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ABSTRACT 

Medical image registration is the process of aligning two images of the same scene into the 

same image space and is a fundamental step in many image processing applications. For the 

registration of brain images between subjects, non-linear diffeomorphic registration is favoured 

since such techniques are capable of compensating for tissue deformation while maintaining brain 

topology. Recently, deep learning has shown success in a wide variety of medical image-analysis 

tasks, including image registration. VoxelMorph is a deep learning-based non-linear technique 

promising fast diffeomorphic registrations and claiming comparable results to Symmetric 

Normalization from Advanced Normalization Tools (ANTs SyN). However, the comparison 

between the two methods was based solely on Dice scores of automatically segmented labels. 

Using automatic segmentations could muddle results, and using Dice scores, an indirect evaluation 

measure, is an incomplete evaluation of goodness of fit. Additionally, the smoothness parameters 

of the ANTs SyN algorithm were altered to be more similar to those of VoxelMorph, thus 

restraining ANTs SyN's capacity to achieve a successful registration. This thesis presents an 

evaluation of VoxelMorph against the native, unaltered ANTs SyN, offering comparisons with 

direct and indirect evaluation metrics using data with manual gold standard segmentation labels. 

This evaluation was performed in experiments with three databases: a database of simulated 

deformations of the VoxelMorph atlas, BrainWeb20, and Neuromorphometrics. Results from the 

first experiment show ANTs SyN outperforms VoxelMorph in the presence of simulated 

deformation. Results from the second and third experiment show VoxelMorph produces inter-

subject registration results comparable to those of ANTs SyN.  
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ABRÉGÉ 

Le recalage d'images médicales est le processus d'alignement de deux images de la même 

scène dans le même espace d'image et est considéré comme une étape fondamentale dans de 

nombreuses applications de traitement d'image. Pour effectuer un recalage entre deux images 

cérébrales, le recalage difféomorphique non-linéaire est favorisé car il est capable de déformer le 

tissu cérébral tout en conservant sa topologie. Récemment, l'apprentissage en profondeur a connu 

du succès en plusieurs tâches d'analyse d'images médicales, y compris le recalage d'images. 

VoxelMorph est une technique non-linéaire basée sur l'apprentissage promettant des recalages 

difféomorphes rapides et revendiquant des résultats comparables à la normalisation symétrique 

des outils de normalisation avancés (ANTs SyN). Cependant, la comparaison entre les deux 

méthodes était basée uniquement sur les scores de Dice des étiquettes automatiquement 

segmentées. L'utilisation de ces étiquettes pourrait brouiller les résultats, et l'utilisation des scores 

de Dice, une mesure d'évaluation indirecte, est une évaluation incomplète de la qualité de 

l'ajustement. De plus, les paramètres de régularité de l'algorithme ANTs SyN ont été modifiés pour 

être plus similaires à ceux de VoxelMorph, limitant ainsi la capacité de ANTs SyN. Cette thèse 

vise à évaluer de manière complète VoxelMorph par rapport au ANTs SyN non modifié, offrant 

des comparaisons avec des mesures d'évaluation directe et indirecte à l'aide de données avec des 

segmentations manuelles. Cette évaluation sera réalisée en trois expériences avec trois bases de 

données: des déformations simulées, BrainWeb20 et Neuromorphometrics. Les résultats de la 

première expérience montrent que ANTs SyN surpasse VoxelMorph en présence de déformation 

simulée. Les résultats de la deuxième et troisième expérience montrent que VoxelMorph peut 

effectuer un recalage inter-sujet comparable à celui des ANTs SyN.  
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CHAPTER 1 

Introduction 

1.1  Motivation 

In the scientific community, publishing novel work has many incentives. But with the 

growing number of publications, it is equally important to see the validation of such work in the 

literature [1]. Reproducibility in science is imperative to give credibility where it is due through 

replication and validation of another’s work. Validation is essential to innovation: to evaluate 

progress, to improve efficiency, and to establish fairness in publications [2]. The Open Science 

Collaboration assessed the reproducibility of 100 experimental and correlational studies in 

physiological science by observing p-values, effect sizes, and other measures in replications of the 

original studies [1]. Of their many findings, only 35 of the replicated studies were statistically 

significant (p < 0.05), while 97 of the original studies claimed statistical significance. Analyses 

such as the one conducted by the Open Science Collaboration suggest the need to improve 

reproducibility in psychology, and this can be extended to all areas of science.  

One field of science where collaboration among institutions has prospered, thanks to its 

infrastructure, is in the medical image-analysis community [3]. However, there is less success in 

software sharing and reproducibility among colleagues. It is important, especially in a field that 

directly affects the health of the public, to make such studies, software and data included, open 

source, in order to facilitate reproducibility, to ultimately accelerate innovation [2]. 
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Recently, deep learning (DL) has shown success in a wide variety of medical image-analysis 

tasks, including image registration, but requires repeatability in their methodology and 

experimentation to consider the techniques credible and comparable against the current state of the 

art [4]. State-of-the-art automatic non-learning-based registration techniques have long been the 

solution for aligning medical images, improving over manual alignment strategies which heavily 

depend on user expertise and are subject to inter- and intra-rater variability. Some non-linear 

diffeomorphic techniques, referred to as “classic” techniques in this thesis, are considered the 

benchmark in the registration of brain images, and will be discussed in-depth alongside DL-based 

registration techniques in the Background Chapter of this thesis.  

Among the newly published DL-based registration techniques is VoxelMorph [5], a non-

linear diffeomorphic registration algorithm promising fast, topology-preserving registration of 

brain images. VoxelMorph has been claimed to have registration results comparable to the 

Symmetric image Normalization method by Advanced Normalization Tools (ANTs SyN) [6]; 

however, the evaluation performed by Dalca et al. between VoxelMorph and ANTs SyN could be 

improved. First, the training and testing of the VoxelMorph model was performed using fully 

automatic FreeSurfer-based [7] segmentations of magnetic resonance imaging (MRI) volumes [5], 

and not manual gold-standard segmentations [8]. Thus, errors in automatic segmentation confound 

registration quality metrics. Second, the smoothness parameters of the ANTs SyN algorithm were 

altered to be more similar to those of VoxelMorph [5], thus restraining ANTs SyN's capacity to 

achieve a successful registration. Finally, Dalca et al. based their comparison solely on Dice 

scores, an indirect measure, which alone is not a complete evaluation of goodness-of-fit [8].  

The objective of this thesis is to compare the registration technique of VoxelMorph to ANTs 

SyN. It will be important to maintain the comparison of VoxelMorph, a newly published technique, 
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to ANTs SyN, published in 2009, as this is how Dalca et al. had performed their comparison, and 

this thesis aims to validate their results. Validating the results from Dalca et al. will be performed 

in three experiments; first, using simulated deformations of the target atlas from the VoxelMorph 

paper [5]; second, using a digital phantom database with manual gold standard labels – 

BrainWeb20 [9]; and third, using a clinical database with manual gold standard segmentations 

from Neuromorphometrics [10]. The methods will be compared using direct metrics, such as 

recovery error, as well as indirect evaluation metrics, such as Dice score, Cohen’s Kappa and 

Hausdorff distance. Both whole brain and specific brain tissue and structure labels will be used for 

measuring direct and indirect metrics. Indirect whole brain metrics will use the 

EvaluateSegmentation tool [11] for the analysis, and the other metrics mentioned will rely on the 

Minc Toolkit [12]. It is hypothesized that the validation methods used to compare the registration 

results from VoxelMorph and ANTs SyN will be sufficient to discern whether one approach 

outperforms another.  

1.2 Thesis Overview 

This thesis is organized into four chapters. Chapter 2 presents an overview of medical image 

registration, including definitions of terms and techniques. Chapter 2 also includes a literature 

review of non-linear diffeomorphic registration “classic” techniques and non-linear DL-based 

techniques for brain image registration. Chapter 3 discusses the methods and results from the three 

experiments in a publication which has been submitted to Medical Image Analysis. Chapter 4 

includes a discussion of the results, possible future work related to the thesis, and a conclusion. 
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1.3 Contributions  

The contributions from this thesis are the following:  

i. Simulated realistic deformations, using deformation warps obtained from the registration 

technique ANIMAL [13], to evaluate VoxelMorph’s effectiveness in recovering deformed 

images and to measure the recovery error in comparison to ANTs SyN.  

ii. Compared the performance of VoxelMorph to ANTs SyN with indirect evaluation metrics 

such as Dice score, Cohen’s Kappa, and Hausdorff distance, using whole brain, grey 

matter, white matter, and cerebrospinal fluid labels from a digital phantom database – 

BrainWeb20 [14]. 

iii. Compared the performance of VoxelMorph to ANTs SyN with indirect evaluation metrics 

such as Dice score, Cohen’s Kappa, and Hausdorff distance, using cortical and deep brain 

structures from the Neuromorphometrics database [10] to observe their movement in an 

atlas-based inter-subject registration task.  
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CHAPTER 2 

Background 

This chapter presents a comprehensive literature review of both “classic” non-linear 

diffeomorphic registration methods and deep learning (DL) based non-linear registration methods. 

In this thesis, “classic” methods refer to any non-linear diffeomorphic registration method that is 

not based on DL. But first, in order to understand both classic and DL-based methods, an overview 

of image registration is required. The overview will be discussed in terms of the importance and 

applications of registration, followed by a definition of image registration. 

The background of this thesis was organized with the intent to first motivate the reader with 

applications of registration to highlight its importance. Once motivation is set, the reader can 

understand image registration in terms of the process and different variations of registration. If the 

reader so chooses, they can circle back to the motivation to further set the importance of image 

registration. Predominantly, the knowledge flow in the background section follows the same 

structure as review papers by Oliveira et al. [15] as well as Zitová et al. [16], with some references 

to Maintz et al. [17] and Crum et al. [18], although Maintz et al. followed a different overall 

knowledge flow than the former authors. For a more detailed understanding of image registration, 

please refer to these publications directly.  
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2.1 The Importance of Image Registration and Applications 

Medical image registration is a fundamental step in many image processing applications 

[15]. Particularly, image registration plays important roles in the application of image 

segmentation and atlas formation, diagnostics, treatment, and monitoring of various pathologies, 

as well as image-guided surgical planning, surgical simulation, and intra-operative brain shift 

correction. To highlight the significance of image registration, some applications will be discussed.  

2.1.1 Applications in Atlas Formation and Image Segmentation 

Firstly, for the purpose of atlas formation – where an atlas is an anatomical template which 

summarizes structure and volume and is a useful tool when performing group analyses in image 

processing [19] – and anatomy segmentation, image registration is particularly essential. Leow et 

al. used registration to create three-dimensional (3D) atlases of intra-subject (i.e. within-subject) 

brain changes across different magnetic resonance (MR) scanning sequences as part of the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) [20]. The utilization of registration here was 

crucial in the determination of stable scanning techniques with the least amount of intra-patient 

variability, ensuring quality data for public use [21]. Gooya et al. performed an atlas-based 

registration (i.e. registering images to a target atlas) of brain images with gliomas [22]. By 

registering with two different atlases, one of a normal (i.e. healthy) brain and one created from a 

model for tumour growth, Gooya et al. produced better tumour segmentations, a challenge in and 

of itself, compared to related works. So, both atlas formation and segmentation were feasible here 

due to registration. Another atlas-segmentation combination is observed with Automatic Nonlinear 

Image Matching and Anatomical Labeling (ANIMAL) [13], a segmentation-registration technique 

by Collins et al. who used a registration algorithm to register MR images to a labelled atlas in 
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order to anatomically segment the brain [13]. The brain is objectively segmented here by applying 

the inverse registration transformation to the atlas labels to segment the brain in its native space 

(i.e. patient acquisition coordinates).  

2.1.2 Applications in Disease Diagnosis, Monitoring and Treatment  

In disease diagnosis, treatment, and therapy, registration adds a level of precision and 

accuracy. This is seen in work by Staring et al., who developed a registration technique, which 

uses both the intensity and local structure data within the image, to register T2-weighted cervical 

MR images of the same patient to previous scans for radiation therapy [23]. The registration 

technique enabled precise dose targeting to the necessary anatomy, while avoiding critical organs. 

Lavely et al. also demonstrated the accuracy of two registration techniques, one automatic and the 

other semi-automatic, in the application of radiotherapy treatment [24]. Both techniques registered 

positron emission tomography (PET) and computed tomography (CT) images and were validated 

using a brain phantom1 as well as patient data. Foskey et al. improved accuracy in image-guided 

radiation therapy for prostate cancer using registration to compensate for regions of 

miscorrespondence due to organ motion in CT images [25]. The registration method facilitates 

accurate organ segmentation and image-guided radiation therapy, targeting specific organs while 

limiting dosage to other organs. More recently in monitoring and treatment, van der Hoorn et al. 

developed a two-stage semi-automatic registration technique to register MR scans from different 

time points to better monitor glioma patients before, during, and after treatment [26]. 

Demonstrating improved accuracy with disease diagnosis, Huang et al. developed a two-step 

registration technique to align real time 3D ultrasound images to dynamic MR and CT images for 

 
1 A brain phantom is an object that typically simulates the tissue and imaging behaviour of a real brain [105]. 
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cardiac diagnosis, and as well as for surgical navigation, to improve the quality of cardiac 

procedures [27].  

2.1.3 Applications in Surgical Simulation, Planning, and Image-Guided Surgery  

Image registration can also be applied in many surgical simulation and surgical planning 

applications. In  cardiac and orthopedic surgery, King et al. developed a technique to register real-

time ultrasound images to their pre-operative MR images during minimally invasive cardiac 

procedures [28]. The technique increases the inherent signal-to-noise ratio in the ultrasound 

acquisition and corrects for bulk motion, such as respiratory motion, during cardiac surgery. 

Hurvitz et al. developed an intraoperative atlas-based registration technique for bone-surface 

reconstruction of X-ray images of the femur using a pre-operative CT intensity atlas to reduce 

miscorrespondences between images [29]. This application is important for image fusion of 

intraoperative images to preoperative CT scans during orthopedic surgery.  

In efforts to improve neurosurgical planning, Nandish et al. used image registration and 

image fusion of CT and MR images to help localize brain lesions and determine skull incisions 

pre-surgery [30]. For image-guided neurosurgery, the registration technique by Maurer et al. using 

implantable fiducial markers was considered critical work for its time in 1997 [15][31]. Their 

technique uses the implantable fiducial markers as a set of points to register one image to the other, 

in this case, CT to MR images [32]. More recently, Drouin et al. have implemented an 

intraoperative ultrasound-MR registration technique, within their neuronavigation system – 

Intraoperative Brain Imaging System (IBIS), to correct for brain shift [33]. The technique uses 

image landmarks from preoperative MR data, instead of invasive implantable fiducial markers, to 

update the preoperative MR images during surgery to correct for brain shift using real-time 
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intraoperative ultrasound images. Use of this technique within IBIS improves patient-to-image 

mapping and increases the use of neuronavigation during surgery.  

From the many applications discussed, the importance of image registration is evident; 

however, an understanding of image registration must be established before delving into related 

work in classic registration and DL-based non-linear registration.  

2.2 Defining Image Registration 

Medical image registration is the process of aligning two images of the same scene or 

anatomy into the same image space [15]. This concise definition of registration requires a lot of 

unpacking to understand (1) what is the process, (2) how is the image pair related and how do they 

differ, and (3) what is an image space. These concepts will be defined in the context of brain image 

registration; however, examples of image registration using other anatomical scenes may be used 

for illustrating specific terms. The concepts will be defined in reverse order. 

2.2.1 Image Space: Coordinate Systems, Standardized Spaces, and Atlases  

Here, the term image space refers to a system of coordinates unique to a specific image [31]. 

To illustrate, if one image, herein referred to as the “moving image”, is registered to another image, 

herein referred to as the “fixed image”, the features of the moving image (i.e. structures, 

boundaries, intensity values, etc.) would share the same position (i.e. coordinates) as the 

corresponding features from the fixed image within the coordinate system of the fixed image.  

The coordinate system can vary from the native coordinate system of each image (i.e. patient 

image acquisition coordinates determined by the scanner geometry), to a standardized brain-based 

coordinate system such as the Talairach space [34] or the MNI space, which has evolved over the 
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years. The first iteration of the MNI space – the MNI305  – was proposed by Collins et al. [35]. 

This brain-based standardized space, based on the Talairach stereotaxic coordinate system, aligns 

images for easier localization of anatomical points of interest in the brain and facilitates voxel-to-

voxel comparison between subjects [36]. The coordinate system defines its origin on three axes: 

one axis passes through the superior aspect of the anterior commissure (AC) and the inferior edge 

of the posterior commissure (PC), the second axis passes through the midline plane, perpendicular 

to the AC-PC axis and the third, perpendicular to the first two, in the left-right direction [35]. This 

thesis will use the latest iteration of the MNI space in its methodology – the International 

Consortium for Brain Mapping atlas, or ICBM152 [37], as well as other niche image spaces such 

as the VoxelMorph atlas space. The ICBM152 atlas is a brain template created from approximately 

150 images from a normative young adult population and was collected from three different 

scanning locations [36]. This atlas provides improved contrast form the top of the brain to the 

bottom of the cerebellum and has been integrated into many brain mapping software.  

2.2.2 Image Pair: Intra- and Inter-Subject Registration 

Returning to the definition, registration is the process of alignment between an image pair, 

of which the pair of images to be registered can differ in many ways. The images can be from the 

same subject – intra-subject registration – or different subjects – inter-subject registration [16]. For 

example, Woods et al. demonstrates the performance of their automated intra-subject registration 

technique on the same patient with eight different PET scans [38]. The technique uses voxel-to-

voxel intensity ratios and aligns each slice in order to minimize variance across all voxel ratios. 

An example of inter-subject registration is the work from Collins et al., which registers MR images 

from different subjects to a standardized space [35]. Inter-subject registration poses a particular 

problem due to the dissimilarities in brain sizes and shapes, or inter-subject variability, and if 
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acquired from different imaging sites, image parameters such as slice thickness, pixel size, and 

resolution can also pose difficulties in performing the task [15][39].  

2.2.3 Image Pair: Mono- and Multi-Modal Registration 

The image pair can also differ in terms of the sensor used to perform each image acquisition. 

The image pair can be from the same image acquisition type – called mono-modal registration – 

or from different acquisition types – multi-modal registration. The previously mentioned method 

by Woods et al. – later to be developed as the technique AIR [38]– is an example of monomodal 

registration, but has been extended to multi-modal intra-subject registration as well. The method 

differs slightly, however, as corresponding voxels between MR and PET differ in intensity [38]. 

To accommodate the extra imaging modality, the method utilizes manual skull-stripping to remove 

all non-brain structures for easier correspondence, and then partitions MR pixels into tissue type 

to best match to the same tissue type found in the PET image using weighted averages of the 

normalized standard deviations of the MR pixel values. This is just one of the many ways that 

multi-modal image registration can be performed.  

2.2.4 The Registration Process: Transformation Model  

The process of image registration itself varies greatly, but can be fundamentally broken down 

into three main components: (1) determining the transformation model to register a moving image 

to a fixed image, (2) determining a measure of similarity between each image of the image pair, 

and (3) determining the search strategy or optimization technique to obtain the transform that 

maximizes similarity between the image pair [15] [16] [17] [40] [41]. Each of these components 

can be interpreted in many different ways and applied using many different techniques. 
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When discussing the first component of the registration process, a transformation between 

an image pair refers to a mapping of the voxels from the moving image to the fixed image space 

[16]. The transformation can be local or global, that is, it can be used to register an entire image 

or only a region of an image [15]. Transformations can be rigid or non-rigid. Rigid registration has 

transformations which only involve rotation or translation of the moving image to the fixed image 

space. For example, if you have a 3D moving image to be registered to a 3D fixed image, there 

would be a total of six degrees of freedom, or parameters, accounted for in registering the moving 

image: three parameters for rotation in the x, y, and z directions, and three parameters for 

translation in the x, y, and z directions. Non-rigid transformations encompass many different 

transformation types, including affine, projective, and curved.  

Affine transformations include twelve parameters, and account for translation, rotation, 

scaling, and shearing in the x, y, and z directions of a 3D image. Affine transformations are 

categorized as linear transformations, along with rigid transformations [40]. If one can think of an 

affine transformation as a mapping of parallel straight lines onto parallel straight lines, projective 

transformations could be defined as mapping straight lines onto straight lines, but here parallel 

straight lines are not constrained to remain parallel [17]. Curved transformations are considered a 

higher order transformation which map straight lines onto curved lines [17] [41]. They are also 

commonly referred to as deformable, elastic, or fluid transformations and are categorized as non-

linear registration in the literature [15] [16] [18].  

Choosing the appropriate transformation type depends on which anatomical structures are 

being registered, as well as the computation power or time available to perform the task, since non-

rigid registration consumes more computational resources than most rigid registration techniques 

[42]. An example where rigid transformation is preferred is when registering rigid anatomical 
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structures, such as bones. For example, Rasoulian et al. used a rigid registration method to 

individually register CT images of vertebrae to intraoperative ultrasound images for spine 

registration during surgery [43]. The use of rigid registration on individual vertebrae and 

amalgamating the information for the whole spine facilitates updated patient-to-image mapping 

during spine surgery and other image-guided spinal procedures, where there exist differences in 

patient position during scanning versus during the procedure. Besides the spine and other bones, 

most parts of the body are considered fluid, or viscoelastic, and thus require non-rigid forms of 

registration in order to compensate for tissue deformation [31] [40]. While rigid transformations 

are usually global transformations, non-rigid transformations can be local or global. Curved 

transformations are typically favoured in most registration task settings, since they are capable of 

mapping viscoelastic tissues while preserving viscoelastic tissue properties [15].  

In general, there are two types of curved transformations: free-form transformations (usually 

referred to as free-form deformations or FFDs) or guided transformations [15]. FFDs allow any 

deformation, while guided transformations rely on models which take into account material 

properties of the tissue to control the deformations to the moving image. Guided transformations 

include flow-based models, such as fluid flow and optical flow. [15] [40].  

Flow-based transformations model the movement between the moving and fixed images 

over time, and can be divided into two categories: fluid flow and optical flow [15] [16]. Fluid flow-

based models model the fluid movement of one image to another, while optical flow uses intensity 

values in the images as a similarity function to drive the movement of one image to another.  

FFDs solve for the mapping of the moving image to the fixed image space using a grid of 

control points [15]. These control points are capable of moving individually according to a given 
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similarity measure. These points within the transformation are interpolated from the moving to the 

fixed image using radial basis functions such as thin plate splines (TPS) or B-splines. Radial basis 

functions are capable of local geometric distortions and are thus beneficial in non-linear 

registration [16]. 

Regardless of the transformation model, be it rigid, affine, or FFD or flow-based, resampling 

methods or interpolators are required to estimate the similarity function. Common interpolating 

functions or resampling functions include cubic B-splines, TPS, tri-linear interpolation, and the 

nearest neighbour function, among others [16]. Resampling or interpolation can work in a forward 

direction, or a backward direction. A forward approach takes the voxels from the moving image 

and maps them according to the transformation model in the fixed image space [16]. This approach 

is risky, however, since it may produce holes or overlaps of voxels in the moved image (where the 

moved image is the moving image registered in the fixed image space). A backward approach 

takes into account the voxel coordinates of the fixed image and uses the inverse of the 

transformation to identify the location of the voxels from the moved image in the fixed image 

space [16].  

Another important aspect of the transformation model is its invertibility and ability to 

preserve topology. One way to guarantee both is to use diffeomorphic transformation models. A 

diffeomorphic transformation is an invertible function that maps one manifold to another such that 

both the forward and inverse transformations are smooth and differentiable [44]. A diffeomorphic 

transformation, in theory, preserves topology.  To illustrate, if one were given a task to physically 

align two real objects, and the only way to successfully complete this task is to tear or fold one of 

the objects to match the other, this would be a case where topology was not preserved [18]. The 

same can be applied to the registration of brain images. It is desirable to maintain image topology 
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(in terms of connectedness and boundaries) of both images during the registration process; hence, 

diffeomorphic registration techniques are preferred. Diffeomorphic registration techniques have 

invertible transformations, which implies that the transforms have a one-to-one mapping of the 

moving image voxels to the moved image voxels, and also preserve topology [15] [44]. Invertible 

transforms are transforms capable of “undoing a registration”; that is, reversing the direction of 

the transformation such that the moved image reverts to the original moving image. For inter-

subject registration, topological differences between subjects may produce unrealistic 

transformations; for example in non-diffeomorphic registration methods, folding or tearing is 

possible when there is no correspondence in a given image location – like when the region of one 

gyrus of one subject is represented by two gyri in another [13] [44]. Diffeomorphic transformations 

are especially important here to ensure a continuous differential transformation which preserves 

topology. For reference in this thesis, both VoxelMorph and ANTs SyN claim diffeomorphic 

registrations. While in theory, diffeomorphic transformations are possible, in practice implications 

during implementation may not always results in diffeomorphic transformations. 

2.2.5 The Registration Process: Similarity Measure 

The second component of the registration process is determining a similarity measure 

between the two images. A similarity measure between an image pair is defined as a characteristic, 

metric, function, or quality that describes this similarity or dissimilarity of two images [15] [45]. 

Ideally, similarity measures would be capable of associating two images to one another down to 

the voxel level, to create a one-to-one mapping.  

Many review papers on image registration classify similarity measures into two categories: 

intensity-based (or area-based) similarity measures, and feature-based (or geometric-based) 
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similarity measures [15] [16] [18] [41] [45]. A popular review paper on medical image registration 

by Maintz et al. classifies similarity measures differently, and includes similarity measures that 

are not image-based [17] such as physically invasive markers implanted or fixed onto the skull of 

the patient, like fiducial markers or a stereotactic frame. For the purpose of this Background 

Chapter, only image-based similarity measures are considered. 

Intensity-based similarity measures are commonly computed in the regions which overlap 

between the fixed and moving images [15] [45]. They include comparison of raw intensity values 

of the voxels, intensity gradients, and statistical or mathematical criteria based on voxel intensity 

[15] [16] [17] [18] [45]. Statistical and mathematical criteria based on voxel intensity include 

measures such as cross-correlation, sum of squared differences (SSD), information theory, and 

Fourier domain-based measures [15] [16] [17] [18] [45].  

Some similarity measures are more popular in particular registration tasks; for example, most 

cross-correlation and SSD similarity metrics are suitable for mono-modal registration tasks, but 

fail in most multi-modal registration tasks since the same tissue type in the fixed image may have 

very different intensity values in the moving image [18]. The SSD similarity metric assumes the 

fixed and moving images have identical image intensity properties apart from some Gaussian 

noise, and correlation-type similarity measures assume a linear relationship between the intensities 

in the fixed image and the intensities in the moving image, hence making it unsuitable for multi-

modal registration tasks. However, correlation ratio and mutual information similarity measures 

work well for multi-modal registration tasks [18]. Generally, a correlation ratio similarity metric 

utilizes a ratio of the intensities from the same tissue type in both the moving and fixed images to 

guide the registration. Mutual information is an information theory-type similarity metric which 

typically uses Shannon entropy, computed using the joint probability distribution of the voxel 
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intensities in the moving and fixed images. A potential disadvantage of intensity-based similarity 

metrics used in registration tasks is that the anatomical data are not considered, that is, the 

structural or boundary information within the image [18].  

Feature-based (or geometric-based) similarity metrics use explicit structural information 

from moving and fixed images [18]. Some feature-based similarity metrics require user input to 

define structural or anatomical regions to use for registration, but this is not always the case [17] 

[18]. Structural or anatomical features used as similarity measures can vary from points to lines to 

surfaces. Feature-based similarity metrics are generally used in rigid or affine registration tasks 

[18] [41], but can be used in some non-linear registration tasks as well [46]. Sometimes feature-

based similarity metrics replace manual identification of structural landmarks with automatic 

segmentations to automatically (or semi-automatically) drive the registration, however these 

methods are limited by the quality of the segmentation [17]. Once anatomical or structural features 

are pulled from the image, distance measures, such as Euclidean distance, Mahalanobis distance, 

chamfer distance, and an SSD method called sum of squared distances, are used in the cost function 

to drive the registration [15] [17] [45]. Typically the features used are spread throughout the image 

so as to not bias the image by an alignment in one particular area [18]. Obviously, a disadvantage 

of using a handful of points, curves, or surfaces to drive the registration is that much of the image 

information is unused, unlike with intensity-based similarity measures where the whole volume 

can play a role in the registration. Some registration methods opt for a combination of intensity-

based and feature-based similarity measures to improve registration accuracy [47] [48] [49].   

The similarity measure, once selected, whether intensity-based or feature-based, is usually 

placed in a cost function which takes into account the parameters of the transformation (i.e. rigid, 

affine, FFD, flow-based, etc.) and, depending on the transformation type, the cost function can 
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also include smoothness constraints (i.e. for non-linear transformations: FFDs and flow-based) 

[15] [16] [17] [18] [41] [45]. Common smoothness constraints, or regularization terms, include 

bending energy or second order derivatives of the transformation model, and the Jacobian of the 

transformation model [15] [17] [44]. The parameters of the transformation are found using an 

optimization strategy as described in the next section.   

2.2.6 The Registration Process: Optimization Strategy 

The third component of the registration process is the optimization strategy. Optimization 

here refers to the way in which the best transformation between an image pair is found such that 

the similarity measure between the images is maximized [18]. Choosing an optimization strategy 

depends on the transformation type, the similarity measure, the cost function, and the desired 

accuracy of the registration.  

There are typically two types of optimization strategies (besides brute force search of course) 

which are categorized into continuous and discrete methods [40] [44]. Continuous optimization 

strategies involve continuous variables, and require the cost function to be differentiable [40] [44]. 

Examples of continuous optimization techniques include gradient descent, conjugate gradient 

descent, Powell’s optimization, downhill simplex method, Quazi-Newton optimization, 

Levenberg-Marquardt optimization, Newton-Raphson iteration, and stochastic gradient descent 

[15] [17] [40]. Discrete optimization strategies work the same way in that the strategy attempts to 

minimize the cost function while maximizing the image similarity, but does so using a set of 

discrete values [40]. Discrete optimization does have the advantage of being more efficient than 

continuous optimization but may not find the most optimal solution given its restrictions using a 

discrete set of parameters. Examples of discrete optimization methods include graph-based 
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methods, Markov Random Field, message passing methods, and linear-programming methods [40] 

[44]. 

Constraints in a cost function become very important especially when using an optimization 

strategy. The sole purpose of an optimization strategy is to find the transformation parameters that 

maximize the similarity between an image pair. So an optimization strategy may appear to do a 

good job because the similarity between a pair of images is near perfect, but this may not preserve 

topology in the case of non-linear transformations [18]. This is why it is important to have a 

transformation that is diffeomorphic, and a cost function (including the similarity metric) which 

constrains optimization.  

Now that an understanding of registration and its various processes has been established, 

related work to the thesis must be discussed. To repeat, the purpose of this thesis is to compare a 

DL-based non-linear diffeomorphic registration technique against the classic technique ANTs 

SyN. Therefore, a review of classic registration techniques is required, to gain knowledge of what 

is considered the benchmark in brain image registration, and then later introduce emerging DL-

based non-linear registration techniques.  

2.3 Related Work in Non-Linear Diffeomorphic Registration 

The eight classic techniques that will be discussed in this section are the top performing 

classic registration techniques which also promise diffeomorphic transformations, several of 

which are evaluated in the most recent evaluation of non-linear brain registration techniques by 

Klein et al. [50], while others are mentioned in several review papers [15] [16] [44]. The 

techniques are listed in chronological order of publication, and their methods are discussed in terms 

of the transformation model (and how the transformation is guaranteed to be diffeomorphic), the 
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similarity metric, and the optimization strategy employed, as well as how the method was 

evaluated and applied to a registration task. The list of classic methods comprises the following: 

Small-Deformation Inverse-Consistent Linear-Elastic Image Registration (SICLE) algorithm 

published in 1999 [46], Large deformation diffeomorphic metric mapping (LDDMM) published 

in 2004 [51], Jensen-Rényi Divergence (JRD) Fluid registration method published in 2006 [52], a 

diffeomorphic FFD algorithm published in 2006 [53], Diffeomorphic Anatomical Registration 

using Exponentiated Lie algebra (DARTEL) Toolbox published in 2007 [54], Diffeomorphic 

Demons published in 2007 [55], Advanced Normalization Tools (ANTs) Symmetric image 

Normalization method (SyN) published in 2008 [6], and Deformetrica published in 2014 [56].  

2.3.1 SICLE 

Small-deformation Inverse-Consistent Linear-Elastic image Registration, or SICLE, is a 

non-linear image registration algorithm developed by Johnson et al. [46] which builds on the very 

first non-linear diffeomorphic registration method by Christensen et al. [57]. The transformation 

model is an FFD which utilizes a thin-plate spline (TPS) interpolator, a radial basis function that 

is based on the energy needed to deform a thin metal plate. SICLE uses both intensity-based and 

feature-based measures as its similarity metric, making this a two-step process. The first step uses 

non-rigid landmark registration for large deformations to essentially align boundaries. 

Corresponding landmarks are chosen from both datasets in the image pair, and the transformation 

is optimized by minimizing the bending energy. The second step utilizes intensity-based 

registration to make small deformations, while maintaining feature-based correspondences from 

the first step. Intensity and landmark-based registration steps are alternated until an adequate 

solution is found. To achieve a diffeomorphic transformation, the forward transformation is 

averaged with the inverse of the reverse transformation, and vice versa. This claims to reduce the 
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effects of large inverse consistency errors, as forward and inverse transformations have more 

correspondence between one another. However, an evaluation of topology preservation was not 

mentioned, so it is questionable whether true diffeomorphic transformations occur for every image 

pair to be registered. The SICLE algorithm was applied to MRI data to demonstrate that using 

landmark and intensity-based similarity measures together achieve better results than using either 

measure alone.  

2.3.2 LDDMM 

Large Deformation Diffeomorphic Metric Mapping, or LDDMM, is a non-linear registration 

technique developed by Beg et al. [51]. The registration technique is based on derivations from 

the Euler-Lagrange equations proposed for the “image-matching problem” from two other 

publications [58] [59]. Euler-Lagrange Equations are partial derivatives used to solve for a 

stationary velocity field. The technique models the transformation as a velocity field or flow field 

[51]. The flow field is solved for using the Euler-Lagrange Equations, and by minimizing the 

intensity-based squared error norm dissimilarity metric between the images. Diffeomorphic 

transformations are guaranteed using the Jacobian of the transformation. A gradient descent 

optimization scheme is implemented to solve for the transformation. The algorithm demonstrated 

its capabilities by calculating geodesic distances between anatomical structures in databases of 

Schizophrenia and Alzheimer’s patients, where data had been obtained from a collaborating 

academic institution.  

2.3.3 JRD-Fluid 

A fluid registration technique using the Jensen-Rényi Divergence (JRD) measure as a 

similarity metric was developed by Chiang et al.[52]. JRD is an information-based measure, much 
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like mutual information, but with more degrees of freedom. The transformation type is modelled 

as a simplified partial differential equation flow field governed by the Navier-Stokes fluid model 

– a common set of equations to describe the momentum of viscous fluid [60]. The partial 

differential equation contains constraints to ensure that large deformations are smooth [52]. The 

flow field is computed using kernel convolution, or Green’s function of the linear differential 

operator, and is accelerated using fast Fourier transforms. To ensure a diffeomorphic 

transformation, only deformations with a Jacobian determinant of less than 0.5 are used. Of course, 

positive Jacobians are associated with smooth and continuous deformations fields, but specifically 

choosing a cut-off value of 0.5 was done to reduce precision errors which occur with larger positive 

Jacobian values [60]. This method was applied to detect brain shape changes in HIV/AIDS patients 

compared to normal controls in order to characterize cognitive impairment [52].  

2.3.4 Diffeomorphic Registration using B-Splines 

The paper this method is based off of initially proposed two methods, which are both 

diffeomorphic, to counter the comparisons at the time which showed that diffeomorphic algorithms 

outperform their non-diffeomorphic counterparts [53]. Only the more successful of two methods 

will be discussed.  

This method implements multi-level FFDs in order to gain the advantage of larger and 

smaller control-point spacings [53]. Larger control-point spacings ensure smooth, global 

transformations, while smaller control-point spacings allow for more localized transformations but 

are computationally expensive. The control-point spacings are constrained using a “hard 

constraint” approach, where the maximum displacement of a control point is given by a 

predetermined bound [61]. Since the final deformation is built upon several concatenated FFDs, if 
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each FFD is diffeomorphic, the overall transformation is diffeomorphic [53]. All FFDs in this 

model are regularized by B-spline interpolation to ensure smooth deformations. The similarity 

measure used in the cost function is normalized mutual information, and the cost function includes 

a regularization term to ensure smoothness. The optimal registration between two images is found 

when the cost function is minimized, but no optimization strategy was mentioned which would 

accelerate this calculation and hence it is assumed that this method performs slower to other 

diffeomorphic registration methods. The method was used to register 20 T1-weighted MR images 

from normal subjects, and the registration performance was evaluated using manual anatomical 

segmentations. Results showed similar accuracy compared to non-diffeomorphic techniques but 

had the added benefit of preserving brain topology.  

2.3.5 DARTEL 

Diffeomorphic Anatomical Registration using Exponentiated Lie algebra (DARTEL), is a 

recursive non-linear diffeomorphic image registration technique developed by John Ashburner 

[54]. The technique uses a flow field transformation model and models the movement from the 

moving image to the fixed image using differential equations. The Euler method solves the 

differential equations by integrating over small steps in time [62], and a scaling and squaring 

method is used to enable faster integration [63]. In theory, to ensure a diffeomorphic 

transformation, the flow field is considered a Lie algebra [54]. Lie algebra is a bracket which 

contains three axioms, one of which is the Jacobi identity. The Jacobi identity is advantageous here 

since positive Jacobian determinants imply diffeomorphic properties, as seen in previously 

discussed methods in this chapter [51] [52]. The voxel-wise mean-square difference between the 

image pair was used as the similarity metric, which is beneficial in template-based inter-subject 

registration tasks [54]. The cost function is comprised of the prior probability of the flow field, 
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which ensures a realistic transformation, and the posterior probability of the flow field. The 

optimization function used to minimize the cost function is the Levenberg–Marquardt algorithm, 

which required the first and second derivatives of the flow field, found recursively using a brute 

force method – a full multigrid approach. A full multigrid approach was used here because they 

are computationally efficient at convergence using different spatial scales. The method was tested 

by creating a template from 471 T1-weighted MR images, comprised of both men and women 

from various ages [64]. The flow fields of each subject were then taken and used to predict the age 

and the sex of the subject [54]. Successful prediction results indicated that the deformations were 

precise enough to encode the necessary shape information to predict age and sex.  

2.3.6 Diffeomorphic Demons 

Diffeomorphic Demons, proposed by Vercauteren et al. [55], is a non-rigid registration 

algorithm which uses Thirion’s Demons algorithm [65]. Thirion’s Demons algorithm uses an 

analogue of Maxwell’s Demons, a theory in which ‘Demon forces’ control a membrane between 

two chambers of gas. The Demon forces are capable of controlling the membrane by which fast 

and slow particles can permeate in only one direction, respectively. The result being that one 

chamber has only high energy gas particles and the other chamber has only low energy gas particles 

[65]. This theory contradicts the second law of thermodynamics due to the decrease in entropy 

from the final result. Demons forces are used in image registration by assuming that the boundaries 

of anatomical objects within the image are like this membrane, and the particles are scattered 

throughout the image and bound by their membranes. In order to match a fixed and moving image, 

the Demons forces work to move the particles across each of the membranes using a deformable 

grid approach. In addition, local anatomical characteristics are accounted for such that the 
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membranes match. The implementation of Thirion’s Demons by Vercauteren et al. uses this 

‘diffusing model’ approach for non-linear registration [55].  

The transformation model of Vercauteren is an optical flow model, just as with Thirion’s 

method [55] [65]. The transformation is expressed in the same way as with Thirion, using Demons 

forces, but additionally using the Jacobian determinant to determine if the transformation is 

diffeomorphic, and by assuming the deformation grid is a velocity vector field instead of a 

displacement field. The similarity metric used here is the voxel wise mean squared error, an 

intensity-based measure [55] with a Newton optimization strategy. The algorithm was compared 

with other methods and was shown to have been diffeomorphic and to perform smoother inter-

subject registration with BrainWeb20 images [9] [55]. 

2.3.7 ANTs SyN 

Advanced Normalization Tools (ANTs) Symmetric image Normalization method (SyN) is a 

non-linear diffeomorphic registration method developed by Avants et al. [6]. ANTs SyN, like 

LDDMM [51], uses Euler-Lagrange equations to solve the stationary velocity field which 

represents the transformation model of the moving image. This technique uses cross-correlation 

as a similarity metric in a diffeomorphic as well as “inverse consistent”, or symmetric 

normalization, case [6]. Computing the cross-correlation Euler-Lagrange equations is 

symmetrized through a Jacobian operator, reducing the computation time significantly. The 

technique guarantees diffeomorphic transformations by including invertibility constraints during 

the optimization. The optimization itself is done by computing the two half velocity fields for each 

direction of image movement: moving to fixed image and fixed to moving image. Both Euler-

Lagrange equations are computed in parallel to find the maximum cross-correlation between the 
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two images, and then their inverses are computed in order to generate a full solution in the direction 

of the moving to fixed image. ANTs SyN was evaluated against two other methods: Thirion’s 

Demons algorithm [66], and an elastic cross-correlation optimizer2 [67]. All three methods were 

to perform an inter-subject registration of twenty T1 MR images from ten normal elderly and ten 

Frontotemporal Dementia (FTD) patients in order to characterize patients for the disease based on 

volume measurements of different brain structures [6]. The Dice score calculated from the images 

registered by ANTs SyN most closely matched those of the gold standard volume measurements 

compared to the other two methods, indicating that ANTs SyN is reliable in normalization and 

volumetric measurement tasks. ANTs SyN has shown better performance in terms of accuracy and 

computation time compared to all other classic methods listed in this Chapter [50]. Because of its 

success in the literature, and despite its age, ANTs SyN will be compared to VoxelMorph in the 

validation study, discussed in Chapter 3. 

2.3.8 Deformetrica 

Deformetrica is a template-based non-linear registration technique developed by Durrleman 

et al. [56]. This algorithm was used to study shape differences between normal controls and 

patients with Down Syndrome. The registration works in a semi-automatic manner, where the user 

specifies the number of control points (in the tens or low hundreds) on a template that will 

parametrize the deformation field. The template is a series of labelled meshes, with initial control 

points located at the most anatomically variable points. Each image that is to be registered to the 

template is matched to the template using a similarity measure known as a “varifold metric”, 

adapted from Charon and Trouvé, which are manifolds that contain unoriented tangent vectors, 

 
2 Note that this method is an inter-subject registration method but does not promise diffeomorphic transformations 

and hence was not listed as a classic method in this thesis.  



 27 

and are useful in representing non-oriented shapes such as in brain images [68]. The varifolds drive 

the movement of the control points, which are modelled as a velocity field over time and are 

ensured to follow a diffeomorphic transformation so long as they are differentiable [56]. The 

registration process is optimized using Nesterov’s gradient descent method. Deformetrica is 

applied to eight controls and eight Down Syndrome patients to assess the shape differences in 

complex deep brain structures between the groups. Results show statistically significant 

anatomical differences between the groups despite the low number of subjects.    

In the comparison by Klein et al., ANTs SyN and Diffeomorphic Demons topped the 

comparison against DARTEL, JRD-fluid, and SICLE, with SyN having a slight advantage in some 

cases such as volume and surface overlap results [50]. Other techniques in this section: LDDMM, 

Diffeomorphic registration using B-splines, and Deformetrica were not compared to other 

techniques in their respective publications. However, the reader could select a registration method 

based on the application to which each method was used; for example, using LDDMM on 

Schizophrenia or Alzheimer’s data [51], or Deformetrica for data of patients with Down Syndrome 

[56]. 

2.4 Related Work in Registration Based on Deep Learning 

Before delving into the literature, a brief definition of deep learning is required. Deep 

learning is a branch of Artificial Intelligence (AI) comprising intelligent software which learns 

concepts in a hierarchical manner and is able to predict complicated problems by breaking the 

problem down into simpler concepts [69]. Building the simple concepts one on top of another 

makes this type of AI “deep” learning, since many layers are required (many more so than, say, an 

artificial neural net). Briefly, deep learning layers typically include convolutional layers, pooling 
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layers, and drop-out layers to name a few, Convolutional layers use kernels with activation 

functions to convolve with the image and produce lower level features [69]. Pooling layers provide 

a summary of the outputs from the convolutional layers and allow invariance in the presence of 

small changes to the input of the deep learning architecture [69]. Dropout layers are used as 

computationally inexpensive method for regularizing models [69]. Together, these layers can 

provide a basic Convolutional Neural Network, a commonly employed deep learning architecture 

[69]. However, there are other architectures that can be employed, even in the case of image 

registration as will be seen in this section. For a more in-depth understanding of deep learning, 

please refer the book titled, “Deep Learning” written by Ian Goodfellow et al. [69].  

Search criteria for related work in DL-based registration included the following: The words 

“deep learning” “registration” were used in PubMed. Papers were excluded if DL-based 

registration was not applied to brain images, or was not non-linear, or if the method was only used 

to supplement part of a registration pipeline, where the bulk of the registration was done by a 

classic method. Resulting from this search are six methods, which are discussed in the following 

six subsections, in chronological order. The methods are discussed similarly to the related work in 

Section 2.3, in terms of the transformation model, similarity metric, optimization strategy 

employed, as well as the evaluation and application of the method. However, since the DL-based 

methods may not follow classic methods of how their deformation fields are derived, details such 

as DL architectures used, inputs, outputs, training and testing employed, and other DL related 

topics necessary for a comprehensive summary, are noted.  
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2.4.1 Self-Supervised Fully Convolutional Network 

This registration algorithm by Li and Fan proposes “deep self-supervision” in their Fully 

Convolutional Network (FCN) to register an image pair [70], where what they call “deep self-

supervision” is advantageous to other methods discussed later in this section. An FFD 

transformation model type is predicted using the FCN, shown in Figure 1. The FCN architecture 

contains several layers which replace conventional registration approaches from classic methods. 

For example, regression layers create image pairs at various resolutions, which are then used to 

predict deformation fields at these resolutions. Deconvolutional layers then upsample these 

deformation fields, essentially interpolating the displacement vectors in the deformation field, thus 

replacing a B-spline or TPS interpolation. The FCN contains a loss function with regularization 

parameters for smoothing, as well as a similarity measure of normalized cross-correlation, which 

is used to predict the deformation fields at each resolution level. This multi-resolution prediction 

is what they call “deep self-supervision”. Conventional optimization strategies are replaced with 

forward and backpropagation during training. The network has a two-channel input which takes 

the fixed and moving images, and outputs a single deformation field. What was not discussed in 

this publication was how the deformation field is applied to the moving image. 

The authors used the publicly available ADNI databases [71], as well as the LONI LBPA40 

database [72] in two separate experiments. The ADNI data was used for an inter-subject 

registration task for the hippocampus. All volumes from ADNI GO and ADNI 2 were used for 

training, leaving 9600 image pairs from ADNI 1 left for testing. The LBPA40 data was used for 

an inter-subject registration of 54 different brain structures, where the ROIs had publicly available 

manual gold standard segmentations. Thirty volumes were used or training with the remaining 10 

volumes saved for testing. The proposed method, in both experiments, was compared against 
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ANTs SyN, where performance was measured by Dice overlap of the 54 brain structures. Results 

from the ADNI experiment and the LBPA40 experiment showed slightly better Dice scores for the 

FCN-proposed method than for ANTs SYN. Although this method presents itself like 

VoxelMorph, ultimately VoxelMorph does present itself as a superior method since it promises 

diffeomorphic transformations.  

  

 

Figure 1: Fully Convolutional Network architecture (inspired by Li et al. [70]), showing the 2-input channel with 

fixed and moving images, three regression layers which extract multi-resolution deformation fields, and 

deconvolution layers which interpolate each deformation field through upsampling. An overall loss function 

controls for the resulting predicted deformation field and contains regularization parameters for smoothing and 

normalized cross correlation as a similarity metric. 
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2.4.2 PCANet 

This registration method uses a Principal Component Analysis (PCA) based DL framework 

to learn features from a pair of images to be registered and uses these features to perform a non-

rigid registration, making it advantageous in multimodal registration tasks. Briefly, PCA is an 

orthogonal linear transformation which is used to reduce the dimensionality while maximizing 

variability of a given dataset [73]. It works by solving for the largest eigenvalues and 

corresponding eigenvectors of a given image. PCANet uses an FFD-based transformation model, 

with B-spline interpolation [74]. The transformation model uses an objective function which 

comprises the similarity metric and smoothness term. The feature-based similarity metric 

calculates the Euclidean distance between the structural representations (as described below) of 

the image pair, which are predicted by the DL network. The network architecture, shown in Figure 

2, contains two stages. The first stage takes image patches from the image pair, subtracts the patch 

mean from each image patch, and vectorizes the remaining information. PCA is then used to reduce 

the dimensionality of the vectors and produce eigenvectors (sorted in decreasing order of 

eigenvalue) which are used as convolution kernels. These convolutional kernels are then used to 

convolve the image patch pair to produce feature information which is used as input to the second 

stage in the network. The second stage takes the output from the first stage, removes its mean, is 

and vectorizes and condenses it in dimensionality using PCA to produce eigenvector convolution 

kernels, which are used to convolve the second stage input. The output from the second stage and 

the first stage are used to produce the fused feature image, or structural representation, which 

drives the registration. The FFD transformation is obtained by applying the cost function, which 

includes the Euclidean distance of this structural representation as well as a smoothness constraint. 
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The cost function is used in the Limited memory Broyden–Fletcher–Goldfarb–Shannon (L-BFGS) 

optimization algorithm.  

 

Figure 2: PCANet architecture (with permission) from Zhu et al. [74], showing the first and second stages of the 

network which act to pull higher level and low level feature information. Each stage shows the same process of 

vectorization and calculating PCA eigenvector kernels on the image patch pair. The input is shown as the image 

patch and the output is shown as the structural representation map which is used to drive the registration. 

The network is trained in order to determine the weights of the convolution kernels in both 

stages 1 and 2. Five hundred images were used from a real brain database called Atlas [75] to train 

the network. BrainWeb20 [9], and a CT and MR image database called RIRE [76], were used for 

testing. The proposed method was evaluated using Target Registration Error (TRE) (i.e. the 

Euclidean distance between fixed and moving points) against four feature-based state-of-the-art 

methods: modality-independent neighborhood descriptor (MIND) [77], normalized mutual 

information (NMI) [78], Weber local descriptor (WLD) [79], and the sum of squared differences 

on entropy images (ESSD) [80]. Results show better TRE results using PCANet than with MIND, 

NMI, WLD and ESSD; however, these methods are not as well-known as the classic methods 
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listed in Section 2.3, and comparison to Diffeomorphic Demons or ANTs SyN would make the 

method more credible. 

2.4.3 Cue-aware Deep Regression Network 

Cao et al. developed this registration algorithm to successfully perform inter-subject 

registration between multiple databases and even databases with diseased populations [81]. The 

algorithm contains two networks which predict the similarity metric and displacement vectors for 

the deformation field, respectively, as shown in Figure 3. The similarity metric is a feature-based 

contextual “cue”, or map, which is generated from multiscale information obtained from the first 

network in the architecture, the Context Driven Network. The Context Driven Network contains 

both convolution layers and pooling layers for feature extraction and assembly at multiple image 

scales. The first network takes the image patch pair as inputs and outputs the contextual cue map. 

The contextual cue, along with the same image patch pair, are inputs to the second network in the 

architecture, the Deep Regression Network. This network predicts and outputs the displacement 

vectors for the image patch pair. These displacement vectors for all patches in one image pair are 

then interpolated using block-wise TPS to produce the final FFD-type deformation field.  

The network is trained on image patches, rather than an entire image, and therefore does not 

have the ease of end-to-end registration that some methods do. However, a novel sampling strategy 

called Key Point Truncated Balance sampling helps to reduce redundant feature and patch 

selection. The “key point” sampling, in the image space, obtains image points with large gradients 

to ensure patches with the most information are obtained, while the “truncated balance” sampling, 

in the displacement space, ensures maximum distribution between displacement vectors.  
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Figure 3: Cue aware deep regression network architecture (with permission) from Cao et al. [81], showing in the 

blue box patches of input image pair as inputs to both networks (labelled Part A and B in figure). The second 

network also takes the output from the first network, the contextual cue, as an input. The output of the second 

network is the deformation field of the image patch inputs (interpolated with TPS), shown in the orange box. 

The network was trained using 40 image patch pairs from 20 images from the LONI LBPA40  

database [72], and was tested using three databases in three different experiments. The first test 

used 15 LONI images, the second used images from the Information eXtraction from Images (IXI) 

database [82], and the third performed an inter-subject registration across the LONI and ADNI 

[20] databases. The experiments were used to compare the proposed method against three state of 

the art methods: ANTs SyN [6], as well as two Demons methods, SSD-Demons (i.e. the method 

mentioned earlier in this chapter) [55] and LCC-Demons (a Demons algorithm which uses a 

symmetric local correlation coefficient (LCC) as its similarity metric) [83]. The evaluation was 
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performed by measuring Dice scores between fixed and moving images, as well as by measuring 

the average surface distance. Grey and white matter segmentations were used, which had been 

produced from an automatic segmentation with manual corrections. Results from all three 

experiments showed comparable if not slightly better performance from the proposed deep leaning 

method. However, the three methods that this method is compared to create diffeomorphic 

registrations, while it is assumed that this method does not produce diffeomorphic transformations 

since they are not mentioned.  

2.4.4 Adversarial Similarity Network 

This registration technique is based on a General Adversarial Network (GAN), in which the 

similarity metric and deformation field are both predicted in this generator-discriminator network 

[84]. Generator and discriminator networks are trained using unsupervised adversarial training 

which is an advantage for this method. Adversarial training is also advantageous since it can 

improve the robustness of the network [85]. The discrimination network acts as the similarity 

metric, since it learns to discriminate between good and bad alignment of an image pair, 

represented by a similarity probability between 1 and 0 (good and bad, respectively) [84]. The 

discrimination network takes as inputs the deformation field, that is, the output from the 

registration network, and outputs the similarity probability. The registration network is a 

regression Unet, supervised by the similarity probability from the discrimination network. The 

registration network takes as inputs the image patch pair, and outputs the deformation field. The 

registration network is trained to convince the discrimination network that a good alignment has 

been made, so its cost function comprises both a smoothness term and a term to approximate a 

similarity probability of 1 between the image patch pair. After the registration network, a 

deformable transformation layer interpolates new voxel locations in the moving image using the 
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displacement vectors in the deformation field. The entire architecture can be seen in Figure 4. Of 

course, when testing occurs the registration network is used on its own. 

The networks were trained using 30 images from the LONI LBPA40 database [72], totalling 

26,000 image patch samples. The networks were tested using four public datasets [50]: the 

remaining 10 images from LONI LBPA40, Internet Brain Segmentation Repository (IBSR18), 

Columbia University Medical Center (CUMC12), and the MGH/MIT/HMS Athinoula A. Martinos 

Center for Biomedical Imaging (MGH10). The method was compared to Diffeomorphic Demons 

[55] and ANTs SyN [6]. Evaluation was performed by measuring the Dice score of 54 ROIs, in 

which the proposed method performed the best in 42 structures and were comparable in the other 

12 structures [84]. As with the previous DL-based method, this method is compared to techniques 

which produce diffeomorphic transformations, while it is assumed that this method does not 

produce such transformations as diffeomorphisms are never mentioned in the methodology.  
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Figure 4: Adversarial Similarity Network architecture and training strategy (with permission) from Fan et al. 

[84], showing 64x64x64 patches of fixed (template) and moving (subject) images as inputs to the registration 

network. The registration network outputs the deformation field of the image patch, which is used to deform the 

moving image (subject) to match the fixed image (template). The figure shows how the discriminator network 

is trained using positive and negative misalignment cases of registrations, acting as the similarity metric to 

determine goodness-of-fit.  

2.4.5 BIRNet 

This registration method offers a supervised method with ground truths obtained from classic 

methods [86]. BIRNet is a hierarchical dual-supervised Fully Convolutional Network (FCN) 

capable of end-to-end registration. That is, the network takes as inputs image patches, and outputs 

the displacement vectors for that image patch pair and is capable of predicting the entire 

deformation field from patches. What makes the network “dual-supervised” is contained within its 

loss function, which acts as the similarity metric. The loss function comprises the displacement 

differences between the predicted and ground truth deformations, where ground truth deformations 
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originate from both ANTs SyN [6], and Diffeomorphic Demons [55]; and the intensity differences 

between the moved and fixed images [86]. Both differences are calculated as normalized gradients 

and drive the registration process. The network architecture is a typical U-Net shape, but with 

additional layers in between to help make connections between the high and low-level features to 

which the authors refer to as “gap-filling” (See Figure 5).  

 

Figure 5: BIRNet architecture and training strategy (with permission) from Fan et al. [86]. The network takes a 

64x64x64 image patch pair as input which undergoes convolutions and deconvolutions in the Unet architecture. 

The Unet architecture contains “gap-filling” layers, which are additional layers between the Unet which bridge 

connections between high and low level features. BIRNet is trained with ground truth deformation fields from 

classic methods which is used in the loss function along with the predicted deformation field to optimize for 

goodness-of-fit. 

The network was trained on 54,000 image patches from 30 subjects of the LONI LPBA40 

database [72], with data augmentation performed through warping the images with percentages of 
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their ground truth deformations to increase robustness of the network. BIRNet was evaluated in an 

atlas-based registration, using the first image from LONI LBPA40 as the template, against 

Diffeomorphic Demons, LCC-Demons [83] and ANTs SyN among others. Testing was done using 

four public datasets: Internet Brain Segmentation Repository (IBSR18), Columbia University 

Medical Center (CUMC12), and the MGH/MIT/HMS Athinoula A. Martinos Center for 

Biomedical Imaging (MGH10), and the Information Extraction from Images database (IXI) [82]. 

Dice scores on ROIs of cortical grey structures indicate BIRNet has the best performance; however 

dice score alone is not an accurate measure of goodness-of-fit [8]. BIRNet was compared against 

two diffeomorphic registration algorithms but fails to produce diffeomorphic transformations 

itself.  

2.4.6 VoxelMorph 

VoxelMorph is a DL-based non-linear diffeomorphic registration algorithm developed by 

Dalca et al. [5]. The advantage of VoxelMorph over other learning-based registration methods is 

its end-to-end unsupervised framework; therefore, no ground truth is required..  

Considering only the basic model shown in Figure 6, VoxelMorph uses a stationary velocity 

field as its transformation model, as introduced by John Ashburner in DARTEL [54]. The 

convolutional neural network, in this case a Unet, learns the stationary velocity field and spatial 

transformation layers perform the diffeomorphic integration to obtain the deformation field [5]. 

Specifically, the Unet takes as inputs the moving and fixed image which both go through a series 

of convolutions and deconvolutions to arrive at a prediction of the mean and covariance for the 

probabilistic model of the stationary velocity field. This posterior registration probability is 

estimated by the Unet in order to obtain the most likely registration field given the cost function. 
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The cost function acts as the similarity metric between the fixed and moving images. The cost 

function is a combination of the Expectation of the similarity between the fixed and moved image, 

and Kullback-Leibler (KL) divergence. KL-divergence is a measure of difference in probability 

distributions [87] and is used to guide the posterior registration probability closer in similarity to 

the prior probability of the stationary velocity field [5]. The network is optimized by stochastic 

gradient descent methods, which acts as the optimization strategy in comparison to classic 

methods. Once the network has predicted the stationary velocity field via the mean and covariance 

of the posterior registration probability, the deformation field is computed through seven scaling 

and squaring layers, which are similar to Euler integration as performed in DARTEL. The 

deformation field is then used to warp the moving image using a learned spatial transformer which 

resamples the moving image. The technique guarantees diffeomorphic registrations since each step 

in its framework is differentiable.  

The data used for training and testing were 3731 T1-weighted brain MRI scans from eight 

datasets [5]. These includes: OASIS [88], ABIDE [89], ADHD200 [90], MCIC [91], PPMI [92], 

HABS [93], and Harvard GSP [94]. Images were skull stripped using FreeSurfer [7], resampled to 

1 mm isotropic sampling, intensity normalized, and affine registered to the atlas. For training, 3231 

volumes were used, leaving 250 volumes for validation and 250 volumes for testing. Segmentation 

labels were automatically generated by FreeSurfer [7], and labels were compared against the atlas 

using Dice scores to evaluate their registration performance against ANTs SyN.  It is important to 

note that the transformation parameters for their version of ANTs SyN were altered to fit the 

“performance standards” of the proposed method. Briefly, this means the smoothness parameters 

of ANTs SyN were altered to produce results which would then be comparable to VoxelMorph, 
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but this comes to the detriment of ANTs SyN’s performance. VoxelMorph performed comparably 

to the modified ANTs SyN when evaluating Dice scores of 29 segmented brain structures.  

It is noted that VoxelMorph is one of few techniques mentioned here which have provided 

fully open source access to their methods. As stressed in the Introduction Chapter of this thesis, 

open source publications facilitate reproducibility in science and help drive innovation forward [1] 

[2]. Since its publication, VoxelMorph has been used as a baseline in another method called FAIM 

[95] by Kuang et al.  

 

Figure 6: VoxelMorph architecture (with permission) from Dalca et al. [5], showing inputs: atlas and moving 

image, as well as the Unet which predicts the mean and covariance of the posterior registration probability, p(z), 

to give the stationary velocity field, z. Seven scaling and squaring layers calculate the deformation field, which 

is then resampled to create the moved image.  

2.5 Evaluation Metrics 

Common evaluation metrics for image registration can be categorized into direct and indirect 

metrics. Direct metrics judge the misalignment between two images through measurements of 

distance, whereas indirect measurements judge misalignment, for example, using segmentations 
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of the registered images. Examples of metrics used in this thesis include direct metrics such as 

recovery error and indirect metrics such as Dice score, Cohen’s Kappa, and Hausdorff distance. 

The recovery error is used to compare two transformations, in this case, the recovered 

transformation and the simulated deformations in Experiment A. The recovery error is defined as 

the root mean square (rms) difference in position of a set of points transformed forward through 

the known transformation, and then back through the inverse of the recovered transformation.  

Equation 1 shows the recover error: 

𝑟𝑒𝑐 𝑒𝑟𝑟𝑜𝑟 = 𝑅𝑀𝑆((𝑥, 𝑦, 𝑧) − 𝑇𝑐(𝑥, 𝑦, 𝑧))    (1) 

where Tc is the concatenation of the forward transformation and the inverse of the recovered 

transformation. Dice score and Cohen’s Kappa are examples of overlap metrics, where two 

registered images have their segmentations overlain to see what percentage of the labels intersect  

[11]. The formula for Dice score is shown in Equation 2. 

𝐷𝐼𝐶𝐸 =  
2 |𝑆𝑔∩𝑆𝑡|

|𝑆𝑔|+|𝑆𝑡|
       (2) 

where Sg is the ground truth segmentation, St is the test or experimental segmentation, and | | 

represents the number of voxels [11]. Cohen’s Kappa tends to provide a more robust calculation 

of overlap, since Cohen’s Kappa takes into account the probability that overlap occurred by chance 

[11]. The formula for Cohen’s Kappa is shown in Equation 3: 

𝐾𝐴𝑃𝑃𝐴 =  
𝑃𝑎− 𝑃𝑐

1− 𝑃𝑐
      (3) 

where Pa represents when the two segmentations overlap, and Pc is the hypothetical probability 

that the segmentation overlap occurred by chance. Last of the indirect metrics is Hausdorff 
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distance, which measures the shortest distance between two furthest voxels in overlain 

segmentations of registered images. Hausdorff distance can be sensitive to outliers, so usually a 

95th percentile Hausdorff distance is used [11]. 

2.6 Moving Forward 

Proceeding to Chapter 3, the chosen DL-based registration method, VoxelMorph, will be 

evaluated against the original unmodified ANTs SyN in a paper whose contents have been 

submitted for publication in Medical Image Analysis. The paper is titled, “Evaluating VoxelMorph, 

a learning-based 3D non-linear registration algorithm, against the non-linear Symmetric 

Normalization technique from ANTs,” with authors Victoria Madge, Philip Novosad, Daniel A. 

DiGiovanni, and D. Louis Collins.  
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CHAPTER 3 

Results 

This thesis has discussed the importance of registration in medical image-analysis tasks. 

Recently, DL has found success in many image processing tasks, including registration, which 

have been reviewed in the previous chapter. Of the DL techniques studied, VoxelMorph appears 

as the first of its kind in end-to-end registration of whole images, producing a deformation field 

for inter-subject registration. It was directly compared to a non-learning state-of-the-art method, 

Advanced Normalization Tools Symmetric Normalization (ANTs SyN) published by Avants et al. 

in 2008 [6].  

In this chapter, VoxelMorph will be compared against ANTs SyN in an evaluation which 

includes both direct and indirect metrics, manual gold standard segmentations, and by using 

unaltered versions of both methods. The contents of the following paper have been submitted for 

publication in Medical Image Analysis. 
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registration algorithm against the non-linear Symmetric 

Normalization technique from ANTs 

Victoria Madgea, b, Philip Novosada, b, Daniel A. Di Giovannia, c, D. Louis Collinsa, b, c 

a McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada 

 
b
Department of Biomedical Engineering, McGill University, Montreal QC, Canada 

c
Department of Neurology and Neurosurgery, McGill University Montreal QC, Canada 

Abstract 

Medical image registration is the process of aligning two images of the same scene into the 

same image space and is considered a fundamental step in many image processing applications. 

Recently, deep learning has shown success in a wide variety of medical image analysis tasks, 

including image registration. VoxelMorph is a learning-based non-linear technique promising fast 

diffeomorphic registrations while claiming comparable results to ANTs SyN. However, the 

indirect comparison between the two methods was based solely on Dice scores of automatically 

segmented labels, and the smoothness parameters of the ANTs SyN algorithm were altered to be 

more similar to those of VoxelMorph. This paper aims to compare VoxelMorph against the native, 

unaltered ANTs SyN using both direct evaluation with simulated deformations and indirect metrics 

based on manual gold standard segmentation labels. Results from the first experiment show ANTs 

SyN significantly outperforms VoxelMorph in the presence of simulated deformation. 

Experiments with real data demonstrate VoxelMorph has a small but significant advantage in inter-

subject registration compared to ANTs SyN. 
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3.1 Introduction 

Medical image registration is the process of aligning two images of the same scene into the 

same image space. This is considered a fundamental step in many image processing applications 

[15] [16]. In particular, image registration plays important roles in the application of brain 

segmentation and atlas formation [13] [21] [22], diagnostics, treatment, and monitoring of various 

pathologies [23] [24] [25] [26] [27], as well as image-guided surgery and surgical planning [30] 

[28] [29], surgical simulation [96], and intra-operative brain shift correction [32] [33].  

For the registration of brain images between subjects, non-linear forms of registration are 

favoured since they are capable of compensating for tissue deformation [15] [31] [37]. However, 

a common problem among the use of non-linear transformations is the inability to maintain brain 

topology. Diffeomorphic transformations guarantee image topology preservation as well as 

transform invertibility in a one-to-one mapping between images [44].  

Recently, DL has shown success in a wide variety of medical image-analysis tasks, including 

image registration, but requires repeatability and validation to deem the techniques credible against 

the current state-of-the-art [4]. Reproducibility in science is imperative to give credibility where it 

is due, through replication and validation of another’s work [2]. This paper aims to evaluate the 

registration technique of VoxelMorph [5] to the state-of-the-art ANTs SyN [6]. 

3.1.1 Related Work 

Several state-of-the-art non-linear diffeomorphic registration techniques, termed “classic” 

methods here, have found success in various brain registration applications. The techniques 

mentioned here use different transformation models to deform the “moving” image to the “fixed” 
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image. Some techniques use Free Form Deformation (FFD) models, such as Small-deformation 

Inverse-Consistent Linear-Elastic image Registration (SICLE) developed by Johnson et al. [46]. 

SICLE uses an FFD model and thin-plate spline (TPS) interpolation, with intensity-based and 

feature-based similarity measures to achieve alignment [46]. Another technique developed by 

Rueckert et al. uses multi-level hierarchical FFDs in order to gain the advantage of larger and then 

smaller constrained control-point spacings, which ensures both smooth local and global 

transformations [53]. B-spline interpolations are then used to regularize the diffeomorphic 

registration of the moving image. Although not necessarily in all cases, the use of FFDs and their 

interpolators can pose problems in the form of holes or folds in the recovered image [16], which 

would not make the registration diffeomorphic. Johnson et al. have overcome this issue in their 

technique by constraining their FFD transformations using diffeomorphic fluidic properties [46], 

and Rueckert et al. ensures diffeomorphic transformations by limiting the maximum number of 

control point displacements for each FFD [53].  

Diffeomorphic Demons, proposed by Vercauteren et al. [50], uses Thirion’s Demons forces 

[65] to express an optical flow transformation model for diffeomorphic registration guaranteed 

using the Jacobian determinant [97]. The intensity-based voxel wise mean square error is used as 

the similarity metric, with a Newton optimization strategy. This technique has reasonable 

computation times compared to other non-linear techniques, but is outperformed in terms of 

accuracy by these very same techniques [50]. 

Other diffeomorphic techniques rely on flow fields or velocity fields to model the movement 

of one image to another, including Large Deformation Diffeomorphic Metric Mapping (LDDMM) 

[51], JRD-fluid [52], Diffeomorphic Anatomical Registration using Exponentiated Lie algebra 

(DARTEL) [54], Deformetrica [56], and Advanced Normalization Tools (ANTs) Symmetric 
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image Normalization method (SyN) [6]. In the model, the ordinary differential equation which 

represents the velocity field of the moving image can be solved using Euler-Lagrange Equations 

[6] [52], or similarly, Euler’s method [52][54]. The methods differ, however, in their approach to 

make the registration diffeomorphic and in the similarity metric used in the method. For example, 

LDDMM guarantees diffeomorphisms using smoothness constraints [51], while DARTEL uses 

the Jacobi identity in Lie Algebra [54]; similarly, JRD-fluid uses a positive Jacobian determinant 

threshold [52]. For similarity metrics, the JRD-fluid method uses the Jensen-Rényi Divergence 

information-based measure as a similarity function, Deformetrica uses a manifold of unoriented 

tangent vectors called varifolds as a similarity measure, as well as a template to drive the 

registration [56], whereas DARTEL uses a voxel-wise mean square difference measure [54]. 

However, of these velocity field-based techniques, ANTs SyN consistently ranked one of 

the best in diffeomorphic registration according to the most recent study evaluating fourteen non-

linear deformation algorithms applied to human brain MR images [50]. The Klein study [50] was 

cited by Dalca et al. as justification to determine which classic registration method to compare to 

VoxelMorph [5].  

ANTs SyN uses cross-correlation (among other similarity metrics) in a diffeomorphic and 

“inverse consistent” process known as symmetric normalization [6]. Computing the Euler-

Lagrange cross-correlation equations to solve for the velocity field is symmetrized through a 

Jacobian operator. The technique guarantees diffeomorphic transformations by including 

invertibility constraints during the optimization. The optimization is done by computing the two 

half velocity fields for each direction of image movement: moving-to-fixed and fixed-to-moving. 

Velocity field equations are solved in parallel to find the maximum cross-correlation between the 

two images. Their inverses are then computed in order to generate a full solution in the moving-
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to-fixed image direction. ANTs SyN has shown to be reliable in normalization and volumetric 

measurement tasks with Alzheimer’s Disease and Frontotemporal Dementia patients [98].  

Classic registration methods, while successful in their respective applications, often suffer 

from long computation times. Recently, deep learning has shown success in a wide variety of 

medical image analysis tasks, including image registration [4]. Learning-based registration offers 

potentially faster registration times with arguably comparable results. However, where the 

“learning” takes place in these non-linear registration techniques, comparable to classic brain 

registration techniques, can vary. 

PCAN net, for example, uses a deep learning framework to learn features from a pair of 

images to be registered and then proceeds with a more classic form of non-linear registration of 

two images [74]. The two-stage network takes image patches as inputs, which are then vectorized 

and passed through Principal Component Analysis (PCA) convolution kernels to extract pertinent 

high-level and low-level structural information. This information is used as a similarity metric in 

an FFD-type registration technique using B-spline interpolation. 

Other techniques use deep learning frameworks to predict the deformation field itself.  Some 

use image patches as inputs to address memory limitation issues, and thus cannot predict an entire 

deformation field in one go [70][81][84]. In their methods, Cao et al. are able to construct a final 

deformation field using TPS interpolation to interpolate between image patches [81]. Interpolation 

approaches are also utilized for Fan et al. [84], while Li et al. use deconvolutional operators to 

upsample, in order to interpolate the final deformation field [70].  

Two deep learning techniques capable of full deformation field predictions include BIRNet 

[86] and VoxelMorph [5]. BIRNet is a hierarchical Fully Convolutional Network (FCN) which 
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uses ground truth deformations from both ANTs SyN and Diffeomorphic Demons, as well as the 

difference between the fixed and moved images in a dual-supervision registration technique [86]. 

The FCN comprises a Unet with additional “gap-filling” layers to help make connections between 

the high and low-level features. However, the supervised nature of this technique is a disadvantage, 

since the registration results from classic methods are required as inputs to train the model. 

However, the second of the two methods – VoxelMorph – requires no ground truth. 

VoxelMorph has an advantage over other deep learning-based registration methods due to 

its end-to-end unsupervised framework [5]. VoxelMorph uses a stationary velocity field as its 

transformation model, with a similar theoretical background as DARTEL [54]. Here, the Unet 

learns parameters to form the stationary velocity field and spatial transformation layers perform 

the diffeomorphic integration to obtain the deformation field [5]. The Unet takes as inputs the 

moving and fixed image and outputs the prediction of the mean and covariance for the posterior 

registration probability. Once the network has predicted the stationary velocity field via the mean 

and covariance of the posterior registration probability, the deformation field is computed through 

seven scaling and squaring layers, which are similar to Euler integration as performed in DARTEL 

[54]. The deformation field is then used to warp the moving image using a learned spatial 

transformer which resamples the moving image. The technique guarantees diffeomorphic 

registrations since each step in its framework is differentiable. 

The authors of VoxelMorph claim to have diffeomorphic registration results comparable to 

ANTs SyN [6]; however, there are several points within the methodology and evaluation 

performed by Dalca et al. which could be improved. First, the training and testing of the 

VoxelMorph model was performed using FreeSurfer-based [7] segmentations of MRI volumes 

[5], and not manual gold standard segmentations [8]. Thus, segmentation errors in the 
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automatically extracted labels could confound registration quality metrics. Second, the smoothness 

parameters of the ANTs SyN algorithm were altered to be more similar to those of VoxelMorph 

[5], thus restraining ANTs SyN’s potential capacity to achieve a successful registration. Finally, 

the methods comparison was based solely on Dice scores, an indirect metric, which alone is not a 

complete evaluation of goodness-of-fit [8]. 

3.2 Methods 

The objective of this paper is to comprehensively evaluate ANTs SyN and VoxelMorph. 

This evaluation will be performed in three experiments, each serving a different evaluation 

purpose. 

3.2.1 Data 

Experiment A – Deformed VoxelMorph Atlas 

Experiment A evaluates how well both VoxelMorph and ANTS SyN can recover simulated 

deformations of a single image. While one could generate random deformations to test each 

method’s performance, such simulated transformations may not be realistic. Realistic 

deformations were estimated with Automatic Nonlinear Image Matching and Anatomical Labeling  

(ANIMAL) [13] to map individual subjects from the Alzheimer's Disease Neuroimaging Initiative 

(ADNI) database [20] to the VoxelMorph atlas. ANIMAL deformations were chosen here since 

they do not advantage either VoxelMorph or ANTs SyN, but give smooth, realistic estimates of 

the required deformations. The VoxelMorph atlas was chosen here since the VoxelMorph model 

has been trained to register moving images to this target atlas, and thus would not be at a 

disadvantage compared to using a different template. The VoxelMorph atlas was borrowed from 



 52 

another study published from the co-authors which provided an analysis framework for 

multimodal image studies with applications in stroke [99]. The atlas contains left and right 

hemisphere labels as well as deep grey structure segmentations including basal ganglia. 

The ADNI database is a publicly available database compiled of multicentre imaging data 

designed to advance research in Alzheimer's Disease detection and tracking [20]. Outside of this 

experiment, ANIMAL [13] was used to register images from the ADNI database, of varying 

disease severities, to a normal template. Briefly, ANIMAL estimates displacement vectors 

between a subject’s MRI and a template brain at various resolution levels, building a deformation 

field from these vectors [13]. The disease severity levels selected for this experiment include 

normal controls, early Mild Cognitive Impairment (MCI), late MCI, and Alzheimer's Disease. 

Thirty randomly selected ADNI-ANIMAL deformations for each disease severity were 

applied to the VoxelMorph atlas and its corresponding label, building a dataset of 120 different 

MRI-label pairs. The data for Experiment A is used to test the performance of both VoxelMorph 

and ANTs SyN to recover these simulated deformations. Since the VoxelMorph atlases are still in 

its own space after the deformations are applied, and the intensity of the image is unaltered from 

the original atlas, no pre-processing is required. 

Experiment B – BrainWeb20 

Experiment B uses the BrainWeb20 database, which comprises twenty T1-weighted digital 

MR phantoms created from twenty normal adults [9]. For each of the 20 subjects, ten manually 

corrected fuzzy mask brain structure volumes (e.g., cerebrospinal fluid (CSF), grey matter, white 

matter, fat, muscle, skin, skull vessels, connective tissue, dura and marrow) were used to simulate 

T1w MRI volumes. The simulator takes these tissue masks and changes them to intensity values 



 53 

using first principles block equations. Thus the data are digital phantoms which represent a 

physical distribution of human head scans and thus can be considered truth, and can help 

understand the accuracy in the performance of these two techniques [8].  

The BrainWeb20 MRI volumes underwent pre-processing similar to the VoxelMorph 

methodology [5]: skull stripping, affine registration to the original VoxelMorph atlas, and intensity 

normalization. However, pre-processing was completed using algorithms from the Minc Toolkit 

[12], a collection of image processing software released by the McConnell Brain Imaging Centre 

at the Montreal Neurological Institute. 

Experiment C - Neuromorphometrics 

Experiment C uses a database with gold standard manual segmentations from 

Neuromorphometrics [10]. The database comprises 93 unique T1-weighted raw MR volumes with 

labels of manually segmented neuroanatomical structures, inspected and certified by a 

neuroanatomical expert [10]. This database was chosen in order to evaluate both VoxelMorph and 

ANTs SyN on real MRI data with manual gold standard segmentations, an important step in 

validation [8]. Specifically, in this experiment, the performance of each method will be evaluated 

using labels from selected anatomical structures.  Due to computation constraints, twenty subjects 

were chosen from the 96 subjects at random. Computation constraints also restricted structure 

inclusion, whereby three cortical and three deep grey structures were chosen at random.  Cortical 

and deep grey structures were chosen specifically to see how the registration methods would 

behave when performing a non-linear registration to these regions. The three cortical structures 

that were randomly selected include: the middle temporal gyrus, the frontal pole, and the post-
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central gyrus; and the three deep grey structures that were randomly selected include: the 

amygdala, the hippocampus, and the thalamus. 

Similar to the data in Experiment B, the twenty selected Neuromorphometrics MRI volumes 

underwent skull stripping, affine registration to the original VoxelMorph atlas, and intensity 

normalization for pre-processing. All pre-processing was performed using the Minc Toolkit [12]. 

3.2.2 Metrics 

The evaluation metrics used in the experiments include both indirect and direct 

measurements. Indirect metrics are measured using the EvaluateSegmentation tool, an open source 

implementation of common and well-defined evaluation metrics for medical image segmentation 

[11]. The tool includes overlap-based metrics, volume-based metrics, pair-counting-based metrics, 

and distance metrics, which have all been implemented for simple one-label cases, and some 

metrics are applicable to multi-label cases. The EvaluateSegmentation tool [11] is used here to 

measure Dice score, Cohen's Kappa, and  Hausdorff distance . Dice score was selected to directly 

compare results published by Dalca et al. Cohen’s Kappa was selected as another overlap metric 

to provide a robust calculation of overlap, since Cohen’s Kappa takes into account the probability 

that overlap occurred by chance [11]. The Hausdorff distance metric was chosen in order to 

calculate the maximum error for each method. Since Hausdorff distance can be sensitive to 

outliers, a 95th percentile Hausdorff distance (hereby referred to as H95) is used to avoid potential 

outliers [11]. Other evaluation metrics from the EvaluateSegmentation tool [11] were considered 

redundant or were not applicable in the evaluation of registration methods. 

Direct measurements are possible with simulated data as the answer is known. The recovery 

error is used to compare two transformations, in this case the recovered transformation and the 



 55 

simulated deformations in Experiment A. The recovery error is defined as the root mean square 

(rms) difference in position of a set of points transformed forward through the known 

transformation, and then back through the inverse of the recovered transformation. Equation 4 

shows how the recovery error is calculated: 

𝑟𝑒𝑐 𝑒𝑟𝑟𝑜𝑟 = 𝑅𝑀𝑆((𝑥, 𝑦, 𝑧) − 𝑇𝑐(𝑥, 𝑦, 𝑧))    (4) 

where Tc is the concatenation of the forward transformation and the inverse of the recovered 

transformation. The recovery error is implemented using xfmconcat and transformtags algorithms 

from the Minc Toolkit [12] to combine deformation and moving to fixed transformation metrics 

and create a grid of points by which the NumPy library from Python [100] is used to subtract the 

grid of points of one image from another in order to get a physical distance between the points. 

The distances are averaged in each direction (x, y and z) and the rms of the distances is calculated 

as well, using Python.   

3.2.3 Experiment A 

The purpose of Experiment A is to evaluate the performance of both VoxelMorph and ANTs 

SyN in the presence of simulated deformations using both Dice, Cohen’s Kappa, H95, and 

recovery error.  

The pre-trained VoxelMorph model (https://github.com/voxelmorph/voxelmorph) was 

applied to the 120 deformed volumes generated for Experiment A to register each volume to the 

original VoxelMorph atlas. The algorithm was configured to output the transformation along with 

the recovered MRI volume and warp parameters. Each volume took approximately 30 seconds to 

1 minute to register on an NVIDIA TitanX GPU. Included in the VoxelMorph package was a 

https://github.com/voxelmorph/voxelmorph
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separate script which resampled the labels with the recovered transformation before calculating 

Dice scores. The VoxelMorph package from Dalca contained a separate script to apply the 

recovered transformation to resample the labels (using nearest neighbour) to calculate Dice scores 

internally. This script was modified to output the resampled labels so that the evaluation can be 

performed with EvaluateSegmentation. 

The ANTs SyN algorithm was applied to estimate 120 3D non-linear registrations to the 

original VoxelMorph atlas. The updated field includes 0.1, 3 and 0 which represent the gradient 

step at each fluid iteration, the update field variance limit at each fluid iteration, and the total field 

variance limit at elastic iteration (in this case, there is no elastic regularization) [101]. With three 

hierarchical levels, the maximum number of iterations is 70, 50 and 20 respectively, with a CC 

threshold (1e-6) which allows the algorithm to move on to the next level if CC does not improve 

within the convergence window of 10 iterations. The three levels have resolutions of 4, 2 and 1 

with default smoothing sigmas 2, 1 and 0. The algorithm output the recovered transformation, 

which was later used to resample the volumes and the corresponding labels using the resampling 

tool from the Minc Toolkit [12] [102]. Tri-linear interpolation was used to resample the MRI data, 

and nearest neighbour interpolation was used for labels [102]. The ANTs SyN technique took 

between 37 to 43 minutes to register each volume on a Xeon E3-1275 V6 CPU with 3.80 GHz 

clock speed. 

The recovered labels from both VoxelMorph and ANTs SyN were compared against the 

original VoxelMorph atlas labels using indirect metrics from the EvaluateSegmentation tool [11]. 

Brain masks (the union of all brain labels, i.e., grey matter, white matter and CSF) were used in 

this evaluation since some measurements in the EvaluateSegmentation tool, including H95 and 
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Cohen’s Kappa, cannot evaluate on multi-label files. The recovered transforms from both 

VoxelMorph and ANTs SyN were used to calculate the recovery error. 

3.2.4 Experiment B 

The purpose of Experiment B is to perform inter-subject atlas-based registration with both 

VoxelMorph and ANTs SyN using known MR volumes and their segmentations via a phantom 

database – BrainWeb20 [9]. The goal will be to see how well the subjects are aligned in the atlas 

template space by doing pair-wise comparisons of anatomical structures between different 

subjects. 

As in Experiment A, atlas-based registration using VoxelMorph and ANTs SyN was 

performed for Experiment B. While VoxelMorph resampled the MRI data internally, the ANTs 

SyN output was recovered using the resampling tool from the Minc Toolkit [12] [102] just as in 

Experiment A. Recovered labels were also resampled as in Experiment A; the label for the 

VoxelMorph output was resampled using the separate script mentioned in Section 3.2.3, and the 

label for the ANTs SyN output was resampled using Minc Toolkit [12] [102]. Once again, both 

labels were resampled using nearest neighbour interpolation into the template space. If the methods 

recovered the necessary transformations without error, the anatomy of all subjects would be 

perfectly aligned to the template and structure comparisons between subjects would achieve Dice 

and Cohen kappa scores of 1.0 and H95 distances of 0.0 mm. 

The original VoxelMorph label set was limited to left and right hemisphere segmentations, 

as well as some deep brain structural segmentations, which did not match the segmentations of the 

BrainWeb20 database [9]. Therefore, whole brain, grey and white matter, as well as CSF 

segmentations from BrainWeb20 [9] were used in pairwise comparisons between subjects. The 
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labels, transformed with simulated and recovered transformations were compared against one 

another within the target space and were evaluated using the indirect metrics from the 

EvaluateSegmentation tool [11]: Dice score, Cohen’s Kappa, and H95. 

3.2.5 Experiment C 

The purpose of Experiment C is to perform inter-subject atlas-based registration using both 

VoxelMorph and ANTs SyN using a database with manual gold standard segmentations from 

Neuromorphometrics [10]. In particular, the methods are evaluated on their ability to register 

anatomical structures. Twenty subjects and six anatomical structures were chosen to measure 

goodness-of-fit for both methods. 

Atlas-based registration using the pre-trained VoxelMorph model and ANTs SyN was 

performed for Experiment C as for Experiments A and B. Outputs and labels were recovered using 

the same methods as for Experiments A and B. As with Experiment B, recovered labels (middle 

temporal gyrus, frontal pole, and post-central gyrus, amygdala, hippocampus, and thalamus) were 

compared against one another within the target space and were evaluated using the indirect metrics 

from the EvaluateSegmentation tool [11]: Dice score, Cohen’s Kappa, and H95. 
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3.3 Results 

3.3.1 Experiment A 

Figures 7, 8 and 9 compare the whole brain Dice scores, Cohen's Kappa, and H95, 

respectively, for VoxelMorph and ANTs SyN in Experiment A. The boxplots are arranged on the 

x-axis by increasing disease severity, with the assumption that increasing disease severity increases 

the voxel displacement in the deformation. Disease severity increases from normal controls (nc), 

to early Mild Cognitive Impairment (emci), late MCI (lmci), and Alzheimer's Disease (ad). Results 

from a two-way analysis of variance (ANOVA) show there is little difference in Dice score 

between disease severities; however, the difference between methods is statistically significant (p 

< 0.001) for both Dice scores (Fig. 7) and Cohen's Kappa (Fig. 8), meaning ANTs SyN 

significantly outperforms VoxelMorph. Results from the two-way ANOVA show H95 results were 

not significantly different for method or severity (Fig. 9).  

Table 1 shows the results of the recovery error for both ANTs SyN and VoxelMorph in 

Experiment A. The table also shows average directional biases for x, y and z directions across all 

images, for each disease severity. From the table, results indicate that ANTs SyN significantly 

outperforms VoxelMorph (p < 0. 001).  
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Figure 7: Dice score results of ANTs SyN (green) and VoxelMorph (blue) with increasing voxel displacement 

represented by increasing disease severity: nc, emci, lmci, and ad. 

 

Figure 8: Cohen's Kappa of ANTs SyN (green) and VoxelMorph (blue) with increasing voxel displacement 

represented by increasing disease severity: nc, emci, lmci, and ad. 
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Figure 9: H95 results of ANTs SyN (green) and VoxelMorph (blue) with increasing voxel displacement 

represented by increasing disease severity: nc, emci, lmci, and ad. 

Table 1: Directional biases in x, y and z, and recovery error of VoxelMorph and ANTs SyN from Experiment 

A, averaged per disease severity: nc, emci, lmci, and ad. Statistically significant results from the better 

performing method are bolded. 

Method Disease Severity Bias in x (mm) Bias in y (mm) Bias in z (mm) Recovery error (mm) 

VoxelMorph 

nc -0.48 -1.17 0.39 2.173 

emci -0.49 -0.78 0.40 2.099 

lmci -0.48 -1.00 0.45 2.111 

ad -0.36 -1.15 0.43 2.099 

ANTs SyN 

nc -0.10 -0.31 0.0072 0.669 

emci -0.10 -0.21 -0.0018 0.638 

lmci -0.094 -0.27 0.015 0.668 

ad -0.050 -0.30 0.014 0.659 

3.3.2 Experiment B 

Figure 10 depicts the whole brain, grey matter, white matter, and CSF Dice score results for 

both VoxelMorph and ANTs SyN from Experiment B. Results are depicted as a colour map for 

each label. Dark red indicates a perfect Dice score of 1.0, while dark blue indicates a Dice score 
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of 0.0. All pairwise comparisons between subjects are done. With all subjects ordered the same 

way from top to bottom on the vertical axis, and left to right on the horizontal axis, a diagonal of 

perfect Dice scores is seen between the same volumes. Two-way repeated measures ANOVA 

reveals that differences in Dice Scores and Cohen’s Kappa between methods are statistically 

significant (p < 0.001). The mean Dice score for each method, and tissue type are shown in Table 

2, where VoxelMorph performs better than ANTs SyN. 

Table 2: Average Dice scores, Cohen’s Kappa, and H95 for Experiment B. Averages are listed per method and 

tissue type. Statistically significant mean differences are in bold for the better performing method.  

Evaluation Metric Tissue Type 𝝁 VoxelMorph 𝝁 ANTs SyN ∆𝝁 

Dice score 

Whole brain 0.98 ± 0.0075 0.96 ± 0.015 0.02 

Grey matter 0.62 ± 0.091 0.58 ± 0.10 0.04 

White matter 0.75 ± 0.060 0.71 ± 0.060 0.04 

CSF 0.50 ± 0.12 0.43 ± 0.14 0.07 

Cohen’s Kappa 

Whole brain 0.97 ± 0.011 0.95 ± 0.021 0.02 

Grey matter 0.59 ± 0.099 0.54 ± 0.11 0.05 

White matter 0.73 ± 0.065 0.68 ± 0.079 0.05 

CSF 0.49 ± 0.12 0.41 ± 0.14 0.08 

H95 (mm) 

Whole brain 7.64 ± 2.77 8.07 ± 2.84 0.43 

Grey matter 11.73 ± 4.04 12.28 ± 4.37 0.55 

White matter 12.75 ± 3.55 12.75 ± 3.65 0.00 

CSF 16.36 ± 4.78 15.88 ± 4.25 0.48 

 

Figure 11 depicts the whole brain, grey matter, white matter, and CSF Cohen's Kappa for 

both VoxelMorph and ANTs SyN for Experiment B. Colour scales are the same as for Dice scores 

in Figure 10. Two-way repeated measures ANOVA reveals that differences between methods are 

statistically significant (p < 0.001). The mean Cohen’s Kappa for each method, and tissue type are 

shown in Table 2, where VoxelMorph performs better than ANTs SyN. 
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Figure 10: Dice Score of BrainWeb20 Images Registered by VoxelMorph (top) and ANTs SyN (bottom). Dark 

red values indicate a Dice score of 1, indicating perfect overlap, while dark blue is a score of 0, indicating no 

overlap. 

 

Figure 11: Cohen's Kappa of BrainWeb20 images registered by VoxelMorph (top) and ANTs SyN (bottom). 

Dark red values indicate a Cohen’s Kappa value of 1, indicating perfect overlap, while dark blue is a value of 0, 

indicating no overlap. 

Figure 12 depicts the whole brain, grey matter, white matter, and CSF H95 results for both 

VoxelMorph and ANTs SyN for Experiment B. Here, Dark blue, or a value of 0 mm, is best. 

Differences in label type and method are significant from a two-way repeated measures ANOVA 

(p < 0.05); however, while differences between tissue types is significant, a t-test reveals 
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differences between methods is not significant. The mean H95 for each method, and tissue type 

are shown in Table 2. 

 

Figure 12: H95 results of BrainWeb20 images registered by VoxelMorph (top) and ANTs SyN (bottom). Dark 

blue indicates perfect overlap and a maximum error of 0. 

3.3.3 Experiment C 

Figure 13 depicts the Dice scores of the three cortical structures and three deep grey 

structures from twenty subjects registered by both VoxelMorph and ANTs SyN from Experiment 

C. Results are depicted in the same manner as in Figures 10 and 11 from Experiment B. All 

pairwise comparisons between subjects are done. Two-way repeated measures ANOVA reveals 

that differences in both structure and method are statistically significant (p < 0.05). The mean Dice 

score for each method, and tissue type are shown in Table 3. It is noted that given the values in 

Table 3, there appears to be no advantage of one method over the other. Cohen’s Kappa results 

were very similar and are not shown here.  

Figure 14 depicts the H95 of the three cortical structures and three deep grey structures for 

both VoxelMorph and ANTs SyN from Experiment C. Results are depicted in the same manner as 
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in Figure 12, although the deep grey structures have a smaller scale compared to the scale of the 

cortical structures (Figure 14). The mean H95 for each method, and tissue type are shown in Table 

3. Differences in H95 are significant between structures, but there is no significant difference 

between methods according to a two-way repeated measures ANOVA.  

Table 3: Average Dice scores and H95 for Experiment C. Averages are listed per method and tissue type. 

Statistically significant mean differences for the better performing method are in bold. 

Evaluation Metric Tissue Type 𝝁 VoxelMorph 𝝁 ANTs SyN ∆𝝁 

Dice score 

Middle temporal gyrus 0.58 ± 0.12 0.55 ± 0.12 0.03 

Frontal pole 0.43 ± 0.21 0.44 ± 0.20 0.01 

Post-central gyrus 0.42 ± 0.16 0.40 ± 0.17 0.02 

Amygdala 0.58 ± 0.14 0.66 ± 0.10 0.06 

Hippocampus 0.69 ± 0.09 0.72 ± .08 0.03 

Thalamus 0.84 ± 0.05 0.83 ± 0.05 0.01 

H95 (mm) 

Middle temporal gyrus 13.42 ± 3.89 13.28 ± 3.76 0.14 

Frontal pole 9.27 ± 4.23 9.40 ± 4.19 0.13 

Post-central gyrus 14.13 ± 4.59 15.20 ± 5.36 1.07 

Amygdala 5.50 ± 2.32 4.63 ± 2.23 0.87 

Hippocampus 6.41 ± 2.37 5.74 ± 2.21 0.67 

Thalamus 4.77 ± 1.69 4.62 ± 1.48 0.15 
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Figure 13: Dice Score of three cortical structures and three deep grey structures from twenty randomly selected 

Neuromorphometrics volumes registered by VoxelMorph and ANTs SyN.  
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Figure 14: H95 of three cortical structures and three deep grey structures from twenty randomly selected 

Neuromorphometrics volumes registered by VoxelMorph and ANTs SyN. Note that the cortical structures have 

H95 results ranging from 0 to 35 mm while deep grey structures have H95 results ranging from 0 to 15 mm.  
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3.4 Discussion 

3.4.1 Experiment A 

ANTs SyN demonstrates superior performance in both Dice score and Cohen’s Kappa results 

(Figures 7 and 8, respectively), as well as in recovery error results (Table 1) in Experiment A. The 

results for Dice score and Cohen’s Kappa imply better structure overlap between the original atlas 

labels when recovering the simulated deformations with ANTs SyN.  

Further inspection of the recovered images revealed fewer holes or overlaps from ANTs SyN 

compared to those from VoxelMorph, and ANTs SyN tends to keep the general shape of gyri and 

sulci better than VoxelMorph does. In theory, the methods compared should be diffeomorphic, but 

in practice, approximations in the implementation of each method can give non-diffeomorphic 

results. Qualitative findings such as those seen in Figure 15, such as the cortical folds and 

discontinuities in topology, seen in all three subjects, could indicate that VoxelMorph did not 

produce diffeomorphic registrations in all of the registration tasks. Figure 15 shows examples of 

cases where sulci do not take on a sulci-like shape and gyri do not take on a gyri-like shape 

(examples are bound in red boxes within the figure).  

Interestingly, the results from Dice score, Cohen’s Kappa, and recovery error were 

statistically significant when comparing methods, but not when taking into account disease 

severity according to the two-way ANOVAs calculated. This shows that both methods are capable 

of recovering images with simulated voxel displacements equally, according to their respective 

performance levels. 
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Recovery error results from Table 1 show much smaller average error and directional bias 

with ANTs SyN compared to VoxelMorph. H95 results (Figure 9) were not statistically significant 

from a two-way repeated measures ANOVA. This implies that errors of ANTs SyN and 

VoxelMorph are similar.  

A further inspection of H95 results from ANTs SyN does reveal greater variability among 

images with smaller deformations (see Figure 9). One might expect the worst performing H95 

measurements to be of volumes deformed with AD transformations since recovered transformation 

would have to make larger local deformations in order to compensate for the large ventricles in 

AD patients. But this was not the case as seen in Figures 7, 8 and 9. It is suspected that variability 

among results here were mostly due to anatomical differences shown in ADNI-ANIMAL 

deformations, such as larger protruding temporal regions compared to the original VoxelMorph 

atlas, which would produce such results. 
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Figure 15: Comparison of three different recovered MRI volumes (rows 1, 2 and 3) from Experiment A, where 

red boxes show discontinuities in VoxelMorph recovered volumes (column 2) compared to ANTs SyN recovered 

volumes (column 3) and the target atlas (column 1).  
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3.4.2 Experiment B 

VoxelMorph appears to significantly outperform ANTs SyN, as shown in Dice scores and 

Cohen’s Kappa results on whole brain, grey matter, white matter, and CSF labels in Experiment 

B (Figures 10 and 11, respectively). The mean differences between the two methods for both 

metrics can be seen in Table 2. While the differences between methods are significant (p < 0.001), 

the metrics on whole brain, grey and white matter labels do not differ greatly, therefore it can be 

said that both methods perform at similar levels, with VoxelMorph having a small but statistically 

significant advantage. Results comparing H95 metrics between methods and labels found no 

significance in a two-way repeated measures ANOVA. Although results were visually 

indistinguishable from H95 results, they were only significant between tissue type and not between 

methods. 

Notable discrepancies, where results for some subjects appeared worse than others, seemed 

to be due to larger inter-subject variability for both methods in all metrics (Figures 10, 11, and 12). 

Anatomical variabilities such as crooked midlines, smaller total white matter area, and 

asymmetrical right and left hemispheres, for subjects 06, 38 and 49, can explain the poorer results 

observed. Finally, it is noted that the worst results for all three indirect evaluation metrics are seen 

for CSF labels, since these labels generally show the most inter-subject variability. 

3.4.3 Experiment C 

Experiment C shows mixed performances for both VoxelMorph and ANTs SyN on Dice, 

Cohen’s Kappa and H95 results; however, two 2-way repeated measures ANOVAs reveal results 

are statistically significant for Dice and Cohen’s Kappa results (p < 0.05). It is noted that as with 

Experiment B, H95 results (Figure 14) differences are driven by structure type and not by methods. 
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To aid in deciphering which method outperformed the other, mean Dice scores are reported 

in Table 3 where ANTs SyN outperforms VoxelMorph in three of the six structures; namely, the 

right frontal pole, the left amygdala, and the left hippocampus (Figure 13). On the other hand, 

VoxelMorph reports better Dice scores on the left middle temporal gyrus, the right post-central 

gyrus, and the right thalamus. Differences in mean Dice scores of each structure can help to discern 

which method performs best, and since both mean and median values are similar, indicating an 

unskewed distribution, these results are trustworthy. For structures with mean Dice score 

differences that are small, for example 0.03 or smaller, it could be said that these results are 

comparable since the difference in structure overlap is so small. However, a closer look at 

differences in recovered amygdala structures, where the mean difference was larger – 0.06, 

indicate ANTs SyN is more capable of maintaining accurate structure alignment.  

For the H95 results in Table 3, mean differences show that ANTs SyN outperforms 

VoxelMorph in four structures: the left middle temporal gyrus, left amygdala, left hippocampus, 

and right thalamus (Figure 14). VoxelMorph outperformed ANTs SyN in the registration of the 

right frontal pole and right post-central gyrus, with post-central gyrus having a difference of 1.07 

mm. Differences below 1 mm (i.e., the voxel size) are arguably very small, and it can be said that 

the performance of the methods is comparable. A closer look at differences in the right post-central 

gyrus, which exceeded 1 mm, indicate that VoxelMorph normalizes inter-subject variability more 

than ANTs SyN. Again, structure type drove the variability among results for H95, and thus these 

results do not aid in choosing the better registration method. 

Figures 13 and 14 also highlight inter-database variability in Dice scores for middle temporal 

gyrus and hippocampus, seen as "blocks" along their respective colour maps. For context, 

Neuromorphometrics is comprised of volumes from four different databases: ADNI [20], a 20 
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Repeats dataset of 20 nondemented subjects scanned on two visits within 90 days and labelled by 

two raters; the Child and Adolescent NeuroDevelopment Initiative (CANDI) database [103]; and 

the Open Access Series of Imaging Studies (OASIS) database [88]. Of the twenty randomly 

selected subjects from the Neuromorphometrics database, four were from the 20 Repeats dataset, 

seven were from ADNI [20], three were from CANDI [103], and six were from OASIS [88]. Most 

notably in this "inter-database" variability are the results from CANDI volumes [103], seen in 

frontal pole Dice scores, and amygdala Dice scores and H95. These discrepancies are to be 

expected since the volumes from the CANDI dataset [103] are from adolescents and children, who 

have different ratios of grey to white matter compared to adults [104]. Other discrepancies in both 

Dice scores and H95 for both methods appear to be due to variability between subjects which could 

not be completely normalized by either method.   

One understandable limitation present in all three experiments was the use of the pretrained 

VoxelMorph model. Had a subset of this data been used to train VoxelMorph, it is possible that 

registrations would have improved performance from indirect and direct metrics in all three 

experiments. However, it must be said that the model was trained on 3731 T1-weighted brain MRI 

scans from eight datasets, including OASIS [88]. Therefore, one would assume that the model is 

capable of registration from a wide range of normal subjects. This could explain VoxelMorph’s 

slightly better performance in Experiments B and C; and since Experiment A contained “non-

normal” deformations, this could explain VoxelMorph’s poor performance. Ultimately, it can be 

said that for either method further parameter tuning, or training, could yield improved results. 
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3.5 Conclusion 

The objective of this paper was to compare VoxelMorph to the state-of-the-art ANTs SyN. 

While Experiment A showed that ANTs SyN outperforms VoxelMorph when recovering 

simulated deformations, with recovery errors approximately 1.5 mm less than VoxelMorph, 

Experiments B and C demonstrate that VoxelMorph normalizes anatomical variability between 

subjects better than ANTs SYN. VoxelMorph achieves comparable results to ANTs SyN in a small 

fraction of the time, but results have suggested that transformations may not always be 

diffeomorphic; however, if the given task relies heavily on topological preservation, taking the 

time to perform a diffeomorphic registration from ANTs SyN may be preferred. Future work on 

quantitative evaluation of diffeomorphisms could effectively determine if one method outperforms 

another. 
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CHAPTER 4 

Discussion, Future Work, and Conclusions 

4.1 Discussion 

This thesis compared the registration performance of VoxelMorph to ANTs SyN. The 

previous chapter contained what may be published in a paper submitted to Medical Image Analysis, 

which explains the methods used to achieve this evaluation and presented key findings. This 

chapter will review the methods and key findings of the previous chapter in terms of the 

contributions, strengths, and limitations of the methods.  

4.1.1 Experiment A 

Key findings from Experiment A include better performance from ANTs SyN, shown in 

both Dice score and Cohen’s Kappa coefficient (Figures 7 and 8, respectively), as well as recovery 

error results (Table 1), with statistical significance between methods (p < 0.001). Firstly, the results 

for Dice score and Cohen’s Kappa coefficient imply better structure overlap with the original 

VoxelMorph atlas labels when the recovered deformation comes from ANTs SyN.  

From inspection, it is noted that both the Dice scores and Cohen’s Kappa results show 

significantly better performance for ANTs SyN since it appears that ANTs SyN makes fewer holes 

or overlaps in the recovered labels and tends to keep the general shape of the gyri and sulci 

compared to VoxelMorph. Examples of this can be seen from Figure 15. This could indicate that 
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VoxelMorph did not produce diffeomorphic registrations in all of the registration tasks. Figure 15 

shows examples of cases where sulci do not take on a sulci-like shape and gyri do not take on a 

gyri-like shape (examples are bound in red boxes within the figure). 

Interestingly, the results from Dice score, Cohen’s Kappa, and recovery error were 

statistically significant when comparing method to method, but not when taking into account 

disease severity according to the two-way ANOVAs calculated. Lack of variability in disease 

severity shows that both methods are capable of recovering images of varying voxel displacements 

to their respective performance levels equally. 

H95 results (Figure 9) were not statistically significant from a two-way repeated measures 

ANOVA. This implies that the maximum error of ANTs SyN and VoxelMorph are similar. 

Additionally, recovery error results show smaller error and directional bias from ANTs SyN, where 

the recovery error is calculated from the average error across the entire image. So, although both 

methods have similar maximum error, overall ANTs SyN performs better in terms of average error, 

structure overlap, as well as directional bias in the presence of deformation.  

However, it is noted that ANTs SyN appears to have greater variability in H95 results (see 

Figure 9). One might expect the worst performing H95 measurements to be of volumes deformed 

with AD transformations. This would be because the recovered transformation would have to make 

larger local deformations in order to compensate for the large ventricles in AD patients. But upon 

further inspection, it was noted that this was not the case, as previously discussed. Further 

investigation reveals the worst performing H95 cases are due to inter-subject variability, with brain 

shapes from ADNI-ANIMAL transformations recovering larger protruding temporal regions, and 

thus producing larger voxel displacement in the simulated database. It is possible that the 
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resampling technique used with ANTs SyN (i.e. the Minc Toolkit [12]) did not have enough 

iterations in its default settings in order to resample the voxels correctly. However, there is no sign 

of mirroring or repetition3 in all of the recovered MRI or label volumes.  

4.1.2 Experiment B 

Key findings from Experiment B include better performance from VoxelMorph compared 

to ANTs SyN, as shown in Dice scores and Cohen’s Kappa results on whole brain, grey matter, 

white matter, and CSF labels (see Figures 10 and 11). The mean differences between both methods 

for both metrics can be seen in Table 2. While the differences between methods are significant (p 

< 0.001), the errors on whole brain, grey and white matter labels do not differ greatly, therefore it 

can be said that both methods perform well, with VoxelMorph having a small but statistically 

significant advantage. Results comparing H95 metrics between methods and labels found no 

significance in a two-way repeated measures ANOVA. Although results were visually 

indistinguishable from H95 results, they were only significant between tissue type alone, however 

this has no bearing on the comparison between methods (see Figure 12).  

Furthermore, discrepancies in the Dice, Cohen’s Kappa, and H95 results were investigated. 

Most notable discrepancies where results stood out as being poorer than the rest of the results 

seemed to be due to (extreme) inter-subject variability. For example, subject 06 has a crooked 

midline which affected results seen in Dice and Cohen’s Kappa results for whole brain and CSF 

labels for both methods (see Figures 10 and 11). Subject 38 has a smaller total white matter area 

compared to other subjects and hence results are noticeable for both methods in both Dice and 

 
3 Mirroring or repetition is observed in images where fewer resampling iterations result in a mirrored image of 

the brain or part of the brain across the x y or z axis.  
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Cohen’s Kappa results (see Figures 10 and 11). Finally, subject 49 has highly asymmetrical right 

and left hemispheres, and thus results are noticeably worse for H95 results of both methods in 

particular (see Figure 12). Finally, it is noted that in general the worst results for all three indirect 

evaluation metrics are seen for CSF labels, since these labels will show the most inter-subject 

variability.  

Despite the discrepancies mentioned above, overall VoxelMorph does slightly outperform 

ANTs SyN. But it is noted that these results are quite different than those observed from 

Experiment A. From Experiment A, it was observed that ANTs SyN outperformed VoxelMorph 

in the presence of deformation. This could be due to the fact that a one-to-one mapping exists and 

is known, since deformations were simulated using transformations from ANIMAL [13], but 

between subjects a one-to-one homology is not guaranteed. A lack of a guaranteed one-to-one 

homology between subjects also explains why results from the same evaluation metrics were worse 

in Experiment B compared to Experiment A. Specifically with the results of the H95 results, the 

average whole brain H95 is approximately 3 mm in Experiment A, but is 7-8 mm in Experiment 

B. Worse performance could be due to stray individual voxels detached from the main structure 

despite using 95th percentile of H95 results. 

Experiments A and B are both limited to evaluating each method using whole brain labels. 

Results from Experiment B confound conclusions on which method performs best for an inter-

subject registration task, despite using grey and white matter as well as CSF labels in its evaluation. 

Perhaps smaller brain structure labels would help in the evaluation of the performance of each 

method, which can be observed in Experiment C.  
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4.1.3 Experiment C 

Key findings from Experiment C shows mixed performances for both VoxelMorph and 

ANTs SyN on Dice, Cohen’s Kappa and H95 results; however, two 2-way repeated measures 

ANOVAs reveal results are statistically significant for Dice and Cohen’s Kappa results (p < 0.05). 

Results from Cohen's Kappa were not shown as they are very similar to those of Dice. It is noted 

that as with Experiment B, H95 results have variability driven mostly by structure type and not 

between methods, as there is no significant variability between methods alone (see Figure 14). 

To aid in deciphering which method outperformed the other, mean Dice scores are reported 

in Table 3. From the table, ANTs SyN outperforms VoxelMorph in three of the six structures; 

namely, the right frontal pole, the left amygdala, and the left hippocampus (see Figure 13). 

Otherwise, VoxelMorph reports better dice scores on the left middle temporal gyrus, the right post-

central gyrus, and the right thalamus (see Figure 13). The differences between the mean Dice 

scores of each structure can give indication of the performance of each method since both mean 

and median values are similar, indicating an unskewed distribution. For structures with mean Dice 

score differences of 0.03 and lower, it could be said that these results are comparable since the 

difference in structure overlap is so small. However, a closer look at differences in recovered 

amygdala structures, where the mean difference was 0.06, indicate ANTs SyN is more capable of 

maintaining structure topology, and can also explain the poorer results observed from 

VoxelMorph.  

For H95 results in Table 3, mean differences show ANTs SyN outperforms VoxelMorph in 

four structures: the left middle temporal gyrus, left amygdala, left hippocampus, and right thalamus 

(see Figure 14). VoxelMorph outperformed ANTs SyN in the registration of the right frontal pole 
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and right post-central gyrus, with post-central gyrus having a difference of 1.07 mm. Differences 

below 1 mm are arguably very small, and it can be said that the performance of the methods is 

comparable. A closer look at differences in the right post-central gyrus, which exceeded 1 mm, 

indicate that VoxelMorph normalizes inter-subject variability more than ANTs SyN. Again, 

structure type drove the variability among results for H95, and thus results may not be useful to 

select the best method for registration. 

Further investigation into visual discrepancies in Figures 13 and 14 was performed. 

Specifically, it was noted that Dice scores for middle temporal gyrus and hippocampus have 

similar Dice scores which can be seen in blocks along their respective colour maps. To understand 

this, it must be said that Neuromorphometrics is comprised of volumes from four different 

databases: ADNI [20], 20 Repeats dataset of 20 nondemented subjects scanned on two visits within 

90 days and labelled by two raters, the Child and Adolescent NeuroDevelopment Initiative 

(CANDI) database [103], and the Open Access Series of Imaging Studies (OASIS) database [88]. 

Of the twenty randomly selected subjects from the Neuromorphometrics database, four were from 

the 20 Repeats dataset, seven were from ADNI, three were from CANDI [103], and six were from 

OASIS [88]. It appears that some structures tend to have similar Dice scores within these datasets. 

Notably, CANDI [103] seems to perform poorly in comparison to other datasets, of which these 

findings can be seen from the frontal pole Dice scores, and the amygdala Dice scores and H95 

results. These discrepancies are to be expected since the volumes from the CANDI [103] dataset 

are from adolescents and children, who have different ratios of grey to white matter compared to 

adults [104]. The fact that CANDI [103] datasets perform slightly better for VoxelMorph then with 

ANTs SyN indicates again that VoxelMorph is better at normalizing inter-subject variability. Other 
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discrepancies in both Dice scores and H95 results for both methods appear to be due to variability 

between subjects which was unable to be completely normalized by either method.   

Comparing Experiment C to Experiments A and B, results are worse for both methods; 

however, this is expected since the labels used in this experiment are of smaller structures, and 

therefore overlap of these structures is worse than with larger areas such as white matter or whole 

brain labels. It is also noted that H95 results of deep grey structures from this method compared 

well against those from Experiment B, but cortical grey structures performed poorly. This can be 

expected since there may be larger deformations to normalize cortical structure between subjects, 

but less so in some deep grey structures, and from these larger deformations maximum error can 

occur from individual voxels which are not connected to the main cortical structure.  

The implications of the registration time per subject also needs to be considered when 

determining which method is better. ANTs SyN registers a single subject in roughly 37 to 43 

minutes on a Xeon E3-1275 V6 CPU with 3.80 GHz clock speed. While VoxelMorph requires 

several days of training [5], but is able to register a single subject in 30 seconds to 1 minute on an 

NVIDIA TitanX GPU. In applications where fast computations times are important, such as with 

image guided neurosurgery [33], VoxelMorph is advantageous over ANTs SyN. But where precise 

alignment is important, ANTs SyN is more favourable.  

One understandable limitation present in all three experiments was the use of the pretrained 

VoxelMorph model. Had a subset of the data been used to train VoxelMorph, it is possible that 

registrations would appear diffeomorphic, and there would be improved performance from indirect 

and direct metrics in all three experiments. Although the model was trained on 3731 T1-weighted 

brain MRI scans from eight datasets, including OASIS [88], one would assume that the model is 
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capable of registration of normal subjects. This would explain VoxelMorph’s slightly better 

performance in Experiments B and C; and since Experiment A contained “non-normal” 

deformations, this would explain VoxelMorph’s poor performance. Ultimately, it can be said for 

either method, that further parameter tuning, or training, could yield improved results.  

Evaluating reproducibility requires several measurements, not only the ability to repeat a 

study [1]. The intention of this thesis is to stress the importance of reproducibility in science, since 

the validation of novel publications drives research forward in a pragmatic way. The hypothesis 

of this thesis was that the validation methods used to compare the performance VoxelMorph and 

ANTs SyN would be enough to determine which method performs best. The results which have 

been discussed do show that the validation methods were sufficient to determine which method is 

better depending on the registration task. The results suggest a trade-off between methods in terms 

of computation speed and quality of results.  

4.2 Future Work 

The evaluation performed in this thesis can hopefully highlight the capabilities and 

drawbacks of both VoxelMorph and ANTs SyN. In the future, further quantitative evaluation on 

the diffeomorphic properties of the transformations will be performed in order to assess whether 

both methods are producing diffeomorphic registrations for all experiments. For example, 

calculating the Jacobian determinant over the entire deformation field can assess whether the 

registrations are in fact diffeomorphic, as discussed in Chapter 2 of this thesis. Additionally, 

perhaps a VoxelMorph model, trained using subsets of data from experiments, could provide 

improved results, and fine-tuning parameters of ANTs SyN without hampering its capabilities, are 

also possible for expected improvements. 
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Finally, VoxelMorph provides a solid building block for potential applications in 

intraoperative image registration to correct for brain shift during image guided surgery tasks. It 

would be interesting to observe the capabilities of deep learning registration when given imaging 

data with brain tumours, since tumour location is patient specific. The advantages of fast (i.e. in 

seconds) non-linear registration of brain images during surgery reveals the advantages of deep 

learning while potentially maintaining the quality of classic methods.   

4.3 Conclusions 

The objective of this thesis was to compare VoxelMorph to the state-of-the-art ANTs SyN. 

The validation techniques employed to evaluate both methods were sufficient in determining 

which method outperforms the other. Specifically, ANTs SyN is a preferable method when dealing 

with registration tasks which have deformations present. Otherwise, there is a trade-off in terms of 

registration quality and computation time depending on if ANTs SyN or VoxelMorph is chosen, 

respectively. In applications where fast computations times are important, VoxelMorph may be 

considered; but where precise alignment is important, ANTs SyN is more favourable. It is 

recommended that the reader reference the Background and Results Chapters of this thesis as a 

guide in selecting an appropriate method for a given registration task. Additionally, the reader can 

take away the validation methods employed in this thesis and apply them to other comparisons of 

medical image processing tools. 

In the evaluation of VoxelMorph and ANTs SyN, it was demonstrated that ANTs SyN 

outperforms VoxelMorph when recovering deformed images, and more specifically, ANTs SyN 

achieves smaller average error, structure overlap, as well as directional bias. Furthermore, both 

methods achieve comparable structure overlap and maximum error for inter-subject registration 
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tasks. While VoxelMorph appears to normalize anatomical variability between subjects, 

qualitative assessments reveal potential non-diffeomorphisms which were comparatively not seen 

in the same subjects recovered from ANTs SyN. Thus, for inter-subject registration tasks, it 

appears there is a trade-off between methods. At the risk of recovering some non-diffeomorphic 

registrations, VoxelMorph achieves comparable results to ANTs SyN in a fraction of the time; 

however, if the registration task relies heavily on topological preservation, taking the time to 

perform a diffeomorphic registration from ANTs SyN may be preferred.  

Future work on quantitative evaluation of diffeomorphisms or spending more time on 

improving results through highly specific fine-tuning of parameters as well as training, could 

effectively determine if one method stands out from the other and improve the evaluation of 

reproducibility of these techniques. 
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