may easily see that imposing the derivative constraint removes all the scalings with −βo

in the curvature and the derivative terms. The −βo terms survive in the G-flux scalings

but do not pose any immediate problems. The above considerations lead us to conclude

that EFT on the heterotic side is only valid if the metric components are independent of the

coordinates ofM2. Any non-trivial dependence on the coordinates ofM2 will rule out an

EFT description in the dual heterotic side.

Chapter 4



Riemann tensors gs scalings

Rmnpq dom
(
−2

3
+ αo,−2

3
+ 2αo + 2γo,

4
3
+ 2αo,−2

3
+ 2αo − βo

)
Rmnαβ dom

(
−2

3
+ αo,−2

3
+ βo,−2

3
+ αo + βo + 2γo,

4
3
+ αo + βo

)
Rαβi0,Rmαβ0, ∗R0ααβ −5

3
+ βo + γo

Rαβαβ dom
(
−2

3
+ βo,−2

3
+ 2βo + 2γo,−2

3
+ 2βo − αo,

4
3
+ 2βo

)
Rmni0,Rmnp0, ∗Rmnα0 −5

3
+ αo + γo

Rmnab dom
(
4
3
+ 2γo + αo,

4
3
+ αo − βo, 103 + αo,

4
3

)
Rmαβi, ∗Riααβ, ∗Rmααβ −2

3
+ βo

Rmnpi, ∗Rmnpα, ∗Rmnαi −2
3
+ αo

Rmabi, ∗Rαabi, ∗Rmαab
4
3

Rαβab dom
(
4
3
, 4
3
+ βo + 2γo,

4
3
+ βo − αo,

10
3
+ βo

)
Rabab dom

(
10
3
+ 2γo,

10
3
− αo,

10
3
− βo, 163

)
R0mab,Rabi0, ∗R0αab

1
3
+ γo

Rm0ij,Rijk0, ∗Rα0ij −11
3
+ γo

Rm0i0,Rmijk, ∗R0αi0 −8
3

∗Rαijk, ∗Rmαij, ∗R0m0α −8
3

Rijij,R0i0j dom
(
−8

3
,−14

3
+ 2γo,−14

3
− αo,−14

3
− βo

)
Rabij,R0a0b dom

(
4
3
,−2

3
+ 2γo,−2

3
− αo,−2

3
− βo

)
Rmnij,R0m0n dom

(
−8

3
,−2

3
+ αo,−8

3
+ αo + 2γo,−8

3
+ αo − βo

)
Rαβij,R0α0β dom

(
−8

3
,−2

3
+ βo,−8

3
+ βo + 2γo,−8

3
+ βo − αo

)

Table 4.1: The gs
HHo

expansions of the components of the curvature tensors associated with the

M-theory metric. The warp factor H(y) is the universal warp factor, whereas Ho ≡ Ho(x, y)

depends on the choice of the de Sitter slicings. The components of the Riemann tensors

are defined in the usual way: (m,n) ∈ M4, (α, β) ∈ M2, (a, b) ∈ T2

G and (µ, ν) ∈ R2,1;

with x ≡ (xi, xj) and ym ∈ M4 ×M2. The modes of the curvature tensor are defined as

R
(k)
A1A2A3A4

= R
(k)
A1A2A3A4

(x, y) where Ai ∈ R2,1 ×M4 ×M2 × T2

G and k ∈ Z
2
.



Chapter 5

Conclusion

It is very a very hard and non-trivial problem to construct the de Sitter space cosmological

solution in string theory. It is still an open question whether it is possible to realize de Sitter

spacetime in string theory. Classical de Sitter vacuum fails to be obtained due to various

no-go theorems. The effective field theory version of the de Sitter vacuum is ruled out by

the ill-defined Wilsonian action over an accelerating background. And yet there is still some

hope.

This work investigates some aspects of the string theory realization of de Sitter space as

a coherent state. This almost classical solution demands a fully quantum analysis, making

it more involved and, simultaneously, more satisfactory. There was made effort to simplify

the model by working with the limited set of scalar fields instead of going to the whole

theory containing the set of 44 gravitons, 84 fluxes and 128 Rarita-Schwinger fermions. This

interpretation allowed us to reveal the main features of the construct and avoid unnecessary

complexity. We started with the general definition of a coherent state in a straightforward

set-up for a non-interacting vacuum with a brief discussion on how to transition to a more

elaborate case of a coherent state on an interacting vacuum.

Next, we introduced a path-integral formalism for doing quantum field theory for a shifted

interacting vacuum, known as the Glauber-Sudarshan state. A toy model of free massive

scalar field theory in 3+1 dimensions was introduced and solved using the abovementioned
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formalism. At the next level of complexity, we attempted to include the full interacting

action with all the quantum corrections in our analysis of the Glauber-Sudarshan state. As

was mentioned previously, to make our computations tractable, we included only three scalar

fields representing different components of the graviton, flux, and fermionic fields. A geo-

metric tool named nodal diagrams was introduced, as a slightly modified version of Feynman

diagrams, to keep track of the path-integral calculations. As a consequence of the analysis,

it was shown that the path-integral structure for the three fields over the shifted vacuum

breaks down as a collection of nodal diagrams. The nodal diagrams representation helps

significantly deal with the integrating diagrams’ momenta and momentum conservation.

In the second part of our work, we introduce another mathematical tool known as the

Borel resummation technique and the resurgent trans-series. The necessity of such an ap-

proach was dictated by the fact that the path-integral calculations of the expectation value

of the metric lead to the answer in the form of asymptotic series. And although it is common

knowledge that perturbative analyses in quantum field theory generate asymptotic solutions,

the non-perturbative part of such investigation is usually lost. We tried to recover some ad-

ditional knowledge by resuming the divergent series and thus making statements about the

non-perturbative nature of the calculations.

The expectation value of the metric generates the divergent asymptotic series because

of the factorial growth coming from the nodal diagrams for higher orders in the coupling

constant. The metric computation only makes sense if we can summarise all the informa-

tion contained in the asymptotic series in some meaningful way. The Borel resummation

technique is the very tool which allows us to boost our results with the knowledge of the

non-perturbative part of the series. It is very natural to suggest that we need to include

non-perturbative physics in our solution to construct de Sitter space in string theory.

We show that for the simplified case of 3 scalar fields, the expectation value of the

metric produces the factorial growth of the generalized Gevrey-α series. In particular, we

found at least the result α = 2, which is expected to be much higher for the complete

solution in M-theory—the correct Borel resummation of the Gevrey-α series results in a
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closed-form expression for the cosmological constant. One of our analysis’s conclusions is

that the cosmological constant’s value in our model can be small. It is based on the fact

that the displacement generated by the Glauber-Sudarshan state from the vacuum in the

configuration space is inversely proportional to the spacetime volume and, thus, minimal.

This means that coherent de Sitter space is close to its vacuum configuration. Another

important outcome of our analysis is a positive value of the cosmological constant.

We also included some results from our investigation of the possibility of realizing de

Sitter space as a Glauber-Sudarshan state for the case of a generic background. This gener-

alization allows us to construct the de Sitter state in various string theories through duality

transformations such as T-dualities and S-dualities. We explicitly show one such transition

from type IIB background to heterotic SO(32) theory.

The results of this work add some new perspectives to the quest of finding a valid de Sitter

space construction from the string theory point of view. Although the fundamental analysis

is based on a toy model and does not consider the complexity of the full realization, at least

it shows some potential original direction that has never been considered before. Besides, the

asymptotic series resummation technique proved helpful in this set-up and thus, arguably,

might find its application in other related physical problems.
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Appendix A

Riemann tensor scalings

In M-theory, the uplifted metric takes the following standard form:

ds2 =

(
gs
HH0

)−8/3 (
−g̃00dt2 + g̃ijdx

idxj
)
+

(
gs
HH0

)4/3

g̃abdw
adwb

+

(
gs
HH0

)−2/3 [
F1

(
gs
H1

)
g̃αβdy

αdyβ + F2

(
gs
H1

)
g̃mndy

mdyn
]

We introduce the following dominant scalings:

F1 =
∞∑
k=0

Ak

(
gs
HH0

)β0+2k/3

, F2 =
∞∑
k=0

Bk

(
gs
HH0

)α0+2k/3

∂

∂t

(
gs
HH0

)
=

∞∑
k=0

Ck

(
gs
HH0

)γ0+2k/3

.

(A.1)

Then we have the following scalings for the metrics:

gµν ∼ g−8/3
s , gmn ∼ g−2/3+α

s , gαβ ∼ g−2/3+β
s , gab ∼ g4/3s . (A.2)

The time derivative of any of the metric components generates the scaling

∂

∂t
gs ∼ gγs ,

∂

∂t
gMN ∼

∂

∂t
gAs ∼ gγs g

A−1
s .

(A.3)

Now we are ready to find the scalings of the Riemann tensors.

We need to find all the possible permutations of the tensor indices:

Rmnpq : m n p q + m m p q + m m p q (A.4)
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Each particular index permutation generates the unique contractions of the first and second

derivatives of the metric tensor:

m n p q : gmn,pq gpq,mn

gmn,R gpq,S g
RS

gRm,n gSp,q g
RS

Now we can easily compute the scalings for each combination of the metric tensors and their

derivatives:

gmn,pq ∼ gs

{
−2

3
+ α0

}
,

gmn,R gpq,S g
RS = gmn,0 gpq,0 g

00 + gmn,i gpq,j g
ij + gmn,α gpq,β g

αβ + gmn,r gpq,s g
rs

∼ gs

{
−2

3
+ 2α0 + 2γ0

}
+ gs

{
4

3
+ 2α0

}
+ gs

{
−2

3
+ 2α0 − β0

}
+ gs

{
−2

3
+ α0

}
,

gRm,n gSp,q g
RS = grm,n gsp,q g

rs ∼ gs

{
−2

3
+ α0

}
,

Both the second and the third permutation of indices generates the same gs scalings:

gs

{
m m p q

}
∼ gs

{
m n p q

}
gs

{
m m p q

}
∼ gs

{
m n p q

}
Finally, we find the scalings of the Rnmpq Riemann tensor to be

Rnmpq ∼ gs

{
−2

3
+ α0,

4

3
+ 2α0,−

2

3
+ 2α0 + 2γ0,−

2

3
+ 2α0 − β0

}
.

Rmnαβ : m n α β + m m α β + m m α β (A.5)

The first permutation of indices generates

m n α β : gmn,αβ gαβ,mn

gmn,R gαβ,S g
RS

gRm,n gSα,β g
RS
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The scalings of the metric tensor combinations are

gmn,αβ ∼ gs

{
−2

3
+ α0

}
, gαβ,mn ∼ gs

{
−2

3
+ β0

}

gmn,R gαβ,S g
RS = gmn,0 gαβ,0 g

00 + gmn,i gαβ,j g
ij + gmn,α gαβ,β g

αβ + gmn,r gαβ,s g
rs

∼ gs

{
−2

3
+ α0 + β0 + 2γ0

}
+ gs

{
4

3
+ α0 + β0

}
+ gs

{
−2

3
+ β0

}
+ gs

{
−2

3
+ α0

}
,

gRm,n gSp,q g
RS ∼ 0.

The second permutation of indices gives similar scalings:

m m α β : gmα,nβ gnβ,mα

gmα,R gnβ,S g
RS

gRm,α gSn,β g
RS

with the following scalings

gmα,nβ ∼ 0, gnβ,mα ∼ 0,

gmα,R gnβ,S g
RS ∼ 0,

gRm,α gSn,β g
RS = gpm,α gqn,β g

pq ∼ gs

{
−2

3
+ β0

}
And the last index permutation is the same as the second one:

gs

{
m m α β

}
∼ gs

{
m m α β

}
.

The full set of scaling is

Rnmαβ ∼ gs

{
−2

3
+ α0 + β0 + 2γ0,

4

3
+ α0 + β0,−

2

3
+ β0,−

2

3
+ α0

}
.

Rαβi0 : i 0 α β + i 0 α β + i 0 α β (A.6)
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The first permutation of indices generates

i 0 α β : gi0,αβ gαβ,i0

gi0,R gαβ,S g
RS

gRi,0 gSα,β g
RS

gR0,i gSα,β g
RS

The scalings of the metric tensor combinations are

gαβ,i0 ∼ gs

{
−5

3
+ β0 + γ

}
, gi0,αβ ∼ 0

gi0,R gαβ,S g
RS ∼ 0,

gR0,i gSα,β g
RS ∼ 0,

gRi,0 gSα,β g
RS ∼ 0.

The second permutation of indices:

i 0 α β : giα,0β g0β,iα

giα,R g0β,S g
RS

gRi,α gS0,β g
RS

with the following scalings

giα,0β ∼ 0, g0β,iα ∼ 0,

giα,R g0β,S g
RS ∼ 0,

gRi,α gS0,β g
RS ∼ 0.

And the last index permutation is the same as the second one:

gs

{
i 0 α β

}
∼ gs

{
i 0 α β

}
∼ 0.

The full set of scalings is

Rαβi0 ∼ gs

{
−5

3
+ β0 + γ

}
.
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Rmαβ0 : m α β 0 + m α β 0 + m α β 0 (A.7)

The first permutation of indices generates

m α β 0 : gmα,β0 gβ0,mα

gmα,R gβ0,S g
RS

gRm,α gSβ,0 g
RS

gRα,m gSβ,0 g
RS

The scalings of the metric tensor combinations are

gmα,β0 ∼ 0, gβ0,mα ∼ 0,

gmα,R gβ0,S g
RS ∼ 0,

gRm,α gSβ,0 g
RS ∼ 0,

gRα,m gSβ,0 g
RS = gβα,m gαβ,0 g

αβ ∼ gs

{
−5

3
+ β0 + γ

}
The second index permutation is the same as the third one:

gs

{
m α β 0

}
∼ gs

{
m α β 0

}
.

The last permutation of indices generates the scaling

m α β 0 : gm0,αβ gαβ,m0

gm0,R gαβ,S g
RS

gRm,0 gSα,β g
RS

with the following scalings

gm0,αβ ∼ 0, gαβ,m0 ∼ gs

{
−5

3
+ β0 + γ

}
,

gm0,R gαβ,S g
RS ∼ 0,
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gRm,0 gSα,β g
RS ∼ 0.

The full set of scalings is

Rmαβ0 ∼ gs

{
−5

3
+ β0 + γ

}
.

R0ααβ : 0 α α β + 0 α α β + 0 α α β (A.8)

The first permutation of indices generates

0 α α β : g0α,αβ gαβ,0α

g0α,R gαβ,S g
RS

gRα,0 gSα,β g
RS

The scalings of the metric tensor combinations are

g0α,αβ ∼ 0, gαβ,0α ∼ gs

{
−5

3
+ β0 + γ

}
,

g0α,R gαβ,S g
RS ∼ 0,

gRα,0 gSα,β g
RS = gβα,0 gβα,β g

ββ ∼ gs

{
−5

3
+ β0 + γ

}
,

The second index permutation is the same as the first one:

gs

{
0 α α β

}
∼ gs

{
0 α α β

}
∼ gs

{
−5

3
+ β0 + γ

}
.

The last permutation of indices generates the scaling

0 α α β : g0β,αα gαα,0β

gmβ,R gαα,S g
RS

gRβ,0 gSα,α g
RS

with the following scalings

g0β,αα ∼ 0, gαα,0β ∼ 0,
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gmβ,R gαα,S g
RS ∼ 0,

gRβ,0 gSα,α g
RS = gαβ,0 gβα,α g

αβ ∼ gs

{
−5

3
+ β0 + γ

}
,

The full set of scalings is

R0ααβ ∼ gs

{
−5

3
+ β0 + γ

}
.

Rαβαβ : α β α β + α β α β + α β α β (A.9)

The first permutation of indices generates

α β α β : g0αβ,αβ gαβ,αα

gαβ,R gαβ,S g
RS

gRα,β gSα,β g
RS

The scalings of the metric tensor combinations are

g0αβ,αβ ∼
{
−2

3
+ β0

}
,

gαβ,R gαβ,S g
RS = gαβ,0 gαβ, g

00 + gαβ,i gαβ,j g
ij + gαβ,α gαβ,β g

αβ + gαβ,m gαβ,n g
mn

∼ gs

{
−2

3
+ 2β0 + 2γ

}
+ gs

{
4

3
+ 2β0

}
+ gs

{
−2

3
+ β0

}
+ gs

{
−2

3
+ 2β0 − α

}
gRα,β gSα,β g

RS = gβα,β gβα,β g
αβ ∼ gs

{
−2

3
+ β0

}
,

The second and the third index permutations are the same as the first one:

gs

{
α β α β

}
∼ gs

{
α β α β

}
gs

{
α β α β

}
∼ gs

{
α β α β

}
.

The full set of scalings is

Rαβαβ ∼ gs

{
−2

3
+ 2β0 + 2γ,

4

3
+ 2β0,−

2

3
+ β0,−

2

3
+ 2β0 − α

}
.
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Rmnp0 : m n p 0 + m m p 0 + m m p 0 (A.10)

Each particular index permutation generates the unique contractions of the first and second

derivatives of the metric tensor:

m n p 0 : gmn,p0 gp0,mn

gmn,R gp0,S g
RS

gRm,n gSp,0 g
RS

Now we can easily compute the scalings for each combination of the metric tensors and their

derivatives:

gmn,p0 ∼ gs

{
−5

3
+ α0 + γ

}
,

gp0,mn ∼ 0,

gmn,R gp0,S g
RS ∼ 0

gRm,n gSp,0 g
RS = gpm,n gqp,0 g

pq ∼ gs

{
−5

3
+ α0 + γ

}
,

Both the second and the third permutation of indices generates the same gs scalings:

gs

{
m m p 0

}
∼ gs

{
m n p 0

}
gs

{
m m p 0

}
∼ gs

{
m n p 0

}
Finally, we find the scalings of the Rnmpq Riemann tensor to be

Rnmp0 ∼ gs

{
−5

3
+ α0 + γ

}
.

Rmni0 is equivalent to Rαβi0 and has the same gs scaling:

Rmnp0 ∼ Rαβi0 ∼ gs

{
−5

3
+ α0 + γ

}
. (A.11)

Rmnα0 is equivalent to Rmαβ0 and has the same gs scaling:

Rmnα0 ∼ Rmαβ0 ∼ gs

{
−5

3
+ α0 + γ

}
. (A.12)

Chapter A



95

Rmnab : m n a b + m n a b + m n a b (A.13)

Each particular index permutation generates the unique contractions of the first and second

derivatives of the metric tensor:

m n a b : gmn,ab gab,mn

gmn,R gab,S g
RS

gRm,n gSa,b g
RS

Now we can easily compute the scalings for each combination of the metric tensors and their

derivatives:

gmn,ab ∼ 0,

gab,mn ∼ gs

{
4

3

}
,

gmn,R gab,S g
RS = gmn,0 gab,0 g

00 + gmn,i gab,j g
ij + gmn,α gab,β g

αβ + gmn,r gab,s g
rs

∼ gs

{
4

3
+ α0 + 2γ0

}
+ gs

{
10

3
+ α0

}
+ gs

{
4

3
+ α0 − β0

}
+ gs

{
4

3

}
,

gRm,n gSa,b g
RS ∼ 0.

The second index permutation gives

m n a b : gma,nb gnb,ma

gma,R gnb,S g
RS

gRm,a gSn,b g
RS

gRa,m gSb,n g
RS

Then

gma,nb ∼ gnb,ma ∼ 0,

gma,R gnb,S g
RS ∼ 0,

gRm,a gSn,b g
RS ∼ 0,
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gRa,m gSb,n g
RS = gba,m gab,n g

ab ∼ gs

{
4

3

}
.

The third permutation is equivalent to the second one:

gs

{
m n a b

}
∼ gs

{
m n a b

}
∼ gs

{
4

3

}
.

Finally, we find the scalings of the Rnmpq Riemann tensor to be

Rnmab ∼ gs

{
4

3
+ α0 + 2γ0,

10

3
+ α0,

4

3
+ α0 − β0,

4

3

}
.

Rmαβi : m α β i + m α β i + m α β i (A.14)

The first permutation of indices generates

m α β i : gmα,βi gβ0,mα

gmα,R gβi,S g
RS

gRm,α gSβ,i g
RS

gRα,m gSβ,i g
RS

The scalings of the metric tensor combinations are

gmα,βi ∼ 0, gβi,mα ∼ 0,

gmα,R gβi,S g
RS ∼ 0,

gRm,α gSβ,i g
RS ∼ 0,

gRα,m gSβ,i g
RS = gβα,m gαβ,i g

αβ ∼ gs

{
−2

3
+ β0

}
The second index permutation is the same as the first one:

gs

{
m α β i

}
∼ gs

{
m α β i

}
.
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The last permutation of indices generates the scaling

m α β i : gmi,αβ gαβ,mi

gmi,R gαβ,S g
RS

gRm,i gSα,β g
RS

with the following scalings

gmi,αβ ∼ 0, gαβ,mi ∼ gs

{
−2

3
+ β0

}
,

gmi,R gαβ,S g
RS ∼ 0,

gRm,i gSα,β g
RS ∼ 0.

The full set of scalings is

Rmαβi ∼ gs

{
−2

3
+ β0

}
.

The Riααβ is very similar to R0ααβ with the difference that since there is no time

differentiation, we don’t have a γ scale dependence and thus

Riααβ ∼ R0ααβ ∼ gs

{
−2

3
+ β0

}
.

Very similarly, the Rmααβ gives similar scaling as R0ααβ without time derivatives and

changes in the main metric scaling:

Rmααβ ∼ R0ααβ ∼ gs

{
−2

3
+ β0

}
.

The scaling of Rmnpi we can find by comparing to the previously computed scaling of

Rmnp0 again taking into account that the absence of the time derivative will remove the γ

dependence and lift up the total scaling by +1:

Rmnpi ∼ Rmnp0 ∼ gs

{
−2

3
+ β0

}
.
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The scaling of Rmnpα is absolutely the same since in this case i and α are equivalent:

Rmnpα ∼ Rmnpi ∼ gs

{
−2

3
+ β0

}
.

The scaling of Rmnαi can be deduced in a similar manner from the Rmnα0 scaling:

Rmnαi ∼ Rmnα0 ∼ gs

{
−2

3
+ β0

}
.

Rmabi : m a b i + m a b i + m a b i (A.15)

Each particular index permutation generates the unique contractions of the first and second

derivatives of the metric tensor:

m a b i : gma,bi gbi,ma

gma,R gbi,S g
RS

gRm,a gSb,i g
RS

gRa,m gSb,i g
RS

Now we can easily compute the scalings for each combination of the metric tensors and their

derivatives:

gma,bi ∼ 0, gbi,ma ∼ 0,

gma,R gbi,S g
RS ∼ 0,

gRm,a gSb,i g
RS ∼ 0,

gRa,m gSb,i g
RS = gba,m gab,i g

ab ∼ gs

{
4

3

}
.

The second permutation of indices generates the same gs scaling as the first one:

gs

{
m a b i

}
∼ gs

{
m a b i

}
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The third permutation again gives the same scaling:

m a b i : gab,mi gmi,ab

gab,R gmi,S g
RS

gRa,b gSm,i g
RS

The only non-zero scaling comes from

gab,mi ∼ gs

{
4

3

}
.

Finally, we find the scaling of the Rmabi Riemann tensor to be

Rmabi ∼ gs

{
4

3

}
.

The scaling of the Rαabi , in this case, is the same as the scaling of the above tensor

Rmabi since α and m are interchangeable in the previous calculations:

Rαabi ∼ Rmabi ∼ gs

{
4

3

}
.

After some thinking, we agree that the scaling of the Rmαab , in this case, is also the

same as the scaling of the two above tensors since only the indices a and b play the crucial

role in the calculations when the other two indices are different and not 0:

Rmαab ∼ Rαabi ∼ Rmabi ∼ gs

{
4

3

}
.

Rαβab : α β a b + α β a b + α β a b (A.16)

Each particular index permutation generates the unique contractions of the first and second

derivatives of the metric tensor:

α β a b : gαβ,ab gab,αβ

gαβ,R gab,S g
RS

gRα,β gSa,b g
RS

Chapter A



100

Now we can easily compute the scalings for each combination of the metric tensors and their

derivatives:

gαβ,ab ∼ 0, gab,αβ ∼ gs

{
4

3

}
.

gαβ,R gab,S g
RS = gαβ,0 gab,0 g

00 + gαβ,i gab,j g
ij + gαβ,α gab,β g

αβ + gαβ,m gab,n g
mn

gs

{
4

3
+ β0 + 2γ

}
+ gs

{
10

3
+ β0

}
+ gs

{
4

3

}
+ gs

{
4

3
+ β0 − α0

}
,

gRα,β gSa,b g
RS ∼ 0.

The second permutation of indices generates only one non-zero scaling:

α β a b :

gRa,α gSb,β g
RS = gba,α gab,β g

ab ∼ gs

{
4

3

}
.

The third permutation again gives the same scaling as the second:

gs

{
α β a b

}
∼ gs

{
α β a b

}
∼ gs

{
4

3

}
.

Finally, we find the scaling of the Rαβab Riemann tensor to be

Rαβab ∼ gs

{
4

3
+ β0 + 2γ,

10

3
+ β0,

4

3
,
4

3
+ β0 − α0

}
.

Rabab : a b a b + a b a b + a b a b (A.17)

Each particular index permutation generates the unique contractions of the first and second

derivatives of the metric tensor:

a b a b : gab,ab gab,ab

gab,R gab,S g
RS

gRa,b gSa,b g
RS

Now we can easily compute the scalings for each combination of the metric tensors and their

derivatives:

gab,ab ∼ 0,

Chapter A



101

gab,R gab,S g
RS = gab,0 gab,0 g

00 + gab,i gab,j g
ij + gab,α gab,β g

αβ + gab,m gab,n g
mn

gs

{
10

3
+ 2γ

}
+ gs

{
16

3

}
+ gs

{
10

3
− β0

}
+ gs

{
10

3
− α0

}
,

gRα,β gSa,b g
RS ∼ 0.

The rest of the permutations generate the same scaling dependence. Thus, we find the

scaling of the Rabab Riemann tensor to be

Rabab ∼ gs

{
10

3
+ 2γ,

16

3
,
10

3
− β0,

10

3
− α0

}
.

R0mab : 0 m a b + 0 m a b + 0 m a b (A.18)

Each particular index permutation generates the unique contractions of the first and second

derivatives of the metric tensor:

0 m a b : g0m,ab gab,0m

g0m,R gab,S g
RS

gR0,m gSa,b g
RS

The only meaningful combination is

gab,0m ∼ gs

{
4

3
− 1 + γ

}
∼ gs

{
1

3
+ γ

}
.

The second permutation generates the same scaling dependence:

0 m a b : g0a,mb gmb,0a

g0a,R gmb,S g
RS

gRa,0 gSb,m gRS

with the only fruitful combination

gRa,0 gSb,m gRS = gba,0 gab,m gab ∼ gs

{
1

3
+ γ

}
.

The last possible permutation is the same as the second one.
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Thus, we find the scaling of the R0mab Riemann tensor to be

R0mab ∼ gs

{
1

3
+ γ

}
.

The scaling of the Rabi0 can be easily obtained from the scaling of the above calculated

R0mab tensor by the simple replacement i into m:

Rabi0 ∼ R0mab ∼ gs

{
1

3
+ γ

}
.

The next scaling of the R0αab is obtained from the scaling of the above calculated R0mab

tensor by the replacement α into m:

R0αab ∼ R0mab ∼ gs

{
1

3
+ γ

}
.

Rm0ij : m 0 i j + m 0 i j + m 0 i j (A.19)

The first permutation of indices generates

m 0 i j : gm0,ij gij,m0

gm0,R gij,S g
RS

gRm,0 gSi,j g
RS

The non-zero scaling of the metric tensor combinations is

gij,m0 ∼ gs

{
−11

3
+ γ

}
The second index permutation gives the same scaling as the first one:

m 0 i j : gmi,0j g0j,mi

gmi,R g0j,S g
RS

gRm,i gS0,j g
RS
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The only survived scaling is

gRi,m gSj,0 g
RS = gki,m gij,0 g

ik ∼ gs

{
−11

3
+ γ

}
The last permutation of indices is the same as the second.

The full set of scalings is simply

Rm0ij ∼ gs

{
−11

3
+ γ

}
.

As long as we keep the pair ij and 0 among the indices and the last index different from

the above, we obtain the same scaling. Thus, we have the same scaling dependence for

Rijk0 :

Rijk0 ∼ Rm0ij ∼ gs

{
−11

3
+ γ

}
.

As well as for the Rα0ij :

Rα0ij ∼ Rm0ij ∼ gs

{
−11

3
+ γ

}
.

Rm0i0 : m 0 i 0 + m 0 i 0 + m 0 i 0 (A.20)

The first permutation of indices generates

m 0 i 0 : gm0,i0 gi0,m0

gm0,R gi0,S g
RS

gRm,0 gSi,0 g
RS

The non-zero scaling of the metric tensor combinations is

gR0,m gS0,i g
RS = g00,m g00,i g

RS ∼ gs

{
−8

3

}
.
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The second index permutation gives the same scaling as the first one:

m 0 i 0 : gmi,00 g00,mi

gmi,R g00,S g
RS

gRm,i gS0,0 g
RS

The only surviving scaling is

g00,mi ∼ gs

{
−8

3

}
The last permutation of indices is the same as the first one.

The scaling of the Riemann tensor is

Rm0i0 ∼ gs

{
−8

3

}
.

The variation of the last tensor is R0αi0 which has the same scaling:

R0αi0 ∼ Rm0i0 ∼ gs

{
−8

3

}
.

The scaling of Rmijk coincides with the two previous ones:

Rmijk : m i j k + m i j k + m i j k (A.21)

The first permutation of indices generates

m i j k : gmi,jk gjk,mi

gmi,R gjk,S g
RS

gRm,i gSj,k g
RS

The non-zero scaling of the metric tensor combinations are

gjk,mi ∼ gs

{
−8

3

}
. gRi,m gSj,k g

RS = gki,m gij,k g
ik ∼ gs

{
−8

3

}
.

Both the second and the third index permutations give the same scaling as the first one.

The scaling of the Riemann tensor is

Rmijk ∼ gs

{
−8

3

}
.
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The next Riemann tensor, Rαijk , has the same scaling dependence as the Rmijk, as can

be easily figured out by interchanging α and m:

Rαijk ∼ Rmijk ∼ gs

{
−8

3

}
.

If we look closely, we find that the next Riemann tensor, Rmαij , has the same scaling

dependence as the Rmijk, since the contribution to the scaling comes from the ij couple and

the mα index contribution does not influence the final result:

Rmαij ∼ Rmijk ∼ gs

{
−8

3

}
.

The final Riemann tensor in this family, R0m0α , is actually secretly the Rm0i0 Riemann

tensor (at least it has the same scaling) which can be seen from their index content:

R0m0α ∼ Rm0i0 ∼ gs

{
−8

3

}
.

Rijij : i j i j + i j i j + i j i j (A.22)

The first permutation of indices generates

i j i j : gij,ij gij,ij

gij,R gij,S g
RS

gRi,j gSi,j g
RS

The non-zero scaling of the metric tensor combinations are

gij,ij ∼ gs

{
−8

3

}
.

gij,R gij,S g
RS = gij,0 gij,0 g

00 + gij,k gij,j g
kj + gij,α gij,β g

αβ + gij,m gij,n g
mn

∼ gs

{
−14

3
+ 2γ

}
+ gs

{
−8

3

}
+ gs

{
−14

3
− β0

}
+ gs

{
−14

3
− α0

}
,

gRi,j gSi,j g
RS = gki,j gji,j g

kj ∼ gs

{
−8

3

}
.
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Both the second and the third index permutations give the same scaling as the first one.

The scaling of the Riemann tensor is

Rijij ∼ gs

{
−14

3
+ 2γ,−8

3
,−14

3
− β0,−

14

3
− α0

}
.

R0i0j : 0 i 0 j + 0 i 0 j + 0 i 0 j (A.23)

The first permutation of indices generates

0 i 0 j : g0i,0j g0j,0i

g0i,R g0j,S g
RS

gRi,0 gSj,0 g
RS

gR0,i gS0,j g
RS

The non-zero scaling of the metric tensor combinations are

gRi,0 gSj,0 g
RS = gki,0 gij,0 g

ki ∼ gs

{
−14

3
+ 2γ

}
,

gR0,i gS0,j g
RS = g00,i g00,j g

00 ∼ gs

{
−8

3

}
.

The second index permutation is the most prolific here:

0 i 0 j : g00,ij gij,00

g00,R gij,S g
RS

gR0,0 gSi,j g
RS

The non-zero scaling of the metric tensor combinations are

g00,ij ∼ gs

{
−8

3

}
, gij,00 ∼ gs

{
−14

3
+ 2γ

}
,

g00,R gij,S g
RS

∼ gs

{
−14

3
+ 2γ

}
+ gs

{
−8

3

}
+ gs

{
−14

3
− β0

}
+ gs

{
−14

3
− α0

}
,

Chapter A



107

The last permutation coincides with the first one.

The scaling of the Riemann tensor is

R0i0j ∼ gs

{
−14

3
+ 2γ,−8

3
,−14

3
− β0,−

14

3
− α0

}
.

Rabij : a b i j + a b i j + a b i j (A.24)

The first permutation of indices generates

a b i j : gab,ij gij,ab

gab,R gij,S g
RS

gRa,b gSi,j g
RS.

The non-zero scaling of the metric tensor combinations are

gab,ij ∼ gs

{
4

3

}
,

gab,R gij,S g
RS = gab,0 gij,0 g

00 + gab,i gij,k g
ik + gab,α gij,β g

αβ + gab,m gij,n g
mn

∼ gs

{
−2

3
+ 2γ

}
+ gs

{
4

3

}
+ gs

{
−2

3
− β0

}
+ gs

{
−2

3
− α)

}
.

The second and the third index permutations are the same and give the non-zero scaling:

gs

{
a b i j

}
∼ gs

{
a b i j

}
∼ gs

{
4

3

}
.

The scaling of the Riemann tensor is

Rabij ∼ gs

{
−2

3
+ 2γ,

4

3
,−2

3
− β0,−

2

3
− α)

}
.

The R0a0b Riemann tensor has almost the same index structure as the Rabij tensor.

The only elements which can potentially generate unexpected scaling are the following :

gab,00 ∼ gs

{
−2

3
+ 2γ

}
, gab,R gij,S g

RS ∼ gs

{
−2

3
+ 2γ

}
,

Chapter A



108

which are included in the main dependence sequence. Thus we have the same scaling struc-

ture:

R0a0b ∼ gs

{
−2

3
+ 2γ,

4

3
,−2

3
− β0,−

2

3
− α)

}
.

Rmnij : m n i j + m n i j + m n i j (A.25)

The first permutation of indices generates

m n i j : gmn,ij gij,mn

gmn,R gij,S g
RS

gRm,n gSi,j g
RS.

The non-zero scaling of the metric tensor combinations are

gmn,ij ∼ gs

{
−2

3
+ α0

}
, gij,mn ∼ gs

{
4

3

}
,

gmn,R gij,S g
RS = gmn,0 gij,0 g

00 + gmn,i gij,k g
ik + gmn,α gij,β g

αβ + gmn,p gij,q g
pq

∼ gs

{
−8

3
+ α0 + 2γ

}
+ gs

{
−2

3
+ α0

}
+ gs

{
−8

3
+ α0 − β0

}
+ gs

{
−8

3

}
.

The second index permutations give the non-zero scalings:

gs

{
m n i j

}
: gmi,nj gnj,mi

gmi,R gnj,S g
RS,

gRm,i gSn,j g
RS.

The non-zero scaling of the metric tensor combinations are

gRm,i gSn,j g
RS = gpm,i gqn,j g

pq ∼ gs

{
−2

3
+ α0

}
, gik,m gij,n g

kj ∼ gs

{
−8

3

}
.

The third possible permutation is the same as the second and has the scale dependence.

The scaling of the Riemann tensor is

Rmnij ∼ gs

{
−8

3
+ α0 + 2γ,−2

3
+ α0,−

8

3
+ α0 − β0,−

8

3

}
.
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Using the analogy with the previous tensors, we conclude that the Riemann tensor

R0m0n has the same scalings as the Rmnij tensor: The scaling of the Riemann tensor

is

R0m0n ∼ Rmnij ∼ gs

{
−8

3
+ α0 + 2γ,−2

3
+ α0,−

8

3
+ α0 − β0,−

8

3

}
.

The scalings for the last couple of Riemann tensors can be guessed from the following

considerations. The scale dependence of the Rαβij should not be very different from the

Rmnij tensor. The only difference would come from the gmn versus gαβ scalings. Thus, we

need to interchange the α0 and β0 to obtain the right gs scale dependence:

Rαβij ∼ gs

{
−8

3
+ β0 + 2γ,−2

3
+ β0,−

8

3
+ β0 − α0,−

8

3

}
.

The scale dependence of the R0α0β can be found following our reasoning from a penul-

timate couple of Riemann tensors. It the same as the scalings of the Ralphaβij tensor:

R0α0β ∼ Rαβij ∼ gs

{
−8

3
+ β0 + 2γ,−2

3
+ β0,−

8

3
+ β0 − α0,−

8

3

}
.
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