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Abstract

Surgical treatment of spine-related injuries requires the placement of pedicle screws. Pre-

cise localization of the individual vertebrae and surrounding tissues is thus essential to

avoid damage to nearby regions. Image-guided surgery can help in surgical planning and

thus improve prognosis. During surgery, preoperative patient scans are registered to intra-

operative scans which allows surgeons to track the location of the surgical tools and better

visualize their position with respect to the actual anatomy. In this thesis, we present a

semi-automated pipeline to segment the human spinal column in computed tomography

scans. These segmented anatomical structures would thus act as a model to which the

intraoperative scans are later registered. We incorporate a shape prior into geometric

active contours to augment the segmentation produced using region and boundary based

terms. We have also applied ideas based on anisotropic diffusion and flux computation

to preprocess the volumes to address the challenges faced when working with CT scans,

such as region inhomogeneities within and outside the spine and a lack of signal at the

vertebral boundaries due to partial volume effects. We validate our approach on three

datasets and achieve results comparable to the state of the art. Our method also pro-

vides good localization and segmentation of the spinal canal and intervertebral discs as

offshoots.
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Resumé

Les opérations chirurgicales des lésions de la colonne vertébrale nécessitent la mise en

place de vis pédiculaires. Localiser précisément les vertèbres et les tissus environnants est

donc indispensable pour éviter dendommager les régions voisines. Guider le chirurgien

par l’image aide à la planification chirurgicale et améliore donc le pronostic. Pendant

l’opération, des scans préopératoires des patients sont recalés sur des images captées en

direct, ce qui permet aux chirurgiens de localiser leurs outils et mieux visualiser leur

position par rapport à l’anatomie du patient. Dans cette thèse, nous présentons un pro-

cessus semi-automatisé pour segmenter des scanners de tomodensitométrie et en extraire

la colonne vertébrale. Ainsi segmentées, ces structures peuvent alors servir de modèle pour

un recalage futur au moment de l’opération. Nous utilisons des contours géométriques

actifs, s’appuyant sur la détection des contours, des régions, et utilisant une connaissance

a priori de ces formes afin d’affiner la segmentation. Nous avons également utilisé des

principes de la diffusion anisotrope et de calculs de flux afin de prétraiter les volumes. En

effet, il s’agit de répondre aux défis usuels de la tomodensitométrie, comme par exemple

l’hétérogénéité à l’intérieur et à l’extérieur de la colonne vertébrale ou les perturbations

liées à la limite de résolution. Nous validons notre approche sur trois jeux de données

et nous obtenons des résultats comparables à l’état de l’art. De notre méthode découle

aussi une bonne localisation et une bonne segmentation du canal rachidien et des disques

intervertébraux.

ii



Acknowledgements

I would like to thank my supervisors Prof. Kaleem Siddiqi and Prof. Louis Collins for their

constant support over the past three years. They have shaped my thought process and

have stirred confidence in me to pursue a possible career in academia. Kaleem has helped

me understand how important it is to have a solid foundation with strong fundamentals.

Louis has taught me how to formulate a problem statement and ask good questions worthy

of spending time on. I would also like to thank Prof. Peter Savadjiev, my thesis examiner,

for his invaluable comments, which helped shaped the structure of this thesis. I spent

Fall 2017 interning at Planet Labs in San Francisco, where I was mentored by Katherine

Scott. I would like to thank her for introducing me to the world of software engineering

and practices. Katherine has helped me become a better programmer, which in turn

helped me in writing cleaner code for this thesis.

This thesis is theoretically motivated, experimentally validated and clinically driven. I

hope that I keep working in this fashion. I would like to thank the open source community

which has helped me fill in gaps in my understanding of concepts.
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Abbreviations

IGS Image-guided surgery

DRA Dynamic Reference Array

CT Computed Tomography

MRI Magnetic Resonance Imaging

US Ultrasound

CSI Computational Methods and Clinical Applications for Spine Imaging

HU Hounsfield Unit

GAC Geodesic Active Contour

ASM Active Shape Model

PCA Principal Component Analysis

MRF Markov random Field

ROI Region of Interest

MAP Maximum a Posteriori

SDF Signed Distance Function

PDE Partial Differential Equation
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CPU Central Processing Unit

GPU Graphics Processing Unit

ASSM Average Symmetric Surface Distance

HD Hausdorff Distance

HD95 Hausdorff Distance 95th percentile

AHD Average Hausdorff Distance
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Symbols

E represents an energy functional

F represents a speed function

N normal vector

T tangent vector

V a vector field

Rn real coordinate space

Ω image domain

κ curvature

g stopping potential

C(p, t) family of smooth curves

H Heaviside function

δ Dirac-delta function

p arc-length parameterization

div divergence

B Bhattacharya coefficient

ψ signed distance function of a shape to build a shape prior
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φ̂ average shape computed from ψi

φi eigenmodes representing shape variation
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Chapter 1

Introduction

1.1 Motivation and Overview

Each year hundreds of thousands of people around the world are surgically treated for

spine-related injuries. Some of the most common injuries are spinal tumors, herniated

discs, scoliosis, spinal stenosis, injuries to the craniocervical junction and osteoporosis.

These surgical procedures often require placement of pedicle screws to provide better

mechanical stability and to fuse the different vertebrae where required. It is thus very

important for surgeons to visualize and keep track of where the surgical tools are with

respect to the patient’s anatomy so that there are no unwanted ramifications of the surgery

such as damage to nearby organs or tissue due to screw malpositioning. To reduce these

errors, image-guided surgery (IGS) might prove to be extremely useful.

In image-guided surgery [Drouin et al., 2017], a patient’s preoperative images (Magnetic

Resonance Imaging or Computed Tomography) are correlated with the patient’s actual

anatomy on a computer workstation. A typical IGS setup is composed of a computer

workstation, camera dynamic reference array (DRA) and a number of specialized surgical

tools [Goulet, 2010]. Prior to the surgery the patient is scanned to obtain 3D models

of the spine, which are visualized on the workstation. During the surgery, the DRA

is fixed above the region where the surgery is to be performed in the vertebra. The

1
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camera then determines the relative 3D positions between the DRA and the surgical

tools. Now, a registration step is required which defines a spatial transformation between

the preoperative 3D models with the manually identified landmarks on the vertebrae of

the patient.

Thus, the surgeon can visualize the position of the surgical tools with respect to the

patient’s anatomy in real-time. Also, instead of manually identifying the landmarks on

the preoperative images and the patient’s body, one can scan the patient intraoperatively

using either CT or ultrasound. Thus, IGS helps in planning surgical navigation. In this

thesis, we focus on the first part of IGS which involves segmentation of the preoperative

CT scans to obtain 3D models of the spine. In particular, we incorporate knowledge

of the geometry of the vertebrae with information gained from the distributions of the

image intensities in the surrounding neighbourhood of the spine. We accomplish this

via a formulation of geometric flows based on a level-set framework, to be discussed in

Section 2.2. These methods are not only much more intuitive and practical than previous

patch-based and complex shape-based methods but also prove to be accurate and precise.

Though, in the past there has been some use of geometric level surfaces for vertebral

segmentation in CT, none of the approaches thus far follow a systematic approach to

design a segmentation pipeline which overcomes the challenges posed by CT images in

image segmentation (as discussed in Chapter 3) or validates the practicality of the method

on clinical data.

The rest of the present chapter gives a brief overview of the anatomy of the spine and how

images are reconstructed by computed tomography (CT). Chapter 2 provides a thorough

literature review of the previous methods in vertebrae segmentation in CT images. The

second part of Chapter 2 presents an introduction to level-set methods. We review the

mathematical formulation of how partial differential equations are used to segment regions

of interest in images and higher dimensional volumes. We explore several different sources

of information which should be included in the energy functional to obtain reasonable

segmentations of the spine. Chapter 3 describes the proposed pipeline. First, we argue

for the importance of anisotropic diffusion and flux-based methods to preprocess the
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Figure 1.1: Image-guided surgery using iUS (intraoperative ultrasound): a) - the tracked iUS
probe; b) acquiring tracked iUS in surgery within the surgical cavity (can also be acquired
on the skin); c) the iUS image of a porcine phantom, overlaid on the preoperative CT before
registration (used to show proposed technique on a human); d) iUS after registration; e) IGS
navigation using the Medtronic system; e) the Medtronic IGS navigation display. Source of the
image and description: [Goulet, 2010]

CT volumes. We then show how one can obtain entire spine and individual vertebrae

segmentations using various energy functionals incorporating shape, region, and boundary

terms. In Chapter 4 we discuss the results of the validation of the proposed pipeline

applied to three datasets. We highlight the advantages of the approach proposed in this

thesis over existing methods, and also address where this pipeline might fail. Chapter

5 concludes this thesis with a discussion of possible extensions to this work. In the

appendices, the reader can find the details of the numerical methods used to implement

these geometric flows using level-set ideas, the metrics used to evaluate the results, and

the open source software packages used for visualization.

1.2 Anatomy of the Spine

We briefly review the anatomy of the human spine with the goal of understanding the

challenges faced when segmenting the vertebral column in CT volumes. The human

vertebral column consisting of thirty-three vertebrae is divided into five regions: cervical,

thoracic, lumbar, sacrum and coccyx. There are seven cervical vertebrae, twelve thoracic

vertebrae, and five lumbar vertebrae. These twenty-four vertebrae are separated from

each other by intervertebral discs. The other nine vertebrae in the sacrum and coccyx

regions are fused. Each individual vertebrae consists of two major parts: the vertebral

body and the vertebral arch. The vertebral arch constitutes the posterior surface because

it faces the back of the person. A cavity is present between these two parts, known as the
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Figure 1.2: Anatomy of a Vertebra. Source: [Wikipedia, 2015]

vertebral foramen, where the spinal cord is found.

The vertebral arch is formed by a pair of pedicles and a pair of laminae and supports seven

processes, four articular, two transverse, and one spinous. Two transverse processes and

one spinous process are posterior to the vertebral body. Figure 1.2 depicts the anatomy

of the spine and labels the different parts of a typical vertebra.

1.3 Imaging Modality: Computed Tomography

Computed Tomography, an imaging modality developed by Geoffrey N. Hounsfield is

based upon the discovery of X-rays by Wilhelm Rontgen. Conventional X-ray imaging

systems can only be used to obtain 2D images. To obtain information regarding depth,

a CT scan produces an n-dimensional (where n is the depth) volume of the underlying

structure of the region of interest. Although radiation doses in CT are relatively high, it

has had a remarkable impact in the field of radiology. It has helped surgeons to help in

the early diagnosis of tumors and track the progress of diseases.

CT helps in the reconstruction of the cross-sectional planar images of the body. In the

simplest form, a CT scanner consists of a collimator (which emits X-rays), and a detector.

This setup is rotated around the patient to obtain images at various angles. The X-rays
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penetrates through the body and the detector measures the transmitted radiation. The

degree to which the different organs and tissues attenuate the signal affects the final image

reconstruction. For example, a dense structure, such as a bone, would absorb most of

the X-rays, i.e., it attenuates the most. On the other hand, soft tissues tend to attenuate

the least, i.e., they let the signal pass through the most. The X-rays collected on the

detector are then converted to an electrical signal, which is then converted to digital

images. Hence, the image acquisition process is known as computed tomography.

The higher the attenuation the larger the µ value (attenuation coefficient). For every

slice scanned, the summed attenuation values are recorded in each direction. The image

is then reconstructed using these µ values and called (filtered) Back Projection. Using

Back Projection, the final grayscale value for each voxel is obtained. The attenuation

coefficients are expressed in Hounsfield units (HU) and are scaled relative to the µ value

of water. HU typically falls in the range -1000 to +1000. The window size (W) and

level (L) are two visualization parameters set by the radiographer. If the window size is

reduced then the contrast between the organs is enhanced. The centre of the window is

adjusted using the Level (L) and this controls the contrast within an organ.

There are various kinds of CT scanners such as fan-beam, spiral or helical, and multi-

slice. Iodine and barium are the most commonly used contrast agents. Contrast agents

help in enhancing structures of interest and making the boundaries of structures more

pronounced.

1.4 Contributions

The key contributions of this thesis are:

• the design of a novel CT image pre-processing pipeline based on anisotropic diffusion

and flux-based geometric flows.

• the development of a level-set formulation to design a new clinically oriented pipeline
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to segment the entire spine and also incorporate a shape-prior to segment individual

vertebrae in computed tomography scans.

• the evaluation of the proposed methods on one in-house dataset and two publicly

available datasets. We demonstrate that the method is fast and flexible, and requires

very little effort on the part of the user to set up the segmentation procedure, which

could potentially be useful to translate into a clinical setting.



Chapter 2

Background

We will begin our discussion by reviewing the previous approaches in the literature for

vertebrae segmentation in CT images. We shall review the methods and results of the

popular approaches, and discuss where they fail or improve upon other techniques. In the

second section, we shall review the use of partial differential equations within a level-set

framework for the task of image segmentation.

2.1 Literature Review: Vertebrae Segmentation

Here, we shall briefly review the previous methods for vertebrae segmentation. The meth-

ods can be broadly classified in the following categories: thresholding based techniques,

active contours and level-sets, optimization techniques such as graph-cuts, deformable

shape-based models, classical machine learning methods such as k-means, random forests

and support vector machines used with handcrafted features, and data-driven deep learn-

ing methods.

The brief introduction to spinal anatomy in the previous chapter suggests that vertebrae

segmentation is a non-trivial task. Different structures can be of interest in spine segmen-

tation including intervertebral discs, the spinal cord, each vertebra or specific parts of each

7
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vertebrae. The segmentation of one structure could potentially be helpful in identifying

other structures.

2.1.1 Image processing based segmentation

Thresholding based methods are widely used to separate regions based on their raw in-

tensity values. A fully automatic 3D segmentation method using adaptive thresholding

was proposed in [Zhang et al., 2010]. An initial segmentation is first performed using a

sensible threshold value to partition the image into classes containing bone vs. non-bone

classes. This is then followed by automatic flood-filling and finally, the segmentation is

refined by an iterative and adaptive thresholding step based on local connectivity and

statistics. The method is fast and has been applied to several CT vertebrae datasets.

An interactive segmentation tool was developed in [Kaminsky et al., 2004] using differ-

ent techniques such as logical and morphological operators, filtering, region growing,

affine and rigid transformations. A very widely used open source software, Slicer3D

[Kikinis et al., 2014], has also been used to segment the spine using simple thresholding.

2.1.2 Active Surfaces

Active contours (surfaces) evolve a deformable model to extract the region of interest in

an image (volume). The evolution of the contour is governed by information extracted

from image intensities, local and global regional characteristics, geometrical properties

or shape-priors. We will discuss active surfaces using the level-set based formulation in

Section 2.2.

Typical difficulties faced in vertebrae segmentation include the presence of double edges

at the boundary. The outer edge tends to have a much higher density than the inner

edge. [Tan et al., 2008] use a cascade of level-sets to segment vertebrae by exploiting

image information at multiple scales. Each level-set follows the geodesic active contour
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(GAC) [Caselles et al., 1995] formulation, to be discussed in Chapter 3, differing only in

the criteria used for the gradient term. They have designed a pipeline which involves

pre-processing using Gaussian smoothing. The series of level-set curve evolution first

roughly segments the interior of the vertebra using a sigmoid for gradient information.

The second level-set then uses a Laplacian as the speed function. The cortical bone is then

segmented using a third level-set curve evolution. This cascade is finally post-processed

via simple morphological operations such as erosion and dilation. This entire pipeline

is applied again to a sub-sampled version of the original CT image. This resulting sub-

sampled segmentation is then super-sampled back to the original scale and refined with

yet another level-set evolution to give the final segmentation. This pipeline was originally

developed to evaluate Ankylosing Spondylitis (a form of spinal disease). This method has

a very detailed discussion on hyperparameter tuning for choosing the relative weights for

the three terms in the GAC formulation. However, it lacks a formal motivation for how

these parameters overcome the difficulties or affect the segmentation.

An edge and region-based level-set (ERBLS) with an Otsu adaptive threshold automatic

initialization method was proposed by [Huang, 2013] which reconstructs 3D vertebral

models from 2D axial segmented slices. The Otsu threshold [Otsu, 1979] gives a reasonable

segmentation of the vertebral bone, since the bone image intensity is brighter than the

rest of the structure. The level-set is then initialized with this rough segmentation. The

initial level set inside the vertebral body evolves by splitting and merging. However,

one might wonder why is the level-set curve evolution is required in this formulation if

the thresholding itself nicely delineates the vertebral boundary. Secondly, the proposed

method was not directly applied to 3D volumes but rather was used to segment each

individual 2D slice, and hence does not exploit all the information available in a full 3D

volume.

[Lim et al., 2013] introduced a Willmore Force term with a kernel density estimation

based shape-prior within a level-set framework to produce good segmentation of the lum-

bar region in 3D. The shape energy is formulated as a sum of Gaussians of shape dissimi-

larity measures between the signed distance function (SDF) of a mean-shape and the SDF
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of each individual vertebrae in the training set. The Willmore flow is based on a boundary

energy functional which is a function of mean curvature, capturing the deviation of the

evolving surface from local sphericity. This work has produced impressive results with an

average Dice score of 89.00%. We believe that even better results could be obtained by

incorporating region based information in the energy functional. Furthermore, a sensible

pre-processing step can lead to the incorporation of smarter energy terms.

A related method was proposed in [Kim and Kim, 2009] using 3D deformable fences

(3DDF). This approach constructs 3D fences that separate adjacent vertebrae from valley-

emphasized Gaussian images. Initial curves for the 3D fences are extracted from interver-

tebral discs, detected with anatomical characteristics, then optimized using a deformable

model. A minimum cost path finding method attempts to corrects any erroneous curves

trapped into a local minimum. The final volume is labeled with the help of the 3D fences

by a fence-limited region growing method. This approach is quite complex to follow or

reproduce as there are a number of heuristics to take care of, such as selecting the correct

range of threshold values to produce a valley-emphasized Gaussian image. Moreover, to

segment the vertebrae, the other structures such as the discs and the spinal cord are to

be separately identified and segmented, which requires alternating between 2D and 3D

segmentation. A number of steps then follow to correct erroneous segmentation in each

part of the spinal column.

In an evaluation of the Medical Image Computing and Computer Assisted Intervention

(MICCAI) Computational Methods and Clinical Applications for Spine Imaging (CSI)

2014 challenge1, the authors in [Hammernik et al., 2015a] have proposed a better and

simpler variational level set formulation which reports an average Dice score of 93.00 ±

0.04%. A bone prior is obtained from the histogram profiles of the bone and other soft

tissues. Separately, a mean-shape prior is obtained by aligning all the groundtruth seg-

mentations of the training set of vertebrae. The thresholded bone prior is then registered

to the mean-shape. A total variation energy functional is formulated which incorporates

an edge detection function using a structure tensor, the mean-shape and a bone prior.

1http://csi-workshop.weebly.com/
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2.1.3 Appearance and Shape Modelling

Variation in shape complexity and pixel information can be captured from a training

dataset of groundtruth segmented volumes to create a representative model of a structure

of interest. Here, we shall review the most relevant literature for shape and appearance-

based segmentation of the vertebrae. Choosing appropriate landmarks and having an

efficient registration scheme is vital in model-based segmentation procedures. Further-

more, some methods segment each vertebra individually while others aim at segmenting

a section of the spine (for example, the lumbar region) in one step.

One of the earlier approaches is described in [Klinder et al., 2009] where a pipeline for

automatically detecting, identifying, and segmenting vertebrae in CT images has been

proposed. Prior knowledge is incorporated based on models obtained via a generalized

Hough transform and appearance-based models. A deformable approach is then used to

perform segmentation by minimizing an energy functional based on image gradients.

In [Ibragimov et al., 2015] and then in a follow-up work in [Korez et al., 2015], the authors

have combined detection with a shape-constrained model to segment the vertebrae. The

detection is based on interpolation theory, comprising of an alignment step between a 3D

mean shape mesh and each vertebra using an objective function, which computes the dot

product of the normal vector at a vertex of the mean shape mesh and a Haar-like gradient

at that vertex location in the CT image. A mesh deformation step is then employed to

improve upon the alignment results and get a more accurate segmentation. This method

achieves an average Dice score of 93.76± 1.61%.

A part based ASM decomposition and conditional shape model based segmentation pro-

cedure was proposed in [Pereañez et al., 2015]. A Voronoi approach is used to decompose

the vertebrae into different parts. This helps include fine details and account for shape

variability at all the vertebral regions. Conditional models are used to model the statistical

inter-relationships to establish statistical coherence of the different parts. Segmentation

is then obtained using an ASM fitting procedure.
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In a promising work by [Ibragimov et al., 2014], a landmark based shape representation

using concepts from theory of transport and a landmark detection algorithm based on

game theory is combined to segment vertebrae in 3D, which results in a Dice score of

93.50%.

The authors in [Shalaby et al., 2014] introduce a 2D vertebral body segmentation ap-

proach based on a shape prior constructed using principal component analysis (PCA) on

the signed distance function of the training groundtruth segmentation images. An initial

segmentation is then obtained using a tensor level set approach exploiting image inten-

sity, Gaussian smoothed values and Gabor features for gradient information. This initial

segmentation is registered with the shape prior to obtain the final segmentation.

In [Forsberg, 2015] the authors propose an atlas-based registration method which achieves

an average Dice score of 94.00 ± 0.03%. The method makes use of a pre-processing step

which consists of spinal canal tracking and disc detection for estimating the local pose

of each vertebra. This step is required for the initial alignment of the atlases before the

registration of the atlases to the target data set. The final step is to merge labels of the

deformed atlases into a single volume.

Superquadrics provide an elegant way to model plausible 3D shapes with a certain num-

ber of parameters. In [Stern et al., 2011] the vertebral body shape is modeled using a

superquadric in the form of an elliptical cylinder. Using a set of 31 parameters the

vertebral body anatomy is modeled for shape and pose. The initial model is deformed

and aligned to segment the 3D image based on a similarity measure. The authors have

carefully designed a criterion based on minimizing the overlap between the probability

distributions of intensities inside and outside the vertebra; thus combining intensity and

gradient information. This method reports a Dice score of 94.50%.

A statistical multi-vertebrae shape and pose model was developed in [Rasoulian et al., 2013].

A novel registration-based technique is used to segment the CT images of the spine rather

than each individual vertebrae. The poses are represented by similarity transformations

forming a Lie group. A group-wise Gaussian Mixture Model based registration technique,
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combined with, partial and full Generalized Procrustes analysis with PCA was used to ob-

tain the statistical multi-object shape+pose model. An initial segmentation using Canny

edge detection is used to initialize the segmentation procedure. The model is then regis-

tered to this rough segmentation using an expectation-maximization algorithm.

In [Castro-Mateos et al., 2015] a statistical inter-space model was introduced, which di-

rectly addresses the neighbouring relationship between regions in different objects or re-

gions of a multi-object structure by learning the statistical distribution between them

to segment the vertebral column, and reports an average Dice score of 90% and a low

Hausdorff error on the 2014 MICCAI challenge. They try to segment complex geome-

tries involving overlaps, excessive separation of neighbouring structures and unrealistic

orientations between neighbouring objects.

In summary, there has been a good amount of work based on shape modeling drawing

on concepts from computer graphics, Lie groups, interpolation theory and game theory.

We have seen new registration techniques being developed with novel similarity metrics.

But, in this thesis we argue that shape and pose variations to segment each individual

vertebra, and even the entire spine, can still be exploited in a much simpler setting, in

particular, within a variational level-set framework, as described in Chapter 3.

2.1.4 Optimization: Graph-cuts, Markov Models and Varia-

tional Methods

Optimization-based methods to create 3D models have been quite successful. In

[Kadoury and Paragios, 2010] a training set of prior mesh models is used to develop a low

dimensional manifold embedding which establishes patterns of global shape variations,

followed by the capture of appearance. At inference time, a higher-order Markov Random

Field (MRF) is employed using unary and pairwise potentials to measure the similarity

between data and shape.

A probabilistic model which approximates the marginal densities of the vertebral body and
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the background using shape and appearance variations was developed in [Aslan et al., 2010].

A matched filter was used to detect the vertebral body. A graph-cuts formulation which

integrates a linear combination of Gaussians (LCG), a Markov Gibbs Random Field

(MGRF), and a distance probabilistic model obtained from 3D shape prior is used.

In the work by [Hammernik, 2015], the author proposed to solve a convex variational

energy functional within an optimization framework. The variational energy functional

is inspired by the PDE based image denoising methods and level-set based segmentation

framework. The authors first smooth the image using the total variation norm image de-

noising model, referred to as the Rudin-Osher-Fatemi (ROF) model [Rudin et al., 1992]

followed by the minimization of an energy functional incorporating a mean-shape model,

bone priors and a structure tensor based anisotropic edge term. The optimization method

used is based on Dysktra’s primal-dual formulation. This formulation involves a convex

energy functional which guarantees a non-unique global convergence.

2.1.5 Machine and Deep Learning

Classical machine learning approaches often rely on the design of handcrafted features

based on literature from the computer vision community, and then use classification tech-

niques such as Support Vector Machines (SVMs), random forests, or logistic regression.

A learning-based method evaluated on the MICCAI CSI 2014 challenge is proposed in

[Chu et al., 2015b] to automatically localize and segment 3D vertebral bodies. For the

localization of 3D vertebral bodies, a random forest regressor is used to aggregate votes

from a set of randomly sampled image patches to get a probability map of the center,

which is then regularized by a Hidden Markov Model (HMM) to remove any ambiguity.

This provides a region of interest (ROI) for the segmentation step, where the random

forest classification is used to estimate the likelihood of being in the foreground or a

background. As an end result of a detection pipeline, [Kelm et al., 2013] developed a

segmentation approach based on iterative marginal space learning incorporating pose

prior information.
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The authors in [Wang et al., 2015] proposed a unified framework to segment multiple

structures, i.e., axial and sagittal vertebral slices and discs in multiple modalities using

a single learned model. This method leverages features extracted based on texture (WI-

SIFT [Badino et al., 2012]), intensity patterns (WI-SURF [Badino et al., 2012]), seman-

tic context (GIST [Oliva and Torralba, 2001]) and shape (HOG [Dalal and Triggs, 2005])

properties to train a multi-kernel multi-dimensional support vector regressor to predict

the boundary of the structure of interest.

In the past few years, medical image analysis has been heavily influenced by data-driven

deep learning methods. A major disadvantage of this paradigm is that these networks

are not directly interpretable and as such the learnt features might not make sense to a

clinician or a radiologist. The most recent work [Lessmann et al., 2019] has proposed an

iterative instance segmentation approach that uses a fully convolutional neural network

(ConvNet) achieving a Dice score of 96.3 ± 1.3% for the MICCAI CSI 2014 challenge

dataset. The vertebrae are segmented one after the other by combining the network

with a memory component which acts as a prior and is used to iteratively search for the

next vertebra to be segmented. The network performs multiple tasks: segmentation of

a vertebra, regression of its anatomical label and prediction of whether the vertebra is

completely visible in the image. [Korez et al., 2016] designed a 3D ConvNet architecture

which is used to learn the appearance of the vertebral bodies of MR images to generate

3D spatial probability maps, which guide the deformable model towards the boundaries of

the vertebral bodies. In [Janssens et al., 2018] a cascade of fully convolutional networks

(FCNs) is used to first localize the bounding box around the lumbar region together with

a segmentation network to label the pixels as foreground or background.

Later, we shall show in Chapter 3 how our region-based level-set method can be used to

obtain full spine segmentation which might then act as groundtruth labels for training deep

networks, or would ease the workload of neurologists or radiologists. The segmentations

produced are based on the local geometry of the vertebrae and the surrounding tissues.
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2.2 Geometric Flows and Shape based Image Seg-

mentation

In this section, we review the level-set based geometric flow formulation. Active contours

extract the boundary of the region of interest by deforming a contour (in 2D) or a surface

(in 3D) governed by certain forces, influenced by image and curve information. They

can be either implicit or explicit depending upon their formulation. Level-sets and Fast

Marching Methods are implicit. Level-sets are embedded in a higher dimensional manifold

and solve an initial value problem, while fast marching methods are based on a boundary

value partial differential equation. Snakes, which will be discussed below, are typically

explicitly parameterized.

Explicit Models

Parametric snake [Kass et al., 1988] models can be described as a contour

v = (x(s, t), y(s, t)) that is time-varying and parameterized by s ∈ [0,1]. In other words,

it is an energy minimizing spline guided by external and internal guiding forces. The

energy functional can then be written as

E∗snake =

∫ 1

0

[Eint(v(s)) + Eimage(v(s)) + Econstraint(v(s))]ds. (2.1)

Internal energy (Eint) makes the snake act like a membrane which controls the elasticity

and the stiffness of the snake. The image-based features (Eimage) exploit line, edge and

curvature information such as stopping potentials. The snake can be constrained by

external forces (Econstraint), including user interaction. The energy minimizing functional

gives rise to a set of Euler equations for the evolving contour as given in [Kass et al., 1988]:

αxss + βxssss +
∂Eext
∂x

= 0 (2.2)

αyss + βyssss +
∂Eext
∂y

= 0 (2.3)

where, Eext is an external energy functional and, α and β are constants. The introduction
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of snakes have laid the foundation for many image segmentation methods. Researchers

have built upon the initial model to develop smarter energy functionals and priors.

An important snake-based model, based on a Gradient Vector Flow (GVF), was proposed

by [Xu and Prince, 1998], which solves the problems associated with initialization and

boundary convergence. The energy functional to be minimized for the GVF field vector

v(x, y) = [u(x, y), v(x, y)] is

∫∫
µ(u2

x + u2
y + v2

x + v2
y)+ | ∇f |2| v −∇f |2 dxdy (2.4)

which is then solved by using the associated Euler-Lagrange formulation equations,

µ∇u2 − (u− fx)(f 2
x + f 2

y ) = 0, (2.5)

µ∇v2 − (v − fy)(f 2
x + f 2

y ) = 0. (2.6)

An edge-map f(x, y) is derived by computing the magnitude of the gradient of the Gaus-

sian smoothed image. The gradients of the edge-map ∇f point toward the edges and,

generally have large magnitudes only in the immediate vicinity of the edges and have a

value close to zero in homogeneous regions. The above energy functional has the follow-

ing property. When ∇f is small, the energy is dominated by the sum of squares of the

partial derivatives of the vector field, which yields a slowly varying field. On the other

hand, when ∇f is large, the second term dominates and it keeps the vector v equal to

the gradient of the edge-map. Various snake-based formulations have been successfully

applied to medical imagery with complex anatomy.

Implicit Models

[Osher and Sethian, 1988] introduced level-sets for capturing moving fronts to the com-

putational physics community. We shall review this formulation, as applied to image

analysis. We will further see how active surfaces are divided into different categories

depending upon the image information they are designed to capture: boundary, region,
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shape or topology of the structures in the image. Examples will be given for each of the

three categories from the literature.

A time-dependent initial value partial differential equation problem is used to model an

evolving front (contour) moving with a speed F . The speed function may depend upon

factors such as the local geometrical properties of the front such as curvature, global

properties that depend upon shape and position of the front, or any other independent

property. The front is neither strictly positive nor negative and can move both forward

and backward, with the possibility of passing through a point (x, y) several times. The

initial position of the front is embedded as the zero level set of a higher dimensional

function φ. Thus, we can think of the front to be given by the zero level-set of the time-

dependent level-set function φ. To come up with a mathematical formulation, we require

that the zero level-set of the evolving front, i.e., φ(x(t), t) = 0 should be the evolving

front. Differentiating this and applying the chain rule gives us:

φt +∇φ(x(t), t).x
′
(t) = 0, (2.7)

where, F is the speed in the outward normal direction, which gives, x
′
(t).n = F where

n = ∇φ
|∇φ| . Thus, we end up with an evolution equation for φ,

φt + F | ∇φ |= 0 (2.8)

given φ(x, t = 0). Thus, Equation 2.8 describes the time evolution of the level-set func-

tion φ such that the zero level set of this evolving function is always identified with the

propagating interface.

It should also be noted that a boundary value problem can be solved which leads to

another class of computational techniques to model the evolving front, namely the Fast

Marching Method [Sethian, 1996]. Assume that the front always moves outward; we can

then characterize the position of the expanding front by computing its arrival time T (x, y)
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as it crosses each point (x, y). The equation can be written as

| ∇T | F = 1. (2.9)

T = 0 on τ , where τ is the initial location of the interface. This remains out of the scope

of this thesis, but a short description has been given in Appendix B.

Let us now discuss the level-set formulation. Let γ be a simple, smooth, closed initial

curve in R2 and let γ(t) be the one-parameter family of curves generated by moving γ

along its normal vector field with speed F . Here, F is the given scalar function. We can

thus write, n.xt = F , where xt is the position vector of the curve, t is time and n is the unit

normal to the curve. Let us now parameterize this equation. Let the speed function F be

dependent on only its curvature κ, i.e. F = F (κ). Let the parameterized position vector

be x(s, t), where 0 ≤ s ≤ S assuming periodic boundary conditions x(0, t) = x(S, t). Also,

let n(s, t) and κ(s, t) be the parameterized outward normal and curvature respectively at

every point on the evolving curve. The individual components x = (x, y) are given by a

Lagrangian representation describing the moving front:

xt = F

[
xsyss − ysxss
(x2

s + y2
s)

3/2

](
ys

(x2
s + y2

s)
1/2

)
(2.10)

yt = −F

[
xsyss − ysxss
(x2

s + y2
s)

3/2

](
xs

(x2
s + y2

s)
1/2

)
. (2.11)

An early introduction of level-sets to image segmentation can be found in the work by

[Malladi et al., 1995], which expands upon the above Lagrangian formulation. The key

idea in the level-set approach is to represent the moving front γ(t) as the level set φ = 0

of a function φ. Thus, for a moving closed hypersurface γ(t), an Eulerian formulation can

be proposed for the motion of the hypersurface propagating along its normal direction

with a speed of F . The propagating surface can be embedded as the zero level-set of a

higher dimensional function φ. Let φ(x, t = 0), where x ∈ RN is defined by,

φ(x, t = 0) = ±d, (2.12)
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where d is the distance from x to γ(t = 0) and the plus or minus sign is chosen if the

point x is outside or inside the initial hypersurface γ(t = 0), respectively. Thus, we have

a function φ(x, t = 0) : RN → R which gives us,

γ(t = 0) = {x | φ(x, t = 0) = 0} . (2.13)

A typical level-set embedding function is chosen as the signed euclidean distance func-

tion(SDF):

φ(x) =


−d, x ∈ Ω+

+d, x ∈ Ω−

0, x ∈ Ω0

(2.14)

where Ω+ is the region inside and Ω− outside the front. As an example, imagine that

the circle is the zero level set φ = 0 of an initial surface z = φ(x, y, t = 0) in R3. Thus

we obtain Equation 2.8 as the evolution equation and refer to it as a Hamilton-Jacobi

type of equation. This formulation of the propagating front as the zero level set of

a higher dimensional surface has several advantages. First, the evolving front φ(x, t)

always remains a function as long as the speed function F remains smooth. Second, since

φ(x, t) remains a function as it evolves, we may use a discrete grid in the domain of x

and substitute finite difference approximations for the spatial and temporal derivatives as

explained in Appendix A. Third, intrinsic geometrical properties of the front may be easily

determined from the level-set function φ such as the curvature. Moreover, sound numerical

methods can be easily incorporated to account for the change of topology, breaks, merges,

or singularities formed by the evolving curve. Finally, the level-set approach can be easily

extended to higher dimensions, and as such level-sets have found its application in the

segmentation of large volumetric data.

We use a level-set based framework for multi-dimensional medical imagery in this thesis.

In Appendix A, we briefly discuss the numerical implementation of level-set methods. We

shall now look at the design of various speed functions depending upon boundary and

region terms, and the corresponding energy functional, along with qualitative examples.



2.2. Geometric Flows and Shape based Image Segmentation 21

In general, PDE based segmentation is dependent on the design of an energy functional

given in a variational setting for the continuous case, which is then discretized and solved

using numerical methods such as level-sets. We leave the discussion of using shape-priors

as a cue until Chapter 3.

2.2.1 Boundary-based flows

A geometric flow could be designed in such a way such that the propagating interface

stops at the boundaries of the desired object while moving freely in homogeneous regions.

Thus to detect edges, a typical term is g = 1
1+|∇Iσ |n , first used for diffusion filtering in

[Perona and Malik, 1990], which represents the inverse of the gradient magnitude of a

Gaussian blurred image (Iσ). Intuitively, in a region of constant intensities, this term

would be quite large as the gradient magnitude is negligible, and as such the front would

propagate according to the other terms which influence the flow. On the other hand, the

gradient would be high at the edges and this high gradient would lead to the term being

close to zero which would help the flow slow down and eventually stop at the desired

boundary.

[Malladi et al., 1995] use this term g in their level-set update equation as follows:

∂φ

∂t
= g (FA + FG)|∇φ|, (2.15)

where, FA controls the expansion and contraction of the flow, and FG depends on the

geometry of the curve such as its curvature κ.

[Caselles et al., 1995] use a similar term in a level-set update equation:

∂φ

∂t
= g (c+ κ) | ∇φ | +∇u.∇g, (2.16)

where the mean curvature κ is as given below and can be used as the speed function F
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in 2.8,

κ = ∇. ∇φ
| ∇φ |

=
(φyy + φzz)φ

2
x + (φxx + φzz)φ

2
y + (φxx + φyy)φ

2
z − 2φxφyφxy − 2φxφzφxz − 2φyφzφyz

(φ2
x + φ2

y + φ2
z)

3/2
.

(2.17)

Equation 2.16 can equivalently be written as,

Ct = g (c+ κ)N − (∇g.N )N , (2.18)

where Ct is the evolving level-set. The inverse gradient function only helps in ideal

cases. Practically, the edges don’t have constant value throughout and are also marred

by small gaps. The term ∇g.N in the above equation helps to detect boundaries with

high variation in gradient magnitude values and the presence of small gaps.

2.2.2 Region and texture-based flows

Boundary-based flows leak through regions when the edge potential is low or the edges

are not sharp. The image domain can also be partitioned based on the region statistics

between the different subsets of the domain. Region-based flows exploit the geometrical

and statistical properties of the local regions and are often modeled as an optimization

problem. [Chan and Vese, 2001] considered a minimum partition problem to minimize an

energy functional whose stopping term extracts information not only limited to the edges,

F (c1, c2,C) = µLength(C) + v Area(inside(C))

= λ1

∫
inside(C)

| u0(x, y)− c1 |2dxdy + λ2

∫
outside(C)

| u0(x, y)− c2 |2dxdy

(2.19)
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The energy can be re-written as:

F (c1, c2,C) = µ

∫
Ω

δ(φ(x, y)) | ∇φ(x, y) | dxdy + v

∫
Ω

H(φ(x, y))dxdy

+ λ1

∫
Ω

| u0(x, y)− c1 |2H(φ(x, y))dxdy

+ λ2

∫
Ω

| u0(x, y)− c2 |2(1−H(φ(x, y)))dxdy,

(2.20)

where, δ is the Dirac-delta function and H is the Heaviside function. An evolving curve

C in an image domain Ω can have a bi-partition defined as inside(C) and outside(C),

respectively, with each having approximately piece-wise constant intensities. Let an object

of interest be represented by intensity value ui0 and the background with an intensity value

uo0. Thus, we have u0 = ui0 inside the object and u0 = uo0 outside the object. In Equation

2.19, c1 and c2 are the mean intensity values inside and outside the propagating interface.

Thus, the objective is to minimize an energy functional F (c1, c2,C), i.e. Inf
c1,c2,C

F (c1, c2,C).

The corresponding gradient descent update equation is as follows:

∂φ

∂t
= δ(φ)

[
µ∇. ∇φ
| ∇φ |

− v − λ1(u0 − c1)2 + λ2(u0 − c2)2

]
, (2.21)

where, λ1 and λ2 are the weights for the inside and outside terms. This region-based

formulation perform good on images with regions of different intensities with possibly

blurred boundaries. The major drawback of this model is that it assumes piece-wise

constant intensities in the two sub-domains of the image and thus it might fail when

applied to images with a considerable amount of noise. This calls for a regularization

term which handles noise.

Another class of region-based level set algorithms makes use of probability densities to

reason about the different regions, as given by [Rousson, 2004]. Using a Maximum a

posteriori (MAP) formulation, we can write,

p(P (Ω) | I) =
p(I | P (Ω))

p(I)
p(P (Ω)) (2.22)
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where p(P (Ω)) is the probability of partition P (Ω) of the image domain and p(I) is the

probability of an image I. The term p(I|P (Ω)) represents the a poteriori segmentation

probability of an image I given the partition P (Ω). The image domain Ω can be composed

of N regions:

p(I|P (Ω)) = p(I|Ω1, . . . ,ΩN) = p(I | Ω1)p(I|Ω2) . . . . . . p(I | ΩN), (2.23)

where p(I|Ωx) denotes the probability of having the image I when Ωx corresponds to

a region of interest. An energy functional can be formulated by taking the negative

logarithm of the posterior,

E([Ω1,Ω2, . . . ,ΩN , θ1, θ2, . . . , θN ]) = −
∑
i

∫
Ωi

log(p(I(x) | θi))dx+ µ |C|, (2.24)

where p(I|θi) represents the a posteriori intensity distribution of a region Ωi parameterized

by θi. The term µ|C| is obtained by taking the logarithm of a regularization constraint,

p(P (Ω)) ∝ e−µ|C|, which favors a short length |C| of the partition boundary. Consider

the case when N = 2 with the region partitions being Ω1 and Ω2, and φ being the signed

distance function, the energy functional becomes,

E(φ, [θ1, θ2]) = −
∫

Ω

(H(φ) log(p(I(x) | θ1)) + (1−H(φ)) log(p(I(x)) | θ2))dx

+ µ

∫
Ω

| ∇H(φ(x)) | dx.
(2.25)

The evolving equation is thus,

∂φ

∂t
(x) = δ(φ)

[
µ∇. ∇φ
|∇φ |

− log
p(I(x)|θ1)

p(I(x) | θ2)

]
, (2.26)

where δ is the Dirac-delta function and H is the Heaviside function. The parameters θi

are updated after every iteration.

In the above image partitions, the individual regions were modelled by a single Gaussian

as pi(I | µi, σi) = 1√
(2πσ2

i )
e

(I−µi)
2

2σ2
i . The variance term σ allows to capture regions with



2.2. Geometric Flows and Shape based Image Segmentation 25

different variances and noisy images are easily handled, which was a major drawback of

the piece-wise constant assumption in the Chan-Vese formulation.

The Gaussian distribution assumption on image intensities gives a rather limited outlook

to model the region distributions. This is because the Gaussian distribution assumes that

the image regions are piece-wise continuous, but is often not the case in textured im-

ages. Kernel-based estimation of the distributions [Kim et al., 2005] within a variational

framework gives,

∂φ

∂t
(x) = δ(φ)

[
µ
∇φ
| ∇φ |

− log
pcinI(x)

pcoutI(x)
+

∑
Cx=Cin,Cout

1

|CX |

∫
CX

gσ(I(x)− I(x̂))

pCX (I(x̂))
dx̂

]
,

(2.27)

where the gσ is a Gaussian kernel and the Parzen window is given by,

pi(I) =
1

| Ωi |

∫
Ωi

gσ(I − Î(x)). (2.28)

Several other region-based curve evolution techniques have been formulated.

[Michailovich et al., 2007] explicitly model the intensity distribution inside and outside

the evolving front by minimizing the distance between two probability distributions using

the Bhattacharya distance (− log(B)) given by the Bhattacharya coefficient (B),

B =

∫
RN

√
p1(z)p2(z)dz, (2.29)

where p1(z) and p2(z) are two probability distributions. Letting “-” and “+” denote the

foreground and the background regions being separated, the following update is applied

for an evolving front given by the SDF φ as:

∂φ

∂t
=

1

2
δ(φ(x))B̃(φ(x))

(
1

A−
− 1

A+

)

+
1

2

∫
z∈RN

K+(z− I(x))
1

2

√
P−(z | φ(x))

P+(z | φ(x))
dz

−1

2

∫
z∈RN

K−(z− I(x))
1

2

√
P+(z | φ(x))

P−(z | φ(x))
dz,

(2.30)
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where B̃(φ(x)) =
∫
z∈RN

√
P−(z | φ(x))P+(z | φ(x)), A− and A+ are the areas of the two

competing regions and I(x) is the image under consideration.

Figure 2.1 provides an example of spleen segmentation2 in a CT image using a region based

flow approach described in [Rousson et al., 2003]. We shall look into these methods in

some detail when we study the region-based spine segmentation method in Chapter 3.

[Mukherjee and Acton, 2015] use Legendre polynomials to generalization the Chan-Vese

formulation.

Figure 2.1: Region-based segmentation of the spleen using [Rousson et al., 2003] on a sample
CT image. Top left image shows the initialization with some manually placed seeds. The top
right image shows the final obtained segmentation. The bottom left image is the groundtruth.
The bottom right image shows the segmentation overlaid on top of the groundtruth.

There are also other cues which could possibly be incorporated into an energy minimizing

formulation, as additional feature vectors. Filters such as a Gabor [Turner, 1986], wavelets

2This image was obtained from http://medicaldecathlon.com/
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and (non) linear structure and diffusion tensors have been used to handle non-smooth

images. These cues can be easily coupled with boundary and region-based information

within a variational formulation. A good reference can be found in [Cremers et al., 2007].

We shall further discuss non-linear structure tensors in Chapter 3, but for the particular

case of non-linear diffusion filtering for image pre-processing.



Chapter 3

Geometric Flows and Shape Priors

for Spine Segmentation

3.1 Pre-processing of CT volumes

3.1.1 Challenges posed in spine segmentation

Spine segmentation is a difficult task as several factors pose challenges. The spine is

a complex structure, with each vertebra varying in shape. This often initiates a need

to develop an explicit shape-prior customized for each vertebrae. In addition, the scans

of patients with severe trauma might have different vertebrae fused together or have

parts of the spine severely fractured. This makes it even harder to segment individual

vertebrae separately. Furthermore, there might be gaps in the images of the vertebral

bodies due to a loss of signal during the acquisition of the volumes or due to insufficient

bone density leading to low edge contrast and high image noise. The outer cortical bone

is much denser than the inner bone marrow. This in turn can cause the appearance of a

double boundary and non-uniform thickness. The cortical bone appears as a distinctively

bright intensity region, while the trabecular bone is similar to soft tissues. The intensity

distribution inside and outside the vertebrae is very inhomogeneous and as such there

28
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Figure 3.1: Challenges in spine segmentation: the image on the extreme left shows anterior-
posterior subluxation for vertebrae L4 and L5. The image in the middle show gaps on the
vertebral boundary. The image on the right has missing boundaries as well. Also, notice that
the intensity distribution is remarkably different in the rightmost image when compared to the
first two images, as these images were acquired using different scanners and protocols.

is no clear separation between these intensity distributions. Another key consideration

while dealing with medical imagery is that the data itself comes from different centres

acquired using variations in protocols with different scanner specifications. Thus, we

employ smarter pre-processing methods to overcome these challenges, as discussed in

the upcoming sections. See Figure 3.1 for some qualitative examples highlighting these

challenges. Throughout this chapter, we will discuss ways in which we overcome these

challenges in our segmentation pipeline.

A preliminary pre-processing step is the intensity normalization. We normalize the in-

tensity values to a range between 0 and 1. First, we cap off the values above the 95th

percentile as 1 and values below the 5th percentile as 0. The rest of the Hounsfield Units

are now scaled between 0 and 1. In some images, we choose an appropriate percentile

range to obtain some visible contrast between the vertebral column and rest of the image,

as discussed in Chapter 4.
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3.1.2 Non-linear Anisotropic Diffusion Filtering

Typically a Gaussian filter is used to smooth an image, to have smoothly varying gradients

and avoid singularities. This often leads to an unnecessary loss in detail, for example, a

Gaussian filter might substantially blur the edges of the vertebrae. Some of the earliest

filtering work goes back to the method proposed in [Perona and Malik, 1990] where they

designed a non-linear anisotropic edge preserving diffusion method. We also propose to use

anisotropic diffusion-based filters to smooth the CT images. We make use of coherence

and edge-enhanced diffusion filters [Weickert and Scharr, 2002] based on diffusion and

structure tensors. These filters have the advantage that they make the vertebrae edges

sharper and produce smooth homogeneous regions inside and outside the vertebrae, as

they adapt to the underlying image structure. Intuitively, the edges are smoothed by

elongated kernels and Gaussian-like kernels are used to smooth uniform regions.

In particular, we use the method proposed by [Kroon and Slump, 2009] which we describe

below. Let I denote the 3D image, where each voxel is indexed by the 3-tuple (x, y, z). For

every voxel, we compute the following in an iterative step-wise fashion for a user-specified

number of iterations,

• Step 1: Structure Tensor

For every voxel, we compute a 3 x 3 positive semi-definite structure tensor given by,

J(∇I) = Kj ∗ (∇I.∇IT ), (3.1)

where ∇I is the image gradient and Kj is a Gaussian weighted function. The eigen-

vectors and eigenvalues are computed by eigen-analysis of the structure tensor,

J(∇I) =

(
v1 v2 v3

)
.


µ1 0 0

0 µ2 0

0 0 µ3

 .


vT1

vT2

vT3

 . (3.2)

The three eigenvectors v1,v2 ,and v3 give the local image orientation with the
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three eigenvalues µ1, µ2, and µ3 describing the average contrast in those directions.

Together with the corresponding eigenvalues, the eigenvectors characterize the local

structural features of the image within a small neighborhood. Each eigenvalue

reflects the gray level variance in the direction of the corresponding eigenvector. The

eigenvector v1, corresponding to the largest eigenvalue µ1 defines a local average

over the directions of maximum variance.

• Step 2: Diffusion Tensor

A diffusion tensor is constructed using the eigenvectors and eigenvalues obtained in

Step 1. Let D be the diffusion tensor computed as,

D =


D11 D12 D13

D12 D22 D23

D13 D23 D33

 . (3.3)

There are several methods to compute the values of the diffusion tensor but here

we are interested in the edge-enhancing method, which leads to the following set of

equations,

D11 = λ1v
2
11 + λ2v

2
21 + λ3v

2
31

D22 = λ1v
2
12 + λ2v

2
22 + λ3v

2
32

D33 = λ1v
2
13 + λ2v

2
23 + λ3v

2
33

D12 = λ1v11v12 + λ2v21v22 + λ3v31v32

D13 = λ1v11v13 + λ2v21v23 + λ3v31v33

D23 = λ1v12v13 + λ2v22v23 + λ3v32v33

(3.4)

where the values λ1, λ2 and λ3 are given in [Weickert and Scharr, 2002] and are

computed at every iteration as follows:

λ1 := c1

λ2 := c1 + (1− c1)e
−c2

(µ2−µ3)2

λ3 := c1 + (1− c1)e
−c2

(µ1−µ3)2

(3.5)
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where c1 ∈ (0, 1) and c2 > 0 are the smoothing and the edge-enhancement constants.

The selection of the parameters λi can be understood as follows. The magnitude

of diffusion in the orientation perpendicular to the gradient is determined by the

difference µ1 − µ3 and µ2 − µ3. This difference is large for flow-like structures due

to a high variance in one direction and consequently, such structures are strongly

enhanced. Areas containing only noise are characterized by µi and therefore remain

unmodified [Frangakis and Hegerl, 2001].

• Step 3: Diffusion scheme

The image is diffused for a certain number of iterations, specified by the user ac-

cording to the equation below,

∂I

∂t
= ∇.(D∇I) (3.6)

where ∇.(D∇I) can be solved using various formulations as described in

[Kroon et al., 2010] and [Weickert and Scharr, 2002]. We use the Rotation Invariant

Scheme computed as,

∇.(D∇I) = ∂xj1 + ∂yj2 + ∂zj3 (3.7)

where the components j1, j2 and j3 are given by,

j1 := D11(∂xu) +D12(∂yu) +D13(∂zu)

j2 := D12(∂xu) +D22(∂yu) +D23(∂zu)

j3 := D13(∂xu) +D23(∂yu) +D33(∂zu).

(3.8)

We refer the interested reader to the comprehensive numerical update scheme given in a

longer version of the work [Kroon et al., 2010] which also describes the implementation.
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3.1.3 Flux-maximizing Feature Map (flux-map)

Once, we have a diffused volume, a flux-map is produced which enhances the image con-

trast near the edges. Flux maximizing geometric flows were first proposed by

[Vasilevskiy and Siddiqi, 2002] and later [Law and Chung, 2009] gave a O(N logN) run-

ning time algorithm for both spherical and anisotropic oriented flux computation com-

pared to the traditional O(s2N), where s is the radius of the disc, centered at a voxel,

along whose boundary the flux is computed. In other words, the flux is computed as

follows, at every voxel, consider a sphere of some radii which covers expected width of

the vertebral boundary. We compute the outward flux using Eq. 3.9 and divide by the

number of entries in the discrete sum. Now at each location, we select the flux value with

the largest magnitude, over the range of radii considered. We limit our discussion to the

key equations and the relevance of the method within the proposed segmentation pipeline,

and refer the reader to both the papers for an in-depth mathematical formulation.

Let C = C(p, t) be a smooth family of curves evolving in a plane parameterized by p and

t where 0 ≤ p ≤ 1 where the tangent T and the inward normal N are given by,

T = (xp, yp)

||Cp|| = (xs, ys), N = (−yp, xp)

||Cp|| = (−ys, xs)

and s is the arc-length parametrization of the curve. A vector-field V = (V1(x, y),V2(x, y))

is defined for each point (x, y) in R2. The total inward flux is then given by,

Flux(t) =

∫ 1

0

< V,N >|| Cp || dp =

∫ L(t)

0

< V,N > ds, (3.9)

where L(t) is the euclidean length of the curve. The flux computation is easily extended

to three dimensions as: let S be a surface embedded in R3 with coordinates indexed by

(u, v), Su = ∂S
∂u

and Sv = ∂S
∂v

and the infinitesimal area is given by,

dS = (|| Su ||2 || Sv ||2 − < Su, Sv >
2)1/2du dv.
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Given a vector field V = (V1(x, y, z),V2(x, y, z),V3(x, y, z)) defined at each point (x, y, z)

in R3, one can easily define the flux in 3D by the following surface integral:

Flux(t) =

∫ 1

0

∫ 1

0

< V,N > ds. (3.10)

The main result proposed by [Vasilevskiy and Siddiqi, 2002] is: “The direction in which

the inward flux of the vector field V through the curve C is increasing most rapidly is

given by ∂C
∂t

= div(V) N . In other words, the gradient flow which maximizes the rate

of increase of the total inward flux is obtained by moving each point of the curve in the

direction of the inward normal by an amount proportional to the divergence of the vector

field.”

We exploit this result to enhance the contrast of the vertebral edges. We do not evolve the

flow equations mentioned in these two articles. Rather, we obtain the flux at every voxel

of the edge-enhanced diffused image and generate a flux-based feature image (henceforth

called flux-map) based on the fast implementation by [Law and Chung, 2009].

Figure 3.2 shows some qualitative examples which highlight the differences between the

images before and after running the non-linear anisotropic diffusion scheme on the nor-

malized vertebrae scans and the obtained flux-map using 3.9 based on the implementation

of [Law and Chung, 2009]. The most notable advantages of this scheme include the clos-

ing of many of the interrupted edges, and the denoising of inhomogeneous regions. The

edges also appear to be sharper than before. Qualitatively, the edge-enhanced flux-map

looks piece-wise linear.

3.2 Region-based segmentation of the spine

One could argue that the edge-enhanced non-linear diffusion filtering and the flux-map

might enhance spurious and unwanted edges inside the vertebral body. While this might

be true, it does not affect our region or shape based segmentation pipeline, as will be
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Figure 3.2: Left column: sagittal and coronal slices of the original image, Middle column: edge-
enhanced image (3.1.2) and Right-most column: flux-map (3.1.3). See text for a discussion.

apparent from the formulation described in the next few sections. We leave the qualitative

and quantitative discussion of the experimental results to Chapter 4.

Once a flux-map is obtained as described in the previous section, the user is required to

place initial seeds at certain locations on the vertebral boundary or at the intersection of

the vertebral body and the processes. Although placing a single voxel should suffice, it is

recommended to have multiple seeds initialized to speed up the surface evolution process.

Now, we run a region-based flow with a sparse field method [Appendix D] for stable

numerical updates. The main aim is to extract the surface of the spine, which has a distinct

intensity distribution from that of the vertebral body and the region just outside the spine

in the flux-map. We have a variety of region-based energy functionals implemented but

we found that they were similar in performance in our applications as the filtered flux-

map image is piece-wise constant. The results reported in this work are based on the

level-set surface evolution proposed in [Chan and Vese, 2001], as discussed in Chapter

2. Some of the region-based flows which work well in our formulation are detailed in
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[Michailovich et al., 2007], [Sandhu et al., 2008], [Dambreville et al., 2007],

[Rathi et al., 2006] and [Rousson et al., 2003].

So far, we have placed seeds at the intersection of the vertebral boundaries and let them

evolve using a region-based flow. This results in surface extraction of the spine, i.e., a

thin sheet of the vertebral edges is reconstructed along the spinal boundary. Note that

there might be some small gaps present on this extracted surface due to loss of signal in

the CT images.

The next step is to fill the holes on the extracted surface and also the interior of the

vertebra by the process of shrink-wrap. For this, a bounding box is used to initialize the

geodesic active contour (GAC) [Caselles et al., 1995] based surface evolution. The inward

flow wraps around the extracted surface and its zero level-set gives the final segmentation

of the spine. This fills the interior of each of the vertebrae present in the image with the

added advantage of closing small gaps present on the surface of the spine.

The shrink-wrapping problem could also be formulated as a surface reconstruction prob-

lem, where one can use the level-set update as given in [Zhao et al., 2001] which uses the

SDF as the stopping criteria instead of the inverse of the gradient used in GAC. The

formulation is very similar to GAC, as given below:

∂φ

∂t
=| ∇φ | ∇.

[
∇φ
| ∇φ |

]
=| ∇φ |

[
∇d . ∇φ

| ∇φ |
+ d∇. ∇φ

| ∇φ |

]
, (3.11)

where d is the stopping criteria, computed by the SDF of the extracted spinal surface.

Note that we have based the implementation of the GAC using additive operator splitting

[Appendix C] updates. We have also employed the morphological active contour formula-

tion by [Marquez-Neila et al., 2013] to obtain much smoother segmentated volumes. Note

that in cases where there are large holes present on the extracted boundary, we did not

shrink-wrap such extracted surfaces because the GAC leaks through large holes. Instead,

we use the region-based flow directly on the edge-enhanced (not the flux-map) image

followed by the shrink-wrapping step to get complete spine segmentations.
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3.3 Shape-prior based flows

Using only a boundary or a region-based term might not be sufficient to extract the desired

region of interest in an image. Additional cues such as texture-based features modelled

by Gabor filters or local binary patterns could help. Another important ingredient is

prior knowledge about the desired object shape and its characteristics in the evolving

front. Complex anatomical structures, such as the spine provide a suitable test case,

because they are largely rigid objects with a fixed part structure. Images with occlusions

or missing parts of the desired objects could also benefit from priors. In this thesis, we

use shape-priors to segment L4 lumbar vertebrae in a challenging dataset of patients with

trauma as discussed in Chapter 4. In this dataset the trauma typically resulted in shifted

vertebrae and dislocated spines. The pose variations modeled from the shape priors help

in demarcating anatomy, when it does not adhere to an expected norm.

The shape-prior framework consists of two stages, the first being shape modelling stage,

where the best possible shape characteristics are learnt from a training set, and the second

being a constrained segmentation step using an energy functional minimization algorithm

which optimizes the required model parameters.

One of the earliest approaches to shape-based segmentation was proposed

in [Cootes et al., 1995] based on landmark points. Active shape models are statistical

models which deform a shape to iteratively fit the desired region of interest. A set of

landmark contour points are selected in a cohesive fashion across a set of training contours

(or surfaces in 3D) obtaining one-to-one correspondences between each contour in the

training set. A principal component analysis (PCA) is then applied on the landmark

representations of the training set to reduce the dimensions and obtain the principal

modes of variations with respect to a mean shape. This method works reasonably well,

but it handles varying topology poorly and also requires careful placement of control

landmark points which is a cumbersome task.

Most of the shape-prior based modelling in the literature is based on this PCA based
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modelling. In this section, we review the key ideas of how a shape-prior is constructed from

a training set. We then look at how this shape model is used within a level-set framework

for segmentation. We will limit our discussion to the work by [Leventon et al., 2002] and

[Tsai et al., 2003].

Principal Component Analysis

We review the PCA based modelling as proposed in [Tsai et al., 2003]. Consider a training

set of n manually labelled binary masks {I1, I2, I3, . . . . . . , In}. Here, we shall consider a

set of groundtruth segmentations of an individual vertebra (say, L4). These different

masks are first jointly aligned using the following transformations to remove any pose

variations while calculating the pose parameters p = [a b c h θ]T , with a, b, c corresponding

to components of 3D translation, h denoting a scaling constant and θ corresponding to

3D rotation respectively. In three dimensions, Ĩ(x̃, ỹ, z̃) is the transformed image based

on the pose parameters p, where the transformed coordinates are given by,



x̃

ỹ

z̃

1


=



1 0 0 a

0 1 0 b

0 0 1 c

0 0 0 1





h 0 0 0

0 h 0 0

0 0 h 0

0 0 0 1





cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1





x

y

z

1


. (3.12)

The series of transformations can be represented as a matrix T [p] to be the product of

three matrices: a translation matrix M(a, b, c), a scaling matrix H(h) and a rotation

matrix R(θ), thus mapping the coordinates (x, y, z) ∈ R3 to (x̃, ỹ, z̃) ∈ R3. Note the R(θ)

in Eq. 3.12 is given for the rotation about the z-axis. The standard transformations are

also defined for rotations about x-axis and y-axis. In practice, a given order of rotations

is fixed for the purpose of transforming the coordinates.

The following energy functional can be minimized using gradient descent:
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Ealign =
n∑
i=1

n∑
j=1,j 6=i

[∫ ∫
Ω

(Ĩi − Ĩj)2dA∫ ∫
Ω

(Ĩi + Ĩj)2dA

]
(3.13)

where Ω is the image domain and thus align the binary volumes.

Using these aligned binary volumes, the signed distance function is computed for every

shape in the training set {Ψ1,Ψ2,Ψ3, . . . . . . ,Ψn} with negative distances inside the ver-

tebrae and positive outside representing the background. The average of these SDFs is

φ̄ = (1/n)
∑

i Ψi. To extract the shape variability, φ̄ is subtracted from each of the n

SDFs to create n mean-offset functions
{

Ψ̃1, Ψ̃2, Ψ̃3, . . . . . . , Ψ̃n

}
. These are the functions

with which the variabilities in the shape population is captured via PCA.

We form n column vectors, Φ̃i consisting of the n shapes Ψ̃i. The image is converted to

a column vector by arranging the voxels lexicographically. The total number of voxels or

pixels in each image isN . A shape variability matrix is then defined, S = [Φ̃1 Φ̃2 . . . . . . Φ̃n]

where S is a N x n matrix. An eigenvalue decomposition follows,

1

n
SST = UΣUT , (3.14)

where U is a N x n matrix whose columns represent the n orthogonal modes of variations

and Σ is an n x n diagonal matrix whose diagonal elements represent the corresponding

eigenvalues. Calculating the eigenvalues and eigenvectors using the matrix SST is costly.

We can use the matrix W = STS to reduce the computational burden. If v is an

eigenvector then it is straightforward to see that Sd is the corresponding eigenvector of

SST and the corresponding eigenvalues of both the matrices remain the same.

We get n different eigenmodes {Φ1,Φ2,Φ3, . . . . . . ,Φn} which can be permuted to get the

different eiegnshapes which capture variations in shape and pose. Normally, one limit to

some k ≤ n which is sufficient to capture a variety of shape variations.

Φ[w] = Φ̄ +
k∑
i=1

wiφi, (3.15)
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Figure 3.3: Sample gold standard volumes comprising the training set of groundtruth segmenta-
tions of L4 vertebra. Notice the differences between the vertebral shapes. This is a representative
database, with variations in the vertebral processes and in the thickness of the vertebral bodies.

where w = {w1, w2, w3, . . . . . . , wn} are the weights for the k eigenshapes with the variances

{σ2
1, σ

2
2, σ

2
3, . . . . . . , σ

2
n}.

See Figures 3.3 through 3.5 for a sample shape population used to build the shape model

using L4 vertebrae.

Integrating the PCA shape model into the Level-set framework

The PCA-based shape model described above is built offline. This model has to be

integrated into a level-set framework to obtain a constrained segmentation. Usually edge

and region-based terms are used in conjunction with the shape model to optimize the

parameters to obtain a final segmentation.

[Leventon et al., 2002] were amongst the first to combine the edge and curvature infor-
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Figure 3.4: Contribution of each of the eigenvectors to the total shape variability being captured
by the vertebrae database. The red line indicates the 98th percentile, i.e., the first 15 eigenvectors
account for 98% of shape variability in the database.

Figure 3.5: Shape Variations. The first four eigenshapes are depicted with first and second
negative and positive shape variations obtained by φ̄±σiλiφi. Each row depicts one eigenshape.
Left to right: in each row, one can see how the eigenshape changes. There is a visible change
in the structure of the vertebral processes. Top to bottom: there are clear visible differences
amongst the different eigenshapes, especially in the vertebral processes.
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mation in a GAC evolution with the shape model using a Maximum a Posteriori (MAP)

approach,

αMAP , pMAP = argmax
α,p

P (α, p | u,∇I) (3.16)

where, u is the evolving surface, ∇I is the gradient of the image, α and p are the shape and

pose parameters, respectivly, which completely determine the final segmentation (the final

curve denoted by u∗). This MAP formulation is solved using Bayes’ rule and αMAP , pMAP

are the estimated shape and pose parameters.

Another approach is to iteratively minimize an energy functional using gradient descent

to optimize the pose p and shape w parameters. [Tsai et al., 2003] computes the gradient

of the region-based energy functional defined by [Chan and Vese, 2001] with respect to

the parameters p and w, which is given by the following two equations:

∇wECV = −2(µ∇wSu + v∇wSv),+(µ2∇wAu) + v2∇wAv), (3.17)

∇pECV = −2(µ∇pSu + v∇pSv) + (µ2∇pAu) + v2∇pAv), (3.18)

where Ru and Rv are the regions inside and outside the evolving front respectively. µ

and v represents the mean intensities in the two regions. S and A represents the sum

of intensities and the area for a given region, respectively. The parameters are updated

using the following equations at every iteration:

wt+1 = w − αw∇wE, (3.19)

pt+1 = p− αp∇pE, (3.20)

where αw and αp are the learning rates. At the end of an iteration, a new shape is

computed using,

φ[w,p](x, y) = Φ̄(x̃, ỹ) +
k∑
i=1

wiφi(x̃, ỹ) (3.21)

where,
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The zero level-set of φ represents the evolving surface and upon convergence the final

segmentation. It is this formulation which we use in our shape-prior based segmentation

for the L4 vertebra.

We now review some of the other relevant shape-prior based methods in the literature.

The method proposed in [Chan and Zhu, 2005] drives the evolving contour towards the

mean shape and also has a separate Chan-Vese region term in the formulation but does

not learn pose and shape variations from a general population. It is thus inefficient

in handling complex anatomies. The major disadvantage of the above mentioned three

methods, [Leventon et al., 2002], [Tsai et al., 2003] and [Chan and Zhu, 2005] is in their

incapacity to handle local edge variations. This is because the energy models region

information only and lacks a term to attract the evolving surface to the edges of the

object under consideration. As discussed in Chapter 2, [Lim et al., 2013] use a PCA and

KDE based shape prior with a boundary based term which constrains the flow to lie

within the object of interest and not leak across the edges. The contribution of all the

three terms, based on boundary, region, and shape, was proposed in [Bresson et al., 2006].

We review the self-explanatory energy functionals below. [Chan and Zhu, 2005] proposed

an energy functional which combines the Chan-Vese functional with a shape term, driving

the evolving curve to the mean-shape of the groundtruth training samples as,

∂φ

∂t
= −[(u− c1)2 − (u− c2)2 + 2λ(H(φ)−H(ψ))] δ(φ), (3.22)

where H(ψ) is the Heaviside function of the mean-shape (here, computed by taking the

average of all the aligned binary images). [Lim et al., 2013] combines a kernelized shape-
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prior term with an edge-mounted Willmore force term as follows:

∂φ

∂t
=
∂E(φ)

∂φ
=
∂(λEs + Ew)

∂φ
,

∂Es
∂φ

=

N∑
i=1

αi
∂d2(H(φ),H(φi))

∂φ

2σ2
∑N

i=1 αi
,

∂Ew
∂φ

= −g(I) || ∇φ || (∆Mh+ h(t) (|| S(t) ||22 −
1

2
h(t)2)),

(3.23)

where h is the mean curvature on M (a d-dimensional surface embedded in Rd+1). ∆Mh

is the Laplace Beltrami operator given by: ∆h− h∂h
∂n
− ∂2h

∂n2 , with n = ∇φ
||∇φ|| .

S = (I − n
⊗

n)(∇×∇)φ is the shape operator on φ. ||S||2 is the Frobenius norm of the

shape operator S.

The set of flow equations which simultaneously evolve, combining boundary, region and

shape terms, as proposed in [Bresson et al., 2006], are as follows:

F = βsFshape(C,xpca,xT ) + βbFboundary(C) + βrFregion(xpca,xT , uin, uout),

Fshape =

1∮
0

φ2(xpca, hxTC(q)) | C ′(q) | dq,

Fboundary =

1∮
0

g(| ∇I(C(q)) |) | C ′(q) |dq,

Fregion =

∫
Ωin(xpca,xT )

(| I − uin |2 +

µ | ∇uin |2)dΩ +

∫
Ωout(xpca,xT )

(| I − uout |2 +µ | ∇uout |2)dΩ,

where q is the curve parameterization and the rest of the symbols have the usual stan-

dard meaning. An in-depth discussion will follow in Chapter 4, where we experimentally

validate the methods described in the present chapter on several spine datasets. We also

provide extensive visualizations to see the segmentation process and the results.
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3.4 Segmentation procedure

There are several components in our geometric flow and shape-prior based segmentation

pipeline, as summarized in the flowchart in Figure 3.6. We briefly review the two stage-

pipeline below.

The normalized input image is pre-processed. First, the edge-enhanced image is obtained

using the edge-enhancing flow (Section 3.1.2). The flux-map is then computed on the

edge-enhanced image using an anistropic flux method (Section 3.1.3). Now, the user can

choose one of the two pipelines. Pipeline 1 is used for the segmentation of a desired region

of the spine. Pipeline 2 is used for the segmentation of an individual vertebrae.

Pipeline 1: the user places seeds on the the flux-map image to initialize the region-

based Chan-Vese segmentation flow (Section 3.2). This results in the surface extraction

of the particular region of interest in the spinal column (for example, the lumbar or

thoracic region). The user then initializes a bounding-box around the extracted surface

to perform a type of shrink-wrapping, an inward flow wraps around the extracted surface

and its zero level-set gives the final segmentation of the spine, which fills the interior of

each of the vertebrae present in the image with the added advantage of closing small gaps

present on the surface of the spine. For this process, we use the geodesic active contour

flow (Equation 2.18) and obtain complete segmentations. Note that if there are large holes

present on the extracted surface, the user can place seeds directly on the edge-enhanced

image and run the Chan-Vese region-based segmentation to get segmentations of the spine

(with some holes inside the vertebral bodies), followed by the shrink-wrapping step.

Pipeline 2: the PCA shape-prior is built offline. The user initializes the shape-prior

based segmentation method by placing the mean-shape (of the groundtruth vertebrae

population) near the vertebrae to be segmented, on the flux-map. The individual vertebra

is then segmented using the shape-prior based segmentation method, as described in

Section 3.3.
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Figure 3.6: A flowchart summarizing the two segmentation pipelines.



Chapter 4

Experimental Results and Discussion

In this chapter we discuss our results in detail and compare the advantages and limitations

with respect to other methods. We benchmark the performance of our proposed two-part

segmentation pipeline on three databases.

Database 1: Healthy cases [Lumbar Vertebrae]

A publicly available database1 [Ibragimov et al., 2014] of 50 vertebrae was extracted from

10 axially reconstructed CT images of lumbar spine, with in-plane voxel size between 0.282

and 0.791 mm, and slice thickness between 0.725 and 1.530 mm. The lumbar vertebrae

(L1-L5) were manually segmented to obtain a binary mask for each vertebra.

Database 2: CSI MICCAI challenge [Thoracular-lumbar vertebrae]

The Department of Radiological Sciences, University of California, Irvine, School of

Medicine2 acquired data on the Philips or the Siemens multidetector CT scanners. The

data sets are spine CT images acquired during daily clinical routine work in a trauma

center from 10 young adults (16-35 years old). The datasets were acquired without intra-

venous contrast. The in-plane resolution is between 0.3125 mm and 3613 mm and the slice

thickness is 1mm. In each scan, all 12 thoracic and 50 lumbar vertebrae, totalling, 120

thoracic and 50 lumbar vertebrae across 10 subjects have been segmented and provided

1Database 1 can be downloaded at http://lit.fe.uni-lj.si/tools.php?lang=eng
2Dataset 2 at http://spineweb.digitalimaginggroup.ca/spineweb/index.php?n=Main.Datasets

47
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as groundtruth references.

Database 3: Trauma cases

The Montréal Neurological Institute (MNI) provided CT images of the lumbar region of

30 patients. These were cases which had suffered a spinal injury, typically leading to a

dislocation of the spine with a corresponding shift to the positions of one or more vert-

erbrae. The images were acquired with 130 kVp tube potential and 175 A tube current.

One image was acquired with 225 A tube current. Manual voxel-based segmentations

of the L4 vertebra was provided for each image. Because the manual segmentations is

voxel-based the precision is limited by the voxel size. The in-plane resolution is 512 x 512

voxels with a voxel size of 0.352 x 0.352 mm. The number of slices ranges from 55 to 200

with a slice thickness of 0.998 to 2.002 mm.

The metrics used to compare the obtained segmentation and the available groundtruth

are summarized in Appendix E. We use the toolbox of [Taha and Hanbury, 2015] and

[Maier et al., 2019] to produce the comparison metrics for the purpose of the evaluation

of our segmentation results.

4.1 Spine segmentation using region-based flow with

shrink-wrapping: discussion

We evaluate the proposed region-based spine segmentation pipeline on the obtained edge-

enhanced flux-maps, as discussed previously in Section 3.2 on the healthy population in

Databases 1 and 2.

We first discuss the results on Database 1. We report an average Dice score of 92.36 ±

0.0131% with the average symmetric surface distance at 0.7884± 0.1385 mm. The average

Hausdorff and its 95th percentile are at 0.1385 ± 0.0845 mm and 2.1638 ± 0.6464 mm

respectively. The average surface distance is 0.6626 ± 0.1371 mm. Figure 4.1 summarizes

the obtained metrics used to evaluate the segmentation results as a box-plot.



4.1. Spine segmentation using region-based flow with shrink-wrapping: discussion 49

Figure 4.1: Spine segmentation evaluation metrics using the region-based flow with shrink-
wrapping for Database 1. The minimum, median, inter-quartile range, and the maximum values
can be clearly seen. The values beyond those can be interpreted as outliers.

See Figure 4.2 for an example of the region-based segmentation procedure. The initial

seeds are manually placed by the user at the intersection of the spinous processes and

the vertebral body. Although a single seed should suffice, in order to speed up the

segmentation process, we place multiple seeds across the spine. Next, the surface of

the spine is extracted using the region-based flow on the flux-map. Figure 4.3 shows the

surface extraction process in 3D, where the initial seeds evolve over time to traverse the
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boundary of the spine in the flux-map. The extracted surface contains some holes due to

the lack of signal at the boundary, as can be also be seen in a 2D sagittal view in Figure

4.4. To fill up the interior volume of the spine and thus obtain a complete segmentation of

every vertebrae, we use the shrink-wrapping method by placing a bounding-box around

the extracted surface. This step also helps in closing of the holes present on the boundary.

The complete segmentation for the lumbar region is shown in Figures 4.2 and 4.3 in 3D,

while Figures 4.4 through 4.6 show 2D slices. Further, an overlay of the segmented volume

on the groundtruth is shown in Figure 4.7. In case where there are large holes present

on the extracted surface, the GAC might leak into the vertebral bodies upon shrink-

wrapping. Therefore, the user can directly place seeds on the edge-enhanced image to get

filled volumes of the spine. The shrink-wrapping step then follows to fill any holes inside

the vertebral body (which are present due to inhomogeneous intensity distribution).

The major advantage is that the flow traverses on the vertebral boundary providing a

very accurate localization of the surface. The method also helps in delineating the spinal

cord and the intervertebral discs. Further, the method does not require any training data

and is simple to implement with a clear mathematical underlying. The method is easily

reproducible as these geometric flows are implemented without heuristics. A positive off-

shoot of this method is that it can successfully segment any vertebral region of the spine

or alternatively any visible spinal region in a given volume. So, if one specifically wants

to segment a small localized region for spinal surgical planning, this can be achieved by

cropping the desired region of interest and then running the region-based flow on the edge-

enhanced flux-map. This is of significant clinical relevance, as this method can be used

to obtain a 3D model of the spine. These 3D models can then be used for downstream

tasks.

It is surprising to discover that there are very few papers which have employed level-

set based segmentation for CT spine segmentation. In particular, [Lim et al., 2013] use

an edge-mounted Willmore flow with kernelized shape-prior based level-set method for

lumbar vertebrae segmentation and [Tan et al., 2008] use a series of GAC based level set

method to segment the vertebral body. [Lim et al., 2013] show for 2D slices that GAC
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Figure 4.2: [Top row: left to right ] The first image depicts the initialization by placing voxels.
The second image shows the extracted surface using the region-based flow, which has cavities
inside since the segmentation is concentrated on boundaries of the vertebrae. The third image
shows a bounding-box placed around the extracted surface, which initializes the process of
shrink-wrapping around the middle segmentation. [Bottom row: left to right ] The leftmost
image is the shrink-wrapped spine segmentation, which now contains a vertebral volume. The
middle image shows a groundtruth image obtained by manual segmentation. The rightmost
image shows an overlay of the obtained segmentation on the groundtruth.

and Chan-Vese based methods fail to segment the CT vertebrae. This is in direct contrast

to our proposed method. The key reason why the GAC and Chan-Vese based formulation

does not work for them is because they do not use appropriate filtering methods as used

in our study. Furthermore, they use a doughnut shaped initialization, which takes a

substantial amount of time to manually initialize, whereas we use a much simpler one-

click (one voxel suffices) initialization. Our method outperforms these approaches, which

report a Dice score of 89.32 ± 1.70% with a Hausdorff distance of 14.03 ± 1.40 mm for

the lumbar region3. Furthermore, these methods are not guaranteed to perform well on

cases with trauma because the shape prior used does not model shape variations of the

3The dataset used in [Lim et al., 2013] is not publicly available but is quite similar to the Database
1 used in our work.
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Figure 4.3: [Left to right and top to bottom] Surface extraction process for Database 1, using the
region-based flow on the flux-map, as explained in Section 3.2. The entire evolution procedure
can be seen from initialization to the final extracted surface.

population but only accounts for each vertebrae in the training set individually.

[Lessmann et al., 2019] proposed a deep learning based method which iteratively segments

the different vertebrae using a memory network, one after the other, keeping the infor-
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Figure 4.4: Sagittal slices: The top-left image shows the initial seeds placed on the edge-enhanced
flux-map for an example from Database 1. The top-right image shows the extracted surface
(vertebral boundary). The bottom left image shows the shrink-wrapped segmented spine. Notice
how the cavities visible in the top-right image are now filled, and the surface holes are closed.
The bottom-right image depicts the groundtruth.

mation from the already segmented vertebrae. This involves keeping a track of nearby

segmented vertebrae, before segmenting the next vertebra. In contrast, we do not require

any such information and segment the full spine or a desired individual vertebra. Thus,

their method does not process the entire volume at once, unlike ours. Our method’s

performance is comparable to theirs but it does not outperform them in terms of Dice

coefficient. However, our ASSD of 0.7884 mm is well within the acceptable surface er-

ror of 2mm for facet joint injection procedures [Gill et al., 2012]. In their formulation,

the images were cropped to the region which contains the vertebrae to be segmented to

restrict the field of view. In contrast, we do not require any such intervention.

Comparing our method to shape and landmark based methods, our approach does not

require any complex shape-modelling and the use of constrained optimization methods as

proposed in [Rasoulian et al., 2013], [Ibragimov et al., 2014], [Korez et al., 2015],

[Castro-Mateos et al., 2015] and [Pereañez et al., 2015]. These methods require lots of

manually selected landmark points which, are cumbersome to obtain. Secondly, the op-
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Figure 4.5: Sample sagittal, coronal and axial segmented slices for Database 1.

Figure 4.6: Sample sagittal, coronal and axial segmented slices for the region not only limited
to the available groundtruth for Database 1. Here, sacrum and thoracic (T12) is shown.
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Figure 4.7: Three examples of the segmented spine (red) overlayed on the groundtruth (blue)
for Database 1.

timization methods are local and do not guarantee convergence. [Rasoulian et al., 2013]

makes a restrictive assumption that there is a strong correlation between the shapes and

poses of different vertebrae, within the same patient. We do not make any such assump-

tions in our region-based surface extraction approach and we outperform4 them on the

comparable metric of HD95 with 2.1638 ± 0.6464 mm vs 3.80 ± 1.61 mm on Database 1.

The Statistical Interspace Models (SIMs) method proposed by [Castro-Mateos et al., 2015]

models the interspace between different vertebrae, to avoid overlap between them. Our

region-based method does not require any explicit account for this as it segments each

vertebrae exactly on its surface, via a much simpler procedure. [Korez et al., 2015]

proposed a landmark-based segmentation method based on transportation theory and

[Ibragimov et al., 2014] uses interpolation theory. We report very comparable segmenta-

tion metrics in terms of Dice coefficients and Hausdorff distances compared to these three

approaches. [Pereañez et al., 2015] proposed to segment the three parts of the vertebrae,

that is, the vertebral body and the two processes individually. Again, we do not require

any such conditional decomposition.

Table 4.1 provides a comparison of different metrics between our method and other ap-

proaches. The proposed segmentation procedure is very fast even on a CPU. The edge-

enhancing pre-processing step takes around 4 minutes and another 15 seconds to com-

pute the flux-map. These pre-processing steps are done offline. The surface extraction

4The dataset used in [Rasoulian et al., 2013] is not publicly available but is quite similar to the
Database 1 used in our work.
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and shrink-wrapping procedure takes around 3 minutes and a minute respectively on an

Intel(R) Xeon(R) CPU at 3.50GHz with 12 cores for the entire lumbar region in 3D.

Table 4.1: Spine segmentation results reported for Database 1

Paper Dice Coefficient Avg. HD(mm) HD95(mm) ASSD(mm) ASD(mm)

[Lessmann et al., 2019] 96.50 ± 0.8% - - 0.2 ± 0.0 -
[Rasoulian et al., 2013] - - 3.8 ± 1.6% - -
[Ibragimov et al., 2014] 93.70 ± 1.12% - - - 0.75 ± 0.13

[Korez et al., 2015] 95.30 ± 1.4% - - - -
[Chu et al., 2015a] 91.00 ± 7.0% - - - 0.9 ± 0.3

Ours 92.36 ± 0.0131% 0.1385 ± 0.0845 2.1638 ± 0.6464 0.7884 ± 0.1385 0.6626 ± 0.1371

We now discuss the results on the CSI challenge dataset (Database 2). The thoracic

and lumbar vertebrae are segmented separately. We divide the thoracic region into three

groups, i.e., upper, middle and lower thoracic regions. Instead of normalizing the images

using the 5th and 95th percentile threshold as described earlier, the thoracic region in

the CSI database have been normalized using an appropriate selection for the lower and

upper threshold values. The intensities are then scaled between 0 and 1. This also has

the advantage that we obtain a better contrast between the vertebral column and the rest

of the image volume.

We did not obtain good segmentations for the thoracic vertebrae if the region-based flow

is used on the flux-map. We observed the presence of several holes on the vertebral

boundary if the region-based flow is used on the flux-map. This is due the lack of signal

at the boundaries, which leads to gaps in the final extracted surface. As a consequence,

the shrink-wrapping process which uses GAC leaks through the larger holes. Additionally,

the GAC based shrink-wrapping method gets stuck inside the intervertebral discs (IVD)

due to the fact that the IVDs in the thoracic region are thinner than those in the lumbar

region. Therefore, for the thoracic region, we applied our region-based flow directly on

the edge-enhanced image. This leads to accurate segmentation of the vertebrae and their

processes with a few holes present inside the vertebral bodies due to the fact that there are

certain piece-wise inhomogeneities present, which have earlier been substantially reduced

because of the pre-processing step. After this, we run the shrink-wrapping step to get

complete vertebral segmentations, filling small holes in the vertebral bodies, if any.
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Figure 4.8 shows the region-based segmentation evolution process on the edge-enhanced

image in the upper thoracic region for a random subject. Figure 4.9 depicts the entire

spine overlaid on the groundtruth volume. Notice that in the thoracic region, the ribs get

segmented too as they are attached to the vertebrae. The advantage of our method is

that one can also segment the coccyx and the sacrum bones. The middle figure shows the

zoomed in thoracic region. Using ITK-SNAP [Yushkevich et al., 2006], we manually crop

out the ribs, the coccyx and the sacrum bones for the purpose of computing the evaluation

metrics. Finally, the rightmost figure shows the thoracic and the lumbar regions after

cropping out the extraneous regions, overlaid on the groundtruth. Figure 4.10 shows the

boundary of the groundtruth and the segmented volume overlaid on top of a 2D slice.

Table 4.2 reports the metrics averaged over the entire thoracic and lumbar regions for the

CSI database. We report an average Dice score of 95.97 ± 0.0159% which is very close to

the current state of the art Dice score of 96.30 ± 1.3%. Our method performs better than

the non-deep learning methods both in terms of volume overlap and surface distances.

Table 4.2: Spine segmentation results reported for Database 2

Paper Dice Coefficient Avg. HD(mm) HD95(mm) ASSD(mm) ASD(mm)

[Lessmann et al., 2019] 96.30 ± 1.3% - - 0.1 ± 0.1 -
[Hammernik et al., 2015a] 93.00 ± 0.04% - - 0.47 ± 0.54

[Korez et al., 2015] 94.40 ± 2.1% - - 0.3 ± 0.1 -
Ours 95.97 ± 0.0159% 0.04522 ± 0.0599 1.7211 ± 1.0528 0.3454 ± 0.1506% 0.4176 ± 0.2383

Figures 4.11 and 4.12 and Table 4.3 report results separately for the three thoracic re-

gions and the lumbar region. The segmentation results are quite similar for these two

regions. Our method performs better than [Hammernik et al., 2015b] for the lumbar and

the thoracic regions, and thus the entire spine. We acknowledge that our work is similar in

nature to the work proposed by the thesis of [Hammernik, 2015] and then the follow-up

CSI workshop submission [Hammernik et al., 2015b]. The authors have used the ROF

model to de-noise the image anisotropically. They solve a variational energy functional

in a convex optimization framework. The energy functional consists of a structure tensor

based GAC term, a mean-shape model and a bone prior map.

Our method though similar in nature, uses level-set framework. [Hammernik et al., 2015b]
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Figure 4.8: [Left to right and top to bottom] Surface extraction process for Database 2, using the
region-based flow on the edge-enhanced image, as explained in Section 3.2. The entire evolution
procedure can be seen from initialization to the final segmented upper thoracic vertebrae.

Table 4.3: Spine segmentation results reported for Database 2: [Thoracic vs Lumbar Vertebrae
comparison]

Vertebral Region Dice Coefficient Avg. HD(mm) HD95(mm) ASSD(mm) ASD(mm)

Thoracic 95.62 ± 0.0179% 0.0525 ± 0.0721 1.7071 ± 1.1202 0.3285 ± 0.1534 0.4382 ± 0.2691
Lumbar 96.56 ± 0.0094% 0.0328 ± 0.0247 1.7448 ± 0.9276 0.3739 ± 0.1413 0.3827 ± 0.1687

use GPUs to implement the computationally expensive convex optimization step. In con-

trast, our method is not limited by hardware constraints. Additionally, the ribs might

be segmented in their method as well, which the authors propose to remove by providing

foreground and background user scribbles. Their method require a groundtruth to build
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Figure 4.9: Left: Shown in light grey is the vertebrae region that is common to both, the
groundtruth and the segmentation obtained by our method. The extra regions segmented such
as the ribs, the coccyx and the sacrum, and other voxels in the spinal column are shown in red.
Middle: A zoomed-in image of the upper thoracic region. Right: The segmented spine (shown
in red) overlaid on top of the groundtruth (shown in light grey) after cropping-out the regions
manually using ITK-SNAP.

the shape model. They construct the mean-shape model using a leave one out cross vali-

dation scheme, i.e., they use nine vertebrae to construct each a shape model and segment

one of the held-out subject. In contrast, we do not require any training data. They re-

port that the IVDs are incorrectly segmented in the upper thoracic regions due to thinner

spacing between the adjacent vertebrae. We do not see any such mis-segmentation in

our experiments. In our method, we do require some manual cropping of the extraneous

segmentations such as the ribs. We argue that some manual intervention is acceptable

since the accurate segmentations outweigh the little time required to crop out the ribs.

Whereas it is an arduous task to segment a vertebrae manually, removing the ribs, the

coccyx or the sacrum requires very little effort. Alternatively, these regions could be pre-

vented from being completely segmented by limiting the region of interest to the vertebral

column prior to the initialization of the segmentation procedure.
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Figure 4.10: The boundary of the segmentation (yellow) and groundtruth (green) overlaid on
top of the image for a subject from Database 2 (CSI). From left to right : parts of upper thoracic,
middle thoracic and lumbar region. [From top to bottom] axial, sagittal and coronal views.
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Figure 4.11: Spine segmentation evaluation metrics using the region-based flow on the lumbar
region with shrink-wrapping for Database 2. The minimum, median, inter-quartile range, and
the maximum values can be clearly seen. The values beyond those can be interpreted as outliers.
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Figure 4.12: Spine segmentation evaluation metrics using the region-based flow on the thoracic
region with shrink-wrapping for Database 2. The minimum, median, inter-quartile range, and
the maximum values can be clearly seen. The values beyond those can be interpreted as outliers.
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4.2 Shape-prior based vertebrae segmentation: dis-

cussion

We evaluate the shape-prior based segmentation method as discussed in Section 3.3 on

Database 3. To motivate the need to use a shape-prior, we first present some results

of the region-based segmentation pipeline on this challenging database of patients with

trauma. A 2D slice obtained by the region-based surface extraction method is shown in

Figure 4.13 and the filled volume is shown in Figure 4.14. The segmentations are very

accurate, as the flow evolves along the vertebral boundary, but it is hard to demarcate

each individual vertebra separately because several vertebrae are either fused, fractured or

dislocated. A shape-prior based segmentation method applied to each individual vertebra

can help eliminate this problem, though the shape-prior based formulation has its own

disadvantages, which we shall discuss in Chapter 5.

Figure 4.13: Sample slices shown for the region-based surface extraction on the flux-map for
Database 3.

We use a six-fold cross-validation approach. We build the shape prior with 25 vertebrae

and evaluate on the remaining five. This procedure is then repeated for the different
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Figure 4.14: Sample slices shown for the shrink-wrapping process for Database 3.

sets. A total of seven parameters are optimized by the level-set formulation: three for

transformation, three for rotation, and one for scale. We report an average Dice score of

84.00 ± 0.0310%. We report an average symmetric surface distance at 1.3149 ± 0.2421

mm. The average Hausdorff and its 95th percentile are at 0.2865 ± 0.09574 mm and

3.7244 ± 1.4368 mm respectively. The average surface distance is 1.4605 ± 0.2662 mm.

Figure 4.15 gives a box-plot for every metric used to evaluate the segmentation results.

Figure 4.16 shows some slices in 2D for the shape-prior based segmentation obtained.

Observe that the boundary demarcated by this shape-prior formulation is not precise but

still the ASSD is well within the clinically accepted surface distance of 2 mm. Figure 4.17

depicts the segmentation overlayed over the groundtruth. Figure 4.18 depicts the shape

prior segmentation procedure. The algorithm is initialized with the mean shape of the

training population placed near the region of interest.

This PCA based shape-prior level set method is not only fast, but also requires, very

little effort to set up. The PCA modelling step takes around a minute to complete for

a set of 25 vertebrae. This step is done offline, before the actual segmentation step. It

takes a couple of minutes to segment an individual vertebra, which is the online step. A
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Figure 4.15: Shape-based segmentation evaluation metrics for Database 3. The minimum,
median, inter-quartile range, and the maximum values can be clearly seen. The values beyond
those can be interpreted as outliers.

shape-prior can also be built for all the vertebrae in the lumbar region together.

The active shape and appearance model based method used in [Stephansen, 2012] requires

a cumbersome procedure of obtaining manual landmarks. We outperform this method

using the proposed shape-prior method both in terms of Dice score and surface distance

errors. See Table 4.4 for a comparison between our method and [Stephansen, 2012].
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Table 4.4: Spine segmentation results reported for Database 3

Paper Dice Coefficient Avg. HD(mm) HD95(mm) ASSD(mm) ASD(mm)

[Stephansen, 2012] 80.86% (median) - - - -
Ours 84.00 ± 0.0310% 0.2865 ± 0.09574 3.7244 ± 1.4368 1.3149 ± 0.2421 1.4605 ± 0.2662

Figure 4.16: Sample slices shown for the shape-prior based segmentation procedure for a subject
from Database 3.

Figure 4.17: Three examples of segmentation (red) overlayed on the groundtruth (blue), for the
shape prior based segmentation of L4 vertebra in Database 3.
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Figure 4.18: [Left to right and top to bottom] Shape-prior based segmentation process for a
subject from Database 3. The entire evolution procedure is shown from the mean-shape initial-
ization, to the final segmented volume.



Chapter 5

Conclusion

In this chapter, we comment on the major advantages and some limitations of our work.

We then conclude this thesis with a brief discussion of possible extensions to this work.

5.1 Concluding remarks

In this thesis, we have proposed a two-phase segmentation pipeline which employs ap-

propriate image analysis methods. To the best of our knowledge, the use of anisotropic

diffusion filtering combined with flux maximizing flows for spine segmentation is new.

In general, the previous studies have employed Gaussian filtering, which displaces the

actual vertebral boundary locations. This is highly undesirable as it might lead to im-

precise localization of the vertebral boundaries. We have overcome this issue by using

edge-enhancing flows with the introduction of the edge-enhanced flux-map as discussed in

Chapter 3. The proposed pre-processing and segmentation pipeline could be used for CT

images of other organs. As an example, see Figure 5.1 for a segmentation of the CT femur

bone. Qualitatively, edge-enhanced flux maps obey the piece-wise constant assumption

that underlies the classic Chan-Vese binary region-based level-set segmentation. This

makes the Chan-Vese bi-partition flow work well for the vertebral segmentation.

We have experimentally validated the performance of our region-based surface extraction
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Figure 5.1: Leftmost image: sagittal slice of femur in CT image. The flux-map is shown in the
middle, and the right most image shows the segmented region using the region-based surface
extraction and shrink-wrapping process.

approach and the subsequent shrink-wrapping step on two publicly available databases.

The shape-prior based method was evaluated on a database of spine cases with trauma.

A detailed comparison via performance measures between our approach and previous

methods in the literature was presented in Chapter 4. We do not require tracking or

segmentation of nearby structures in the spinal column to segment the vertebrae. This

again is a major advantage of the proposed method as it saves additional computational

burden.

The recent data-driven deep learning methods rely heavily on large image databases. Our

approach does not require any training images for the region-based spine segmentation

and it still produces results close to the current state of the art. The other methods rely

on training data and can thus, only segment the vertebrae for which the groundtruth

segmentations are available. Deep learning based methods typically require days to train.

[Lessmann et al., 2019] report that they trained their network for 4-5 days on Nvidia Titan

X GPUs with 12 GB memory. We do not require any training and the entire process from

pre-processing to shrink-wrapping takes around 9 minutes per lumbar region on a CPU.

This, we believe is one of the key contributions of the surface extraction based method.

Our method works across different data distributions because it exploits information di-

rectly from the images based on concrete mathematical image analysis. It does not suffer

from the lack of generalization, as is common with the deep learning methods. The major

disadvantage of deep learning methods is that they are not interpretable. A clinician work-

ing with computer algorithms would want to know how the algorithm makes its decision,
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but unfortunately this is not the case with the deep learning methods. Additionally, the

deep networks do not handle the voxel spacing appropriately, and thus generally make the

volume isotropic 1 mm3 for tasks such as segmentation. This might lead to inappropriate

segmentations.

As discussed previously, [Hammernik et al., 2015b] use similar energy functionals as pro-

posed in our work. Their variational formulation is not implemented in a level-set frame-

work unlike ours. Again, our method does not require any training data because we do not

use any shape-prior for the region-based segmentation. Furthermore, they initialize the

method using a mean-shape of the vertebrae. We eliminate the need for this by having a

one-click initialization. The major advantage of their method is that the energy functional

is convex and has a non-unique global optimal solution. However, the shape-prior based

method proposed in this thesis might get stuck in a local minimum which is the major

drawback of the level-set based method. We have not encountered any mis-segmentations,

but we rely on manual-cropping of extraneous regions for the region-based segmentation

method. Interestingly, we use shape variations (due to pose estimations) and are not

limited to the mean-shape only. This way the proposed method in our work is better able

to capture a wide variability in shapes.

In the second part of Chapter 3, we proposed a shape-prior based segmentation method.

The method is quite fast and helps in the segmentation of the individual vertebrae having

undergone trauma. A critique of the shape-prior based level-set method used in this

thesis, is that these methods suffer from convergence issues. The algorithm is a local

optimization method, which is sensitive to initialization. During our evaluations, we

noticed that the method can sometimes get stuck in a local minimum, and as such,

might provide inaccurate segmentation results. Furthermore, we have not used edge-

based information in the shape-prior formulation. An edge-based term might help to

better localize the vertebra. The segmented vertebrae using these methods can now be

used for further downstream tasks such as registration with intraoperative ultrasound

scans, and thus, aid neurosurgeons in planning spinal surgery. We have shown that with

no training data (or little for shape-prior based segmentation), we achieve good vertebral
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segmentations. It would be fruitful to see if this pipeline could be used in the preopertive

surgical planning procedure as demonstrated by [Goulet, 2010].

5.2 Future Work

There is also some scope to improve the shrink-wrapping method used in this thesis. In-

stead of the direct application of geodesic active contours, the problem can be viewed as

that of surface reconstruction. This would better help in filling-up the holes to obtain

smoother vertebral surface. We are currently investigating a suitable method to use from

the existing literature. Separately, we plan to develop a new shape-prior based level-set

variational energy functional which incorporates boundary and region terms based on a

set of features. This would include a structure tensor based stopping potential for the

boundary term and a multivariate kernel density estimation to incorporate several fea-

tures, leading to higher region based discriminatory power. The shape based term would

again be determined by fitting a kernel. The last term would incorporate a feature vector

to topologically adapt the evolving contour toward a desirable segmentation and thus,

would help to preserve the complex topology of the vertebrae. We would try to eliminate

the need for mean-shape initialization and, rather have a one-click initialization with a few

voxels. It might be worthwhile to evaluate this new formulation on the publicly available

dataset, xVert1, which is a much more challenging database because the subjects have

suffered spinal trauma. This dataset consists of 10 subjects with groundtruth reference

segmentations for the lumbar vertebrae, thus comprising a total of 50 vertebrae.

As discussed above, the shape-prior based segmentation suffers from convergence guaran-

tees as the solution obtained is often a local minimum. Thus, it would be beneficial to

have sound mathematical properties for the energy functional which might then guarantee

a globally optimal solution.

1Database can obtained from: http://lit.fe.uni-lj.si/xVertSeg
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Numerical Methods for Level-sets

We briefly review numerical methods to implement level-set methods for image segmen-

tation. After the front is initialized and the embedding function φ has been computed,

a set of schemes are used to evolve the front iteratively. Remember that the continuous

formulation is now discretized. An excellent in-depth discussion can be found in the text

by [Sethian, 1999].

A.1 Solution to the Hamilton-Jacobi Equation and

Upwind scheme

Earlier we studied the formulation of the level-set based segmentation. Here, we shall

look at how this scheme is implemented numerically. In particular, we summarize the

numerical schemes for Hamilton-Jacobi equations which converge to the viscosity solution.

The initial value problem of level-set equation φt + F | ∇φ |= 0 can be interpreted as a

general Hamilton-Jacobi equation,

αUt +H(Ux, Uy, Uz, x, y, z) = 0, (A.1)
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where H is known as the Hamiltonian and for our initial value problem level-set we have,

H(Ux, Uy, Uz, x, y, z) = F
√
U2
x + U2

y + U2
z . (A.2)

Now, we can have a solution to the above equation by computing forward and backward

differences in the domain of the function φ,

Un+1
i,j,k = Un

i,j,k −∆t.g

(
Un
i,j,k − Un

i−1,j,k

∆x
,
Un
i+1,j,k − Un

i,j,k

∆x
,

Un
i,j,k − Un

i,j−1,k

∆y
,
Un
i,j+1,k − Un

i,j,k

∆y
,

Un
i,j,k − Un

i,j,k−1

∆z
,
Un
i,j,k+1 − Un

i,j,k

∆z

)
.

(A.3)

Thus, a first order convex solution for the initial value level-set equation can be given as,

φn+1
ijk = φnijk −∆t[max(Fijk, 0)∇+ + min(Fijk, 0)∇−], (A.4)

where

∇+ = [max(D−xijk , 0)2 + min(D+x
ijk , 0)2+

max(D−yijk, 0)2 + min(D+y
ijk, 0)2+

max(D−zijk, 0)2 + min(D+z
ijk, 0)2]1/2

(A.5)

∇− = [max(D+x
ijk , 0)2 + min(D−xijk , 0)2+

max(D+y
ijk, 0)2 + min(D−yijk, 0)2+

max(D+z
ijk, 0)2 + min(D−zijk, 0)2]1/2,

(A.6)

where D+x and D−x are the forward and backward derivatives. This entire formulation

of using derivatives to arrive at the solution of the given partial differential equation is

known as an upwind. The above scheme can also be extended to higher order and can

have non-convex speed functions.
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A.2 Narrow band implementation and CFL condi-

tion

To speed up the computation, the computation of the upwind scheme could be limited

to a certain neighbourhood around the evolving front. We call this neighbourhood as the

narrowband. Also, the evolving curve should follow the Courant Friedrichs Lewy (CFL)

condition given by

max
Ω

F∆t ≤ ∆x (A.7)

to avoid instability during the updates, where the symbols have the usual meaning.

A.3 Typical front evolution update equation

Summarizing the above numerical updates for curve evolution governed by three forces

namely expansion motion, mean curvature and an advection term,

F = Fprop + Fcurv + Fadv, (A.8)

where Fprop = F0 is the propagation expansion speed, Fcurv = −ε κ is the curvature

dependent force and Fadv =
−→
U (x, y, t).−→n where the

−→
U (x, y, t) is some velocity field which

corresponds to advection.

The level-set variational formulation can be written simply as,

φt + F0 | ∇φ | +
−→
U (x, y, t).∇φ = ε div

(
∇φ
| ∇φ |

)
| ∇φ | . (A.9)
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Thus, the numerical scheme for the above equation would be,

φn+1
ij = φnij + ∆t

[
− [max(F0ij, 0)∇+ + min(F0ij, 0)∇−]

−
{

max(unij, 0)D−xij + min(unij, 0)D+x
ij

+ max(vnij, 0)D−yij + min(vnij, 0)D+y
ij

}
+[εKn

i,j((D
0x
ij )1/2 + (D0y

ij )1/2)1/2]

]
,

(A.10)

where Kn
i,j is the mean curvature computed using a central difference approximation.



Appendix B

Fast Marching Methods

Recall how the front propagation problem can be seen as a boundary value problem.

Fast Marching Method (FFM) are solved by efficient use of the heap data structure,

by keeping track of optimal ordering of the grid points (voxels). The goal is to design

numerical methods to solve the Eikonal equation |∇T |F = 1. The upwind equation is

given by,

[max(D−xijkT,D
+x
ijkT, 0) + max(D−yijkT,D

+y
ijkT, 0) + max(D−yijkT,D

+y
ijkT, 0)]1/2 =

1

Fijk
. (B.1)

Solving this quadratic equation iteratively would require order O(N4) labour. To reduce

time complexity, FFM exploits the causal relationship. FMM builds the solution of the

above equation outward from the smallest T value, stepping away from the boundary

condition in a downwind direction. We sweep the front along by considering points in

a narrow band around the existing front and marching this front forward, freezing the

values of the existing points and bringing new ones into the narrow band structure. The

following is the FMM update procedure. Let us define the points in the boundary as

known points, trial points are one grid point away and far as all other grid points. The

following steps are performed iteratively,

• Let A be the trial point with the smallest T value.
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• Add the point A to known and remove it from trial.

• Tag as trial all the neighbours of A that are not known. If the neighbour is in far,

remove, and add to the set trial.

• Recompute the values of T at all trial neighbours of A by solving the above equation.

The initial conditions can be set as follows: label all the grid values points as far away,

and assign them T values of ∞. A signed distance function can be constructed around

a narrow band from the initial hypersurface. The front can now be propagated in both

forward and backward directions with speed F for a layer of grid points. All the points

with negative crossing times are known points and with positive crossing times are the

trial points with value T. Then we can begin the FMM algorithm described above.

The key to the efficient version is in the use of a min-heap data structure to have a fast

way to locate the grid point in the narrow band with the smallest value. The smallest T

value is thus at the root of the min-heap which takes O(1) time to access it and then we

also ensure that the values do not violate the heap property. Thus, the total time taken

is O(logM) assuming there are M elements in the heap. A good in-depth discussion can

be found in the text by [Sethian, 1999].



Appendix C

Additive Operator Splitting

As we have seen in Appendix A, the numerical updates are performed with Euler-forward

explicit schemes based on simple finite discrete discretization which are stable only for

very small time steps and often lead to poor efficiency in terms of implementation, making

it of little practical use. [Weickert et al., 1998] present an implicit separable scheme based

on the solution of a tridiagonal system of linear equations solved by Thomas Algorithm

and Additive Operator Splitting methods that do not have any time step restrictions. This

method is fast, stable, easy to implement and can accommodate large time steps. The

authors introduced this numerical scheme for the case of non-linear diffusion filtering.

Problem Formulation

A filtered image u(x,t) at a given time t of an image f(x) can be given as a solution of the

diffusion equation

∂u

∂t
= div(g(|∇uσ|2)∇u) (C.1)

with the gradient of a smoothed version of u obtained by convolving u with a Gaussian

of standard deviation (σ) given by ∇uσ = ∇Kσ ∗ u,

g(s) =

 1 (s ≤ 0)

1− exp(−3.315
(s/λ)4

) (s > 0).
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Now, this diffusion equation can be discretized and written in an explicit setting and then

in an implicit manner. Let’s discretize the diffusion equation and see the explicit scheme.

uk+1
i − uki
τ

=
∑
j∈N(i)

gkj + gki
2h2

(ukj − uki ), (C.2)

where N(i) is the neighbourhood of pixel i. We can write the above equation in a matrix

vector notation,

uk+1 − uk

τ
= A(uk)uk (C.3)

with A(uk) = (aij(u
k)) and,

aij(u
k) :=


gkj+gki

2h2
(j ∈ N(i))

−
∑

n∈N(i)

gkj+gki
2h2

(j = i)

0 else

or more compactly:

uk+1 = (I + τA(uk))uk, (C.4)

where I ∈ RN is the unit matrix. This is an explicit scheme as uk+1 can be directly

calculated from uk without solving a system of equations. This scheme suffers from a

severe step-size restriction.

We now consider a slightly more complicated discretization,

uk = (I − τA(uk))uk+1. (C.5)

This semi-implicit scheme does not suffer from any time-step restriction. But, this leads to

solving a tridiagonal linear system which is solved using the famous Gaussian elimination

algorithm, Thomas Algorithm as described in [Schwarz and Waldvogel, 1989] comprising

of LR decomposition, forward and backward substitutions.
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Now, let us state the diffusion equation for the m-dimensional case,

∂u

∂t
=

m∑
l=1

∂xl(g(|∇uσ|2)∂xlu). (C.6)

The m-dim explicit scheme and its semi-implicit counterpart is given by the following two

equations:

uk+1 = (I + τ

m∑
l=1

Al(u
k))uk, (C.7)

uk+1 = (I − τ
m∑
l=1

Al(u
k))−1uk. (C.8)

The explicit scheme again suffers from having to deal with small time-steps but the im-

plicit scheme suffers from the destruction of the zeros in the band if we directly apply

Gaussian elimination method and would lead to a massive computational burden. Iter-

ative methods are required and hence a new method called Additive Operator Splitting

(AOS) is proposed,

uk+1 =
1

m
(I −mτ

m∑
l=1

Al(u
k))−1uk. (C.9)

This method has several advantages, since all the coordinate axes are treated in exactly

the same manner. These schemes satisfy all criteria for discrete nonlinear diffusion scale-

spaces and are easy to implement in any dimension. Both computational and storage

effort is linear in the number of pixels.



Appendix D

Sparse Field Methods

The narrow band algorithm reduces the computation time by restricting the computations

to a small band near the evolving interface. The narrow band should however be wide

enough to justify the updates. The sparse-field algorithm [Whitaker, 1998] takes narrow

band to an extreme by computing updates on a band of grid points that is only one

point wide. The key strategy is to create a neighbourhood around the active points that

is precisely the width needed to calculate the derivatives for the next time step. The

approach has several advantages: the algorithm does not require the recalculation of

the positions of the level-sets and their distance transforms, thus performing the exact

number of calculations needed to compute the next position of the level-set. Linked-list

data structure is used to keep track of the number of points being computed. Thus,

at each iteration only the points adjacent to the k-level curve are visited. Also, this

approach helps in accurate computation of external forces as each level set is identified

with a specific set of points. Another major advantage is that this algorithm allows for

larger time steps in the update equations whereas in the narrow band method, the time

step is limited by the speed of the fastest moving level curve.

Formulation We briefly look at the algorithm. A more detailed and intuitive explanation

can be found in [Lankton, 2009]. The sparse-field method uses a list of points (via a doubly

linked-list) to represent the zero level-set (called the active set). The neighbourhoods of
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the active sets are defined in layers such as L+1, . . . . . . , L+N and L−1,. . . . . . ,L−N . The

active set have grid point values in the range [−0.5,+0.5] and the rest of the layers have

values in the range [i− 1/2, i+ 1/2].

• For each point xj in the active set, compute the local geometry and the change in

uxj based on the forces using some upwind equations.

• Now, using the updated uxj(t+ ∆t) falls outside the range [i− 1/2, i+ 1/2] or not.

If it does, then put the point xj into the status list : S−1 or S+1 if its value is less

than -1/2 or greater than +1/2 respectively.

• Next, visit each of the layers Li in the following: ±1, ±2, . . . and so on, and update

the grid point values based on the values of the next inner layers L∓1. If the grid

point has no L∓1 neighbours, then it gets demoted to L±1 i.e. the next level away

from the active set.

• Lastly, for each status list do the following,

– For each point xj on the list Si, remove xj from the list L∓1 and add it to the

list Li

– Add L∓1 neighbours to the list Si±1

.



Appendix E

Segmentation Evaluation Metrics

For the sake of completeness, we provide a short note on the evaluation metrics. For

the segmentation evaluations in this report we use one spatial overlap measure and four

surface distance based measures. Distance-based measures take into consideration the

spatial position of voxels. The Hausdorff distance is generally sensitive to outliers due to

presence of noise. It is thus recommended to use the Average Hausdorff distance or its

95th percentile.

E.1 Dice Coefficient

Let Ssg be the segmentation obtained from a segmentation algorithm and Sgt be the

groundtruth segmentation. The Dice score can then be obtained as,

DICE =
2| Ssg | ∩ | Sgt |
| Ssg | + | Sgt |

(E.1)
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E.2 Average Symmetric Surface Distance (ASSD)

ASSD is the average of all the distances from points on the boundary of one surface to

the boundary of the other surface and vice versa. Let Bsg and Bgt be the points on the

surface of the segmentation and its groundtruth.

ASSD =
1

|| Bsg || + || Bgt ||
∑
x∈Bsg

d(x,Bgt) +
∑
y∈Bgt

d(y,Bsg) (E.2)

E.3 Hausdorff Distance (HD)

The Hausdorff distance between two finite points sets P and Q is defined by,

HD(P,Q) = max(h(P,Q), h(Q,P )) (E.3)

where h(P,Q) is called the directed Hausdorff distance,

h(P,Q) = max
p∈P

min
q∈Q
|| p− q || (E.4)

where maxp∈P minq∈Q || p− q || is some norm such as the Euclidean norm.

E.4 Average Hausdorff Distance (AHD)

The Hausdorff distance between two finite points sets P and Q is defined by,

HD(P,Q) = max(h(P,Q), h(Q,P )) (E.5)

where h(P,Q) is called the directed Average Hausdorff distance,
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h(P,Q) =
1

N

∑
p∈P

min
q∈Q
|| p− q || (E.6)

where is the total number of points in set P or Q.

E.5 Hausdorff Distance 95th percentile (HD95)

This computes the 95th percentile of the Hausdorff Distance between the two surfaces

Bsg and Bgt. Compared to the Hausdorff distance, this metric is slightly more stable to

outliers.



Appendix F

Software used in this work

In this section, we would like to acknowledge some of the open-source software and code

repositories used in this thesis.

• ITK-SNAP [Yushkevich et al., 2006] for placement of seeds, bounding-box and crop-

ping out extraneous regions, and for conversion between different file formats.

• Paraview [Ayachit, 2015] for visualization. Most of the figures in thesis are based

on the features of this software.

• 3DSlicer [Kikinis et al., 2014] for visualization.

• Seaborn library [Waskom et al., 2017] for visualization.

• MedPy [Maier et al., 2019] for computing the metrics.

• EvaluateSegmentation [Taha and Hanbury, 2015] for computing the metrics.

• FreeSurfer [Dale et al., 1999] for registration of all the images to a common space.

• Inkscape [Bah, 2011] for image editing and making the flowchart.
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