
ARDA: A FRAMEWORK FOR

PROCEDURAL VIDEO GAME CONTENT GENERATION

by

Nicholas Eugene Rudzicz

School of Computer Science

McGill University, Montreal

February 2009

A thesis submitted to McGill University

in partial fulfillment of the requirements of the degree of

Master of Science

Copyright c� 2009 by Nicholas Eugene Rudzicz

Abstract

The current trend in computer game design is toward larger and richer virtual

worlds, providing interesting and abundant game content for players to explore. The

creation and continuous expansion of detailed virtual environments, however, is a time

and resource-consuming task for game developers. Procedural content generation po-

tentially solves this problem; textures, landscapes, and more recently the creation of

entire cities and their constituent roads and buildings can be performed in an auto-

mated fashion, potentially offering considerable resource savings for developers. This

thesis develops a comprehensive system for content generation, centering on a hierar-

chical world design. The Arda tool is presented as a modular system for supporting

automatic content generation in a game context. Arda is composed of a framework

for internally managing environmental data and content-generation algorithms, in

addition to a graphical tool providing a simplified interface for generating video game

content. The tool supports extensive customization, which is demonstrated through

a novel algorithm for efficient and realistic city (road-plan) generation. Experimental

results show the design is practical, producing qualitatively realistic results. It is also

quite fast; large city plans, extending to the size of major real-world cities can be gen-

erated in a few seconds. The Arda design demonstrates the feasibility of automatic

content generation, providing a practical and flexible system for quick prototyping,

development and testing of game assets.

i

Résumé

La nouvelle tendance dans la conception de jeux vidéo vise des environnements

vastes et détaillés, pour mettre en valeur l’exploration de l’univers virtuel. Cependant,

la création de ce contenu impose au développeur un investissement majeur au niveau

des ressources et du temps requis pour la production. L’emploi du contenu procédural

pourrait résoudre le problème : la création de textures, de paysages, et finalement de

villes entières—incluant des réseaux routiers et des bâtiments complexes—se fait de

façon automatisée, ce qui représente une économie considérable pour les développeurs.

Cette thèse présente un système de génération de contenu procédural axé sur une

conception hiérarchique du monde virtuel : Arda, un outil modulaire qui facilite

la création automatique de contenu pour les jeux vidéo. Arda est composé d’un

cadre d’applications pour la gestion de données environnementales et d’algorithmes

procéduraux, ainsi que d’une interface d’utilisation graphique qui simplifie le proces-

sus de création de contenu. L’outil est fortement paramétrable, ce qui est démontré

grâce à un nouvel algorithme, conçu ci-après, pour la création efficace et réaliste

de réseaux routiers. Les essais prouvent que le concept est pratique et produit des

résultats très réalistes. De plus, le système est rapide : des villes virtuelles, de la même

dimension que des villes actuelles, sont construites en quelques secondes. Le système

Arda démontre la faisabilité de la génération de contenu procédural, fournissant une

méthode pratique et modulaire pour le dévelopement et la validation rapide de con-

tenu pour les jeux vidéo.

ii

Acknowledgments

I would like to acknowledge the help and supervision provided by Clark Verbrugge

throughout the course of this project. It has been instrumental and inspiring.

A debt of gratitude, now and always, to my family. For the usual reasons.

“Ash nazg durbatulûk,

Ash nazg gimbatul,

Ash nazg thrakatulûk,

Agh burzum-ishi krimpatul!”

iii

Contents

Abstract i

Résumé ii

Acknowledgments iii

Contents iv

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Content in Video Games . 1

1.2 Procedural Content . 2

1.3 Arda . 4

1.4 A Hybrid Content Creation Approach 5

1.5 Contributions . 6

2 Related Work 8

2.1 Existing Content Creation Techniques 8

2.2 Games and Procedural Content . 9

2.3 Procedural Content Algorithms . 11

iv

3 Arda System 15

3.1 Motivation . 15

3.2 Overview . 16

3.3 Arda Framework . 17

3.3.1 Storing Content Data . 17

3.3.2 Content Generation Pipeline 22

3.3.3 Generation Modules & Extending the Framework 26

3.3.4 Additional Components . 29

3.4 Arda Toolkit . 32

3.4.1 Design . 32

3.4.2 Default Generation Modules 34

3.4.3 Module Parameters . 37

3.5 Summary . 39

4 Iterated Subdivision 40

4.1 Motivation . 40

4.2 Iterated Subdivision . 40

4.3 Refinements . 43

4.3.1 Diameter-to-Width Ratio . 43

4.3.2 Branching Angles . 44

4.3.3 Snap distance . 47

4.3.4 Bitmap Parametrisation . 47

4.3.5 Blocking Polygons . 52

4.4 Improved Algorithm . 53

4.5 Allotment Subdivision . 53

4.6 Integration into Arda . 55

4.6.1 Generation Module . 55

4.6.2 Parametrisation Modules . 56

4.7 Summary . 57

v

5 Evaluation 60

5.1 Testing ItSub . 60

5.1.1 Performance . 61

5.1.2 Realism . 64

5.2 Parallelisation of Arda Framework . 64

5.3 Integrating Arda into Mammoth . 67

6 Conclusion & Future Work 72

6.1 Conclusion . 72

6.2 Future Work . 75

6.2.1 Improving the Arda Framework 75

6.2.2 Improving the Arda Toolkit 77

6.2.3 Improvements to ItSub . 78

vi

List of Figures

1.1 Evolution of environmental content 3

3.1 Overview of Arda Framework components 17

3.2 Height maps . 18

3.3 Interface for a Terrain object . 19

3.4 Interface for a City object . 20

3.5 Interface for a Building object . 21

3.6 A view of the Arda Framework’s data hierarchy 22

3.7 Querying higher-level content . 23

3.8 Content generation in parallel . 24

3.9 Regenerating content at a node . 25

3.10 A module for generating terrain . 27

3.11 A generic generation module . 28

3.12 Current pipeline implementation . 29

3.13 Distribution of module blueprints . 31

3.14 Current implementation of the Arda Toolkit 33

3.15 Using parametrisation modules in the Toolkit 38

4.1 Overly-elongated subdivisions . 44

4.2 Different diameter-to-width ratios . 45

4.3 Branching angles . 45

4.4 Examples of different road patterns 46

4.5 Snapping road endpoints . 48

4.6 Effects of a density bitmap . 49

vii

4.7 User-controlled road plan variations 50

4.8 Density and road plan influence maps used simultaneously 51

4.9 Blocking polygons . 53

4.10 Using ItSub for allotment generation 54

5.1 Performance of ItSub when varying starting polygon area 62

5.2 Performance of Arda pipeline with and without parallelisation 66

5.3 ItSub applied to Manhattan and Montreal islands 69

5.4 Screenshots of Arda-generated content in Mammoth 70

5.5 A sense of scale in Arda-generated content 71

viii

List of Tables

3.1 Content elements and their associated interfaces 35

5.1 Influence of starting polygon area on ItSub running time. 61

5.2 Influence of parallelisation on running time of Arda pipeline. 66

ix

Chapter 1

Introduction

1.1 Content in Video Games

Environmental content in video games has long played an important role in the

gameplay experience. The earliest adventure games—both text-based and graphi-

cal; for example, the Zork or King’s Quest series, respectively—rewarded exploration

as a means of advancing the storyline. More recent “open world” games—such as

the Grand Theft Auto series, Far Cry 2, Fallout 3, The Elder Scrolls: Morrowind

and Oblivion, and any number of Massively Multiplayer Online (MMO) games—

provide expansive environments generally tailored towards incrementally improving

an avatar’s characteristics. The latter type of environment—the open world—has in

fact increased dramatically in popularity, as storage space has become more plen-

tiful and less expensive on both the PC and home gaming consoles. At the same

time, the graphics processing power of video game systems has also trended towards

greater power for a lower price point; consequently, gamers expect much more detail

from a game’s environment. Taking the improvements in storage space and graphical

power together, we note a trend in modern open world game environments: while

this type of game world is becoming more common in games—and significantly more

detailed—the actual size of such environments has been drastically reduced. For ex-

ample, The Elder Scrolls: Daggerfall, a role-playing game released in 1996, boasted

1

“a game world the size of Great Britain”, or roughly 209,000km2 [2, 32]; in contrast,

the latest game in the same series, Oblivion, occupies a mere 41km2 [33].

Increased production costs are at the core of this dichotomy. Whereas Daggerfall ’s

wilderness environments were relatively sparse—a flat terrain arbitrarily populated

by vegetation sprites—the world in Oblivion is much more detailed, with varying

terrain, dense and realistic vegetation, even simulated wildlife (see Figure 1.1). Such

high levels of realism and visual detail require a significant proportion of a game’s

development budget, in terms of both money spent on artists’ salaries and necessary

tool sets, and time required to complete the content and the game itself. Since the

majority of video game companies still make use of a “brute force” approach to

content creation—that is, simply hiring more artists and investing more time in the

process—the costs of creating expansive environments, all while maintaining parity

with continually-improving technology, will continue to spiral upwards, becoming

prohibitively expensive for all but the largest companies with the greatest resources.

1.2 Procedural Content

An alternative to the brute-force approach is the use of procedural content genera-

tion, or PCG; that is, allowing content to be created and deployed by the computer

program itself, by means of well-defined algorithms and/or rule sets. This enables

vast amounts of content to be produced in a fraction of the cost and time normally

required, potentially representing an important savings for companies creating their

own open-world games. While this has granted PCG techniques a broad and rapidly

growing interest in more recent years, it is worthwhile to note that a number of very

early games have already used procedural content quite successfully, and furthermore

that many of the most popular algorithms have been known for decades. In fact,

research into PCG has proceeded quite steadily in a number of otherwise unrelated

disciplines—simulation, plant biology, statistics, urban sociology, population studies,

2

(a)

(b)

Figure 1.1 – Evolution of environmental content. (a) An environment in The Elder

Scrolls: Daggerfall ; the distribution of trees and other details are procedural, if somewhat

simple. (b) An environment from a more recent game in the same series, Oblivion. The

environment is much more detailed, but relies primarily on manual content generation.

[Both games property of Bethesda Softworks.]

and so on—and has resulted in a huge variety of well-studied algorithms (we dis-

cuss a number of these techniques, along with several games making use of PCG,

in Chapter 2). However, every one of these techniques currently exists in isolation,

producing solitary artefacts—visualisations, for the most part—that are interesting

from a technical standpoint, and often very impressive aesthetically, but insufficient

for a complete mainstream video game.

On the one hand, it is clear that (purely) manually-created environmental content

will become increasingly expensive as time goes on; on the other, there exists a

multitude of (currently isolated) techniques capable of generating a staggering variety

of content entirely automatically, using a fraction of the resources of traditional asset

creation. The increasing importance of the content-generation problem, coupled with

the sophistication of procedural techniques as a potential solution, suggests that PCG

will play a growing role in future game design, an observation that provides the main

motivation for this thesis work.

3

1.3 Arda

First and foremost, our primary goal is to mediate the aforementioned discrepancy

between the capability and variety of content generation algorithms, and their relative

scarcity in modern video games—in other words, to make procedural content more

accessible to game developers. To do so, we propose here a content generation system

consisting of both a framework (essentially an application programming interface, or

API), and a graphical toolkit (a graphical application to make creating content simple

and intuitive). We refer to this system as Arda, and explain both the framework and

the toolkit below. (By virtue of explanation, we note here that the name “Arda”

was originally given by J.R.R. Tolkien to the vast and detailed world in which his

Silmarillion and Lord of the Rings novels took place.)

There are a number of required and/or desirable features for a system such as

Arda. In order to provide the most practical benefits to developers and researchers,

we determined the following goals for the system:

• Hierarchy—Since most content creation algorithms target a specific type of

content, Arda should maintain a clear distinction between these various types.

Furthermore, there are a number of logical dependencies between types: build-

ings belong in a city, cities belong on a terrain, and so on. These dependencies

should be reflected in the final structure of the system.

• Modularity—If two algorithms generate the same type of content—for instance,

both Perlin noise and fractal methods can be used to generate terrain—then the

system should allow either one to be “swapped” with the other in such a way

that the replacement is transparent to the rest of the content creation process.

• Simplicity—To allow for the desired modularity, simple interfaces must be pro-

vided in various points of the framework, such that game developers and algo-

rithm researchers can easily import their techniques into the system.

• Parallelism—Given that, in a single virtual world, there may be a large amount

of non-overlapping content to generate, Arda should accommodate parallelised

4

computation, to improve performance and take advantage of modern multi-core

systems.

• Versatility—Once created, content data should be stored in abstract, high-

level internal data structures so that they can be exported later to a variety of

platforms and/or formats.

• Basic functionality—The graphical tool for content creation should be able to

generate a virtual world immediately upon starting, without the need for any up-

front programming on the user’s part. Therefore, several “default” algorithms

should be created to allow full environment creation from start to finish.

These design principles guided the development of the Arda Framework and the

Arda Toolkit presented in subsequent chapters.

1.4 A Hybrid Content Creation Approach

Finally, expanding on the goal of “Versatility” outlined above, we note that the

Arda content-generating system is not meant to be monolithic in the process of as-

set creation. Rather, it is intended simply as one half of a “hybrid” content cre-

ation approach—a process whereby procedural and manually-created content can be

rapidly combined to ensure both maximum efficiency and maximum artistry. In other

words, while procedural techniques can lay content “ground-work” or create other-

wise prohibitively-large environments automatically, human artists can still modify

the resulting assets or introduce their own content in order to better suit a particular

project’s gameplay requirements or general aesthetic.

As previously stated, procedural content generation is not a recent innovation in

the video games industry. Indeed, as early as 1985, the Adventure Construction Set

(or ACS), developed by Electronic Arts, provided users with procedurally-generated

content—of a much simpler nature than what is currently possible—and enabled a

hybrid approach very similar to that which we propose with Arda: (italics added)

“ACS also displayed a key truth reflected in later adventure building systems: they

5

only automated the mechanical parts of game construction; good game design was

still difficult and time-consuming. The option to allow the computer to create a

random adventure produced treasure-hunt mazes and compounds, but no story or

logical succession of challenges to link them together. Many users would use the

random function to save time and create large, relatively empty canvases and then

build their adventures by modifying them.” [24, 30]

1.5 Contributions

• Arda Framework: An internal representation of the various types of con-

tent data to be created, with the ability to create large amounts of procedural

content in a top-down approach. The Framework defines a number of points

where human input would otherwise be required; these are replaced with “inter-

faces” which allow different algorithms to be swapped in and out of their place.

Game developers can create new algorithms and very quickly adapt them to the

system, extending the Framework’s capabilities.

• Arda Toolkit: A graphical tool built on top of the Framework, providing

quick and intuitive access to the latter’s underlying functions. Users can gener-

ate extensive environments, select from different algorithms to perform content

generation at any level, regenerate selected portions of the created content, and

modify the parameters of any algorithm chosen. A simple preview of the re-

sulting virtual worlds is provided; having evaluated the latter, the user is able

to export the given world to a format of their choosing.

• Iterated Subdivision Algorithm: Part of the development of the Frame-

work and Toolkit involved the implementation of content creation algorithms

for evaluation purposes. The task of generating random, procedural urban

road networks has been addressed elsewhere; however, previous techniques are

complex and difficult to parametrise. We present, in conjunction with the de-

velopment of Arda, a simpler, more intuitive road generation algorithm with

results qualitatively approaching those of previous algorithms.

6

• Experimental Trials: Finally, we examine the performance of our road gen-

eration algorithm in terms of running time and aesthetic quality. Furthermore,

we test the Arda content generation system by producing large environments

for an extant video game platform, and evaluate the results.

In Chapter 2, we examine the various methods (both manual and procedural) used

in generating content for video games; furthermore, we survey the state of the art in

content-generation algorithms. Chapter 3 presents the Arda system for procedural

content generation, including both an internal representation and a graphical tool.

Next, Iterated Subdivision—a novel algorithm for urban road network generation—is

developed in Chapter 4, with the goal of integrating it into the previously-defined

Arda system. Finally, we evaluate the performance of both Iterated Subdivision and

the Arda system itself in Chapter 5, before concluding in Chapter 6 and suggesting

further possibilities for research.

7

Chapter 2

Related Work

As hinted in the previous chapter, procedural content generation (PCG) is not a

recent development in the field of computer science in general, nor the video game

industry in particular. Many of the earliest video games used procedural content in

very important ways; meanwhile, a wide variety of disciplines within academia have

continued to contribute inventive and powerful algorithms for the automatic creation

of any number of different content types. In this chapter, we examine traditional

methods of generating environmental content, as well as discussing previous uses of

procedural content in video games, and the impressive range of procedural algorithms

developed within the industry and within other research disciplines. Each of these

concepts can inform the development of Arda, our own content generation system.

2.1 Existing Content Creation Techniques

Traditionally, video game asset creation has relied on general-purpose digital art

software—for instance, many 2D games are developed using tools such as Adobe’s

Illustrator or Photoshop Elements to create sprites; whereas 3D games make use of

any number of 3D modelling utilities, such as Blender, 3DS Max, Maya, and so on.

While these are powerful tools, they often require a significant amount of training in

order to achieve practical results, and moreover, the content thus created still requires

integration into a game environment, which can be a complicated task. For these

8

reasons, many game developers have designed tool sets to easily manage individual

content elements created with the utilities listed above, and incorporate them into

a game. However, these early tool sets—such as UnrealEd for the Unreal series, or

the former Worldcraft editor for the Quake and Half-Life series—provided only basic

functionality, being restricted primarily to the placement of created objects.

More recently, tool sets have become more powerful (even being released to the

public) and often can be used to create the majority of quest and environmental

content in a game. The Elder Scrolls series, in particular, has gained recognition for

its Elder Scrolls Construction Sets, which allow a significant level of customisation:

terrain forms can be created, non-player characters (NPCs) can be distributed along

with their associated quest and dialogue trees, items can be placed and modified,

and so on. Similarly, the Warcraft III level editor provides the capability to create

full scenarios, including environmental, NPC, and quest editing. While these editors,

and others like them, provide a much more powerful and complete game-creation

environment, they nevertheless suffer from the same scalability problem: as games

become larger and more detailed, increasing amounts of resources are still required

in order to produce an acceptably large and detailed world.

2.2 Games and Procedural Content

Hardware limits encouraged many of the earliest games to incorporate some mea-

sure of automated content creation. First, because the content to be displayed was

relatively simple (basic 2D maps, or, at their most complex, flat ground textures pop-

ulated by sprites—see the discussion of Daggerfall in the previous chapter), concerns

of absolute realism were minimal: rectangles joined by meandering lines sufficed as

dungeons, for example; or the use of tile-based maps somewhat forgave abrupt changes

between neighbouring areas. Secondly, however, size constraints on distribution media

and on hard disk space actually discouraged the use of massive, hard-coded environ-

ments. Insead, new environments could be generated at run-time—the code to create

the procedural content taking orders of magnitude less space than then content itself

9

would have done. Thus, many early games were quick to take advantage of procedural

content, either for data amplification or novel gameplay.

Daggerfall, mentioned above, exemplifies the use of PCG for data amplification,

a process whereby a finite amount of art assets can be replicated an arbitrarily large

number of times. In the case of Daggerfall, wilderness areas are “filled in” with

random distributions of vegetation and enemies drawn from libraries particular to a

given region. Many games use data amplification similarly, in order to flesh out non

story-specific areas with content that nevertheless mitigates player tedium.

The use of PCG for novel gameplay has its roots in very early games, such as Elite

or Nethack, and is carried on most predominantly in the current generation by the

Civilization series. In each of these games, and others like them, the emphasis is not

on the size of the environment to be explored, but rather the novelty of an environment

each time a new game is begun. Using procedural techniques, entirely random and

unique planets, dungeons, or landscapes can be generated at each iteration, extending

the lifetime of the game by constantly providing new challenges.

As outlined in Chapter 1, procedural content editors have existed in video games

since at least 1985. The Adventure Construction Set (ACS) released by Electronic

Arts allowed a random adventure to be created by the computer, and then modified by

an end user [24,30]. While this type of hybrid construction kit has become rare if not

nonexistant in the current video game industry, it nevertheless serves as inspiration

for Arda system to be developed here.

Approaches to procedural game creation have also been advanced in academia,

although generally in the context of more traditional games, such as board games

(Chess, Checkers, Go) and card games (Poker, Solitaire). Romein et al. and Pell

both introduce game-definition languages—Multigame and Metagame, respectively—

for specifying abstract rules, values, and goals for a game [18,23]. Both systems then

use compilers to perform transformations on the defined games: Multigame paral-

lelises as much as possible and proceeds to analyse the set of possible moves in order

to build a game-tree search space, while Metagame rapidly creates a playable version

of the game for testing. Orwant proceeds in a similar fashion with his Extensible

Graphical Game Generator (EGGG), which uses a high-level language to define a

10

game, and then procedurally creates a playable, graphical version for demonstration

purposes [16].

2.3 Procedural Content Algorithms

The variety of available content generation algorithms reflects the numerous disci-

plines that have been involved in developing them: not only is there a considerable

volume of these techniques, but they can be used to create content of a number of

different types.

One can consider terrain forms as being the most fundamental level of content

common to nearly all games, notwithstanding those taking place entirely in artificial

environments—that is, they are generally created first, and changes to the terrain af-

fect any and all objects placed upon it. Accordingly, a large body of work has already

been developed, in both video games and visualisation, to automate the process of

terrain generation. Mandelbrot, in the mid-1970s, was one of the first to implement

such an algorithm, having noticed the fractal nature of many natural landscapes—for

example, that the large-scale structure of a mountain range is roughly analogous to

much smaller-scale local perturbations [11]. Similarly, Perlin later developed his own

Perlin Noise technique, in which similar noise patterns with strictly varying frequen-

cies are added together to provide a global noise function [19]. The latter technique

has since become so popular that it is often included by default in most graphics

software and video game API’s.

Musgrave developed an even greater realism in procedural terrain by introducing

two types of erosion into the terrain generation process: hydraulic (erosion by water

drainage), and thermal (erosion of rocks naturally breaking and falling down steep

slopes) [13]. These forces reduced the the appearance of jagged peaks in the generated

terrain, resulting in a more natural look. Much more recently, Olsen defined an

erosion metric for evaluating the fitness of generated terrains, arguing that these must

balance visual/aesthetic interest with actual gameplay (i.e., the ability of structures

and characters to be placed on or move around the terrain) [15]. Olsen also introduced

11

a hybrid technique for terrain generation, combining a base noise function (such as

fractal or Perlin noise) with Voronoi cells and pixel-wise perturbations to produce a

quick algorithm capable of generating visually interesting and useable natural terrains.

Once a terrain model is built, it is generally desirable to populate it with vege-

tation, in order to avoid having an overly barren world. In fact, some of the earliest

work in content generation was directed towards the generation of natural tree-like

structures—this was Lindenmayer’s work in the 1960s on the subject of L-systems [9].

Similar to context-free grammars (CFG’s), L-systems are a mechanism for string ma-

nipulation given a specific alphabet and production rules (which may be deterministic

or stochastic). Applying the production rules over a number of iterations, and allow-

ing the underlying symbols to have physical representations (e.g., branching points,

branching angles, lengths, etc.), Lindenmeyer was able to replicate structured, tree-

like organic entities with a remarkable accuracy.

Lindenmeyer further developed his work alongside Prusinkiewicz, modeling herba-

ceous plants with great success [22]. They extended basic L-systems by making them

more context-aware; for instance, they allow for “genetic” information to be passed

down particular branches, as well as between neighbouring “cells”. These modifi-

cations bring an element of time-dependence to L-systems—whereas the first imple-

mentations were directed simply towards an end result, this enhanced version allows

structures to be viewed in developmental stages, increasing the realism of the output.

The actual distribution of plant models (themselves procedural or manually-

created) can be automated as well. Both Deussen and Wells have achieved some

success in simulating complex natural landscapes using L-systems and land cover

classification (LCC) bitmaps, respectively [3, 29]. Both techniques incorporate rules

for the various species (i.e., models) of plants: min/max elevation; min/max slope;

relative elevation; and so on. However, Deussen’s L-system technique relies on a num-

ber of simulation iterations—replicating competition and migration in ecosystems—to

build up the vegetation distribution over time; in contrast, Wells’ technique uses the

LCC bitmaps as guidelines for random, one-pass distribution. Thus, the L-system

approach is more variable at the cost of programming complexity, while the LCC

system provides a simple algorithm that is dependent on user input (either from an

12

accurate geological survey of real locations, or “painted” by an artist).

Parish and Müller extend the use of L-systems even further, noting the similar-

ity between previous L-system content—such as trees and branches, or veins in a

leaf—and city-wide systems of roads. Recognising the suitability of L-systems for

modelling urban road networks, the authors present impressive results [12,17]. Their

implementation is extended, however: first, the L-system is “self-aware” in that it

can form closed loops with itself (i.e., new roads can create cycles by connecting with

pre-existing ones); and second, the L-system is highly parametrised—for instance, it

can be made to follow population density or terrain elevation, or follow more grid-like

patterns as opposed to radial ones.

Meanwhile, research from sociology and civil engineering has presented other

unique approaches to urban simulation. Lechner and Watson employ an agent-based

technique: a collective of independent “developer agents” is built, in which each

individual is assigned a specific role—residential or industrial development, road ex-

tension, and so on. Each agent type is endowed with specific goals and biases; when

the agents are subsequently “released” into the environment, cities and road plans

emerge from their competition for virtual real estate and resources. While this algo-

rithm quite accurately models the dynamic growth of cities under competing forces,

the authors admit that the results are coarser and on a much smaller scale than

desired [8]. Furthermore, as in any agent-based approach, results are highly unpre-

dictable, though Watson has suggested means for users to significantly influence the

final product by placing strong attractors (or “honey”) in various areas of the game

world [28].

Once suitable procedural road plans have been generated, it is of course necessary

to populate these with buildings—much as the generation of random terrain led into

the generation of overlaying vegetation. Parish and Müller populate their L-system-

generated road plans in a two-step process: first, building geometry (on allotments

created during road plan generation) is evolved using another L-system; and second,

the geometry is textured using a texture synthesis technique incorporating standard

building elements [17]. As with many of the algorithms presented in this chapter,

these approaches are capable of impressive results at the expense of programming

13

complexity. Simpler alternatives are discussed in further chapters.

Other researchers have developed different approaches to generating building ge-

ometries, and texturing the blank façades. Greuter begins with a basic (and arbitrary)

geometric figure—a square, a hexagon, etc.—and then extrudes the figure downwards

in three dimensions; at several intervals, new geometric figures are unioned with the

base shape, creating larger and more varied floor plans as the building is extruded

from its top down to ground level [6]. Wonka provides an implementation for building

façade creation (i.e., the second step of building generation) that is quite similar to

L-systems and the CFG’s on which these are based. This algorithm defines a shape

grammar in which basic geometric shapes (i.e., axioms) are replaced by more detailed

components according to pre-defined production rules [34].

Proceeding inside the generated buildings, a number of algorithms have been sug-

gested for the generation of floor plans—that is, subdividing a building space into

rooms, hallways, and so on. Noel presents an algorithm for iteratively subdivid-

ing space into separate polygons, which are then resized according to pre-defined

constraints [14]. Hahn provides a similar subdivision algorithm, but extends it to

be capable of building-wide constraints (e.g., elevators, stairwells, etc.), as well as

suitable hallway distribution (ensuring all rooms are adequately connected to a hall-

way) [7]. Hahn’s algorithm also allows for lazy, “on-demand” generation, reducing

the overhead for content creation in general.

While the discussion in the following chapters focuses primarily on the generation

of terrain, cities, and building façades, the sheer number and variety of algorithms

listed above demonstrates the potential for generating vast and detailed environments,

from the underlying landforms to the placement of rooms in buildings.

14

Chapter 3

Arda System

3.1 Motivation

The previous chapter presented a wide variety of techniques for content generation

at various levels of detail—from large-scale terrain masses, to the placement of in-

dividual rooms and hallways in buildings. However, as outlined in Chapter 1, these

algorithms are generally used in isolation, or strictly for visualisation purposes. The

Arda system presented here is an agglomeration of these disparate algorithms for

procedural video game content creation. It provides a means of creating different

content types, or content elements (terrain, cities, buildings, etc.), via any number of

interchangeable generation modules, wrappers providing a standardised interface to

a particular content generation algorithm. Such a system allows researchers to test

out and integrate new content-generating techniques within a well-defined framework,

and furthermore leads to a tool that can be used by game designers for the rapid,

customised creation of large amounts of environmental content that might otherwise

be prohibitively expensive to produce manually.

As outlined in Chapter 2, there is a plurality of content types to be generated by

the various algorithms that have been discussed; accommodating each and incorpo-

rating them into a single tool is an ambitious goal. For the sake of simplicity, the

current discussion about—and implementation of—the Arda system is limited to the

levels of terrain, cities, and buildings. However, the implementation of these levels

15

should adequately serve to demonstrate that the larger systems are possible; includ-

ing further content and module types is simply a matter of repeating the same design

patterns that exist within the system already, and is discussed in Chapter 6.

3.2 Overview

The remainder of this chapter presents the Arda content generation system in detail.

Section 3.3 describes the design of the Arda Framework; that is, the means of

organising static content data as well as allowing generation of that content via ar-

bitrarily many different algorithms. Subsection 3.3.1 motivates the need for a data

hierarchy, using well-defined, high-level representations of each content type. Sub-

section 3.3.2 describes the process of procedurally creating environmental content

element by element, resulting in a tree-like hierarchy. Subsection 3.3.3 outlines the

means by which new algorithms can be integrated into the Framework for use in gen-

erating content. Finally, Subsection 3.3.4 describes a remaining pair of components

required to complete the definition of the Framework.

Section 3.4 describes the Arda Toolkit, a graphical tool that makes use of the

Framework internally, and that allows users to quickly select and customise content

generation modules for rapid prototyping, testing, and creation of environmental

content. Subsection 3.4.1 describes the various components of the Toolkit’s graphical

user interface (GUI). Subsection 3.4.2 lists a number of default modules that generate

very basic content elements; these have been implemented in order to provide a

minimal functionality to the Toolkit. Finally, Subsection 3.4.3 outlines the means

by which generation modules in the underlying Framework can be parametrised by a

user of the Toolkit front-end through the use of parametrisation modules.

Finally, Section 3.5 provides a summary of the Arda Framework and Toolkit, and

concludes the chapter.

16

3.3 Arda Framework

The Arda Framework is the internal software system used to manage both content-

generating algorithms, and the actual content data that these create. It is an ag-

glomeration of three logically distinct components: a static data storage structure;

a pipeline for creating content using interchangeable algorithms; and an application

programming interface (API) affording designers or researchers the ability to develop

new algorithms and integrate them into the Arda system with a minimum of effort.

These components are shown in Figure 3.1.

(a) (b) (c)

Figure 3.1 – Overview of Arda Framework components. (a) Several formalised con-

tent data types, arranged in a hierarchy. (b) The process of generating content data. (c) A

standard API for content-generating algorithms, to facilitate integration and interchange-

ability in the Framework.

3.3.1 Storing Content Data

The Arda system is designed to use any number of arbitrarily interchangeable algo-

rithms; it is therefore vital that each one has the same representation of the content

being generated. This motivated the first component of the Arda Framework: a

static data storage structure, the means by which the Framework represents content

internally.

17

Chapter 1 presented modularity as one of the primary goals of the Arda system,

while Chapter 2 outlined the sheer variety of algorithms that could potentially be

added to that system: Perlin noise or real geographical data might be used to cre-

ate terrain; L-systems or cellular automata might be used to generate cities; and so

on. Consequently, every discrete piece of content—a terrain, a building, or content

elements in general—may potentially be generated by a multitude of very varied tech-

niques. To guarantee that any two algorithms generating a particular content element

provide data in identical formats, the internal data component of the Arda Framework

must define and enforce specific content types, or structures. However, while these

content types must be strictly defined to avoid conflicts between algorithms, the defini-

tions themselves must nevertheless be abstract enough to accommodate the plurality

of content-generating algorithms and the variety of different representations they may

use. As the current implementation of the Arda system is responsible for three dis-

tinct content types—Terrain, Cities, and Buildings—we define appropriate structures

below. Any algorithm generating one of these content types is subsequenty required

to create content matching these definitions, guaranteeing consistency regardless of

the technique used.

Terrain

(a) Height map

in memory

(b) Correspond-

ing B&W image

(c) Typical large-

scale height map

Figure 3.2 – Height maps as represented in the Framework ((a) and (b)), and in a typical

application (c).

18

Terrain data is stored in the Arda Framework as a height map, a two-dimensional

array of numbers whose values correspond to the elevation at a specific point. This

can be stored as an actual array internally, or exported to a greyscale image for

simple visual inspection or use in external applications—many 3D graphics engines

accept such height maps in generating terrain (see Figure 3.2(c)). Note that other

applications might also accept or require terrain to be provided in a standard 3D

model format (.3ds, .obj, etc), or as an explicitly (i.e., programmatically) defined

triangle mesh. However, given a height map, it is trivial to convert to the other

formats, and thus the array of height values remains the chosen representation.

Given the simplicity of the terrain concept, and the limited range of probable

queries to be performed, designing an abstract interface for terrain items is relatively

straightforward. As suggested above, the internal representation chosen for terrain

objects in the Arda Framework is simply a two-dimensional array of floating-point

values. Queries can be performed on the terrain objects in the same way as for stan-

dard array-access: by providing vertical and horizontal co-ordinates, and receiving

the corresponding value from the array.

Figure 3.3 – Interface for a Terrain object. Terrain is a relatively simple object with

which to interface.

Cities

Defining an abstract city data type is a great deal more complicated than the case

of terrain. Cities can contain a large amount and variety of semantic information

depending on the particular game being played; Civilization might record a city’s

location, size, and population, along with gameplay-dependent factors such as culture,

pollution, satisfaction, production, etc.; Oblivion may record a city’s location, visual

style, scale or level of development; the Grand Theft Auto series might use information

19

on which areas are urban or suburban; and so on. However, the Arda Framework is

intended primarily for the purposes of environmental content generation, allowing us

to ignore game-specific considerations and simply consider the physical components

of our abstract cities:

• Position—The global position of the “centre” of the city relative to some global

reference point.

• Radius/Size—The approximate extent of the city around the city centre.

• Roads—A collection of line segments representing the roads present in the city.

• Parcels—A collection of polygons which are defined as the spaces between the

constituent roads; these are equivalent to undeveloped land.

Note that while the terms “centre” and “radius” are used, this does not imply that

every city must be circular in shape. These are merely approximations defining the

position of the city in the virtual world and the extent of its mass; the various

city-generation algorithms used might generate any number of city shapes (circular,

square, oblong, arbitrary), but each should, in theory, remain concentrated within

roughly the same physical area.

Figure 3.4 – Interface for a City object. The queries are more general than those for

Terrain; they apply to the whole City, rather than a specific point.

Buildings

Buildings, like cities, are also not easily abstracted, and often require drastically dif-

ferent implementations based on the engine in which they are used. Some games

20

(such as Oblivion) use pre-defined 3D building models placed by hand at specific

locations in the game world in a “cookie-cutter” fashion (perhaps linked by an index

to a library of building models), whereas others (such as the latest Grand Theft Auto

games) feature a much more detailed approach in which each building is modelled

individually and stored discretely. Still other games, such as Mammoth (a video

game project at McGill University) build structures in a much more component-wise

fashion, placing each wall, doorway, floor, window, and so on separately. With such a

variety of possible building implementations, it is difficult to specify an internal rep-

resentation for the Arda Framework that will be sufficiently abstract to accomodate

all possibilities. Presently, the following elements make up a building structure:

• Name—An optional identifier, to allow for indices to be used as mentioned

above.

• Allotment—A polygon representing the entire area belonging, or available for

development, to the building in question.

• Model—A specific 3D model in a known format (.obj, .3ds, etc). Also optional,

depending on the method chosen to represent buildings in the targeted game.

Figure 3.5 – Interface for a Building object. These methods are designed primarily

for visualisation purposes.

Using the representations listed above guarantees consistency between interchange-

able generation algorithms. The Framework then stores these static types as a “con-

tent hierarchy,” with high-level, large scale content (in this case, Terrain) at the

highest levels, and smaller-scale content (i.e., Cities and Buildings) at lower levels.

This derives from the observation that most virtual environments contain an implicit

set of “one parent, many children” dependencies: for instance, a specific city belongs

21

to exactly one landscape, but the city itself may contain an arbitrary number of

lower-level component buildings, as illustrated in Figure 3.6. The content hierarchy

is therefore explicitly maintained in the Framework, where any data element is re-

sponsible for storing (and making accessible) its child elements. For example, in this

context a single Terrain exists, storing a heightmap as data, along with a set of all

child elements (Cities); each City stores its own position, radius, and so on, along

with a set of all child elements (Buildings); and each Building stores its own allot-

ment and 3D model, along with a set of all child elements—which, since the current

implementation of the Framework consists only of the three listed elements, must

necessarily be empty. Accessing a specific allotment, for instance, becomes simply a

matter of navigating the content tree from the Terrain, to the appropriate City, to

the appropriate Building.

Figure 3.6 – A view of the Arda Framework’s data hierarchy, demonstrating the

“one parent, many children” structure. A single terrain may contain an aribtrary number

of cities, which may in turn contain an arbitrary number of buildings.

Finally, it is important to note that while these data abstractions should allow

for the majority of game configurations, it is nevertheless possible that they are not

sufficiently representative. In the Future Work section of Chapter 6, we discuss the

possibility of making content elements more flexible and open to developer customi-

sation.

3.3.2 Content Generation Pipeline

The second component of the Arda Framework is the content pipeline, the process

by which environmental content is actually created. The process is tailored to the

22

hierarchical internal representation of content data outlined above, and allows each

new content element to be generated by any suitable algorithm.

While the static data hierarchy reflects the way content data is stored internally,

this hierarchical construction is equally useful when attempting to visualise the actual

process of creating content within the Framework. Content is created in a top-down

approach: for instance, first the Terrain is generated, followed by a number of child

Cities, each of which in turn generates multiple child Buildings. The creation of

this content tree is strictly ordered: no content element (besides the root) may begin

generation until its parent in the hierarchy has completed its own generation. This

is particularly important given that many of the content-creation algorithms already

discussed can make use of information at higher levels of the Framework’s data hier-

archy: for instance, Parish and Müller’s road generation algorithm (along with many

others) can be influenced by the underlying terrain shape [17]; likewise, one can imag-

ine building-generation algorithms that reflect the higher-level city in which they are

located, perhaps adapting to local road density or other metrics. With a top-down

data hierarchy, logical data dependencies are maintained not only in static storage

(as previously), but also during the process of content creation. Enforcing this rule

allows content generation to occur at any level with the guarantee that all higher-level

data is completely generated and available for querying, as in Figure 3.7.

Figure 3.7 – Querying higher-level content. Dotted lines show allowable queries by

content generation algorithms of higher-level, fully-generated data. Here, building B11 and

city C1 both query their direct parents in the hierarchy; building B21 queries its parent city,

along with the highest-level content available, the terrain. These types of queries are made

possible by the tree-like hierarchy of data generation. Note that, for instance, building B21

could not query city C1, as they are considered mutually independent in the tree.

23

In addition to this latter guarantee of higher-level content, we impose the con-

straint that two content elements on the same level (for instance, two cities within

one terrain, or two buildings within a city, and so on) cannot share information dur-

ing the generation process. This entails an important observation: there can be no

synchronisation issues between any algorithms operating in the hierarchy. This in

turn allows content generation to be completely parallelised within the Arda system;

every node in the content hierarchy can be generated within a dedicated thread, with

the guarantee that all ancestral data will be complete and available, and that no

other module will interfere. An example is shown in Figure 3.8, in which not all

nodes are generated at the same speed; however, the top-down approach to content

generation ensures that no node is generated out of order. Planning for such parallel

processing enables a huge performance boost on modern multi-core and distributed

systems, which will be increasingly important as generated worlds grow larger and

more complex (i.e., containing more nodes in their corresponding content hierarchy).

In Chapter 5, we examine the benefits of the Framework’s parallelisation.

Figure 3.8 – Content generation in parallel allows for a drastic reduction in running

time, particularly on multi-core systems. Here, completed data nodes (in black) and those

whose content generation is currently ongoing (in white) are found simultaneously on any

level. Due to assumptions in the Arda system’s hierarchy, this parallelisation occurs without

risk of synchronisation problems.

Finally, there may be occasions when certain elements within a fully-generated

world or hierarchy must be modified or re-generated. Just as the entire content-

generation pipeline can be parallelised relatively simply, recreating a given content

element is permissible without having to modify or destroy any other content on the

24

same level—none of the other nodes will be affected, due to previous assumptions

about horizontal independence within the hierarchy. However, it must be noted that

the vertical dependencies present in the hierarchy require, in such an event, that all

content below the modified element be destroyed—for example, if one is regenerating

a city, it is useless to retain the constituent buildings (and their contents), since the

city’s road network structure will be completely regenerated. In effect, this implies

completely pruning the static content hierarchy at the desired node, and recreating

the node itself and its descendents anew. This process is illustrated in Figure 3.9.

(a) Cut (b) Regen (c) New

Figure 3.9 – Regenerating content at a node. The entire subtree located at the node to

be regenerated is pruned in (a) and (b). A completely new subtree results from subsequent

regeneration (c).

Difficulties

The strict hierarchical, tree-like requirements of the Arda Framework are not without

drawbacks, however. The situation outlined above, in which the regeneration of one

node results in the discarding of an entire branch of the content tree, is potentially sub-

optimal in that it may involve a great deal more computational power to regenerate

the branch than to simply change the individual node itself. While a final, static,

exported environment can be manually modified (e.g., an artist can move roads or

reshape buildings) without destroying a large amount of content, the Framework as

currently implemented does require full branch regeneration in order to maintain data

dependencies and allow the queries described in Section 3.3.2. Furthermore, there may

25

be algorithms for content generation that operate on several elements simultaneously:

for instance, an algorithm for Terrain- and City- generation which relies on feedback

between the two elements; or two City elements that share a common highway, and

thus contain similarly-oriented road patterns. Such possibilities are currently ruled

out in the Framework implementation.

Both of the above situations are caused by the strict hierarchical structure used in

the Arda Framework. Though this hierarchy enables a vast amount of parallel com-

putation, other structures could allow a wider range of interaction between elements

in the Framework. Such possibilities are discussed further in Chapter 6.

3.3.3 Generation Modules & Extending the Framework

The third component of the Arda Framework is the application programming interface

(API) allowing any procedural content-generation algorithm to be integrated into the

Framework itself.

The two previous sections have outlined the abstract content representation in-

ternal to the Arda Framework, as well as the overall process for generating content

within that hierarchical structure. However, the primary goal—and major asset—of

the Arda system in general is the ability to use any appropriate algorithm to proce-

durally generate content anywhere within the hierarchy. This requires not only the

formalised data structure presented in Section 3.3.1 (which ensures that any two al-

gorithms creating the same type of data have identical representations of that data),

but also a means of using algorithms interchangeably without affecting any other

components in the content-generation pipeline—for example, swapping Perlin noise

for midpoint displacement to perform terrain generation should have no effect on a

lower-level city generation event using cellular automata. To achieve this, we mod-

ify the process of generating content at multiple levels to allow for “black boxes” at

any point that would otherwise require human input. Strictly speaking, these black

boxes are interfaces in the object-oriented programming sense—placeholders that del-

egate function calls to any designated object that follows a particular signature. In

this case, the objects in question are called generation modules ; a given generation

26

module wraps around a particular content-generation algorithm, and can then be

“plugged into” the appropriate interface in the content-generation hierarchy. When

called upon, they generate exactly the content required, in the appropriate format,

and then cede control back to the main content pipeline. Figure 3.10 demonstrates

this process: here, a Terrain interface allows any one of several generation modules to

generate the Terrain data; each module itself wraps around a particular algorithm.

Figure 3.10 – A module for generating terrain. The “black box” interface for Terrain

generation allows any one of the generation modules X, Y, or Z to be used to generate

terrain interchangeably; the rest of the content pipeline remains oblivious to any changes.

Each generation module wraps around a particular algorithm, such as Perlin noise, fractal

techniques, etc.

As indicated previously, any generation module that is being used in the content

pipeline (and, by extension, the algorithm around which it wraps) can make the as-

sumption that all higher-level content has been fully generated; in effect, that content

can be queried and used as input for the given algorithm. In addition, some content

algorithms require or make available a number of other tuning parameters that in-

fluence the final result: Perlin noise uses a specified number of octaves; L-systems

may use different rules, and alter production rule probabilities; and so on. These

parameters allow developers and researchers to experiment with or otherwise config-

ure the content to be generated. Given the sheer variety of these possible parameter

types, the task of specifying parameters is not part of the Arda Framework itself;

rather, generation modules must allow for parametrisation themselves (e.g., through

the “get” and “set” methods common to object-oriented code), as well as providing

27

a set of default parameters. When the Framework is embedded in an external ap-

plication (for instance, as part of a game engine, or as a separate content tool), this

application then becomes responsible for interfacing with the generation module and

tuning the parameters as required, as seen in Section 3.4. The algorithm implemented

by the generation module is then executed, with all the appropriate input and pa-

rameters guaranteed. Finally, the generation module provides the generated content

back to the content-generation pipeline, in a format consistent with the content types

described in 3.3.1. Given all of the above, an abstract representation of a generic

generation module is shown in Figure 3.11.

Figure 3.11 – A generic generation module. Each generation module is guaranteed

access to higher-level content, as well as parameters defined by an external application. The

algorithm then executes with this information, and generates the appropriate data.

In Section 3.1, we specified that the current implementation of the Arda system

focuses on a particular subset of video game content: terrain, cities, and buildings. As

further noted in 3.3.3, the content pipeline requires the use of generation modules at

any point where human input would otherwise be needed; thus, the choice of content

elements used in this implementation of the Arda Framework dictates the type of

generation modules required (and which will be created in Section 3.4). They are

listed below, and illustrated in Figure 3.12.

• Terrain—Generate the full terrain height map.

28

Figure 3.12 – Current pipeline implementation. Top: the static elements currently

implemented in the Framework and their associated generation interfaces—(T)errain gen-

eration, City (Pl)acement, (R)oad generation, (Al)lotment division, (B)uilding generation.

Bottom: an example content hierarchy being generated by these modules. Notice how (Pl)

is responsible for creating several Cities as children of the Terrain, and (Al) is similarly

responsible for creating Buildings for each City.

• City placement—Determine the number of cities to generate, along with their

placement and size. While this might be seen as three separate tasks, the values

chosen are inter-related: creating very large cities limits the choices for their

number and placement, and so on. Using one module to determine the three

values ensures complete control over the balance between these parameters.

• Road networks—Create networks of roads throughout each city.

• Allotment generation—Divide the large land parcels created in the previous

step into individual building allotments.

• Building façades—Create and model building exteriors.

3.3.4 Additional Components

A difficulty arises from the use of generation modules in the dynamic, arbitrarily-

defined content pipeline. The discussion to this point seems to suggest that the

generation modules required for each particular content element are hand-picked for

each individual node. Not only would this require human input (something the Arda

system is designed to eliminate) for each node, but it also does not make sense, for

29

instance, in the case where the entire content hierarchy has not yet been generated:

no content elements yet exist, and so no generation modules can be selected. Instead,

a particular set of generation modules—one for each available interface, i.e., five in the

current implementation of the Framework listed above—is selected before the content

pipeline is executed. This subset of modules is called a module blueprint, and defines

which modules are to be used at each level of content generation. Given a module

blueprint, a particular content element can determine which generation modules to use

during the creation phase; furthermore, every child of that node inherits and makes

use of the same module blueprint for their own generation. Both new generation and

inheritance using a given module blueprint are shown in Figure 3.13(a) and (b). In

addition, once the full content generation process is complete, individual nodes may be

selected, and their module blueprints modified; thus, in the case of regeneration from

a particular node (as in Figure 3.9), an entirely different set of generation modules—

as opposed to those chosen initially—can be used to regenerate the given branch, as

shown in Figure 3.13(c). The introduction of module blueprints therefore addresses

the problem of specifying generation modules for non-existent content elements, as

well as removing the need for human input (i.e., the selecting of modules) during

generation itself.

Finally, a module manager is added as a means of managing the use of generation

modules within the Framework. This component allows new generation modules to

be added to the Framework, while avoiding duplicates. Furthermore, it ensures that

no generation module is assigned to an incompatible point in the content generation

pipeline (e.g., a module for building allotment generation being assigned to a terrain

node). Lastly, we note that when a given content element is created (for example, a

new Building is defined), it may share the same type of generation modules as other

similar elements—for instance, two Cities may use L-systems for road generation—but

they must not share the same instance of a generation module, since it is quite possible

that a user might want each city to be parametrised differently. The module manager

is therefore responsible for instantiating new generation modules for each newly-

generated content element, ensuring that each content element, and its associated

generation modules, can be parametrised individually.

30

(a)

(b) (c)

Figure 3.13 – Distribution of module blueprints. In (a), a single element is assigned a

blueprint containing a list of modules to use during generation. (b) shows the content hier-

archy after generation; all elements were generated using the modules indicated in Blueprint

1, and have inherited the blueprint itself. (c) shows a single node having been assigned a

new module blueprint; if generation is begun at that node, the sub-tree is destroyed and

modules from Blueprint 2 are used in regenerating it.

The combination of the above components completes the design of the Arda

Framework. Content types (in the present implementation: “Terrain,” “City,” and

“Building”) abstractly represent the data that can be generated, and are stored hi-

erarchically. The content pipeline follows this hierachical pattern, creating a tree of

content elements; each branch of the tree is generated node by node, and every branch

in parallel. The actual generation of a content element at a particular node is left

to generation modules, objects that implement a given content-generation algorithm,

and obey strict input-output signatures. Once created, the generation modules are

added to the module manager, which itself is called upon during content genera-

tion to provide appropriate modules where required. Lastly, users can use module

blueprints to define, at any node of the content tree, which modules will be used for

subsequent content generation. The design of this Framework allows many different

types of content—which, until previously, had been generated strictly in isolation—

to be brought together into a single representation, and generated by any number of

applicable algorithms, as many as programmers wish to implement.

31

3.4 Arda Toolkit

The Arda Framework presented above combines a hierarchical data structure with

what is essentially an application programming interface (API) allowing game design-

ers and algorithm researchers to “plug in” their own generation modules according to

specific object interfaces. The Arda API and libraries are designed in such a way as

to be self-sufficient: they form a closed system that can function independently from

any external application, and the resulting content can be exported to any format

required. This flexibility affords the Arda Framework the possibility of being inte-

grated into any number of applications making use of automatic content creation; for

instance, it could be embedded within an actual video game in order to make content

generation a distinct part of gameplay, or it can be used as the principal API within

a software tool specifically designed to generate video game content. The latter ap-

proach was used here, leading to the development of the Arda Toolkit, a graphical user

interface (GUI) that can be used to simplify the process of creating procedural con-

tent for games; a user can intuitively import newly-implemented generation modules

into the underlying Framework, select generation modules to be used during content

generation, and can quickly evaluate the resulting content and adjust parameters or

switch algorithms appropriately.

3.4.1 Design

The Arda Toolkit is comprised of three components: the panel, the view, and the

model.

The panel presents to the user a tree-like outline of any content that has previously

been created. Within this tree, the user can select any number of nodes (i.e., content

elements) to be regenerated or re-parametrised. Note that, if a node and one of its

descendants are selected for regeneration, only the node itself is regenerated; all lower-

level content is deleted before being recreated, thus eliminating the lower-level node

entirely (see Figure 3.9). Furthermore, when a content node is selected in the outline,

that element’s module blueprint is presented to the user, with each generation module

32

Figure 3.14 – Current implementation of the Arda Toolkit. On the left, the “panel”

contains the current content hierarchy, as well as a parametrisation tab for each of the

currently-selected generation modules. On the right, the “view” displays a simplified version

of the content created thus far.

given a separate tab. The user may then choose which module to use at a given level

of content creation, or reparameterise one that is already present. The panel is shown

in Figure 3.14—note both the tree-like content outline, and the modules available for

parametrisation.

The view is a small window displaying the state of the current world. In simpli-

fied form (a two-dimensional projection of a fully 3D world, for instance), the view

provides immediate feedback on the extent of content creation, the capabilities of a

particular algorithm, or the effects that changing parameters may have on the result-

ing content. The view is shown in Figure 3.14 after content creation has occurred

and both a City and its component Buildings have been generated.

Finally, the model is simply the aforementioned instance of the Arda Framework

that underlies all Toolkit operations. As users of the Toolkit add and select generation

modules, they are added to and activated within the Framework, respectively. When

33

parameters of a specific module are changed via the Toolkit, the underlying model is

changed as well. Likewise, when a content generation phase is initiated through the

Toolkit, all of the appropriate functionality is performed within the Framework itself.

In this sense, the Toolkit is effectively a visual representation of the Arda Framework

with a much simpler (i.e., graphical) interface to an external user.

3.4.2 Default Generation Modules

The intent of the Arda Toolkit is that a novice user can run the program and be-

gin generating content within minutes, with little or no parametrisation required.

However, the Framework defined above merely presents interfaces for generation

modules—“black boxes” into which algorithms can be inserted—without providing

any underlying implementations. In order for the Arda Toolkit to be able to generate

a minimal amount of content, at least one generation module must be implemented

for each available interface, to allow the content pipeline to operate fully. In 3.3.3,

we defined the interfaces specific to the current implementation of the Arda system,

as shown in Table 3.1; we must therefore implement at least one default generation

module for each of these interfaces. The modules themselves are defined below—

however, note that they perform the bare minimum of content generation, with little

or no regard for realism or aesthetics, and act primarily as place-holders for future

algorithms. More realistic implementations for some these modules are discussed in

the next chapter.

Terrain: Flat Surface

The most basic method of generating terrain is to simply generate a completely

flat surface—i.e., a height map or grid of identical values. While not very visually

appealing, it allows designers and developers to focus instead on other parts of the

content pipeline, such as generating road networks or building façades. Despite this

technique’s simplicity, however, we allow users to specify a height value for the terrain,

should such information be required to better integrate the generated terrain with an

existing world, for instance.

34

Content Element Interfaces

Terrain
Height Map Generation

City Placement

City
Road Networks

Allotment Generation

Building Building Façades

Table 3.1 – Content elements and their associated interfaces. The current Arda

system defines the three types of content element shown on the left. Each content element

requires certain operations to be performed during the course of content generation; these

are the interfaces shown on the right which will delegate the operations to the appropriate

generation modules.

City Placement: Random Number Generation

In the most basic case, the placement of cities in a virtual world can be left entirely

to chance by generating arbitrary world co-ordinates. More sophisticated algorithms,

such as those presented by Olsen, might take gameplay considerations into account

and only choose locations more suited to cities (such as those with large expanses of

relatively flat terrain) [15], but would likely require a measure of pattern recognition

beyond the scope of the current discussion. Therefore, unlike terrain generation, the

placement of cities is entirely random, and does not require parametrisation.

As with the placement of cities, the selection of a specific city size in our place-

holding generation module is both arbitrary and entirely ignorant of gameplay con-

siderations. However, in the case where there are multiple cities to be generated in

the virtual world, it may be desirable that they occupy roughly similar amounts of

space. For this reason, city size selection is parametrised by a Gaussian distribution

whose mean (µ) and standard deviation (σ) can be specified by the developer. This

allows a multitude of cities to be generated with an approximate desired size, but

also allows for as much variability as required.

35

Road Networks: Grid Pattern

Given the use of purely arbitrary data in the default generation modules above, it

might be tempting to simply generate completely random line segments to be used

as roads in this module. However, as will be shown in Chapter 4, this creates unap-

pealing, chaotic road networks, and so another technique is required. One method is

to create a simple grid-like pattern of roads: a number of roads that span the city

both horizontally and vertically, and which cross each other perpendicularly. The

user can specify the number of roads in either direction: at least one horizontal and

one vertical road, up to any arbitrary amount within machine limits.

Road Networks: Voronoi Cells

As outlined in Chapter 2, Glass has had great success using randomly-generated

Voronoi cells to simulate the haphazard but partially-structured appearance of in-

formal settlements [5]. While Glass’ work relates mostly to contemporary “shanty

town” settlements in South Africa, it can be argued that the results bear some quali-

tative similarities to the fantasy-style cities seen in many modern role-playing games

(RPGs), such as Dungeons & Dragons or Oblivion. Such cities are often loosely

based on actual medieval cities or towns, which themselves were traditionally also

organised informally. This module therefore makes use of the JTS computational ge-

ometry package to generate random Voronoi cells to serve as a set of roads and land

parcels [27]. For this module, the user can input the number of randomised seeding

points used in generating the Voronoi cells.

Allotment Generation: Single Buildings

Road network generation provides a city object with a collection of road segments—

simple lines—and a collection of land parcels—polygons that make up the space

between roads. Ideally, the parcels should be subdivided so that there are many

buildings on one city block, as opposed to one massive building; the former being more

common in most urban regions. Again sacrificing realism for the sake of simplicity,

this module will simply generate one allotment per parcel, using a geometry package

36

(again, such as JTS) to create an interior offset polygon, to offset the allotment from

the centre of the road.

Building Façades: Simple Blocks

Once again, simplicity is the primary concern of the building façade generation mod-

ule. This module merely extrudes the building’s allotment polygon (its “footprint”)

in three dimensions, giving the building a height; a random texture is then chosen

from a set of building textures, and applied to the newly-created model.

Having defined all of these default generation modules, the Arda Toolkit can

be immediately employed by a new user to create content (however uninteresting)

without an initial programming task.

3.4.3 Module Parameters

Once a new generation module has been implemented (see Subsection 3.3.3), it can

be added programmatically to the set of generation modules in the Framework, and

subsequently used at any appropriate content generation step. However, most mod-

ules (including several listed above) allow parametrisation of a number of different

values for customisation purposes, a process that is not provided for by the Frame-

work itself. Instead, each generation module is expected to expose its parameters for

reading and writing by an external application—in this case, the Toolkit. However,

the “panel” component of the Toolkit cannot be constructed in such a way as to

anticipate all possible parametrisations available to generation modules—these may

require any type of input, including text or integer values, sliders, lists, and so on,

in any arbitrary number and combination. As such, when a content element is se-

lected in the panel’s tree-like view of the data hierarchy, and that element’s module

blueprint is evaluated to determine which generation modules to display, the panel

cannot presuppose which type of parameters to present to the user.

To enable the parametrisation of generation modules within the panel, we re-

quire that when a generation module is loaded into the Framework via the Toolkit,

a corresponding panel interface be loaded for the Toolkit itself. For instance, if a

37

generation module for Perlin noise is created, a corresponding graphical interface is

provided that allows a user to specify a number of octaves to use during generation;

both components are bundled together and provided to the Toolkit, which passes the

generation module to the Framework, and stores the required graphical interface in-

ternally. When a node is subsequently loaded that has a module blueprint containing

the Perlin generation module, the Toolkit is able to identify which graphical interface

to use, and prompts the user appropriately for input (see Figure 3.15(b)). Essentially,

this means that any designer or researcher who aims to use the Arda Toolkit to make

use of new content-generation algorithms must create two components: a genera-

tion module—implementing the algorithm itself—for use within the Arda Framework

during execution of the content-generation pipeline; and an interface module for the

Arda Toolkit, providing a graphical interface to the parameters within the generation

module, as in Figure 3.15(a)).

(a)

(b)

Figure 3.15 – Using parametrisation modules in the Toolkit. In (a), a developer

(“Dev.”) creates two modules: a parametrisation module for the Toolkit, and a generation

module—wrapping around a content algorithm—for the Framework underlying the Toolkit.

In (b), the parametrisation module informs the Toolkit (1) how to present parameters in

the panel (see Fig. 3.14); the parameters entered by the user through the panel are then

redirected (2) to the appropriate generation module in the Framework.

38

3.5 Summary

In this chapter, we have introduced the Arda system for procedural content genera-

tion, composed of the Arda Framework and the Arda Toolkit.

The Arda Framework is a data structure composed of a number of objects abstract-

ing common content types (terrain, cities, buildings), as well as software interfaces

for modules designed to generate that content. Its hierarchical structure enforces a

strict ordering during the generation process—terrain is generated before cities, cities

before buildings, and so on. This allows generation modules to access previously-

generated data at higher levels (as many algorithms do), as well as enabling a vast

amount of parallelisation.

The Arda Toolkit is a visual tool or GUI allowing developers to easily make use

of the Framework in order to experiment with new content generation algorithms, as

well as simply to generate their own virtual worlds. The Toolkit allows users to choose

which generation modules will be used at each level in the content generation pipeline,

as well as allowing the complete regeneration of the content subtree rooted at any

specific node in the Framework. The Toolkit provides visual feedback as well, in the

form of a small preview of the content generated at any given point. Once satisfied

with the end result, the designer can export the data stored in the Framework to the

format of their choice.

A number of default generation modules have been implemented for the Toolkit,

to allow it to be used immediately by any designer and avoid a long programming

task for new users; however, these default modules are aesthetically quite basic. In

the next chapter, we introduce a new algorithm for road network generation, capable

of much more sophisticated results than those introduced thus far.

39

Chapter 4

Iterated Subdivision

4.1 Motivation

In Chapter 3, we looked at the overall structure of the Arda Framework and imple-

mented a handful of very simple generation modules to serve as “place holders” in

the content generation pipeline. These basic modules generally use very simplistic

algorithms and, while quickly implemented and executed, only generate qualitatively

“uninteresting” content that would be unfit for use in a commercial game. Our goal,

however, is to show that the Arda content generation system is capable of producing

large-scale, complex environmental data in a fraction of the time it would take for

human artists to do the same; this requires more powerful algorithms at a number of

points in the content-creation pipeline. The current chapter introduces such an algo-

rithm: Iterated Subdivision, a technique that can be used both for city road network

generation, as well as allotment subdivision.

4.2 Iterated Subdivision

Several road-generation algorithms were discussed in Chapter 2; in particular, the use

of L-systems or agent-based approaches has become relatively common. However,

while these have proven successful in a number of ways, they come at the cost of

40

programming complexity. Large L-systems (e.g., being used to generate large cities)

often become slow and inefficient; furthermore, the extension to parametric L-systems

(adapting to internal context and external stimuli) adds another layer of programming

and conceptual complexity. Agent-based approaches, on the other hand, require a

great deal of programming overhead to create a multitude of agent types, while the

interactions of the latter are often so complex as to entail a prohibitive amount of

parametrisation and fine-tuning. Our goal was therefore to develop an algorithm

that—qualitatively—is approximately as expressive and powerful as the two latter

approaches, while retaining a conceptual simplicity to make it more accessible to the

majority of programmers.

Our approach draws inspiration from Tarbell’s Substrate visualisation, which was

noted to produce “intricate city-like structures” [25]. Tarbell’s algorithm places

“seed” vectors in a two-dimensional canvas and proceeds to extend these vectors

as far as possible; new vectors are added roughly perpendicular to these seeds and

any other vectors that have subsequently been generated. Similarly, the algorithm

presented here begins with a two-dimensional polygon and proceeds to repeatedly bi-

sect it with deliberately chosen line segments. Since it iterates a (controllably) finite

number of times, and involves the repeated subdivision of polygons, the algorithm

has been dubbed Iterated Subdivision, or ItSub.

The initial form of the algorithm requires as input merely a predefined, simple

polygon P , and minimum and maximum areas—Amin and Amax, respectively—for

the resulting subdivisions (which in this case represent tracts of land between roads,

or “parcels”); further initial parametrisation is possible, and discussed below. The

algorithm then bisects P randomly, resulting in two new simple polygons. These

are then either accepted or rejected based on their size: large polygons are subdi-

vided further, while those below a certain size threshold are set aside as completely

subdivided. The algorithm continues until there are no more polygons to subdivide.

The basic ItSub process as described above is formalised in Algorithm 1. The key

data structure in the algorithm is Soversized, a set containing every (unique) polygon

that is larger than Amax (i.e., every “oversized” polygon), which must therefore be

41

Algorithm 1: Basic Iterated Subdivision

Input: Polygon P , Amin, Amax

Output: Sparcel, Sroads

Soversized ← P1

Sparcel ← Sroads ← ∅2

repeat3

Pworking ← Soversized.poll()4

repeat create random bisector5

Lbisect ← random bisector, random angle6

{p1, p2} ← Pworking subdivided by Lbisect7

until |p1| ≥ Amin and |p2| ≥ Amin8

Sroads ← Sroads ∪ Lbisect9

foreach polygon pi in {p1, p2} do10

if pi.area > Amax then11

Soversized ← Soversized ∪ pi12

else13

Sparcel ← Sparcel ∪ pi14

end15

end16

until |Soversized| == 017

subdivided further. Soversized is initialised with the starting polygon P , and subse-

quently provides polygons one at a time via Soversized.poll(). Every working polygon

(Pworking) thus provided is then randomly subdivided. This is done by randomly se-

lecting an edge of the polygon, then randomly picking a point along this edge and

drawing a bisecting line, Lbisect, through the polygon at this point—note of course

that we assume that Lbisect is not parallel to the chosen edge. The bisection results

in two new simple polygons, p1 and p2, which are evaluated individually. If either of

these polygons is too small (that is, smaller than Amin), then Lbisect is discarded, and

a new bisector is again chosen randomly. Once a valid bisecting line is returned, Lbisect

42

is added to Sroads, the set of all valid bisecting lines, which is interpreted in this case

as the set of all roads belonging to the resulting city. Finally, p1 and p2 are measured

in relation to Amax. If a polygon is larger than Amax, it is still oversized, and there-

fore returned to Soversized to be subdivided further; if not, it is added to Sparcel, which

represents the final set of land parcels resulting from subdivision. Note that while

Sparcel could be calculated from Sroads (and vice versa), it is stored separately here

to avoid unnecessary post-processing. As outlined above, the algorithm continues to

process polygons in this fashion until the entire space is sufficiently subdivided—that

is, when |Soversized| = 0.

4.3 Refinements

The ItSub algorithm, as presented above, adequately approximates the Substrate

algorithm on which it is originally based. It uses a minimum of inputs: a starting

polygon, P ; Amax to ensure that the algorithm eventually terminates; and Amin

principally for aesthetic purposes, to require that the resulting subdivisions (i.e.,

“parcels”) are above some minimum acceptable size. However, there are a number

of improvements that can be made without drastically altering the basic algorithm;

these are described below.

4.3.1 Diameter-to-Width Ratio

The selection of bisecting lines is clearly critical to the aesthetic success of the ItSub

algorithm, and various constraints can be applied to the process to ensure more real-

istic output. With the näıve implementation of Algorithm 1, degenerate subdivisions

can sometimes appear, as shown in Figure 4.1. In this example, a number of subdi-

visions near the top of the image seem extremely long and narrow; nevertheless, the

given polygons are smaller than Amax and larger than Amin, and are thus considered

valid by the basic ItSub algorithm. However, such overly-elongated constructions are

rare in urban areas, and would be overly constricting on any contained buildings.

To avoid the problem of excessively long and thin subdivisions, an extra constraint

43

Figure 4.1 – Overly-elongated subdivisions are evident at the top of the figure. These

would generally be unacceptable in a standard video game.

must be placed on the range of “acceptable” bisecting lines, and the sub-polygons

they produce. Previously, it sufficed that a polygon’s total area be larger than Amin.

Now, a new constraint must be placed on the ratio between the polygon’s largest and

smallest spans—that is, between the polygon’s diameter and width, as defined by

both Preparata and Toussaint [21, 26]. As this ratio approaches infinity (that is, as

the diameter becomes increasingly larger than the width), the polygons become more

elongated; as the ratio approaches unity, the polygon is contracted to become more

square-like. A bisector is thus defined to be acceptable if the resulting sub-polygons

have diameter-to-width ratios below a certain threshold—which we call Rmax—in

addition to areas larger than Amin. The effects of varying Rmax are shown in Figure

4.2; tests have shown that setting Rmax = 16 provides adequate results, and this value

has been used in all subsequent figures.

4.3.2 Branching Angles

Returning to Algorithm 1, we note that the angles of the chosen bisecting lines—

Lbisect—are unconstrained; that is, a bisecting line is allowed to pass through the

working polygon in any direction. In practice, however, this leads to completely arbi-

trary road patterns, as shown in Figure 4.4(b). While a certain degree of arbitrariness

is expected in urban road networks, the effect is unrealistic on any large scale; indeed,

the majority of (especially modern) urban areas tend to display much more regular,

44

(a) (b)

Figure 4.2 – Different diameter-to-width ratios and their effects on resulting subdivi-

sions. (a) shows a small ratio, and (b) a much larger one.

right-angled road patterns. When a random edge is chosen from a polygon, and a ran-

dom point chosen along that line, an acceptable solution to the latter problem would

therefore produce bisecting lines that are generally perpendicular to the chosen line at

the given point—we say that the branching angle is 90 degrees—with the possibility of

some variation. To achieve this, the current implementation of the ItSub algorithm

initialises any branching angle to 90◦, and then perturbs this angle by an amount

determined by a Gaussian distribution, whose mean (µ) and standard deviation (σ)

parameters can be defined at run-time. Figure 4.3 illustrates the process.

Figure 4.3 – Branching angles determined by a Gaussian. The mean perturbation is 0◦;

larger angles are more rare.

As described elsewhere, many urban regions are composed of more than one dis-

tinct “style” of road plan—large-scale patterns emerging from the orientation of a

local collection of roads [17]. The manipulation of branching angles as outlined above

45

allows the ItSub algorithm to produce at least two different road plan styles, which

have been dubbed Manhattan and Arbitrary. Manhattan-styled roads—named af-

ter the city in which they are most prevalent—exhibit branching angles that rarely

(if ever) deviate from 90◦, and are common in modern, commercial, or rigourously-

planned neighbourhoods. This style of road plan can be achieved by modifying the

perturbation Gaussian above with a µ and σ of 0—thus ensuring that all branching

angles are perpendicular, and resulting in the grid-like pattern desired. Arbitrary

roads, on the other hand, are more typical of older neighbourhoods, in which strict

urban planning was less of a concern than simple expedience. In these areas, there is

no specific guideline or obvious pattern to branching angles, and the resulting roads

tend to be somewhat chaotic; achieving this effect is once again possible by manipulat-

ing the perturbation Gaussian’s standard deviation. Here, σ is significantly increased

(e.g., to 15◦ or larger), resulting in a wide variety of branching angles, and a more

arbitrary pattern of roads. Figure 4.4 shows examples of both of these road pattern

types.

(a) Manhattan (b) Arbitrary

Figure 4.4 – Examples of different road patterns possible through the parametrisation

of branching angles in the ItSub algorigthm.

46

4.3.3 Snap distance

Due to the arbitrariness of the ItSub algorithm, it can often be the case that a

given bisecting line either begins or ends close to, but not precisely at, a previously-

created intersection. When this is the case, it results in a comparatively short road

segment—or as we interpret it, a short city block. However, these short “jogs” do

not generally occur in the majority of road networks, and so a solution is required to

eliminate such constructions from the final road network. We define a new parameter

Dsnap, the minimum distance between intersections in the final road network; when an

endpoint of the bisecting line Lbisect is determined to be closer to an intersection than

Dsnap, that endpoint is displaced, or “snapped,” to the intersection itself. The process

is illustrated in Figure 4.5: (a) shows two completed polygons (in grey) meeting

at an intersection, and part of a working polygon in white; in (b), the projected

endpoint of Lbisect is found to be less than Dsnap away from that intersection; (c)

shows the resulting projection when snapped into place; and (d) shows the newly

completed polygon (it is assumed that the bottom-left polygon, in white, requires

further subdividing). Note of course that both, either, or none of the bisecting line’s

endpoints may be snapped into place—snapping one endpoint to an intersection does

not preclude snapping the other.

4.3.4 Bitmap Parametrisation

Constraining diameter-to-width ratios and snapping together nearby road endpoints

(as above) are both modifications to Algorithm 1 that ensure realistic results; they

are both applied globally. There are, however, certain aesthetic qualities of the re-

sulting road plans that can be much more localised, and can exhibit a large degree of

variability. For such properties, it is desirable to allow user paramitrisation through

the use of bitmaps similar to those in Figure 3.2.

47

(a) (b)

(c) (d)

Figure 4.5 – Snapping road endpoints eliminates the appearance of small “jogs” in the

resulting road networks.

Road Density

Nearly all urban areas exhibit some degree of variation in population and road density

across their surface. In the basic ItSub implementation, however, a uniform density

is implicitly assumed—polygons are subdivided until all are between Amin and Amax,

both invariant values. In order to parametrise the variation of road density, we use

greyscale bitmaps to represent the appropriate changes: light areas in the bitmap

indicate high road density, darker areas indicate low density.

Algorithm 1 is altered slightly to allow for user-defined density maps. In the

base case, where no density map is provided, there is no difference with the origi-

nal algorithm. Conversely, when a map is provided, extra processing is performed

when testing each polygon resulting from a subdivision: the values of Amin and

48

(a) Density map (b) Resulting road plan

Figure 4.6 – Effects of a density bitmap. The bitmap in (a) is reflected in the density

pattern in (b).

Amax—which were invariant, previously—must be modified to account for the speci-

fied density. First, an axis-aligned bounding box is created around the given polygon,

and projected onto the greyscale bitmap. The average of the greyscale values within

this bounding box is then calculated, and used as an inverse weight on Amin and

Amax—polygons mapped onto a lighter area in the bitmap will be compared against

smaller threshold values, and will therefore be subdivided to a greater extent. Mean-

while, polygons mapped to darker areas will be compared against larger values, and

will consequently tend to be subdivided less. As a result of these modifications, the

ItSub algorithm can be easily parametrised to exhibit a significant variation of road

density, as illustrated in Figure 4.6.

This also addresses a valid concern: that is, whether any given road-generation

algorithm should be based on an initial enclosing polygon—most cities, in fact, have

very vague boundaries, if any. The ItSub algorithm currently does require the starting

polygon P ; however, the city boundary can be “softened” through the use of an

appropriate density bitmap. By gradually dropping the density towards zero at the

city limits, the resulting road patterns can be made sparse enough to become nearly

negligible.

49

Road Patterns

As with the variation of road density throughout a city, it is also common to find a

variety of road patterns as described in Subsection 4.3.2: for example, the regular,

grid-like pattern of many modern road networks is often disrupted by local terrain

conditions or adaptations to legacy roadways. As above, a greyscale bitmap is used

to represent the desired influence of a given road pattern (Manhattan or Arbitrary)

in a particular area, with lighter areas indicating a strong influence, and darker areas

a weaker one. In the case of road patterns, however, the component of interest is

the branching angle of a new road, as opposed to the whole area of a polygon to

be subdivided as in the case of changing road densities. Therefore, only a single

point (the branching point of the new road) is mapped to the underlying bitmap, as

opposed to an entire polygon. Greyscale values in the vicinity of the branching point

are sampled, and the average value is determined; this value then corresponds to the

influence of a particular road pattern on the branching angle at that point.

(a) “Abitrary” influence (b) Resulting subdivision

Figure 4.7 – User-controlled road plan variations. The bitmap in (a) defines a region

of Arbitrary-influenced roads in the top-right corner of the city; (b) shows the resulting

subdivision. Note how the roads seamlessly vary from being very grid-like and regular, to

being much more chaotic, as desired.

Importantly, it must be noted that there are two bitmaps to sample in the current

50

ItSub implementation, one for each of the two types of road pattern: Manhattan, and

Arbitrary. The calculation described above is therefore carried out on both bitmaps,

and the resulting values compared; the pattern with the greater influence is then

reflected in the choice of µ and σ for the perturbation Gaussian (see 4.3.2), which

then determines the appearance of the resulting subdivisions. An example of this use

of bitmaps to influence the appearance of road patterns is shown in Figure 4.7.

Combining Inputs

Interestingly, the parametrisations of both road density and patterns are mutually in-

dependent; the former only affects the total size of resulting polygons, while the latter

changes the angle that roads make with each other. Since neither operation affects

the other, they can be integrated simultaneously into the general ItSub algorithm.

An example of the use of both types of input simultaneously is shown in Figure 4.8.

(a) A completed subdivision

(b) Density map

(c) Arbitrary in-

fluence map

Figure 4.8 – Density and road plan influence maps used simultaneously. The road

map in (a) seamlessly integrates both the density map (b) and the Arbitrary influence (c).

51

4.3.5 Blocking Polygons

As outlined in Chapter 1, one of the goals of the Arda system and the current

project in general is to enable artists to quickly integrate their own work with other,

procedurally-generated content. Another additional capability is therefore deemed

useful: to allow users to specify regions within the original polygon which will specif-

ically not be subdivided. We call these regions blocking polygons, and their use will

enable artists to create their own specific buildings or structures and reserve a space

within the resulting cities in which to insert their models.

There are two changes to be made to the ItSub algorithm to accommodate block-

ing polygons. First, the algorithm must accept, as a new input, a set of polygons

that will be used as blocking polygons. We call this set Sblocking, and note that it

can potentially be empty (i.e., no blocking polygons); furthermore, we assume that

the blocking polygons provided are all non-overlapping, and contained by the original

ItSub polygon, P .

The second modification takes place when a bisecting line (Lbisect) has been suc-

cessfully chosen. Before determining if the resulting polygons are valid or “accept-

able,” Lbisect is compared against all polygons in Sblocking—the current ItSub im-

plementation uses the JTS computational geometry suite [27]. If the bisector does

not cross through any blocking polygons, then the working polygon is subdivided by

Lbisect as in the original implementation: sub-polygons p1 and p2 are generated and

independently evaluated. However, if the bisector does pass through one or more

blocking polygons, a number of intermediate steps are required. First, a set Si is

created of all blocking polygons that do intersect with Lbisect. Every polygon within

Si is then subtracted from the working polygon, resulting in a working polygon with

“holes.” Next, Lbisect is also subtracted from this working polygon; this results in two

polygons, p
�

1
and p

�

2
, which are similar to p1 and p2, but which follow the contours of

the blocking polygons. These are then evaluated independently as before. Since the

space within the blocking polygon is added to neither Soversized or Sparcels, we ensure

that it is never subdivided, as required. This process is fully illustrated in Figure 4.9.

52

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.9 – Blocking polygons. (a) Completed polygons (grey), current working polygon

(white), and blocking polygon (striped). (b) Randomly-chosen Lbisect. (c) Working polygon.

(d) Working polygon with all intersected blocking polygons subtracted. (e) Working polygon

with blocking polygon and Lbisect removed. (f) Final subdivision of working polygon, with

two new polygons p
�

1
and p

�

2
following contours of the blocking polygon.

4.4 Improved Algorithm

The multitude of changes in the previous section prompts us to re-define our original

ItSub algorithm to account for all modifications. The improved version of ItSub

is shown in Listing 2 (see page 59), and contains all modifications listed above. In

Chapter 5, we examine the output of ItSub under a variety of initial conditions and

evaluate it from a qualitative perspective.

4.5 Allotment Subdivision

We have thus far discussed the ItSub algorithm purely in the context of generating

urban road networks. However, an examination of Table 3.1 suggests another use for

53

(a) (b)

Figure 4.10 – Using ItSub for allotment generation. (a) shows the resulting road map

created by ItSub. (b) shows the result of applying ItSub to each land parcel from the

previous step.

the technique. After the road network module has completed in a particular city, the

latter contains a number of polygons that represent land parcels; these must then

be divided randomly in order to create the varied allotments required for individual

buildings. The ItSub algorithm is ideally designed for this task, being by definition

intended to subdivide polygons.

To create allotment subdivisions, ItSub proceeds in much the same way as for

road networks, as described above. Each parcel in the city—representing “vacant

land”—is used as an input for ItSub; that is, the parcels are the starting polygons

(P) which must be subdivided. Note that these polygons may have been generated by

ItSub at the road network generation level, or by any equivalent algorithm. Finally,

the ItSub algorithm is applied to each land parcel polygon in turn. Whereas in road

network generation, the algorithm returned a set of parcels, it now returns a set of

allotments, which completes the definition of the given city being generated.

Importantly, the allotment polygons generated here (and their contained build-

ings) have the additional requirement that they are typically expected to be accessible

from the road itself; the Arda Framework and pipeline ensure that each polygon has

a road-facing edge regardless of the road generation algorithm chosen. In the case of

54

ItSub, this is currently ensured by careful setting of the Amin and Amax parameters; if

the allotments are no smaller than a given size, then the resulting allotment subdivi-

sion will not be small enough to accommodate interior polygons, and each allotment

will therefore have road access. This is, however, a weak guarantee, and future work

would include a more rigourous assurance of road access.

Note also that some assumptions can be made regarding the ItSub algorithm in

this context. Since the majority of real-world allotments exhibit some regularity (i.e.,

are bound by right angles), the use of “road patterns” as a defining characteristic

no longer applies; the algorithm can be simplified to assume a global “Manhattan-

style” pattern—that is, the resulting allotments are consistently grid-like, as expected.

Furthermore, we assume in the current implementation that there is no density map

affecting allotment sizes—it can be considered constant across P (the parcel). These

alterations produce allotments as shown in Figure 4.10.

4.6 Integration into Arda

Having developed the ItSub algorithm, we can now begin to integrate it within the

Arda system presented in Chapter 3. We note that the Arda Framework has three

distinct types of content—Terrain, Cities, and Buildings (see 3.3.1)—and five “in-

terfaces” into which content-generating algorithms can be inserted (Table 3.1). As

described at the outset of this chapter, the ItSub algorithm is intended to replace pre-

vious, conceptually-complex road-generation algorithms; we must therefore create a

generation module to wrap around ItSub, provide the appropriate inputs, and return

the acceptable type of content to the Arda pipeline. Furthermore, we must create

a parametrisation module to be used by the Arda Toolkit in presenting algorithm

parameters to the user.

4.6.1 Generation Module

In Subsection 3.3.3, we described the principal components of a generation module:

input (from higher-level content in the Arda hierarchy, and from external parameters),

55

the algorithm, and output.

Given that we are creating a Road Network generation module, we know which

higher-level modules have already been executed, and thus which content is available

for querying: when the ItSub generation module is executed, it is guaranteed that

the underlying terrain has been generated, and that all cities have been placed in the

virtual world (i.e., their positions and radii have been determined); a specific ItSub

module will operate on a specific city, whose roads and parcels have not yet been

defined. While the ItSub algorithm does not yet adapt to terrain variation, this is

would be a desirable extension, and is discussed in Chapter 6. On the other hand, city

radius can be used to determine a starting polygon for the algorithm; for instance,

a circular or polygonal shape can be created with the given radius around the city’s

centre. Another option would be to allow the user to supply a starting polygon, along

with all other parameters, as in the following subsection.

The algorithm implemented by the ItSub generation module would simply be

same modified algorithm defined in Listing 2, with all parameters (starting polygon

P , Amin, Amax, and Sblocking) provided by the user. Finally, the ItSub module has

the responsibility to provide a set of road segments and a set of land parcels to the

city. These are precisely the outputs of the ItSub algorithm: Sroads and Sparcel,

respectively. A similar generation module can be created to fill the role of allotment

subdivision.

The ItSub algorithm is therefore easily tailored to the general requirements of all

generation modules, and can be very rapidly integrated into the Arda Framework for

use in content generation.

4.6.2 Parametrisation Modules

The parametrisation of a given iteration of the ItSub algorithm is relatively straight-

forward. For the generation of road networks, the following parameters are made

available to the user for modification (default values are shown in brackets):

• Polygon P—the starting polygon of the ItSub algorithm (Default: assume the

city spans the entire width and height of the underlying terrain).

56

• Amin, Amax—the threshold values used within ItSub (Default: depends upon

the scale of the original terrain).

• Density map—a bitmap showing the desired density of roads within the result-

ing subdivision (Default: none).

• Manhattan, Arbitrary maps—bitmaps showing the desired variation of road

patterns within the resulting subdivision (Default: none).

• Sblocking—a file containing definitions of polygons not to be subdivided by ItSub

(Default: none).

Similarly, a parametrisation module is required in order to use ItSub to generate

allotment subdivisions; however, as outlined in 4.5, a number of simplifying assump-

tions can be made in order to eliminate several of the parameters. All that is required

in this case is a means of changing the threshold values Amin and Amax, which are as-

sumed to be smaller than the threshold parameters used in road network generation.

With these values defined, ItSub can properly subdivide the provided parcels.

The ItSub algorithm is therefore quite flexible: with the appropriate genera-

tion module wrapper, it can be integrated seamlessly into the Arda Framework and

content-generation pipeline; and with the appropriate parametrisation module, it can

be easily controlled by the user through an external application.

4.7 Summary

In this chapter, we presented Iterated Subdivision, or ItSub—an algorithm for the

repeated, controlled subdivision of polygons. The algorithm can be used, as shown

above, for the procedural creation of complex urban road networks, and compares

favourably to other such algorithms in terms of conceptual simplicity and ease of

parametrisation. The algorithm has several means to ensure an acceptable aesthetic

quality; furthermore, it can generate more complex road patterns through the use of

input bitmaps to control localised density of the roads, as well as the type of road

pattern exhibited (Manhattan or Arbitrary). In addition, it is not limited to road

57

generation, but can be re-used for other procedural content generation tasks. Further

potential improvements are outlined in Chapter 6.

The ItSub algorithm is shown to be easily integrated into the Arda system de-

scribed in Chapter 3. In the next chapter, we examine the types of road networks

and allotments generated by the algorithm, and experiment both with ItSub and

the Arda system as a whole, in order to evaluate its use in generating video game

content.

58

Algorithm 2: Improved Iterated Subdivision

Input: Polygon P , Amin, Amax, Rmax, Dmin, Sblocking

Output: Sparcel, Sroads

Soversized ← P1

Sparcel ← Sroads ← ∅2

repeat3

Pworking ← Soversized.poll()4

{A�

min, A
�

max} ← {Amin, Amax} modified by density map5

repeat create random bisector6

Lbisect ← random bisector, angle based on road plan inputs7

snap Lbisect endpoints if necessary (see Dmin)8

if Lbisect ∩ Sblocking �= ∅ then /* intersects blocking polygons? */9

{p1, p2} ← subdivision with blocking polygons subtracted10

else11

{p1, p2} ← regular subdivision12

end13

until |p1| ≥ A�

min and |p2| ≥ A�

min and diam
width

≤ Rmax14

Sroads ← Sroads ∪ Lbisect15

foreach polygon pi in {p1, p2} do16

if pi.area > A�

max then17

Soversized ← Soversized ∪ pi18

else19

Sparcel ← Sparcel ∪ pi20

end21

end22

until |Soversized| == 023

59

Chapter 5

Evaluation

The previous chapters have introduced two major concepts: the Arda system

for procedural video game content creation; and the Iterated Subdivision algorithm

for rapid, parametrised creation of urban road networks (and, as an extension, for

allotment subdivision). The next step is to evaluate their respective performance

in light of the goals with which we originally set out. We begin in Section 5.1 by

evaluating ItSub in terms of raw performance—the time taken to subdivide large

polygons—as well as its realism in comparison to actual cities. Next, in Section 5.2

we examine the benefits of parallelisation within the Arda Framework, as it is designed

to generate many different content elements simultaneously. Finally, in Section 5.3,

we evaluate the use of the Arda system as a whole in generating content for an existing

video game project.

All experiments in this chapter are performed on a computer with an AMD Phe-

nom 9500 2.2GHz quad-core CPU and 4GB of RAM, running Xubuntu 8.10 (Intrepid

Ibex).

5.1 Testing ItSub

The ItSub algorithm provides a number of qualitative advantages over other road

network generation techniques, as discussed in Chapter 4. However, we wish to

60

perform more quantitative analyses of the algorithm in order to evaluate its overall

characteristics.

5.1.1 Performance

A central performance concern is how ItSub scales in terms of generated city size.

Several substeps repeat based on randomization, and it is important to determine

whether this has practical impact. To evaluate scalability the size of the original

polygon is progressively increased, while maintaining the same minimum subdivision

size. Note that for the purposes of even large computer games the most important

size range is much smaller than that of any large existing, real-life city.

No bitmaps All bitmaps

Map Length Map Area # Roads Time (ms) # Roads Time (ms)

512 262144 203 236 201 1059

1024 1048576 812 253 802 4502

2048 4194304 3258 1339 4030 26096

3072 9437184 7338 4602 7239 61276

4096 16777216 13037 9138 12851 126459

Table 5.1 – Influence of starting polygon area on ItSub running time.

To perform these experiments, we define square-shaped initial polygons of varying

size, starting with 512 pixels on a side and gradually increasing. ItSub is then exe-

cuted on each polygon, with Amin and Amax being held constant, to ensure roughly the

same amount of subdivisions per unit square (in these experiments, we set Amin = 64.0

and Amax = 2048.0 for testing purposes). Each input polygon is tested 10 times under

these conditions, and the average number of roads created and average running time

is then calculated. Finally, to evaluate the effect of using parametrisation bitmaps

(i.e., density map, Manhattan and Arbitrary distribution maps), we perform one such

series of tests without the maps, and another using all three.

The results of the performance tests are summarised in Table 5.1, and shown

graphically in Figure 5.1, with the caveat that memory constraints forced the test

61

to halt at starting polygons of 4096 pixels per side. As the area to be subdivided

becomes larger, the running time for the ItSub algorithm increases approximately

linearly. The use of bitmap parametrisation adds significantly to the cost, largely due

to the use of inefficient, generic routines for accessing bitmap content in the prototype

design, but maintains the linear relation.

(a) No Bitmaps

(b) All Bitmaps

Figure 5.1 – Performance of ItSub when varying starting polygon area. (a) shows

the performance of ItSub when no bitmaps are present; (b) shows the performance using

all bitmaps (Density map, Manhattan and Arbitrary maps).

Of course the numbers used in this evaluation (that is, number of road segments

generated) require some kind of baseline. For instance, the fact that ItSub is capable

62

of creating 13,037 roads in 9 seconds is meaningless without relating it to a real-world

example. Dupuis and Chopard provide such a sense of scale with their simulations

of traffic in Geneva, Switzerland. In modeling this city, they create a road network

of discrete road junctions and segments and note that “[the] full network comprises

3145 road segments and 1066 junctions” [4]. Meanwhile, the city of Geneva itself

occupies 15.86km2 and is home to roughly 185,500 inhabitants [31]. Coupled with

the known number of road segments and the information in Table 5.1, it can therefore

be said that the ItSub algorithm is capable of generating a city roughly the size of

Geneva in 1.3 seconds if no parametrisation bitmaps are used, or roughly 25 seconds

if the bitmaps are used. We also note that New York City—the canonical city used

when discussing road generation algorithms—occupies an area of 1,214km2 and is

home to 8.2 million inhabitants. Though a direct formula for calculating the required

number of road segments from this data is currently unknown, we can perform a

rough calculation based on the respective areas of both regions: New York City is

76 times larger than Geneva, so we might expect an equal proportion of additional

roads. This gives 3145 × 76 = 239, 020 roads in a potential application of ItSub to

New York City; referring to Table 5.1, we can deduce that such a network would

take roughly 2 minutes, 47 seconds to complete without parametric bitmaps, or 39

minutes and 12 seconds with all bitmaps. While the latter figure may seem large

in comparison, it is nevertheless suitable for off-line generation, particularly given

the real-world size of the city being generated. Finally, it must be emphasised that

these values—the number of roads in Geneva, the proportionality between city size

and number of road segments, and so on—are extremely approximate. The numbers

reported by Dupuis and Chopard are estimated, and no exact formula is known to

relate numbers of roads with size, density, or population of a given city. However,

these numbers may give at least a rough sense of the speed with which the ItSub

algorithm can recreate complex, “life-sized” cities.

63

5.1.2 Realism

While the analysis above gives some idea of the time required by ItSub to generate

roughly life-sized cities, it says nothing about the inherent realism of the result.

Unfortunately, few metrics exist to evaluate urban road networks in this way. The

design and analysis of roads does appear in academia, but the primary concern in

these cases is efficiency/throughput and safety of roadway users—see for example,

the American Association of State Highway and Transportation Officials’ “Green

Book” [1]. In the next chapter, we discuss the need for more analytical metrics of

cities and road networks that can then be used to evaluate individual road-generation

techniques, or perform comparisons between several.

In the absence of definite metrics, analyses of ItSub (or any algorithm for creating

road networks) must necessarily be of a qualitative nature only. In Figure 5.3 (see

page 69), we demonstrate the use of ItSub on real-world landforms: the islands of

Manhattan and Montreal. The starting polygons (P) for both islands were generated

by hand, and ItSub executed using the density and road pattern maps shown. The

map of Manhattan consists of roughly 2700 road segments having taken approximately

7.5 seconds to be generated. In addition, a blocking polygon was used to keep the

mass of Central Park (towards the right of the image) free of subdivisions (i.e., roads).

Meanwhile, the Montreal road map contains approximately 10000 road segments, and

ran for 70 seconds—roads are visibly much more densely distributed than in 5.3(b).

In combination with the given parametric bitmaps, ItSub thus creates qualitatively

convincing road networks adapted to the real-life cities of Manhattan and Montreal.

While the resulting networks are perhaps not as extensive as their real-life equivalents,

the speed with which they generated shows the practicality of ItSub in creating large

cityscapes quickly.

5.2 Parallelisation of Arda Framework

One of the primary goals when designing the Arda system was to enable a certain

degree of parallelism. For example, a building being generated at one end of a city

64

has no influence on the generation of another building at the other end, and thus

generating them in parallel runs no risk of conflict while reducing the overall run time.

In Chapter 3, we saw how the content generation pipeline of the Arda Framework

is designed to allow such parallel computations; we now perform tests in order to

evaluate these benefits.

Tests are performed by generating full content trees incorporating the three con-

tent types defined in Chapter 3—Terrain, City, and Building. Content generation

proceeds as follows. First, a single Terrain is generated, and several sites in the re-

sulting map are chosen for generating Cities. Next, a new thread is created for each

City to be generated, and (in parallel) every City creates its own local road network

and allotment subdivisions, or Buildings. Terrain is generated as a flat map—since

there is only ever one (non-parallelisable) Terrain, this step is negligible and kept as

simple as possible. City placement is random, with all Cities being given the same

overall size. Road networks are generated using the grid-based algorithm described in

Chapter 3: each city is created as a square with 20 horizontal roads and 20 vertical—

or in other words 21 buildings horizontally by 21 buildings vertically—resulting in a

total of 441 buildings per city. Note that a constant number of buildings in each city

renders the test much more stable; other randomised road-generation techniques (such

as ItSub) would create a random number of buildings in every city, adding to the

statistical noise of the content creation process. These tests, moreover, are intended

to examine parallelization of the Arda system more than the specific behaviour of

ItSub. Next, allotment subdivision actually performs no subdivision at all, simply

re-labelling each land parcel as one large allotment. Finally, building façades are

generated by simply offsetting the building polygon from the surrounding roads. See

Chapter 3 for the implementation of these generation modules.

The Arda Toolkit is used to perform the generation listed above, with a variable

number of Cities. For each given number of Cities, a virtual world is created 10

times, and the average time to complete the process is computed. This series of tests

is first executed with parallelism activated (the default state of the Arda Framework),

and then once again with parallelism turned off. In the latter case, a single control

thread is responsible for generating the Terrain, each City, and each Building. We

65

Num. Cities Num. Buildings Single thread (ms) Parallel (ms) Speedup

1 441 592 283 2.09

2 882 1146 419 2.73

4 1764 2171 609 3.56

8 3528 4178 1093 3.82

16 7056 8131 2495 3.26

32 14112 16287 4476 3.64

64 28224 32409 12867 2.52

Table 5.2 – Influence of parallelisation on running time of Arda pipeline.

Figure 5.2 – Performance of Arda pipeline with and without parallelisation. The

solid line represents the time taken to create content with a single execution thread; the

dotted line represents the same, but using a separate thread for each data element.

therefore expect that the single-threaded tests should take appreciably longer than

the multi-threaded ones, since content elements are created one at a time. Finally,

we note once more that all tests are performed on a quad-core system, whereas a full

parallelisation analysis would normally involve significantly varying the number of

available cores as well—from a single CPU, up to dozens. The resulting analysis here

is therefore less detailed than others, but should serve to adequately demonstrate the

value of parallelisation within the Arda Framework.

The results of the parallelisation tests are summarised in Table 5.2, and shown in

66

Figure 5.2. It is clear, by examining this data, that the parallelisation of the Arda

content generation pipeline results in a significant savings in terms of execution time,

as predicted. The speedup observed in each sample above averages around 2.5 times,

with a maximum of 3.82—close to the theoretical speedup of 4x that would be ex-

pected on a quad-core system. Finally, we note the relative simplicity of the data

generated in these trials: a flat terrain, a limited number of cities, and very simple

buildings. Savings will become even more important as the data being generated

becomes more complex, and as the corresponding pipeline hierarchy branches expo-

nentially; furthermore, deploying the Arda Framework on much larger distributed

systems would lead to even greater performance.

5.3 Integrating Arda into Mammoth

In Chapter 1, we discussed the growing need for tools capable of creating vast virtual

worlds quickly and procedurally, and expressed an interest in making such a tool

modular and extensible, so as to accommodate the plurality and variety of content-

generation algorithms. We now look at the process of integrating our Arda system into

an extant video game project, and using it to create much larger virtual environments

than was previously possible.

An ongoing project in the School of Computer Science at McGill University has

been the development of Mammoth, “a massively multiplayer game research frame-

work” allowing students, professors, and researchers to experiment with various tech-

niques in AI, distributed computing, databases, and so on, within the constraints of

a massively multiplayer online (MMO) game [10]. Being a large game project po-

tentially able to make use of extensive virtual environments, Mammoth is an ideal

testbed for the type of content generated by the Arda system. The integration of

Arda-generated content into Mammoth has therefore been complementary to the

process of developing Arda itself.

Adapting the Arda system to a developing project such as Mammoth is com-

plicated by the latter’s constantly changing specifications. Mammoth underwent a

67

drastic shift from 2D to 3D environments during the course of Arda’s development,

which emphasised the importance of properly defining static content types in the

Arda Framework implementation (Terrain, City, Building—see Chapter 3). As high-

level design decisions change the use and capability of data, these content types must

be re-evaluated in order to ensure consistency. Here, the abstractness of the chosen

data representations enabled a smooth transition between various Mammoth revi-

sions. Changes in Mammoth’s design required fundamental alterations to the game

engine, a task which lasted several weeks; conversely, the Arda static content types

were flexible enough to require only minimal changes over the course of several days—

changes for the most part limited to the process of exporting data to the appropriate

format, not in the actual definition of data itself. Properly designing the Arda static

content types to be suitably abstract is thus important to ensure the greatest possible

flexibility in the Arda system.

Once the general design of Mammoth became more stable, generating the content

itself proved comparatively simple. The Arda Framework and Toolkit had already

been fully designed; the Toolkit was simply modified to assemble the content created

by the underlying Framework, and export this data to the appropriate formats for

the JMonkey graphics engine used by Mammoth [20]. Results are shown in Figures

5.4 and 5.5 (see pages 70 and 71). As a rough guide, the content shown in these

images took less than one minute to generate from the moment the Arda Toolkit was

opened. While this content is not yet on par with contemporary open-world video

games, the size of the generated worlds, the speed with which they were created, and

the potential of more sophisticated content-generation algorithms should emphasise

the possibilities of procedural content generation.

68

(a) Manhattan

(b) Montreal

Figure 5.3 – ItSub applied to Manhattan and Montreal islands. Each figure shows a

density map (top-left) and an Arbitrary road map (top-right), with the resulting subdivision

below. Note the varying density and chaotic branching angles corresponding to the input

bitmaps, as well as the use in (a) of a blocking polygon on the right of the image.

69

(a)

(b)

Figure 5.4 – Screenshots of Arda-generated content in Mammoth

70

(a) (b)

(c)

Figure 5.5 – A sense of scale in Arda-generated content

71

Chapter 6

Conclusion & Future Work

6.1 Conclusion

In Chapter 1, we emphasised the increasing need for procedural content generation

techniques in video games. Traditionally, all art assets in a game are constructed man-

ually by artists using a variety of tools; however, this production model rapidly be-

comes prohibitively expensive—in both time and money—as data storage and graph-

ics capability become increasingly powerful. At the same time, procedural content

generation techniques are numerous and varied, prompting the question as to why

more games do not make use of this type of automatic content creation. This led us

to propose the Arda system for procedural content generation, a system by which any

number of varied algorithms can be interchanged, and by which content can then be

created and exported to a particular game’s format.

Chapter 3 saw the development of the Arda system itself, divided between two

components: the Arda Framework, and the Arda Toolkit. The Arda Framework is an

internal representation responsible for defining content, generating it in the proper or-

der, and managing the different content-generating algorithms used. The Framework

uses specific data representations to ensure that all algorithms have the same “view”

of data; the current implementation of the Arda Framework defines Terrain, City,

and Building content elements, and all algorithms must conform to these structures.

Next, the Framework has the capability to generate content in a “top-down” manner:

72

large structures (e.g., Terrain) are generated first, followed by elements of gradually

decreasing scale (e.g., Cities, then Buildings, and so on). The strict hierarchy guar-

antees that content at lower levels can refer to higher-level content as parametric

inputs. Furthermore, the generation can be performed in parallel, allowing a dras-

tic reduction in run-time when generating vast amounts of non-overlapping content.

Finally, the Arda Framework provides a well-defined API enabling programmers to

add new algorithms to the system. Higher-level content and externally-controlled

parameters are provided as inputs to so-called “generation modules,” which wrap

around a content-generating algorithm and return the generated content in a format

appropriate for the content elements defined previously. These generation modules

are then managed by the Framework, and can be selected and swapped by the user

at run-time.

The Arda Toolkit is a graphical user interface (GUI) that allows users to inter-

act more easily with the Arda Framework, which is internal to the Toolkit itself.

The Toolkit displays, for the user, the hierarchy of content elements created by the

Framework; the user can then select nodes and determine which content-generating

algorithms are to be used at every point during the generation process. Each algo-

rithm provided to the Framework also has a corresponding parametrisation module

provided to the Toolkit; this module presents algorithm-specific parameters to the

user, and allows the latter to affect the algorithm as it operates in the Framework.

Once the user is satisfied with the selection and parametrisation of algorithms, the

content is generated entirely algorithmically, and can be saved by the user in an ap-

propriate format. Several basic algorithms and associated parametrisation modules

have been created for use in the Framework and Toolkit, respectively, and ensure

that a new user can immediately start creating content without any programming

required.

While the basic modules provided for the Arda Toolkit are functional, they are

lacking in realism or complexity; in order to improve the results of content creation,

more powerful algorithms are required. A number of techniques exist for generating

urban road networks, for instance, but these are either overly complex or difficult

73

to parametrise. Therefore, in Chapter 4, we developed the Iterated Subdivision al-

gorithm, or ItSub, to allow rapid, customisable road network generation in a much

more straightforward way. The algorithm repeatedly subdivides polygons until they

are within a certain size threshold; the resulting bisecting lines are interpreted then

as road segments, and the spaces between them as “parcels” of land. The algorithm

can be parametrised through the use of greyscale bitmaps representing the varying

density of the given city, or the change of road pattern between Manhattan (grid-like

branching points) and Arbitrary (branching angles of any size) styles; furthermore,

the user can specify regions within the original polygon that are not to be subdivided,

which can therefore represent obstacles or regions within which manually-generated

content will be inserted. The completed ItSub algorithm thus provides a conceptu-

ally simple, easily parametrised technique for generating arbitrary but realistic road

patterns, and can even be re-used (with fairly trivial modifications) to subdivide re-

sulting land parcels into individual allotments for buildings, another required module

in the Arda content-generation pipeline.

In Chapter 5, we evaluated both the ItSub algorithm and the Arda system. ItSub

was shown to perform well as the size of the original polygon to be subdivided is

increased. Furthermore, we saw that the available parametrisations provide adequate

control over the algorithm, which is therefore capable of creating a wide variety of road

networks very quickly, and qualitatively on par with other, more complex algorithms.

Finally, the Arda content generation system was adapted in order to produce con-

tent for a video game currently under development at McGill University. Though the

game was in a state of constant development—emphasising the need for accurate data

representations in the Arda Framework—it was possible to test large environments

successfully within the game. The experience of producing procedural content for

the game was straightforward and rapid, and newly-generated worlds were playable

within a matter of minutes.

The traditional approach to content generation for vast environments—hiring

more artists and spending more time on the process—is rapidly approaching a limit

in terms of feasibility and accessibility. The logical solution is the introduction of

the Arda system for procedural content generation, or systems like it; using them,

74

game developers can more easily take a hybrid approach to content creation, where

both procedural and manually-created environmental assets are merged seamlessly,

creating massive and unique video game worlds.

6.2 Future Work

While the Arda system and the ItSub algorithm are both well-developed in this

thesis, a number of improvements can be suggested for either one to be extended in

the future.

6.2.1 Improving the Arda Framework

We have shown that the Arda content generation system can accomodate multiple,

interchangeable algorithms to create content for an extant video game project. Fur-

ther improvements aim to make the system much more flexible in order to create

assets for a much wider variety of games.

Extend the Framework

Currently, only Terrain, Cities, and Buildings are represented as static data objects

in the Arda Framework. However, the majority of open-world game environments

contain many more types of content, such as rivers, bodies of water, vegetation pat-

terns, individual plants, dungeons or landmarks, and so on. Adding these various

types of content to the Arda Framework would open up the use of an even greater

variety of algorithms, and lead to even richer virtual worlds as a result.

Increased Modularity

While the Framework can be extended as outlined above, in the end the choice of

which content elements must be represented internally, and how these should be

structured, is very game-specific. To make the Arda content generation system as

flexible and as general-purpose as possible, it may be desirable in the future to allow

75

even data types to be modified or interchanged by the user, as opposed to simply the

algorithms used to generate that content, as now. In such a system, programmers

could define explicitly how to represent data (for instance, giving their own definition

to the Terrain, City, and Building types); generation modules (and the algorithms

around which they wrap) would therefore be forced to provide output specific to

these specifications when executing. The Framework would serve a similar purpose

as before: once a data hierarchy has been defined and the programmer has identified

points where content generation (i.e., generation modules) are required, the Frame-

work would then be delegated responsibility for generating the tree-like hierarchy of

content—once again, this could still be level by level, and in parallel across branches.

An alternative would be to create a fully customisable API: custom data types and

generation algorithms could be arranged in “building-block” patterns while a higher-

level Framework monitors the correct sequence of content generation. This would

address problems discussed in 3.3.2, though it would require a significant rewriting

of the code, while the arbitrariness of structure would likely make parallelisation

impractical or impossible.

New Types of Environment

Whether the Arda Framework is simply extended through the addition of specific new

content types, or whether it is given the ability to use modular types as defined above,

it would be desirable to see a variety of different content created using the system.

Whether implicitly or explicitly, the discussion thus far has tended to suggest modern

urban environments, such as those found in the Grand Theft Auto series, or fantasy

environments, such as those in the Elder Scrolls series. The flexibility of the Arda

content generation system could be further demonstrated through the generation of

even more types of environments: Old West countrysides, space stations and future

cities, Tron-like computer worlds, and so on.

76

6.2.2 Improving the Arda Toolkit

The Arda Toolkit is a preliminary attempt at GUI design. While it is functional,

improvements can be suggested to make it more intuitive for an end user.

Improvements to the GUI

At present, all generation modules in the Framework and their associated parametri-

sation modules in the Toolkit are hard-coded. To fully realise the potential of the

Arda system, the Toolkit should be modified to allow modules created externally to

be imported and integrated immediately into the appropriate sub-systems. This re-

quires that such modules are presented in a specific format (to facilitate importing),

and would necessitate appropriate visual and functional changes within the GUI—for

instance, providing a module management screen for the purpose. Other improve-

ments would include: building towards a more suitable interface, as opposed to the file

explorer-like window currently used; streamlining the process of regenerating multiple

nodes simultaneously; and so on. These types of improvements will require extensive

testing of the Toolkit and user surveys to determine areas requiring attention.

Testing for Quantitative Savings

Thus far, all analyses of the possible resource savings available through the use of

the Arda system have been qualitative. However, while the potential of procedurally-

generated content has been widely recognised, little work has been done to give this

claim empirical weight. Ideally, a census of various video game companies would be

performed to determine the allocation of a game’s fiscal and temporal budget to the

creation of game worlds; a comparison test could then be performed, using Arda to

create worlds of similar size. While it is unlikely that a full and accurate report

could be expected from most game companies, such a census would at least give an

approximate indication of the benefits of using procedural content.

77

6.2.3 Improvements to ItSub

The Iterated Subdivision algorithm presented in Chapter 4 did fulfil the requirement

for a conceptually-simple road network generation algorithm, as previously discussed.

However, while several refinements were added to the algorithm, there are a number

of desired improvements that have yet to be implemented.

Terrain Adaptability

Both the L-system and agent-based approaches to urban road network generation

(among others) are capable of adapting to local terrain conditions; for instance, they

might avoid generating roads with very large slopes, or tend to build denser pat-

terns over large areas of level ground [8,15,17]. ItSub does not yet have this ability;

however, adding terrain adaptability would increase the realism of the resulting sub-

divisions, and furthermore would likely incur only a small additional programming

cost. Similar to the process of adapting ItSub subdivisions to greyscale density maps,

one could imagine projecting a polygon onto a terrain height map; if the underlying

terrain were too varied, subdivision could cease; or, conversely, subdivision could be

encouraged further if the terrain were acceptably level. Another modification could

examine the terrain beneath a bisecting line (Lbisect) for overly steep slopes, and

discourage such roads from forming.

Automatic Initial Polygons

The ItSub algorithm requires a starting polygon, P , on which subdivision will be

performed. Throughout this project, this polygon has either had a very simple form

(i.e., a square) defined programmatically, or a more complex shape (such as the

outline of the island of Manhattan) defined and input manually. In order to make

the algorithm—and thus the Arda system into which it is integrated—more fully

autonomous and more realistic, it is desirable to have starting polygons that, for in-

stance, are defined based on the underlying terrain features, perhaps avoiding areas

marked as “underwater” or following the outline of steep geographical features, for

78

instance. While this requires a level of pattern recognition and parametrisation be-

yond the scope of the current project, it would nevertheless improve the realism of

the final subdivision.

Improved Blocking Polygons

The current use of blocking polygons in ItSub is effective in marking off areas that are

not subdivided by the algorithm. However, degenerate cases exist, for instance when

bisecting lines pass close to, but not touching, a blocking polygon, resulting in parcels

or allotments too small for practical use. More careful scrutiny is therefore required

before placing new bisecting lines. Additionally, an alternative method to achieve

blocking polygons might also be tested: generating the full road network as before,

and then simply removing the blocking polygons in a post-processing step. This

might be computationally less demanding; however, we note that it would disallow

the possibility of roads ending at the blocking polygon, as is the case presently, and

might be desired.

Improved Context and Realism

Currently, ItSub produces a road map with only one “type” of (straight) road, as

well as a parameter for becoming more or less grid-like. Realistic road patterns,

however, require a greater range of expression and adaptation. Using population

“sources” and “sinks,” the graph-theoretical notion of a flow network might be used

to determine major and minor roads, allowing road generation to proceed accordingly:

large highways might have fewer connections, with smaller roads running in parallel,

and so on. Curving roads are another desired feature, as they are evident in even the

most grid-like cities (see Broadway on the island of Manhattan); likewise, dead ends

could be added to road networks, or generated in post-processing. Roads could also

be made to follow natural features such as coastlines or mountainous terrain, running

parallel to these much like the highways mentioned above. Blocking polygons and/or

sparsely-subdivided areas could be served or bounded by much larger roads. All of

these features could contribute to an increased realism in the resulting road network.

79

New Parametrisation

The original ItSub algorithm was modified in Algorithm 2 to allow for bitmap

parametrisation—greyscale images defining road density and branching angles. While

this enabled a significant customisation of the resulting road plans, we can imagine

other potential uses for such bitmaps, representing further kinds of information. For

example, bitmaps could represent the distribution of “downtown” versus suburban

areas; of older versus more modern neighbourhoods in the city; a distribution of

income; and so on. These types of input would then affect road generation in the

appropriate ways, and could perhaps even be inherited by lower-level algorithms: for

instance, building façades could subsequently be parametrised by the relative age of

the neighbourhood in which they are located.

Comparative Tests and Quantitative Metrics

The performance of the ItSub algorithm has been evaluated in Chapter 5, and it was

determined to be acceptable for practical purposes. However, proper analysis requires

that the technique be measured against other possible algorithms, such as L-systems

and agent-based approaches. Measurements could include tests of pure performance—

comparing the time required to generate road networks in cities of equivalent size, or

comparing the time required per individual road segment, for instance—or tests of a

more qualitative measure—evaluating the ease with which one algorithm can be used

and controlled compared to another, coupled with an assessment of the resulting road

networks.

Other tests and quantitative metrics could also be devised for use in determining

how “city-like” the results of ItSub can be—that is, comparing the road networks

created by ItSub with conditions in actual cities. Metrics such as road density,

average road branching angle and variance, distribution of road lengths, and so on,

would give weight to a claim that a particular road network generation algorithm

(not simply ItSub) performs well in approximating real life cities. For the moment,

however, no such metrics exist, and only qualitative arguments can be made.

80

Bibliography

[1] AASHTO. A Policy on Geometric Design of Highways and Streets. American

Association of Highway and Transportation Officials, 2004.

[2] Bethesda Softworks. The Elder Scrolls: Daggerfall. Online, 2009. http://www.

elderscrolls.com/tenth_anniv/tenth_anniv-daggerfall.htm, last visited Jan.

28, 2009.

[3] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and

P. Prusinkiewicz. Realistic modeling and rendering of plant ecosystems. In SIG-

GRAPH ’98: Proceedings of the 25th annual conference on Computer graphics

and interactive techniques, pages 275–286, New York, NY, USA, 1998. ACM.

[4] A. Dupuis and B. Chopard. Cellular Automata Simulations of Traffic: A Model

for the City of Geneva. Networks and Spatial Economics, 3(1):9–21, January

2003.

[5] K. R. Glass, C. Morkel, and S. D. Bangay. Duplicating road patterns in south

african informal settlements using procedural techniques. In Afrigaph ’06: Pro-

ceedings of the 4th international conference on Computer graphics, virtual real-

ity, visualisation and interaction in Africa, pages 161–169, New York, NY, USA,

2006. ACM.

[6] S. Greuter, J. Parker, N. Stewart, and G. Leach. Real-time procedural generation

of ‘pseudo infinite’ cities. In GRAPHITE ’03: Proceedings of the 1st international

81

conference on Computer graphics and interactive techniques in Australasia and

South East Asia, pages 87–ff, New York, NY, USA, 2003. ACM.

[7] E. Hahn, P. Bose, and A. Whitehead. Persistent realtime building interior gen-

eration. In sandbox ’06: Proceedings of the 2006 ACM SIGGRAPH symposium

on Videogames, pages 179–186, New York, NY, USA, 2006. ACM Press.

[8] T. Lechner, B. Watson, U. Wilensky, and M. Felsen. Procedural city modeling.

In 1st Midwestern Graphics Conference, St. Louis, MO, 2003.

[9] A. Lindenmayer. Mathematical models for cellular interaction in development –

i. filaments with one-sided inputs. Journal of Theoretical Biology, 18:280–289,

1968.

[10] Mammoth Team. Mammoth massively-multiplayer online game. Website, July

2008. http://mammoth.cs.mcgill.ca/, last visited Jul. 18, 2008.

[11] B. B. Mandelbrot. Stochastic models for the Earth’s relief, the shape and the

fractal dimension of the coastlines, and the number-area rule for islands. Pro-

ceedings of the National Academy of Sciences of the United States of America,

72(10):3825–3828, 1975.

[12] P. Müller. Design und Implementation einer Preprocessing Pipeline zur Visual-

isierung prozedural erzeugter Stadtmodelle. Master’s thesis, ETH Zürich, 2001.

[13] F. K. Musgrave, C. E. Kolb, and R. S. Mace. The synthesis and rendering of

eroded fractal terrains. SIGGRAPH Comput. Graph., 23(3):41–50, 1989.

[14] J. Noel. Dynamic building plan generation. Technical report, University of

Sheffield, 2003.

[15] J. Olsen. Realtime procedural terrain generation. Technical report, Department

of Mathematics And Computer Science (IMADA) – University of Southern Den-

mark, October 2004.

82

[16] J. Orwant. Eggg: Automated programming for game generation. IBM System

Journal / MIT Media Laboratory, 39(3 & 4), 2000.

[17] Y. I. H. Parish and P. Müller. Procedural modeling of cities. In SIGGRAPH ’01:

Proceedings of the 28th annual conference on Computer graphics and interactive

techniques, pages 301–308, New York, NY, USA, 2001. ACM Press.

[18] B. Pell. METAGAME in symmetric chess-like games. Technical report, Univer-

sity of Cambridge, Computer Laboratory, 2003.

[19] K. Perlin. An image synthesizer. SIGGRAPH Comput. Graph., 19(3):287–296,

1985.

[20] M. Powell et al. jMonkey Engine. Online, April 2008. http://jmonkeyengine.

com/, last visited Jan. 28, 2009.

[21] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.

Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[22] P. Prusinkiewicz, A. Lindenmayer, and J. Hanan. Development models of herba-

ceous plants for computer imagery purposes. In SIGGRAPH ’88: Proceedings

of the 15th annual conference on Computer graphics and interactive techniques,

pages 141–150, New York, NY, USA, 1988. ACM.

[23] J. Romein, H. Bal, and D. Grune. Multigame - a very high level language for

describing board games. In Proceedings of the first annual conference of the

Advanced School for Computing and Imaging, pages 278–287, May 1995.

[24] S. Smith. Adventure construction set. Electronic Arts, 1985. Video game.

[25] J. Tarbell. Substrate algorithm. Gallery of Computation website, April 2008.

http://complexification.net/gallery/machines/substrate/, last visited Jul.

18, 2008.

83

[26] G. T. Toussaint. Solving geometric problems with the rotating calipers. In

Proceedings of IEEE MELECON’83, pages A10.02/1–4, Athens, Greece, may

1983.

[27] Vivid Solutions. JTS Topology Suite. Online, December 2006. http://www.

vividsolutions.com/jts/jtshome.htm, last visited Jan. 21, 2009.

[28] B. Watson. Modeling land use with urban simulation. In ACM SIGGRAPH

2006 Courses, pages 185–251, New York, NY, USA, 2006. ACM Press.

[29] W. D. Wells. Generating enhanced natural environments and terrain for in-

teractive combat simulations (genetics). In VRST ’05: Proceedings of the ACM

symposium on Virtual reality software and technology, pages 184–191, New York,

NY, USA, 2005. ACM.

[30] Wikipedia. Adventure Construction Set. Online, 2008. http://en.wikipedia.

org/wiki/Adventure_Construction_Set, last visited Nov. 25, 2008.

[31] Wikipedia. Geneva. Online, 2009. http://en.wikipedia.org/wiki/Geneva, last

visited Feb. 1, 2009.

[32] Wikipedia. Great Britain. Online, 2009. http://en.wikipedia.org/wiki/Great_

Britain, last visited Feb. 1, 2009.

[33] Wikipedia. The Elder Scrolls IV: Oblivion. Online, 2009. http://en.wikipedia.

org/wiki/The_Elder_Scrolls_IV:_Oblivion, last visited Feb. 1, 2009.

[34] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky. Instant architecture. In

ACM SIGGRAPH 2003 Papers, pages 669–677, New York, NY, USA, 2003. ACM

Press.

84

