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Abstract 

 
 The overarching goal of the work presented in this thesis is to formulate, implement, 

test, and demonstrate cost-effective mathematical models and numerical solution methods 

for computer simulations of fluid flow and heat transfer in loop heat pipes (LHPs) 

operating under steady-state conditions. 

 A segmented network thermofluid model for simulating steady-state operation of 

conventional LHPs with cylindrical and flat evaporators is proposed. In this model, the 

vapor-transport line, condenser pipe, and liquid-transport line are divided into 

longitudinal segments (or control volumes). Quasi-one-dimensional formulations, 

incorporating semi-empirical correlations for the related single- and two-phase 

phenomena, are used to iteratively impose balances of mass, momentum, and energy on 

each of the aforementioned segments, and collectively on the whole LHP. Variations of 

the thermophysical properties of the working fluid with temperature are taken into 

account, along with change in quality, pressure drop, and heat transfer in the two-phase 

regions, giving the proposed model enhanced capabilities compared to those of earlier 

thermofluid network models of LHPs. The proposed model is used to simulate an LHP 

for which experimental measurements are available in the literature: The predictions of 

the proposed model are in very good agreement with the experimental results. 

 In earlier quasi-one-dimensional models of LHPs, the pressure drop for vapor flow 

through the grooves in the evaporator is computed using a friction-factor correlation that 

applies strictly only in the fully-developed region of fluid flows in straight ducts with 

impermeable walls. This approach becomes unacceptable when this pressure drop is a 

significant contributor to the overall pressure drop in the LHP. A more accurate 

correlation for predicting this pressure drop is needed. To fulfill this need, first, a co-

located equal-order control-volume finite element method (CVFEM) for predicting three-

dimensional parabolic fluid flow and heat transfer in straight ducts of uniform regular- 

and irregular-shaped cross-section is proposed. The methodology of the proposed 

CVFEM is also adapted to formulate a simpler finite volume method (FVM), and this 

FVM is used to investigate steady, laminar, Newtonian fluid flow and heat transfer in 

straight vapor grooves of rectangular cross-section, for parameter ranges representative of 
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typical LHP operating conditions. The results are used to elaborate the features of a 

special fully-developed flow and heat transfer region (established at a distance located 

sufficiently downstream from the blocked end of the groove) and to propose novel 

correlations for calculating the overall pressure drop and also the bulk temperature of the 

vapor. These correlations are incorporated in the aforementioned quasi-one-dimensional 

model to obtain an enhanced segmented network thermofluid model of LHPs. 

 Sintered porous metals of relatively low porosity (0.30 – 0.50) and small pore 

diameter (2.0 – 70 micrometers) are the preferred materials for the wick in LHPs. The 

required inputs to mathematical models of LHPs include the porosity, maximum effective 

pore size, effective permeability, and effective thermal conductivity of the liquid-

saturated porous material of the wick. The determination of these properties by means of 

simple and effective experiments, procedures, and correlations is demonstrated using a 

sample porous sintered-powder-metal plate made of stainless steel 316. 

 Finally, the capabilities of the aforementioned enhanced segmented network 

thermofluid model are demonstrated by using it to simulate a sample LHP operating 

under steady-state conditions with four different working fluids: ammonia, distilled 

water, ethanol, and isopropanol. The results are presented and comparatively discussed. 
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Sommaire 

 
 L'objectif principal de cette thèse consiste à formuler, mettre en œuvre, tester et 

démontrer des modèles mathématiques et des méthodes numériques pour réaliser la 

simulation d'écoulements de fluide et de transfert de chaleur dans des boucles fluides 

diphasiques [Loop Heat Pipes (LHPs) en anglais],  opérant en régime permanent. 

 Un modèle de réseau segmenté thermofluide pour simuler le fonctionnement en 

régime permanent des LHPs conventionnelles avec des évaporateurs cylindriques et plats 

est proposé. Dans ce modèle, la ligne de transport de la vapeur, le tuyau du condenseur et 

la ligne de transport du liquide sont divisés en segments longitudinaux (ou volumes de 

contrôle). Des formulations quasi-unidimensionnelles, intégrant des corrélations semi-

empiriques pour les phénomènes multiphasiques sont utilisées pour assurer la 

conservation de la masse, de la quantité de mouvement et de l’énergie sur chacun des 

segments individuels, puis sur l'ensemble du LHP. Les variations des propriétés 

thermophysiques du fluide en fonction de la température sont prises en compte, ainsi que 

le changement dans le titre en vapeur, la chute de pression, et le transfert de chaleur dans 

les régions diphasiques, améliorant ainsi les capacités du modèle proposé par rapport aux 

modèles précédents de réseaux de LHPs. Le modèle proposé est utilisé pour simuler un 

LHP pour lequel des mesures expérimentales sont disponibles dans la littérature: les 

prédictions du modèle proposé sont en très bon accord avec les résultats expérimentaux. 

 Dans les modèles quasi-unidimensionnels précédents de LHPs, la chute de pression 

pour un débit de vapeur à travers les gorges de l'évaporateur est calculée en utilisant une 

corrélation faisant intervenir un facteur de friction s’appliquant uniquement dans la 

région pleinement développé de conduits avec des murs imperméables. Cette approche 

est inacceptable quand cette baisse de pression devient significative devant la chute de 

pression globale du LHP. Une corrélation plus précise pour prédire cette chute de 

pression est alors nécessaire. Pour répondre à ce besoin, une méthode de volumes 

éléments finis (CVFEM) est proposée pour prédire l'écoulement en trois dimensions du 

fluide et le transfert de chaleur dans différents conduits à section uniforme régulière et 

irrégulière. La méthodologie du CVFEM est également adaptée pour formuler une 

méthode plus simple en volumes finis (FVM). Cette approche est utilisée pour étudier 
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l'écoulement laminaire de fluides newtoniens et le transfert de chaleur dans des 

cannelures de vapeur à section rectangulaire, pour des conditions typiques de 

fonctionnement d’un LHP. Les résultats sont utilisés pour élaborer les caractéristiques 

d’une région pleinement développé (particulière aux LHPs) et de proposer de nouvelles 

corrélations pour le calcul de la chute de pression globale et des températures de vapeur. 

Ces corrélations sont incorporées dans le modèle quasi-unidimensionnel pour obtenir un 

modèle amélioré de réseau segmenté thermofluide pour les LHPs. 

 Les métaux poreux, fabriqués à partir de poudre de métaux sintérisées, ayant une 

faible porosité (0.30 - 0.50) et un diamètre de pores de petite taille (2.0 à 70 

micromètres), sont les matériaux idéals pour la mèche des LHPs. Les paramètres 

d’entrées des modèles mathématiques de LHPs incluent la porosité, la taille effective 

maximale des pores, la perméabilité effective et la conductivité thermique effective de la 

mèche saturée d'un liquide. La détermination de ces propriétés par des expériences 

simples est réalisée en utilisant un échantillon poreux fritté de poudre de métal en acier 

inoxydable 316. 

 Enfin, les capacités du modèle améliorée du réseau segmenté thermofluide discuté ci-

dessus  sont démontrées en l’utilisant pour simuler un LHP opérant en régime permanent 

avec quatre fluides différents: l'ammoniac, l'eau distillée, l'éthanol et l'isopropanol. Les 

résultats sont présentés et discutés comparativement. 
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Chapter 1: 

Introduction 

 
 This research work is primarily concerned with the modeling of fluid flow and heat 

transfer phenomena occurring in loop heat pipes (LHPs) under steady operating 

conditions. LHPs are devices in which capillary forces in a wick and liquid-vapor phase-

change phenomena are used to achieve continuous transfer of thermal energy from a heat 

source to a heat sink. The phase-change phenomena and the capillary-driven circulation 

of the fluid within LHPs allow them to transfer heat over long distances with relatively 

small temperature drops, no mechanical moving parts, and no special external power 

inputs. In addition, the rates of heat transfer achievable with LHPs are usually one to 

three orders of magnitude larger than those possible with either single-phase convection 

systems or solid thermal conductors for corresponding thermal boundary conditions. 

 Owing to fewer restrictions and greater flexibility in applications than conventional 

heat pipes (HPs) [Silverstein (1992)], LHPs have received much attention in the space 

community. LHPs are currently emerging as the baseline design for the thermal 

management of several commercial communication satellites and NASA spacecrafts, 

including ICESAT, AURA, SWIFT, and GOES [Wang et al. (2008)]. There is also an on-

going Canadian effort to use LHPs in the Polar Communication and Weather (PCW) 

mission led by the Canadian Space Agency (with the participation of Environment 

Canada and Canada's Department of National Defense), which has two PCW satellites 

scheduled for launch in 2016 [Trishchenko and Garand (2011)]. LHPs have also found 

numerous applications on earth: In electronics cooling, gas turbine engines, avionics, 

cryogenics, solar energy devices, and heating, ventilating and air-conditioning (HVAC) 

systems, for instance. In these applications, the allure of LHPs is directly related to their 

passive nature, in that they do not necessitate any external motive devices (such as 

pumps), and, as was stated above, their ability to continuously transport heat over long 

distances with relatively small temperature drops. However, LHPs have not been as 

intensively researched as HPs, and, currently, the manufacturing costs of LHPs are about 

an order of magnitude higher than HPs for comparable applications. Thus, in recent 

years, there has been a great deal of interest in further developing LHPs [Maydanik 
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(2005); Launay et al. (2007a); Vasiliev et al. (2009)], and new and challenging research 

needs have been identified. This research work represents an effort to fulfill some of 

these needs. 

 In this chapter, succinct discussions of the background, motivation, and overall goals 

of this research work are presented. Following that, a concise review of the pertinent 

literature is provided. Next, the specific objectives of this research work are put forward. 

Finally, the organization of the thesis is summarized. 

 

1.1 BACKGROUND, MOTIVATION AND OVERALL GOALS  

 Loop heat pipes (LHPs) chronologically follow heat pipes (HPs) and capillary 

pumped loops (CPLs), and many of the underlying concepts and principles of operation 

of these two-phase, capillary-driven, devices are similar [Stenger (1966); Chi (1976); 

Dunn and Reay (1982); Faghri (1995); Nikitkin and Cullimore (1998)].  

 LHPs were first developed in the former Soviet Union in the early 1970s [Maydanik 

(2005)]. The primary components of a conventional (cylindrical-type) LHP are shown 

schematically in Figure 1.1, consisting of an evaporator, a compensation chamber, a 

vapor-transport line, a condenser, and a liquid-transport line. In LHPs, the evaporator and 

the compensation chamber are integrated, and linked together both hydrodynamically and 

thermally. Typically, the evaporator is composed of an internally-grooved metal pipe and 

an annular wick (usually made of sintered powder metal) with a liquid pool of the 

working fluid at its center (core). A variety of working fluids such as ammonia, ethanol, 

isopropanol, acetone, water, and liquid metals have been used in LHPs, to achieve a high 

level of operational versatility, with applications ranging from cryogenics to metallurgy. 

 In steady-state operation of LHPs, the heat input to the evaporator is conducted 

through its metallic grooved wall to the adjoining wick surface. This causes the saturated 

liquid in the wick to evaporate at its outer surface, and the resulting vapor flows into the 

grooves (vapor channels), as is schematically illustrated in Figure 1.2. The depletion of 

the liquid in the evaporator causes the liquid-vapor interface to enter the wick, which, in 

turn, creates a capillary pressure head: the pressure in the vapor phase at the interface is 

higher than that of the liquid on the other side, by an amount equal to the capillary 

pressure jump. The vapor collected in the grooves then flows through a smooth pipe 
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(vapor-transport line) and reaches the condenser. In the condenser, the vapor is first 

condensed, and then, if the condenser is long enough (as the one shown is Figure 1.1), the 

condensed liquid is subcooled. The liquid collected in the condenser flows through the 

liquid-transport line and reaches the compensation chamber. Upon entering the 

compensation chamber, this liquid is heated, due to a “heat leak” from the evaporator 

[Kaya and Hoang (1999)], and also experiences heat exchange with the ambient 

environment. After passing through the compensation chamber, the liquid reaches the 

inner surface of the wick, and then flows through the wick back to the liquid-vapor 

interface. The static pressure drops as the liquid flows through the wick, and its 

temperature rises due to heat conducted through the grooved walls of the evaporator to 

the wick. At the liquid-vapor interface, the liquid temperature reaches that of the 

saturated vapor on the other side. Furthermore, as the saturated vapor is at a higher 

pressure than the adjoining liquid at the interface, due to the capillary pressure jump, the 

liquid at the liquid-vapor interface is in a superheated state. 

 

 

Figure 1.1: Schematic representation of a conventional (cylindrical-type) loop heat pipe. 
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Figure 1.2: Schematic representation of the evaporator of a typical loop heat pipe. 

 

 As was mentioned previously in this section, LHPs chronologically follow HPs and 

CPLs, and some of the underlying concepts and principles of operation of these capillary-

driven heat transfer devices are similar [Stenger (1966); Chi (1976); Dunn and Reay 

(1982); Faghri, A. (1995); Nikitkin and Cullimore (1998)]. Therefore, it is useful to 

ascertain the evolutionary advantages of LHPs over HPs and CPLs.  

 LHPs, as well as CPLs, use separate smooth tubing for both the vapor- and liquid-

transport lines, and a wick is only needed in the evaporator section of the loop. Therefore, 

the pressure drop associated with the liquid flow through the wick is significantly 

reduced in comparison to that in HPs (where the wick covers the entire length of the pipe) 

for the same overall mass flow rate of the working fluid [Chi (1976); Dunn and Reay 

(1982); Faghri, A. (1995)]. As a result, LHPs and CPLs are usually capable of higher 

maximum rates of heat transfer than HPs, over longer distances. Moreover, the pore sizes 

of the wicks used in LHPs and CPLs can be finer than those of wicks used in HPs: The 

corresponding increase in capillary head allows LHPs and CPLs to more effectively 

accommodate adverse gravitational effects. In addition, in LHPs and CPLs, the 

evaporator and the condenser can be installed at a greater distance from one another, 

which facilitates the applications of these devices by providing flexibility in the 
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positioning of the heat source and the heat sink [Ku (1999); Maydanik (2005); Launay 

and Vallée (2011)]. 

Another advantage of LHPs and CPLs over HPs is that the vapor- and liquid-flow 

paths are completely separated. In HPs, the vapor and the returning liquid (condensate) 

flow in opposite directions, and a shear force exists at the corresponding liquid-vapor 

interface. At a high vapor velocity, liquid droplets can detach from the surface of the 

wick and get entrained in the vapor flow leading to a dry-out of the wick in the 

evaporator. This counter flow (vapor-liquid) arrangement in HPs imposes an entrainment 

limit on these devices: The entrainment limit dictates a maximum vapor velocity that can 

be sustained within a HP, which, in turn, limits the rate of heat transport that the HP can 

provide (more so than in LHPs and CPLs) [Silverstein (1992)].  

LHPs and CPLs also allow the possibility of cooling multiple heat sources and 

rejecting the collected heat to single or multiple thermal sinks: This can be achieved by 

installing multiple evaporators in a hydrodynamically parallel configuration, and 

rejecting the total heat input via a single- or multi-condenser arrangement. Multi-

evaporator LHPs and CPLs, with and without multiple condensers, are discussed in 

papers by Ku (1998, 1999), Yun et al. (1999), Goncharov et al. (2000), Hoang and Ku 

(2005), Ku et al. (2009), and Anderson et al. (2010). The main distinction between LHPs 

and CPLs resides in the location of the two-phase reservoir (or compensation chamber) in 

the loop. As discussed earlier, the two-phase reservoir in LHPs is an integral part of the 

evaporator body, whereas in CPLs, this reservoir is a separate chamber that is connected 

via a relatively short pipe to the liquid-transport line, at a point that is usually quite close 

to the evaporator [Ku (1998, 1999); Nikitkin et al. (1998)]. This seemingly minute 

difference has a noticeable impact on the start-up characteristics of LHPs and CPLs: In 

most instances, it is easier to start and maintain the steady-state operation of LHPs than 

that of CPLs. CPLs typically require preconditioning, where the reservoir is heated 

incrementally a few degrees (roughly 5 – 15 oC) above the evaporator temperature. On 

the other hand, LHPs do not necessitate any such preconditioning, and can begin 

operating as soon as the temperature difference between the compensation chamber and 

the evaporator is sufficient to establish the corresponding pressure difference required to 
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initiate circulation of the working fluid [Bienert and Wolf (1995); Nikitkin et al. (1998); 

Maydanik (2005)] 

 The main source of motivation for the work reported in this thesis is a strong desire 

and sense of commitment, on the part of both the author and his supervisor, to contribute 

to ongoing international efforts to ameliorate the design or enhance the operating 

efficiency of energy exchange, storage, and conversion systems. 

 As was mentioned earlier, this work pertains to the modeling of thermofluid 

phenomena encountered in loop heat pipes (LHPs). The overarching goal is to formulate, 

implement, and demonstrate cost-effective mathematical models and numerical solution 

methods for computer simulations of LHPs. The intention here is to propose improved 

models and numerical solution methods that are suitable for the design and optimization 

of LHPs, to illustrate the use of simple experimental procedures and correlations to 

effectively calculate the properties of the porous material (sintered powder metal) used as 

wicks in LHPs that are needed as inputs to the mathematical models, and also contribute 

to the understanding of the thermofluid processes that occur within these devices. 

 

1.2 LITERATURE REVIEW 

 This section is divided into five subsections as follows: 1) textbooks, handbooks, and 

review articles that provide historical and comprehensive discussions of heat pipes (HPs), 

capillary pumped loops (CPLs), and loop heat pipes (LHPs); 2) textbooks, handbooks, 

and review articles that provide detailed discussions of the thermofluid phenomena that 

occur in LHPs; 3) publications on numerical methods for the prediction of fluid flow and 

heat transfer; 4) publications related to the properties of liquid-saturated porous materials; 

and 5) published works on the transient and steady-state operations of LHPs. 

 A comprehensive review of the vast number of published works on each of the above-

mentioned topics is not intended in this section. Rather, only works that were used in 

and/or are directly relevant (or closely related) to the research presented in this thesis are 

reviewed here. 
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1.2.1 Books and Review Articles 

Excellent reviews and discussions of the underlying theory, modeling, design, 

construction, and operation of HPs, CPLs (both chronologically preceding LHPs), and 

LHPs are available in books by Chi (1976), Dunn and Reay (1982), Silverstein (1992), 

Petersen (1994), and Faghri (1995). Review articles (on these devices) that were found to 

be particularly informative and useful in this work include the contributions of 

Ochterbeck and Peterson (1997), Ku (1999), Garimella and Sobhan (2001), Maydanik 

(2005), Launay et al. (2007), and Launay and Vallée (2011). 

 

1.2.2 Thermofluid Phenomena in LHPs 

The following thermofluid phenomena are encountered in LHPs: Single- and two-

phase (vapor-liquid) fluid flow and heat transfer in passages (of circular and noncircular 

cross section) and fittings; fluid flow and heat transfer in porous media (wick materials); 

boiling; and condensation. 

There are numerous textbooks related to single-phase Newtonian fluid flow and heat 

transfer in ducts: Examples include the works of Batchelor (1967), Eckert and Drake 

(1971), Landau and Lifshitz (1987), Tritton (1988), White (1991), Kays and Crawford 

(1993), Bejan (1995), Fox and McDonald (1998), Oosthuizen and Naylor (1999), 

Kaviany (2001), Incropera and DeWitt (2002), Bird et al. (2002), Currie (2003), and 

Munson et al. (2008). Classical research works in this area are reviewed in Kays and 

Perkins (1973). Single-phase laminar flow and heat transfer in ducts have been discussed 

comprehensively by Shah and London (1978). Detailed discussions of single-phase 

turbulent flow and heat transfer in ducts are available in the works of Tennekes and 

Lumley (1972), Hinze (1975), Wilcox (1993), Pope (2000), Launder and Sandham 

(2002), Davidson (2004), and Durbin (2010). For comprehensive reviews of the rheology 

of non-Newtonian flows, the reader is referred to books by Dealy and Wissbrun (1990), 

Macosko (1994), Tanner (2000), and Chhabra et al. (2008). Details of single-phase fluid 

flow and heat transfer topics of particular relevance to this research are covered in the 

works of Colebrook (1939), Sparrow and Patankar (1977), Gnielinski (1976, 1983), 

White (1991), and Kays and Crawford (1993), and are also elaborated in Chapters 2, 3, 

and 4 of this thesis. 
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Authoritative discussions of the basic and more advanced aspects of fluid flow and 

heat transfer in porous materials are available in books by Dullien (1992), Kaviany 

(1999), Nield and Bejan (2006), and Smirnov (2009). For comprehensive derivations of 

volume-averaged equations that govern these phenomena and related topics, the reader is 

referred to the contributions of Beavers and Sparrow (1969), Crapiste et al. (1973), 

Scheidegger (1974), Slattery (1981), Whitaker (1999), Kaviany (1999), Minkowycz et al. 

(1999), Alazmi and Vafai (2000), Nield and Bejan (2006), Clark (2009), and Civan 

(2011). Specific details of fluid flow and heat transfer in the wicks of LHPs are provided 

in Chapters 2 and 5 of this thesis. 

For extensive discussions of two-phase (vapor-liquid) fluid flow and heat transfer in 

ducts, boiling, and condensation, the reader is referred to books by Wallis (1969), Collier 

(1972), Carey (1992), Whalley (1996), Tong and Tang (1997), Levy (1999), Klienstreuer 

(2003), Brennen (2005), Kolev (2007), and Ishii and Hibiki (2010). Reviews of these 

topics are available in articles by Bouré and Delhaye (1982), Drew (1983), Rohsenow 

(1985), Griffith (1985), Rose (1998), Ghajar (2005), Cheng and Mewes (2006), and 

Cheng et al. (2008). Pioneering works related to flow regime maps, pressure drops, and 

heat transfer coefficients for two-phase flows in horizontal and slightly inclined tubes 

include the contributions of Lockhart and Martinelli (1949), Baker (1954), Chato (1962), 

Mandhane et al. (1974, 1977), Taitel and Dukler (1976), Jaster and Kosky (1976), 

Soliman (1982, 1986), Dobson (1994), Dobson and Chato (1998), Ould Didi et al. 

(2002), El-Hajal et al. (2003), Thome (2003), Kim and Ghajar (2006),  Lee et al. (2010), 

and Ong and Thome (2011). Some details of these works are provided in Chapter 2 of 

this thesis. 

The Handbook of Single-Phase Convective Heat Transfer edited by Kakac et al. 

(1987), Handbook of Heat Transfer edited by Rohsenow et al. (1998), Handbook of 

Phase Change: Boiling and Condensation edited by Kandlikar et al. (1999), ASHRAE 

Fundamentals (2005), Handbook of Porous Media edited by Vafai (2005), and  

Multiphase Flow Handbook edited by Crowe (2006) are rich sources of information on 

the above-mentioned thermofluid phenomena that occur in LHPs. Comprehensive 

reviews of these topics can also be found in Vols. 1 – 42 of the series Advances in Heat 

Transfer edited by Hartnett et al. (1964 – 2010). 
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1.2.3 Numerical Methods for Fluid Flow and Heat Transfer 

Numerical methods for the prediction of fluid flow and heat transfer phenomena are 

usually grouped into the following five main categories: finite difference methods, finite 

volume methods, finite element methods, boundary element methods, and spectral 

methods. Hybrid numerical methods that combine the attractive features of the 

aforementioned categories of methods have also been proposed, and examples include: 

Spectral element methods, finite analytic methods, and control-volume finite element 

methods. The fundamentals of these numerical methods are discussed in books authored 

by Patankar (1980), Tannehill et al. (1997), Roache (1998), Ferziger and Peric (1999), 

Reddy and Gartling (2000), Gresho and Sani (2000), Zienkiewicz and Taylor (2000), 

Peyret (2002), Gaul et al. (2003), Jaluria and Torrance (2003), Karniadakis and Sherwin 

(2005), and Wendt and Anderson (2009), among others. Comprehensive reviews of 

control-volume finite element methods for fluid flow and heat transfer are available in the 

works of Baliga (1997), Baliga and Atabaki (2006), and Jesuthasan and Baliga (2009b). 

For authoritative and useful discussions of the numerical modeling of turbulent flow and 

heat transfer in ducts, the reader is referred to the works of Wilcox (1993), Pope (2000), 

and Launder and Sandham (2002). The contributions of Leonard (1979, 1997) are also 

recommended for reviews of upwind procedures. The Handbook of Numerical Heat 

Transfer edited by Minkowycz et al. (2006) and Vols. 1 and 2 of the series Advances in 

Numerical Heat Transfer edited by Minkowycz and Sparrow (1997, 2000), provide 

comprehensive reviews and overviews of various aspects of computational fluid 

dynamics and heat transfer. 

 

1.2.4 Properties of Liquid-Saturated Porous Materials 

As was mentioned previously in this chapter, the wicks of LHPs are liquid-saturated 

porous materials. Therefore, key inputs to the design and mathematical models of LHPs 

include the porosity, the maximum effective pore size, the effective permeability, and the 

effective thermal conductivity of liquid-saturated wicks. 

The seminal contributions of Maxwell (1954), Kunii and Smith (1960), Chen and 

Tien (1973), Batchelor and O’Brien (1977), Ogniewicz and Yovanovich (1978), Sangani 

and Acrivos (1983), Hadley (1986), Bauer (1993), Kaviany (1999), Hsu (2000), 
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Bonnefoy et al. (2004), Bahrami et al. (2004, 2006), and Nield and Bejan (2006) provide 

extensive discussions of many of the available analytical, semi-analytical, and numerical 

correlations for effective properties of porous materials made of uniformly sized, 

regularly spaced, and packed (unconsolidated or consolidated) spherical particles. 

Reviews of some of the aforementioned and additional analytical correlations are 

available in the works of Tsotsas and Martin (1987), Tavman (1996), Gusarov and 

Kovalev (2009), and Antwerpen et al. (2010). 

The above-mentioned analytical correlations are inapplicable to the wicks typically 

used in LHPs, as they are made from sintered metal powders or fibers. Furthermore, for 

the sintering of metal powders, particles of angular rather than spherical shapes are 

preferred, and these particles are not necessarily uniformly sized or regularly spaced 

[Goring and Churchill (1961), Batchelor (1974), Hadley (1986); Leong et al. (1997); Mo 

et al. (2006)]. The sintering process creates excellent joints (solid-to-solid contact zones) 

between the particles or fibers; and most of the available analytical correlations do not 

properly account for this effect of the sintering process [Kunii and Smith (1960); Hadley 

(1986); Leong et al. (1997); Mo et al. (2006)]. 

Analytical and experimental investigations to determine the effective properties of 

sintered metal powders and fibers have been conducted and reported by Kunz et al. 

(1967), Soliman et al. (1970), Alexander (1972), Singh et al. (1973), Van Sant and Malet 

(1975), Hadley (1986), Peterson and Fletcher (1987), Chang (1990), Mantel and Chang 

(1991), Bonnefoy et al. (2004), Atabaki and Baliga (2007), Petrasch et al. (2008), and Yu 

et al. (2011). 

Details of some of the aforementioned and other contributions on this topic are 

presented in Chapters 2 and 5 of this thesis. 

 

1.2.5 Loop Heat Pipes 

The main focus of this thesis is on the steady-state operation of loop heat pipes 

(LHPs). However, there have been some recent efforts aimed at better understanding of 

the transient operations of LHPs, including their temperature overshoots and oscillations 

during startup. In this subsection, first, papers that deal with the startup and transient 
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operations of LHPs are reviewed. Following that, attention is then devoted to works on 

modeling and experimental investigations of the steady-state operation of LHPs. 

1.2.5.1 Startup and Transient Operations of LHPs 

Ku and Rodriguez (2003) and Ku (2003) have outlined the existence of what are 

essentially three types of temperature oscillations in LHPs: (i) An ultra-high-frequency 

temperature oscillation with a period of the order of a few seconds that is associated with 

the inherent two-phase flow characteristics in LHPs; (ii) a high-frequency, low-

amplitude, temperature oscillation with a period of the order of seconds to minutes, and 

an amplitude of the order of 1 K (this type of oscillation is attributed to the inability of 

the vapor front to find a stable position inside the condenser); and (iii) a low-frequency, 

high-amplitude, temperature oscillation with a period of the order of hours and an 

amplitude of the order of tens of Kelvin.  

Ku and Rodriguez (2003) have reported experimental results of low-frequency, high-

amplitude temperature oscillations for their LHP operating with propylene, with power 

inputs in the range of 15 – 75 W and sink temperatures between 243 K and 273 K. The 

authors first described the two most common conditions associated with this type of 

temperature oscillation in LHPs: (i) a constant power input to the evaporator linked with 

an oscillating sink temperature; and (ii) a constant sink temperature coupled with an 

oscillating power input to the evaporator. Ku and Rodriguez (2003) then presented a 

third, more subtle, condition for the aforementioned temperature oscillation: A large 

thermal mass attached to the evaporator can absorb and store energy during an increase in 

the compensation chamber temperature, and can also release energy during a decrease in 

the temperature of the latter. As a result, the large thermal mass can modulate the 

constant power applied to the evaporator into what is essentially an oscillating power 

input. This subsequent oscillation of the power input to the evaporator is the main source 

of the low-frequency and high-amplitude temperature oscillations in LHPs.  

Ku (2003) has also performed an analytical and experimental investigation of the 

high-frequency and low-amplitude temperature oscillations in LHPs. As was mentioned 

earlier, this type of temperature oscillation is commonly associated with the inability of 

the vapor front to find a suitable, stable, position inside the condenser. Ku (2003) has 

used three different LHPs (all working with ammonia) to investigate the motion of the 
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vapor front. The experimental results of Ku (2003) showed the occurrence of high-

frequency, low-amplitude temperature oscillations in the LHPs corresponding to the 

following locations of the vapor front: (i) near the condenser inlet; and (ii) near the 

condenser outlet. Thus, when the vapor front moves near the inlet or outlet of the 

condenser, it is unable to find a suitable stable location and moves back-and-forth in the 

vicinity of these locations. As a result of this movement of the vapor front in the 

condenser, a temperature fluctuation is induced in the liquid line leading to a 

corresponding oscillation in the temperature of the compensation chamber in LHPs. 

Chen et al. (2006) have conducted an experimental investigation of the steady-state 

and transient performance of a miniature loop heat pipe under different orientations (one 

horizontal and four vertical) for sink temperatures ranging from 5 – 50 oC. The LHP had 

a cylindrical evaporator with an outer diameter of 5 mm and a length of 29 mm. The 

working fluid consisted of ammonia, and the maximum evaporator temperature was 

limited to 80 oC. Chen et al. (2006) have presented steady-state and transient results of 

their LHP for the following orientations: (i) Horizontal (the evaporator and condenser are 

located on a single horizontal plane with respect to the gravitational acceleration vector);  

(ii) condenser above evaporator; (iii) evaporator above condenser; (iv) compensation 

chamber above evaporator; and (v) evaporator above compensation chamber. The authors 

claimed that startup of the LHP was possible with a power input as low as 5 W. 

Generally, a small temperature overshoot was observed during startup, which was 

attributed to the slow movement of the cold liquid from the condenser into the 

compensation chamber. The thermal resistance of the LHP decreased with increasing sink 

temperature and power input to the evaporator. Chen et al. (2006) reported that for a sink 

temperature of 25 oC and a power input of 70 W, the resulting thermal resistance of the 

loop approached a minimum value of 0.2 oC/W for the first four orientations described 

earlier; whereas for the prescribed sink temperature, the LHP did not work under the fifth 

(evaporator above compensation chamber) orientation. 

Launay et al. (2007b) have formulated a mathematical model for the prediction of the 

transient behavior of LHPs. In this model, the LHP is first divided into the following four 

subsystems: (i) the fluid in the compensation chamber; (ii) the evaporator and 

compensation chamber wall; (iii) the fluid in the condenser; and (iv) the fluid in the 
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vapor- and liquid-transport lines. The conservation of mass, momentum and energy are 

then imposed on each subsystem and also on the overall LHP. Launay et al. (2007b) 

compared the predictions of their model with the experimental results of Wrenn et al. 

(1999): Their model qualitatively predicted the experimental data despite an inherent 

time lag of about 100 s between the model predictions and experimental results. The 

model also under-predicted the temperature of the evaporator saddle and compensation 

chamber by less than 2 K, and the liquid-line temperature variation by nearly 3.5 K. 

Nevertheless, the model predictions of Launay et al. (2007b) are in qualitative agreement 

with the experimental findings of Wrenn et al. (1999).  

Launay et al. (2007b) also used their transient model of LHPs to study the occurrence 

of (i) low-frequency, high-amplitude, temperature oscillations; and (ii) high frequency, 

low amplitude, temperature oscillations.  

As reported earlier by Ku and Rodriguez (2003), low frequency, high amplitude, 

temperature oscillations are related to the evaporator thermal mass, which modulates the 

net heat input to the evaporator by storing energy when the compensation chamber 

temperature is increasing, and releasing energy when the compensation chamber 

temperature is decreasing. Consequently, the net heat load on the evaporator is 

oscillatory. In order to investigate low-frequency and high-amplitude temperature 

oscillations, a heat input of 25 W was imposed on the LHP by Launay et al. (2007b). In 

addition, the sink and ambient temperatures were maintained constant with a temperature 

difference of 35 K, and the thermal mass attached to the evaporator was increased to a 

value of 10 kg, similar to the experimental study of Ku and Rodriguez (2003). The model 

of Launay et al. (2007b) qualitatively predicted the low-frequency, high-amplitude, 

temperature oscillations in the LHP. The oscillation period was around 140 minutes, and 

the maximum temperature variation at the evaporator was equal to 8 K.  

The high-frequency, low-amplitude, temperature oscillations, on the other hand, are 

caused by the inability of the vapor front to find a stable position at the condenser outlet 

(or inlet for low power input) [Ku (2003)]. In order to simulate this type of temperature 

oscillations, Launay et al. (2007b) imposed two heat inputs on the LHP: one varying from 

20 to 800 W at time 1000 s, and another varying from 800 to 450 W at time 4000 s. The 

sink and ambient temperatures were also maintained constant, with a temperature 
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difference of 15 K. The model then predicted a temperature oscillation at a heat input of 

800 W with a frequency equal to 1.8 x 10-3 Hz. The maximum amplitude of the 

temperature oscillation reported was about 5 K. 

Li et al. (2010) conducted an experimental study on the startup and transient behavior 

of a compact copper LHP with a flat evaporator operating with de-ionized distilled water 

(claimed to be most environmental-friendly and compatible with copper wick) as the 

working fluid. The authors further underlined the extensive international interest of both 

academic and industrial circles in high performance LHPs, as well as the on-going 

research efforts being conducted to provide a well-accepted physical model capable of 

describing the mechanisms behind the transient and steady-state operations of LHPs.   

The compact LHP designed and used by Li et al. (2010) consisted of a flat square 

evaporator with a dimension of 30 mm (L) x 30 mm (W) x 15 mm (H). The vapor- and 

liquid-transport lines each had an internal pipe diameter of 5 mm and a length of 120 

mm. No additional information was provided regarding the size of the condenser, 

compensation chamber, or the characteristics of the porous wick (porosity, permeability, 

maximum pore size, and effective thermal conductivity) used in this work. This LHP was 

tested under a vertical configuration with the evaporator placed below the condenser. Li 

et al. (2010) noticed repeated transient temperature oscillations during the startup process 

of their LHP for heat loads of 30 W, 50 W, and 100 W. During the startup process, they 

monitored the evaporator-bottom temperature, and observed an initial temperature rise 

followed by a sudden temperature drop (with a magnitude between 5 – 10 oC). Following 

this rapid drop, the evaporator temperature oscillated over time in a regular and periodic 

manner.  

Li et al. (2010) hypothesized that the oscillations with different characteristics arise 

mainly from the following three effects: (i) original liquid blocking along the vapor flow 

passage; (ii) alternative turn-out of menisci and flooding in the wick; and (iii) two-phase 

flow instability in the condenser. Based on their experimental findings and earlier work 

on high-speed visualization of boiling and evaporation of water on micro-porous-media, 

the authors proposed the existence of two main modes associated with the startup of 

LHPs to explain how vapor is first generated in the evaporator, and how it ultimately 

displaces liquid from the vapor flow passage in the evaporator, vapor-transport line, and a 
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portion of the condenser. These modes are referred to in their work as (i) a boiling-

triggered startup at comparatively low temperatures, and (ii) an evaporation-triggered 

startup at comparatively high temperatures. 

Li et al. (2010) inferred from their experiments that at very low heat loads the LHP 

startup can be initiated in an unstable manner. The observed irregular oscillations in the 

LHP temperature at very low heat loads were associated with the discontinuous bubble 

generation and collapse, combined with the two-phase flow instability in the condenser. 

This represents the so-called boiling-triggered startup of the LHP. If this boiling process 

is unable to maintain the appropriate heat balance in the LHP with increasing heat loads, 

the LHP temperature increases and the liquid-vapor interface starts to retreat into the 

wick, meaning that the circulation of the fluid in the LHP from the evaporator back to the 

compensation does not fully occur at this boiling stage due to the lack of sufficient 

driving force. Once the liquid-vapor interface (and related menisci) is established in the 

wick, the capillary force drives the circulation of the fluid in the LHP, and evaporation 

becomes the dominant heat transfer mechanism: this is the so-called evaporation-

triggered startup of the LHP.  

Li et al. (2010) also noticed the occurrence of temperature oscillations when the 

startup mode switched from the boiling-triggered to the evaporation-triggered mode. A 

probable explanation was put forward: The heat load was still comparatively low at this 

stage, and therefore immediately after the establishment of the liquid-vapor interface in 

the wick and the proper fluid circulation inside the loop, the extensive evaporation heat 

transfer process resulted in a sudden cooling of the evaporator. The temperatures of the 

compensation chamber and the rest of the LHP also decrease correspondingly. 

Consequently, the vapor pressure at the liquid-vapor interface reduces causing the 

collapse of the menisci, and results in the temporary re-flooding of the wick. This 

repeated process of the menisci formation and re-flooding of the wick is the suggested 

mechanism behind the temperature oscillations during the evaporation-triggered startup 

mode. 
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1.2.5.2 Steady-State Operation and Models of LHPs 

Bienert and Wolf (1995) presented an analytical model and some experimental results 

for an LHP. However, full details of the experimental setup were not provided. The 

proposed analytical model was focused on pressure and energy balances on each 

component of the LHP. The energy balances are resolved using a combined lumped 

parameter and nodal network approach: Specifically, the evaporator and compensation 

chamber are treated as lumped parameters, whereas the rest of the loop was modeled 

using a nodal network approach. The authors presented experimental results for the 

steady-state performance of an LHP operating in both variable- and fixed-conductance 

modes. They also indicated that these two modes of operation may not be fully prevalent 

in every test case. Furthermore, one mode may be inhibited by the other, depending on 

the thermal connection to the ambient environment.   

Bienert and Wolf (1995) also discussed the concept of using an active thermal control 

in the operations of LHPs. In their experiments, the thermostatic control (heating) of the 

compensation chamber of their LHP was operated at temperatures higher than that of the 

ambient environment. This approach allowed for active control of the steady-state 

operating temperatures in the LHP, but only until the condenser could no longer 

accommodate the rejection of the total power input: Simply put, for a given sink 

temperature using this method, the control range was constrained by the heat rejection 

capability of the condenser.  Therefore, increasing the set-point, for the given sink 

temperature, allowed for a higher heat rejection capability and more precise thermal 

control over a broader spectrum of the overall power input to the evaporator-

compensation-chamber assembly. 

 Wirsch and Thomas (1996) have conducted experimental, analytical, and numerical 

studies of the performance of an LHP constructed of stainless steel and operated with 

ammonia as the working fluid. The evaporator was equipped with a cylindrical sintered 

nickel-powder wick fitted in a flat aluminum saddle. To keep the temperature of the fluid 

in the vapor-transport line stable at a pre-established set-point temperature, the 

condenser’s cooling rate was modified by increasing or reducing the flow-rate of the 

refrigerant. Wirsch and Thomas (1996) performed two tests for vapor-transport-line 

temperatures of 40 oC and 50 °C, and through these tests were able to discern the 
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maximum power inputs that could be sustained by the LHP: A maximum power input of 

337 W was achieved with a vapor-transport-line temperature of 50 oC. However, at this 

point, there was insufficient amount of liquid to maintain the wick wet, the evaporator 

temperature increased suddenly, and the evaporator eventually dried out. Wirsch and 

Thomas (1996) then found conditions that limited the power input and kept the 

evaporator sufficiently wet: This corresponded to a 40 °C vapor-transport-line 

temperature and an approximate condenser limit (the highest heat-rejection capability) of 

260 W. From these results, the authors were able to calculate an effective thermal 

resistance using the input power and temperature difference between the average steady-

state temperatures of the evaporator and condenser. This effective thermal resistance 

decreased when the power input was increased, and attained a minimal sustainable value 

of 0.085 oC/W. 

Wirsch and Thomas (1996) used a finite-element analysis to model the steady-state 

heat conduction in the evaporator assembly (aluminum saddle, thermal grease, and 

stainless steel evaporator shell). Their model focused on the transfer of heat from a strip 

heater to the aluminum saddle of the evaporator, which was then directed to and 

conducted through the stainless steel wall of the evaporator, and ultimately dissipated at 

the inner radius of the evaporator wall through an evaporative boundary condition. Based 

on their experimental results, the authors computed values of the evaporative heat 

transfer coefficient as a function of the power input and difference in the average 

temperatures of the vapor-transport line and the evaporator. Their predictions of the 

outer-surface temperature of the evaporator were in agreement with the corresponding 

experimental data.  

Kaya and Hoang (1999) proposed a mathematical model for LHPs, built on steady-

state energy conservation equations and pressure drop calculations. The predictions they 

obtained using this model were compared to experimental data from two different LHPs 

(the GLAS-LHP and the NRL-LHP). NASA designed the GLAS-LHP to facilitate 

thermal control of the Geoscience Laser Altimeter System (GLAS), while the NRL was 

designed and built for U.S. Naval Research Laboratory (NRL). Good agreements (within 

5%) were reached between corresponding computational and experimental results. The 

model proposed by Kaya and Hoang (1999) assumed that the LHP compensation 
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chamber would always be filled with a two-phase (liquid and vapor) fluid mixture. This 

condition guaranteed that the mass and phase distribution requirements in the LHP were 

automatically satisfied. It also ensured that there was enough room in the compensation 

chamber to absorb excess fluid forced into it from the condenser, while also maintaining 

the fluid inside it in a two-phase condition. Kaya and Hoang (1999) also assumed that 

any subcooled liquid entering the compensation chamber from the liquid-transport line 

would be heated to the same temperature as the liquid absorbed into the inner surface of 

the wick, with the required energy coming from the heat transfer from the ambient 

environment (conducted through the compensation chamber envelope) and heat leak from 

the evaporator. The heat rejection in the condenser was divided into a two-phase and a 

subcooled part. However, the details for the calculation of the two-phase pressure drop in 

this region were not provided. The condenser tube was attached on one side to a plate 

with embedded pipes through which a coolant (a refrigerant) was circulated to simulate a 

uniform-temperature thermal sink, and the other side of the condenser pipe was exposed 

to the ambient environment. In the model of this condenser, the heat exchange with the 

ambient environment (the so-called “parasite heat transfer”) was included. However, 

details of how the heat transfer surface of the condenser tube was partitioned to take into 

account heat transfer to and/or from the ambient environment and to the sink (cooling 

plate) are not provided in this paper. 

Kaya and Hoang (1999) reported that the GLAS-LHP performed in a variable-

conductance mode when the power input to the evaporator was less than 100 W. The 

operating temperature (saturation temperature in the vapor grooves of the evaporator) in 

this mode decreases to a minimum with increasing power input, up to 100 W. For power 

inputs above 100 W, the LHP operated in the fixed-conductance mode: This was 

demonstrated by the linear rise in the operating temperature with increase in the power 

input. The experimental results reported in Kaya and Hoang (1999) were used, in Chapter 

2 of this thesis, to validate the proposed segmented network thermofluid model of LHPs. 

The predictions obtained with this computational model were in very good qualitative 

agreement with the reported experimental data of Kaya and Hoang (1999). 

Maydanik (2005) has provided a review of LHPs, including a short historical 

background, description of the theory, and presented some recent developments and test 
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results concerning LHPs. In particular, he presented elements of a mathematical model of 

LHPs, widely adopted by many researchers, based on steady-state energy conservation 

equations and pressure drop calculations akin to Kaya and Hoang (1999). 

 As a condition of LHP operability, Maydanik (2005) stated that the capillary pressure 

jump across the liquid-vapor interface located in the wick must sustain all the associated 

vapor and liquid pressure drops in the overall LHP system. However, he explicitly 

asserted that the pressure drop in the condenser section of LHPs was negligible. This 

definitive statement is too restrictive. Indeed, many of the available mathematical models 

of LHPs do not properly account for the single- and two-phase pressure drops in the 

condenser portion of LHPs. As will be shown in this thesis (Chapter 6), the pressure drop 

in the condenser of LHPs can make up a significant portion of the overall pressure drop 

in the loop for certain operating conditions. 

 Maydanik (2005) also described the importance of vapor removal channels in LHPs, 

especially for LHPs with high heat flux (great than 0.70 MW/m2) capability. The 

evaporation of the working fluid takes place in a relatively thin layer of the wick 

immediately adjacent to the wall of the evaporator, towards which the evaporating 

menisci are turned. To provide effective heat exchange in this evaporation zone, it is 

necessary to create a special system of vapor-removal channels located at the wall-wick 

boundary to facilitate the vapor flow into the vapor-transport line. The simplest vapor-

removal channels are straight grooves cut into the metal wall of the evaporator, adjacent 

to the wick. A two-step vapor-removal system incorporates small azimuthal grooves cut 

into the evaporator wall, and larger longitudinal channels cut into the wick itself. 

Although Maydanik (2005) discussed the importance of the vapor-removal channels for 

achieving high heat exchange in the evaporation zone, he did not discuss the importance 

of adequately accounting for the associated increase in pressure drop in these vapor 

channels due to the corresponding increase in the rate of evaporation in high-heat flux 

LHPs. Furthermore, to the knowledge of the author, no currently available mathematical 

model of LHPs provides for accurate and reliable calculations of the pressure drop in the 

vapor-removal channels of LHPs. A suitable numerical method for the computation of 

the pressure drop and also heat transfer in the vapor-removal channels of LHPs is put 

forward, implemented, tested, and used in Chapters 3, 4, and 6 of this thesis. 
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Singh et al. (2007) presents an experimental investigation of a miniature LHP made 

of copper, and with a flat-disk shaped evaporator (30 mm in diameter and 10 mm thick) 

designed for thermal control of computer microprocessors. The inner face of the 

evaporator was machined with 15 vapor channels of rectangular cross-section (1 mm 

deep and 0.50 mm wide), which provided an efficient vapor-removal mechanism. The 

evaporator was also equipped with a nickel wick, of thickness 3 mm, mean pore radius 

between 3 - 5 m, and porosity 0.75. The condenser of the LHP was provided with 

external fins measuring 20 mm x 10 mm with a thickness of 0.20 mm. Cooling of the 

condenser was achieved by forced convection, provided using a cooling fan and ambient 

air with inlet temperature of about 24 °C. Tests were conducted using water as the 

working fluid. The reported LHP design was able to transport a maximum heat load of 70 

W over a distance of 150 mm. The flat-evaporator design was preferred due to its lower 

interface resistance and ease of integration inside the limited space of notebook PCs. 

In the above-mentioned paper, Singh et al. (2007) reported that the LHP achieved 

reliable startup with a power input as low as 20 W, and was able to attain steady-state 

operation for every 5 W step-increases in the input power. The LHP operated in the 

variable-conductance mode for power inputs less than 30 W, and in the constant-

conductance mode of operation for power inputs greater than 30 W. The minimum value 

of the overall thermal resistance of the LHP was 0.17 °C/W. Singh et al. (2007) stated 

that the maximum heat capacity of miniature LHPs in electronics cooling is essentially 

dictated by the maximum permissible temperature at the heat source (chip surface, for 

example), which is generally estimated as 100 °C. They also stated that water is an ideal 

candidate for the working fluid of LHPs designed for ground based electronics cooling 

applications, where stringent restrictions are in place concerning the use of high-pressure, 

toxic, or inflammable working fluids such as ammonia, acetone, or different grades of 

alcohol. In this regard, water was selected as a suitable option, and for its highly-effective 

heat transfer characteristics in the 50 - 100 °C temperature range. 

More recently, Singh et al. (2009) presented a mathematical model of a miniature 

LHP operating under steady-state conditions. In this work, the pressure drop associated 

with the flow of liquid in the wick is modelled using Darcy's law, and the pressure drops 

in the vapor- and liquid-transport lines are computed based using correlations for the 
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Darcy friction factor for fully-developed (laminar or turbulent) flows in circular and non-

circular pipes. However, Darcy friction-factor correlations that are strictly applicable only 

for fully-developed (laminar or turbulent) flows in ducts of circular and non-circular 

cross-sections and impermeable walls were also used to calculate the pressure drop in the 

vapor-removal channels of rectangular cross section (based on the hydraulic diameter of 

the channel and vapor flow-rate at the exit of the channel). This approach is inherently 

invalid as it fails to account for injection of vapor into the vapor-removal channels, along 

their surface adjacent to the wick, as a result of the vaporization process at the liquid-

vapor interface located in the wick. Furthermore, the mathematical model of Singh et al. 

(2009) does not account for the single- and two-phase pressure drops in the condenser 

section of the LHP. Instead, single-phase flow correlations were used to determine the 

overall pressure drop in the entire condenser unit. In addition, the calculation of the two-

phase heat transfer in the condenser was simplified and assumed to be equal to the rate of 

heat transfer required for evaporation of the saturated liquid in the wick. These 

shortcomings of this and other similar mathematical models of LHPs are addressed 

further (along with ways to overcome them) in Chapters 2, 3, and 4 of this thesis. 

Most recently, Li and Peterson (2011) presented a quasi three-dimensional 

computational model of a specific flat-evaporator design used in their earlier LHP 

experiments [Li et al. (2010)]. The special features of this evaporator design pertained to 

construction of the sintered-powder-copper wick structure, in which (i) the wick was 

mounted on top of a copper substrate; (ii) vapor-removal channels of rectangular cross-

section were directly machined in the wick structure; and (iii) the compensation chamber 

was attached on top of the wick, keeping it in a fully-saturated condition. The heat input 

to the evaporator occurred at the base of the copper substrate, and evaporation took place 

at the liquid-vapor interface located near the wick-substrate boundary. 

In the above-mentioned paper, Li and Peterson (2011) computationally investigated 

the fluid flow and heat transfer mechanisms, but only within the wick structure and 

compensation chamber. In particular, attention was focused on understanding the heat 

transfer mechanism along the liquid-vapor interface inside the wick. They adapted 

suitable liquid and vapor boundary conditions in the wick, based on works of Demidov 

and Yatsenko (1994), and Kaya and Goldak (2008). Li and Peterson (2011) observed that 
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the highest heat flux occurred at the wick-substrate boundary where there is excellent 

metal-to-wick contact. When moving further from the metal-to-wick contact region and 

closer to the open cavity region representing the vapor-removal channel (or groove), the 

heat flux decreased. This provided support to the earlier work of Demidov and Yatsenko 

(1994), which claimed that the evaporation from the meniscus formed in the vicinity of 

the metal-to-wick contact region between the wick and evaporator body was much higher 

than that occurring at the interface between the wick and the open vapor-channel. 

It should also be noted that Li and Peterson (2011) proposed the use of a detailed 

evaporator model in conjunction with a network model (based on steady-state energy 

conservation equations and pressure-drop calculations) for the accurate predictions of 

LHP performance. However, details concerning the heat transfer in the rest of the LHP 

were not provided. Furthermore, despite aiming to provide a detailed model of the LHP 

evaporator, Li and Peterson (2011) used a fully-developed Darcy friction-factor 

correlation strictly applicable only to ducts of rectangular cross-section and impermeable 

walls for the calculation of the pressure drop in the vapor-removal channels. A full three-

dimensional conjugate fluid flow and heat transfer model of the LHP evaporator is 

needed to properly account for the details of the heat transfer across the liquid-vapor 

interface in the wick and the associated pressure-drop mechanisms in the evaporator 

section of LHPs. However, this approach could potentially become computationally 

intensive, and would not be readily adaptable within the framework of a simple and cost-

effective thermofluid model for the reliable design and optimization of LHPs.  

Considering the aforementioned shortcomings in past models of LHPs, the work 

reported in this thesis was directed towards the formulation of novel correlations for 

predicting pressure drops and the associated heat transfer within the vapor-removal 

channels, and the incorporation of these correlations within enhanced quasi-one-

dimensional network thermofluid models. The overall goal in this work was to propose 

cost-effective mathematical models and numerical solution methods that could serve as 

useful tools for the design and optimization of LHPs. 
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1.3 OBJECTIVES 

The objectives of the research work reported in this thesis are summarized below: 

 To formulate, implement, test, and apply a segmented network thermofluid 

model for the simulation of conventional LHPs with cylindrical and flat 

evaporators operating under steady-state conditions. The aim is to illustrate 

the main steps in the formulation of a segmented network model of LHPs that 

is, at the least, capable of generating qualitatively accurate predictions of the 

associated thermofluid phenomena. In addition, the model is intended to serve 

as a cost-effective tool for the design and optimization of LHPs. In this 

context, the capabilities of the proposed model are assessed by using it to 

simulate an LHP akin to that illustrated in Figure 1.1, and comparing its 

predictions against experimental measurements in the available literature. 

 To put forward a co-located equal-order control-volume finite element method 

(CVFEM) for predicting three-dimensional parabolic fluid flow and heat 

transfer in straight ducts of uniform regular- and irregular-shaped cross-

section. The methodology of the proposed CVFEM is also adapted to 

formulate a simpler finite volume method (FVM). The aim here is to use this 

simpler FVM to investigate steady, laminar, Newtonian fluid flow and heat 

transfer in straight vapor grooves of rectangular cross-section, for parameters 

ranges representative of typical LHP operating conditions.  

 To propose novel correlations for accurate, reliable, and cost-effective 

predictions of the overall pressure drop, and also the bulk temperature, of the 

vapor flowing in straight grooves of rectangular cross-section machined in the 

metallic body of the evaporator of LHPs. The aim is to develop correlations 

that could be easily incorporated into thermofluid models of LHPs. These 

correlations are incorporated in the aforementioned quasi-one-dimensional 

model to obtain an enhanced segmented network thermofluid model of LHPs. 

 To illustrate the use of simple and effective experiments, procedures, and 

correlations for determining the following properties of sintered powder-metal 

porous materials that are used as wicks in LHPs: 

 Porosity 
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 Maximum effective pore size 

 Effective permeability 

 Effective thermal conductivity when fully saturated with a liquid 

These properties of the porous wick material are required for the design of 

LHPs and are needed as inputs in mathematical models of these devices. The 

intension here to illustrate the determination of these properties for a sample 

porous sintered-powder-metal plate made of stainless steel 316, and present 

and discuss the results. 

 To demonstrate the capabilities of the enhanced network thermofluid model 

by applying it to simulate a sample LHP operating with four different working 

fluids: Ammonia, distilled water, ethanol and isopropanol. 

 To present and comparatively discuss the model predictions of the above 

demonstration problem and to illustrate the significance of incorporating in 

accurate correlations for the predictions of the overall pressure drop in the 

vapor-grooves of LHP evaporators into thermofluid models of LHPs. 

 

1.4 ORGANIZATION OF THE THESIS 

In earlier sections of this chapter (Chapter 1), some background discussions (of HPs, 

CPLs, and LHPs), the motivation for this work, a review of the literature relevant to this 

research, and its objectives were presented. 

In Chapter 2, a segmented network thermofluid model for simulating steady-state 

operation of conventional LHPs with cylindrical and flat evaporators is presented. 

Suitable quasi-one-dimensional formulations, incorporating semi-empirical correlations 

for the related multiphase phenomena, are presented and discussed. The proposed model 

is used to simulate an LHP for which experimental measurements are available in the 

literature, and comparisons of the predicted results to the experimental data are presented 

and discussed. 

In Chapter 3, a three-dimensional, parabolic numerical method based on a control-

volume finite element method (CVFEM) is first put forward. This CVFEM is designed 

for predicting steady developing fluid flow and heat transfer in straight ducts of irregular 

cross-section. Next, this three-dimensional parabolic CVFEM is adapted to formulate a 
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simpler finite volume method (FVM) designed for predicting developing fluid flow and 

heat transfer in straight ducts of regular rectangular cross-section, akin to the geometry of 

vapor grooves (or  vapor-removal channels) used in  the LHPs considered in this work. 

In Chapter 4, the FVM formulated in Chapter 3 is used to investigate steady, laminar, 

Newtonian fluid flow and heat transfer in straight vapor grooves of rectangular cross-

section. Some novel results corresponding to a special fully-developed flow and heat 

transfer region (particular to LHPs) are systematically presented and discussed, and 

suitable new correlations are developed for predictions of the overall pressure drop and 

the bulk temperature of the vapor flowing in the vapor grooves. 

In Chapter 5, the use of simple and effective experiments, procedures, and 

correlations for the determination of the porosity, maximum effective pore size, effective 

permeability, and effective thermal conductivity of liquid-saturated, porous-sintered- 

powder-metal wicks in LHPs is demonstrated. This demonstration exercise is conducted 

using a sample porous sintered-powder-metal plate made of stainless steel 316, and the 

results are presented and discussed. 

In Chapter 6, the capabilities of the proposed enhanced thermofluid network model 

(comprised of the segmented network thermofluid model presented in Chapter 2, coupled 

with the correlations developed from the detailed numerical analysis of the flow and heat 

transfer in the vapor grooves, as outlined in Chapter 4) are illustrated through a 

demonstration problem, that involves an LHP operating with four different working 

fluids. In this work, ammonia, distilled water, ethanol, and isopropanol are used as the 

working fluids, and the obtained results are comparatively discussed. 

In Chapter 7 (the concluding chapter), the contributions of this thesis are reviewed 

and some suggestions are presented for extensions of this work. 
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Chapter 2: 

A Segmented Network Thermofluid Model of               
Loop Heat Pipes 
Equation Chapter 2 Section 2 

 A segmented network thermofluid model for the simulation of loop heat pipes (LHPs) 

operating under steady-state conditions is presented in this chapter. This model was 

formulated by borrowing, extending, and amalgamating key ideas from Atabaki (2006) 

and Atabaki et al. (2007). The extensions have been reported in Jesuthasan et al. (2008) 

and Jesuthasan and Baliga (2009a). The proposed model also sets the stage for important 

contributions of this thesis (presented in Chapters 3 and 4) related to modeling and 

computer simulations of fluid flow and heat transfer in the vapor grooves of the 

evaporators of LHPs. The focus here is on cost-effective modeling of thermofluid 

phenomena in LHPs with one evaporator, a vapor-transport line, one condenser, a liquid-

transport line, and a compensation chamber, akin to those illustrated in Figure 2.1.  

 In this segmented network thermofluid model, the vapor-transport line, the condenser 

pipe, and the liquid-transport line are divided into longitudinal control volumes              

or cells (segments). Quasi-one-dimensional formulations, incorporating semi-empirical 

correlations for the related single-phase and multiphase phenomena, are used to impose 

balances of mass, momentum, and energy on each of the aforementioned cells. Variations 

of thermophysical properties of the working fluid with temperature are taken into 

account, along with change in quality, pressure drop, and heat transfer in the two-phase 

regions, giving the proposed model enhanced capabilities compared to those of earlier 

thermofluid network models of LHPs, such as those of Bienert and Wolf (1995), Kaya 

and Hoang (1999), Maydanik (2005), Singh et al. (2007). In these earlier models, 

balances of mass, momentum, and energy are imposed on the full elements (rather than 

segmented portions) of the LHP, and the variations of quality and pressure drops in the 

liquid-vapor two-phase regions are overlooked. 

 After the presentation of the aforementioned segmented network thermofluid model, its 

capabilities are demonstrated by using it to simulate an LHP similar to one investigated 

experimentally by Kaya and Hoang (1999). This chapter provides details of this 
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simulation, including comparisons of the predicted results and with the experimental 

results of Kaya and Hoang (1999). 

 Chapters 3 and 4 are devoted to the presentation of multidimensional mathematical 

models, numerical solution methods, and the development of accurate correlations for 

predicting the pressure drop and bulk temperature of the vapor flowing in the vapor-

removal channels cut in the metallic walls of the evaporators of LHPs. These correlations 

are used to enhance the segmented network thermofluid model proposed in this chapter. 

In Chapter 6, the capabilities of this enhanced model are demonstrated by using it to 

simulate an LHP operated with four different working fluids. 

 

(a)  
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(b)  

Figure 2.1: Schematic representations (not to scale) of loop heat pipes with (a) a 
cylindrical-evaporator and (b) a flat-evaporator. 
 

2.1 OVERVIEW OF LHP THERMODYNAMICS 

 The pressure-temperature (P-T) diagram given in Figure 2.2 illustrates the 

thermodynamic states of the working fluid at each of the numbered points shown in 

Figure 2.1. In the P-T diagram given in Figure 2.2, it is assumed that the evaporator and 

condenser sections are at comparable elevations (so the effect of gravity is negligible), 

mainly for ease of presentation.  

 At point 1, which corresponds to the liquid-vapor interface located inside the 

rectangular wick very close to its outer surface, the fluid is vaporized at T1 = Tsat and     

P1 = Psat (on the vapor side of the liquid-vapor interface). P1 is the highest 

thermodynamic (static) pressure in the loop. The vapor flows through the grooves in the 

wall of the evaporator to the entrance of a collector (vapor exit header) at point 2, and 

then reaches point 3 at the entrance to the vapor-transport line. A rate of heat input, appq , 

is applied to the evaporator. A part of appq  superheats the vapor as it flows in the grooves 
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cut into the metallic body of the evaporator, from point 1 to point 2, and this process is 

also accompanied by a pressure drop. In the collector of the evaporator, there is some 

heat loss from the vapor to the ambient environment and a small pressure drop: here, the 

vapor at point 3 is assumed to be saturated (x = 1). However, it should be noted that vapor 

leaving the evaporator and entering the vapor-transport line could be superheated, as 

discussed by Maydanik (2005). 

 

 

Figure 2.2: Pressure-temperature (P-T) diagram for the LHP (not to scale). 

 

 The process 3-4 corresponds to the flow of the working fluid through the vapor-

transport line: it is assumed here that this process is accompanied by a very small rate of 

heat loss, just enough to keep the vapor essentially saturated, with an exit quality between 

x = 0.98 – 1.0. Again, in some LHPs, the vapor exiting this transport line could be 

superheated [Maydanik (2005)]. 

The saturated vapor that enters the condenser unit cools to a saturated liquid (quality        

x = 0) in the process 4-5, and experiences a pressure drop (needed to drive the momentum 

changes and overcome the shear stresses at the wall) and a corresponding temperature 

drop. If the condenser is sufficiently long (which is the case for the conditions depicted in 

Figure 2.1), then in the process 5-6, the liquid is subcooled and there is a slight pressure 
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drop. The fluid flow in the liquid-transport line is assumed to be essentially adiabatic, 

with a small pressure drop and negligible viscous dissipation. Thus, the process 6-7 in 

Figure 2.12 is an essentially isothermal process. In practice, there could be some heat 

exchange between the liquid-transport line and the external environment, which is 

accounted for in the proposed thermofluid model. 

 The subcooled liquid (at T7) enters the compensation chamber, and then mixes with 

the warmer two-phase (saturated liquid-vapor) mixture in this chamber. The two-phase 

mixture inside the compensation chamber could either gain or lose heat to the outside 

(ambient) environment, depending on whether its temperature is lower or higher, 

respectively, than the ambient temperature. Furthermore, a part of the rate of heat input to 

the evaporator goes into heating up the fluid in the compensation chamber by means of 

conduction through the wick material: this heat transfer is referred to as heat leak [Kaya 

and Hoang (1999)]. The saturation temperature (and the corresponding saturation 

pressure) of the two-phase mixture inside the compensation chamber ( 8 , sat ccT T ) is 

determined by an energy balance on this element of the LHP. In Figure 2.2, the related 

path 7-8 is shown as a heating process accompanied by a pressure drop.  

 The saturated liquid from the compensation chamber enters the wick (it is assumed 

here that , 8 , wick ent sat ccT T T  ) and then moves up through it to the liquid-vapor interface. 

During this passage through the wick, the temperature of the liquid rises and its pressure 

drops. At the liquid-vapor interface, the temperature of the liquid (T9) equals that of 

saturated vapor (T1), but P1 is greater than P9 because of the capillary jump across the 

liquid-vapor interface in the wick. Therefore, the liquid at point 9 is in a superheated 

(metastable) state. The processes 8-9 and 9-1 are thus plotted as dashed lines in the vapor 

region of the P-T diagram in Figure 2.2. Due to heat input at the interface, the 

superheated liquid at the liquid-vapor interface evaporates along a constant-temperature 

process (9-1). Point 9 has the lowest absolute pressure in the loop. The pressure 

difference (P1 – P9) is sustained by the capillary jump across the liquid-vapor interface, 

and the assumption of local thermodynamic equilibrium at this interface gives T9 = T1. 

 In practice, the difference between the saturation temperatures in the evaporator and 

the condenser (T1 – T5) and the overall pressure drop in the entire loop (P1 – P9) would 

typically be relatively small compared to the absolute values of the saturation temperature 
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and pressure in the evaporator, T1 and P1, respectively: these values are depicted in 

Figure 2.2 in an exaggerated manner (not to scale) to aid the presentation. 

 

2.2 SEGMENTED NETWORK THERMOFLUID MODEL 

 As was noted earlier, this model is intended for cost-effective simulations of the 

steady-state operation of LHPs akin to those shown schematically in Figure 2.1. 

Variations of the thermophysical properties of the working fluid with temperature, and 

multiphase phenomena, such as the change in quality, pressure drops and heat transfer in 

the two-phase regions, are taken into account. The model can handle any suitable 

working fluid for which the required thermophysical properties can be provided as inputs. 

In the energy balances on the various elements of the LHP, the rates of viscous 

dissipation and changes in the kinetic energy of the fluid are assumed to be negligible (as 

the related values of Eckert number are all much less than one). The details of this model 

are concisely presented in the remainder of this section.  

 

2.2.1 Evaporator Section 

 In conventional LHPs, the evaporator unit is typically constructed of an internally 

grooved cylindrical-pipe of circular cross section, with an annular wick installed on its 

inner surface, akin to that illustrated schematically in Figure 2.3. The wick is usually 

made of a sintered powder metal. However, cylindrical evaporators generally require a 

special saddle (a kind of cylindrical-planar reducer) to properly attach them to a flat 

surface. This saddle design creates an additional thermal resistance and increases the total 

mass of the LHP.  

 LHPs with a flat-evaporator design are less susceptible to the above-mentioned 

difficulties or inconveniences, and can be easily integrated into compact spaces. A typical 

flat-evaporator design, schematically illustrated in Figure 2.4, consists of the following 

parts: An upper piece with vapor-transport grooves (or vapor-removal channels) of 

rectangular cross section cut into its metallic body, adjacent to its interface with the wick; 

a lower piece with a cavity of rectangular cross section that serves as the liquid pool in 

the evaporator; and a sintered powder-metal rectangular wick sandwiched between the 

upper and lower pieces, as shown in Figure 2.4. 
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Figure 2.3: Details of a cylindrical-evaporator section of a conventional LHP design. 

 

 

Figure 2.4: Details of a flat-evaporator section of an LHP. 

 

 Under steady-state conditions, the rate of heat transfer applied to LHP evaporator 

(cylindrical or flat), appq , can be expressed as follows: 

app vsh fg hlq q q q                    (2.1) 



 33

In the above equation, vshq  is the rate of heat transfer to the saturated vapor during its 

passage through the grooved channels (causing the vapor to superheat), fgq  is the rate of 

heat transfer that is associated with the evaporation process at the liquid-vapor interface, 

and hlq  is the rate of heat leak through the wick. The rate of heat loss from the exit 

header to the ambient is denoted as exhdq . In the proposed model and in many practical 

applications of LHPs, the following conditions apply: ,[{( ) /( )}/ ] << 1vsh exhd tot p v satq q m c T  ; 

( / ) << 1vsh appq q ; and the sum of pressure drops in the grooves and the exit header is very 

small compared to the absolute value of 1P . Under these conditions, for all practical 

purposes,  3 1  satT T T . 

 

2.2.2 Liquid-Vapor Interface Inside the Porous Wick 

 The location of the liquid-vapor interface is assumed to be near the outer surface of 

the cylindrical and rectangular wicks shown in Figures 2.3 and 2.4, respectively. A 

momentum balance in a direction normal to this interface in a representative pore inside 

the wick, paired with the assumption that the corresponding net normal viscous stress is 

negligible, yields the following equation:  
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          (2.2) 

Here,   is the surface tension at the vapor-liquid interface, pr is the effective pore radius, 

  is the porosity of the wick material, , wsurf ickA  is the outer surface area of the wick 

structure normal to the flow, eff  is the effective contact angle of the liquid-vapor 

interface inside the representative pore, and totm  is the total mass flow rate in the LHP. 

During steady-state operation of the LHP, eff  self-regulates to meet the requirement 

stipulated by Eq. (2). For successful operation of the LHP, (P1 – P9) should not exceed 

the maximum capillary pressure associated with the chosen porous wick material and 

working fluid combination: This is the well-known capillary limit [Chi (1976); 

Silverstein (1992)]. 
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2.2.3 Pressure Drop and Heat Leak Across the Porous Wick 

 The liquid flow through the wick is modeled using the Darcy law for a homogenous 

porous medium [Kaviany (1999); Nield and Bejan (2006)]. The rate of heat transfer 

inside the liquid-saturated wick is, however, assumed to be conduction-dominated, as the 

related values of the effective Peclet number are very small [Kaya and Hoang (1999); 

Maydanik (2005)]. Invoking these assumptions, the pressure drop in the liquid, ,l wickP , 

and the rate of heat leak, hlq , across the cylindrical and rectangular wick geometries (as 

illustrated in Figures 2.3 and 2.4) are given by the following expressions: 

Cylindrical wick geometry: 
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Rectangular wick geometry: 
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In these equations, wickK  refers to the permeability of the wick; wickl  denotes the thickness 

of the rectangular wick; L is the length of the cylindrical wick structure; and ir and 

or denote the inner and outer radii of the cylindrical wick, respectively.   

 The effective thermal conductivity, effk , of the liquid-saturated sintered powder-metal 

wick was calculated using the following model proposed by Atabaki and Baliga (2007):  
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In these equations, effk  is the effective thermal conductivity of the liquid-saturated wick; 

lk and sk denote the average values of the thermal conductivities of the liquid and the 

solid (material of the porous medium) in the wick, respectively; and   represents the 

porosity of the wick material. Additional details of this and other effective thermal 

conductivity models are presented and discussed in Chapter 5 of this thesis. 

 

2.2.4 Vapor-Removal Channels in the Evaporator 

 Here, it is assumed that the evaporator has N  grooves of essentially rectangular 

cross-section. The vapor generated from the evaporation process at the liquid-vapor 

interface (located near the outer surface of the wick) is injected at a uniform velocity, injv , 

into the vapor grooves from the bottom lateral surface. The vapor then flows along the 

length of the vapor groove, as illustrated schematically in Figure 2.5.  

 

  
                                 (a)                                                                   (b) 

 
Figure 2.5:  (a) schematic representation of vapor flow in straight rectangular grooves 
cut in the evaporator body of an LHP; (b) cross-sectional (y-z plane) view of this flow.  

 

 The flow of vapor in each of the grooves (or channels) could be either laminar or 

turbulent, depending on the local running Reynolds number along the length of the 
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channel. The total static pressure drop in these vapor grooves, vgP , is computed in 

available quasi-one-dimensional models of LHPs using correlations for a Darcy friction 

factor that strictly applies only in the fully-developed region of flows in straight ducts of 

circular and non-circular cross-sections with impermeable walls [Kaya and Hoang 

(1999); Ghajar and Darabi (2005); Maydanik (2005); Atabaki et al. (2007); Launay et al. 

(2007); Jesuthasan et al. (2008); Jesuthasan and Baliga (2009a); Singh et al. (2009)], as 

follows: 
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The hydraulic diameter of the groove, , vghD , the Darcy friction factor, f , and the 

Reynolds number, Re
vgL , at the end of the channel ( vgL ) are defined as follows: 
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 In this analysis, it is assumed that the product Re
vgLf is a constant and corresponds to 

its fully developed value. For Re
vgL  2300, the flow is considered laminar, and for fully-

developed flow Re
vgLf is set equal to 64.0. For Re

vgL >2300, the flow is considered 

turbulent, and the Colebrook and White correlation [Colebrook (1939); White (1991)] is 

used to estimate the friction factor (using an iterative procedure). Thus,  

, vg
10

64 / Re when Re 2300

/1 2.51
2.0log  when Re 2300

3.7 Re

vg vg

vg

vg

L L

h
L

L

f

e D

f f

 

 
    
  

 

 
       (2.10) 

 This approach is inapplicable or ad hoc, at best, with respect to the vapor flows 

illustrated in Figure 2.5. The resulting errors can become serious if the pressure drop in 

the vapor grooves is a significant contributor to the overall pressure drop in the LHP. 

Consequently, to enhance the capabilities of current quasi one-dimensional models of 

LHPs, more accurate correlations for the calculation of the above-mentioned vapor-

channel pressure drop are needed. It is within this context that a computational method is 

formulated in Chapter 3 and applied in Chapter 4 to develop accurate and cost-effective 
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correlations for the prediction of the pressure drop in the vapor-removal channels of 

LHPs. The development and incorporation of these novel correlations, and their 

incorporation into the proposed segmented network thermofluid model of LHPs, are 

important contributions of this thesis. The capabilities of the resulting enhanced model 

are demonstrated in Chapter 6. 

In this work, the effects of the compressibility of the vapor in the grooves and also the 

rest of the LHP are assumed to be negligible (as the values of the associated Mach 

number are all much less than 0.1). If necessary, the effects of vapor compressibility 

could be accounted for by using recommendations available in Chi (1976). 

 The specific enthalpy, i, of the vapor is assumed to be only a function of temperature 

( ,p vdi c dT ). Thus, the vapor temperature (T3) at the exit of the evaporator, just before it 

enters the vapor-transport line, can be expressed as follows: 

3 ,( ) / ( )sat vsh exhd p v totT T q q c m                  (2.11) 

 As was mentioned earlier, it is assumed that ,[{( ) /( )}/ ] << 1vsh exhd tot p v satq q m c T   and the 

sum of pressure drops in the grooves and the exit header is very small compared to the 

absolute value of 1P , although not necessarily negligible with respect to the overall 

pressure drop in the LHP. Therefore, for all practical purposes, 3 1 satT T T . 

 

2.2.5 Vapor-Transport Line 

 The vapor-transport line connects the exit of the evaporator section of the LHP to the 

entrance of the condenser unit, as shown schematically in Figure 2.1. A segmented quasi-

one-dimensional model is used to simulate the thermofluid phenomena in the vapor-

transport line. The vapor-transport line is first discretized (segmented) into control 

volumes or cells of equal length (  / const.vapor transport line vlz L M   ). The number of cells 

( vlM ) that is suitable is determined heuristically: vlM  is increased until the differences in 

the results obtained are negligibly small. A schematic illustration of this segmentation is 

given in Figure 2.6 with reference to a general fluid-transport line.  
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Figure 2.6:  Segmentation of a general fluid-transport line into cells. 

 

 The principles of conservation of mass, momentum, and energy are applied over each 

of the aforementioned control volumes or cells. Quasi-one-dimensional formulations and 

semi-empirical correlations are used to calculate the corresponding single- and two-phase 

heat transfer and pressure drops over each cell. In each cell, the fluid properties, and also 

the heat transfer and pressure drop calculations, are based on the arithmetic mean values 

of the inlet and outlet temperatures and quality ( ,b iT  and x i ). These particular features of 

the segmented network model allow it to accurately account for the influences of the 

variation of fluid properties and of the quality (in two-phase regions). Depending on the 

values of the loop operating temperature (Tsat) and the ambient environment temperature 

(Tamb), the vapor flowing through the vapor-transport line could either undergo a heat loss 

or a heat gain. The related pressure drops and heat transfer calculations for these two 

cases are presented next. 
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2.2.5.1 Case 1: sat ambT T  

In this case, the vapor loses heat to the ambient and partially condenses in the vapor-

transport line. This two-phase flow also involves a pressure drop.  

 

 Segmented Pressure Drop Calculations in the Two-Phase Region 

In this work, following the recommendations of Rouhani and Sohal (1983) and 

Dobson and Chato (1998), the two-phase flow regimes were determined using a map 

proposed by Taitel and Dukler (1976) for horizontal and slightly inclined gas-liquid 

flows. This map requires the values of the following parameters: 
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         (2.12) 

In this equation, Cl, Cv, m, and n are constants;  is the mass density;  is the dynamic 

viscosity; D is the internal diameter of the fluid transport line (vapor-transport line here); 

dP/dz is the axial gradient of the static pressure; lG and vG  denote the superficial liquid 

and vapor mass fluxes; s
lRe  and s

vRe  are the superficial liquid and vapor Reynolds 

numbers; X  is a parameter introduced by Lockhart and Martinelli (1949);   is the angle 

between the axis of the fluid transport line and the horizontal (in the demonstration 

problem considered in this work, 0  ); TDF  is a modified Froude number (ratio of 

inertia to gravity forces); TDK  = s
TD lF Re ; and TDT  is the ratio of turbulent to gravity 

forces acting on the gas phase. The values of the constants Cl, Cv, m, and n depend on the 
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four possible particular combinations of laminar and turbulent flows of the liquid and 

vapor phases. The recommendations of Taitel and Dukler (1976) are given in the Tables 

2.1 and 2.2. 

 

Table 2.1: Laminar and turbulent combinations of the liquid and vapor phases            
[Taitel and Dukler (1976)]. 

Liquid-Phase Vapor-Phase Symbol s
lRe   s

vRe   

Turbulent Turbulent t t  > 2000 > 2000 

Laminar Turbulent l t  < 1000 > 2000 

Turbulent Laminar t l  > 2000 < 1000 

Laminar Laminar l l  < 1000 < 1000 

 

Table 2.2: Constants in the Lockhart-Martinelli parameter [Taitel and Dukler (1976)]. 

Constants t t  l t  t l  l l  

n  0.2 1 0.2 1 
m  0.2 0.2 1 1 

lC  0.046 16 0.046 16 

vC  0.046 0.046 16 16 
 

In the two-phase flows encountered in LHPs, the liquid flow is typically laminar, but 

the vapor flow could become turbulent in some cases. Thus, conservatively, the laminar-

liquid/turbulent-vapor combination can be assumed, as was done in this work, and then 

the following values of the constants in Eq. (2.12) apply: n = 1.0; m = 0.2; lC  = 16.0; and 

vC  = 0.046. The corresponding Taitel and Dukler (1976) map is shown schematically in 

Figure 2.7: The parameter TDF  is used to distinguish between the stratified and annular 

flow regimes, whereas TDK  is used to specify two subclasses of the stratified flow, 

namely, stratified-smooth and stratified-wavy; TDT  is used to separate the intermittent and 

dispersed bubble flow regimes; and the Lockhart and Martinelli (1949) parameter ltX  

(conservatively assumed here to correspond to the laminar-liquid/turbulent-vapor 
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condition) is calculated using Eq. (2.12), and used to delineate between the annular and  

dispersed bubble regimes.  

 

Figure 2.7: The Taitel and Dukler (1976) flow regime map for laminar-liquid/turbulent-
vapor flow. 
 

 For a fixed mass flow rate, the pressure drop in the two-phase flow is needed to 

overcome the wall friction (shear) and gravity forces, and sustain the momentum changes 

during the condensation process [Griffith (1985); Ould Didi et al. (2002); Thome (2003); 

Quibén and Thome (2007a); Quibén and Thome (2007b)]. Furthermore, if fittings and/or 

bends are used, additional pressure drops are needed to overcome the associated losses: 

these losses are assumed to be minor in comparison to the pressure drops in the straight 

portions of the fluid-transport line, and are thus neglected. The two-phase pressure drop 

in the thi cell of the vapor-transport line,  2
vl i

P  , is then expressed as follows: 

       2 2
vl f mom gravi i i i

P P P P                 (2.13) 

In the above expression, the terms 2
fP  , momP , and gravP  denote pressure drops caused 

by the wall friction force, momentum changes during the condensation process, and 
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gravity force, respectively: These pressure drops are referred to in this thesis as the 

friction pressure drop, momentum pressure drop, and gravity pressure drop, respectively. 

Baker (1954) has proposed different correlations for the calculation of two-phase 

pressure drops in each of the aforementioned flow regimes. However, Dukler et al. 

(1964) recommended the Lockhart and Martinelli (1949) pressure-drop correlations over 

that proposed by Baker (1954), based on an extensive assessment against experimental 

data. Thus, for each segment in the straight portions of the vapor-transport line, the two-

phase friction pressure drop was computed using the approach proposed by Lockhart and 

Martinelli (1949). The parameter X  given in Eq. (2.12), is first calculated, using the 

laminar-turbulent combinations of the liquid-gas flows and the corresponding constants 

given in Tables 2.1 and 2.2. Then, a two-phase multiplier, 2
l , (based on the liquid phase) 

is calculated using the following equation [Chisholm (1967)]: 

2
2

1
1l

C

X X
              (2.14) 

The value of the coefficient C in this equation also depends on the laminar-turbulent 

combinations of the liquid-gas flows [Collier (1972)], and is given in Table 2.3. 

 

Table 2.3 Values of the coefficient, C, in the two-phase multiplier. 

Liquid-phase Gas-phase Symbol C 

Turbulent Turbulent t t  20 

Laminar Turbulent l t  12 

Turbulent Laminar t l  10 

Laminar Laminar l l  5 

 

Once 2
l  is obtained, the two-phase friction pressure drop for each segment in 

straight portions of the vapor-transport line is calculated using the following equation: 

   2 2
, f l f li i

P P              (2.15) 

In this equation, , f lP  is the single-phase friction pressure drop with the liquid-phase 

flowing alone in the pipe at its mass velocity. For laminar fully-developed flow of the 
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liquid, the following equation yields the single-phase frictional pressure drop over the    

thi cell: 

 
2

, 
,   

/32
( )( )l l

f l s
f l l

i
ii

GdP
P z z

dz Re D
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         (2.16) 

As was stated earlier, in this work, a conservative approach is taken, and the laminar-

liquid/turbulent-vapor combination is assumed to prevail. 

 The pressure drop needed to sustain the momentum changes due to condensation in 

the segment of interest,  mom i
P , is obtained as follows: 

 
2 2 2 2
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, , 

(1 ) (1 )
  

(1 ) (1 )mom i
l g l gout i in i

x x x x
P G
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Here,   denotes the void fraction. It is calculated using a correlation proposed by       

Zivi (1964): 
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                 (2.18) 

 Next, the gravitational pressure drop in the thi  cell is calculated using the following 

equation: 

     1 singrav g l ii i
P g z                      (2.19) 

In this equation,   denotes the angle between the axis of the transport-line segment i and 

the horizontal, and g  is the gravitational acceleration. In this work, only horizontal or 

slightly inclined (< 5°) transport lines are considered. 

 The total pressure drop,  vl tot
P , in the vapor-transport line is then computed as 

follows: 

   2 2

1 1

vl vlM M

vl vl f mom gravtot
i ii i

P P P P P 

 

                     (2.20) 

 

 Segmented Heat Transfer Calculations in the Two-Phase Region 

 Following the thermodynamic description of the LHP provided earlier in this chapter, 

the vapor at the entrance of the vapor-transport line is assumed to be saturated and thus 
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has a quality of one. It is assumed here that the vapor only partially (not completely) 

condenses  in the vapor-transport line. Therefore, based on the equal length segmentation 

(  / const.vapor transport line vlz L M   ) of the vapor-transport, the rate of heat loss from the 

thi cell (refer to Figure 2.6) is calculated as follows: 

   
sat vl ,  i

'
sat vl , ivl loss , i vl amb tot vl ,i fg Ti

q UA z T T m x i


              (2.21) 

In this expression, '( )vl iUA is the thi cell overall thermal conductance per unit length based 

on the inside area of the vapor-transport line; sat vl , iT   is the average saturation 

temperature for     segment i (Note: In the two-phase fluid region, the fluid bulk 

temperature corresponds to the saturation temperature); 
sat vl , i

fg T
i


is the latent heat of 

vaporization based on the average saturation temperature for segment i ; and 

 vl ,i vl , in vl , out i
x x x   is the change in the quality over the segment i . 

 The thi  cell overall thermal conductance per unit length, '( )vl iUA , takes the following 

factors into account: The convective two-phase heat transfer inside the vapor-transport 

line, the radial heat conduction in the pipe wall and the insulation (if present), and the 

external heat transfer (free convection, forced convection, radiation, or a combination of 

all three). This overall cell thermal conductance (refer to Figure 2.6) can be expressed as 

follows: 

' ' ' ' ' ' '
_ , _ , _ , _ , _ , _ , ( ) 1/ ( ) 1/ ( )vl i th inside i th wall outside i th inside i th wall i th insl i th outside iUA R R R R R R        

                      (2.22) 

In this equation, '
_ , th inside iR  and '

_ , th wall outside iR   are, respectively, the per unit length thermal 

resistance for the internal two-phase convection in the vapor-transport line segment i; and 

the external thermal resistance (sum of the thermal resistances associated with the pipe 

wall, insulating material, and the external heat transfer). Here, it is assumed that the rate 

of axial heat conduction through the pipe wall and the insulation are negligible compared 

to the heat transfer in the radial direction. It is also assumed that the convective heat 

transfer inside the pipe is fully developed. In this context, the two thermal resistances in 

Eq. (2.22) are defined as follows: 
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 
' '

_ , _ , 2 '
, -

1 1
 and th inside i th wall outside i

vl i vl wall outside i

R R
D h UA          (2.23) 

In the above expression, 2
ih  is the internal two-phase heat transfer coefficient in the 

thi cell of the vapor-transport line based on its inside surface area;  '
, -vl wall outside i

UA is the 

overall conductance per unit length between the inside surface area of the vapor-transport 

line segment i and the outside external environment; and Dvl is the internal diameter of 

the vapor-transport line. The internal heat transfer coefficient 2
ih   for the condensing 

vapor inside segment i of the vapor-transport line depends on the two-phase flow regime 

and needs to be properly determined for accurate heat transfer calculations. 

 The method used for the two-phase heat transfer calculations in the proposed 

segmented network model is based on the average vapor and liquid properties as well as 

the average quality over each cell. These average cells attributes are based on estimates 

from the previous iteration of the overall solution procedure, or initial estimates of the 

dependent variables. In this work, the stratified- (wavy/smooth) and annular-flow regimes 

are considered for LHP applications, and the corresponding two-phase heat transfer 

coefficients on the inside surface of the vapor-transport line are calculated using the 

following correlations proposed by Dobson and Chato (1998): 
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These correlations involve the following dimensional and dimensionless parameters: 

Galileo number, Ga; total mass flux, G ; superficial liquid Reynolds number, lRe ; 
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quality, x; vapor-only Reynolds number, voRe ; Jacob number for the liquid, Jal; liquid 

Prandtl number, lPr ; liquid Froude number, lFr ; turbulent-turbulent Lockhart-Martinelli 

(1949) parameter, ttX ; and the angle subtended at the center of the tube cross-section by 

the portion of the inner wall that is above the liquid level, l . The constants c1 and c2 in 

the above-mentioned equations are determined using the following expressions: 
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 It is important to note that the Dobson and Chato (1998) correlation for the stratified-

wavy flow contains the average temperature of the inner surface of the transport-line 

wall, wallT , which is not known a priori. However, using the resistance analogy, the 

following relation can be used to relate wallT  to sat vlT   and ambT , which are known:  

   sat vl wall sat vl amb
i i

' ' '
th _ inside, i th _ inside, i th _ wall outside, i

T T T T

R R R

 



 



           (2.27) 

 In the heat transfer calculations, a Froude number, soFr , proposed by Soliman (1982) 

is used to distinguish the transition between the stratified-wavy and annular flow regimes: 

1.50.039
1.59

0.5

1.50.039
1.04

0.5

1 1.09 1
0.025  for 1250

1 1.09 1
1.260  for 1250

tt
so l l

tt

tt
so l l

tt

X
Fr Re Re

X Ga

X
Fr Re Re

X Ga

 
  

 

 
  

 

       (2.28) 

While Soliman (1982) sets the transition from stratified-wavy to annular flow at 7soFr  , 

Dobson and Chato (1998) obtained better correlation of their experimental data by setting 

20soFr  . Thus, in this work, the transition value is set at 20soFr  , and the two-phase 

heat transfer coefficient is selected as follows: 
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 The correlations proposed by Dobson and Chato (1998) for the stratified-wavy and 

annular flow regimes matched their experimental data very well with a mean deviation of 

6.6% and 11.8%, respectively. Therefore, these correlations are used in this work to 

compute the appropriate value of the internal two-phase heat transfer coefficient, 2
ih  , 

inside each segment i of the vapor-transport line (and also the two-phase portion of the 

condenser pipe as will be discussed later in this section). This exercise is required to 

compute the overall thermal conductance per unit length and the associated rate of heat 

loss for each segment of the discretized vapor-transport line as per Eq. (2.21). 

The total rate of heat loss from the vapor-transport line is determined by adding 

together the rates of heat loss from all of the segments:    

   
1 1 1

vl vl vl

sat vl , i

M M M
'

sat vl , ivl loss , tot vl loss , i vl amb tot vl , i fg Ti
i i i

q q UA z T T m x i


 
  

          (2.30) 

Finally, the saturation temperature at the exit of segment i,  , sat vl out i
T  ,  (which 

corresponds to the temperature at the inlet of segment i+1) is obtained from the saturation 

temperature at the inlet of segment i,  , sat vl in i
T  , using the slope of the liquid-vapor 

saturation curve (P-T diagram) of the working fluid and the associated pressure drop 

 2
vl i

P   in segment i computed from Eq. (2.20):  

     
, 

2
, , /

sat vl i

sat
sat vl out sat vl in vli i i

sat T

dP
T T P

dT




 

 
    

 
           (2.31) 

At the entrance of the first segment in the vapor-transport line, i = 1, the saturation 

temperature is Tsat , which corresponds to the saturation temperature at the exit of the 

evaporator. The average temperature in segment i , sat vl , iT  , is initially assumed to be its 

inlet temperature,  , sat vl in i
T  . All vapor and liquid properties, as well as the average 

quality, are then based on this temperature. Once the temperature at the exit of segment i, 

 , sat vl out i
T  ,  is calculated from Eq. (2.31), the average temperature in segment i is re-

computed based on the arithmetic mean of  the inlet and exit temperatures: 

    2sat vl , i sat vl , in sat vl , outi i
T T T /  

    . Following that, another iteration of the 

aforementioned pressure drop and heat transfer calculations is conducted for segment i 
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using the newly calculated value of sat vl , iT  . This process is repeated for segment i until 

subsequent changes in sat vl , iT  are within a user-specified tolerance (all absolute relative 

changes < 10-4 was used in this work). A similar iterative procedure is then conducted on 

the next i+1 segment for the corresponding pressure drops and heat transfer calculations 

in the vapor-transport line (and so, until vli M  is reached). 

 
2.2.5.2 Case 2: sat ambT T  

In this case, heat is transferred from the ambient environment to the vapor (heat gain), 

there is no condensation (vapor is superheated, and single-phase flow prevails), and the 

static pressure drops as the vapor flows through the vapor-transport line. 

  

 Segmented Pressure Drop Calculations in the Single-Phase Region 

As mentioned earlier, the vapor-transport line is segmented into control-volumes or 

cells of equal lengths, iz . The single-phase, static-pressure drop is calculated in each 

segment i of the vapor-transport line as follows (for the flow of superheated vapor, 

gravitational effects are assumed to be insignificant): 

, 2
Re

2
gtot

vl i vl
g vl vl i

m
P f z

A D




 
   

  


         (2.32) 

 The Reynolds number is defined as follows: 

Re tot vl
vl

g vl

m D

A
 

  
  


                  (2.33) 

 For Revl  <2300, the flow is considered to be laminar and fully-developed, and the 

Darcy friction factor, f, is calculated using the analytical solution Re 64.0vlf   [Kays 

and Crawford (1993)]. 

 For Revl  >2300, the flow is considered to be turbulent and fully developed, and the 

Colebrook-White correlation [Colebrook (1939); White (1991)] is used to estimate the 

Darcy friction factor: 

10

/1 2.51
2.0 log

3.7 Re
vl

vl

e D

f f

 
   

  
             (2.34) 
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 Note that the Revl , f , the related fluid properties, and ,vl iP  are computed in a 

segment-by-segment manner based on the average fluid temperature in each segment of 

the vapor-transport line. The overall pressure drop in the complete (or total) vapor-

transport line is then obtained as follows: 

   
1

vlM

vl vltot
i i

P P


                    (2.35) 

  

 Segmented Heat Transfer Calculations in the Single-Phase Region 

 A steady-state energy balance over segment i of the vapor-transport line yields the 

following relation for the corresponding heat gain , vl gain iq  :   

   

   

, , , , 

'

, , 
,

 , where

exp

vl gain i tot p v vl out vl in ii

vl
vl out amb amb vl ini i

p v toti

q m c T T

UA z
T T T T

c m

  

               





        (2.36) 

In the above expressions,  '
vl i

UA , is the cell overall thermal conductance per unit length 

akin to the one introduced earlier, and takes into account the following considerations: 

the convective single-phase heat transfer inside the vapor-transport line; the radial heat 

conduction in the pipe wall and the insulation (if present); and the external heat transfer 

(free convection, forced convection, radiation, or a combination of them). In Eq. (2.36), 

 , invl i
T and  , vl out i

T are, respectively, the bulk fluid temperature at the inlet and exit of 

segment i; and  ,p v i
c  is the specific heat at constant pressure of the vapor in the thi  cell. 

 In a manner similar to that used in Case 1, '( )vl iUA  is expressed as follows: 

 

' ' '
_ , _ , 

' '
_ , _ , 1 '

, -

( ) 1/ ( )

1 1
;  

vl i th inside i th wall outside i

th inside i th wall outside i
vl i vl wall outside i

UA R R

R R
D h UA





 

 
        (2.37) 

In this equation, '
_ , th inside iR  and '

_ , th wall outside iR   are, respectively, the per unit length thermal 

resistance for the internal, single-phase, convection in the vapor-transport line segment i; 

and the external thermal resistance (sum of the thermal resistances associated with the 

pipe wall, insulating material, and the external heat transfer). Again, it is assumed here 
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that the rate of axial heat conduction through the pipe wall and the insulation are 

negligible compared to that in the radial direction, the convective heat transfer inside the 

pipe is fully developed.  

 Next, the calculation of the single-phase heat transfer coefficient, 1
ih  , for segment i  

is done following the usual practice in heat transfer calculations [Incropera and DeWitt 

(2002)]. For Revl <2300, the flow is considered to be laminar, and, for fully-developed 

conditions, available analytical and numerical solutions [Kays and Crawford (1993); 

Sparrow and Patankar (1977)] show that the Nusselt number,  1 /vl vl vl vNu h D k , is in 

the range 3.65  vlNu   4.36: A value in the middle of this range, vlNu = 4.0, is used for 

this case. 

For Revl >2300, a correlation proposed by Gnielinski (1976) is used to estimate the 

value of vlNu : For 0.5 < Pr < 2000 and 2300 < Revl < 5106: 

  
   1/2 2/3

/ 8 Re 1000 Pr

1 12.7 / 8 Pr 1
vl

vl

f
Nu

f




 
            (2.38) 

Here,  f  is the Darcy friction factor, and Pr is the Prandtl number of the vapor.  

 The temperature at the entrance of the first segment (i = 1) of the vapor-transport line 

is satT , which is the saturation temperature at the exit of the evaporator. The average 

temperature in segment i , vl , iT , is initially assumed to be its inlet temperature,  , vl in i
T , 

and all vapor properties are based on this cell temperature. Once the temperature at the 

exit of segment i,  , vl out i
T , is determined using Eq. (2.36),  the average temperature in 

segment i is re-computed based on the arithmetic mean of  the inlet and exit 

temperatures:     2vl , i vl , in vl , outi i
T T T /    . Following that, all cell thermofluid 

properties are based on this newly calculated value of vl , iT , and another iteration of the 

aforementioned pressure drops and heat transfer calculations is conducted for segment i. 

This process is repeated for segment i until subsequent changes in vl , iT  are within a user-

specified tolerance (all absolute relative differences < 10-4 was used in this work). Then, a 

similar iterative process is conducted on each of the subsequent segments for 
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corresponding pressure drops and heat transfer calculations in the vapor-transport line 

(until vli M  is reached). 

The total rate of heat gain in the vapor-transport line is then obtained by adding 

together the rates of heat gain in all of the segments:    

   , tot , , , , 
1 1

vl vlM M

vl gain vl gain i tot p v vl out vl in ii
i i

q q m c T T 
 

            (2.39) 

  

2.2.6 Condenser Unit 

 The condenser unit connects the exit of the vapor-transport line to the entrance of the 

liquid-transport line, as is shown in Figure 2.1. In the LHP considered here, the condenser 

unit essentially consists of a horizontal tube that experiences a heat loss to an external 

environment maintained at a fixed sink temperature, sinkT . Depending on the particular 

condenser design and operating conditions, the fluid exiting the condenser line either 

could be 1) a saturated-liquid, 2) a two-phase mixture, or 3) a subcooled-liquid. Figure 

2.8 depicts a situation in which the fluid exits the condenser in a subcooled state.  

 

Figure 2.8: Schematic of the fluid flow through the condenser when 2 cd cdL L . 
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Here, the position where the zero-quality (x = 0, full condensation of the vapor) is first 

attained is located within the condenser pipe ( 2
cd cdL L  ). As shown in this figure, the 

vapor entering at temperature cd inT   is condensed over the length 2
cdL  , and its temperature 

drops slightly over this length due to the drop in pressure. Over the remaining length of 

the condenser, scL , the condensed liquid is further cooled and exits in a subcooled state. 

If the condenser tube were long enough, the subcooled liquid temperature at the exit of 

the condenser would asymptotically approach the sink temperature in this instance. 

A segmented quasi-one-dimensional model is used to simulate the thermofluid 

phenomena in the condenser line for the distinctive two-phase and subcooled flow 

regions schematically illustrated in Figure 2.8. 

 

2.2.6 .1 Segmented Thermofluid Calculations in the Two-Phase Region 

As presented in Figure 2.8, the saturated vapor enters the condenser pipe at , cd inT and 

fully condenses in the two-phase region of length 2
cdL  . As was mentioned earlier, the 

thermodynamic process in this region involves a pressure drop, and associated slight 

lowering of the saturation temperature, and the fluid reaches the saturated liquid state at 

the start of the subcooled region. However, 2
cdL   is not known a priori, and the pressure 

drop and rate of heat loss and the pressure drop in the condenser depend on this length. 

The condenser sizing procedure presented in Rohsenow (1985) is adapted here to 

evaluate 2
cdL  .  

The two-phase region of the condenser line is first discretized (segmented) into 

2cdM  control-volumes or cells of equal quality change ( , 2/ const.cd in cdx x M    ), 

where , cd inx  is the quality of the vapor flow at the inlet of the condenser. Moreover, the 

mean quality in segment i is calculated from the arithmetic mean of the corresponding 

inlet and exit qualities:  , / 2i cd in i
x x x  . The number of cells ( 2cdM  ) suitable for 

simulation is determined heuristically: It is increased until the differences in the results 

obtained are negligibly small. In this equal-quality segmented approach, the 

corresponding lengths of the pipe segments, iz , are not necessarily equal, and are 
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determined by applying the following steady-state energy balance in a segment-by-

segment manner: 

 

 

, 

, 

2
, 2 , 

2 , 

( )

( )

sat cd i

sat cd i

cd loss i tot fg cd i sat cd i sink iT

tot fg T

i

cd i sat cd i sink

q m i x UA T T z

m i x
z

UA T T










  

 

    


 

 



        (2.40) 

In this expression, 
, 

2

cd loss i
q 


 is the heat loss from segment i in the two-phase region of the 

condenser; , sat cd iT   is the average saturation temperature in segment i of the condenser 

(equal to the arithmetic mean of the corresponding segment inlet and exit temperatures); 

, sat cd i
fg T

i


is the latent heat of evaporation in the segment i; and 2( )cd iUA   is the cell overall 

thermal conductance per unit length, and takes into account the convective two-phase 

heat transfer inside the condenser pipe, the radial heat conduction in the pipe wall and 

sleeve (if present), and the external heat transfer methods (free convection, forced 

convection, radiation, or a combination of them). The definition of the overall cell 

conductance, 2( )cd iUA  , is similar to that presented earlier for the two-phase region of 

the vapor-transport line: 

 

' ' '
2 _ , _ , 

' '
_ , _ , 2 '

2 , -

( ) 1/ ( )

1 1
;  

cd i th inside i th wall outside i

th inside i th wall outside i
cd i cd wall outside i

UA R R

R R
D h UA






 




 

 
       (2.41) 

In the above expression, 2
ih  is the internal two-phase heat transfer coefficient in the 

thi cell of the condenser pipe based on its inside surface area;  '
2 , -cd wall outside i

UA  is the 

overall conductance per unit length between the inside surface area of the condenser 

segment i and the outside external environment; and cdD is the internal diameter of the 

condenser pipe. The internal heat transfer coefficient 2
ih   for the condensing vapor inside     

segment i of the condenser depends on the related flow regimes that occur in the two-

phase region inside the condenser. Therefore, following the procedure presented earlier 

for the two-phase region of the vapor-transport line, the correlation of Dobson and Chato 

(1998) is used to predict 2
ih  :  See Eqs. (2.21) - (2.29) and related discussions in the last 
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subsection. Once 2
ih  is calculated , then 2( )cd iUA   and iz  are determined using Eqs. 

(2.41) and (2.40), respectively. Following that, the two-phase pressure drop across the 

calculated pipe length, iz , is determined using the procedure presented earlier for the 

two-phase region of the vapor-transport line: 

 2 2
cd f mom grav ii

P P P P                       (2.42) 

It should be noted that all fluid properties in these calculations are obtained based on 

the average saturation temperature, , sat iT , of the condenser segment. 

Next, the saturation temperature at the exit of condenser segment i,  , sat cd out i
T  ,  

(which is the same as the temperature at the inlet of segment i+1) is obtained from the 

saturation temperature at the inlet of corresponding segment i,  , sat cd in i
T  , using the slope 

of the liquid-vapor saturation curve (P-T diagram) of the working fluid and the associated 

pressure drop  2
cd i

P   in segment i computed from an equation akin to Eq. (2.42):  

     
, 

2
, , /

sat cd i

sat
sat cd out sat cd in cdi i i

sat T

dP
T T P

dT




 

 
    

 
          (2.43) 

At the entrance of the first segment in the condenser pipe, i = 1, the temperature 

corresponds to that at the exit of the vapor-transport line:  
2cs

sat cd , out i M
T


 

. The average 

temperature in segment i , sat vl , iT  , is initially assumed to be its inlet temperature, 

 , sat cd in i
T  . All vapor and liquid properties are then based on this temperature. Once the 

temperature at the exit of segment i,  , sat vl out i
T  ,  is calculated from Eq. (2.43), the 

average temperature in segment i is re-computed based on the arithmetic mean of  the 

inlet and exit temperatures:     2sat cd , i sat cd , in sat cd , outi i
T T T /  

    . Following that, 

another iteration of the aforementioned pressure drop and heat transfer calculations are 

conducted for segment i using the newly calculated value of sat cd , iT  . This process is 

repeated for segment i until subsequent changes in sat cd , iT  are within a user-specified 

tolerance (10-4 was used in this work). A similar iterative process is then conducted on 
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the next i+1 segment (and so, until 2cdi M   is reached) for corresponding pressure 

drops and heat transfer calculations in the two-phase part of the condenser line. 

At this stage, the total length of the two-phase region of the condenser is calculated:  

22

1

cdM

cd ii
L z 


            (2.44) 

Once 2
cdL  is determined, it is compared to the total length of the condenser pipe, cdL . As 

was mentioned previously, three possible cases could exist: 

 

 1) 2
cdL   = cdL : The fluid exits the condenser as a saturated liquid state in this case, at 

the saturation temperature 2
cd exitT 
 . The quality at the exit is 0cd exitx   , and the total rate 

of heat rejection in the condenser is:                            

 
2 2

,

2
, , 2 , 

1 1

( )
cd cd

sat cd i

M M

cd loss tot cd loss tot cd i i sat cd i sink tot fg T
i i

q q UA z T T m x i
 




 


   

 

         (2.45) 

 

 2) 2
cdL   > cdL : This situation occurs when the rate of heat rejection in the condenser is 

not enough to condense the vapor completely, and a two-phase (vapor-liquid) flow exits 

the condenser at the saturation temperature ,sat cd jT  . Here, j (j< 2cdM  ) denotes the 

segment at the end of which, collectively, the total length of the segments 0  i j  is 

equal to the total length of the condenser pipe. In this case, the quality of the fluid at the 

exit would be ,0 1vqual cdexitx  , and the total rate of heat rejection in the condenser is:   

 
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1 1
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sat cd i

j j

cd loss tot cd i i sat cd i sink tot fg T
i i

cd loss tot tot cd in cd exit

q UA z T T m x i
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

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 

 


      (2.46) 

In this equation, cd exiti is the fluid specific enthalpy at the exit of the condenser, and 

cd ini is the fluid specific enthalpy at the inlet of the condenser. Both , cd loss totq   and cd exiti  

are determined using Eq. (2.46). Once cd exiti  is calculated, the quality at the exit of the 

condenser, cd exitx , can be determined as follows: 

, , 

(1 )
sat cd j sat cd j

cd exit g cd exit cd exit fT T
i i x x i

 
              (2.47) 
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Here, fi and gi  are the enthalpies of the saturated liquid and saturated vapor, respectively. 

 For this case, the vapor exiting the condenser would have to condense in the 

compensation chamber, relying on the heat loss to the ambient there. If this condition 

cannot be met, then satT  in the evaporator would go up until one of the following 

situations prevails with respect to the vapor generated in the evaporator: 1) fully 

condenses with 2
cdL   < cdL , if the compensation chamber is adiabatic or gains heat from 

the ambient; or 2) fully condenses in the condenser with 2
cdL   = cdL , if the heat loss in the 

compensation chamber exactly balances the heat leak. 

 3) 2
cdL   < cdL : In this situation, the ability of the condenser to reject heat is more than 

that required for completing condensation of the vapor, and the position where this 

happens ( 0x  if first reached) is located within the condenser pipe. As the rate of heat 

rejection to the sink continues over the rest of the condenser pipe, the fluid exits in a 

subcooled state. The total rate of heat rejection in the condenser is calculated as follows: 

2
, , cd loss tot cd loss tot scq q q

        (2.48) 

In this equation, 2
, cd loss totq 

  is the rate of heat transfer required to fully condense the vapor 

in the condenser, see Eq. (2.45); and scq  is the rate of heat rejection (total) from the 

condensed liquid, causing it to exit the condenser in a subcooled state. A segmented 

procedure for the calculation of scq  is presented in the next subsection.  

 As was mentioned earlier, the two-phase pressure drop in the condenser is determined 

using the same procedures as those employed for this task in the vapor-transport line. The 

total pressure drop in the two-phase region of the condenser given by 

   
2 2

2 2 2

1 1

cd cdM M

cd cd f mom gravtot
i ii i

P P P P P
 

  

 

                     (2.49) 

 

2.2.6.2 Segmented Thermofluid Calculations in the Subcooled Region 

The subcooled (or single-phase liquid) region exists in the condenser only if 

 2 0sc
cd cd cdL L L    . If such a subcooled region exists, then, it is discretized into control-

volumes or cells of equal length ( / const.sc
cd cd scz L M    ). Again, the appropriate value 
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of cd scM   is determined heuristically: It is increased until the differences in the results 

obtained are negligibly small.  

The calculation procedure for the single-phase pressure drop and heat transfer in the 

subcooled region of the condenser is identical to that presented earlier for the single-

phase region of the vapor-transport line, and thus the adapted equations are presented 

succinctly in this section. 

The single-phase static pressure drop is calculated in each segment i in the subcooled 

region of the condenser as follows: 

, 2
Re

2
tot l

cd sc i sc
l cd cd i

m
P f z

A D




 
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 


         (2.50) 

 The Reynolds number is defined as follows: 

Re tot cd
sc

l cd

m D

A
 
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
                  (2.51) 

 For Resc  <2300, the flow is considered to be laminar and fully-developed, and the 

Darcy friction factor, f, is calculated using the analytical solution [Kays and Crawford 

(1993)]  Re 64.0scf  . 

 For Resc  >2300, the flow is considered to be turbulent and fully developed, and the 

Colebrook-White correlation [Colebrook (1939); White (1991)] is used to estimate the 

Darcy friction factor: 
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 
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            (2.52) 

  

In addition, the gravity pressure drop across segment i in the subcooled region of the 

condenser pipe is given by 

   singrav l iii
P g z                     (2.53) 

In this equation,   denotes the angle between the axis of the segment i and the 

horizontal, and g  is the gravitational acceleration. In this work, only a horizontal or 

slightly inclined (< 5°) condenser pipe is considered. 
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 Note that the Resc , f , ,sc iP , , grav iP , and the related fluid properties are computed 

in a segment-by-segment manner based on the average fluid temperature in each segment 

of the subcooled region of the condenser pipe.  

 The total pressure drop in the subcooled region of the condenser line is then obtained 

as follows: 

     
1
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cd sc cd sc gravi itot
i

P P P


 


                   (2.54) 

Next, a steady-state energy balance over segment i in the subcooled region yields the 

following relation for the corresponding heat loss , cd sc loss iq   :   
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      (2.55) 

In the above expressions,  '
cd sc i

UA  , is the cell overall thermal conductance per unit 

length akin to the one introduced earlier, and takes into account the convective single-

phase heat transfer inside the subcooled region of the condenser pipe, radial heat 

conduction in the pipe wall and sleeve (if present), and external heat transfer (free 

convection, forced convection, radiation, or a combination of them);  , cd sc in i
T  and 

 , outcd sc i
T  are, respectively, the bulk fluid temperature at the inlet and exit of segment i; 

and  ,p l i
c  is the specific heat at constant pressure of the liquid in the thi  cell. 

 As was discussed earlier, '( )cd sc iUA   can be expressed in terms of a per unit length 

thermal resistance for the internal, single-phase, convection in segment i; and an 

equivalent external thermal resistance (sum of the thermal resistances associated with the 

pipe wall, sleeve/saddle material, and the external heat transfer): 

 

' ' '
_ , _ , 

' '
_ , _ , 1 '
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1 1
;  
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


 

 
        (2.56) 

 The calculation of the single-phase heat transfer coefficient, 1
ih  , for segment i  is 

accomplished following the usual practice in heat transfer calculations [Incropera and 
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DeWitt (2002)]. For Resc  <2300, the flow is considered to be laminar, and, for fully-

developed conditions, available analytical and numerical solutions [Kays and Crawford 

(1993); Sparrow and Patankar (1977)] show that the Nusselt number, 

 1 /cd sc cd sc cd lNu h D k
  , is in the range 3.65  cd scNu    4.36: Again, a value in the 

middle of this range, cd scNu  = 4.0, is used for this case. 

For Resc  >2300, a correlation proposed by Gnielinski (1976) is used to estimate the 

value of cd scNu  : For 0.5 < Pr < 2000 and 2300 < Resc  < 5106: 

  
   1/2 2/3

/ 8 Re 1000 Pr

1 12.7 / 8 Pr 1
sc

cd sc

f
Nu

f





 
            (2.57) 

Here,  f  is the Darcy friction factor, and Pr is the Prandtl number of the vapor.  

 Furthermore, the temperature at the entrance of the first segment (i = 1) in the 

subcooled region of the condenser line is 2
cd exitT 
 , which is the temperature at the exit of 

the two-phase region of the condenser. The average temperature in segment i , cd sc , iT  , is 

initially assumed to be its inlet temperature,  , cd sc in i
T  , and all liquid properties are based 

on this cell temperature. Once the temperature at the exit of segment i ,  , cd sc out i
T  , is 

determined from Eq. (2.55),  the average temperature in segment i is re-calculated based 

on the arithmetic mean of the inlet and exit temperatures: 

    2cd sc , i cd sc , in cd sc , outi i
T T T /  

    . Following that, all cell thermofluid properties are 

based on this newly calculated value of cd sc , iT  , and a reiteration of the pressure drops 

and heat transfer calculations is conducted for segment i. This process is repeated for 

segment i until subsequent changes in cd sc , iT   are within a user-specified tolerance (all 

absolute relative differences < 10-4 was used in this work). Then, a similar iterative 

process is conducted on the next i+1 segment for corresponding pressure drops and heat 

transfer calculations in the subcooled (single-phase) region of the condenser pipe (and so 

on, until sci M is attained). 

The total rate of heat loss in the subcooled portion of the condenser is then obtained 

by summing together the rates of heat loss in all of the associated segments:    
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   , tot , , , 
1

cd scM

cd sc loss tot p l cd sc in cd sc out ii
i

q m c T T


   


            (2.58) 

  

2.2.7 Liquid-Transport Line 

 The liquid-transport line serves to convey the subcooled liquid exiting the condenser 

to the compensation chamber of LHPs. In well-designed LHPs, the vapor flow is fully 

condensed in an initial portion of the condenser, and a subcooled liquid exits the 

condenser to then enter into the liquid-transport line. The liquid-transport line is generally 

well insulated and typically assumed to be adiabatic [Kaya and Hoang (1999); Maydanik 

(2005)]. However, in practice there could be some heat exchange between the liquid-

transport line and the external environment. In the proposed segmented thermofluid 

model, the liquid-transport line is discretized into control-volumes or cells of equal length 

(  / const.liquid transport line llz L M   ) akin to the subcooled region of the condenser pipe. 

The segmented single-phase pressure drop and heat transfer calculations for each 

segment i of the liquid-transport line are done following the procedure outlined in section 

2.2.6.2 for the subcooled region of the condenser line, so it is not repeated here. 

 

2.2.8 Compensation Chamber  

 It is assumed that during the steady-state operation of the LHP, over the full range of 

the rate of heat input, the compensation chamber is always filled with a two-phase 

(liquid-vapor) mixture. Thus, for the desirable condition of 2
cdL   < cdL , the following 

equation applies: 

 
 

 , , 

, 

cc in sat cctot l T l Tcc amb hl

cc sat cccc amb cc amb amb

q q m i i

q U A T T



 

  

 


             (2.59) 

In this equation, cc ambq   is the rate of heat loss from the fluid in the compensation 

chamber to the ambient environment; , cc inT  is the bulk temperature of the subcooled fluid 

entering the compensation chamber; , sat ccT  (= T8) is the saturation temperature of the two-

phase mixture inside the compensation chamber; 
, cc inl Ti  and 

, sat ccl Ti  are the specific 

enthalpies of the liquid at , cc inT  and , sat ccT , respectively; cc ambU   is an overall heat transfer 
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coefficient and ccA is the corresponding heat transfer surface area of the compensation 

chamber; and ambT  is the ambient temperature. The value of cc ambq  could be negative or 

positive depending on the operating conditions of the LHP. 

  

2.2.9 Total Pressure Drop in the Loop Heat Pipe 

In the context of the discussions presented in Section 2.2.1 – 2.2.7, the total pressure 

drop in the entire LHP should not be higher than the maximum capillary pressure that is 

developed at the liquid-vapor interface in the wick structure. The total loop pressure drop, 

in its general form, is calculated as follows: 

  2
1 9 ,tot l wick vg vl cd cd sc llP P P P P P P P P

                     (2.60) 

Here, ,l wickP  denotes the liquid pressure drop during its passage through the porous 

wick; vgP  is the vapor pressure drop through the evaporator grooved channel; vlP  is 

the vapor pressure drop through the vapor-transport line; 2
cdP   is the liquid-vapor 

mixture pressure drop in the two-phase part of the condenser; cd scP   denotes the liquid 

pressure drop in the subcooled region of the condenser (single-phase part); and llP  

indicates the liquid pressure drop through the liquid-transport line. 

 The maximum capillary head available in the wick is given by 

, 

2 cos c
cap max

p

P
r

 
            (2.61) 

In this equation, c  is the contact angle at the static equilibrium condition (it depends on 

the wick material and the working fluid),  is the liquid-vapor surface tension, and rp is 

the maximum effective capillary pore radius.  

For the successful operation of LHPs under steady-state conditions, the total pressure 

drop should be less than the maximum capillary head: 

, tot cap maxP P             (2.62) 

 

2.3 MODEL IMPLEMENTATION 

 The proposed steady-state segmented network thermofluid model was incorporated in 

a computer program written in FORTRAN, and an iterative solution procedure was used 
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to solve this model. When this computer program is started, the following required inputs 

are read in first: the geometrical parameters of the loop; curve fits to all required 

thermophysical property data of the working fluid; the sink temperature, sinkT ; and the 

ambient temperature, ambT . Next, the rate of heat transfer applied to the evaporator ( appq ) 

and a corresponding guess value of the saturation temperature at the liquid-vapor 

interface in the wick, satT , are prescribed. The following overall iterative solution 

procedure is then used: 

1. The total rate of evaporation, totm , at the liquid-vapor interface in the wick is 

initially approximated from the rate of heat applied to the evaporator, appq ,  alone 

(ignoring the contributions of vshq  and hlq ): /
sat

tot app fg T
m q i . 

2. The vapor-transport line, the subcooled region of the condenser line (if it exists), 

and liquid-transport line are discretized (segmented) into control volumes or cells 

of equal length, z , while the two-phase region of the condenser line is divided 

into equal-quality segments, x . The flow regime map, quality, single- and two-

phase pressure drop and heat transfer calculations are performed iteratively, as 

needed, in each contiguous cells or control-volumes corresponding to the vapor-

transport-line, condenser line, and liquid-transport-line of the LHP.  

3. The total pressure drop in the overall loop, totP , is calculated from the sum of the 

pressure drop contributions (single- and two-phase frictional pressure drop, 

pressure drop required to sustain the momentum changes due to condensation, and 

pressure drop due to gravity) in various segmented elements of the LHP.  

4. Next, the temperature of the liquid at the wick entrance, , 8wick entT T , is 

determined based on the total pressure drop in the overall loop, totP , the liquid 

pressure drop across the wick, ,( )l wick dropP , and slope of the liquid-vapor 

saturation curve (P-T diagram) of the working fluid: 

 , , /
sat

sat
wick ent sat tot l wick

sat T

dP
T T P P

dT

 
     

 
. 
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5. The effective thermal conductivity, effk , of the liquid-saturated wick is calculated 

using Eqs. (2.5) - (2.7). Following that, the rate of heat leak through the wick, hlq , 

is obtained from Eq. (2.3) or Eq. (2.4) depending on the LHP evaporator design.  

6. The calculated rate of heat leak through the wick, hlq , is used in conjunction with   

Eq. (1) to compute a new (or corrected) total mass flow rate in the LHP: 

, ( ) /
sat

tot new app hl fg T
m q q i  . 

7. The new and old values of the total mass flow rate in the loop are then compared 

with respect to a user specified tolerance: 

-4
, , - /  (10 was used)tot new tot tot newm m m TOL   . 

8.  If the absolute value of the difference between the two mass flow rates is not 

within the prescribed tolerance, then the total mass flow rate in the LHP is set 

equal to the new mass flow rate, , tot tot newm m  , and steps 2 - 7 are repeated until 

convergence is achieved in the value of the total mass flow rate in the LHP. 

9. The rate of heat transfer in the evaporator, vapor-transport-line, condenser-line 

and liquid-transport-line are calculated based on the converged value of the total 

mass flow rate in the loop and suitable mean values of the temperature, 

thermofluid properties, quality, and heat transfer coefficient prevailing over each 

contiguous cells or control-volumes of the LHP. An overall energy balance is then 

applied on the compensation chamber of the LHP and the rate of heat loss from 

the fluid in the compensation chamber to the ambient environment, cc ambq  , is 

obtained from Eq. (2.59):   , , cc in sat cctot l T l Tcc amb hlq q m i i    . 

10. The rate of heat loss from the fluid in the compensation chamber to the ambient 

environment, cc ambq  , is also computed based on the product of a prescribed 

overall heat transfer coefficient, cc ambU  , a corresponding heat transfer surface 

area of the compensation chamber, ccA , and the temperature difference between 

the saturation temperature of the two-phase mixture inside the compensation 
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chamber and the ambient temperature ( , sat ccT - ambT ). In this stage of the iterations, 

this rate of heat loss is denoted as cc ambq  , and calculated using the following 

equation:  , cc sat cccc amb cc amb ambq U A T T   . 

11. The values of the rate of heat loss from the fluid in the compensation chamber to 

the ambient environment, cc ambq   and cc ambq   calculated in steps 9 and  10, 

respectively, are compared with respect to a user specified tolerance: 

/cc amb cc amb cc ambq q q TOL     (TOL = 10-4 was used in this work). If the 

absolute value of the difference between the above-mentioned expression is not 

within the prescribed tolerance, then the initial guess value of the saturation 

temperature of the working fluid at the liquid-vapor interface in the wick, satT , is 

incorrect. The value of satT is therefore corrected, based on the Newton-Raphson 

or Secant method, for example, and steps 1-10 are repeated until convergence is 

achieved in the energy balance of the compensation chamber of the LHP. 

12. Subsequently, steps 1 - 10 are repeated for a newly specified value of the rate of 

heat applied to the evaporator, appq . Key elements of the iterative procedure used 

to solve the proposed segmented thermofluid network model of an LHP are 

presented in the flow chart shown in Figure 2.9. 
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Figure 2.9: Flow chart illustrating key elements of the overall iterative procedure that 
was used to solve the segmented thermofluid network model. 
 

2.4 APPLICATION TO A TEST PROBLEM, RESULTS AND DISCUSSIONS 

 The proposed segmented network thermofluid model was used to predict the steady-

state operational characteristics of a conventional cylindrical-evaporator LHP with 

attributes akin to those depicted in Figures 2.1a and 2.3. Details of this LHP and the 

results obtained in this investigation are presented and discussed in this section. 
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2.4.1 Details of the LHP 

 The details of the LHP were similar to those of the GLAS LHP (LHP1) investigated 

by Kaya and Hoang (1999). However, not all required data were provided in this paper. 

Thus, the overall dimensions, porosity, and permeability of the wick, and the number and 

hydraulic diameter of the vapor grooves, were estimated using information available in 

related literature. Also, the overall heat transfer coefficient, cc ambU  , from the inside 

surface to the compensation chamber to the ambient was fine-tuned to match the 

predicted results to the experimental data for a sink temperature of sinkT   283 K. 

 The cylindrical evaporator had an external diameter of 25.4 mm, a length of 150 mm, 

and essentially rectangular vapor grooves. The total number of grooves in the evaporator 

was set equal to N = 16, each with an average cross-sectional area of , c s grooveA   = 4 mm², 

and a hydraulic diameter of Dh = 2 mm. A sintered powder-nickel wick with an effective 

pore radius of 1.2 m was used. The wick porosity and permeability were set equal to    

  = 0.5 and K = 2.710-14 m², and its inside and outside radii were assigned the values of 

ir = 6 mm and or = 10 mm. The compensation chamber (CC) had an internal diameter of 

46 mm and a length of 76 mm (volume = 126.3 ml; surface area ccA  = 0.012645 m2 that 

exchanges heat with the ambient). The value of ambT  was fixed at 295 K. The CC was 

initially filled (at ambient temperature) with a two-phase mixture, of quality equal to 0.5. 

The charging strategy was the following: The liquid transport line, condenser pipe, 

evaporator liquid core, and the void volume of the wick structure were filled with 

saturated liquid ammonia; and the vapor transport line and the evaporator grooves were 

filled with saturated ammonia vapor at ambT . The rate of heat transfer through the 

envelope of the CC to or from the ambient environment was estimated via an overall heat 

transfer coefficient, cc ambU  , which was assigned a value of 20 W/m²-K, based on ccA .

 The vapor- and the liquid-transport lines of the LHP were identical smooth tubes 

made of stainless steel, each with an inner diameter of 4.52 mm and a length of 0.460 m. 

These vapor- and liquid-transport lines were very well insulated, and assumed to have 

adiabatic boundaries [Kaya and Hoang (1999)].  
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The condenser was a single-pass heat exchanger, with a tube of length 4.06 m and 

internal diameter of 4.52 mm. The overall thermal conductance per unit length, 

'
, -cd wall outsideUA , from the inner surface of the condenser tube to the outer surface of the 

metallic sleeve (in which it is snugly fitted) was set equal to 4 W/m-K, and the outer 

surface temperature of this sleeve was set equal to the sink temperature sinkT . It was also 

assumed that this overall thermal conductance is constant over the entire length of the 

condenser pipe. 

Ammonia was used as the working fluid in the LHP. The required thermophysical 

property data for this fluid were obtained from the NIST Standard Reference Database 

[Linstrom and Mallard (2005)], and appropriate curves were fitted to this data for use in 

the FORTRAN computer program. In this investigation, the range of the applied rate of 

heat input to the evaporator, qapp, was limited to ensure that the saturation temperature of 

the ammonia was in the range 200 K 400 KsatT  , as the critical-point temperature of 

ammonia is 405.4 K [Avallone and Baumeister III (1987)]. 

The performance of the LHP was examined for qapp in the range 0 to 350 W, and two 

different values of the sink temperature: sinkT = 273 K and 283 K.  The results obtained for 

these sink temperatures were qualitatively similar.  Therefore, in this section, attention is 

limited to the results for sinkT = 283 K. In this work, the vapor-transport line, two-phase 

portion of the condenser, subcooled part of the condenser (if it exists), and the liquid-

transport line were segmented into 2 100vl cd sc llM M M M     control-volumes: The 

differences in the results obtained with the assigned number of control volumes and the 

next augmented ( 2 200vl cd sc llM M M M    ) number of such control volumes were 

negligible (all absolute differences < less than 10-4). 

 

2.4.2 Variations of satT  and cd exitT  with appq  

 The variations in the saturation temperature of ammonia at the liquid-vapor interface 

in the wick structure, satT  , and the fluid temperature at the exit of the condenser, cd exitT  , 

with the power input to the evaporator, appq , are presented in Figure 2.10 for sinkT = 273 K 

and ambT = 295 K. 
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 For low power inputs ( appq < 78 W), the saturation temperature first decreases with 

appq  and then reaches a minimum value. For higher values of power input, satT  increases 

with appq , almost linearly.  For low power inputs, cd exitT   remains almost constant and 

very close to the sink temperature, and when this temperature starts to rise with appq , so 

does satT .  

 

Figure 2.10: Variation of satT  and cd exitT  with appq  for sinkT = 283 K and ambT  = 295 K. 

  

 Bienert and Wolf (1995) and Kaya and Hoang (1999) have also reported very similar 

results. In both studies, the authors concluded that at low power inputs, the fluid exits the 

condenser as a subcooled liquid and the LHP operates in variable conductance mode; and 

beyond the minimum point of the satT  vs. appq  curve, the condenser becomes fully "open" 

(in that its entire length is filled with a two-phase fluid), and LHP operates in a fixed 

conductance mode, where satT  increases almost linearly with appq . This explanation is 

essentially correct, but not precise as was demonstrated in Atabaki (2006) and Atabaki, 

Jesuthasan and Baliga (2007): This is made known by the results presented in the next 

subsection. 
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2.4.3 Length of the Two-Phase Flow Region inside the Condenser 

 The variation of dimensionless length of the two-phase flow region in the condenser 

with appq  (for sinkT = 283 K and ambT  = 295 K) is shown in Figure 2.11. The results indicate 

that when appq < 78 W, roughly 88% of the condenser length is occupied by the two-

phase flow region.  

 

Figure 2.11: Non-dimensional length of the two-phase flow region in the condenser as a 
function of appq , for 283 KsinkT  and 295 KambT  . 

 

Thus, the location of the minimum point in Figure 2.10 does not coincide with the 

condenser becoming fully open, as proposed by Bienert and Wolf (1995) and Kaya and 

Hoang (1999). Indeed, at the location of the minimum point in the loop operating 

temperature, satT , the rate of growth of the two-phase region inside the condenser is 

decreased, and an inflection point is evident in Figure 2.11, close to appq =75 W.  

 

2.4.4 Comparison of Model Predictions with Experimental Data 

As was mentioned previously in this section, the value of cc ambU   was adjusted to 

closely match the predicted results ( .sat appT vs q ) with the corresponding experimental 



 70

data, for sinkT   283 K. The numerical predictions obtained in this work are compared 

with the experimental results of Kaya and Hoang (1999) in Figure 2.12 for two values of 

the sink temperature: sinkT   273 K and 283 K. As the fine-tuning of cc ambU   was done 

with respect to sinkT   283 K, the predicted and experimental results for this sink 

temperature show excellent agreement. Even for sinkT   273 K, considering that several 

parameters of the LHP had to be estimated (see the related discussions in Section 2.4.1), 

the comparisons of the predicted and experimental results shown in Figure 2.12 can be 

regarded as being quite encouraging. 

 

Figure 2.12: Comparisons of the experimental data of Kaya and Hoang (1999) with the 
numerical predictions obtained with the proposed segmented network thermofluid model, 
for 295 KambT  . 

 
 
2.5 CONCLUDING REMARKS 

 A segmented network thermofluid model for the simulation of loop heat pipes (LHPs) 

operating under steady-state conditions was presented and discussed in the earlier 

sections of this chapter. Attention was focused on LHPs with one evaporator (cylindrical 

or flat), a vapor-transport line, one condenser, a liquid-transport line, and a compensation 
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chamber.  Variations of thermophysical properties of the working fluid with temperature 

are taken into account, along with change in quality, pressure drop, and heat transfer in 

the two-phase regions, giving the proposed model enhanced capabilities compared to 

those of earlier thermofluid network models of LHPs, such as those of Bienert and Wolf 

(1995), Kaya and Hoang (1999), Maydanik (2005), Singh et al. (2007). In these earlier 

models, balances of mass, momentum, and energy are imposed on the full elements 

(rather than segmented portions) of the LHP, and the variations of quality and pressure 

drops in the liquid-vapor two-phase regions are overlooked. 

The model proposed in this work was formulated by borrowing and extending key 

ideas from the works of Atabaki (2006) and Atabaki et al. (2007). These extensions, 

which have been reported in Jesuthasan et al. (2008) and Jesuthasan and Baliga (2009a), 

are the following: 1) in the models of Atabaki (2006) and Atabaki et al. (2007), 

calculations of pressure drop and heat transfer in the two-phase region of the LHP were 

done using correlations that could only handle the stratified-smooth regime, where as 

correlations that can handle the stratified-smooth, stratified-wavy, and annular-flow 

regimes have been implemented in the model proposed in this chapter, making it suitable 

for a wider range of applications; 2) the balances of mass, momentum, and energy over 

the segments (cells or control volumes) of the vapor-transport line, condenser pipe, and 

the liquid-transport line are done with fluid properties based on the mean bulk 

temperature within the cells (and in the case of two-phase flow, also the mean quality 

within the cell), and imposed using an inner-iterative procedure, whereas upstream 

properties (and quality) and a non-iterative procedure were used in Atabaki (2006) and 

Atabaki et al. (2007); and 3) the updating of the satT  values in the overall iterations is 

done using a secant method, where as a trial-and-error procedure was used for these 

updates in Atabaki (2006) and Atabaki et al. (2007). 

The proposed segmented network thermofluid model was used to simulate an LHP 

similar to the one investigated experimentally by Kaya and Hoang (1999). Results 

pertaining to the performance of this LHP over a range of operating conditions were 

presented, and their implications were discussed. These results indicated that the 

proposed model produces results that compare quite well (at least qualitatively) with the 

corresponding experimental results of Kaya and Hoang (1999). 
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 In the proposed model and also in earlier quasi-one-dimensional models [Kaya and 

Hoang (1999); Ghajar and Darabi (2005); Maydanik (2005); Atabaki (2006); Atabaki et 

al. (2007); Launay et al. (2007); Jesuthasan et al. (2008); Jesuthasan and Baliga (2009a); 

Singh et al. (2009)], the total static pressure drop in the vapor grooves of the evaporator, 

vgP , is computed using correlations for a Darcy friction factor that strictly applies only 

in the fully-developed region of flows in straight ducts of circular and non-circular cross-

sections with impermeable walls. This approach is inapplicable or ad hoc, at best, when 

the pressure drop in the vapor grooves is a significant contributor to the overall pressure 

drop in the LHP. To enhance the capabilities of current quasi one-dimensional models of 

LHPs, more accurate correlations for the calculation of the above-mentioned vapor-

channel pressure drop are needed. A computational method is formulated in Chapter 3 

and applied in Chapter 4 to develop accurate and cost-effective correlations for the 

prediction of the pressure drop in the vapor-removal channels of LHPs. The development 

and incorporation of these novel correlations, and their incorporation into the proposed 

segmented network thermofluid model of LHPs, are important contributions of this 

thesis. The capabilities of the resulting enhanced model are demonstrated in Chapter 6. 
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Chapter 3: 

A Numerical Method for Three-Dimensional Parabolic 
Flow and Heat Transfer in Straight Ducts of Irregular 
Cross-Section 
 
 In this chapter, the emphasis is primarily on the formulation, implementation, and testing 

of a novel co-located equal-order control-volume-based finite element method (CVFEM) for 

the prediction of three-dimensional parabolic fluid flow and heat transfer in straight ducts of 

uniform regular- and irregular-shaped cross-section, akin to those shown schematically in 

Figure 3.1 [Jesuthasan and Baliga (2009b)]. 

 

Figure 3.1: Examples of three-dimensional parabolic flows in straight ducts of uniform    
cross-section. 
 

The formulation of the proposed novel CVFEM is based on extensions and 

amalgamation of ideas put forward in two earlier numerical methods for fluid flow and heat 

transfer: a seminal finite-volume method based on staggered Cartesian grids for the solution 
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of three-dimensional parabolic problems [Patankar an Spalding (1972)]; and a co-located 

equal-order control-volume-based finite element method for the solution of planar two-

dimensional elliptic problems [Baliga and Atabaki (2006)]. An automatic axial step-size 

selection procedure for problems in which the dependent variables vary monotonically in 

the axial direction is also proposed. The validity of the proposed method is established by 

applying it to developing laminar fluid flow and forced convection in a straight duct of 

square cross-section, and comparing the results to those available in the literature.  

Following the presentation of the above-mentioned CVFEM, the methodology put 

forward in it is adapted to formulate a simpler finite volume method (FVM) that is well 

suited for cost-effective predictions of three-dimensional parabolic fluid flow and heat 

transfer in straight ducts of rectangular cross-section. This FVM is used in Chapter 4 of 

this thesis to investigate fluid flow and heat transfer phenomena in straight rectangular 

vapor-removal grooves of LHP evaporators. 

 

3.1 BACKGROUND INFORMATION AND MOTIVATION  

 Fluid flow and heat transfer in regular- and irregular-shaped ducts or duct-like 

geometries are encountered in nature and in numerous engineering devices, equipment, and 

systems. Today, powerful general-purpose computational fluid dynamics (CFD) methods 

and codes, many of them direct offshoots or extensions of the pioneering work of Patankar 

and Spalding (1972), allow reliable predictions and investigations of such fluid flow and 

heat transfer phenomena, and facilitate the design and optimization of the related 

engineering devices, equipment, and systems. However, there are still opportunities for 

formulating focused CFD methods that are specialized or tailored for efficient predictions of 

specific classes or subsets of these duct flow and heat transfer phenomena. It is in this 

context that the work presented in this chapter was undertaken. 

 Attention here is limited to incompressible, steady, laminar, Newtonian fluid flow and 

heat transfer. However, the proposed CVFEM is formulated by borrowing and extending 

ideas from the three-dimensional parabolic and elliptic finite-volume methods of Patankar 

and Spalding (1972), Pratap and Spalding (1976), and Patankar (1980): these methods 

and/or their extensions have been used extensively for predictions of turbulent, single-phase 

and multiphase, steady and unsteady fluid flow and heat transfer phenomena in straight 
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regular-shaped ducts, using available mathematical models such as those discussed in 

Wilcox (1993), Launder and Sandham (2002), Brennen (2005), and Crowe (2006). Thus, it 

may be argued that the CVFEM proposed here could be readily adapted for the prediction of 

these phenomena in straight ducts of uniform regular- and irregular cross-section. However, 

explicit demonstrations of such adaptations are not within the scope of this thesis. 

 It should also be noted that the proposed CVFEM would be useful in investigations of 

many practical liquid or low-Mach number gas flows and heat transfer in ducts, such as the 

following: developing laminar forced convection in straight internally-finned ducts, similar 

to those discussed in Kays and London (1984) and Webb and Kim (2005); and developing 

laminar mixed convection in ducts, as discussed, for example, by Patankar et al. (1978), 

Choudhury and Patankar (1988), and Nesreddine et al. (1997). It could also be used for 

simulations of fluid flow and heat transfer in the entrance region of micro-scale channels 

and tubes, akin to those discussed in Peng and Petersen (1996), Adams et al. (1999), Ng and 

Tan (2004), Morini (2004), Thompson et al. (2005), and Liu et al. (2007). In addition, the 

proposed numerical method could be used in investigations of heat transfer in tubes 

conveying nanofluids, using mathematical models akin to those discussed by 

Daungthongsuk and Wongwise (2007) and Akbari and Behzadmehr (2007), for example. 

 Incompressible, laminar, parabolic flow and heat transfer in ducts are governed by 

equations that are intrinsically nonlinear and coupled to each other, as will be shown in the 

next section of this chapter. If major simplifications are introduced in these equations, such 

as linearizing the inertia terms in the momentum equations and neglecting cross-stream 

pressure gradients, then analytical solutions are possible, as shown, for example, in Fleming 

and Sparrow (1969). However, for the solution of problems in which the aforementioned 

major simplifications are invalid, numerical methods are needed. The seminal numerical 

methods for the solution of three-dimensional parabolic flows in ducts of rectangular cross-

section are the finite-volume methods proposed by Caretto et al. (1972) and Patankar and 

Spalding (1972). In subsequent papers, variants of the method of Patankar and Spalding 

(1972) have been proposed by Carlson and Hornbeck (1973) and Briley (1974). These 

methods are best suited for solution of problems with regular-shaped domains, the 

boundaries of which lie along the axes of commonly used orthogonal coordinate systems. 

Ducts with irregular-shaped cross-section can be handled using finite volume or finite 
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difference methods that are designed to work with curvilinear orthogonal or non-orthogonal 

boundary-fitted grids, as is done in the work of Roberts and Forester (1979). However, such 

methods are not well suited for the solution of problems with highly irregular and/or 

multiply connected domains. 

 Several finite-element methods have been put forward for the solution of three-

dimensional parabolic flow and heat transfer in straight ducts of regular- or irregular-shaped 

cross-section. An example of such a method is that proposed by Del Giudice et al. (1981). 

These finite-element methods typically use a non-iterative marching technique, achieved by 

using the upstream values of the dependent variables at each axial step to calculate the 

coefficients in the discretized equations, in a manner akin to that proposed in the work of 

Patankar and Spalding (1972). This non-iterative technique often necessitates the use of 

overly small axial step sizes in order to obtain results that are essentially independent of the 

sequence in which the dependent variables are solved. 

 The method proposed in this chapter contains several novel features that allow it to 

overcome the aforementioned limitations and difficulties. It is formulated by extending and 

amalgamating ideas put forward in two earlier methods: a seminal staggered-Cartesian-grid 

finite-volume method proposed by Patankar and Spalding (1972) for the prediction of three-

dimensional parabolic fluid flow and heat transfer in straight ducts of rectangular cross-

section; and a co-located equal-order control-volume-based finite element method 

(CVFEM) discussed by Baliga and Atabaki (2006) for planar two-dimensional elliptic fluid 

flow and heat transfer in irregular-shaped domains. This feature of the proposed CVFEM 

enables its application to straight ducts of uniform regular- and irregular-shaped cross-

section. In each axial step of a marching solution procedure, a fully-implicit scheme is used 

to discretize the governing equations in the axial direction, and the non-linear coupled 

discretized equations are solved using an adaptation of a sequential iterative variable 

adjustment (SIVA) scheme proposed earlier by Saabas and Baliga (1994): thus, for any axial 

step size, the proposed method is able to generate results that are independent of the 

sequence in which the dependent variables are solved. Another novel feature of the 

proposed method is an automatic axial step-size selection procedure for problems in which 

the dependent variables vary monotonically in the axial direction. 
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3.2 MATHEMATICAL MODEL 

 Parabolic duct flows have the following characteristics: there exists a predominant flow 

along the duct (the main-stream direction), and no flow reversal is encountered in that 

direction; diffusion transport in the mainstream direction is negligible compared to the 

corresponding advection transport and the cross-stream diffusion transport; and the 

downstream pressure field has negligible influence on the upstream flow conditions. 

Following the discussions in the seminal work of Patankar and Spalding (1972), and with 

reference to the ducts and the Cartesian coordinate system shown in Figure 3.1, the 

equations that govern steady, parabolic, incompressible Newtonian fluid flow and heat 

transfer phenomena can be cast in the following forms:  

 

Continuity: 

( ) ( ) ( ) 0u v w
x y z
    

  
  

              (3.1) 

x-momentum: 

( ) ( ) ( ) ( ) ( ) u
p u u

uu vu wu S
x y z x x x y y
           

      
       

    (3.2) 

y-momentum: 

( ) ( ) ( ) ( ) ( ) v
p v v

uv vv wv S
x y z y x x y y
           

      
       

    (3.3) 

z-momentum: 

( ) ( ) ( ) ( ) ( ) w
dP w w

uw vw ww S
x y z dz x x y y
          

      
      

    (3.4) 

Energy: 

( ) ( ) ( ) ( ) ( ) T
p p

k T k T
uT vT wT S

x y z x c x y c y
        

    
      

     (3.5) 

In these equations, u, v, and w, are components of the velocity vector in the x, y, and z 

directions, respectively; T is the temperature; uS , vS , wS , and TS  are volumetric source 

terms (which can also be used to account for extra terms, such as those due to non-

constant dynamic viscosity) in the x-, y-, and  z-momentum and energy equations, 

respectively; and  ,  , pc , and k  are the mass density, dynamic viscosity, specific heat 
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at constant pressure, and thermal conductivity of the fluid, respectively. The variables p  

and P  in Eqs. (3.2) to (3.4) are a perturbation pressure and a cross-sectional average 

pressure, respectively, defined as follows: 

( , , ) ( ) ( , , )

1
( ) ( , , )

c s
c s A

P x y z P z p x y z

P z P x y z dxdy
A




 

                (3.6) 

In this equation, c sA   is the cross-sectional area of the duct. Again following Patankar 

and Spalding (1972), it has been assumed in Eq. (3.4) that ( / )p z   << /dP dz , and the 

following approximation and substitutions have been applied: 

/ / ; / / ; / /P z dP dz P x p x P y p y                     (3.7) 

In addition to the above-mentioned equations, a constraint on the overall or total mass 

flow rate through the duct must be respected. For steady flow in a duct with impermeable 

boundaries (except for the inlet and outlet planes), this constraint leads to the following 

equation: 

constant

c s

c s
A

m wdA


                (3.8) 

 The six equations, (3.1) to (3.5) and (3.8), form a parabolic system in the main-stream 

or one-way (Patankar, 1980) coordinate direction, z, with six unknowns, u, v, w, p , T, 

and ( / )dP dz . To specify the problem completely, the calculation domain geometry, 

fluid properties, and problem-specific conditions at the inlet-plane and boundaries of the 

duct must be specified. The proposed CVFEM can handle any commonly encountered 

conditions at the inlet-plane and boundaries of the duct. 

 

3.3 FORMULATION OF THE NUMERICAL METHOD 

 The various building blocks of the proposed numerical method are described 

concisely in this section. 

 

3.3.1 Domain Discretization 

 The calculation domain is a straight uniform duct of regular- or irregular-shaped 

cross-section, akin to the samples shown in Figure 3.1. It is first divided into a series of 
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contiguous slabs perpendicular to the z axis (main-stream coordinate): each slab is made 

up of the region between two adjacent parallel cross-sectional planes, one upstream and 

the other downstream. These slabs need not have the same thickness (axial step-size, 

z ). Indeed, the ability to work with a non-uniform z , adjusted suitably with reference 

to the axial gradients of the dependent variables in the developing duct flow and heat 

transfer problems of interest, is crucial to the formulation of a computationally-efficient 

method. 

 

Figure 3.2: (a) Prism-shaped element of triangular cross-section, its discretization into 
portions of control volumes associated with each of the nodes, and associated notation; (b) 
prism-shaped control volume of polygonal cross-section associated with an internal node 1 
and associated notation. 

 

 Following the discretization of the calculation into slabs, the cross-section of each 

slab is further discretized using a two-stage procedure: first, it is divided into three-node 

triangular elements; following that, the centroid of each three-node triangular element is 

joined to the mid-points of its three sides, to collectively associate each node with a 

control volume of polygonal cross-section. This cross-sectional discretization is swept 

through each slab in the axial (main-stream) direction to generate three-dimensional 

prism-shaped elements and control volumes of triangular and polygonal cross-sections, 

respectively, as shown schematically in Figure 3.2 along with the associated notation (the 

superscripts ‘u’ and ‘d’ indicate upstream and downstream locations, respectively). The 

rationale for using three-node triangular elements and the aforementioned polygonal 
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control volumes in each cross-section has been discussed by Baliga and Patankar (1980), 

Baliga (1997), and Baliga and Atabaki (2006), thus it is not repeated here. All slabs are 

discretized in the same manner. In each cross-section, all dependent variables are stored 

at the same three nodes of each element, leading eventually to a co-located equal-order 

numerical method. 

 

3.3.2 Control-Volume Conservation Equations 

 The differential equations that govern the three-dimensional parabolic flow and heat 

transfer problems considered in the work, Eqs. (3.1) – (3.5), are integrated over control 

volumes such as the one shown in Figure 3.2 (b), and cast in the following general form 

with respect to a specific (per unit mass) scalar dependent variable  : 

    
 

1 1

. .

( ) ( )

Similar contributions from other elements associated with nodes 1  and 1

Boundary contribution

d o c

x y x yu a o

dd u

u
aoc aoc

u d

J i J j nds J i J j nds dz

w w dxdy S dxdy dz   

    
 

       
  

   


  

  

    

 s, if applicable 0

 (3.9) 

In this equation, S  is a volumetric source term associated with  ; and xJ  and yJ  are 

the (advection + diffusion) fluxes of   in the x and y directions, respectively: 

, , , ,  and  x Advec x Diff x y Advec y Diff yJ J J u J J J v
x y 
     

       
 

  (3.10) 

In Eq. (3.10),   is the diffusion coefficient associated with  . 

 

3.3.3 Interpolation Functions 

 In order to obtain algebraic approximations to the various terms in Eqs. (3.9) and 

(3.10), element-based interpolation functions in the cross-sectional plane ( x y ) and in 

the mainstream direction ( z ) are prescribed for the fluid properties (   and  ),  the 

volumetric source term ( S ), and the dependent variable ( ). These interpolation 

functions are described in this subsection. 
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3.3.3.1 Fluid Properties and Volumetric Source Terms in the Cross-Sectional    
Plane (x-y) 

 In each cross-sectional plane of the duct of interest, with reference to Figure 3.2 (a), 

the values of   and   at the centroid, o, are computed (if required), stored, and 

assumed to be uniform (prevail) over the element 123. The source term, S , is linearized, 

if required, and expressed in the following general form, following the recommendations 

of Patankar (1980): 

 S SS G E 
                    (3.11) 

In each element, with reference to the element 123 in Figure 3.2 (a), the values of SG   and 

SE   at the nodes 1, 2, and 3 are computed (if required), stored, and assumed to prevail over 

the volumes 1aoc, 2boa, and 3cob, respectively. 

 

3.3.3.2 Velocity Components in the Mass Flux Terms in the Cross-Sectional Plane (x-y) 

 In the calculation of the mass fluxes across the control volume faces in the cross-

sectional plane, the velocity components in the x and y directions are denoted by mu  and 

mv , respectively. These velocity components ( mu  and mv ), are interpolated using a special 

treatment borrowed from the works of Rhie and Chow (1983) and Prakash and Patankar 

(1985), in order to prevent the occurrence of spurious pressure oscillations in solutions 

yielded by the proposed co-located numerical method. The development of these special 

interpolation functions requires inputs from the discretized momentum conservation 

equations. Therefore, they will be presented later in this chapter. 

 

3.3.3.3 Scalar Dependent Variable in the Diffusion Terms in the Cross-Sectional 
Plane (x-y) 

 In the derivations of algebraic approximations of the diffusion terms in the cross-

sectional plane, the nodal values of the specific scalar dependent variable,  , are 

interpolated linearly in each three-node triangular element.  
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Figure 3.3: A typical three-node triangular element in a cross-sectional plane and related 
nomenclature: (a) local x,y coordinate system; (b) unit vectors normal to control volume 
faces; (c) local flow-oriented X,Y coordinate system. 
 

Thus, with respect to the triangular element 123 shown in Figure 3.3 (a), the following 

linear interpolation function applies: 

1 2 2 3 3 1 1 2 2 3 3 1

2 3 1 3 1 2 1 2 3

3 2 1 1 3 2 2 1 3

2 3 3 2 1 3 1 1 3 2 1 2 2 1 3

 ; ( )

[( ) ( ) ( ) ] /

[( ) ( ) ( ) ] /

[( ) ( ) ( ) ] /

D D D

D

D

D

A x B y C DET x y x y x y y x y x y x

A y y y y y y DET

B x x x x x x DET

C x y x y x y x y x y x y DET

 

  

  

  

  







         

     

     

     

   (3.12) 

 

3.3.3.4 Scalar Dependent Variable in the Advection Terms in the Cross-Sectional 
Plane (x-y) 

 In the derivations of algebraic approximations of the advection terms in the cross-

sectional plane, the nodal values of the specific scalar dependent variable,  , are 

interpolated using the flow-oriented upwind (FLO) scheme proposed by Baliga and 

Patankar (1980), which was formulated by borrowing and extending ideas from the 

works of Spalding (1972) and Raithby (1976). In this scheme, first, with reference to 

Figure 3.3 (a), the average mass-conserving velocity vector, avV


, in the cross-sectional 

plane and its magnitude, avU , in the element 123 are defined as follows: 

1 2 3 1 2 3

2 2 0.5

( ) / 3 ; ( ) / 3

 ; | | {( ) ( ) }

m m m m m m m m
av av

m m m m
av av av av av av av

u u u u v v v v

V u i v j U V u v

     

    
             (3.13) 

Then the value of an element Peclet number, Pe , is computed as follows: 
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1 2 3 1 2 3

1 2 3 1 2 3

2 2 0.5

max( , , ) ; min( , , )

max( , , ) ; min( , , )

[( ) ( ) ]  ;  ( ) /( )

max min

max min

max min max min o av o

x x x x x x x x

y y y y y y y y

L x x y y Pe U L   

 
 

     

      (3.14) 

Here, the subscript ‘o’ indicates centroidal values. At this stage, a new element-based 

Cartesian coordinate system (X,Y) and a variable,  , are introduced. If 610Pe 
  , then 

(X,Y) is identical to the Cartesian coordinate system (x,y) shown in Figure 3 (a), and 

 and X x Y y    . On the other hand, if 610Pe 
  , then a local flow-oriented 

Cartesian coordinate system (X,Y) shown in Figure 3.3 (c) is defined: the origin of this 

coordinate system is located at the centroid of the element 123, and the X-axis is oriented 

along the element-average mass-conserving velocity vector, avV


. In this case, the following 

equations relate the (X,Y) and the (x,y) coordinates: 

( )( / ) ( )( / ) ; ( )( / ) ( )( / )m m m m
o av av o av av o av av o av avX x x u U y y v U Y x x v U y y u U          

                      (3.15) 

Furthermore, for 610Pe 
  , the variable   and the element-based interpolation function 

for   are defined as follows: 

1 2 3 1 2 3max( , , ) ;  min( , , )

( ) ( ) ( )
exp 1  ; 

( ) ( )

max min

o C C Co av max

o av o

X X X X X X X X

U X X
A B Y C

U




  
   

 

              

     (3.16) 

The constants CA , CB , and CC  in this equation can be determined in a manner akin to that 

used to determine the constants in Eq. (3.12). It should also be noted that when 0Pe  , 

the FLO scheme reduces to the linear interpolation scheme given in Eq. (3.12). 

 In problems that involve acute-angle triangular elements and relatively modest values of 

Pe , the FLO scheme performs very well. However, in problems with large values of Pe , 

the FLO scheme can lead to negative contributions of the advection transport terms to the 

coefficients in the discretized equations, especially when large gradients of the cross-

sectional velocity field occur within an element or when obtuse-angle triangular elements 

are used. If negative coefficients in the discretized equations are not admissible, as would be 

the case, for example, when always-positive variables such as the kinetic energy of 

turbulence are computed, or when the magnitudes of the negative coefficients lead to 
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divergence of iterative solution methods, then a suitable lower-order upwind scheme that 

guarantees positive advection contributions to the coefficients in the discretized equations is 

recommended: one such scheme is the mass-weighted (MAW) scheme described in the 

works of Schneider and Raw (1986) and Masson et al. (1994). Full details of the MAW 

scheme are also available in the work of Baliga and Atabaki (2006). Thus, they are not 

repeated here. 

 
3.3.3.5 Perturbation Pressure in the Cross-Sectional Plane (x-y) 

 In the cross-sectional plane, the perturbation pressure, p, is interpolated linearly within 

each element: 

p p pp A x B y C                      (3.17) 

With reference to element 123 in Figure 3.3(a), pA , pB , and pC  are given by expressions 

akin to those for DA , DB , and DC  in Eq. (3.12), with 1 , 2 , and 3  replaced by 1p , 2p , 

and 3p , respectively. 

 
3.3.3.6 Scalar Dependent Variable, Fluid Properties, and Volumetric Source Terms 
in the Mainstream (z) Direction 

 In the mainstream (z) direction, the fully-implicit scheme is used to interpolate the 

scalar dependent variable ( ), the fluid properties (   and  ), and the volumetric source 

term ( S ) between the upstream and downstream locations: thus, in each slab of the duct, 

the downstream nodal values of  ,  ,  , and S  are assumed to prevail over the axial 

step size z . As discussed by Patankar (1980), the fully-implicit scheme provides good 

accuracy in the parabolic duct flow and heat transfer problems of interest, is 

unconditionally stable, and ensures positive contributions to the coefficients in the 

discretized equations. However, the fully-implicit scheme is only first-order accurate, and 

if more accurate discretization is considered necessary, then the Crank-Nicolson scheme 

or other higher-order schemes should be used with appropriate restrictions on the size of 

z  to ensure positive contributions to the coefficients in the discretized equations. 

Additional information on such schemes is available in the works of Patankar and Baliga 

(1978), Patankar (1980), and Jothiprasad et al. (2003), among others. 
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3.3.4 Discretized Equations for   

 The discretized equations are obtained by first deriving algebraic approximations to the 

element contributions and the boundary contributions, if applicable, in Eq. (3.9), and then 

assembling these contributions appropriately. Each element contribution consists of the 

cross-sectional diffusion terms, the cross-sectional and mainstream advection terms, and the 

source terms. The interpolations functions discussed in the last subsection are used in the 

derivations of the algebraic approximations to these terms in the element contributions. 

 
3.3.4.1 Contributions of the Diffusion Terms in the Cross-Section 

 In element 123, the centroidal value of the diffusion coefficient, ( )o , and the linear 

interpolation function given by the expressions in Eq. (3.12) are used to approximate the 

cross-sectional diffusion transport contributions of element of 123 to Eq. (3.9) as follows: 

 
 

. .

( ) [ ] ( ) [ ]

d o c

Diff Diffu a o

dD D D D
o a a o c c

J nds J nds dz

A y B x A y B x z    

 

     

  
  

     (3.18) 

In this equation, the unit normal vectors ( n


) point outward with respect to the control 

volume associated with node 1, and the superscript ‘d’ denotes downstream values, as 

shown in Figure 3.2 (a). 

 

3.3.4.2 Contributions of the Advection Terms in the Cross-Section 

 In the element 123 shown in Figure 3.3 (a), the advection flux in the cross-sectional 

plane (x-y) is expressed as follows: 

, , ( ) ( )x y m m
Advec Advec x Advec y o oJ J i J j u i v j       
    

         (3.19) 

where   is given by Eqs. (3.15) and (3.16) when the FLO scheme is used, and o  is the 

centroidal value of the mass density of the fluid. In the FLO scheme, algebraic 

approximations to the cross-sectional advection contributions of element 123 to Eq. (3.9) are 

evaluated numerically using the third-order accurate Simpson’s rule: 
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     (3.20) 

In this equation, r and t are the midpoints of the control-volume faces o-a and o-c, 

respectively, as shown in Figure 3.3 (a), the unit normal vectors ( n


) point outwards with 

respect to the control volume associated with node 1, and the superscript ‘d’ denotes 

downstream values, as shown in Figure 3.2 (a).  

 
3.3.4.3 Contributions of the Advection Terms in the Mainstream Direction 

 The contribution of the advection term in the mainstream direction to Eq. (3.9) is 

approximated as follows: 

    11
1

( ) ( ) ( ) ( )d u d u
aoc

aoc

w w dxdy w w A                  (3.21) 

In this equation, 1aocA  is the area associated with node 1 in the element 123, as shown in 

Figure 3.3 (a), and it is given by the following equation: 1 | | / 6aocA DET , with DET 

given in Eq. (3.12). 

 

3.3.4.4 Source Term Contribution 

 The contribution of the source term to Eq. (3.9) is approximated as follows: 

    1 1 1
1 1

1

dd S S
aoc aocu

aoc

S dxdy dz G A E A z 
 

      
  

          (3.22) 

Here, 1( )SG   and 1( )SE   are the values of SG   and SE   associated with the node 1 in the 

element 123, and the superscript ‘d’ denotes downstream values. 
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3.3.4.5 Combined Element Contribution 

 Adding up the diffusion, advection, and source contributions, the total contribution of 

element 123 to Eq. (3.9) is obtained. The algebraic approximation to this combined element 

contribution can be expressed compactly as follows: 

    
 

1 1

,1 ,2 ,3
1 1 1 2 1 3 1

. .

( ) ( )

d o c

x y x yu a o

dd u

u
aoc aoc

d d d

J i J j nds J i J j nds dz

u u dxdy S dxdy dz

C C C D



   

   

  

  

 
    

 
   

  

  

    

      (3.23) 

In this equation, the superscript ‘d’ denotes downstream values, and the coefficient 1D  

includes contributions of the related source terms and also the upstream value of the 

dependent variable, 1
u . 

 

3.3.4.6 Assembled Discretized Equation 

 The coefficients in Eq. (3.25) are computed and appropriately assembled element-by-

element to obtain the discretized equations for internal nodes. For boundary nodes, 

appropriate boundary contributions are also approximated algebraically, if needed, and then 

added to the element contributions to obtain the complete discretized equation. With 

reference to a node i, this discretized equation can be cast in the following general form: 

, , ,
d d

i i nb nb i
nb

a a b                     (3.24) 

Again, the superscript ‘d’ denotes downstream values, the subscript ‘nb’ indicates 

neighbors of node i, and the coefficient ,ib   includes contributions from ( )dS  and u
i . 

 

3.3.5 Discretized x- and y-Momentum Equations 

 Except for the presence of integrals of the perturbation pressure gradients and the 

particular source terms, the integral x- and y-momentum conservation equations are identical 

in form to the integral conservation equation for  . With reference to node 1 in            

Figure 3.2 (a), the contribution of element 123 to integrals of these terms in the x- and y-

momentum equations are approximated as follows: 
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(3.25) 

 The perturbation pressure gradients inside element 123 are computed using the linear 

interpolation function given in Eq. (3.17): ( / )  ; ( / )d p d pp x A p y B         . Then, with 

reference to a node i, when all of the associated element and applicable boundary 

contributions are assembled, the discretized x- and y-momentum equations are obtained, and 

they can be cast in the following forms: 

, , ,

, , ,

( ( / ) )

( ( / ) )

i

i

d d d
i u i nb u nb i u i

nb

d d d
i v i nb v nb i v i
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a u a u b p x

a v a v b p y

     

     





V

V

V

V
                 (3.26) 

In this equation, the terms ( / )
i

dp x  V  and ( / )
i

dp y  V  are volume-averaged values of the 

perturbation pressure gradients in the various elements associated with node i in the 

downstream plane, and iV  is the volume of the control volume surrounding this node. 

 

3.3.6 Discretized z-Momentum Equations 

 Except for the presence of integrals of the cross-sectional average pressure gradient and 

the particular source term, the integral z-momentum conservation equation is identical in 

form to the integral conservation equation for  . With reference to node 1 in Figure 3.2 (a), 

the contribution of element 123 to integrals of the cross-sectional average pressure gradient 

and source term in the z-momentum equation are approximated as follows: 

 
1

1 1 1 1 1 1

{ ( / ) }

( / ) ( ) ( )w w
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S Sd d d
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    
  

    

 
     (3.27) 

With reference to a node i, when all of the associated element and applicable boundary 

contributions are assembled appropriately, the resulting discretized z-momentum equation is 

obtained, and it can be cast in the following form: 

, , , ( / )d d
i w i nb w nb i w i

nb

a w a w b dP dz    V             (3.28) 
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3.3.7 Mass-Conserving Velocity Components in the Cross-Sectional Plane (x-y) 

 The discretized x- and y-momentum equations are first cast in the following forms: 

, , , , , ,

, , , ,

, ,

ˆ ˆ{ }/  ; { }/

/  ; /

ˆ ˆ{ ( / ) } ; { ( / ) }
i i

d d d d
i nb u nb i u i u i nb v nb i v i v
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d dd d d d
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 
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 

V V

V V         (3.29) 

For the evaluation of cross-sectional mass fluxes within the element 123 in Figure 3.2 (a), 

mu  and mv  in the downstream plane are interpolated using the following equations: 

. . . .
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. .
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linear interpolation of nodal values to the point of interest within element

}

ˆ { }d
lin intv  

  (3.30) 

The element-based pressure gradient terms in this equation are related to the nodal values of 

the perturbation pressure using the linear interpolation function given in Eq. (3.17). 

 
3.3.8 Discretized Equations for Perturbation Pressure 

 First, the integral mass conservation equation applied to the control volume surrounding 

nodes 1u and 1d in Figure 3.2 (b) is cast in the following form: 
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(3.31) 

The contribution of the element 123 in Figure 3.2 (a) to this equation is approximated as 

follows: 

      

    
 

1

1 1 1

. . ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

d o cm m m m d u

u a o
aoc

d
m m m m

o r a o r a o o t c o t c o

d u
o o aoc

u i v j nds u i v j nds dz w w dxdy

u y y v x x u y y v x x z

w w A

     

 

 

 
     

 

         

 

   
    

(3.32) 

Here, r and t are midway points on the control volume faces o-a and o-c in the element 123, 

as shown in Figure 3.3 (a). Using the interpolation functions given in Eq. (3.30), this 
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element contribution is evaluated in terms of the nodal values of the perturbation pressure 

and cast in the following form: 

      
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(3.33) 

 With reference to a node i, expressions analogous to that presented in this equation are 

derived for each element and appropriately assembled, along with any applicable boundary 

contributions, in accordance with Eq. (3.31). The result is then suitably rearranged to obtain 

the following form of the complete discretized equation for the perturbation     pressure d
ip :  

, , ,
d d

i p i nb p nb i p
nb

a p a p b                  (3.34) 

 
3.3.9 Discretized Equation for the Axial Gradient of the Cross-Sectional Average 
Pressure 

 First, the z-momentum equation is cast in the following form: 

, , , , , ,ˆ ˆ{ }/ ; / ; { / }d d d d
i nb w nb i w i w i w i i w i i i w

nb

w a w b a d a w w d dP dz      V   (3.35) 

Then, in each slab of the duct of interest, with reference to the element 123 in          

Figure 3.2 (a), the overall mass conservation equation, Eq. (3.8), is approximated as 

follows: 
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        (3.36) 

Using this equation, for a specified mass flow rate, the value of the axial gradient of the 

cross-sectional average pressure at each axial step can be expressed as follows: 



 91

1 2 3
123

1 2 3
123

ˆ ˆ ˆ

3

3

d
d

specified o
All elements

in c s
dw w w

d
o

All elements
in c s

w w w
m A

dP

dz
d d d

A









 
       

 
  
      
     







       (3.37) 

Finally, the value of dP  is given by the following equation: 

( / )d uP P dP dz z                   (3.38) 

 

3.3.10 Solution of the Discretized Equations 

 At each axial step, a sequential iterative variable adjustment procedure (SIVA), 

patterned after the one proposed by Saabas and Baliga (1994), is used to solve the nonlinear 

coupled sets of discretized equations for u , v , w , p , /dP dz , and  . This procedure is 

summarized below: 

 1. Set the values of u , v , w , p , and   at the downstream location to the 

corresponding upstream values: d uu u , d uv v , d uw w , d up p , and u  . Set 

0ud  , 0vd  , ˆd uu u , ˆd uv v , ( )m d uu u , and ( )m d uv v  at all nodes. 

 2. Calculate property values at the downstream nodes: d , d , and d
 . 

 3. Calculate coefficients in the discretized z-momentum equations; do not add the 

contributions of the axial gradient of the cross-sectional average pressure to the wb  terms, 

and do not under-relax these equations at this stage. 

 4. Calculate ˆ dw  using the latest available values of dw ; calculate and store values of 

wd ; and use these values along with the specified overall mass flow rate to calculate 

( /dP dz ). 

 5. Add the contributions of ( /dP dz ) to the wb  terms in the discretized z-momentum 

equations; under-relax; and solve for ( )d
calcw . 

 6. Calculate the correction term ( / ) 'dP dz , using the right-hand side of Eq. (3.43) 

with ˆ dw  replaced by ( )d
calcw ; and then calculate ( ) ( / ) 'd d

calc ww w d dP dz   : this 
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ensures that the dw  distribution satisfies the overall mass conservation requirement in 

each step of this overall iterative procedure. 

 7. Calculate coefficients in the discretized x-momentum equations; do not add 

perturbation pressure gradient contributions to the ub  terms, and do not under-relax these 

equations at this stage; store the center-point coefficients ( ,i ua ) and the constant terms 

( ,i ub ). 

 8. Add the perturbation pressure gradient contributions to the ub  terms in the 

discretized x-momentum equations; under-relax; solve for du . 

 9. Calculate ˆdu  and ud , using the non-under-relaxed center-point coefficients and the 

constant terms stored in Step 6, and the latest available values of du . 

 10. Calculate coefficients in the discretized y-momentum equations; do not add 

perturbation pressure gradient contributions to the vb  terms, and do not under-relax these 

equations at this stage; store the center-point coefficients ( ,i va ) and the constant terms 

( ,i vb ). 

 11. Add the perturbation pressure gradient contributions to the vb  terms in the 

discretized y-momentum equations; under-relax; solve for dv . 

 12. Calculate ˆdv  and vd , using the non-under-relaxed center-point coefficients and the 

constant terms stored in Step 9, and the latest available values of dv . 

 13. Calculate coefficients in the discretized equations for the perturbation pressure; do 

not under-relax; solve these equations; and then store and use the newly calculated 

perturbation pressure values, ( )d
ncp , in computations of the mass-conserving velocity 

components, ( )m du  and ( )m dv . 

 14. Update the perturbation pressure field using under-relaxation as follows: 

( ) (1 )( )d d d
p nc p oldp p p    . 

 15. Calculate coefficients, suitably under-relax, and sequentially solve the discretized 

equations for all other dependent variables ( ). 
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 16. With the latest available values of du , dv , dw , dp , and d  as the new guess values, 

return to Step 2, and repeat Steps 2-16 until suitable convergence criteria (which are 

specified by the user) are satisfied. 

 An implicit scheme proposed by Patankar (1980) is used to under-relax the discretized 

equations. Thus, for example, Eq. (3.26) is under-relaxed as follows: 

, *
, , ,

1i d d
i nb nb i i i

nb

a
a b a 

  
 


  

 
   

        
   

            (3.39) 

In this equation,   is an under-relaxation parameter and *
i  is the latest available value of 

 . Suitable values of this parameter for the various dependent variables should be 

established for each problem of interest by doing some exploratory preliminary 

computations. As a rough guide, the combination u = 0.7, v = 0.7, w = 0.7, p = 0.9, and 

 = 1.0 has worked quite well. 

 In each of the overall iterations of the SIVA solution procedure, it is necessary to solve 

sets of linearized and decoupled discretized equations. If a line-by-line structured grid is 

used, these equations are solved using an iterative line-Gauss-Seidel method, akin to that 

discussed in Patankar (1980). If an unstructured grid is used, an iterative point-Gauss-Seidel 

method is used to solve these equations. Implementation of techniques to accelerate the 

convergence of these iterative linear equation solvers is highly recommended, especially for 

the solution of the discretized perturbation pressure equations. In particular, an additive-

correction multigrid method with adaptive volume agglomeration, akin to that proposed by 

Elias et al. (1997), has been found to be very useful by Venditti and Baliga (1998). 

 At each axial step, the above-mentioned SIVA procedure was terminated when the 

following convergence criterion was satisfied: suitably normalized maximum residuals of 

the discretized equations for the dependent variable of interest are all less than or      

equal  to 10 – 6. 

 

3.3.11 Automatic Selection of Axial Step-Size 

 In three-dimensional parabolic fluid flow and heat transfer problems, the dependent 

variables could change significantly and nonlinearly with the axial coordinate, z, 
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especially in the vicinity of the entrance region of the straight ducts, and they become 

progressively invariant or change linearly with z as the fully-developed region is 

approached. Typical variations with z  of the maximum value of the axial velocity 

component, maxw , and a peripherally-averaged Nusselt number, Nu , are shown in 

Figures 3.4 (a) and (b), respectively. Thus, for computational efficiency, it is desirable to 

start with a very small value of the axial step-size, z , and adjust it appropriately in 

response to the relative changes of the dependent variables as the solution is advanced 

downstream. A procedure to automatically adjust z  in this manner is described in this 

section. 

 

Figure 3.4: (a) Typical variation of maxw  with z; (b) typical variation of  peripherally-

averaged Nusselt number, Nu , with z; (c) schematic illustration of the variables used in the 
automatic axial step-size selection procedure based on the axial variation of maxw ; and (d) 

schematic illustration of the variables used in the automatic axial step-size selection 
procedure based on the axial variation of Nu . 
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 Referring to Figures 4 (a) and (b), the desired changes in maxw  and Nu  are specified 

in terms of an ideal number of axial steps, IDEAL, as follows: 

   
2

max
max

[ ] [ ]
;

n
fd fd

desired desired

w w Nu Nu
w Nu

IDEAL IDEAL

 
          (3.40) 

Here, it should be noted that maxw  increases and Nu  decreases with z, as shown in Figures 

3.4 (a) and (b), respectively, and the subscript ‘fd’ indicates fully-developed values. The 

absolute values of the slopes ( max /dw dz ) and ( /dNu dz ) at the axial station nz  (n = 1 is the 

first axial station and it is coincident with the inlet plane) are approximated as follows, using 

the notation shown schematically in Figures 3.4 (c) and (d): 
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            (3.41) 

Using linear extrapolation and the slopes given in Eq. (3.41), the axial step sizes required to 

produce the desired changes in maxw  and Nu  are calculated as follows: 
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       (3.42) 

 As is illustrated in Figures 3.4 (c) and (d), for the problems considered here, the 

actual changes in maxw  and Nu  produced by the axial step sizes yielded by the expressions 

in Eq. (3.42) would be less than those desired: thus, these step sizes are conservative ones. 

However, as the fully-developed region is approached, Eq. (3.42) could give rise to 

undesirably large values of z , as the corresponding spatial rates of change of maxw  and 

Nu  with z are very small. This difficulty was avoided by adjusting  max desired
w , 

 desired
Nu , and z  for n > 3 as follows: 

 
 

 

1 1
max max max max

1 1

max

[ ] min [ ] , ( )

[ ] min [ ] ,

[ ] min [ ]  yielded by the expressions in equation (3.42) , ( )

n n n
desired desired fd

n n n
desired desired fd

n n

w w w w

Nu Nu Nu Nu

z z z

 

 

     
     

     

  (3.43) 

In Eq. (3.43), max( )z  is a user-prescribed maximum axial step-size. 
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 In the developing fluid flow and heat transfer problems of interest, the computations 

were stopped when the following conditions were satisfied: 

max max0.99( ) ; 1.05n n
fd fdw w Nu Nu              (3.44) 

In the solution of the problems of interest, the computations were started by prescribing a 

very small value of z  for the first axial step, and then initiating the above-mentioned 

automatic step-size selection procedure. 

 

3.4 APPLICATION TO A TEST PROBLEM AND RESULTS 

 

3.4.1 Problem Statement 

 Steady, developing, laminar fluid flow and forced convection in a straight duct of square 

cross-section are considered in this test problem. The fluid is Newtonian, and its properties 

are assumed to be constant. The fluid flow is governed by Eqs. (3.1) to (3.4), (3.6) and (3.8); 

and the heat transfer is governed by Eq. (3.5). At the inlet plane, the following conditions 

apply: avw w ; u = v = 0; and iT T . On the walls of the duct, 0w u v   . Two thermal 

boundary conditions on the walls are considered: (i) constant wall temperature (T); and (ii) 

uniform wall heat flux (H). The value of the Prandtl number was fixed at Pr = 0.72. This 

problem is relatively simple yet effective for validating the proposed method, especially 

because well-established analytical, experimental, and numerical results are available for it 

in the published literature. 

 

3.4.2 Computational Details 

 The geometry of the duct is shown schematically in Figure 3.5(a). Taking advantage 

of the symmetry surfaces in the problem, the calculation domain was limited to one-

quarter of the duct cross-section, shown by the hatched region in Figure 3.5(a). The 

cross-section of the calculation domain was discretized using a non-uniform line-by-line 

grid consisting of L1xM1 nodes, as shown in Figure 3.5 (b). The lines parallel to the y 

and x axes are indicated by the integers I and J, respectively. The positions of these lines 

was established by using the following equations for I = 1, 2, …, L1 and J = 1, 2, …, M1: 

( , ) [( 1) /( 1 1)] *( / 2)  ;  ( , ) [( 1) /( 1 1)] *( / 2)Power Powerx I J I L L y I J J M L       (3.45) 
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Figure 3.5: (a) Schematic representation of a straight duct of square cross-section, the 
calculation domain (the hatched region of the cross-section), and related notation; and (b) 
line-by-line discretization of the cross-section of the calculation domain into elements, 
and related notation. 
 

3.4.3 Grid Checks 

 The effect of changing the number of grid lines in the cross-section (L1 and M1) and 

the value of Power, which determines their distribution, was assessed by calculating the 

product of the Darcy friction factor, f, the Reynolds number, 
hDRe , and the peripherally 

averaged Nusselt numbers, ( )TNu  and ( )HNu , all based on the hydraulic diameter, hD : 
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 





     (3.46) 

Here, avw  is the average axial velocity in the duct; "
wq  is the peripherally-averaged wall 

heat flux in the (T) problems; wT  is the peripherally-averaged wall temperature in the (H) 

problems; bT  is the bulk temperature of the fluid; and k  is the thermal conductivity of 

the fluid. 
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Table 3.1: Laminar Fluid Flow in a Straight Duct of Square Cross-Section - Grid Checks 
based on (

hDf Re )fd. 

L1 x M1 Power 

(f.ReDh)fd, computed (f.ReDh)fd, analytical 

% Error Proposed 
Method 

Shah and 
London (1978)  

11 x 11 1 57.146 

56.908 

0.42 

11 x 11 1.2 57.093 0.33 

11 x 11 1.4 57.092 0.32 

11 x 11 1.6 57.107 0.35 

11 x 11 1.8 57.133 0.40 

11 x 11 2 57.160 0.44 

15 x 15 1 56.991 0.15 

15 x 15 1.2 56.969 0.11 

15 x 15 1.4 56.976 0.12 

15 x 15 1.6 56.991 0.15 

15 x 15 1.8 57.003 0.17 

15 x 15 2 57.023 0.20 

19 x 19 1 56.890 0.01 

19 x 19 1.2 56.901 0.01 

19 x 19 1.4 56.912 0.01 

19 x 19 1.6 56.923 0.03 

19 x 19 1.8 56.941 0.06 

19 x 19 2 56.952 0.08 

 
 

 For the duct of square cross-section shown in Figure 3.5 (a), hD L . For             

fully-developed, laminar, Newtonian fluid flow in a straight duct of square cross-section, 

it can be shown analytically that the product 
hDf Re  = 56.908 = constant, as discussed, 

for example, in Shah and London (1978). The fully-developed value of 
hDf Re  yielded 

by the proposed method for several different values of L1, M1, and Power are presented 

in Table 3.1: These results show that successive refinements of the grid systematically 

decrease the percentage error; for a grid of 19x19 nodes and Power = 1.4, the error in the 

computed value of 
hDf Re is as low as 0.01%; for a fixed number of nodes, there is an 

optimum value of Power for which the percentage error is a minimum. The grid checks 
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for the corresponding thermal problems with the (T) and (H) wall boundary conditions 

are given in Table 3.2. 

 On the basis of the grid checks presented in Table 3.1 and Table 3.2, a cross-sectional 

grid of 11x11 nodes with Power = 1.4 was chosen for the final computations. The 

automatic axial step-size selector was used with an initial axial step-size of 

1{[ ] / ( )}
h

n
h Dz D Re  = 10 – 7 and IDEAL = 25. 

 

Table 3.2: Laminar Forced Convection in a Straight Duct of Square Cross-Section - Grid 
Checks base on (Nu(T))fd. 

L1 x M1 Power 
(Nu(T))fd, computed (Nu(T))fd, analytical 

% Error, (Nu(T))fd Proposed 
Method 

Shah and 
London (1978)  

11 x 11 1.4 2.939 
2.976 

1.26 
15 x 15 1.4 2.958 0.61 
19 x 19 1.4 2.965 0.37 

 

Table 3.3: Laminar Forced Convection in a Straight Duct of Square Cross-Section - Grid 
Checks base on (Nu(H))fd. 

L1 x M1 Power 
(Nu(H))fd, computed (Nu(H))fd, analytical 

% Error, (Nu(H))fd 
Proposed 
Method 

Shah and 
London (1978)  

11 x 11 1.4 3.048 
3.091 

1.41 
15 x 15 1.4 3.067 0.78 
19 x 19 1.4 3.074 0.54 

 

3.4.4 Variations of Cross-Sectional Average Pressure and Centerline Axial Velocity 
with Axial Distance 

 The variations with axial distance of dimensionless cross-sectional average pressure 

and dimensionless centerline axial velocity are shown graphically in Figures 3.6(a) and 

3.6(b), respectively, along with the corresponding experimental results of Beavers et al. 

(1970) and Goldstein and Kreid (1967). In both these figures, the computed results 

yielded by the proposed method are in excellent agreement with the aforementioned 

experimental results. 
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 (a)      

  (b)    

Figure 3.6: Developing laminar flow in a straight duct of square cross-section: variation 
with axial distance of (a) dimensionless cross-sectional average pressure; and (b) 
dimensionless centerline axial velocity.  
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3.4.5 Variations of Peripherally-Averaged and Mean Nusselt Numbers with Axial 
Distance for the (T) Thermal Boundary Condition 

 The peripherally-averaged Nusselt number, ( )TNu , is defined in Eq. (3.46). The mean 

Nusselt number from the inlet plane to the axial location z for the (T) thermal boundary 

condition, ( )( )T mNu , is defined below: 

( ) ( )

1
( )

( ) inlet

z

T m Tz
inlet

Nu Nu dz
z z


                      (3.47) 

 The variations with axial distance of the peripherally-averaged and the mean Nusselt 

numbers, ( )TNu  and ( )( )T mNu , respectively, are presented in Figure 3.7. The computed 

results of Chandrupatla and Sastri (1978) for ( )( )T mNu  are also shown in this figure. 

There is excellent agreement between the ( )( )T mNu  results yielded by the proposed 

method and those of Chandrupatla and Sastri (1978) is excellent. 

 

 

Figure 3.7: Developing laminar forced convection in a straight duct with square cross-
section: variation with axial distance of ( )TNu  and ( )( )T mNu for Pr = 0.72. 
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3.5. A FINITE VOLUME METHOD FOR THREE-DIMENSIONAL PARABOLIC FLOW AND 

HEAT TRANSFER IN STRAIGHT DUCTS OF RECTANGULAR CROSS-SECTION 

 A CVFEM for the prediction of three-dimensional parabolic fluid flow and heat 

transfer in straight ducts of uniform regular- and irregular-shaped cross-section was 

formulated and tested in earlier portions of this chapter. A simpler finite volume method 

(FVM) based on the methodology put forward in the aforementioned CVFEM is 

presented in this section. This FVM is specially adapted (and thus very cost-effective) for 

the solution of three-dimensional parabolic fluid flow and heat transfer in straight ducts 

of rectangular cross-section. As the full details of the CVFEM have already been 

presented in earlier sections of this chapter, only a succinct overview of the main features 

of the three-dimensional FVM is presented this section. 

 

3.5.1 Rectangular Domain Discretization 

The calculation domains considered in this section consist of straight uniform ducts of 

rectangular cross-section. Following a discretization process similar to the previously 

formulated CVFEM, the calculation domain is first segmented into a series of contiguous 

slabs perpendicular to the z-axis: each slab encompasses the region between two adjacent 

parallel cross-sectional planes, one upstream and the other downstream. These slabs need 

not have the same thickness (axial step-size, z ). 

Next, each cross-sectional (x-y) plane of the duct is first discretized into contiguous 

rectangular control volumes that fill the domain exactly. Then, nodes or grid points are 

located at the geometric centers of the control volumes. These grid points or nodes lie on 

lines that are parallel to the coordinate axes, and these grid lines could be non-uniformly 

spaced. This discretization of the rectangular duct cross-section and the associated 

nomenclature are illustrated in Figures 3.8 and 3.9, respectively.  
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Figure 3.8: Discretization of a rectangular cross-section of the duct at each axial (z) 
location: dashed lines indicate control volume faces; solid dots indicate nodes or grid 
points; solid lines denote grid lines; and the hatched regions show two control volumes, 
one in the domain interior and the other adjacent to its boundary. 
 

 
 
                                  (a)                                                          (b)  

Figure 3.9: Cross-sectional grid and related nomenclature for (a) a node C located in the 
domain interior; and (b) a node C located adjacent to a boundary. 

 
The boundaries of the cross-sectional control volumes associated with corresponding 

pairs of upstream and downstream nodes are joined to form rectangular parallelepiped 

control volumes of extents x , y , and z  in the x, y, and z coordinate directions, 

respectively as shown in Figure 3.10. All dependent variables and the fluid thermophysical 
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properties are stored at the same set of nodes (co-located formulation) in the upstream (z) 

and downstream (z + z ) cross-sections. 

 

Figure 3.10: Formation of a rectangular parallelepiped control volume with 
corresponding pairs of upstream and downstream nodes, and related notation. 
 

3.5.2 Discretization of the Conservation Equations 

The governing differential equations, Eqs. (3.1) - (3.5), are first integrated over the 

control volumes, such as the one shown in Figure 3.10, and then cast in the following form 

with respect to a specific (per unit mass) scalar dependent variable  : 

       

    0

d n e

x x y ye w n s
u s w

n e d n e

d u
s w u s w

J J dy J J dx dz

w w dxdy S dxdydz   

           

    

  

    
                          (3.48) 

In this equation, S  is a volumetric source term associated with  ; indices w, e, s, n, u, 

and d correspondingly refer to the west-, east-, south-, north-, upstream- and downstream-

faces of the rectangular parallelepiped control volume based on the nomenclature 
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presented in Figures 3.9 and 3.10; and xJ  and yJ  are the (advection + diffusion) fluxes 

of   in the x and y directions, respectively: 

, , , ,  and  x Advec x Diff x y Advec y Diff yJ J J u J J J v
x y 
     

       
 

  (3.49) 

In Eq. (3.49),   is the diffusion coefficient associated with  . 

In the derivation of these discretized equations, the x- and y-direction advection and 

diffusion transport terms are discretized using the hybrid scheme [Patankar (1980)]. This 

scheme is second-order accurate at low velocities (strictly, at grid Peclet number values 

less than 2) and uniform grids; a second-order quadratic interpolation is used at the cross-

sectional boundaries, and appropriately adjusted to incorporate the specified boundary 

conditions [Baliga and Atabaki (2006)]. 

The reduced perturbation pressure, p , in the cross-sectional (x-y) plane is 

interpolated using piecewise-linear functions between the nodes. In the mass flow rate 

terms, the u and v velocity components are interpolated using the so-called momentum 

interpolation scheme [Rhie and Chow (1983)], to avoid undesirable checkerboard-type 

pressure and velocity distributions that would otherwise afflict this equal-order co-located 

FVM [Patankar (1980)]. In this work, the fluid properties  ,  , pc , and k are assumed 

to be essentially constant for each case of interest. In the main-stream (z) direction, a 

fully-implicit discretization scheme is used [Patankar (1980)] at each axial step, z . 

Following the recommendations of Patankar (1980), the source term is linearized, if 

required, as follows: ( ) ( )C PS S S    . 

The algebraic approximations to the integral conservation equations are derived using 

the above-mentioned interpolation functions for the dependent variable ( ) the 

corresponding fluid properties (ρ and  ) and the source term ( S ). 

The final algebraic approximation is rearranged to obtain the following form of the 

discretized equation for C : 
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              (3.50) 

In the above equation, the grid-related diffusion conductances, D, the mass flow rates, F, 

and the Peclet numbers, Pe , are given by the following expressions, with respect to the 

notation in Figures 3.9 and 3.10: 
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               (3.51) 

In the hybrid scheme, the function  A Pe  is given by the following equation 

[Patankar (1980)]: 

  0, 1 0.5A Pe Max Pe 
 

                                                                                      (3.52) 

It should also be noted that when the solution is fully converged, continuity requirements 

are satisfied for each control volume and    ( ) 0e w n s d u
F F F F w w x y           . 

 

3.5.3 Solution of the Discretization Transport Equations 

To advance the solution from an upstream cross-section at z to the next downstream 

cross-section at z + z , an overall sequential iterative solution procedure was used to 

solve the nonlinear coupled discretized equations. This procedure incorporates elements 

of the sequential iterative variable adjustment (SIVA) procedure proposed by Saabas and 

Baliga (1994) and the semi-implicit method for pressure-linked equations revised 

(SIMPLER) of Patankar (1980). In each overall iteration of this procedure, decoupled and 
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linearized sets of the discretized equations for u, v, w, p , and   were solved iteratively 

using a line-Gauss-Seidel method [Sebben and Baliga (1995)], and ( / )dP dz  was 

calculated using the overall mass flow rate balance requirement given in Eq. (3.8). Full 

details of this iterative solution method are summarized in section 3.3.10 of this chapter 

and also provided in the work of Jesuthasan and Baliga (2009b). The discretized 

equations for u, v, p , and   were under-relaxed using an implicit scheme proposed by 

Patankar (1980), with the following under-relaxation factors: 0.8u v   , 0.9p  , 

and 1.0  ; no under-relaxation was used or necessary in the solution of the 

discretized equations for w and ( / )dP dz . At each axial step, convergence of the 

aforementioned overall sequential iterative solution procedure was assumed to be 

achieved when suitably normalized absolute residues of the discretized equations for the 

dependent variables were all less than 10 – 6. 

 

3.6. SUMMARY 

 A control volume finite element method (CVFEM) for the prediction of three-

dimensional parabolic fluid flow and heat transfer in straight ducts of uniform regular- and 

irregular-shaped cross-sections was first presented and discussed in this chapter. The 

method has the following novel features: a formulation based on extensions and 

amalgamation of ideas put forward in a seminal staggered-Cartesian-grid three-dimensional 

parabolic finite-volume method proposed by Patankar and Spalding (1972) and a co-located 

equal-order planar two-dimensional elliptic control-volume finite element method discussed 

by Baliga and Atabaki (2006); a step-by-step marching solution procedure in which the non-

linear coupled discretized equations are solved at each axial step using an adaptation of a 

sequential iterative variable adjustment scheme (SIVA) proposed earlier by Saabas and 

Baliga (1994); and a computationally efficient automatic axial step-size selection procedure. 

The proposed method was applied to a relatively simple but effective test problem that 

involved developing laminar fluid flow and forced convection in a straight duct of square 

cross-section. The results obtained were checked against some well-established analytical, 

experimental, and numerical results available in the published literature [Shah and London 
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(1978); Goldstein and Kreid (1967); Beavers and Sparrow (1970); and Chandrupatla and 

Sastri (1978)]: the agreement between the various results was uniformly excellent, 

indicating the validity of the formulation and the successful implementation of the proposed 

numerical method. 

 Following that, the methodology put forward in the proposed CVFEM was adapted to 

formulate a simpler finite volume method (FVM), particularly well suited for predictions of 

three-dimensional parabolic fluid flow and heat transfer in straight ducts of rectangular 

cross-section. This FVM is used in the next chapter to study fluid flow and heat transfer 

phenomena in the rectangular vapor grooves of LHP evaporators. Based on this study, 

novel correlations for reliable and cost-effective calculations of the overall pressure drop 

and bulk temperature of the vapor in these grooves are proposed. 
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Chapter 4: 

Modeling Laminar Flow and Heat Transfer in Rectangular 
Vapor Grooves of Evaporators used in Loop Heat Pipes 
 

 The modeling of steady laminar flow and heat transfer in straight rectangular vapor 

grooves machined into the metallic walls of flat evaporators used in LHPs, akin to that 

shown in Figure 2.1(b) and illustrated once more (for convenience) in Figure 4.1, is the 

main focus of this chapter. The problems of interest involve a straight rectangular duct 

with one end blocked, and inflow of vapor from the bottom lateral surface with an 

injection velocity, vinj, and temperature, injT , as shown schematically in Figure 4.2.  

 

 

                                   (a)                                                                  (b)    
 
Figure 4.1: (a) schematic representation (not to scale) of a loop heat pipe with a flat 
evaporator; and (b) details of a cross-section of the flat evaporator. 
 

 As was mentioned earlier in Chapter 2, in available quasi-one-dimensional models of 

LHPs, for example, in the works of Kaya and Hoang (1999), Ghajar and Darabi (2005), 

Maydanik (2005), Atabaki (2006), Atabaki et al. (2007), Bai et al. (2009b), and Singh et 

al. (2009), and also in a recent quasi three-dimensional model of heat transfer in an LHP 

evaporator with a fully-saturated wick [Li and Peterson (2011)], the pressure drops for 

vapor flowing through grooves in the metallic walls of the evaporator are computed using 

a friction-factor correlation that applies strictly only in the fully-developed region of fluid 
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flows in straight rectangular ducts with impermeable walls. This approach is inapplicable 

or ad hoc, at best, and the resulting errors can become serious if the pressure drop in the 

vapor grooves is a significant contributor to the overall pressure drop in the LHP. Thus, 

more accurate correlations for predicting the pressure drop in the vapor grooves are 

needed. There is also a need for correlations for calculating the bulk temperature of the 

vapor as it leaves the vapor grooves and enters the vapor header of the evaporator. The 

work reported in this chapter addresses these needs. 

 

 

                                 (a)                                                              (b) 

 
Figure 4.2: (a) schematic representation of vapor flow in rectangular grooves of a flat 
evaporator of an LHP; (b) cross-sectional (y-z plane) view of this flow.  
 

 In the published literature, there are many papers related to steady laminar flow and 

heat transfer in straight ducts with an inlet velocity imposed at one end, blowing or 

suction along one or more lateral surfaces, a variety of thermal boundary conditions, and 

an outflow condition at the other end: examples include the works of Berman (1953), 

Taylor (1956), Yuan and Finkelstein (1958), Kinney (1968), Bundy and Weissberg 

(1970), Pederson and Kinney (1971), Raithby (1971), Raithby and Knudsen (1974), Rhee 

and Edwards (1981), Ku and Leidenfrost (1981), Hwang et al. (1993), Cheng et al. 

(1994), and Beale (2005). The fluid flows investigated in these papers are different from 

the vapor flows of interest in which, as shown schematically in Figure 4.2, one end of the 

rectangular duct is blocked (there is no inlet velocity at this end). Nevertheless, beyond a 

sufficient distance downstream of the inlet plane in the fluid flow problems investigated 
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by Hwang et al. (1993) and Cheng et al. (1994), and the blocked end in the problems of 

interest (z = 0 in Figure 4.2), the flows become fully developed (for the case of uniform 

injection on the bottom wall) and essentially similar (details of this fully-developed 

region will be elaborated later in this chapter). However, Hwang et al. (1993) and Cheng 

et al. (1994) reported values and correlations for only cross-sectional average skin-

friction coefficient (akin to the Fanning friction factor, based on the cross-sectional 

average wall shear stress), and those results cannot be used for computing the overall 

pressure drops in the vapor grooves of interest in this work. The thermal boundary 

conditions considered by Hwang et al. (1993) and Cheng et al. (1994), namely, constant 

heat flux at the bottom wall, adiabatic conditions at the other walls, and a uniform fluid 

temperature at the inlet plane of the duct, are also different from those that are relevant to 

the problems investigated in this work. Yuan et al. (2001) have investigated fully-

developed laminar flow and heat transfer in fuel cell ducts with different rectangular and 

trapezoidal cross-sections. However, they seem to have ignored cross-stream velocities in 

the fully-developed region, considered only relatively low values of an injection (or 

suction) Reynolds number (magnitude of 2.5 and lower, which may be adequate for fuel 

cells, but not for LHP applications), reported only fanning friction factor values (based on 

the average shear stress on the walls), and used thermal boundary conditions different 

from those considered here. Thus, their results too are not directly applicable for the 

vapor flows and heat transfer phenomena investigated in this work. 

 There are also many published papers on vapor flows in heat pipes: examples include 

the works of Busse (1973), Tien and Rohani (1974), Chen and Faghri (1990), and Leong 

et al. (1996). However, in heat pipes, both ends of the core vapor-flow passage are 

blocked, with blowing (inflow) and suction (outflow) along portions of the lateral surface 

of this passage, and these boundary conditions are not the same as those in the vapor 

grooves of LHP evaporators. 

 Detailed studies aimed at elucidating the fluid flow, heat transfer, and liquid-vapor 

phase-change phenomena in the wick, forced convection in the vapor grooves, and 

conjugate heat conduction in the body of LHP evaporators have been presented in Cao 

and Faghri (1994), Figus et al. (1999), Kaya and Goldak (2006), Ren et al. (2007), 

Chernysheva and Maydanik (2008), Li and Peterson (2011), and Ren (2011). While these 
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studies have enhanced the understanding of the physics of the aforementioned transport 

phenomena, they do not provide information or correlations that can been directly used to 

enhance available cost-effective quasi one-dimensional models of LHPs. 

 In this work, the three-dimensional parabolic finite volume method (FVM) put 

forward in Chapter 3 is used to simulate laminar, steady, Newtonian fluid flow and heat 

transfer in straight rectangular passages akin to that shown schematically in Figure 4.2, 

for parameter ranges representative of LHP operating conditions. The goal is not only to 

enhance the understanding of the fundamental aspects of such transport phenomena, but 

also to provide correlations that can be used to improve current quasi one-dimensional 

models of LHPs. The corresponding mathematical models, numerical solution method, 

results, and correlations for dimensionless pressure drop and bulk temperature of the 

vapor are presented and discussed in the following sections of this chapter. 

 

4.1 MATHEMATICAL MODELS 

 Mathematical models of the steady vapor flow and heat transfer phenomena 

schematically depicted in Figures 4.1 and 4.2 are presented in this section. The 

assumptions invoked in these models are presented first. Next, three-dimensional elliptic 

and parabolic approaches to the formulation of such models, their applicability to the 

flows of interest, and related issues are discussed concisely. Finally, the three-

dimensional parabolic forms of the governing equations and boundary conditions are 

presented in suitable dimensionless forms, along with related comments. 

 

4.1.1 Assumptions 

 The vapor is assumed to be a Newtonian fluid. Its density, dynamic viscosity, specific 

heat at constant pressure, and thermal conductivity for each case (or combination of 

parameters) of interest are evaluated at average values of the absolute pressure and the 

bulk temperature, and assumed to prevail (remain constant) over the whole flow passage 

(see Figure 4.2) for that case. 

 For the range of operating conditions of the LHPs considered in this work, the 

maximum value of Reynolds number, based on the hydraulic diameter of the grooves in 

the evaporator and the maximum value of the mean vapor velocity (which occurs at the 
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exit plane of the flow passage), is 2000 or lower. So it is assumed that the vapor flows of 

interest remain laminar throughout their passage through the grooves. 

 With respect to the thermal problem, the upper-half of the metallic body of the flat 

evaporator, in which the rectangular vapor grooves are cut (see Figure 4.1), has relatively 

high thermal conductance: thus, for each value of the specified rate of heat input (qapp), 

the corresponding steady-state value of the temperature of the impermeable walls of the 

vapor groove (indicated by Tw in Figure 4.2) is essentially constant. For detailed 

discussions of the liquid-vapor phase-change processes in the wick, the readers are 

referred to the works of Cao and Faghri (1994), Figus et al. (1999), Kaya and Goldak 

(2006), Li and Peterson (2011), and Ren (2011). Here, it should be noted that the total 

pressure drop in the vapor grooves is typically a small fraction of the average absolute 

pressure in these grooves. Thus, for each case of interest, the corresponding values of the 

saturation temperature, Tsat, at the liquid-vapor interface and the temperature difference 

(Tw – Tsat) that drives the liquid-vapor phase-change process in the wick are assumed to 

be essentially constant. It is also assumed that the viscous dissipation and compression 

work terms in the energy equation can be ignored (because values of the Eckert number 

are all much smaller than one), and compressibility effects are negligible (because values 

of the Mach number are all less than 0.1). 

 In the context of the above-mentioned assumptions, and keeping in mind that one of 

the key objectives of this work is to generate relatively simple and effective correlations 

that are suitable as inputs to practical quasi-one-dimensional models of LHPs (similar to 

the one put forward in Chapter 2), the injection velocity and temperature of the vapor 

entering the groove through its bottom surface (see Figure 4.2), injv  and inj satT T , 

respectively, are considered to be essentially uniform for each case of interest. 

 

4.1.2 Overview of Elliptic and Parabolic Approaches, their Applicability, and 
Related Issues 

In the region adjacent to the blocked end of the rectangular vapor groove (the x-y 

surface or plate at z = 0 in Figure 4.2), though the overall fluid flow is in the positive z 

direction and the cross-sectional-average value of the z-direction velocity component, 

wav, increases with the axial coordinate, z, a zone of recirculating fluid flow can be 
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established next to the upper surface (y = b). In this region of the vapor groove, the 

velocity, pressure, and temperature fields are governed by the continuity equation, and 

the full three-dimensional, elliptic, forms of the Navier-Stokes and energy equations 

[White (1991)]. For the problems of interest, however, results of preliminary computer 

simulations based on these full forms of the governing equations for large values of the 

aspect ratio (AR = a/b  , so the fluid flow and heat transfer are essential two-

dimensional, with negligible variations in the x direction ) showed that the maximum z-

extent of the aforementioned zone of recirculating flow is less than 0.1Dh, where           

Dh = 4ab/{2(a+b)} is the hydraulic diameter of the rectangular vapor groove. The results 

of these preliminary computations also showed that for 4 hz D , that is, sufficiently 

downstream of the aforementioned recirculating flow zone, the following conditions 

prevail: there exists a predominant fluid flow along the lengthwise (positive z) direction 

of the vapor groove, and no flow reversal is encountered in this direction; the rates of 

viscous and conduction transport in this mainstream (z) direction are negligible compared 

to the corresponding rates of advection transport and the rates of cross-stream viscous 

and conduction transport; and the influence of the downstream pressure field on the 

upstream flow conditions is negligible. Thus, for 4 hz D , the steady vapor flow and heat 

transfer phenomena considered in this work can be characterized as three-dimensional 

parabolic, with corresponding significant simplifications of the governing equations, as 

discussed in the seminal work of Patankar and Spalding (1972) and also detailed in 

Chapter 3 of this thesis. 

For large values of the aspect ratio, a/bAR   , simulations of the essentially 

two-dimensional fluid flow and heat transfer phenomena of interest were undertaken 

using both elliptic and parabolic forms of the governing equations. The differences 

between the corresponding results of these two sets of simulations (some of which will be 

presented in subsequent sections), including those between cumulative results such as 

overall drop of cross-sectional-average reduced pressure ( 0z zP P  ) and increase in bulk 

temperature ( , , 0b z b zT T  ) of the vapor, became essentially imperceptible (negligibly 

small) for 4 hz D . For finite (and with respect to LHP designs, practical) values of the 

aspect ratio, the extent of the above-mentioned zone of recirculating flow in the region 
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adjacent to the blocked end plate (at z = 0) would be comparable to that for AR  , 

considering the confining effects of the two vertical side walls (at x = 0 and x = a in 

Figure 4.2): thus, the corresponding results produced by elliptic and parabolic models 

would become similar for z   4Dh. In practice and also in several recent publications on 

LHPs [Chu et al. (2004); Ghajar et al. (2005); Bai et al. (2009a); Vasiliev et al. (2009); 

Lin et al. (2010)], values of the length-to-hydraulic-diameter ratio (L/Dh) of the vapor 

grooves lie in the range of about 6 to 190. Thus, even though the parabolic model cannot 

predict the relatively small zone of the recirculating flow (z-extent less than 0.1Dh) in the 

region adjacent to the blocked end (z = 0) of the vapor groove, and it is not applicable to 

the flow and heat transfer in this recirculating zone, from a practical point of view, it can 

be used for satisfactory and computationally cost-effective predictions of the overall 

pressure drop and increase in bulk temperature over the full length of the vapor groove 

(L) in problems of interest. This approach was adopted in the investigation presented in 

this chapter. The governing equations of the parabolic model are reviewed in the next 

subsection. 

 

4.1.3 Dimensionless Forms of Three-Dimensional Parabolic Governing Equations 
and Boundary Conditions 

 With reference to the Cartesian coordinate system and notation shown in Figure 4.2, 

the components of the velocity vector in the x, y, and z directions are denoted by u, v, and 

w, respectively. The temperature of the fluid is denoted by T. In the context of the 

assumptions discussed earlier, the mass density,  , the dynamic viscosity,  , the 

specific heat at constant pressure,  cp, the thermal conductivity, k, the wall temperature, 

Tw, the injection velocity, vinj, and the injection temperature, Tinj = Tsat, are uniform and 

constant for each case of interest. 

 The reduced pressure (static pressure minus the hydrostatic pressure) is denoted by P, 

and following the parabolic model proposed by Patankar and Spalding (1972), it is 

expressed in terms of its cross-sectional average value, P , and a perturbation component 

about this average, p, as follows: 

1
( , , ) ( ) ( , , ) ; ( ) ( , , )

c sc s A

P x y z P z p x y z P z P x y z dxdy
A



           (4.1) 
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In this equation, c sA   is the cross-sectional area of the duct. Again following Patankar 

and Spalding (1972), it is assumed that ( / )p z   << /dP dz , and the following 

approximation and expressions apply: 

/ / ; / / ; / /P z dP dz P x p x P y p y                      (4.2)  

 At this stage, with reference to the Cartesian coordinate system and notation shown in 

Figure 4.2, the following dimensionless variables and parameters are introduced: 

* 2 * 2

/ b; / b; / b; / b

/ ; / ; /

/(0.5 ); /(0.5 )

( ) /( )

Re b / ; Pr /

inj inj inj

inj inj

inj w inj

inj inj p

X x Y y Z z AR a

U u v V v v W w v

p p v P P v

T T T T

v c k

 



  

   
  

 

  

 

                      (4.3) 

Here, Reinj  is the injection Reynolds number based on the height of the vapor groove, b, 

and the injection velocity, vinj (see Figure 4.2). 

 In the context of the above-mentioned assumptions and in terms of the dimensionless 

variables and parameters given in Eq. (4.3), the differential equations in the three-

dimensional parabolic model of the laminar flow and heat transfer phenomena of interest 

can be cast in the following forms (note that the dimensional forms of these equations 

were presented earlier in Section 3.2, so they are not presented here): 

Continuity: 

0
U V W

X Y Z

  
  

  
                 (4.4) 

x-momentum: 

* 2 2

2 2

1
( ) ( ) ( )

Reinj

p U U
UU VU WU

X Y Z X X Y

      
           

                  (4.5) 

y-momentum: 

* 2 2

2 2

1
( ) ( ) ( )

Reinj

p V V
UV VV WV

X Y Z Y X Y

      
           

                (4.6) 

z-momentum: 

* 2 2

2 2

1
( ) ( ) ( )

Reinj

dP W W
UW VW WW

X Y Z dZ X Y

     
          

             (4.7) 
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Energy: 

2 2

2 2

1
( ) ( ) ( )

Re Prinj

U V W
X Y Z X Y

   
     

         
               (4.8) 

In addition to Eqs. (4.4) to (4.8), an equation for the overall or total mass flow rate 

through the duct at each value of the main-stream coordinate (z) is needed and must be 

respected. With reference to the notation given in Figure 4.2, and with the assumption of 

uniform injection velocity, injv , this equation can be expressed in the following form: 

(a ) (ab) , or

/ ( / b)
c s

c s inj av

A

av av inj

m wdA z v w

W w v z Z

  


  

  


           (4.9) 

 Equations (4.4) to (4.9) form a parabolic system in the main-stream coordinate direction, 

Z, with six unknowns, U, V, W, *p ,  , and 
*( / )dP dZ . To complete the mathematical 

description of the problem, the boundary conditions and the dimensionless parameters (AR, 

Reinj , and Pr ) must be specified. Once the problem description is completed, the parabolic 

model allows a marching solution procedure in the Z direction, so the solution can be 

advanced step-by-step along the duct, from Z = 0 to Z = L/b, as was described earlier in 

Chapter 3 [Patankar and Spalding (1972); Jesuthasan and Baliga (2009b)]. 

 In this work, with respect to the problem schematic given in Figure 4.2, and the 

dimensionless variables and parameters given in Eq. (4.3), the following boundary 

conditions apply: 

* *

* *

At 0 and , 0, 1

At 0, 0, 1, 0

At 1, 0, 1

At 0, 0, 1,

In each c-s, at  0.5 and 0.5,

ref

ref

X X AR U V W

Y U W V

Y U V W

Z U V W P P

X AR Y p p








     
    
    

     

  

            (4.10)       

In the parabolic mathematical model, in the main-stream direction, boundary conditions are 

needed only at Z = 0. With respect to the boundary conditions on *P  and *p , as the fluid 

density (  ) is assumed to be essentially constant, the absolute value of the fluid pressure is 

immaterial, and only the drops in the fluid pressure (that drive the fluid flow) matter 

[Patankar (1980)]. In the proposed parabolic model, as is indicated in Eq. (4.10), the value 
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of *P  is assigned a suitable reference value ( *
refP ) at Z = 0; and in each cross-section, *p  is 

assigned a suitable reference value ( *
refp ) at X = 0.5AR and Y = 0.5. Considering that 

sintered porous metals of relatively low porosity (typically, 0.30 – 0.50) and small pore 

diameter (2.0 to 70 m ) are the materials of choice for the wick in LHPs, the following 

conditions were assumed to apply at the interface between the wick and the bottom surface 

of the vapor groove, y = 0, as shown in Figure 4.2: the velocity components tangential to this 

interface are zero; the normal component of the velocity is equal to the injection velocity 

(thus, V = v/vinj = 1); and the temperature of the fluid is equal to the injection temperature 

(thus,   = 0). Thus, the dimensionless velocity components and temperature, defined in Eq. 

(4.3), respect the following conditions at Y = 0: U = W = 0, V = 1, and   = 0. In this context, 

it should also be noted that the so-called interfacial stress-jump and flux-jump conditions, 

which are often used to account for implied excess viscous and inertial stresses and heat 

fluxes that are caused if the porosity of the wick is assumed to be uniform right up to its 

interface with the open domain [Beavers and Joseph (1967); Ochoa-Tapia and Whitaker 

(1995); Nield and Bejan (2006)], are considered to have negligible effects in the problems of 

interest in this work. 

 

4.2 NUMERICAL SOLUTION METHOD 

 

4.2.1 Background 

The co-located finite volume method (FVM) presented earlier in Chapter 3 was used 

to solve the three-dimensional parabolic mathematical model described in the previous 

section. Its formulation is closely related to that of the three-dimensional parabolic, co-

located, control-volume finite element method (CVFEM) of Jesuthasan and Baliga 

(2009b). The full details of these numerical methods have already been presented in 

Chapter 3. So they are not presented again in this section. Rather, some notes on the 

verification of this FVM are presented in the next subsection. 
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4.2.2 Notes on Verification of the FVM 

Before using the proposed three-dimensional parabolic FVM to investigate the fluid 

flow and heat transfer phenomena of interest, the computer program incorporating this FVM 

was verified by using it to solve several test problems and comparing the results to 

corresponding analytical, numerical, and experimental results available in the literature. 

Three most relevant of these test problems are presented and discussed in this section.  

 The proposed three-dimensional parabolic FVM was used to solve a problem studied 

earlier by Berman (1953). This problem involves laminar flow in a parallel-plate channel as 

shown schematically in Figure 4.3 (a): a parabolic velocity distribution (characteristic of 

Poiseuille flow in a parallel-plate channel) with an average value of wav, inlet, is prescribed at 

its inlet plane; and uniform injection velocity, vinj, is imposed on its top and bottom 

permeable walls. The following dimensionless parameters were investigated:            

Reinlet   ,( / )av inletw H   = 1000, and ,Reinj H   ( / )injv H   = 2. With reference to the 

notation given in Figure 4.3 (a), the proposed three-dimensional FVM was used to solve this 

problem with the following uniform grids: ( / )x H  = 1/(NX – 2), with NX = 5 and slip and 

impermeability conditions imposed at (x/H) = 0 and 1; ( / )y H  = 1/(NY – 2), with         

NY = 22, 42, and 82; and ( / )z H  = 0.050, 0.025, and 0.0125. At each value of (z/H), the 

dimensionless cross-sectional reduced pressure drop, * *
0( )zP P  = 2

0{( ) /(0.5 )}z injP P v  , 

and dimensionless maximum z-direction velocity component, ( / )av maxw w , computed 

using the proposed FVM, were compared to the corresponding results yielded by the 

perturbation solution proposed by Berman (1953). The agreement between these results 

was uniformly excellent. For example, the absolute differences between the essentially 

grid-independent values of * *
0( )zP P   and ( / )av maxw w  at (z/H) = 100 (obtained using the 

extrapolation technique proposed by Richardson (1910) and the computed results yielded 

by the proposed FVM with the two finest grids in the y and z directions) and the 

corresponding results of Berman (1953) were 0.37% and 0.33%, respectively. 

 In the next test, the proposed three-dimensional parabolic FVM was used to solve a 

problem studied earlier by Raithby (1971). This problem, which is an extension of the 

Berman (1953) problem discussed in the previous paragraph, involves laminar flow and heat 

transfer in a parallel-plate channel shown schematically in Figure 4.3 (b): uniform fluid 
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velocity and temperature, inletw  and Tinlet, respectively, are prescribed at its inlet plane; 

uniform injection velocity, vinj, is imposed on its top and bottom permeable walls; over an 

initial unheated length, (Lunheated/H) = 50, that is long enough to ensure full-developed fluid 

flow prevails at z = 0 (for z  0, . . /F D avw w  is invariant with z, where avw  is the local cross-

sectional average velocity component in the axial direction; additional details of this fully-

developed flow are provided in Section 4.3), the injected fluid temperature is Tinlet; over the 

remainder of the permeable top and bottom walls (z > 0), the injected fluid temperature is 

inj inletT T . The following dimensionless parameters were investigated: Reinlet   

( / )inletw H   = 1000, ,Reinj H   ( / )injv H   = 10, and Pr = 4.0.  

(a)   

(b)  

Figure 4.3: Schematic illustrations of two of the test problems that were used for 
verification of the proposed FVM: (a) problem investigated and solved by Berman 
(1953); and (b) problem investigated and solved by Raithby (1971). 
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With reference to the notation given in Figure 4.3 (b), the proposed three-dimensional FVM 

was used to solve this problem with the following uniform grids: ( / )x H  = 1/(NX – 2), 

with NX = 5 and slip and impermeability conditions imposed at (x/H) = 0 and 1;     

( / )y H  = 1/(NY – 2), with NY = 22, 42, 82, 102, and 122; and ( / )z H  = 0.0125. In this 

problem, for ( / ) 20z H  , a fully-developed regime is established in which both ( / )avw w  

and 0( ) /( )inj y injT T T T     are independent of ( / )z H . For (z/H) values in this fully-

developed region, the values of  , computed using the proposed FVM, were compared to 

the corresponding results yielded by the asymptotic-expansions solution proposed by 

Raithby (1971). The agreement between these results was uniformly very good. For 

example, the absolute differences between the essentially grid-independent values of   at 

(y/H) = 0.1 and 0.2 (obtained using the extrapolation technique proposed by Richardson 

(1910) and the computed results yielded by the proposed FVM with the two finest grids 

in the y direction) and the corresponding results of Raithby (1971) were less than 1.16% 

and 1.10 % (of the centerline value of   = 1), respectively. 

 In a final test, the proposed three-dimensional parabolic FVM was used to solve the 

fluid flow portion of a problem studied numerically by Hwang et al. (1993). This problem 

involves laminar flow in a straight duct of square cross-section, with uniform fluid flow 

specified at the inlet plane, and uniform injection on the lower surface: the schematic 

illustration given in Figure 4.3 applies to this problem, but with the blocked end at z = 0 

replaced with uniform flow specified at the inlet plane, and with AR = a/b = 1. Beyond a 

sufficient distance downstream from z = 0, the fluid flow in this test problem becomes fully 

developed. In this fully-developed region, the following conditions are achieved [Hwang et 

al. (1993)]: / avw w  is invariant with z (where avw  is the local cross-sectional-average axial 

velocity at z); and Re
hFanning Df = 2

, ,{ /(0.5 )}( / )w z c s av av av hw w D     = constant, where 

, ,w z c s av   is the cross-sectional-average wall shear stress in the axial direction, and hD b  

when AR = 1. The proposed FVM was used to compute the values of , . .( / )av max F Dw w  and 

. .( Re )
hFanning D F Df  for Reinj  = ( / )injv b   = 5, 10, and 20, with uniform cross-sectional grids 

of 41 x 41 nodes (Grid 1), 61 x 61 nodes (Grid 2), and 81 x 81 nodes (Grid 3). Essentially 

grid-independent values were then obtained using the extrapolation technique of  
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Richardson (1910) with the values obtained with Grids 2 and 3, and the extrapolated results 

were compared to the corresponding numerical results of Hwang et al. (1993), which were 

obtained with a uniform cross-sectional grid of 41 x 41 nodes. These results and 

comparisons are summarized in Table 1. The values yielded by the proposed FVM with the 

successively finer grids converge monotonically to the corresponding extrapolated results. 

The extrapolated results compare very well with the corresponding numerical results of 

Hwang et al. (1993), with |% Diff| values less than 0.255 and 1.736 for , . .( / )av max F Dw w  and 

. .( Re )
hFanning D F Df , respectively. 

 
Table 4.1: Computed values of , . .( / )av max F Dw w  and . .( Re )

hFanning D F Df  for AR = 1, and 

comparisons with the results of Hwang et al. (1993). 

Reinj

 Results 
Grid 1 Grid 2 Grid 3 Richardson 

extrapolation
/ Grids 2 & 3 

Hwang 
et al. 

(1993) 
|% Diff|41 x 41 61 x 61 81 x 81 

5 

, . .( / )av max F Dw w  2.018 2.020 2.021 2.022 2.020 0.099 

. .( Re )
hFanning D F Df

 
15.931 15.882 15.857 15.837 15.73 0.676 

10 

, . .( / )av max F Dw w  1.988 1.975 1.968 1.963 1.968 0.255 

. .( Re )
hFanning D F Df

 
17.240 17.552 17.691 17.799 17.49 1.736 

20 

, . .( / )av max F Dw w  1.891 1.895 1.896 1.897 1.893 0.211 

. .( Re )
hFanning D F Df

 
21.235 21.062 20.985 20.926 20.65 1.319 

 

4.3 RESULTS AND DISCUSSIONS 
 

4.3.1 Overview: Dimensionless Parameter Ranges Considered and Definitions of 
Dimensionless Forms of Results 

 The results and discussions presented in this section pertain to computer simulations 

of steady laminar flow and heat transfer in straight rectangular vapor grooves machined 

into the metallic walls of evaporators used in LHPs, similar to those shown in Figures 4.1 

and 4.2. Keeping in mind practical applications [Chi (1976); Faghri (1995); Silverstein 
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(1992); Chu et al. (2004); Maydanik (2005); Launay et al. (2007); Wang et al. (2008); 

Bai et al. (2009); Vasiliev et al. (2009)], and with respect to the notation shown in Figure 

4.2 and the dimensionless parameters defined in Eq. (4.3), the following values of the 

aspect ratio, AR, injection Reynolds number, Reinj , and fluid Prandtl number, Pr, were 

considered in this work: 

( / ) 1, 2, 5, 

Re ( / ) 0,  0.1, 1, 10, 50, and 100

Pr ( / ) 1, 2,  and 3

inj inj

p

AR a b

v b

c k

 



  
 

 

          (4.11)  

The groove with infinitely large aspect ratio (AR → ∞) was not selected for any particular 

practical relevance. Rather, it was chosen because it provides a computationally convenient 

setting for testing of the proposed FVM (see test problems described Section 4.2) and also 

for simulations using both elliptic and parabolic forms of the governing equations (and a 

comparative evaluation of the results, as described in the next subsection). It should also be 

noted that Reinj  = 0, which corresponds to no injection (or no rate of heat input to the LHP 

and thus no liquid-vapor phase-change process in the evaporator), was chosen mainly to 

allow checks of the FVM predictions against analytical solutions to the equations that 

govern fully-developed fluid flow in straight rectangular ducts with impermeable walls. 

 The chosen values of the Prandtl number bracket those of saturated vapors of 

ammonia, distilled water, ethanol, and isopropanol in the temperature range                  

300 K satT   400 K. 

 The results are presented in this section using the following dimensionless forms, in 

addition to the dimensionless variables and parameters already defined in Eq. (4.3): 

/ /{4 /(2 2 )} ; hydraulic diameter {4 /(2 2 )}

/ /{( ) /( )} ; local average axial vlocity {( ) /( )}

( ) /( ) ; local bulk temperature { }/{
c s

h h

av inj av inj

b b inj w b b p p

A

z D z ab a b D ab a b

w w w az v ba w az v ab

T T T T T wc Tdxdy wc dxd  


   
 

    

2 2
, ,

2
0

}

Re /  ;  R e /  ; Pr = /  ; Pe Re Pr

( / ) /(0.5 ) ; /(0.5 )

{( ) / ) /(0.5 )

c s

h

A

D av h inj inj p inj inj

Darcy h av Fanning w z c s av av

app z z h av

y

w D v b c k

f f dP dz D w f w

f P P z D w

    

  









  

   

 


 

                     (4.12)  
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In this equation, , ,w z c s av   is the cross-sectional-average wall shear stress in the axial 

direction. 

 

4.3.2 Computational Grids used in the Final Simulations for AR = 1, 2, and 5  

 Based on the results of grid-independence checks done for the test problems 

described in Section 4.2, the axial step size in the final three-dimensional parabolic FVM 

simulations of the problems of interest was chosen to be ( / )hz D  = 0.02, for all the 

values of the parameters specified in Eq. (4.11). For the values of Reinj   100 and     

Pr   3, which produce the steepest gradients of the dependent variables in the calculation 

domain for the cases considered, computations were done with uniform cross-sectional 

grids of 41 x 41 nodes (Grid 1), 61 x 61 nodes (Grid 2), and 81 x 81 nodes (Grid 3) for 

each value of AR (1, 2, and 5). In each of these checks, beyond a sufficient distance 

downstream from z = 0, the fluid flow and heat transfer become fully developed, and the 

following conditions prevail (elaborated further in Sections 4.3.4 – 4.3.5): / avw w  is 

invariant with z; Re
hDf = constant; b  is invariant with z. The absolute differences in the 

computed values of . .( Re )
hD F Df  and . .( )b F D  obtained with Grid 3 (81 x 81 nodes) and 

their essentially grid-independent values (obtained by applying the extrapolation technique 

of Richardson (1910) to the values obtained with Grids 2 and 3) were less than 0.31% and 

0.30%, respectively. Based on these grid checks, all final simulations of the problems of 

interest, for AR = 1, 2, and 5, were done with a uniform cross-sectional grid of 81 x 81 

nodes, and ( / )hz D  = 0.02. Details of the grid used in the computations for AR → ∞ are 

presented in the next subsection, along with other related results and discussions. 

 

4.3.3 Comparative Evaluation of Results Yielded by Elliptic and Parabolic Models 
for AR  → ∞ 
 In the rectangular groove with AR → ∞, which corresponds to a parallel-plate 

channel, the steady laminar fluid flow and heat transfer phenomena of interest (see 

schematic in Figure 4.2) are essentially two-dimensional. This problem was solved using 

an elliptic, two-dimensional, co-located, equal-order FVM [Baliga and Atabaki (2006)] 

and also the proposed three-dimensional parabolic FVM (described in Section 4.2 and 
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detailed in Chapter 3). The following dimensionless parameters were investigated:     

Reinj   ( / )injv b   = 0.1, 1, 10, 50, and 100; Pr   3; and ( / ) 8hL D  , where the hydraulic 

diameter is 2hD b  when AR → ∞. The boundary conditions specified in Eq. (4.10) apply 

here to both the elliptic and parabolic models. In the elliptic model, additional conditions are 

needed at the outlet plane located at ( / )hz D   ( / ) 8hL D  : the so-called outflow 

conditions (namely, negligible viscous and conduction transport in the z direction, compared 

to the advection transport in this direction) were imposed at the outlet plane [Patankar 

(1980)]. Using guidance from the results of test problems described in Section 4.2, the 

following essentially comparable grids were used: with the two-dimensional elliptic FVM, a 

uniform grid of 81 nodes in the y direction and 402 nodes in the z direction; and with the 

three-dimensional parabolic FVM, ( / )hz D  = 0.02 = constant, a uniform grid of 81 nodes 

in the y direction, and ( / )x b  = 1/(NX – 2), with NX = 5 and slip and impermeability 

conditions imposed at (x/H) = 0 and 1. 

 Streamline patterns obtained with the two-dimensional elliptic FVM for Reinj   0.1 and 

100 are presented in Figure 4.4 (a) and 4.4 (b), respectively.  

 

(a)  

(b)  

Figure 4.4: Streamline patterns obtained with the two-dimensional elliptic FVM for    
AR → ∞ and (a) Reinj   0.1 and (b) Reinj   100. 
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There is a recirculating-flow region in the top left-hand corner in both cases: the length of 

this recirculating-flow region in the z direction is less than 0.05 hD  and 0.1 hD  for 

Reinj  0.1 and 100, respectively. These lengths of the recirculating flow zone are quite 

small, considering that the vapor grooves in the evaporators of LHPs reported in the 

published literature have lengths that lie in the range 6 ( / )hL D   190.  

 The plots of the variations of Re
hDf , Re

happ Df , and b  with ( / )hz D  presented in 

Figures 4.5 (a), 4.5 (b), and 4.5 (c), respectively, show that for all practical purposes, fully-

developed conditions (namely, invariance of all these results with z) prevail for ( / )hz D   4. 

The plots in Figure 4.5 (a) show that the values of Re
hDf initially drop steeply with 

( / )hz D , then exhibit a mild increase, and finally asymptote to fully-developed (constant) 

values. The mild increase in the values of Re
hDf , which is especially evident in the results 

for Reinj  = 50 and 100, is due to the recovery of the cross-sectional-average static pressure 

as the fluid flows past the recirculating zones in the top left-hand corner of the groove (see 

Figure 4.4). This mild recovery of the cross-sectional-average static pressure is also evident 

in the plots of Re
happ Df  vs. ( / )hz D  in Figure 4.5 (b), but not to the same extent as it is in     

Figure 4.5 (a), as the cumulative pressure drop per unit length, 0( ) /z zP P z  , is used in the 

definition of appf  whereas the local axial gradient of this pressure, /dP dz , is used in f . 

(a)  
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(b)  

(c)  

Figure 4.5: Results obtained using the two-dimensional elliptic FVM for AR → ∞: 
variations with ( / )hz D  of (a) Re

hDf , (b) Re
happ Df , and (c) b . 
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(a)  
 
 

(b)  
 

Figure 4.6: Comparisons of results obtained using the two-dimensional elliptic and three-
dimensional parabolic FVMs for AR → ∞: variations with ( / )hz D  of (a) ( ) /( )app p app ef f  

and (b) ( ) /( )b p b e  . 

 
 Plots of the variations of ( ) /( )app p app ef f  and ( ) /( )b p b e   with ( / )hz D , where the 

subscripts p and e indicate results obtained with the parabolic and elliptic FVMs, 

respectively, are given in Figures 4.6 (a) and 4.6(b), respectively. For ( / )hz D   4, these 
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plots show that the cumulative results yielded by the parabolic and elliptic FVM are 

essentially the same, for all practical purposes. The distributions of ( / )avw w  and   at 

( / )hz D  = 4 obtained with the elliptic and parabolic FVMs are compared in Figures 4.7 (a) 

and 4.7 (b), respectively, and they too show that the differences between these results are 

negligible for all practical purposes. 

(a)  

(b)  

Figure 4.7: Comparisons of results obtained using the two-dimensional ellptic and three-
dimensional parabolic FVMs for AR → ∞ at ( / )hz D   4: distributions of (a) / avw w    

and (b)  . 
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 For AR = 1, 2, and 5, taking into consideration the confining effects of the impermeable 

walls at ( / )x b   0 and AR, similar favourable comparisons between the results obtained 

with the elliptic and parabolic FVMs as those demonstrated in Figures 4.6 and 4.7 are 

expected for ( / )hz D   4. As was mentioned earlier, the vapor grooves in the evaporators of 

LHPs reported in the published literature have lengths that lie in the range                         

6 ( / )hL D   190. Thus, it was concluded that the three-dimensional parabolic FVM 

(which is computationally much less expensive than the elliptic FVM, especially for         

AR = 1, 2, and 5) is satisfactory for obtaining values of ( / )avw w ,  , f , appf , and b  in the 

region 4 ( / )hz D   ( / )hL D  of the vapor grooves in the problems of interest, and it was 

used for all of the final simulations. 

 

4.3.4 Distributions of . .( / )av F Dw w  and . .F D  

 As was mentioned earlier, at a sufficient distance downstream of the blocked end (z = 0) 

of the vapor groove, ( / )hz D   4 in the problems of interest, the distributions of ( / )avw w  

and   become essentially invariant with ( / )hz D . Here, these fully-developed distributions 

are denoted by . .( / )av F Dw w  and . .F D . Plots of . .( / )av F Dw w  vs. ( / )y b  in the longitudinal 

symmetry plane at ( / ) 0.5x b AR  are shown in Figure 4.8 (a) for AR = 1: at Reinj  = 0.1, 

the rate of injection of vapor at the bottom surface of the groove is relative low, and the 

. .( / )av F Dw w  profile is almost symmetrical about the geometrical centerline at ( / ) 0.5y b   

and close to the profile for laminar full-developed flow in a straight duct with impermeable 

walls (no injection); and as Reinj  is increased, this dimensionless velocity profile get skewed 

and the location of . .,max( / )av F Dw w  shifts progressively upwards towards ( / )y b   1. Plots of 

. .( )F D  vs. ( / )y b  in the longitudinal symmetry plane at ( / ) 0.5x b AR  are shown in 

Figure 4.8 (b) for AR = 1 and Pr   3.0: at the lowest injection rate, Reinj  = 0.1, the . .F D  

profile is concave, with a value close to one ( wT T ) over a large portion of the duct cross-

section; and as Reinj  is increased, the . .F D  distribution gets progressively more convex, 

with the injected fluid temperature prevailing (yielding    0) over an increasing portion of 
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the duct cross-section. The distributions of . .( / )av F Dw w  for AR = 1 given in Figure 4.8 (a) 

were qualitatively similar to those obtained for AR = 2, 5, and  ; and the distributions of 

. .F D  given in Figure 4.8 (b) for AR = 1 and Pr = 3 were qualitatively similar to those 

calculated for AR = 2, 5, and   and Pr   1 and 2; therefore, they are not presented here. 

(a)  

 (b)  

Figure 4.8: Distributions of fully-devloped dimensionless velocity and temperature 
profiles on the longitudial symmetry plane located at ( / ) 0.5x b AR : (a) . .( / )av F Dw w  for 

AR = 1; and (b) . .F D  for AR = 1 and Pr = 3. 

 



 132

4.3.5 Axial Variations of . .( Re ) /( Re )
h happ D D F Df f  and b  

 The axial variation of the product of the apparent friction factor and Reynolds 

number, ( Re )
happ Df  normalized by the value of the product of Darcy friction factor and 

Reynolds number in the fully developed region . .( Re )
hD F Df  is plotted in Figure 4.9 (a) 

for AR = 1. These results show that for all cases considered, . .( Re ) /( Re )
h happ D D F Df f  

almost equals its asymptotic value of 0.5 for z  4. The rationale for the asymptotic value 

of 0.5 for this ratio is stated in the next paragraph. 

 In the problems of interest, . .( / )av F Dw w  is invariant with axial distance z, as was 

discussed in the previous subsection. Thus, . .F Dw  = ( , ) avfnc x y w , where ( , )fnc x y  is a 

function of the cross-section coordinates x and y, and with uniform injection on the 

bottom surface of the vapor groove, avw  varies linearly with z, as was shown in Eq. 

(4.12). With this condition in the fully-developed region, the corresponding cross-

sectional-average wall shear stress in the axial direction varies linearly with z; the 

associated axial gradient of total rate of transport of z-moment in the fully-developed 

region varies linearly with z; and the axial gradient of the cross-sectional-average reduced 

pressure needed to sustain the flow in the fully developed region also varies linearly with 

z. Thus, if the z = 0 were located in the fully developed region, and . .( / )F DdP dz z    

(which applies if z is large enough to make the value of . .( / )F DdP dz  at z = 0 negligibly 

small), then 2
0( ) / 2z zP P z   , and the ratio 0 . .{( ) / }/( / ) 0.5z z F DP P z dP dz   . 

Therefore, in the actual problems of interest, at sufficiently large values of the axial 

distance z, . .( Re ) /( Re )
h happ D D F Df f  asymptotes to the value of 0.5, regardless of the value 

of the aspect ratio or the shape of the cross-section of the vapor groove (as long as it is 

straight and axially uniform). The results given in Figure 4.9 (a) for AR = 1 show this 

behavior. Qualitatively similar results and the asymptotic value of 0.5 for 

. .( Re ) /( Re )
h happ D D F Df f  were also obtained for AR = 2, 5, and  . 
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(a)  

(b)  

Figure 4.9: Axial variations of (a) . .( Re ) /( Re )
h happ D D F Df f  for AR = 1, and (b) b  for 

AR = 1 and Pr = 3. 
 
 The axial variation of the dimensionless bulk temperature, b , is presented in Figure 

4.9 (b) for AR = 1 and Pr = 3. The results in this figure show that b  becomes invariant 

with z in the thermally fully-developed region. Qualitatively similar results were also 

obtained for   AR = 2, 5, and  , and Pr = 1 and 2. Predictions obtained with the three-

dimensional parabolic FVM indicates that this thermally fully-developed regime is 

established at very small values of ( / )hz D , but the elliptic FVM simulations done for AR 
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=   show that almost thermally fully-developed conditions prevail for ( / )hz D   4, and 

the values of . .( )b F D  obtained with the elliptic and parabolic FVMs are the same for all 

practical purposes. 

 

4.3.6 Variations of . .( Re )
hD F Df  and . .( Re )

hFanning D F Df  with AR and Reinj , and 

Correlations 
 
 The computed values of the . .( Re )

hD F Df  and . .( Re )
hFanning D F Df are presented in 

Figures 4.10 (a) and 4.10 (b), respectively, and also in Table 4.2. 

(a)  

(b)  

Figure 4.10: Variations of (a) . .( Re )
hD F Df  and (b) . .( Re )

hFanning D F Df  with Reinj  for      

AR = 1, 2, 5, and ∞. 
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Table 4.2: Computed values of . .( Re )
hD F Df  and . .( Re )

hFanning D F Df  

Reinj  Results 
AR 

1 2 5 ∞ 

0 
. .( Re )

hD F Df  5.691E+01 6.219E+01 7.628E+01 9.600E+01

. .( Re )
hFanning D F Df 1.423E+01 1.555E+01 1.907E+01 2.400E+01

0.1 
. .( Re )

hD F Df  5.755E+01 6.327E+01 7.774E+01 9.591E+01

. .( Re )
hFanning D F Df 1.425E+01 1.558E+01 1.909E+01 2.352E+01

1 
. .( Re )

hD F Df  6.341E+01 7.305E+01 9.111E+01 1.126E+02

. .( Re )
hFanning D F Df 1.450E+01 1.593E+01 1.932E+01 2.352E+01

10 
. .( Re )

hD F Df  1.235E+02 1.714E+02 2.318E+02 2.982E+02

. .( Re )
hFanning D F Df 1.769E+01 2.014E+01 2.363E+01 2.733E+01

50 
. .( Re )

hD F Df  3.690E+02 5.800E+02 8.422E+02 1.135E+03

. .( Re )
hFanning D F Df 2.862E+01 3.410E+01 3.994E+01 4.500E+01

100 
. .( Re )

hD F Df  6.530E+02 1.062E+03 1.571E+03 2.148E+03

. .( Re )
hFanning D F Df 3.785E+01 4.584E+01 5.354E+01 6.003E+01

 

 The values of . .( Re )
hD F Df , Reinj , and AR presented in Figure 4.10 (a) and Table 4.2 

were used to obtain the following correlation ( 2R  = 0.99): 

     
     

. . 1

3 2 1
0

3 2 1
1

( Re ) Re

  57.76 143.7 125.0 96

11.99 30.85 33.41 20.57

hD F D o injf a a

a AR AR AR

a AR AR AR

  

  

 

    

    

            (4.13) 

With uniform injection on the bottom surface of the vapor groove, avw  increases linearly 

with z, and in the fully-developed region, the axial gradient of the rate of transport of z-

momentum also increases linearly with z. Thus, in the fully-developed region, the axial 

gradient of the cross-sectional-average reduced pressure has to not only overcome the 

wall-shear force, but it must also provide the force necessary to maintain the rate of 
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increase of z-moment in the duct. The values of . .( Re )
hD F Df , . .( Re )

hFanning D F Df , AR, and 

Reinj  given in Table 4.2 were used to obtain the following correlation (maximum absolute 

error < 4.8%): 

   
     

. . . .

3 2 1

Re 4 Re Re  

8.776 24.08 28.59 18.62

h hD fanning D injF D F D
f f

AR AR AR



   

 

    
       (4.14) 

It should be noted that when Reinj   0,    
. . . .

Re 4 Re
h hD fanning DF D F D

f f , which is the 

correct relationship for fully-developed flows in straight in ducts with impermeable walls. 

 

4.3.7 Variations of . .( )b F D  with AR,  Reinj, and Pr, and Correlations 

 The computed values of the . .( )b F D  are presented in Figures 4.11 and also in      

Table 4.3. 

 

Figure 4.11: Variation of . .( )b F D  with Peinj  for AR = 1, 2, 5, and ∞, and Pr = 1, 2,     

and 3. 
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Table 4.3: Computed values of . .( )b F D  

Reinj  Pr Peinj  
. .( )b F D  

AR = 1 AR = 2 AR = 5 AR = ∞ 

0.1 

1 

0.1 7.477E-01 6.086E-01 5.326E-01 4.958E-01 

1 1 7.261E-01 5.799E-01 5.000E-01 4.593E-01 

10 10 5.376E-01 3.794E-01 2.930E-01 2.399E-01 

50 50 2.963E-01 1.980E-01 1.420E-01 1.045E-01 

100 100 2.191E-01 1.453E-01 1.030E-01 7.323E-02 

0.1 

2 

0.2 7.446E-01 6.045E-01 5.280E-01 4.909E-01 

1 2 6.962E-01 5.419E-01 4.587E-01 4.153E-01 

10 20 4.110E-01 2.768E-01 2.042E-01 1.587E-01 

50 100 2.068E-01 1.360E-01 9.589E-02 6.823E-02 

100 200 1.502E-01 9.885E-02 6.919E-02 4.780E-02 

0.1 

3 

0.3 7.416E-01 6.004E-01 5.234E-01 4.860E-01 

1 3 6.671E-01 5.071E-01 4.219E-01 3.765E-01 

10 30 3.412E-01 2.257E-01 1.632E-01 1.235E-01 

50 150 1.655E-01 1.080E-01 7.569E-02 5.296E-02 

100 300 1.191E-01 7.821E-02 5.462E-02 3.709E-02 
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 The values of . .( )b F D , Pe Re Prinj inj , and AR presented in Table 4.3 were used to 

obtain the following correlation ( 2R  = 0.998): 

 
     

     

4 3 2

. . 4 3 2 1 0

4 3 3 2 3 1 3
4

3 3 3 2 3 1 3
3

2

ln ( ) ln( ) ln( ) ln( ) ln( )

7.313x10 1.730x10 1.277x10 1.113x10

4.742x10 9.133x10 1.477x10 4.217x10

b F D inj inj inj inja Pe a Pe a Pe a Pe a

a AR AR AR

a AR AR AR

a


      

      

                  

    

   

      
     
     

2 3 2 2 2 1 2

2 3 2 2 1 1 1
1

1 3 1 2 1 1 1
0

2.887x10 6.574x10 6.669x10 6.462x10

3.232x10 8.243x10 1.452x10 1.369x10

2.139x10 3.151x10 3.625x10 7.756x10

AR AR AR

a AR AR AR

a AR AR AR

      

      

      

  

   

    

    (4.15) 

 
4.4 SUMMARY 

In this chapter, steady laminar flow and heat transfer phenomena in straight 

rectangular vapor grooves machined into the metallic walls of flat evaporators used in 

LHPs were investigated numerically using a three-dimensional parabolic FVM presented 

earlier in Chapter 3 . The straight rectangular grooves have one end blocked, and inflow 

of vapor along the bottom lateral surface with an injection velocity, vinj, and temperature, 

injT . The following values of the dimensionless parameters that govern the problems of 

interest were analyzed: AR = 1, 2, 5, and ∞; Reinj  = 0.1, 1, 10, 50, and 100; Pr  = 1, 2, 

and 3; and ( / )hL D  = 8. For AR = ∞, simulations were conducted with a two-dimensional 

elliptic FVM [Baliga and Atabaki (2006)] and the proposed three-dimensional parabolic 

FVM: the differences between results yielded by these two methods become essentially 

imperceptible for ( / )hz D   4. Thus, all of the final simulations were done using the 

proposed cost-effective three-dimensional parabolic FVM. 

In each of the cases considered, for ( / )hz D   4, a special fully-developed regime is 

established with the following characteristics: ( / )avw w  and ( ) /( )inj w injT T T T     

become invariant with axial distance z; ( Re )
hDf , ( Re )Fanning injf , and b  achieve constant 

values. The values of  . .( Re )
hD F Df , . .( Re )Fanning inj F Df , and . .( )b F D  were computed for the 

above-mentioned range of the governing parameters. These values were used to propose 

a correlation that relates . .( Re )
hD F Df  to AR and Reinj , and a correlation that relates 
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. .( )b F D to AR, Reinj , and Pr. Another correlation that relates . .( Re )
hD F Df  to 

. .( Re )
hFanning D F Df , AR, and Reinj  was also proposed. It was also shown that the ratio 

. .( Re ) /( Re )
h happ D D F Df f achieves an asymptotic value of 0.5 regardless of the value of the 

aspect ratio or the shape of the cross-section of the vapor groove (as long as it is straight 

and axially uniform). The computed results also showed that for all practical purposes, 

. .( Re ) /( Re )
h happ D D F Df f can be considered equal to its asymptotic value of 0.5 for 

( / )hz D   4. These results and correlations are intended to enhance the capabilities of 

available quasi-one-dimensional thermofluid models of LHPs, akin to that proposed in 

Chapter 2. The relevance of these model enhancements are demonstrated and discussed 

later in Chapter 6 of this thesis. 

 



 140

Chapter 5: 

Properties of Liquid-Saturated Sintered Powder-Metal 
Wicks 
 
 Porous materials of excellent rigidity and low effective pore size can be easily 

manufactured by sintering metal powders. These key attributes of porous sintered-

powder-metal plates and tubes make them the materials of choice for the construction of 

wicks used in heat pipes (HPs), capillary pumped loops (CPLs), and loop heat pipes 

(LHPs) [Dunn and Reay (1986); Silverstein (1992); Faghri (1995); Leong et al. (1997); 

Maydanik (2005); Vasiliev et al. (2009); Li and Peterson (2011)]. As was seen in the 

discussion given in Chapter 2, the required inputs to mathematical models of LHPs include 

the porosity, maximum effective pore size, effective permeability, and effective thermal 

conductivity of the liquid-saturated porous material of the wick. Primarily borrowing 

ideas and discussions from the work of Atabaki (2006), and also deriving guidance from 

the works of Alexander (1972), Stepanov et al. (1977), Hadley (1986), Silverstein (1992), 

Kaviany (1999), Nield and Bejan (2006), Clark (2009), and Civan (2011), the 

determination of the aforementioned properties by means of simple and effective 

experiments, procedures, and correlations is demonstrated in this chapter, using a sample 

porous sintered-powder-metal plate made of stainless steel 316, saturated with high-

purity (99.9%) isopropanol. 

  

5.1 SAMPLE POROUS SINTERED-POWDER-METAL PLATE 

A porous sintered-powder-metal plate made of stainless steel 316 was used as the 

sample in this work. This plate was purchased from a manufacturer of specialized filters 

(Mott Corporation, Connecticut, U.S.A) in the form of a disk with nominal dimensions of 

185.4 mm (7.3'') diameter and 3.18 mm (1/8'') thickness. Laser machining was used to cut 

a few smaller disk-shaped samples from this porous plate. This machining process also 

ensured that the peripheral surfaces (cut edges) of these disk-shaped samples were sealed 

(impermeable to the working fluid). 
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(a)              (b) 

Figure 5.1: Scanning electron microscopy images of a stainless steel 316, sintered 
powder-metal, plate at magnifications of (a) 300X and (b) 1000X. 

 

Photomicrographs of the porous sintered-powder-metal sample of stainless steel 316, 

obtained using a Hitachi S-4700 scanning electron microscope, are shown below in     

Figure 5.1. These images clearly indicate that the particles of the metal powder used in 

the fabrication of the sample sintered porous plate are not spherical in shape, but have 

quite random shapes and are not uniformly sized. In addition, these images show that the 

sintering process produces excellent connections (solid-to-solid contact zones) between 

these particles. Thus, it is clear that available analytical, semi-analytical, and numerical 

correlations for effective properties of porous materials made of uniformly sized, 

regularly spaced, and packed (unconsolidated or consolidated) spherical particles [Kunii 

and Smith (1960); Chen and Tien (1973); Ogniewicz and Yovanovich (1978); Hadley 

(1986); Kaviany (1999); Hsu (2000); Bahrami et al. (2004); Nield and Bejan (2006); 

Montillet (2007)] are not applicable to the porous sintered-powder-metal plate considered 

in this work. Therefore, specialized experiments, procedures, and correlations for the 

determination of the above-mentioned effective properties of liquid-saturate porous 

sintered-powder-metal plates are needed, and some of these are presented and discussed 

in this chapter. 

 

5.2 POROSITY 

The porosity of a porous material is defined as the ratio of the volume occupied by 

the voids (or empty space) within it to its total volume, and accounts for all pores 
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(through pores, blind pores, and closed pores). The effective porosity is similarly defined, 

but accounts for only the volume of the interconnected pores within the porous material. 

Extensive examination of photomicrographs of sintered metal fibers and screens lead 

Kunz et al. (1967) to conclude that the pores in these types of porous materials are 

essentially interconnected. However, the authors also observed the occurrence of isolated 

voids during the compaction of powders to form sintered materials. Nevertheless, they 

argued that by adequately packing the powder prior to the compacting and sintering 

process, the probability of isolated void formation could be minimized. Based on these 

observations, it is assumed in this work that for well-fabricated porous materials 

constructed of both sintered fibers and powders, the porosity and the effective porosity 

are essentially equal. In this context, following the arguments of Kunz et al. (1967), the 

porosity of porous sintered-powder-metals is estimated as follows: 

_ _1 dry porous matlvoid

total s total

mV

V V



             (5.1) 

where voidV  is the total volume of the voids inside the porous material; totalV  is the total 

volume of the porous material; _ _dry porous matlm is the total mass of the dry porous material; 

and s is the mass density of the solid. In this equation, the mass of the air filling the 

voids is overlooked in comparison to the mass of the solid part of the porous material.  

 Techniques for measuring the porosity of porous metal plates are discussed in Dullien 

(1992). A simple procedure, the so-called density (or Archimedes') method [Dullien 

(1992)], was used in this work to determine the porosity of the sample porous material. 

The procedure is outlined below: 

1. Measure the geometrical dimensions of the sample several times, and average the 

measurements to obtain their corresponding mean values. Use these mean values 

to calculate the total volume of the porous sample. 

2. Measure the ambient temperature, and then obtain the value of the mass density 

( s ) of the solid component of the porous sample at this temperature. 

3. Dry the porous sample and then weigh it (in this work, an electronic balance with 

an accuracy of 0.1g was used).  

4. Use Eq. (5.1) to estimate the porosity of the sample. 
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In the experiments, the mass of the sample porous stainless steel 316 disk, having a 

diameter of 22.30 mm and a thickness of 3.11 mm, was measured to be 6.08 g. The 

ambient temperature during these experiments was about 22oC throughout. At this 

temperature, the mass density of solid stainless steel 316 is 8238 kg/m3 [Incropera and 

DeWitt (2002)]. Using this data and Eq. (5.1), the porosity of the sample porous sintered-

powder-metal plate made of stainless-steel 316 was determined to be the following:  

 0.393 (  0.011)    

The uncertainty in the porosity was calculated using the method described in 

ASHRAE Standard 41.5-75 (1976). 

 

5.3 MAXIMUM EFFECTIVE PORE SIZE 

The maximum effective pore size is a property that is required for the determination 

of the maximum capillary pressure that can be sustained at the liquid-vapor interface in 

the wick, which, in turn, dictates the so-called capillary-limit on the maximum rate of 

heat transfer possible in HPs, CPLs, and LHPs. In this section, an experimental apparatus 

that was originally designed and constructed by Atabaki (2006), and later modified by the 

author, for the determination of the maximum effective pore size of the wick is presented. 

The related experiments were conducted with a disk-shaped sample cut (using laser 

machining) from the above-mentioned porous sintered-powder-metal plate made of 

stainless steel 316. The results of these experiments are also described and discussed in 

this section. 

 
5.3.1 Theoretical Aspects 
 
 A schematic representation of a liquid-vapor interface that is concave with respect to 

the vapor-phase is presented in Figure 5.2. The two principal radii of curvature, R1 and 

R2, characterize an arbitrarily-curved interface. Under static conditions with no mass 

transfer across the interface, the normal components of the surface tension forces are 

exactly in balance with the force generated due to the pressure jump from the liquid-

phase to the vapor-phase. This statement is strictly valid only for regions of the curved 

liquid-vapor interface that are away from the solid walls. However, de Gennes (1985) and 
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Vissersa et al. (2000) argued that in many applications, the influence of the near-wall 

region that is affected by the Van der Waals force of the solid is less than 100 Å.  

 

Figure 5.2: An arbitrarily-curved liquid-vapor interface and related notation. 

 

 The pressure difference across the curved liquid-vapor interface (shown in Figure 5.2) 

is given by the Young-Laplace equation [Silvertein (1992)]: 

1 2

1 1 1
( ) 2 /   ;  / 2cap v l lv c

c

P P P r
r R R


 

      
 

         (5.2) 

In this equation, Pv and Pl denote, respectively, the thermodynamic pressure in the vapor 

and the liquid phases adjacent to the interface; lv represents the surface tension at the 

liquid-vapor interface; and rc is the mean radius of curvature. As is common practice 

[Alexander (1972); Stepanov et al. (1977); Silverstein (1992)], it is assumed here that the 

liquid-vapor surface tension is essentially equal to that of the liquid-air interface, and 

both are referred to as the liquid surface tension, . Furthermore, it is mandatory in HPs, 

LHPs, and CPLs to obtain a positive value of the pressure jump (Pv – Pl) to balance the 

overall pressure drop in the rest of the working-fluid circuit. Therefore, a working fluid 

that wets the solid in the porous wick is required. 

In the simple experimental setup schematically illustrated in Figure 5.3, the capillary 

force ensures that the liquid inside the vertical pipe (of relatively small diameter) to rise 
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to an equilibrium height of hcap. Ignoring the weight of the air column with respect to that 

of the liquid column, the following equation is obtained: 

( ) (2 / )   ;  / cos( )a l c l cap c p cP P r gh r r               (5.3) 

In Eq. (5.3), l is the mass density of the liquid; σ is the surface tension at the liquid-air 

interface; g is the gravitational acceleration; rp is the inner radius of the pipe; and θc is the 

contact angle at static equilibrium [Stepanov et al. (1977)]. 

 

Figure 5.3: Schematic representation of capillary action inside a small diameter pipe. 

 

The experiment depicted in Figure 5.3 could also be repeated if the pipe were 

replaced by a cylinder made of a porous material. The equilibrium height of the liquid 

column that would rise up in the porous cylinder could then be used in Eq. (5.3) to 

calculate a value of rp, which would represent the effective pore radius of the interstices 

of the porous material under “rising” conditions. 

  Another experiment with a cylindrical piece of porous material inserted in a sample 

holder with a pipe attached to its bottom could be conducted as follows: Immerse the 

entire assembly in a pool of liquid contained in a vertical tube of larger diameter; after the 

porous disk (or cylinder) is fully saturated with the liquid and the tube at the bottom of 

the sample holder is completely filled, slowly withdraw the liquid in the larger tube until 
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the liquid column inside the bottom tube breaks away from the porous sample. The height 

of this liquid column just prior to its collapse is then used in Eq. (5.3) to compute a 

corresponding value of rp, which would represent the effective pore radius under 

“falling” conditions [Alexander (1972); Stepanov et al. (1977)]. 

In earlier experimental studies [Alexander (1972); Stepanov et al. (1977)], values of 

the effective pore size (dp = 2rp) obtained under rising conditions have been found to be 

consistently less than those obtained under falling conditions, but no convincing 

explanation has been advanced for this observation. However, a careful examination of 

the data indicated that these rising and falling values are dictated by the minimum and 

maximum effective pore radii, respectively, of the interstices of the porous material           

[Atabaki (2006)].  

Furthermore, in HPs, CPLs, and LHPs operating just beyond their capillary limit 

[Silverstein (1992)], the vapor pushes the liquid out of the wick material, and the 

corresponding capillary pressure is that obtained with the falling (or maximum) value of 

the effective pore size. The determination of this maximum effective pore size is the 

focus of the experimental work described next. 

 

5.3.2 Experimental Apparatus and Procedure 

The apparatus that was designed, constructed, and used in this work was adopted 

directly from the work of Atabaki (2006), and is depicted in Figure 5.4. It is an improved 

version of an apparatus designed by Alexander (1972). 

This apparatus was designed to accommodate cylindrical (disk-shaped) test samples 

of 22.23 mm diameter and 3.18 mm thickness (nominal). As was mentioned previously, 

in this study, disk-shaped (cylindrical) samples cut from a 3.18 mm thick (nominal) 

porous sintered-powder-metal plate of stainless steel (SS) 316 were tested. It is important 

to note again that these disk-shaped samples were cut out of the porous plates using laser 

machining, which ensured that their curved surface (cut edge) was sealed (impermeable 

to the working fluid). 
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Figure 5.4: Schematic representation of the experimental apparatus used for 
measurements of the maximum effective pore size.  
 

In the apparatus illustrated in Figure 5.4, the straight Polypropylene tube has an outer 

diameter of 50.8 mm and a total length of 2 m. The porous metal sample was sandwiched 

between two specially designed flanges, along with ring-shaped gaskets (see inset in 

Figure 5.4). In this work, isopropanol (99.9% purity) was used as the working fluid. At 

the start of each experimental run, the porous sample was thoroughly cleaned using high-

pressure nitrogen to sequentially push high-purity (99.9%) isopropanol several times 

through the porous sample. Next, the test cell was located in its fixed position (as shown 

in Figure 5.4), the globe valve fully closed, and the entire system completely filled with 

high-purity (99.9%) isopropanol. Following this, the globe valve was opened slightly to 

allow the isopropanol to very slowly drain out of the system. In the early stages of this 

draining process, the isopropanol levels both in the Polypropylene tube and on top of the 

porous sample decreased. However, once the liquid-air interface entered the porous 

sample, a capillary pressure jump was created, and isopropanol drained only from the 
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Polypropylene tube. In each run, the isopropanol in the Polypropylene tube was allowed 

to continue draining until the column of isopropanol in the flexible transparent tube 

(supported by capillary forces in the porous material) broke away from the sample: The 

height of this isopropanol column in the flexible transparent tube, hcap,
 was recorded and 

used in Eq. (5.3) to compute the maximum (falling) effective pore size (dp = 2rp) of the 

sample. 

 

5.3.3 Results and Discussions 

 

Table 5.1: Results of the maximum effective pore size experiment. 

Test No. hcap [m] P [kPa] c [deg] dp [mm] 

1 0.375 2.877 20 27.44 
2 0.375 2.877 20 27.44 
3 0.380 2.915 20 27.08 
4 0.378 2.896 20 27.26 
5 0.375 2.877 20 27.44 
6 0.375 2.877 20 27.44 
7 0.378 2.896 20 27.26 
8 0.378 2.896 20 27.26 
9 0.378 2.896 20 27.26 
10 0.378 2.896 20 27.26 

 

The final results obtained from ten runs with the stainless steel 316 cylindrical porous 

sample considered in this work are reported in Table 5.1. The contact angle was obtained 

from Stepanov et al. (1977). The average isopropanol temperature in the experiments was 

25.1°C. For the porous sample tested, the values of the maximum effective pore size,     

dp = 2rp, were repeatable to within ± 0.9 % of the mean value.  

The overall relative uncertainty in the maximum effective pore size was calculated 

using the method described in ASHRAE Standard 41.5-75 (1976).  

The mean value of the maximum effective pore size, dp, for the stainless steel 316 

sample is the following: 

27.31 m (  5.79%).pd    

 



 149

5.4 EFFECTIVE PERMEABILITY 
 

The effective permeability is needed for calculating the pressure drop associated with 

the flow of liquid through the wick, as was described in Chapter 2. A combined 

experimental-numerical method proposed by Atabaki (2006) was adapted and used to 

determine the permeability of the porous sintered-powder-metal disk made of stainless 

steel 316, and having a diameter of 22.23 mm and a nominal thickness of 3.18 mm. Some 

theoretical considerations, the aforementioned experiment-numerical method, and the 

usefulness of determining the effective permeability of the wick material with reference 

to the particular working fluid used in the LHP are discussed in this section. 

 

5.4.1 Theoretical Considerations 

In 1856, the French engineer Henry Philibert Gaspard Darcy conducted an  

experiment in Dijon, France, which is now regarded as a classical experiment on laminar 

flow through a homogenous porous medium. A schematic illustration of Darcy's 

experimental setup is provided in Figure 5.5. It consists of a homogenous porous material 

of height h packed inside a pipe of cross-sectional area Ac-s. An incompressible liquid is 

circulated through this porous material, and its volumetric flow rate, Q, is measured. A 

manometer is used to calculate the pressure drop across the top and bottom boundaries of 

the porous medium. Darcy conducted numerous experiments with this setup and observed 

a linear relationship between the volumetric flow rate of the liquid and the reduced 

pressure gradient across the porous medium. 

Assuming that the mass density of the liquid, l, and the gravitational acceleration 

vector, g, are constant, Darcy’s observation can be mathematically formulated as follows:  

1 2
( P)( ) friclP P ghK K

U
h h


 

 
           (5.4) 

In the above equation, U is the area-averaged velocity of the fluid (U = Q/Ac-s),  is the 

dynamic viscosity of the fluid, K is the effective permeability of the porous medium, and 

( ) fricP  is the so-called friction pressure drop associated with the flow through the 

porous medium.  This expression, originally proposed by Darcy as an empirical relation, 

has been derived by volume-averaging the Stokes equation by many researchers [Hubbert 
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(1956); Whitaker (1969); Slattery (1969); Lehner (1979)]. Furthermore, Beavers and 

Sparrow (1969) showed that departures of experimental results from Darcy’s law, as 

expressed in Eq. (5.4), occur at values of Reynolds number (based on the square-root of 

the permeability of the porous material as the characteristic length) of the order of one or 

greater. As the porous sintered-powder-metal plates or tubes used in LHPs have fine 

pores, they also tend to have very low effective permeabilities. In addition, the flow rate 

in LHP wicks is usually very small. Thus, in this work, it is assumed that Darcy’s law 

governs the liquid flow through the wick in LHPs. 

 

 

Figure 5.5: Schematic representation of Henry Philibert Gaspard Darcy’s experimental 
setup in Dijon (France) for measurements of effective permeability. 

 

The effective permeability is a geometrical property of porous materials. For porous 

media with simple and regular structures, such as homogeneous packed beds of spheres, 

analytical relations are available for determining the effective permeability: Some of 

these relations are presented in the works of Scheidegger (1974), Chi (1976), Dunn and 

Reay (1982), Faghri (1995), and Ochterbeck and Peterson (1997). However, as can be 
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seen from the photomicrographs presented in Figure 5.1, the geometry of the porous 

sintered-powder-metal plate used in this work is quite complex and highly irregular: 

Thus, the aforementioned analytical relations cannot be used to determine its effective 

permeability, and this task is best accomplished using an experimental method. 

Experimental setups similar to Darcy's (see Figure 5.5) are commonly used to 

determine the effective permeability of porous materials by first assuming a macroscopic 

one-dimensional flow through the test section, and then using an equation akin to         

Eq. (5.4). However, for this approach to be strictly valid, the porous material must be 

fitted in the flow passage in such a manner that at its boundary with the walls of the test 

section, the effective permeability is unaltered. Welding, soldering, or press-fitting the 

sintered power-metal porous media into the test section is a viable approach to achieving 

good accuracy of the aforementioned one-dimensional formulation. Moreover, assuming 

that these operations would change the porosity and permeability of the porous media in a 

region immediately adjacent to the confining walls, possibly over a cross-sectional area 

,c s peripheralA  , it is important to ensure that , / 1c s peripheral c sA A   . However, this approach 

may not always be convenient, practical, or cost-effective.  

Another approach is to use laser machining to cut the sample of the sintered powder-

metal porous medium (which seals its cut edge) and then place flat gaskets over 

peripheral regions of its upper and lower surfaces to seal it into the test section. Even 

with this procedure, in order to ensure the validity of the one-dimensional approach, it is 

necessary to ensure ,( ) / 1c s open c s c sA A A    , where ,open c sA   is the cross-sectional area 

on the upper and lower surfaces of the sample that is open to the flow (not blocked by the 

gaskets). In cases where it is not practical to make ,( ) / 1c s open c s c sA A A    , it is 

necessary to use a multidimensional formulation of Darcy’s law to model the flow in the 

porous media in between the gaskets, and use a numerical solution of the governing 

equations, with inputs of experimental data, to obtain the effective permeability. Such an 

experimental/numerical approach was presented in Atabaki (2006), and its application for 

the determination of the effective permeability of the porous sintered-powder-metal 

(stainless steel 316) plate considered in this work is described in this section. The 
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experimental setup is explained in the next subsection, followed by subsections 

describing the experimental data, the experimental/numerical procedure, and the results. 

 

5.4.2 Description of the Experimental Setup and Procedure 

A schematic representation of the experimental setup that was designed, constructed, and 

used to measure the effective permeability of samples of the sintered powder-metal plate 

is given in Figure 5.6. High-purity (99.9%) isopropanol was used as the working fluid in 

the experiments. 

 

Figure 5.6: Schematic representation of the experimental setup used for measurements of 
effective permeability. 
 

As shown above in Figure 5.6, the isopropanol was gravity fed from a reservoir (a glass 

flask), which could be located at four different levels above the floor of the laboratory. A 

flexible tube was used to connect this reservoir to the test cell (labeled as sample holder 

in Figure 5.6) in which the porous material was held. A plug valve was used to turn the 

flow on and off, and a globe valve was used to control the flow rate. Two digital pressure 

gauges (Omega DPG1000B, 0-15 psig) were used for measuring the static pressure 

immediately before and directly after the test cell. The mass flow rate of the isopropanol 

was obtained by collecting it in a small glass flask (250 ml Erlenmeyer flask) until it was 
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nearly full, recording the related time, weighing the flask plus the isopropanal (using an 

electronic balance accurate to 0.01 g), subtracting out the mass of the empty (dry) flask, 

and dividing the mass of the isopropanol by the recorded time. A cylindrical (disk-

shaped) test sample having a diameter of 22.23 mm and a nominal thickness of 3.18 mm 

(cut using laser machining) was used in this experiment. 

As was mentioned previously, flat gaskets were used for sealing the stainless steel 

316 porous sample in the test cell. The areas sealed by gaskets on the upper and lower 

surfaces of the cylindrical sample are schematically presented in Figures 5.7. The 

peripheral surfaces of the porous sample were also sealed (impermeable), given that they 

were cut using laser machining. 

 
                                           (a)                                                            (b) 

Figure 5.7: Geometrical description of the cylindrical (disk-shaped) porous sample: (a) 
isometric view of the sample; and (b) the rz  plan view of the sample. 

 
The dimensions of the cylindrical (stainless steel 316) porous sample as per the 

notation given in Figure 5.7 are the following:  

21.11x10 [m]R  , 35.74x10 [m]opR  , and 33.18x10 [m]zl
  

In terms of the notation shown in Figure 5.7, the open (unblocked) area for flow 

through the bottom and top surfaces of the cylindrical porous sample is Ao,cyl = Rop
2. 

Before starting the experiments, the test samples were cleaned using the same 

procedure as that used in the experiments to measure the maximum effective pore size 
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(see Subsection 5.3.2). Then, the desired test-sample and test-cell combination were 

installed in the setup, and the entire flow circuit shown in Figure 5.6 was filled with high 

purity (99.9%) isopropanol. The reservoir was located at level 4 (highest point), and all 

valves were fully opened, allowing the isopropanol to flow through the porous sample. 

About six liters of isopropanol were circulated through the porous sample in order to 

purge any residual air or nitrogen inside it. Then the plug valve was closed, the empty 

250 ml Erlenmeyer flask was weighed, and the isopropanol temperature was measured. 

The two electronic pressure gauges were turned on, and their readings were recorded: 

The difference between these readings in the no-flow condition represents the hydrostatic 

pressure drop across the porous sample. To obtain the friction pressure drop, the 

hydrostatic pressure drop was subtracted from the difference in the readings of these 

pressure gauges with the isopropanol flowing through the porous sample assuming that 

the minor losses in the fittings at the low flow rates used in these experiments were 

negligible compared to the friction pressure drop through the porous material.  

After the above-mentioned preparations and preliminary measurements, the 

experimental setup was considered ready for the final measurements. For each of the 

reservoir position, it was important to first record the arithmetic means of at least five sets 

of measurements of the mass flow rate of the isopropanol and the associated frictional 

pressure drop across the porous sample with both the plug valve and the globe valve fully 

open, after which several additional sets of these measurements were obtained at lower 

flow rates (using the globe valve for flow control). 

 

5.4.3 Experimental Determination of the Effective Permeability  

The experimental data obtained for the cylindrical (disk-shaped) porous sample made 

of stainless steel 316 is shown in Figure 5.8. The symbols in this figure correspond to the 

experimental data, and the straight line is a least-square fit to the data which is forced to 

pass through the origin (0,0): The equation that represents this line is given in title of this 

figure. As is indicated by the results presented in Figure 5.8, the frictional pressure drop 

across the porous sample, ( ) fricP , varies linearly with the mass flow rate, m , indicating 

that the flow is in the Darcy regime for all cases considered here.  
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The absolute uncertainties in the pressure-drop measurements were all less than 

365.5 Pa. The vertical error bars in Figure 5.8 represent these absolute uncertainties in 

the measurements of the friction pressure drop across the porous samples. The maximum 

relative uncertainty in the pressure-drop measurements for the disk-shaped stainless         

steel 316 sample is 6.51%. The uncertainty in the mass flow rate data was found to be          

less than 1.0%. 

 

 

Figure 5.8: Data from the permeability experiments on a cylindrical sample of stainless 
steel 316. Least-squares straight line:    7( ) Pa 8.031x10  kg/sfricP m   . 

 
If one-dimensional flow through the considered sample porous media is assumed, the 

area-averaged liquid velocity can be obtained using the following expression: 

2
,/ ( ) / ( )o cyl opU m A m R                            (5.5) 

In this equation, opR  is the radial dimension of the open (unblocked) flow areas on the 

top and bottom surfaces of the cylindrical porous sample (see Figures 5.7). The area-

averaged velocity, U, given by Eq. (5.5), is used in the one-dimensional formulation of 

Darcy’s law, Eq. (5.4), to calculate the permeability K. 
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The experiments were performed at a temperature of 21.1 oC. At this temperature, the 

values of mass density and dynamic viscosity of isopropanol are the following [Incropera 

and DeWitt (2002)]: l = 784.71 kg/m³ and  = 2.2110-03 kg/m-s. Based on these 

properties of isopropanol, the experimental data presented in Figure 5.8, and the U value 

computed using Eq. (5.5), the experimental value of the effective permeability of the 

porous sintered-powder-metal sample made of stainless steel 316 was determined (based 

on the one-dimensional Darcy flow assumption):  

 

13 2
1 8.875x10  m  (  3.1%)DK    

 

5.4.4 Validity of the One-Dimensional Darcy Flow Assumption 

In the previous section, the determination of the effective permeability of a sample 

sintered powder-metal porous material using a relatively simple experimental approach 

was demonstrated. However, this exercise was conducted without strictly verifying the 

validity of the underlying assumption that the flow through the porous media is 

essentially one-dimensional. As was mentioned earlier, in order to ensure the validity of 

the one-dimensional approach, it is necessary to maintain ,( ) / 1c s open c s c sA A A    .    

Based on the reported values of 21.11x10  [m]R   and 35.74x10  [m]opR  , the ratio 

,( ) /c s open c s c sA A A   = 0.73 was calculated, which is clearly non-negligible. Therefore, in 

this case, the cross-sectional area of the gasket used to properly seal the top and bottom 

surfaces of the sample porous material in the test cell (see Figure 5.7) becomes 

comparable to the cross-section area of the porous sample, and invalidates the underlying 

one-dimensional flow assumption strictly required for the proposed experiment.  

Possible remedies for this difficulty would be to (1) reduce the size of the gasket used 

to seal the porous material in the test cell, and/or (2) to increase the diameter of the 

porous sample utilised in the experiment. However, reducing the size of the gasket could 

result in poor sealing of the porous media in the test cell and lead to leakage in the test 

cell: This approach is impractical. On the other hand, increasing the size of the porous 

test specimen may not be always convenient, practical or cost-effective. 
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An alternative method would be to solve a multidimensional formulation of Darcy’s 

law, with the above-mentioned experimental data as inputs, and check the corresponding 

values of the effective permeability. This multidimensional experimental/numerical 

approach to the calculation of the effective permeability and the results are presented in 

the following subsection based on the work of Atabaki (2006). 

 

5.4.5 A Multidimensional Technique for the Evaluation of Effective Permeability 

For an axisymmetric, constant-property fluid flow through a porous material with 

constant permeability, K, Darcy's law in the cylindrical coordinate (r, z) can be written as 

follows [Kaviany (1999); Nield and Bejan (2006)]: 

P P
;r z

K K
u u

r z 
    

          
                                                               (5.6) 

In this equation, ur and uz are the velocity components in r and z directions, respectively, 

and P is the reduced pressure: P = P +lgz, where P is the static pressure, g is the 

gravitational acceleration, and the term lgz represents the hydrostatic pressure. It is 

assumed here that the gravitational acceleration vector is directed along the negative z 

direction.  

Assuming steady-state, constant-property, incompressible fluid flow in the porous 

medium, the continuity equation is 

 1
0r z

ru u

r r z

 
 

 
                                                                                                (5.7) 

Combining Eqs. (5.6) and (5.7), the following equation is obtained: 

2

2

1 P P
0r

r r r z

         
                                                                                      (5.8) 

 Next, with reference to the schematic representations of the calculation domains and 

the notations given in Figure 5.7, the boundary conditions that apply to the cylindrical 

porous sample are as follows: 
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                                                         (5.9) 

In these equations, P1 and P2 are the reduced pressures that prevail over the inlet and 

outlet flow areas of the cylindrical porous sample. 

Equation (5.8)  is akin to the equation that governs steady-state, constant-property, 

diffusion-type problems with a diffusion coefficient of one (unity) and no (zero) 

volumetric source term. A well-established finite volume method proposed by Patankar 

(1980) was used to discretize and solve Eq. (5.8) subject to the boundary conditions given 

by Eq. (5.9): In these numerical solutions, P2 was set equal to zero (for convenience), and 

P1 was set equal to a specified value, such that (P1 – P2) covered the range of the friction 

pressure drops involved in the permeability experiments (see Figure 5.8). It should be 

noted here that as the working fluid (isopropanol) is assumed to be incompressible, the 

absolute level of pressure is unimportant and can be set to any convenient value [Patankar 

(1980)]: The pressure difference imposed across the porous sample is what drives the 

flow through it. In each case, once the pressure field was computed, the corresponding 

inlet (or outlet) mass flow rate was calculated with velocity components obtained using 

Eq. (5.6) for the cylindrical sample, along with prescribed values of the liquid mass 

density, l , and dynamic viscosity,  : These calculated mass flow rates were in the 

form K , where   is a computed number and K is the (unknown) permeability of the 

porous medium. The experimental data were used to determine the permeability K as 

follows: For each prescribed value of (P1 – P2), the computed mass flow rate, K , was 

equated to the corresponding experimentally measured value, m , and the permeability 

was calculated using /K m  . 
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To test for grid independence of the numerical results, the computations were 

conducted with ( / ) 1K    on two different grids for each sample: For the cylindrical 

sample with grids of 101401 and 126x501 nodes (in the r and z directions) the relative 

difference between the calculated values of permeability was less than 0.05%. Based on 

these findings, in the final computations, a grid of 101x401 nodes was used for the 

cylindrical sample 

The numerical results obtained for the cylindrical (disk-shaped) sintered powder-

metal plate made of stainless steel subjected to an overall pressure difference (P1 – P2) of 

1000 Pa are presented in Figure 5.9: 

 

 

Figure 5.9: Numerically calculated isobars (reported in Pa) and streamlines (not to scale) 
in a diametrical cross section of the cylindrical, stainless steel 316, porous specimen: 
Pressures imposed at the inlet and outlet planes are P1=1000 Pa and P2=0 Pa, 
respectively. 
  

The results for the cylindrical sample ( 21.11x10 [m]R  , 35.74x10 [m]opR  , and 

33.18x10 [m]zl
 ) presented in Figure 5.9, indicate that the streamlines (lines with arrow 

heads) are significantly bent (indicating two-dimensional flow) in the outer regions, over 

almost half of the radius: This is because the sealing gaskets block significant portions of 

the top and bottom surfaces of this sample (see Figure 5.7): ( ) /opR R R  = 0.478.  

The permeability value computed using the proposed experimental/numerical method 

for the cylindrical, sintered power-metal, porous specimen made of stainless steel 316 is 

the following: 

13 27.356x10  m  (  2.5%)Multi DK 
    
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In comparison with the corresponding results obtained using the simple one-

dimensional method (see the previous subsection, 13 2
1 8.875x10  mDK 
   ), the 

permeability for the cylindrical sample is about 20.6 % lower, as the multidimensional 

effects are quite pronounced, and the effective flow area in the central region of the 

sample, in between the gaskets, is quite a bit larger than the open areas in the inlet and 

outlet planes. 

 

5.4.6 Impact of Test Fluids Used in the Determination of Effective Permeability 

 The permeability of a porous medium is considered to be a geometrical property 

related to the inherent microstructure of the material [Vafai (2005); Nield and Bejan 

(2006)], and, as such, should not be dependent on the specific type of fluid used to 

determine this property. In most industrial settings, inert gases (instead of liquids) are 

used as the more convenient and preferred test fluids due to their ease of handling, 

transportation, and storage. In fact, many manufacturers of porous materials commonly 

only test and report the gas-permeability (permeability determined using a gas as the test 

fluid) of their products. 

 However, there are reports of discrepancies observed in the experimental 

determination of permeability depending on the phase (gas or liquid) of the test fluid 

used, and also the type of liquid (water, ethanol, isopropanol, etc.) considered; and these 

differences are more pronounced for small-pore-size materials (such as the wicks used in 

LHPs, for example) [Klinkenberg (1941); ISO 4022 (1987); Loosveldt et al. (2002)]. The 

gas-to-liquid permeability ratio, and the liquid-to-liquid permeability ratio can, at times, 

range between 2 - 140 [Loosveldt et al. (2002]. 

  A possible explanation for the discrepancy observed between the gas- and liquid-

permeability has been linked to the adsorptive reaction that some metals exhibit with 

certain liquids. In this case, the pore size of the porous material is effectively reduced due 

to the adhesion of atoms, ions, or molecules on the metal surfaces [ISO 4022 (1987)] 

leading to a decrease in the effective permeability. 

 It is clear that there is a need to accurately and reliably determine the effective 

permeability of wicks used in LHPs (and also HPs and CPLs), for the design, modeling, 

and optimization of these devices. Based on the observations and discussions presented 
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above, it is strongly advisable to select the same test fluid in the permeability experiments 

as the particular working fluid of the LHPs (and also HPs and CPLs). This approach 

would provide the most reliable estimate of the effective permeability of the wick 

material under actual operating conditions of the LHP. 

 

5.5 EFFECTIVE THERMAL CONDUCTIVITY 

In mathematical models of LHPs, the effective thermal conductivity of the wick 

structure is needed to calculate the so-called heat-leak from the wick to the compensation 

chamber, as was illustrated in Chapter 2. In this section, some available analytical and 

semi-analytical correlations for the effective thermal conductivity of porous media are 

reviewed. Following that, a correlation put forward by Atabaki and Baliga (2007) for the 

calculation of the effective thermal conductivity in liquid-saturated, porous sintered-

powder-metal plates is presented and discussed. 

In the published literature, there are several analytical and numerical correlations for 

the determination of the effective thermal conductivity of fluid-saturated porous materials 

as a function of the fluid and solid thermal conductivities and geometrical details of the 

porous structure. Some examples include the works of Maxwell (1954), Kunii and Smith 

(1960), Dul’nev (1965), Ofuchi and Kunii (1965), Hadley (1986), Prasad et al. (1989), 

Bauer (1993), Hsu et al. (1995), Calmidi and Mahajan (1999), Boomsma and Poulikakos 

(2001), Bahrami et al. (2004), Petrasch et al. (2008), and Yu et al. (2011). Furthermore, 

various experimental investigations, and corresponding correlations, of the effective 

thermal conductivity of porous materials made of sintered powders and fibers, with a 

liquid, gas, or vacuum in the interstices or voids are presented in the works of Alexander 

(1972), Singh et al. (1973), Hadley (1986), Peterson and Fletcher (1987), Mantle and 

Chang (1991), and Atabaki (2006). 

 

5.5.1 Review of Some Available Correlations 

The discussion in this section is largely borrowed from Atabaki (2006) and Atabaki 

and Baliga (2007). Some well-established analytical and semi-analytical correlations that 

relate the effective thermal conductivity of a porous media, effk , to its porosity, , and the 
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thermal conductivities of the fluid and solid phases, kf  and ks, respectively, are briefly 

reviewed in this section.  

The parallel and series arrangements of solid spherical particles with fluid in the 

interstices are the simplest geometrical structures considered in analytical models of the 

effective thermal conductivity of porous media; these arrangements yield upper and 

lower limits, respectively, of this property [Batchelor and Obrien (1977); Hadley (1986); 

Kaviany (1999)]. The parallel model provides the following result: 

 1eff s

f f

k k

k k
                         (5.10) 

The following expression is obtained using the series model: 

 
( / )

( / ) 1
eff s f

f s f

k k k

k k k 


 
              (5.11) 

Maxwell (1954) performed analytical studies of two solid-fluid systems and proposed 

equations for the prediction of their effective specific electrical-resistance. His work can 

be adapted to obtain the corresponding effective thermal conductivity of solid-fluid 

systems similar to fluid-saturated porous media [Hadley (1986)]. The first such system 

consists of a dilute suspension of solid spherical particles in an infinite uniform fluid. Its  

effective thermal conductivity is given by the following equation: 

2 ( / )(3 2 )

3 ( / )
eff s f

f s f

k k k

k k k

 
 

 


 
                                            (5.12) 

This equation has been referred to by Hadley (1986) as the “lower Maxwell formula”. 

The second system analyzed by Maxwell consists of a solid body containing a dilute 

dispersion of fluid-filled voids. The effective thermal conductivity of this second system 

is given by the following equation, referred to by Hadley (1986) as the “upper Maxwell 

formula”:  

      
  

2
2 / 1 1 2 /

2 / 1

s f s feff

f s f
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 

 

  

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             (5.13) 

Dul’nev (1965) modelled porous materials as a combination of cubic unit cells with 

interconnected pores. He applied a resistance analogy to obtain an effective thermal 
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conductivity of the unit cell, based on an assumption of unidirectional heat conduction. 

His analytical solution is presented below: 
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                               (5.14) 

Alexander (1972) experimentally determined the effective thermal conductivities of 

some samples of porous materials saturated with water (wet) or air (dry). These samples 

were made of metal felts, sintered powders, layers of wire cloth, and unconsolidated bead 

beds. He used his experimental data to propose the following empirical correlation:  

  1
/eff

s f
f

k
k k

k


               (5.15) 

The following values are recommended for the parameter  in this equation 

[Alexander (1972)]: For metal felts,   = 0.34; sintered powders,   = 0.53; layers of wire 

cloth,   = 0.59; and for unconsolidated beads,   = 0.44. 

Hadley (1986) has proposed a general approach to modeling the effective thermal 

conductivity of packed metal powders. The approach involves combining a theoretical 

expression appropriate for conduction through a contiguous solid (the upper Maxwell 

formula) and another such expression that is suitable for conduction through a suspension 

(not necessarily dilute) of solid particles. For a solid-fluid (two-phase) system, where the 

solid is connected (consolidated by cold pressing), Hadley (1986) proposed the following 

equation for the effective thermal conductivity: 
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                         (5.16) 

where the values of the parameters con  and of  are to be determined with reference to 

experimental data. The parameter con  depends strongly on what Hadley (1986) refers to 

as the “degree of consolidation”; it will be referred to here as the consolidation 
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parameter. The value of the parameter of  lies between the theoretical upper and lower 

limits provided by Maxwell’s formulas: Thus, 

,min ,max ,min .max

2( / )2
    ;        ;    

3 2( / ) 1
s f

o o o o
s f

k k
f f f f f
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
          (5.17) 

Here, ( / ) 1s fk k  . For Hadley's experimental data (1986), 0.8 0.9of  . The values of 

the parameter con  as a function of (1  ) for evacuated samples ( /s fk k  ) have been 

presented graphically by Hadley (1986): Nonlinear (semi-log) curve fits to Hadley’s data 

for con , as proposed by Kaviany (1999), are given below: 
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        (5.18) 

Bauer (1993) has presented an analytical approach for the determination of the 

effective thermal conductivity of porous media. He started with the theoretical lower 

formula of Maxwell, Eq. (5.17), for dilute suspensions of spherical particles, and then 

extended it to suspensions of solid particles of random shapes and different 

concentrations. Bauer proposed the following implicit correlation for the calculation of 

the effective thermal conductivity of porous materials with a single type of randomly 

oriented pores: 
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             (5.19) 

Here, ko and kp respectively denote the thermal conductivities of the continuous medium 

and the material inside the pores. The term, , in this equation is a shape factor: Its value 

lies in the range 2/3 < β  1, with the upper limit of unity applicable to spherical pores. 

Its value for specific materials is determined using corresponding experimental data. 

 

5.5.2 Correlation for the Effective Thermal Conductivity of Liquid-Saturated 
Sintered Powder-Metals  

 Based on an earlier experimental investigation [Atabaki (2006)], Atabaki and Baliga 

(2007) proposed a correlation for the effective thermal conductivity of liquid-saturated 
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sintered powder-metal porous media by borrowing and extending ideas from the works of  

Kunii and Smith (1960) and Hadley (1986). In this work, the authors focused on the 

thermal conductivity of liquid-saturated sintered powder-metal plates. These sintered 

porous metal plates are different from the cold-pressed packed metal-powder porous 

media used by Hadley (1986), in that the thermal conduction across the solid-to-solid 

contacts zones between the metal particles created by the sintering process is better than 

that across similar contact zones created by the cold-pressing process.  

In the proposed correlation, the basic combined expression, Eq. (5.16), proposed by 

Hadley (1986) was retained. However, it was hypothesized that, in this combined 

expression, the parameters con  and of  are functions of not only the porosity,  , as 

originally proposed by Hadley (1986), but also of the conductivity ratio /s fk k . The 

inspiration for this postulate was derived from the earlier work of Smith and Kunii 

(1960). The following function was then proposed for the consolidation parameter, con : 
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       (5.20) 

This expression is applicable to systems for which ( / ) 1s fk k  : Note that when 

( / ) 1s fk k   and 0 1  , 1con  . The parameter of  is assumed to be the following 

porosity-weighted average of the values corresponding to Maxwell’s upper and lower 

limits: 
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Equations (5.20) and (5.21) guarantee that when the porosity approaches very small 

values ( 0  ), 1con   and ,maxo of f ; and when the porosity approaches its highest 

value ( 1  ), 0con   and ,mino of f . 

 Based on the application of curve fitting techniques with the experimentally 

determined values of the effective thermal conductivity detailed in Atabaki (2006), and 
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also on the experimental results reported by Peterson and Fletcher (1987), the constants 

in the Eq. (5.20) were determined [Atabaki (2006); Atabaki and Baliga (2007)]: 

0.148    ;    0.283    ;    0.04m n     

The correlation proposed by Atabaki and Baliga (2007) predicted all of the values of the 

effective thermal conductivity experimentally determined by Atabaki (2006), and also 

those reported by Peterson and Fletcher (197) with a mean deviation of less than 5.67%  

and a maximum deviation of 19.39% . Their correlation was selected for 

implementation in the segmented network thermofluid model of LHPs proposed in 

Chapter 2, and also in the enhanced version of this model that is demonstrated in    

Chapter 6. 
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Chapter 6: 

Enhanced Segmented Network Thermofluid Simulations 
of a Loop Heat Pipe Operating with Four Different 
Working Fluids 
 

 A segmented network thermofluid model of loop heat pipes (LHPs) operating under 

steady-state conditions was proposed in Chapter 2. The methods and models put forward 

in Chapters 3 and 4 were used to proposed novel correlations for predicting the pressure 

drop and bulk temperature in the vapor-grooves of LHP evaporators. These novel 

correlations were then incorporated into the above-mentioned segmented network 

thermofluid model to obtain an enhanced version of this model. 

In this chapter, the capabilities of this enhanced segmented network thermofluid 

model are demonstrated by using it to simulate a sample LHP running with four different 

working fluids (ammonia, distilled, ethanol, and isopropanol) for a range of operating 

conditions relevant to the thermal management of a state-of-the-art central processing 

unit (CPU) installed in a server that is part of a so-called cloud-computing system [Mell 

and Grance (2011)]. First, the influence of the operating conditions on the characteristics 

of the sample LHP running with ammonia as the working fluid are presented and 

discussed. Following that, results that illustrate differences in the predictions obtained 

with the aforementioned novel and the old correlations for the pressure drop in LHP 

vapor grooves are presented and discussed. Then, pressure drops in the various 

components of the sample LHP running with the four aforementioned working fluids for 

a baseline set of operating conditions are presented, along with comparative discussions. 

Finally, some of the features of the two-phase flow in the condenser of the sample LHP 

are presented with reference to a flow regime map proposed by Taitel and Dukler (1976). 

 

6.1 BACKGROUND NOTE ON THE DEMONSTRATION PROBLEM 

 Thermal management of modern digital computers and electronics is becoming 

increasing important and challenging due to the relentless demand for more powerful, 

faster, and smaller devices. Currently, state-of-the-art central processing units (CPUs) 

and graphics processing units (GPUs), which will be referred to as chips in this chapter 
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(following standard terminology), dissipate between 100 W and 150 W, and the external 

heat transfer area of these chips has become less than 4 cm2 [Singh. et al. (2007); 

Maynadik et al. (2010)]. The related thermal management problems are considerable, to 

say the least, and are further complicated by packaging-space limitations, and the 

requirement that the chip-case temperature be between 70 - 80 °C to ensure operation. 

Heat pipes (HPs) have been successfully used to address some of the above-

mentioned thermal-management challenges. However, as noted by Maydanik (2010), 

when the power dissipation requirements of these electronic devices exceeds 150 W, both 

the size and the heat transfer capacity of HPs pose a serious impediment to their usage. 

Loop heat pipes (LHPs) offer a viable alternative for meeting these ever-growing 

thermal-management requirements, but the manufacturing costs of LHPs are currently 

about one order of magnitude higher than those of conventional HPs. As a result, 

presently, there is great deal of interest in theoretical, experimental, and numerical 

investigations aimed at improving the designs of LHPs adapted for cooling of chips in 

personal computers, supercomputers, servers, and datacenters [Singh et al. (2007); 

Zimbeck et al (2008); Maydanik et al. (2010); Li et al. (2010); Li and Peterson (2011)].  

 With the above-mentioned observations in mind, it was decided to demonstrate the 

capabilities of the proposed enhanced segmented network thermofluid model by applying 

it to a sample LHP intended for thermal management of the chips in a cloud-computing 

server unit. The objective is to evaluate the performance of the proposed sample LHP in 

maintaining the casing temperature of the chip (akin to Intel Xeon Processor X5690) 

below a safe-operating limit of 70°C while dissipating a maximum of 260 W. Four 

different working fluids (ammonia, distilled water, ethanol, and isopropanol) are 

considered, for a representative range of operating conditions. Details of the sample LHP 

and the operating conditions considered are presented in the next section. 

 

6.2 DETAILS OF THE SAMPLE LHP AND THE OPERATING CONDITIONS CONSIDERED 

 The sample LHP has a flat evaporator and its other attributes are similar to those 

illustrated in Figure 2.1b.  The wick fitted in the evaporator consists of a 80 mm x 80 mm 

x 3.175 mm sintered-powder-metal plate made of stainless steel 316, with properties 

matching those presented earlier in Chapter 5. Fourteen (14) rectangular vapor-removal 
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channels (each with length x width x height combination of 80 mm x 2 mm x 1 mm) are 

machined in the upper-part of the evaporator, as shown in Figure 2.4. The vapor- and 

liquid-transport lines, as well as the condenser unit, are made of a smooth stainless steel 

316 tubing, with inner diameter of 5 mm, wall thickness of 1 mm, and an effective length 

of 300 mm. The vapor-transport line is assumed to be well insulated, with allowance for 

only partial condensation. The liquid-transport line is also well insulated, and is assumed 

to be essentially adiabatic. The condenser unit is attached with excellent thermal contact 

to a copper cold-plate maintained at a sink temperature, sinkT , following a design similar 

to one described in Maydanik et al. (2010). The overall per unit length thermal 

conductance of the condenser,  '
cd wall outside

UA


, evaluated from the inside wall of the 

condenser pipe to the outside constant-temperature copper cold-plate, is set equal to 31.4 

W/m-°C. The compensation chamber is assumed to be always filled with a two-phase 

mixture during the full range of operation of the considered LHP. An overall thermal 

conductance,  cc amb
UA


, of 0.1 W/°C between the inner surface of the compensation 

chamber and the ambient condition is used. The elevation difference between the 

evaporator and the condenser is denoted by .gH  For the baseline operating conditions, 

ambT   35 °C , sinkT   20 °C, and gH   0 are used, based on values used in the works of 

Singh et al. (2007), Zimbeck et al. (2008), and Maydanik et al. (2010). It is important to 

note that the more stringent US-military specification of the ambient temperature for such 

electronics-cooling applications of LHPs is 45 °C [Zimbeck et al. (2008)].  

 The geometric details of the various elements of the sample LHP, the selected 

materials, some characteristics of the sintered powder metal wick, and the operating 

conditions considered in this demonstration problem are summarized in Table 6.1. Using 

terminology introduced by Li et al. (2010), with the chosen inner diameters (5 mm) of the 

vapor-transport, liquid-transport, and condenser-pipe of the sample LHP, it would fall in 

the category of “compact LHPs,” for which the diameters of the “connecting pipelines” 

fall in the 3 - 5 mm range. 

In the remainder of this chapter, the term LHP (baseline) is used to indicate that the 

baseline operating conditions indicated in Table 6.1 apply. 
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Table 6.1: Characteristics of the sample LHP and the operating conditions considered. 

EVAPORATOR CONDENSER 
Wick  Pipe Material: SS 316
Sintered Metal Powder: SS 316 Inner Diameter: 5 mm

Dimensions (L x W x H) : 
80 mm x 80 mm x 

3.175 mm
Wall Thickness: 1 mm

Porosity: 39.3 % Effective Length: 300 mm

Max. Effective Pore Size: 27.31 m  'cd wall outside
UA

 : 

23.6 W/m-°C,  
31.4 W/m-°C 

(baseline), and
 39.3 W/m-°C

Effective Permeability: 7.356 x 10-13 m2
COMPENSATION CHAMBER 

Vapor Grooves  Pipe Material: SS 316
Number of Grooves: 14

 cc amb
UA

 : 
0 W/°C,  0.1 

W/°C (baseline), 
and 0.2 W/°C Dimensions (L x W x H): 

80 mm x 2 mm x 
1 mm

VAPOR-AND LIQUID-TRANSPORT LINES OPERATING CONDITIONS 

Pipe Material: SS 316 sinkT : 
10 °C, 20 °C 

(baseline), and 
30 °C 

Inner Diameter: 5 mm ambT : 
25 °C , 35 °C 

(baseline), and 
45 °C

Wall Thickness: 1 mm Elevation 
between 
Evaporator and 
Condenser, gH : 

0.0 mm 
(baseline), 50.8 

mm, and 
101.6mm

Effective Length: 300 mm

 

6.3 IMPACT OF OPERATING CONDITIONS ON PERFORMANCE OF THE SAMPLE LHP 

RUNNING WITH AMMONIA 
 In this section, the impact of operating conditions considered (Table 4.1) on the 

performance of the sample LHP running with ammonia is presented and discussed. 

Power inputs to the evaporator, appq , in the range of 0 - 400 W are considered here. 

 

6.3.1 Influence of the Sink Temperature 

 The variation of the saturated vapor temperature at the exit of the evaporator, denoted 

by satT , is shown in Figure 6.1 for three different sink temperatures: sinkT = 10, 20, and   

30 °C. At low power inputs, satT  first decreases with appq , indicating that the LHP is 
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operating in a variable-conductance mode. For higher values of appq , the LHP operates in 

an essentially constant-conductance mode, and satT increases almost linearly. As s inkT  is 

increased, the transition between the variable- and constant-conductance mode begins at 

lower values of  appq . As s inkT  is increased, the driving temperature difference for heat 

rejection in the condenser decreases. Therefore, the ability of the condenser to reject heat 

is reduced, and in order to evacuate the same amount of heat as before, the condenser 

becomes progressively more open (the location of the vapor-liquid interface in the 

condenser moves closer to its exit). As a result, when s inkT  increases, the condenser 

becomes fully open at lower power inputs, and the LHP operates in a constant-

conductance mode, as shown in Figure 6.1. 

 

Figure 6.1: Variations of satT  with appq  for the sample LHP operating with ammonia for 

sinkT = 10, 20, and 30 °C, ambT  35 °C,  'cd wall outside
UA

  = 31.4 W/m-°C,  cc amb
UA

  = 

0.1 W/°C, and gH  = 0. 
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 Furthermore, in the constant conductance mode, a given increase in s inkT , with respect 

to a reference value, results in an increase in satT  by an equal amount. This is also 

demonstrated in   Figure 6.1. 

 

6.3.2 Influence of the Ambient Temperature 

 Figure 6.2 shows the changes in satT  with appq  for three different ambient 

temperatures, ambT = 25, 35, and 45 °C. At low power inputs, the rate of evaporation in the 

LHP evaporator is reduced, leading to a small mass flow rate in the loop. As indicated by 

an energy balance on the compensation chamber (refer to Eq. 2.59), the saturation 

temperature of the compensation chamber, , sat ccT , approaches ambT .at low mass flow 

rates. It is important to note that, in these situations, , sat ccT and satT  are very close, and 

thus satT  also approaches ambT . This behavior is evident in Figure 6.2. 

 

Figure 6.2: Variations of satT  with appq  for the sample LHP operating with ammonia for 

ambT = 25, 35, and 45 °C, sinkT = 20 °C,  'cd wall outside
UA

  = 31.4 W/m-°C,  cc amb
UA

  = 

0.1 W/°C, and gH  = 0. 
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In summation, an increase in ambT  yields a higher value of satT  at low values of the 

power input. The higher value of  satT , augments the heat rejection capability of the LHP 

condenser and delays the transition from variable- to constant-conductance mode of LHP 

operation, as can be seen from the results given in Figure 6.2. 

 

6.3.3 Effect of the Conductance between Compensation Chamber and Ambient 

 The impact of  cc amb
UA


 on the variations of  satT  with appq  is illustrated in Figure 

6.3. In the case of the LHP considered, an increase in the conductance value implies a 

heat gain in the compensation chamber for appq < 110 W, and consequently leads to an 

increase in , sat ccT  and satT . An increase in the value of  cc amb
UA


 for appq > 110 W results 

in heat loss in the compensation chamber, which accounts for the slight decrease in satT  

observed in Figure 6.3 for high power inputs.  

 

Figure 6.3: Variations of satT  with appq  for the sample LHP operating with ammonia for 

 cc amb
UA


 = 0, 0.1, and 0.2 W/°C, ambT = 35 °C, sinkT = 20 °C,  'cd wall outside

UA
  = 31.4 

W/m-°C, and gH  = 0. 
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 For a completely insulated compensation chamber,  cc amb
UA


 = 0 W/°C, the heat 

leak to this chamber from the evaporator must be exactly balanced by the associated 

cooling caused by the subcooled liquid entering this chamber. Thus, at low power inputs, 

, sat ccT  and satT  are closely related to the temperature of the subcooled liquid, which 

equals the sink temperature at low values of appq . This behavior is evident in Figure 6.3. 

 

6.3.4 Effect of the Condenser Overall Wall-to-Outside Conductance 

 The variations of  satT  with appq  for three different values of the overall thermal 

conductance per unit length between the condenser inner wall to the outside sink 

environment,    , 
'

cd wall outside
UA


= 23.6, 31.4, and 39.3 W/m-°C, are shown in Figure 6.4. 

 

Figure 6.4: Variations of satT  with appq  of the sample LHP operating with ammonia for 

  , 
'

cd wall outside
UA


 = 23.6, 31.4, and 39.3 W/m-°C, ambT = 35 °C, sinkT = 20 °C,  cc amb

UA
  

= 0.1 W/°C, and gH  = 0. 
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At low power inputs ( appq < 50 W) the LHP operates in the variable conductance 

mode, and satT  is greatly influenced by ambT , as mentioned earlier in section 6.3.2. Thus, 

all three curves are essentially the same in this operational regime. Conversely, there is a 

clear distinction in the variation of satT  with appq  in the constant-conductance mode of 

operation ( appq > 50 W), and an increase in   , 
'

cd wall outside
UA


 augments the heat rejection 

capability of the condenser. This consequently delays the transition between the variable- 

and constant-conductance modes of operation and reduces the operating temperature satT  

in the evaporator for the same appq . Furthermore, the slopes of the nearly linear satT  

versus appq  curves in Figure 6.4 represent the effective thermal resistance (or inverse of 

the effective conductance) of the LHP evaluated between satT  and sinkT .  

 

6.3.5 Impact of Adverse Elevation between LHP Evaporator and Condenser 

 When the condenser of a LHP is positioned at a distance Hg below the 

evaporator/compensation chamber unit, an additional pressure head is required to 

overcome the associated gravitational pressure drop in the liquid-transport line. Here, this 

distance or height is referred to as an adverse elevation between the LHP evaporator and 

condenser. Figure 6.5 presents the operating characteristics of the LHP for three different 

adverse heights, Hg = 0, 50.8, and 101.6 mm. 

 As shown in Figure 6.5, the adverse elevation has a noticeable impact on the 

performance of the LHP at low power inputs ( appq < 50 W), which corresponds to 

variable-conductance mode of operation. With increase in Hg, the total pressure drop in 

the LHP is also increased, leading to an increase in ( satT - , sat ccT ). This consequently 

augments the heat leak from the evaporator to the compensation chamber and raises 

, sat ccT . Since , sat ccT  and ( satT - , sat ccT ) are increased, it follows that the operating 

temperature of the evaporator satT  itself is also increased. An increase in satT  augments 

the heat transfer capability in the condenser and defers the transition between the 

variable- and constant-conductance operating regimes of the LHP. This behavior is 

illustrated in Figure 6.5, but is not only restricted to adverse elevation effects in LHPs: 
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Any other changes to the LHP that lead to an increase in the total pressure drop (such as 

an increase in the length of the vapor-transport line or decreasing the permeability of the 

wick material) will have a similar impact on its performance. 

  

Figure 6.5: Variations of satT  with appq  for the sample LHP operating with ammonia for 

gH  = 0, 50.8, and 101.6 mm, ambT = 35 °C, sinkT = 20 °C,  'cd wall outside
UA

  = 31.4 W/m-

°C, and  cc amb
UA

  = 0.1 W/°C.  

 

It is important to note that care should be taken when operating with adverse 

elevations to ensure that the total pressure drop in the LHP, totP , never exceeds the 

maximum capillary pressure drop, , cap maxP , that can be sustained at the liquid-vapor 

interface in the wick. Figure 6.6 presents the variation of totP / , cap maxP  with appq  for  

gH  = 0, 50.8, and 101.6 mm. As shown in this figure, the LHP operating with ammonia 

reaches the capillary limit ( totP / , cap maxP = 1) at appq = 375 W when the condenser is 

adversely positioned 101.6 mm below the evaporator. 
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Figure 6.6: Variations of totP / , cap maxP  with appq  for the sample LHP operating with 

ammonia for gH  = 0, 50.8, and 101.6 mm, ambT = 35 °C, sinkT = 20 °C,  'cd wall outside
UA

  

= 31.4 W/m-°C, and  cc amb
UA

  = 0.1 W/°C. 

 

6.4 SIMULATIONS OF THE SAMPLE LHP OPERATING WITH FOUR DIFFERENT WORKING 

FLUIDS 
 As was stated earlier, the sample LHP (see characteristics in Table 6.1) is intended for 

the thermal management of a chip (Intel Xeon Processor X5690) used in a server unit for 

cloud-computing. The objective of this demonstration exercise is to evaluate the 

performance of this sample LHP in maintaining the chip-casing temperature below the 

70°C limit (for safe operation) when the chip is dissipating a maximum of 260 W. 

It should be noted that unless otherwise stated explicitly, the results in the rest of this 

chapter correspond to the baseline operating conditions of the sample LHP: ambT = 35 °C, 

sinkT = 20 °C,  'cd wall outside
UA

  = 31.4 W/m-°C,  cc amb
UA

  = 0.1 W/°C, and gH  = 0. 

 In this demonstration exercise, it is assumed that the metallic upper-part of the sample 

LHP evaporator (refer to Figure 2.4) is thin enough to render the thermal resistance of the 

related conductive wall minute. Consequently, the surface temperature of the evaporator 
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can be assumed to be equal to the saturated vapor temperature, satT , in the evaporator. It 

is further assumed that the thermal contact resistance at the interface between the chip-

casing and evaporator is very small: so for all practical purposes, the surface temperature 

of the chip-casing is equal to satT . These thermal resistances are considered negligible in 

this section only for convenience in the presentation. However, if needed in practice, the 

actual chip-casing temperature, chip caseT  , can easily be approximated as follows: 

/chip case sat app thT T q R     

In this expression, thR is the sum of the thermal resistances (resistance due to 

conduction in the evaporator casing and thermal contact resistance at the chip-evaporator 

interface) between chip caseT   and satT . 

 The proposed enhanced segmented network thermofluid model is used for the 

simulation of the sample LHP operating under steady-state conditions with four different 

working fluids (ammonia, distilled water, ethanol and isopropanol) for power inputs to 

the evaporator, appq , in the range of 0 - 400 W. The obtained results are presented and 

compared in the following subsections. 

 

6.4.1 LHP Operating Temperatures and Impact of the New Correlation for Pressure 
Drop in the Vapor Grooves 

 The variation of satT  with appq  of the sample LHP (see Table 6.1) operating at the 

baseline conditions with ammonia, distilled water, ethanol, and isopropanol are presented 

in Figures 6.7 - 6.10, respectively. The impact of the newly proposed correlation for 

predictions of the pressure drop in the rectangular vapor grooves of the sample LHP, 

, new .vg corrP  , on the variation of satT  with appq  is also shown in these figures, with 

reference to the corresponding results obtained with the classical baseline correlation for 

fully-developed Darcy friction factor, referred to here as , .vg baseline corrP  , used in many 

current thermofluid models of LHPs [Kaya and Hoang (1999); Ghajar and Darabi (2005); 

Maydanik (2005); Launay et al. (2007); Singh et al. (2009); Li and Peterson (2011)]. 
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LHP Operated with Ammonia 

 Figure 6.7 indicates that the sample LHP operating with ammonia functions in the 

variable-conductance mode for appq < 50 W, and in the constant-conductance mode for 

appq  > 50 W. This LHP is capable of transferring up to 335 W from the chip while 

maintaining its casing temperature ( chip case satT T  ) below 70 °C. At the rated maximum 

chip power dissipation of 260 W, the chip-casing temperature reaches a value close to 

56.9 °C, which is well below the stated limit of 70 °C. As shown in Figure 6.7, the 

influence of , new .vg corrP  is not apparent when this LHP operates with ammonia under the 

established working conditions. As will be shown later (in Figure 6.12), this is because 

the pressure drop in the vapor grooves represents only a small portion of the overall 

pressure drop in the sample LHP when operating with ammonia as the working fluid. 

 

Figure 6.7: Variations of satT  with appq  for sample LHP (baseline) operating with 

ammonia. 
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 LHP Operated with Distilled Water 

 As is evident in Figure 6.8, when the LHP is operated with distilled water, there is an 

appreciable difference in the variation of satT  with appq , when the simulations are 

conducted with the baseline and new pressure-drop correlations (corresponding results 

indicated by , .vg baseline corrP   or , new .vg corrP  ). A maximum difference of 4.5 °C is observed 

in the predictions of satT  at appq = 35 W obtained with the two-pressure drop correlations. 

This occurs because, with distilled water as the working fluid, the pressure drop in the 

vapor grooves contributes significantly to the overall pressure drop in the LHP. 

  

Figure 6.8: Variations of satT  with appq  for the sample LHP operating with distilled 

water. 
 

As is also illustrated by the results presented in Figure 6.8, the difference in 

satT obtained with the baseline and new correlations for the pressure drop in the vapor 

grooves decreases with increasing appq . At higher power inputs, the pressure drop in 

other elements of the LHP has more of an impact, and therefore reduces the overall 
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impact of , .vg baseline corrP   or , new .vg corrP  on the total pressure drop in the loop. This is 

demonstrated later in Figure 6.12. 

 As an example, if the goal is to maintain the chip-casing temperature below 60 °C 

with distilled water as the working fluid in the sample LHP, then the differences in the 

predictions obtained using the two different pressure-drop correlations are critically 

important (as shown in Figure 6.8). The results obtained using the baseline Darcy friction 

factor correlation for the pressure drop in the vapor grooves indicates that the compact 

LHP is limited to a maximum rate of heat transfer of 65 W in order to keep the chip-

casing temperature below the stated limit of 60 °C. However, the predictions obtained 

with the newly-proposed vapor-groove pressure-drop correlation reveal that the sample 

LHP operating with distilled water can handle a maximum heat transfer rate of 150 W at 

the maximum chip-casing temperature of 60 °C. Thus, the use of the baseline Darcy 

friction factor correlation can, under certain conditions, produce erroneous predictions of 

the LHP operating characteristics, leading to inaccurate decision-making in the design 

and optimization of LHPs. This example clearly demonstrates the importance of accurate 

predictions of the pressure drop in the vapor removal channels in the evaporators of 

LHPs. 

 Moreover,  as illustrated by the non-linear variation of satT  with appq  in Figure 6.8, the 

sample LHP essentially operates in the variable-conductance mode over most of the 

considered range of power inputs. This LHP approaches a constant-conductance mode of 

operation only very close to appq  = 400 W. In addition, this sample LHP operating with 

distilled water is capable of handling a maximum heat load of 325 W, while maintaining 

the chip-casing temperature below 70°C. This is comparable to the capability of the 

ammonia-operated LHP demonstrated earlier. At the rate maximum chip power 

dissipation of 260 W, the chip-casing temperature attains a value of 65.7 °C, which is   

8.8 °C higher than that obtained when the sample LHP is operated with ammonia. 

 

 LHP Operated with Ethanol 

 The transition between the variable- and constant-conductance modes of operation 

occurs close to appq  = 270 W when ethanol is used as the working fluid in the sample 
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LHP, as illustrated in Figure 6.9. However, this sample LHP is only able to accommodate 

a heat transfer rate of 240 W from the chip, if its casing temperature is to be maintained 

below 70 °C. Thus, with ethanol as the working fluid, the sample LHP is incapable of 

handling the stated maximum power of 260 W. At this rated maximum power, the chip-

casing temperature is 73.4 °C, exceeding the stated limit of 70 °C for safe and reliable 

operation of the chip. This sample LHP operating with ethanol is not suited for operations 

beyond appq  = 240 W for the considered application. 

 

 

Figure 6.9: Variations of satT  with appq  for the sample LHP operating with ethanol. 

 

Figure 6.9 also shows the impact of the baseline and newly proposed correlations for 

the pressure drop, , .vg baseline corrP   and , new .vg corrP  ,  in the vapor-removal channels of this 

LHP: A maximum temperature difference of 2.2 °C is obtained in the predictions of satT  

at appq = 15 W with the two-pressure drop correlations. Thus, the importance of accurate 

predictions of the pressure drop in the vapor grooves of the evaporator at low power 

inputs is once again demonstrated. 
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 LHP Operated with Isopropanol 

 The thermofluid properties of isopropanol (high-purity, 99.9%) are quite close to 

those of ethanol. Consequently, the performance of the sample LHP operating with these 

two fluids is qualitatively very similar. For the isopropanol-based LHP, the transition 

between the variable and constant-conductance regime of operation takes place near   

appq  = 290 W. In addition, as illustrated in Figure 6.10, this LHP can only handle a 

maximum heat transfer rate of 230 W from the chip, with the stated chip-casing 

temperature limit of 70 °C. At the higher chip-power rating of 260 W, satT  (and also 

chip caseT  ) reaches a temperature of 75 °C, exceeding the established safety limit by 5 °C. 

As a result, this LHP operating with isopropanol is not suited for operations beyond    

appq  = 230 W for the considered application. 

 

Figure 6.10: Variations of satT  with appq  for the sample LHP operating with isopropanol. 

 

Moreover, Figure 6.10 further illustrates the influence of the baseline and new 

correlations on the predicted variations of satT  with appq . A maximum temperature 
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difference of  2.1 °C in the predicted values of satT  at appq = 20 W  is obtained with the 

two pressure-drop correlations. In addition, there is a difference of 1.6 °C in the 

predictions of satT  at appq  = 230 W yielded by the two correlations: The baseline Darcy 

friction factor correlation under predicts satT , which could lead to detrimental 

consequences, such as overheating and failure of the electronic components the LHP is 

supposed to cool.  

 
 Importance of Accurate Correlations for the Pressure Drop in Vapor Grooves 

 The relative differences in vgP  predictions obtained with the newly-proposed and 

baseline correlations for sample LHP are presented in Figure 6.11. These results show 

that the baseline Darcy friction factor correlation over-predicts the pressure drop in the 

vapor-removal channels of the sample LHP at low power inputs by nearly 50 % , while 

under-predicting this pressure drop at higher power inputs by up to 200 %.  

 
 

Figure 6.11: Comparison of , .vg baseline corrP  and , new .vg corrP  for the sample LHP. 



 185

 Figure 6.12 illustrates the contribution of the pressure drop, for all four working 

fluids, sustained in the rectangular vapor grooves, vgP , of the sample LHP, to the total 

overall pressure drop, totP . The /vg totP P   ratio is the highest when the LHP is operated 

with distilled water (between 60 - 90%), followed by ethanol (about 33 - 50 %), 

isopropanol (close to 36 - 50 %), and ammonia (between 14 - 18 %). 

 

Figure 6.12: Variations of /vg totP P   with appq  for the sample LHP operating with 

ammonia, distilled water, ethanol and isopropanol. 

 

 Finally, the predicted variations of satT  with appq  obtained with the newly-proposed 

correlation for the calculation of the pressure drop in the rectangular vapor-removal 

channels, with the sample LHP operating with ammonia, distilled water, ethanol and 

isopropanol, are presented in Figure 6.13.  
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Figure 6.13: Variations of satT  with appq  for the sample LHP operating with ammonia, 

distilled water, ethanol and isopropanol (prediction obtained with the new correlation for 
calculating vgP ). 

 

6.4.2 Pressure Drop Contributions from Other Elements of the LHP 

 The pressure drops in various other elements of the sample LHP operating with 

ammonia, distilled water, ethanol and isopropanol incorporating are presented in     

Figures 6.14 - 6.17. All of the results in these figures pertain to the baseline operating 

conditions of the sample LHP: ambT = 35 °C, sinkT = 20 °C,  'cd wall outside
UA

  =             

31.4 W/m-°C,  cc amb
UA

  = 0.1 W/°C, and gH  = 0. 

 

  Pressure Drop in the Sintered-Powder-Metal Wick 

 As indicated in Figure 6.17, the pressure drop in the wick, wickP , represents between           

53 - 72 % of the total pressure drop, totP , of the ammonia-operated LHP, and is the most 
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significant contributor to the overall pressure drop in this LHP. The pressure drops 

sustained in the wick of the LHP operating with ethanol and isopropanol are nearly 

identical, ranging between 28 - 42 % of the overall pressure drop. When the sample LHP 

is operated with distilled water, /wick totP P   < 10 %. 

 

Figure 6.14: Variations of /wick totP P   with appq  for the sample LHP operating with 

ammonia, distilled water, ethanol and isopropanol. 
 

 Pressure Drop in the Vapor-Transport Line 

 The variations of /vl totP P   with appq  for the sample LHP are shown in Figure 6.15. 

When ammonia is used as the working fluid, /vl totP P   initially decreases with an 

increasing  appq , but when approaching appq  = 100 W, there is a noticeable jump in vlP . 

This sudden increases in vlP  is due to the laminar to turbulent transition of the vapor 

flow in the vapor-transport line. The value of /vl totP P   for the ammonia-operated LHP 

ranges between 8 - 18 %. The values of /vl totP P   for the ethanol- and isopropanol-

operated LHP increase with  appq  up to about 230 W, and then decrease as appq  increases. 



 188

In this case, /vl totP P   is between 5 - 40 % for the considered range of  appq . The value 

of /vl totP P   for the sample LHP operating with distilled water is observed to 

continuously increase, and it attains a maximum value of 50 % at appq  = 400 W. 

 

Figure 6.15: Variations of /vl totP P   with appq  for the sample LHP operating with 

ammonia, distilled water, ethanol and isopropanol. 

 

 Pressure Drop in the Condenser Section 

 Figure 6.16 illustrates the variations of the total pressure drop (accounting for both 

two-phase and sub-cooled regions) in the condenser, , cd totP , with respect to the overall 

total pressure drop sustained in the sample LHP. For the ammonia-based LHP, 

, /cd tot totP P   increases with appq  and reaches a maximum value of 12.6 % at appq  = 100 

W; beyond the appq  = 100 W mark, , /cd tot totP P   slightly decreases and asymptotes to a 

value of 10 %. For LHP operations with ethanol and isopropanol,  , /cd tot totP P   first 

decreases with appq  reaching a minimum value of  6 and 12 %, respectively, and then 
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increases with appq . The observed decrease in , /cd tot totP P   indicates that the pressure 

recovery due to changes in momentum caused by condensation of the vapor in the 

condenser exceeds the corresponding two-phase friction pressure drop in the condenser. 

As a result, there is a negative total pressure drop (or a pressure recovery) in the 

condenser. Similarly, a pressure recovery is observed for the LHP operating with distilled 

water, representing nearly 20 % of the total pressure drop in the LHP. 

 This exercise also demonstrates that the total pressure drop (single- and two-phase 

pressure drop) in the condenser of an LHP could represent an important portion of the 

overall pressure drop in the LHP (for certain combination of LHP geometry, working 

fluid, and operating conditions), and should not be ignored in thermofluid models of 

LHPs, contrary to what was suggested by Maydanik (2005). 

 

Figure 6.16: Variations of , /cd tot totP P   with appq  for the sample LHP operating with 

ammonia, distilled water, ethanol and isopropanol. 
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 Pressure Drop in the Liquid-Transport Line 

 Figure 6.17 shows the variations of /ll totP P   with appq  for the sample LHP 

operating with ammonia, distilled water, ethanol and isopropanol. The liquid flow is slow 

and laminar in the liquid-transport line, and the associated pressure drop is also small: 

The values of /ll totP P   are well under 2.5 %, 1.6 %, 1.5 %, and 0.5 % for the sample 

LHP operating with ammonia, ethanol, isopropanol, and distilled water, respectively. 

 

Figure 6.17: Variations of /ll totP P   with appq  for the sample LHP operating with 

ammonia, distilled water, ethanol and isopropanol. 

 

6.4.3 Variations of , /tot cap maxP P   with appq  

 The changes in , /tot cap maxP P   with appq  are presented in Figure 6.18 for the sample 

LHP (baseline conditions) working with ammonia, distilled water, ethanol and 

isopropanol. For operations with ammonia and distilled water, , /tot cap maxP P   reaches a 

maximum value of 16.9 % and 17.1 %, respectively. However, an inspection of the 
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slopes of the related , /tot cap maxP P   versus appq  curves indicates that for ammonia, 

, /tot cap maxP P   continues to rise rapidly beyond appq  = 400 W, whereas , /tot cap maxP P   

starts to plateau past appq  = 400 W for water. The variations of , /tot cap maxP P   with appq  

are very similar for the ethanol and isopropanol-operated LHP, and , /tot cap maxP P   attains 

a value of 63 % and 66 % for ethanol and isopropanol, respectively.  

 

Figure 6.18 Variations of , /tot cap maxP P   with appq  for the sample LHP operating with 

ammonia, distilled water, ethanol and isopropanol. 

 

 Based on these results, ammonia and distilled water would be the preferred working 

fluids for the sample LHP, as they would allow operation of the LHP well below the 

capillary limit, and could further accommodate additional pressure drops in the LHP such 

as those due to adverse elevations (as shown in 6.3.5). 
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6.4.4 Variations of /sat atmP P  with appq  

 The /sat atmP P  results for the sample LHP (baseline conditions) operating with 

ammonia, distilled water, ethanol and isopropanol are presented in Figure 6.19. The 

values of /sat atmP P  are relatively high for the ammonia-operated LHP, ranging from 10.2 

- 42.0 atm. For distilled water, these values are the lowest of all the working fluids 

considered here, ranging between 0.08 - 0.39 atm. The values of /sat atmP P  for ethanol and 

isopropanol are low to moderate, ranging from roughly 0.14 - 2.46 atm and 0.11 - 2.42 

atm, respectively. 

 

Figure 6.19 Variations of /sat atmP P  with appq  for the sample LHP operating with 

ammonia, distilled water, ethanol and isopropanol. 

 

 Therefore, from a strictly operational-safety standpoint, for the sample LHP and the 

baseline operating conditions given in Table 6.1, distilled water would to be the most 

favorable, and ammonia the least suitable, of the four working fluids considered in this 

work. 
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6.4.5 Variations of , LHP1/ thR  with appq  

 Figure 6.20 shows the variations of the overall thermal conductance, 

, LHP1/ / ( )th app sat sinkR q T T   with appq  for the sample LHP (baseline conditions) 

operating with ammonia, distilled water, ethanol, and isopropanol as the working fluids.  

 

Figure 6.20 Variations of , LHP1/ thR  with appq  for the ample LHP (baseline conditions) 

operating with ammonia, distilled water, ethanol and isopropanol. 
 

For ammonia, , LHP1/ thR  rapidly increases with appq  in the range 0   appq   50 W 

corresponding to the variable-conductance operation of the LHP, and reaches an 

essentially uniform conductance of 6.8 W/°C for higher power inputs, in the fixed-

conductance-mode of operation of the LHP. The variation of , LHP1/ thR  with appq  is much 

more gradual for distilled water, ethanol and isopropanol. At low power inputs, the LHP 

clearly operates in the variable-conductance mode, as shown in Figure 6.20. In the fixed-

conductance mode of operation, the LHP attains an overall conductance of 4.8 W/°C for 

ethanol and 4.7 W/°C for isopropanol. The LHP operating with distilled water, however, 
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remains in the variable-conductance mode of operation for full range of the power input,  

0 appq   400 W, and attains a conductance of  7.1 W/°C at appq  = 400 W. 

 

6.4.6 Condenser Two-Phase Flow Features 

 The two-phase flow features in the condenser of the compact LHP for low and high 

power inputs ( appq  50 and 400 W) are illustrated on the flow regime map of Taitel and 

Dukler (1976) in Figures 6.21 and 6.22, respectively. In these figures, the abscissa, ltX , 

represents the laminar (liquid) - turbulent (gas) Lockhart-Martinelli parameter, whereas 

the ordinate, FTD ,  corresponds to a modified Froude number proposed by Taitel and 

Dukler (1976).  The modified Froude number , FTD, is used to distinguish between the 

stratified and annular-dispersed liquid flow regimes, which are accounted for in the 

proposed segmented network thermofluid model of LHPs (refer to Chapter 2). The 

symbols represent conditions in each of the cells into which the condenser pipe is 

segmented, with the entrance to the condenser corresponding to the left-extreme symbols 

and the end of the two-phase region to the right-extreme symbols.  

 As is shown by the results presented in Figures 6.21 and 6.22, the entire two-phase 

flow section of the condenser is in the stratified regime for all four working fluids for the 

power inputs considered. Moreover, as the power input is increased, the two-phase flow 

section of the condenser moves closer to the annular-dispersed liquid regime: The results 

presented in Figures 6.21 and 6.22 show that this effect is more apparent for ammonia 

and distilled water than it is for ethanol and isopropanol. 
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Figure 6.21 Two-phase flow conditions in the condenser plotted on the flow regime map 
of Taitel and Dukler (1976) for appq  = 50 W. 

 

Figure 6.22 Two-phase flow conditions in the condenser plotted on the flow regime map 
of Taitel and Dukler (1976) for appq  = 400 W. 
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Chapter 7: 

Conclusion 
 
 This final chapter is divided into the following two sections: (1) a review of the thesis 

and its main contributions; and (2) some recommendations for extensions of this work. 

 

7.1 REVIEW OF THE THESIS AND ITS MAIN CONTRIBUTIONS 

 In this section, a review of the work reported in this thesis and its main contributions 

are presented in six salient parts, which corresponds to the first six chapters. 

1. In the first chapter, first, the motivation for this work, the overall goals of this 

thesis, and some background material on heat pipes (HPs), capillary pumped 

loops (CPLs), and loop heat pipes (LHPs) were presented. A review of the 

published literature relevant to this work was then presented, and some 

shortcomings in available quasi-one-dimensional thermofluid models of LHPs 

were identified. Finally, the specific objectives of this work were presented. 

2. In the second chapter, a segmented network thermofluid model for the simulation 

of LHPs operating under steady-state conditions was presented and discussed. 

Attention was focused on LHPs with one evaporator (cylindrical or flat), a vapor-

transport line, one condenser, a liquid-transport line, and a compensation 

chamber. The distinguishing features of the proposed model compared to those of 

earlier thermofluid network models of LHPs include the following:  

  Variations of thermophysical properties of the working fluid with 

temperature are taken into account, along with change in quality, pressure 

drop, and heat transfer in the two-phase regions, giving the proposed 

model enhanced capabilities compared to those of earlier thermofluid 

network models of LHPs, such as those of Bienert and Wolf (1995), Kaya 

and Hoang (1999), Maydanik (2005), Singh et al. (2007). In these earlier 

models, balances of mass, momentum, and energy were imposed on the 

full elements (rather than segmented portions) of the LHP, and the 
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variations of quality and pressure drops in the liquid-vapor two-phase 

regions were overlooked. 

  In the models of Atabaki (2006) and Atabaki et al. (2007), calculations of 

pressure drop and heat transfer in the two-phase region of the LHP were 

done using correlations that could only handle the stratified-smooth 

regime, whereas correlations that can handle the stratified-smooth, 

stratified-wavy, and annular-flow regimes are implemented in the 

proposed model, making it suitable for a wider range of applications. 

  The balances of mass, momentum, and energy over the segments (cells or 

control volumes) of the vapor-transport line, condenser pipe, and the 

liquid-transport line are done with fluid properties based on the mean bulk 

temperature within the cells (and in the case of two-phase flow, also the 

mean quality within the cell), and imposed using an inner-iterative 

procedure, whereas upstream properties (and quality) and a non-iterative 

procedure were used in Atabaki (2006) and Atabaki et al. (2007); 

  The updating of the satT  values in the overall iterations is done using a 

secant method, where as a trial-and-error procedure was used for these 

updates in Atabaki (2006) and Atabaki et al. (2007). 

The model proposed in this chapter, was also used to simulate an LHP 

experimentally investigated by Kaya and Hoang (1999): The predictions of the 

proposed model were in very good (qualitative) agreement with the experimental 

results. 

3. It was noted (through an extensive literature survey) that in earlier quasi-one-

dimensional models of LHPs, the pressure drop for vapor flow through the 

grooves in the evaporator is computed using a friction-factor correlation that 

applies strictly only in the fully-developed region of fluid flows in straight ducts 

with impermeable walls. This approach becomes unacceptable when this pressure 

drop is a significant contributor to the overall pressure drop in the LHP. Thus, a 

more accurate correlation for predicting this pressure drop was needed.  
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To fulfill this need, first, a novel co-located equal-order control-volume finite 

element method (CVFEM) for predicting three-dimensional parabolic fluid flow 

and heat transfer in straight ducts of uniform regular- and irregular-shaped cross-

section was put forward in the third chapter of this thesis.  

A marching procedure in the axial direction was used to construct the solution step-

by-step from the inlet to the exit planes of the duct. In each step or slice, the 

following formulation was used: the slice was first discretized into six-node prism-

shaped elements of triangular cross-section; then, prism-shaped control volumes of 

polygonal cross-section were constructed around each set of corresponding upstream 

and downstream nodes; algebraic approximations to integral mass, momentum, and 

energy conservation equations for each of the aforementioned control volumes were 

then derived using appropriate element-based interpolation functions for the 

dependent variables; and the resulting discretized equations were solved using an 

adaptation of a sequential iterative variable adjustment scheme.  

Following that, this three-dimensional parabolic CVFEM was adapted to 

formulate a simpler finite volume method (FVM) designed for predicting 

developing fluid flow and heat transfer in straight ducts of regular rectangular 

cross-section, akin to the geometry of vapor grooves (or  vapor-removal channels) 

used in the evaporators of LHPs considered in this work. 

4.  In the fourth chapter, the FVM formulated in Chapter 3 was used to investigate 

steady, laminar, Newtonian fluid flow and heat transfer in straight vapor grooves 

of rectangular cross-section. The straight rectangular grooves have one end 

blocked, and inflow of vapor from the bottom lateral surface with an injection 

velocity, vinj, and temperature, injT . The following values of the dimensionless 

parameters that govern the problems of interest were analyzed: AR = 1, 2, 5, and 

∞; Reinj  = 0.1, 1, 10, 50, and 100; Pr  = 1, 2, and 3; and ( / )hL D  = 8. The main 

points of note and the related novel findings are summarized below:  

  For AR = ∞, simulations were conducted with a two-dimensional elliptic 

FVM [Baliga and Atabaki (2006)] and the proposed three-dimensional 
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parabolic FVM: it was shown that the differences between results yielded 

by these two methods become essentially imperceptible for ( / )hz D   4. 

Consequently, all of the final simulations were done using the proposed 

cost-effective three-dimensional parabolic FVM. 

  In each of the cases considered, for ( / )hz D   4, a special fully-developed 

regime was established with the following characteristics: ( / )avw w  and 

( ) /( )inj w injT T T T     become invariant with axial distance z; ( Re )
hDf , 

( Re )Fanning injf , and b  achieve constant values. The values of  

. .( Re )
hD F Df , . .( Re )Fanning inj F Df , and . .( )b F D  were computed for the above-

mentioned range of the governing parameters. These values were used to 

propose a correlation that relates . .( Re )
hD F Df  to AR and Reinj , and a 

correlation that relates . .( )b F D to AR, Reinj , and Pr. Another correlation 

that relates . .( Re )
hD F Df  to . .( Re )

hFanning D F Df , AR, and Reinj  was also 

proposed.  

  It was also shown that the ratio . .( Re ) /( Re )
h happ D D F Df f achieves an 

asymptotic value of 0.5 regardless of the value of the aspect ratio or the 

shape of the cross-section of the vapor groove (as long as it is straight and 

axially uniform). The computed results also showed that for all practical 

purposes, . .( Re ) /( Re )
h happ D D F Df f can be considered equal to its 

asymptotic value of 0.5 for ( / )hz D   4.  

These results and correlations are intended to enhance the capabilities of available 

quasi-one-dimensional thermofluid models of LHPs, akin to that put forward in 

Chapter 2 of this thesis. 

5. In the fifth chapter, the use of simple and effective experiments, procedures, and 

correlations for the determination of the porosity, maximum effective pore size, 

effective permeability, and effective thermal conductivity of the liquid-saturated, 

sintered-powder-metal, wicks (required as inputs to mathematical models) in 
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LHPs  was demonstrated. This demonstration exercise was conducted using a 

sample porous sintered-powder-metal plate made of stainless steel 316, and the 

corresponding results were presented and discussed. 

6. In the sixth chapter, the capabilities of the proposed enhanced segmented 

network thermofluid model (comprised of the segmented network thermofluid 

model presented in Chapter 2, coupled with the correlations developed from the 

detailed numerical analysis of the flow and heat transfer in the vapor grooves, as 

outlined in Chapter 4) were illustrated through a demonstration problem. In this 

problem, a sample LHP running with four different working fluids (ammonia, 

distilled water, ethanol, an isopropanol), and operating under conditions relevant 

to the cooling of a state-of-the-art central processor unit (CPU) installed in a 

server of a cloud-computing set-up, was simulated using the proposed enhanced 

segmented network thermofluid model. The results obtained were presented and 

comparatively discussed. 

 

7.2 RECOMMENDATIONS FOR EXTENSIONS OF THIS WORK 

 A few recommendations for extensions of this work are listed in this section.  

 The segmented network thermofluid model presented in this thesis was focused on 

the steady-state modeling of LHPs. It would be worthwhile to extend this model to allow 

simulations of LHPs operating in transient modes, such as startup, power-down, and 

power-up. Some guidance for such extensions could be obtained, for example, from the 

works of  Ku (2003), Ku and Rodriguez (2003), Chen et al. (2006), Launay et al. (2007b), 

and Vlassov  and  Riehl (2008). 

 Attention in this thesis was limited to the modeling of LHPs with one evaporator 

(cylindrical or flat), a vapor-transport line, one condenser, a liquid-transport line, and a 

compensation chamber. It would be very interesting and useful to extend this model for 

the simulations of LHPs with multiple evaporators. A multi-evaporator LHP would allow 

the transfer of heat from multiple heat sources to a corresponding sink. The works of Yun 

et al. (1999), Nagano and Ku (2006), Ku et al. (2009), and Anderson et al. (2010) would 

be helpful in this regard. 
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 In this work, a FVM, particularly well suited for predictions of three-dimensional 

parabolic fluid flow and heat transfer in straight ducts of rectangular cross-section, was 

used to investigate the fluid flow and heat transfer phenomena in the rectangular vapor-

removal grooves of LHP evaporators. Based on this study, novel correlations for the 

reliable and cost-effective calculations of the overall pressure drop and bulk temperature 

of the vapor in these so-called vapor grooves were proposed. The development of similar 

correlations for vapor grooves of irregular cross-section, such as trapezoidal and 

triangular, using the CVFEM presented in Chapter 3 would represent a very useful and 

original endeavor. This could also be particularly useful for shape-optimization studies of 

the vapor grooves in LHP evaporators. 

 It would also be useful to design and build an LHP with a flat evaporator (akin to that 

explored in Chapter 6), and to use this LHP to obtain measurements that characterize its 

performance in both steady-state and transient modes of operation. The corresponding 

experimental measurements could be ultimately used to further check and refine the 

proposed enhanced segmented network thermofluid model. 

 The enhanced segmented network thermofluid model of LHPs proposed in this thesis, 

after incorporation of some of the extensions suggested above, could be used for 

achieving optimal designs of these devices for applications in advanced sustainable 

energy systems, state-of-the-art computers and electronics, process and materials 

industries, agriculture and food industries, transportation systems, biomedical systems, 

and spacecrafts, for example. The author hopes that the work presented in this thesis will 

have such a fitting evolution. 
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