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Abstract 

Serotonin (5-hydroxytryptamine, 5-HT) is a common neurotransmitter in mammals, and 

the serotonergic system plays an essential role in the regulation of various behaviours such as 

sleep, perception, and cognitive and autonomic functions in the mammalian central nervous system 

(CNS). Previous studies have investigated the distribution pattern of the 5-HT type 3 (5-HT3) 

receptor in the brain. Moreover, it has been demonstrated that 5-HT3 receptors are expressed in 

both the substantia nigra (SN) and the dorsal raphe nucleus (DRN). Here, we determine the 

quantitative distribution of 5-HT3 receptors in the SN and DRN of the rat. 

 Six rats were deeply anaesthetised with 4% isofluorane in 100% O2 and perfused 

transcardially with 0.9% saline followed by 4% paraformaldehyde in phosphate buffered saline 

(pH 7.4). Double immunofluorescence immunohistochemistry was performed on coronal sections 

(40 μm) of rat brain covering the entire rostro-caudal extent of the SN and DRN with an antibody 

specific to the 5-HT3A receptor subunit in combination with antibodies targeting the 

monoaminergic markers tyrosine hydroxylase (TH) and serotonin transporter (SERT). Then, the 

number of 5-HT3-, TH- and SERT-positive neurons were counted either in the SN or in the DRN 

using stereological techniques. 

We found that TH- and 5-HT3A-positive cells are present in the SN, with a higher number 

of TH- positives cells compared to 5-HT3A-positive cells. We also found that SERT- positive 

cells are present in the DRN in a higher proportion. In contrast, no 5-HT3A-positive cells were 

found in the DRN. The present results support the presence of 5-HT3 receptors in the SN, but not 

in the DRN, and do not support their expression on dopaminergic nor serotonergic cells.  
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Résumé 

La sérotonine (5-hydroxytryptamine, 5-HT) est un neurotransmetteur répandu chez les 

mammifères. En effet, le système sérotoninergique joue un rôle essentiel dans la régulation de 

plusieurs comportements, dont le sommeil, la perception, ainsi que les aspects cognitifs et 

autonomes du système nerveux central des mammifères. Des études antérieures ont montré la 

distribution du récepteur 5-HT de type 3 (5-HT3) dans le cerveau et d’autres ont rapporté son 

expression dans la substance noire (SN) et le noyau dorsal du raphé (NDR). Dans cette étude, nous 

déterminons quantitativement la distribution des récepteurs 5-HT3 dans la SN et le NDR dans le 

rat. 

 Six rats ont été anesthésiés avec 4% d’isofluorane dans 100% d’O2 et ont été perfusés 

transcardialement avec de la saline 0.9% suivi par 4% de paraformaldehyde dans du tampon 

phosphate salin (pH 7.4). De l’immunohistochimie à double immunofluorescence a été performée 

sur des coupes coronales (40 μm) de cerveau de rat couvrant la distribution rostro-caudale de la 

SN et du NDR avec un anticorps spécifique à la sous-unité 3A du récepteur 5-HT3 (5-HT3A) en 

combinaison avec des anticorps ciblant les marqueurs monoaminergiques tyrosine hyroxylase 

(TH) et le transporteur de sérotonine (SERT). Ensuite, le nombre de neurones marqués avec 5-

HT3, TH et SERT a été compté dans la SN ou le NDR en utilisant des technique stéréologiques. 

 Nous avons trouvé que les cellules positivement marquées avec la TH et 5-HT3A sont 

présentes dans la SN. Le nombre de cellules marquées avec TH était plus élevé comparativement 

aux cellules marquées avec 5-HT3A. Nous avons aussi rapporté la présence de cellules marquées 

positivement avec SERT dans le NDR, sans la présence de cellules marquées positivement pour 

le récepteur 5-HT3. Les résultats ci-présents soutiennent la présence du récepteur 5-HT3 dans la 

SN, mais pas dans le NDR. De plus, l’absence d’expression du récepteur 5-HT3 sur les cellules 

dopaminergiques et sérotoninergiques a été observé. 
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1.1. General introduction 

Serotonin, also known as 5-hydroxytryptamine (5-HT) is one of the most phylogenetically 

ancient neurotransmitters. It is therefore involved in a plethora of behaviours and processes in the 

brain, hence being of critical importance in the day-to-day functioning of animals and humans 

(Mohammad-Zadeh et al., 2008). Although 14 5-HT receptors distributed across 7 families have 

been discovered to date, only one subtype, the 5-HT3 receptor, is a ligand-gated ion channel. All 

others are G-protein coupled receptors (GPCRs) (Nichols and Nichols, 2008). Therefore, contrary 

to other 5-HT receptors, 5-HT3 receptors can directly modulate rapid synaptic transmission 

(Férézou et al., 2002). This renders them an attractive target for pharmacotherapy of disorders 

associated with abnormal 5-HT transmission, as they may offer increased potency when compared 

to the more modulatory role of GPCRs in synaptic transmission (Andrade and Beck, 2010). Indeed, 

a number of drugs with 5-HT3 antagonistic properties are used clinically to treat diarrhoea-

predominant irritable bowel syndrome, depression, psychosis, malaria and chemotherapy-induced 

emesis, amongst other uses (Zoldan et al., 1995; Nakagawa et al., 1998; Gill and Hatcher, 2000; 

Thompson and Lummis, 2008; Lewis, 2010; Hesketh et al., 2017). In addition, ondansetron, a 

selective 5HT3 antagonist, may reduce visual hallucinations in patients with advanced Parkinson’s 

disease (PD), without interfering with mainstay L-3-4-dihydroxyphenylalanine (L-DOPA) 

treatment (Butler et al., 1988; Zoldan et al., 1993; Zoldan et al., 1995). Conversely, excitation of 

5-HT3 receptors proved to be anticonvulsant in a mouse seizure model (Gholipour et al., 2009). 

This brief summary highlights how 5-HT3 receptors and 5-HT3 modulation play broad roles within 

the nervous system. 

At the pharmacological level, studies have shown that modulation of 5-HT3 receptors can 

alter the release of dopamine and 5-HT, both of which could explain the effects of 5-HT3 ligands 
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described above (Blandina et al., 1989; Martin et al., 1992; Blier and Bouchard, 1993; Zazpe et 

al., 1994; Haddjeri and Blier, 1995; MacDermott et al., 1999). Whereas several anatomical studies 

have been performed using various techniques such as in situ hybridisation and autoradiographic 

receptor binding, it is striking that there are few, if any, studies aiming at precisely determining 

the cellular localisation of 5-HT3 receptors within two key monoaminergic structures of the brain, 

the substantia nigra (SN) and the dorsal raphe nucleus (DRN) (Kilpatrick et al., 1987; Kilpatrick 

et al., 1988; Waeber et al., 1988; Barnes et al., 1989a; Kilpatrick et al., 1989; Waeber et al., 1989; 

Barnes et al., 1990; Pratt et al., 1990; Waeber et al., 1990; Gehlert et al., 1991; Jones et al., 1992; 

Laporte et al., 1992b; Morales et al., 1996b; Morales and Bloom, 1997; Morales et al., 1998; 

Morales and Wang, 2002; Koyama et al., 2017). If it were demonstrated that 5-HT3 receptors are 

expressed by monoaminergic neurons of both the SN and the DRN, then one might suspect that 5-

HT3 ligands have a direct effect on monoaminergic neurons, as opposed to an indirect effect via 

actions on interneurons. Here, we seek to determine if monoaminergic neurons of the SN and the 

DRN harbour 5-HT3 receptors using immunohistochemistry (IHC) and stereological counting. 

 

1.2 The basal ganglia 

1.2.1 Anatomical organisation 

The basal ganglia (BG) are a collection of subcortical nuclei with pivotal roles in 

movement, motivation, affect and cognitive functions (Parent and Hazrati, 1995a, b; Stathis et al., 

2007). There are four main constituents of the classic model of the basal ganglia, all of which 

except one have subdivisions which can be considered nuclei in and of themselves. These include, 

the striatum (putamen and caudate nucleus), the globus pallidus (GP), SN and the subthalamic 

nucleus (STN) (Koprich et al., 2009). Figure 1 shows the anatomical organisation of the basal 
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ganglia and related structures identified on coronal section. For this thesis, the SN is our nucleus 

of interest within the BG. 

1.2.1.1 Substantia nigra 

The SN is located in the midbrain, playing an important role in reward and movement 

(Ikemoto, 2007; Ikemoto et al., 2015). The SN can be subdivided into two areas which have 

different cell types  (Francois et al., 1985). The most ventral area is referred to as the SN pars 

reticulata (SNr) and the more dorsal portion the SN pars compacta (SNc) (Francois et al., 1985). 

Certain authors describe a third distinct subregion, the SN pars lateralis (SNl), however this is 

generally included in the SNr. The large dopaminergic neuronal population of the SNc is darkly 

pigmented by neuromelanin, which instills a grey hue to the SNc with age (Beck, 2011). The SNc 

projects to the striatum and, according to the classic model of the BG, determines the valence, i.e. 

excitation or inhibition, of striatal projections to the GP based on the activation of dopamine type 

1 (D1) or dopamine type 2 (D2) receptors (DeLong and Wichmann, 2007). The SNr is a much less 

dense structure than the SNc, with efferents which are largely inhibitory projections which release 

γ-aminobutyric acid (GABA) (Parent, 1990; Parent and Hazrati, 1995a). Similarly, cells in the SNr 

tend to be thinner and smaller than their dopaminergic counterparts in the SNc, resembling more 

closely pallidal GABAergic neurons (Cooper and Stanford, 2000). The SNr, on the other hand, is 

adjacent (caudal) to the GP pars interna (GPi) and projects to the thalamus (Stathis et al., 2007; 

Koprich et al., 2009; Reed et al., 2013). 

The SNc is composed of three subgroups of cells which together form its classic bilateral 

structure. The primary group is the densocellular (β) group, but there is also a ventral (γ) group, 

known as the cell column group, as well as the dorsal (α) group (Haber, 2014). The dorsal group 

merges indiscriminately with ventral tegmental area (VTA) cells medially, however can be 
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differentiated from the more ventral densocellular group owing to their horizontal rather than 

oblique orientation (Haber, 2014). An important distinction exists between the VTA and SNc, the 

former belonging to the A10 dopamine neuron developmental group, and the latter belonging to 

the A9 group (Björklund, 2011). This difference in ontogeny has important functional 

implications, notably the more motivational role of VTA dopaminergic projections and the broader 

role of SNc dopaminergic projections (Ikemoto, 2007; Ikemoto et al., 2015). Together, the dorsal 

SNc group and VTA are known as the dorsal tier midbrain dopamine cells, whereas the 

densocellular and cell column groups are known as the ventral tier (Haber, 2014). These two tiers 

can also be chemically distinguished by calbindin-positive (CaBP) staining in the former, while 

calbinding staining is absent from the latter. Furthermore, unlike the dorsal tier, ventral tier 

dendrites extend into the SNr, having important functional consequences on BG parallel-loop 

processing. Although the SNr is primarily a GABAergic signalling structure, there are some 

endogenous dopaminergic neurons which do not differ from SNc ones, as well as the 

aforementioned projections from the ventral tier of the SNc (Richards et al., 1997; Björklund, 

2011). 

1.2.1.2 Striatum 

The striatum is one of the most diversified of the nuclei of the BG, comprised of the dorsal 

and ventral striatum (Stathis et al., 2007). The ventral striatum is composed of the nucleus 

accumbens (NAc) and the deep portions of the olfactory tubercle (OT), both of which play roles 

in reward learning, decision making and motivated behaviour (Ikemoto et al., 2005; Ikemoto, 

2007; Tremblay et al., 2009; Ikemoto et al., 2015). The dorsal striatum is comprised of the putamen 

and caudate nucleus, both of which are having various functions, with motor control being of 

particular importance (Voorn et al., 2004).  
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1.2.1.3 Globus pallidus 

The GP has an internal and external segment (GPi and GPe, respectively), the former being 

the primary output nucleus of the BG, projecting to the thalamic relay nuclei, the latter modulating 

this output via the indirect pathway of the basal ganglia (Koprich et al., 2009). The amalgamation 

of the GP and putamen is known as the lentiform nucleus, which does not bear any specific 

physiological function, but is rather an anatomical entity. A white matter tract known as the 

internal capsule separates the caudate nucleus from the lentiform nucleus, defining the medial 

boundaries of the latter (Russmann et al., 2003). There are some differences in the anatomy of the 

GP between primates and “lower” species such as rodents or felines which have functional 

implications. For instance, in primates there is the presence of a ventral GP (GPv) proper which is 

distinct from the GPe/GPi (Parent and Hazrati, 1995a, b). Furthermore, in rodents and cats, the 

entopeduncular nucleus, which appears to serve similar functions as the GPi, is generally 

considered homologous to the latter, although not entirely (Parent and Hazrati, 1995a, b). For 

instance, there is a more diffuse distribution of pallidotegmental projections, i.e. to the 

pedunculopontine nucleus (PPN), however it is unclear as to whether these differences are due to 

variable development of target structures or to differences in the organisation of motor systems 

(Parent and Hazrati, 1995a). Anatomical differences such as these are important to ponder when 

studying brain circuitry using translational models. Nevertheless, a conserved feature is that most 

of the neurons in the GP use a GABA signal as their primary neurotransmitter (Parent, 1990). 

Similarly, the GP receives its primary inputs from the striatum and STN, as well as secondary 

inputs from the SNc, DRN and PPN (Parent, 1990). 
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1.2.1.4 Subthalamic nucleus 

Lastly, there is the STN, distinguishable as being the only nucleus of the BG with, in 

contrast to all of the structures mentioned above, primarily glutamatergic efferents (Lévesque and 

Parent, 2005). Because of this distinctive feature, it is believed to be a key modulator of BG outputs 

by activating GABAergic pallidothalamic projections, hence inhibiting thalamocortical pojections 

and movement in turn (DeLong and Wichmann, 2007). The STN projects primarily to the GPi 

(Figure 2) (Lévesque and Parent, 2005).  

 

Figure 1. Organisation of the basal ganglia and surrounding structures. The striatum (STR), 

composed of the caudate nucleus and putamen, the globus pallidus (GP), with its internal and 

external segments, the subthalamic nucleus (STN), and substantia nigra (SN) are the main nuclei 

of the BG. Red arrows indicate excitatory projections; blue ones indicate inhibitory projections 

Reproduced from Redgrave (2007).  

 

1.2.2 Basal ganglia pathways 

Owing to the complex anatomy of the BG, it is useful to use models of BG connectivity to 

understand their functional anatomy. In the BG circuit, there are two pathways controlling 

movements, namely the direct and indirect pathways, although there is sometimes mention of a 



Page | 8  
 

third, hyperdirect, pathway (DeLong and Wichmann, 2007). Figure 2 shows the classic illustration 

of the organisation of the BG. 

1.2.2.1 Direct pathway 

The direct pathway plays a role in the initiation and execution of voluntary behaviours 

(Calabresi et al., 2014). The nigrostriatal pathway consists of dopaminergic projections from the 

SNc to the dorsal striatum. This pathway is the primary input to both the direct and indirect 

movement pathways of the BG, depending on whether these dopaminergic efferents activate D1 or 

D2 receptors (Koprich et al., 2009; Haber, 2014). These SNc efferents activate D1 dopamine 

receptors in the striatum, the medium spiny neurons (MSNs) of which project to the GPi and SNr, 

inhibiting these structures. (Parent, 1990; Parent and Hazrati, 1995a; DeLong and Wichmann, 

2007). The SNc also projects to the cortex, more generally via collaterals to layer I, and more 

specifically to layers V-VI of regions which project to the striatum themselves (Haber, 2014). 

Hence, these projections are seen as generally modulatory or modulating an indirect 

nigrocorticostriatal pathway, respectively (Haber, 2014). The SNc also projects directly to the 

thalamus, the amygdala, the hippocampus and the GP (Haber, 2014). It also receives reciprocal 

innervation not only from the striatum, but also from the cortex (Bunney and Aghajanian, 1976). 

The SNc is influenced by a variety of neurotransmitters, notably 5-HT projections from the DRN, 

but also cholinergic, glutamatergic and GABAergic ones from other nuclei such as the PPN, the 

rostromedial tegmental nucleus, the superior colliculus as well as the GPe and thalamic 

ventroposterior (VP) nucleus (Fibiger and Miller, 1977; Oertel and Mugnaini, 1984; Weiner et al., 

1990; Gervais and Rouillard, 2000; Chen and Rice, 2002; Forster and Blaha, 2003; Wooltorton et 

al., 2003; Haber, 2014; Miguelez et al., 2014). Apart from nigral afferents, the striatum receives 

substantial input from the cortex and the thalamus, mainly from the intralaminar nuclei of the 
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centromedian (CM)/parafascicular complex and, to a lesser extent, from relay nuclei such as the 

ventrolateral (VL), ventroanterior (VA), lateroposterior (LP), mediodorsal (MD) and pulvinar 

nuclei (Parent and Hazrati, 1995a). The striatum also receives inputs from the midbrain raphe 

nuclei (Brigitte and André, 1990; Parent and Hazrati, 1995a). The striatum has a much greater ratio 

of projection to interneurons compared to most brain structures, with a 9:1 ratio in rats, and a 3:1 

ratio in primates (Graveland and Difiglia, 1985; Parent and Hazrati, 1995a). Most striatal efferents 

from GABAergic MSNs project to both segments of the GP, with those to the GPi releasing 

thalamocortical projections from inhibition, permitting movement or other behavioural outputs 

(Parent et al., 1989; Parent, 1990; Parent and Hazrati, 1995a, b). The GPi sends massive 

projections to the CM, VA and VL nuclei of the thalamus, as well as the habenula (Hb) and PPN 

(Parent and Hazrati, 1995a). In primates, these projecting fibres are highly collateralised, 

especially with respect to thalamic and PPN efferents (Harnois and Filion, 1982; Parent and De 

Bellefeuille, 1982, 1983; Fénelon et al., 1990; Hazrati and Parent, 1991). Conversely, pallido-

habenular projections, which are more prominent in rodents, arise largely from a distinct, non-

collateralising population of neurons (Parent and Hazrati, 1995a). The GPi also sends projections 

to the SNr, the efferents of which, in combination with the aforementioned pallidothalamic 

projections, constitute the outputs of the direct pathway (DeLong and Wichmann, 2007). In the 

rat, up to 40% of striatal efferents send collateral projections to both the GP and SNr, whereas 

projections to different nuclei originate from separate populations in primates and cats, however 

the functional significance of this disparity remain unclear (Féger and Crossman, 1984; Parent et 

al., 1984; Loopuijt and Van der Kooy, 1985; Beckstead and Cruz, 1986; Parent et al., 1989; Parent, 

1990).  
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1.2.2.2 Indirect pathway 

The indirect pathway is initiated by an inhibitory dopaminergic projection from the SNc to 

the striatum. This pathway helps to prevent unwanted muscle contractions from interfering with 

voluntary and involuntary movements and consists of SNc efferents activating D2 dopamine 

receptors in the striatum, thereby inhibiting GABA-producing neurons in the GPe, which releases 

the inhibition of the GPe on the STN (Parent, 1990; Parent and Hazrati, 1995a, b; DeLong and 

Wichmann, 2007). This is known as the pallidosubthalamic pathway (Parent and Hazrati, 1995b; 

DeLong and Wichmann, 2007). The STN is the only excitatory glutamatergic structure of the BG 

and provides excitatory projections to the output neurons of the BG (Parent and Hazrati, 1995b). 

These fibres synapse in the dorsal portion of the STN, and the STN then sends glutamatergic 

projections to the GPi and SNr, reinforcing the GABA-mediated inhibition of thalamocortical 

projections from thalamic nuclei, eg. the VA and VL nuclei, thereby inducing a negatively-

valenced shift in BG outputs to the cortex (Parent, 1990; Parent and Hazrati, 1995a, b; DeLong 

and Wichmann, 2007). There is also presence of a hyperdirect pathway, which involves cortical 

projections directly to the STN, activating GPi/SNr projections to the thalamus, thereby inhibiting 

thalamic signalling to the cortex (Figure 2B). 
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Figure 2. Schematic representation of the classic model of basal ganglia. A. The direct 

(excitatory) pathway consists of the activation of D1 receptors in the striatum such that 

striatopallidal cells release GABA in the GPi and SNr, disinhibiting the thalamus. The indirect 

(inhibitory) pathway consists of the activation of D2 receptors in the striatum so that striatopallidal 

cells release GABA in the GPe, which releases the STN of inhibition, increasing the activity of 

GPi and SNr GABAergic projections to the thalamus. B. More detailed representation of 

anatomical connections, illustrating the presence of multiple parallel pathways, feedback and 

feedforward loops, as well as the addition of the glutamatergic hyperdirect pathway in yellow. 

Adapted from Redgrave (2007). 

 

1.2.3 Function of the basal ganglia  

The BG are a network of complexly organised connections, with specific nuclei and 

pathways activated to achieve different functions under different circumstances (Obeso et al., 

2008). The BG play a key role in the mediation of a large number of behaviours, including 

movement, associative learning, planning, working memory and emotional regulation (Selemon 

and Goldman-Rakic, 1985; Parent, 1990; Alexander et al., 1991; Parent and Hazrati, 1995a, b; 

Haber et al., 2000; Haber, 2003; Zahm, 2006; DeLong and Wichmann, 2007; Obeso et al., 2008; 

Tremblay et al., 2009; Miguelez et al., 2014; Ikemoto et al., 2015; Kim and Hikosaka, 2015). By 
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integrating diffuse cortical inputs conveying motor, cognitive (i.e. associative) and limbic 

information, the BG potentiate or inhibit behavioural outputs to address stimuli in the environment 

(Parent, 1990; Alexander et al., 1991; Parent and Hazrati, 1995a, b; Tremblay et al., 2009; Haber, 

2014; Ikemoto et al., 2015; Kim and Hikosaka, 2015). This is most readily seen in the case of 

motor outputs, however there are subtler elements such as motivation and affect mediated by the 

BG which strongly influence behaviour (Parent, 1990; Alexander et al., 1991; Parent and Hazrati, 

1995a, b; Haber et al., 2000; Zahm, 2006; DeLong and Wichmann, 2007; Tremblay et al., 2009; 

Haber, 2014; Miguelez et al., 2014; Ikemoto et al., 2015; Kim and Hikosaka, 2015). Hence, the 

BG act less as an output system per se and rather as a broader gating network. Dysfunction of the 

BG results in a plethora of diseases, many of which having grave personal and societal 

consequences (DeLong and Wichmann, 2007; Fox et al., 2009; Lees et al., 2009; Huot et al., 

2011). Two of the most known of these are PD and Huntington’s disease (HD), representing the 

two extremes of the spectrum of motor deficits associated with the BG (Steward et al., 1993a; 

Yang et al., 2008). The former consists of a hypokinetic disorder, whereas the latter is a 

hyperkinetic disorder (Steward et al., 1993a; Yang et al., 2008).Although their motor 

characteristics are arguably their most evident symptoms, both have accompanying neurocognitive 

changes which highlight the profound role the BG play in daily life (Steward et al., 1993a; Yang 

et al., 2008; Fox et al., 2009). Beyond these classical BG disorders, other associated diseases 

include addiction, attention deficit hyperactivity disorder (ADHD), cerebral palsy, major 

depressive disorder (MDD), Tourette’s syndrome, anxiety disorder and many more (DeLong and 

Wichmann, 2007; Fox et al., 2009; Drysdale et al., 2016; Heller, 2016; Pariyadath et al., 2016).A 

better appreciation of how BG circuits are modulated, for instance through 5HT3 receptors, may 

have profound impacts on the lives of many individuals as well as society in a broader sense.  
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1.3 The raphe nuclei 

1.3.1 Anatomical organisation 

The raphe nuclei are part of the medial portion of the reticular formation, an interconnected 

network of nuclei in the brainstem, forming a ridge along the sagittal plane  (Hornung, 2012). They 

are a collection of seven nuclei located in the brainstem, often separated into a rostral and a caudal 

portion (Istvan, 1990). These nuclei are the primary producers of the 5-HT in the central nervous 

system (CNS) (Adell, 2015).  

The caudal part of raphe is subdivided in three nuclei: the nucleus raphe obscurus (B2 cell 

group), the nucleus raphe pallidus (B1 cell group) and the nucleus raphe magnus (B3 cell group) 

(Istvan, 1990). The rostral nuclei represent the primary portion of 5-HT neurons, with the caudal 

nuclei being substantially smaller (Hornung, 2012).  

The rostral part of the raphe is divided as follows. Two nuclei are found in the pontine 

reticular formation: the raphe pontis (B5 cell group) and raphe centralis inferior, also known as the 

nucleus linearis. Two nuclei are located in the midbrain reticular formation: the raphe centralis 

superior (NCS), also known as the median raphe (MnR) formed of the B8 cell group and the DRN 

formed of the B6 and B7 cell groups (Istvan, 1990; Jacobs and Azmitia, 1992). The rostral nuclei 

represent approximately 85% of all 5-HT neurons in the brain (Hornung, 2003; Adell, 2015). The 

DRN is one of the largest raphe nuclei and can be divided into nine sub-regions in rodents (Hale 

and Lowry, 2011; Commons, 2016). Histologically, the DRN is a dense nucleus, composed of 

sparse cells with many unmyelinated fibres and short, spiny dendrites of 5-HT neurons, consistent 

with neuropil (Adell et al., 2002; Beliveau et al., 2015). It is also the largest 5-HT nucleus and 

provides a substantial proportion of the 5-HT innervation of the forebrain. 
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1.3.2 Raphe nuclei connections 

Given the focus of the present thesis being on the potential contribution of 5-HT3 

receptors to modulation of BG function, the sections below will focus primarily on the rostral 

raphe, and the DRN in particular.  

1.3.2.1 Afferents 

Although primary role of the raphe nuclei in the brain is to provide 5-HT input to other 

structures, there are nonetheless important modulatory inputs to the raphe nuclei as well (Soiza-

Reilly and Commons, 2011). For instance, the DRN receives reciprocal dopaminergic innervation 

from midbrain dopaminergic centres (Ferré and Artigas, 1993). Moreover, the MnR and DRN both 

receive inputs from limbic cortices, as well as the lateral and medial preoptic areas (Vertes and 

Linley, 2008). Sub-cortically, these structures receive inputs from the lateral Hb and various nuclei 

of the hypothalamus (perifornical, lateral and dorsomedial) (Figure 3) (Vertes and Linley, 2008). 

They also receive input from several brainstem areas including the central grey at both the 

midbrain and pontine levels, the locus coeruleus, the laterodorsal tegmental nucleus (LDTg) and 

the caudal raphe nuclei (Figure 3) (Vertes and Linley, 2008). In addition to these, the DRN more 

specifically receives inputs from the lateral septum the bed nucleus of the stria terminalis, the 

tuberomammillary nucleus and the diagonal band nuclei (Vertes and Linley, 2008). Hence, the 

general pattern of forebrain modulation of the rostral raphe nuclei is provided by limbic areas. 
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Figure 3. Afferent glutamatergic and GABAergic projections to the dorsal raphe nucleus. 

Illustration of main excitatory (i.e. glutamatergic) and inhibitory (i.e. GABAergic) projections to 

the DRN. Glutamatergic projections are in red, GABAergic projections are in green. PFC: 

prefrontal cortex, Hyp: hypothalamus, LHb: lateral habenula, SN: substantia nigra, RMTg: 

rostromedial tegmental nucleus VTA: ventral tegmental area, PAG: periaqueductal gray, DRN: 

dorsal raphe nucleus, LDTg: laterodorsal tegmental nucleus, PB: parabrachial nucleus, PGi: 

paragigantocellular nucleus, Pr: prepositus hypoglossal nucleus, Sp5: spinal trigeminal nucleus. 

Reproduced from Soiza-Reilly & Commons (2014). 

 

1.3.2.2 Efferents 

Generally speaking, the caudal raphe nuclei project to the spinal cord, brainstem and 

cerebellum, whereas the more rostral nuclei of the pons and midbrain project to higher brain areas 

such as the striatum and across the cortex (Figure 4) (Istvan, 1990; Jacobs and Azmitia, 1992; 

Mohammad-Zadeh et al., 2008). One example of caudal pathways is the activation of gastric 

motility via the vagal nerve by the nucleus raphe obscurus, an effect partially mediated by 5-HT3 

receptors (Krowicki and Hornby, 1993). This nucleus also regulates expiration via the phrenic 

nerve through a 5-HT receptor type 1A (5-HT1A)-mediated mechanism and plays a role in 

hypoglossal nervous output (Lalley et al., 1997; Peever et al., 2001). Of the rostral nuclei, the 
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MnR, sends 5-HT projections to more medial forebrain regions than the DRN (Commons, 2016). 

The former projects mainly to more lateral brain regions such as the cortex, amygdala, lateral 

hypothalamus, thalamus, midbrain dopaminergic centres and the striatum (Sawyer et al., 1985; 

Commons, 2016). These projections arise from outbranchings of the medial forebrain bundle 

(MFB) (Park et al., 1982). Of particular interest for the present study, the DRN is known to synapse 

in the SNc of rats, primates, and humans, and can therefore provide 5-HT modulation to this key 

input nucleus to the BG (Fibiger and Miller, 1977; Nicolaou et al., 1979; Hornung and Celio, 1992; 

Jacobs and Azmitia, 1992; Andrade and Beck, 2010; Sharp, 2010). Similarly, 5-HT terminals have 

been reported in the ventromedial SNr (Steinbusch, 1981). These 5-HT projections appear to 

tonically inhibit the SN, however this effect is not uniform (Dray et al., 1978; Gervais and 

Rouillard, 2000). In contrast, area B6, i.e. the caudal DRN, projects to more medial areas such as 

the hippocampus, the septum, the retromamillary nucleus, suprachiasmatic nucleus, the medial and 

lateral Hb, and the paraventricular hypothalamus (Commons, 2016). Strikingly, these connectivity 

patterns, reinforced by developmental and genetic evidence, share remarkable similarities with the 

MnR (Jensen et al., 2008; Fox and Deneris, 2012; Alonso et al., 2013; Commons, 2016). 
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Figure 4. Mid-sagittal section showing the neuroanatomy of the 5-HT system in rat. 

Schematic of the raphe nuclei and their major projections in the rat brain, showing the broad range 

of targets spanning the entirety of the CNS. Reproduced from Carlson (2013). 

 

1.3.3 Functions of the raphe nuclei 

The primary function of the raphe nuclei is to provide 5-HT innervation to the rest of the 

brain (Tõrk, 1990). As mentioned previously, the nucleus raphe obscurus is in the medulla and 

activates gastric motility via the vagal nerve (Krowicki and Hornby, 1993). The raphe pallidus is 

rostral to the raphe obscurus, and is primarily involved in sympathetic responses such as 

tachycardia, thermogenesis and pyrexia (Nakamura et al., 2002; Zaretsky et al., 2003; Tupone et 

al., 2011). The most rostral of the caudal nuclei is the raphe magnus, which is primarily associated 

with pain modulation through inhibition of peripheral nociceptive circuits in the dorsal horn of the 

spinal cord, as well as cardiorespiratory, sexual, autonomic and thermoregulatory functions 

(Mason and Gao, 1998; Mason, 2001; Hellman et al., 2007; Hellman et al., 2009). The nucleus 

raphe pontis is the most caudal of the rostral nuclei, playing a role in narcotic anaesthesia-

associated muscle rigidity and having a putative interaction with the vascular system (Scheibel et 
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al., 1975; Broekkamp et al., 1984; Blasco et al., 1986). Similarly, the nucleus centralis inferior is 

also involved in analgesia through 5-HT projections to the spine (Oliveras et al., 1975; Guilbaud 

et al., 1977; Oliveras et al., 1977). As mentioned previously, the MnR, sends 5-HT projections to 

more medial forebrain regions than the DRN (Commons, 2016). This nucleus has been found to 

be involved in hallucinogenesis, as well as in memory consolidation through 5-HT modulation of 

hippocampal rhythms (Trulson et al., 1984; Wang et al., 2015). As mentioned previously, the 

raphe nuclei are the main source of 5-HT innervation to both the CNS and peripheral nervous 

system (PNS), roles served primarily by the rostral and caudal nuclei, respectively. Although 

generally seen as a modulatory neurotransmitter, 5-HT can play a more direct role in neural 

processing through its sole ionotropic receptor, the 5HT3 receptor (Sugita et al., 1992; Férézou et 

al., 2002; Varga et al., 2009). Given the massive scope of these projections in terms of downstream 

nuclei, 5-HT plays a role in almost every function of the brain (Trulson et al., 1984; Mohammad-

Zadeh et al., 2008; Berger et al., 2009; Larson et al., 2015; Wang et al., 2015). With this plethora 

of functions, dysfunctional 5-HT signalling can result in a number of pathologies. Two of the most 

common being MDD and other mood disorders (Hornung, 2003; Mohammad-Zadeh et al., 2008; 

Berger et al., 2009; Andrade and Beck, 2010; Zhang et al., 2012). However, the exact role of 5-

HT in these disorders, as well as how to treat its dysfunction, remain elusive and the subject of 

intensive research. One of the main therapeutic venues is to administer selective 5-HT reuptake 

inhibitors (SSRIs), a class of molecules which block the reuptake of 5-HT by the 5-HT transporter 

(SERT) (Adell et al., 2002). Given that 5-HT signalling appears to be decreased in MDD, by 

blocking SERT, the hope is to increase the efficiency of 5-HT transmission by keeping it in the 

cleft longer (Hornung, 2003; Mohammad-Zadeh et al., 2008; Berger et al., 2009; Andrade and 

Beck, 2010; Zhang et al., 2012). More intimately related to the BG, abnormal 5-HT signalling has 
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been proposed as one of the main causative factors in L-DOPA induced dyskinesia in PD (Carta 

et al., 2008; Shin et al., 2012). Another illness associated with abnormal 5-HT activity is the 

Serotonin Syndrome (Turkel et al., 2001; Boyer and Shannon, 2005). This syndrome, caused by a 

hyperactivation of the 5-HT system, occurs in 14-16% of patients overdosing SSRIs, or being 

administered SSRIs alongside other 5-HT-modulating therapies (Turkel et al., 2001; Boyer and 

Shannon, 2005). The syndrome results in a plethora of symptoms including tremor, abnormal heart 

rhythms, shivering, excessive sweating, hypertension, diarrhoea, seizures, renal failure, delirium, 

neuromuscular rigidity, anxiety, and hyperthermia, highlighting the truly profound, global role 5-

HT plays in mammalian physiology (Boyer and Shannon, 2005). 

 

1.4 Neurotransmitter systems  

Although there are numerous neurotransmitters involved in the physiology of the BG and 

the raphe nuclei, an exhaustive review is beyond the scope of the present work. Hence, we will 

focus on the two most pertinent to the SN and DRN: dopamine and 5-HT.  

1.4.1 Serotonergic system 

As previously mentioned, there are 14 5-HT receptors distributed across 7 families which 

have been discovered to date, with only one subtype, the 5-HT3 receptor, being a ligand-gated 

ion channel. All others are GPCRs (Nichols and Nichols, 2008). Given the involvement of 5-

HT in almost every function of the brain, an in-depth review of the functionality and 

localisation of all of its receptors is beyond the scope of the present work (Mohammad-Zadeh 

et al., 2008; Berger et al., 2009; Larson et al., 2015). Nonetheless, an in-depth review of 5HT3 

receptors and key characteristics of the GPCR 5-HT receptors are presented below. 
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1.4.1.1 5-HT3 receptors 

1.4.1.1.1 Pharmacological properties 

5-HT3 receptors belong to the cysteine (Cys)-loop superfamily of ligand-gated ion channels 

and have similar characteristics to nicotinic acetylcholine (nACh), glycine and GABA type A 

(GABAA) receptors (Hannon and Hoyer, 2008; Nichols and Nichols, 2008; Lummis, 2012). They 

are non-specific cation-selective channels, depolarising the membrane primarily through Na+ or 

K+ influx, but also Ca2+
 and other small organic cations (Lummis, 2012). Interestingly, 5-HT3 

receptors can share ligands with other receptors as is the case with tropisetron, a 5-HTR antagonist, 

and dopamine in N1E-115 cells (Neijt et al., 1986; Hannon and Hoyer, 2008). In addition, 5-HT3 

receptors can be allosterically modulated by compounds such as ethanol and trichloethanol to 

increase the effect of 5-HT3 agonists (Lovinger, 1991; Bentley and Barnes, 1995; Downie et al., 

1995). 5-HT3 receptors are pentamers, the internal boundary of which forms the channel through 

which cations can pass (Hannon and Hoyer, 2008). Each receptor requires at least one 5-HT3A 

subunit to function, meaning that the 5-HT3A subunit is the only one capable of forming functional 

homomers. There are two versions of the 5-HT3A subunit, a short and a long form, the former 

having a six amino acid deletion. Both variants appear to function similarly (Doucet et al., 1999; 

Lummis, 2012). There are four additional subunits: 3B, 3C, 3D and 3E (Niesler et al., 2007; 

Hannon and Hoyer, 2008; Kapeller et al., 2011; Lummis, 2012). The latter three have so far only 

been identified based on genetic data in humans (Niesler et al., 2007; Hannon and Hoyer, 2008; 

Kapeller et al., 2011; Lummis, 2012). Subunit 3B has been show to increase channel conductance 

when coupled to a 5-HT3A subunit, representing what appears to be the predominant wild-type 5-

HT3 receptor (i.e. 5-HT3AB heteromer) in tissue when compared to previous in vitro studies using 
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cloned 5-HT3A homomers (Lummis, 2012). The 5-HT3B and 5-HT3E subunits have been found to 

have three and five isoforms, respectively (Lummis, 2012). 

1.4.1.1.2 Anatomical distribution 

Given the need to have at least one 5-HT3A subunit for 5-HT3 receptors to function, most 

specific studies mapping 5-HT3 receptor distribution in the body have focussed on mapping the 5-

HT3A subunit (Morales et al., 1996b; Morales et al., 1998; Doucet et al., 1999; Morales and Wang, 

2002; Huang et al., 2004; Koyama et al., 2017). Several studies have also been conducted using 

autoradiographic binding for 5-HT3 receptors or pharmacological assays (Kilpatrick et al., 1987; 

Kilpatrick et al., 1988; Waeber et al., 1988; Barnes et al., 1989a; Kilpatrick et al., 1989; Waeber 

et al., 1989; Barnes et al., 1990; Pratt et al., 1990; Waeber et al., 1990; Gehlert et al., 1991; Jones 

et al., 1992; Laporte et al., 1992a; Bufton et al., 1993a; Gehlert et al., 1993; Steward et al., 1993b; 

Morales et al., 1996a; Morales and Bloom, 1997). There is significant disparity in the apparent 

distribution of 5-HT3 receptors between species (Bentley and Barnes, 1995). For instance, in 

humans there are high levels of 5-HT3 receptors in the caudate, putamen, amygdala, NAc and 

hippocampus, whereas there are low levels found in the cortex, GP and SN (Barnes et al., 1989a; 

M et al., 1989; Waeber et al., 1989; Abi-Dargham et al., 1993; Bufton et al., 1993b; Barnes and 

Sharp, 1999). Conversely, in rodents, there have been reports of significant 5-HT3 receptor 

presence in the cortex (Barnes and Sharp, 1999). Moreover, in humans, it seems that 5-HT3 

receptors are not located on dopaminergic cells as they appear to be unaffected by nigrostriatal 

degeneration associated with PD (Steward et al., 1993a). In contrast, there is significant depletion 

of 5-HT3 receptors accompanying the neurodegeneration associated with HD, which affects striatal 

MSNs (Steward et al., 1993a; Barnes and Sharp, 1999).  
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In the rat, brainstem areas such as the dorsal vagal complex, area postrema (believed to 

mediate the antiemetic effects of 5-HT3 antagonists), nucleus of the solitary tract (NTS), trigeminal 

nucleus and the dorsal horn of the spinal cord generally display robust 5-HT3 receptor expression 

(Pratt et al., 1990; Gehlert et al., 1991; Gehlert et al., 1993; Steward et al., 1993b; Huang et al., 

2004). However, forebrain areas show mixed patterns of expression depending on the methods 

used by experimenters, e.g. pharmacological experiments, radioligands, mRNA probes or 

antibodies (Barnes et al., 1990; Gehlert et al., 1991; Gehlert et al., 1993; Tecott et al., 1993; 

Morales et al., 1996a; Morales et al., 1996b; Maswood et al., 1997; Morales and Bloom, 1997; 

Morales et al., 1998). Studies have found weak 5-HT3 expression across the cortex, in the 

amygdala, subiculum, striatum, OT, NAc, glomerular layer of the olfactory bulb (OB), anterior 

olfactory nucleus, hippocampus, ventromedial hypothalamus (VMH) and very low expression in 

the thalamus (reticular and paraventricular nuclei), cerebellum, SN and DRN (Kilpatrick et al., 

1988; Barnes et al., 1990; Gehlert et al., 1991; Laporte et al., 1992b; Gehlert et al., 1993; Morales 

et al., 1996a; Morales et al., 1996b; Morales and Bloom, 1997; Morales et al., 1998; Doucet et al., 

1999; Spier et al., 1999; Geurts et al., 2002; Puig et al., 2004). Furthermore, the ultrastructural 

pattern of expression analysed using electron microscopy has varied considerably depending on 

the detection method used, ranging from largely axonal, to pre-synaptic, to dendritic, to somatic 

(Doucet et al., 1999; Miquel et al., 2002; Huang et al., 2004). Non-visual methods of detection 

such as membrane binding assays, in vivo electrophysiology or behavioural assays have detected 

or implied the presence of 5-HT3 receptors in the SN (Sorensen et al., 1989; Palfreyman et al., 

1993; Maswood et al., 1997; Alex and Pehek, 2007). Conversely, other studies have provided 

evidence refuting the presence of 5-HT3 receptors in the SNc (Rasmussen et al., 1991; Prisco et 

al., 1992). 
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A similar distribution to that seen in rats was found in the marmoset, i.e. strong signals in 

the hindbrain and medium binding in the hippocampus (Jones et al., 1992). As for the rat, patterns 

in the forebrain were less conclusive, with low levels of detection in the cortex, the medial SNc, 

the amygdala, thalamus, septum, interpenduncular nucleus, and hypothalamus (Jones et al., 1992). 

More recently, Carrillo and colleagues (2010) found 5-HT3A-positive fibres in the caudal SN, as 

well as fibres and cell bodies in the caudal DRN of the Syrian hamster. In the mouse, data from 

the Allen Brain Institute (http://mouse.brain-map.org/experiment/show/74724760) show higher 

levels of mRNA expression in hindbrain regions, low-level expression in various regions 

throughout areas similar to rats (e.g. the hippocampus, cortex, etc.), very low levels in the SNr, 

and undetectable levels in the DRN (Lein et al., 2006). Alternatively, Koyama and colleagues 

(2017) used a transgenic mouse model expressing green fluorescent protein (GFP) under the 

control of the promoter for the gene encoding the 5-HT3A subunit to visualise the transcription of 

the receptor. They found very strong labelling in the OB, OT, NTS, trigeminal nucleus, moderate 

to high levels in the cortex, hippocampus, amygdala, caudate and putamen, NAc, but no signal in 

the SN, cerebellum, or the DRN (Koyama et al., 2017). Clearly, there are many similarities – and 

differences – in 5-HT3 receptor expression depending on the species examined and methods 

employed, which require judicious interpretation.  

1.4.1.1.3 Functional and physiological properties 

As mentioned previously, 5-HT3 receptors modulate rapid synaptic transmission, and this 

can occur both pre and post-synaptically (Chen et al., 1991; Kidd et al., 1993; Morales et al., 

1996b; Bloom and Morales, 1998; MacDermott et al., 1999). Studies have shown that 5-HT3 

receptors can modulate GABAergic transmission, particularly in hippocampal and cortical 

interneurons, but also in the medial preoptic area and posterior hypothalamus (Ferraro et al., 1996; 

http://mouse.brain-map.org/experiment/show/74724760
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Morales et al., 1996a; Morales and Bloom, 1997; Puig et al., 2004). Multiple studies have shown 

that 5-HT3 receptors act as facilitating autoreceptors for 5-HT release when excited, creating a 

positive feedback loop (Martin et al., 1992; Blier and Bouchard, 1993; Haddjeri and Blier, 1995). 

Similarly, there is substantial in vitro and in vivo evidence that these receptors also play a role in 

dopamine release (Blandina et al., 1989; Schmidt and Black, 1989; Lian Hai et al., 1990; Chen et 

al., 1991; Su-Jin et al., 1991; Benuck and Reith, 1992; Zazpe et al., 1994). A study found that 

there was an increase of 5-HT3 receptors following injection of 6-hydroxydopamine (6-OHDA) to 

the MFB of rats, which depletes the striatum of midbrain dopaminergic afferents, leadin them to 

conclude that 5-HT3 receptors effects on dopaminergic transmission may not be due to direct 

effects on striatal dopaminergic terminals, but rather is mediated by non-monoaminergic 

projections to the striatum (Kidd et al., 1993). Moreover, excitation of 5-HT3 receptors enhances 

the release of a third monoamine, noradrenaline, in the rat (Mongeau et al., 1994). Whether these 

increases in monoaminergic transmission require a carrier-mediated mechanism, are due to direct 

effects of 5-HT3 receptors on monoaminergic cells, or effects on interneurons or other glial cells 

remains uncertain (Morales et al., 1996b; Morales and Bloom, 1997; Morales et al., 1998; Alex 

and Pehek, 2007). Similarly, there is evidence of 5-HT3 receptors modulating acetylcholine release 

(Barnes et al., 1989b). Hence, further investigation into the potential expression of 5-HT3 receptors 

on dopaminergic and 5-HT neurons would address a lacuna in the current literature, given the 

importance of these monoamines in virtually every function of the brain. 

5-HT3 receptors have been investigated as potential targets for a number of illnesses 

including anxiety, schizophrenia-related psychosis, on top of their well-known anti-emetic effects 

(Barnes et al., 1990; Bentley and Barnes, 1995). Indeed, as previously stated, a number of 5-HT3 

antagonists are used clinically to treat gastric diseases, affective disorders, psychosis, malaria and, 
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especially, chemotherapy-induced emesis, amongst other uses (Zoldan et al., 1995; Nakagawa et 

al., 1998; Gill and Hatcher, 2000; Thompson and Lummis, 2008; Lewis, 2010; Hesketh et al., 

2017). More relevant to the present work, ondansetron, a selective 5HT3 antagonist, may reduce 

visual hallucinations in patients with advanced PD, without interfering with mainstay L-DOPA 

treatment (Butler et al., 1988; Zoldan et al., 1993; Zoldan et al., 1995).  

1.4.1.2 Other 5-HT receptors 

As mentioned previously, there are 7 families of 5-HT receptors, all of which apart from 

5-HT3 receptors are GPCRs (Nichols and Nichols, 2008). 5-HT type 1 (5-HT1) receptors are 

autoreceptors which inhibit the release of 5-HT from 5-HT cells, or act as inhibitory postsynaptic 

heteroreceptors on non-5-HT cells through a Gi/o-coupled mechanism (Nichols and Nichols, 2008). 

5-HT1 receptors contribute to a plethora of phenomena, including cerebrovascular regulation, 

migraines, learning and memory, anxiety, addiction, schizophrenia, PD and depression (Blier and 

De Montigny, 1987; Sprouse and Aghajanian, 1987; Lucki, 1991; Heisler et al., 1998; Parks et al., 

1998; Nilsson et al., 1999; Bantick et al., 2001; Kannari et al., 2002; Prinssen et al., 2002; Blier 

and Ward, 2003; Buhot et al., 2003; Ramadan et al., 2003; Toth, 2003; Åhlander-Lüttgen et al., 

2003; Assié et al., 2005; Kleven et al., 2005; Rutz et al., 2006; Eskow et al., 2007; Müller et al., 

2007; Stark et al., 2007; Muñoz et al., 2008; Nichols and Nichols, 2008). 5-HT type 2 (5-HT2) 

receptors act through a Gαq-coupled mechanism to increase protein kinase C (PKC) signalling and 

intracellular Ca2+ concentrations, therefore acting as excitatory receptors (Nichols and Nichols, 

2008). 5-HT2 receptors, particularly 5-HT type 2A (5-HT2A) receptors and to a lesser degree 5-HT 

type 2C (5-HT2C) receptors, are notable for being the consensus locus of hallucinogenic activity in 

the brain caused by drugs such as lysergic acid diethylamide (LSD). N,N-dimethyltryptamine 

(DMT), and psilocybin, amongst others (Titeler et al., 1988; Sadzot et al., 1989; Branchek et al., 
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1990; Egan et al., 1998; Krebs-Thomson et al., 1998; Smith et al., 1998; Vollenweider et al., 1998; 

Aghajanian and Marek, 1999; Nelson et al., 1999; Smith et al., 1999; Scruggs et al., 2000; Ebersole 

et al., 2003; Nichols and Nichols, 2008). Outside of this context, 5-HT2A receptors have also been 

implicated in weight regulation, hearing, depression, suicide, schizophrenia, anxiety, spatial 

memory, analgesia at the level of the spine, and in dyskinesia, a side-effect of chronic L-DOPA 

treatment for PD, with mixed effects on psychosis-like behaviour (Niswender et al., 2001; Sodhi 

et al., 2001; Berthoud, 2002; Schmauss, 2003; Sommer, 2004; Iwamoto et al., 2005; Nitanda et 

al., 2005; Hackler et al., 2006; Du et al., 2007; Tadros et al., 2007; Van Steenwinckel et al., 2008; 

Hamadjida et al., 2018a; Hamadjida et al., 2018b; Hamadjida et al., 2018c, d). 5-HT type 4 (5-

HT4) receptors are Gαs-coupled receptors which upregulate cyclic adenosine monophosphate 

(cAMP) signalling, generally resulting in an excitatory response through cAMP-gated ion channels 

or in the upregulation of gene transcription through the cAMP response element binding protein 

(CREB) (Nichols and Nichols, 2008). 5-HT4 agonists have been shown to positively affect learning 

and memory in animal models, with 5-HT4 receptors mediating long term depression (LTD) in the 

CA1 region of the hippocampus (Terry Jr. et al., 1998; Lamirault and Simon, 2001; Lelong et al., 

2001; Kemp and Manahan-Vaughan, 2005; Micale et al., 2006; Nichols and Nichols, 2008). 5-

HT4 receptors also tonically upregulate 5-HT signalling in the raphe nuclei (Conductier et al., 

2006). Similarly to 5-HT1 receptors, 5-HT type 5 (5-HT5) receptors are Gi/o-coupled receptors 

(Nichols and Nichols, 2008). Although their distribution, apparently almost exclusively reserved 

to the CNS, is well described in humans and rodents, little is known about their functional role 

given the lack of selective agonists (Pasqualetti et al., 1998; Grailhe et al., 1999; Oliver et al., 

2000; Nichols and Nichols, 2008). However, based on localisation, they are hypothesised to be 

involved in circadian regulation, mood, and cognition, and activation thereof could act as an 
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antipsychotic for schizophrenia (Thomas, 2006; Nichols and Nichols, 2008). Similarly to the 5-

HT4 receptor, the 5-HT type 6 (5-HT6) receptor is a Gαs-coupled receptor (Nichols and Nichols, 

2008). 5-HT6 blockade upregulates cholinergic neurotransmission through an indirect mechanism 

as these receptors are not expressed on cholinergic neurons, which has proven to be beneficial to 

learning and memory in animal models (Riemer et al., 2003; Lieben et al., 2005; Hirst et al., 2006; 

Marcos et al., 2006). 5-HT6 receptors have also been shown to influence glutamatergic, 

dopaminergic, adrenergic, noradrenergic and GABAergic transmission, and are therefore under 

investigation for enhancing cognition in Alzheimer’s disease and schizophrenia, treating 

depression, and tackling obesity (Dawson et al., 2000; Mitchell and Neumaier, 2005; Fisas et al., 

2006; Schechter et al., 2007; Svenningsson et al., 2007; Wesołowska and Nikiforuk, 2007). The 

last of the 5-HT receptors is the 5-HT type 7 (5-HT7) receptor, which is also a Gαs-coupled receptor 

(Nichols and Nichols, 2008). Little is known as to the function of 5-HT7 receptors in the CNS 

owing to a lack of selective agonists, but studies with antagonists and knock-out mice have led to 

the hypotheses that 5-HT7 receptors regulate sleep, circadian rhythms, body temperature and mood 

in general (Guscott et al., 2003; Hedlund et al., 2003; Thomas et al., 2003; Hedlund and Sutcliffe, 

2004; Guscott et al., 2005).   

1.4.1.3 SERT 

As previously mentioned, SERT is classically responsible for the reuptake of 5-HT from 

the synaptic cleft following its vesicular release induced by an action potential (Hoffman et al., 

1998). SERT is a dynamic membrane protein, with expression beyond the pre-synaptic terminal, 

given the ability of 5-HT cells to release their transmitter by means of volume secretion anywhere 

in the cell (Descarries et al., 1982; Kapadia et al., 1985; Liposits et al., 1985; Chazal and Ralston, 

1987; Hoffman et al., 1998; Adell et al., 2002). Hence, this transporter is a good marker of 5-HT 
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cells (Hoffman et al., 1998). SERT plays a pivotal role in determining the strength of 5-HT 

transmission. Too rapid reuptake of 5-HT will prevent appropriate binding of 5-HT to 5-HT 

receptors, whereas too slow reuptake results in a loss of temporal encoding of the signal or non-

specific diffusion outside the synapse (Amara and Kuhar, 1993; Borowsky and Hoffman, 1995; 

Hoffman et al., 1998). As seen previously, SERT is the primary target for drugs aiming to treat 

MDD, known as SSRIs (Blakely et al., 1991; Hoffman, 1994; Tatsumi et al., 1997; Adell, 2015). 

Moreover, it is also a target for psychostimulants such as fenfluramine and 3,4-

methylenedioxymethamphetamine (MDMA) (Schuldiner et al., 1993). 

1.4.2 Dopaminergic system 

Dopamine is involved in numerous functions, particularly with respect to motivation, 

reward, cognition, emotion and movement (Ikemoto, 2007; Govoni, 2009; Ikemoto et al., 2015). 

Dopamine is a derivative of tyrosine, with tyrosine hydroxylase (TH) being the rate limiting 

enzyme of its synthetic pathway. Therefore, anti-TH antibodies are regularly used to label 

dopaminergic cells (Hökfelt et al., 1976; S.Y. et al., 1999). Considering that TH is involved in the 

synthesis of other catecholamines such as noradrenaline and adrenaline, staining for the dopamine 

transporter (DAT) may be a more selective approach to labelling dopaminergic neurons. 

Nonetheless, staining for TH has been shown to be an effective way to visualise dopaminergic 

neurons in the SN as other catecholamines are not present (S.Y. et al., 1999). 

Similarly to 5-HT, dopamine is a monoamine neurotransmitter, with multiple receptors and 

DAT, analogous to SERT, modulating its wide-ranging effects (Beaulieu et al., 2015). However, 

a detailed description of these interactions is beyond the scope of this thesis. For a functional 

understanding of dopamine effects in the BG physiology, see section 1.2 (Haber, 2014; Ikemoto 

et al., 2015). Outside of the BG, dopamine also plays role in the physiology of the raphe nuclei 
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(Ferre et al., 1994). For instance, dopaminergic neurons are encountered alongside 5-HT neurons 

in the DRN and MnR (Ochi and Shimizu, 1978; Jahanshahi et al., 2013). Indeed, it has been 

demonstrated that dopamine regulates 5-HT raphe-striatal projections, as well as extracellular 5-

HT within the DRN itself (Ferré and Artigas, 1993; Ferre et al., 1994). More surprisingly, the DRN 

also has dopaminergic projections which increase dopamine levels in the NAc of rats, potentially 

through a VTA-mediated mechanism (Stratford and Wirtshafter, 1990; Yoshimoto and McBride, 

1992). Hence, although classically considered a 5-HT structure, this does not reflect the broad 

functions of the DRN. 
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1.5 Hypothesis and objectives 

Better understanding of the distribution of 5-HT3 receptors in the rat SN and DRN could 

have implications for our understanding of how the BG and the 5-HT system interact, notably to 

modulate monoamine release within these structures so that they perform their roles in normal 

movement, behaviour, and cellular physiology. Thus, the present study investigates the localisation 

of 5-HT3 receptors in the SN and DRN in the BG of the rat. More specifically, the hypotheses are as 

follows: 

• 5-HT3 receptors are present in the SN of the rat, in which they are expressed by 

dopaminergic neurons. 

• 5-HT3 receptors are present in the DRN of the rat, in which they are expressed by 5-HT 

neurons. 

To validate these hypotheses, we specifically aim to: 

• Determine the quantitative distribution of cells expressing 5-HT3 receptors and TH in the 

SN using IHC and unbiased stereology. 

• Determine the quantitative distribution of cells expressing 5-HT3 receptors and SERT in 

the DRN using IHC and unbiased stereology.    
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2 Materials & Methods 
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2.1 Antibodies used 

In the SN, TH was labelled with an Alexa Fluor 488 (green) probe, whereas the 5-HT3A 

subunit was labelled with an Alexa Fluor 594 (red) probe. 4′,6-diamidino-2-phenylindole (DAPI) 

[blue] was applied as a nuclear counterstain. The 5-HT3A subunit of the 5-HT3 receptor is the target 

antigen in the proposed experiments as all known functional 5-HT3 receptors to date require at 

least one 5-HT3A subunit to be functional (Hanna et al., 2000; Hassaine et al., 2014). Therefore, 

this subunit permits the identification of all 5-HT3 receptors, whether they are homoreceptors or 

heteroreceptors.  

In the DRN, 5-HT cells were labelled with an Alexa Fluor 488 probe targeting SERT, 

whereas 5-HT3A-containing cells were labelled with the same Alexa Fluor 594 probe. Again, DAPI 

was applied as a nuclear counterstain. The use of Alexa Fluor 488 for the anatomical rather than 

experimental targets was decided upon as biological tissue exhibits increased autofluorescence 

under green wavelengths of light (Mosiman et al., 1997; Billinton and Knight, 2001). As the 

anatomical distribution of TH and SERT within the SN and DRN are well characterised, whereas 

that of 5-HT3A is not, this configuration was favoured to increase the signal-to-noise ratio of the 

experimental condition [i.e. the 5-HT3A subunit] (Zhao et al., 2003; Li et al., 2016). The antibodies 

used in this set of experiments were selected based on available data pertaining to specificity and 

applicability for IHC in murine rodents (Carlsson et al., 2009; Lu et al., 2010; Shin et al., 2012; 

Tronci et al., 2012; Hitora-Imamura et al., 2015; Schreglmann et al., 2015; Van Rompuy et al., 

2015; Zharikov et al., 2015; Chang et al., 2016). Immunofluorescent (IF) methods were favoured 

over colourimetric IHC as multi-labelling is crucial to answer the hypotheses posited for this 

project. Although multi-labelling is possible with colourimetric approaches, the manipulations 

required (e.g. quenching different endogenous enzymes or peroxidases) can be problematic (Inc., 
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2015; van der Loos, 2017). Moreover, the resolution between different colourimetric stains is 

lesser than is possible with IF microscopy (Biologicals, 2018; Inc., 2018). Lastly, IF permits the 

easy identification of overlapping signals, which will be critical in the analysis described below 

(Busceti et al., 2012). 

 

2.2  Animals 

Six (2 male and 4 female) adult Sprague-Dawley rats (250 - 275 g, Charles River, Saint-

Constant, Canada) were separately group-housed in a temperature, humidity, and light-controlled 

environment (under 12-h light/dark cycle, on 07:00) with free access to food and water. Upon 

arrival, rats were left undisturbed to acclimatise to the housing conditions for at least 3 days before 

they were euthanised. Experimental protocols were approved by McGill University Animal Care 

Committee in agreement with guidelines established by the Canadian Council on Animal Care.  

 

2.3 Animal perfusion and tissue processing 

Animals were deeply anaesthetised with 4% isofluorane in 100% O2 (1L/min), and 

perfused transcardially with 0.9% NaCl (1 mL/g of body weight), followed by 4% 

paraformaldehyde (PFA) in 1X phosphate buffered saline (PBS, pH 7.4), both at a flow rate of 50 

mL/min (Gage et al., 2012). Then, brains were carefully extracted from the skull and transferred 

to 50 mL Eppendorf tubes containing approximately 15 mL of cryoprotective solution composed 

of 30% sucrose in 1X PBS at 4°C, until they sunk (Koyama et al., 2017). Approximately two days 

later (once the brains sunk), the cryoprotected tissue was remove from the solution and quickly 

frozen at -56°C with methyl butane before being stored at -80°C.  
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One day before sectioning, frozen tissues were embedded with OCT (Sakura Finetek, 

Torrance, California, USA) and transferred to a cryostat set to -23 °C overnight, in which brains 

were cut in the frontal plane in a single series of 40 µm thickness. Sections were taken in a rostral 

to caudal direction and immediately transferred to 24-well plates containing approximately 1 mL 

of 1X PBS (pH 7.4) before proceeding with IHC.  

 

2.4 Immunohistochemistry 

Double IF IHC was performed for this study. Sections were rinsed 3 times with 1X PBS 

(pH 7.4) at room temperature (RT), followed by a 30-min antigen retrieval (AR) incubation in 10 

mM sodium-citrate buffer (pH 8.5) heated to 80°C in a water bath, and then rinsed again 3 times 

at RT with 1X PBS (pH 7.4). AR was empirically determined to be necessary to unmask SERT 

antigens following the PFA-fixation process. After rinsing, sections were transferred to a blocking 

solution containing 5% normal goat serum (NGS) in 1X PBS for 30 minutes. NGS was used as a 

blocking agent against non-specific binding, as both secondary antibodies (Alexa Fluor 488 and 

Alexa Fluor 594, Jackson Immunoresearch, West Grove, Pennsylvania, USA) were raised in goats. 

Sections were then incubated overnight (20 h) at 4°C with the following primary antibodies: 

1:1,200 rabbit anti-5-HT3A antibody (Cat # ASR-031, Alomone Labs, Israel), 1:4,000 mouse anti-

SERT antibody (Cat # MAB1564, EMD Millipore, Burlington, Massachusetts, USA), 1:8,000 

mouse anti-TH antibody (Cat # MAB318, EMD Millipore,Burlington, Massachusetts, USA) in the 

same blocking solution (5% NGS, 1X PBS). After this primary incubation, sections were rinsed 

again 3 times at RT with 1X PBS (pH 7.4), and incubated with the following secondary antibodies: 

1:1,000 Alexa Fluor 594 goat anti-rabbit antibody (Cat # 111-585-144, Jackson ImmunoResearch, 

West Grove, Pennsylvania, USA) and 1:1,000 Alexa Fluor 488 goat anti-mouse antibody (Cat # 
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115-545-146, Jackson ImmunoResearch, West Grove, Pennsylvania, USA) for one hour in the 

dark at RT, in 1X PBS (pH 7.4). Following secondary incubation, tissues were rinsed thrice at RT 

with 1X PBS (pH 7.4) in the dark, counter-stained with DAPI for 5 min in the dark and underwent 

one final round of 3 rinses with RT 1X PBS (pH 7.4) in the dark. Tissues were then mounted on 

gelatinised slides and allowed to air-dry (generally 1-2 h) in the dark. Slides were then coverslipped 

using ProLong™ Diamond antifade fluorescent mounting medium (Cat # P36965, Thermo Fisher 

Scientific, Waltham, Massachusetts, USA), and allowed to air-dry overnight at RT in the dark. 

Once dried, slides were cleaned with gauze soaked in xylene to remove any mounting residue, 

hence improving visibility under the microscope. All reasonable precautions were taken to avoid 

photobleaching of samples, including working away from direct light when preparing secondary 

antibodies and during all following steps by covering samples with aluminium foil when possible. 

Excitation time was also minimised when using the microscope through the generation of Z-stack 

virtual images which were then used for digital analysis. All incubations other than AR were 

performed on a shaker plate set to 165 rpm. 

 

2.5 Stereological estimations and image analysis 

A neuroanatomical reconstruction system, consisting of a computer-interfaced microscope 

(Nikon Eclipse E800, Tokyo, Kantō, Japan) and associated software (StereoInvestigator, 

MicroBrightField Bioscience, Williston, Vermont, USA), was used to count TH-, 5-HT3A- and 

SERT-positive cells in the SN and DRN (Glaser, 2007). Cell numbers in the SN and DRN of the 

rat were estimated, using a design-based stereology protocol (Schmitz and Hof, 2005; Benarroch 

et al., 2008). A systematic random series (SRS) of 40 μm-thick coronal sections using a one-in-
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six sampling scheme was used for all analyses in both the SN and DRN (Glaser, 2007; Ahmad et 

al., 2008; Nair-Roberts et al., 2008; Baquet et al., 2009).  

The total number of TH-positive cells in the SN and SERT-positive cells in the DRN was 

determined using SRS. We also estimated the number of 5-HT3A-positive cells in both the SN and 

DRN. For each section, the region of interest (ROI) was outlined on the basis of the atlas by 

Paxinos & Watson (2007), over which a lattice in the X-Y plane was randomly superimposed for 

sampling. The size of this initial lattice was such that there were approximately 10 randomly-

generated counting frames per ROI as determined by the StereoInvestigator software. This 

corresponded to a 250 μm  300 μm grid for the SN, and a 234 μm  155 μm grid for the DRN. A 

second, smaller (100 μm  100 μm  15 μm, X  Y  Z) randomly placed unbiased counting box 

was inserted in the initial field, representing the volume in which cells would be counted at 60 

magnification (Glaser, 2007). The size of the initial SRS grid and sampling box were empirically 

determined during preliminary experiments such that dopaminergic and 5-HT cell estimates for 

the SN and DRN were similar to those previously published in the literature (Descarries et al., 

1982; Nair-Roberts et al., 2008). We only counted immunoreactive cells that could be clearly 

identified by the presence of a soma, dendritic processes, or both in sequential focal planes. 

Accuracy of cell counts were evaluated using Gundersen’s m=1 CE. This formula evaluates the 

variance of samples owing to noise, as well as that due to SRS. CE values less than 0.1 are deemed 

satisfactory, whereas values of 0.06 and below are preferred for biological samples (Gundersen 

and Jensen, 1987; Mattfeldt, 1989; West et al., 1991; Gundersen et al., 1999; West, 2012).  

Digital images were acquired using a digital camera (OPTRONICS Inc., Serial No. 

DG604048-H, Santa Barbara, California, USA) attached to a microscope (Nikon Eclipse E800, 

Tokyo, Kantō, Japan). The digitised images were then imported to Adobe Lightroom CC (Adobe 
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Inc., San Jose, California, USA) and adjusted for brightness and contrast to maximise visibility of 

positive signals.  

 

2.6  Statistical analyses 

TH-, 5-HT3A- and SERT-positive cells counted in the SN and DRN are presented as the 

mean ± standard error of the mean (SEM) and were analysed using descriptive statistics. Statistical 

analyses (mean and SEM) were computed using Microsoft Excel (Microsoft Inc., Redmond, 

Washington, USA) and graphed with GraphPad Prism 7.03 (GraphPad Software Inc., La Jolla, 

California, USA). 
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3 Results 
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3.1 Validation of the anti-5-HT3A antibody 

Figure 5 shows four positive control regions demonstrating the characteristics of 5-HT3A-

positive staining. Figure 5A shows the positive staining of OB glomerular cells, Figure 5B cells in 

the NTS, Figure 5C cells in the LDTg and Figure 5D a cell in the VMH with slight projection 

labelling. Notice the generally punctate appearance of fluorescent signals, as well as their orange 

hue under high fluorescein isothiocyanate (FITC) background (Figure 5A & B). 

 

Figure 5. 5-HT3A-positive cells in the olfactory bulb (A), nucleus of the solitary tract (B), 

laterodorsal tegmental nucleus (C) and ventromedial hypothalamus (D). 60 magnification, 

scale bar: 20 µm. 
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3.2 Immunohistochemistry in the substantia nigra 

Figure 6 shows a whole section of the SN of the rat showing dopamine neurons stained for TH. 

The bilateral “wings” of the SNc are clearly visible, as are the more medial dopaminergic cells of 

the VTA. A few sparse dopaminergic cells are visible in the core of the SNr, as well as in its 

dorsolateral portion (i.e. the SNl). Figure 7 shows the localisation of TH-positive and 5-HT3A-

positive cells in the SN. Low magnification of the SN after TH and 5-HT3A IHC are shown in 

Figure 7A and B. TH-positive cells of the SN were more densely and clearly visible (Figure 7A), 

whereas 5-HT3A-positive cell in the SN were less apparent at low magnification (Figure 7B). 

Figure 7 C-E displays higher magnification of TH-positive and 5-HT3A-negative cells found in the 

SNc. The differences in intensity of TH-positive signals compared to background 5-HT3A 

signalling is apparent. No overlap is seen in the multichannel image (Figure 7E). Figure 7 F-H 

displays higher magnification of TH-negative and 5-HT3A-positive cells found in the SNr. No 

overlap is seen in the multichannel image (Figure 7H), although the red signal shines through the 

FITC background. 

 

Figure 6. Representative section of the substantia nigra of the rats showing dopamine 

neurons stained for TH. Scale bar:1000 μm  
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Figure 7. Multichannel staining of TH- and 5-HT3A-positive cells in the substantia nigra.  

Double-labelled immunofluorescent staining was used to quantify TH (green) and 5-HT3A (red) 

expressing cells in the SN of rats, with delineation of the SNc and SNr. A. 10 magnification in 

FITC channel, showing robust staining of TH-positive neurons. B. 10 magnification in Texas 

Red channel, illustrating high background in SNc and faint positive signals in the SNr. C. 60 

magnification of the SNc in FITC channel. D. 60 magnification of the SNc in Texas Red channel. 

E. 60 magnification multichannel image with FITC, Texas Red and DAPI (blue) staining in the 

SNc. F. 60 magnification of the SNr in FITC channel. G. 60 magnification of the SNr in Texas 

Red channel. H. 60 magnification multichannel image with FITC, Texas Red and DAPI staining 

in the SNr. Scale bars: 500 µm in A & B, 20 µm in C-H. 

 

3.3 Quantitative distribution of TH- and 5-HT3A-positive cells in the substantia nigra 

The number of dopaminergic cell bodies within the SN of the rats is summarised in Table 1. 

The average estimate of TH-positive cells in the SN was of 28,428 ± 888 (CE = 0.05) (Figure 8). 

The vast majority of these cells were located in the SNc, with a few cells descending ventrally into 

the SNr or being part of the SNl (Figure 7A). TH-positive cell counts per section ranged from 0-

120 cells. In contrast, the average estimate of 5-HT3A-positive cells in the SN was of 1,250 ± 64 
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(CE = 0.24) (Figure 8). 5-HT3A-positive cells were all observed in the SNr, and counts per section 

ranged from 0-10 cells, therefore being much more rarely observed. 

 

 

 

 

 

 

 

Table 1. Total number of TH- and 5-HT3A-positive cells in the rat substantia nigra. SEM: 

Standard error of the mean. 

 

 

Figure 8. Average estimates of TH- and 5-HT3A-positive cells in the rat substantia nigra.  

Data are presented as the mean ± SEM. 

 

animal ID individual cell count 

estimate (TH) 

individual cell count 

estimate (5-HT3A) 

1 22,554 756 

2 32,382 819 

3 27,405 1,827 

4 37,989 1,197 

5 26,838 1,575 

6 23,399 1,324 

mean 28,428 1,250 

SEM 888 64 
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3.4 Immunohistochemistry in the dorsal raphe nucleus 

Figure 9 shows a whole section of the DRN of the rat showing 5-HT neurons stained for SERT. 

A faint band of SERT-positive cells is visible ventromedially to the central aqueduct. Figure 10 

shows the localisation of SERT-positive cells in the DRN. Higher magnification of the DRN after 

SERT and 5-HT3A IHC are shown in Figure 10A and B, in which SERT-positive cells of the DRN 

were clearly visible (Figure 10A) whereas 5-HT3A-positive cells were not encountered in the DRN. 

Figure 10 C-E display higher magnification of SERT-positive and 5-HT3A-negative cells found in 

the DRN. The differences in intensity of SERT-positive signals compared to background 5-HT3A 

signalling is apparent. No overlap is seen in the multichannel image (Figure 10E). 

 

Figure 9. Representative section of the dorsal raphe nucleus of the rats showing 5-HT 

neurons stained for SERT. Scale bar: 1,000 μm.  
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Figure 10. Multichannel positive staining of SERT in the dorsal raphe nucleus. Double-

labelled immunofluorescent staining was used to quantify SERT- (green) and 5-HT3A- (red) 

expressing cells in the DRN of rats (delineated). A. 10 magnification in FITC channel, showing 

robust staining of SERT-positive neurons. B. 10 magnification in Texas Red channel, illustrating 

the absence of clearly discernible positive signals. C. 60 magnification in FITC channel. D. 60 

magnification in Texas Red channel. E. 60 magnification multichannel image with FITC, Texas 

Red and DAPI (blue) staining, with clear SERT staining and lack of yellow staining, which would 

have indicated signal overlap. Scale bars: 500 µm in A and B, 20 µm in C-E. 
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3.5  Quantitative distribution of SERT and 5-HT3A-positive cells in the dorsal raphe 

nucleus 

 
The number of 5-HT cell bodies within the DRN of the rats is summarised in Table 2. The 

average estimate of SERT-positive cells in the DRN was of 12,852 ± 462 (CE = 0.06) (Figure11). 

5-HT cell counts per section ranged from 0-183 cells. No 5-HT3A-positive cells were identified in 

the DRN, despite positive staining in the adjacent LDTg (Figure 5C). 

 

 

 

 

 

 

 

 

Table 2. Total number of SERT- and 5-HT3A-positive cells in the dorsal raphe nucleus of the 

rats. SEM: Standard error of the mean. 

 

animal ID individual cell count 

estimate (SERT) 

individual cell count 

estimate (5-HT3A) 

1 13,131 0 

2 8,774 0 

3 14,289 0 

4 13,741 0 

5 17,153 0 

6 10,024 0 

mean 12,852 0 

SEM 462 0 



Page | 46  
 

 

Figure 11. Average estimates of SERT- and 5-HT3A-positive cells in the dorsal raphe nucleus. 

Data are presented as the mean ± S.E.M. 
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4 Discussion  
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The results presented in the previous section report a low expression of 5-HT3 receptors in 

the SN and an absence thereof in the DRN. Although we initially hypothesised that 5-HT3 receptors 

would be present on monoaminergic neurons in the SN and DRN given the alleviation of 

dyskinesia in the 6-OHDA-lesioned rat with the 5-HT3 antagonist ondansetron and improvements 

in visual hallucinations in humans with PD, it would appear that these effects may not mediated 

by a direct monoaminergic mechanism with respect to the SN and DRN (Zoldan et al., 1993; 

Zoldan et al., 1995; Kwan, 2017). Instead, it is conceivable that these effects are due to a decreased 

post-synaptic effect of serotonergic signaling in key regions involved in L-DOPA-induced 

psychosis and dyskinesia, notably the striatum, cortex, and other limbic regions in the brain, rather 

than direct modulation of the SN and the DRN via 5-HT3 receptors (Zoldan et al., 1995). Similarly, 

it is plausible that, if ondansetron indeed had an influence on these psychosis- and dyskinesia-

associated regions, this may have been due to afferent projections without 5-HT3 receptor 

mediation at the synapse within these structures. 

 

4.1 Methodological considerations 

The rat was the organism of choice for these experiments. The circuitry of the BG has been 

widely studied in rodents, and they have been used to model several diseases associated with its 

dysfunction, such as PD and HD (Cenci et al., 2002; Stathis et al., 2007; Ellenbroek and Youn, 

2016). To perform the proposed IHC experiments, brains first needed to be histologically 

processed. There are numerous techniques which can be employed to preserve neurological tissue, 

each with their own advantages and disadvantages. Perfusion fixation improves tissue morphology 

when cryosectioning and more evenly fixes larger tissues in less time compared to immersion 

fixation (Jung‐Hwa et al., 2007; Kasukurthi et al., 2009). Similarly, PFA has empirically been 
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shown to better preserve gross tissue morphology as well as ultrastructural features such as protein 

tertiary structure compared to alternatives such as traditional formaldehyde, alcohol or acetone 

fixation (Cinar et al., 2006). Perfusion-fixation is generally accomplished via transcardial 

perfusion, first with saline to flush the circulatory system of blood, then followed by a PFA fixing 

solution (Gage et al., 2012). Tissue thickness must also be judiciously predetermined to preserve 

tissue morphology in free-floating IHC, while being appropriately thick following shrinkage 

during processing for stereological analysis, which requires a minimum thickness (Glaser, 2007; 

MicroBrightfield, 2018). Free-floating IHC was selected over slide-mounted IHC because it 

permits better antibody penetration into the tissue even with the increased thickness [indeed, slide-

based IHC often uses sections which are not sufficiently thick for stereological analysis] (Glaser, 

2007; MicroBrightfield, 2018). 

In terms of antibodies used for IHC, TH staining has been shown to be an effective indicator 

of dopaminergic neurons as TH is the rate-limiting step of dopamine synthesis (Hökfelt et al., 

1976), as discussed earlier. Similarly, targeting SERT is an effective way of labelling 5-HT-

producing neurons, as it is responsible for 5-HT reuptake following its ubiquitous release by 5-HT 

cells: in axons, dendrites, soma and pre-synaptically (Descarries et al., 1982; Kapadia et al., 1985; 

Liposits et al., 1985; Chazal and Ralston, 1987; Adell et al., 2002; Kalueff et al., 2010). Antibodies 

were selected based on prior use in IHC experiments in murine rodents, increasing their likelihood 

of success. Similarly, antibody titres were based on published concentrations in the literature, 

while optimal dilutions and staining protocols were determined empirically (Carlsson et al., 2009; 

Lu et al., 2010; Shin et al., 2012; Tronci et al., 2012; Hitora-Imamura et al., 2015; Schreglmann 

et al., 2015; Van Rompuy et al., 2015; Zharikov et al., 2015; Chang et al., 2016; Hoffman et al., 
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2017). For instance, there was a high likelihood of requiring AR to unmask antigens following the 

PFA-fixation process (Ramos-Vara, 2005; Ivell et al., 2014).  

To ensure the validity of the obtained staining, negative controls were run for all antibodies, 

whereas positive controls were only performed for the experimental rather than anatomical 

markers (Ivell et al., 2014). The rationale for this is that TH and SERT are both known to be 

expressed in the SN and DRN, respectively (Zhao et al., 2003; Li et al., 2016). Conversely, the 

presence of 5-HT3 receptors in the SN and DRN was, prior to this study, ambiguous owing to 

different authors reporting different patterns of expression in these ROIs depending on the methods 

or radiolabels used, for instance (Kilpatrick et al., 1987; Kilpatrick et al., 1988; Waeber et al., 

1988; Barnes et al., 1989a; Kilpatrick et al., 1989; Waeber et al., 1989; Barnes et al., 1990; Pratt 

et al., 1990; Waeber et al., 1990; Gehlert et al., 1991; Jones et al., 1992; Laporte et al., 1992b; 

Tecott et al., 1993; Morales and Bloom, 1997; Morales et al., 1998; Morales and Wang, 2002; 

Koyama et al., 2017). The improved resolution, i.e. cellular and potentially sub-cellular, as well 

as improved specificity of immunolabelling compared to radiolabeling renders the present results 

more compelling. For a comparison of relative differences between various direct and indirect 

methods of receptor detection, see Table 3. Positive controls in regions with known 5-HT3 receptor 

expression were therefore required to validate the antibody. Without these, false-negative results 

could have been obtained. 
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Direct 

Methods 

 Quantitation Neuronal 

Chemical 

Specificity 

Sensitivity Anatomical 

Resolution 

Ultrastructural 

Resolution 

 IHC +++ +++ ++ +++ +++* 

 Radiolabeling ++ + + + - 

 In situ 

hybridisation 
+++ ++ +++ +++ + 

Indirect 

Methods 

 
     

 RT-PCR + - +++ - - 

 Western Blot + - +++ - - 

 Electrophysiology - - - + - 

 Pharmacological 

Experiments 
- ± + ± - 

 Microdialysis - ± + + - 

 

Table 3. Comparison of different receptor detection techniques. In situ hibridisation and RT-

PCR examine RNA expression, not protein expression. *IHC methods appropriate for scanning 

electron microscopy provide the highest ultrastructural resolution possible. RT-PCR: Reverse 

Transcriptase Polymerase Chain Reaction  

 

In terms of histological analysis, unbiased stereology is a method for estimating the 

geometric properties of 3-dimensional biological objects in 2-dimensional space (Burke et al., 

2009; West, 2012). Using SRS and an unbiased counting frame for the inclusion or exclusion of 

said objects, unbiased stereology removes systematic bias from cell counts (Glaser, 2007; Burke 

et al., 2009; West, 2012). The optical dissector probe (also known as the optical fractionator) 

examines cells through sequential focal planes, allowing the discrimination of individual cells 

without repeated measures. This facilitates the estimation of cell counts as it is based on all parts 

of an ROI having an equal probability of being sampled. Therefore, there is rarely a need for more 

than 150 sampling events over 10-20 sections in a given individual (West et al., 1991; West, 2012). 

Moreover, with the use of semi-automated computer-interfaced stereological microscope, 

sampling time can be reduced. Indeed, unbiased stereology has rapidly become the method of 

choice for biological quantification at the microscopic level (Saper, 1996). 
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4.2 Validity of immunostaining 

The present study demonstrated robust staining of dopaminergic and 5-HT cells in the SN 

and DRN, respectively. However, in these ROIs, there was minimal 5-HT3A staining, if any, and 

its detection was marred by high non-specific background. It is possible that this background was 

exacerbated by the dense nature of both structures, which would be liable to reflect more light off 

biological matter than less dense regions. Nonetheless, we believe the methods employed to 

fluorescently label 5-HT3A-expressing cells were valid, given 5-HT3A subunit detection across 

multiple positive control ROIs, e.g. the OB, VMH, LDTg and NTS. These ROIs were selected 

over other known regions of expression such as the hippocampus, cortex and spinal cord as they 

are less diffuse anatomical regions (Morales et al., 1996a; Morales et al., 1998). Moreover, in the 

case of the spinal cord, there was difficulty in obtaining adequate samples given its small size and 

fragility. Hence, we opted for control regions with clear, specific anatomical boundaries that could 

be obtained in a handful of sections, as opposed to requiring staining large quantities of tissue to 

identify sparse 5-HT3 receptors. We also saw incidental cerebellar staining on some sections. In 

such regions, the anti-5-HT3A antibody performed well, with clearly fluorescing cells displaying 

primarily somatic staining, with projections and dendrites sometimes visible. Critically, despite 

high background in these regions as well, positive signals were discernible therefrom. Although 

positive controls were not run for the anti-TH and anti-SERT antibodies, these labelled nuclei 

outside of the ROIs appropriately (e.g. VTA in the case of TH and MnR in the case of SERT). 

Negative controls, consisting of a lack of primary and/or secondary antibodies, were performed 

for all antibodies used. The anti-TH and anti-SERT antibodies were the most specific, whereas the 

anti-5HT3A antibody showed some non-specific staining and high background. Nevertheless, as 

mentioned above, this non-specific staining was distinguishable from the specific staining seen in 
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positive controls, and was ignored during analysis. In addition, perivascular cells displayed 

fluorescence in both FITC and Texas Red channels without the presence of antibodies. Once again, 

these staining patterns were readily distinguishable from specific staining, and were ignored during 

analysis. Given these considerations, as well as the reproducibility of 5-HT3A staining across 

multiple positive control regions, we believe our IHC staining to be appropriately specific for the 

project at hand.  

 

4.3 5-HT3 receptors in the substantia nigra 

The present results suggest a lack of 5-HT3A expression at the protein level in the SNc of 

the rat. This finding is equivocal, given the high background staining seen when examining the 

Texas Red filtre, the channel under which the secondary reporter for 5-HT3A fluoresces. Future 

studies using a more specific primary antibody with less background staining are needed to 

validate the present IF-IHC findings, although such specific primary antibodies may not be 

commercially available yet. An alternative approach would be, rather than relying on positive 

control ROIs for antibody validation, to validate candidate antibodies with knock-out animals for 

the protein of interest. Most knock-out animals models have used mice, with genetic toolboxes 

such as zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) 

for rats having been developed in recent years being uncommon (Geurts et al., 2009; Huang et al., 

2011; Tesson et al., 2011). Currently, no rat 5-HT3 knock-out rats exist, however studies in mice 

demonstrate that the lack of this receptor is not lethal (Zeitz et al., 2002; Kelley et al., 2003; 

Bhatnagar et al., 2004a; Bhatnagar et al., 2004b; Smit-Rigter et al., 2010). It is noteworthy that 

the findings reported here are in line with those of others who have attempted to map the 

distribution of 5-HT3 receptors using methods such as autoradiographic binding, in situ 
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hybridisation and precipitation-based IHC in the rat and also encountered variable levels of non-

specific binding/labelling (Kilpatrick et al., 1988; Barnes et al., 1990; Waeber et al., 1990; Gehlert 

et al., 1991; Laporte et al., 1992b; Gehlert et al., 1993; Steward et al., 1993b; Morales et al., 1996b; 

Morales et al., 1998; Spier et al., 1999; Geurts et al., 2002).  

In agreement with the findings presented here, data from studies conducted in other rodent 

species such as the mouse and the Syrian hamster, also indicate a lack of cellular 5-HT3 receptor 

expression in the SNc (Carrillo et al., 2010; Koyama et al., 2017). Indeed, the literature review 

conducted identified only one study  which found low-level expression of 5HT3 receptors in the 

rat SN using antibody radiolabelling (Doucet et al., 1999). Homogenate membrane binding assays 

also demonstrated low-level 5-HT3 receptor binding in rat SN homogenates when [125I]-iodo-

zacopride and [3H]-zacopride were used as radioligands (Laporte et al., 1992b). None of these last 

2 studies separated the SNc from the SNr. These rodent data are in agreement with data in humans, 

in whom low 5-HT3 receptor levels are encountered within the SN (Bufton et al., 1993b).  

Results obtained via non-visual methods of detection such as membrane binding assays, in 

vivo electrophysiology or behavioural assays have both implied and casted doubt on the presence 

of 5-HT3 receptors in the SNc (Sorensen et al., 1989; Ashby et al., 1990; Rasmussen et al., 1991; 

Prisco et al., 1992; Palfreyman et al., 1993; Alex and Pehek, 2007). Thus, it was found that chronic, 

but not acute, 5-HT3 blockade with MDL-73,147EF resulted in reduced electrophysiological 

activity in SNc dopaminergic neurons (Sorensen et al., 1989; Palfreyman et al., 1993). It is 

noteworthy that, because these last 2 studies employed chronic systemic injections, an effect on 5-

HT3 receptors localised on structures known to provide afferences to the SNc, e.g. the cortex, PPN, 

rostromedial tegmental nucleus, superior colliculus, GPe and thalamus could have underlied the 

effect encountered here (Fibiger and Miller, 1977; Oertel and Mugnaini, 1984; Sorensen et al., 
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1989; Weiner et al., 1990; Palfreyman et al., 1993; Gervais and Rouillard, 2000; Chen and Rice, 

2002; Forster and Blaha, 2003; Wooltorton et al., 2003; Haber, 2014; Miguelez et al., 2014). In 

contrast, other 5-HT3 antagonists such as granisetron, DAU 6215, zatosetron and BRL-43,694 all 

failed to replicate this effect either acutely or chronically (Ashby et al., 1990; Rasmussen et al., 

1991; Prisco et al., 1992). It was suggested that these differences may be due to the different 

chemical structures of of the different antagonists (Rasmussen et al., 1991). Thus, the herein results 

are in line with the prevailing conclusion, supported by anatomical, pharmacological and 

electrophysiological studies, that there is an absence of 5-HT3 receptors in the rat SNc. Similarly, 

the lack of expression on dopaminergic neurons is consistent with human data, seeing how 5-HT3 

receptor binding in nigrostriatal dopaminergic terminals did not decrease with the onset of PD 

(Steward et al., 1993a).  

As alluded to in the discussion above, non-pharmacological studies indicating a presence of 5-

HT3 receptors in the rat SN did not differentiate between the SNc and SNr, and therefore do not 

preclude their presence in the SNr rather than the SNc (Laporte et al., 1992b; Doucet et al., 1999). 

Because no 5-HT3 receptor staining was encountered in the rat SNc in the current study, this would 

suggest that the 5-HT3 receptors detected in the SN in those previous experiments might be 

localised in the SNr, which is what was found here.  

Although the initial intent of using stereological sampling was to eliminate bias from estimates 

of 5-HT3 receptors in the SN, they appear to be too sparse to be adequately quantified by the 

method, as a fundamental assumption thereof is a reasonably uniform (i.e. dense) population 

(West, 2012). In so far as few 5-HT3A-positive cells were counted (1,250 bilateral estimate, CE = 

0.24, Table 1) compared to the total estimate of 52,600 Nissl-stained cells (CE = 0.07) by Oorschot 

(1996), it is not surprising that the CE obtained is > 0.1. Indeed, because only 0-10 cells were 
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counted per section, stereological sampling may not have been the most appropriate method for 

such sparse quantification. Instead, whole sampling, beyond the scope of the present project, would 

be better suited to quantify the density of 5-HT3 receptors in the SNr.  

Inasmuch as the SNr is a primarily GABAergic structure, the presence of 5-HT3Rs is intriguing 

as, for instance, 90% of 5-HT3 receptors expressed in the neocortex and hippocampus are present 

on GABAergic neurons (Morales et al., 1996a; Morales and Bloom, 1997; Richards et al., 1997). 

Hence, further studies investigating whether 5-HT3 receptor-expressing SNr cells are GABAergic, 

and if so, to which sub-family they belong to, could be of interest. Hypothetically, the presence of 

5-HT3 receptors in the SNr could play a role in the regulation of seizures, as the SNr may be a 

modulator thereof (Velı́šek et al., 2002). This link between the SNr and seizures appears to relate 

to GABAergic projections from the SNr, with the anteromedial SNr being anticonvulsant and the 

posterodorsal SNr being proconvulsant (Moshé et al., 1995). Furthermore, a study in mice found 

that 5-HT3 activation with SR-57,227, achieved via systemic injection, was anticonvulsant, with a 

proposed mechanism of increased GABAergic signalling (Gholipour et al., 2009). While 

mechanistic insight remains needed, it is plausible that these effects may have been mediated by 

GABAergic SNr neurons. Outside of this context, studies in primates have implicated the 

anterolateral segment of the SNr in the development of parkinsonian motor manifestations 

(Wichmann et al., 2001). Further investigations into the SNr, as well as the potential for 5-HT3 

modulation therein could be of interest for the treatment of neurological disorders. 

 

4.4 5-HT3 receptors in the dorsal raphe nucleus 

The present results suggest a lack of 5-HT3A subunit expression at the protein level in the rat 

DRN. This finding is equivocal, considering the high background staining seen when examining 
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the Texas Red filtre, the channel under which the secondary reporter for 5-HT3A signals fluoresces. 

Nevertheless, this outcome is in agreement with other studies that have attempted to map the 

distribution of 5-HT3 receptors using methods such as autoradiographic binding, in situ 

hybridisation and precipitation-based IHC in the rat (Kilpatrick et al., 1987; Kilpatrick et al., 1988, 

1989; Barnes et al., 1990; Waeber et al., 1990; Gehlert et al., 1991; Gehlert et al., 1993; Kidd et 

al., 1993; Steward et al., 1993b; Morales et al., 1996b; Morales et al., 1998). Indeed, only a single 

study using visual methods found low-level 5-HT3 receptor binding in the rat DRN (Laporte et al., 

1992b). However, there has also been indirect evidence of the presence of 5-HT3 receptors in the 

DRN. Thus, microinjections of the 5-HT3 agonist m-chlorophenylbiguanide (m-CPBG) into the 

DRN had effects on rapid eye movement (REM) sleep in rats although, through pharmacological 

experiments, it was later shown that this effect was mediated by glutamatergic, not 5-HT, DRN 

cells expressing 5-HT3 receptors (Monti and Jantos, 2008; Monti et al., 2011). Another studyfound 

that 5-HT3 antagonists had no effect of 5-HT DRN cells, either in vivo or in vitro (Adrien et al., 

1992). These data collected from previous studies, combined with data collected in the present 

study, suggest that 5-HT3 receptors may not be expressed on 5-HT cells in the rat DRN.  

The argument presented in the previous paragraph provided indirect pharmacological 

evidence of the presence of 5-HT3 receptors on glutamatergic DRN cells, while the current IHC 

experiments failed to detect them. One possibility to explain this discrepancy is that the density of 

5-HT3 receptors in the DRN may be very low, below the detection threshold of visual methods 

such as in situ hybridisation or IHC. A caveat of this explanation is that it is hard to reconcile with 

the results of a study that used autoradiographic binding and detected low levels of 5-HT3 receptors 

in the rat DRN (Laporte et al., 1992b). In the context of the present study, it is possible that the 5-

HT3 receptors reported by Laporte et al. (1992b) are those associated with glutamatergic activity 
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in the DRN by Monti et al. (2008; 2011), and that these 5-HT3 receptors are expressed on the 

projections of endogenous glutamatergic neurons (Adrien et al., 1992; Jolas and Aghajanian, 

1997). Accordingly, it is conceivable that 5-HT3 receptors in the DRN are expressed on 

glutamatergic afferents from other nuclei (Soiza-Reilly and Commons, 2011). If this were the case, 

given the primarily somatic labelling of the anti-5-HT3A antibody used in the present study, such 

axonal 5-HT3 receptors would unlikely have been observed. Moreover, from a stereological point 

of view, such projections would not have been counted as it is virtually impossible to ascertain to 

which cell a given projection belongs, and that said cell would only be counted once (West, 2012). 

Nevertheless, experiments to determine whether the tenuous expression of 5-HT3 receptors by 

glutamatergic cells are on local (vesicular glutamate transporter type 3 [VGluT3]-positive) cells, 

or on projections from other loci (VGluT1/2-positive) would be of interest (Soiza-Reilly and 

Commons, 2011). However, owing to a lack of detection of 5-HT3 receptors in the DRN through 

visual means other than autoradiographic binding, such experiments would likely have to be 

pharmacological, and therefore not quantitative. Biochemical experiments such as Western blots 

could yield quantitative data, at the expense of anatomical resolution (Taylor and Posch, 2014). 

 

4.5 Validity of stereological estimates 

The stereological parameters used were determined based on previously published ones in 

the literature (Oorschot, 1996; Nair-Roberts et al., 2008; Strackx et al., 2008; Maia et al., 2016), 

as well as empirical determination during preliminary experiments. In turn, these yielded estimates 

for TH-positive and SERT-positive cells in the SN and DRN with CEs below the minimum 

Gundersen m = 1 CE threshold of 0.1 and within the appropriate CE boundary of 0.06 for 

biological accuracy (West et al., 1991). Thus, the sampling parameters employed were deemed 
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valid for both TH- and SERT-positive cells. Using these parameters, estimations of the number of 

5-HT3 receptors did not achieve appropriate CEs. An alternative method to the one employed 

would have been to perform more intensive sampling, or even whole-structure sampling. However, 

this would have defied the rationale of stereology, which aims to produce reliable cell-count 

estimates with reduced sampling or time spent counting (West et al., 1991; West, 2012). Hence, 

retrospectively, given the paucity of 5-HT3 receptors in these ROIs, unbiased stereology may not 

have been the most appropriate quantitative methodology. Qualitative investigations were carried 

out following the stereological investigations to determine whether the sampling scheme employed 

was missing large populations of 5-HT3 receptors. These assessments did not demonstrate any 

noticeable groupings of 5-HT3A signals missed by the stereological sampling in experimental 

ROIs. Despite these caveats, stereological sampling was theoretically the least-biased method of 

5-HT3 receptors quantification.For a more thorough future quantification, assumption-based 

methods such as direct cell counting may have to be employed. 

For TH staining, the number of TH-positive cells estimated bilaterally in the SN were in 

accordance with previous results published in the literature (Ahmad et al., 2008; Nair-Roberts et 

al., 2008). For SERT staining, the average estimate of 5-HT cells was less robust. The obtained 

average estimate of 12,852 (± 462) is similar to a previous estimation of 11,428 (± 207) 5-HT cells 

(Descarries et al., 1982). However, it is lower than the estimate provided by a later study, which 

estimated to approximately 33,000 the number of 5-HT cells in the DRN (Strackx et al., 2008). 

An important distinction between the aforementioned publications are that the former used model-

based cell counting methods rather than stereology to estimate the number of serotonergic cells in 

the DRN, whereas the latter employed stereology. Although differences in cell estimates tend to 

occur between classical and stereological counting, they tend not to be so marked (Baquet et al., 
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2009). These authors observed little difference in cell counts of mouse SNc using design-based or 

method-based counting (Baquet et al., 2009). It would therefore be unlikely for such a vast 

difference to occur between the studies conducted by Descarries et al. (1982) and Strackx et al. 

(2008). Moreover, the results of the latter appear to be very close to estimates of total cells in the 

DRN of 33,008 [± 2345] (King et al., 2002). Raising further questioning on the robustness of the 

estimates provided by Strackx et al. (2008) is the fact that, as mentioned in section 1.3.1, the DRN 

is a nucleus consisting primarily of neuropil, has a high density of glial and other cell types, such 

as GABAergic, dopaminergic and glutamatergic cells distinct from 5-HT cells (Belin et al., 1979; 

Molliver, 1987; Jacobs and Azmitia, 1992; Jolas and Aghajanian, 1997; Adell et al., 2002; Allers 

and Sharp, 2003; Commons, 2009; Fu et al., 2010; Hioki et al., 2010; Jahanshahi et al., 2013; 

Soiza-Reilly and Commons, 2014). The number of 5-HT cells should therefore be lower than total 

cell counts, and has been estimated to represent approximately two-thirds thereof in the rat (Fu et 

al., 2010). One other stereological study was identified which reported 5-HT cell count estimates 

around 18,500, with relatively high CEs ranging from 0.07 to 0.09 for various DRN sub-regions 

(Maia et al., 2016). While the data generated by the present study does not correspond to the 

estimate of 20,000 5-HT cells (assuming a whole-cell count of roughly 30,000), the CEs for the 

estimates herein are more robust than those provided by Maia et al. (2016). Unfortunately, there 

appears to be little additional literature on stereological estimates of 5-HT cell counts in the rat 

DRN, as most studies found do not explicitly state these, but rather percent changes or other 

relative assessments (Díaz-Cabiale et al., 2011; Van den Hove et al., 2014).  
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5 Conclusion and Summary  
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To date, relatively few studies have examined the precise, high resolution anatomical 

distribution and density of 5-HT3 receptors in the rat brain. Data on the distribution of this receptor 

in humans is difficult to obtain owing to limitations of in vivo techniques available (e.g. positron 

emission tomography), and the potential confounds of post-mortem studies. Limitations in our 

knowledge pertaining to 5-HT3 receptors in non-human primates persist for similar reasons. 

Pharmacological modulation of 5-HT3 receptors has already been shown to be a clinical tool for 

the treatment of chemotherapy-induced nausea, and preliminary studies indicate an additional 

therapeutic potential for the treatment of visual hallucinations in patients with advanced PD 

(Zoldan et al., 1993; Zoldan et al., 1995; Hesketh et al., 2017). Pre-clinically, activation of these 

receptors has been shown to be potentially beneficial in the treating of epileptic seizures 

(Gholipour et al., 2009). Seeing how the role of 5-HT in the CNS as well as PNS is vast, and that 

5-HT3 receptors are the only ionotropic 5-HT receptor identified to date, this receptor is an 

attractive target for potential direct modulation of fast synaptic transmission in neural circuits 

(Férézou et al., 2002; Nichols and Nichols, 2008). IF-IHC renders possible the accurate 

identification of anatomical regions containing 5-HT3 receptors, in contrast to previous radioligand 

binding experiments, which offer a lesser cellular resolution (Kilpatrick et al., 1987; Kilpatrick et 

al., 1988; Barnes et al., 1989a; Barnes et al., 1989b; Kilpatrick et al., 1989; Barnes et al., 1990; 

Pratt et al., 1990; Jones et al., 1992; Laporte et al., 1992b). The results presented herein indicate a 

low density of 5-HT3 receptors in the SN, these being located solely in the SNr, and not the SNc. 

They also do not indicate the presence of these receptors in the DRN. Therefore, the present results 

do not suggest a direct role for these receptors in monoaminergic transmission in these nuclei. 

They rather suggest that the effects of 5-HT3 antagonism in the context of disorders of the BG are 
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likely to be due to indirect effects of these receptors with respect to dopaminergic and 5-HT inputs 

to the BG.  
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