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Abstract

The three dimensional conformation of DNA plays a crucial role in the mechanisms of

cell dynamics like gene regulation. It is based on a hierarchical model where, in partic-

ular, chromatin is compartmentalised into structures known as Topologically Associated

Domains (TADs). With a length of around 1Mb, they define regulatory landscapes where

chromatin loci interact more frequently than with regions located in adjacent domains. In

this thesis, we present a computational pipeline for sequence-based annotations of these

functional units, enhanced by cross-species comparison. The motivation of this work

stems from the small number of species for which TAD annotations are available, due to

the cost of Hi-C experiments needed to detect them. Based on studies aiming to character-

ize TADs, we postulate that, first, their boundaries are enriched in specific DNA-binding

proteins, whose sites are hardwired in the genome sequence. Second, they are mainly con-

served across neighboring species, so that using phylogeny could improve TAD inference.

The first step of the pipeline consists in scanning the raw genome sequence to detect tran-

scription factor binding sites. Then, a recurrent neural network is trained based on these

sites to infer TAD left and right boundaries. Finally, predictions from different species

are compared to update them and improve the general performance of the task. We de-

veloped ten approaches, cross-validated on five mammals for liver cells, with final AUC

scores ranging between 70% and 90% depending on the input required to train the mod-

els. We observe that DNA sequence features convey subsequent knowledge about TAD

boundaries, but the performance is too low to expect an accurate genome-wide annota-

tion. More strikingly, the cross-species comparison was still an unexplored approach that

shows a consequent improvement in TAD boundary inference, providing a promising

future for the understanding of these domains.
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Abrégé

L’organisation tridimensionnelle de l’ADN joue un rôle clé dans les mécanismes de dy-

namique cellulaire comme la régulation génétique. Elle repose sur un modèle hiérarchique

où, en particulier, la chromatine est compartimentée en structures appelées TADs. Avec

une longueur d’environ 1Mb, ils définissent des unités de régulation au sein desquelles

les loci de chromatine interagissent plus fréquemment. Dans cette thèse, nous présentons

un pipeline de calcul pour l’annotation de ces unités fonctionnelles. Ce travail a été mo-

tivé par le fait que l’identification des TADs est restreinte à un faible nombre d’espèces, dû

au coût important des expériences Hi-C, nécessaires à leur détection. A partir des nom-

breuses études sur ces structures, nous faisons l’hypothèse que les frontières des TADs

sont enrichies en certaines protéines liées à l’ADN, détectables à partir de la séquence

génomique. En outre, les TADs semblent globalement conservés entre espèces proches,

laissant penser qu’une comparaison entre ces dernières pourraient être bénéfique à leur

inférence. La première étape consiste en la détection des sites d’attache des facteurs de

transcription à partir de la séquence ADN. Ensuite, un réseau récurrent est entraı̂né à

prédire distinctement les frontières gauches et droites des TADs. Finalement, les prédictions

des différentes espèces sont comparées pour être affinées. Nous avons développé 10

approches, validées sur 5 mammifères pour des cellules du foie. Elles atteignent des

scores AUC compris entre 70% et 90%, selon la nature des composantes d’entrée du

prédicteur. Nous observons que la séquence ADN porte des informations importantes

sur les frontières des TADs, mais son seul apport donne des résultats insuffisants pour

espérer une annotation complète et précise du génome. Plus remarquablement, une com-

paraison inter-espèces, approche encore inexplorée, montre une amélioration significative

des prédictions, donnant des pistes prometteuses pour la compréhension des TADs.
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Chapter 1

Introduction

The first draft sequence of the human genome was produced in 2001, thanks to innova-

tive shotgun sequencing methods [1]. It constitutes the final piece of the 13-year-long

Human Genome Project, opening countless perspectives in medicine and biology. Nev-

ertheless, the insights provided by a linear sequence remain incomplete as they do not

convey knowledge on both the spatial conformation and its dynamics inside the nucleus.

The latter are now of a paramount interest to a new phase called the 4D nucleome project,

aiming to map the genome both in space and time to better understand its functions and

interactions [2, 3]. In this thesis, we aim at predicting a type of structure called Topologi-

cally Associated Domains (TADs) from Deoxyribonucleic Acid (DNA)-sequence features

and phylogenetic data. This introductory chapter brings in the key concepts to under-

stand the purpose of the study. We first explain in detail the three-dimensional (3D) or-

ganization of the genome and the experimental methods to capture it. Then, we tackle

the dynamics of this structure across time, both at the scale of cell cycle and evolution of

species. Finally, we review innovative computational tools applied to understanding 3D

genomics, with a particular focus on the benefits that deep learning can provide, paving

the way for such an approach to predict TADs.
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1.1 3D Genomics

1.1 3D Genomics

1.1.1 DNA Folding

Chromosome folding in the nucleus is critical in eukaryotes for very basic reasons. For

example, the human genome consists of many molecules of DNA combining into a 2-

meter-long structure which must fit inside each cell’s nucleus. Therefore, a bio-mechanical

compaction is needed. Equally, multiple evidences advocate for the crucial role of a non

random DNA conformation on mechanisms of cell dynamics. Indeed, such functional

architecture affects gene expression by bringing together genes and distal regulatory el-

ements [4]. Some loops can also play a role in gene silencing and replication timing [5].

Finally, a complex interplay exists between spatial organization and mutation rates, with

altered regions leading to disease like cancer [6]. Indeed, some Single Nucleotide Poly-

morphisms (SNPs) are associated with changes in chromatin accessibility and interactions

linked with transcription between distal loci [7]. Therefore, the structure of DNA and its

interactions with proteins to form a complex called chromatin, was until recently a key

yet unheralded topic, but is now attracting growing interest. Many genomics approaches

for mapping DNA in space allow us to understand it at unprecedented level, and will

be largely developed in subsection 1.1.2. Thanks to them, we can bring to light differ-

ent levels of packaging which are summarized in Figure 1.1. It is important to note that

this multi-scale hierarchy is specific to mammals and may be broadened to other sub-

structures, according to the precision of the definitions at stake.

First of all, DNA wraps twice around histone octamers to form nucleosomes of 147

base pairs (bp), reducing the length sevenfold. It can interact with several proteins thanks

to binding sites all over the genome, creating chromatin loops (A) which may, for exam-

ple, enhance or disrupt physical contacts between regulatory elements. This process is

the cornerstone of gene expression. For some of these loops, bigger regions are bridged

- on a scale of 40kbp to 3Mbp - called TADs (B), allowing recurring bonds in open chro-

matin [9]. At a higher scale and at least in mammals, TADs are partitioned into compart-
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1.1 3D Genomics

Figure 1.1: Hierarchy and organization of 3D mammalian genome reproduced from [8]

ments with megabase-scale interactions (C). ”A” compartments gather open and active

chromatin while ”B” compartments are more compact and enriched in repressive chro-

matin. Finally, chromosomal territories (D) define even larger portions of the nucleus

occupied by chromosomes with a functional role. Sexton et al. made an analogy with the

organization of a protein reproduced in Figure 1.2, from the amino acid to a complex of

proteins through functional units like helices or sheets [10]. Just like these structures influ-

ence the activity of the protein because of their shape, TADs are likely to be of paramount

importance for processes inside the nucleus. We will focus on these units in this study.
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1.1 3D Genomics

Figure 1.2: Analogy between DNA and protein structures, from [10]. 3D conformation is a highly
organized process influencing theur functional role

1.1.2 Experimental Tools and 3C Technologies

The mapping of the genome organization was made possible by multiple innovative

methods that stem from the so-called 3C-technologies - standing for Chromosome Con-

formation Capture - and that depend on the resolution desired and type of data available.

Before that, the dynamics of DNA inside the nucleus was studied using microscopy-based

techniques enabling direct and dynamic visualization of the structure - the fluorescent in

situ hybridization (FISH) is a common process among many others [11]. Nevertheless,

these approaches are limited to a small number of loci and do not provide a genome-wide
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1.1 3D Genomics

mapping. The 3C technologies retrieve distal bonds between loci based on the frequency

at which the chromatin fragments interact [12]. Usual steps are described in Figure 1.3:

1. Formaldehyde cross-linking of cells to strengthen covalent bonds

2. Digestion by a restriction enzyme such as HidIII or MboI to capture interactions

3. ligation of DNA ends, reverse crosslinking, and quantification of ligation products

with Polymerase Chain Reaction (PCR)

4. Labelling with biotin (B on the Figure 1.3, to identify true sites) of the products in the

case of Hi-C, to create a library of DNA reads that is analyzed with massive parallel

sequencing [13].

Each improvement on one of these steps - mainly in the approaches to identify in-

teractions after reverse crosslinking, but also in the process of fragmentation like ChIA-

PET that requires sonication - leads to the development of a new technique aiming at a

particular resolution or type of interaction. Experiments on multiple regions of loci al-

low genome-wide results but represent a fixed superposition of snapshots from different

genome structures rather than a unique source. Indeed, typical maps come from many

different experiments that are performed at various possible states of a cell, resulting in

an average estimation and limiting the insights on the real structure of a particular nu-

cleus in a given state. New methods are now in development to study 3D genomics at

single cell level, in particular for Hi-C [14].

Among 3C-technologies, Hi-C was introduced by Lieberman et al. in 2009, and is the

cornerstone of the characterization of TADs [15]. The first two steps are similar to 3C but

the technology then involves deep sequencing in order to generate a massive catalog of

different ligations mapped to a reference genome - hundreds of millions of sequencing

reads per experiment [8].

5



1.1 3D Genomics

Figure 1.3: Fundamental steps of the 3C method and its variants, reproduced from [9]

6



1.1 3D Genomics

Figure 1.4: Example of Hi-C contact matrix for
human chromosome 1. Interactions are more
frequent on the diagonal, corresponding to loci
that are close on the linear sequence. Bigger red
squares highlight condensed loops, enriched in
interactions, and the possible presence of TADs.

As shown in Figure 1.4, the typical out-

put of an Hi-C experiment takes the form

of a symmetric contact matrix, each cell

representing the number of read pairs that

have been found to physically interact. The

resolution of a Hi-C experiment is the size

of the bin and constitutes a very active re-

search area. It first depends on the preci-

sion of the restriction enzyme used, more

precisely the size of the resulting fragment

- 400bp for MboI vs. 4kb for HindIII

for instance. In addition, it is limited by

the sequencing coverage to get a reason-

able number of samples for each cell. In-

deed, high-resolution coverage results in

more precise but extremely sparse matrices

- most pairs are observed zero times -, mak-

ing the measurements unreliable and diffi-

cult to statistically analyze. Usually ranging from 40kb to 1Mb, recent studies achieved kb-

resolutions [16], and even fragment-based resolution thanks to computational and math-

ematical correction of the matrix [17].

1.1.3 Structure and Formation of TADs

Thanks to Hi-C experiments performed on mammalian genomes, Topologically Associ-

ated Domains (TAD) were first identified by Dixon et al. in 2012 [18]. Following this

study, TADs - often characterized by different mechanisms and size - were found in other

vertebrates, Drosophila [19], Caenorhabditis elegans [20], and more or less similar structures

have been identified in plants [21], yeast [22] or bacteria [23]. We will restrict our study

7



1.1 3D Genomics

to mammals. The ubiquity of such domains in many species advocates for their impor-

tance as functional and conserved units of the genome, defined as regions inside which

chromatin loci interact more frequently than with regions located in adjacent domains.

Therefore, understanding their biological organization is crucial. We can see TADs as big

condensed loops with a median size of 880kb, defining regulatory landscapes. However,

the epigenetic state alone is no sufficient to create boundaries. Their formation lies in the

joint action of several proteins binding to precise loci and interacting among themselves.

TAD boundaries are then enriched for these proteins, but the latter can also be found

inside a TAD to create less stable loops, and leading to some confusions on the exact de-

lineation of these structures - TADs can often be divided into sub-TADs. The classification

of TADs is also ambiguous and variable with studies as the mapping is highly dependent

on Hi-C resolution.

Many epigenomic marks have been studied to assess their influence on chromatin

shape. Among them, the complex CTCF-cohesin has emerged as an essential piece for

TAD formation [24]. Cohesin is a protein complex, previously known for its role as a

structural mediator during cell division or DNA repair [25], but which has been found

to also play a role in chromatin looping. More importantly, the CCCTC-binding factor -

known as CTCF - is considered as the key player in anchoring TADs. Indeed, this zinc-

finger protein is detected at 76% of boundaries [9]. It has always been a famous insulator

protein, binding a nonpalindromic 20-bp DNA motif [24]. For 3D looping, two distal

CTCF proteins, bound to DNA and surrounded by cohesin, can interact to gather loci and

create a condensed loop. The orientation of the CTCF is crucial as they can only interact

in a symmetric way, so that CTCF sites at loop anchors are associated with a convergent

orientation [9]. The so-called loop extrusion model is described in Figure 1.5. Other puta-

tive elements have been found close to boundaries in high proportion. We can cite among

others histone marks (like H3K4me3), housekeeping genes or DNA hypersensitive sites,

although they have conflicting implications depending on the study. All these observa-

tions suggest that the assembly of domain structure is hardwired in the genome, and

represent a useful source of data for the TAD prediction task. Nevertheless, a significant

number of boundaries does not obey to the previously stated rules - 24% of boundaries are

8



1.2 Dynamics of 3D Organization

independent from the CTCF-cohesin complex -, so that a precise sequence-based identifi-

cation of TADs remains a difficult task. TAD conservation across species could represent

a great additional source of information, and will be discussed in Subsection 1.2.2

1.2 Dynamics of 3D Organization

1.2.1 TADs and cell differentiation

In addition to its complex spatial structure, chromatin has been found to evolve dynam-

ically over time. In the light of our TAD inference problem, it represents a precious foot-

print to help us understand chromatin folding as a logical 4D process, consistent with its

functional role in gene expression. First of all, interactions between distal loci may vary

over the cell cycle. Bio-mechanical constraints of mitosis force the established organization

to temporarily disrupt, but there is a striking global re-establishment of the 3D organiza-

tion after each cell division [9], which proves that the folding is far from being random.

Nevertheless, at the time scale of cell differentiation, some changes do occur. While the

global structure of TADs remains stable, interactions inside TADs undergo major rear-

rangements which depend on the cell fate and the specific function to assume [26, 27].

Occasionally, the disruption of a TAD boundary can generate a new bigger one and allow

completely new contacts and functions. In the same way, TADs can also switch from an

active ”A” compartment to an inactive ”B” one, altering or fostering the TAD-TAD inter-

actions [28]. These modifications lead to a new hierarchy in transcription processes and

advocate for the essential role of chromatin folding, in particular for the stability of TADs

as a functional unit of the genome across cell types.

9



1.2 Dynamics of 3D Organization

(a) TADs are units represented as squares of high
intensity in Hi-C interaction frequency data

(b) The convergent CTCF-cohesin complex is con-
sidered the most important for anchoring TADs.

(c) The orientation of the complex is crucial as some mutations or knockdown of binding sites can com-
pletely disrupt TADs or shape other ones

Figure 1.5: TAD formation as condensed loop visible from Hi-C matrix, thanks to a complex of
proteins. Reproduced from [9, 16, 24]

10



1.2 Dynamics of 3D Organization

1.2.2 TAD conservation across species

Because a pattern between genome organization across cell types emerges, it is natural

to wonder what the link between 3D structure and species evolution is. Indeed, the func-

tional role of TADs is an evidence of the negative selection applied to disruption of bound-

aries. A single mutation can break a boundary, reorganize TADs that create new ectopic

contacts, gene misexpression and lead to the development of diseases like cancer [29].

Nevertheless, some rearrangement scenarios can provide new interesting functions and

benefit the resulting phenotypes. For instance, in vertebrates, HoxD genes are organized

in a specific conformation (at a boundary, flankes by two TADs), allowing a proper gene

regulation. This structure is not conserved in the invertebrate Amphioxus, where the clus-

ter is present within a single TAD. We may assume that the presence of two TADs is the

consequence of a sequence of mutations, that is now stable for vertebrates as only a large

deletion could lead to their fusion [30]. This specificity has created a new regulatory land-

scape in the vertebrate lineage. Recently, many studies tried to quantify the conservation

of the 3D genome across evolution, mainly for vertebrates and in particular primates. It

has emerged that many TADs are conserved between close species, the difference being

linked to each phenotype’s specificity. For example, half of TAD boundaries are shared

between human and chimpanzee [31]. More precisely, as genomes mainly differ because

of big rearrangement of syntenic blocks, it has been found that breakpoints are enriched

at TAD boundaries and rare inside those domains, even between species with a more an-

cient common ancestor [32, 33]. This observation is consistent with the molecular context

of TADs, where regions inside TADs are condensed and less likely to mutate, while loci

outside of TADs are associated with chromatin fragility.

The CTCF-cohesin complex is then an important stake to understand TAD conserva-

tion. First, because this protein complex plays different roles depending on the family of

species, a common hypothesis states that it has mutated across evolution, sometimes dis-

appearing - for C. elegans-, or becoming a central piece for insulation - for vertebrates [24].

This diversification go hand in hand with the increased rate of mutations at TAD bound-

11



1.2 Dynamics of 3D Organization

Figure 1.6: TAD conservation based on CTCF-cohesin complex across evolution, reproduced from
[35]

aries, enriched with this complex. For vertebrates, conserved CTCF binding sites between

species are highly correlated with convergence in their orientation, resulting in stable

TADs. The Six homeobox gene cluster, crucial for their development, has then remained

organized into two adjacent TADs [34]. That means that the orientation is a key for loop

creation and gives the boundary the stability to last with evolution (see Figure 1.6). Con-

versely, non-conserved CTCF binding sites are enriched inside domains and more likely

to mutate [35]. These results are strong evidence for the help of phylogeny for TAD pre-

diction, and recent studies have brought out the conserved patterns of 3D structure with

muli-species Hi-C data to map the Hi-C matrix as a mix between ancient, steady domains

and new species-specific ones [36].

12



1.2 Dynamics of 3D Organization

1.2.3 Character-based Phylogeny

In order to gather insights from this correlation between 3D organization and evolution,

handling phylogenetic data is mandatory. The original idea is to reconstruct a phyloge-

netic tree based on a set of observed characters on multiple species on the principle of

maximum parsimony. This was first introduced by Fitch in 1971 and Sankoff in 1975 with

two algorithms tackling the problematic through different paradigms [37,38]. For a given

bin of the genome, the character can be, for instance, one of the four nucleotides - each

value is called a state -, or the presence or absence of a TAD boundary - binary states.

Considering that the characters are observed at leaves, the goal is to label the internal

nodes with maximum parsimony, in other words with the minimum number of changes

along the fixed tree. The theory is based on the assumption that observed characters re-

sult from the fewest possible mutations, and the parsimony score is defined as the sum

of all mutations found in the tree. Each mutation can be of different cost depending on

the biological context, resulting in a weighted parsimony problem. Both algorithms are

equivalent and involve dynamic programming. Sankoff’s method computes the mini-

mum score and the associated labelling, while Fitch’s technique directly finds the same

set of labels without the score. For Sankoff’s algorithm, a forward step calculates the best

score for every possible label from leaves to the root, and uses the fact that the score of

a parent is based only on scores of its children. The state with smallest score at root is

then the most parsimonious character. Then, a backward step travels down to the tree

and assigns each vertex with the state that leads to this best parsimony. Fitch’s algorithm

is similar but reasons on ensembles of possible states rather than scores, the state of the

parent being either the union or the intersection of the sets of its children. A tree and the

summary of these two algorithms is highilghted in Figure 1.7

These solutions are efficient and widely-used, but ignore branch length on the phylo-

genetic tree. For instance, a mutation is more likely to occur between an ancestor and its

child if the branch is long, witness to the slow evolution towards the new species. To over-

come this issue, Felsenstein proposed a probabilistic model bringing into play Markov
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1.2 Dynamics of 3D Organization

Sankoff

Si(parent) =
minj(Sj(left child) + Cij)

+
minj(Sj(right child) + Cij)

Fitch
T(n) the set of states for vertex n

T(parent)=
T(left child) ∩ T(right child)

if non-empty intersection

T(parent)=
T(left child) ∪ T(right child)

otherwise

Figure 1.7: Sankoff’s (top left) and Fitch’s (bottom left) forward algorithms for character-based
tree reconstruction with maximum parsimony. The backward step is common. Example with
nucleotides (right) for Sankoff’s method, reproduced from [39]

process [40]. The method also uses dynamic programming and a forward-backward pass

through the tree. Given the topology T of a tree, label states (b, c) of two species (i, j), and

some assumptions on independence, we can compute the likelihood of the subtree rooted

at the common ancestor k given label state a as follows:

Pr[Tk|a] =
∑
b

Pr[b|a, Ti] Pr[Ti|b]
∑
c

Pr[c|a, Tj] Pr[Tj|c]

Each sum corresponds to the information carried by a specific child, the first term being

the probability of state transition, depending on branch length, the second one being the

likelihood of the subtree rooted at this child. With dynamic programming, we are able to

start from the leaves where the likelihood is known, to reach the root where the likelihood
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1.3 Computational Tools for 3D Genomics

is for the whole tree. The same traceback can finally be applied to reconstruct the best

set of states, corresponding to the maximum likelihood. These kinds of methods are the

cornerstone of a phylogenetic model to encapsulate all the knowledge on a tree, and link

TAD predictions between species for a classification task.

1.3 Computational Tools for 3D Genomics

1.3.1 TAD callers using Hi-C data

In order to detect TADs, the main source of data comes from the results of experiments

described in subsection 1.1.2. Hi-C contact maps are by far the most used data to infer 3D

structure, but need a substantial downstream work. computational tools using Hi-C maps

are the most common methods for TAD prediction. An impressive amount of software is

available, and two published reviews summarize and compare their results [41, 42]. They

differ in the input they require, the method they apply and the task they focus on. First

of all, most of them take as input a Hi-C contact map, whether it be under .hic format file

or raw interaction matrix. However, some tools also need external data like transcription

marks from Chromatin Immunoprecipitation Sequencing (ChIP-Seq) experiments. Con-

cerning the computational method, the common assumption is that chromatin contacts

are more frequent within TADs than among them, with a peak at boundaries. Many ap-

proaches compute a linear score along a genome divided into bins. New ones involve

statistical models or clustering on the contact matrix. Even more recently, graph theory

has been useful to detect communities inside a graph whose adjacency matrix was the

Hi-C map. Finally, the output of these models are specific and make their comparison

sensitive. Some tools only return disjoint TADs, other accept overlapping or even nested

domains, and the presence of inter-TAD gaps are also a point of divergence. A few of them

only output the boundaries to avoid those confusions and the smoothing of boundaries

to complete domains is left to the user. Beyond that, these differences highlight the fact
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that the definition of a TAD is flexible and must be put in each study’s context to draw

insightful conclusions.

Figure 1.8: Comparison of seven TAD callers at
two levels of sequencing depth, at 50 kb resolu-
tion, for chr3:40–45 Mb. Reproduced from [41]

To compare TAD callers, both reviews

tested the consistence between themselves

and with commonly known biological be-

haviors - like manual TAD annotations also

under serious debate, or CTCF enrichment

around boundaries -, the robustness to

data resolution and normalization, and the

parameters required to get the best results.

The common conclusion is that the predic-

tions vary significantly between tools, but

no clear winner emerges (see Figure 1.8).

Indeed, some algorithms are very concor-

dant with biological observations on val-

idation set but struggle to adapt to high

resolution and sparse matrices. Some tools

better fit the detection of sub-TADs, while

less shrewd but more robust ones focus on

bigger steady domains. Overall, all these

TAD callers are very satisfying tools but

are task-specific, and the user should know

the strengths and weaknesses of the chosen

model to ensure a enlightened overview of

the results.
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1.3.2 Deep Learning background

Bioinformatics has benefited from the tremendous progress in Machine Learning (ML) for

several reasons. Indeed, the common issues encountered in biology and medicine often

find an efficient solution thanks to computational methods involving ML. In the particular

field of 3D genomics, Deep Learning (DL) - a subclass of ML - has become an inescapable

tool for detecting complex patterns in very large datasets, like the sequence specificity of

DNA-binding proteins, gene expression, methylation states, etc [43]. Here, we explain at a

high level two very useful architectures for genomics applications: Convolutional Neural

Network (CNN) and Recurrent Neural Network (RNN). While they were introduced for

very different purposes - computer vision and Natural Language Processing, respectively

-, they fit well to prediction tasks on genomics data. The main reference for this devel-

opment is the book Deep Learning published in 2016 by Ian Goodfellow, Yoshua Bengio

and Aaron Courville [44]. We consider that more classical methods like Random For-

est, Support Vector Machine, Logistic Regression or Multi-Layer Perceptron are common

knowledge.

On the one hand, CNNs [45] are neural networks performing impressively well on

grid-like topology data like images. For genomics, the input can be seen as an image for a

linear DNA sequence of length L transformed into a one-hot encoded vector with dimen-

sion 4 x L for the four nucleotides. It is thus very similar to the scanning of a sequence

given a position weight matrix of a motif, with the difference that the network automati-

cally learns the parameters of this matrix. Indeed, CNNs use convolution - while slightly

different than the mathematical definition - instead of general linear matrix multiplica-

tion from perceptrons. The input is convolved with a kernel to catch relevant features

with three crucial benefits. First, because the kernel has a smaller size than the input,

the numbers of parameters to learn is reduced and efficiency increased. This is known as

sparse weights improvement. Besides, the kernel is shared across multiple positions of

the input, which drastically reduces memory storage requirements. Each kernel acquires

a certain function of relevance to the broader classification task, like detecting edges or

17
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contrast, which is relevant for all sets of pixels with the same number of parameters for

each convolution. This invariance in space is both efficient and very useful to find insight-

ful patterns in the image. An example of convolution operation is displayed on Figure

1.9a. After this, some activation functions like ReLU, or pooling transformations are per-

formed, which help catching some variations in the position of an object between inputs.

For example, if an edge at a particular position is detected for some input, we may want

to link it to a similar edge translated by some pixels for an other input.

(a) Convolution operation on a 2D image

(b) LeNet architecture, standard template for more complex networks. Stacks of convolution/pooling layers
and ending with fully-connected layers

Figure 1.9: CNN operation and architecture, reproduced from [44]

Stacking of multiple convolutional layers in various ways leads to very efficient ar-

chitectures for detecting complex invariant patterns, widely used in image classification

or voice recognition. Among others, we can cite famous networks such as LeNET-5 (by
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1.3 Computational Tools for 3D Genomics

LeCun et al. [46], for digit recognition, 1998, see Figure 1.9b), AlexNet or VGG (for image

classification, 2012 and 2014), or ResNet-50 (first to use batch normalization and popular-

ized skip connections, 2016).

On the other hand, RNNs [47] are designed for sequential data, when the input at

time t can be dependent on that at time t − 1 - or positions in the domain of genomics.

Indeed, for usual neural networks, the main assumption is that the input is identically

and independently sampled from an unknown distribution, which makes no sense for

application such as natural language processing. Like CNNs, it uses parameter sharing

across several time steps to generalize learning for input of various forms. But there is no

more kernel; instead, the output of the network is a function of both the current input and

previous blocks. There are many ways to connect different time steps, but they all include

the definition of a hidden state which conveys the information across time. The simplest

operation is as follows:

ht = tanh(W × ht−1 + U × xt + b)

Here, ht is the hidden state at time t, xt is the input, W and U are shared weight ma-

trices between hidden states and inputs respectively, and b is a bias term. The activa-

tion function is the hyperbolic tangent function. From this hidden state, an output can

be computed through classical fully connected methods (with matrix V ), while the state

is stored for the next time-step. The computational graph and its unfolded representa-

tion is displayed on Figure 1.10a. The main drawback of basic RNNs is the difficulty

to learn long-term dependencies [48]. It can be proven by computing the gradient with

back-propagation that RNNs come across the delicate issue of vanishing or exploding gra-

dients, corresponding to the behaviour of the latter through time-steps, preventing from

efficiently learning. The most effective solution to this problem is the use of gated RNNs.

A famous implementation is the Long Short-Term Memory network (LSTM) [49]. The idea

is to create connections between time-step that have gradients that will never vanish or ex-
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plode. For the original version, the folded module of the LSTM is no longer composed of

a simple linear combination of hidden state and input, but has four different gates smartly

interacting. The flow of information is controlled thanks to gates - input, forget, output -

that allow or forbid it to be transferred. The equations, with the corresponding diagram

on Figure 1.10b, are:

ft = σ(Wf × [ht−1, xt] + bf )

it = σ(Wi × [ht−1, xt] + bi)

Ĉt = tanh(WC × [ht−1, xt] + bC)

Ct = ft × Ct−1 + it × Ĉt

ot = σ(Wo × [ht−1, xt] + bo)

ht = ot × tanh(Ct)

Here, the W s are the shared weight matrices and bs the bias terms. f stands for the forget

gate and regulates the information coming from previous states. Thanks to the sigmoid

function, if f is close to 0, the information is not transferred, while all of it is taken into

account if f is close to 1. The two next equations constitutes the input gate and controls

the information from the current input. The result of these two gates is combined with

the cell state Ct, and leads to an output ot, but an output gate can shutdown it and is

represented by the hyperbolic tangent in the last equation. At the end, the hidden state

will undergo the same process at the next time-step. LSTMs are powerful tools to recall

long term dependencies between inputs, which is particularly useful in the domain of 3D

genomics if the genome is the input and we want to detect long range contacts for putative

TADs.

1.3.3 Machine Learning for 3D Genomics

Because of the type and amount of data that bioinformaticians deal with, ML algorithms

are increasingly used to understand the 3D organization of the genome. There are var-
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(a) Computational graph of an usual RNN and its un-
folded version. The hidden state h is conveying infor-
mation across time-steps. x is the input, o the output,
y the true label, L the loss function, and U, V,W are the
shared weight matrices

(b) LSTM architecture, with more control on
the information transferred. Two input gates
corresponding to i, Ĉ in the equation, a forget
gate f , an output gate o

Figure 1.10: RNN and LSTM diagrams, reproduced from [44]

ious sub-domains where ML finds an application, and we will focus on the prediction

of protein-binding sites and TAD classification. For both of them, compared to classical

computational tools, the real added value lies in the fact that the DNA sequence is often

the input data, which is easy to find and deal with. Conversely, biological experiments

like Hi-C, ChIP-Seq are very costly and their accessibility depends on the species. For

the task of predicting protein-binding sites, CNNs achieve great results by one hot en-

coding the DNA sequence of length L to get an input of size 4 × L that is read as a 1D

image by the convolutional layers. The results are compared to the known binding motifs

from experiments, but the trained paramaters of kernels can also be interpreted to detect

new unknown motifs, enhancing both the performance and the understanding. Many re-

markable studies have been carried out, but we can cite DeepBind from Alipanahi et al.

in 2015, or Basset from Kelley et al. in 2016, which got more than 0.9 average AUC score

over all DNA-binding proteins, for multiple line cells [50, 51]. Alternatively, Shen et al.

used a type of gated RNN called Gated Recurrent Unit (GRU) with a sequence embedded
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thanks the NLP tricks which transfroms a string into an array [52]. They had even better

results with AUC score greater than 0.95 for the same data as DeepBind. Overall, these

three tools outperformed classical algorithms scanning chunks of DNA sequences as k-

mers and comparing them to the position weight matrix of the motif. Nevertheless, we

should note that such scores remain quite poor in a setting were in a genome, 99% of the

regions are negative examples. Thus the level of False-Discovery rate remains very high,

which is a crucial feature for the interpretation of the results of our study.

An other kind of methods focus on genome-wide chromatin looping prediction, but

depends on other features than DNA sequence. For example, Huang et al. developed in

2015 a model called Bayesian Additive Regression Tree (BART) to predict TAD boundaries

thanks to histone marks from ChIP-Seq experiments, as there are a strong clue in favor of

the formation of such loops [53]. The model consists in an ensemble method of regression

trees that discriminates the continuous values of histone tracks, and achieved an AUC

score of 0.774 on human IMR90 cells. Al Bkhetan and Plewczynski proposed 3DEpiloops in

2018 to map all chromatin interactions at genome-wide level, based on many epigenomics

data [54]. Once again, ensemble methods - here on classification task - with non deep

learning models were implemented and reached 0.81 AUC score when compared against

annotated Hi-C loops. A last interesting example introduces EAGLE by Gao and Qian in

2019, which has the particularity of focusing on a small number of processed features to

predict enhancer-gene interactions [55]. These features are obtained by computing various

scores from experimental data, and classical ML classifiers were trained. For instance, they

defined the enhancer activity and gene expression profile correlation (Pearson correlation

coefficient), based on RNA-seq measurement for gene expression, and on multiple high-

throughput datasets for enhancer activity. This kind of human-built features helps the

classifier to better perform and highlights the role of feature engineering.

Finally, a new paradigm tries to combine the two types of methods described above.

Indeed, innovative algorithms try to detect patterns like chromatin looping based on DNA

sequence only. The goal is to get rid of the dependency of Hi-C experiments, limited to

a small number of species. The predictor would be able to map the 3D structure of the

22



1.4 Thesis Outline

genome given its sequence only, as it has been suggested that the assembly of domains is

hardwired in the linear sequence - like CTCF for TADs [24]. Thus, because many species

have their genome sequenced, the perspectives of understanding 3D structure for most of

the phylogenetic tree become tangible. A probent published study higlighting this point

comes from Henderson et al. in 2019, who focused on TAD boundaries prediction for fruit

flies [56]. They tried different deep learning architectures, and the best performer includes

a mix of CNN on one-hot DNA sequence, followed by a bidirectional LSTM (see Figure

1.11). They reached an AUC score of 0.9829 when compared with known annotations.

They also put great effort in interpretability, by analyzing the kernels from the CNN to

understand the motifs caught by the model. The comparison proves that deep learning

can, at cost of sometimes complex architectures, retrieve characteristic footprints in DNA

sequence, like the CTCF binding motif, and even detect new interesting transcription fac-

tors. Nevertheless, this study cannot really be compared to ours focusing on mammals,

because of the different mechanisms involved in TAD formation. In mammals, TADs are

larger and may be harder to detect, leading to a lower performance.

1.4 Thesis Outline

The background provided in last sections highlights that the 3D organization of chromatin

can be inferred from sequence-level features. In this thesis, we propose a deep learning ap-

proach combining transcription factor binding sites and phylogenetic data to predict TAD

boundaries for mammals. The objective of such a model is to get rid of the dependency

on rare and costly Hi-C experiments to map the genome of species where this kind of data

is not available. It takes inspiration from from the methods presented in sub-section 1.3.3

with ML algorithms based on specific processed features from DNA sequence, but differs

from them since we take advantage of the links between species across the phylogenetic

tree to retrieve TAD boundaries consistently with evolution rearrangement scenarios. We

introduce various deep learning pipelines, each one of them reaching a particular scope of

biological application depending on the type of data available to the user. We demonstrate
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Figure 1.11: Best architecture to predict TAD boundaries from DNA sequence only. CNN followed
by a bidirectional LSTM, before fully connected layers, reproduced from [56]

how sequence-based features are a precious yet not self-sufficient source of information to

detect TADs. Our approaches achieve higher performance when combined with a cross-

species comparison, proving the benefit of phylogeny for 3D genomics.

Chapter 2 of this thesis will be submitted shortly for publication in a bioinformatics

journal. Amaury Leroy contributed to the design of the study, implemented the com-

putational analyses, and wrote the manuscript. Mathieu Blanchette conceived the study,

coordinated the computational analysis, and helped draft the manuscript.
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Chapter 2

Sequence-Based Prediction of

Topologically Associated Domains

Enhanced by Cross-Species Comparison

Abstract

Background: Topologically Associated Domains (TADs) are functional units of con-

densed chromatin with a length of around 1Mb, crucial for gene regulation and disease

development. We propose 10 machine learning pipelines composed of both a Long Short-

Term Memory (LSTM) network and a cross-species comparison algorithm to predict TAD

boundaries using features derived from genomic sequence and phylogeny.

Results: Our results are shown to be accurate across 5 mammals, even more when pre-

dictions are updated with the phylogenetic algorithm. This still unexplored approach is

promising for a better understanding of TADs without Hi-C data.

Keywords: TADs, 3D genomics, Deep Learning, LSTM, Phylogeny
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2.1 Introduction

2.1 Introduction

Because of its crucial role in the mechanisms of cell dynamics, the three dimensional con-

formation of DNA is a key yet unheralded topic attracting growing interest in biology.

First of all, chromosome folding of eukaryotic genomes is essential for bio-mechanical

reasons, as an aggregated 2-meter-long molecule must fit into a micron-scale nucleus. In

addition, the 3D structure is the result of a non-random process, intrinsically linked to

essential biological functions like gene regulation [4]. Innovative approaches, gathered in

the so-called 3C techniques, have uncovered general features of genome organization. In

particular, Hi-C experiments, introduced by Lieberman et al. in 2009, revealed genome-

wide cluster of DNA contacts, allowing us to better understand this relationship between

architecture and function [15]. In mammalian genomes, DNA wraps twice around histon

octamers to form nucleosomes of 147bp, reducing the length seven-fold. Some proteins

can then bind to specific DNA loci to shape a complex called chromatin. Through this

phenomenon, the emergence of loops can either enhance or disrupt physical contacts be-

tween regulatory elements, influencing the fate of gene expression. At a scale of hundreds

of kilobases, packs of loops can bridge larger structures called TADs, allowing recurring

bounds in open chromatin [9]. These domains are partitioned into compartments, classi-

fied as ”A” - for active chromatin - or ”B” - for repressive chromatin. Finally, territories

define portions of the nucleus occupied by chromosomes with preferential and functional

long-range interactions.

TADs were first identified by Dixon et al. in 2012, thanks to Hi-C experiments on

human and mouse genomes [18]. Following this study, similar domains were found in

various species, both in mammals or other phyla [30]. That ubiquity advocates for their

importance as functional and conserved units of the genome, defined as regions inside

which chromatin loci interact more frequently than with regions located in adjacent do-

mains. With a median size of 880kb, they are made of condensed loops defining regu-

latory landscapes. Therefore, understanding their biological formation is crucial. It lies

in the joint action of several chromatin marks binding to precise loci and among them-

26



2.1 Introduction

selves, which are then enriched at TAD boundaries. In mammals, the complex CTCF-

cohesin has emerged as an essential piece of this process, for which 76% of boundaries

stem from [9,24]. In this so-called loop extrusion model, chromatin is extruded by cohesin

until two distal and convergent CTCF proteins bind and create a border [57]. This results

in stable domains, which are the cornerstone of essential functions such as transcription.

As a consequence, a negative selection is applied to disruption of boundaries, going hand

in hand with their conservation across species. The breakage of a boundary due to a mu-

tation can reorganize the 3D structure, lead to gene misexpression and the development of

diseases [29]. Nevertheless, some rearrangement scenarios can provide favourable func-

tions and make new phenotypes arise. It has been found that evolutionary breakpoints are

enriched at boundaries [32,33], and that TADs are mainly conserved across close species -

more than half of TAD boundaries are shared between human and chimpanzee [31].

Hi-C contact maps are by far the most used source of data to infer TAD structure, with

an impressive amount of available computational tools (for reviews, see [41, 42]). They

all try to solve the same task but predictions vary greatly between methods, depending

on the quantitative method or the resolution used. Nevertheless, the major drawback is

that Hi-C data is only available for a small number of species because of the substantial

cost of such experiments. In light of previously exposed arguments, advocating for an

assembly of TAD structure hardwired in the DNA sequence through specific conserved

chromatin marks, new methods have successfully started to detect 3D patterns based on

features extracted from sequence genome only - a much accessible source of information.

Some of them apply ensemble machine learning pipelines on epigenomics data to predict

enhancer-gene interactions [55], chromatin contacts [54] or TAD boundaries [53]. In 2019,

Henderson et al. even proposed a compelling approach based on DNA sequence only for

prediction of TAD boundaries in fruit flies, with deep convolutional and recurrent neural

networks [56]. Nevertheless, the precise mechanisms of TAD formation are still unclear,

making their inference a difficult task. Even if the presence of complex CTCF-cohesin is

a precious hint for the existence of boundaries, many of the latter obey to unknown rules

involving various transcription marks.
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An interesting and yet uninvestigated paradigm is to take advantage of from evolu-

tionary data. Because they represent a functional unit of the genome, TADs are mainly

conserved across species, and we can hope that divergent ones can even be inferred by

the knowledge of rearrangement scenarios of syntenic blocks, in addition to sequence-

features data. Initial predictions can then be enhanced by the comparison with close-

species for which TADs have been either referenced or predicted, thanks to a probabilistic

model inspired from the work of Fitch, Sankoff or Felsenstein [37, 38, 40]. That still unex-

plored approach is a main feature of the proposed study.

Here, we describe 10 machine learning models for the prediction of TAD boundaries in

mammals, which are enhanced by cross-species comparison either during or at the end of

the learning process. They differ in the input they require: either single genome sequence,

multi-species genome sequences, or referenced TAD boundaries extracted from Hi-C data

for known species. Their use depends on the data available to the user and type of study

carried out. We demonstrate how sequence-based features are a precious yet not sufficient

to detect TADs with high accuracy. Our approaches achieve higher performance when

combined with a cross-species comparison, proving the benefit of comparative genomics

for DNA conformation in 3D.

2.2 Material and Methods

TAD boundaries and sequence features acquisition

The scope of our study focuses on mammals, where TAD mechanisms have been rela-

tively well characterized. As often as possible, we tried to start from raw data on which

we performed in silico experiments to get rid of the dependency over processed biologi-

cal marks, which means that we processed sequence genome to extract our features such

as transcription factors or TAD labels. More precisely, we used data of liver cells from
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five species: human (hg38), mouse (mm10), rabbit (oryCun2), macaque (rheMac2) and

dog (canFam3). With the exception of hg38, raw Hi-C reads were extracted from Rudan

et al. [35] to ensure consistency when comparing results. We then processed them with

software from the Aiden lab to produce 5kb-resolution normalized Hi-C contact maps,

using Juicer to create interaction frequency matrices [58], and Straw to process them [59].

For human, we did not find the same cell type but chose liver cancer cell line HepG2 in-

stead. The already processed Hi-C data set was available thanks to the work of Dekker

Lab as part of the 4D Nucleome Project [2]. These 5kb resolution Hi-C contact maps were

the input for the TAD boundary caller RobusTAD [60], which was chosen because of its

robust behaviour with respect to variations in coverage, resolution and noise level. With

default parameters and for these five mammals, outputs of RobusTAD are scores for each

bin, related to the likelihood to host a TAD boundary, which were used either as features

or labels for our machine learning models. It is important to note that RobusTAD distin-

guishes left and right boundaries, which is very useful for TAD reconstruction - our task

was also dual as outputs of the models were a pair of probabilities. For RobusTAD, such

differentiation is made possible by a computation on the contact counts between the bin

of interest and its antecedents - hint for a right boundary if this count is high, and vice

versa between the bin of interest and the ones after for a left boundary. For sequence fea-

tures acquisition, we scanned the genomes of each species with a Perl script and HOMER

software [61], which accurately returns bins corresponding to a positive binding score

of 335 transcription factors based on their Position Weight Matrices (PWM). We counted

the predicted sites in each 5kb kin, consistent with the resolution of TAD boundaries, to

produce features for each of the 335 transcription factors. The last step of the processing

was the alignment of genome bins into consistent blocks between species. LiftOver was

used with default parameters to map all the features and labels to the reference genome

assembly mm10 [62]. This mapping is made possible thanks to whole-genome alignment

chains, coming from UCSC Genome Browser (ref). Eventually, the full data set, processed

in python [63] with tools from SciPy library [64], was made of 20 chromosomes of the mul-

tiple sequences genome partitioned into successive 5kb bins containing TAD boundaries

(binary features) and Transcription Factor Binding Sites (TFBS) count (discrete values).
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See Table 2.1 for accession references, and an example of two lines in the dataset in Figure

2.1.

Specie Reference Cell type Restr. Enzyme Accession Number
Human 4D Nucleome Project [2] HepG2 DpnII 4DNFICSTCJQZ
Mouse Rudan et al. [35] liver HindIII GSE65126

Dog Rudan et al. [35] liver HindIII GSE65126
Rabbit Rudan et al. [35] liver HindIII GSE65126

Macaque Rudan et al. [35] liver HindIII GSE65126

Table 2.1: Hi-C data sets for five studied species

Machine Learning pipeline

The classification task involves various architectures, detailed in Results section 2.3. They

depend on the data available to the user, but they all share the same building blocks, ar-

ranged in different orders. First of all, a classifier can take as input a feature vector made

of the 335 TFBS counts from a given species on a specific bin and return the probability

that this bin host a TAD boundary. For the whole study, we distinguished left and right

boundaries so that the real output is a pair of probabilities. It is also important to note

that the data set is highly imbalanced, as only 1% of the bins host a boundary. We will

refer to this classifier under the same abbreviation f , even if each one of them takes in-

put with different nature and dimension. In order to establish a baseline for our results,

the classifier can naively take the form of a Random Forest, which is very simple to im-

plement and optimize. We used the library Scikit-learn to perform our experiments with

this pipeline [65]. Nevertheless, this kind of ensemble method consider the different bin

examples as independent and identically distributed. That could limit the performance of

the predictions because TADs have a characteristic size of L base pairs, so that a boundary

is more likely to be found close to L base pairs after or before another one. To capture this

idea, we can see the different bins as a sequence on which we can apply a recurrent neu-

ral network, taking into account the distal dependency between bins. More precisely, we

chose to implement a Long Short-Term Memory (LSTM, [49]) model, as LSTM units have

30



2.2 Material and Methods

Figure 2.1: LSTM classifier pipeline with annotated genome as input. In this example, left bound-
ary is the label, and we represent two typical rows corresponding to consecutive bins in chro-
mosome 18, with predicted TFBS counts being fed to the bidirectional LSTM. The output is the
probability for each bin to host a left boundary.

a great ability to recall distant states, and we made it bi-directional because the direction

of scanning is independent from the presence of boundaries. Figure 2.1 summarizes the

pipeline from raw DNA sequence, transformed into annotated genome, to LSTM predic-

tor f . We set up LSTM units in the ”many-to-many” way, inputs being a pool of 2000

ordered bins and outputs being the prediction to host a TAD boundary for each bin -

left and right boundaries are separate outputs. It then deals with 10Mb-long sequences,

which is an interesting trade-off between computational time and the necessity to have

sequences long enough to embed several TAD boundaries and learn long range depen-

dencies. Besides, considering a sequence longer than a chromosome would be deleterious

as there is TADs cannot straddle multiple chromosomes.
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2.2 Material and Methods

We used a binary cross entropy loss function, with a larger weight ω on positive pre-

dictions - the inverse of the proportion of such labels - to overcome the imbalance of the

data set. The loss function for predictions f(xi) and labels yi, eluding the regularization

term, is defined as

1

N

∑
i

ωyi log(σ(f(xi))) + (1− yi log(1− σ(f(xi))))

For cross validation, We chose to split the data set into entire chromosomes. Concretely,

the first four chromosomes are for the training set, the fifth is for the validation set and the

sixth is for the test set - and so forth for the remaining chromosomes. For both Random

Forest and LSTM models, there are many hyper-parameters to fine-tune. For Random

Forest, we can point the number of estimators, the depth of each tree, the criterion to as-

sess the weight of a decision, and the minimal number of samples to split a node. For

LSTM, we had to take care of the different dimensions of the architecture, especially the

number of layers and the dimensions of hidden and cell state vectors, but also the clas-

sical parameters for a neural network, such as the batch size, learning rate, optimizer or

regularization. We used the library Hyperopt [66] to carry out a Bayesian - not Gaussian -

optimization, using Tree Parzen Estimator as a surrogate function. We justify this choice

with both the ease of use of the library and the performance of the optimization algorithm,

although a Gaussian method would have performed just as well. The most important hy-

per parameters had different optimized values depending on the final architecture. To

find them, we ran Hyperopt with a 5-fold cross-validation pipeline to ensure robustness

of the results obtained.

Phylogenetic algorithm - PhyloTAD

The second major building block is a phylogenetic algorithm that we call PhyloTAD. Its

purpose is to update and enhance the accuracy of the initial predictions made by a pre-

dictor f on sequences from multiple species, to make them more consistent with the phy-

logenetic tree. Given the hypothesis that TAD breakage rarely occurs, sharing knowledge
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2.2 Material and Methods

about neighboring species can be of great help to infer the presence of a TAD on the target

species. In order to compare predictions between nodes, the algorithm is inspired from

Felsenstein’s work [40] on the maximum likelihood of a tree for biological characters. For

the sake of clarity, Figure 2.2 displays the general idea of this algorithm for a given bin,

with the following notations:

• The features contained inside this bin can be embedded in a discrete vector of fixed

size called Cu for species u.

• A classifier f is supposed to return the probability of hosting a TAD boundary given

these features, defined as Pr[Tu = 1|Cu] with Tu the binary random variable repre-

senting the presence of a boundary for species u.

• The binary phylogenetic tree links these species across evolution, with the five mod-

ern mammals at leaves

• Some prior knowledge thanks to statistics on the data set, like the prior probability

of hosting a TAD, i.e. Pr[Tu = 1]

Like for Felsenstein’s algorithm [40], the labels at leaves are first pooled to infer labels

of ancestors up to the root during the forward step. Then, during the trace-back step,

information goes from root to leaves taking into account the constraints inherent of the

tree, in order to finally update the labels at leaves. The goal is to transform Pr[Tu =

1|Cu] into Pr[Tu = 1|(C1, C2, C2, C4, C5)] which is a good representation of how evolution

influences TAD structure.

The whole derivation of the model is available in the Supplementary Methods section

2.5. The idea is to find a dynamic programming method to pass information from the

leaves to the internal nodes until the root, and an other method to make the reverse path.

The quantity ruling the forward step is introduced by the function Xu defined at node
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2.2 Material and Methods

Figure 2.2: General architecture of node updating with PhyloTAD algorithm

Figure 2.3: The phylogenetic tree used for this study, consisting of 5 mammals, from [67]
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u ∈ [1..N ] (N = 9 is the number of nodes, or species in the entire tree) as:

Xu : i ∈ {0, 1} 7→ Pr[{Cj} j ∈ Σu | Tu = i]

for Σu the set of leaves in the sub-tree rooted at u. At leaves, this definition becomes:

Xu(i) = Pr[Cu | Tu = i]

which is merely what the output of the predictor provides with Bayes’ rules:

Xu(i) = Pr[Tu = i|Cu]
Pr[Cu]

Pr[Tu = i]

Given some assumptions on independence, if u is an internal node with children v - left -

and w - right -, we find that:

Xu(i) =
∑

a∈{0,1}

Xv(a) Pr[Tv = a | Tu = i]

×
∑

b∈{0,1}

Xw(b) Pr[Tw = b | Tu = i]

In a more compact formulation, we can write Xu(i) = Lu(i)Ru(i) with Lu (respectively Ru)

for the nodes of the left (respectively right) branch respectively. The term Pr[Tv = a | Tu =

i] constitutes the probability of evolution across a generation, following a Markov process

that we represented by a transition probability matrix defined as M = exp(Q.t) with Q the

mutation rate matrix - hyper-parameter - and t the branch length. A dynamic program-

ming algorithm is then able to reach each ancestor given information from its children.

When the root is reached, the algorithm retraces the path in the opposite direction to find

for each leaf u : Pr[Tu = i | {Cj}j∈[1..5]]. To do so, we introduce a new set of functions:

Ou(i) = Pr[{Cj}j j ∈ Ωu | Tu = i]
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2.3 Material and Methods

for Ωu the set of leaves not under the subtree rooted at u. In other words, Ou(i) is the

probability of having all the Cj which are strictly not under u, conditioned by the label at

the node of interest. At the root, because there is a definition issue, we take the convention

that Ou(0) = Ou(1) = 1, justified afterwards. At leaves, Ou(i) = Pr[{Cj}j 6=u | Tu = i] which

is very close to what we want as an output thanks to Bayes’ rules:

Pr[Tu = i | {Cj}j∈[1..k]] = Xu(i)Ou(i)
Pr[Tu = i]

Pr[{Cj}j∈[1..k]]

This quantity is increasing as the node is closer to a leaf, thus we can dynamically com-

pute every Ou from root to leaves given the previous calculation of all Xus. The formula

to pass from a node to its child, where u is the left child and p(u) its parent, is as follows:

Ou(i) =
∑

a∈{0,1}

Pr[Tp(u) = a | Tu = i]Rp(u)(a)Op(u)(a)

This formula is valid when the child is at the left position of its parent, and must be

modified by switching from Rp(u) to Lp(u) when the child is at the right position - symmet-

ric calculation. The convention of a probability equal to 1 at root ensures that the parent

is not contributing to the calculation on its child when at root, because we only want to

look at its brother which gathers all the leaves not under the running subtree. In that re-

spect, all quantities are known thanks to the first part of the calculation - from leaves to

root - and the current knowledge on Ou for parents. We extracted the phylogenetic tree

linking the five mammals from the platform Interactive Tree of Life [67], and used the

library Biopython to represent it internally [68]. The dynamic algorithm is implemented

through a post-order traversal of the tree for the forward step, and a pre-order traversal

for the backward step. For each bin, the overall complexity is linear in both space and

time, ensuring a scalable application in our classification task with multiple bins.
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2.3 Results

Here, we propose three global approaches - resulting in 10 models - for TAD boundary

prediction, this partition corresponding to the input data required for the trained model:

single genome sequence, multi-species genome sequence, or multi-species TADs.For all

figures below, which describe the corresponding pipelines, we did not distinguish the

baseline classifier - single-bin prediction with Random Forest - and the LSTM predictor -

multi-bin prediction in the form of a sequence; they both refer to f . For the metrics, we

chose AUC, which gives robust insights about the behaviour of the model, independent

from any decision threshold. For all tables, AUCs are obtained by computing the average

between left and right TAD boundary predictions. As LSTM always performed better

than the baseline, we only displayed its results.

Single genome sequence as input

Many mammals were not studied for Hi-C experiments, and only the DNA sequence is

available. In this case, we can still get partial information about TAD formation mecha-

nisms since the data available to the cell is similar but much more complete and contex-

tualized when the genome is folded. Then, a basic classifier f can learn from those marks

for a single species to infer boundaries, without any knowledge on phylogeny. The first

naive model, called ”Transfer”, is trained only on one species for which TADs are refer-

enced, with computational predicted TFBS for 335 transcription factors as features. The

labels are a pair of binary results, corresponding to the presence or absence of a left/right

boundary on the bin of interest. We can then detect TADs for a new species by transfer-

ring the trained parameters for a set of features composed of the marks of a single target

species, hoping that the mechanisms of TAD formation are similar between the species for

training and for testing.
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A more complex model, called ”Pooling”, is trained on multiple species where Hi-

C data is available. The sets of {TFBS counts, label} pairs across species are pooled to

create a bigger data set - the number of features is the same, but the number of examples

increases 5-fold. The advantage of such a training is that, in addition to simulating a data

augmentation, it implicitly takes into account the differences of TAD formation between

mammals, preventing from overfitting and making the classifier more flexible to a new

target species.

The last model taking as input a single genome only is species-specific: it is only appli-

cable to species for which Hi-C data is available for training, therefore it does not represent

a very useful tool for practical application. However, such an architecture may yield in-

sights into the differences of mechanisms for TAD formation between species. Figure 2.4

highlights those three models, and results are summarized in Table 2.2.

Figure 2.4: Pipeline for unified models with single genome sequence as input. The training is
carried out either with a unique species (Transfer and Species-specific), or with the pooled set of
all species for which Hi-C data is available (Pooling). TAD inference is then made possible by
applying those models on a single annotated genome for the target species.

As expected, when pooling examples from different species, the overall results are

improved compared to the ”Transfer Model”. The predictor f learns partial informa-

tion about the sequence, with a AUC score around 0.7 for ”Transfer Model”, except for

38



2.3 Results

Model Mouse Human Dog Macaque Rabbit
Transfer 0.71 0.70 0.70 0.62 0.71
Pooling 0.73 0.73 0.74 0.63 0.73

Species-specific 0.71 0.71 0.72 0.63 0.72

Table 2.2: Area Under Curve (AUC) on testing set for the three first models and the five

mammals. We trained the first model with TFBS from mouse training set, and transferred

the trained parameters to other species

macaque, with disappointing results on many models, which is likely due to a poorer

quality of data. For each species, ”Pooling Model” has an accuracy around 2% higher,

which is a small but comforting improvement to state that mammals have common mech-

anisms for TAD formation, and that a mutual training has to be prioritized. It is confirmed

with the ”Species-specific Model”, which is better than the ”Transfer Model” because

TFBS from the target species have been learnt, but worse than the ”Pooling model”. It

seems that increasing the number of examples, even if they do not correspond to the same

specie, is valuable to the learning because of the common mechanisms of TAD forma-

tion. Nevertheless, the different AUC scores show that transcription factors only are not a

sufficient source of data to accurately map TADs genome-wide.

Multi-species genome sequence as input

The second scenario is to consider that the we have DNA sequence from multiple species,

including the target one. That is very plausible since genome sequence is available for a

large number of species, and we only need to predict TFBS with Homer and align syntenic

blocks with LiftOver - see Methods. It yields to the development of two models that

could fairly be compared to the previous ones since only sequence information is used.

The first approach consists in a concatenation, at each bin, of the TFBS feature vectors

obtained at orthologous regions across all 5 species, allowing the predictor to learn by

itself phylogenetic relations between them. The input dimension being fixed, it requires

to keep the same species between training and testing, leading to issues when trying to
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apply the model for practical use. The architecture of this approach is displayed on Figure

2.5.

A smarter approach is to take advantage of the insights from models with single

genome sequence as input, in particular the pooling method which performs the best.

We can apply those models for each species in our data sets, yielding to a multi-species

prediction for each bin. To use evolutionary information, this set of predictions can be,

on the one hand, the input of PhyloTAD. The goal is to update them, consistent with the

relative distances between species. Species need to be phylogenetically placed in relation

to others. On the other hand, the prediction outputs can be the input of a new classifier

f ′, with a fixed input dimension corresponding to the number of target species. Then, the

phylogeny is not explicitly mentioned and we can expect the network to implicitly learn

it by itself, smoothing the independent results from f applied to distinct mammals. Com-

pared to PhyloTAD which is deterministic, it has the advantage to need less knowledge

on the relations between species, but requires a specific training for each new experiment,

yielding a less flexible application in practice. The corresponding pipelines are schema-

tized in Figure 2.6, and results are summarized in Table 2.3.

Model Mouse Human Dog Macaque Rabbit
Concatenation 0.72 0.72 0.73 0.62 0.72

Pooling + PhyloTAD 0.77 0.79 0.78 0.71 0.78
Pooling + Smoothing f ′ 0.75 0.77 0.78 0.69 0.77

Table 2.3: AUC on testing set for multi-species models

Results from these three models are very informative about the benefits of phylogeny.

First, the concatenation model performs very similarly to the pooling method with single

genome sequence as input, with AUCs around 0.72 except for macaque. We can speculate

that phylogenetic relationships are partially learnt by the predictor f without any knowl-

edge required, which is more user-friendly as there is only one block in the pipeline. How-

ever, such a model is not really applicable to practical TAD inference as both the training

and testing are needed on multi-species, while the pooling approach, once trained on

known mammals, can be applied on the genome sequence of the target species only. The
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Figure 2.5: Concatenation model for 5 species, including the target species - mouse. The number
of features is the number of TFBS times the number of species. Both training and testing must be
carried out with the same sample of species to ensure consistent results

Figure 2.6: Pipelines combining general mammals predictor and phylogenetic tree to infer TAD
boundaries in multiples species where no Hi-C data is available. The classifiers f are trained
separately with specific genomes, and the results are merged with either PhyloTAD or a smoothing
predictor f ′ to update temporary outputs
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second method merging pooling from previous models with phylogeny is much more in-

teresting, as it involves shared learning of various general trained classifiers for mammals,

applied on new species. Here, the temporary predictions are updated either with a deter-

ministic algorithm or with a new neural network. The first method is very efficient as it

does not require any training, and generally performs better than the smoothing classifier

f ′ - around 2% increase in AUC. Overall, for these two similar approaches, predictions are

significantly improved compared to the pooling method before update. Indeed, we reach

AUC close to 0.8 - an increase of more than 6%.

Multi-species TADs as input

A new paradigm consists in considering directly TAD annotations from Hi-C data from a

certain subset of mammals to transfer them to a broader set of species where Hi-C data is

unavailable. Very basically, our LSTM, with input dimensions fit to the input features, can

infer boundaries from labels of neighboring species. This model requires to be trained on

the species where Hi-C data is available. A second possible approach is to use PhyloTAD

directly, which does not need training anymore. For each bin, the inputs are the labels for

known species, and a prior probability for the target species - we chose the genome-wide

frequency of hosting a TAD -, that will be updated. The task is less time consuming as

the data needed to build the features is drastically lower, but it is important to note that

we are limited by the small number of mammals with available Hi-C data, producing

stereotyped and inflexible results, independent from the specificity of the target species.

Both methods are displayed on Figure 2.7, with results in Table 2.4.

Model Mouse Human Dog Macaque Rabbit
TAD concatenation 0.83 0.82 0.82 0.79 0.84

PhyloTAD only 0.81 0.82 0.80 0.78 0.81

Table 2.4: AUC on testing set for the models using TAD boundaries as input

The results presented above consider the different species where we know the true la-

bels in order to compute the performance, but the final goal is to apply these models on
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Figure 2.7: Models using TAD labels from known mammals to infer boundaries on target species,
here mouse. It is done either with a deep learning classifier f - top - or by the deterministic algo-
rithm PhyloTAD - bottom.

new target species. Unsurprisingly, TAD annotations from other species are very infor-

mative and the overall performance is better than in previous models. In addition, the

gap in AUC between macaque and other mammals is partially bridged with this method,

advocating for issues in genome sequence data rather than Hi-C contact matrices. Despite

these satisfactory results, it is crucial to be aware that we would get the exact same results

for distinct species, as the input would be fixed and independent from the target. There-

fore, this solution is insightful on the role of phylogeny but hardly applicable in practice,

at least on its own.
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Multi-species genome sequence and TADs as input

The previous approaches advocate for the distinct and decisive contributions of both

genome sequence and phylogeny for TAD inference. The final models merge both source

of information to boost accuracy of predictions. The idea is to adapt the last model of Fig-

ure 2.7, replacing the naive prior by a temporary prediction from a classifier f based on

sequence features. This classifier can be either species-specific, or general to mammals -

the second option, ”pooling”, gave better performance when used alone. The other labels,

fed as input for PhyloTAD, stem from mammals with known Hi-C data. Thus, we ran

our experiments on a leave-one out basis, computing the performance on a target species

with four other mammals as helpers to accuracy boosting. The architecture is highlighted

on Figure 2.8, and results are summed up in Table 2.5, with a visualization of improve-

ment for a portion of chromosome 3 in mouse experiment. Lastly, we tested a model -

displayed on Figure 2.9 - consisting in a global concatenation of all data available, both

TFBS and TAD labels for a subset of species. These input were used for a predictor f for

which a high performance was expected, but with the same issues of inflexibility as the

model ”TAD concatenation”.

Figure 2.8: Pipeline merging inference from TFBS and update thanks to PhyloTAD for a target
species, here mouse

The model for different species have better performance when combining sequence-

based features with knowledge on evolutionary scenarios. The first model gives very

satisfying results, as it only requires a general classifier trained on mammals taking as

input a single genome sequence. In practice, PhyloTAD could take as input many more
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Figure 2.9: Global predictor taking all data available in a jumble

Model Mouse Human Dog Macaque Rabbit
Pooling + PhyloTAD with labels 0.86 0.84 0.85 0.81 0.86

Global concatenation 0.89 0.89 0.90 0.85 0.88

Table 2.5: AUC - average of right/left labels - on testing set for the models using both

genome sequence of the target mammals and TAD boundaries from other species as input

species, with a mix of true labels when Hi-C data is available - as experimented here, and

of predictions from f when only the genome sequence is known - model called ”Pooling

+ PhyloTAD”. Therefore, it represents the most applicable approach to be easily used

to infer TAD boundaries in a new species. The ”Global Concatenation” model has even

better AUC scores but heavier constraints on the input data.

Finally, we can make a qualitative assessment of our results for three typical models.

Figure 2.10 shows the output probabilities compared to the true labels, for the mouse on a

portion of chromosome 3. The top sub-figure concerns the pooling model before update,

the middle one refers to the pooling model followed by PhyloTAD for all species, and

the bottom one only differs because the input of PhyloTAD are true labels from related

species except for the target ones. First, we notice that predicting TAD boundaries based

on sequence-features only is a tough task, as the predicted TAD boundary probabilities of
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the top sub-figure are very low, even if we often can recognize peaks close to true labels.

After update with PhyloTAD, when sequence-based predictions from other species are

also the results from f , we notice a significant improvement in the confidence of results.

Peaks are getting sharper with a good accuracy, but sometimes are a few bins away from

true labels, resulting in a still low AUC score. When inputs are true labels except for the

target species, there is a striking increase in accuracy, peaks being very high for true labels

and smoothed otherwise. Nevertheless, some true boundaries are still unrecognized by

the different models, suggesting that other features, crucial for TAD formation, could be

incorporated to improve the study. Indeed, these bins often correspond to sites with no

CTCF site, the strongest hint for our predictor to assess the presence of a boundary.

2.4 Discussion and Conclusion

In this study, we have focused our interest on TAD boundary prediction when no Hi-C

data is available for the species of interest. Such work has been motivated by the crucial

importance of TADs in biological cell mechanisms, paradoxical with the poor knowledge

of their locations in the genome of various species. Mapping the 3D structure of chro-

matin, in particular these big domains of high frequent contacts, would be a huge step

in the understanding of gene regulatory networks. However, Hi-C experiments are quite

expensive, thus limited to few species such as some mammals - human, macaque, dog,

rabbit, mouse -, fruit flies or some plants. For mammals, many studies have converged to

the establishment of an extrusion model in which a complex of proteins, including CTCF,

could be the cornerstone of the formation of such large loops [24]. The hypothesis of an ar-

chitecture hardwired in the genome was our first hypothesis. The second one stems from

another observation, suggesting that these structures apply a strong negative selection

because of their importance in gene regulation. Therefore, TADs are mainly conserved

across species, giving us precious hints to recall TADs in known neighboring mammals.
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Figure 2.10: Probability outputs (blue) vs. true binary labels (orange ) for chr3:7000000-12500000 in
mm10 genome for three different scenarios: Pooling (top), Pooling + PhyloTAD (middle), Pooling
+ PhyloTAD with labels (bottom)
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We developed different machine learning models to predict TAD boundaries in mam-

mals, based on both sequence features and cross-species comparison. They differ in the

input required to the user, but all include a general classifier made of either a Random

Forest or a LSTM to scan the genome, and a phylogenetic algorithm to make the results

more coherent with the tree of evolution. We focused on the five mammals for which Hi-C

data is available, in order to assess the performance of our models, but the final goal is to

apply them on species with unavailable Hi-C data to broaden knowledge on new species.

A summary table 2.6 highlights the main results.

Model Mouse Human Dog Macaque Rabbit
Transfer 0.71 0.70 0.70 0.62 0.71
Pooling 0.73 0.73 0.74 0.63 0.73

Species-specific 0.71 0.71 0.72 0.63 0.72
Concatenation 0.72 0.72 0.73 0.62 0.72

Pooling + PhyloTAD 0.77 0.79 0.78 0.71 0.78
Pooling + Smoothing f ′ 0.75 0.77 0.78 0.69 0.77

TAD concatenation 0.83 0.82 0.82 0.79 0.84
PhyloTAD only 0.81 0.82 0.80 0.78 0.81

Pooling + PhyloTAD with labels 0.86 0.84 0.85 0.81 0.86
Global concatenation 0.89 0.89 0.90 0.85 0.88

Table 2.6: Summary of AUC scores for all proposed models

Transfer, Pooling and Species-specific models suggest that sequence-based features

do carry information about TAD formation mechanisms, but AUC scores are too low -

around 0.72 - to rely exclusively on them for TAD identification. When they are followed

by phylogenetic algorithms, either with PhyloTAD or with a new deep learning classifier

f ′, there is a significant improvement – by 0.06 -, advocating for the subsequent benefit of

such knowledge. All in all, adding true labels of known mammals with probability out-

puts from f for unknown mammals, a cross-species comparison enables a quite accurate

prediction of both left and right boundaries on a target species, paving the way for a com-

plete genome-wide identification of these structures. The different models are available

as building blocks for an end-to-end software where the user could input their data set

and apply the relevant trained model. An interesting question to discuss is the purpose

of phylogenetic data for such task. Indeed, when a cell folds its genome, it does not have
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access to phylogenetic information, but only to the sequence. Why does it systematically

succeeds at producing the right fold, whereas our models do not? What information are

we missing? One aspect is epigenetic data. Our predictor does not have DNA methyla-

tion and histone modification data, but the cell does. Still, these epigenetic modifications

are ultimately sequence-specific. So all the information is the sequence, but presented in

a more informative way, still hard to understand to our knowledge.

There are some aspects that can be improved to boost performance and possibilities.

First of all, concerning sequence-based features, we were limited to 335 TFs with Homer

database of motifs. We could have looked for other marks, such as histone marks, DNase

I hypersensitive site, etc. However, as they cannot be accurately predicted directly from

the sequence and require biological experiments, we would lose the initial purpose of

sequence-based study. Some of them have putative effect on chromatin architecture and

could have provide additional information to the model. In addition, Homer uses a deter-

ministic algorithm for mapping sites. We could have used alternative methods, in partic-

ular innovative deep learning approaches such as Basset or DeepBind [50,51], which have

excellent performance for predicting DNA-binding protein sites. To go even further, we

could have replicated and incorporate their methods into our models, which introduce

CNNs, to start from raw DNA sequence to detect particular patterns. This is a heavier but

more independent and user-friendly method, because the user only need to input the se-

quence genome to have it annotated with TADs, which is an objective for future work. It

has been done by Henderson et al. in fruit flies, thus the difference of families, in addition

to the choice of bins exposed previously, makes the comparison irrelevant. We can also

discuss about the choice of human Hi-C data. Indeed, it is the only species for which the

source changes and the cell line is slightly different, with cancer cells HepG2. The issue

with such cancer cells is the possible presence of trans-locations in the DNA sequence,

hindering a proper learning. Nevertheless, this cell line was the closest to other species’

lines we could find, and the percentage of difference should remain small, allowing the

usage of such data with some reserve on the results. Finally, there are some ways of im-

provement in machine learning pipelines. We are currently working on a final pipeline

where PhyloTAD is used inside the learning part - not after -, and included in the compu-
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tation of gradients for backpropagation. We hope that this method will converge faster,

balancing with the huge amount of calculus needed to compute gradients in each batch.

The frequent dependency on the amount of data is also an interesting point to discuss. In

this study, we were limited to 5 species, for which a consistent amount of Hi-C data was

available. We can expect our model to perform better with the increase in Hi-C experi-

ments, so that a virtuous cycle could be generated between in vitro experiments and in

silico predictions, towards a better understanding of 3D genomics in mammals.
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2.5 Supplementary Methods

Here, we derive the probabilistic model that leads to a dynamic programming perspec-

tive. Xu(i) and Ou(i) are the quantities we want to find with a recurrent formula. See the

Methods section 2.2, in particular Figures 2.2 and 2.3 for the context. We assume that the

probability of a vector embedding transcription marks only depends on the value of the

50



2.5 Supplementary Methods

random variable T at the node of interest, and is independent of other vectors or the value

of T on another node. In this derivation, u is the internal node of interest, with children v -

left - and w - right -, p(u) is the ancestor of u. Σu the set of leaves under the subtree rooted

at u and Ωu is the set composed of the node u and the leaves not under the subtree rooted

at u.

Xu(i) =
∑

a,b∈{0,1}

Pr[{Cj}j∈Σu | Tu = i, Tv = a, Tw = b] Pr[Tv = a | Tu = i] Pr[Tw = b | Tu = i]

=
∑

a∈{0,1}

∑
b∈{0,1}

Pr[{Cj}jleft | {Cj}jright, Tu = i, Tv = a, Tw = b] Pr[Tv = a | Tu = i]

× Pr[{Cj}jright | Tu = i, Tv = a, Tw = b] Pr[Tw = b | Tu = i]

=
∑

a∈{0,1}

Xv(a) Pr[Tv = a | Tu = i]
∑

b∈{0,1}

Xw(b) Pr[Tw = b | Tu = i]

= Lu(i)Ru(i)

Ou(i) =
∑

a∈{0,1}

Pr[{Cj}j∈Ωu , Tp(u) = a | Tu = i]

=
∑

a∈{0,1}

Pr[Tp(u) = a | Tu = i] Pr[{Cj}j∈right descendents of p(u) | Tp(u) = a, Tu = i]

× Pr[{Cj}j∈Ωp(u)
| {Cj}j∈right, Tp(u) = a, Tu = i]

=
∑

a∈{0,1}

Pr[Tu = i | Tp(u) = a]
Pr[Tp(u) = a]

Pr[Tu = i]
Rp(u)(a)Op(u)(a)
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Conclusion

Spatial genomic organization plays a key role in gene regulation. The introduction of tech-

nologies such as Hi-C has allowed increasing insights into the 3D properties of genomes

and cell types. In particular, a class of structure has been brought to light by Dixon et

al. in 2012, which are now referred as Topologically Associated Domains (TADs) [18].

For mammals, they are considered as a crucial functional unit of chromatin, made of con-

densed loops of around 1Mb, inside which chromatin loci interact more frequently than

with regions located in adjacent domains. TAD organization across genome sequence de-

fines regulatory landscapes, as it enhances or disrupt physical contact between elements

involved in gene expression. Therefore, understanding their biological architecture is of

paramount importance, but still incomplete. This is a consequence of small number of

species for which TAD annotations are available, due to the substantial cost of Hi-C ex-

periments.

TADs are then a topic of high interest, and many studies have tried to characterize their

mechanisms of formation. In mammals, the extrusion model, where CTCF and cohesin

jointly interact with DNA sequence to create non-random loops, helps us better under-

stand how TADs are created, and what are the patterns present at their boundaries [16].
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The knowledge of DNA-binding protein sites can thus give precious hints to annotate

the genome with TADs. In other words, the first hypothesis is that TAD boundaries are

hardwired in DNA sequence. In addition, TADs are mainly conserved across mammals

because of the negative selection they apply with gene regulation. Indeed, the disruption

of a TAD can generate serious unsustainable change in the phenotype. Comparing neigh-

boring mammals is then an interesting and still unexplored idea to infer TADs in unkn-

won species. The new flow of large scale data, in particular genomic sequences, enables

many computational approaches to study and model TAD organization in the genome,

including machine learning ones.

In this thesis, we show that TAD boundaries in mammals can be accurately predicted

from the joint use of sequence-level features and evolutionary data. We implemented 10

machine learning models based on these two hypotheses, which differ in the input re-

quired to the user. Depending on the available data, the latter can apply a specific trained

model to infer TAD right and left boundaries - separately - on the whole genome. The

major building blocks are made of a general TAD predictor - either a Random Forest or

a LSTM -, which scans the genome to give initial predictions based on sequence features

only; and a phylogenetic algorithm comparing the predicted or referenced boundaries be-

tween close mammals to update the predictions and enhance the performance of bound-

ary inference. To assess the robustness of our models, we extracted TAD annotations from

five mammals and computed AUC scores for each one of them, before and after update.

The first insight is that DNA sequence features convey subsequent knowledge about

TAD boundaries, but they are not sufficiently informative to accurately predict them for a

practical use. Besides, we only used transcription factor binding sites from Homer, and we

can expect that a broader library of regulatory marks - histone marks, DNase I hypersen-

sitive sites, ... - would profit such an inference, even if they require experimental results.

To go even further, it would be interesting to start from raw DNA sequence and build a

more general predictor that would learn by itself such features, inspired from those algo-

rithms. In this perspective, the user would only need to input raw genome sequence from

the target species to get accurate feature-based predictions of right and left TAD bound-
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aries. An interesting thought about the limitation in performance lies in the small number

of training positive examples, which limit the ability to learn sophisticated models. As

the training data is limited by the biology, no amount of additional efforts will be able to

produce more data in species. That explains the idea to improve predictions, developed

in next paragraph.

The second important lesson is that cross-species comparison represent a valuable

improvement for TAD inference, as AUC scores are significantly enhanced after update

through the phylogenetic tree. This new and still unprecedented idea - in the context

of TAD prediction - have a high potential that need deeper investigations - on bigger

databases, with larger trees - to be fully exploited. PhyloTAD is a user-friendly, determin-

istic and scalable probabilistic algorithm to propagate information through neighboring

species. However, we only used it after the training of predictor f , and it could be in-

teresting to incorporate it inside the learning. Computing the gradients would then be

really heavy but we can expect the learning to converge faster as predictions would be

more accurate for the very first batches. All in all, the future work will focus on the de-

velopment of an end-to-end algorithm, taking as input raw DNA sequence. A machine

learning pipeline would first learn relevant transcription mark counts inside each bin, that

would be scanned thanks to a recurrent neural network which would output temporary

left/right boundary predictions. Those outputs would then be compared to predictions

from the same classifier applied to other species, or to referenced true boundaries from

Hi-C experiments when available, in order to update them before back-propagation. Fi-

nally, after training, any mammals - and eventually other organisms - placed inside the

phylogenetic tree could have its genome annotated with TAD boundaries, paving the way

for a better understanding and new discoveries of 3D genomics.

We could eventually wonder if this type of cross-species boosting approach could be

used for other bioinformatics tasks. Applied here in the context of TADs, the idea remains

very general and could impact well beyond 3D genomics, for any sequence-based function

prediction task, like TFBS or gene prediction.
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