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ABSTRACT 

Two different approaches are co •. sidered for studying the neural networks involved 

in re1!piratory rhythm generation. 

First, the phase resetting effects of stimulating the superior laryngeal nerve at 

different phasE"s of the respiratory cycle in cats were measured in terms of the latency 

of onset of the cycle following stimulation. Fixed-delay stimulation (i. e. delivery of 

stimuli at a constant delay after the onset of the cycle) was also usedj for certain 

combinations of delay, stimulus intensity, and cycles between stimuli, it resulted in 

(1) a variable, rather than consistent, response, and (2) a transient increase in cycle 

duration during and after stimulation. Phase resetting and fixed-delay stimulation of 

a simple three-phase model for neural rhythm generation produce respollses that are 

qualitativ ely similar to those obtained experimentally. However, the marked increases 

in cycle duration during and after fixt:.d-delay stimulation do not occur in the model. 

TI'ese comparisons sur;gest that, while the phase resetting properties of this three­

phase model are similar to those of the respiratory oscillator, stimulus dependent 

properties with a longer time course are needed in the model to account for the 

transit'ot. increases in unstimulated respiratory cycle duration. 

Second, we consider the dynamical }lroperties of a class of theoretical models 

of neural networks that have the same mathematical formulation as tbe ab ove three­

phase model, but consist of a larger number of randomly connected elements. A simple 

transformation of these models shows correspondence with previou'5 neural network 

models and enables a theoretical analysis of steady states and cydes. Complex ape­

riodic dynamics are found in networks consisting of 6 or more elements. Examples 

are given to illustrate multistability of cycles and chaotic dynamic& in networks of 

different sizes. 
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RESUME 

Deux approches différentes ont été utilisée's pour étudier Ie's réseaux nervellx im-

pliqués dans la génération du rythme respiratoire. 

Premièrement, les effets de rajustement de' phase (phasf' rf'Sfltwg), qlll st' pro­

duisent lorsltu'on stimule le nerf laryngé supérie-ur il différentes phases du cyril' rf'S-

piratoire chez des chats, ont été mesurés en fonction du temps de latence il partir du 

début du cycle suivant la stimulation. Un protocole de' stimulation à délai ronstatlt 

(fixed-delay sttmulatlOn, z.e. des stimuli appliqués à un délai cOlHltant après le déhut. 

d'un cycle) a aussi été utilisé; pour certaines combinaisons de délai, d'int,ensit.i- dt· 

stimulus, et de cycles entre stimuli, le résultat obtenu fut (1) une ri-ponse varia hlt· 

plutôt que constante-, (2) une augmenta.tion transitoire dt' la durée du cyde durant. 

et après la stimulation. Le rajustement de phase et la stimulation il délai constant. 

d'un modèle simple triphasique pour la génération du rythme neuronal donnt' dt'fi 

résultats qualitativem~llt semblables à ceux obtenus expérimentalement.. Touf.efois, 

ces augmentations de la durée du cycle pendant et après un stimulus à di-Iai constiHlt 

ne sont pas présentes dans ce modèle. Ces comparaisons suggèrent que, Tn('-tr\t' si I('s 

propriétés de rajustement de phase de ce modèle- triphasique sont semblahlt's il ('ellt's 

de l'oscillateur respiratoire, des propriétés à plus long terme doivent ('-he induses 

dans le modèle pour tenir compte des augmentations transitoires de la duri-(' (III cycle 

respiratoire de base. 

Deuxièment, nous avons étudié les propriétés dynamiques d'une classe de rnodè-Ies 

théoriques de réseaux nerveux qui ont la même formulation math~mati(l'le que le 

modèle triphasique déja mentionné, mais qui consi&tent en un plus grand nomhre 

d'éléments à connections aléatoires. Une sirnplt> transformation de ct>s modèles déUlontn' 

une correspondance avec des modèles de réseaux nerveux étudiés antérieurt>rnellf. (·t, 
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· ( permet une analyse théorique des régimes stables (steady states) et des cycles. Des 

dynamiques complexes et apériodiques surviennent dans des réseaux de 6 éléments 

ou plus. Des exemples sont donnés pour illustrer la multistabilité des cycles et les 

dynamiques chaotiques dans des réseaux de différentes dimensions. 
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PREFACE 

The neural mechanisms of mammalian rt'spiratory rhythm generation are un­

known, Currt'nt hypot.heses concerning thest' brainstem mechanisms involve either 

neural network interactions or spontaneous pacemaker fleurons, Various t'xperimental 

approaches have been IIsed in ail attempt to distin~uish bt"tween the two differf"nt hy­

potheses, from intracellular recording of brainstem respiratory neurolls to perturbing 

the rhythm with external inputs such as afferent nerve stimulation and manipulation 

of lung volume, 1'0 date, none of tIlt'se techniques have provided conclusive evidence 

either way. This task may in faet be hnpossihlf' dut' to the complexi1.y (lf the 1If'1I­

raI arrhitt"durt' invo\ved, (lntil there is dired e\·idenct' of pacf'maker IIf'UrOI1 S ill nif' 

hrainstelll respiratory centers, the neural Iletwork t,heory l'an he considt'red a us('ful 

working hypotht"sis. In light of this, we havt' taken two hasic approadlt's 1,0 tltf' st,urly 

of respiratory rhythm generation. 

The first al)proach, described in Chapter 2, invt'stigates tht' elft'cts of stimulllt" 

iuS the supt'rior laryngea\ nt'rve on the respiratory rhythm in cat,s amI cOJllparj\l~ 

th(' results with simulations of a simple thret'-phase model, based qualitatively on (1 

theory of respiratory rhythm generation proposed by Rkhter and (:oworkeT!; (1986), 

Two different stimulation protocols, phase resetting and fixed delay stimulation, 81'e 

ust'd in this comparison. Phase re~etting analyses illvolve measuring the effects of 

dt'livering a stimulu~ 1t diAerent phases of the cydt". This approach has bt"en prt'­

viousl)' used in ma ny difft'rent. biological cont,exts, and in many cases, an oscillator 

('Rn bl' charactt'rized by its l'hase rt'setting propert.ies. Thlls, careflll phase re'it"tting 

f1l1alyst's ran br used to l'\'aillatt' differl'nt models of the bi%giral osrillalor in qUf'S­

tion, Fixed-delay I"timulation involves givit1g reprtitivt' pertt:rbations at a ronstant, 

delay from t.he on.;(' t of the osrillafor cyclt". This protocol cal, he used 10 st.udy th(' 
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time-dependent or long-lasting (l.e. longer than one cycle) efft'cts of a pt'rtllrhation. 

The second approach, described in Chapter 3, is to ill\"t'stigate tltt' dynalllirai 

properties of a class of abstract models for lIt'ural Ilet works titat are fnrnmla t<·d in 

the same manner as the previous thret'-phast' model, hut ("outain a largt'f numlwr of 

randomly connected elements. The existence and stabilit.y of steady statt's ,,,HI ("yrli(" 

behavior 8-::e investigated as a function of network size (7. c. lIumber of dellll'nt s in t.he 

network) and other system parameters. l\Iultistability (t.c. a Humher of coexist.ill~ 

stablt' behaviors) and chaotic dynamics ar(' set'n in thes(' syst(,lIls. In t h(' st.lIll)' 

of respiratory rhythm generation, this type of approach has never heen flHlsid('f(·d. 

However, we think that a bettt'r undt'rstanding of tht' dynamirs of su ch simplifit'd 

systems will provide a basis for a comprehensi\'t' tht'ory clt'sc:ribing rt'spiratory rhyt.hm 

generation. 
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CONTRIBUTIONS TO ORIGINAL KNOWLEDGE 

The experimental results presented in Chapter 2 have been published in a form 

simiJar to that which appears in this thesis (Lewis et al. 1990). For these experiments, 

Dr. Manjit Bachoo performed the neccssary surgery. 1 performed ail data analysis. 1 

was responsible for the computer programming required to measure and plot the phase 

response curves. The idea of perturbing an oscillator at a constant latency after the 

onset of its cycle has been previously suggested. H,)wever, along with Dr. Bachoo and 

Drs. Canio Polosa and Leon Glass, 1 developed tht" fixed-delay stimulation proto col 

and ust"d it systematically, for the first time, to study the respiratory oscillator in 

rats, the Poincar~ oscillator (Lewis et al. 1987), and the three-phase model presented 

in ChalJtf"r 2. 

The three-phase model studied in Chapter 2 is one member of a large class of 

modt'ls for rhythm generation. A systematic phase resetting study of this model, 

such as that presented here, has not been previously performed. The application of 

tht" fixed-delay proto col to evaluate a mode} of rhythm generation is original. 1 wrote 

aH the computer code required to perform the analysis of the model (z.e. numerical 

integration, phase reset ting curves etc.). 

Tht' original results of the existence of steady states and limit cycles in piecewise­

Jinear piecewise-focused networks, discussed in Chapter 3, are due to Glass and Paster­

nack (1978). 1 am rt'sponsible for the demonstration that these results apply equally 

to a broad class of commonly studied neural networks (Hopfield-type networks) in 

a well-dt"fined limit. No one has previously attempted, with reason, to show a 5-

dimensional state transition diagram on a sheet of paper. 1 prt'sent one in Chapter 3. 

Tht" dt"lllonstration of multistability and chaotic dynamics in these systems is original. 

SOlllt' of these results appear in a preliminary study that has becn publisht'd rect'ntly 
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(Lewis and Glass 1991). 

The results in Chaptt'rs 2 and 3 that have not been prt'viously Pllblished will h(' 

presented in two papers to be submitted for publication. 
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Chapter 1. 

INTRODUCTION 

1.1. RESPIRATORY RHYTHM GENERATION 

Breathing in rnarnrnals is a cornplex neural and rnuscular process, consisting of 

two principal phases, inspiration and expiration. It allows the exchange of oxygen 

and ca,r bon dioxide between internai and external environments, and hence varying 

the rat.e and depth of breathing is an important means of maintaining homeostasis. 

Due to the rnany control rnechanisms that exist in the respiratory system, the respira-

tory rhythm is robust and stable to external perturbations. While sorne of the control 

rnechanisms have been described in detail (for reviews see Euler 1986; Feldman 1986), 

the underlying neural rnechanisms responsible for the basic rhythm generation (i. e. 

the respiratory rhythm generator, RRG) are not known. In this section, 1 will intro­

duce what is known of the anatomical organization of the RRG and then de!'cribe 

sorne selected hypotheses of how it might function. 

The RRG has been anatomically localized to the brainstem regions of rnedulla 

and pons by various brainstem sectioning experiments. Results indicate that a normal 

breathing rhythm can remain after sections rostral to the pons. Sections caudal to the 

medulla obliterate any normal rhythrnic neural output to the respiratory musculature. 

Within the brainstern, distinct groups of neurons have been classified according 

to their firing properties and anatomical location (see reviews by Cohen 1979, 1981; 

Euler 1986; Feldrnan 1986). The dorsal respiratory group (corresponding to the 
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ventrolateral nucleus of tractus solitaris) consists mostly of ut'urons that art' adi\'{' 

during inspiration (1). The ventral respiratory group consists of nt'urons t ha.t lirt' 

in both 1 and expiration (E): 1 m.'urons in the nucleus ambigllus, E nt'lIrons in tht' 

Botzinger complex, and both 1 and E in the nucleus retroambiguus. The pontine 

respiratory group (nucleus parabrachialis and Kollicker- Fuse nudells )()("ated in t.ht' 

dorsolateral rostral pons) consists of l, E, and phase-spanning m'urons. 1 Classifyi np; 

neurons according to the timing and pattern of their firing has led to t.he desniptioll 

of many classes of cells in addition to those above. The class of 1 Ileurons has 

been divided into such subclasses as I-mcremenhng and I-decrementmg, in whi("h tht' 

level of neural recruitment increases/decreases during J, and indivirlual nE'UTOl1S lire 

during 1 with increasing/decreasing frequellcy, respectively (Feldman 1986). Similar 

firing patterns in E neurons have resulted in the classification of E- mcremf'ntmq and 

E-decrementing populations. Indeed, there may he a continuum of differeut. lJetHon 

timing and firing patterns (according to firing properties). In titis cast', c-ategorizat.inll 

according to firing properties would not lead to a better understanding of how t.11(> 

cells interact to generate a stable rhythm. Nonetheless, the simplest approadl 1.0 

modelling the respiratory rhythm is to consider a ft'w distinct populations of llelHOnS 

and formulate equations that describe their average behavior. These models Mt' 

generally much easier to investigate than the alternative in which the interad.ions 

hetween an extremely large numher of individual neurons are considered. 

Current theories of r("spiratory rhythm ~eneration are based on tht' assurnptioll 

that distinct populations of non-pacemaker neurons interact via stereotyp~d synapti(' 

connections (Cohen 1981; Euler 1983; Richter et al. 1986). One of the simplest and 

perhaps earliest theory of this sort considered two separate J and E populations l.ha1. 

1 Phase-spanning nenrons fire during both 1 and E, nsually during the transitit>"!! betw(,(,fI the 
two phases. 
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were mutually inhibitory (Burns and Salmoiraghi 1960). An ELlternative to this type 

of theory is that the basic source of the respirat,ory rhythm is Crom spontaneously 

active pacemaker neurons, rather than Crom network interactions (e.g. Feldman et 

al. 1988, 1990). The Collowing is a brieC summary of severa! of these theories, with 

aIl emphasis on those which have been described by quantitative models. 

1.1.1. The Geman-Miller model 

Geman and Miller (1976) proposed a model of the RRG 'composed oC two mutu­

aUy inhibitory populations of neurons (I and E), each alone capable of cyclic activity. 

Within each population, neurons were randomly arranged with both excitatC't'y and 

inhibitory connections, so in fact this model consists of 4 distinct neuron pools (fig. 

1.1). Each pool was capable of regenerative excitation, but had a selC-limiting mecha­

nism to control the maximum level of firing. The changes in average activities of the 

neurons in each pool (denoted J _, J +, E_, E+) were described by a 4-dimensional sys­

tem of ordinary differential equations. The connections between the Cour populations 

oC neurons were described by parameters representing synaptic strength. Parame-

ters representing tonic input to each population were also included. The effects of 

changing these parameters were investigated. Varyiug the strengths of the connec­

tions between populations resulted in augmented activity with no change in period. 

Increasing the tonic input to the system resulted in an increase in the amplitude of 

the oscillation and a decrease in period. 

As a way of evaluating the model, the effects of stimull!~ting vagal afferents2 were 

simulated using two different methods. Stimulation was simulated by either an in-

Cft'ase in E activity, or a decrease in J. In the first case, aU rhythmic activity ceased 

:.1 Experimentall: stimulation of the vagus has a strong inhibitor.y efl"ed on J. Physiologically, 
vagal .. fI'erentll fire according to the level of excitation of pulmonary stretch receptors in the lung, 
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--0 inhibitory 

---- excitatory 

Figure 1.1. The model network proposed by Geman and ~1il1er (1976). The I1('lwork 

consists of 4 populations of neural elements, two inspiratory (J _, 1_) and two cxpiratory 

(E+1 E_), interacting through excitatory (closed tirdes) and inhlbitory (open circles) 

connections. 
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with constant vagal input. As this was contrary to previous experimental results 

(Cohen 1969), the second method was considered appropriate. Phasic vagal input 

using the second method resulted in a reduction in peak 1 activity as weIl as a de­

creast' in the period of oscillation. This situation occurs in the normal physiologicai 

context, and arter eliminating vag al feedbad., an increase in amplitude and decreaF~ 

in frequency of the rhythm is found. Under sorne conditions, the averaged activity of 

Land 1+ had two peaks belore a peak in E activitYi the second peak was termed 1 E 

activity to repr«"sent phase-spanning neurons. Recent experimental findings reveal 

that in sorne conditions, sorne respiratory related motorneurons show two distinct 

bursts, near the I-E and E-I transitions, during each respiratory cycle (Dick et al. 

unpublisht'd observations). Smith et al. (1990) have also observed such biphasic firing 

characteristics in medullary neurons of an in mtro neonatal rat brainstem-spinal cord 

preparation. 

This model shows that interactions between two intrinsically oscillating networks 

(1 and E) can produce behavior that is similar to the respiratory rhythm. The main 

hypothesis that was tested by Geman and Miller (1976) was that the RRG could 

produce a normal rhythm without influence from the pontine neurons. However, it 

has not been established that individual populations of 1 or E neurons can oscillate 

independent of other populations, unless pacemaker properties are assumed. The idea 

of distinct yet cou pied neural networks consisting of both land E has support from 

observations in split brainstem experiments (e.g. Eldridge and Paydarfar 1989). 

1.1.2. The Feldman models 

Feldman and Cowan (1975) proposed a network model for the RRG consisting 

of 6 pools of respiratory neurons. Two of these pools were inspiratory, In and I,~, 

corresponding to the Q- and ,B-inspiratory neurons that are inhibited and facilitated, 
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respectively, by lung inflation (Cohen 1979; Euler 1986). Twootht'r pools wt'rt't'xpira­

tory, Eu and E!~; again categorized by their rt"sponst" to lung inflation (facilit,at.t"d and 

inhibited respectively). The remaining two pools werl' delloted phase-spanllin~, 1 E 

and El, to describe the populations oC Ileurons that. firt" during both 1 and E hut. hil\'(' 

peak activity during the I-E and E-I transitions rt"spl'ctively. The t1t"twork ('Ollllt'('­

tivity is summarized in fig. 1.2. The model was described by a 6-dimensiollal syst.t'Ill 

of differential equations, with parameters describing strength and sign of synapt.i(' 

connections, sensitivity and relative threshold responst' to excitation, post.-synallt,Î\' 

potential amplitude and absolute reCractory pt"riods. The magnitudes of the param-

eters were estimated so that the uetwork bt'havior resembled, qualitat1vl'ly, prt'vÎolls 

experimentally observed behavior. Howevcr, similar net,work bt"haviors wt'rt' fOllnd 

for various sets of parameter magnitudes. 

N umerical experiments simulating pontine stimulation and CO:! dt"pt"IHIt"lIfy w(>rt" 

performed and the results were compared to actua} observations. Becaust" most phast'-

spanning neurous were thought to be in the pons, pontine stimulation was postulat.t·d 

to increase or decrease the activity of the 1 E pool bya fixed amount Cor t,ht' duration 

of the stimulus. The authors concluded that (1) 1" and Er> ut"uron pools should fir" il t, 

distinct and successive times duriug the respiratory cycle; , (2) stimulatioll of II~ alld 

El neurons in the pons produces strong inhibition of I" and E,. lIeurons respedively, 

with this inhibition described by a nonlinear Cunction of In and Er> activity. t 

More recently Feldman and coworkers (Feldman ct al. 1988, 1990) have propost'd 

a new theory of the organization of the RRG. The theory desC':ibes tht' RRG as COIl­

sisting of two functionally distinct sets of neural populatiùns: a central m;clllatnr, 

:II am not aware of any experimental confirmation of this prediction. 
tThis prediction is generally accepted to be hue; however, see Orem (J !:I88) for an alternattv~ 

view. 
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----<) inhibitory 

---e excitatory 

Figure 1.2. The network activity of the model of the RRG proposed by Feldman 
and Cowan (1975. The six populations of neurons are functionally divided into an 
inspiratory group! la, 1,3, lE) and an expiratory group (Ea, EfJ, El). Each population 
is characterized by its response to vag al stimulation and the timing of its firing. Vagal 
input is indicated by V. 



.. responsible for timing, and a pattern formahon neil/lorlr, rt'sponsible for st rud IIrill~ 

the respiratory motor output. The HOVel aspt'ct of this hypotht'sis is that the Irll-

irai osczllaior is thought to consist of intrinsically rhyt,hmir or paft"makt'f lIt'UWIIS. 

Evidence supporting this pacemaker hypothesis Itas bt't'II round \Ising ail 111 l'Ill'fl 

brainstem-spinal cord preparation (Feldman and Smit,h 1989; Smith ri al 199(1). 

With this preparation, it was shown that the timing of the respiratory motor out Pli' 

was not affected when synaptic transmission was diminated. In SI' "h cast's, t.he I!t'II-

ronal bursts persisted but with marked changes in duration and amplitllde. This \\'Il!. 

taken as evidence of a distinction between a central osciUator and a pat.t.(,fIl formatioll 

network that requires inhibitory synaptic mechani!ims. Furt her, be( a use t ht' a Il l, hors 

considered most theories for network dTivt'n oscillations 10 requin' inhihitioll, t.!J('Y 

hypothesized that the ouly explanation for a persist,t'lIce of oscillat,ory hehavior in t.ht' 

absence of inhibition was that the central oscillator consisted of pa("cmaker n'II!i. 

Only preliminary evidence has been ohtained to support titis hypotht'si!i. Tht' 

most interesting aspect of the theory is the possibility that paremaker W'\lrOIlS play 

a role in the generation of the respiratory rhythm. 

1.1.3. l.'ht! Richter three-phase theory 

Richter and coworkers (1982, 1983, 1986) proposed a (Iua.litative model of tht' R HG 

that is based on the three main phases of the oscillation, reffected hy the activities of 

brainstem respiratory neurons. These distinct phases are dt"srribed as inspirat.ory (/), 

post-inspiratory (pI), and expiratory (E). Each phase is associated with a distinrt 

population of medullary respiratory neurons, and can al50 be associated witt. 4.h(' 

firing patterns of sorne respiratory related rnotorneurons (c.g. /, and in !iOJJlt' rast'!; 

pl, is associated with the activity of the phrenic motorneurons, which innervatt' tlJ(' 

dinphragm). 
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The proposed network of neural interactions consists of 5 populations of fiE'urons 

within the titree-phase framework (fig. 1.3): early 1 (el), ramp 1 (lu), and late 1 (LI); 

a pl group; and an E group. The qualitative firing patterns of these groups is shown 

in fig. 1.4. The el neurons have their peak activity near the onset of the phrenic burst. 

The lu neurons exhibit af, augmenting firing pattern similar to the ramp component 

of thE' phrenic discharge. LI neurons begin firing during the latter part of the phrenic 

ramp and reach a peak near the end of the burstj they are silent during expiration. 

This population is postulated to be responsible for the reversible 1 off-switch. The pl 

Murons fire with a rapid onset of activity and a decrementing frequency during the 

rE'mainder of the pl phase. E neurons discharge in an augmenting pattern between 

phrE'nic bursts. SornE' begin during the pl phase, but most are silent during this time. 

This model was a divergence from the common view that the RRG consisted of 

only two antagonistic phases, 1 and E. Feldman and Cowan (1975) hinted at su ch 

an idea with the inclusion of phase spanning populations in their model, but still 

separated the six populations into either 1 or E categories. Richter's three-phase 

model has found favor in recent discussions of the RRG. 

1.1.4. A three-phase neural network model 

Recently, a mathematical model based on the Richter theory has been proposed 

(Bruce 1989; Botros and Bruce 1990). The network model was described by a system 

of diffE'rential equations (in a Corm similar to that of Geman and Miller, 1976), in which 

l'ach of 5 neural populations was described by a variable representing its activity. The 

connectron welghts describing the interactions between each population were adjusted 

so that the' behavior of the network (z. e. the firing pattern of each population) 

fe'sembled the qualitative activities proposed in Euler (1986). The model was robust to 

changes in the system parameters. The effects oC changing central chemical drive and 
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---e excitatory 

Figure 1.3. The network proposed by ruchter et al. (1986) consi~ting of 5 nl'Ilm! 
populations: early 1 (el), ramp 1 (Ill), and late 1 (LI); a pl group; and an E group­
The population denoted lBS represents the inspiratory bulbo-spinal neurons, which arr> 
generally considered to relay 1 output to respiratory motorneurons. 
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Figure 1."'. The qualitative firing patterns of each of the populations in the Richter 
network (fir. 1.3). Adapted from Richter et al. (1986). 



pulmonary stretch receptor (vagal afferent) input \Vere sÎmulated. Chemical drive was 

represented by an increase in the tonic input to e8ch Beuron group. Inne(tscc! dri\'(' 

resulted in decreases in the durations of both inspiration and t'xpiratioll. Tht' influ(·Il('t· 

of vagal input was best mimieked when the vagal input actt'd throllgh excitatiol\ of t.ht' 

L-l pool and inhibition of the e-l pool. This is in disagreement with the qualit.ati\·t' 

Richter model in whieh sueh input is thought to aet through excitation of t.Ilt' Ir 1 

pool alone. The response of this model to simulated afferent nerve stimuhtt,ioll has 

also becn investigated in preliminary studies (Maass-Moreno and Katona 19R8; Bflll'(' 

1989), and will be discussed in the next section. 

1.2. PHASE RESETTING OF THE RESPIRATORY RHYTHM 

Phase resetting experiments involve the perturbation of an intrinsintlly o!H'illat.illJ?; 

system at distinct times during its cycle. The goal of these types of t'Xp<'rilllt'lIt.fi je; 

to gain sorne insight as to the underlying mechanisms producing tht' oscillation. The 

effect!! of perturbations delivered throughout the cycle on the intril1sic cycle durat.ioll 

are expressed by measures such as perturbed cycle duration, phase advanct' or <!elay, 

and new- phase or cophase (Winfree 1980, 1987; Glass and Maeh'Y 1988). ln mos!. of 

the further discussion, l will refer to tht! cophase in the description of phast' /'cst't,l.ing 

effects. The cophase 0, is the latency from the end of stimulation to tilt' onsct. of 

the if" following cycle, normalized 1.0 the control cycle duration. Cophase plots are 

constructed by plotting (J, versus the phase of stimulation, 4>.; 

Winfree (1980) made specifie predictions concerning phase resetting of lIonlin{'ar 

oscillators. Given that two topologieally distinct types of resetting occur, nam(·ly 

Type 1 and Type 0, it was predicted that a singulal'ity exists in th(' r(,spollse 1.0 

fisee chapter 2 for examples of cophase plots. 
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stimulation. Type 1 (or weak) resetting is obtained with stimuli of relatively smalt 

magnitude and the resulting cophase plots are of average slope -1. Type 0 (or 

strong) resetting oecurs when the stimuli are large in magnitude; the average slope 

of cophase plots in this case is O. Theoretically, a singularity in the response to 

stimulation means that a critical stimulus (of specifie magnitude and phase) can 

stop the oscillation. The existence of such a phase smgulanty suggests the use of 

a particular ciass of mathematical models describing oscillations called limit cydt" 

models. These models are formulated by systems of differential equations. Aphase 

smgularzty in a biological oscillator cannot always be realized because of the presence 

of noise. Thi., is especially true ifthe singular region in phase or parameter space (the 

black hole in Winfree's terminology) is very small.H It was predicted that resetting 

with the critical stimulus in such experimental situations would result in a random 

latency in the return of the oscillation. Because of the large number of isochrons; 

converging in the neighborhood of the black hole, small perturbations from this region 

due to noise result in returns to the cycle at random phases and therefore random 

latencies. Thus, in the experimental setting, random resetting is taken as evidence of 

a phase szngularity. This has important implications for biological oscillations. For 

t"xample, the possibility that the respiratory rhythm could he stopped with a single 

perturbation represents a potentially life-threatt"ning vulnerability. 

Pert urhation of the respiratory rhythm has been performed previously in a variety 

of ways including: lung inflation (Clark and Euler 1972; Petrillo et al. 1983), pontine 

stimulation (Cohen 1971), and stimulation of the vagus nerve (Younes and Polacheck 

1985; Zuperku and Hopp 1985), carotid sinus nerve (Eldridge 1972), intercostal nerves 

hl n tht' CRse of an unlltable IIteady state, the singular region is a single point. 
i manifolds in phase IIpace on which the phase attributed to the oscillation (the timing) is the 

same (Guckenheimer 1975; Winfree 1987) 
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(Shannon 1980), somatie nervt"s (Iscoe and Polosa 1976; Kawahara et al. 19R8) and 

superior laryngeal nerve (Larrabee and Rodes 1948). Whilt' the gent'ra) efft'ds of 

these forms of perturbation have been documentt'd, only tlm.>t' groups to dal.t' hl\\'(' 

systematically investigated phase resetiing of the rt'spiratory rhythm in tht' st'nse 

outlined by Winfree (1980, 1987). 

In two different studies, Paydarfar and coworkers (1986, 1987) pt"rformed a .,hl\$t' 

resetting analysis of the respiratory rhythm in cats. ln the first, supt'rior larYlIgt'al 

nerve stimulation was used as the perturbation, and cophase plots wt'rt' consf.rlldec! 

for stimulus trains of different duration. They concluded that ft phase singularity t'X­

ists in the response of the respiratory oseillator based on random rt'setting thal, was 

ohserved when a stimulus of intermediate strength was delivered near tht' E-J f,rilllsi­

tion (fig. 6D of Paydarfar et al. 1986). In tht' first cophase (Bd, the random rt'st'Uing 

is not clear as the curve appears discontinuous. Over the subsequent cophas('s t.his 

discontinuity fills in giving the impression of a random responst'. Whilt' it is possible 

that these results are indeed due to a phase singularity, it is also possihle that tht' 

cophase plots are very steep in this region, which in the presence of noist' could makca 

the resetting appear random. The second study was similar to tht' first t'xct'pt thaf, 

midhrain stimulation was used (Paydarfar and Eldridge 1987). A phasc singlliarity 

was also suggested, however, it oceurred at a phase near tht' 1-E transition with this 

method of stimulation. 

Kitano and Komatsu (1988) performed a similar phase resetting analysis of tht' 

respiratory rhythm using intercostal nerve stimulation in rabbits. Random rt'st'tt,ing 

was not observed. They attributed the discrepancy with Paydarfar et al. (1986) to 

the inherent fluctuations in the respiratory rhythm and the use of differcnt stimulus 

durations. Stimulus trains of long duration (2 300ms, like those used in Paydarfar ct 

10 



( 

( 

al. 1986) can terminate 1 and continue to act during the following E. The resulting 

change in cycle duration is a combination of effects on two distinct phases of the 

cycle. Kitano and Komatsu (1988) suggested that a shorter stimulus provides more 

easily interpretable data when investigating the response of the respiratory rhythm. 

The discrepancy between the two studies could also be due to the differential effects 

of stimulation of different afferent nerves. 

We have used this phase resetting protocol to investigate the effects of superior 

i'tryngeal nerve (SLN) stimulation on the RRG (Lewis et al. 1990). Sorne of these 

results are described in Chapter 2. Two different effects on the RRG were seen with 

stimulation during 1.1'. If a threshold, that varied inversely with the phase of l, was 

exceeded, then the stimulus produced an irreversible termination of 1 (shortening 

of the cycle). Otherwisf', the stimulus produced a transient inhibition or reversible 

termination of 1 (slight prolongation of the cycle). Stimulation during E produced 

a prolongation of the cycle. No evidence of a phase singularity was found. However, 

an apparent discontinuity in the response (cophase) was seen during 1 for stimuli of 

intermediate magnitude, due to a discontinuous change from reversihle to irreversible 

1 termina.tion with increasing phase of stimulation. The difference between a true 

discontinuity or simply a very fast change in the response (i.e. cophase plot with a 

steep slope), is hard to distinguish experimentally hecause of noise. Nonetheless, this 

feature of the phase response may explain random resetting of the respiratory rhythm 

with SLN stimulation. 

Il Phrenic nerve recordings were used 8S ft meftsure of RRG output. 
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1.3. FIXED-DELAY STIMULATION IN THE INVESTIGATION OF DI­

OLOGICAL OSCILLATORS 

Fixed-delay stimulation consists of dt"li"t"ring stimuli rept'atedly at Il const,Hnl 

delay from the onset of an oscillator's cycle. This method of stimulation WIIS rt'fem'.! 

to previously, but not studied Ï.' detail (Levy et al. 1972). Fixt'd-dday stimulation 

can be "seful in studying the relaxation of an oscillator following a perturh!\t.ion, ftS 

weIl as its response (or refractoriness) to subsequent perturbations. 

If 6. given perturbation produces effects on an oscillator that decay OVt'r several 

cycles, the response to fixed-delay stimulation can be complt'x. Differt'nf. pattt'rns 

of cycle durations, sorne very irregular, can be expected in many cases (Lewis et al. 

1987; Glass and Zeng 1990; Zeng et al. 1990). This is not surprising as fixt'fl-d('llIy 

stimulation can be considered a form of delayed feedback and many delaYt'd-ft"t'dhark 

physiological control systems have been shown to exJlibit complex bt'ltaviors (Glass 

and Mackey 1988). One such example is the feedba,ck of tht' pulmonary st.rt't.rh 

receptors (via vagal afferents) on the respiratory oscillator. 

We have previously used fixed-delay stimulation to study the Poir .... ré oscillat,or, 

a simple nonlinear olScillator (Lewis et al 1987). The response of the modd to this 

protocol was irregular for sorne stimulus dt"lays and magnitudes. Glass and Zt'ng 

(1990) later showed that at least sorne of these irregular behaviors arE" chaotk: l 

Fixed-delay stimulation was performed using SLN input (Lewis et al 1987, 1990). 

The results showed that long-terrn effects on the respiratory rhythm, eviclenct'd hy 

a change in the threshold for irreversible 1 termination, can result from repE"titiv(' 

fixed delay stimulation. The mechanisms involved in thest' aftereffects are unknown. 

In other neural systems, long terrn changes in synaptic efficacy produced hy variolJs 

9Chaotic in the sense defined in the field of nonlinear dynamlcl!I. See the next section, 
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stimuli and lasting from seconds t,) days have been docurnented extensively (Ito 1989; 

Racine and de Jonge 1988; Zucker 1989). The changes in the respiratory rhythm re­

sulting during and after repetit,ive SLN stimulation may he due to s!milar mechanisms 

at the level of the synapses responsible for 1 termination. 

To date, anatomical studies and phase resetting studies have been the main meth­

ods of investigating the mechanisms of respiratory rhythm generation. Mathematical 

models have played a relatively small role. The extremely complex nature of the respi­

ratory system demands multiple approaches to its study. To complement new exper­

imental protocols, like fixed-delay stimulation, different quantitative models should 

be investigated in more detail. Simulations and model development are efficient ways 

of interpreting new experimental results. Realizing the unique properties of different 

models rnay lead to a better understanding of the RRG. 

1.4. NEURAL NETWORK MODELLING 

In the previous sections, 1 have described several models of the RRG. 1 have 

also outlined an important experimental approach to the study of the RRG, namely 

observing the effects oC perturbing the rhythm in different ways. In addition to such 

studies, a better understanding of the dynamical properties of networks of neurons in 

generaI, may elucidate the mechanisms of respiratory rhythm generation. One way 

of investigating the behavior of a network of neurons has been to consider network 

models consisting of greatly simplified elements. 

The idea that the behavior of ft network of neurons could be represented by a 

interconnected net of binary (two-state) elements was first proposed by McCuHoch 

and Pitts (1943). More recentIy, Hopfield (1982) generated renewed interest in models 

of neural nets by showing that such systems could exhihit associative memory. The 
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property of memory in these networks results from the faet that spt'cifi(' (·at.t'gorit,s of 

inputs will produce specifie steady state behaviors, so tbat a Ilumbt'r of input-output. 

relations can he distributed throughout the connect.ivity of a singlt' l\etwork. Hopfit'''' 

(1984) continued this in"estigation to include eontinuous state and continuolls tinH' 

models. Most work on neural network modelling lIas bt'en dont' in the ('ont,t'xl. of 

such associative memory (see reviews by Cowan and Sharp 1988 and Crick IHRH). 

Relatively few studies of biological oscillations resulting from Ilt'ura.l merhanislIIs have 

involved this type of neural modelling. 

Simple continuous state and time network models consisting of ft smaH num!)('r of 

elements (:S; 4) have heen investigated in the contt'xt of biologieal oscilla tions (('.9. 

Friesen and Stent 1978; Glass and Young 1979; Matsuoka 1985). These studit's w('re 

constrained to networks of specifie eonnectivities. While some analytical rt'sults havt' 

been shown for the oscillatory properties of these systems (e.g. Matsuoka IH85; Cohen 

1988), it is difficult to extrapolate to more general systems of higher dirnensioll, a task 

that is necessary for the description of most neural systems. 

Glass (1975,1977a,b) presented a method of analysis for a specifie class of cont.ifl-

uous hiological networks based on associated boolean state systems. Suhseclllt'nt.ly, 

Glass and Pasternack (1978) provided a theorem dealillg with the existence, uni(lut'­

ness and stability of steady states and limit cycle oscillations in thest' systems and 

thus a direct link hetween continuous models a.nd finite state models can he macle. 

The importance of this result lies in its generality. III It can he applied to a largt' dass 

oi neural network models regardless of dimension, thus simplifying the investigal,ion 

of the dynamical properties of large systems. 1 will discuss thesf' results and t.1lt'ir 

application to neural network models in more detail in Chapter 3. 

IOHopfield (1984) a150 made an association between continuous Ilnd finite state network!!, "ut il 
applied only to net",orks consisting of symmetrical connections, 
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1.4.1. Chaos in Neural Networks 

In the field of nonlinear dynamics, chaotic dynamics are defined as those resulting 

in a deterministic system that exhibit a sensitivity to the initial state of the system 

(RuellE' 1989; Glass and Mackey 1988). The time series of a single observable related 

to the system may appear random in these cases. 

The existence of chaos in neural systems has recently been discussed (for a recent 

rE'view see King 1991). 1t has been suggested that the underlying mechanisms of neu­

ral signaIs reflected in the EEG are chaotic (Skarda and Freeman 1987; Babloyantz 

and Destexhe 1987). A mu ch simpler system, the Hodgkin-Huxley model of the squid 

giant axon, has been shown to exhibit chaotic behavior during periodic stimulation 

(Guevara et al. J 983). Similar results have been used to suggest that periodic stim-

ulation of the squid axon in an experimental context can produce chaotic responses 

(Matsumoto et al. 1987, Takahashi et al. 1990). 

The existence of chaotic dynamics in models of abstract neural networks has also 

been investigated. Kürten and Clark (1986) used spectral and dimensional analysis 

to idelltify chaos in a neural network model of 26 elements, each described by 2 

ordinary differential equations and interconnected in a pseudorandom manner with 

each dement receiving 7 inputs (both excitatory and inhibitory). Sompolinsky et 

al. (1988) have shown that sorne continuous models of neural networks will show a 

transition to chaotic dynamics as a gain parameter is varied. They proved this result 

in the thermodynamic limit (i.e. infinitely large network) llsing a mean-field theory 

approach. 

Kepler et al. (1990) showed that for a specifie formulation of a neural network, 

chaotic dynamics could be observed in three dimensions. Their investigation fo-
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cused, however, on the dynamics of four-dimensional nt'tworks. Tilt' network WIlS 

implemented on an electronic circuit. It was then possible 1.0 search through di/ft'r­

ent network connectivities and document the fesulting dynamirs. Chaotic dynnmil's 

were found in less than 1 % of the networl,s testt'd, with most showing simple st.t'ady 

state or cyclic hehavior. Using a simple statistical analysis, they were ahle to show 

measures of network connectivity that correlated with the dynamics resulting in the 

network. This type of analysis may prove to be invaluablt' in deterrnil1ing the critt'ria 

for a given network to exhibit chaotic dynamics. 

Whether or not actual neural systems exhibit chaotic dynamics, and w lu, t, t.he 

functionai significance of chaos in these systems would be, remains to he dt"termillt'IL 

However, the question of the existence of periodicities and chaos in typical neural 

network models is important. It must be shown that the models can acco11 Il t, for nt. 

least sorne of the examples of chaotic-like behavior in biological neural syst.f'ms. Of 

course, the biological systems are not nearly as simple as the models and it may he that. 

the increased complexity is necessary to explain mueh of the dynamics. However, the 

limitations of th, simple models must be understood beCore an increase in complexif,y 

can be fully justified. 

1.5. OUTLINE OF PURPOSE 

The purpose of this dissertation is to investigate a general class oC neural network 

models in the context of respiratory rhythm generation. Two approaches are used in 

this investigation. 

In Chapter 2, a simple three-phase formulation is considered. The motivation 

for this model cornes from the Richter hypothesis of the organization of the nue; 
described in Section 1.1.3. For a specifie set of model parameters, a l'hast' :,espoJlse 
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analysis of this model is compared to previous experim~ntal results (Lewis et al. 1987, 

1990; Paydarfar et al. 1986, 1987). Fixed-delay stimulation is used as an additional 

protocol to evaillate the model. 

In Chapter 3, a more general formulation of these models is considered. The 

methods described by Glass and Pasternack (1978) for the investigation of these 

systems are discllssed. The dynamics of the rnodels are numer~cally investigated as 

a function of network size and other system parameters. Stable step,dy state and 

periodic behaviors are found in many cases, and in sorne networks are seen to coexist 

for a given set of parameters. Aperiodic dynamics are found in systems of 6 dimensions 

and higher. In these cases, the dynamics show a sensitivity to initial conditions and 

appear to be chaotic. A preliminary report of this investigation has been published 

(Lewis and Glass 1991). 
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Chapter 2. 

PHASE RESETTING AND FIXED-DELAY 

STIMULATION OF A SIMPLE MODEL OF NEURAL 

RHYTHM GENERATION 

2.1. INTRODUCTION 

The exact mechanisms of respiratory rhythm generation are unknowlI. ApproadH's 

to this problem have involved various experimental techniques, as weU as quantitat.ive 

modelling (Euler 1986; Feldman 1986). One experimental mcthod of studying the rt's­

piratory oscillator has been phase response analysis (e.g. Paydarfar et al. 1986, 1987; 

Kitano and Komatsu 1988). This in volves delivering a perturbation at difft'rt'nt. t.imt's 

during the respiratory cycle, usually by afferent nerve stimulation. Phase responst' 

curves are then constructed by quantiCying the responsl", in terms of changes in cycl(· 

duration, as a function of time of stimulation. Previously, phase response anaJyses 

have been used to evaluate models of respiratory rhythm gcncration (Winfret' 1980; 

Bruce 1989; Eldridge et al. 1989). 

Richter and coworkers (1982, 1983, 1986) have proposed a quaJitative model of f,lIe 

respiratory rhythm generator based on the three principle phases of ncural adivity in 

the brainstem respiratory centers: inspiratory l, post-inspiratory pl, and cxpiratory 

E. A quantitative neural network model based on this theory, and involviug fivf' 

neuron pools within the three-phase framework, has recently been described (Bru(:e 
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1989; Hotros and Bruce 1990). The qualitative connectivity of the model was that 

proposed by Richter et al. (1986). The magnitudes ofthe connections between neuron 

pools wert> adjustf'd so that the output of each of the pools resembled their postulated 

physiological activity (Euler 1986). The efft"cts of stimulating afferent inputs on the 

respiratory rhythm have been simulated using this model (Maass-Moreno and Katona 

1988; Bruct> 1989). 

The purpose of this study is to investigate a simple three-pool neural network 

model in the context of experjmental studies on the response of the respiratory rhythm 

to superior laryngeal nerve (SLN) stimulation. Although the interactions between the 

neuron populations are not rigorously based on the known connectivity within the 

brainstem respiratory centers, the motivation for the three pool construction cornes 

from the Richter three-phase theory. 

The model considered belongs to a class of mathematical models previously used 

t0 describe biological oscillations (e.g. Friesen and Stent 1978; Glass and Young 

1979). These models consist of a number of distinct pools of neurons that interact by 

inhibitory and excitatory connections. The activity of each neuron pool is described 

by an ordinary differential equation (ODE); thus a network of N neuron pools is 

dt"scribed by a system of N coupled ODEs. Each pool receives tonic excitatory 

drivf', but. also receives inhibition from one other pool. Although other network 

models of respiratory rhythm generation have been proposed (e.g. Palmay et al 1974; 

Feldman and Cowan 1975; Geman and Miller 1976; Botros and Bruce 1990), none 

have consisted solely of three pools of neurons. 

In spite of the simplified nature of the present model, a phase response analysis 

shows a striking resemblance to experimental observations. A second stimulation 

protocol, fixed-delay stimulation, is suggested as an additional method of evaluating 
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models oC rhythm generation. Response's of the pre'sent monel to titis protofol IHt' 

sirnilar in sorne aspects to the experirnental observations, but differ in others. TIIt'st' 

cornparisons suggest that a phase' rt'sponse analysis is not an adt"'1uatl' mf't.hod of 

evaluating a particular model oC rhythm generation. 

2.2. METHODS 

2.2.1. General experimelltal proto cols 

The Collowing is a brier surnmary oC the experimental methods, as a detailt'cI d(·­

scription has been given previously (Lewis et al., 1990). Experiments Wt>rt' perforJIlt'd 

on rnidcollicular decerebrate, unanesthetized cats t.hal, were paralyst'd, vagoj,ornized, 

debuffered and artificially ventilated. The internaI brandI oC the supt'rior laryllgeal 

nerve (SLN) was isolated close to the larynx. The central end of tht' nerve was 

desheathed and mounted on a pair of silver hook eledrodes. The (\ phrellÎ<' lIt'rvt' 

root was sectioned near the thoracic inlet. The central end was desheatht'c! Ilnd 

its electrical activity was recorded rnonophasically with silvN hook t>ledrodt's. Tht' 

phrenic signal was arnplified, half-wave rectified, and integrated (lOOms tin\(' ('011-

stant). The duration oC the respirat/)ry cycle ('1;,) is the time betwet'n tht' ollsds of 

two successive phrenic bursts. The onset of a phrenic hurst was ddined hy phr('lIic 

activity exceeding a preset level for a minimum duration of 15rns. Th(' duratioll of 

inspiration (T,) is defined as the tirne between the onset of the phrenic hurst arul 

the beginning of the rapid decline in activity. Expiratory duration (T, ) is dt'fint'd as 

the time between the onset of the rapid decline in phrenic activity and that. of I,ht' 

next phrenic burst. A stimulator and stimulus isolation unit were uSt'd 1o (h'livN 

rnonophasic square-wave pulses (O.2ms duration) to the SLN in trains of 50ms or 
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JOOms dllration at frequencies of 100Hz or 200Hz, with varying intensities. 

2.2.2. Description of the model 

The interactions of the three-pool model are described by a three-dimeusional 

system of differential equations of the form in Eq. (1): 

(1) 

(2) 

where i represents the i'!. neuron pool (i=l, 2, 3; i=4=1). Figure 2.1A shows the 

connectivity of the network. The gain fundion G( :1:,+1) defined in Eq. (2) is illustrated 

in fig. 2.1B. The parameter le is a real number (le > 0) that determines the steepness of 

the gain function, T, represents a type of threshold, and the 'Y, are the time constants 

of the system. 

The equations were numerically integrated using a 4111 order Runge-Kutta sel.eme 

with time step Ât (~t=O.OOl, unless otherwise stated) and implemented on a DECsta­

tion 2100 (Digital Equipment Corporation). Figure 2.1C shows the stable limit-cycle 

solution of Eq. (1) for k = 10 and T, = 0.5, 'Y, = Le for each i. The set of parameters 

which are used for the remainder of the paper are: le = 10, T, = 0.1, T2 = 0.2, T:, = 

0.7,)', = 0.5')'2 == 0.5, )',\ = 1.5; the corresponding solutions are shown in fig 2.2A. 

These parameter values were chosen so that the time courses of the variables XI' X2, 

:r 1 would qualitatively resemble the membrane potential trajectories of three different 

classes of respiratory neurons (fig. 2.2B): l, pl, E respectively (Richter et al. 1986). 

A marker event (or cycle onset) is defined at a time, t, when X, =0.5, ~ > 0, and x, 
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Figure 2.1. (A) Schematic of model connectivity. AU connections are inhibitory. 
(B) Shows the gain function G(z) Eq. (2) used in t.he model Eq. (1) for r == 0.5. 
(C) Example of model simulation with a symmetrical choice of parameters: k=lO and 
T.=0.5, 1.=1.0 for each i. The period of this oscillation is 3.26 time urùts. The initial 
conditions are: z} = 0.22, Z2 = 0.57, Z3 = 0.68. 
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Figure 2.2. (A) Simulation of the model with the parameter values chosen for phase 
respc lse analysis and fuced delay stimulation: k = 10, Tl = 0.1, T2 = 0.2, Tl = 0.7"YI = 
0.5,/! = 0.5, "Y3 = 1.5. The period of the oscillation is 7.36 time unit!. Initial conditions 
are: .!t = 0.11,:1:2 = 0.16, Z3 = 0.66. (B) Experimental traces of membrane potential 
trajectories (not to scale) from three different classes of brainsteÏn respiratory neurons: 
inspiutory, Ii post~ inspiratory, pli expiratory, E. (Adapted from Wchter 1982 with 
permission). 



remains above 0.5 for a time t+0.015. (This cOllVt'ution is used to approximate tht, 

experimental definition of a phrenic burst). 

The experimelltal procedures presently considered illvolvt' stimulation of an ill!;pi­

ratory inhibiting input, SLN. The pl or late 1 Ilt'urons, or a similar populat.ioll of 

phase-spanmng nemons, are thought to play a rolt' in 1 terrnination by direct inhihi­

tion (Remmers et al. 1986). For this reason SLN Ilerve stimulation was simulat.ed in 

the model by a discontinuous increase in the value of X2 by a magnitudt> 8. Tht>fefoft" 

the stimulus S inhibits XI (the 1 pool) indirectly by incremt'ntillg tht' act.ivit.y of :J'1 

(the pl pool). 

2.2.3. Stimulation proto cols 

2.2.3.1. Phase re.'Jettmg 

The stimulus response properties, in both the model and expt"riments, Wt'H' cha.r­

acterized by delivering stimuli at different times throughout. the r:yde. Tht' phast' 

of stimulation <p was defined as the time between cycle onst't and stimulus delivery 

normalized with respect to the control cycle duration (n). The cophase was lIsed 

as an index of the responSf" to stimulation (fig. 2.3). The i'" cophase, (J" or 1I0f­

malized latency, is defined as the time from the end of stimulation to the onset of 

the i'" cycle following stimulation, normalized to the control cycle duration (Winfr('(' 

1980). Cophase plots are constructed by plotting 0, versus <p. In tilt' case where a 

stimulus has no effect on the duration of the oscillation, the cophase plot lias a slol'(' 

of -1. The no effect Hne is defined as (J, ~ i - tjJ for stimuli of smaU duration. If th(' 

perturbed cycle is prolonged with respect to control, the resuIting cophase lies abovf' 

this Hne, whereas if it is shortened the cophase is below this line. In the copha&(' plot.s 

presented, the 1~', 2'H/ , and 3rd cophases ((JI, ()l' (JI) are plotted conseclltively agaim;t, 

<p and cP + 1 to clearly illustrate the cophase near the heginning and end of OH' cycle. 
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Figure 2.3. Schematic of integrated phrenic nerve activity showing the conventions for 
the phase resetting terminology. Tu represents the control cycle duratiC'nj Tl, T2, and T3 
represent the durations of the perturbed cycle and the two following cycles respectively. 
T, and Tf' represent the durations of inspiration p..nd expiration. The phase of stimulation 
is denoted by 4>. The first, second, and third cophases are denoted by 817 821 and 83 
respectively. 



'. 2.2.3.2. Fized-delay stimulahon 

To investigate the possible long-term effects of stimulation, stimuli w('re deli"t'rt'(1 

repetitively at a constant delay from cycle onst't. In the case whert' stimuli afft'd ollly 

the cycle in which they are deIivered, this protocol results in a consistent. rt'sponst' from 

cycle to cycle. We have round however, when using stimuli that havt' longt'r lasting 

effects, that this protocol can produce a variety of complicated rt'sponst's (Lt'wis ri al, 

1987). By varying the stimulus delay, as weil as the number of Ilnstimlllat,t'd rydt's 

between the stimulated cycles, the time course and potentially other charadt'ristil'S of 

the prolonged effect of stimulation can he investigated. Figure 2.4 shows sdlt'mat,inlly 

the two different fixed-delay protocols: (A) stimulation given every cyclt' for ilm'c 

cycles, and (B) with n - 1 unstimulated cycles hetween stimuli. 

2.3. RESULTS 

2.3.1. Phase resetting: experiment 

SLN stimulation produces changes in the respiratory rhythm that depend 011 tht' 

inteDsity of the stimulus and the phase of the cycle in which it is delivt'red. Stimuli 

applied during inspiration (/) produce one of two effeds, depending on intensity. If 

the intensity exceeds a critical threshold value, that varit's inversely with timt' during 

l, an lrreversible terminahon of 1 is observed, '.e. a shortening of tht' phrt'nic hursf. 

is observed. There is a corresponding shortening of the following expiration (E), 

resulting in a perturhed cycle duration as small as 30%1;, (fig. 2.5A). Wht'n tht' 

stimulus intensity is just below the threshold value for irreversible 1 termillation, a 

reversible termmatzon of 1 is observt'd, t.e. the phrcnic burst is transiently Ruppressed 

and then resumes its incrementing activity (fig. 2.5B). SLN stimuli applif'd durillg 
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A 

every cycle 

1 1 1 

B 
every n cycles 

1 1 
n-l unstimulated cycles 

Figure 2.4. Schematic showing the two protocols used for fixed-delay stimulation. (A) 
sh·)ws the case where stimulation is given at a fuced delay for three successive cycles. (B) 
sh, .ws the case where a number of unstimulated cydes (n -1) are left between stimulated 
cyl les. 
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Figure 2.5. Traces of integrated plU'enic activity showing the phase dependent effects 
of SLN stimulation, O.3V, 50ms trains, 200Hz. (A) Irreversible 1 terrnination (HOms 
delay). (B) Reversible 1 termination (70ms delay). (C) prolongation of E (2000ms 
delay). (Reproduced from Lewis et al. 1990 with permission) 
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E delay slightly the onset of the next l, resulting in a prolongation of the cycle (fig. 

2.50). 

2.3.1.2. Cophase plots 

Phase resetting experiments were performed with stimuli of various intensities. 

Figure 2.6 shows cophase plots from one experiment using four different intensities 

(O.07V, O.2V, O.3V, O.6V). The O.07V stimulus produces relatively little effect as 

refleded by the cophase plot with an approximate slope of -1 (fig 2.6A). As the 

stimulus intensity is increased, the cophase plots reveal a shortening of the cycle at 

sorne phases during l, i. e. irreversible 1 termination. There are sorne phases (early 

I) that show Htt.le effect or a slight prolongation, z.e. reversible 1 termination (fig 

2.6B,C). For the highest intensity, all phases during 1 show a shortening of the cycle 

(fig 2.6D). Stimuli delivered during E produced a slight prolongation of the cycle. 

2.3.2. Fixed-delay stimulation: experiment 

Figure 2.7 shows the results of fixed-delay stimulation of the SLN in an experiment 

in which the stimulus intensity was O.098V (50ms trains, 100Hz) and the delay was 

varied from 100ms to 825ms. In fig. 2.7B, a consistent reversible 1 termination is 

shown, while the delay in fig. 2. 7F, produced a consistent irreversible 1 termination. 

However, figs. 2.70, D, and E show no such consistency. Rather, a combination of 

reversible and irreversible 1 terminations resuIted. As the delay is gradually increased 

from the beginning of 1 to the end of l, there is an apparently graduai increase in the 

frequency of irrevertlible 1 termination. Of note was the appear,''1.ce of an alternation 

between the two responses for a delay of 350ms, that lasted over 3 minutes after an 

initial transient of 75 seconds. Fig re 2.7D shows a segment of this pattern, that 

includes the last cycle of the transient. 

Figures 2.8 and 2.9 show the results of an experiment, where the number of recov-
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Figure 2.6. Cophase plots for SLN stimulation (50ms trains, 200Hz) of increasing 
intensities from (A) to (D). Ol! (J2, and 83 are plotted twice versus t/> to clearly show the 
response at the E - 1 transition. (Reproduced From Lewis et al. 1990 with permissiorü 
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Figure 2.7. Experimental effeds of fixed-delay stimulation with varying delay. (A: 
shows the Wlstimulated control cyde (integrated phrenic activity). In (D) - (F), thf 
upper trace shows integrated phrenic activity and SLN stimulation (0.098V, 100Hz, 5C 
ms trains) is shown on the lower trace. The stimulus delays for (D) • (F) are 100ms. 
200ms, 350ms, 650ms, and 825ms. Time bar is 10 seconds. (Reproduced from Lewis et 
al. 1987 with permission). 
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Figure 2.8. Experimental effeds of SLN stimulation (O.6V, 100ms train, 200Hz) at 
a fixed delay (200ms, 30% of 1 duration) with varying number of unstimulated cydes 
between stimuli. (A) Stimulus delb,.ered every cycle; (B) every 2 cycles; (C) every 4 
cycles; (D) every 8 cycles. In each panel, the integrated phrenic activity is shown in the 
upper trace, with the lower trace showing SLN stimulation. (Reproduced from Lewis et 

al. 1990 with permission). 
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Figure 2.9. Sequential plot of respiratory cycle durations correspond..:ng to the data 
shown in fig. 2.8. Stimulated cycles are indicated by filled circles, an,l unstimulated 
cycles are indicated by open circ1es. (Reproduced from Lewis et al. 1990 w th permission) 



ery cycles between stimuli was varied. For a delay of 200ms, stimuli (O.O\', 100lllS 

train, 200Hz) did not produce a consistent response until ï recovery cycles wt're al­

lowcd between stimuli. Two important points are apparent in figs. 2J)A,n. Fin,t., as 

stimulation proceeds, it becomes harder to produce an irrevefsible terminat.ion of 1. 

This is shown by the decreasing number of shortel1ed cycles with incrt'asing Ilumher 

of stimuli, suggestil1g that stimulus effects may summate over several cycles. Second, 

there is an increase in cycle duration with increasillg number of stimuli. The incrf'as(' 

is apparent not only in the reversibly terminated and ul1stimulated cycles, hut also 

in the irreversibly termil1ated cycles. 

2.3.3. Phase resetting: model 

To simulate the phase resetting effeds of SLN stimulation on the rt'spirat.ofy 

rhythm, perturbations of the model were performed using the method dt'scrihl'cl ill 

Section 2.2.2.; a stimulus consists of a discontinuous increase in tht' value of :r l by a 

magnitude S. 

The effects of delivering a stimulus of magnitude, S=0.06, at three different phases 

of the cycle is shown in fig. 2.10. In this case, a favorahle comparison can he rmulr 

with the three types of effects produced experimentally, as tht're art' analogut"s of 

the {ollowing observations: (1) reversible termination of l, resulting in il slightly 

prolonged cycle (fig. 2.10A), (2) irreversible termination of l, producing a shortt"f1ed 

cycle (fig. 2.1OB), and (3) prolongation of E (fig. 2.l0C). Figure 2.11 shows cophast' 

plots {or S= 0.03, 0.06, 0.1. For </> greater than about 0.2, a consistent, but. slight, 

prolongation of the cycle is round. For smaller </>, there is a progressive shortf'IIing of 

the cycle as Sis increased. In fig. 2.llC (S=O.I), there appears io he a dist:ont.ill\lOIl!. 

transition from prolongation to shortening for small cP. This is exactly what. was 

observed experimelltally. In the model, however, the magnitude of the clisc:ontinuity 
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Figure 2.10. Phase dependent effects of stimulus S=0.06 on the mode!. (A) shows 
a transient inhibition of the cycle, q,=0.03, resulting in prolongation of the cycle by 3%. 
(D) shows inhibition of the cycle, q,=0.1, resulting in shortening of the cycle by 30%. 
(C) shows a delay in the onset of the next cycle, 4>=0.7, resulting ~n prolongation of the 
cycle by 7%. In aIl panels, the stimulus is indicated by the vertical arrow and the control 
oscillation is shown by the dotted lines. 
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Figure 2.11. Cophase plots for the model at three diffe' ent stimulus magnitudes. (A) 
5=0.03; (B) 5=0.06; (C) 5=0.1. 81! 821 and 8J are plot\ ed twice versus ifJ· 
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is equivalent to one normalized cycle length, so the jump can be explained by the 

definitioll of the marker event, I.e. cycle onset (Glass and Winfree 1984). 

2.3.4. Fixed-delay stimulation: model 

The experimellts usillg the fixed-delay stimulation protocol showed that for sorne 

delays during l, combinations of cycle prolongation (reversible 1 termination) and 

cycle shortelling (irreversible 1 terminatioll) resulted. Figure 2.12 illustrates the effect 

of fixed-delay stimulation of the model for S=0.085 in a sequential plot of cycle 

durations (normalized to Tt)), for four different values of the normalized delay, 6 = 

0.095, 0.1, 0.11, 0.115 (6 = d,::~y). Stimulation began on the 10111 cycle and was 

discontinued on the 90111 cycle. The cycle duration returned to control within 2 

cycles in aIl cases. Because the stimulus effects lasted such a short number of cycles, 

varying the number of recovery cycles during stimulation at a fixed-delay produced 

only consistent responses, unlike the experimental system. 

The effect of changing 6 on the resulting dynamics is shown further in the form 

of a biCurcation diagram. For a given 6, stimuli were delivered Cor 150 cycles at a 

fixed-delay oC 61'0' The normalized durations of the last 50 cycles were plotted versus 

6. Figure 2.13 shows such a diagram Cor one stimulus magnitude, S=0.085. The 

bifurcation sequence for the model shows an interesting similarity with the experi­

ments. As 6 illcreases from 0.1 to 0.12, each response pattern shows an increase in 

the number of shortelled cycles for every prolonged cycle. This increase appears to 

be graduai, as evidenced by the discontinuous appearance of branches in the bifur­

cation diagram representing shortened cycles. Other more complicated patterns are 

seell as weil. In the region of 6=0.0844, there are two different cycles of duration 

shorter than control. This region apparently arises as a result of a period-doubling 

bifurcation; and subsequently disappears through a period-halving bifurcation. This 
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type of bifurcation is similar to those shown in two previous studies of the Poin('nri-

oscillator, in which a succession of period-doubling bifurcations resulted from changes 

in the delay during fixed-delay stimulation (Lewis et al. 198;; Glass and Zt'n~ 1990). 

Table 2.1. lists several of the patterns seen in fig. 2.13. 

Table 2.1. 

FIXED-DELAY RESPONSE PATTERNS 

D # Prolonged Cycles # Shorteued Cycles 
0.08 0 1 

0.0844 u 2 
0.09 0 1 

0.095 1 0 
0.1 1 1 

0.106 1 2 
0.1088 1 3 
0.1094 1 4 
0.11 1 5 
0.11104 1 9 
0.125 0 1 
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2.4. DISCUSSION 

2.4.1. Phase resetting 

Phase resetting experiments, that consist of perturbing an oscillating system at 

different phases of its cycle, have been performed in a variety of biological systems 

(Winfree IP80; Glass and Mackey 1988). Phase resetting curves are constructed by 

plotting sorne rneasure of the effects of the perturbation, such as change in cycle 

duration or cophase, versus the phase in which the perturbation is delivered. These 

curves can then be used to suggest different classes of models for the oscillation under 

study. 

One such class of models are limit cycle models. Limit cycle models exhibit at least 

two distinct types of phase resetting curves. One, produced by relatively weak per­

turbations, represents Type 1 resetting and is characterized by cophase plots with an 

average slope of -1. The other, produced by relatively strong perturbations, reprE"sents 

Type 0 resetting, for which the cophase plot has average slope O. For perturbations 

of interrnediate shength, a phase smgulanty should exist (Winfree 1980). That is, 

it is possible to stop the oscillation with a perturbation of critical amplitude at a 

critical phase. Experimentally, this critical stimulus may not be realizable due to 

the prese-nce of noise. Thus, Winfree predicted that if both Type 1 and 0 resetting 

could be shown experimentally, and for sorne intermediate stimulus strength random 

resetting occurs for a particular phase of stimulation, a phase singularity exists in the 

oscillator. 

Sornt" prt'vious studies involving the respiratory oscillator have discussed phase 

resetting in these terms. Perturbations applied with SLN (Paydarfar et al. 1986) and 

brainstem (Paydarfar and Eldridge 1987; Eldridge et al. 1989) stimulation showed 

both Type 1 and Type 0 resetting, and an apparently unpredictable response for a 
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stimulus of intermediate strength. From these observations, it was suggestt-d that, 1ll<' 

respiratory oscillator could be described by a limit cycle model. The intt'rpret./ltioll 

oC the phase response curves showiug such raudom resetting is a difficult task dut' to 

the inherent complexities of this system as weil as the experÏmt'ntal noise (Lewis fi 

al. 1990). 

Similar experimental methods have been used to study the phase response oC the 

Van der Pol oscillator (a 2-D system of nonliuear ordillary differential equations) in 

the context of respiratory rhythm generation (Eldridge 1989; Eldridgt" ct al. \08H). 

Simulations were perCormed to show how noise and chermcal drrve (tolli(' exC'Ït.atnry 

input) can affect the phase response curves. Dt"pendillg on litt" diive, pN1.1l rha1.ion 

with a stimulus of constant magnitude produced Type 1 or Type () resetting. rll otller 

words, the "size" of the limit cycle oscillation was Iarger for incre/lsed drivt', thus n 

larger stimulus was required to produce Type 0 resetting. These results were used 1.0 

imply that changing CO2 drive in experimental contexts was equivalellf, 1.0 ('hallgillg 

the Cunctional size of the limit cycle. 

Bruce (1989) used phase resetting lo evaluate a neural network model of t.he 

respiratory oscillator (Botros and Bruce 1990). Evidence of a phase stngulanty in t.llt' 

response of the model to simulated vagal stimulation was inCerred Crom argum(,lIt.s 

similar to those of Paydarfar et al. (1986) and was shown with a phas .. respmIS(> 

curve. In this analysis, an investigation of the phase respollse for small .. r incrernellts 

of cP would have heen useful. The phase resetting curve showll (fig. 5 of Bruel' 

1989), appears to indicate Type 1 resetting with a region in whi('h litt" slope is lafl~t·. 

Because the model is by defiuition a limit cycl .. model, a phase singularity must t'xist., 

but it may not necessarily be attainable for Il particular melhod of pt'rt.urhat.ÎolI. 

This need not be inCerred by random resetting. On the ('ontrary, harring errors in th!' 
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integration scheme, the deterministic nature of the model implies that the resetting 

is not unpredictahJe for the same stimulus given at the same phase." With such 

models, demonstrating both Type 1 and Type 0 resetting is sufficient evidence for a 

phase sing' .larity in the response to a given perturbation. 

ln the present study, the phase response curves from a simple three-pool neural 

network model compare {avorably with those obtailled experimentally for the respi­

rat ory rhythm with SLN stimulation. The simulations show that stimuli have little 

effed on the cycle when given during expiration. However, a phase dependent effed, 

with both reversible and irreversible inhibition of inspiration, is seen with stimulation 

during inspiration. There is also a threshold transition from reversible to irreversible 

inhibition of inspiration. 

The method of simulating experimental stimulation of afferent nerves may a{-

feet the phase respOllse of sorne models, but qualitatively the resetting behavior will 

remain tht' same, t. e. in the context of Type 1 or Type 0 resetting in limit cycle 

models. The choice of stimulation in the present model was based on experimental 

obst'rvatlons. The SLN produces an inhibitory effect on inspiration, so simulation of 

this effeet in the model must involve a decreas~ in the variable z,. This could be 

accomplished directly by decreasing z" or because of the network connectivity, by 

increasing Z}. Changillg both variables is also a possibility. The stimuli could also 

he considered to aet over a period of time or aCter a certain delay. However, a simple 

point stimulus, expressed as a discontinuous increase in Z2, was chosen and is con-

sidered sufficient for the present analysis. Previous experimental evidence suggests 

that SLN inhibition of 1 oceurs via excitation of post-inspiratory hrainstem neurons, 

which in turu inhibit inspiratory neurons (Remmers et al. 1986). It may be possi-

"This ho)ds of course only wh en the system is in the same initial state for each stimulus. If not, 
as is the case with the fixed-delay stimulation protocol, the response may appear random 
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ble to choose a different method of stimulation and achit"vt" brttt"r agrt"t"lnt"ut wit.h 

experimental observations. 

Cophase plots for the model showed that both Type 1 and Typt" 1) rt"st"Uinp; was 

possible with the chosen method of stimulation. Limit, cyclr oscillations Ilt"ct'ssarily 

have an associated phase singularity. In 2 dimt"nsions, the siugularity may bt" a singlt" 

point. In this case (J. e. 3 dimensions), the singularity i5 a Iiut" givt"n by tltt" st,ahlt" 

manifold of the steady state. The critical stimulus rt'quirt"d to show this was not 

investigated. However, for the current method of stimulation, the critieal l>hast' in 

the model appears to be neaf the discol1tinuity in the copbase plots J.e. t"arly in tht" 

cycle. This would correspond to the suggested location of the phase singularity for 

SLN stimulation (Paydarfar et al. 1986). 

The qualitative effects of phase resetting in this model did not dept'nd st"IJsit,ivl'ly 

on the parameters chosen. For example, if the parameters are chost"1J to ht" syUllllet,. 

rieal (as in fig. 2.1C), the cophase plots are qualitatively similar to t!tose showlI in 

fig 2.11. 

The discontinuity in the cophase {or the model (fig 2.l1C) i5 only trallsieut. Tht> 

2ud and 3n ' cophases are continuous. Discontinuities in the cophast" with magllitllltt, 

that is not a multiple of 1 must be transient (i.e the steady state phast' rt"spOJHit' i" 

continuous), in an models de5cribed by continuous ODEs (Kawato 1981). Expl'ri· 

mentally, however, it i5 diffieult to interpret discontinuities because (1) tht' transit'J1ts 

may be 50 long that they are unreeognized as slleh; (2) the slope of tht' t,rue phast' 

re5ponse curve at the phase of the apparent discolltinuity may he 50 steep that it ('ail 

not be measured experimentally. 

2.4.2. Fixed-delay stimulation 

Sorne perturbations can produce effects on an oscillator that last longer than tIlt' 
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cycle in which they are given. In the case oC the respiratory rhythm, SLN stimulation 

is such a perturbation. Fixed-delay stimulation can be used to investigate the time 

course and magnitude of these long lasting effects (Lewis et al., 1987, 1990). In the 

present study, this stimulation protocol was used, in addition to phase resetting, to 

evaluate a model oC respiratory rhythm generation. 

Fixed-delay stimulation of the model produced combinations of shortened and 

prolonged cycles Cor a given delay, in a manner similar to the experiments. The 

bifurcation sequence in terms of the ratio oC the number of shortened to the number 

of prolonged cycles increases gradually with increasing delay, as in the experiments. 

This is in contrast to such studies on the Poincaré oscillator where period doubling 

bifurcations in the cycle durations are seen 1. e. (1 short : 1 long) ---+ (2 short 

: 2 long), etc. as the delay is increased (Lewis et al. 1987). Differences between 

experiment and model were found in the effect of the repetitive stimulation on the 

intrinsic Creq~\ency of oscillation. Experimental results show a significant increase in 

the duration of the post-stimulus cycles aCter fixed-delay stimulation. This leads to 

complex responses to fixed-delay stimulation even when several unstimulated cycles 

are left between successive stimuli. In the model, only a short lasting post-stimulation 

effect is present. For this reason, it is not possible to show complex behavior in the 

present model for the fixed-delay protocol when one or more unstimulated cycles are 

leCt between stimulated cycles. 

Further, the response of the model to fixed-delay stimulation is sensitive to the 

choice oC parameters. For the symmetrically chosen parameter values (fig 2.1C), this 

protocol resulted in only shortened cycles when the stimuli were delivered at small 

delays. 

These observations show that there may be two different components to tht' long-
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term effects of SLN stimulation. The first, whost' timt" course is of tht' orcier of ont' 

cycle, consists of a variation in the thrt'shold for irreversiblt> t.t'rminatinn of 1. The 

second involvc~ the intrillsic mechanisms of 1 termination and can la~t 5 t,o 20 ('y-

cles. The first componellt can be explained by the model, but tht' second ('81111Ot.. 

Incorporating a time varying threshold T, or asymptotic valut' of tht' gain fund,jon 

into the model is one way to describe a build-up of efft"cts resulting from rt'pt'8t.t'd 

stimulation. Experimentally, it may be possible to st'paratt' tht' two "ropost'cl ('0111-

ponents of stimulus aftereffects by using different inputs. Conditioning tht' osciIlator 

with one input (e.g. the SLN) a,nd testing the response to another input ((' .. 1/. t,lit' 

vagus nerve) may allow a dissociation of changes in input efficacy and changes in t.ht' 

intrinsic oscillation. 

2.4.3. Conclusion 

Phase resetting analysis and fixed-delay stimulation have been ust'rl to invt'sti-

gate a model of rhythm generation. The results of these stimulation protoc:ols W('f(' 

discussed in the context of the experimental effects of superior laryngeal nervt' stimu-

lation on the respiratory rhythm (Paydarfar et al. 1986,1987; Lewis t't al. 1987,1990). 

A comparison of phase resetting data showed much similarity betwet~n modt'J and t'X-

periment. However, the comparison of the fixed-delay stimulation rt'sults f('veal('cl 

shortcomings of the model. These comparisons suggest that phase rest'Uing experi-

ments are not a sufficiently sensitive method of evaluating different models of rhyt.hm 

generation. lndeed, different models may have the same gelleral phllse resetting char­

acteristics given the appropriate stimulus. So in addition to phase r'esetting protorols, 

other methods, such as fixed-delay stimulation, should he used to evaluat.e thcst' mod-

ds. 
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Chapter 3. 

NONLINEAR DYNAMICS OF NEURAL NETWORK 
MODELS 

3.1. INTRODUCTION 

Understanding the properties of neural systems is essential to the study of many 

animal behaviors. These properties are manifested at various levels, from the study 

of ionic channels in single neurons to the dynamics of complex neural networks. In 

the study of neural networks, there have been extensive theoretical analyses comple­

mellting purely experimelltal approaches. In this chapter we discuss the properties of 

several of the popular theoretical models from a perspective of nOlllinear dynamics. 

Thus, we are Ilot especially interested at the moment in the computational properties 

of these models; likewise we do not insist that the models correspond in sorne reaHstic 

way to properties of actual physiological systems. However, we wish to analyze qual­

itative features of the dynamics su ch as the existence and stahility of steady states, 

cycles, or chaotic dynamics that are found in theoretical models of neural networks. 

Several popular theoretical models of neural networks can he expressed in a well­

defined limit as a piecewise linear ordinary differential equation that was studied sorne 

years ago (Glass 1975, 1977a,bj Glass and Pasternack 1978). Since a good deal is 

known about the properties of the piecewise lillear equation, this can be immediately 

t,ranslated to the study of neural network models (e.g. Hopfield-type networks). In 

section 3.2 we show that several different theoretical models of neural networks can 
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be written as piecewise linear (PL) ordinary difft'rt'ntial t'quations. In St'ct ion :L~~ 

we discuss the properties of thest' equations that have bt'en fou lU! in prt'violl!i work. 

This enables us to obtain graphical criteria for sueh propt'rti{'s as stahle !it.eady stat.t'S 

and limit cycle oscillations. In section 3.4 we t'xtt'nd thi~ t'arlier work and ('()II!iidt'r 

the presence of cornplex bifurcations and chaotic dynamics in these t'qnatiol\s. A 

preliminary report of sorne of these results has rec{'utly appeart'd (Lt'wi!i and Ulnss 

1991). 

3.2. THEORETICAL MODELS OF NEURAL NETWORKS 

In one simple formulation of a model neural network, the activity of elelllt'Ilt i, 

denoted z" is determined by 

d .\ 
~' = -x, + G,(Lw,)x) - T,), 

1=1 

i = 1,2, ... ,N, (:J) 

where N is the nurnber of elements constituting the network, G, is a nonlin{'ar gain 

function describing the response of each element to an input, T, is a paralllett'r t,hat w(' 

interpret as the response threshold, and tLI" gives the weight of the input of "It'ment 

j to element i. We assume that there is no self-input, I.e., that UlII = (J. ft is Il RPr .. 1 

to consider transforming Eq. (3) to a new set of variahles, y" where 

,\' 

Y, = E WI)X) - T" 

}=I 

(" ) 

Differentiating Eq. (4) and substituting from Eq. (3) leads to the transformed e(lua-

tion, 
dy, ",' 
dt = -y, + L w'lG}(y}) - T" 

1=1 

1::-:- 1,2, ... ,N, (5) 

that has often been used in neural network modelling (Hopfield, 1984; Sompolin,;ky 

et al. 1988). 

As is usual, we assume the.t the nonlinear functions G J are monot.onically ill-

creasing or decreasing sigmoidal functions. Consider the lirnit. of illfinite slop(' of t.llt' 
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sigmoidal function in which the functions GJ are piecewise constant with a single 

discontinuity at 0, so that 

with the condition that 

N 

L w,JGAYJ) =1- T" 
J=I 

if YJ < 0, 
jf YJ 2: 0, 

i = 1,2, ... , N. 

(6) 

(7) 

In order to demonstrate the equivalence of this theoretical model with a previous 

formulation (Glass and Pasternack 1978), for each variable, y" we define a corre-

sponding Boolean variable, fi" where 

_ {O, 
y, = 

1, 
if Y, < 0, 
if Y, 2: O. 

The equations can be rewritten in terms of the Boolean variables to give 

i=1,2, ... ,N, 

(8) 

(9) 

where for each i the value of A,(fi""" fi'-l' fi'+I'" . , fiA') does not depend on fi" 

and from Eq. (7), A, is nowhere O. Equation (9) has been previously proposed 

as a mathematical model for complex genetic and biochemical control systems and 

several of its properties are weIl understood (Glass and Pasternack, 1978). The above 

derivation shows that Eq. (9) is also equivalent to standard formulations of neural 

nt"tworks, such as Eqs. (3) and (5), provided there are step function nonlinearities 

satisfying the restrictions in Eqs. (6) and (7). 
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3.3. SYMBOLIC DYN AMIes AND THE STATE TRANSITION DIA­

GRAM 

Several of the qualitative features of the dynamics of f~q. (9) can bt" apprt"ciat.t'd 

from a symbolic representation of the dynamics on an N-dimellsional cube. ('all('(1 ail 

N-cube. We now describe sorne of the properties of N-cllbes and tht"Il show t.ht'ir 

connection with the PL differential equatiolls. 

3.3.1. The N-cube 

A Boolean variable is either l or O. If there are N variables, then a Ooolt'an 8ta!.(' 

is an N-tuple of 1s and Os designatillg a value for each variable. For N variahlt's UU'fe 

are 2'" different Boolean states. 

In the case of Eq. (9), the N-dimensional Euclidean phase spact" can be partitiollt'd 

into 2'\ volumes, called orthants, by the coordinate hyperplanes dt'fined hy]/, ~ II. 

Each orthant can be labelJed byan N-tuple of 1s and Os, corresponcling 1.0 the valu('s 

of y, from Eq. (8). For example, the partition of the 2-dimensional phasf' SIHH'(' is 

shown in fig. 3.1B. The N-cube can now be construded by selecting a single poillt 

from each of the 2/\ orthants. Each of these points, called vertices, is lalj('lIed hy 

the Boolean N-tuple designating the orthan~ from which it was deri-/t'd. Ea('h vt"rt,('x 

can be conneded to N adjacent vertices associated with Boolean states tltal. c1iff .. 1 

in 1 locus, ~.e. one variable in the N -tuple. The resultillg geometrie objt'd, cal\rll 

the N-cube, has 2'" vertices and N2!\' -1 edges. The distance bel. ween any 2 Ooolrall 

states, or vertices 011 the N-cube, is equal to the number of loci that diffef ill Ure 2 

states. 12 

3.3.2. The truth table 

From the above discussion every point in phase space is mappf'd to il vertex of UI(' 

l'.!This is commonly know as the Hamming distance. 
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N-cuhe. The solution curves of Eq. (9) originating at a point P = (PI,P2'''' ,Pt.·) 

are givcn by 

y, = .\, + (p, - .\,) exp( -t), i = 1,2, ... , N, (10) 

where 

(11) 

Thus, ail the local solutions to Eq. (9) in the orthant containing Pare straight lines 

directed to a common focal point (.\1, '\2,"" À J\"). Each orthant in phase space has an 

associated fonl point, so that the generalized flows are piecewise Iinear and piecewist." 

focused (PLPF). Based on the above t'quation, we have the coarse grained symbolic 

transition PI, Pz! ... ,Pt. - XI, X2, ... ,Xi\' where the first state represents the orthant 

of the initial point P and the second state rt'presents the orthant of the focal point 

towards which tilt' f10w is directed. The table which gives the symbolic location of 

the focal point for each orthant is defined here as the truth table. 

3.3.3. The state transition diagram 

Now consider the connection between the flows in the PL differential equations, 

and the truth table. CalI the current Boolean state S, and the Boolean state towards 

which tht' f10w is directed, given by the truth table, S2' If the distance between S, and 

5.1 is 0, then ail initial conditions in orthant S, are dirt'cted towards the focal point in 

S, leading to a stable steady state in the differential equation. If the distance between 

S, and S2 is 1 then trajectories from ail initial conditions in S, are directed across the 

common boundary between SI and S2' Now suppose the distance between S, and S2 

is grt'ater than 1; for example let the two states differ in n loci. Then the f10w from S, 

can l)(' directed to auy of the n different orthants that lie a distance of 1 from S, and 

11 1 frolll S!. The boundary that is crossed depends on the initial condition in S,. 

As a COllSt'quence of the above properties the allowed transitions can be represented 
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as a directed graph on an N-cube, This direded graph is ralled the state transitioll 

diagram, As the dynamics of Eq, (9) e,'oh'e. the trajedories IlHIY pass into ,li!rert'1I1 

orthants in phase space, Thus a symbolk st'(luefi{'e is gt'I\t'Tated ("orresIHlIHlinp; 10 

the sequence of orthants visited along the trajedory, These symholir s("l)uelu'es art· 

consistent with the allowed transitions {mm tilt' staie transition diagram 011 Illt' N­

cube, 

The state transition diagram for Eq, (9) has the following femarkahlt' prol'­

erty. Each edge lS oriented ln one and only one d,rectlOn, This ('ail hl" t'st ah­

lished using very simple arguments. Sinel" we assume thai for t'aeh 1 tht' ,'nIlle of 

A,(yt, ... ,y,-"y,+" ... ,y\) does Ilot depend on Y. (7.e, w" -= 0), an t'dgf' ('a 111101 

be directed in two directions, From the construction of the state transit.ion dia~rallI. 

the number of directed edges in the state transition diagram Îs {'(Iual t.n tilt' clistan( t' 

between each state on the left hand side, and the subsequent stah' on t.he right lWIlI1 

side. Each column 011 the right hand si de of tht." trulh tablt' cOlltrihutes 2 \ 1 10 1.11(' 

total distance, and there are N columns 50 that the total distance is N2 \ l, This is 

equal to the total number of edges of t.he N -cube, Since 110 erlge ('an h(' dir('ct(·() in 

2 orientations, it follows that each edge is oriented in one unique orientation ( :tass 

1975). 

3.3.4. Steady states and limit cycles 

Previous work established rules to find stable steady states and li",it c,Vrles hasc>,J 

on the state transition diagram (Glass and Pastt'rnack 1978). V('ry hriefly, if 1 lI(' 

N edges at any given vertex of the N-('ubt' art' ail dirt'cted toward it, tlWfI in t /'" 

correspondillg orthant of pha!'e space of the PLPF sysh'rn, thert' will ht' i\ sta)'I,· 

steady state. These steadv states, which are ('alled extremal r.tt'acly slat.t's, hav(' 1)('('1\ 

the main focus in the study of neural networks (e,g, C'owan and Sharp 19RR). For ail 
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, , ... osdllation to result, a necessary condition is that there be a cyclic path in the state 

transition diagram. This is not however, a sufficient condition to guarant.l"e stability 

or uniqueness of the oscillation. In sorne circumstances, a much more power fui result 

can be found. A cycltc attractor is defined as a configuration on the N -cube that is 

analogous to a stable limit cycle in a differential equation. A cycltc attractor of length 

n is a cyclic path through n vertices of the N-cube such that: (i) the edge betweeJl 

successive vertices on the cyclt' is directed from one to the next in sequence; (ii) for 

any vertex on the cycle, there are N - 2 adjacent vertices that are not on the cycle, 

and the edge( s) from each of these adjacent vertices is( are) directed toward the cycle. 

If there is a cyrlic attractor in the state transition diagram then in the associated PL 

differential equations there is either li stable unique limit cycle in phase space such 

tlaat ail points in ail orthants associated \Vith the cyclic at tractor approach the limit 

cycle in the limit t -> 00, or there is an asymptotic oseiIlatory approaeh to a point Pr. 

The point Pris 8 nalogous to a stable focus with eaeh of the n coordinates involved 

in tht' cyclic attractor approaehing zero. The proof of this result relies on the explicit 

algebraic computation of the limiting properties of the return map using the Perron 

tht'ort'm (Glass and Pasternack 1978). 

3.4. DYNAMICS OF PLPF NETWORKS 

Wt' illustrate the results of the previous section in two simple systems. Assume, 

unless otherwise stated, that in Eqs. (5) and (6), for aU j, the funelions GAy)) are 

the same wit.h a) = 1 and hl = 0, and T, = T for aIl i. Likewise aIl terms of the 

COIlIlt'ftion matrix. W , ,, are either 1 or O. Eaeh of the N elements in the network has 

t hl' sllmt' number of inputs, n,}. 

EX8mpie 1 

Consider tht' Iletwork in Fig. 3.IA, where the symbol Y2 -l YI implies y'.! inhibits 
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Figure 3.1 (A) Schematic diagram of a neural network in which thefP i~ mutual 
inhibition. (B) Integration of the PL equations in the phase plane, T = 0.5. The hea"y 
dots indicate the focal points. (C) State transition wagram on the 2·cube (YI Yl)' 



YI (Wll := 1) and T=O.5. The integration of the dynamics starting from several initial 

conditions is shown in Fig. 3.lB, and the N-cube state transition diagram is shown 

in Fig. 3.1 C. There are two stable steady states. The truth table is shown below 

(Table :U). 

Table 3.1 

y, Y2 X, X2 

00 1 1 
o 1 o 1 
1 0 1 0 
1 1 00 

Example 2 

A second ext'mple is the cyclic inhibitory loop shown in Fig. 3.2A with N = 3. 

For T=O.5, this sy'.:Î.em gives a unique stable limit cycle oscillation, associated with 

the cyrlic attractor in the state transition diagram, Fig. 3.2B (Glass and Pasternack, 

1978). The tn~th table is given in Table 3.2. 

Table 3.2 

~ ~ ~ X, "\2 X,J y, Y2 y,J 
000 111 
00 1 101 
o 1 0 o 1 1 
o 1 1 001 ---
100 1 1 0 
1 0 1 100 
1 1 0 010 
l 1 1 000 

\Ve now consider novel dynamical behavior of this s~rstem (Eqs. 5 and 6) found 

in numerical studies. Solving the PL system is reduced to connecting the analytical 
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Figure 3.2 (A) Schematic dja~rarn of a neural network composed of 3 plements. (0) 
State transition diagram on th" 3-cube (iitY2!iJ). There is a cyclic attractor passing 
through the states 001, 101, 100 110,010, 011. 



solution curves in Eq. (10) in a piecewise fashion for each element. This entails finding 

the sequence of timc!t at which the solution trajedory crosses one of the threshold 

hyperplanes, Y, =0. Givt.·n an initial condition P=(p, ,P2,' . . ,P:\) at a time t = t
"

, the 

times, t, (t= l, ... ,N), at which each ofthe N variables reaehes a thre-shold hyperplane 

arc given Ily Eq. (12). Taking the minimum of t, (over aU 1) gives the next transition 

time for the system, after which the variables are updated and the process is repeated. 

Equation (13) gives the time of the ktl. transition, delloted Tir 

/' l' T - À, 
t,( t ) = t - In( (/') _ À ) 

:1:, t , 
i=I, ... ,N (12) 

(13) 

3.4.1. Characterizing the Dynamics as a Function of N. 

We present the results of a search through a number of networks up to N = 20, 

for n" = 2,3 and T = 0.5,1.5. For a given set of the parameters N, n", and T, 1000 

randomly constructed networks were investigated. For eaeh network, 20 different 

random initial conditions were chosen. In each of these 20 trials, the system was 

integrated for 100,000 state transitions. If 8 steady state or periodic cycle" was 

round before this, the trial was ended. For each set of parameters, the llumber of 

steady states and cycles were counted to estimate the prevalence of the different 

dynamical bt"haviors. ln sorne cases, neither a stpady state, nor a cycle was detected . 

.Many of the networks found in this way exhibited chaotie-like dynamics (see later 

sections ). 

The results of this survey are summarized in figs. 3.3, 3.4, and 3.5. Figure 3.3 
- -- --- --- ----------------

l 'Cydf's of length up to 500 transitions could be detected. 
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shows the proportion oC steady states (I.e. the number of stt"ady states i" 20 initial 

conditions for 1000 different network& divided by 200(0) as ft functioll of N for t ht' 

different values of n" and T. A neRrly lineRr decrease ,,"ith N is ohser\"e(t. 'l'hl" 100wT 

panel in fig. 3.3 shows the average length of t,ime requift-cl to reaeh t ht" urt halll. ill 

which the steady state is contained. These short transient times (compar('«l tn tht, 

length oC integration), usually correspond to between 5 and 30 state transit.ions, alld 

suggest that on average, it is easy to find steacly states dllring the time of int,t'gratioll 

considered here. 

Fig. 3.4 shows the relative Ilumber of cycles found cluring this search. TIlt' prt'vit· 

lence of cyclic behavior inereases with N. The average period of thes(' (oydt's, alHI 

the average Ilumber of state transitions during the eyclt's also in<"ft'8se with N. No 

attempt was made to determille the Humber of unique cycles in a singlt' Ilt't work. JI. 

is remarkable that the illcrease in the nllmber of cydes with N, as with the de("ft"ItSf' 

in the number of stf'ady states, is so slight and lIearly Iirlt"ar, whilf' the siz(' of HH' 

coarse-grai'led phase space in these systt'ms (i.e nllmber of orthants) increRst's as 2'\ , 

In a relatively few number of trials, rlt"ither a steacly state Ilor a cycle was (OlllUI. 

Figure 3.5 shows the number of such occurrences for the differenl. pararnet('rso ThNc' 

are three possible explanations for these observations: (J) the transit"nt 1.0 tht' stall)f' 

dynamics was 1.00 long to die out before the end of the trial, or (2) a cycle of longer 

than 500 state transitions existed, or (3) the dynamics observed arl' ehaoti(', Bt'('aUSf' 

the average transient to a steady state is relatively small cornparl'd to thl' )t'lIgth of 

integration, and the average nurnber of transitions in a (:yde is mud, )('ss titan !)()O, Wf' 

believe that these dynamics are chaotic and provide eviden('(' for this in later s{>c,tions, 

There are obvious limitations to this type of scarch. Ideally, OH' numlwr of difff'f('lIt 

initial conditions and different networks t.ested should incff'ast' f'xlwllt'ntially wit.h 
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Figure 3.3 The top panels show the relative frequency of steady states occuring in 
networks of different sizes, N, for different values of np and T, in 1000 different ran­
dom!y constructed networks with 20 initial conditions each. The bottlJm panels show 
the corresponding average transient times to reach these steady states in arbitrary time 
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N to ensure that ail possible dynamics are found. E\"ell for PL intt'gration, t"i~ 

task is computationally intensive for largt' networks. St'colldly, as will bt' showlI ill 

later sections, the exact value of T cau have ft major iufhlt'IlCt' ou t.ht' tlynami('s nf 

a particular network. Thus, using onl)' two vahlt's of titis paraml't.l'r ill a st'an'" is 

not complete. Nonetheless, this approach provides a gl'nt'ral idea of t.hl' diffl'rl'nt. 

dynamics exhibited by these systems. 

3.4.2 Multiple Limit Cycles in a 5-D Network 

Example 3 

In this example, we consider the dynamics of tht" 5-clement network showll in fig. 

3.6 (n,,=2) with u( 1,2). For this range of T, we have found 8 differt"llt cydt·s. TI\(' 

sequences of states for each of these cycles are shown in Tahle :J.3. F,ad, st.at.e is 

represented by the 5-tuple y,ii .. dhihiii' 

Table 3.3 

cycle 1 cycle 2 cycle 3 cycle 4 cycle ~ cycle ~ cy~~? cycl! _8 
10010 10010 10010 10010 10010 10010 10010 1101 () 
00010 00010 00010 00010 00010 00010 00010 01010 
00011 01010 00011 00011 01010 00011 000]1 01011 
00111 01011 00111 00001 01011 00]11 00111 000] 1 
00101 00011 00110 00101 00011 00110 00110 00111 
00100 00111 01110 00100 00001 00100 OlllO 00101 
01100 00101 01100 01100 OOLOl OIIOO 01010 oUlon 
01000 30100 01000 01000 00100 01000 010\1 01\ 00 
01001 01100 01010 01001 01100 01010 01001 () 1 oon 
11001 01000 01011 00001 01000 01011 IlUO 1 () 1 00 1 
10001 01001 01001 10001 0100l o iOn 1 1000 1 11001 
10000 1iOOl 11001 10000 11001 00001 10000 11000 

11000 10001 11000 10001 
11010 10000 10000 1000lJ 

The stability of each of thest" cycles dept'nds on tlt(' value of r . For exarnple, figuff' 
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Figure 3.6. The 5 element network described in Example 3. Ail connections are 
inhibitory ane of uniform magnitude (i.e wl }=l). 



3.7 shows the three different stable cycles for r=1.9. From left to right the cyl'It'S 

correspond to cycle 4, 5 and 6 from Table 3.3. It is possiblt> to change from cYc\t' 

to cycle by giving short perturbations to one of the variables, YI' Such multistability 

of cyclic behaviors is interesting in light of recent expcrimental studies on multi­

functional invertebrate neural networks (Harris-Warrick and Mardl'r 1991; Meyrand 

et al. 1991), where so-called command neurons can control the type of oscillation 

exhibited by a single network. 

A close examination of cycles 5 and 6 reveals that they are idcntical ullder a simpl(' 

relabeling transformation. To make this more clear, consider the sequences of the 

state transitions in Table 3.3 corresponding to the two cycles. As mentioned carlier, 

each state is represented by the 5-tuple iitihihY1Y.1' The relabeling transformation i~ 

the following: switch locus 1 with 3, and locus 2 with 4. In other words, the 5-tuplc 

YI Y2ihy-tY5 becomes Y3Y-tYt YzY5' Performing this transformation on one of tht> cycles 

shows that the sequences of state transitions are the same, and thus the cycles arc 

the same. This symmetry is also evident in the connectivity of the net.work (fig. 3.6). 

A similar relationship exists between cycles 2 and 3, and cycles 7 and 8. 

To investigate these dynamics further consider the state transition diagram for this 

network. In order to represent a 5-cube with a two-dimensional drawing, considcr two 

adja.cent 4-cubes. Let each vertex (i.e 4-tuple) on one 4-cube represent ail thc vertiu"., 

of the ,j-cube in which the first digit of the 5-tuple is 0 (i.e. Oxxxx). Sirnilarly for 

the adj lcent 4-cube, let each vertex ft'present aU the vertices of the 5-cu be in which 

the first digit i5 1 (i.e. lxxxx). Then each vertex on one 4-cube is connectcd ln 

the equivalent vertex on the other, aed the resulting geometrical nbject now has 

25 vertices. Using this convention, fig. 3.8 shows the state transition diagram for 

the abo'le network. Each of the different cycles for this network (Table 3.3) can he 
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Figure 3.7. I\Iultistability of cycles for network described in Example 3. Three dif. 
ferent cycles are stable for T= 1.9 and are shawn here by choosing three different initial 
conditions. The time axis is arbitrary. 
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foJ/owed on th(· state transition diagram. Sud! an exercise reveals that 13 of the 32 

differellt statt'S are not visited by any of the cycles. 

ft is useful, in the rharacterization of the different dynamics, to consider a 4-

dimt'nsiollal face FI separating two neighboring orthants in phase space. By tracking 

tht, intersection of the solution trajectory \Vith this face starting from differellt initial 

conditions, it is possible to track the bifurcations. A li mit cycle that intersects this 

fan' is reduced to a point. This approach is especially useful when the dynamics 

are more complicated. J J The state trallSition diagram can be used very effectively 

to ('hoose FI' Ideally, a face separating two orthants that is crossed by ail 8 cycles 

should he chosen. IIowever, there is not one state transition that is common to ail 

R (·ydes. Therefore, W(' chose FI to be the face that separates two orthants that 

fIrt' visited by ail cycles except cycle i (l.C. 01100 --> 01000). By plotting the point 

of intersection of the trajectory with this hyperplane as the value of T is varied for 

diffeft'lI1. initial conditions, the regiolls of parameter space for which eaeh of the 8 

cycles are stable ran be observed. Projections of the bifurcation diagram constructed 

in this way onto the y,-axes are shown in fig 3.9. In such diagrams, more than one 

hrandl for a gi\'en vaiue of T indicates that either there nre multiple cycles, or that one 

or more cycles havt' multiple crossings of :F,. By using different initial conditions, it 

is possible to distinguish the two cases. In fig 3.9, the multiple branches aIl represent 

multiple cycles. We have numerically analyzed the bifurcations shown here. Briefly, 

the hifurcation occurring near T=1.29 appears to be a subcritical Hopf bifurcation. 

Increasing T above this value causes cycles 2 and 3 to lose stability (outer branches). 

Cycle 1 maintains its stability through this point (inner brandl). Near 7=1.66, an 

t'xchangt' of stabilit.y from cycle 1 to cycle 4 occurs. Cycles.5 and 6 gain stahility 

J'In the field of nonlinear dynamics the face FI is known as n F incaré section For n discussion 
sre Gllckenheimer and Holmes 1983 
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near r=1.79 in a bifurcation that is similar to that o("("uring ",ith cycle" 2 and :~ fOI 

T= 1.29. Cycles 7 and 8 are stable for \'alucs of rc( 1. 1.25). 

3.4.3 Aperiodic Dyu8mics in 6-D Net.works 

Example 4. 

Consider the J\etwork shown in Fig. 3.IOA \Vii h N - 6, 11" -1. r '.5. '1'0 l'harilc 

terize the dynamics, we consider tht' (N -1 )-dimt'Ilsional fac{', F" dcfil\t'c! h,\' .'J, CI nl1d 

Y:z=O, y.=O, y,=O, y;=l, Yh=O that is repeatedly nosst'd by the sollltion trajf'dory.'· 

This system shows aperiodic dynamics. In Pig. 3.IOB we plot a projt'ct iOIl of 1 1 If' 

dynarnics in the YI-Y'.! plane, and in Pig. :UOC \\f' gi\'t' df'lIsily hislogrilllls of Ih(' 

successive values of Yl on FI' Figure 3.11 sho\\ s ho\\ lIt'ighh()ri\l~ illil ial cOlldit IOIlS 

on:F, diverge over time. Starting fwm SOOO difft'fent initinl conclitio!ls nll Il ill ",hil" 

Y2(t O ) was varied and aIl other variables wen" kept (,ol\stant, wc plot t Iw vallll's of !/! 

on the 1",2/1<1, 10/1r and 20/1. returns to FI versus y~(ffl) (leff, panels) and tilt' ("Of 

respoJ\ding density histograms (right pan{'ls) The approach 10 an invarianl dl'llsil)', 

and the observation of the same invariant dellsity found hy following il sillglt· 1 nlje( 

tory, Fig. 3.10C, co.lstitute nurnerical evidence I.hal Ihis syst.em is f'rgoclic ,11111 lins fi 

unique invariant density, two features common to lTlany chaotic sys1.(·rns (Laso1.a and 

Mackey, 1985). The same density is a'50 ohserved with rnany HIIII\ornly dIOSf'1I initiid 

conditions after a sufficient nurnber of r('turus to F l . 

A consideration of thf' associated state transition diagram on the 6-('11 he (not 

shown), shows that the network structure in Fig. :L HIA allows clynami(:s in 11 of !Jw 

64 orthants of phase space. The trajectory round from lIulJIf'rical simulation visits 

each of these 41 orthants. In 6 of the orthants, ail tht> How is fOrleel to ail adjacent 

orthant. For exarnple, ail trajectories in the orthant 101000 must v.~it subs(·qu(·II1. 

"'t.e. the face :F j separa tes the orthants defined by JOOOIO "nd 000010 
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orthants in the sequence 101000 --+ 111000 -4 011000 ---+ 01l100. In tht' ntht'r :\1) 

orthants of the attractor, the flow is not rest,ridt'o to a t1niqut' ort ha nt. O\'t'f t ht' 

time intervals that were examined, almost ail of tilt' allo",ed t ra nsit ions bast'(\ OJl Fi~ 

3.lOA were observed (4 transit.ions that are allowt'd Wt'Tt' Ilot ohst'f\'t'cI). This shows 

how the state transition diagram can be used to gin' informatioJl ahout tht' symholi( 

dynamics in the differential equations during chaotie d)'lIamics. 

Example 5. 

We consider another example of a 6 element lIet\Vork (n,.=3) that t'xhihits apt'ri­

odic behavior for some parameters (see Appendix :l.I). A projectioll of t.!u' nit ra('f,or 

onto the YrY1 plane is shown (fig. 3.12A). \Ve nlllsidt>r a fat'e, .F. s('parating tilt' or­

thants defined by 011011 and 010011. Figur{' 3.12H,C shows th(, dt'Ilsity ItistogralIIs 

for a single variable YI on 2000 successi\'{' returlls to :F-" and for tht' times ht'tWt'('1I 

successi ve l'et urns. \\'e also cOllsider the' e\'ol u tioll of the dcnsi t,Y his!'ogra IIlS for S 11(' 

cessive returns to :Fi for a set of 2000 initial coJlditions in which YI \Vas varit'd, iIIul 

the oUler variables were held constant (as in example 4). Figllrt':U 3 shows t.hat hy 

the 20111 return, the histograms have reacht>d a density that is the salll(' fiS t.hal. of il 

single trajectory (fig. 3.12B). 

Now we cODsider the effects of varying 7 on tht' dynamics of this nt't,wnrk. Th .. 

dynamics are tracked by plotting the values of Y 1 on 30 successive rrossings of :F~ ilS 

7 is varied. Figure 3.14 shows the lesulting bifurcation diagram. As 7 is iJl("f('asecl 

from 7=1.2, the dynamics change from a simfllf' limit, cyril' to apt'riodic hl'haviof. 

For larger values of 7, a limit cycle is t'vident again. In the aperiodic regioll, t.lH"rt' art' 

at least 4 periodic windows, spaced ncarly symmf'trically ahout 7-1.!). This simpl(· 

example shows how T can influence the network dynamks. 
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3.4.4. Aperiodic DYDamics in a Network of 50 clements 

Up to DOW, the networks considerecl have consisted of relatively few t"lelllt'nt s. In 

this example, we consider the dynamics of a larger Ilt"twork, ronsisting of 50 elt'lIu'lIts 

with n,,=5 and T=2.5 (Appendix 3.1). 111 t.his lIt'twork, ill fi prdiminary Sl'/lI('!. of 

100 randomly chosen initial conditions, no steady states or cydt's were fOlllHI IIsin~ 

the search criteria outlined in section 3.4.1. As in previons examples, t ht" VAlUt' of a 

single variable on the return of the trajedory to an (N-t)-dimellsional fan', .F;" is 

considered (Appendix 3.1). Figure 3.15A shows the density histograr,H; of 111 on .r;, 

for 500 successive returns of a single trajectory (left panel), as weil 8S that. for I.ht, 

times between returns (right panel). Figure 3.158 shows the dt'nsity hist,ograms for 

YI and the retuTU times for a 1" return map construct.ed by ta king initial condit.ions 

on :Ft, that differed only in that YI was varied from -~\.O to -l.n (as in eX8lllplt' Il) 

These density histograms are similar to thosc of a single traject.ory (fig. :L1 5A) aft.(·r 

only one return to Ffi' Calculating a 1.1 return mal' for a smaUer Înterval of YI, 

between -2.1 and -1.9, again reveals similar density histograrns (fig. :L15C), This 

example shows not only that this system is ergodic, hut that the division of l'hast' 

space is such that only a small number of passes through phase space is fe(l',irt·d for 

nearby trajectories to diverge. Further, the division of phase space has scalt' invariant 

properties. 

3.4.5. A Iink between the PL eqllations and a continuous 8nalog. 

Since the step function nonlillearity in Eq. (6) is gent'rally considert'd IInrt'Hlist.i( 

as a model for most biological processes, it is important "0 darify tht' dynalllÏfs wl)(,11 

contilluoUS llonlillear functions are used in Eq. (5). For t'xamplt', frolll 1I111IJ('rÎ( al 

studies it is known that the Jimit cyrIl' in Examplc 2, ifi also found ",hen ('olltillllOIlS 

Ilonlinear functiolls that approximate Eq. (6) are usrd (Glass, J!)17\'). W(' IIOW 

49 



t 
... 

A 

B 

c 

# 

# 

# 

75 

50 

25 

0 

75 

50 

25 

0 

75 

50 

-2.0 

YI 

SINGLE TRAJECTORY 

0, 0, 

-1.5 

75 

50 
# 

25 

0 ~--

RETURNMAPS 

# 

# 

-1.0 

75 

50 

25 

0 

75 

50 

25 

o 
Ir~--ri -T~lr-~~I--r-~i~~1 

o 2000 40CO 6000 8000 10000 
crossing tirne 

Figure 3.15. (A)! eft panel shows the density histogram of YI on :F6 for 500 successive 
crossings of a single rajedorYj Right panel shows the density histogram for the corre­
sponding times betwt en successive crossings of ;:6' (B) Shows the density histogram of 
YI on the 1'" return nap constructed for 500 different initial conditions on :F6 in which 
the value of YI was viIied between -3.0 and -1.0 
(left panel). The den! ity histogram of the corresponding crossing times is shown in the 
right panel. (C) SimJlar density histograms as those directly above, but the l.!t return 
m<lp is constructed using initial values of YI between -2.1 and -1.9. 



investigate the dynamics of the network described in Examplt" 4 when tht' ront,il\\lou!\ 

gain function, 

t '·1 ) 

where (3 is a positive constant, is substltut.ed in "8(\. (5). Equation (14) apprOllrht'!\ 

a step function in the limit of inl1nite gain J f3 - > 00. A 4/ 1r orcier H IIl1gt'-1\ 1111 a 

integratioll seheme (~t = 0.01) was used to solve the equatiolls. Figurt" :1.1(i shows 

several projections onto the Y'-Y'l plane for differellt values of {J. TIlt' aperiodi(' 

dynamics found with f3 = 100 is similar to the dynamics in the PL equatiolls (,olllpar(' 

with Fig. 3.lOB). This similarity is also evident in the density hist.ograms of ]/! on 

As the value of f3 increases, the continuous nonlinear system t'xhihit.s fi ('omplt'x 

sequence of behaviors including bistability, pt'riod doubling bifurcat.iolls fllld lH'riodic 

windows. By using a method similar to that described for Example :\, a bif\lfrat iOIl 

diagram was eonstructed for values of (3 between 6.0 ancl 10.0 (fig. :3.1 i). 'l'II(' vaille 

of Y'l is plotted as the solution trajectory crosses the YI=O hyperplalle in a positive 

sense. For each value of (3, a transient of 300 crossings was allowed beron> f.he J1t'xl. :W 

points were plotted. For values of f3 less than i, a bist.ability of two uni(!Itt, <"ydes was 

evident. This is not shown in the bifurcation diagram, as the hifurcat.ions o('('lIrrillg 

in only one branch were followed (t.e. by taking a specifie initial condition). The 

apparently diseontinuous bifurcation occurring near ~=-7.3 is dut' tn an ovt-riap of 

the basins of attraction of the two stable attractors. Near f3~7.4 there are rnultipl,' 

period doublings, followed by a region where th(' dynamÏcs appear chaotk. This 

is further evidence that the dynamics occurring in the analogous PLPF systeTJI fin' 

·::haotic (Glass and Mackey 1988). 
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3.5. DISCUSSION 

The advantages of the PL equations are tltat numerical integratioll is rapid. ami 

t118.t the analysis of their dynamics is facilitated. For t'xamplt', for ('yc\k aU rnrturs, 

the analytic computation of the return map enable!' an analyti<- delllonstrat.ion of 

criteria for the dynamics to converge to a unique limit cycle oscillation in t.llt' N­

dimensional differeiltial equations. We have not yet been ablt' to d"rivt' criteria ror 

the chaotic dynamics illustrated here. However, it follows immediat.t"ly from E(I (Jn) 

and (11) that within each orthant ail trajectories converge. Thus, tht' divergt'lH'(' 

of neighboring trajedories is introduced by dramat.ir changes of direction r('snlt ing 

when 2 neighboring trajectories Jeave a single orthant across 2 differt"ltt open ('ommon 

boundaries and then are directed to 2 different focal points. Wt' hav(' givt'Il eXfllllplt's 

showing that chaotic dynamics can be found in compllratively small dimensions (s('(' 

also Kepler et al. 1990) but we do not have a proof that N =6 is the smallt'st din\t'Ilsintl 

in which such behavior is found in these syatems. Tht' presence of chaotic dynamin; 

in similar systems containing a large number of elements has previously !Jeen showlI 

using a meall field approximation (Sompolinsky et al. 1988) and fr('cIIlt'ncy dOlllnin 

analyses (Kürten and Clark 1986). 

The present observations have implications for a popular class of genetic control 

networks called Kauffman nets (Kauffman 1969). In the original model, Kauffmall 

described these random neiworks as consisting of binary genf'tic elemf'nts that in­

teracted in discrete time. The sYllthesis of each element is controlled hy K othf'f 

elements in a manner described by a randomly chosell Boolean function. Tht' dy­

namics of these networks were limited to relativc:'ly short cycles and st.f'ady statt's, 

even for large systems (N ~ 1000) as long as Kwas smaH (v. 2 or :l). Kallffman 

proposed that these random networks provid("d a hiologically plausihh' ("xplanatinn 
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for such hehaviors as cell division and cell diversity. It was also proposed that the 

dynamics of these networks would he similar for continuously varying elements inter­

acting in continuous time. The networks descrihed in this chapter can he considered 

a subset of continuous-time continuous-state Kauffman nets. It is thus interesting to 

ohserve very complicated dynamics in these networks, even in those consisting of only 

a few elements. Preliminary studies have shown that chaotic-like dynamics can also 

he observed in more general continuous-time continuous-state Kauffman nets. 

3.6. CONCLUSIONS 

This chapter describes a pleceWlse linear equation that provides a mathemati­

cal model for complex hiological networks. Analytic criteria are given to establish 

steady states and limit cycle oscillations, and numerical results demonstrate chaotic 

dynamics. It is weIl known that real neural and genetic systems exhibit dynamic 

fluctuations of activity. Despite this observation, clarification of the role of complex 

oscillations and chaotic dynamics in biological functions such as the control of the 

cell cycle (Kauffman, 1969) and perception (Skarda and Freeman, 1987; Gelperin and 

Tank, 1990) still remains a formidable challenge for future research. 
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Appendix 3.1 

The 6-element network described in Examplt' 5 is gi"t'II bf'low. Tht' collllf'dioll 

matrix is listed in 6 rows and 6 columns, where w, 1 is t he value in tht' ,1/1 row and j'" 

column. 

010011 
000111 
110010 
111000 
110100 
011100 

Similarly, the connection rnatrix of the 50-elt'ment network consiof'ft'c1 in sf'dioll 
3.4.4. is given below. 

01000101000100000000000000000000000000000000100000 
10000100010000000000000000000000010000000000000100 
00000000000000001000000000~00000001000000000100010 

00000000000001000001010000000010000100000000000000 
00010010000000000000000000000000000000110000000001 
010000010000000000100100001000000000000000~~~~nooo 

00000000010000000000010100000000010000000000100000 
00001000000000000000100000001000010000000000010000 
00100000000000000100001001000000000000000000001000 
00000000000000100000010010000000100000000000001000 
00000000000000100100100010000000000010000000000000 
00010000000000100000000000000001001010000000000000 
00001000000001010000000001000000000000000000001000 
00010000010000000000000000000000000000000110001000 
00001001000000000000101000000000000000100000000000 
00000000000000100000000000000010001000000000110000 
00000000010000000010000000000000000000010101000000 
10010000000000000000000000010010000000000010000000 
00000000000000000000000000000100000000011001010000 
0010000COOOOOOOI0000011000000000000001000000000000 
00000100000000000000000000000010100000010001000000 
00001000000000000000000000000001000001010100000000 
00000010000000100000000100000000000000001010000000 
00000000000000100000100000000010000011000000000000 
00000001000000000000010000010100010000000000000000 
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( 00001000000000010000000000000000000000010010010000 
00000000000000001010000000000100000001000000001000 
00001000011000000000000000000000000000000001000100 
00000010000000000010001000000000000000000010010000 
00000110000000000010000000000000010100000000000000 
00000010000000000000000101000000000000001000010000 
11000000000010000000000000010000000000000000100000 
00000000000100010001100000000000001000000000000000 
00000010100000010000000000000100001000000000000000 
00001000000100000000001000001100000000000000000000 
00000001001001000000000000000010001000000000000000 
00000000100001000000000000100000100000000010000000 
00000000001000000000000000010001010100000000000000 
00000000000000000101000010000000000010000001000000 
00100000001000000000001000000001000000000000001000 
000000000000000000100000010~0100000010000001000000 
00000000000000010000000010000011000000010000000000 
00000001000000000000001001010000000000000100000000 
00000000000001000000000000000100000000110000000010 
00000000000100000010000100000010000100000000000000 
00000000010010101001000000000000000000000000000000 
00000000000000000010000000001000001000000001000001 
00000000000000001010000000010000000010010000000000 
01000000000110000000001000000000010000000000000000 
00010000000000000000000000000100000001100000001000 

The following 50 numbers (left to right) are the values of 3), that define :FOI as weIl 

as the initial condition on :Ffi that was used for the return maps for the 50-element 

network described in sectioH 3.4.4. 

-2.438121 1.425150 -0.489371 0.000000 -0.433626 

0.556166 1.441740 1.353951 0.264749 -0.557145 

0.967273 1.419969 -0.398455 0.394705 0.449118 

0.007808 0.763345 0.662820 -0.491387 1.481146 

-0.982777 -0.436926 -0.897041 0.017299 -0.469791 

0.998168 -1.487464 1.360035 1.143791 0.485442 
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-0.289051 -0.458907 0.484412 -0.508091 -0.629091 

-0.915406 -0.866027 0.468788 0_966335 0.465587 

0.743734 0.865069 -0.953974 -2.421832 0.961426 
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CONCLUDING REM.I\.RKS 

1 have taken two rliffert.nt approaches to the study of the neural networks involved 

ln respiratory rhythm generation, and the behavior of neural networks in general. 

First, 1 have considered the effcds of perturbing the respiratory rhythm in cats 

Ilsing sllperior laryngeal nerve stimulation. Two different stimulus protocols were 

Ilsed, phase resdting and fixed delay stimulation. The results of these experiments 

were used to evaluate a simple model of neural rhythm generation. This model was not 

ba.sed rigorously on the known organization of the respiratory centers, but is similar 

in principle to a proposed three-phase theory of respiratory rhythm generation. The 

simple model cou Id account for experimentally observed phase resetting data, but 

was unable to account for sorne of the complex responses observed in the experiments 

when stimuli were delivered at a fixed-delay. Stimulus effects with longer time courses 

must be present for such behavior to occur. The comparisons between the experiments 

and the model suggest that models of rhythm generation should be evaluated with 

oUler techniques in addition to phase resetting. 

The second approach 1 have taken is to investigatf' the dynamics of a class of 

piecewise-linear (PL) neural network models. These systems exhibit steady state 

and periodic dynamics. 1 have demonstrated that even for relatively small networks 

(N ~ 6), chaotic dynamics can be found. The study of these networks is greatly 

simplified by their PL nature - not only because PL analytical solutions can be 

obtained, but al80 because previollsly described techniques for the analysis of steady 

states and cycles can be applied to these systems. Thus, these systems can be useful in 

the study of the dynamics of more general models, especially those describing neural 

rhythm generatioll. 
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