
LEARNING INFLUENCE
PROBABILITIES IN SOCIAL

NETWORKS

Gheorghiţǎ Cǎtǎlin Bordianu

Master of Science

School of Computer Science

McGill University

Montreal, Quebec

March 2012

A thesis submitted to McGill University in partial fulfillment of the requirements of the
degree of Master of Science

c© Gheorghiţǎ Cǎtǎlin Bordianu, 2012

DEDICATION

This thesis is dedicated to my friends and family. Their trust in me never faded.

ii

ACKNOWLEDGEMENTS

My gratitude goes to those who shaped my life in the past two years. Foremost, I

thank my supervisor, professor Doina Precup. Her kind heart and good advice kept me on

the right path throughout my studies at McGill. Thank you for your support, for always

smiling, and for knowing how to get my spirit up when I felt I was not moving forward.

You were the best supervisor and mentor a student could have asked for.

Many thanks to my colleagues in the Reasoning and Learning lab, who made me walk

to my desk each morning with a smile on my face. Special thanks to Gheorghe Comǎnici

and Cosmin Pǎduraru, our conversations and late nights in the lab both helped me in my

research and gave me new perspectives on important things in life. I will sure miss taking

turns with you guys to sleep on the office couch when tired. My friends and fellow grad

students Jarryd, Tim, Ian, Arash, Philip, Danesh, Pierre-Luc, Radu and many others also

deserve gratitude for helping me reach this point in my life.

Many more thanks go to my family. Without their support I would not be here to type

these words. I thank my parents Vasile and Maria Bordianu from the bottom of my soul,

you have been and will always be the pillars of support in my life. Many thanks to my

two sisters Alina and Diana, my brother-in-law Lucian and my little niece Ella. As I am

finishing an exciting journey of 17 years of study, she is starting her own in elementary

school. I hope one day to read my name in her thesis acknowledgments.

Thanks to Laurent Féral-Pierssens for encouraging me to pursue graduate studies.

Finally, thanks to James McGill for making this place happen, may you rest in peace in

heavens.

iii

ABSTRACT

Social network analysis is an important cross-disciplinary area of research, with ap-

plications in fields such as biology, epidemiology, marketing and even politics. Influence

maximization is the problem of finding the set of seed nodes in an information diffusion

process that guarantees maximum spread of influence in a social network, given its struc-

ture. Most approaches to this problem make two assumptions. First, the global structure of

the network is known. Second, influence probabilities between any two nodes are known

beforehand, which is rarely the case in practical settings. In this thesis we propose a diffe-

rent approach to the problem of learning those influence probabilities from past data, using

only the local structure of the social network. The method is grounded in unsupervised

machine learning techniques and is based on a form of hierarchical clustering, allowing

us to distinguish between influential and the influenceable nodes. Finally, we provide

empirical results using real data extracted from Facebook.

iv

ABRÉGÉ

L’analyse des réseaux sociaux est un domaine d’études interdisciplinaires qui com-

prend des applications en biologie, épidémiologie, marketing et même politique. La maxi-

misation de l’influence représente un problème où l’on doit trouver l’ensemble des noeuds

de semence dans un processus de diffusion de l’information qui en même temps garan-

tit le maximum de propagation de son influence dans un réseau social avec une structure

connue. La plupart des approches à ce genre de problème font appel à deux hypothèses.

Premièrement, la structure générale du réseau social est connue. Deuxièmement, les pro-

babilités des influences entre deux noeuds sont connues à l’avance, fait qui n’est d’ailleurs

pas valide dans des circonstances pratiques. Dans cette thèse, on propose un procédé

différent visant la problème de l’apprentissage de ces probabilités d’influence à partir des

données passées, en utilisant seulement la structure locale du réseau social. Le procédé

se base sur l’apprentissage automatique sans surveillance et il est relié à une forme de

regroupement hiérarchique, ce qui nous permet de faire la distinction entre les noeuds in-

fluenceurs et les noeuds influencés. Finalement, on fournit des résultats empiriques en

utilisant des données réelles extraites du réseau social Facebook.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ABRÉGÉ . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 Introduction . 2

1.1 Introduction . 2
1.2 Outline . 5

2 Background and Related Work . 6

2.1 Unsupervised Learning . 6
2.1.1 Clustering . 8
2.1.2 Partitional clustering . 9
2.1.3 Hierarchical clustering methods 10
2.1.4 Expectation Maximization 13

2.2 Information diffusion models and influence maximization 15
2.2.1 The Linear Threshold model 16
2.2.2 The Independent Cascade model 18
2.2.3 A generalized framework for diffusion models 18
2.2.4 Influence maximization . 19
2.2.5 Learning influence probabilities 22

3 Proposed method . 28

3.1 Learning influence probabilities using Agglomerative Clustering . . . 29
3.1.1 Outlier detection and removal 31

vi

3.1.2 Proposed Algorithm . 32

4 Experimental framework and setup . 37

4.1 Terminology . 38
4.2 The database layer . 39

4.2.1 MySQL and memcached . 40
4.2.2 Raw data and the Riak cluster 41
4.2.3 Storing filtered data in MongoDB 43

4.3 The application layer . 44
4.3.1 The Models API . 44
4.3.2 The Reports API . 46
4.3.3 Performing and monitoring jobs with resque-mongo 46
4.3.4 Crawling Facebook accounts 48

4.4 The presentation layer . 48

5 Experimental results . 52

5.1 Methodology . 52
5.2 Determining influenceable nodes using Agglomerative Clustering . . . 55
5.3 Experiments and analysis of results 58

6 Conclusion . 69

References . 72

Appendix A . 77

vii

LIST OF TABLES
Table page

5–1 Types of activities detected . 53

5–2 Mined activities and contributors . 54

5–3 Basic statistics for Algorithm 4 . 57

5–4 Confidence intervals for the true fraction of influenceable neighbors 60

5–5 Results for the second survey task . 62

5–6 Results for the second survey task . 64

5–7 Correlation between top 10 rankings . 67

viii

LIST OF FIGURES
Figure page

2–1 Example of a dendogram . 11

4–1 Deployment diagram of the web application 51

5–1 Chaining effect when using single linkage 56

ix

List of Algorithms

1 Expectation Maximization (Y, L(θ;Y, Z), ε) 14

2 Greedy Influence Maximization (f, k) 21

3 Agglomerative Clustering (X) . 32

4 Learning Influence Probabilities: (N(v), Av, SAv , ε) 36

1

CHAPTER 1
Introduction

1.1 Introduction

Large scale social network analysis has become a subject of particular interest in

research, given the rise and incredible growth of online social networks such as Facebook,

Twitter and LinkedIn. Early network analysis research focused on explaining statical pro-

perties of the networks, as most of their dynamics and formation process were impossible

to observe and track at that time. Paul Erdős and Alfred Rényi’s impressive work on

random graphs [15] was an important step forward as it formalized the sufficient conditions

that need to be met, in order to prove that some property holds for “almost all” graphs.

Important questions about the properties and formation of large scale networks have been

addressed as early as 1999 by pioneers Albert-László Barabási and Réka Albert, who

proposed the preferential attachment model [5] aimed at explaining the self-similar aspect

of a lot of real life networks viewed at different scales. The difficulty in obtaining relevant

datasets for study has hindered research in this field for a long time, but the emergence of

online social networks that expose most of their data through public APIs alleviated this

problem to a great extent.

Besides studying general properties of the network, one of the important directions

of research in social network analysis is the study of properties of individual nodes [14].

Quantifying these properties can be used to distinguish between different categories of

nodes based on their level of activity and behavior tendencies. This is an open research

2

question of great importance. Although no precise definition of influence has been for-

mulated yet, the general consensus is that it describes the ability of a particular node to

persuade its neighbors to adopt a particular type of behavior [10]. This idea gave rise to

a number of fundamental diffusion models aimed at explaining how a particular behavior

spreads through a social network, such as the Linear Threshold model [22, 25] and its

generalization for multiple cascades [40], the Independent Cascade model [25], the De-

creasing Cascade model [26] and topical factor graphs studied by Tang et al. [46]. These

models provide a natural framework for measuring the network reach achieved by using

a particular method of selecting seed nodes for the diffusion process. The likelihood of a

node becoming activated and further spreading a piece of information — seen as a function

of the neighbors of that node which are already activated — has nice properties, such as

being submodular and incremental in most of these models. This makes these approaches

computationally efficient.

The ease of obtaining very large datasets for analysis enables researchers for the very

first time to empirically test and prove or disprove a lot of their models regarding the

formation and dynamics of networks. This abundance of data also provides a great oppor-

tunity to identify new patterns and formulate novel hypotheses regarding the way informa-

tion spreads from one node to another. One particular problem of interest — closely related

to diffusion of information models — that has been the object of study in social network

analysis is the problem of influence maximization posed by Domingos and Richardson

[13, 42] and further researched by Kempe, Kleinberg and Tardos [25] and others [29]. The

problem of influence maximization with parameter k has the following informal descrip-

tion: given a network modeled as a directed graph G = (V,E) and influence probabilities

3

on each edge denoted by w(v, u) (where v and u are any two nodes), select a set of k nodes

that will be used as seeds in an information diffusion process, so that a maximum number

of nodes is reached. The number of nodes reached is called the influence spread through

the network of that specific seed set.

Influence maximization is an NP-hard discrete optimization problem in both the linear

threshold model as well as the independent cascade model [25]. Practical approaches focus

on finding approximate solutions. For this purpose, heuristics derived from measures of

structural properties of the network or of individual nodes from the field of social network

analysis are employed. Such measures include (in or out) degree centrality, betweenness

and closeness centrality, or more complex ones such as PageRank [30]. A recent empirical

comparison of some seeding strategies has been performed by Hinz et al. [23].

Most of these algorithms are successful in the sense that the number of nodes reached

in a diffusion process increases by a factor of up to 30 in some cases [30], when compared

to the baseline of using random nodes as seeds. However, none of these heuristics take

into account the chronological interactions observed between nodes. Accounting for these

interactions shows some promise in improving the capacity to learn influence probabilities

and thus distinguish between influencers and influenceable nodes, as shown by Saito et al.

[45] and more recently Goyal et al. [21]. While significant and enticing, these findings

still leave room for research, as in some settings we might not have access to a detailed

timestamped log of interactions between nodes. A second assumption often made is com-

plete knowledge of the social network structure, which is rarely encountered in practical

settings. Relaxing this constraint has a lot of practical value and promises to yield good

4

results, if the local structure of the social graph can be used as a good proxy for the global

structure of the network [42, 4].

The goal of this thesis is to find a computationally efficient approach for learning

influence probabilities in the local neighborhood of a given node. Ideally, the algorithm

should also allow us to discriminate between the neighbors of a particular node, namely

to distinguish between the influential and the influenceable nodes. Formally, for a given

node v and the set of his neighbors N(v), we want to learn a function fv : N(v)→ [0, 1],

with fv(u) = wv,u; the function fv assigns to every edge (v, u), u ∈ N(v) a weight de-

scribing the degree to which v influences u. We will focus on applying techniques from

the discipline of machine learning such as hierarchical clustering, which seem promising

according to some recent work [45].

1.2 Outline

The rest of this thesis is split into five chapters. The second chapter provides the re-

quired background in various machine learning algorithms that are relevant to the topic.

Chapter 3 introduces the method we propose for learning influence probabilities in the

local neighborhood of a node. Chapter 4 presents a high-level overview of the software

we wrote for extracting data from Facebook. All the major required details needed for

replicating our setup and performing the same experiments are given. Chapter 5 presents

findings on real data extracted from Facebook. Chapter 6 discusses how the new knowl-

edge we gained from this work fits in the current research landscape and presents new

possible directions of research.

5

CHAPTER 2
Background and Related Work

This chapter provides the required machine learning background for understanding

the problem at hand, and presents related research work and results.

Section 2.1 introduces the problem and formalisms of unsupervised learning (one of

the core areas of machine learning research), some important applications and clustering

techniques.

Section 2.2 presents some important diffusion of information models, delves into the

problem of influence maximization and formalizes the problem of learning influence pro-

babilities. Different methods and related approaches that have already been explored in

the literature are introduced when needed.

2.1 Unsupervised Learning

Machine learning concerns itself with the development of methods and techniques

for learning from past data or experience. This enables the creation of programs that

achieve complex tasks in areas where there are no human experts (such as DNA analysis),

or in which humans performing them cannot explain how do they do it (e.g. understan-

ding speech, recognizing handwriting). More recently, machine learning has significantly

expanded due to its ability to analyze very large, heterogeneous datasets (including text,

images, etc.) made available on the web.

6

In this thesis, we focus on methods from unsupervised learning, in which we are

provided with a dataset consisting of vectors containing the values for different attributes

of interest. The goal is to find interesting patterns or associations in the data. Generally,

this is achieved by employing some measure of similarity between different input points.

To some extent, unsupervised learning can be thought of as the problem of recovering the

labels for a given dataset, in the absence of an expert. Some major applications for this

type of learning are anomaly detection, noise reduction, finding groups of similar points

(called clustering), learning new important features, and data visualization. Unsupervised

learning techniques are often used for preprocessing and better understanding the data,

before classifiers or regression functions are to be trained.

In unsupervised learning we are given a dataset of m points x1,x2 . . .xm. Each of

these points or inputs is a n-dimensional vector xi = (xi,1, xi,2 . . . xi,n)T, where by xi,j

we denote the value attribute j takes for the i-th input. These attributes or features are

problem specific and can be continuous or discrete. In matrix form, the entire dataset can

be written as

X =

x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n
...

...

xm,1 xm,2 · · · xm,n

The task of an unsupervised learner is to find interesting patterns in the data beyond what

would be considered noise. Assuming that the inputs xi are independent and identically

distributed according to some distribution P (x), almost all unsupervised learning algo-

rithms are equivalent to fitting a model Q(x) to the data, to approximate P (x).

7

Typical examples of unsupervised learning tasks are finding groups of similar points

called clusters, or performing dimensionality reduction for compression or visualization

purposes. Modeling structured data such as time series using State-Space Models (SSMs)

or Hidden Markov Models (HMMs), inference in graphical models and approximate Bayesian

inference algorithms such as Laplace approximation or Expectation Propagation can also

be regarded as unsupervised learning tasks. The rest of this section will focus on clustering

techniques. A high-level overview of the algorithms from a statistical modeling perspec-

tive, is given by Zoubin Grahramani [18].

2.1.1 Clustering

Given input data in the form presented above, the problem of clustering is to find

interesting patterns by grouping similar points together. This is achieved by employing

a dissimilarity function. A group of points that belong together is called a cluster and

usually the mean of the points in the cluster is called the centroid.

A dissimilarity function over the input space X is defined as a functionD : X×X→

< with the following properties:

1. Symmetry: D(x, y) = D(y, x), ∀x, y ∈ X

2. Positivity: D(x, y) ≥ 0,∀x, y ∈ X

If the triangle inequality D(x, y) ≤ D(x, z) + D(z, y) and reflexivity D(x, y) =

0 ⇐⇒ x = y,∀x, y, z ∈ X also hold, D is called a metric.

After deciding on a function with these properties, the next step in elaborating a

clustering algorithm is to define a criterion or loss function to optimize. A commonly

used and well studied optimization criterion is minimizing the sum of squared distances

8

between each point and its corresponding centroid. The output of a clustering algorithm

is a set of centroids and an assignment of each input point to a particular centroid. This

effectively achieves compression of the dataset, as all points in a particular cluster can now

be encoded by their centroid.

Clustering has a large number of practical applications in outlier and anomaly detec-

tion, where it is used to determine when a system or part of it is functioning outside its

normal parameters, by using a past history of normal activity. Efficient communication

in a network, as well as data compression are also important applications of clustering

techniques.

Clustering algorithms can be classified using a variety of criteria, but a widely agreed

taxonomy is based on the nature of the clusters generated [16]. Partition methods return

a single partition of the data into clusters, while hierarchical methods return an entire se-

quence of partitions, ranging from every point in its own cluster, to all the points in one

cluster. An expert then chooses the best partition, or a numerical criterion is used to deter-

mine which partition best captures the true structure of the data [38].

2.1.2 Partitional clustering

This type of clustering methods attempt to directly decompose the dataset into a par-

tition consisting of a pre-specified number of clusters. The most straightforward solution

would be to choose an optimization criterion and to evaluate all possible partitions of the

dataset into k clusters. However, this is an intractable combinatorial optimization prob-

lem, even for small datasets. Approximate solutions are generated by starting with an

initial (usually random) partition, reassigning points to clusters and recomputing centroids

9

in such a way that the value of the optimization criterion improves. This type of approach

is prone to converge to local minima instead of the global one, so techniques such as

random restarts need to be employed to obtain useful solutions.

One of the simplest examples of partitional clustering is the K-means algorithm [35].

K-means is based on the idea of optimizing the sum of squared distances between every

point and its corresponding centroid (also called within-cluster sum of squares), through

an iterative process. Let the cluster centroids be denoted by µ1, µ2 . . . µk and the actual

partition by C = {C1, C2 . . . Ck}. The optimization problem can be formulated as:

min
C

k∑
i=1

∑
xj∈Ci

‖xj − µi‖2 (2.1)

After randomly initializing k centroids, K-means performs the following steps repea-

tedly until no more points change cluster assignment:

1. Assign each point xi to the cluster with the closest centroid

2. Re-compute centroids µi, i = 1→ k as the means of the points xj ∈ Si

Different variations of this idea have been studied, giving rise to the K-medoids and

fuzzy C-means algorithms [47]. Although quite computationally efficient, all approaches

suffer from local minima issues and need to have k pre-specified. Good values for this

parameter can be determined using cross-validation or the silhouette method [44].

2.1.3 Hierarchical clustering methods

Hierarchical clustering methods return a succession of partitions of the data into clus-

ters, according to a proximity matrix. The partitions range from every point in its own

cluster, to all the points in one cluster. No pre-specified number of clusters is needed. If

10

the partitioning is done bottom-up — starting with each individual point being a cluster —

the method is called agglomerative clustering. Starting with all points in a single cluster

gives rise to divisive methods. Divisive methods are rarely used in practice. For a cluster

of n elements, 2n−1 − 1 divisions into two subsets are possible, and considering them is

computationally intractable for large values of n [16].

Agglomerative methods work by starting with every point in its own cluster and join-

ing two clusters at each iteration based on some measure of similarity, until all the points

are in one cluster. A common way to represent the arrangement of clusters produced by

such as method is through a dendogram (see figure 2–1), a binary tree in which the length

of an edge is proportional to the distance between the adjacent clusters. Different simi-

Figure 2–1: Example of a dendogram

11

larity measures between clusters — also called linkages — generate different hierarchies.

The following recurrence formula [31] describes the distance between a cluster Ck and the

cluster resulting by merging clusters Ci and Cj:

D(Ck, (Ci, Cj)) = αiD(Ck, Ci) + αjD(Ck, Cj)+

βD(Ci, Cj) + γ|D(Ck, Ci)−D(Ck, Cj)|
(2.2)

Tweaking the values for the parameters αi, αj, β and γ in (2.2) yields different linkages.

For example, setting αi = αj = 1/2, β = 0 and γ = −1/2 yields the formula for single

linkage, which is just the distance between the two closest points in the two clusters. Jain

and Dubes [24, Table 3.1] present in detail the values of parameters for obtaining various

linkages.

While it is true that hierarchical clustering methods are suitable for detailed data ana-

lysis and give more information than partitional methods, at leastm2 similarity coefficients

need to be computed and updated during the process. In terms of computational efficiency,

this class of algorithms might not be suitable for very large datasets.

Another drawback of hierarchical clustering algorithms is that results can be easily

skewed by outlying data points, subject to the kind of linkage used. For example, Ward’s

linkage is significantly more sensitive to outliers than centroid linkage. Complete linkage

can too be severely distorted even by moderate outliers. A preprocessing step of detecting

and removing outlying observations from the dataset is a must when using hierarchical

clustering algorithms in practice. Some studies have shown that clustering techniques

themselves can be successfully used as a tool for achieving this task [48, 36].

12

2.1.4 Expectation Maximization

One widely used unsupervised learning method which deals with missing data is

called Expectation Maximization (EM). EM is used to compute maximum likelihood (ML)

or maximum a posteriori (MAP) estimates for the parameters of a model, when part of the

data is unobserved. Published by Dempster et al. in 1977 [12], this idea generated over

time an entire class of algorithms suitable in different problem settings [37].

The basic algorithm makes the assumption that observations depend on latent random

variables or are incomplete (e.g. due to sensor noise). We introduce the following notation,

and for the rest of the discussion — for ease of explanation — we assume observations are

discrete:

• Y = {y1, y2 . . . ym} is the observed data, consisting of m points.

• Z is the set of unobserved latent variable.

• θ is a vector of unknown parameters.

The likelihood of θ given the observed data is:

L(θ;Y, Z) =
m∏
i=1

∑
z

P (yi, z|θ) (2.3)

However, the quantity in (2.3) is computationally intractable to maximize because of the

marginal likelihood of the observed data (the sum over all possible values of Z) inside a

product. EM works around this issue by filling in the missing values forZ using the current

estimate of the parameters θ, and then using those values to find a maximum likelihood re-

estimate of the parameters. Applying these two steps iteratively leads to convergence, as a

consequence of Jensen’s inequality. After each iteration, the estimate of θ has a greater or

same log-likelihood as the estimate from the previous iteration.

13

Formalized, the basic EM algorithm is the following:

Algorithm 1 Expectation Maximization (Y, L(θ;Y, Z), ε)
Input:

Y - the observed (incomplete) data
L(θ;Y, Z) - the likelihood of θ, given the complete data
ε - small real value, used for determining algorithm convergence

Output:
θ(t+1) - a maximum likelihood estimate of the parameter vector θ

1: initialize θ(0) to random values
2: repeat for t = 0, 1 . . .
3: Q(θ|θ(t)) = EZ|Y,θ(t) [logL(θ;Y, Z)]

4: θ(t+1) = arg maxθQ(θ|θ(t))
5: until ‖θ(t+1) − θ(t)‖ < ε
6: return θ(t+1)

Step 3 is called the expectation step, since it involves computing the expected value

of the log-likelihood function. Note that the expectation is taken with respect to the con-

ditional distribution Z|Y, θ(t), where θ(t) is the current estimate for the parameters. In step

4 — called the maximization step — new ML estimates for the parameters of the model

are computed, keeping the values for the realizations of the latent variables fixed.

To summarize, EM is an iterative method for finding the parameters of a model and

provides a natural framework for dealing with missing data. It takes advantage of the fact

that the log-likelihood of the complete dataset is easy to maximize. EM suffers from the

same local minima issues as other unsupervised learning algorithms, so multiple random

restarts need to be applied to get a good estimate for the parameters.

14

2.2 Information diffusion models and influence maximization

The way ideas and technology spread has been a subject of great importance in re-

search. While the origins of this field span across disciplines, the first detailed synthesis

was published by Everett Rogers in 1962 in “Diffusion of Innovations” [43], which is now

considered a standard textbook.

Studying properties of diffusion processes has a large number of practical applica-

tions. In epidemiology, they are used to understand the spread of pandemics, in the mi-

litary, to dismantle terrorist cells, and in marketing, to conduct efficient campaigns using

limited budgets. We are interested in a subset of diffusion models which can be used to

describe the way information spreads through a social network of individuals.

In most practical settings, we can directly observe the times when nodes get “in-

fected” or “activated” and adopt a certain behavior. However, it is impossible to get ac-

curate information about who infects or influences whom, especially in large-scale online

networks. Even survey-based methods are unreliable, as the individuals surveyed are sub-

jective or may not even be aware that their behavior was influenced by some of their peers.

Several researchers conducted studies on inferring the underlying influence network by ob-

serving multiple instances of information or behavior propagating between nodes, called

cascades [45, 20, 21]. Leskovec et al. [33] studied the topology of cascades that arise

frequently and their relationship to properties of the underlying network. Tang et al. [46]

worked on inferring subnetworks based on the intuition that if some node u consistently

and repeatedly adopts a certain behavior shortly after some node v, then v influences u to

some extent.

15

The models presented in subsections 2.2.1 and 2.2.2 are both progressive, meaning

that once activated, a node cannot become inactive, although Kempe et al. [25] show that

this assumption can be easily lifted.

2.2.1 The Linear Threshold model

One of the simplest models — often used in viral or “word of mouth” marketing —

is called the Linear Threshold (LT) model and was proposed by Mark Granovetter in 1978

[22] to explain social processes such as riots or segregation. The LT model is based on

the idea that each node in the network has an individual threshold, defined as a weighted

fraction of his neighbors that need to activate to make it become active. If the threshold

value is reached for a particular individual, the benefits gained exceed the cost of activating

and the node will adopt the behavior, assuming that it is a rational agent.

Let v be a node in the network, θv its corresponding threshold value chosen uniformly

at random in the interval [0, 1] and N(v) its set of neighbors. Each neighbor u ∈ N(v)

influences v according to a weight bu,v such that:

∑
u∈N(v)

bu,v ≤ 1 (2.4)

Initially a set of seed nodes S0 are activated and the model works in discrete time

steps i = 1, 2 . . . until at some time step τ no more new nodes activate (i.e. Sτ = ∅).

Associated with each node v is a monotone threshold function, fv : 2N(v) → [0, 1],

fv(S) =
∑
u∈S

bu,v (2.5)

16

with fv(∅) = 0. The function maps subsets of v’s neighbors to real numbers in the interval

[0, 1].

Let us denote the set of active neighbors of v at time step t by AN t(v). A node v

activates at time step t+ 1 if:

fv(AN
t(v)) ≥ θv (2.6)

The model assumes that the weights bu,v are known beforehand, while the thresholds

θv are chosen uniformly at random in [0, 1]. This reflects the lack of knowledge of the true

thresholds, as underlined in the seminal work published by Kempe et. al [25]. There have

been studies, such as [41], which use a fixed value (namely, 1/2) for all thresholds.

The model has been adapted recently to work with multiple cascades of information

by Pathak et al. [40]. Let us consider a network of nodes, and a world which starts ran-

domly in one of two possible states. The state of the world is hidden from the nodes, which

are trying to figure out which of the two it is. Furthermore, assume a sequential process, in

which every node decides to accept or reject some option, based on a combination between

the decision of the previous nodes and some private information. Every decision has an

associated payoff. Rejecting the option has a payoff of 0, while accepting the option has

a negative or positive payoff, depending on the hidden random state of the world. An in-

formation cascade occurs when the optimal strategy for a node for maximizing its payoff

is to make the same decision as the majority of the preceding nodes, disregarding his own

private signal [14, Chapter 16].

In Pathak’s adapted model [40], if k cascades of information are in effect simultane-

ously, a node can be in k + 1 states: active in any of the k cascades, or inactive. Pathak

et al. employ a stochastic graph coloring process (which they show to be equivalent to a

17

rapidly mixing Markov chain) to learn the most likely state of the entire network, out of

(k + 1)|V | possible states.

2.2.2 The Independent Cascade model

Another widely used probabilistic information diffusion model is called the Indepen-

dent Cascade (IC) model, motivated by work in interactive particle systems [34].

The social network is modeled as a digraph G = (V,E), where on each edge (u, v) ∈

E there is an influence probability pu,v. Time unfolds in discrete steps i = 1, 2 . . . and

the initial seed set S0 is considered to become active at t = 1. The process stops when at

some time step no more activations occur. The set of inactive neighbors of v at time step t

is denoted by IN t(v).

When some node v becomes active at time step t, it is given one chance to activate

every other node u ∈ IN t(v) with probability pu,v. If the activation succeeds, u will be-

come active at time step t+ 1; if not, v will never be given the chance again to activate it.

If for some node u there is more than one node who attempts to activate it at some t, they

will do so in random order.

2.2.3 A generalized framework for diffusion models

Kempe et al. [25] propose a broader framework for diffusion models. The Linear

Threshold and the Independent Cascade model are generalized simultaneously and are

shown to have equivalent formulations.

In the General Threshold model, the functions fv can be any monotone set functions

with fv(∅) = 0, which take values in [0, 1]. The threshold functions in the LT model are

18

just a special case, taking the form in (2.5) subject to the constraint (2.4), for every node

in the network.

In the General Cascade model, the probability of a node u infecting one of his neigh-

bors v is an incremental function of the set S ⊂ N(v) of v’s neighbors which have already

tried and failed, denoted pv(u, S). The IC model is a special case of this more general

model, in which the incremental functions pv(u, S) are the constants pu,v, independent of

S.

Let us consider an instance of the Linear Threshold model. If a set of nodes S have al-

ready tried and failed in activating a node v, then the IC probabilities of any other neighbor

u ∈ N(v) \ S activating it are given by:

pu,v =
bu,v

1−
∑

w∈S bw,v
(2.7)

Conversely, if we consider the same scenario for the Independent Cascade model, the

threshold functions fv are given by:

fv(S) = 1−
∏
u∈S

(1− pu,v) (2.8)

Note that in this case normalization needs to be performed to enforce constraint (2.4).

2.2.4 Influence maximization

We can now formally express the influence maximization problem, first studied by

Domingos and Richardson [13, 42] from an algorithmic point of view, and later on by

Kempe et al [25] as a discrete optimization problem.

19

Given either of the models presented in 2.2.1 and 2.2.2, or any generalized version of

them, as time unfolds, at each step there is a set of newly activated nodes St. Note that an

influence cascade cannot last more than n steps (by convention, the activation of the seed

set is considered one step). We need to start with at least one seed node and at each step at

least one other node needs to activate for the cascade to continue. The influence spread of

a seed set S is defined as:

σ(S) =
∣∣∣ n−1⋃
i=0

Si

∣∣∣ (2.9)

Intuitively, σ(S) is the number of nodes that will be infected at the end of the diffusion

process, given S as the seed set. The problem of influence maximization with parameter

k is choosing a seed set of size k over all possible seed sets of this size that maximizes the

quantity in (2.9).

As a function of S, σ has a property called submodularity which can be interpreted

as a law of diminishing returns. The probability of a node activating saturates, as more of

its neighbors become activated.

A set function f is submodular if for any S ⊆ T ⊆ V and any w ∈ V \ T :

f(S ∪ {w})− f(S) ≥ f(T ∪ {w})− f(T) (2.10)

The proofs that σ is submodular in both the LT and the IC models will be omitted for

brevity [25, Theorem 2.2, Theorem 2.5].

Kempe et al. [25, Theorem 2.4, Theorem 2.7] proved that influence maximization

is an NP-hard problem in both the LT and IC models. However, given that the influence

spread is submodular, non-decreasing, and σ(∅) = 0, a greedy hill-climbing algorithm can

20

provide an approximation to the optimal solution within a factor of 1− 1/e [11, 39]. The

algorithm is given in Algorithm 2.

Algorithm 2 Greedy Influence Maximization (f, k)
Input:

f - a submodular, non-decreasing influence spread function with f(∅) = 0
k - the size of the desired seed set

Output:
S - a seed set of size k

1: S = ∅
2: for i = 1→ k do
3: u = arg maxw∈V \S f(S ∪ {w})− f(S)
4: S = S ∪ {u}
5: end for
6: return S

Selecting a seed set using the greedy algorithm guarantees that at least 63% of the

nodes that would be activated by the optimal seed set, will be active at the end of the

diffusion process.

Algorithm 2 does not scale to large datasets. At every iteration, it needs to determine

the node with the biggest marginal increase in influence spread. This is a #P-hard problem

in both models [25, 9]. Kempe et al. circumvent this issue through Monte-Carlo simula-

tions of cascades, estimating the actual spread of a seed set within some ε. Unfortunately,

the algorithm still takes days to select 50 seeds in a network of 30K nodes, as pointed out

by Chen et al. [9]. Recent research focuses on improving the greedy algorithm [32, 8],

finding new heuristics for the LT and IC models [28, 8, 7] or rooting directed acyclic graphs

(DAGs) at each node, to compute approximations to the influence spread in linear time [9].

21

2.2.5 Learning influence probabilities

One assumption made by both diffusion models presented above is that influence

probabilities (or influence weights in the case of the LT model) on each edge are known

beforehand. This, however, is not the case in most practical settings. One largely open

research question is how and from where can these influence probabilities be computed,

as pointed out by Goyal et al. [21].

Independently and concurrently, Goyal et al. studied this question for the General

Threshold model (presented in subsection 2.2.3) [21], while Saito et al. tried answering

it for the Independent Cascade model [45]. Tang et al. [46] worked on efficiently infer-

ring subnetworks of influence and their appropriate weights induced by different topics

of interest in a social network. Using the network structure and topic distributions on all

nodes, they developed a probabilistic graphical model based on factor graphs called To-

pical Affinity Propagation (TAP). While omitting TAP for brevity, we present below the

ideas developed by Goyal et al. [21] and Saito et al. [45].

General Threshold model

Goyal et al. learned influence probabilities using a so called “action log” which is a

history of past information cascades. Let us consider a specific cascade, an action in that

cascade denoted a and two nodes v and u which are neighbors in the social network. If v

performs a at time ta(v) and u performs the same action at a later time ta(u) > ta(v), we

conclude that v infected node u for action a. Let Av denote the total number of cascades

in which v became active, and Av2u the number of times v infected u (summed up over all

actions in all cascades in which v was active). Following the same notation, Av|u denotes

22

the number of times either nodes activated and Av&u the number of times both nodes were

active in the same cascade.

The first model developed in [21] is called the Bernoulli model:

pv,u =
Av2u
Av

(2.11)

Intuitively, equation (2.11) states that the probability of v infecting u is the ratio between

the number of times u got infected from v in some cascade, and the total number of cas-

cades in which v was active node.

The second model is based on the Jaccard index, usually used to compare how similar

two samples are:

pv,u =
Av2u
Av|u

(2.12)

Goyal et al. also introduced the notion of partial credit. Let AN t(u) be the set of

active neighbors of a node u at time t (with |AN t(u)| = d), and c be some cascade.

Denote by tw(c) the time at which node w activated in cascade c. Then the credit an active

node v gets for contributing to the activation of u is given by

creditv,u(c) =
1∑

w∈ANt(u) I(tw(c) < tu(c))
(2.13)

where I is an indicator function. If a node u gets activated in some cascade, each of its d

activated neighbors (which might have influenced its decision) receive 1/d credit.

Mixing the notion of partial credit into the models above yields two more. The third

model is called the Bernoulli model with partial credit. Let A be the set of actions in

the training data. The probability of a node v infecting some node u is estimated as the

ratio between the total credit v receives from influencing u over all cascades, and the total

23

number of cascades in which v was active.

pv,u =

∑
c∈A creditv,u(c)

Av
(2.14)

Similarly, the Jaccard model with partial credit is computed using a modified version

of equation (2.14), where the denominator is Av|u instead of Av. All these four models are

static, in the sense that pv,u does not change over time.

Goyal et al. [21] devised learning and testing algorithms for these four models, and

extended them into continuous time, by multiplying the probabilities pv,u with a time-

dependent exponential decay term. Furthermore, they tested both the static models and

their extensions over Flickr data. The results show the continuous time models to perform

best in terms of precision and recall. From the four static models, the Bernoulli ones win

over the ones based on the Jaccard index. Out of the two Bernoulli models, the one that

mixes in the notion of partial credit is slightly better.

An interesting consequence of extending the models into the continuos domain is that

they can also predict the expected time at which some node will activate, with an impre-

ssively small error margin. However, for computational efficiency, Goyal et al. produced

a discretized time model, in which a node influences its neighbors only within some time

interval after it actives. After the time window passes, the node stops being contagious.

We omit explaining in detail the continuous and discretized time models for brevity.

Independent Cascade model

Saito et al. [45] studied the same problem of inferring influence probabilities from

past cascades, but for the IC model. They derived the likelihood of a sequence of cascades

24

as a function of the diffusion probabilities and applied the Expectation Maximization al-

gorithm to find maximum likelihood estimates for them.

Let Ck : k = 1, 2 . . . K be a set of K independent cascades with corresponding du-

rations TCk
and θ = {pv,u|(v, u) ∈ E} be the parameter vector. We denote by Sk(t) the

set of newly activated nodes in cascade Ck at time t, and by P k
u (t+ 1) the probability that

node u will become active at time t+ 1 in cascade Ck:

P k
u (t+ 1) = 1−

∏
v∈ANt(u)

(1− pv,u) (2.15)

Equation (2.15) can be interpreted as 1 minus the probability that all of u’s active neighbors

in cascade k at time t (AN t(u)) fail to activate it. As a function of u, t and k, P k
u (t) is

monotone and submodular [21, Theorem 1].

The log-likelihood of some θ in the series of K cascades is:

l(θ) =
K∑
k=1

TCk
−1∑

t=0

(∑
w∈Sk(t+1)

logP k
w(t+ 1) +

∑
v∈Sk(t)

∑
w∈IN(t+1)(v)

log(1− pv,w)

)
(2.16)

In equation (2.16) first we sum over all cascades and for each cascade, over every time

step of that cascade. For the nodes that were successfully activated in the next time step

(w ∈ Sk(t + 1)), we add the log of the probabilities that they will be activated. For the

nodes that were not successfully activated (w ∈ IN (t+1)(v)) even though they had at least

one contagious neighbor v, we add the log of the probabilities that each of their contagious

neighbors at time t (v ∈ Sk(t)) failed to activate them.

Saito et al. applied Expectation Maximization for maximizing (2.16) with respect to

θ. First, they initialized each pu,v to random values in some interval [α, β]. The interval

25

was determined by using a bond percolation process equivalent to the IC model; we omit

the details for brevity.

AQ(θ|θ̂) function forK episodes is provided in [45, Equation 7]. Solving ∂Q/∂pu,v =

0, yields the following update rule for the influence probabilities:

pu,v =
1

|K+
u,v|+ |K−u,v|

∑
k∈K+

u,v

p̂u,v

P̂ k
v

(2.17)

In equation (2.17), |K+
u,v| is the number of cascades in which u successfully infected v,

while |K−u,v| is the number of cascades in which u was contagious, but failed to infect v.

Also, p̂u,v is the current estimate for the influence probability and P̂ k
v is computed using

(2.15).

Saito et al. [45] tested this approach on a medium-sized network of approximately

80.000, nodes consisting of trackbacks between blogs. On average — when using at least

60 past cascades — the difference between the learned and the true probabilities is roughly

0.14. The standard deviation is also big. In some runs the probabilities are learned almost

perfectly, while in others the error is 0.25 or more. However, performance always improves

as the number of past cascades used in the learning process increases.

One of the assumptions that both Goyal et al. [21] and Saito et al. [45] do in their

studies is access to a very rich set of past data, which consists of information cascades

whose propagation was tracked over the entire network. However, in most practical set-

tings such a dataset is difficult, if not impossible to obtain. Recording the activation times

of every node in an information cascade is most of the time impractical due to missing in-

formation about the global structure of the network. A new approach is needed for dealing

26

with settings where we only have partial information about the network structure and can

effectively track just the local interactions between a set of nodes and their neighbors.

The proposed method presented in chapter 3 works under the same assumption about

influence adopted by Tang et al. [46]. Intuitively, if there is any influence between a pair

of two nodes, the influenced node adopts to some degree the behavior of the influencer

node. Recent studies over large-scale datasets from online social networks such as the one

performed by Bisgin et al. [6] demonstrate that this is a realistic assumption, as homophily

does not dictate the way connections are initially formed in any significant way.

27

CHAPTER 3
Proposed method

In this chapter we present a novel approach for learning influence probabilities in the

local neighborhood of a node, grounded in unsupervised learning techniques. Let v be

a node and N(v) the set of its neighbors. Somewhat similar to the action log assumed

by Goyal et al. [21], we assume to have access to a timestamped history of interactions

between v and every u ∈ N(v), denoted by Av. This history is composed of different types

of interactions, denoted by A1
v, A

2
v . . . A

k
v (k ≥ 1). The k subsets of interactions form a

partition over Av. Our task is to learn a function fv : N(v) → [0, 1], with fv(u) = wv,u

that assigns to every edge (v, u) a weight quantifying the extent to which v influences u.

In contrast to the approaches in subsection 2.2.5 which use a log of past cascades over

the entire network, this method is local and uses only the history of interactions between a

node and its neighbors. This makes it computationally efficient due to inherent parallelism.

The same algorithm can be run concurrently and independently on every node of interest

in the network to learn the desired probabilities.

Section 3.1 explains how agglomerative clustering is applied to learn influence pro-

babilities in this context. The proposed algorithm learns a probability mass function on v’s

outgoing edges. Running the algorithm for all of v’s neighbors allows us to combine those

mass functions and obtain the weights bu,v assumed by the Linear Threshold model, in a

manner we explain towards the end of the section. Note that in the generalized framework

presented in subsection 2.2.3, our proposed method can be used to learn the parameters

28

for the entire class of diffusion models introduced in section 2.2.

3.1 Learning influence probabilities using Agglomerative Clustering

Let Av(u) = (|A1
v(u)|, |A2

v(u)| . . . |Anv (u)|)T be a vector containing aggregated counts

of actions performed by some neighbor u ∈ N(v). Any social interaction between u and v

that we can observe and record (e.g. retweeting one of v’s statuses on Twitter, tagging v in

a picture on Facebook) can be regarded as an action. Let |Aiv(u)| be the integer value de-

noting the number of times node u has interacted with node v by performing action Aiv. In

practical settings not all actions are equally important. Let SAv = (sA1
v
, sA2

v
. . . sAn

v
)T be

a scoring vector, with sAi
v

being the score associated with action Aiv. For example, com-

menting on someone’s picture on Facebook involves more commitment than just liking

it. In this case we might decide to give more importance to the first action, by assigning a

higher score. The score vectors act as heuristics which allow us to encode prior knowledge

about the problem domain in our framework. Whenever it is clear that we are referring to

the local neighborhood of v, we drop the subscript from Av.

Let n be the total number of distinct actions and m be the number of neighbors for

node v. The input dataset for agglomerative clustering is obtained by performing the

Hadamard product between A(u) and SA, ∀u ∈ N(v):

X =

|A1(u1)|sA1 |A2(u1)|sA2 · · · |An(u1)|sAn

|A1(u2)|sA1 |A2(u2)|sA2 · · · |An(u2)|sAn

...
...

|A1(um)|sA1 |A2(um)|sA2 · · · |An(um)|sAn

(3.1)

29

Hence, xi,j is the product between the number of times node ui performed action Aj and

the score associated with that action (sAj).

The next step in learning influence probabilities is to cluster the dataset X which

consists of m input vectors. We first compute a m×m matrix D of all pairwise Euclidean

distances between the points (assuming the scoring vectors allow such a distance to be

justified). We then apply an iterative process for performing the clustering. At every

iteration, we find for the two closest clusters Ci and Cj , based on the dissimilarity function

given by equation (2.2). Let Ck be the result of merging Ci and Cj . We compute the

distances from every other cluster to Ck and update the distance matrix accordingly, by

removing two rows and columns (i-th and j-th ones) and adding a new row and column

corresponding to Ck. Storing the sequence of merges allows us to find the corresponding

partition associated with a particular iteration. The process stops when the matrix D is

reduced to a single element, which corresponds to the case when all inputs are clustered

together.

Finally, we assess the quality of every partition returned by the iterative process using

a measure called the Calinsky-Harabasz index. According to a comprehensive analysis on

both real and synthetic data performed by Milligan and Cooper [38], this index performs

best in assessing how well a given partition captures the true structure of the data. The

bigger the value for the index, the better the partition. The Calinsky-Harabasz index for a

partition P consisting of k clusters is computed as follows:

CH(P) =
(m− k)BCSS(P)

(k − 1)WCSS(P)
(3.2)

30

In equation (3.2), the term WCSS(P) is the sum of squared distances between every

point and its corresponding cluster centroid formally defined as:

WCSS(P) =
∑
Ci∈P

∑
xj∈Ci

‖xj − µi‖2 (3.3)

The term BCSS(P) is the sum of squared distances between every point and all other

centroids.

BCSS(P) =
∑
Ci∈P

∑
xj /∈Ci

‖xj − µi‖2 (3.4)

Intuitively, the closer the points are inside the clusters and the farther away the clus-

ters are from one another, the bigger the score. The term m−k
k−1 accounts for the number

of parameters in the model. Partitions with small number of clusters are preferred, while

those with large number of clusters are penalized.

3.1.1 Outlier detection and removal

The input dataset needs to be curated of any potential outliers before attempting to

cluster it. Certain nodes which exhibit a level of activity considerably higher than the

rest can skew the clustering results significantly. Due to the large distance between them

and every other input point, the resulting partition will contain most of the data clustered

together while the outliers will share their own cluster.

The following preprocessing steps are performed to prevent this issue. Agglomerative

clustering is performed over the original dataset. If some of the resulting clusters contain

less than a small fraction ε of the total number of input points, we take them out of the

dataset and repeat the process. The outliers removed in this iterative process are put all

31

together into one cluster and added to the final partition.

3.1.2 Proposed Algorithm

After performing outlier detection and removal, we run agglomerative clustering on

the curated dataset and then choose the partition with the highest Calinsky-Harabasz score.

Algorithm 3 presents our approach for performing agglomerative clustering on a dataset

X. The distance function between two clusters, denoted d, is given by equation (2.2).

Algorithm 3 Agglomerative Clustering (X)
Input:

X - input data consisting of m vectors of size n
Output:

Pfin - the partition with the highest Calinsky-Harabasz score

1: P = {C1, C2 . . . Cm}, where Ci = {xi}
2: Pfin = P
3: D = [] // list for storing the distances between merged clusters
4: AP = [] // list for storing all the partitions
5: repeat
6: (a, b) = arg min(i 6=j) d(Ci, Cj)
7: append d(Ca, Cb) to D
8: Cab = Ca ∪ Cb
9: P = (P \ {Ca, Cb}) ∪ {Cab}

10: if CH(P) ≤ CH(Pfin) then // CH(P) is computed using eq. (3.2)
11: Pfin = P
12: end if
13: until |P | = 1
14: return Pfin

Next we want to assess the quality of every individual cluster and quantify our con-

fidence that the points in a particular cluster really belong there. We start by defining a

measure of dissimilarity between a point xi to a cluster Cj as the average distance between

32

xi and the points xj ∈ Cj .

dissim(xi, Cj) =
1

|Cj|
∑
xj∈Cj

‖xi − xj‖ (3.5)

Let Cxi be the cluster to which xi belongs. We denote dissim(xi, Cxi) by a(xi). Let b(xi)

be the lowest dissimilarity of a point xi to one of the rest of the clusters it does not belong

to:

b(xi) = min
Cj ,Cj 6=Cxi

sim(xi, Cj) (3.6)

Intuitively, b(xi) is the average distance to the cluster in which aside from Cxi , xi fits

best. The following equation called the silhouette of a point [44] allows us to quantify the

confidence in the fact that the point xi belongs to the cluster Cxi:

s(xi) =
b(xi)− a(xi)

max{(a(xi), b(xi))}
(3.7)

It can be easily seen that −1 ≤ s(xi) ≤ 1. As s(xi) approaches 1, the confidence that the

point is appropriately clustered increases. Averaging this measure over all the points in a

cluster gives the cluster silhouette:

s(Ci) =
1

|Ci|
∑
xi∈Ci

s(xi) (3.8)

A high value for the cluster silhouette indicates a high cohesion cluster.

The last step is to define the importance of a point in a cluster as the sum of the

fraction of scores for every activity:

J(xi) =
n∑
j=1

xi,j∑
xk∈Cxi

xk,j
(3.9)

33

Equation (3.9) gives the relative importance of node ui compared to the rest of the nodes

in the cluster, based on its level of activity. Intuitively, if ui interacts more with v than with

the rest of the nodes in the cluster, its importance grows.

Using all the measure from above, we now assign the following score to every point

xi ∈ X:

ω(xi) =
J(xi)(s(xi) + 1 + ε)(s(Cxi) + 1 + ε)m

|Cxi |
(3.10)

The score given by equation (3.10) accounts for the quality of the cluster in which the point

is (Cxi), the importance of the point in the cluster (J(xi)), our confidence in the cluster

assignment (s(xi)) and penalizes big clusters by multiplying with m
|Cxi|

. Since we aim

for the scores w(xi) to be positive and rank the corresponding nodes ui in terms of their

influenceability, we add 1 + ε to s(Cxi) and s(xi) to make the quantities strictly positive.

For outliers and their associated cluster, we set s(Cxi) and s(xi) to −1 in (3.10), to denote

the fact that we consider the quality of the cluster to be bad.

Let xi be the data point in X associated with neighbor ui. The function fv : N(v)→

[0, 1] is defined as follows:

fv(ui) =
ω(xi)∑

uj∈N(v) ω(xj)
(3.11)

In equation (3.11) fv(ui) is the probability of node v influencing node ui. This probability

is obtained by normalizing the score ω(xi) (dividing by the total sum of scores of all nodes

in N(v)). Putting everything together, our proposed approach for learning influence prob-

abilities in the local neighborhood of a node v using agglomerative clustering is presented

in Algorithm 4.

To learn the required weights bu,v for the Linear Threshold model, we run the pro-

posed algorithm on all of v’s neighbors. We then multiply each influence probability on

34

the incoming edges of v by:

JN(v)(u) =
n∑
j=1

xu,j∑
w∈N(v) xw,j

(3.12)

This ensures we take into account the relative importance of v’s neighbors to one another.

Let θv be the unknown threshold value (chosen uniformly at random in [0, 1]) associated

with node v, as assumed by the Linear Threshold model described in subsection 2.2.1. The

weights required as input by the model can be computed with the following formula:

bu,v =
JN(v)(u)fu(v)θv∑

w∈N(v)

(
JN(v)(w)fw(v)θv

) (3.13)

We can easily reason about the worst case time complexity of Algorithm 4, by look-

ing at the individual steps involved in the computation. Agglomerative clustering (see

Algorithm 3) has a worst case time complexity of O(m2), where m is the size of the in-

put. Performing outlier removal and clustering the dataset implies running Algorithm 3

for some small number of times denoted by c. Since computing S and J can be done in

time linear to the size of the input, the worst case complexity of Algorithm 4 is O(cm2).

As c is significantly smaller than m, this reduces to O(m2).

35

Algorithm 4 Learning Influence Probabilities: (N(v), Av, SAv , ε)
Input:

N(v) - v’s set of neighbors
Av - log of interactions between v and its neighbors
SAv - scores associated with each action for v
ε - the minimum size of a cluster in order to not be considered as consisting of
outliers

Output:
fv - a probability mass function on the outgoing edges of v, quantifying the degree
to which it influences its neighbors

1: compute X using eq. (3.1)
2: Cout = ∅
3: repeat
4: Cout′ = ∅
5: P = Agglomerative Clustering(X)

6: for all Ci ∈ P, |Ci|
m
≤ ε do

7: Cout′ = Cout′ ∪ Ci
8: end for
9: Cout = Cout ∪ Cout′

10: until Cout′ = ∅
11: X = X \ Cout // outlier removal step
12: P ′ = Agglomerative Clustering(X)
13: P ′ = P ′ ∪ Cout // adding back the cluster of outliers
14: S = {s(Ci),∀Ci ∈ P ′} using eq. (3.8)
15: J = {J(xi),∀xi ∈ X} using eq. (3.9)
16: ω = {ω(xi),∀xi ∈ X} using eq. (3.10)
17: fv = {fv(u),∀u ∈ N(v)} using eq. (3.11)
18: return fv

36

CHAPTER 4
Experimental framework and setup

For the purpose of obtaining Facebook data to test the performance of our proposed

algorithm, we created a web application. The application is written in the Ruby program-

ming language and follows the 3-tier architectural pattern. The first tier is composed of the

database management systems in charge of data storage, as well as the appropriate data ab-

stractions in the code. The middle tier contains the code responsible for crawling the data

from Facebook, as well as the implementations of our proposed algorithm. The last tier

offers a basic user interface, required for authorization. All layers are as decoupled as po-

ssible, but reside on the same physical machine, as this provides sufficient computational

power for our needs.

This setup enables us to crawl, store and analyze all the data associated with a particu-

lar Facebook account, provided the owner grants us permissions in the form of an OAuth

2.0 access token. The use of the open standard OAuth 2.0 for the purpose of authorization

and access to a user’s private resources avoids the need to obtain and store login credentials

(usernames and passwords). The user has the ability to revoke the access token and stop

the application from accessing his data at any time. After a straightforward authorization

process, the account data is extracted from Facebook using their Graph API and stored for

future reference and access. The proposed algorithm can thus be run entirely offline.

37

Section 4.1 defines the vocabulary of the problem domain. Sections 4.2, 4.3 and 4.4

introduce and explain each of the three layers of the application.

4.1 Terminology

For eliminating confusion, we define below the terms commonly used throughout the

rest of this chapter.

Application: the software system we designed and implemented for the purpose of

extracting, storing and analyzing Facebook data. It follows the inversion of control

design principle and it exposes an application public interface. The API can be

further extended and built upon.

Connector: a Facebook account that is being tracked, associated with a particular

user. Multiple connectors can be associated with one user, since he can own mul-

tiple accounts or Facebook Pages simultaneously. A connector consists of a set of

snapshots.

Snapshot: contains the full set of crawled data associated with a Facebook account

(e.g. posts, statuses, pictures, likes), as available via the Graph API at a particular

moment in time. Each snapshot is associated with a timestamp.

Sub: a part of a snapshot pertaining to a specific type of data (e.g. all status updates).

Subs can be classified as main subs (status updates, links etc.) and collection subs

(or simply collections). A sub consists of a set of items.

Item: the most basic unit of data retrieved and stored from Facebook. It can be a

comment, like, picture, status update etc. Items contain the raw data in JSON format

38

obtained during the crawling process. An item can be associated with zero or more

collections.

Collection: a specific type of sub, containing items associated with another partic-

ular item called the collection parent. Some examples include but are not limited

to: all likes associated with a comment, all comments associated with a picture, all

photos in a photo album.

Crawl: the process of requesting data from Facebook’s Graph API and storing the

responses in a snapshot composed of items.

Contributor: a person who has interacted with a Facebook user at least once on

the social platform. A contributor is part of the user’s social graph, but does not

necessarily need to be a Facebook friend.

Activity: denotes any unidirectional interaction between two users on Facebook,

such as liking someone’s post, “friending”, or tagging someone in a picture.

Report: a JSON document stored in MongoDB containing the aggregated results of

running some algorithm for analyzing the data. A report is associated with either a

connector, or a specific snapshot.

Job: a Ruby class which contains a class method called #perform. A job can be

serialized to MongoDB and run at a future point in time in a separate operating

system process.

4.2 The database layer

This layer of the application stores three different types of information. First, there

is user profile and login information including the OAuth access tokens. Second, we have

39

raw data in JSON format crawled from Facebook. The last type of data we need to store is

filtered data containing the exact pieces of information needed for running the experiments.

Storing and accessing these different categories of data employ different use cases

and enforce certain non-functional requirements for the system. We deploy three different

database management systems (DBMSs) to serve our needs. One of them falls under the

relational paradigm, while the other two have different data models and fall under the so

called NoSQL paradigm. These three DBMSs and other critical details needed for repli-

cating the experimental setup are the subject of the following subsections.

4.2.1 MySQL and memcached

For the purpose of storing user profile information and access tokens we deploy a

standard relational open source database management system called MySQL. Choosing

Ruby on Rails as a web framework enables us to add a higher level of abstraction (in the

form of Ruby classes called ActiveRecord models) to our database tables. The ActiveRe-

cord models provide built in create, read, update and delete capabilities and can also be

extended as needed. This object-relational mapper provides ease of access, as well as the

option of switching to a different relational DBMS at any point in future, without having

to update any code.

To avoid too many disk operations when accessing data, a distributed open source

memory object caching system called memcached is deployed between the MySQL database

and the application layer. Data is fetched inside the main memory allocated to the mem-

cached process upon first being accessed. When the memory gets full, data is evicted

according to a least-recently used policy. Disk writes only happen in two scenarios: when

40

a row is evicted from the cache, and when the entire cache is being flushed to the disk

(operation that happens periodically).

4.2.2 Raw data and the Riak cluster

The Graph API returns raw JSON data that does not follow a fixed schema (i.e. is

semi-structured). Storing this data without performing any preprocessing is useful for two

purposes. First, we want to mine the structure and the interactions of the local social graph

associated with that particular account without having to constantly query Facebook. Sec-

ond, we want to archive the data for backup purposes. Fault tolerance and high availability

are also a concern. A failure in a write could result in an entire failed snapshot and the

result of several hours of crawling being lost. For these reasons, we employ a NoSQL

DBMS called Riak which uses a very simple key-value storage and access model for the

data.

While Riak can generate unique keys for the stored values, we have put in place a

couple of conventions for their format. This way we can easily retrieve data related to a

snapshot or a specific sub. A snapshot’s key follows the pattern:

connector id:timestamp

The timestamp is of the form yyyyddmmxx (e.g. 2012300100). The last two digits (denoted

by xx) enable the creation of multiple snapshots in the same day. They incrementally

increase by 1, starting with the value 00 associated with the first snapshot taken in a specific

day.

The key for a sub follows the pattern:

connector id:timestamp:kind:[remote id:collection]

41

The kind identifies what type of items are contained in the sub (e.g. “statuses”, “links”).

The optional pair of parameters remote id:collection identify the collection the item be-

longs to, and the collection parent. Each item key is generated by applying a cryptographic

hash function on the minimal set of fields (dependent on the item type) which uniquely

identify the item content. This saves a lot of processing time and storage space. A partic-

ular item – even though part of multiple snapshots – is stored only once.

A cluster of three Riak nodes has been deployed for handling the load, each of them

with 1023 threads in its asynchronous thread pool. In a Riak cluster there are no special or

master nodes. Every node is treated the same, facilitating horizontal scaling. No dedicated

node for performing query routing is needed. Every instance knows where to redirect a

read request, through consistent hashing. This architecture does not contain any single

points of failure.

At the Principles of Distributed Computing conference in 2000 [3], professor Eric

Brewer from University of California, Berkeley stated the conjecture that a distributed

system can only guarantee two of the following three properties:

Partition tolerance: a distributed system should be fault-tolerant and respond cor-

rectly when faced with any set of failures, besides a total network crash.

Consistency: all connected clients should have the same view of the data at any

given time. Multiple conflicting values for the same piece of data of different net-

work nodes are prohibited.

Availability: every incoming request should receive a response.

42

The conjecture was formally proven by Gilbert and Lynch [19] and is now known

as the CAP theorem. The theorem implies a taxonomy for distributed DBMSs, depend-

ing on the tradeoffs made by their architects. Based on this classification, Riak sacrifices

consistency for increased availability, while providing partition tolerance. Moreover, the

number of Riak nodes who need to read or write a value successfully in the cluster before

a success is returned to the client can be configured on a per bucket (a bucket is the log-

ical equivalent of a table in a RDBMS) or even per query basis. This kind of flexibility

makes Riak a perfect solution for storing semi-structured raw data crawled from Facebook.

4.2.3 Storing filtered data in MongoDB

In the kind of analysis we are performing, computational speed is an important fac-

tor. The raw data obtained from Facebook is not on the appropriate abstraction level for

running the experiments. Recreating the data structures we need each time we run the al-

gorithm would be wasteful in terms of time and resources. In effect, we preprocess the raw

data by mining it for contributors and activities, effectively modeling the underlying social

network. The preprocessed dataset is stored in another NoSQL DBMS called MongoDB.

MongoDB is a open-source document-oriented database that stores JSON documents

in a binary-encoded format called BSON [2]. This DBMS provides high throughput and

complex query capabilities (e.g. logical operators, queries based on regular expressions)

as well as powerful indexing features.

Consistency is one of the main focuses of MongoDB and is achieved by employing

the master/slave paradigm for distributing load. To ensure each client has the same view of

the data, all writes are performed on a particular running instance called “the master”. The

43

master records the write in an append-only replication log that is subsequently replayed

by the rest of the nodes in the cluster called “slaves.”.

We deploy three MongoDB nodes (one master, two slaves) for both read-load distri-

bution, as well as replication purposes. The schema-less storage paradigm, the ability to

only retrieve certain fields from documents in a result set, and the high performance in

terms of throughput justify the use of MongoDB as a solution for storing datasets needed

for analysis.

4.3 The application layer

The code in this layer concerned with authorization and the filtered data in MongoDB

is packaged as a standalone gem. A Ruby gem is the standard format for distributing Ruby

programs and libraries. Most of the code in the cloud backend is aimed at providing an

abstract framework for authorizing the application to any service supporting the OAuth

2.0 protocol. Access tokens are obtained from the service API as dictated by the protocol.

A separate gem containing specializations of some key classes in the cloud backend

enables us to obtain the required permissions from Facebook users, permissions needed

to extract the required data for the experiments. Two extensible APIs are exposed by the

cloud backend gem, for handling filtered data.

4.3.1 The Models API

This API offers six simple methods for handling the filtered MongoDB data associ-

ated with a particular connector. Three of them allow for mining data for contributors and

44

activities, while the other two allow for the destruction and re-creation of the entire filtered

dataset. The method signatures and short descriptions about their behavior follow:

Analytics#parse item for data(item, options) - uses an item along with informa-

tion identifying the snapshot to which it belongs and uses a JSON parser to scan

the item content for Facebook user ids. The appropriate MongoDB models are then

created or updated accordingly.

Analytics#parse sub for data(sub, options) - mines an entire sub for contributors

and activities, by calling the previous method on every composing item. Before

parsing the item for the data, the associated collection subs for that item (if any) are

stored in a list. The method recursively calls itself on each of those subs.

Analytics#parse snapshot for data(snapshot, options) - parses a entire snapshot

for contributors and activities in two steps. First, the main subs for that particular

snapshot are fetched from Riak. For each such sub, a new operating system process

is forked and the sub is parsed in it.

Analytics#create models for connector(connector) - processes all the data avail-

able for a given connector across all the snapshots taken and creates the filtered

MongoDB models. This method can be safely called multiple times, as no duplicate

records will be stored.

Analytics#drop models for connector(connector) - the counterpart for the previ-

ous method. Deletes anything in MongoDB related to the connector passed as a

parameter.

Analytics#models status for connector(connector) - writes a simple report on the

standard output about the status of the connector and its associated models.

45

4.3.2 The Reports API

The second API exposed by the cloud backend controls the creation of reports con-

taining aggregated results of running experiments on the preprocessed dataset stored in

MongoDB. Three methods are made available, with the following signatures and behav-

ior:

Analytics#create report for connector(connector, options) - creates a particular

type of report for a connector, based on the information passed in the options hash.

The report is computed, associated with a particular snapshot (as indicated by the

:report name and :timestamp options) and stored in MongoDB. A human readable

version of the report is cached in Riak and sent to the standard output.

Analytics#drop report for connector(report) - destroys the report passed as a pa-

rameter, as well as any cached data associated with it.

Analytics#drop all reports for connector(connector) - destroys all the reports be-

longing to a given connector, as well as any associated data structures.

4.3.3 Performing and monitoring jobs with resque-mongo

Manually dispatching and keeping track of jobs is a tedious task, especially across

multiple snapshots. Moreover, the Facebook Graph API has limitations regarding the

number of queries allowed per ten minutes. This forces us to schedule jobs at future points

in time. Sometimes, for various reasons such as bad network connectivity or malformed

responses from Facebook, some jobs fail. The appropriate corrections have to be made

and the jobs need to be retried. For these reasons we have integrated in the application a

46

framework for creating background jobs and placing them on multiple execution queues

called resque-mongo.

The framework is composed of three separate parts. The first part allows for the cre-

ation of background jobs that will be executed in separate operating system processes. Any

Ruby class or module that responds to the class method #perform is a valid resque-mongo

job. When enqueued, jobs are serialized to MongoDB as simple documents containing the

job class and the arguments that will be sent to the #perform method upon execution.

The second part of the framework is a small application for launching multiple worker

operating system processes. The workers will constantly poll MongoDB, reserve jobs and

execute them by instantiating the appropriate class and calling #perform with the serialized

arguments. Workers can be configured to only poll certain queues or prioritize certain

groups of jobs.

The last part consists of a web interface for monitoring queues, jobs, and workers, as

well as retrying them in case of failure. The user interface also contains a search feature

and provides the ability to drop entire queues. An utility for monitoring workers in realtime

is also present.

To be able to queue jobs at a specific future time or based on a schedule and keep track

of groups of jobs, we have extended the framework through two plugins, called resque-

mongo-scheduler and resque-mongo-groups. The latter was implemented by us and is

available as open-source software on Github.

47

4.3.4 Crawling Facebook accounts

The process of extracting data associated with a Facebook account consists of per-

forming and keeping track of the execution of multiple jobs simultaneously. These jobs

request data from the Graph API and create the appropriate items in Riak for storing the

results. There are three types of jobs involved in successfully crawling a new snapshot.

An initial job called the “dispatcher” verifies the validity of the access token, creates a

new empty snapshot and dispatches a job for each main sub. Each of these jobs, called

“crawlers” make the actual API calls, requesting data from Facebook. Any crawler can

dispatch other crawlers, for getting data such as comments or likes associated with a par-

ticular item. Each crawler operates on multiple threads and requests data in batches, writ-

ing 1500 items at a time to Riak. The last type of job called the “post process” is enqueued

and performed periodically. Its responsibility is to check the status of the snapshots, mark

the ones that finished as complete, and delete any temporary or intermediate data stored.

During the crawling process we cannot know ahead of time how many jobs will be

dispatched. Instead, what we can do is track how many have been dispatched so far, how

many are scheduled to perform at a future point in time and how many have been com-

pleted. When the number of total dispatched jobs equals the number of completed jobs

and there are no more delayed ones, a post process job will mark the snapshot as complete.

4.4 The presentation layer

The last layer in the architecture is in charge of displaying a basic UI to the users,

allowing them to authorize connectors. It also includes the resque-mongo monitoring

interface, for keeping track of jobs, queues, and workers.

48

This frontend layer is built on top of the Ruby on Rails web framework. Rails follows

the Model-View-Controller architectural pattern, separating presentational concerns from

the actual models and the rest of the application logic. The controllers themselves do

nothing more than just call certain methods from the cloud backend gem for retrieving

data needed to build the views. The views themselves are written in eRuby, a templating

system that allows the insertion of Ruby code in HTML documents.

To decouple the backend gem from the Rails application we have implemented an

internal REST-ful [17] API that provides information related to the crawling process via

HTTP calls. The Rails application listens to incoming requests on a specific port and

builds and returns information stored in the JSON format. The response contains infor-

mation such as the list of connectors for which there are snapshots in progress, the list of

connectors to trigger snapshots for and so on.

The web application is efficient in terms of both storing the data, and time taken to

create a snapshot of an account. Whenever an API call is made to Facebook, the response is

matched against what is already stored in the Riak cluster, by computing a hash function

over the content received. In effect, after performing the first snapshot, the subsequent

ones store just a delta of the data. Applying deltas over the data stored during the initial

snapshot allows us to access the state of the account at any specific point in time. Since

the crawling process is parallelized using background and delayed jobs handled by resque-

mongo, the major factor in determining the speed of taking a snapshot is the rate limit

policy of Facebook’s Graph API.

For a better understanding, figure 4–1 shows a deployment diagram of the entire sys-

tem. Note that the only kind of jobs we show are the crawlers, since they are the ones

49

interfacing with the Facebook API. Other jobs such as the post process task or the code

implementing algorithm 4 are spawned by workers processes, run, save their results back

to Riak or MongoDB and then quit.

50

Web Application

ReplicaSet

MongoDB
Master Server

MongoDB
Slave Server

MongoDB
Slave Server

Riak
cluster

Riak Node

Riak Node

Riak Node

Memcached

Resque-Mongo

Worker

Worker

Worker

Crawler

Crawler

Crawler

Authorization
Interface

Facebook
API

OS Process

*

Third Party
Service

*

Interfaces with
System component

Legend:

MySQL
Database

Figure 4–1: Deployment diagram of the web application

51

CHAPTER 5
Experimental results

In this chapter we present and analyze results obtained from performing three ex-

periments on real data extracted from Facebook. The first two ones aimed at assessing

whether the approach detailed in chapter 3 can correctly identify influenceable nodes in

the neighborhood of some node or not. The last experiment assesses the quality of the

influence probabilities learned by looking at the rankings of the nodes returned by the

algorithm.

Section 5.1 introduces the datasets and the methodology used for performing the ex-

periments and assessing the results. In section 5.2 we present the details needed to repli-

cate them, and give some preliminary statistics regarding the output of Algorithm 4 on the

datasets. Section 5.3 presents and discusses the results of the experiments.

5.1 Methodology

For the purpose of running the experiments, we enrolled the help of 16 volunteers.

Each of them authorized our web application to access their private Facebook data and

crawl their accounts. Furthermore, the volunteers helped assess the results, since the ex-

periments presented in section 5.3 involve obtaining ground truth data from them. The

data is obtained by asking the volunteers to answer some survey questions, and the output

of the algorithm is compared against their responses.

52

Let v1, v2 . . . v16 be the nodes in the social network corresponding to the volunteers.

Where there is no confusion, we use vi interchangeably to refer either to the volunteer,

or the node associated with him/her. For each volunteer vi we crawl the Facebook data

and mine the set of contributors denoted by N(vi), as well as the timestamped history of

interactions between vi and every u ∈ N(vi), denoted by Avi . We detected and mined 20

distinct types of activities that determine the type of social ties between a contributor and

some volunteer vi. The list of types of activities and their explanations can be found in

table 5–1.

Activity number Activity name Description
1 employer u is the employer of v
2 significant other u is v’s significant other
3 family member u is part of v’s family
4 wall post author u posted on v’s wall
5 tagged in video u is tagged in one of v’s videos
6 tagged in photo u is tagged in one of v’s photos
7 checkin author u checking in the same place as v
8 post comment u commented on one of v’s posts
9 status comment u commented on one of v’s status updates
10 link comment u commented on one of v’s posted links
11 checkin comment u commented on one of v’s checkins
12 video comment u commented on one of v’s videos
13 photo comment u commented on one of v’s photos
14 post like u liked one of v’s posts
15 status like u liked one of v’s status updates
16 link like u liked one of v’s posted links
17 checkin like u liked one of v’s checkins
18 video like u liked one of v’s videos
19 photo like u liked one of v’s photo
20 comment like u liked one of v’s comments

Table 5–1: Types of activities detected

53

However, the aggregated number of comments and likes (rows 8-20) account for more

than 98.118% of the total number of activities. Hence, in the analysis we only take into ac-

count these two types of activity since the others would not provide significant data. Table

5–2 contains the total number of contributors and a detailed breakdown of the activities

mined from the account data of each of the volunteers.

Volunteer Contributors Comments Likes Other Total
v1 583 508 771 56 1335
v2 993 802 951 79 1832
v3 514 528 436 47 1011
v4 459 65 475 13 553
v5 2164 2919 5584 390 8263
v6 261 1679 752 59 2490
v7 390 78 190 7 275
v8 384 554 1085 63 1702
v9 452 546 259 25 830
v10 273 204 510 27 741
v11 515 1162 960 102 2224
v12 361 295 311 28 634
v13 613 1173 1441 106 2720
v14 610 69 116 8 193
v15 720 446 828 39 1313
v16 344 1672 2039 145 3856

Table 5–2: Mined activities and contributors

To be able to run Algorithm 4 on the datasets we crawl, we need to define a scor-

ing vector SAv = (sA1
v
, sA2

v
. . . sAn

v
)T that tells us how important each type of actions is,

compared to the others. We follow the simple intuition that a comment involves much

more commitment from a contributor than a like, claim that is supported by click-through

data [1]. We choose the scoring vector SAv = (1, 4)T for every node vi, which means a

comment is considered 4 times more valuable than a like.

54

We then run Algorithm 4 on each of the 16 datasets Xi, i = 1 → 16 and rank the

contributors for each volunteer in N(vi) in decreasing order of their associated weights,

as computed by the algorithm. For every vi we interpret the output as being a permutation

from the set N(vi) to the set [|N(vi)|] = {1, 2 . . . |N(vi)|}, denoted σ(vi).

5.2 Determining influenceable nodes using Agglomerative Clustering

We ran Algorithm 4 on the 16 datasets crawled, using values between 0.5% and 1%

for the parameter ε. This parameter dictates the minimum fraction of input points a cluster

must contain to not be considered as consisting of outliers. Multiple linkages were tested

against each dataset to determine the best clustering possible: single, complete, average,

weighted average and Ward’s linkage. Because the single linkage criterion is local (the

similarity of two clusters is the similarity of their most similar members and in effect

we are only paying attention to the area where the two clusters come closest together),

we experienced the phenomenon of chaining. Clusters were merged because of single

elements being close to each other, even though most elements in the merged clusters

were relatively far away from one another. The chaining effect encountered when using

single linkage is illustrated in figure 5–1, which shows the resulting dendogram for the

dataset associated with volunteer v16.

Centroid and median linkages sometimes produced non-monotonic cluster trees. Merg-

ing two clusters can move the centroid in such a way that the next cluster to be merged in

is actually closer to the centroid than the previous one. For this reason we avoided them.

Good results were obtained using complete and average linkages, but the most consistent

results were obtained using Ward’s linkage and weighted average linkage. The formula for

55

Figure 5–1: Chaining effect when using single linkage

the distance between two clusters according to Ward’s linkage is shown in equation (5.1).

d(Ci, Cj) =

√
|Ci||Cj|
|Ci|+ |Cj|

‖µi − µj‖ (5.1)

The formula for weighted average linkage can be obtained by setting αi = αj = 1/2 and

β = γ = 0 in equation (2.2). If cluster Ck was created by merging clusters Ci and Cj , the

distance from it to some other cluster Ct is just the mean of the distances between Ci and

Cj respectively to Ct.

After running Algorithm 4 on the datasets, we took into account only the neighbors

who are being influenced with a probability of more than 0.001. These restricted datasets

are denoted by Xi
res, i = 1→ 16. In table 5–3 we present basic statistics about the output

56

of the algorithm. The first two columns contain the original dataset size and the percentage

of contributors which are influenced with probability of more than 0.001. Note that the

dataset sizes are smaller than the corresponding number of crawled contributors, since a lot

of them just added the volunteer as a friend and then did not interact with them anymore.

The rest of the columns contain the maximum values for the influence probabilities as well

as their the mean, mode, median and standard deviation.

vi |Xi| |Xi
res|
|Xi| Max Mean Mode Median Stdev

v1 271 0.140 0.081 0.026 0.002 0.017 0.027
v2 284 0.151 0.129 0.022 0.002 0.006 0.032
v3 139 0.237 0.127 0.030 0.001 0.018 0.035
v4 195 0.328 0.104 0.015 0.002 0.003 0.027
v5 1190 0.048 0.100 0.017 0.004 0.005 0.027
v6 116 0.284 0.136 0.029 0.001 0.016 0.038
v7 96 0.344 0.565 0.030 0.005 0.005 0.103
v8 207 0.266 0.111 0.018 0.001 0.005 0.028
v9 139 0.252 0.146 0.028 0.001 0.005 0.044
v10 118 0.314 0.160 0.027 0.001 0.007 0.037
v11 228 0.145 0.141 0.030 0.141 0.012 0.044
v12 107 0.178 0.268 0.514 0.002 0.004 0.083
v13 204 0.304 0.211 0.016 0.001 0.003 0.033
v14 89 0.483 0.240 0.023 0.002 0.002 0.049
v15 253 0.146 0.207 0.027 0.006 0.007 0.047
v16 224 0.134 0.162 0.032 0.003 0.011 0.047

Table 5–3: Basic statistics for Algorithm 4

Table 5–3 reveals a number of interesting facts about the data. First, the mean fraction

of neighbors which are influenced with probability of more than 0.001 is 0.235. Thus, each

node vi engages and influences on average almost a quarter of their neighbors, keeping the

online interactions with the rest of them casual. The standard deviation from this mean

however is quite big, 0.109, meaning that it is not unusual to see nodes which manage to

57

influence almost half of their neighbors. Even in those close-knit communities (Xi
res, i =

1 → 16), the influence the nodes vi exhibit varies from one neighbor to the other (mean

standard deviation of 0.044, which is big considering the average mode of 0.011).

Appendix A contains plots offering a visual interpretation of the results obtained from

running Algorithm 4 for each dataset Xi, i = 1 → 16. In each case, first plot shows the

variation of the Calinsky-Harabasz index over the topmost 25 partitions in the sequence

generated by the algorithm, the second one is a dendogram plot, and the last two are scatter

and silhouette plots for the final clustering of each dataset. Note that in each scatter plot,

the brown points correspond to outliers. We observe two emerging patterns across the

clustering for datasets. Part of the volunteers such as v8 and v13 have most of the data in

clusters close to the origin which tend to be vertically shaped. Some of the datasets such

as the ones for v10 and v11 present spherically shaped clusters at various distances from the

origin. The diversity we see in the latter clustering pattern suggest the existence of small

communities of neighbors which are quite different in the behavior they exhibit from one

another, due to the way the volunteer engages them.

5.3 Experiments and analysis of results

First, we want to see if the proposed method correctly identifies the influenceable

nodes in the neighborhood of vi. The first step in answering this question is estimating

the true fraction of influenceable nodes in N(vi), which we denote by f̂vi . For every node

vi, we sample uniformly, at random, a list of n of their neighbors. Let γvi denote that

list. Since we are trying to find an estimate for f̂vi through means of survey, we choose a

moderately small value for the sample size n, of 50. The following survey task was posed

to each of the volunteers:

58

“You are given a random list of 50 of your friends. For each of them, answer by “yes”

or “no” the following question: “Is this friend highly likely to act (e.g. like, comment, re-

share) on a piece of information I post on Facebook?””

Each survey gives us a sample statistic we can use to approximate f̂vi , which is the

fraction of nodes in γvi for which the question was answered with “yes”. Let that fraction

be f̄vi . As a consequence of the fact that the sample size n is greater than 40, the Central

Limit theorem states that the distribution of the sample statistic f̄vi is normal or nearly

normal. We can now choose a confidence level and build a confidence interval for the

population statistic f̂vi , centered around f̄vi:

f̂vi = f̄(vi)± zα/2 ∗
√
f̄vi(1− f̄vi)

n
∗
√
m− n
m− 1

(5.2)

For a level of confidence of 1 − α, equation (5.2) computes a margin of error around the

estimate of the true fraction of influenceable nodes. This margin of error is computed

as a critical value zα/2, multiplied by the standard error of the sample statistic, which is

an unbiased estimate of the standard deviation of the population statistic f̂vi . The critical

value zα/2 represents the value in a standard normal distribution (mean 0 and variance 1)

beyond which the area in each tail of the distribution is α/2. For this analysis, we choose

a confidence level of 95% (α = 5%), which gives us the critical value of zα/2 = 1.96. The

results of the survey, as well as confidence intervals for the true fractions of influenceable

nodes in N(vi) are presented in table 5–4.

The last column in table 5–4 is the fraction of influenceable nodes that Algorithm 4

produced (i.e. percentage of nodes influenced with probability of more than 0.001). Note

that aside from nodes v6, v10 and v14, the fractions produced by the algorithm fall in the

59

vi f̄vi f̂vi , α = 5% |Xi
res|
|Xi|

v1 0.10 0.10± 0.075 0.140
v2 0.14 0.14± 0.087 0.151
v3 0.24 0.24± 0.095 0.237
v4 0.28 0.28± 0.108 0.328
v5 0.08 0.08± 0.074 0.048
v6 0.16 0.16± 0.092 0.284
v7 0.26 0.26± 0.085 0.344
v8 0.30 0.30± 0.111 0.266
v9 0.22 0.22± 0.092 0.252
v10 0.20 0.20± 0.085 0.314
v11 0.10 0.10± 0.074 0.145
v12 0.14 0.14± 0.071 0.178
v13 0.24 0.24± 0.103 0.304
v14 0.32 0.32± 0.086 0.483
v15 0.12 0.12± 0.081 0.146
v16 0.12 0.12± 0.080 0.134

Table 5–4: Confidence intervals for the true fraction of influenceable neighbors

confidence intervals learned by sampling. In the three cases above, the fractions produced

by the algorithm are bigger than the upper limits of the corresponding confidence intervals,

but within two margins of error from f̄vi . This means that either Algorithm 4 tends to

incorrectly mark nodes as being influenceable, or the volunteers were conservative in their

assessment of certain nodes as being influenceable.

In the next step of the analysis, we will look at a list of k neighbors influenced with

probability of more than 0.001 according to the algorithm. Specifically, we are interested

to know whether such a list contains more influenceable nodes than a list of the same

size, sampled uniformly at random from N(vi). This experiment is aimed at determining

whether algorithm 4 can successfully identify the truly influenceable nodes. In a random

60

sample of size k, we would expect to find the same fraction of truly influenceable nodes

f̂vi as in the entire population. We next investigate whether in a random sample of size k

chosen from the set of nodes marked by the algorithm as being influenced with probability

of more than 0.001, the number of truly influenceable nodes is statistically significant

higher than kf̂vi . Let τ k(vi) be such a list of size k, where ∀uj ∈ τ k(vi), xj ∈ Xi
res. We

formulate the following null hypothesis:

“For any value of k less than |Xi
res|, the number of influenceable neighbors in τ k(vi)

is not significantly bigger than the number of influenceable neighbors in a list of k of them,

picked at random.”

To test this hypothesis we perform an experiment consisting of the following steps.

First, we sample τ k(vi) uniformly at random from the neighbors influenced with probabil-

ity of more than 0.001. Note that since the experiment consists of a survey, we choose a

reasonably small value for k, of 10. The following survey task is posed to the volunteers:

“You are given a list of 10 of your friends, in random order. For each of them, answer

by “yes” or “no” the following question: “Is this friend highly likely to act (e.g. like,

comment, re-share) on a piece of information I post on Facebook?””

Let r be the number of nodes marked as being influenceable by the volunteers in

τ 10(vi). Since we are sampling without replacement, r is the realization of a random

variable R which is hyper-geometrically distributed, with parameters |Xi
res|, f̂vi |Xi

res| and

k (population size, number of successes and sample size respectively). Now that we know

the population size and the true number of influenceable nodes in the population, we can

determine whether the number of successes r present in our sample of size k could have

occurred by chance or not. Table 5–5 presents the results of this experiment.

61

vi |Xi
res| f̂vi|Xi

res| r P (R ≥ r)

v1 38 7 6 4.75× 10−4

v2 43 10 5 3.60× 10−2

v3 33 11 6 4.24× 10−2

v4 64 25 7 3.48× 10−2

v5 210 32 6 1.07× 10−3

v6 33 8 7 2.02× 10−4

v7 33 11 7 5.91× 10−3

v8 55 23 9 9.33× 10−4

v9 35 11 6 3.06× 10−2

v10 37 11 8 1.58× 10−4

v11 39 7 5 7.05× 10−3

v12 19 4 6 0.00
v13 62 21 8 1.66× 10−3

v14 43 17 8 4.46× 10−3

v15 99 20 6 4.15× 10−3

v16 30 6 5 8.84× 10−3

Table 5–5: Results for the second survey task

The first column in the table is the number of nodes influenced with probability of

more than 0.001 (i.e. the size of the population from which we are sampling). The second

column contains the number of influenceable nodes we would expect to see in a dataset of

size |Xi
res|, according to the estimate of f̂vi . For the purpose of this study, the upper margin

of the corresponding confidence interval is taken into account and the number is rounded

to the nearest integer. The third column represents the number of nodes the volunteers

marked as being influenceable in the sample τ 10(vi). The last column is the probability of

seeing at least that many successes in the sample (i.e. the p value for determining statistical

significance).

62

The values in the last column of table 5–5 are all below a statistical significance level

of p = 0.05. This means we can safely reject the null hypothesis we are testing, and

state that Algorithm 4 marks a significantly higher proportion of truly influenceable nodes

as being influenced with a probability of more than 0.001, than an algorithm who marks

them at random. Note that the p value for node v12 is 0.00, since the expected number of

successes in the entire population is actually smaller than the number of successes in the

sampl. We estimated there are 4 truly influenceable nodes in the dataset of size 19 and the

volunteer marked 6 of them as such in the sample we presented to him.

We have so far shown two things about Algorithm 4. First, the fraction of nodes

identified as influenceable is close to the true fraction of such nodes. Second, in lists

sampled uniformly at random from Xi
res (the set of neighbors influenced with probability

of more than 0.001) there are more truly influenceable nodes than we would expect to

see by pure chance. The last thing of interest is whether a significant number of the truly

influenceable nodes (as marked by the volunteers in the first survey) are properly identified

by the algorithm (i.e. they are in Xi
res).

Let γ̂vi denote the number of nodes in γvi which were marked as influenceable by the

volunteer in the survey process. We now formulate a second null hypothesis to test:

“There is no significant overlap between γ̂vi and Xi
res.”

To test this hypothesis, we need to make a critical observation. Let δvi = |γ̂vi ∩Xi
res|,

be the size of the overlap between the nodes marked by the volunteers as influenceable,

and the ones marked by the algorithm as influenceable. Note that both γ̂vi and Xi
res are

subsets of Xi. We now imagine a sampling process in which we sample without replace-

ment |Xi
res| nodes from Xi and are interested in what fraction of them are in γ̂vi . This

63

means the size of the overlap δvi is the realization of a random variable H , which is hyper-

geometrically distributed with parameters |Xi|, γ̂vi and |Xi
res| (population size, number of

successes, sample size).

With this observation made, we can now determine whether the size of the overlap

observed could have arisen by chance or not. Table 5–6 contains, for each volunteer, the

following information: the population size (|Xi|), the number of contributors marked as

influenceable by Algorithm 4, the number of contributors marked as influenceable during

the survey, the size of the overlap between them and Xi
res and the probability of observing

that overlap.

vi |Xi| Xi
res |γ̂vi | |δvi| P (H ≥ |δvi |)

v1 271 38 5 3 2.09× 10−2

v2 284 43 7 4 1.14× 10−2

v3 139 33 12 6 3.60× 10−2

v4 195 64 14 8 4.63× 10−2

v5 1190 210 4 0 5.40× 10−1

v6 116 33 8 5 4.08× 10−2

v7 96 33 13 8 3.08× 10−2

v8 207 55 15 9 4.80× 10−3

v9 139 35 11 6 2.95× 10−2

v10 118 37 10 6 5.00× 10−2

v11 228 39 5 3 3.63× 10−2

v12 107 19 7 4 1.81× 10−2

v13 204 62 12 8 8.40× 10−3

v14 89 43 16 12 1.78× 10−2

v15 253 99 6 5 3.53× 10−2

v16 224 30 6 3 3.29× 10−2

Table 5–6: Results for the second survey task

64

Except the one corresponding to v5, the values in the last column of table 5–6 are

below a statistical significance level of p = 0.05. The fact that during the first survey

we selected a sample size of 50 which is significantly lower than the population size of

1190 for v5 might explain why out of the 4 nodes which he marked as being influenceable,

we do not see even one in the list the algorithm produces. There is a high chance that

the sample we sent to the volunteer did not even contain any truly influenceable nodes

(Algorithm 4 detects only 57 such nodes). The volunteer might have marked the 4 nodes

out of subjectivity. With this observation made, we reject the null-hypothesis postulated

earlier and conclude that there is indeed significant overlap between the nodes that the

algorithm marks as influenceable and the ones that the volunteers do.

The last part of the analysis focuses on assessing the quality of the rankings produced

by the algorithm. We want to know if the relative order of the nodes the algorithm marks

as highly influenceable is accurate or not. Let σk(vi) denote the ordered list of the first k

nodes, as returned by Algorithm 4, and σ̂k(vi) the true ranking of those nodes, in terms of

their influenceability. We formulate the following null hypothesis:

“For any value of k less than |Xi
res|, there is no significant correlation between σk(vi)

and σ̂k(vi).”

To test this hypothesis, we give the following survey task to the volunteers, choosing

a small value for k, of 10.

“You are given a list of 10 of your friends, in random order. Rank them in decreasing

order of who is more prone to act (e.g. like, comment, re-share) on any piece of information

you post on Facebook.”

65

Note that both the rankings σk(vi) and the true rankings returned by the volunteers

σ̂k(vi) are permutations of the same set of elements denotedD. Let n = |D| be the number

of elements in the set. To measure the correlation between the two permutations, we use

a statistic called Kendall’s Tau rank correlation coefficient [27], which has the following

definition. Let D be a set of elements, PD = {{i, j}|i 6= j, and i, j ∈ D} the set of all

unordered pairs of distinct elements from D, and i, j ∈ PD such a pair. The pair i, j is said

to be concordant if the order of the two elements is the same in both permutations σk(vi)

and σ̂k(vi). Conversely, the pair is said to be discordant if the permutations disagree on

the order of the i and j. Let NC be the number of concordant pairs, ND the number of

discordant pairs, and NP = |PD| = n(n − 1)/2 the total number of pairs. Kendall’s Tau

rank correlation coefficient is defined as:

KT (σk(vi), σ̂
k(vi)) =

NC −ND
NP

(5.3)

In equation (5.3), the number of concordant minus the number of discordant pairs is di-

vided by the total number of pairs, which brings the coefficient in the range [−1, 1]. If

the two rankings agree perfectly (are the same), the coefficient takes the value 1. If they

disagree completely (one raking is the reverse of the other) the coefficient value is −1.

When there is no correlation between the rankings, we expect the value of the coefficient

to be 0.

Since there are no ties in the rankings, we can apply the Tau-a statistical test to de-

termine if the correlation (if any) is statistically significant. If the rankings would be real-

izations of two independent random variables, the distribution of the following statistic zA

66

would be nearly normal:

zA =
3(NC −ND)√

(n(n− 1)(2n− 5)/2)
(5.4)

All that is left is to compute the cumulative probability for the standard normal distribution

at −|zA| and multiply it by two, since we are interested in both significant positive or

negative correlation. This gives us a p value — the probability of seeing that correlation by

chance — which we can use to accept or reject the null hypothesis at a specific significance

level. Table 5–7 contains the correlation coefficient value, as well as the p value for each

of the datasets.

vi KT (σ10(vi), σ̂
10(vi)) p value

v1 0.511 4.90× 10−2

v2 0.378 1.52× 10−1

v3 0.467 7.36× 10−2

v4 0.378 1.52× 10−1

v5 0.556 3.18× 10−2

v6 0.244 3.71× 10−1

v7 0.511 4.90× 10−2

v8 0.422 1.07× 10−1

v9 0.600 2.00× 10−2

v10 0.556 3.18× 10−2

v11 0.689 7.29× 10−3

v12 0.333 2.10× 10−1

v13 0.289 2.83× 10−1

v14 0.644 1.22× 10−2

v15 0.422 1.07× 10−1

v16 0.556 3.18× 10−2

Table 5–7: Correlation between top 10 rankings

67

There is definitely a positive correlation between the rankings we got from the volun-

teers and the ones Algorithm 4 computed (mean 0.472 and standard deviation of 0.128).

However, at a significance level of p = 0.05 we can reject the null hypothesis only in 8

out of 16 cases. For the rest of them, the only statement we can make is that the rankings

σ10(vi) weakly agree with the true rankings σ̂10(vi). To conclude this chapter, we note that

although we regard the rankings we got from the volunteers as ground truth, we currently

have no way of measuring or accounting for subjectivity in their assessment. The fact that

in half of the cases our rankings only weakly agree with them does not imply the fact that

the quality of the results is bad. It is possible that Algorithm 4 provides insight into who

is more influenceable, that cannot be observed by eye. Also, the heuristic used to score

the nodes was not designed to give an exact ranking, but to quantify the magnitude of the

influence the node vi exerts on its neighbors. Although convenient, survey methods might

not be the best way of obtaining ground truth data.

68

CHAPTER 6
Conclusion

In this thesis, we tackled the problem of learning influence probabilities between

nodes in social networks using past data. Influence probabilities are assumed as inputs in

information diffusion models such as the Linear Threshold models and the Independent

Cascade model. Finding efficient and accurate solutions to this problem enables us to find

more accurate solutions to other ones, such as the problem of influence maximization.

After presenting the necessary background in understanding this work, we delved

into the theory behind the two diffusion models mentioned above, as well as the influence

maximization problem. We then presented previous research in the field, which attempts

to find solutions to the problem, for the two models. Most of this research assumes knowl-

edge of the global structure of the network, as well as a rich dataset of past information

cascades. The influence probabilities are learned either as empirical estimates from the

data, or by solving maximum likelihood problems using techniques such as Expectation

Maximization.

In chapter 3 we proposed a new method for learning influence probabilities between

nodes. The method is grounded in agglomerative clustering techniques from the field of

machine learning and uses only the local structure of a network. Specifically, the algo-

rithm we propose learns a probability mass function on the outgoing edges of a chosen

node using the past history of interactions between that specific node and its neighbors.

69

Besides relaxing the constraint of knowing the entire structure of the network, a signifi-

cant advantage of this approach is computational efficiency. The algorithm can be run in

parallel for multiple nodes of interest at once, and the results aggregated. We concluded

the chapter by showing how the output of the algorithm can be transformed into the input

for the Linear Threshold model. Implicitly, this means the output of Algorithm 4 can be

used as the input for an entire class of diffusion algorithms, in the generalized framework

presented in subsection (2.2.3).

In chapter 4 we presented a high-level overview of the architecture of a 3-tier web

application we built to extract and store real data from Facebook, needed for performing

experiments. The results of the algorithm are assessed by comparing them to ground

truth data obtained by performing various experiments, detailed in chapter 5. First, we

estimated the true fraction of influenceable neighbors in the network with the help of 16

volunteers which agreed to participate in multiple surveys. We then showed that most of

the time, the fraction predicted by the algorithm falls in the confidence interval for the

estimate. Second, we showed that the algorithm correctly marks significantly more nodes

as truly influenceable in lists of fixed size, compared to an algorithm who would mark

them at random. To further support this claim we showed the overlap between the nodes

marked by the algorithm as being influenceable and the ones the volunteers mark, to be

statistically significant (significance level of p = 0.05). For the last part of the analysis,

we looked at the top 10 rankings of nodes (as returned by algorithm 4 and the volunteers)

and concluded there is a positive correlation between them. The correlation is sometimes

statistically significant, at a significance level of p = 0.05.

70

One of the core hypothesis we have made throughout our analysis is that common

behavior of nodes is explained by influence, and not by homophily. Although we under-

stand the limitations of this approach, we do note that studies such as the one made by

Bisgin et al. [6] show this to be a valid assumption, at least in the context of large-scale

online social networks. Another limitation is the fact that the Linear Threshold and the

Independent Cascade model are not flexible enough to incorporate the notion of external

influences in a meaningful way. Future work could explore other diffusion models, as

well as exploit richer multi-dimensional datasets and the effect that tweaking the scores

for different types of activity would have on the influence probabilities learned.

Another important direction for future work is to simulate information cascades in

one of the diffusion models presented above, using the influence probabilities learned. We

could then choose some specific seeding strategy and determine the influence spread of

that seed set. Comparing the results of the simulation with the observed propagation would

give us a good assessment of the quality of the influence probabilities learned through the

proposed method. Testing different heuristics for scoring the nodes after the clustering

is also something worth looking into, as it might give us better rankings or even more

insight into the data. One last direction of future work would be to study how the influence

probabilities we learned evolve in time, from one snapshot to another. Using our algorithm

in tandem with one for performing community detection in social networks will allow us

to determine whether there is significant correlation between the influence a community

exerts on a specific node, and its decision to join or not. This would effectively enable us

to predict how much influence a community must exert on a node on its fringe, before it

decides to join it.

71

References

[1] Comments 4x more valuable than likes. http://edgerankchecker.com/blog/2011/11/comments-
4x-more-valuable-than-likes/.

[2] MongoDB’s official website. http://www.mongodb.org/.

[3] Nineteenth ACM Symposium on Principles of Distributed Computing.
http://www.podc.org/podc2000/.

[4] Eytan Bakshy, Jake M. Hofman, Winter A. Mason, and Duncan J. Watts. Everyone’s
an influencer: quantifying influence on twitter. In Proceedings of the fourth ACM
international conference on Web search and data mining, WSDM ’11, pages 65–74,
New York, NY, USA, 2011. ACM.

[5] A Barabási. Emergence of Scaling in Random Networks. Science, 286(5439):509–
512, 1999.

[6] Halil Bisgin, Nitin Agarwal, and Xiaowei Xu. Investigating Homophily in Online
Social Networks. 2010 IEEE/WIC/ACM International Conference on Web Intelli-
gence and Intelligent Agent Technology, pages 533–536, August 2010.

[7] Wei Chen, Chi Wang, and Yajun Wang. Scalable influence maximization for preva-
lent viral marketing in large-scale social networks. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining, number
January, pages 1029–1038. ACM, 2010.

[8] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization in social
networks. Proceedings of the 15th ACM International Conference on Knowledge
Discovery and Data Mining (2009), 67(1):199, 2009.

[9] Wei Chen, Yifei Yuan, and Li Zhang. Scalable influence maximization in social
networks under the linear threshold model. In Proceedings of the 2010 IEEE In-
ternational Conference on Data Mining, ICDM ’10, pages 88–97, Washington, DC,
USA, 2010. IEEE Computer Society.

72

73

[10] Robert B Cialdini. Influence: Science and Practice, volume 4. Allyn and Bacon,
2001.

[11] Gerard Cornuejols, Marshall L. Fisher, and George L. Nemhauser. Location of bank
accounts to optimize float: An analytic study of exact and approximate algorithms.
Management Science, 23(8):pp. 789–810, 1977.

[12] A P Dempster, N M Laird, and D B Rubin. Maximum likelihood from incomplete
data via em algorithm. Journal of the Royal Statistical Society Series B Methodolog-
ical, 39(1):1–38, 1977.

[13] Pedro Domingos and Matt Richardson. Mining the network value of customers. In
Proceedings of the seventh ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’01, pages 57–66, New York, NY, USA, 2001.
ACM.

[14] David Easley and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning About
a Highly Connected World, volume 1. Cambridge University Press, 2010.

[15] Paul Erdős and Alfred Rényi. On the evolution of random graphs. Evolution,
5(1):17–61, 1960.

[16] B S Everitt, S Landau, and M Leese. Cluster Analysis, volume 33. Arnold, 2001.

[17] Roy Thomas Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, 2000. AAI9980887.

[18] Zoubin Ghahramani. Unsupervised learning. In Advanced Lectures on Machine
Learning, pages 72–112. Springer-Verlag, 2004.

[19] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33:51–59, June 2002.

[20] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. Inferring networks
of diffusion and influence. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’10, pages 1019–1028,
New York, NY, USA, 2010. ACM.

[21] Amit Goyal, Francesco Bonchi, and Laks V.S. Lakshmanan. Learning influence
probabilities in social networks. In Proceedings of the third ACM international con-
ference on Web search and data mining, WSDM ’10, pages 241–250, New York, NY,
USA, 2010. ACM.

74

[22] Mark Granovetter. Threshold models of collective behavior. American Journal of
Sociology, 83(6):pp. 1420–1443, 1978.

[23] Oliver Hinz, Bernd Skiera, Christian Barrot, and J.U. Becker. Seeding Strate-
gies for Viral Marketing: An Empirical Comparison. Journal of Marketing,
75(November):55–71, 2011.

[24] Anil K Jain and Richard C Dubes. Algorithms for Clustering Data, volume 355.
Prentice Hall, 1988.

[25] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’03, pages 137–146,
New York, NY, USA, 2003. ACM.

[26] David Kempe, Jon Kleinberg, and Éva Tardos. Influential nodes in a diffusion model
for social networks. In IN ICALP, pages 1127–1138. Springer Verlag, 2005.

[27] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):pp. 81–93,
1938.

[28] Masahiro Kimura and Kazumi Saito. Tractable models for information diffusion in
social networks. Knowledge Discovery in Databases PKDD 2006, 4213:259–271,
2006.

[29] Masahiro Kimura, Kazumi Saito, Ryohei Nakano, and Hiroshi Motoda. Extracting
influential nodes on a social network for information diffusion. Data Min. Knowl.
Discov., 20:70–97, January 2010.

[30] C Kiss and M Bichler. Identification of influencers Measuring influence in customer
networks. Decision Support Systems, 46(1):233–253, December 2008.

[31] G N Lance and W T Williams. A general theory of classificatory sorting strategies.
The computer journal, 10(3):271–277, 1967.

[32] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne Van-
Briesen, and Natalie Glance. Cost-effective outbreak detection in networks. Pro-
ceedings of the 13th ACM SIGKDD international conference on Knowledge discov-
ery and data mining KDD 07, 124(June):420, 2007.

75

[33] Jure Leskovec, Ajit Singh, and Jon Kleinberg. Patterns of influence in a recommen-
dation network. In In Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD, pages 380–389. Springer-Verlag, 2005.

[34] Thomas M Liggett. Interacting Particle Systems, volume 276. Springer-Verlag, 1985.

[35] S Lloyd. Least squares quantization in pcm. IEEE Transactions on Information
Theory, 28(2):129–137, 1982.

[36] Antonio Loureiro, Luis Torgo, and Carlos Soares. Outlier detection using clustering
methods: a data cleaning application. In Proceedings of the Data Mining for Business
Workshop, 2004.

[37] Geoffrey J McLachlan and Thriyambakam Krishnan. The EM Algorithm and Exten-
sions, volume 382. Wiley-Interscience, 2008.

[38] G W Milligan and M C Cooper. An examination of procedures for determining the
number of clusters in a data set. Psychometrika, 50(2):159–179, 1985.

[39] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for
maximizing submodular set functionsi. Mathematical Programming, 14:265–294,
1978. 10.1007/BF01588971.

[40] Nishith Pathak, Arindam Banerjee, and Jaideep Srivastava. A generalized linear
threshold model for multiple cascades. In Proceedings of the 2010 IEEE Interna-
tional Conference on Data Mining, ICDM ’10, pages 965–970, Washington, DC,
USA, 2010. IEEE Computer Society.

[41] D Peleg. Local majority voting , small coalitions and controlling monopolies in
graphs : A review 1 introduction. Science, (June):0–28, 1996.

[42] Matthew Richardson and Pedro Domingos. Mining knowledge-sharing sites for viral
marketing. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’02, pages 61–70, New York, NY, USA,
2002. ACM.

[43] E.M. Rogers. Diffusion of innovations. Free Press of Glencoe, 1962.

[44] P Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of
cluster analysis. Journal of Computational and Applied Mathematics, 20(1):53–65,
1987.

76

[45] Kazumi Saito, Ryohei Nakano, and Masahiro Kimura. Prediction of information dif-
fusion probabilities for independent cascade model. In Proceedings of the 12th inter-
national conference on Knowledge-Based Intelligent Information and Engineering
Systems, Part III, KES ’08, pages 67–75, Berlin, Heidelberg, 2008. Springer-Verlag.

[46] Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-
scale networks. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, KDD ’09, pages 807–816, New York, NY,
USA, 2009. ACM.

[47] T Velmurugan. A survey of partition based clustering algorithms in data mining: An
experimental approach. Information Technologies Journal, 2011.

[48] Belal Al Zoubi. An Effective Clustering-Based Approach for Outlier Detection. Eu-
ropean Journal of Scientific Research, 28(2):310–316, 2009.

Appendix A

Below are plots describing the output of Algorithm 4 on the 16 datasets obtained from

the volunteers. In each case, first plot shows the variation of the Calinsky-Harabasz index

over the topmost 25 partitions in the sequence generated by the algorithm, the second one

is a dendogram plot, and the last two are scatter and silhouette plots for the final clustering

of each dataset. Note that in each scatter plot, the brown points correspond to outliers.

77

Plots for volunteer v1, weighted linkage (1/2)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal number of clusters: 9

Number of clusters (k)

C
H

(k
),

 r
e
la

ti
v
e
 t
o
 t
h
e
 m

a
x
 v

a
lu

e

131412 9 10172930262728 1 11 2 3 8 23 4 5 6 7 151624251819212022

5

10

15

20

25

30

35

40

45

50

55

Clusters

C
lu

s
te

r
d
is

s
im

ila
ri
ty

78

Plots for volunteer v1, weighted linkage (2/2)

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

Number of comments (x4)

N
u
m

b
e
r

o
f
lik

e
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4
5
6
7
8
9

10

Silhouette value

C
lu

s
te

r

79

Plots for volunteer v2, ward linkage (1/2)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal number of clusters: 8

Number of clusters (k)

C
H

(k
),

 r
e
la

ti
v
e
 t
o
 t
h
e
 m

a
x
 v

a
lu

e

 1 2 3 6 202124 8 9 1011121314151718161927 4 30 5 7 222526232829
0

100

200

300

400

500

Clusters

C
lu

s
te

r
d
is

s
im

ila
ri
ty

80

Plots for volunteer v2, ward linkage (2/2)

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

35

40

Number of comments (x4)

N
u
m

b
e
r

o
f
lik

e
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3
4

5

6

7

8
9

Silhouette value

C
lu

s
te

r

81

Plots for volunteer v3, complete linkage (1/2)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal number of clusters: 10

Number of clusters (k)

C
H

(k
),

 r
e
la

ti
v
e
 t
o
 t
h
e
 m

a
x
 v

a
lu

e

 8 15 7 3 9 101112181920232426252728 1 2 5 4 6 2122131416172930
0

10

20

30

40

50

60

70

Clusters

C
lu

s
te

r
d
is

s
im

ila
ri
ty

82

Plots for volunteer v3, complete linkage (2/2)

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

Number of comments (x4)

N
u
m

b
e

r
o
f
lik

e
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1
2

3

4

5
6

7

8

9

10
11

Silhouette value

C
lu

s
te

r

83

Plots for volunteer v4, weighted linkage (1/2)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal number of clusters: 13

Number of clusters (k)

C
H

(k
),

 r
e
la

ti
v
e
 t
o
 t
h
e
 m

a
x
 v

a
lu

e

 9 101112141618 3 2 1723131519202130 1 7 4 5 6 8 29272822242526
0

5

10

15

20

25

Clusters

C
lu

s
te

r
d
is

s
im

ila
ri
ty

84

Plots for volunteer v4, weighted linkage (2/2)

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

Number of comments (x4)

N
u
m

b
e
r

o
f
lik

e
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1
2
3

4

5

6

7
8
9

10

11
12

13

14

Silhouette value

C
lu

s
te

r

85

Plots for volunteer v5, ward linkage (1/2)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal number of clusters: 11

Number of clusters (k)

C
H

(k
),

 r
e
la

ti
v
e
 t
o
 t
h
e
 m

a
x
 v

a
lu

e

2329 1 26 2 4 3 131415161720222427282530 5 6 181921 7 8 9 101112
0

100

200

300

400

500

600

700

800

900

Clusters

C
lu

s
te

r
d
is

s
im

ila
ri
ty

86

Plots for volunteer v5, ward linkage (2/2)

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

80

Number of comments (x4)

N
u
m

b
e
r

o
f
lik

e
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3
4

5

6

7
8
9

10
11

Silhouette value

C
lu

s
te

r

87

Plots for volunteer v6, ward linkage (1/2)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal number of clusters: 7

Number of clusters (k)

C
H

(k
),

 r
e
la

ti
v
e
 t
o
 t
h
e
 m

a
x
 v

a
lu

e

 1 2 8 3 5 6 4 7 16172022181921 9 1110121314152325242627292830
0

50

100

150

200

250

300

350

400

450

500

Clusters

C
lu

s
te

r
d
is

s
im

ila
ri
ty

88

Plots for volunteer v6, ward linkage (2/2)

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

Number of comments (x4)

N
u
m

b
e
r

o
f
lik

e
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7
8

Silhouette value

C
lu

s
te

r

89

Plots for volunteer v7, ward linkage (1/2)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal number of clusters: 4

Number of clusters (k)

C
H

(k
),

 r
e
la

ti
v
e
 t
o
 t
h
e
 m

a
x
 v

a
lu

e

 3 6 8 9 10111213 4 181920251617 1 2 5 7 1415212224262823272930
0

10

20

30

40

50

60

Clusters

C
lu

s
te

r
d
is

s
im

ila
ri
ty

90

Plots for volunteer v7, ward linkage (2/2)

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

Number of comments (x4)

N
u
m

b
e
r

o
f
lik

e
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

Silhouette value

C
lu

s
te

r

91

Plots for volunteer v8, weighted linkage (1/2)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal number of clusters: 8

Number of clusters (k)

C
H

(k
),

 r
e
la

ti
v
e
 t
o
 t
h
e
 m

a
x
 v

a
lu

e

 3 4 5 1 2 22301213 6 8 7 9 1011291415161718192021272823242526
0

10

20

30

40

50

60

70

80

90

100

Clusters

C
lu

s
te

r
d
is

s
im

ila
ri
ty

92

Plots for volunteer v8, weighted linkage (2/2)

0 50 100 150
0

5

10

15

20

25

30

35

40

45

50

Number of comments (x4)

N
u
m

b
e
r

o
f
lik

e
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

5
6
7
8

9

Silhouette value

C
lu

s
te

r

93

Plots for volunteer v9, weighted linkage (1/2)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal number of clusters: 8

Number of clusters (k)

C
H

(k
),

 r
e
la

ti
v
e
 t
o
 t
h
e
 m

a
x
 v

a
lu

e

 3 6 2 1 151617231920242526 4 2927 7 5 8 9 10111213143018212228
0

5

10

15

20

25

30

35

40

45

Clusters

C
lu

s
te

r
d
is

s
im

ila
ri
ty

94

Plots for volunteer v9, weighted linkage (2/2)

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

Number of comments (x4)

N
u
m

b
e
r

o
f
lik

e
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6
7
8
9

Silhouette value

C
lu

s
te

r

95

Plots for volunteer v10, ward linkage (1/2)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal number of clusters: 9

Number of clusters (k)

C
H

(k
),

 r
e
la

ti
v
e
 t
o
 t
h
e
 m

a
x
 v

a
lu

e

232425 1 2 16 3 5 4 6 8 7 10 9 11121315141718192022212627283029
0

20

40

60

80

100

120

Clusters

C
lu

s
te

r
d
is

s
im

ila
ri
ty

96

Plots for volunteer v10, ward linkage (2/2)

0 10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

Number of comments (x4)

N
u
m

b
e
r

o
f
lik

e
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7
8
9

Silhouette value

C
lu

s
te

r

97

Plots for volunteer v11, weighted linkage (1/2)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal number of clusters: 9

Number of clusters (k)

C
H

(k
),

 r
e
la

ti
v
e
 t
o
 t
h
e
 m

a
x
 v

a
lu

e

22262030 2 3 5 7 8 1 4 6 141516 9 1029111227282425212313171819

10

20

30

40

50

60

70

80

90

Clusters

C
lu

s
te

r
d
is

s
im

ila
ri
ty

98

Plots for volunteer v11, weighted linkage (2/2)

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

Number of comments (x4)

N
u
m

b
e
r

o
f
lik

e
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3
4
5
6
7
8

9

10

Silhouette value

C
lu

s
te

r

99

Plots for volunteer v12, ward linkage (1/2)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal number of clusters: 4

Number of clusters (k)

C
H

(k
),

 r
e
la

ti
v
e
 t
o
 t
h
e
 m

a
x
 v

a
lu

e

 3 6 8 11 4 7 9 1513 1 2122232426272829 5 1230 2 1014161718192025
0

50

100

150

200

250

Clusters

C
lu

s
te

r
d
is

s
im

ila
ri
ty

100

Plots for volunteer v12, ward linkage (2/2)

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

Number of comments (x4)

N
u
m

b
e
r

o
f
lik

e
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

Silhouette value

C
lu

s
te

r

101

Plots for volunteer v13, ward linkage (1/2)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal number of clusters: 7

Number of clusters (k)

C
H

(k
),

 r
e
la

ti
v
e
 t
o
 t
h
e
 m

a
x
 v

a
lu

e

262928 5 231725 6 9 1615 1 3 4 2 7 8 10111213141819202221242730
0

50

100

150

200

250

300

350

400

450

500

Clusters

C
lu

s
te

r
d
is

s
im

ila
ri
ty

102

Plots for volunteer v13, ward linkage (2/2)

0 50 100 150 200 250 300 350
0

5

10

15

20

25

30

Number of comments (x4)

N
u
m

b
e
r

o
f
lik

e
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

Silhouette value

C
lu

s
te

r

103

Plots for volunteer v14, ward linkage (1/2)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal number of clusters: 7

Number of clusters (k)

C
H

(k
),

 r
e
la

ti
v
e
 t
o
 t
h
e
 m

a
x
 v

a
lu

e

2628232122242527 1 3 5 6 1920293012 2 4 8 7 14 9 10111315171816
0

5

10

15

20

25

30

35

40

Clusters

C
lu

s
te

r
d
is

s
im

ila
ri
ty

104

Plots for volunteer v14, ward linkage (2/2)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

Number of comments (x4)

N
u
m

b
e
r

o
f
lik

e
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

Silhouette value

C
lu

s
te

r

105

Plots for volunteer v15, ward linkage (1/2)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal number of clusters: 7

Number of clusters (k)

C
H

(k
),

 r
e
la

ti
v
e
 t
o
 t
h
e
 m

a
x
 v

a
lu

e

 7 8 4 5 1 6 10171819212022 2 3 9 1211131516143023242526292728
0

20

40

60

80

100

120

140

160

Clusters

C
lu

s
te

r
d
is

s
im

ila
ri
ty

106

Plots for volunteer v15, ward linkage (2/2)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

Number of comments (x4)

N
u
m

b
e
r

o
f
lik

e
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

Silhouette value

C
lu

s
te

r

107

Plots for volunteer v16, ward linkage (1/2)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Optimal number of clusters: 10

Number of clusters (k)

C
H

(k
),

 r
e
la

ti
v
e
 t
o
 t
h
e
 m

a
x
 v

a
lu

e

262725282930111213141516171819212022 1 24 2 23 3 4 5 8 7 6 10 9
0

100

200

300

400

500

600

700

800

Clusters

C
lu

s
te

r
d
is

s
im

ila
ri
ty

108

Plots for volunteer v16, ward linkage (2/2)

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

Number of comments (x4)

N
u
m

b
e
r

o
f
lik

e
s

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

10
11

Silhouette value

C
lu

s
te

r

109

