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Abstract

In this thesis we study the consequences of two-dimensional Conformal Field Theories
(CFTs) defined on non-orientable surfaces and their three-dimensional gravity duals ac-
cording to the AdS/CFT correspondence. We focus on a particular class of conformal
theories, called Minimal Models, which are conjecturally describing a gravitational the-
ory in a highly quantum regime. The core of this work is summarized in the non-trivial
results we provide for the RP2 one-point function normalization constants of the Ising
and the Tricritical Ising model, by numerically solving the CFT consistency conditions
on the Real Projective plane, RP2. These two minimal theories are of particular impor-
tance since they constitute extremal CFTs, and their gravity dual is already conjectured
with success in the literature. We review the construction of CFTs in both orientable
and non-orientable surfaces as well as the statement of the AdS/CFT correspondence,
and we mainly rely on our results to understand the structure of the path integral of
pure gravity in three dimensions. We end by discussing the gravitational consequences of
analogous not-yet-obtained results for other Minimal Models, and we sketch a potential
utility in the CFT reconstruction program of bulk operators in AdS.



Résumé

Dans cette thèse, nous étudions les conséquences de définir des Théories Conformes
des Champs (CFTs) en deux dimensions sur une surface non-orientable ainsi que leurs
duals gravitationnels en trois dimensions décrits par la correspondance AdS/CFT. Nous
nous concentrons en particulier sur les Modèles Minimaux, des théories conformes qui
décrivent de manière conjecturale des théories gravitationnelles dans un régime haute-
ment quantique. La partie la plus importante de ce travail est les résultats non-triviaux
que nous fournissons par rapport aux constantes de normalisation des fonctions de
corrélation à un point pour les modèles de Ising et Tricritique de Ising sur RP2, que nous
obtenons numériquement en résolvant les conditions de cohérence sur le plan projectif
réel, RP2. Les deux théories minimales que nous étudions sont d’une importance par-
ticulière puisquélles constituent des CFTs extrémales et leurs duals gravitationnels ont
déjà été conjecturés avec succès dans la littérature. Nous résumons ici la construction de
CFTs sur des surfaces orientables et non-orientables ainsi que l’énoncé de la correspon-
dance AdS/CFT et nous nous fions principalement sur nos résultats pour comprendre
la structure de l’intégrale de chemins pour la gravité pure en trois dimensions. Nous
terminons en discutant des conséquences gravitationnelles de futurs résultats similaires
pour les autres Modèles Minimaux et nous esquissons une utilité potentielle dans la
reconstruction d’opérateurs dans AdS à partir des CFTs.
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1 Conformal Field Theory on Riemann surfaces

1.1 Basics of CFT

We start by setting the general stage of a theory with conformal symmetry, in a suitable
d-dimensional conformal compactification1of Minkowski spacetime Rd−1,1. The point of
this section is to give a first hint of why conformal symmetry is qualitatively different in
d = 2 than in d > 2, and hence motivate us to study its various aspects in the former case.

A conformal transformation of the coordinates is defined as the invertible map which
leaves the metric tensor invariant up to a local function Λ(x):

g′µν(x
′) = Λ(x)ηµν (1)

One first observation is that the special case of Λ(x) = 1 corresponds to the familiar
Poincare group consisting of translations and Lorentz transformations.

Therefore, as in the study of the Poincare group (and any Lie group), what we would
like to do next is to specify the infinitesimal form of conformal transformations. This
will lead us to define the corresponding generators, their algebra and the representations
of the group. Our ultimate goal is to build a quantum field theory with conformal
symmetry. This will in turn allow us to determine the field content by specifying how
various fields transform under the action of the group, and then ”promote” appropriately
our fields to operators and build a quantum Hilbert space.

Let us consider an infinitesimal coordinate transformation (ε(x) << 1) and the
induced change in the metric:

xρ → xρ + ερ(x), ηµν → ηµν + ∂µεν + ∂νεµ (2)

Equation (1) then demands that :

∂µεν + ∂νεµ = K(x)ηµν (3)

where Λ(x) ≡ 1 +K(x) +O(ε2)

Eq.(3) in principle determines the form of ε. We can however manipulate this relation
a bit more to derive some further useful relations. First, by tracing the equation with
ηµν we can get a specific form of K(x) in terms of ε:

∂µεν + ∂νεµ =
2

d
(∂·ε)ηµν (4)

and then, by first taking derivative with respect to ∂ν and summing over ν:

∂µ(∂·ε) + �εµ =
2

d
∂µ(∂·ε) (5)

1by conformal compactification here we mean the manifold that also includes the point at infinity,
e.g. the Riemann sphere S2 in 2d. We’re going to discuss this in more detail on section 1.2.
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and next differentiating (5) with respect to ∂ν and adding the corresponding expressions
with µ and ν interchanged, we can arrive at:

(d− 1)�(∂·ε) = 0 (6)

One last relation that we are going to need is obtained by taking derivatives of (4) with
respect to some other index ∂ρ, and then permuting indices:

∂ρ∂µεν + ∂ρ∂νεµ =
2

d
ηµν∂ρ(∂ · ε)

∂ν∂ρεµ + ∂µ∂ρεν =
2

d
ηρµ∂ν(∂ · ε)

∂µ∂νερ + ∂ν∂µερ =
2

d
ηνρ∂µ(∂ · ε)

(7)

Subtracting the first line from the sum of the last two yields:

2∂µ∂νερ =
2

d
(−ηµν∂ρ + ηρµ∂ν + ηνρ∂µ)(∂ · ε) (8)

Equations (4),(6) and (8) will be important for our following analysis. For d = 1 we
can see that the above equations do not impose any constraint on ε, and therefore any
smooth transformation is conformal in one dimension. In the case of d = 2, equation (4)
turns out to include some interesting information about the structure of the symmetry
but let us postpone the discussion until section 1.2. For the moment we focus on the
case d ≥ 3. Equation (6) suggests that ε is at most quadratic in x and so we can make
the ansatz:

εµ = aµ + bµνx
ν + cµνρx

νxρ (9)

where a,bµν ,cµνρ are small constants and the latter is symmetric in the last two indices
(cµνρ = cµρν). Their specific form can be studied independently as the constraints for
conformal invariance have to be independent of the position x:

⇒ εµ = aµ. It describes infinitesimal translations for which the generator is the
familiar momentum operator Pµ = −i∂µ.

⇒ εµ = bµνx
ν . We can split b into a symmetric and an antisymmetric tensor and

insert this ansatz into (4). What we will find is a constraint on the symmetric part to
be proportional to the metric:

bµν = αηµν +mµν (10)

where mµν = −mνµ. We identify the symmetric part with infinitesimal scale transfor-
mations x

′µ = (1 + α)xµ with generator D = −ixµ∂µ, and the antisymmetric part with
infinitesimal rotations x

′µ = (δµν + mµ
ν )xν with generator being the angular momentum

Lµν = i(xµ∂ν − xν∂µ).

⇒ εµ = cµνρx
νxρ. For this term it’s better to use a relation with two derivatives

that’s why we insert it into equation (8). We obtain:

∂ν(∂ · ε) = 2cµµν (11)
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from which we can see that:

cµνρ = ηµρBν + ηµνBρ − ηνρBµ (12)

with Bµ ≡ 1
d
cρρµ. These kind of transformations go under the name of Special Conformal

Transformations and their infinitesimal form is x′µ = xµ + 2(x · B)xµ − (x · x)Bµ with
the corresponding generator: Kµ = −i(2xµxν∂ν − (x · x)∂µ).

It’s good to summarize our results in a table:

Transformations Finite form Generators

Translations x
′µ = xµ + aµ Pµ = −i∂µ

Dilations x
′µ = αxµ D = −ixµ∂µ

Rotations x
′µ = Mµ

ν x
ν Lµν = i(xµ∂ν − xν∂µ)

SCT x
′µ = xµ−(x·x)Bµ

1−2(B·x)+(B·B)(x·x)
Kµ = −i(2xµxν∂ν − (x · x)∂µ)

Table1.1(a): Conformal transformations in d ≥ 3, their finite form (obtained by exponentiating the
infinitesimal form) and the corresponding generators.

The above transformations as derived are globally defined and invertible in a suitable
conformal compactification of Rd−1,1(i.e. the point at infinity is included), therefore we
can go ahead and identify the corresponding group by determining the algebra of the
generators. If we perform the identifications:

Jµ,ν = Lµν , J−1,µ =
1

2
(Pµ −Kµ)

J−1,0 = D, J0,µ =
1

2
(Pµ +Kµ)

(13)

then we can group all the generators in one object Jm,n, with m,n = −1, 0, 1, ..., (d− 1).
More than that, the commutation relations can be shown to be:

[Jmn, Jrs] = i(ηmsJnr + ηnrJms − ηmrJns − ηnsJmr) (14)

where ηmn ≡ diag(−1,−1, ..., 1). These are the commutations relations of the Lie algebra
so(d, 2). Therefore, the conformal group on Rd−1,1 for d ≥ 3 is identified as the Lie group
SO(d, 2)2. We fulfilled our goal to identify the conformal group and the algebra of its
generators. As a next step, we can go ahead and study representations of SO(d, 2). We
are not going to do it here though as we will focus mostly in the case of d = 2. A good
reference can be found in [1].

At this point we should step back and think to which extent the above analysis also
carries in the case of d = 2. Equation (6) holds when d = 2, so one can argue that the
result of ε being at most quadratic in the coordinates is still valid. However there is
much richer structure obtained solely by equation (4) when d = 2. We will discover it
in the next section.

2For a Euclidean d-dimensional space Rd,0, it can be shown in the same way that the conformal
group is SO(d + 1, 1) which is the Lorentz group in two higher dimensions. In more generality, the
conformal group on Rp,q is SO(p+ 1, q + 1).
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1.2 CFT on S2

In this section we will sketch the general properties of a two-dimensional conformal
field theory defined on the Riemann sphere S2 ' C ∪ ∞ and then we will focus on
a specific class of conformal field theories called Minimal Models. The goal of this
chapter is to understand the powerful mathematical structure which is hidden in a two-
dimensional CFT, which will eventually allow us to highly constrain its spectrum via the
so-called crossing symmetry of four-point functions. We perform all of our calculations
in Euclidean signature unless otherwise specified.

1.2.1 Global and local conformal transformations on S2

Let’s examine (4) in the case of 2d. We obtain two equations:

∂0ε0 = ∂1ε1, ∂0ε1 = −∂1ε0 (15)

These are the Cauchy-Riemann equations that the real and imaginary part of a holomor-
phic function satisfies in the complex plane.This observation dictates a natural change
in the variables:

ε = ε0 + iε1, z = x0 + ix1, ∂z = 1
2
(∂0 − i∂1)

ε = ε0 − iε1, z = x0 − ix1, ∂z = 1
2
(∂0 + i∂1)

(16)

and now the infinitesimal form becomes:

z′ = z + ε(z), z′ = z + ε(z) (17)

The conclusion is: for an infinitesimal conformal transformation in two dimensions the
function ε(z) has to be holomorphic in some open set of the complex plane. This fact
immediately implies that we can apply the rich machinery of holomorphic functions in
order study the properties of conformal transformations in two dimensions! Furthermore,
it’s understood that there is actually an infinite set of holomorphic mappings one can
implement, that eventually constitutes a local conformal transformation.

In general, we can assume that ε(z) is a meromorphic function having isolated poles
outside the open set and hence it admits a Laurent expansion around say z = 0. A
general infinitesimal conformal transformation can be written then as:

z′ = z +
∑
n∈Z

εn(−zn+1),

z′ = z +
∑
n∈Z

εn(−zn+1)
(18)

for constant εn and εn. From this expression we can easily read the generators:

ln = −zn+1∂z, ln = −zn+1∂z (19)

and in turn the corresponding algebra:

[ln, lm] = (n−m)ln+m

[ln, lm] = (n−m)ln+m

[ln, lm] = 0

(20)

5



Thus, the conformal algebra is the direct sum of two isomorphic algebras. The algebra
(20) is sometimes called the Witt algebra.

The important thing to notice here is that the number of generators is infinite (since
n ∈ Z), a fact that was expected from the holomorphicity of ε. This situation is special
in two dimensions and, as we’ll see, it has many other interesting consequences.

After the identification of the algebra, the next thing to do is to specify the conformal
group of the Riemann sphere S2. In order to do that though our transformations should
be globally defined and invertible.From the expression (19) of the generators, we can see
that the points z = 0 and z =∞ are actually ambiguous. The generator ln = −zn+1∂z
is non-singular at z = 0 only for n ≥ −1, whereas is non-singular at z = ∞ only for
n ≤ +1.

This means that globally defined conformal transformations on S2 are generated only
by l−1, l0, l1. The algebra between these operators closes so this specific subalgebra is to
be associated with the global conformal group. From (19) it is manifest that l−1 = −∂z
generates translations on the complex plane, l0 = −z∂z generates scale transformations
and rotations, and l1 = −z2∂z generates special conformal transformations. In general
it’s easy to show that a finite global conformal transformation in 2d takes the compact
form:

z → az + b

cz + d
, with a, b, c, d ∈ C (21)

For this transformation to be invertible, we should require that ad− bc 6= 0; and we can
always scale the constants a, b, c, d such that ad−bc = 1. Hence, the total number of real
parameters that we have to specify is 6. Furthermore, we notice that (21) is invariant
under (a, b, c, d) → (−a,−b,−c,−d) which means that the corresponding group should
be also projective. This is exactly the so called Mobius group PSL(2,C), which we
eventually identify as the conformal group of the Riemann sphere S2.

Let us summarize what we learned so far. In two dimensions there exists an infinite
variety of coordinate transformations that, although not everywhere well-defined, are
locally conformal: they are holomorphic mappings from the complex plane onto itself.
Among this infinite set of mappings we should distinguish the 6-parameter global confor-
mal group PSL(2,C), made of one-to-one mappings of the complex plane into itself.It
is actually known that SL(2,C) is isomorphic to the Lorentz group in four dimensions
SO(3, 1). Therefore, as far as the conformal group proper is concerned, we have learned
nothing new since the previous section. Our previous analysis still holds when consider-
ing these transformations only. However, if we want to build a local field theory, it better
be sensitive to the local symmetries, even if the related transformations are not globally
defined. And it’s exactly the local conformal invariance that enables exact solutions of
two-dimensional conformal field theories.

1.2.2 Energy-monetum tensor, primary fields and correlation functions

Having studied to some extent the structure of conformal transformations and conformal
group, the next step is to introduce classical fields (i.e. functions of space and time)
Φ(z, z) on the Riemann sphere. There is a slight difference in terminology between CFTs
and more general quantum field theories that we have to point out. Usually in quantum
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field theory, one reserves the term field for the objects which sit in the action and are
integrated over in the path integral. In contrast, in CFT the term field refers to any
local expression that we can write down. This includes Φ, but also includes derivatives
∂nΦ or composite operators such as eiΦ. All of these are thought of as different fields in
a CFT.

A distinguished tensor field, on which we’re going to focus first, is the energy-
momentum tensor. The energy-momentum tensor can be in principle deduced from
the variation of the action with respect to the metric and so it encodes the behaviour
of the theory under infinitesimal transformations gµν → gµν + δgµν . It turns out that in
a conformal field theory the constraints of the symmetry are so powerful that we won’t
need an explicit form of an action. What we will show next is that the energy-momentum
tensor of a CFT in d-dimensions (in general) is traceless, and that in two dimensions it
has two non-vanishing components which are chiral and anti-chiral fields (to be defined
shortly).

In order to study the energy-momentum tensor of a CFT, we should recall Noether’s
theorem from classical field theory: for every continuous symmetry of a given action,
there is a curent jµ which conserved, i.e. ∂µj

µ = 0, where µ = 0, .., d− 1 in a Lorentzian
say spacetime (identical analysis holds for Euclidean). For a global conformal transfor-
mation xµ → xµ + εµ(x), we have a conserved current which can be written as:

jµ = Tµνε
ν (22)

where the symmetric tensor Tµν is the energy-momentum tensor. For the simple case of
εµ = const. the conservation law suggests:

∂µTµν = 0 (23)

For more general conformal transformations εµ(x) now, we can see that:

0 = ∂µjµ = (∂µTµν)ε
ν + Tµν(∂

µεν)

= 0 +
1

2
Tµν(∂

µεν + ∂νεµ) =
1

2
Tµν

2

d
(∂ · ε)ηµν =

1

d
T µµ (∂ · ε)

(24)

where we have used Eq.(4). The conclusion is that the energy-momentum tensor in a
classical conformal field theory is traceless.

Let us now investigate what the previous result means in two dimensions in the case
of Euclidean signature(ηµν = diag(+1,+1)). Using the change of coordinates (16), we
can easily see that Tµν where µ, ν = 0, 1 is related to Tab where a, b = z, z via:

Tzz =
1

4
(T00 − 2iT10 − T11)

Tzz =
1

4
(T00 + 2iT10 − T11)

Tzz = Tzz =
1

4
(T00 + T11) =

1

4
T µµ = 0

(25)

Employing the traceleness relation we can write: Tzz = 1
2
(T00 − iT10) and Tzz = 1

2
(T00 +

iT10), and now the conservation condition in two dimensions:

∂0T00 + ∂1T10 = 0, ∂0T01 + ∂1T11 = 0 (26)

implies:

∂zTzz =
1

4
(∂0 + i∂1)(T00 − iT10) =

1

4
(∂0T00 + ∂1T10 + i∂1T00 − i∂0T10) = 0 (27)
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where in the last equality we used (26) and T µµ = 0. In the same way, one can show that
∂zTzz = 0.

What we found is that the two non-vanishing components of the energy-momentum
tensor are functions seperately of z and z, namely Tzz(z, z) ≡ T (z) and Tzz(z, z) ≡ T (z).
We call these kind of fields chiral and anti-chiral respectively. This property will be cru-
cial in the calculations when we proceed with quantization.

Let us now turn to general fields as we advertise them in the beginning of the section.
Fields are affected by a conformal transformation as they change according to some rep-
resentation of the conformal group. In physics, we usually demand that a physical field Φ
also belongs to an irreducible representation of the symmetry group3. The basic picture
in words is the following: given an infinitesimal conformal transformation parametrized
by ωg, we seek a matrix representation Rg such that a general multi-component field
Φ(z, z) change infinitesimally as:

Φ′(z′, z′) = (1− iωgRg)Φ(z, z) (28)

In order to consider the actual change in Φ we should compare Φ′ and Φ in the same
spacetime point. Hence we also need the infinitesimal expansion of z, z in terms of z′, z′

and then, Rg together wth the spacetime part is just a representation of the abstract
generators of the conformal group. Therefore, they must also form a matrix represen-
tation of the corresponding algebra and this requirement is actually enough to specify
them. Then, one can proceed and derive the change in Φ under a finite conformal
transformation by exponentiation.

Without delving into the details4, let us state here the field classification on S2

under conformal transformations. First, we should introduce the notion of conformal
dimension: if a field Φ(z, z) transforms under finite dilations z → λz according to:

Φ′(λz, λz) = λ−hλ
−h

Φ(z, z)

then it is said to have conformal dimensions (h, h)5.
Now we proceed to the notion of a primary field : If a field transforms under finite

conformal transformations z → f(z) according to:

Φ′(f(z), f(z)) = (
∂f

∂z
)−h(

∂f

∂z
)−hΦ(z, z) (29)

it is called primary field fo conformal dimension (h, h). We will soon realize that primary
fields are the basic buildings blocks of the representations of the conformal algebra.
For later use, let us also figure out how a primary field transforms under infinitesimal
conformal transformations. Consider the map f(z) = z + ε(z) where ε << 1. Then:

(
∂f

∂z
)−h = 1− h∂zε(z) +O(ε2)

Φ(z + ε(z), z) = Φ(z) + ε(z)∂zΦ(z, z) +O(ε2)
(30)

3for example in usual quantum field theory we classify the fields according to irreducible represen-
tations of the Poincaré group, labeled by the spin and the mass.

4for an extensive discussion of conformal representations see [2].
5as one might expect, h and h are actually a linear combination of the eigenvalue of the representation

matrix of the dilation operator, denoted by ∆, and the planar spin s : h = 1
2 (∆ + s) and h = 1

2 (∆− s).
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Using these two expressions we obtain the infinitesimal actual change of a primary field:

δε,εΦ(z, z) ≡ Φ′(z, z)− Φ(z, z) = −(hΦ∂zε+ ε∂zΦ)− (hΦ∂zε+ ε∂zΦ) (31)

Sometimes, it can be the case that the transformation rule (29) holds only for f ∈
PSL(2,C), i.e for global conformal transformations. Then, the field Φ is called quasi-
primary. As we will see, an important example of a quasi-primary field is the energy-
momentum tensor. It is clear that a primary field is always a quasi-primary but the
reverse is not true in general. A field which is not a primary (hence neither quasi-
primary) is generally called secondary. For example, the derivative of a primary field of
conformal dimension h 6= 0 is a secondary field.

We should emphasize that, up to now, we are dealing with classical fields. When
we turn to the quantum aspect of the theory -where fields are promoted to operators-
we will actually see that there is a better classification of secondary fields/operators, as
descendants of a given primary.

Since we identified the conformal group and classified the field content, maybe we can
get a first flavor of how quantum correlation functions look like. Correlation functions
can in principle be obtained in the path integral formalism where insertions are just
’classical’ (commuting or anti-commuting) fields.

Consider a CFT involving a collection of fields Φ with an action S[Φ] invariant under
conformal transformations. A general correlation function has the familiar form:

〈Φ(x1)Φ(x2)...Φ(xn)〉 =
1

Z

∫
DΦ Φ(x1)Φ(x2)...Φ(xn)e−S[Φ] (32)

where Z is the vacuum-to-vacuum correlation function (i.e. the partition function), and
we denote collectively zn, zn ≡ xn for ease.

If we make a conformal transformation x1, x2..xn → x′1, x
′
2..x

′
n then, from (32):

〈Φ(x′1)Φ(x′2)...Φ(x′n)〉 =
1

Z

∫
DΦΦ(x′1)Φ(x′2)...Φ(x′n)e−S[Φ]

=
1

Z

∫
DΦ′Φ′(x′1)Φ′(x′2)...Φ′(x′n)e−S[Φ′]

=
1

Z

∫
DΦF (Φ(x′1))F (Φ(x′2))...F (Φ(x′n))e−S[Φ]

= 〈F (Φ(x′1))F (Φ(x′2))...F (Φ(x′n))〉

(33)

where F (Φ(x′n)) describes the functional change of the field. Now for a primary field,
(29) implies:

〈Φ(w1, w1)Φ(w2, w2)...Φ(wn, wn)〉 =
n∏
i=1

(
dw

dz

)−hi
w=wi

(
dw

dz

)−hi
w=wi

〈Φ(z1, z1)Φ(z2, z2)...Φ(zn, zn)〉

(34)
under a conformal map z → w(z).

Covariance of the correlation function under the global transformations, i.e. trans-
lations, rotations, scalings and special conformal transformations, is enough to specify
exactly the form of the two and three point function, and fix the four point function up
to a conformally invariant function.
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Using (34) we get:

2-point function:

〈Φ1(z1, z1)Φ2(z2, z2)〉 =
d12

(z1 − z2)2h(z1 − z2)2h
δh1h2δh1h2

(35)

where d12 is just a constant which can always be absorbed in the normalization of the
fields, and h ≡ h1 = h2, h ≡ h1 = h2. An interesting fact is that two-point functions
vanish for fields with different conformal dimensions, indicating how constraining con-
formal symmetry is.

3-point function:

〈Φ1(z1, z1)Φ2(z2, z2)Φ3(z3, z3)〉 = C123
1

(z1 − z2)h1+h2−h3(z2 − z3)h2+h3−h1(z1 − z3)h3+h1−h2
×

1

(z1 − z2)h1+h2−h3(z2 − z3)h2+h3−h1(z1 − z3)h3+h1−h2

(36)

In contrast to the situation in the two-point function, the coefficients C123 are in prin-
ciple there and cannot be absorbed by some redefinition.These coefficients are actually
dynamical data of a specific CFT, as we will see next, together with the set of conformal
dimensions h, h determine completely a CFT on S2!

As far as the four-point functions (and beyond) conformal invariance does not fix their
precise form. With four points on S2 it is possible to construct conformally invariant
expressions, the so called anharmonic ratios. In particular:

η ≡ z12z34

z13z24

, 1− η =
z14z23

z13z24

,
η

1− η
=
z12z34

z14z23

(37)

The four-point function may then depend on η and η in an arbitrary way G(η, η), pro-
vided the result is real.

4-point function:

〈Φ1(z1, z1)Φ2(z2, z2)Φ3(z3, z3)Φ4(z4, z4)〉 = G(η, η)
4∏
i≤j

z
h/3−hi−hj
ij z

h/3−hi−hj
ij (38)

where h =
∑4

i=1 hi and h =
∑4

i=1 hi. One important thing to notice here is that, it is
always possible to find a global confromal transformation that maps three of the four
points to three fixed points, e.g. 0,1 and ∞6. Hence, a generic four-point function will
depend in principle only on one spacetime point (z, z).

The expression for the four-point amplitude and all the implications that arise from
conformal invariance on (38) will be extremely important for our purposes. As we will
see later, the function G(η, η) can be decomposed into conformally covariant expressions
known as conformal blocks, which will in turn lead us to the powerful statement of cross-
ing symmetry of four-point functions on S2. Before we delve into it though we need one
really powerful tool: the operator product expansion.

6indeed, PSL(2,C) involves three independent complex parameters as we pointed out in 2.2.1.
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1.2.3 Radial quantization

We now move to the quantum aspects of a conformal field theory. Our fields are going
to be promoted to operators in a specific way and a Hilbert space of quantum states will
be defined.

The operator formalism of quantum mechanics implies a choice of reference frame, in
the sense that one should choose a time axis in order to define quantum states in a fixed
time slice. We are always in a Euclidean two-dimensional flat space with coordinates x0

and x1. To make the choice of a time slice a little more natural, we can initially define
our theory on an infinite cylinder by compacitfying the Euclidean space direction x1 on
a circle of say unit radius. The CFT we obtain in this way will depend on the complex
coordinate:

w = x0 + ix1, where w ∼ w + 2πi (39)

where the identification is understood. Constant time slices are obviously circles S1 sur-
rounding the cylinder. Let us now perform a conformal change of variables by mapping
the cylinder (back) to the complex plane (or rather, the Riemann sphere) and identify
the slices. This mapping is achieved by:

z = ew = ex
0 · eix1

(40)

and is illustrated in Figure1.2(a) below.

Figure1.2(a) The conformal map of the cylinder to the complex plane

We should emphasize that our theory is covariant after the change, since the coordinate
mapping is itself conformal. For this reason, the upcoming consequences of this mapping
(state-operator correspondence) are true only for conformal field theories.

On the complex plane the infinite past t → −∞ is located at the origin z = 0,
whereas future infinity t→∞ lies on the point at infinity on the Riemann sphere. Time
translations on the cylinder x0 → x0 + a now become complex dilations z → eaz, and
space translations x1 → x1 + b become rotations z → eibz. In addition to that, surfaces
of constant x0 are mapped to |z| = const., which means that integrals over space

∫
dx1

get transformed into closed contour integrals, which is a very powerful calculational tool
as we will see next.

The next step is to put our fields on the game. The quantization is achieved first
by expanding in Laurent modes and then promoting these modes into operators. Let’s
consider a field Φ(z, z) of conformal dimensions (h, h) for which we can perform a Laurent
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expansion around z0 = z0 = 0:

Φ(z, z) =
∑
n,m∈Z

z
−n−h

z
−m−h

φn,m

φn,m = (
1

2πi
)2

∮
dz

∮
dz z

n+h−1

z
m+h−1

Φ(z, z)

(41)

We can deduce the action of hermitian conjugation on the Laurent modes from this
expression. (41) yields:

Φ(z, z)† =
∑
n,m∈Z

z
−n−h

z
−m−h

φ†n,m (42)

But under scalings Φ† behaves as:

Φ(z, z)† = z−2hz−2hΦ(1/z, 1/z) (43)

The last two equations are compatible provided

φ†n,m = φ−n,−m (44)

Having obtained the necessary ingredients, let us now proceed by defining our first
quantum states. We first assume the existence of a vacuum |0〉 upon which a Hilbert
space is built by application of (appropriately defined) ’creation’ operators, as we know
from quantum field theory. We also assume that it’s inherently invariant under global
conformal transformations, i.e. it’s annihilated by l0, l−1, l1 (and their anti-holomorphic
counterparts). In free theories, the vacuum may be defined as the state annihilated by
the ’positive’ frequency part of the field. For interacting ones, the basic assumption is
that the interaction is turned off as t → ±∞ and this helps us to define in and out
states:

Φin ∼ lim
t→−∞

Φ(x, t)

Φout ∼ lim
t→+∞

Φ(x, t)
(45)

Upon radial quantization, the asymptotic in field reduces to a single operator, which,
when acting on the vacuum, creates a single asymptotic in state:

|Φin〉 ≡ lim
z,z→0

Φ(z, z) |0〉 (46)

The infinite past t → −∞ is at the point z, z → 0 as we pointed out earlier. However,
in order for Eq.(46) to be non-singular there, we should require:

φn,m |0〉 = 0 for n > −h, m > −h (47)

from the expansion (41). We can say that this condition defines the vacuum at this
stage. Using this restriction together with the mode expansion (41), we can simplify
(46) by writting:

|Φin〉 = lim
z,z→0

Φ(z, z) |0〉 = φ−h,−h |0〉 (48)

12



Let’s find a similar relation for the out-state as well. Naturally, this is achieved by
using the hermitian conjugate field which reads:

〈Φout| ≡ lim
z,z→0

Φ†(z, z) = lim
w,w→∞

w2hw2h 〈0|Φ(w,w) (49)

where we used (43) together with the change z ≡ 1/w and z ≡ 1/w. However, by the
same reasoning as before, in order for the asymptotic out-state to be well-defined, we
require:

〈0|φn,m = 0 for n < h, m < h (50)

We can now conclude, as in (48), that the definition of the out state is:

〈Φout| = lim
w,w→∞

w2hw2h 〈0|Φ(w,w) = 〈0|φ+h,+h (51)

There is actually one particularly important aspect of conformal field theories implied
by Eq.(48) and (51): a map between states and local operators. As we know from
Quantum Mechanics in general, states and local operators are quite different objects.
Local operators are defined in a specific point in spacetime, whereas states are supported
on an entire time slice. Hence it seems quite strange that there might be an isomoprhism
between them.

They key point is that the infinite past on the cylinder gets mapped to a single point
z = 0 in the plane. Given an initial state on the cylinder |Ψ〉 we can make a confor-
mal transformation that ’squashes’ it all to the origin on the plane! Thus it actually
corresponds to a local disturbance on the plane, which can in turn be interpreted as
the action of an operator at the origin(c.f.Eq.(48)). Then we may as well evolve that
initial state with the Hamiltonian, and obtain a well-defined final state on the plane.
It’s understood that the concept of state-operator map is only true in conformal field
theories where we can map the cylinder to the plane. It also holds in higher dimensions,
where R× Sd−1 can be mapped to the plane Rd.

Let us consistently conclude the discussion with the notion of radial ordering. As we
mentioned above, constant time slices in the complex plane are circles surrounding the
origin(c.f.Fig2.2(a)). Since we also have a first notion of operators acting on a Hilbert
space, we are soon going to implement correlation functions of these operators. However,
from quantum field theory we know that correlation functions are only defined as a
time ordered product. Therefore, the change of coordinates (40) dictates that the time
ordering now becomes a radial ordering. Any product of two operators A(z, z)B(w,w)
make sense only for |z| > |w|. To this end, we define the radial ordering of two operators
as:

R(A(z, z)B(w,w)) ≡

{
A(z, z)B(w,w) for |z| > |w|
B(w,w)A(z, z) for |w| > |z|

(52)

If the two fields are fermions, a minus sign is added in front of the second expression.
For what follows, it will be implicit that the product of two operators is already radially
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ordered, without writing the symbol R every time. Now, it turns out the the closed
contour integral of a radial ordering of two operators is of particular interest in the
calculations that will follow. It is actually the integral of the commutator of the two
fields. Let’s examine it here:

Consider two chiral fields A(z) and B(w). If we take the integral∮
C(w)

A(z)B(w) (53)

where the integration contour C(w) circles counterclockwise around w, then we can
split the contour into two fixed-time circles (Fig.1.2(b)) going in opposite directions.
Our integral is now seen to be just the commutator:

∮
C(w)

A(z)B(w) =

∮
|z|>|w|

dzA(z)B(w)−
∮
|w|>|z|

dzB(w)A(z) =

∮
dz[A(z), B(w)] (54)

we will see the importance of this calculation in the next section.

Figure1.2(b) Sum of contour integrals in equation (54).

1.2.4 The Operator Product Expansion and Virasoro algebra

In subsection 1.2.2 we studied the classical aspects of the energy-momentum tensor Tµν
on S2. We saw that T is traceless with its two non-vanishing components (in the (z, z)
coordinate system) being chiral fields. We now have the necessary machinery to treat
it as quantum operator and see what new knowledge we can gain.

Let us recall that, since the current jµ = Tµνε
ν is conserved (classically), the time

component of that current, when integrated over space, yields a conserved charge:

Q =

∫
dx1j0 =

1

2πi

∮
C

(dzT (z)ε(z) + dzT (z)ε(z)) (55)

In quantum field theory, this charge is an operator and generates symmetry transforma-
tions for an operator Φ as:

δΦ = [Q,Φ] (56)

where the commutator is evaluated at equal times. Knowing the form of Q,we can
evaluate the change of the field Φ under a conformal transformations:

δΦ ≡ δε,εΦ(w,w) =
1

2πi

∮
C

dz[T (z)ε(z),Φ(w,w)] +
1

2πi

∮
C

dz[T (z)ε(z)),Φ(w,w)] (57)
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which leads to:

δε,εΦ(w,w) =
1

2πi

∮
C

dzε(z)R(T (z),Φ(w,w)) + anti-chiral (58)

What happens if the field Φ is a primary field of conformal dimension h? We have already
computed the infinitesimal change of a primary field under conformal transformations
back in subsection 1.2.2. We repeat it here for convenience:

δε,εΦ(w,w) = −(hΦ∂wε+ ε∂wΦ)− anti-chiral (59)

Comparing with (58), we can deduce a non-trivial relation for the radial ordering of
the energy-momentum tensor and a primary field! In particular, if we use the following
identities:

hΦ(w,w)∂wε(w) =
1

2πi

∮
C(w)

dz h
ε(z)

(z − w)2
Φ(w,w)

ε(w)∂wΦ(w,w) =
1

2πi

∮
C(w)

dz
ε(z)

z − w
∂wΦ(w,w)

(60)

we obtain:

R(T (z),Φ(w,w)) = − h

(z − w)2
Φ(w,w)− 1

z − w
∂wΦ(w,w) + ... (61)

where the ellipsis denotes non-singular terms as z → w in principle. An expression like
(61) is of great significance in a CFT and in quantum field theory in general, and it’s
called an Operator Product Expansion. It basically defines an algebraic product structure
on the space of quantum fields. We emphasize once again how important and powerful
complex analysis in all these results is.

The idea of Operator Product Expansion(OPE) is known to hold in quantum field
theories in general. Any product of two operators, evaluated inside a correlation function
at two distinct points, say z and w, can be approximated by a sum of local operators
with some c-number coefficient functions (possibly diverging) as z → w:

Oi(z, z)Oj(w,w) ∼
∑
k

ckij(z − w, z − w)Ok(w,w) (62)

In a CFT, we can proceed more and write it in a conformally covariant fashion. For two
primary fields Oi,Oj one can argue that[13]:

Oi(z, z)Oj(w,w) =
∑

k primary

Ck
ij λk(z − w, z − w, ∂, ∂)Ok(w,w) (63)

where Ck
ij are known as OPE coefficients, and λk’s are functions of derivatives and

positions which are completely fixed by conformal symmetry. The expansion in (63) is
actually an exact statement in CFT (and not just some representation when z → w) as
it was nicely shown in [14]. For the purposes of this thesis, we will not focus too much
on the explicit form of λk’s, but instead on the values of the OPE coefficients. One
important fact about these coefficients is that they are basically equal to the constant
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terms in the three-point function of primary operators (c.f. (36))7. One can see this by
demanding consistency of (63) with the two and three-point amplitudes we obtained back
in 1.2.2. Hence, determining these coefficients for a given CFT amounts to specifying true
dynamical data for the theory. We will reutn to the importance of the OPE coefficients
in subsections 1.2.6 and 1.2.7 .

Let us next investigate what is the OPE of the energy-momentum tensor with itself.
First, one can easily see that the conformal dimensions (h, h) of the energy momentum
tensor T (z) are (2, 0) (from its definition as the variation of the action with respect to
the metric,and then performing a scaling transformation). Similarly, T has dimensions
(0,2). In the spirit of (61) then, the TT OPE should be:

T (z)T (w) = ...+
2T (w)

(z − w)2
+
∂T (w)

z − w
+ (non-singular terms) (64)

and similarly for T (z)T (w). The ellipsis on the RHS denotes other possible operators
which should in principle be of the form:

On

(z − w)n
(65)

where h[On] = 4 − n. However, in a unitary CFT there are no operators with h, h < 0
(we will show it in the next subsection). The only allowed contributions should come
from an operator proportional to the identity and an operator of dimension 1. It turns
out that the most singular term we can have is coming solely form a term (z − w)−4

proportional to the identity8:

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ (non-singular terms)

T (z)T (w) =
c̃/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ (non-singular terms)

(66)

The constants c, c are called the central charges of the theory and they play a very
important role in characterizing a tow-dimensional CFT. We will understand this point
soon. For now, they constitute just the constant piece in the most singular term of TT
OPE9. Another conclusion that can be drawn from (66) is that Tµν is not a primary
operator. Indeed, by comparing the OPE (66) with (61), we see that for non-vanishing
central charges, T (z) is generically not a primary. One can actually determine how T
transforms under conformal transformations using appropriate Ward identities [1]. We
will just state the answer here, which is:

T (z) =
(∂f
∂z

)2
T (f(z)) +

c

12
S(f(z), z) (67)

where S(w, z) denotes the so-called Schwarzian derivative defined as S(w, z) ≡ 1
(∂zw)2

(
(∂zw)(∂3

zw)−
3
2
(∂2
zw)2

)
. We are going to need this transformation rule in later considerations.

7they are actually related with the three-point function constants via the normalization of the two-
point functions as: Cijk = Clijdlk. See for example [12].

8one can show that a term of the form (z−w)−3 is not compatible with the associativity of the OPE
T (z)T (w) = T (w)T (z) inside a correlation function.

9the factor of 1/2 is a convenient normalization.
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One important question that we haven’t asked so far is how the conformal generators
act on the Hilbert space of the quantum theory. In section 1.2.1 we understood the
infinite Witt algebra of conformal transformations, but this was the algebra acting on
the space of functions(classical fields). In order to find the quantum algebra we need to
understand the commutation relations of the modes of T, which are now promoted to
operators. It’s at this very point where the OPE (66) will be crucial.

Let us perform a Laurent expansion of T in the following way:

T (z) =
∑
n∈Z

z−n−2Ln where: Ln =
1

2πi

∮
dzzn+1T (z) (68)

If we use this expansion in the conserved charge (55), along with an conformal transfor-
mation ε(z) =

∑
n∈Z εnz

n+1, we find that:

Q ≡ Qε =
∑
n∈Z

εnLn (69)

The mode operators Ln (and Ln for the anti-chiral part) are the generators of the
local conformal transformations on the Hilbert space. Let’s compute their commutation
relation and see where it leads us:

[Ln, Lm] =

∮
dz

2πi

∮
dw

2πi
zn+1wm+1[T (z), T (w)]

=
1

(2πi)2

∮
C(0)

dwwm+1

∮
C(w)

dzzn+1

{
c/2

(z − w)4

+
2T (w)

(z − w)2
+

∂T (w)

(z − w)
+ non-sing

}

=
1

2πi

∮
C(0)

dwwm+1

{
1

12
c(n+ 1)n(n− 1)wn−2

+ 2(n+ 1)wnT (w) + wn+1∂T (w) + 0

}
=

1

12
cn(n2 − 1)δn+m,0 + 2(n+ 1)Lm+n

− 1

2πi

∮
dw(n+m+ 2)wn+m+1T (w)

= (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

(70)

This is the celebrated Virasoro Algebra. The quantum generators obey almost an identi-
cal algebra as the classical generators, except for a central term. If we perform analogous
calculations for T , we end up with the overall algebra:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[Ln, Lm] = 0

(71)
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We have to emphasize some important facts about (71) before we go on. First,
we notice that the holomorphic and anti-holomorphic components decouple. Therefore,
representations of the Virasoro algebra -which is our next goal- can be equivalently con-
structed for any part (holomorphic or anti-holomorphic) and, in the case of S2, one can
then construct general representations by merely taking the tensor product of the two
sectors10. Secondly, the commutation relations for L0, L−1, L1(and their corresponding
anti-holomorhic parts) are the same as the commutation relations of l0, l−1, l1. Hence,
it is still true that these are exactly the generators of the global PSL(2,C) transforma-
tions, i.e. L−1 generates translations, L0 generates dilations and L+1 generates special
conformal transformations. In the radial quantization framework in particular, the mo-
mentum operator is given by P = i(L0 − L0) and the Hamitonian by H = L0 + L0. In
a physical theory with conformal symmetry, we expect the eigenstates of H to fall into
representations of the conformal algebra. This will be the topic of the next section.

1.2.5 CFT Hilbert space

In section 1.2.3 we built our first quantum states based on the knowledge of in and
out states from usual quantum field theories. The Φ field we considered was a general
field, with the only assumption that admits an expansion in Laurent modes. Let’s now
examine what happens if our field is a primary field, and apply the technology of the
OPE.

The commutator of a Virasoro generator with a primary field Φ yields:

[Ln,Φ(w,w)] =
1

2πi

∮
w

dzzn+1T (z)Φ(w,w)

=
1

2πi

∮
w

dzzn+1

[
hΦ(w,w)

(z − w)2
+
∂Φ(w,w)

z − w
+ non-sing

]
= h(n+ 1)wnΦ(w,w) + wn+1∂Φ(w,w) (for n ≥ −1)

(72)

The anti-holomorphic counterpart of this relation is:

[Ln,Φ(w,w)] = h(n+ 1)wnΦ(w,w) + wn+1∂Φ(w,w) (for n ≥ −1) (73)

After applying the above relations to an asymptotic state
∣∣h, h〉 ≡ Φ(0, 0) |0〉 created by

the primary field, we get:

L0

∣∣h, h〉 = h
∣∣h, h〉 , L0

∣∣h, h〉 = h
∣∣h, h〉

Ln
∣∣h, h〉 = 0 , Ln

∣∣h, h〉 = 0 for n > 0
(74)

where the invariance of the vacuum under L0, L0 has been used. Thus the state
∣∣h, h〉 is

an eigenstate of the Hamiltonian and is annihilated by all the modes with n > 0. These
properties can serve as a definition for a primary state in the quantum theory.

Excited states above the the asymptotic state
∣∣h, h〉 can be constructed if we notice

that the generators L−n (m > 0) increase the conformal dimension of the state, by virtue
of the Virasoro algebra11:

[L0, L−m] = mL−m (75)

10we will examine more carefully this statement when we study conformal symmetry on a torus T2.
11from now on we focus only on the holomorphic sector; analogous results hold for the anti-

holomorphic part unless otherwise emphasized.
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This means that excited states may be obtained by successive applications of these
operators on the asymptotic state |h〉:

L−k1L−k2 ...L−kn |h〉 (1 ≤ k1... ≤ kn) (76)

The states (76) are eigenstates of the Hamiltonian and called descendants of the
primary state |h〉. Sometimes is common to say that they belong to the conformal
family of |h〉.Their eigenvalue is:

h′ = h+ k1 + k2 + ..+ kn ≡ h+N (77)

and the number of distinct,linearly independent states at level N is simply the number
of partitions p(N) of the integer N.

The subset of the full Hilbert space generated by the asymptotic (or highest-weight)
state |h〉 and its descendants is closed under the action of the Virasoro generators and
thus forms a representation (or a module) of the Virasoro algebra. This subspace is
called a Verma module, and the representations constructed in the above way are com-
monly refered to as highest weight representations.12

We are almost done in specifying a Hilbert space for a 2-dimensional CFT on S2.
We need also an inner product in order to define norms. It turns out we can construct it
quite easily from the knowledge we already have. The hermitian conjugate of a Virasoro
generator is: L†m = L−m. Hence, the inner product of two states

L−k1 ...L−km |h〉 and L−l1 ...L−ln |h〉 (78)

is simply
〈h|Lk1 ...LkmL−l1 ...L−ln |h〉 (79)

where the dual of a primary state is defined to satisfy: 〈h|Lm = 0 for m < 0. It is
worth noticing that the inner product of two states vanishes unless they belong to the
same level. One can proceed with the calculations here by passing the Lkm ’s over the
L−ln ’s using the Virasoro algebra. So two eigenstates of L0 having different eigenvalues
are orthogonal to each other. Hermiticity also renders h real.

Analogously, we can state similar arguments for the Verma modules of the anti-
holomorphic sector. Denoting by V (c, h) and V (h, c) the Verma modules generated
respectively by the sets Ln and Ln for a value c of the central charge and with highest
weigths h and h, we are now in a position to write down the structure of the Hilbert
space: it is the direct sum of tensor products V ⊗ V over all conformal dimensions of
the theory:

H = ⊕h,h V (c, h)⊗ V (h, c) (80)

We have to emphasize that the number of terms in the sum can be infinite or finite; we
can also have several terms with the same conformal dimension.

We have achieved our goal to construct a Hilbert space of quantum theory with
conformal symmetry on S2. Expression (80) is quite elegant. It tells us that the content

12this is reminiscent of the construction of su(2) spin algebra in Quantum Mechanics.
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of primary fields and their corresponding conformal dimensions constitute dynamical
data for a CFT. After knowing that, we can go ahead and construct the descendants
of each conformal family, take tensor product of the holomorphic and anti-holomorphic
sector and sum over distinct families. Furthermore, energy eigenstates merely fall into
representations of V ⊗ V .

One question we want to ask next is, what is the structure of the unitary represen-
tations of the Virasoro algebra. This will be the subject of the next section and, as we
will see, it will lead us to a particular set of CFTs called Minimal Models.

1.2.6 Minimal models: Part I

In order to build a generic unitary theory in quantum mechanics. we need to make sure
that a representation of states contains no negative-norm states. The necessary and
sufficient conditions for unitarity are found by considering the so-called Gram matrix of
inner products between all basis states.

For the Verma module, let’s denote as |i〉 a basis state. Then,

Mij = 〈i|j〉 (M † = M) (81)

is the Gram matrix. In a Verma module, states at different level are orthogonal to
each other, hence the Gram matrix is block diagonal, with blocks corresponding to a
particular level. We are going to focus only on the matrix elements of particular blocks
in what comes next.

Let’s now consider a generic state as a linear combination |a〉 =
∑

i ai |i〉. Its norm
is:

〈a|a〉 = a†Ma (82)

Since M is hermitian we can diagonalize it with a unitary matrix U : M = UM̃U †. If
also |b〉 = U |a〉, then we have:

〈a|a〉 =
∑
i

λi|bi|2 (83)

where λi are the diagonal elements of M̃ , i.e. the eigenvalues of the Gram matrix.
Therefore, it’s easy to see that there will be negative-norm states if and only if M

has one or more negative eigenvalues. Furthermore, in principle there will be states of
zero norm, let us call them null states from now on, if one of the eigenvalues λi vanishes.
The number of linearly independent null states is simply given by the number of roots of
the equation detM = 0. It turns out that, for the Virasoro representations, null states
generate an independent Verma module which is orthogonal to the parent one. The
importance of this ”orthogonality” will become clear later when we discuss the fusion
rules.

Let us make a first example and obtain some basic results. If we calculate the norm
of the n-level state L−n |h〉 inside the Verma module of some primary state |h〉 we get:

〈h|LnL−n |h〉 = 〈h|L−nLn + 2nL0 +
1

12
cn(n2 − 1) |h〉

=

[
2nh+

1

12
cn(n2 − 1)

]
〈h|h〉

(84)

where the Virasoro algebra is used. If we choose n = 1 then we have 〈h|L1L−1 |h〉 = 2h,
which means that only only primaries with h > 0 constitute a unitary theory. If we
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choose n sufficiently large, the term 1
12
cn3 will dominate in (84), which automatically

implies that the central charge is also positive in a unitary theory, c > 0. Soon, we are
going to find ourselves describing several conclusions about unitarity in an (h, c)-plane;
we now know that whatever lies outside the first quadrant of this plane leads to a non-
unitary theory, which is relatively a strong constraint.

A second good example includes states at level 2. Here we will see the role of null
states determined by the equation detM = 0. At level 2 there are two basis states we
can choose, namely L−2 |h〉 and L2

−1 |h〉. The Gram matrix reads:

M2(c, h) =

(
4h+ c

2
6h

6h 4h(2h+ 1)

)
(85)

and the determinant:

detM2(c, h) = 32h(h2 − 5

8
h+

1

8
hc+

1

16
c)

≡ 32
(
h− h1,1(c)

)(
h− h1,2(c)

)(
h− h2,1(c)

) (86)

wherein:
h(1,1) = 0

h(1,2) =
1

16
(5− c−

√
(1− c)(25− c))

h(2,1) =
1

16
(5− c+

√
(1− c)(25− c))

(87)

The notation will become clear in what follows. In summary, at level 2 we found three
non-trivial states of vanishing norm. V.Kač in 1978 found a very powerful formula for
the determinant of the Gram matrix at arbitrary level N:

detMN(c, h) = αN
∏

p,q≤N,pq≥1

(
h− hp,q(c)

)P (N−pq)

(88)

with

hp,q(c) ≡
(
(m+ 1)p−mq

)2 − 1

4m(m+ 1)
, m ≡ −1

2
± 1

2

√
25− c
1− c

(89)

αN a positive constant independent of c and h, and P (..) is the number of partitions of
its argument. Also we have to emphasize that m is in general complex for generic values
of c > 0.

In which sense can the Kac determinant be useful in the classification of the unitary
representations? So far, we have seen that the first quadrant of (h, c) plane is allowed.
But still, it will be constructive if we had some stronger constraints. Starring at (89),
we can see that hp,q(c) defines curves on that plane (Fig1.2(c)). These are the curves
indicating the null states. But how one can determine negative norm states -if any- in
that first quadrant? It turns out that there is indeed a way to do it systematically. We
will not go into the details of this proof here13, instead we will summarize the interesting
results that come up:

13we refer the reader to the usual reference [1].
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Figure1.2(c) Some of the curves hp,q(c) characterized by vanishing Kač determinant.
The various dots represent unitary representations.

c>1:
For h > 0 and c > 1 there are no zeros and all eigenvalues of MN are positive. Unitary
representations can exist for this range.

c=1:
In this case, one can show that the Kac determinant vanishes for h = n2

4
where n ∈ Z.

c<1:
For this region, it can be shown first that the points which do not lie on a curve hp,q(c)
(where detMN = 0) correspond to a non-unitary theory. In fact, only certain intersec-
tion points of these vanishing curves define a unitary theory with non-negative states.
The dots in Fig.1.2(c) indicate this discrete set of theories. We can even right down the
expression for the conformal dimensions of the operators of such theories:

c = 1− 6

m(m+ 1)
, m = 3, 4, ..

hp,q(m) =

(
(m+ 1)p−mq

)2 − 1

4m(m+ 1)
, 1 ≤ p ≤ m− 1 and 1 ≤ q ≤ m

(90)

One might notice that these expressions coincides with eq.(89) above. Indeed, the two
expressions are the same, except now m is an integer greater than 2, and q, p take values
in a different range; to each c there are only

(
m
2

)
allowed values of h.

We should emphasize at this point the power of conformal symmetry. By arguing
only with group theory arguments, without writing down any concrete conformal theory
model, we saw that one can obtain theories with finite number of primary fields at
a specific rational value of the central charge, c < 1. Their simplicity in principle
allows for a complete solution (i.e. specifying completely the dynamical data and hence,
the correlation functions) and strikingly, most of them can be identified with known
statistical models at criticality as we will see next. This class of theories deserve a name
and called Minimal Model CFTs. Determining and examining dynamical data of some
of these theories is basically the purpose of this thesis.

Before moving on and investigating further these theories, we should mention at this
point that unitarity is not a severe constraint. Indeed, as we will see with the example
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of the Lee-Yang model, it seems that the statistical models of so-called hard objects
(i.e., of bulky objects that cannot overlap, subject to simple short-ranged interactions)
always admit critical continuum descriptions with non-unitary conformal field theories.
Without going into much details again, it can be shown that this more general class of
minimal CFTs have central charges:

c = 1− 6(p− q)2

pq
, p, q ≥ 2 and rel.coprime

hr,s(p, q) =
(pr − qs)2 − (p− q)2

4pq
, 1 ≤ r ≤ q − 1 and 1 ≤ s ≤ p− 1

(91)

Note the obvious symmetry property: hr,s = hq−r,p−s. One should compare the general
expression (91) with (90). Whenever |p−q| = 1 one can parametrize the equations using
p ≡ m + 1 and q ≡ m for some m > 2, and in this way we recover the unitary models
in (90). In principle though, we can have generic values of p, q (always relative coprime
and > 2) with |p− q| 6= 1 which correspond to nonunitary minimal CFTs. It is common
to denote a minimal model associated with a pair (p, q) by M(p, q) and we will adopt
the convention p > q.

Of course, the above discussion is restricted to the holomorphic sector. The full
theory requires tensor products of holomorphic and anti-holomorphic sectors, as we
mentioned earlier. However, one has to be careful when combining the components of
a minimal model into tensor products as we will find out in the next section. For now,
a particularly simple solution is to associate to each holomorphic module, let’s call it
M(c, hr,s), the corresponding anti-holomorphic module M(c, hr,s). The Hilbert space of
the theory is then,

H = ⊕ 1≤r<q
1≤s<p

M(c, hr,s)⊗M(c, hr,s) (92)

The resulting theory is termed diagonal, since the two factors of each tensor product are
identical. We will soon explore what a non-diagonal minimal model is.

Let’s now try to understand further the impact of the existence of null states in the
minimal models. As we will see, there are severe restrictions on the form of OPE between
primary fields as well. This is quite remarkable because, not only have we achieved a
restriction in the allowed operator dimensions, we can also obtain non-trivial information
on the other piece of dynamical data of a CFT, namely the OPE coefficients. We will
illustrate this point with the example of a null state at level 2.

A general state at level 2 can be written as a linear combination of L−2 |h〉 and
L2
−1 |h〉. If we assume it is null, then:(

L−2 + a L2
−1

)
|h〉 = 0 (93)

If we apply L1 we can fix the constant a:

0 = [L1, L−2] |h〉+ a [L1, L
2
−1] |h〉

= 3L−1 |h〉+ a
(
2L0L−1 + 2L−1L0

)
|h〉

=
(
3 + 2a(2h+ 1)

)
L−1 |h〉

⇒ a = − 3

2(2h+ 1)

(94)
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If we apply L2:

0 = [L2, L−2] |h〉+ a [L2, L
2
−1] |h〉

=
(
4L0 +

c

2

)
|h〉+ aL−1[L2, L−1] |h〉+ a[L2, L−1]L−1 |h〉

=
(
4h+

c

2
+ 6ah

)
|h〉

⇒ h =
1

16

(
5− c±

√
(c− 1)(c− 25)

)
(95)

which is exactly the dimension of the null primary state we obtained previously(c.f.(87)).
We reached the conclusion that at level 2 we have a descendant field of |h〉 which satisfies:(

L−2 −
3

2(2h+ 1)
L2
−1

)
|h〉 = 0 (96)

We would like to somehow use this result in the computation of correlation functions.
So let’s examine how descendant states define a descendant field. Consider, for instance,
the descendant L−n |h〉:

L−n |h〉 = L−nΦ(0) |0〉 =
1

2πi

∮
dzz1−nT (z)Φ(0) |0〉 = (L−nΦ)(0) |0〉 (97)

So the natural definition of the descendant field associated with the state L−n |h〉 is:

L̂−nΦ(w) ≡ 1

2πi

∮
w

dz
1

(z − w)n−1
T (z)Φ(w) (98)

From the OPE of T (z) with Φ(w) (c.f.(61)) we can determine the descendant fields for
the first values of n, e.g.

L̂0Φ(w) = hΦ(w) , L̂−1Φ(w) = ∂Φ(w) , ... (99)

The important take home message from the above expressions is that the physical
properties of these fields, i.e. their correlation functions, may be derived from those of
the ancestor primary field. Indeed, if we consider the correlator:

〈 (L−nΦ)(w)X 〉 (100)

where X = Φ1(w1)...Φn(wn) a string of primary fields hi, we can calculate it using (98)
and performing the contour integration appropriately. In particular, the contour circles
w only, excluding the positions wi of the other fields. The residue theorem may be
applied by reversing the contour and hence summing the contributions from the poles
at wi, with the help of the OPE of T with primaries:

〈(L−nΦ)(w)X〉 =
1

2πi

∮
w

dz(z − w)1−n 〈T (z)Φ(w)X〉

= − 1

2πi

∮
{wi}

dz(z − w)1−n
∑
i

{
1

z − wi
∂wi 〈Φ(w)X〉

}
+

hi
(z − wi)2

〈Φ(w)X〉

≡ L−n 〈Φ(w)X〉 (n ≥ 1)

(101)
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wherein the differential operator is:

L−n ≡
∑
i

{
(n− 1)hi
(wi − w)n

− 1

(wi − w)n−1
∂wi

}
(102)

The above result is quite important. If our descendant state is also null, then we get
constraints in the form of correlation functions! Let’s study the case of two and three-
point functions when our state is (96). The corresponding descendant field is:

L̂−2Φ(z)− 3

2(2h+ 1)
L̂2
−1Φ(z) (103)

and its correlation with any other primary field should vanish:

0 =
(
L−2 −

3

2(2h+ 1)
L2
−1

)
〈Φ(w)Φ1(w1)..ΦN(wN)〉

=

( N∑
i=1

( hi
(wi − w)2

− 1

wi − w
∂wi
)
− 3

2(2h+ 1)
∂2
w

)
〈Φ(w)Φ1(w1)..ΦN(wN)〉

(104)

Therefore, if we consider the example of a two-point function we obtain:

0 =

(
h

w1 − w
− 1

w1 − w
∂w1 −

3

2(2h+ 1)
∂2
w1

)
d

(w − w1)2h

=

(
h+ 2h− 3

2(2h+ 1)
2h(2h+ 1)

)
d

(w − w1)2h+2

(105)

which is trivially satisfied. However, for the three-point function:

〈Φ(w)Φ1(w1)Φ2(w2)〉 =
Chh1h2

(w − w1)h+h1+h2(w1 − w2)h1+h2−h(w − w2)h−h1+h2
(106)

we got a non-trivial constraint between the conformal dimensions of the primary fields
involved, which we didn’t know before! After using (104) one can obtain the following
constraint for the conformal weights {h, h1, h2}:

2(2h+ 1)(h+ 2h2 − h1) = 3(h− h1 + h2)(h− h1 + h2 + 1) (107)

If we solve this in terms of h2 for example, then:

h2 =
1

6
+
h

3
+ h1 ±

2

3

√
h2 + 3hh1 −

1

2
h+

3

2
h1 +

1

16
(108)

The expression (108) is very crucial. It highlights the fact that the OPE between
two primaries in a minimal model includes an explicit and finite number of operators.
Any OPE coefficient corresponding to an exchanged field that is not allowed is zero.

Let us apply (108) to the primary fields Φp,q of the minimal models with central
charges given by (90). If we choose h = h2,1 and h1 = hp,q, then the two solutions for
h2 are exactly: {hp−1,q, hp+1,q}. Therefore, at most two of the coefficients Chh1h2 will be
non-zero. It is common notation to write:[

h(2,1)

]
×
[
h(p,q)

]
=
[
h(p+1,q)

]
+
[
h(p−1,q)

]
(109)
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where this equation means that the OPE between a field in the conformal family of h(2,1)

and a field in the conformal family of h(p,q) involves only fields belonging to the conformal
families of of h(p+1,q) and h(p−1,q). More work is needed if one wants to determine the
precise value of the OPE coefficients. We are going to return on this issue when we
develop the notion of conformal blocks.

The above manipulations can be generalized to higher level null states. Without
going into the detailed derivation14, it turns out that the conformal families in a unitary
Minimal Model obey:

[
h(p1,q1)

]
×
[
h(p2,q2)

]
=

p1+p2−1∑
k=1+|p1−p2|
k+p1+p2 odd

q1+q2−1∑
l=1+|q1−q2|
l+q1+q2 odd

[
h(k,l)

]
(110)

These are the so-called fusion rules in unitary Minimal Models. The closed algebra that
is formed between the conformal families is highly non-trivial and basically highlights the
power of conformal symmetry in two dimensions with c < 1. One can actually obtain
explicit formulae for the OPE coefficients of the Minimal Models by using a specific
method called the Coulomb gas formalism, first developed in [15][16]. We are going to
illustrate this formalism in Appendix A as we’re going to use the results from there, to
numerically specify the OPE coefficients for the Ising and Tricritical Ising model later
on.

Concluding this section, we will introduce three physical theories which correspond
to two unitary and one non-unitary Minimal Models. The two unitary examples consti-
tute basically the main core of this thesis as later on, we will investigate their dynamical
data on a non-orientable surface as well.

The Lee-Yang model M(5, 2)

The Lee-Yang model or the Lee-Yang singularity occurs in an Ising model above its
critical temperature in an non-zero purely imaginary magnetic field ih. For h larger
than some critical value hc(T ) the partition function acquires zeros, which in the ther-
modynamic limit (N→∞) become ”dense”, in the sense that one can describe the free
energy of the system in terms of a well-defined density of that zeros15. The density
of these zeros near hc has a power law behaviour (h − hc)

σ (where σ is to be related
with the conformal dimension of a primary operator when we identify the model with
a rational CFT) . It turns out that the relevant Landau-Ginsburg theory that describes
the fluctuations of a scaling field Φ in an imaginary field close to h = ihc is:

LLY =
1

2
(∂µΦ)2 + i(h− hc)Φ + iγΦ3 (111)

The model is of course non-unitary, because of the imaginary magnetic field, which
translates into an imaginary coupling of the Landau-Ginsburg effective field theory.

As J.Cardy explained in his paper[3], the conformal theory that describes this model
is identified as the M(5, 2) non-unitary minimal theory with central charge c = −22/5
and operator content consisting merely of two primary fields:

14see ch.8 in [1].
15Interestingly, people have also speculated about a relationship between the Lee-Yang model and

the Riemann hypothesis which involves the non trivial zeros of the zeta function. See [Knauf Andreas,
Number theory, dynamical systems and statistical mechanics, Rev. Math. Phys., 11, 1027 (1999).
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Symbol Kac operator (h, h)
1 h1,1 = h1,4 (0, 0)
Φ h1,2 = h1,3 (−1

5
,−1

5
)

Table1.2(a): List of the operator content of the M(5, 2) theory which correspond to the physical
Lee-Yang model.

The single fusion rule is:

Φ× Φ = 1 + Φ (112)

The Ising model M(4, 3)

The first non-trivial unitary minimal model is theM(4, 3) and, strikingly, it describes
the critical Ising model in two-dimensions. The Ising model consists of a square lattice
with spin variables at each site taking values ±1. With a nearest neighbour interaction
the theory has a conformally invariant critical point where it’s described by three local
primary operators, namely the identity, the spin operator, and the energy density:

Symbol Kac operator (h, h)
1 h1,1 = h2,3 (0, 0)
σ h1,2 = h2,2 ( 1

16
, 1

16
)

ε h1,3 = h2,1 (1
2
, 1

2
)

Table1.2(b): List of the operator content of the M(4, 3) theory which correspond to the critical Ising
model.

The fusion rules are:

σ × σ = 1 + ε

σ × ε = σ

ε× ε = 1

(113)

The Tricritical Ising model M(5, 4)

This conformal field theory has a statistical interpretation as a simple generalization
of the Ising model, where we now allow the spin variable to take values {0,±1}. This
adds to the model a chemical potential associated to the fractional occupation number.
This new parameter modifies the structure of the phase diagram, so that there is now a
tricritical point where three phases meet: paramagnetic, ferromagnetic and a two-phase
region. This tricritical Ising model now has six primary operators, corresponding to the
identity, three energy operators and two spin like operators16:

Symbol Kac operator (h, h)
1 h1,1 = h3,4 (0, 0)
ε h1,2 = h3,3 ( 1

10
, 1

10
)

ε′ h1,3 = h3,2 (3
5
, 3

5
)

ε′′ h1,4 = h3,1 (3
2
, 3

2
)

σ h2,2 = h2,3 ( 3
80
, 3

80
)

σ′ h2,4 = h2,1 ( 7
16
, 7

16
)

16the Tricritical Ising model is also the unique minimal model endowed with supersymmetry, but we
are not going need this feature in our analysis.
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Table1.2(c): List of the operator content of the M(5, 4) theory which correspond to the Tricritical
Ising model.

The fusion rules read:

ε× ε = 1 + ε′

ε× ε′ = ε+ ε′′

ε× ε′′ = ε′

ε′ × ε′ = 1 + ε′

ε′ × ε′′ = ε

ε′′ × ε′′ = 1

ε× σ = σ + σ′

ε× σ′ = σ

ε′ × σ = σ + σ′

ε′ × σ′ = σ

ε′′ × σ = σ

ε′′ × σ′ = σ′

σ × σ = 1 + ε+ ε′ + ε′′

σ × σ′ = ε+ ε′

σ′ × σ′ = 1 + ε′′

(114)

One basic characteristic that Ising and Tricritical Ising model share is that they are
the unique CFTs, within the unitary minimal model classification, with non-trivial op-
erator dimensions satisfying h > c/2417. Theories with that feature are usually termed
Extremal CFTs [4] and, as we will explore soon, they are really important in the context
of three-dimensional gravity.

1.2.7 Crossing symmetry and Conformal Bootstrap

In the previous section we explored the power of conformal symmetry in two dimensions
when one wants to impose unitarity for the representations of the Virasoro algebra. In
particular, we saw that in some cases (c ≤ 1) one is able to constraint very strongly
the dynamical data of a CFT on S2, namely the spectrum of primary operators and
the OPE coefficients (c.f. fusion rules). In the present section we will study further
generic constraints on these data arising purely from conformal symmetry. This is the
basic strategy of the so-called conformal bootstrap program -which was initiated in two
dimensions by A.Belavin, A.Polyakov and A.Zamolodchikov in [5], and then in higher
dimensions by R.Ratazzi, S.Rychkov, E.Tonni and A.Vichi [6]: the approach to solve
and classify all CFTs by imposing a set of consistency conditions that constrain the
allowed conformal dimensions and OPE coefficients.

In a two-dimensional CFT defined on a closed orientable Riemann surface, the basic
statement of the consistency of the theory is summarized elegantly in two sufficient
conditions [7],[8]: (a) crossing symmetry of the four-point functions on S2, and (b)

17moreover, as we will see, these two theories have a unique diagonal partition function, in contrast
with the rest minimal models.

28



modular covariance of the one-point functions on the torus T 2. We will expand on the
former here.

Let’s start with a generic four-point function on S2:

〈Φ1(z1, z1)Φ2(z2, z2)Φ3(z3, z3)Φ4(z4, z4)〉 (115)

We have seen (c.f. (38)) that such a function depends continuously on the anharmonic
cross ratio η ≡ z12z34

z13z24
. Global conformal symmetry further allows us to put z1 = ∞,

z2 = 1, z4 = 0 and z3 = z. The conformally invariant cross ratio becomes η = z and the
above correlation function may be related to a matrix element between two asymptotic
states of a two-field product:

lim
z1,z1→∞

z2h1
1 z2h1

1 〈Φ1(z1, z1)Φ2(1, 1)Φ3(z, z)Φ4(0, 0)〉 ≡ G(z, z) (116)

Now one can actually evaluate (115) in several different ways:

1) We can use the OPE between Φ1 and Φ2 and then between Φ3 and Φ4. The am-
plitude, then, can be expressed as:

G(z, z) =
∑
p

Cp
12C

p
34F34

12 (p; z)F34

12(p; z) (117)

where Cp
12, C

p
34 are the relevant OPE coefficients and the contributions of the primary

field Φp are factorized into a holomorphic and anti-holomorphic piece. The expressions
F34

12 (p; z) are called Virasoro conformal blocks. They depend only on the conformal
dimensions of the primary fields involved, on the central charge of the theory and, in
principle, they are completely fixed by conformal symmetry.

A handful closed expression for a generic F is not known yet, although people have
tried to extract some useful expressions [9],[10]. In the case of minimal models, Vira-
soro conformal blocks obey ordinary differential equations, and in the simplest examples
are just hypergeometric functions[5]. There are also some exact interesting results of
the blocks at large central charge [5],[9]. In general though, aside from these examples,
one simple way we can start doing progress is by expanding the blocks in power series
of the cross ratio z, and use conformal symmetry to calculate the different coefficients[11].

2) One can evaluate the four-point function alternatively by first using the OPE be-
tween Φ2 and Φ3 and between Φ1 and Φ4. Effectively, this means exchanging Φ2 with
Φ4 in the previous result, and which on the level of cross ratios is achieved by z → 1−z.
The resulting four-point amplitude is expressed as:

G(z, z) =
∑
p

Cp
14C

p
23F23

14 (p; 1− z)F23

14(p; 1− z) (118)

3) Similarly, we can first evaluate the OPE Φ2Φ4 which leads, in turn, to the following
form for the amplitude:

G(z, z) = z−2h2z−2h2

∑
p

Cp
13C

p
24F24

13 (p;
1

z
)F24

13(p;
1

z
) (119)

The three above channels of the four-point amplitude are commonly called s-channel,
t-channel and u-channel respectively. Ordering of fields within correlators does not
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change the correlation function (except for signs when dealing with fermions); this means
that expressions (117),(118),(119) are equal with each other. These equalities provide
the set of consistency conditions that we were looking for. These so-called crossing
symmetry conditions are depicted below in Fig.1.2(d)

Figure1.2(d): The statement of crossing symmetry between the s and t-channel of the four-point
function in diagrammatic language.

Assuming that the conformal blocks are known for arbitrary values of the conformal
dimensions, these equalities in principle allow us to determine the coefficients Ck

ij and
the conformal dimensions hp. Indeed, if we assume the presence of N conformal families
in the theory, the above relation yields, through naive counting, N4 constraints on the
N3 +N parameters Ck

ij and hp, hence not only we can solve the theory completely but
we also can classify the ”allowed” CFTs among a vast set of theories that one can write
down.

Before concluding the discussion for a CFT on S2, we will discuss an important
aspect of conformal blocks in minimal model CFTs, which will be important for our
future calculations. In a minimal model CFT there are only a finite number of conformal
families which can ”propagate” in the OPE between two primaries. This means that
the conformal blocks for the three distinct channels form a finite dimensional vector
space. The crossing symmetry then suggests that the different classes of conformal
blocks are nothing else than three different choices of basis which must be related by
linear transformations. Indeed, the relation between s-channel and t-channel conformal
blocks can be written as:

Fklij (p; z) =
∑
q

M

[
i l
j k

]
p,q

F iljk(q; 1− z) (120)

and to clarify the notation is useful to present a graph:

Figure1.2.(e): Diagrammatic illustration of the fusing matrices relating s and t-channels of conformal
blocks.
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The matrices M

[
i l
j k

]
r,s

are called the fusing or duality matrices and depend on the

external fusing operators. Notice that (p, q) indices denote the p-primary and q-primary
exchanged in the s and t channel respectively. We can also define the so called braiding
matrices B, which relate the s-channel with u-channel:

Fklij (p; z) =
∑
q

B

[
j k
i l

]
p,q

F jlik(q;
1

z
) (121)

and graphically:

Figure1.2.(f): Diagrammatic illustration of the braiding matrices relating s and u-channels of
conformal blocks.

Crucial for the purposes of this thesis are going to the fusing matrices M for the
Minimal Models, as we will see later on. Closed expressions for these matrices were
obtained in [15],[16] in the framework of Coulomb gas formalism and we are going to
review the related formulas in Appendix A.

Let us finally mention that the braiding and fusing matrices satisfy two non-trivial
identities. The fusing matrices satisfy the so called pentagon identity and the braiding
matrices the so called hexagon identity :

M

[
j k
i s

]
r,t

M

[
t l
i m

]
s,u

=
∑
p

M

[
k l
r m

]
s,p

M

[
j p
i m

]
r,u

M

[
j k
u l

]
p,t

∑
p

B

[
j k
i s

]
r,p

B

[
j l
p m

]
s,t

B

[
k l
i t

]
p,u

=
∑
q

B

[
k l
r m

]
s,q

B

[
j l
i q

]
r,u

B

[
j k
u m

]
q,t

(122)

These relations are basically derived by considering a five-point function and successively
applying the fusing and braiding operations, respectively [12].
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1.3 CFT on T2

In this section we will sketch the general properties of a two-dimensional conformal field
theory defined on a genus one surface, namely the torus T2. The goal of this section is
two-fold. First, we want to illustrate the general properties of a CFT on the next simple
example of orientable (Riemann) surface, other than S2. In fact, the construction we
are going to implement in this section is also going to be useful later in defining CFTs
on non-orientable surfaces. Secondly, the concept of modular invariance (or covariance
in general), which is introduced specifically for the study of functions on a torus, is the
second sufficient condition one needs to impose in a 2d CFT, in order to ensure higher
point crossing symmetry and higher genus modular invariance[7][8], thus it is certainly
very crucial to understand it.

1.3.1 Modular invariance and Partition function

We already know how conformal transformations act on the plane, as holomorphic or
antiholomorphic coordinate changes. Now we want to examine conformal symmetry
on the torus T2. All of the usual conformal transformations z → z + ε(z) are still
symmetries, but it turns out that there are also new, large conformal transformations,
which cannot be continuously connected to the identity as we will find out.

In the previous section we defined a CFT on S2 = C ∪ ∞ from the theory defined
on a cylinder via the mapping:

z = ew = ex
0

eix
1

(123)

where z is the coordinate on C and w = x0 + ix1 the coordinate on the cylinder. In
this way, we were able to develop the concept of radial quantization and we introduced
radial ordering for the evaluation of correlation functions as well as for operator product
expansion. Our goal now is to define a theory on T2. A torus is obtained by cutting out
a finite piece from the infinite cylinder and identifying the ends so that not only space
coordinate but also time coordinate becomes finite.

It is actually useful to formalize this compactification from the point of view of a
plane. We notice that a torus can be defined by identifying points w in the complex
plane C as18:

w ∼ w +mα1 + nα2, m, n ∈ Z (124)

Figure1.3(a): Lattice of a torus generated by the complex vectors (α1, α2) as obtained from the plane.
The shades region indicates the fundamental domain of the torus.

18note that the plane we are considering now is not the one defined from an exponential map from
a cylinder. It is just a plane helping us to define the periodic identifications. From the plane, one can
also start to define the cylinder (though we only identify one direction). This is eventually the reason
why we use again the notation w for coordinates on this plane.
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where (α1, α2) is a pair of complex numbers which spans the lattice whose smallest cell is
called the fundamental domain of the torus. One should pay attention to the orientation
of these vectors (before gluing together the ends of the cylinder we could have twisted
them, for example). The quantity that describes the shape of the torus is actually the
ratio of α1 and α2 and is called the modular parameter of the torus:

τ ≡ α1

α2

= τ1 + iτ2 (125)

If there is another pair of complex numbers, say (β1, β2) which is related with (α1, α2)
via integer multiples:

b1 = a α1 + b α2

b2 = c α1 + d α2 with a, b, c, d ∈ Z
(126)

then this pair is clearly describing the same fundamental domain of the torus, and hence
the torus itself. We can compactly write the above statement as:(

β1

β2

)
=

(
a b
c d

)(
α1

α2

)
a, b, c, d ∈ Z (127)

In general, for the inverse of this matrix to also have integer entries, we have to require
that ad−bc = ±1 which just means that the unit cell in each basis should have the same
volume (up to a sign, which from now on we choose it to be 1). Furthermore, we notice
that the lattice spanned by (α1, α2) is equivalent to the one spanned by (−α1,−α2),
hence we can identify points related by a Z2 action.

We are led to consider the group of integer, invertible matrices with unit determinant
divided by a Z2 action. This is the so-called modular group SL(2,Z)/Z2 or PSL(2,Z)
and is the new infinite set of large conformal transformations which basically acts on the
modular parameter τ . The important point is that any physical quantity (correlation
functions, partition function etc.) defined on the torus should transform covariantly
under the action of the modular group. This fact is really crucial and powerful as we
will explore soon.

The action of PSL(2,Z) will keep τ in the upper half-plane, so this is where we’re
going to focus form now on and we call it H+. This action is in general rather compli-
cated. There is a domain though such that no pair of points within it can be reached
through a modular transformation, and any point outside it can be reached from a
unique point inside, by some modular transformation. This is the so called fundamental
domain H+/SL(2,Z) of the modular group (Fig.1.3(b)):

Figure1.3(b):The fundamental domain (shaded region) of inequivalent tori in the upper-half τ -plane.
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One last interesting thing to know for the modular group is its generators. Consider
the particular modular transformations:

T : τ → τ + 1, T =

(
1 0
1 1

)
S : τ → −1

τ
, S =

(
0 1
−1 0

) (128)

it can be shown that these two transformations generate the whole modular group,
namely, each modular transformation A may be reduced to successive applications of S
and T . In particular:

A = T n1ST n2S · · · ST nk (129)

where ni are integers.
Now let’s move to defining our physical quantities. We are going to start by studying

the partition function in this subsection. For conformal field theories this is essentially
the same object as in statistical mechanics where it is defined as a sum over all possible
configurations weighted by the Boltzmann factor exp(−βH). This quantity corresponds
to the generating functional or the vacuum to vacuum amplitude in a finite temperature
QFT where the time is compactified on a circle of radius R = β = 1/T .

For the case of the torus we can choose Rew to be the space direction and Imw
to be the time direction. Refering to Fig.1.3(a), on a torus with non-trivial modular
parameter τ = τ1 + iτ2, we see that a time translation of length τ2 does not end up
at the starting point but is displaced in space by a τ1. Therefore, a closed time circle
on a torus involves also a space translation. This observation motivating the following
definition of a CFT partition function19:

Z(τ1, τ2) = TrH
(
e−2πτ2He2πτ1P

)
(130)

where H is the Hamiltonian and P the momentum operator. The trace is taken over all
states in the Hilbert space H. Let us determine these operators from the theory on the
cylinder.

The ground state energy of the theory is calculated from the zero-zero component
of the energy-momentum tensor T00. But under conformal transformations T changes
as in (67), with an extra piece involving a Schwarzian derivative. For the map (123) we
obtain:

Tcyl.(w) =
(∂f
∂z

)2
T (f(w)) +

c

12
S(f(w), w) = z2T (z)− c

24
(131)

It is interesting to see how the modes of T transform:

Tcyl.(w) =
∑
n∈Z

Lnz
−n − c

24
=
∑
n∈Z

(
Ln −

c

24
δn,0
)
e−nw (132)

hence, for the zero mode in particular:(
Lcyl.

)
0
≡ L0 −

c

24
(133)

19note that we are always working in Euclidean signature.
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Similar results hold for the anti-holomorphic component of T . Now, having in mind
relation (25) for T in terms of complex coordinates, we get for the ground state:

E0 = 〈(Tcyl.)00〉 = 〈Tcyl.〉 +
〈
T cyl.

〉
= −c+ c

24
(134)

where we have assumed that the energy density 〈T (z)〉 vanishes on the plane. Since H
is the generator of time translations, we can write:

Hcyl. = − ∂

∂t
+ E0 = −(∂w + ∂w)− c+ c

24
=
(
Lcyl.

)
0

+
(
Lcyl.

)
0

(135)

using the fact that L0 = −z∂z = ∂w. Similarly for the momentum operator:

Pcyl. = i
((
Lcyl.

)
0
−
(
Lcyl.

)
0

)
(136)

With these observations in hand we can express the partition function (130) as:

Z(τ1, τ2) = TrH

(
e−2πτ2

((
Lcyl.

)
0
+
(
Lcyl.

)
0

)
e2πτ1

(
i
((
Lcyl.

)
0
−
(
Lcyl.

)
0

)))
= TrH

(
e2πiτ(Lcyl.)0e−2πiτ(Lcyl.)0

)
= TrH

(
qL0− c

24 qL0− c
24

)
where q ≡ e2πiτ

(137)

We have arrived at the final expression for the partition function of a CFT defined
on a torus with modular parameter τ . In general, the modular group is acting in a
non-obvious way on Z, but since modular transformations of τ do not change the torus
as we saw, the partition function should be invariant :

Z(τ, τ) = Z
(
aτ + b

cτ + d
,
aτ + b

cτ + d

)
(138)

This fact imposes very strong constraints on the dynamical data of a CFT. Probably
the most famous result in this context was derived by J.Cardy[17] in his seminal work
on the universal asymptotic density of states in a two-dimensional CFT. We will not
go into the details of this work here, however it’s worth mentioning the spirit of the
calculation. Modular invariance strikingly allows us to relate the partition function in
low and high temperatures; the reason is simply that temperature inversion β → 4π2/β
is nothing more than the action of a specific modular transformation -and in particular
S- in the modular parameter τ .

As we will discover soon, modular invariance allows us also to understand the com-
bination of the holomorphic and anti-holomorphic part of the theory. Remember that
so far, in the case of CFT on S2, we were studying the two sectors as being decoupled
from each other.

1.3.2 One-point function

In the light of the results of [7][8], it would be constructive to also study the one-point
functions on T2 to some extent. The analysis of these authors basically states that
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in a CFT, the crossing symmetry of four-point functions on the sphere and modular
covariance of one-point functions on the torus are the sufficient conditions one needs
to impose in order to ensure higher-point crossing symmetry and higher genus modular
invariance. So far we have have seen what crossing symmetry means. Let us now move
to the covariance of one-point functions on T2.

The torus one-point function of a primary operator O with conformal dimensions
(hO, hO) is defined as:

〈O〉τ = TrH

(
O qL0− c

24 qL0− c
24

)
=
∑
i

〈i|O |i〉 qhi−
c
24 qhi−

c
24

(139)

where in general we have expanded in a basis of states {|i〉} on the cylinder, with (hi, hi)
the corresponding conformal dimensions on the plane (i.e. L0 |i〉 = L0Oi |0〉 = hi |i〉 and
similarly for the anti-holomorphic part).

One first observation is that, by translation invariance, the one-point function (139)
depends only on τ and not on the specific location of the operator O on the torus. This
fact indicates that the coefficients 〈i|O |i〉 are also constants and basically equal to the
three-point function coefficient for the correlation function 〈OiOOi〉 on S2:

〈i|O |i〉 = 〈Oi(∞,∞)O(1, 1)Oi(0, 0)〉S2 , with Oi(∞,∞) = lim
z→∞

z2hiz2hiOi(z, z)

(140)
where Oi is the corresponding basis of (hermitian) operators which creates the state |i〉.

There is also another way we can expand the definition of the one-point function in
(139). Consider:

〈O〉τ = TrH

(
O qL0− c

24 qL0− c
24

)
=
∑
α

〈α|O |α〉 qhα−
c
24 qhα−

c
24F hO

hα,c
(q) F

hO
hα,c

(q)
(141)

where |α〉 are now a set of primary states of dimension (hα, hα). We see that the
contributions from the descendants of a given primary |α〉 factorize in the functions

F hO
hα,c

(q) and F
hO
hα,c

(q). These objects are called torus one-point function conformal blocks,
in analogy with the case of the conformal blocks of the four-point function on the sphere,
and they depend only on the dimensions (h0, h0) and (hα, hα) and the central charge c.
People have studied these blocks and it turns out they can be computed algorithmically
using the Virasoro algebra[18]. For example, we can expand F hO

hα,c
(q) in power series of

q -exactly as we could expand the conformal blocks in the cross ratio- and compute the
various coefficients basically by using the null vectors of the Virasoro algebra.

Let us finally study the covarinace of the one-point function under the action of the
modular group PSL(2,Z). If we make a modular transformation on τ :

τ → γτ ≡ aτ + b

cτ + d
(142)

then using the transformation law of a primary operator, along with the fact that ad−
bc = 1, we arrive at:

〈O〉γτ = (cτ + d)hO(cτ + d)hO 〈O〉τ (143)
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Mathematically, this transformation law indicates that the one-point function is a Maass
form of weight (hO, hO) meaning, roughly, that it falls into a category of objects which
have some nice transformation properties under the modular group but need not be
necessarily holomorphic (in contrast to the so-called modular forms).

It’s easy to see that in case where O is the identity operator, the above formula
reduces to the modular invariance of the partition function (138). As in the case of
the partition function, the covariance of the one-point function is crucial and imposes
further constraints on the dynamical data of the CFT. One such constraint was ob-
tained quite recently in [19], where the authors -using covariance under the S modu-
lar transformation- were able to derive a universal asymptotic formula for the average
value of light-heavy-heavy three point function coefficients (c.f. (140)), in analogy with
Cardy’s result about the universal asymptotic density of states that we mentioned ear-
lier. Results like Cardy’s and Kraus-Maloney’s formulas are important not only from
the CFT point of view, but also for quantum gravity in a three-dimensional spacetime
with negative cosmological constant, as we will explore in Chapter 3.

1.3.3 Minimal models: Part II

Let us now turn to the study of modular invariance in the context of minimal models and
see what new knowledge we can learn about the structure of these theories. We recall
that the Hilbert space of a minimal model with central charge c is a finite collection of
holomorphic and anti-holomorphic modules

H = ⊕h,h M(c, h)⊗M(h, c) (144)

The partition function (137) can be written as:

Z(τ, τ) = TrH

(
qL0− c

24 qL0− c
24

)
=
∑
h,h

Nh,h χh(τ)χh(τ) (145)

where Nh,h denotes the multiplicity of occurrence of M(c, h)⊗M(c, h) inside the Hilbert
space H. The χ’s contain the contribution to the partition function of a given primary
with dimensions (h, h) and called Virasoro characters of the corresponding Verma mod-
ule. Their holomorphic expression is 20:

χh(τ) ≡ Tr qL0−c/24

=
∑
n≥0

d(n)q(n+h)−c/24

= qh−c/24
∑
n≥0

p(n)qn

(146)

where in the first line the trace is taken over the corresponding Verma module, and in
the second line d(n) is the number of independent vectors at level n which is equal -as
we saw back in (77)- to p(n): the number of partitions of the integer n. The Virasoro
characters can be viewed, basically, as the analogous conformal blocks of the zero-point
correlation function on the torus or as the generating functions for the level degeneracy.

20the characters for the anti-holomorphic module are defined in the same manner.
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We can actually make a little more progress in the above formula if we notice that21:

∑
n≥0

p(n)qn =
∞∏
n=1

1

1− qn
(147)

then,

χh(τ) =
qh+(1−c)/24

η(τ)
, η(τ) ≡ q1/24

∞∏
n=1

(1− qn) (148)

The so-called Dedekind η function, as defined above, is a special modular function which
possesses some nice transformation properties under modular transformations. In par-
ticular, under the action of the generators S and T it transforms as:

η(τ + 1) = eπi/12η(τ)

η(−1

τ
) =
√
−iτη(τ)

We have to make an important remark at this point. The characters given by (148)
describe a reducible representation of a Verma module in general. The reason is of
course the existence of several null states which are naturally included within the trace
in (146). One may construct however an irreducible representation of the Virasoro
algebra by quotienting out the null states in a systematic way or, in other words, by
identifying states that differ by a state of zero norm. These irreducible representations
contain relatively ”fewer” states than the generic Verma module. For the case of unitary
minimal models, the expression of the irreducible characters χ(r,s)(τ) in the notation of
(91) is given by:

χ(r,s)(τ) =
q(1−c)/24

η(τ)

[
qhr,s +

∞∑
k=1

(−1)k{qhr+kq,(−1)ks+[1−(−1)k]p/2 + qhr,kp+(−1)ks+[1−(−1)k]p/2}
]

(149)

Although we are not going to delve into the details that lead this calculation22, this
result is going to be crucial for us in Chapter 3, where we discuss the quantum gravity
physics behind this construction. From now on, we consider our Hilbert space (144)
built out of these irreducible holomorphic/antiholomorphic modules.

We have managed to write the partition function in the form (145), where we know
the explicit τ -dependence for the characters χh. The next natural question to ask is how
these characters transform under the modular group PSL(2,Z), or more accurately, what
is their transformation under the generators S : τ → −1/τ and T : τ → τ + 1. Exactly
as the conformal blocks of the four-point function transform into linear combinations
of one another according to (120),(121), the Virasoro characters of different modules
transform into one another under the action of S and T . Organizing the characters into

21expanding the rhs in product of geometric series, it’s easy to see that the n-th order coefficient
captures exactly the number of ways we can write the integer n.

22see ch.8 in [1].
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a vector χµ, where µ = (r, s) denotes the Kac indices, the transformation rules are:

T : τ → τ + 1, χµ(τ + 1) =
∑
ν

Tµνχν(τ)

S : τ → −1/τ, χµ(−1/τ) =
∑
ν

Sµνχν(τ)
(150)

where in the case of the Minimal Models the representations Sµν and Tµν take a specific
form[1]:

Tµν = Trs;ρσ = δr,ρδs,σ exp
(
2πi(hr,s−c/24)

)
Sµν = Srs;ρσ = 2

√
2

pq
(−1)1+sρ+rσ sin

(
π
p

q
rρ
)

sin
(
π
q

p
sσ
) (151)

and (p, q) are the co-prime integers labeling the specific unitary minimal model as in
(91), namely p > q > 2 and 1 ≤ r ≤ q−1, 1 ≤ s ≤ p−1. The matrices T and S actually
form an

(
q
2

)
-dimensional representation of the modular group PSL(2,Z), where

(
q
2

)
is

the number of primaries of a given unitary minimal model. In particular, we notice that
S is a symmetric,real matrix satisfying S2 = 1, which implies that is also unitary.

With the above derivations in mind, let’s go back and review the modular invariance
of the partition function Z(τ, τ). What we actually want is to construct all partition
functions

Z(τ, τ) =
∑
h,h

Nh,h χh(τ)χh(τ) (152)

which are modular invariant and have unique vacuum. This means, first, that for the
identity N1,1 = 1. Secondly, since we know how the characters transform under the
generators of the modular group, the multiplicities N (viewed as a rank-2 tensors with
its indices running over the spectrum (h, h)) should commute with T and S, namely:

NT = T N and NS = SN (153)

For Minimal Modle CFT’s this classification is a well-posed, but difficult, algebraic
problem. For minimal theories based on the sl(2) algebra there is a one-to-one correspon-
dence between modular invariants and pairs of the so-called simply laced Lie algebras
with Coxeter numbers exactly q and p. This is the ADE classification of minimal models
developed in [20][21]. One of the main features of this classification of minimal models
is that more than one modular-invariant theory can exist at a given value of the central
charge c = 1 − 6(p − q)2/pq. This means that one can find different operator algebras,
closed under OPE, and built out of the same set of primary fields. The conformal the-
ories discussed so far correspond only to one of this invariants, namely the diagonal
invariant, that’s why they are termed as diagonal theories. In particular the fusion rules
discussed in (110) apply only to these theories, and in general we expect different fusion
rules for the other theories.

We will not expand into the details of the ADE classification in this thesis. For our
purposes, we will just highlight two classes of physical modular invariants, namely the
diagonal (AA) and block diagonal (AD,DA).
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Diagonal invariants
Implementing T invariance yiels a restriction in the relative values of the conformal
dimensions, namely:

h− h = 0 mod 1 (154)

An obvious solution consists of states with h = h. The corresponding partition function
then reads23:

ZAA =
∑
r,s

|χr,s|2 (155)

and, because S is a unitary matrix, modular invariance is ensured. These kind of parti-
tion functions are describing the minimal theories, referred to as M(p, q) so far.

Block diagonal invariants
The other simple solution to (153) ivolves linear combinations of characters whose con-
formal dimensions differ by integers (so that the whole linear combination is invariant
under the T -transformation). In addition, one needs to ensure that the S-transformation
relates the relevant linear combinations to one another. Then, one can consider the usual
diagonal invariant of this ’extended theory’. For example, for (p, q) with q = 4m+2 and
m > 1, the DA modular invariant is of this type:

ZDA =
1

2

p−1∑
s=1

[ 2m−1∑
r odd=1

|χr,s + χ4m+2−r,s|2 + 2|χ2m+1,s|2
]

(156)

The important thing we notice in the above construction is the non-trivial ’inter-
action’ between the holomorphic and anti-holomorphic sector of the theory. Modular
invariance dictates which character of the holomorphic module should be combined with
the anti-holomorphic one, in order to give a modular invariant expression24. This fact
was absent in the development of the theory on S2.

For the end, let us examine three unitary examples:

The Ising model

As we described back in 1.2.6, the Ising model is the M(4, 3) minimal theory with
central charge c = 1/2. It includes three primary fields with dimensions h = 0, 1

16
, 1

2
and

the corresponding characters are χ1,1, χ1,2, χ2,1. The T and S matrices read:

T =

e−2πi/48 0 0
0 e46πi/48 0
0 0 e2πi/24

 S =
1

2

 1 1
√

2

1 1 −
√

2√
2 −

√
2 0

 (157)

23the subscript (AA) refers to the An algebra of the ADE classification
24we should have in mind that the expressions of χr,s in (155) and (156) correspond to the irreducible

representation of the Verma module (c.f. (149)).
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Given these matrices, the unique modular invariant function is the diagonal invariant:

ZAA =
∑
r,s

|χr,s|2 = |χ1,1|2 + |χ1,2|2 + |χ2,1|2 (158)

The Tricritical Ising model

The tri-critical Ising model corresponds to the M(5, 4) minimal theory with central
charge c = 7/10. There are six primary fields, as we saw back in Table1.2(c), and the
characters are χ1,1, χ1,2, χ1,3, χ1,4, χ2,2, χ2,4. The T and S matrices form a six-dimensional
representation of PSL(2,Z):

T = diag
(
e2πi 233

240 , e2πi 17
40 , e2πi 137

240 , e2πi 113
240 , e2πi 2

240 , e2πi 98
240

)

S =
1√
5



s2 s1 s1 s2

√
2s1

√
2s2

s1 −s2 −s2 s1

√
2s2 −

√
2s1

s1 −s2 −s2 s1 −
√

2s2

√
2s1

s2 s1 s1 s2 −
√

2s1 −
√

2s2√
2s1

√
2s2 −

√
2s2 −

√
2s1 0 0√

2s2 −
√

2s1 +
√

2s1 −
√

2s2 0 0


(159)

where s1 ≡ sin2π
5
, s2 ≡ sin4π

5
. The unique modular invariant of this model is again the

diagonal one:

ZAA =
∑
r,s

|χr,s|2 = |χ1,1|2 + |χ1,2|2 + |χ1,3|2 + |χ1,4|2 + |χ2,2|2 + |χ2,4|2 (160)

The Three-state Potts model

The next unitary model corresponds to the labellingM(6, 5) and has central charge
c = 4

5
. There are 10 primary fields with characters:

χ1,1 , χ2,1 , χ3,1 , χ4,1 , χ2,2 , χ3,2 , χ4,2 , χ3,3 , χ4,3 , χ4,4

For this theory we can write two distinct invariants. The diagonal invariant:

ZAA =
∑
r,s

|χr,s|2 (161)

and the block diagonal invariant(c.f.(156)):

ZDA = |χ1,1 + χ4,1|2 + |χ2,1 + χ3,1|2 + 2|χ3,3|2 + 2|χ4,3|2 (162)

There is a partition function of a physical statistical model at criticality which is identi-
fied with (162), and this is the so-called Three-State Potts model. It basically describes
a model of spin variables σi which take 3 different values. The important point is that
the operator content of this theory is different than that of theM(6, 5), given by (161).
We read that only the operators h1,1, h4,1, h2,1, h3,1 are present, together with two copies
of the operators h3,3, h4,3. This multiplicity actually shows that the Three-State Potts
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model is not just a subtheory ofM(6, 5), as it contains more copies of some of its fields.
This is reflected also in the non-trivial structure of the Three-State Potts fusion rules,
which are not a subset of the M(6, 5) fusion rules, calculated with (110).

In general, the analysis of the M(p, q) =M(m+ 1,m) =M(6, 5) model appears to
be representative of all unitary minimal models with m ≥ 5. Indeed, one can see that
all of these models have at least a second (physical) modular invariant[20],[21].

2 Conformal Field Theory on Non-Orientable sur-

faces

2.1 Boundary CFTs

In this chapter we will start studying conformal field theories on non-orientable surfaces,
that is, two dimensional surfaces where an orientation cannot be chosen globally. Ex-
amples of these surfaces constitute the Mobius strip, the Real Projective plane RP2 or
the Klein bottle K2. Our ultimate goal will be to understand the CFT data of mini-
mal models in these surfaces. In order to pursue, though, this kind of construction, it
is necessary to introduce first some basic tools from a CFT defined on a surface with
boundaries. The study of boundary CFTs, as well as CFTs on non-orientable surfaces,
was motivated initially from string theory and in particular the study of open string
world-sheets and orientifolds. In this discussion, however, we will describe the basic
ideas from the point of view of quantum field theory, without regard to any particular
applications in string theory.

So far, we have discussed conformal field theories defined on compact orientable sur-
faces, such as the sphere and the torus, and obtain several important results regarding
the corresponding CFT data, namely the OPE coefficients Cijk and the spectrum of
primary (bulk) operators (hi, hi). We saw that two sufficient consistency conditions -
crossing symmetry and modular invariance- should be respected, in order for correlation
functions on these surfaces to be well-defined. When one considers conformal field the-
ories on surfaces with boundaries, we encounter the possibility of operators living solely
in the boundary. The spectrum of boundary operators will naturally depend on the
boundary conditions considered and need not coincide with those in the bulk. There-
fore, it is understood that we can have OPE coefficients arising in the short distance
expansion as two boundary operators approach each other, or as a bulk operator ap-
proaches the boundary, respectively. These are now new piece of data for our theory,
and one might wonder whether analogous consistency conditions might apply in order
to render the corresponding amplitudes well-defined. The answer is certainly positive
and, in rational CFTs, these additional data can actually be given in terms of bulk
CFT data. This study was initiated mainly by N.Ishibashi, J.Cardy and D.Lewellen in
[23],[24],[25]. These authors termed the boundary CFT consistency conditions as sewing
constraints and we’re going to adopt the same terminology from now on. We will not go
into the very details of their construction for general surfaces with boundaries, we will
however study the sewing constraints which arise in connection with the framework of
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rational CFTs on non-orientable surfaces. To do this, we need to understand first the
construction of boundary quantum states. Let us start by studying CFT on two simple
(orientable) surfaces with boundary: the upper-half plane and the annulus.

2.1.1 CFT on the Upper-Half Plane

The complex upper-half plane H+,with coordinates z : {Imz ≥ 0}, is a domain whose
boundary is just the real axis. One can actually obtain it from the -more physical-
infinite strip, described by the real variables (τ, σ) : {τ ∈ (−∞,+∞) and σ ∈ [0, π]},
via the conformal mapping:

z = eτ+iσ (163)

Note in particular, as illustrated in Fig.2.1(a), the boundary σ = 0, π is mapped to the
real axis z = z.

Figure2.1(a):Map from the infinite strip to the complex upper-half plane

For a boundary CFT, we would like to formulate a conformally invariant boundary
condition independently of any particular set of fundamental fields and a Lagrangian.
The only intrinsic field in our theory is the energy-momentum tensor, which generates
the conformal transformations. A natural requirement, then, is that the off-diagonal
component T‖⊥ parallel/perpendicular to the boundary should vanish. This is called
the conformal boundary condition and is in complete generality. Let’s see why it makes
sense from the upper-half plane point of view: in the physical picture of the infinite strip
our boundaries are at σ = 0, π, which means we don’t want any momentum flow across
there. This implies that:

Tτσ = 0 (164)

which is exactly the statement that T‖⊥ = 0. In the coordinates of the upper-half plane
we get(c.f.(25)):

T (z) = T (z) at z = z (165)

If we expand T in Laurent modes we obtain a relation:

Ln − Ln = 0 (166)

which indicates that boundaries, in general, introduce relations between the chiral and
anti-chiral modes of the theory.
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Let’s move to quantization now. In radial quantization we mainly want Hilbert
spaces defined on different time-slices to be equivalent. Hence, we should choose semi-
circles centred on some specific point on the boundary, conventionally the origin. The
Hamiltonian is now:

Huhp ≡
1

2πi

∫
S

zT (z)dz − 1

2πi

∫
S

zT (z)dz, (167)

where S is a semicircle (Fig.2.1(a)). Splitting the contours into a real and a complex
one, and using the conformal boundary condition, this can be written as an integral over
a complete circle C around the origin:

Huhp =
1

2πi

∫
C

zT (z)dz = L0 (168)

It is clear that there is now one Virasoro algebra for our boundary CFT. The eigenstates
of that L0 correspond to primary boundary operators φBi , which are restricted to lie on
the real axis25 and have conformal dimension hBi . As in the case of a bulk CFT, conformal
invariance fixes the form of the one- and two-point functions of boundary operators and
their OPEs: 〈

φBi
〉

= 0〈
φBi (0)φBj (x)

〉
= CB

δij

x2hBi
, x > 0

φBi (0)φBj (x) ∼
∑
k

CBijk x
hBk−h

B
i −hBj φBk (x) + · · · , x > 0

(169)

The numbers CB are just some boundary-condition-dependent normalization constants
which we are not completely free to choose, having already fixed the bulk normalizations.
This connection is due to the fact that bulk and boundary operators are actually related
(for more details on that see [24]). In the third expression, the sum runs over boundary
primary fields and the omitted terms are descendants under the single Virasoro algebra.
It’s understood that the OPE coefficients CBijk constitute new piece of data for our
boundary CFT.

Furthermore, as it was first analyzed in [26], it turns out that in a conformal field
theory in which the boundary conditions do not break the conformal symmetry (i.e.
T‖⊥ = 0), a bulk primary operator approaching the boundary can be expanded in terms
of boundary primary operators as:

φj(z) ∼
∑
i

(2Im z)h
B
i −hj−hj CBji ψ

B
i (Re z) (170)

The new coefficients CBji are our second piece of boundary CFT data. Finally, one needs
to consider separately the constant amplitude[24]:

〈1〉B ≡ 〈0|B〉 = αB (171)

25the index φB indicates the different behaviour of these these operators under the specific bound-
ary conditions that we choose, e.g. Neumann or Dirichlet. These kind of boundary conditions are
unrestricted so far. Our only requirement is the conformally invariant relation (164) for the energy-
momentum tensor. In ref.[24], this index is treated more concretely and is specified by two letters φαβ ,
but it’s not going to be of great importance for our discussion.
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where we can consider a ”boundary state” |B〉, as a suitable state in the Hilbert space
of the bulk CFT (without any boundary), and then expressing equivalently all the cor-
relation functions in the geometry of a boundary CFT as 〈·〉B = 〈0| · |B〉. This is always
possible when the boundary is at a constant time-slice, and this is actually the reason
why we can define a state for it (a good example is the the bulk CFT of the infinite
cylinder and the boundary CFT on a semi-infinite cylinder). This observation will be
important later for CFT on the annulus. The one-point function of the identity, αB, is
therefore a constant that constitutes our last piece of new CFT data that we need to
specify.26

What about the sewing conditions that constraint these new data? As D.Lewellen
described in [24], for CFT on the upper-half plane one should consider three type of
sewing constraints. First, the crossing symmetry of the boundary four-point function,
secondly the sewing involving one bulk operator and two boundary operators, and lastly
the sewing between two bulk and one boundary operator. In the subclass of rational
CFTs, these conditions are eventually given in terms of data in the bulk, and in par-
ticular: the duality matrices M , relating bulk four-point conformal blocks as we saw
back in (120), the S matrix elements, which implements modular transformation on the
Virasoro characters, and the bulk OPE coefficients[24],[27].

2.1.2 CFT on the Annulus

Having set the basics with the example of the upper-half plane, let us move to the
annulus and see what knowledge we can gain. The annulus can be obtained form the
upper-half plane if, starting from the conformally equivalent infinite strip, we identify
periodically the time coordinate τ . In this way, we are left with the topology of a finite
cylinder as illustrated in Fig.2.1(b) below:

Figure2.1(b):Map from the infinite strip to the finite cylinder or Annulus.

There is now a modular parameter t parametrizing different cylinders with coordi-
nates (τ, σ) : {τ ∈ [0, t) and σ ∈ [0, π]}. This situation is reminiscent of the case of the
torus T2, where there we started with the infinite cylinder, the space coordinate being
already periodic, and then identify time. Here σ is not periodically identified, instead
we have some boundary conditions on the two ends.

Let’s try to calculate the partition function on this surface. We need to determine
the Hamiltonian generating translations in time circling the cylinder once along the τ

26one might argue that the value of 〈1〉B, being interpreted as a bulk one-point function, is already
fixed by the conventions chosen for the bulk theory and hence is not new CFT data. As it shown in
[24], however, in the example of the Ising model, one finds that αB must take non-trivial values in order
for all of the four-point boundary operators amplitudes to be crossing-symmetric.
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direction, having in mind also the calculation the Hamiltonian in the upper-half plane.
Because boundaries lead to the identification (165) between the holomorphic and anti-
holomorphic sectors, we see that the Hamiltonian is actually:

Hann. ≡ (Lcyl.)0 = L0 −
c

24
(172)

Hence, in analogy to the torus construction, we obtain the cylinder partition function:

ZB(t) = Tr e−2πtHann. = TrHB
(
qL0−c/24

)
where q ≡ e−2πt (173)

where HB denotes in general the Hilbert space of all states satisfying the boundary
conditions under consideration, or the space on which Hann. acts. As in the case of the
torus, we can decompose the partition function into characters of the hB representation,
which they now come only in one copy:

ZB(t) =
∑
hB

NhBχhB(t) (174)

The non-negative integers NhB give the boundary primary operators’ multiplicity.
In fact, looking at Fig.2.1(b), it seems we can interchange the role of σ and τ and

interpret the partition function as the path integral for a CFT on a circle of circumference
π:

Figure2.1(c):Illustration of the duality between the partition function of the finite cylinder and
propagation for time τ = π/t between two boundary states.

Indeed, we can legitimately perform a modular transformation t → −1/t in the real
modular parameter t. From this point of view, the partition function is no longer a
trace, but rather the matrix element of the time evolution operator e−πH/t for time
τ = π/t between two ”boundary states” |a〉 and |b〉:

ZB(t) = 〈a| e−πH/t |b〉 (175)

Equation of the two expressions (173) and (175) constitute, together with the three
conditions from the upper-half plane, our fourth sewing constraint. Again, in rational
CFTs, this constraint allows us to calculate, in non-trivial way, the boundary data in
terms of the bulk CFT[28].

Let us now try to sketch the analysis that eventually allow us to determine the
boundary data in terms of the bulk elements. The remarkable thing to notice in the
dual interpretation (174) is that: H is the Hamiltonian of the infinite cylinder, that is

H = L0 + L0 −
c+ c

24
(176)
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and the ”boundary states” |a〉 and |b〉 belong in the Hilbert space

H = ⊕h,hM(c, h)⊗M(c, h)

as in (144). Put it differently, we have managed to describe a boundary CFT in terms
of a bulk CFT.

The question that arises now is how are these boundary states at τ = 0 and τ = π/t
to be characterized. The conformal boundary condition T‖⊥ = 0 in the dual picture, at
τ = 0, yields:

Tcyl.(w) = T cyl.(w) at τ = 0 (w = τ + iσ) (177)

and if we expand T in modes(c.f. (132)):

Tcyl.(w)
∣∣
τ=0

=
∑
n∈Z

(
Ln −

c

24
δn,0
)
e−inσ

T cyl.(w)
∣∣
τ=0

=
∑
n∈Z

(
Ln −

c

24
δn,0
)
einσ

(178)

Changing variables in the second expression n→ −n we arrive at the result:

Ln − L−n = 0 (179)

Hence, the statement is that any boundary state |B〉 should satisfy:(
Ln − L−n

)
|B〉 = 0 (180)

The result (179) deserves some attention (also because we’re going to run into a similar
expression in the non-orientable case). It says that there is a subspace of special states
within the bulk CFT Hilbert space H, that can describe boundary states. If we are able
to find a solution to this equation, or even better a nice basis that span these states,
then we can characterize any boundary state.

This work was done by Ishibashi in [23]. He showed that to each highest weight
representation hi of the Virasoro algebra one can associate an up to a constant unique
state

∣∣Bi

〉〉
such that the condition (179) is satisfied. If we use |i; ~m〉 and |i; ~m〉 to

denote an orthonormal basis of states for the holomorphic and anti-holomorphic Virasoro
descendants of a primary field with conformal dimensions (hi, hi), then any state in the
bulk theory of the form: ∣∣Bi

〉〉
≡ 1

N
∑
~m

|i; ~m〉 ⊗ |i; ~m〉 (181)

satisfies (180). These are called Ishibashi states27. The notation ~m indicates the descen-
dant states, constructed by acting with each raising operator L−j on the given primary.

27We can always have the possibility of an extended symmetry algebra in our theory, e.g. a W-
symmetry. Then, there is an analogous condition for the modes of the corresponding current, and
Ishibashi states are defined with an insertion of an anti-unitary operator U , acting in a particular way
on the extended symmetry generators[23]. We are not going to discuss this situation here, though.
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As it turns out, the Ishibashi states are not the boundary states itself but only
building blocks guaranteed to satisfy the conformal boundary condition T‖⊥ = 0. A
general boundary state can be expressed as a linear combination of Ishibashi states
corresponding to different highest weight representations:

|Ba〉 =
∑
i

Bi
a

∣∣Bi

〉〉
(182)

where the complex coefficientsBi
a are usually called reflection coefficients ; the two indices

a, i indicate that for each highest weight representation hi, there exists not only an
Ishibashi state but also a boundary state, that is, the index a also runs from one to the
number of highest weight states.

The bra vector of |Ba〉 is not defined in the usual way, i.e. just as an element of the
dual Hilbert space. We have to include the insertion of the CPT operator Θ, and use
〈Ba|Θ = 〈ΘBa| when calculating matrix elements. The action of Θ is defined formally
as:

Θ |Ba〉 =
∑
i

(Bi
a)
∗∣∣Bi+

〉〉
(183)

where + denotes charge conjugation, which in general will not be of interest for our
purposes. The reason for considering this operator can roughly be explained by the fact
that, the orientation of the boundary where a given process was initiated is opposite to
the orientation of the boundary where the process is ended after some time evolution28.

Having expressed a boundary state in a way that allows us to proceed with calcula-
tions (using basically the bulk conformal algebra), our fourth sewing constraint suggests
that we can actually express all the boundary data in terms of these reflection coeffi-
cients! This fact is indeed manifest in the case of Minimal Model CFTs [24][27], where
we have only a finite number of highest weight states and thus, only a finite number of
Ishibashi states. The authors of these papers showed that, in diagonal minimal theories,
we can write down explicit relations -using the various sewing constraints- of the reflec-
tion coefficients with the bulk duality matrices M , the modular S matrix and the bulk
OPE coefficients, and in turn relate them with the boundary data {CBijk, CBji, αB}.

2.2 CFT on RP2

We now turn to the study of CFT on non-orientable surfaces. Although we are going to
focus on closed non-orientable surfaces, we will shortly realize that the construction of
boundary states we did in the previous section resembles the construction of the so-called
crosscap state, which is going to be relevant for the calculation of correlation functions
on these surfaces. Our ultimate goal is to understand the crosscap states in the Minimal
Models, so we can implement them in sections 2.4 and 2.5.

The surface of the Real Projective plane RP2 (or crosscap surface) is depicted in the
following figure:

28an example of a process can be given in the context of string theory, where the amplitude (175)
between two boundary states can be interpreted as an emission and absorption of a closed string.
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Figure2.2(a):The surface of the crosscap (above) and its fundamental domain (below) with the arrows
indicating how opposite edges are identified leading to the crosscap surface.

It can be defined in several equivalent ways. It can be obtained from a disk by pairwise
identifying opposite points on its boundary, or it can be obtained from the sphere S2 by
a Z2 involution that changes the orientation,

z → −1

z
(184)

It’s easy to see that (184) has no fixed points hence the surface that we end up with has
no boundary(closed). We’re going to stick to this latter definition, because it actually
illustrates a general fact about non-orientable surfaces, namely that any non-orientable
surface Σ can be represented as the Z2 quotient of an orientable manifold Σ̂, called the
orientation double cover of Σ. Here, RP2 = S2/Z2.

If we have any fields in our theory, the involution (184) realizes itself as a specific
discrete symmetry operator Ω, say, that acts in a specific way on the fields, relating their
values at the two identified points. This situation will of course be true also at the level of
the Hilbert space. For conformal field theories on non-orientable surfaces, which are Z2

quotients of the orientable ones, the Hilbert space will in general be different compared
to the one corresponding to the orientable case. In particular, it should contain only
states from the orientable-case Hilbert space which are invariant under Ω and for the
calculation of the partition function, one should project appropriately onto invariant
states (we will see it explicitly for the Klein bottle).

By demanding that the energy momentum tensor is covariantly the same at a pair
of points identified via (184), we get for the Laurent modes:

Ln − (−1)nL−n = 0 (185)

This relation reminds us a lot the analogous identification of the Laurent modes of T in
the case of the boundary CFT. Here though we don’t have any boundary. In fact, we
can define a state |C〉 in the CFT Hilbert space of its orientation double cover by:(

Ln − (−1)nL−n
)
|C〉 = 0 (186)

This is the so-called crosscap state. We can think of this state, alternatively, as the state
prepared by the CFT path integral on a crosscap surface, in the Hilbert space of the
CFT on a circle.
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Figure2.2(b):An alternative graphic representation of the crosscap state thought of as the state
prepared by a CFT path integral on the crosscap surface

In this sense, we can express any CFT correlator on the Real Projective plane as the
amplitude between:

〈·〉RP2 = 〈0| · |C〉 (187)

exactly as we saw in the case of boundary CFTs with the analogous ”boundary states”.
For example, the partition function can be written as:

ZRP2 = 〈0|C〉 ≡ Γ1 (188)

where the symbol Γ1 will make sense shortly. Similarly, as it was shown in [29], the one
point function of primary operators Φi is non zero only for hi = hi (i.e. scalar operators)
and has the form:

〈Φi〉RP2 = 〈0|Φi |C〉 =
Γi

(1 + zz)2h
(189)

with Γi yet unspecified constants.
Having in mind the analogous constructions for boundary CFT, it is natural to ask

whether we can solve (186) explicitly. For a rational CFT one can show[23] that to
each highest weight representation of the Virasoro algebra one can associate a crosscap
Ishibashi state of the form:∣∣Ci〉〉 ≡ 1

Ñ

∑
~m

(−1)
∑
j mj |i; ~m〉 ⊗ |i; ~m〉 (190)

such that the condition (186) is satisfied. The notation ~m denotes, again, all the de-
scendants constructed by acting with L−j, mj times on the given primary. A general
crosscap state is then a linear combination of crosscap Ishibashi states:

|C〉 =
∑
i

Γi
∣∣Ci〉〉 (191)

where the sum is over all the primary states in the theory. The coefficients Γi are often
called one-point function normalizations on RP2 and it is now clear why they enter in
the zero- and one-point amplitudes. Indeed, using conformal invariance and the orthogo-
nality of different highest weight states, one can obtain[29] the explicit expressions given
by (188) and (189).

Taking into consideration the analysis so far, we have seen that in order to specify
a CFT on the Real Projective plane an additional piece of data needs to be determined
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(along with the OPE coefficients Cijk and the spectrum hi of primary operators): the
Γi’s, which arise -as we saw- in the one-point functions on RP2. In fact, the set of data
{hi, Cijk,Γi} is enough to specify a CFT in any non-orientable surface. The deeper rea-
son is that, topologically, every non-orientable surface Σg can be written as a connected
sum of g copies of real projective space

Σg = RP2# · · ·#RP2

where g denotes the (non-orientable) genus of the surface, and the connected sum # with
RP2 means a process of removing a disk and gluing in a crosscap surface. The Klein
bottle, for example, is a connected sum of two Real Projective spaces K2 = RP2#RP2,
and we will explore it next.

2.3 CFT on K2

The Klein bottle K2 is our next example of non-orientable surface (Fig.2.3(a)). It can be
constructed by the cylinder (τ, σ) ∼ (τ, σ+ 2π) by modding out by the following action:

(τ, σ) ∼ (τ, σ + 2π) ∼ (τ + 2πt̃,−σ) (192)

Figure2.3(a):The Klein bottle surface (above) and its fundamental domain (below) with the arrows
indicating how opposite edges are identified leading to the K2 surface.

It is therefore a cylinder of circumference 2π and length 2πt̃ with the two ends identified
with a parity-reversal transformation. Because of this, there are no boundaries (there
are, however, two crosscaps as we will soon find out). The modulus l ≡ t̃ is a positive
real number and characterizes topologically different Klein bottles.
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An equivalent description of K2 is by taking the Z2 quotient of the rectangular torus
(t, φ) ∼ (t+ β, φ+ 2π)29 and identify as:

(t, φ) ∼ (t+ β, φ+ 2π) ∼ (−t, φ+ π) (193)

Hence, K2 = T2/Z2 and the modulus of the Klein bottle in this case is l = β/π (we will
see why that is shortly).

Let us try to compute the partition function, given (193). We start with the usual
form of the partition function on T2:

Z(τ, τ) = TrH

(
qL0− c

24 qL0− c
24

)
(194)

where the Hilbert space H is a tensor product of the holomorphic and anti-holomorphic
sector of the theory. Now, as we discussed in the previous section, the identification
(193) manifests itself in the Hilbert space of the theory as a discrete operator acting on
the spectrum of states. Here, we actually encounter a parity operator Ω which changes
the orientation. What we want then, is to project the entire Hilbert space H onto those
states which are invariant under the action of Ω. It’s easy to construct such a projection
operator, namely 1

2
(1 + Ω). Therefore, we get:

ZΩ(τ, τ) = TrH

(
1 + Ω

2
qL0− c

24 qL0− c
24

)
=

1

2
Z(τ, τ) +

1

2
TrH

(
ΩqL0− c

24 qL0− c
24

) (195)

Let us focus on the second term. The insertion of Ω into the trace has the effect of
changing the orientation of the t circle of the torus, after performing a loop into itself.
Geometrically, this is exactly the construction of the Klein bottle, hence we are led to
identify the second term of (195) with the partition function on K2.

In order to proceed with calculations, we need to know how Ω acts on a basis state
in H, namely

∣∣i, j〉 where i denotes a basis state in the holomorphic sector and j a basis
state in the anti-holomorphic sector. A logical assumption is that30:

Ω
∣∣i, j〉 = ±

∣∣∣Ω(j),Ω(i)
〉

(196)

Let us try to explain why that is. The parity operator Ω satisfies naturally Ω2 = 1.
This is the origin of the ± sign, which indicates whether the state is parity-odd or even.
When Ω is acting on the vacuum state, a natural choice (that we’re going to adopt from
now on) is Ω |0〉 = + |0〉, i.e. the vacuum is invariant under parity. Next, the fact that
Ω interchanges the ”quantum numbers” of holomorphic and anti-holomorphic sector as
i → Ω(j) can be understood briefly from the fact that Ω is, by definition, a parity
operator which introduces a change in the orientation in the time direction. This change
will be manifest as change in the sign of the Laurent modes of any field that we have in
the theory, which in turn results to an interchange of holomorphic and anti-holomorphic
modes. Finally, the map Ω(i) can be chosen to be the identity map Ω(i) = i, leading us
to: 〈

i, j
∣∣Ω ∣∣i, j〉 =

〈
i, j
∣∣j, i〉 = δij (197)

29we’re always referring to Euclidean time t.
30one can explicitly verify this action in several examples where we have a lagrangian description of

a CFT, e.g. for the free boson see [12].
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Now we are ready to calculate the partition function of the Klein bottle:

ZK2(τ, τ) = TrH

(
ΩqL0− c

24 qL0− c
24

)
=
∑
i,j

〈
i, j
∣∣ΩqL0− c

24 qL0− c
24

∣∣i, j〉
=
∑
i,j

〈
i, j
∣∣ΩqL0− c

24 Ω−1ΩqL0− c
24 Ω−1Ω

∣∣i, j〉
=
∑
i

〈
i, i
∣∣ qL0− c

24 qL0− c
24

∣∣i, i〉
(198)

and since the diagonal subset of state will contribute to the trace we can effectively
identify L0 and L0 as well as c and c. Then,

ZK2(τ, τ) =
∑
i

〈
i, i
∣∣ (qq)L0− c

24

∣∣i, i〉 = TrHsym.
(
e−4πIm(τ)(L0−c/24)

)
= TrHsym.

(
e−2β(L0−c/24)

)
= TrHsym.

(
e−2πl(L0−c/24)

) (199)

where Hsym. denotes the states of the form
∣∣i, i〉, and we have taken into account that

the modulus of the torus was defined with Im(τ) = β/2π (c.f.(130)). The modulus for
the Klein bottle turned out to be l ≡ β/π.

There is a second representation of the Klein bottle partition function, however,
where we can represent the Klein bottle as the cylinder between two crosscaps. This
is reminiscent of the annulus partition function where, via a modular S-transformation,
we could interpret the result as a matrix element between two boundary states. For the
Klein bottle, it’s simple to illustrate the effect of this S-transformation at the level of
the transformation of the fundamental region.

We will describe the large conformal transformations in 5 steps(Fig.2.3(b)). We
start (a) with the initial fundament domain of K2 and we divide it (b) in half, where the
identification of segments and points is indicated explicitly by arrows and symbols. Next,
we shift one-half of the fundamental domain (c), and we flipped it to the left (d) so that
the appropriate edges be identified. Quite remarkably, we end up with a fundamental
domain of the form (e) which is a cylinder between to crosscaps(c.f. Fig.2.2(a)).

Figure2.3(b):Transformation of the fundamental region of K2 using large conformal transformations,
to an equivalent propagation between to crosscap states
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Therefore, the Klein bottle partition function can be viewed as matrix element of the
time evolution operator propagating between to crosscap states over distance π

2Im(τ)
= π2

β

ZK2(β) = 〈ΘC| e−
π2

β
(L0+L0− c+c24

) |C〉

= 〈ΘC| e−2πl(L0+L0− c+c24
) |C〉

(200)

where now l ≡ π/2β. The inclusion of the parity operator Θ is understood (c.f.(183)).
Expression (200) is now easier to manipulate. From the decomposition of the crosscap

state into Ishibashi states (191), we can write:

ZK2(β) =
∑
i,j

ΓiΓj
〈〈
Ci
∣∣e−2πl(L0+L0− c+c24

)
∣∣Cj〉〉 =

∑
i

Γ2
i

〈〈
Ci
∣∣e−4πl(L0− c

24
)
∣∣Ci〉〉 (201)

where, again, we can effectively identify L0 and L0, and c and c, because of the form of
the Ishibashi states. For Minimal Model CFTs the sum is running over a finite set of
primary fields and expression (201) is more convenient for calculation.

We have managed to write down the partition function of a CFT on the Klein bottle
with two expressions, (199) and (201). The important thing to notice about the second
expression is that, if we know the Γi’s of all the primaries, namely their one-point corre-
lation functions on RP2, we can have all the information we need about the Klein bottle
partition function as well. This situation illustrates the general fact we mentioned pre-
viously: the CFT partition function on a non-orientable surface Σg = RP2# · · ·#RP2 is
uniquely determined once the set of data {hi, Cijk,Γi} is specified. The very goal of this
thesis is to examine two examples of minimal model CFTs on non-orientable surfaces,
by determining their one-point normalizations on RP2 via sewing constraints. This will
be the topic of the next two sections.

2.4 Sewing constraints on non-orientable surfaces

So far, we have encountered consistency conditions (or sewing constraints) for CFTs
on closed orientable surfaces (e.g. S2,T2), and on surfaces with boundary (e.g. upper-
half plane, annulus). These conditions, as we discussed, restrict the spectrum of the
corresponding CFT data. For non-orientable surfaces, the presence of the crosscap
imposes a new type of sewing constraint, first discussed in[29], and we’re going to study
it in this section. As we will see, consistency of CFT on RP2 requires basically the
crossing symmetry of the two-point functions.

Consider the two-point function of two scalar primary operators, Φi,Φj of dimensions
hi, hj on RP2:

〈ΦiΦj〉RP2 ≡ 〈0|Φi(z, z)Φj(w,w) |C〉 (202)

where (z, z) and (w,w) are locations on the sphere (not related with a relation similar
to the involution z → −1/z), and we can choose the crosscap to be at the origin.
Topologically, this amplitude corresponds to having two distinct punctures in a crosscap
surface. In turn, this situation is equivalent to having 4 punctures on the sphere of the
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form 〈
Φi

(
z
)
Φj

(
w
)
I(Φj)

(
− 1

w

)
I(Φi)

(
− 1

z

)〉
S2

(203)

and in addition imposing the involution z → −1/z. The fields I(Φi), I(Φj) are the
images of the fields Φi,Φj under the involution.

The equivalent expression (203) allows us now to use the knowledge about four-point
functions on S2 in order to understand two-point functions on RP2. The general form
of the four-point amplitude on S2 is:

〈Φ1(z1)Φ2(z2)Φ3(z3)Φ4(z4))〉 = G(η, η)
4∏
a≤b

z
h/3−ha−hb
ab z

h/3−ha−hb
ab (204)

where η is the usual anharmonic ratio (c.f. (37)). For the particular locations of the
operators in (203) we get that:

P ≡
4∏
a≤b

z
h/3−ha−hb
ab z

h/3−ha−hb
ab =

(
z − w

)r−hi−hj(z − w)r−hi−hj(1 + |z|2
)r−hi−hi×

×
(
1 + |w|2

)r−hj−hj(1 + zw
)r−hi−hj(1 + wz

)r−hj−hi
and

η =
|z − w|2

(1 + |z|2)(1 + |w|2)

where r ≡ 1
3
(hi + hj + hi + hj).

For the function G, we know from Section1.2 that it can be decomposed into con-
formal blocks for distinct OPE channels, and the different results should agree. This
was the idea of crossing symmetry. In the present situation, the OPE between Φ,Φ and
Φ, I(Φ) yield[29]:

Φi(z)Φj(w) ∼
∑
k

Cijk(z − w)hk−hi−hj(z − w)hk−hi−hjΦk(w) (205)

and

Φi(z)I(Φj)(−
1

w
) ∼

∑
k

CijkΓk(1 + zw)hk−hi−hj(1 + zw)hk−hi−hjΦk(w) (206)

where we have to include a factor of Γk in the second expression, since the image of
the field need not coincide precisely with the field itself, as is dictated by the one-point
function (189).

Thus we are now able to compute the G function in two different channels and use
crossing symmetry. First, we can fuse Φi,Φj and I(Φi)I(Φj), i.e. the s-channel with
η → 0 The holomorphic part of G in this case is:

G(η) =
∑
k

CijkΓkF(k; η) (207)
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If we next fuse in the t-channel(η → 1), namely Φi, I(Φj) and Φj, I(Φi) we get a similar
expression except with a conventional nromalization which is justified from the choice
of the location of the image field[29]:

G(η) =
∑
k

(−1)hi−hi+hj−hjCijkΓkF(k; 1− η) (208)

Agreement between the expressions (208) and (209) will generate for us a non-trivial
sewing constraint on Γi’s in terms of bulk CFT data. For Minimal Model CFTs we can
further relate the conformal blocks F , evaluated at η and 1−η, with the duality matrices
M :

F(p; η) =
∑
q

M

[
i l
j k

]
p,q

F(q; 1− η)

Hence, the final elegant result of [29] reads31:

∑
k

CijkΓkM

[
i j
j i

]
kp

= (−1)hi−hi+hj−hjCijpΓp (209)

2.5 Solving the Ising & Tricitical Ising model on RP2

We now move to solving the crosscap constraint (209) in terms of Γi’s for the two diagonal
minimal models, namely the Ising and the Tricritical Ising model. The OPE coefficients
and the fusing matrices for diagonal minimal theories are obtained via equations (293)
and (294), in the Coulomb gas formalism explained in the Appendix A. In addition,

the normalization term (−1)hi−hi+hj−hj is trivial in our case. Thus, after numerically
examining all the different linear equations arising in (209), we summarize our results:

Ising model

Γε
Γ1

=

√
2−
√

2

2 +
√

2
, Γσ = 0 (210)

Tricritical Ising model

Γε′

Γ1

=

√√
5− 2 ,

Γε′′

Γε
=

√√
5 + 2 ,

Γε′′

Γ1

=
√

2− 1 ,
Γε′

Γε
=
√

2 + 1 , Γσ = Γσ′ = 0

(211)

31we have been careful to maintain consistently the notation we have used in 1.2.7 for the entries and
indices of the fusing matrix M .
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As it was expected from the form of (209), the one-point normalizations Γi are fixed
up to a normalization constant, that’s why we present their ratios above.

This is the main result of this thesis. The values of Γi’s for the Ising model have been
reported previously in the literature[29], however the results for the Tricritical Ising are
new as far as we can tell. Given (210) and (211),along with the knowledge of the OPE
coefficients and the spectrum of primary operators, the Ising and the Tricritical Ising
model are completely specified on RP2. We would like to proceed and examine these
results in the context of gravity next.

3 Quantum gravity on AdS3

3.1 Basics of the AdS/CFT correspondence

In the final chapter of this thesis we are going to discuss the quantum gravity physics
that is hidden behind the study of CFTs. As we will describe, a quantum theory of grav-
ity in a d-dimensional Anti-de Sitter spacetime (to be defined shortly) is conjecturally
equivalent to a (d−1)-dimensional CFT, i.e. a theory without gravity in one less spatial
dimension. This remarkable observation is commonly attributed to J.Maldacena in his
seminal work [32], though some earlier contributions were also made by J.Brown and
M.Henneaux in the setting of three-dimensional Anti-de Sitter space[33]. The AdS/CFT
correspondence is a manifestation of a general principle that is believed to govern quan-
tum gravity physics, the so-called holographic principle [30][31]. For the purposes of this
thesis, we are going to focus primarily on AdS3/CFT2 correspondence, and analyze the
several CFT derivations we obtained in the previous chapters. Our goal, in particular,
is to understand the implications of the crosscap states from the quantum gravity side
point of view. As we will explore soon, the crosscap states will help us -up to some level-
in understanding the structure of the quantum mechanical path integral over geometries.

3.1.1 Anti-de Sitter spacetime

We will start by sketching the important general clues that lead to the famous AdS/CFT
correspondence, not necessarily following the historical order of the scientific develop-
ments. Our basic reference is the lecture notes by J.Kaplan [34]. We are working in
Euclidean signature as we did in CFT.

The d-dimensional Euclidean Anti-de Sitter spacetime with length scale lAdS is de-
fined as the set of all points (X0, X1, X2, · · · , Xd) in a (d + 1)-dimensional Minkowski
spacetime Rd,1 that satisfy:

−
(
X0
)2

+
(
X1
)2

+ · · ·+
(
Xd
)2

= −l2AdS, (X0 > 0) (212)

It is clear from the above definition that the isometry group of Anti-de Sitter spacetime is
SO(d, 1), which is exactly the conformal group in Rd−1 as we showed in the first chapter.
This is our starting naive clue for supporting any correspondence between gravity in AdS
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and CFT. The generators are given by:

JAB = −i
(
XA

∂

∂XB
−XB

∂

∂XA

)
(213)

where A,B = {0, 1, .., d}. The corresponding quadratic Casimir is:

1

2
JABJ

BA = −X2∂2
X +X · ∂X(d+X · ∂X) (214)

where repeated indices are summed over as usual. Using (212), let us define some
intrinsic coordinate systems on Euclidean AdSd. Poincare’ coordinates (xµ, z) are defined
by the identification:

X0 ≡ lAdS
1 + x2 + z2

2z
, Xµ ≡ lAdS

xµ

z
, Xd ≡ lAdS

1− x2 − z2

2z
(215)

where xµ ∈ Rd−1 and z > 0. In these coordinates, the metric on AdSd reads:

ds2 = l2AdS
dz2 + δµνdx

µdxν

z2
(216)

One can easily show that the above metric is a maximally symmetric solution of the
Einstein-Hilbert action with negative cosmological constant Λ ≡ − (d−1)(d−2)

2l2AdS
and no

matter fields:

SEH [gµν ] =
1

ld−2
Pl

∫
ddx
√
g[R− 2Λ] (217)

where R is the Ricci scalar and lPl ≡ G
1/(d−2)
N is the Planck length, whose relative size

with lAdS controls the quantum/classical effects as we will see later. Also, the metric
(216) shows that AdS is conformal to R+ × Rd−1 whose boundary at z = 0 is just
Rd−1. These coordinates make explicit the subgroup SO(1, 1) × ISO(d− 1) of the full
isometry group of AdS. These correspond to dilatation and Poincare symmetries inside
the (d− 1)-dimensional conformal group. In particular, the dilatation operator is:

D = −iJ0,d = −X0
∂

∂Xd
+Xd

∂

∂X0
= −z ∂

∂z
− xµ ∂

∂xµ
(218)

Another useful coordinate system for AdSd is the one defined by (τ,Ωµ, ρ) as:

X0 ≡ lAdS cosh τ cosh ρ , Xµ ≡ lAdSΩµ sinh ρ , Xd ≡ −lAdS sinh τ cosh ρ (219)

where Ωµ (µ = 1, .., d − 1) parametrizes a unit (d − 2)-dimensional sphere, Ω · Ω = 1.
The metric is given by:

ds2 = l2AdS
[

cosh2 ρ dτ 2 + dρ2 + sinh2 ρ dΩ2
d−2

]
(220)

To understand the global structure of the spacetime it is further convenient to change
the radial coordinate ρ via the relation tanh ρ ≡ sin r, so that r ∈ [0, π/2]. Then, the
metric becomes

ds2 =
l2AdS
cos2r

[
dτ 2 + dr2 + sin2 r dΩ2

d−2

]
(221)

which is conformal to a solid cylinder(Fig.3.1(a)) whose boundary at r = π/2 is R×Sd−2.
In these coordinates, the dilatation operator D = −iJ0,d = − ∂

∂τ
is the Hamiltonian

conjugate to global time.
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Figure3.1(a): The picture of AdSd in global coordinates. The boundary is topologically an infinite
cylinder R× Sd−2.

3.1.2 Particles and fields in AdS

We would like now to describe real time dynamics of particles or fields in a fixed Anti-de
Sitter spacetime background. In order to gain the correct intuition it is useful to change
the metric back to Lorentzian signature. Lorentzian AdSd is defined by the universal
cover of the manifold

−
(
X0
)2

+
(
X1
)2

+ · · ·+
(
Xd−1

)2 −
(
Xd
)2

= −l2AdS (222)

embedded in Rd−1,2 with isometry group SO(d− 1, 2). The analytic continuation of the
Euclidean global coordinates (τ,Ωµ, ρ)→ (t,Ωµ, ρ) via the map τ → it (and Xd → iXd),
now reads

X0 ≡ lAdS cos t cosh ρ , Xµ ≡ lAdSΩµ sinh ρ , Xd ≡ −lAdS sin t cosh ρ (223)

As before, it is convenient to also change the radial coordinate via tanh ρ→ sin r so that
r ∈ [0, π/2]. Then, the metric becomes:

ds2 =
l2AdS
cos2r

[
− dt2 + dr2 + sin2 r dΩ2

d−2

]
(224)

which is, again, conformally equivalent to a solid cylinder whose boundary at r = π/2
is R× Sd−2.

If we want to study the motion of a classical particle in AdS we have to study
geodesics of course. Geodesics are basically given by the intersection of AdS with 2-
planes through the origin of the embedding space Rd−1,2. In global coordinates (224),
the simplest timelike geodesic describes a particle sitting at ρ = 0. This corresponds to
the intersection of Xµ = 0 for µ = 1, · · · , d− 1 with the hyperboloid (222). Performing
a boost in the (X1, Xd)-plane we can obtain an equivalent timelike geodesic X1 cosh β =
Xd sinh β and Xµ = 0 for µ = 2, · · · , d−1. In global coordinates, this gives an oscillating
trajectory

tanh ρ = tanh β sin t (225)

with period 2π. This is actually a general fact about timelike geodesics in global time.
Therefore, we can say that AdS acts like a box that confines massive particles, and it is
a very symmetric box since all points are equivalent through the isometry.
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Null geodesics in AdS are also null geodesics in the embedding space. For example,
the null ray Xd −X1 = X0 − lAdS = Xµ = 0 for µ = 2, · · · , d − 1 is a null ray in AdS
which in global coordinates is given by coshρ = 1

cos t
. This equation describes a light ray

that passes through the origin at t = 0 and reaches the conformal boundary ρ = ∞ at
t = ±π

2
. All the light rays in AdS start and end at the conformal boundary travelling

for a global time interval equal to π.

Now let’s turn to the study of fields in AdS. For simplicity, we can choose a scalar
field Φ of mass m obeying the Klein-Gordon equation in global coordinates (224):

∇2
AdSΦ = m2Φ (226)

With a little bit of work we can show that the SO(d − 1, 2) quadratic Casimir of
Lorentzian AdSd isometry group, acting on a scalar field, is given by the Laplacian
as:

1

2
JABJ

BAΦ = l2AdS∇2
AdSΦ (227)

Therefore, we should identify the mass l2AdSm
2 of the field (measured in AdS units) with

the eigenvalues of the quadratic Casimir. But the Casimir of the AdSd isometry group is
equivalent to the quadratic Casimir of the conformal group in Rd−2,1 spacetime. In order
to establish a connection with CFT, it’s necessary to remind ourselves the connection
of JA,B’s with D,Mµν , Pµ, Kµ generators, in Lorentzian signature:

D = −J0,d , Pµ = Jµ0 + iJµ,d ,

Mµν = Jµν , Kµ = Jµ0 − iJµ,d
(228)

In global coordinates, these generators take the form:

D = i
∂

∂t
, Pµ = −ie−it

[
Ωµ(∂ρ − i tanh ρ ∂t) +

1

tanh ρ
∇µ

]
,

Mµν = −i
(
Ωµ

∂

∂Ων
− Ων

∂

∂Ωµ

)
, Kµ = ieit

[
Ωµ(−∂ρ − i tanh ρ ∂t)−

1

tanh ρ
∇µ

]
(229)

Now, in analogy with the CFT construction we can look for primary states, which are
annihilated by Kµ, KµΦ = 0, and are eigenstates of the Hamiltonian, DΦ = ∆Φ. The
solution has the form:

Φ ∼
( e−it

cosh ρ

)∆
=
( lAdS
X0 −Xd

)∆
(230)

This is the lowest energy state. One can get excited states acting with Pµ. The important
thing is that all these states will have the same value under the Casimir which turns out
to be

1

2
JABJ

BAΦ = ∆
(
∆− (d− 1)

)
Φ (231)

Therefore, we can extract our first crucial result, that is:

l2AdSm
2 = ∆(∆− d+ 1) (232)
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Let’s now return to Euclidean signature and consider quantum fields in AdS back-
ground. For simplicity, we continue with the example of a free scalar field of mass m
with action:

S =

∫
AdS

dX
[1
2

(∇Φ)2 +
1

2
m2Φ2

]
(233)

Our goal is to compute all the correlation functions of this theory. The two-point function
is given by the propagator Π(X, Y ), which obeys:[

∇2
X −m2

]
Π(X, Y ) = −δ(X, Y ) (234)

From the symmetries of ∇2
X , it is clear that the propagator can depend on the invariant

X ·Y or equivalently on the so-called chordal distance ζ ≡ (X−Y )2/l2AdS. From now on
we will set lAdS = 1 and all lengths will be measured with respect to AdS radius. Using
the form (231) for the Laplacian we can show that

Π(X, Y ) =
C∆

ζ∆ 2F1

(
∆,∆− d

2
+ 1, 2∆− d+ 2,−4

ζ

)
(235)

where, here, ∆ appears exactly as ∆ ≡ d−1
2

+

√
(d−1)2+(2m)2

2
(c.f. (232)), and the coefficient

C∆ is:

C∆ ≡
Γ(∆)

2π(d−1)/2Γ(∆− d
2

+ 3
2
)

(236)

The higher point functions, as in free QFT in flat space, are simply given by Wick
contractions. For example a four-point function is

〈Φ(X1)Φ(X2)Φ(X3)Φ(X4)〉 = Π(X1, X2)Π(X3, X4)+Π(X1, X3)Π(X2, X4)+Π(X1, X4)Π(X2, X3)
(237)

If we want to include weak-coupling interactions in our theory, these can be treated
perturbatively as usually in QFT. Suppose, for instance, the action which includes a
cubic self-interaction:

S =

∫
AdS

dX
[1
2

(∇Φ)2 +
1

2
m2Φ2 +

1

3!
gΦ3

]
(238)

Then, a three-point function at tree level is given by

〈Φ(X1)Φ(X2)Φ(X3)〉 = −g
∫
AdS

dY Π(X1, Y )Π(X3, Y )Π(X3, Y ) + O(g3) (239)

It would be interesting to investigate how two and three-point functions behave if we
send all points to the boundary of AdS. More precisely, we can parametrize the point
X by introducing a real parameter λ as X ≡ λP + · · · , where P is a future-directed
null vector in Rd,1 and the · · · denote terms that do not grow with λ but are there to
ensure that the parametrization is compatible with X2 = −1(AdS manifold). Then, we
can write

O(P ) ≡ 1√
C∆

lim
λ→∞

λ∆ Φ(X = λP + · · · ) (240)
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In other words, the operator O(P ) is the limit of the field Φ(X) when X approaches the
boundary point P of AdS. We should emphasize that, by definition, the operator O(P )
obeys the condition

O(λP ) = λ−∆O(P ) (241)

which reminds us the notion of conformal dimension ∆ of an operator under scalings.
If we ask now how the correlation functions of O behave, the answer is simple. They
are naturally defined by the limit of correlation functions of Φ in AdS. For example, the
two-point function at tree-level is given by

〈O(P1)O(P2)〉 =
1

(−2P1 · P2)∆
+ O(g2) (242)

which is exactly the CFT two-point function of a primary operator of dimension ∆. We
can show the same for the three-point function at tree-level, namely

〈O(P1)O(P2)O(P3)〉 = −gC−
3
2

∆

∫
AdS

dXΠ(X,P1)Π(X,P2)Π(X,P3) + O(g3) (243)

where

Π(X,P ) = lim
λ→∞

λ∆Π(X, Y = λP + · · · ) =
C∆

(−2P ·X)∆
(244)

is the bulk-to-boundary propagator. Using its expression in (243) and manipulating the
integral appropriately, we can eventually arrive at the form of a CFT three-point function
for a primary operator with dimension ∆ (c.f. (36)). Same kind of manipulations hold
for the four-point amplitude of O at order g2(tree level), where one confirm the form of
a CFT four-point function as well.

Taking into consideration the above, we see that the operators O(P ) are of partic-
ular importance in our analysis and reinforce a possible duality of QFT in AdS with
a quantum conformal field theory32. We can go even further actually and prove that
the correlators of O obey an associative OPE, and that there is also a state-boundary
operator map that can be derived purely from the AdS symmetries [35]. However, there
is still one missing ingredient to obtain a full-fledged CFT: a stress-energy tensor. In
the next subsection, we will see that this requires dynamical gravity in AdS. Moreover,
one can show in an elegant way[37] that free QFT in AdSd, on its own right, cannot be
dual to a local CFT in (d− 1)-dimensions.

Before we move on, let us mention another equivalent way of obtaining correlation
functions in AdS/CFT. This is the so-called GKPW dictionary[35][36] 33. We can intro-
duce the generating functional

ZCFT on ∂M [Φ∂] ≡
〈
e
∫
∂M dP Φ∂(P )O(P )

〉
(245)

where the asymptotic value Φ∂ of our field Φ is a source for the operator O and, the
integral over ∂M denotes formally an integral over a chosen section of the null cone

32Sometimes it is commonly said that CFT ”lives at the boundary of AdS”. This statement, however,
is not quite accurate for two basic reasons. First, we do not have both theories at once; we either do
CFT or we have an AdS spacetime. Second and more importantly, the CFT is dual to the entire gravity
theory (i.e. the two Hilbert spaces are equivalent in principle) so in a sense it’s not ”confined” in some
boundary region.

33as ”opposed” to the BDHM dictionary due to [38], which was the method we used previously.
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in Rd,1 with its induced measure. We impose Φ∂(λP ) = λ∆−d+1Φ∂(P ) and then, the
correlation functions are easily obtained with functional derivatives

〈O(P1) · · ·O(Pn)〉 =
δ

δΦ(P1)
· · · δ

δΦ(Pn)
Z[Φ∂]

∣∣
Φ∂=0

(246)

If we now set the generating functional to be equal to the gravitational partition function
Φ in a fixed asymptotically AdS background

ZCFT on ∂M [Φ∂] = ZAdS[Φ∂] ≡
∫

Φ→Φ∂
DΦ e−S[Φ]∫

Φ→0
DΦ e−S[Φ]

(247)

with the boundary condition that it approaches the source Φ∂ at the boundary,

lim
λ→∞

λ(d−1−∆) Φ(X = λP + · · · ) =
1

(2∆ + 1− d)

1√
C∆

Φ∂(P ) (248)

then we recover the correlation functions of O defined above as limits of the correlation
functions of Φ.

The statement of the equality of the partition functions is actually more general than
expression (247). The UV complete gravitational partition function is a function not
only of any matter fields but also of the metric. In the above analysis we were merely
describing an effective field theory where the scales of the problem where such that
the metric quantum fluctuations are negligible (lAdS, 1/m, .. >> lPl). The generalized
statement of the AdS/CFT correspondence is:

ZCFT on ∂M [Φ∂] = ZAdS [Φ∂; ∂M ] (249)

where the symbol ∂M denotes the boundary conditions for the value of the metric (i.e.
asymptotically AdS) and the topology of the spacetime boundary. This remarkable state-
ment, in a sense, summarizes a non-perturbative definition of quantum gravity in AdS.
We will examine it next to some extent.

3.1.3 Dynamical gravity in AdS

Let’s consider general relativity in the presence of a negative cosmological constant and
a scalar field. The full action reads:

SEH [gµν ,Φ] =
1

ld−2
Pl

∫
ddw
√
g[R− 2Λ +

1

2
(∇Φ)2 +

1

2
m2Φ2 + · · · ] (250)

The partition function (omitting the normalization with the zero-point amplitude) in-
cludes, at least in principle, a sum over geometries:

ZAdS[Φ∂; ∂M ] =

∫
g→g̃

Φ→Φ∂

DΦDg e−SEH [g,Φ] (251)

Of course we cannot actually compute the path integral (251) by brute force. In
fact, the Euclidean action in gravity is not bounded below[39], so the problem is not
well-defined on it’s own. The best we can do is to approximate it by expanding around
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classical saddlepoints, that is, a solution of the classical Einstein field equations

ZAdS[Φ∂; ∂M ] ∼ e−SEH [Φcl.,gcl.]+ ··· (252)

where the solutions Φcl., gcl. obey the appropriate boundary conditions and the · · · in-
dicate O(G0

N) terms, i.e. loop terms.
Whenever our theory is defined on a space with a boundary, we need to add a

boundary term to the action (250) in order to have a well posed variational problem for
the metric. This is the so-called Gibbons-Hawking-York term (we set GN = 1):

SEH [g,Φ] =

∫
ddw
√
g[R− 2Λ + · · · ] + 2

∫
∂M

√
h(K −K0) (253)

Here, hij is the induced metric on the boundary and the extrinsic curvature of ∂M is:

Kij ≡
1

2
Lnhij = ∇(inj) , K = hijKij (254)

where n is the inward-pointing unit normal to ∂M . The constant term K0 is just the
extrinsic curvature of the boundary embedded in flat spacetime and it serves as a coun-
terterm, as we will see soon.

The Gibbons-Hawking-York term is needed for the action to be stationary around
classical solutions. The variation of the Einstein term includes both bulk and boundary
terms

δ

∫
M

√
gR ∼

∫
M

(EoM)δg +

∫
∂M

[A(g, ∂g)δg +B(g, ∂g)∂δg] (255)

On a classical solution the bulk term vanishes and if we have fixed the metric at the
boundary then δg

∣∣
∂M

= 0. The term involving ∂δg, though, is not zero. The Gibbons-
Hawking-York term fixes this problem. It is chosen so that the variation of the full
action has the form

δSEH [g] =

∫
M

(EoM)δg − 1

4π

∫
∂M

√
hT ijδhij. (256)

i.e. we eliminated the term ∂δg. The ”quasi-local stress-tensor” associated with the
boundary

T ij ≡ − 4π√
h

δSon−shell

δhij

= −1

4

(
Kij −Khij −K0hij

) (257)

is called the Brown-York stress tensor. The first two terms in the second expression
came from varying the Einstein action plus the Gibbons-Hawking term. The last term
comes from the counterterm, with the coefficient set in order to make the answer finite as
r →∞. We would like to compute this stress tensor and see how its expression in terms
of the boundary data.We will specialize to the case of AdS3 to sketch this calculation
and study its consequences.

Consider global coordinates in Euclidean AdS3 (lAdS = 1)

ds2 = cosh2 ρdτ 2 + dρ2 + sinh2 ρ dφ2 (258)
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The group of symmetries of AdS3 is SO(3, 1) = SL(2,C) or, in Lorentzian signature,
SO(2, 2) = SL(2,R) × SL(2,R). Let us perform the coordinate change z, z = τ ± iφ,
ρ = log(2r) and send r →∞. At leading order in 1/r we get:

ds2 =
dr2

r2
+ r2dzdz (259)

Having this in mind, we define a metric to be asymptotically AdS if at large r takes the
form:

ds2 = hijdx
idxj =

dr2

r2
+ r2dzdz + hzzdz

2 + hzzdz
2 + 2hzzdzdz (260)

where the h’s are arbitrary functions of z and z but independent of r, and serve as a
continuous perturbation to the AdS metric. A notable example of an asymptotically
AdS spacetime is the BTZ black hole[40], which is an ”honest”34 black hole solution in
three-dimensional gravity with negative cosmological constant.

Using Einstein equations for this metric imply that the perturbation is traceless and
conserved, namely:

hzz = 0 , ∂hzz = ∂hzz = 0 (261)

We can now implement (257) and determine the Brown-York tensor. The appropriate
choice for the counterterm in this case is K0 ≡ 1/lAdS, where we restored the AdS units
for consistency. Using (261), after a long calculation35 we arrive at the important result:

Tzz = 0 , Tzz = − 1

4lAdS
hzz , Tzz −

1

4lAdS
hzz (262)

Thus, the Brown-York tensor is traceless, conserved and therefore holomorphic/anti-
holomorphic just like in CFT. We have managed to relate a quantity that is basically
related to the boundary metric in the gravity side, with the characteristics of the energy-
momentum tensor of a CFT in one less dimension. We can make this relation even
stronger actually.

Remaining in our AdS3 set up, we can ask what vector field ζ preserve the form of
the metric (260). The answer is:

z → z + ε(z)− l4AdS
2r2

ε′′(z)

z → z + ε(z)− l4AdS
2r2

ε′′(z)

r → r − r

2
ε′(z)− r

2
ε′(z)

(263)

for arbitrary functions ε(z) and ε(z). Near the boundary, these act on z, z just like con-
formal transformations, whereas the extra ∂r piece acts as a rescaling. Thus, transfor-
mations of AdS3 that preserve the asymptotics of the metric coincide with 2d conformal

34by honest here we mean that it shares all the general features of black holes, like a mass/charge, a
horizon of positive area (length) and a corresponding Bekenstein- Hawking entropy in the semi-classical
limit[41]

35for details of the calculation see[42].
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transformations! Hence, the actual group of symmetries of AdS3 turns out to be the in-
finite dimensional Virasoro group of orientation-preserving diffeomorphisms of the unit
circle, that is G = diffS1×diffS1(which contains SL(2,R)×SL(2,R) as a subgroup).

We can derive a very crucial result from this observation. If we set ε = 0 and focus
only on the holomorphic transformations, under (263) the metric transforms as

ds2 → ds2 +
(
− 2hzzε

′ − εh′zz +
l2AdS

2
ε′′′
)
dz2 (264)

Thus the dz2 piece of the metric, which we interpreted as the gravitational stress tensor
up to a factor of −1/4lAdS, transforms as

δεT = −ε∂T − 2T∂ε− lAdS
8
ε′′′ (265)

This is exaclty the infinitesimal transformation law of T in 2d CFT discussed back in
(67). Comparing the coefficient coming from the Schwarzian derivative, we see

c =
3lAdS
2GN

=
3lAdS
2lPl

(266)

where we restored the factor of GN from dimensional analysis. This is called the Brown-
Henneaux central charge after the work of Brown and Henneaux in [33] back in 1987,
long before the establishment of AdS/CFT by J.Maldacena. We will come back to the
Brown-Henneaux analysis later. For now, the above result, although subject to the case
of AdS3/CFT2 correspondence, allow us to discuss some interesting conclusions that
hold in general in AdS/CFT.

First of all, it seems that the magnitude of the central charge determines how quan-
tum/classical our theory is in the gravity side. A CFT with small central charge (e.g.
a minimal model CFT where c < 1) should, at least naively, correspond to a highly
quantum mechanical regime of gravity in the bulk. In contrast, large central charge
should describe a semi-classical theory of gravity as given by the Einstein-Hilbert action
(or suitable generalizations), where the AdS radius is sufficiently larger than the Planck
length. This last statement should be taken with caution though, as we will explain
shortly.

Back in (252), we saw that we can compute the gravitational partition function by
saddle point approximation in powers ofGN , which basically organize the loop expansion.
If we want to calculate a graviton two-point function at tree-level then we will see that

〈gg〉 ∼ 1/GN + · · · (267)

From the CFT side, we already know that the two point function of the energy-momentum
tensor has the form (c.f. (66))

〈TT 〉 ∼ c+ · · · (268)

This observation, together with the Brown-Henneaux result suggest that the metric
tensor in gravity is dual to the stress-tensor in CFT. Every theory of gravity has a mass-
less spin-2 particle and every CFT has a stress tensor Tµν which generates conformal
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trasnformations. In fact, this statement is generic in AdSd/CFTd−1. Indeed, one can
show that when lAdS >> lPl the gravitons form an approximate Fock space of states.
One can compute the single graviton states and verify that they are in one-to-one cor-
respondence with the CFT stress tensor and its derivatives.

In general, it is believed that the AdS/CFT correspondence, as summarized by (249),
holds for any theory of gravity and CFT. That is, given a theory of gravity we can use
it to define a CFT, and (perhaps) vice-versa. Aside from certain examples however, the
correspondence is well defined and useful only in certain regimes, like the semi-classical
limit in gravity. And even in that limit, certain requirements should hold for the CFT,
in order to reproduce a nice semiclassical theory of gravity given by Einstein-Hilbert
action or suitable generalizations thereof (i.e.f(R) gravity)[43].

3.2 Holography on orientable surfaces

In the previous section we were working on coordinates where the boundary, ∂M , of
Euclidean AdSd was topologically a sphere Sd−1(or an infinite cylinder R× Sd−2). As
we’ve discussed, the topology of the asymptotic boundary is crucial for the computation
of the gravitational path integral. If we don’t include any matter fields in our analysis,
then the path integral reads:

ZAdS [∂M ] =

∫
Dg e−S[g] (269)

and we say that we deal with pure gravity theories. In the present and following sec-
tion, we’re going to study this integral over geometries in its own merit, and use the
AdS/CFT correspondence to see what new knowledge we can gain about it. In par-
ticular, an interesting question one can ask is: can we have a CFT which is dual to a
quantum mechanical theory of just pure gravity36 degrees of freedom? We are going to
focus on the case of AdS3/CFT2 and see what answers we can get. The topology of the
AdS3 boundary will ”define” for us a dual CFT on surfaces we studied in the previous
chapters of this thesis. In this section we discuss the case of an orientable boundary,
namely the torus T2, and we follow the analysis of [45],[46]. The authors of [47] were
actually the first to interpret a gravitational path integral with torus boundary condi-
tions as a CFT partition function, where they termed the resulting sum over geometries
lyrically as Black Hole Farey Tail.

The problem we have to solve is the Euclidean path integral (269) over asymptot-
ically AdS manifolds M , with a conformal structure of a torus at the boundary. As
it’s proposed in [45],[46], to compute this path integral we should sum not just over
all the metrics on a fixed topological 3-manifold, but also over all possible topologies.
The boundary conditions conditions in (269) fix the topology of spacetime only at the
boundary, not in the interior. Thus, the gravitational path integral should take the form:

ZAdS [∂M ] =
∑
M

Z(M) (270)

36the particular theory of gravity in the bulk plays an important role in this question. We are going
to focus mostly on three-dimensional Einstein-Hilbert action, but there are other interesting theories of
pure 3d-gravity (e.g. Chiral Gravity[44])
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where M denotes a specific topological 3-manifold and Z(M) the contribution from the
sum over all metrics on M . This is a nice organization of the path integral but we would
like to know how to compute the different M . We can get a hint from the saddle point
approximation:

ZAdS [∂M ] =
∑
gcl

exp
(
− cS[gcl] + S(1)[gcl] +

1

c
S(2)[gcl] + · · ·

)
(271)

where we have normalized the action S so we can have a factor of c = 3lAdS/2GN out
front, and gcl is a classical saddle, i.e. a solution to the equations of motion. The terms
S(k) describe k-loop terms. As we can see, in the semi-classical limit the only topologies
which contribute to the path integral are those which admit a classical solution to the
equations of motion. In fact, one of the basic assumptions of the authors of [46], is that
this picture -that the only topologies which contribute are those which admit a classical
solution- continues to hold even in the highly quantum regime where c is of order one.
This is a relatively strong assumption but one needs it in order to make progress. In
this regime, the seed partition function for a given gcl contains an infinite (in principle)
series of quantum corrections and there is no sense in which these corrections are small
compared to the classical O(c) term.

A second important assumption in the following analysis is the inclusion only of
smooth geometries for gcl. Non-smooth geometries, such as those which include conical-
type singularities, may solve the equations of motion locally but are usually associated
with new degrees of freedom in the bulk and thus do not describe pure theories of gravity.
We will come back to question this assumption actually, when we study non-orientable
boundaries in AdS.

Given these two assumptions, we can go ahead and write an explicit expression for
the sum over topologies,

∑
M , and for the seed partition function, Z(M), as we will see.

Let’s start by thinking of a simple geometry M that contributes to the above sum. The
metric of Euclidean AdS3 in global coordinates reads:

ds2 = l2AdS
(

cosh2 ρdt2E + dρ2 + sinh2 ρdφ2
)

(272)

where the angle φ is periodic φ ∼ φ+2π. Defining the complex coordinate z = i(φ+i tE),
we have the identification z ∼ z+ 2πin for n ∈ Z. If we further make the identification

z ∼ z + 2πimτ , m ∈ Z (273)

then we get thermal AdS3 with a torus boundary of conformal structure τ . Topologically,
thermal AdS3 is a solid torus with one contractible circle -the spatial φ circle- and a
non-contractible one -the tE circle. This situation actually makes it clear how one can
construct other distinct topologically 3-manifolds. One just needs to consider other
solid tori where other circles are of the boundary torus are contractible in the bulk.
Geometrically, these new solid tori will have the same metric as AdS3 but will be ”glued”
in the boundary torus in a different way. Hence, the different 3-manifolds are related
to thermal AdS3 by large diffeomorphisms which act non-trivially on the boundary
torus. And we actually know this group of large diffeomorphisms from when we studied
conformal transformations on T2, that is, the modular group PSL(2,Z) acting on the
conformal structure τ :
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τ → γτ =
aτ + b

cτ + d
, γ =

(
a b
c d

)
∈ PSL(2,Z) (274)

The geometries constructed in this way are physically inequivalent and, at first glance,
give topologically distinct contributions to the path integral. They also describe smooth
solutions to the equations of motion as was shown in [45]. A simple but important
example is the diffeomorphism that corresponds to the S-transformation

z → z′ ≡ i(φ′ + it′E) = −1

τ
z (275)

After this change of variables, the contractible cycle is now a combination of φ′ and t′E
and not just the spatial cycle alone. The Lorentzian continuation of this geometry will
thus have a horizon. Indeed, this geometry is the Euclidean continuation of the BTZ
black hole we saw back in 3.1.3.

We have reached the conclusion that different geometries are labelled by the elements
γ of the modular group. We will refer to the contribution to the partition function of
thermal AdS3 as Zvac.(τ, τ) or, in other words, the contributions from metrics which
are continuously connected to the AdS3 solution (272). The full path integral therefore
seems to take the form of a sum over the modular group PSL(2,Z) of the seed partition
function Zvac.(γτ, γτ).

It turns out there is a subtlety, however, which is that not all elements of PSL(2,Z)
will give distinct contributions to the path integral. As it’s described in [46], there is a
subgroup Γc of PSL(2,Z) which corresponds to trivial diffeomorphisms on the boundary
that do not change the topology of the resulting 3-manifold. The important thing in this
analysis is that this subgroup depends on the central charge of 2d CFT that ”lives” on
the boundary torus(via the Brown-Henneaux analysis). If the central charge is c < 1, the
subgroup Γc is a finite index subgroup of PSL(2,Z) which leaves the vacuum character
of the conformal theory invariant(we will understand shortly the reason for that). If the
central charge is c >> 1, the theory is in the semi-classical regime and we can actually
determine exactly those trivial diffeomorphisms: Γ∞ constitutes the infinite subgroup of
shifts τ → τ+n, generated by n powers of the modular T matrix. These transformations
basically add a contractible cycle to a non-contractible cycle but this fact does not affect
the topology of the resulting 3-manifold. We will discuss more about the case of c < 1
later.

Eventually, the gravitational partition function is not a sum over the elements of the
modular group, but rather a sum over the elements of the coset Γc/PSL(2,Z):

ZAdS [T2] =
∑

γ∈Γc/PSL(2,Z)

Zvac.(γτ, γτ) (276)

We note that this expression is manifestly modular-invariant and agrees with the mod-
ular invariance expected from CFT living on the boundary.

Now let’s move to describing the contribution from a fixed topology Zvac.(τ, τ). As
we said, Zvac.(τ, τ) describes the contributions from metrics which are continuously con-
nected to the AdS3 solution (272) with the identifications (273). We would like to
determine its non-perturbative expression and not just some semi-classical expansion of
the form (271). At least naively, we expect the partition function to be of the form

Zvac.(τ, τ) ∼ Trvac. e
−βH+iθJ (277)
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where the trace is over the Hilbert space of the theory (which we don’t know yet and
want to determine eventually) and H, J operators which act on this Hilbert space. In
the classical limit the theory is described by general relativity. The Hamiltonian H and
the angular momentum J are defined via the ADM procedure in terms of the leading
behaviour at spatial infinity of the correction to the AdS3 metric (in our case). Hence,
if we analyze the transformations that leave the metric invariant to leading order at
spatial infinity, we will be able to know H, J as the conserved charges corresponding to
the killing vectors of these transformations. This is exactly what we did back in (263)
where we identified the group of transformations as G = diffS1×diffS1, summarizing
the seminal work by Brown and Henneaux [33]. Let us actually proceed more concretely
now.

We can define a classical phase space for our theory as the configuration space of
all physically inequivalent excitations of AdS3 -in the sense that they correspond to
diffeomorphisms that do not vanish sufficiently quickly at infinity- which are continuously
connected to the to the AdS ”ground state” (272). The various states of the theory are
obtained by acting on the ground state with one of the phase space charges. This action
is dictated by the symplectic structure with which the phase space is equipped and is
basically defined by the Dirac bracket37. Let us see these quantities explicitly.

In the Lorentzian version (tE → t = −itE) of coordinates (272), the standard Brown-
Henneaux boundary conditions at large ρ state that the metric is

ds2 = l2AdS

(
dρ2 +

1

4
e2ρ(−dt+ dφ)

)
+O(ρ0)

Following [46], we denote by ζ the vector which generates a diffeomorphism that preserves
these boundary conditions, and by H[ζ] the corresponding phase space charge which
generates the symmetry. Then, the Fourier modes ζν of the killing vectors can be shown
to be

ζn = einu
(
∂u −

1

2
n2e−2ρ∂v − i

n

2
∂ρ
)

+ · · · , ζn = einv
(
∂v −

1

2
n2e−2ρ∂v − i

n

2
∂ρ
)

+ · · ·

where u ≡ 1
2
(t+ φ), v = 1

2
(t− φ) and the ”· · · ” denote subleading corrections in ρ that

do not affect the charges H[ζ]. Brown and Henneaux calculated the Dirac bracket of
the corresponding charges H[ζn] and found the amazing result:

i{H[ζn], H[ζm]} = (n−m)H[ζn+m] +
c

12
n(n2 − 1)δn+m,0 (278)

and similarly for H[ζn]. The Brown-Henneaux central charge is identified, as before,
from the value c = 3lAdS/2GN . Hence, the phase space charges H[ζn] correspond to
Virasoro generators of 2d conformal transformations. The states of the theory created by
H[ζn] are usually called boundary gravitons and correspond to genuine physical states(or
metrics) in the theory describing excitations above empty AdS.

We have managed to describe the classical phase space of the theory for a fixed
topology, namely that of empty AdS. It comprises of the empty AdS solution plus the
”boundary gravitons” geometries. Of course the total phase space of the gravitational
theory has many more states coming from different topologies in the sum (270). The

37a Dirac bracket is the appropriate generalization of the Poisson bracket when we treat classical
systems with second class constraints in Hamiltonian mechanics.
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topologies different than that of empty AdS describe in general geometries where the
spatial cycle is non-contractible and hence, as we mentioned previously, correspond to
BTZ-like black hole states38. In fact, the phase space for these topologies can be worked
out in a similar fashion as that for empty AdS. The only difference is the representations
of the killing vectors ζ and charges H[ζ] that act on the boundary (where the φ and
t circles are essentially exchanged, at least in the BTZ case). The Virasoro algebra
however is still the symmetry algebra of our problem. Therefore, we can summarize
saying that the total classical phase space of pure AdS3 gravity consists of the state
of empty AdS, the states of inequivalent black holes, and the states where boundary
gravitons are ”dressed” on top of the aforementioned states.

Returning to the seed contribution of AdS3 in (276), one might now hope to quantize
its phase space and thus compute Zvac. explicitly. When the central charge is c > 1 this
can indeed be accomplished with the method of co-adjoint orbits [48]. When the central
charge is c < 1, though, the quantization of the phase space turns out to be a difficult
task in general. We will describe an alternative way here, following the arguments of
[49].

Having in mind that all we need to compute is the contribution from the ground state
of empty AdS, we can make progress by relying on the symmetries of this topology! For
every value of c, we can in principle quantize canonically. Let us promote the Dirac
bracket in (278) to commutators, and the generators H[ζn] to operators L̂n ≡ ˆH[ζn]. We
denote also by |0〉 the empty AdS vacuum state. This state has zero ADM energy and
angular momentum, hence will be annihilated by the operators L0 and L0. Moreover,
as it is the state with lowest energy it will be annihilated by all of the lowering Virasoro
operators Ln, Ln with n > 0 which decrease L0 and L0. Thus it is a weight-zero primary

Ln |0〉 = 0 , n > 0 (279)

Another physical requirement comes from the fact that empty AdS is by definition
invariant under global SO(2, 2) = SL(2,R) × SL(2,R) transformations. Therefore, we
should impose

L−1 |0〉 = L−1 |0〉 = 0 (280)

which indicates that there is one null state in the Verma module of our weight-zero
primary. These are all the symmetry requirements that we can impose for the vacuum
state. Descendants of this state are obtained by acting with raising operators L−n, L−n
with n > 1 and correspond to boundary gravitons quantum states.

L−n1 · · ·L−nk |0〉 = 0 , ni > 1 (281)

We have managed to describe a Hilbert space for our theory39. The partition function
(277) is then a trace over the Verma module of |0〉, and takes the familiar form:

Zvac.(τ, τ) = TrHvac q
L0qL0 , q = e2πiτ (282)

where specifically Hvac should be the Hilbert space of irreducible holomorphic and anti-
holomorphic Verma modules of |0〉 (c.f. (144)). As we discussed back in Sect.1.2.3, the
irreducible modules are the full Verma modules modded out by the null states. And this

38in [45], these states are nicely called SL(2,Z) family of black holes.
39one should note that the above analysis is efficient only to the ground state topology. The dynamics

of black holes states are in general not known to be fixed by symmetry. We don’t know for example
where the first black hole states should enter the spectrum.
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is exactly what we want in a consistent gravity theory, that is, to count only physical
states with positive norm. The result however depends on whether c is greater than or
less than one.

When c > 1, the norm of any boundary graviton (281) is positive, with the exception
of the null state L−1 |0〉. This computation of the norm follows directly from the Virasoro
algebra, after we promoted the Dirac bracket to a commutator. The resulting trace is
equal to the character of the full Verma module of |0〉 modded out by the L−1 |0〉 null
state, which is:

Zvac.
c>1 (τ, τ) =

∣∣∣∣q(1−c)/24 (1− q)
η(τ)

∣∣∣∣2 =

∣∣∣∣q−c/24(1 + q2 + q3 + 2q4 + 2q5 + 4q6 + · · · )
∣∣∣∣2 (283)

η(τ) is the Dedekind eta function and the factor of (1 − q) accounts for the removal of
the L−1 from the spectrum.

When c < 1 the computation is identical to the construction of the minimal models
using the Kac determinant. The partition function is simply equal to the irreducible vac-
uum character of a minimal model CFT as we wrote it back in (149) with the additional
factor of (1− q) for the exclusion of the L−1 state. Thus we read

Zvac.
c<1 (τ, τ) =

∣∣χ1,1(τ)
∣∣2

=

∣∣∣∣q(1−c)/24 (1− q)
η(τ)

(
1 +

∞∑
k=1

(−1)k{qh1+k(p−1),(−1)ks+[1−(−1)k]p/2 + qh1,kp+(−1)ks+[1−(−1)k]p/2}
)∣∣∣∣2

(284)

where we follow all the conventions from Section 1.2.6.
We have managed to get a complete picture about the path integral over geometries

for pure Einstein-Hilbert gravity. Let us summarize the results:

The partition function of AdS3 quantum gravity with torus boundary conditions has
the general form:

ZAdS [T2] =
∑

γ∈Γc/PSL(2,Z)

Zvac.(γτ, γτ)

The subgroup Γc of pure gauge transformations, as well as the seed partition function
Zvac. depend on the values of the Brown-Henneaux central charge. For c > 1, where
the theory admits a semi-classical approximation, the subgroup Γc can be determined
concretely [45] and the seed partition function reads

Zvac.
c>1 (τ, τ) =

∣∣∣∣q(1−c)/24 (1− q)
η(τ)

∣∣∣∣2
For c < 1, we have no perturbative control over the bulk theory in order to determine
pure gauge transformations. The form of the seed partition function

Zvac.
c<1 (τ, τ) =

∣∣χ1,1(τ)
∣∣2

however dictates the structure of Γc. We should take Γc to be the subgroup of PSL(2,Z)
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that leaves the minimal model vacuum character
∣∣χ1,1(τ)

∣∣2 invariant. In the case where
the minimal theory has a unique modular invariant partition function (namely the di-
agonal), one can explicitly compute the inequivalent contributions to the sum using the
transformation of the vacuum character under the modular matrices S and T (c.f. Sec-
tion 1.3.3). In the case, though, where we have more than one modular invariants one
should proceed more systematically[46].

All in all, we are in a situation where we can explicitly make computations for the
gravitational partition function. In the light of AdS/CFT correspondence, the question
we should ask then is: does the gravity result reproduce the partition function of a
suitable CFT theory? For the case of pure Einstein-Hilbert gravity the answer is given
by the authors of [45],[46] and we summarize it here:

• For c > 1 the gravitational partition function cannot be written as a well-defined
trace over a CFT Hilbert space.

• For c < 1 the gravitational partition function agrees with a minimal model CFT
only for the central charge values: c = 1/2 and c = 7/10.

The (mostly) negative results of these authors for the search of a dual theory of
pure Einstein gravity might be suggestive that such a theory doesn’t exist quantum
mechanically. One can however advocate the argument that some of the assumptions
that led to the form (270) were too strict. A basic assumption, for example, was that
one should include only smooth geometries in the sum over 3-manifolds. We are going
to discuss the validity of this assumption when we examine pure gravity with a non-
orientable boundary in the next section.

Finally, the fact that the gravitational partition function in the highly quantum
regime (c < 1) agrees with two minimal theories, namely the M(4, 3) (Ising) and the
M(5, 4) (Tricritical Ising) models, deserves some special attention. As we mentioned
back in Sections 1.2.6 and 1.3.3, the Ising and Tricritical Ising model are the unique
unitary minimal theories with two basic characteristics: (a) their operator spectrum
(other than the identity) obeys the bound:

h > c/24

and, (b) their partition functions is given solely by the diagonal invariant

ZAA =
∑
r,s

|χr,s|2

. From the bulk point of view, the fact that their partition function is given by the
diagonal invariant was really crucial in the calculations of [46], in order to render the
corresponding CFT partition functions equal to the gravitational one. As far as the
bound on the spectrum is concerned, in gravity the black hole states are naturally sep-
arated by the AdS ground state by a gap. As it was shown in [17],[41], these black
holes should correspond to states in the CFT with weight larger than c/24 in order to
reproduce the semiclassical Bekenstein-Hawking entropy correctly from the CFT. Thus,
it seems that M(4, 3) and M(5, 4) theories are the only two diagonal minimal model
CFTs with the property that all primary states can be interpreted as black holes in AdS3

gravity. The rest of the minimal models that failed to reproduce the gravity theory, ac-
cording to the analysis of [46], include primaries with dimensions (not much) below
c/24. For example, the diagonalM(6, 5) theory has central charge c = 4/5 and includes
a single primary operator, namely h2,2, with dimension h = 1/40 < c/24. Therefore a
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possible interpretation is that such primaries correspond to matter fields which do not
render the theory dual to pure gravity, but rather to something more complicated.40

3.3 Holography on non-orientable surfaces

In this section we will consider the gravitational partition function on non-orientable
surfaces, focusing on the case of RP2 and the Klein bottle K2. Following the recent
analysis of [51], we will examine only the semi-classical limit (c >> 1) in these cases, and
see if our results reproduce the expected CFT results from Chapter 2. One assumption
that is maintained from the previous section is that the AdS3 partition function still
admits a semi-classical expansion in saddle-point geometries. In particular,

ZAdS [RP2,K2] =

∫
Dg e−S[g] ≈

∑
gcl

exp
(
− S[gcl.] + · · ·

)
(285)

The problem is to classify all these saddles with the appropriate boundary conditions
and study their features and contributions to the partition function.

As we mentioned back in Section 2.2, any non-orientable surface Σg can be repre-

sented as a Z2 quotient of an orientable double cover Σ̂g. For example, the RP2 is a Z2

quotient of the sphere, and the Klein bottle K2 is the Z2 quotient of a torus. This ob-
servation applies in the bulk as well and allow us to relate the familiar bulk saddles with
orientable boundary to bulk saddles with a non-orientable one. Actually, any 3-manifold
with a non-orientable boundary must be non-orientable itself and thus, any bulk geom-
etry with Σg boundary is the Z2 quotient of an orientable manifold whose boundary is

the orientable double cover Σ̂g. The bulk saddles obtained in this way, however, are not
guaranteed to be smooth in general.

Let’s expand on the previous statement. Imagine we have a manifold M that has
discrete symmetry group G. We can consider a new manifold M̃ = M/G, which is
obtained from the old one by modding out by the symmetry group G. If M has no fixed
points under the action of G then M/G is a smooth manifold. On the other hand, if G
has fixed points, then M/G is no longer a smooth manifold but has conical singularities
at the fixed points. These are known as orbifold singularities and are the types of non-
smooth saddles we will come across in what follows. A simple example is the case of the
real line R. It has a Z2 symmetry x → −x which has one fixed point, namely x = 0.
Thus, the orbifold R/Z2 is the manifold of half-line with an orbifold singularity at x = 0.

For our purposes, we want to find a locally Euclidean AdS3 spacetime with isome-
try group SL(2,C) or, in other words, a locally hyperbolic 3-manifold, whose conformal
boundary is a non-orientable surface Σg. Let’s begin with the case of Σg = RP2 = S2/Z2.
The bulk saddles with such boundary should be of the form H3/Z2, where H3 the hy-
perbolic 3-space. An easy way to visualize these geometries is to imagine starting from
the S2 boundary of H3 and extending the involution z → −1/z into the interior. We
would like to see however if there are any orbifold singularities in such a saddle. In
order to specify a point in the bulk of such saddle uniquely, we must choose an element
g ∈ SL(2,C) with g2 = 1. This means, in turn, that every such g has a single fixed
point in the bulk; and actually different choices of g correspond to different choices of
fixed point. We have come to the conclusion that there are no smooth saddles when

40see however [50].
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the boundary is RP2. If we stick to the assumption that only smooth saddles should
be included in (285), exactly as we did in the orientable case, then we realize that the
gravity partition function should vanish. Such a result seems to be in odds with the
CFT partition function on RP2 as we examine it in Chapter 2. In particular, a vanish-
ing partition function would mean that

ZRP2 = 〈0|C〉 = Γ1 → 0

Let’s examine the case of the Klein bottle and return to the above statement again
later. As we mentioned, the Klein bottle geometry is obtained as the Z2 quotient of the
rectangular torus: K2 = T2/Z2. Restating the identification we wrote on Section 2.3.:

(t, φ) ∼ (t+ β, φ+ 2π) ∼ (−t, φ+ π) (286)

The way to identify the bulk saddles with this boundary is to look for saddle points
for the torus which are invariant under the Z2 action. In the previous section, we saw
that the bulk saddles with T2 boundary conditions are solid tori characterized by which
non-contractible cycle in the torus becomes contractible in the bulk. Since the Z2 is a
symmetry of the boundary torus, the corresponding bulk saddle will either be invariant
under it or will be exchanged with some other saddle. Under the above orientation-
reversing, a t-cycle is odd whereas a φ-cycle is even. More formally, since the first
homotopy group of the torus is H1(T2) = Z⊕Z, a natural basis consisting of an α cycle
along t and a b cycle along φ gives us a general contractible cycle of the form mα+ nb,
where m,n ∈ Z. Therefore, under orientation-reversing the mα+ nb cycle is exchanged
with −mα + nb. We conclude that there are only two bulk saddles which are invariant
under Z2: the one where the α cycle is contractible, i.e. the non-rotating BTZ black
hole, and the one where the b cycle is contractible, i.e. thermal AdS. We distinguish
these two particular saddles, and construct the Klein bottle geometries as quotients of
these.

It is convenient to start with Poincaré coordinates (y, z, z) on usual AdS3

ds2 =
dy2 + dzdz

y2

with y ∈ (0,∞) and z a complex coordinate on the planes of constant y. The orbifold
by γ : (y, z) → (eβy, eβz) turns the geometry in to a solid torus. Furthermore, if we
write z = et+iφ, where t is the Euclidean time on the boundary, this is a torus with

t ∼ t+ β, φ ∼ φ+ 2π, and the solid torus is thermal AdS3. If write instead z =
β
2π

(φ+it),
the boundary is a torus with t ∼ t + 4π2/β, φ ∼ φ + 2π, and the bulk solution is the
non-rotating BTZ black hole. To the obtain the saddles for the Klein bottle we just have
to take the Z2 quotient t→ −t, φ→ φ+ π.

In the case of thermal AdS, where z = et+iφ, the Z2 action corresponds to the
involution z → −1/z, which can also be written as a discrete isometry of H3 as:

σ : z → − z

|z|2 + y2
, y → y

|z|2 + y2

where σ2 = 1. We notice that there two fixed points in this case, namely at z = 0 and
y = 1, eβ/2. The space we obtain after the orbifold with γ and σ is generally H3/Γ,
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where Γ is the subgroup generated by the γ and σ orbifold actions. The boundary of
that space is a Klein bottle with fundamental region shown in Fig.3.3(a) below. It is
equivalent to the propagation between two crosscaps (corresponding to the two fixed
points) as we discussed back in Chapter 2.

Figure3.3(a): The fundamental domain of the K2 boundary of the space H3/Γ, with
Γ = {γn, σγn|n ∈ Z}.The propagation between two crosscaps indicate the existence of fixed points for

the quotient space.

where the modular parameter reads l = β/4π. If we further want to write the CFT
partition function on this boundary, using expression (201) from Chapter 2, we have

ZK2(β) = 〈ΘC| e−2πl(L0+L0− c
12

) |C〉 =
∑
i

Γ2
i

〈〈
Ci
∣∣e−βH/2∣∣Ci〉〉 (287)

where H = L0 + L0 − c/12, and
∣∣Ci〉〉 the crosscap Ishibashi states.

In the case of the non-rotating BTZ, where z = e
β
2π (φ+it), the Z2 action corresponds

to identifying z → eβ/2z, which in turn can be written as a discrete transformation

κ : z → eβ/2z, y → eβ/2y

with no fixed points and κ2 = γ. The fact that this subgroup is freely acting means that
in this case we obtain a smooth manifold H3/Γ, where Γ is the subgroup generated by
κ alone. This geometry is actually the Euclidean version of the so-called RP2geon[52].
Its boundary is a Klein bottle with modular parameter l = π/β and fundamental region
given below:

Figure3.3(b):The fundamental domain of the K2 boundary of the space H3/Γ, with Γ = {κn|n ∈ Z}.
This geometry is smooth and corresponds to the Euclidean geon.
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This is basically the second representation of K2 as we obtained it back in Section 2.3
using S-duality. It’s interesting that we confirm again this construction (this time from
the S-duality that basically relates thermal AdS and the non-rotating BTZ) which was
otherwise expected from the symmetries of AdS. The partition function in this case is
given by

ZK2(β) = Tr
(
Ωe−2π2H/β

)
(288)

where Ω is the parity operator.

Summarizing so far: in the case of RP2 boundary we have obtained no smooth bulk
solution of Einstein gravity, whereas for a K2 boundary we have one smooth solution,
namely the Euclidean RP2 geon, and one non-smooth solution from the quotient of
thermal AdS3. We would like now to go back and calculate the gravitational path
integral (285) in the large central charge limit, by calculating the contributions of these
geometries. We are facing however the question of what kind of saddles -smooth or
non-smooth- should be included in the sum over gcl.. In the orientable case we didn’t
have to struggle about this fact because we constructed only smooth saddles and their
inclusion in the path integral seemed a natural assumption. Let’s use AdS/CFT to get
our answers in the present case.

If we assume that only smooth saddles are to be included, we get at first that
ZAdS[RP2] → 0 which in turns means ZRP2 = 0 , as we’ve discussed already. For the
Klein bottle, we do have one smooth saddle so let’s investigate the result better. The
classical action of the Euclidean RP2 geon is easy to compute: since the solution is the
Z2 quotient of the BTZ black hole, the action is just half the action of the non-rotating
BTZ black hole41. This gives a contribution:

ZAdS[K2] ≈ exp
{π2c

6β

}
(289)

where c = 3lAdS/2GN Let us now see if it reproduces the CFT partition function. From
(288), at high temperatures (small β) we can approximate the expression by the vacuum
state contribution with energy −c/12 on the circle. Hence,

ZK2(β → 0) ≈ exp
{π2c

6β

}
(290)

where we have assumed that the vacuum is parity symmetric. Therefore, there is an
agreement between the CFT and gravity in this case. The small temperature(large β)
behaviour is a little more subtle though. From the gravity side we see that the action
of the geon is zero for β → ∞ rendering the partition function finite. However, from
the CFT point of view we can use the representation (287) for the K2 partition function
which gives

ZK2(β →∞) =
∑
i

Γ2
i

〈〈
Ci
∣∣e−βH/2∣∣Ci〉〉 ≈ Z2

RP2exp
{βc

24

}
(291)

where Γ1 = ZRP2 . The only way the gravity and CFT behaviours agree in this case is if
ZRP2 → 0 in order to compensate for the exponential growth. This indeed seems to be a
correct statement as we argued independently from the gravitational partition function

41for the calculation of the action of the BTZ geometry see for example Note 16 in [53].
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on RP2. So if we take into account also our previous result we again reach an agreement.
There is one more non-trivial requirement though, implied by the exact expression of
ZK2 . For primary operators φi with negative energies, i.e. Ei = hi + hi − c/12 < 0,
the one-point normalizations Γi should also vanish in order to render the result finite at
large β. This is a non-trivial constraint from the gravity side, especially considering the
fact that Γi’s should also obey the sewing constraints we described back in Section 2.4.
Moreover, the vanishing of these Γi’s should hold even for finite values of the central
charge, and not just at some semi-classical limit in 1/c, or the exponential growth will
eventually take over at sufficiently large β. In other words, the general conclusion that
we can reach at this point is that: a bulk calculation involving only smooth saddles can
reprduce the CFT behaviour only if the one-point functions Γi vanish for all operators
with hi + hi < c/12.

Let’s take into consideration our results in Section 2.5 for the one-point normaliza-
tions of the Ising and the Tricritical Ising model. As far as the vanishing of ZRP2 is
concerned, it is immediately clear in both cases that, if we set Γ1 = ZRP2 = 0, then
all the Γi vanish. In this case, the Klein bottle partition function should also vanish
identically. However, from the gravity side we have already identified a smooth saddle
point which contributes to the Klein bottle partition function. We see, therefore, that
the assumption of the inclusion of smooth saddles leads to some qualitative contradiction
with CFT. Unfortunately, the results we obtained in (210) and (211) are not informa-
tive about the vanishing of Γi for some non-trivial operator with hi + hi < c/12. As we
discussed, the spectrum of these two diagonal theories satisfies the bound h > c/24.

The authors of [51] proceeded with considering the inclusion of singular saddles
in the above analysis. They examined both the singular semi-classical saddles (as we
will also examine here) as well as the one loop determinant term. And they indeed
found agreement with the CFT partition function. This fact constitutes a significant
modification of the usual rules for calculating the integral over geometries in pure 3d
gravity, especially taking into account the (mostly) negative results we discussed in the
previous section for the search of a CFT dual. As it’s emphasized in [51], one suggestive
approach as to what kind of singular geometries should be included in the path integral
might be the inclusion of instanton contributions which occur at points in the Euclidean
time circle. These saddles do not correspond to some additional ”particle-like” degrees
of freedom in the bulk and hence, we are still considering a pure theory of gravity.

Before we end this chapter, let us discuss the case of the inclusion of singular saddles
at tree level, just so we can enjoy to some extent the agreement of the formulas. In the
case of RP2, the quotient spaces H3/Z2 will have fixed points in the bulk and they will
contribute to ZRP2 rendering it non-zero. For the Klein bottle we have, in addition to
the smooth saddle of the geon geometry, we now consider the singular saddle from the
Z2 quotient of thermal AdS. Its action will therefore be half the action of the thermal
AdS, plus potentially a contribution from singularities. At small β, the geon geometry
dominates and our results agree as in (289),(290). For large β it is the singular saddle
that dominates and we get

ZAdS[K2] ≈ exp
{
−
(
SAdS/2 + Ssing.

)}
= exp

{
β
c

24
+ Ssing.

}
(292)

The important thing is that Ssing. is independent of β since the singularities are localized
at points in the t direction. Hence, these contributions add an overall constant to the
action and allow us to remarkably match the result with the CFT partition function
(291).
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4 Discussion

In this thesis we have mostly considered CFTs on non-orientable surfaces and obtain
some exact information about the conformal data of two Minimal Model theories, namely
the Ising and the Tricritical Ising model, on the surface of Real Projective plane RP2.
This piece of data is specifically the one-point function normalizations constants Γi’s on
RP2, which together with the OPE coefficients and the operator spectrum, uniquely fix
the partition function of a CFT on a general non-orientable surface[29].

According to the AdS/CFT correspondence[32], a quantum gravity theory in a d-
dimensional spacetime with asymptotically AdS boundary conditions and specific bound-
ary topology is equivalent to a (d−1)-dimensional CFT defined on the boundary of that
spacetime. The authors of [46] considered AdS3 spacetime with torus boundary condi-
tions and examined to which extent the Ising and the Tricritical Ising model on T2 are
equivalent to pure gravity in the bulk by explicitly computing the corresponding parti-
tion functions. They found perfect agreement in both sides and thus they were naturally
led to conjecture a duality between Ising and Tricritical Ising in the one side, and pure
gravity theory at specific order one values of the Brown-Henneaux central charge on the
other side. As they explain though, these dualities should remain conjectural since they
only provide evidence about the torus partition functions. In principle, one should be
able to check the duality in higher genus partition functions, non-orientable surfaces of
genus g or even in surfaces with boundaries as well. If agreement persists in all of these
cases then the duality should be considered exact. In this spirit, the values of the Γi’s
we calculated in this thesis for the Ising and the Tricritical Ising model, certainly allow
us to calculate the Klein bottle partition function(c.f. (201)) for these models. Hence
calculating the non-perturbative contributions of the corresponding pure gravity path
integral and see if it matches with CFT is a natural next project, although we are not
aware of such calculation in the literature.

Furthermore, one can certainly solve the sewing constraints (209) for the rest of
the diagonal minimal theories and hence determine their structure on non-orientable
surfaces. In connection with the pure gravity program, it would be interesting to find
a model with Γi = 0 for the operators with h + h < c/12, and some Γi 6= 0 for higher
dimension operators. This fact would mean that light operators do not contribute in the
partition function (e.g. on K2) and hence the inclusion of only smooth saddles in the
orientable-boundary case is probably justified for that reason, but this might not be true
in general as an assumption. The Ising and the Tricritical Ising are not good playgrounds
for these kind of conclusions because as we’ve explained they constitute extremal CFTs.
A good first example to check might be the diagonalM(6, 5) model with central charge
c = 4/5 which includes an operator φ2,2 of dimension h2,2 = 1/40 < c/24.

Finally, let us comment on a recent interesting application of CFTs on RPd to con-
structing bulk AdS operators in the context of holography. As we mentioned in 3.1.2,
the asymptotic boundary values of any bulk fields in AdS correspond to primary op-
erators of specific conformal dimension (dictated by the mass of the bulk field) in the
boundary CFT. However, there is no confirmed correspondence of a purely bulk oper-
ator in AdS and a corresponding intrinsic operator in CFT. In the semi-classical limit
where the bulk is described by an effective local QFT on a fixed background, one can
in principle integrate the equations of motion in the bulk and obtain a non-local ex-
pression of a bulk operator in terms of integrals of the boundary primary operators.
This is the so-called HKLL procedure, after [54]. However, we would like to have an
inherent non-perturbative operator in CFT that corresponds to such a bulk operator
and also one that does not rely on the spacetime geometry as in HKLL. H.Verlinde in
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[55] first proposed such an inherent definition from CFT. Working in the framework of
AdS3/CFT2 he proposed the identification of a bulk operator in AdS with a Virasoro
crosscap state in the dual CFT, as we defined it in (191). Recently, the authors of [56]
provided non-trivial evidence that this proposition passes a series of non trivial tests. In
particular, they rely on the fact that an ’honest’ bulk operator should be inherently grav-
itationally dressed and this fact imposes some strong physical constraints on the form its
correlations functions. According to [56], the identification with the crosscap state does
seem to obey all these constraints in the case of AdS3/CFT2. Another remarkable fact
these authors show is that, for holographic CFTs, approximate bulk locality emerges as
a dynamical consequence of the crosscap sewing constraint (209). They also point out
some interesting connections of this approach with the investigation of the black hole
interiors and the regularity of correlation functions at the black hole horizon.

All in all, it seems that the study of CFTs in non-orientable surfaces is a far reaching
subject, especially in the context of AdS/CFT. It would be extraordinarily interesting to
study all the aforementioned consequences in the case of the minimal theories where we
can explicitly compute the crosscap state by determining a finite number of one-point
normalizations on RP2.
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Appendix A. Coulomb-gas formalism for Minimal Mod-

els

This appendix describes a representation of the conformal Minimal Models in terms
of vertex operators built from a free boson with special boundary conditions. We will
sketch the analysis as presented in [1] in order to reach to the expressions for the OPE
coefficients and the duality matrices.

This representation of the Minimal Models bears the name of Coulomb gas from the
resemblance of the free boson correlator:

〈φ(z, z)φ(w,w))〉 = −4ln|z − w|

with the electric potential energy between two unit charges in two dimensions. The
above propagator is obtained by the usual 2d bosonic action:

S =
1

16π

∫
d2x∂µφ∂

µφ

which corresponds to a conformal field theory with central charge c = 1. The energy
momentum tensor reads:

T (z) = −1

4
(∂φ)2(z)

The basic idea is to consider a modified stress tensor

T (z) = −1

4
(∂φ)2(z) +Q∂2φ(z)

obtained from the action

S =
1

16π

∫
d2x
√
g[gµν∂µφ∂νφ+ 2QφR]

The Ricci term R in the action contributes to, among other things, global symmetries
and Ward identities as well as the central charge:

c = 1 + 24Q2

Conformal primaries of interest are the so-called vertex operators of the form

Va(z, z) ∼ eiaφ(z,z)

suitable regularized. Since the propagator for φ is that of a free boson, arbitrary corre-
lation functions of vertex operators have the form〈

n∏
i=1

Vai(zi)

〉
Q

∼
∏
i<j

z
2aiaj
ij

The subscript Q denotes that these correlation functions are actually only non-zero
if a neutrality condition is satisfied. This condition arises as following: the Ricci scalar
term in the action modifies the nature of the global symmetry φ → φ + A, effectively
placing a background charge of −2iQ at infinity. More precisely, despite the fact that
the Ricci scalar coupling ’breaks’ the shift symmetry, a modified Ward identity survives
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that forces non-zero correlation functions to have total charge −2iQ. Taking Q ≡ ia0

and noting that the vertex operators Va(z) have charge a under the global symmetry,
the neutrality condition is: ∑

i

ai = 2a0

In the case of a two point function, this prescription yields

〈Va(z)V2a0−a(0)〉 ∼ z2a(2a0−a)

which implies that one should take V †a = V2a0−a and

ha = a(a− 2a0)

In order to generalize the set of correlators that can be non-vanishing consistently
with the neutrality condition above, one adds in non-local ’screening charges’, which are
conformally invariant operators that soak up extra charge:

Qa =

∮
C

dzVa(z)

For this to be conformally invariant, the vertex operator must have weight 1 to offset
the measure, which requires:

a(a− 2a0) = 1 → a± = a0 ±
√
a2

0 + 1

One can show that inserting such an operator does not affect the conformal Ward identi-
ties. Therefore, this is a constructive method for generating correlation functions that are
consistent with crossing symmetry and conformal symmetry, which for minimal models
uniquely determines the correlation functions.

The solutions a± satisfy

a+ + a− = 2a0 , a+a− = −1

and for later use we define the parameters

ρ ≡ a2
+ , ρ′ = a2

− =
1

ρ

To evaluate, say, the four point function 〈VaVaVaV2a0−a〉, one must be able to add in
factors of Q± to bring the total charge to 2a0. If 2a is a linear combination of a±, i.e. if

2a = (1− r)a+ + (1− s)a−

then one can consider 〈
VaVaVaV2a0−aQ

r−1
+ Qs−1

−
〉

By construction, the operators in this correlation function satisfy the neutrality condi-
tion. It is conventional to parametrize these particular charge values of a by:

ar,s ≡
1− r

2
a+ +

1− s
2

a− = a0 −
1

2
(ra+ + sa−)

corresponding to dimensions of

hr,s = ar,s(ar,s − 2a0) = −ar,sa−r,−s =
(ra+ + sa−)2

4
− a2

0
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Similar considerations apply to correlation functions with more than one operator,
i.e.

〈
Va1Va2Va3V2a0−a4Q

r
+Q

s
−
〉
.

The crucial thing with all this formalism is that we can have integral represen-
tations of the correlators in minimal models. For instance, the correlator F (zi) ≡
〈V1,2(z1)V1,2(z2)Vr,s(z3)V−r,−s(z4)Q−〉 can be represented as

F (zi) =

∮
C

du 〈V1,2(z1)V1,2(z2)Vr,s(z3)V−r,−s(z4)V−(u)〉

= z
2a2

1,2

12 (z13z23)2a1,2ar,s(z14z24)2a1,2a−r,−sz
−2∆r,s

34 ×

×
∮
du[(z1)(z2 − u)]2a1,2a−(z3 − u)2ar,sa−(z4 − u)2a−r,−sa−

Using global conformal invariance to send z1 → ∞, z2 → 1, z3 → z and z4 → 0, this
reduces to

F (z) = (1− z)2a1,2ar,sz2a2
1,2

∮
du u2a1,2a−(u− z)2a1,2a−(u− 1)2ar,sa−

up to some phase factors that we will fix independently. This integral depends on the
choice of contour. This contour should be single valued, that is the integrand should
be single valued upon going around the entire contour, while also enclosing at least
one singular point so that it is non-vanishing. A way to do it is to use the so-called
Pochhammer contour, which encloses two of the singularities twice, once clockwise and
once counter clockwise. Since any monodromy obtained by going around a singularity
is eventually cancelled by going around in the opposite direction, the integrand is single
valued. Furthermore, by collapsing the contour to the line connecting the singularities,
the integral reduces to a single integral between the two singular points, though there is
a phase that one has keep track of. In any case, there are two independent such contours,
which correspond to the two different conformal blocks that are allowed in the OPE of
V1,2 × V1,2. In the present case, they have simple representations as hypergeometric
functions, via the identities∫ ∞

1

du ua(u− 1)b(u− z)c = I1(a, b, c; z)

=
Γ(−a− b− c− 1)Γ(b+ 1)

Γ(−a− c) 2F1(−c,−a− b− c− 1;−a− c; z) ,∫ ∞
z

du ua(1− u)b(z − u)c = I2(a, b, c; z) = z1+a+c

∫ ∞
0

ua(1− u)c(1− zu)b

= z1+a+cΓ(a+ 1)Γ(c+ 1)

Γ(a+ c+ 2)
2F1(a+ 1,−b; a+ c+ 2; z)

The generalization to higher level degenerate operators is straightforward [1].
So far we have concentrated on the holomorphic correlation functions, but for a

physical theory we must construct add in the anti-holomorphic sector. Restricting to
the case of scalar primaries, we can construct the physical correlation function as

G(z, z) =
N∑

k,l=1

CklFk(z)Fl(z)
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To specify the matrix Ckl we require that the physical correlation function be single
valued and hence monodromy free. In particular we check the monodromy around z = 0
and z = 1. The z = 0 case is simple and forces Ckl to be diagonal Ckl = Ckδkl:

G(z, z) =
N∑

k,l=1

Ck|Fk(z)|2

The z = 1 monodromy is much more involved. The approach worked out in [15],[16] is
to use the integral expressions to rewrite the Fk(z) in terms of N new analytic functions
F̃k(z) with diagonal monodromy around z = 1; physically this procedure is expressing
the conformal blocks in the s-channel in terms of the t-channel blocks:

Fk(z) = M

[
a2 a3

a1 a4

]
k,l

F̃l(z)

In terms of the t-channel blocks, the correlation function reads

G(z, z) =
∑
k,l,m

CkM

[
a2 a3

a1 a4

]
k,l

M

[
a2 a3

a1 a4

]∗
k,m

F̃l(z)F̃m(z) ≡
∑
l,m

C̃lmF̃l(z)F̃m(z)

Therefore diagonal monodromy around z = 1 requires C̃lm = 0 for for l 6= m. With this
constraint, one can solve for the coefficients Ck up to an overall coefficient

Ck
CM

=
M∗

NN(M−1)Nk
M∗

kN(M−1)NN

Provided we normalize the blocks Fk(z) appropriately, the Ck are just the OPE coeffi-
cients! The squared OPE for the diagonal Minimal Models read[15],[16]:

[
Cr1,s1

(r2,s2),(r3,s3)

]2
=
a(r2, s2)a(r3, s3)

a(r1, s1)

[
D

(r1,s1)
(r2,s2),(r3,s3)

]2
(293)

where a(r, s) and D
(r1,s1)
(r2,s2),(r3,s3) are defined as:

a(r, s) =

[
s−1,r−1∏
i,j=1

1 + i− ρ(1 + j)

i− jρ

]2 [s−1∏
i=1

Γ(iρ′)Γ(2− ρ′(1 + i))

Γ(1− iρ′)Γ(ρ′(1 + i)− 1)

]

×

[
r−1∏
j=1

Γ(jρ)Γ(2− ρ(1 + j))

Γ(1− jρ)Γ(ρ(1 + j)− 1)

]
,

D
(r1,s1)
(r2,s2),(r3,s3) = µ(l, l′)

[
l′−2,l−2∏
i,j=0

λ̃ij(r1, s1)λij(r2, s2)λij(r3, s3)

]

×

[
l−2∏
j=0

τ̃j(r1, s1; ρ)τj(r2, s2; ρ)τj(r3, s3; ρ)

]

×

[
l′−2∏
i=0

τ̃i(s1, r1; ρ′)τi(s2, r2; ρ′)τi(s3, r3; ρ′)

]
.
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Here l = r2+r3−r1+1
2

and l′ = s2+s3−s1+1
2

, while the auxiliary functions µ, λ and τ are
defined as

µ(l, l′) = ρ4(l−1)(l′−1)

l′−1,l−1∏
i,j=1

(i− ρj)−2

l′−1∏
i=1

Γ(iρ′)

Γ(1− iρ′)

l−1∏
j=1

Γ(jρ)

Γ(1− jρ)
,

λij(r, s) = [(s− 1− i)− ρ(r − 1− j)]−2 ,

λ̃ij(r, s) = [(s+ 1 + i)− ρ(r + 1 + j)]−2 ,

τi(r, s; ρ) =
Γ(s− ρ(r − 1− i))

Γ(1− s+ ρ(r − 1− i))
,

τ̃i(r, s; ρ) =
Γ(ρ(r + 1 + i)− s)

Γ(1 + s− ρ(r + 1 + i))
.

We also recall that ρ = 1/ρ′ = a2
+, which takes the value ρ = p/q for the minimal model

M(p, q). The unitary series correspond to p = m+ 1, q = m.

Finally, we give the closed form expressions for the fusion matrices M :

M

[
α2 α3

α1 α4

]
(ps,p′s),(qt,q

′
t)

=
N

(m,n)

k2,k′2
(b, a, c, d; ρ)

N
(m,n)

k1,k′1
(a, b, c, d; ρ)

α
(m)
k1,k2

(a, b, c, d; ρ)α
(n)

k′1,k
′
2
(a′, b′, c′, d′; ρ′) (294)

where the parameters are defined as

a = 2α+α1, b = 2α+α3, c = 2α+α2 , d = 2α+ᾱ4 , ρ = α2
+ ,

a′ = 2α−α1, b′ = 2α−α3, c′ = 2α−α2 , d′ = 2α−ᾱ4 , ρ′ = α2
− = 1/ρ ,

the indices as (ki, k
′
i, i = 1, 2 are just convenient parameterizations for the exchanged

operators)

m =
r1 + r2 + r3 − r4

2
, n =

s1 + s2 + s3 − s4

2
,

k1 =
r1 + r2 + 1− ps

2
, k′1 =

s1 + s2 + 1− p′s
2

,

k2 =
r2 + r3 + 1− pt

2
, k′2 =

s2 + s3 + 1− p′t
2

,

the normalization functions as (note that a′ = −a/ρ, b′ = −b/ρ, etc.)

N
(m,n)
p,p′ (a, b, c, d; ρ) = Jm−p,n−p′(d, b; ρ)Jp−1,p′−1(a, c; ρ) ,

Jp,q(a, b; ρ) = ρ2pq

p,q∏
i,j=1

1

iρ− j

p∏
i=1

Γ(iρ)

Γ(ρ)

q∏
j=1

Γ(jρ′)

Γ(ρ′)

×
p−1∏
i=0

Γ(1 + a+ iρ)Γ(1 + b+ iρ)

Γ(2− 2q + a+ b+ (p− 1 + i)ρ)

×
q−1∏
j=0

Γ(1 + a′ + jρ′)Γ(1 + b′ + jρ′)

Γ(2− 2p+ a′ + b′ + (q − 1 + j)ρ′)

×
p−1,q−1∏
i,j=0

1

(a+ iρ− j)(b+ iρ− j)[a+ b+ ρ(p− 1 + i)− (q − 1 + j)]
,
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and finally,

α
(m)
j,k (a, b, c, d; ρ) =

min(m,j+k−1)∑
p=max(j,k)

p−j∏
i=1

s[(j + k + i− p− 1)ρ]

s(iρ)

m−p∏
i=1

s[(p− k + i)ρ]

s(iρ)∏m−p−1
i=0 s[1 + a+ (j − 1 + i)ρ]

∏p−k−1
i=0 s[1 + d+ (m− j + i)ρ]∏m−k−1

i=0 s[a+ d+ (m− k − 1 + i)ρ]∏j+k−p−2
i=0 s[1 + b+ (m− j + i)ρ]

∏p−j−1
i=0 s[1 + c+ (j − 1 + i)ρ]∏k−2

i=0 s[b+ c+ (k − 2 + i)ρ]
,

s(x) = sin(πx) .
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