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ABSTRACT

Two different approaches are co..sidered for studying the neural networks involved
in respiratory rhythm generation.

First, the phase resetting effects of stimulating the superior laryngeal nerve at
different phases of the respiratory cycle in cats were measured in terms of the latency
of onset of the cycle following stimulation. Fixed-delay stimulation (i.e. delivery of
stimuli at a constant delay after the onset of the cycle) was also used; for certain
combinations of delay, stimulus intensity, and cycles between stimuli, it resulted in
(1) a variable, rather than consistent, response, and (2) a transient increase in cycle
duration during and after stimulation. Phase resetting and fixed-delay stimulation of
a simple three-phase model for neural rhythm generation produce respouses that are
qualitatively similar to those obtained experimentally. However, the marked increases
in cycle duration during and after fixcd-delay stimulation do not occur in the model.
These comparisons suggest that, while the phase resetting properties of this three-
phase model are similar to those of the respiratory oscillator, stimulus dependent
properties with a longer time course are needed in the model to account for the
transient increases in unstimulated respiratory cycle duration.

Second, we consider the dynamical properties of a class of theoretical models
of neural networks that have the same mathematical formulation as the above three-
phase model, but consist of a larger number of randomly connected elements. A simple
transformation of these models shows correspondence with previous neural network
models and enables a theoretical analysis of steady states and cycles. Complex ape-
riodic dynamics are found in networks consisting of 6 or more elements. Examples
are given to illustrate multistability of cycles and chaotic dynamics in networks of

different sizes.
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RESUME

Deux approches différentes ont été utilisées pour étudier les réseaux nerveux im-
pliqués dans la génération du rythme respiratoire.

Premierement, les effets de rajustement de phase (phase resetting), qui se pro-
duisent lorsqu’on stimule le nerf laryngé supérieur a différentes phases du cycle res-
piratoire chez des chats, ont été mesurés en fonction du temps de latence a partir du
début du cycle suivant la stimulation. Un protocole de stimulation a délai constant
(fized-delay stimulation, 1.e. des stimuli appliqués a un délai constant apreés le début
d’un cycle) a aussi été utilisé; pour certaines combinaisons de délai, d’intensité de
stimulus, et de cycles entre stimuli, le résultat obtenu fut (1) une réponse variable
plutét que constante, (2) une augmentation transitoire de la durée du cycle durant
et apres la stimulation. Le rajustement de phase et la stimulation a délai constant
d’un modeéle simple triphasique pour la génération du rythme neuronal donne des
résultats qualitativement semblables a ceux obtenus expérimentalement. Toutefois,
ces augmentations de la durée du cycle pendant et apres un stimulus a délai constant
ne sont pas présentes dans ce modele. Ces comparaisons suggerent que, méme si les
propriétés de rajustement de phase de ce modele triphasique sont semblables a celles
de Doscillateur respiratoire, des propriétés a plus long terme doivent étre incluses
dans le modele pour tenir compte des augmentations transitoires de la durée du cycle
respiratoire de base.

Deuxiement, nous avons étudié les propriétés dynamiques d'une classe de modeles
théoriques de réseaux nerveux qui ont la méme formulation mathématique que le
modele triphasique déja mentionné, mais qui consistent en un plus grand nombre
d’éléments & connections aléatoires. Une simple transformation de ces modeles démontre

une correspondance avec des modeles de réseaux nervenx étudiés antérieurement et
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permet une analyse théorique des régimes stables (steady states) et des cycles. Des
dynamiques complexes et apériodiques surviennent dans des réseaux de 6 éléments

ou plus. Des exemples sont donnés pour illustrer la multistabilité des cycles et les

dynamiques chaotiques dans des réseaux de différentes dimensions.
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PREFACE

The neural mechanisms of mammalian respiratory rhythm generation are un-
known. Current hypotheses concerning these brainstem mechanisms involve either
neural network interactions or spontaneous pacemaker neurons. Various experimental
approaches have been used in an attempt to distinguish between the two different hy-
potheses, from intracellular recording of brainstem respiratory neurons to perturbing
the rhythm with external inputs such as afferent nerve stimulation and manipulation
of lung volume. To date, none of these techniques have provided conclusive evidence
cither way. This task may in fact be i:npossible due to the complexity of the neu-
ral architecture involved. Until there is direct evidence of pacemaker neuronrs in the
brainstem respiratory centers, the neural network theory can be considered a useful
working hypothesis. In light of this, we have taken two basic approaches to the study
of respiratory thythm generation.

The first approach, described in Chapter 2, investigates the effects of stimulat-
ing the superior laryngeal nerve on the respiratory rhythm in cats and compariug
the results with simulations of a simple three-phase model, based qualitatively on a
theory of respiratory rhythm generation proposed by Richter and coworkers ( 1986).
Two different stimulation protocols, phase resetting and fixed delay stimulation, are
used in this comparison. Phase resetting analyses involve measuring the effects of
delivering a stimulus 2t diflerent phases of the cycle. This approach has been pre-
viously used in maany different biological contexts, and in many cases, an oscillator
can be characterized by its phase resetting properties. Thus, careful phase resetting
analyses can be used to evaluate different models of the biological oscillator in ques-
tion. Fixed-delay siimulation involves giving repetitive perturbations at a constant

delay from the onact of the oscillator cycle. This protocol can be used to study the
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time-dependent or long-lasiing (1.e. longer than one cycle) effects of a perturbation,

The second approach, described in Chapter 3, is to investigate the dynamical
properties of a class of abstract models for neural networks that are formulated in
the same manner as the previous three-phase model, but contain a larger number of
randomly connected elements. The existence and stability of steady states and cyclic
behavior a-e investigated as a function of network size (1.e. number of elements in the
network) and other system parameters. Multistability (.. a number of coexisting
stable behaviors) and chaotic dynamics are seen in these systems. In the study
of respiratory rhythm generation, this type of approach has never been considered.
However, we think that a better understanding of the dynamics of such simplified
systems will provide a basis for a comprehensive theory describing respiratory rhythm

generation.
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CONTRIBUTIONS TO ORIGINAL KNOWLEDGE

The experimental results presented in Chapter 2 have been published in a form
similar to that which appears in this thesis (Lewis et al. 1990). For these experiments,
Dr. Manjit Bachoo performed the necessary surgery. I performed all data analysis. 1
was responsible for the computer programming required to measure and plot the phase
response curves, The idea of perturbing an oscillator at a constant lateacy after the
onset of its cycle has been previously suggested. However, along with Dr. Bachoo and
Drs. Canio Polosa and Leon Glass, I developed the fixed-delay stimulation protocol
and used it systematically, for the first time, to study the respiratory oscillator in
cats, the Poincaré oscillator (Lewis et al. 1987), and the three-phase model presented
in Chapter 2.

The three-phase model studied in Chapter 2 is one member of a large class of
models for rhythm generation. A systematic phase resetting study of this model,
such as that presented here, has not been previously performed. The application of
the fixed-delay protocol to evaluate a model of rhythm generation is original. I wrote
all the computer code required to perform the analysis of the model (i.e. numerical
integration, phase resetting curves etc.).

The original results of the existence of steady states and limit cycles in piecewise-
linear piecewise-focused networks, discussed in Chapter 3, are due to Glass and Paster-
nack (1978). 1 am responsible for the demonstration that these results apply equally
to a broad class of commonly studied neural networks (Hopfield-type networks) in
a well-defined limit. No one has previously attempted, with reason, to show a 5-
dimensional state transition diagram on a sheet of paper. I present one in Chapter 3.
The demonstration of multistability and chaotic dynamics in these systems is original.

Some of these results appear in a preliminary study that has been published recently
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(Lewis and Glass 1991).
The results in Chapters 2 and 3 that have not been previously published will he

presented in two papers to be submitted for publication.
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Chapter 1.

INTRODUCTION

1.1. RESPIRATORY RHYTHM GENERATION

Breathing in mammals is a complex neural and muscular process, consisting of
two principal phases, inspiration and expiration. It allows the exchange of oxygen
and caibon dioxide between internal and external environments, and hence varying
the rate and depth of breathing is an important means of maintaining homeostasis.
Due to the many control mechanisms that exist in the respiratory system, the respira-
tory thythm is robust and stable to external perturbations. While some of the control
mechanisms have been described in detail (for reviews see Euler 1986; Feldman 1986),
the underlying neural mechanisms responsible for the basic rhythm generation (i.e.
the respiratory rhythm generator, RRG) are not known. In this section, I will intro-
duce what is known of the anatomical organization of the RRG and then describe
some selected hypotheses of how it might function.

The RRG has been anatomically localized to the brainstem regions of medulla
and pons by various brainstem sectioning experiments. Results indicate that a normal
breathing rhythm can remain after sections rostral to the pons. Sections caudal to the
medulla obliterate any normal rhythmic neural output to the respiratory musculature.

Within the brainstem, distinct groups of neurons have been classified according
to their firing properties and anatomical location (see reviews by Cohen 1979, 1981;

Euler 1986; Feldman 1986). The dorsal respiratory group (corresponding to the




ventrolateral nucleus of tractus solitaris) consists mostly of neurons that are active

during inspiration (I). The ventral respiratory group consists of neurons that fire
in both I and expiration (E): I neurons in the nucleus ambiguus, E neurons in the
Botzinger complex, and both I and E in the nucleus retroambiguus. The pontine
respiratory group (nucleus parabrachialis and Kollicker-Fuse nucleus located in the
dorsolateral rostral pons) consists of I, E, and phase-spanning neurons.! Classifying
neurons according to the timing and pattern of their firing has led to the description
of many classes of cells in addition to those above. The class of / neurons has
been divided into such subclasses as I-incrementing and I-decrementing, in which the
level of neural recruitment increases/decreases during I, and individual neurons fire
during I with increasing/decreasing frequency, respectively (Feldman 1986). Similar
firing patterns in F neurons have resulted in the classification of E-ncrementing and
E-decrementing populations. Indeed, there may be a continuum of diflerent neuron
timing and firing patterns (according to firing properties). In this case, categorization
according to firing properties would not lead to a better understanding of how the
cells interact to generate a stable rhythm. Nonetheless, the simplest approach to
modelling the respiratory rhythm is to consider a few distinct populations of neurons
and formulate equations that describe their average behavior. These models are
generally much easier to investigate than the alternative in wbich the interactions
between an extremely large number of individual neurons are considered.

Current theories of respiratory rhythm ygeneration are based on the assumption
that distinct populations of non-pacemaker neurons interact via stereotyped synaptic
connections (Cohen 1981; Euler 1983; Richter et al. 1986). One of the simplest and

perhaps earliest theory of this sort considered two separate I and E populations that

!'Phase-spanning neurons fire during both I and E, usually during the transitions between the
two phases.




were mutually inhibitory (Burns and Salmoiraghi 1960). An alternative to this type
of theory is that the basic source of the respiratory rhythm is from spontaneously
active pacemaker neurons, rather than from network interaclions (e.g. Feldman et
al. 1988, 1990). The following is a brief summary of several of these theories, with

an emphasis on those which have been described by quantitative models.

1.1.1. The Geman-Miller model

Geman and Miller (1976) proposed a model of the RRG composed of two mutu-
ally inhibitory populations of neurons (I and E), each alone capable of cyclic activity.
Within each population, neurons were randomly arranged with both excitatety and
inhibitory connections, so in fact this model consists of 4 distinct neuron pools (fig.
1.1). Each pool was capable of regenerative excitation, but had a self-limiting mecha-
nism to control the maximum level of firing. The changes in average activities of the
neurons in each pool (denoted I_, I, E_, E, ) were described by a 4-dimensional sys-
tem of ordinary differential equations. The connections between the four populations
of neurons were described by parameters representing synaptic strength. Parame-
ters representing tonic input to each population were also included. The effects of
changing these parameters were investigated. Varying the strengths of the connec-
tions between populations resulted in augmented activity with no change in period.
Increasing the tonic input to the system resulted in an increase in the amplitude of
the oscillation and a decrease in period.

As a way of evaluating the model, the effects of stimulating vagal afferents® were
simulated using two different methods. Stimulation was simulated by either an in-

crease in E activity, or a decrease in /. In the first case, all rhythmic activity ceased

?Experimentall; stimulation of the vagus has a strong inhibitory effect on I. Physiologically,
vagel afferents fire according to the level of excitation of pulmonary stretch receptors in the lung.
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Figure 1.1. The model network proposed by Geman and Miller (1976). The network
consists of 4 populations of neural elements, two inspiratory (/., I.) and two expiratory
(E4, E-), interacting through excitatory (closed circles) and inhibitory (open circles)
connections.
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with constant vagal input. As this was contrary to previous experimental results
(Cohen 1969), the second method was considered appropriate. Phasic vagal input
using the second method resulted in a reduction in peak I activity as well as a de-
crease in the period of oscillation. This situation occurs in the normal physiological
context, and after eliminating vagal feedback, an increase in amplitude and decrease
in frequency of the rhythm is found. Under some conditions, the averaged activity of
I_ and I, had two peaks before a peak in E activity; the second peak was termed I E
activity to represent phase-spanning neurons. Recent experimental findings reveal
that in some conditions, some respiratory related motorneurons show two distinct
bursts, near the /-E and E-I transitions, during each respiratory cycle (Dick et al.
unpublished observations). Smith et al. (1990) have also observed such biphasic firing
characteristics in medullary neurons of an in vitro neonatal rat brainstem-spinal cord
preparation.

This model shows that interactions between two intrinsically oscillating networks
(I and E) can produce behavior that is similar to the respiratory rhythm. The main
hypothesis that was tested by Geman and Miller (1976) was that the RRG could
produce a normal rhythm without influence from the pontine neurons. However, it
has not been established that individual popnlations of I or E neurons can oscillate
independent of other populations, unless pacemaker properties are assumed. The idea
of distinct yet coupled neural networks consisting of both 7 and E has support from

observations in split brainstem experiments (e.g. Eldridge and Paydarfar 1989).

1.1.2. The Feldman models
Feldman and Cowan (1975) proposed a network model for the RRG consisting
of 6 pools of respiratory neurons. Two of these pools were inspiratory, I,, and I,

corresponding to the a- and (-inspiratory neurons that are inhibited and facilitated,




respectively, by lung inflation (Cohen 1979; Euler 1986). T wo other pools were expira-

tory, E, and Ej; again categorized by their response to lung inflation (facilitated and
inhibited respectively). The remaining two pools were denoted phase-spanning, I K
and E1, to describe the populations of neurons that fire during both 7 and E but have
peak activity during the I-E and E-I transitions respectively. The network connec-
tivity is summarized in fig. 1.2. The model was described by a 6-dimensional system
of differential equations, with parameters describing strength and sign of synaptic
connections, sensitivity and relative threshold response to excitation, post-synaptic
potential amplitude and absolute refractory periods. The magnitudes of the param-
eters were estimated so that the network behavior resembled, qualitatively, previous
experimentally observed behavior. However, similar network behaviors were found
for various sets of parameter magnitudes.

Numerical experiments simulating pontine stimulation and CO, dependency were
performed and the results were compared to actual observations. Because most phase-
spanning neurons were thought to be in the pons, pontine stimulation was postulated
to increase or decrease the activity of the I E pool by a fixed amount for the duration
of the stimulus. The authors concluded that (1) I,, and E,, neuron pools should fire at
distinct and successive times during the respiratory cycle;® (2) stimulation of /1 and
ET neurons in the pons produces strong inhibition of {,, and E, neurons respectively,
with this inhibition described by a nonlinear function of 7,, and E, activity.'

More recently Feldman and coworkers (Feldman ¢t al. 1988, 1990) have proposed
a new theory of the organization of the RRG. The theory desc:ibes the RRG as con-

sisting of two functionally distinct sets of neural populations: a central oscillator,

31 am not aware of any experimental confirmation of this prediction.
'This prediction is generally accepted to be true; however, see Orem (1988) for an alternative
view,
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Figure 1.2. Thea network activity of the model of the RRG proposed by Feldman
and Cowan (1975 . The six populations of neurons are functionally divided into an
inspiratory group (I, I3, IE) and an expiratory group (E,, Eg, EI). Each population
is characterized by its response to vagal stimulation and the timing of its firing. Vagal
input is indicated by V.
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responsible for timing, and a pattern formation network, responsible for structuring
the respiratory motor output. The novel aspect of this hypothesis is that the cen-
tral oscillator is thought to consist of intrinsically rhythmic or pacemaker neurons.
Evidence supporting this pacemaker hypothesis has been found using an m witro
brainstem-spinal cord preparation (Feldman and Smith 1989; Smith et al 1990).
With this preparation, it was shown that the timing of the respiratory motor output
was not affected when synaptic transmission was eliminated. In sv-h cases, the nen-
ronal bursts persisted but with marked changes in duration and amplitude. This was
taken as evidence of a distinction between a ceatral oscillator and a pattern formation
network that requires inhibitory synaptic mechanisms. Further, because the authors
considered most theories for network driven oscillations to require inhibition, they
hypothesized that the only explanation for a persistence of oscillatory behavior in the
absence of inhibition was that the central oscillator consisted of pacemaker cells.
Only preliminary evidence has been obtained to support this hypothesis. The
most interesting aspect of the theory is the possibility that pacemaker neurons play

a role in the generation of the respiratory rhythm.

1.1.3. The Richter three-phase theory

Richter and coworkers (1982, 1983, 1986) proposed a qualitative model of the RRG
that is based on the three main phases of the oscillation, reflected by the activities of
brainstem respiratory neurons. These distinct phases are described as inspiratory (/),
post-inspiratory (pI), and expiratory (E). Each phase is associated with a distinct
population of medullary respiratory neurons, and can also be associated with ‘he
firing patterns of some respiratory related motorneurons (e.g. 7, and in some cases
pl, is associated with the activity of the phrenic motorneurons, which innervate the

digphragm).




The proposed network of neural interactions consists of 5 populations of neurons
within the three-phase framework (fig. 1.3): early / (el),ramp I (I};), and late I (L1);
a pl group; and an E group. The qualitative firing patterns of these groups is shown
in fig. 1.4. The el neurons have their peak activity near the onset of the phrenic burst.
The Ij; neurons exhibit an augmenting firing pattern similar to the ramp component
of the phrenic discharge. LI neurons begin firing during the latter part of the phrenic
ramp and reach a peak near the end of the burst; they are silent during expiration.
This population is postulated to be responsible for the reversible I off-switch. The p/
neurons fire with a rapid onset of activity and a decrementing frequency during the
remainder of the p/ phase. £ neurons discharge in an augmenting pattern between
phrenic bursts. Some begin during the pI phase, but most are silent during this time.

This model was a divergence from the common view that the RRG consisted of
only two antagonistic phases, I/ and E. Feldman and Cowan (1975) hinted at such
an idea with the inclusion of phase spanning populations in their model, but still
separated the six populations into either I or E categories. Richter’s three-phase

model has found favor in recent discussions of the RRG.

1.1.4. A three-phase neural network model

Recently, a mathematical model based on the Richter theory has been proposed
(Bruce 1989; Botros and Bruce 1990). The network model was described by a system
of differential equations (in a form similar to that of Geman and Miller, 1976), in which
each of 5 neural populations was described by a variable representing its activity. The
connection weights describing the interactions between each population were adjusted
so that the behavior of the network (u.e. the firing pattern of each population)
resembled the qualitative activities proposed ir Euler (1986). The model was robust to

changes in the system parameters. The effects of changing central chemical drive and
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Figure 1.3. The network proposed by Richter et al. (1986} consisting of 5 neural
populations: early I (el), ramp I (Ip), and late I (LI); a pl group; and an £ group.
The population denoted Igs represents the inspiratory bulbo-spinal neurons, which are
generally considered to relay I output to respiratory motorneurons.
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Figure 1.4.The qualitative firing patterns of each of the populations in the Richter
network (fig. 1.3). Adapted from Richter et al. (1986).
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pulmonary stretch receptor (vagal afferent) input were simulated. Chemical drive was
represented by an increase in the tonic input to each neuron group. Increased drive
resulted in decreases in the durations of both inspiration and expiration. The influence
of vagal input was best mimicked when the vagal input acted through excitation of the
L-TI pool and inhibition of the e-I pool. This is in disagreement with the qualitative
Richter model in which such input is thought to act through excitation of the L-/
pool alone. The response of this model to simulated afferent nerve stimulation has
also been investigated in preliminary studies (Maass-Moreno and Katona 1988; Bruce

1989), and will be discussed in the next section.

1.2. PHASE RESETTING OF THE RESPIRATORY RHYTHM

Phase resetting experiments involve the perturbation of an intrinsically oscillating
system at distinct times during its cycle. The goal of these types of experiments is
to gain some insight as to the underlying mechanisms producing the oscillation. The
effects of perturbations delivered throughout the cycle on the intrinsic cycle duration
are expressed by measures such as perturbed cycle duration, phase advance or delay,
and new- phase or cophase (Winfree 1980, 1987; Glass and Mackey 1988). In most of
the further discussion, I will refer to the cophase in the description of phase resetting
effects. The cophase 4, is the latency from the end of stimulation to the onset of
the 7, following cycle, normalized to the control cycle duration. Cophase plots are
constructed by plotting 6, versus the phase of stimulation, ¢.

Winfree (1980) made specific predictions concerning phase resetting of nonlinear
oscillators. Given that two topologically distinct types of resetting occur, namely

Type 1 and Type 0, it was predicted that a singularity exists in the response to

“see chapter 2 for examples of cophase plots.



stimulation. Type 1 (or weak) resetting is obtained with stimuli of relatively small

magnitude and the resulting cophase plots are of average slope —1. Type 0 (or
strong) resetting occurs when the stimuli are large in magnitude; the average slope
of cophase plots in this case is 0. Theoretically, a singularity in the response to
stimulation means that a critical stimulus (of specific magnitude and phase) can
stop the oscillation. The existence of such a phase singularity suggests the use of
a particular class of mathematical models describing oscillations called limit cycle
models. These models are formulated by systems of differential equations. Aphase
sitngularity in a biological oscillator cannot always be realized because of the presence
of noise. This is especially true if the singular region in phase or parameter space (the
black hole in Winfree’s terminology) is very small.® It was predicted that resetting
with the critical stimulus in such experimental situations would result in a random
latency in the return of the oscillation. Because of the large number of isochrons’
converging in the neighborhood of the black hole, small perturbations from this region
due to noise result in returns to the cycle at random phases and therefore random
latencies. Thus, in the experimental setting, random resetting is taken as evidence of
a phase singularity. This has important implications for biological oscillations. For
example, the possibility that the respiratory rhythm could be stopped with a single
perturbation represents a potentially life-threatening vulnerability.

Perturbation of the respiratory rhythm has been performed previously in a variety
of ways including: lung inflation (Clark and Euler 1972; Petrillo et al. 1983), pontine
stimulation (Cohen 1971), and stimulation of the vagus nerve (Younes and Polacheck

1985; Zuperku and Hopp 1985), carotid sinus nerve (Eldridge 1972), intercostal nerves

'_‘ln the case of an unstable steady state, the singular region is a single point.
‘manifolds in phase space on which the phase attributed to the oscillation (the timing) is the
same (Guckenheimer 1975; Winfree 1987)
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(Shannon 1980), somatic nerves (Iscoe and Polosa 1976; Kawahara et al. 1988) and

superior laryngeal nerve (Larrabee and Hodes 1948). While the general effects of
these forms of perturbation have been documented, only three groups to date have
systematically investigated phase resetiing of the respiratory rhythm in the sense
outlined by Winfree (1980, 1987).

In two different studies, Paydarfar and coworkers (1986, 1987) performed a phase
resetting analysis of the respiratory rhythm in cats. In the first, superior laryngeal
nerve stimulation was used as the perturbation, and cophase plots were constructed
for stimulus trains of different duration. They concluded that a phase singularity ex-
ists in the response of the respiratory oscillator based on random resetting that was
observed when a stimulus of intermediate strength was delivered near the E-/ transi-
tion (fig. 6D of Paydarfar et al. 1986). In the first cophase (6,), the random resetting
is not clear as the curve appears discontinuous. Over the subsequent cophases this
discontinuity fills in giving the impression of a random response. While it is possible
that these results are indeed due to a phase singularity, it is also possible that the
cophase plots are very steep in this region, which in the presence of noise could make
the resetting appear random. The second study was similar to the first except that
midbrain stimulation was used (Paydarfar and Eldridge 1987). A phase singularity
was also suggested, however, it occurred at a phase near the I-E transition with this
method of stimulation.

Kitano and Komatsu (1988) performed a similar phase resetting analysis of the
respiratory rhythm using intercostal nerve stimulation in rabbits. Random resetting
was not observed. They attributed the discrepancy with Paydarfar et al. (1986) to
the inherent fluctuations in the respiratory rhythm and the use of different stimulus

durations. Stimulus trains of long duration (> 300ms, like those used in Paydarfar et
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al. 1986) can terminate I and continue to act during the following E. The resulting
change in cycle duration is a combination of effects on two distinct phases of the
cycle. Kitano and Komatsu (1988) suggested that a shorter stimulus provides more
easily interpretable data when investigating the response of the respiratory rhythm.
The discrepancy between the two studies could also be due to the differential effects
of stimulation of different afferent nerves.

We have used this phase resetting protocol to investigate the effects of superior
1aryngeal nerve (SLN) stimulation on the RRG (Lewis et al. 1990). Some of these
results are described in Chapter 2. Two different effects on the RRG were seen with
stimulation during I.* If a threshold, that varied inversely with the phase of I, was
exceeded, then the stimulus produced an irreversible termination of I (shortening
of the cycle). Otherwise, the stimulus produced a transient inhibition or reversible
termination of I (slight prolongation of the cycle). Stimulation during E produced
a prolongation of the cycle. No evidence of a phase singularity was found. However,
an apparent discontinuity in the response (cophase) was seen during I for stimuli of
intermediate magnitude, due to a discontinuous change from reversible to irreversible
I termination with increasing phase of stimulation. The difference between a true
discontinuity or simply a very fast change in the response (i.e. cophase plot with a
steep slope), is hard to distinguish experimentally because of noise. Nonetheless, this
feature of the phase response may explain random resetting of the respiratory rhythm

with SLN stimulation,

®Phrenic nerve recordings were used as a measure of RRG output.
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1.3. FIXED-DELAY STIMULATION IN THE INVESTIGATION OF BI-
OLOGICAL OSCILLATORS

Fixed-delay stimulation consists of delivering stimuli repeatedly at a constant
delay from the onset of an oscillator’s cycle. This method of stimulation was referred
to previously, but not studied i. detail (Levy et al. 1972). Fixed-delay stimulation
can be »seful in studying the relaxation of an oscillator following a perturbation, as
well as its response (or refractoriness) to subsequent perturbations.

If & given perturbation produces effects on an oscillator that decay over several
cycles, the response to fixed-delay stimulation can be complex. Different patterns
of cycle durations, some very irregular, can be expected in many cases (Lewis et al.
1987; Glass and Zeng 1990; Zeng et al. 1990). This is not surprising as fixed-delay
stimulation can be considered a form of delayed feedback and many delayed-feedback
physiological control systems have been shown to exhibit complex behaviors (Glass
and Mackey 1988). One such example is the feedback of the pulmonary stretch
receptors (via vagal afferents) on the respiratory oscillator.

We have previously used fixed-delay stimulation to study the Poir aré oscillator,
a simple nonlinear oscillator (Lewis et al 1987). The response of the model to this
protocol was irregular for some stimulus delays and magnitudes. Glass and Zeng
(1990) later showed that at least some of these irregular behaviors are chaotic.”

Fixed-delay stimulation was performed using SLN input (Lewis et al 1987, 1990).
The results showed that long-term effects on the respiratory rhythm, evidenced by
a change in the threshold for irreversible I termination, can result from repetitive
fixed delay stimulation. The mechanisms involved in these aftereffects are unknown.

In other neural systems, long term changes in synaptic efficacy produced by various

9Chaotic in the sense defined in the field of nonlinear dynamics. See the next section.
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stimuli and lasting from seconds t» days have been documented extensively (Ito 1989;

Racine and de Jonge 1988; Zucker 1989). The changes in the respiratory rhythm re-
sulting during and after repetitive SLN stimulation may be due to similar mechanisms
at the level of the synapses responsible for I termination.

To date, anatomical studies and phase resetting studies have been the main meth-
ods of investigating the mechanisms of respiratory rhythm generation. Mathematical
models have played a relatively small role. The extremely complex nature of the respi-
ratory system demands multiple approaches to its study. To complement new exper-
imental protocols, like fixed-delay stimulation, different quantitative models should
be investigated in more detail. Simulations and model development are efficient ways
of interpreting new experimental results. Realizing the unique properties of different

models may lead to a better understanding of the RRG.

1.4. NEURAL NETWORK MODELLING

In the previous sections, I have described several models of the RRG. I have
also outlined an important experimental approach to the study of the RRG, namely
observing the effects of perturbing the rhythm in different ways. In addition to such
studies, a better understanding of the dynamical properties of networks of neurons in
general, may elucidate the mechanisms of respiratory rhythm generation. One way
of investigating the behavior of a network of neurons has been to consider network
models consisting of greatly simplified elements.

The idea that the behavior of a network of neurons could be represented by a
interconnected net of binary (two-state) elements was first proposed by McCulloch
and Pitts (1943). More recently, Hopfield (1982) generated renewed interest in models

of neural nets by showing that such systems could exhibit associative memory. The
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property of memory in these networks results from the fact that specific categories of
inputs will produce specific steady state behaviors, so that a number of input-output
relations can be distributed throughout the connectivity of a single network. Hopfield
(1984) continued this investigation to include continuous state and continuous time
models. Most work on neural network modelling has been done in the context of
such associative memory (see reviews by Cowan and Sharp 1988 and Crick 1989).
Relatively few studies of biological oscillations resulting from neural mechanisms have
involved this type of neural modelling.

Simple continuous state and time network models consisting of a small number of
elements (< 4) have been investigated in the context of biological oscillations (c.g.
Friesen and Stent 1978; Glass and Young 1979; Matsuoka 1985). These studies were
constrained to networks of specific connectivities. While some analytical results have
been shown for the oscillatory properties of these systems (e.g. Matsuoka 1985; Cohen
1988), it is difficult to extrapolate to more general systems of higher dimension, a task
that is necessary for the description of most neural systems.

Glass (1975,1977a,b) presented a method of analysis for a specific class of contin-
uous biological networks based on associated boolean state systems. Subsequently,
Glass and Pasternack (1978) provided a theorem dealing with the existence, unigue-
ness and stability of steady states and limit cycle oscillations in these systems and
thus a direct link between continuous models and finite state models can he made.

9 1t can be applied to a large class

The importance of this result lies in its generality.
of neural network models regardless of dimension, thus simplifying the investigation
of the dynamical properties of large systems. I will discuss these results and their

application to neural network models in more detail in Chapter 3.

""Hopfield (1984) also made an association between continuous and finite state networks, but it
applied only to networks consisting of symmetrical connections.
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1.4.1. Chaos in Neural Networks

In the field of nonlinear dynamics, chaotic dynamics are defined as those resulting
in a deterministic system that exhibit a sensitivity to the initial state of the system
(Ruelle 1989; Glass and Mackey 1988). The time series of a single observable related
to the system may appear random in these cases.

The existence of chaos in neural systems has recently been discussed (for a recent
review see King 1991). It has been suggested that the underlying mechanisms of neu-
ral signals reflected in the EEG are chaotic (Skarda and Freeman 1987; Babloyantz
and Destexhe 1987). A much simpler system, the Hodgkin-Huxley model of the squid
giant axon, has been shown to exhibit chaotic behavior during periodic stimulation
(Guevara et al. 1983). Similar results have been used to suggest that periodic stim-
ulation of the squid axon in an experimental context can produce chaotic responses
(Matsumoto et al. 1987, Takahashi et al. 1990).

The existence of chaotic dynamics in models of abstract neural networks has also
been investigated. Kiirten and Clark (1986) used spectral and dimensional analysis
to identify chaos in a neural network model of 26 elements, each described by 2
ordinary differential equations and interconnected in a pseudorandom manner with
each element receiving 7 inputs (both excitatory and inhibitory). Sompolinsky et
al. (1988) have shown that some continuous models of neural networks will show a
transition to chaotic dynamics as a gain parameter is varied. They proved this result
in the thermodynamic limit (¢.e. infinitely large network) using a mean-field theory
approach.

Kepler et al. (1990) showed that for a specific formulation of a neural network,

chaotic dynamics could be observed in three dimensions. Their investigation fo-
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cused, however, on the dynamics of four-dimensional networks. The network was

implemented on an electronic circuit. It was then possible to search through differ-
ent network connectivities and document the resulting dynamics. Chaotic dynamics
were found in less than 1% of the networ/is tested, with most showing simple steady
state or cyclic behavior. Using a simple statistical analysis, they were able to show
measures of network connectivity that correlated with the dynamics resulting in the
network. This type of analysis may prove to be invaluable in determining the criteria
for a given network to exhibit chaotic dynamics.

Whether or not actual neural systems exhibit chaotic dynamics, and what the
functional significance of chaos in these systems would be, remains to be determined.
However, the question of the existence of periodicities and chaos in typical neural
network models is important. It must be shown that the models can account for at
least some of the examples of chaotic-like behavior in biological neural systems. Of
course, the biological systems are not nearly as simple as the models and it may be that
the increased complexity is necessary to explain much of the dynamics. However, the
limitations of th- simple models must be understood before an increase in complexity

can be fully justified.

1.5. OUTLINE OF PURPOSE

The purpose of this dissertation is to investigate a general class of neural network
models in the context of respiratory rhythm generation. Two approaches are used in
this investigation.

In Chapter 2, a simple three-phase formulation is considered. The motivation
for this model comes from the Richter hypothesis of the organization of the RRG

described in Section 1.1.3. For a specific set of model parameters, a phase response
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analysis of this model is compared to previous experimental results (Lewis et al. 1987,
1990; Paydarfar et al. 1986, 1987). Fixed-delay stimulation is used as an additional
protocol to evaluate the model.

In Chapter 3, a more general formulation of these models is considered. The
methods described by Glass and Pasternack (1978) for the investigation of these
systems are discussed. The dynamics of the models are numerically investigated as
a function of network size and other system parameters. Stable steady state and
periodic behaviors are found in many cases, and in some networks are seen to coexist
for a given set of parameters. Aperiodic dynamics are found in systems of 6 dimensions
and higher. In these cases, the dynamics show a sensitivity to initial conditions and
appear to be chaotic. A preliminary report of this investigation has been published

(Lewis and Glass 1991).
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Chapter 2.

PHASE RESETTING AND FIXED-DELAY
. STIMULATION OF A SIMPLE MODEL OF NEURAL
RHYTHM GENERATION

2.1. INTRODUCTION

The exact mechanisms of respiratory thythm generation are unknown. Approaches
to this problem have involved various experimental techniques, as well as quantitative
modelling (Euler 1986; Feldman 1986). One experimental method of studying the res-
piratory oscillator has been phase response analysis (e.g. Paydarfar et al. 1986, 1987;
Kitano and Komatsu 1988). This involves delivering a perturbation at different times
during the respiratory cycle, usually by afferent nerve stimulation. Phase response
curves are then constructed by quantifying the response, in terms of changes in cycle
duration, as a function of time of stimulation. Previously, phase response analyses
have been used to evaluate models of respiratory rhythm generation (Winfree 1980;
Bruce 1989; Eldridge et al. 1989).

Richter and coworkers (1982, 1983, 1986) have proposed a qualitative model of the
respiratory rhythm generator based on the three principle phases of neural activity in
the brainstem respiratory centers: inspiratory 7, post-inspiratory pl, and expiratory
E. A quantitative neural network model based on this theory, and involving five

neuron pools within the three-phase framework, has recently been described (Bruce
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1989; Botros and Bruce 1990). The qualitative connectivity of the model was that
proposed by Richter et al. (1986). The magnitudes of the connections between neuron
pools were adjusted so that the output of each of the pools resembled their postulated
physiological activity (Euler 1986). The effects of stimulating afferent inputs on the
respiratory thythm have been simulated using this model (Maass-Moreno and Katona
1988; Bruce 1989).

The purpose of this study is to investigate a simple three-pool neural network
model in the context of experimental studies on the response of the respiratory rthythm
to superior laryngeal nerve (SLN) stimulation. Although the interactions between the
neuron populations are not rigorously based on the known connectivity within the
brainstem respiratory centers, the motivation for the three pool construction comes
from the Richter three-phase theory.

The model considered belongs to a class of mathematical models previously used
te describe biological oscillations (e.g. Friesen and Stent 1978; Glass and Young
1979). These models consist of a number of distinct pools of neurons that interact by
inhibitory and excitatory connections. The activity of each neuron pool is described
by an ordinary differential equation (ODE); thus a network of N neuron pools is
described by a system of N coupled ODEs. Each pool receives tonic excitatory
drive, but also receives inhibition from one other pool. Although other network
models of respiratory rhythm generation have been proposed (e.g. Palmay et al 1974;
Feldman and Cowan 1975; Geman and Miller 1976; Botros and Bruce 1990), none
have consisted solely of three pools of neurons.

In spite of the simplified nature of the present model, a phase response analysis
shows a striking resemblance to experimental observations. A second stimulation

protocol, fixed-delay stimulation, is suggested as an additional method of evaluating

19




¢ 3

models of thythm generation. Responses of the present model to this protocol are

similar in some aspects to the experimental observations, but differ in others. These
comparisons suggest that a phase response analysis is not an adequate method of

evaluating a particular model of rhythm generation.

2.2. METHODS

2.2.1. General experimental protocols

The following is a brief summary of the experimental methods, as a detailed de-
scription has been given previously (Lewis ef al, 1990). Experiments were performed
on midcollicular decerebrate, unanesthetized cats that were paralysed, vagotomized,
debuffered and artificially ventilated. The internal branch of the superior laryngeal
nerve (SLN) was isolated close to the larynx. The central end of the nerve was
desheathed and mounted on a pair of silver hook electrodes. The (' phrenic nerve
root was sectioned near the thoracic inlet. The central end was desheathed and
its electrical activity was recorded monophasically with silver hook electrodes. The
phrenic signal was amplified, half-wave rectified, and integrated (100ms time con-
stant). The duration of the respiratory cycle (T})) is the time between the onsets of
two successive phrenic bursts. The onset of a phrenic burst was defined by phrenic
activity exceeding a preset level for a minimum duration of 15ms. The duration of
inspiration (7,) is defined as the time between the onset of the phrenic burst and
the beginning of the rapid decline in activity. Expiratory duration (7)) is defined as
the time between the onset of the rapid decline in phrenic activity and that of the
next phrenic burst. A stimulator and stimulus isolation unit were used to deliver

monophasic square-wave pulses (0.2ms duration) to the SLN in trains of 50ms or
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100ms duration at frequencies of 100Hz or 200Hz, with varying intensities.

2.2.2. Description of the model

The interactions of the three-pool model are described by a three-dimensional

system of differential equations of the form in Eq. (1):

dz,
E‘ = G(mv-H) e (T 2 (1)
k
r
Glz.y) = — 1 — (2)
(=41) Th +ah,

where i represents the i'" neuron pool (i=1, 2, 3; t=4=1). Figure 2.1A shows the
connectivity of the network. The gain function G(z,,,) defined in Eq. (2)is illustrated
in fig. 2.1B. The parameter k is a real number (k > 0) that determines the steepness of
the gain function, 7, represents a type of threshold, and the v, are the time constants
of the system.

The equations were numerically integrated using a 4'" order Runge-Kutta sc’.eme
with time step At (A£=0.001, unless otherwise stated) and implemented on a DECsta-
tion 2100 (Digital Equipment Corporation). Figure 2.1C shows the stable limit-cycle
solution of Eq. (1) for k = 10 and 7, = 0.5, 4, = 1.C for each i. The set of parameters
which are used for the remainder of the paper are: ¥ = 10,7, = 0.1,7, = 0.2,75 =
0.7,y = 0.5,9, = 0.5,7; = 1.5; the corresponding solutions are shown in fig 2.2A.
These parameter values were chosen so that the time courses of the variables =, z,,
ry would qualitatively resemble the membrane potential trajectories of three different
classes of respiratory neurons (fig. 2.2B): I, pI, E respectively (Richter et al. 1986).

A marker event (or cycle onset) is defined at a time, ¢, when z,=0.5, "'—,',L >0, and z,

21



¢

1—
X, X3 X5
Xi b
0 L 1 Al 1 1 L 1
0 2 4 6 8

time

Figure 2.1. (A) Schematic of model connectivity. All connections are inhibitory.
(B) Shows the gain function G(z) Eq. (2) used in the model Eq. (1) for 7 = 0.5.
(C) Example of model simulation with a symmetrical choice of parameters: k=10 and
7,=0.5, 7,=1.0 for each i. The period of this oscillation is 3.26 time units. The initial
conditions are: z; = 0.22,z, = 0.57,z3 = 0.68.
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Figure 2.2. (A) Simulation of the model with the parameter values chosen for phase
respc1se analysis and fixed delay stimulation: k& = 10,7 = 0.1,7, =0.2,73 = 0.7,7; =
0.5,7:= 0.5,73 = 1.5. The period of the oscillation is 7.36 time units. Initial conditions
are: i) = 0.11,z2 = 0.16,z; = 0.66. (B) Experimental traces of membrane potential
trajectories (not to scale) from three different classes of brainstem respiratory neurons:
inspiratory, I; post- inspiratory, pI; expiratory, E. (Adapted from Richter 1982 with

permission).



remains above 0.5 for a time ¢+0.015. (This convention is used to approximate the

experimental definition of a phrenic burst).

The experimental procedures presently considered involve stimulation of an inspi-
ratory inhibiting input, SLN. The pI or late I neurons, or a similar population of
phase-spanning neurons, are thought to play a role in I termination by direct inhibi-
tion (Remmers et al. 1986). For this reason SLN nerve stimulation was simulated in
the model by a discontinuous increase in the value of z, by a magnitude S. Therefore,
the stimulus S inhibits z, (the I pool) indirectly by incrementing the activity of =,

(the pI pool).

2.2.3. Stimulation protocols

2.2.3.1. Phase resetting

The stimulus response properties, in both the model and experiments, were char-
acterized by delivering stimuli at different times throughout the cycle. The phase
of stimulation ¢ was defined as the time between cycle onset and stimulus delivery
normalized with respect to the control cycle duration (7:,). The cophase was used
as an index of the response to stimulation (fig. 2.3). The i'" cophase, 6,, or nor-
malized latency, is defined as the time from the end of stimulation to the onset of
the i'* cycle following stimulation, normalized to the control cycle duration (Winfree
1980). Cophase plots are constructed by plotting 6, versus ¢. In the case where a
stimulus has no effect on the duration of the oscillation, the cophase plot has a slope
of —1. The no effect line is defined as 8, ~ i — ¢ for stimuli of small duration. If the
perturbed cycle is prolonged with respect to control, the resulting cophase lies ahove
this line, whereas if it is shortened the cophase is below this line. In the cophase plots
presented, the 1%, 2"/, and 3" cophases (4,, §,, 6,) are plotted consecutively against

¢ and ¢ + 1 to clearly illustrate the cophase near the beginning and end of the cycle.
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Figure 2.3. Schematic of integrated phrenic nerve activity showing the conventions for
the phase resetting terminology. Ty represents the control cycle duration; Ty, T3, and Ty
represent the durations of the perturbed cycle and the two following cycles respectively.
T, and T represent the durations of inspiration and expiration. The phase of stimulation
is denoted by ¢. The first, second, and third cophases are denoted by 8,, 6, and 6,

respectively.




2.2.3.2. Fized-delay stimulation

To investigate the possible long-term effects of stimulation, stimuli were delivered
repetitively at a constant delay from cycle onset. In the case where stimuli affect only
the cycle in which they are delivered, this protocol results in a consistent. response from
cycle to cycle. We have found however, when using stimuli that have longer lasting
effects, that this protocol can produce a variety of complicated responses (Lewis et al.
1987). By varying the stimulus delay, as well as the number of unstimulated cycles
between the stimulated cycles, the time course and potentially other characteristics of
the prolonged effect of stimulation can be investigated. Figure 2.4 shows schematically
the two different fixed-delay protocols: {A) stimulation given every cycle for three

cycles, and (B) with n — 1 unstimulated cycles between stimuli.

2.3. RESULTS

2.3.1. Phase resetting: experiment

SLN stimulation produces changes in the respiratory rhythm that depend on the
intensity of the stimulus and the phase of the cycle in which it is delivered. Stimuli
applied during inspiration (/) produce one of two effects, depending on intensity. If
the intensity exceeds a critical threshold value, that varies inversely with time during
I, an irreversible termination of I is observed, 1.e. a shortening of the phrenic burst
is observed. There is a corresponding shortening of the following expiration (F),
resulting in a perturbed cycle duration as small as 30%7, (fig. 2.5A). When the
stimulus intensity is just below the threshold value for irreversible / termination, a
reversible termination of I is observed, t.e. the phrenic burst is transiently suppressed

and then resumes its incrementing activity (fig. 2.5B). SLN stimuli applied during
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Figure 2.4. Schematic showing the two protocols used for fixed-delay stimulation. (A)
shows the case where stimulation is given at a fixed delay for three successive cycles. (B)
shows the case where a number of unstimulated cycles (n — 1) are left between stimulated
¢y les.
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Figure 2.5. Traces of integrated phrenic activity showing the phase dependent effects
of SLN stimulation, 0.3V, 50ms trains, 200Hz. (A) Irreversible I termination (140ms
delay). (B) Reversible I termination (70ms delay). (C) prolongation of E (2000ms
delay). (Reproduced from Lewis et al. 1990 with permission)
.
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E delay slightly the onset of the next I, resulting in a prolongation of the cycle (fig.

2.5C).
2.3.1.2. Cophase plots

Phase resetting experiments were performed with stimuli of various intensities.
Figure 2.6 shows cophase plots from one experiment using four different intensities
(0.07V, 0.2V, 0.3V, 0.6V). The 0.07V stimulus produces relatively little effect as
reflected by the cophase plot with an approximate slope of —1 (fig 2.6A). As the
stimulus intensity is increased, the cophase plots reveal a shortening of the cycle at
some phases during I, i.e. irreversible I termination. There are some phases (early
I) that show little effect or a slight prolongation, i.e. reversible / termination (fig
2.6B,C). For the highest intensity, all phases during I show a shortening of the cycle

(fig 2.6D). Stimuli delivered during E produced a slight prolongation of the cycle.

2.3.2. Fixed-delay stimulation: experiment

Figure 2.7 shows the results of fixed-delay stimulation of the SLN in an experiment
in which the stimulus intensity was 0.098V (50ms trains, 100Hz) and the delay was
varied from 100ms to 825ms. In fig. 2.7B, a consistent reversible I termination is
shown, while the delay in fig. 2.7F, produced a consistent irreversible I termination.
However, figs. 2.7C, D, and E show no such consistency. Rather, a combination of
reversible and irreversible / terminations resulted. As the delay is gradually increased
from the beginning of I to the end of I, there is an apparently gradual increase in the
frequency of irreversible 7 termination. Of note was the appear nce of an alternation
between the two responses for a delay of 350ms, that lasted over 3 minutes after an
initial transient of 75 seconds. Fig re 2.7D shows a segment of this pattern, that
includes the last cycle of the transient.

Figures 2.8 and 2.9 show the results of an experiment where the number of recov-
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Figure 2.8. Cophase plots for SLN stimulation (50ms trains, 200Hz) of increasing
intensities from (A) to (D). 6, 67, and 05 are plotted twice versus ¢ to clearly show the
response at the E — [ transition. (Reproduced from Lewis et al. 1990 with permission)
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Figure 2.7. Experimental effects of fixed-delay stimulation with varying delay. (A’
shows the unstimulated control cycle (integrated phrenic activity). In (B) - (F), the
upper trace shows integrated phrenic activity and SLN stimulation (0.098V, 100Hz, 5C
ms trains) is shown on the lower trace. The stimulus delays for (B) - (F) are 100ms.
200ms, 350ms, 650ms, and 825ms. Time bar is 10 seconds. (Reproduced from Lewis et

al. 1987 with permission).
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Figure 2.8. Experimental effects of SLN stimulation (0.6V, 100ms train, 200Hz) at
a fixed delay (200ms, 30% of I duration) with varying number of unstimulated cycles
between stimuli. (A) Stimulus delivered every cycle; (B) every 2 cycles; (C) every 4
cycles; (D) every 8 cycles. In each panel, the integrated phrenic activity is shown in the
upper trace, with the lower trace showing SLN stimulation. (Reproduced from Lewis et
al. 1990 with permission).
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ery cycles between stimuli was varied. For a delay of 200ms, stimuli (0.6V, 100ms
train, 200Hz) did not produce a consistent response until 7 recovery cycles were al-
lowed between stimuli. Two important points are apparent in figs. 2.9A,B. First, as
stimulation proceeds, it becomes harder to produce an irreversible termination of I.
This is shown by the decreasing number of shortened cycles with increasing number
of stimuli, suggesting that stimulus effects may summate over several cycles. Second,
there is an increase in cycle duration with increasing number of stimuli. The increase
is apparent not only in the reversibly terminated and unstimulated cycles, but also

in the irreversibly terminated cycles.

2.3.3. Phase resetting: model

To simulate the phase resetting effects of SLN stimulation on the respiratory
rhythm, perturbations of the model were performed using the method described in
Section 2.2.2.; a stimulus consists of a discontinuous increase in the value of =, by a
magnitude S.

The effects of delivering a stimulus of magnitude, S=0.06, at three different phases
of the cycle is shown in fig. 2.10. In this case, a favorable comparison can be made
with the three types of effects produced experimentally, as there are analogues of
the following observations: (1) reversible termination of I, resulting in a slightly
prolonged cycle (fig. 2.10A), (2) irreversible termination of I, producing a shortened
cycle (fig. 2.10B), and (3) prolongation of E (fig. 2.10C). Figure 2.11 shows cophase
plots for S= 0.03, 0.06, 0.1. For ¢ greater than about 0.2, a consistent, but slight,
prolongation of the cycle is found. For smaller ¢, there is a progressive shortening of
the cycle as S is increased. In fig. 2.11C (§=0.1), there appears to be a discontinuous
transition from prolongation to shortening for small ¢. This is exactly what was

observed experimentally. In the model, however, the magnitude of the discontinuity
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Figure 2.10. Phase dependent effects of stimulus §=0.06 on the model. (A) shows
a transient inhibition of the cycle, $=0.03, resulting in prolongation of the cycle by 3%.
(B) shows inhibition of the cycle, ¢=0.1, resulting in shortening of the cycle by 30%.
(C) shows a delay in the onset of the next cycle, $=0.7, resulting in prolongation of the
cycle by 7%. In all panels, the stimulus is indicated by the vertical arrow and the control
oscillation is shown by the dotted lines.
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is equivalent to one normalized cycle length, so the jump can be explained by the

definition of the marker event, 1.e. cycle onset (Glass and Winfree 1984).

2.3.4. Fixed-delay stimulation: model

The experiments using the fixed-delay stimulation protocol showed that for some
delays during I, combinations of cycle prolongation (reversible I termination) and
cycle shortening (irreversible I termination) resulted. Figure 2.12 illustrates the effect
of fixed-delay stimulation of the model for $=0.085 in a sequential plot of cycle
durations (normalized to T),), for four different values of the normalized delay, § =
0.095, 0.1, 0.11, 0.115 (8§ = ""~,’§’1) Stimulation began on the 10" cycle and was
discontinued on the 90" cycle. The cycle duration returned to control within 2
cycles in all cases. Because the stimulus effects lasted such a short number of cycles,
varying the number of recovery cycles during stimulation at a fixed-delay produced
only consistent responses, unlike the experimental system.

The effect of changing & on the resulting dynamics is shown further in the form
of a bifurcation diagram. For a given §, stimuli were delivered for 150 cycles at a
fixed-delay of §T,,. The normalized durations of the last 50 cycles were plotted versus
6. Figure 2.13 shows such a diagram for one stimulus magnitude, S=0.085. The
bifurcation sequence for the model shows an interesting similarity with the experi-
ments. As § increases from 0.1 to 0.12, each response pattern shows an increase in
the number of shortened cycles for every prolonged cycle. This increase appears to
be gradual, as evidenced by the discontinuous appearance of branches in the bifur-
cation diagram representing shortened cycles. Other more complicated patterns are
seen as well. In the region of §=0.0844, there are two different cycles of duration
shorter than control. This region apparently arises as a result of a period-doubling

bifurcation; and subsequently disappears through a period-halving bifurcation. This
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type of bifurcation is similar to those shown in two previous studies of the Poincare

oscillator, in which a succession of period-doubling bifurcations resulted from changes

in the delay during fixed-delay stimulation (Lewis ef al. 1987; Glass and Zeng 1990).

Table 2.1. lists several of the patterns seen in fig. 2.13.

Table 2.1.

FIXED-DELAY RESPONSE PATTERNS

]

# Prolonged Cycles

# Shortened Cycles

0.08
0.0844
0.09
0.095
0.1
0.106
0.1088
0.1094
0.11
0.11104
0.125

0
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2.4. DISCUSSION

2.4.1. Phase resetting

Phase resetting experiments, that consist of perturbing an oscillating system at
different phases of its cycle, have been performed in a variety of biological systems
(Winfree 1980; Glass and Mackey 1988). Phase resetting curves are constructed by
plotting some measure of the effects of the perturbation, such as change in cycle
duration or cophase, versus the phase in which the perturbation is delivered. These
curves can then be used to suggest different classes of models for the oscillation under
study.

One such class of models are limit cycle models. Limit cycle models exhibit at least
two distinct types of phase resetting curves. One, produced by relatively weak per-
turbations, represents Type 1 resetting and is characterized by cophase plots with an
average slope of -1. The other, produced by relatively strong perturbations, represents
Type O resetting, for which the cophase plot has average slope 0. For perturbations
of intermediate strength, a phase singularity should exist (Winfree 1980). That is,
it is possible to stop the oscillation with a perturbation of critical amplitude at a
critical phase. Experimentally, this critical stimulus may not be realizable due to
the presence of noise. Thus, Winfree predicted that if both Type 1 and 0 resetting
could be shown experimentally, and for some intermediate stimulus strength random
resetting occurs for a particular phase of stimulation, a phase singularity exists in the
oscillator.

Some previous studies involving the respiratory oscillator have discussed phase
resetting in these terms. Perturbations applied with SLN (Paydarfar et al. 1986) and
brainstem (Paydarfar and Eldridge 1987; Eldridge et al. 1989) stimulation showed

both Type 1 and Type 0 resetting, and an apparently unpredictable response for a
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stimulus of intermediate strength. From these observations, it was suggested that the
respiratory oscillator could be described by a limit cycle model. The interpretation
of the phase response curves showing such random resetting is a difficult task due to
the inherent complexities of this system as well as the experimental noise (lLewis et
al. 1990).

Similar experimental methods have been used to study the phase response of the
Van der Pol oscillator (a 2-D system of nonlinear ordinary differential equations) in
the context of respiratory rhythm generation (Eldridge 1989; Eldridge ct al. 1989).
Simulations were performed to show how noise and chemical drive (tonic excitatory
input) can affect the phase response curves. Depending on the drive, perturbation
with a stimulus of constant magnitude produced Type 1 or Type 0 resetting. In other
words, the “size” of the limit cycle oscillation was larger for increased drive, thus a
larger stimulus was required to produce Type 0 resetting. These results were used to
imply that changing CO, drive in experimental contexts was equivalent to changing
the functional size of the limit cycle.

Bruce (1989) used phase resetting to evaluate a neural network model of the
respiratory oscillator (Botros and Bruce 1990). Evidence of a phase singularity in the
response of the model to simulated vagal stimulation was inferred from arguments
similar to those of Paydarfar el al. (1986) and was shown with a phase response
curve. In this analysis, an investigation of the phase response for smaller increments
of ¢ would have been useful. The phase resetting curve shown (fig. 5 of Bruce
1989), appears to indicate Type 1 resetting with a region in which the slope is large.
Because the model is by definition a limit cycle model, a phase singularity must exist,
but it may not necessarily be attainable for a particular method of perturbation.

This need not be inferred by random resetting. On the contrary, barring errors in the
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integration scheme, the deterministic nature of the model implies that the resetting

is not unpredictable for the same stimulus given at the same phase.'" With such
models, demonstrating both Type 1 and Type 0 resetting is sufficient evidence for a
phase sing-.larity in the response to a given perturbation.

In the present study, the phase response curves from a simple three-pool neural
network model compare favorably with those obtained experimentally for the respi-
ratory rhythm with SLN stimulation. The simulations show that stimuli have little
effect on the cycle when given during expiration. However, a phase dependent effect,
with both reversible and irreversible inhibition of inspiration, is seen with stimulation
during inspiration. There is also a threshold transition from reversible to irreversible
inhibition of inspiration.

The method of simulating experimental stimulation of afferent nerves may af-
fect the phase response of some models, but qualitatively the resetting behavior will
remain the same, 2.e. in the context of Type 1 or Type 0 resetting in limit cycle
models. The choice of stimulation in the present model was based on experimental
observations. The SLN produces an inhibitory effect on inspiration, so simulation of
this effect in the model must involve a decrease in the variable z,. This could be
accomplished directly by decreasing z,, or because of the network connectivity, by
increasing z,. Changing both variables is also a possibility. The stimuli could also
be considered to act over a period of time or after a certain delay. However, a simple
point stimulus, expressed as a discontinuous increase in z,, was chosen and is con-
sidered sufficient for the present analysis. Previous experimental evidence suggests
that SLN inhibition of I occurs via excitation of post-inspiratory brainstem neurons,

which in turn inhibit inspiratory neurons (Remmers et al. 1986). It may be possi-

""This holds of course only when the system is in the same initial state for each stimulus. If not,
as is the case with the fixed-delay stimulation protocol, the response may appear random
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ble to choose a different method of stimulation and achieve better agreement with
experimental observations.

Cophase plots for the model showed that both Type 1 and Type 0 resetting was
possible with the chosen method of stimulation. Limit cycle oscillations necessarily
have an associated phase singularity. In 2 dimensions, the singularity may be a single
point. In this case (z.e. 3 dimensions), the singularity is a line given by the stable
manifold of the steady state. The critical stimulus required to show this was not
investigated. However, for the current method of stimulation, the critical phase in
the model appears to be near the discontinuity in the cophase plots w.e. early in the
cycle. This would correspond to the suggested location of the phase singularity for
SLN stimulation (Paydarfar et al. 1986).

The qualitative effects of phase resetting in this model did not depend sensitively
on the parameters chosen. For example, if the parameters are chosen to be symmet-
rical (as in fig. 2.1C), the cophase plots are qualitatively similar to those shown in
fig 2.11.

The discontinuity in the cophase for the model (fig 2.11C) is only transient. The
2"! and 3" cophases are continuous. Discontinuities in the cophase with magnitude
that is not a multiple of 1 must be transient {i.e the steady state phase response is
continuous), in all models described by continuous ODEs (Kawato 1981). Experi-
mentally, however, it is difficult to interpret discontinuities because (1) the transients
may be so long that they are unrecognized as such; (2) the slope of the true phase
response curve at the phase of the apparent discontinuity may be so steep that it can

not be measured experimentally.

2.4.2. Fixed-delay stimulation

Some perturbations can produce effects on an oscillator that last longer than the
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cycle in which they are given. In the case of the respiratory rhythm, SLN stimulation
is such a perturbation. Fixed-delay stimulation can be used to investigate the time
course and magnitude of these long lasting effects (Lewis et al., 1987, 1990). In the
present study, this stimulation protocol was used, in addition to phase resetting, to
evaluate a model of respiratory rthythm generation.

Fixed-delay stimulation of the model produced combinations of shortened and
prolonged cycles for a given delay, in a manner similar to the experiments. The
bifurcation sequence in terms of the ratio of the number of shortened to the number
of prolonged cycles increases gradually with increasing delay, as in the experiments.
This is in contrast to such studies on the Poincaré oscillator where period doubling
bifurcations in the cycle durations are seen z.e. (1 short : 1 long) — (2 short
: 2 long), etc. as the delay is increased (Lewis et al. 1987). Differences between
experiment and model were found in the effect of the repetitive stimulation on the
intrinsic frequency of oscillation. Experimental results show a significant increase in
the duration of the post-stimulus cycles after fixed-delay stimulation. This leads to
complex responses to fixed-delay stimulation even when several unstimulated cycles
are left between successive stimuli. In the model, only a short lasting post-stimulation
effect is present. For this reason, it is not possible to show complex behavior in the
present model for the fixed-delay protocol when one or more unstimulated cycles are
left between stimulated cycles.

Further, the response of the model to fixed-delay stimulation is sensitive to the
choice of parameters. For the symmetrically chosen parameter values (fig 2.1C), this
protocol resulted in only shortened cycles when the stimuli were delivered at small
delays.

These observations show that there may be two different components to the long-
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term effects of SLN stimulation. The first, whose time course is of the order of one
cycle, consists of a variation in the threshold for irreversible termination of 7. The
second involves the intrinsic mechanisms of I termination and can last 5 to 20 cy-

cles. The first component can be explained by the model, but the second cannot.
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Incorporating a time varying threshold 7, or asymptotic value of the gain function
into the model is one way to describe a build-up of effects resulting from repeated
stimulation. Experimentally, it may be possible to separate the two proposed com-
ponents of stimulus aftereffects by using different inputs. Conditioning the oscillator
with one input (e.g. the SLN) and testing the response to another input (e.g. the
vagus nerve) may allow a dissociation of changes in input efficacy and changes in the

intrinsic oscillation.

2.4.3. Conclusion

Phase resetting analysis and fixed-delay stimulation have been used to investi-
gate a model of rthythm generation. The results of these stimulation protocols were
discussed in the context of the experimental effects of superior laryngeal nerve stimu-
lation on the respiratory rhythm (Paydarfar et al. 1986,1987; Lewis et al. 1987,1990).
A comparison of phase resetting data showed much similarity between model and ex-
periment. However, the comparison of the fixed-delay stimulation results revealed
shortcomings of the model. These comparisons suggest that phase resetting experi-
ments are not a sufficiently sensitive method of evaluating different models of rhythm
generation. Indeed, different models may have the same general phase resetting char-
acteristics given the appropriate stimulus. So in addition to phase resetting protocols,
other methods, such as fixed-delay stimulation, should be used to evaluate these mod-

els.
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Chapter 3.

NONLINEAR DYNAMICS OF NEURAL NETWORK
MODELS

3.1. INTRODUCTION

Understanding the properties of neural systems is essential to the study of many
animal behaviors. These properties are manifested at various levels, from the study
of ionic channels in single neurons to the dynamics of complex neural networks. In
the study of neural networks, there have been extensive theoretical analyses comple-
menting purely experimental approaches. In this chapter we discuss the properties of
several of the popular theoretical models from a perspective of nonlinear dynamics.
Thus, we are not especially interested at the moment in the computational properties
of these models; likewise we do not insist that the models correspond in some realistic
way to properties of actual physiological systems. However, we wish to analyze qual-
itative features of the dynamics such as the existence and stability of steady states,
cycles, or chaotic dynamics that are found in theoretical models of neural networks.

Several popular theoretical models of neural networks can be expressed in a well-
defined limit as a piecewise linear ordinary differential equation that was studied some
years ago (Glass 1975, 1977a,b; Glass and Pasternack 1978). Since a good deal is
known about the properties of the piecewise linear equation, this can be immediately
translated to the study of neural network models (e.g. Hopfield-type networks). In

section 3.2 we show that several different theoretical models of neural networks can
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be written as piecewise linear (PL) ordinary differential equations. In section 3.3

we discuss the properties of these equations that have been found in previous work.
This enables us to obtain graphical criteria for such properties as stable steady states
and limit cycle oscillations. In section 3.4 we extend this earlier work and consider
the presence of complex bifurcations and chaotic dynamics in these equations. A

preliminary report of some of these results has recently appeared (Lewis and Glass

1991).

3.2. THEORETICAL MODELS OF NEURAL NETWORKS
In one simple formulation of a model neural network, the activity of element 7,

denoted z,, is determined by

dz, N
T =—m,+G,(Lw,,z1—r,), i=1,2,...,N, (3)
1=1

where N is the number of elements constituting the network, G, is a nonlinear gain
function describing the response of each element to an input, 7, is a parameter that we
interpret as the response threshold, and w,, gives the weight of the input of element
7 to element i. We assume that there is no self-input, s.e., that w,, = 0. It is useful

to consider transforming Eq. (3) to a new set of variables, y,, where

N
Yo=Y w,T, — T, (1)
1=1
Differentiating Eq. (4) and substituting from Eq. (3) leads to the transformed equa-

tion,

dy, Y : N .

"dT =_y1+zlwr]G](y;)-Tn 1= 1,27-“1 ) ('))
J:

that has often been used in neural network modelling (Hopfield, 1984; Sompolinsky

et al. 1988).

As is usual, we assume that the nonlinear functions G, are monotonically in-

creasing or decreasing sigmoidal functions. Consider the limit of infinite slope of the
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sigmoidal function in which the functions G, are piecewise constant with a single

discontinuity at 0, so that

_J a,, if y, <0,
o -{w  Fvss C
with the condition that
AY
Y w,G,(y,) # 7, i=12,...,N. (7
=1

In order to demonstrate the equivalence of this theoretical model with a previous
formulation (Glass and Pasternack 1978), for each variable, y,, we define a corre-

sponding Boolean variable, 7,, where

- 0, if y <0,
y { 1, i y>0 ®)

The equations can be rewritten in terms of the Boolean variables to give

dy, . S . :
I:Av(ylv'-'7yv—layr+lv'-'ayl\')""yn 7*=1a27'-°7N’ (9)

where for each i the value of A,(§y,...,§i=1,8i41,---,9n) does not depend on 3,
and from Eq. (7), A, is nowhere 0. Equation (9) has been previously proposed
as a mathematical model for complex genetic and biochemical control systems and
several of its properties are well understood (Glass and Pasternack, 1978). The above
derivation shows that Eq. (9) is also equivalent to standard formulations of neural
networks, such as Eqs. (3) and (5), provided there are step function nonlinearities

satisfying the restrictions in Eqs. (6) and (7).
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3.3. SYMBOLIC DYNAMICS AND THE STATE TRANSITION DIA-
GRAM

Several of the qualitative features of the dynamics of Eq. (9) can be appreciated
from a symbolic representation of the dynamics on an N-dimensional cube, called an
N-cube. We now describe some of the properties of N-cubes and then show their
connection with the PL differential equations.

3.3.1. The N-cube

A Boolean variable is either 1 or 0. If there are N variables, then a Boolean state
is an N-tuple of 1s and 0s designating a value for each variable. For N variables there
are 2" different Boolean states.

In the case of Eq. (9), the N-dimensional Euclidean phase space can be partitioned
into 2" volumes, called orthants, by the coordinate hyperplanes defined by y, = 0.
Each orthant can be labelled by an N-tuple of 1s and 0s, corresponding to the values
of §, from Eq. (8). For example, the partition of the 2-dimensional phase space is
shown in fig. 3.1B. The N-cube can now be constructed by selecting a single point
from each of the 2" orthants. Each of these points, called vertices, is labelled by
the Boolean N-tuple designating the orthant from which it was derived. Each vertex
can be connected to N adjacent vertices associated with Boolean staies that differ
in 1 locus, 2.e. one variable in the N-tuple. The resulting geometric object, called
the N-cube, has 2V vertices and N2"~' edges. The distance between any 2 Boolean
states, or vertices on the N-cube, is equal to the number of loci that differ in the 2
states.'’

3.3.2. The truth table

From the above discussion every point in phase space is mapped to a vertex of the

'2This is commonly know as the Hamming distance.




N-cube. The solution curves of Eq. (9) originating at a point P = (p,p2,...,Pn)

are given by

¥, = A+ (p - A)exp(-t), 1=1,2,...,N, (10)

where

’\v :A:(ﬁlaﬁh'-"ﬁ/\)' (11)

Thus, all the local solutions to Eq. (9) in the orthant containing P are straight lines
directed to a common focal point (A;,Az,...,Ax ). Each orthant in phase space has an
associated focal point, so that the generalized flows are piecewise linear and piecewise
focused (PLPF). Based on the above equation, we have the coarse grained symbolic
transition py,pa,...,pn — S YIS VIR Ar where the first state represents the orthant
of the initial point P and the second state represents the orthant of the focal point
towards which the flow is directed. The table which gives the symbolic location of
the focal point for each orthant is defined here as the truth table.
3.3.3. The state transition diagram

Now consider the connection between the flows in the PL differential equations,
and the truth table. Call the current Boolean state S, and the Boolean state towards
which the flow is directed, given by the truth table, S,. If the distance between S| and
S, is 0, then all initial conditions in orthant S, are directed towards the focal point in
S) leading to a stable steady state in the differential equation. If the distance between
Si and S, is 1 then trajectories from all initial conditions in S, are directed across the
common boundary between S, and S;. Now suppose the distance between S, and S,
is greater than 1; for example let the two states differ in n loci. Then the flow from 5,
can be directed to any of the n different orthants that lie a distance of 1 from S, and
n | from S,. The boundary that is crossed depends on the initial condition in S,.

As a consequence of the above properties the allowed transitions can be represented
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as a directed graph on an N-cube. This directed graph is called the state transition

diagram. As the dynamics of Eq. (9) evolve, the trajectories may pass into different

orthants in phase space. Thus a symbolic sequence is generated corresponding to

the sequence of orthants visited along the trajectory. These symbolic sequences are
consistent with the allowed transitions from the state transition diagram on the N-
cube.

The state transition diagram for Eq. (9) has the following remarkable prop-
erty. FEach edge 1s oriented 1n one and only one direction. This can be estah-
lished using very simple arguments. Since we assume that for each 1 the value of
A(Fiye s TiatsTisry - -, §1 ) does not depend on g, (r.e. w,, = 0), an edge cannot
be directed in two directions. From the construction of the state transition diagram,
the number of directed edges in the state transition diagram is equal to the distance
between each state on the left hand side, and the subsequent state on the right hand
side. Each column on the right hand side of the truth table contributes 2% ' to the
total distance, and there are N columns so that the total distance is N2* '. This is
equal to the total number of edges of the N-cube. Since no edge can he directed in
2 orientations, it follows that each edge is oriented in one unique orientation (Cilass
1975).

3.3.4. Steady states and limit cycles

Previous work established rules to find stable steady states and limit cycles based
on the state transition diagram (Glass and Pasternack 1978). Very briefly, if the
N edges at any given vertex of the N-cube are all directed toward it, then in the
corresponding orthant of phase space of the PLPF system, there will be a stable

steady state. These steady states, which are called extremal steady states, have been

the main focus in the study of neural networks (e.q. Cowan and Sharp 1988). For an

39




e

oscillation to result, a necessary condition is that there be a cyclic path in the state
transition diagram. This is not however, a sufficient condition to guarantee stability
or uniqueness of the oscillation. In some circumstances, a much more powerful result
can be found. A cychc attractor is defined as a configuration on the N-cube that is
analogous to a stable limit cycle in a differential equation. A cyclic attractor of length
n is a cyclic path through n vertices of the N-cube such that: (i) the edge between
successive vertices on the cycle is directed from one to the next in sequence; (ii) for
any vertex on the cycle, there are N — 2 adjacent vertices that are not on the cycle,
and the edge(s) from each of these adjacent vertices is(are) directed toward the cycle.
If there is a cyclic attractor in the state transition diagram then in the associated PL
differential equations there is either a stable unique limit cycle in phase space such
that all points in all orthants associated with the cyclic attractor approach the limit
cyclein the limit ¢ — oo, or there is an asymptotic oscillatory approach to a point P;.
The point P, is analogous to a stable focus with each of the n coordinates involved
in the cyclic attractor approaching zero. The proof of this result relies on the explicit
algebraic computation of the limiting properties of the return map using the Perron

theorem (Glass and Pasternack 1978).

3.4. DYNAMICS OF PLPF NETWORKS

We illustrate the results of the previous section in two simple systems. Assume,
unless otherwise stated, that in Eqs. (5) and (6), for all j, the functions G,(y,) are
the same with a, = 1 and b, = 0, and 7, = 7 for all i. Likewise all terms of the
connection matrix, w,,, are either 1 or 0. Each of the N elements in the network has
the same number of inputs, n,,.

Example 1

Consider the network in Fig. 3.1A, where the symbol y, - y, implies y, inhibits
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Figure 3.1 (A) Schematic diagram of a neural network in which there is mutual
inhibition. (B) Integration of the PL equations in the phase plane, v = 0.5. The heavy
dots indicate the focal points. (C) State transition diagram on the 2-cube (§,3,).
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y1 (w2 = 1) and 7=0.5. The integration of the dynamics starting from several initial
conditions is shown in Fig. 3.1B, and the N-cube state transition diagram is shown

in Fig. 3.1C. There are two stable steady states. The truth table is shown below

(Table 3.1).

Table 3.1
glﬁ? A|A2
00 11
01 01
10 10
11 00

Example 2

A second exemple is the cyclic inhibitory loop shown in Fig. 3.2A with N = 3.
For 7=0.5, this sysiem gives a unique stable limit cycle oscillation, associated with
the cyclic attractor in the state transition diagram, Fig. 3.2B (Glass and Pasternack,

1978). The trrth table is given in Table 3.2.

Table 3.2
§r Y2 9s | A A Ay
000 [ 111
001 | 101
010 | 011
011 | 001
100 | 110
101 | 100
110 [ 010
111 [ 000

We now consider novel dynamical behavior of this svstem (Egs. 5 and 6) found

in numerical studies. Solving the PL system is reduced to connecting the analytical
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Figure 3.2 (A) Schematic dia gram of a neural network composed of 3 elements. (B)
State transition diagram on th: 3-cube (#;§293). There is a cyclic attractor passing
through the states 001, 101, 100 110, 010, O11.
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solution curves in Eq. (10) in a piecewise fashion for each element. This entails finding
the sequence of times at which the solution trajectory crosses one of the threshold
hyperplanes, y,=0. Given an initial condition P=(p,,ps,...,pr) at a time ¢ = ¢/, the
times, ¢, (1=1,...,N), at which each of the N varizables reaches a threshold hyperplane
are given by Eq. (12). Taking the minimum of ¢, (over all 1) gives the next transition
time for the system, after which the variables are updated and the process is repeated.

Equation (13) gives the time of the k" transition, denoted T*

(¢! :t"—ln(w—'(:,—,_)—i'T) i=1,...,N (12)
T* = min{t,(T*~")} (13)

3.4.1. Characterizing the Dynamics as a Function of N.

We present the results of a search through a number of networks up to N = 20,
for n, = 2,3 and 7 = 0.5, 1.5. For a given set of the parameters N, n,, and 7, 1000
randomly constructed networks were investigated. For each network, 20 different
random initial conditions were chosen. In each of these 20 trials, the system was
integrated for 100,000 state transitions. If a steady state or periodic cycle'' was
found before this, the trial was ended. For each set of parameters, the number of
steady states and cycles were counted to estimate the prevalence of the different
dynamical behaviors. In some cases, neither a steady state, nor a cycle was detected.
Many of the networks found in this way exhibited chaotic-like dynamics (see later
sections).

The results of this survey are summarized in figs. 3.3, 3.4, and 3.5. Figure 3.3

"'Cycles of length up to 500 transitions could be detected.
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shows the proportion of steady states (1.e. the number of steady states in 20 initial

conditions for 1000 different networks divided by 20000) as a function of N for the
different values of n,, and 7. A nearly linear decrease with N is observed. The lower
panel in fig. 3.3 shows the average length of time required to reach the orthant in
which the steady state is contained. These short transient times (compared to the
length of integration), usually correspond to between 5 and 30 state transitions, and
suggest that on average, it is easy to find steady states during the time of integration
considered here.

Fig. 3.4 shows the relative number of cycles found during this search. The preva-
lence of cyclic behavior increases with N. The average period of these cycles, and
the average number of state transitions during the cycles also increase with N. No
attempt was made to determine the number of unique cycles in a single network. It
is remarkable that the increase in the number of cycles with N, as with the decrease
in the number of steady states, is so slight and nearly linear, while the size of the
coarse-grained phase space in these systems (i.e number of orthants) increases as 2",

In a relatively few number of trials, neither a steady state nor a cycle was found.
Figure 3.5 shows the number of such occurrences for the different parameters. There
are three possible explanations for these observations: (1) the transient to the stable
dynamics was too long to die out before the end of the trial, or (2} a cycle of longer
than 500 state transitions existed, or (3) the dynamics observed are chaotic. Because
the average transient to a steady state is relatively small compared to the length of
integration, and the average number of transitions in a cycle is much less than 500, we
believe that these dynamics are chaotic and provide evidence for this in later sections.

There are obvious limitations to this type of search. ldeally, the number of different

initial conditions and different networks tested should increase exponentially with
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N to ensure that all possible dynamics are found. Even for PL integration, this
task is computationally intensive for large networks. Secondly, as will be shown in
later sections, the exact value of 7 can have a major influence on the dynamics of
a particular network. Thus, using only two values of this parameter in a search is
not complete. Nonetheless, this approach provides a general idea of the different

dynamics exhibited by these systems.

3.4.2 Multiple Limit Cycles in a 5-D Network

Example 3

In this example, we consider the dynamics of the 5-element network shown in fig.
3.6 (n,=2) with 7¢(1,2). For this range of 7, we have found 8 different cycles. The

sequences of states for each of these cycles are shown in Table 3.3. Fach state is

Table 3.3

cyclel cycle2 cycle3 cycled cycleb5 cycle6 cycle 7 cycle8
10010 10010 10010 10010 10010 10010 10010 11010
00010 00010 00010 00010 00010 00010 00010 01010
00011 01010 00011 00011 01010 oooll  QoolIl  OlOLl
00111 01011 00111 00001 01011 00111  O0O111 00011
00101 00011 00110 00101 00011 00110 00110 00111
00100 00111 01110 00100 00001 00100 O1110 0010}
01100 00101 01100 01100 OOtOol 01100 01010 00100
01000 20100 01000 01000 00100 01000 0101} 01100
01001 01100 01010 01001 01100 01010 01001 01000
11001 01000 01011 00001 01000 O1l011 11001 01001
10001 01001 01001 10001 01001 01001  toool 11600l
10000 11001 11001 10000 11001 00001 10000 11000

11000 10001 11000 10001

11010 10000 10000 1000y

The stability of each of these cycles depends on the value of 7. For example, figure
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Figure 3.6. The 5 element network described in Example 3. All connections are
inhibitory anc of uniform magnitude (i.e w,,=1).
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3.7 shows the three different stable cycles for 7=1.9. From left to right the cycles

correspond to cycle 4, 5 and 6 from Table 3.3. It is possible to change from cycle

to cycle by giving short perturbations to one of the variables, y,. Such multistability

of cyclic behaviors is interesting in light of recent experimental studies on multi-
functional invertebrate neural networks (Harris-Warrick and Marder 1991; Meyrand
et al. 1991), where so-called command neurons can control the type of oscillation
exhibited by a single network.

A close examination of cycles 5 and 6 reveals that they are identical under a simple
relabeling transformation. To make this more clear, consider the sequences of the

state transitions in Table 3.3 corresponding to the two cycles. As mentioned earlier,

shows that the sequences of state transitions are the same, and thus the cycles are
the same. This symmetry is also evident in the connectivity of the network (fig. 3.6).
A similar relationship exists between cycles 2 and 3, and cycles 7 and 8.

To investigate these dynamics further consider the state transition diagram for this
network. In order to represent a 5-cube with a two-dimensional drawing, consider two
adjacent 4-cubes. Let each vertex (i.e 4-tuple) on one 4-cube represent all the vertices
of the 5-cube in which the first digit of the 5-tuple is 0 (i.e. Oxxxx). Similarly for
the adjacent 4-cube, let each vertex represent all the vertices of the 5-cube in which
the first digit is 1 (i.e. lxxxx). Then each vertex on one 4-cube is connected to
the equivalent vertex on the other, ard the resulting geometrical object now has
25 vertices. Using this convention, fig. 3.8 shows the state transition diagram for

the above network. Each of the different cycles for this network (Table 3.3) can be
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followed on the state transition diagram. Such an exercise reveals that 13 of the 32
different states are not visited by any of the cycles.

It is useful, in the characterization of the different dynamics, to consider a 4-
dimensional face Fy separating two neighboring orthants in phase space. By tracking
the intersection of the solution trajectory with this face starting from different initial
conditions, it is possible to track the bifurcations. A limit cycle that intersects this
face is reduced to a point. This approach is especially useful when the dynamics
are more complicated.!' The state transition diagram can be used very effectively
to choose F,. Ideally, a face separating two orthants that is crossed by all 8 cycles
should be chosen. However, there is not one state transition that is common to all
8 cycles. Therefore, we chose F, to be the face that separates two orthants that
are visited by all cycles except cycle 7 (n.e. 01100 — 01000). By plotting the point
of intersection of the trajectory with this hyperplane as the value of 7 is varied for
different initial conditions, the regions of parameter space for which each of the 8
cycles are stable can be observed. Projections of the bifurcation diagram constructed
in this way onto the y,-axes are shown in fig 3.9. In such diagrams, more than one
branch for a given vaiue of 7 indicates that either there are multiple cycles, or that one
or more cycles have multiple crossings of F,. By using different initial conditions, it
is possible to distinguish the two cases. In fig 3.9, the multiple branches all represent
multiple cycles. We have numerically analyzed the bifurcations shown here. Briefly,
the bifurcation occurring near r=1.29 appears to be a subcritical Hopf bifurcation.
Increasing 7 above this value causes cycles 2 and 3 to lose stability (outer branches).
Cycle | maintains its stability through this point (inner branch). Near r=1.66, an

exchange of stability from cycle 1 to cycle 4 occurs. Cycles 5 and 6 gain stability

"“In the field of nonlinear dynamics the face F; is known as a F incaré section For a discussion
see Guckenheimer and Holmes 1983
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near 7=1.79 in a bifurcation that is similar to that occuring with cycles 2 and 3 fou

7=1.29. Cycles 7 and 8 are stable for values of r¢(1. 1.25).

3.4.3 Aperiodic Dynamics in 6-D Networks

Example 4.

Consider the network shown in Fig. 3.16A with N-6, n, -2. 7 1.5. To charac
terize the dynamics, we consider the (N-1)-dimensional face, /F,, defined by y, " and
72=0, §:=0, §,=0, §-=1, §,=0 that is repeatedly crossed by the solution trajectory."’
This system shows aperiodic dynamics. In Fig. 3.10B we plot a projection of the
dynamics in the y,-y, plane, and in Fig. 3.10C" we give density histograms of the
successive values of y, on F,. Figure 3.11 shows how neighboring initial conditions
on F, diverge over time. Starting from 5000 different initial conditions on /7 in which
y2(t,) was varied and all other variables were kept constant, we plot the values of y,
on the 1Y, 2", 10" and 20" returns to F, versus y(f.) (left panels) and the cor
responding density histograms (right panels) The approach to an invariant deasity,
and the observation of the same invariant density found by following a single trajec
tory, Fig. 3.10C, co.stitute numerical evidence that this system is ergodic and has a
unique invariant density, two features common to many chaotic systems (Lasota and
Mackey, 1985). The same density is a'so ohserved with many randomly chosen initial
conditions after a sufficient number of returns to F,.

A consideration of the associated state transition diagram on the 6-cube (not
shown), shows that the network structure in Fig. 3.10A allows dynamics in 41 of the
64 orthants of phase space. The trajectory found from numerical simulation visits
each of these 41 orthants. In 6 of the orthants, all the flow is forced to an adjacent

orthant. For example, all trajectories in the orthant 101000 must v.sit subsequent

54 e. the face F separates the orthants defined by 100010 and 000010
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Figure 3.9. Bifurcation diagram for returns to the face F3 and values of 7 from 1.001
to 1.999 in steps of 0.001. Each panel (A-D) shows the projections onto the different
axes.
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Figure 3.10 (A) Schematic diagram of a neural network composed of 6 elements. (B)
Dynamics in the y,~y, plane. (C) Histogram giving the density of y, on 5000 successive
to the axis hyperplane, F,, defined by y; = 0, j» = 0,
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Figure 3.11 (left panels) The value of y, on successive returns to ¥, from an initial
condition of y; = 0.0, y3 = ~0.017411, y, = —0.207825, y5 = 0.122799, ys = —0.336493
and 5000 equally spaced values of y; on the (A) 1%, (B) 2%, (C) 10** (D) 20'* returns.
(right panels) The density histograms corresponding to the return values of y2 shown in
the left panels. There is convergence to the same invariant density found from a single

trajectory (fig. 3.10C).
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orthants in the sequence 101000 —» 111000 - 011000 — 011100, In the other 35

orthants of the attractor, the flow is not restricted to a unique orthant. Over the
time intervals that were examined, almost all of the allowed transitions based on Fig
3.10A were observed (4 transitions that are allowed were not observed). This shows
how the state transition diagram can be used to give information about the symbolic
dynamics in the differential equations during chaotic dynamics.

Example 5.

We consider another example of a 6 element network (n,=3) that exhibits aperi-
odic behavior for some parameters (see Appendix 3.1). A projection of the attractor
onto the y,-y, plane is shown (fig. 3.12A). We consider a face, JF, separating the or-
thants defined by 011011 and 010011. Figure 3.128,C shows the density histograms
for a single variable y, on 2000 successive returns to -, and for the times between
successive returns. We also consider the evolution of the density histograms for suc
cessive returns to JF- for a set of 2000 initial conditions in which y, was varied, and
the other variables were held constant (as in example 4). Figure 3.13 shows that by
the 20" return, the histograms have reached a density that is the same as that of a
single trajectory (fig. 3.12B).

Now we consider the effects of varying 7 on the dynamics of this network. The
dynamics are tracked by plotting the values of ¥, on 30 successive crossings of F- as
T is varied. Figure 3.14 shows the i1esulting bifurcation diagram. As 7 is increased
from r=1.2, the dynamics change from a simole limit cycle to aperiodic hehavior.
For larger values of 7, a limit cycle is evident again. In the aperiodic region, there are
at least 4 periodic windows, spaced nearly symmetrically about r—1.5. This simple

example shows how 7 can influence the network dynamics.
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Figure 3.12. (A) Shows a projection of the dynamics onto the y,-y, plane for 7=1.5.
(B) shows the density histogram of y; for 2000 successive crossings of F; on a single
trajectory. (C) shows the density histogram for the times between successive crossings

of Fs.
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Figure 3.13. Shows the density histograms of y, for the 1st, 2nd, {rd, 4th, 5th, 10th,
20th. and 40th returns to F; using 2000 different initial condition: in which equally
spaced values of y, were chosen between -0.2 and 0, with y,= -0.297862, y,=0.478693,
y3=:0.0, y5=0.028766 and ys=0.270764.




0.04

Ya

1.2 1.4 1.6 1.8

Figure 3.14 Bifurcation diagram showing the value of y, on 30 successive crossings of
F; after a sufficient transient, for different values of 7.
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3.4.4. Aperiodic Dynamics in a Network of 50 elements

Up to now, the networks considered have consisted of relatively few elements. In
this example, we consider the dynamics of a larger network, consisting of 50 elements
with 7,=5 and 7=2.5 (Appendix 3.1). In this network, in a preliminary search of
100 randomly chosen initial conditions, no steady states or cycles were found using
the search criteria outlined in section 3.4.1. As in previous examples, the value of a
single variable on the return of the trajectory to an (N-1)-dimensional face, F,, is
considered (Appendix 3.1). Figure 3.15A shows the density histograras of y, on F,
for 500 successive returns of a single trajectory (left panel), as well as that for the
times between returns (right panel). Figure 3.15B shows the density histograms for
¥, and the return times for a 1* return map constructed by taking initial conditions
on F; that differed only in that y, was varied from -3.0 to -1.0 (as in example 4)
These density histograms are similar to those of a single trajectory (fig. 3.15A) after
only one return to Fy. Calculating a 1* return map for a smaller interval of y,,
between -2.1 and -1.9, again reveals similar density histograms (fig. 3.15C). This
example shows not only that this system is ergodic, but that the division of phase
space is such that only a small number of passes through phase space is required for
nearby trajectories to diverge. Further, the division of phase space has scale invariant

properties.

3.4.5. A link between the PL equations and a continuous analog.

Since the step function nonlinearity in Eq. (6) is generally considered unrealistic
as a model for most biological processes, it is important to clarify the dvnamics when
continuous nonlinear functions are used in Eq. (5). For example, from numerical
studies it is known that the limit cycle in Example 2, is also found when continuous

nonlinear functions that approximate Eq. (6) are used (Glass, 1977h). We now
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Figure 3.15. (A) I eft panel shows the density histogram of y; on F5 for 500 successive
crossings of a single rajectory; Right panel shows the density histogram for the corre-
sponding times between successive crossings of Fg. (B) Shows the density histogram of
y1 on the 1" return raap constructed for 500 different initial conditions on Fg in which
the value of y;, was viried between -3.0 and -1.0

(left panel). The den:ity histogram of the corresponding crossing times is shown in the
right panel. (C) Simular density histograms as those directly above, but the 1% return
map is constructed using initial values of y; between -2.1 and -1.9.



investigate the dynamics of the network described in Example 4 when the continuous

gain function,

I + tanh( 3,
G (y,) = o)

(1)

where 3 is a positive constant, is substituted in Zq. (5). Equation (14) approaches
a step function in the limit of infinite gain, 3 -» co. A 4'" order Runge-Kutia
integration scheme (At = 0.01) was used to solve the equations. Figure 3.16 shows
several projections onto the y,~y, plane for different values of 3. The aperiodic
dynamics found with 3 = 100 is similar to the dynamics in the PL equations (compare
with Fig. 3.10B). This similarity is also evident in the density histograms of y, on
F..

As the value of 3 increases, the continuous nonlinear system exhibits a complex
sequence of behaviors including bistability, period doubling bifurcations and periodic
windows. By using a method similar to that described for Example 3, a bifurcation
diagram was constructed for values of 3 between 6.0 and 10.0 (fig. 3.17). The value
of y» is plotted as the solution trajectory crosses the y,=0 hyperplane in a positive
sense. For each value of 3, a transient of 300 crossings was allowed before the next 30
points were plotted. For values of 8 less than 7, a bistability of two unique cycles was
evident. This is not shown in the bifurcation diagram, as the bifurcations occurring
in only one branch were followed (z.e. by taking a specific initial condition). The
apparently discontinuous bifurcation occurring near S="7.3 is due to an overiap of
the basins of attraction of the two stable attractors. Near 3=7.4 there are multiple
period doublings, followed by a region where the dynamics appear chaotic. This
is further evidence that the dynamics occurring in the analogous PLPF system are

chaotic (Glass and Mackey 1988).
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3.5. DISCUSSION

The advantages of the PL equations are that numerical integration is rapid, and
that the analysis of their dynamics is facilitated. For example, for cyclic attractors,
the analytic computation of the return map enables an analytic demonstration of
criteria for the dynamics to converge to a unique limit cycle oscillation in the N-
dimensional differential equations. We have not yet been able to derive criteria for
the chaotic dynamics illustrated here. However, it follows immediately from Eq (10)
and (11) that within each orthant all trajectories converge. Thus, the divergence
of neighboring trajectories is introduced by dramatic changes of direction resulting
when 2 neighboring trajectories leave a single orthant across 2 different open common
boundaries and then are directed to 2 different focal points. We have given examples
showing that chaotic dynamics can be found in comparatively small dimensions (sce
also Kepler et al. 1990) but we do not have a proof that N=6 is the sinallest dimension
in which such behavior is found in these systems. The presence of chaotic dynamics
in similar systems containing a large number of elements has previously been shown
using a mean field approximation (Sompolinsky et al. 1988) and frequency domain
analyses (Kiirten and Clark 1986).

The present observations have implications for a popular class of genetic control
networks called Kauffman nets (Kauffman 1969). In the original model, Kauffman
described these random neiworks as consisting of binary genetic elements that in-
teracted in discrete time. The synthesis of each element is controlled by K other
elements in a manner described by a randomly chosen Boolean function. The dy-
namics of these networks were limited to relatively short cycles and steady states,
even for large systems (N =~ 1000) as long as K was small (v.r. 2 or 3). Kauffman

proposed that these random networks provided a biologically plausible explanation
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for such behaviors as cell division and cell diversity. It was also proposed that the
dynamics of these networks would be similar for continuously varying elements inter-
acting in continuous time. The networks described in this chapter can be considered
a subset of continuous-time continuous-state Kauffman nets. It is thus interesting to
observe very complicated dynamics in these networks, even in those consisting of only
a few elements. Preliminary studies have shown that chaotic-like dynamics can also

be observed in more general continuous-time continuous-state Kauffman nets.

3.6. CONCLUSIONS

This chapter describes a piecewise linear equation that provides a mathemati-
cal model for complex biological networks. Analytic criteria are given to establish
steady states and limit cycle oscillations, and numerical results demonstrate chaotic
dynamics. It is well known that real neural and genetic systems exhibit dynamic
fluctuations of activity. Despite this observation, clarification of the role of complex
oscillations and chaotic dynamics in biological functions such as the control of the
cell cycle (Kaufflman, 1969) and perception (Skarda and Freeman, 1987; Gelperin and

Tank, 1990) still remains a formidable challenge for future research.
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Appendix 3.1

The 6-element network described in Example 5 is given below. The connection

matrix is listed in 6 rows and 6 columns, where w,, is the value in the i'" row and j

column.

010011
000111
110010
111000
110100
011100

Similarly, the connection matrix of the 50-element network considered in section
3.4.4. is given below.

01000101000100000000000000000000000000000000100000
10000100010000000000000000000000010000000000000100
00000000000000001000000000?00000001000000000100010
00000000000001000001010000000010000100000000000000
000100100000000000000000000000000000001 10000000001
010000010000000000100100002000000000000000<1020000
00000000010000000000010100000000010000000000100000
00001000000000000000100000001000010000000000010000
00100000000000000100001001000000000000000000001000
00000000000000100000010010000000100000000000001000
000000000000001001001000100000000006010000000000000
00010000000000100000000000000001001010000000000000
00001000000001010000000001000000000000000000001000
00010000010000000000000000000000000000000110001000
00001001000000000000101000000000000000100000000000
00000000000000100000000000000010001000000000110000
00000000010000000010000000000000000000010101000000
10010000000000000000000000010010000000000010000000
00000000000000000000000000000100000000011001010000
0010000C000000010000011000000000000001000000000000
00000100000000000000000000000010100000010001000000
00001000000000000000000000000001000001010100000000
00000010000000100000000100000000000000001010000000
000000000000001000001000000000100000£1000000000000
00000001000000009000010000010100010000060000000000
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00001000000000010000000000000000000000010010010000
00000000000000001010000000000100000001000000001000
00001000011000000000000000000000000000000001000100
00000010000000000010001000000000000000000010010000
00000110000000000010000000000000010100000000000000
00000010000000000¢0000010100000000000000100001000C
11000000000010000000000000013000000000000000100000
00000000000100010001100000000000001000000000000000
09000010100000010000000000000100001000000000000000
00001000000100000000001000001100000000000000000000
00000001001001000000000000000010001000000000000000
000000001000010060°00000000100000100000000010000000
00000000001000000000000000010001010100000000000000
000000000000000001010000100000000000100000G1000000
00100000001000000000001000000001000000000000001000
000000000000000900100000010v01000000100060001000000
00000000000000010000000010000011000000010000000000
00000001000000000000001001010000000000000100000000
00000000000001000000000000000100000000110000000010
000000000001000000100001000000100001000606000000000
00000000010010101001000000000000000000000000000000
00000000000000000010000000001000001000000001000001
00000000000000001010000000010000000010010000060000
010000000001 10000000001000000000010000000000000000
00010000000000000000000000000100000001100000001000

The following 50 numbers (left to right) are the values of z, that define Fg, as well
as the initial condition on F; that was used for the return maps for the 50-element

network described in section 3.4.4.

-2.438121 1.425150 -0.489371 0.000000 -0.433626
0.556166 1.441740 1.353951 0.264749 -0.557145
0.967273 1.419969 -0.398455 0.394705 0.449118
0.007808 0.763345 0.662820 -0.491387 1.481146
-0.982777 -0.436926 -0.897041 0.017299 -0.469791
0.998168 -1.487464 1.360035 1.143791 0.485442
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¢ 3

-0.289051 -0.458907 0.484412 -0.508091 -0.629091
-0.915406 -0.866027 0.468788 0.966335 0.465587
0.743734 0.865069 -0.953974 -2.421832 0.961426



CONCLUDING REMARKS

I have taken two differcnt approaches to the study of the neural networks involved
in respiratory rhythm generation, and the behavior of neural networks in general.

First, I have considered the effects of perturbing the respiratory rhythm in cats
using superior laryngeal nerve stimulation. Two different stimulus protocols were
used, phase resetting and fixed delay stimulation. The results of these experiments
were used to evaluate a simple model of neural rhythm generation. This model was not
based rigorously on the known organization of the respiratory centers, but is similar
in principle to a proposed three-phase theory of respiratory rhythm generation. The
simple model could account for experimentally observed phase resetting data, but
was unable to account for some of the complex responses observed in the experiments
when stimuli were delivered at a fixed-delay. Stimulus effects with longer time courses
must be present for such behavior to occur. The comparisons between the experiments
and the model suggest that models of rthythm generation should be evaluated with
other techniques in addition to phase resetting.

The second approach I have taken is to investigate the dynamics of a class of
piecewise-linear (PL) neural network models. These systems exhibit steady state
and periodic dynamics. I have demonstrated that even for relatively small networks
{N > 6), chaotic dynamics can be found. The study of these networks is greatly
simplified by their PL nature — not only because PL analytical solutions can be
obtained, but also because previously described techniques for the analysis of steady
states and cycles can be applied to these systems. Thus, these systems can be useful in
the study of the dynamics of more general models, especially those describing neural

rhythm generation.
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