
Embedding-based

Automated Assessment of Domain Models

Kua Chen

Department of Electrical and Computer Engineering

McGill University, Montreal

August, 2024

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Science

©Kua Chen, August, 2024

Abstract

Domain modeling is an essential part of software engineering and serves as a way to represent

and understand the concepts and relationships in a problem domain. Typically, students

learn domain modeling by interpreting natural language problem descriptions and manually

translating them into a domain model such as a Unified Modeling Language (UML) class

diagram. Instructors evaluate these student-generated diagrams manually, comparing them

against a reference solution and providing feedback. However, as enrollment in software

engineering courses continues to rise, the manual grading of numerous student submissions

becomes an overwhelming and time-intensive task for instructors. Recently, Large Language

Models (LLMs) have exhibited impressive ability in domain understanding capabilities. Due

to the lack of automated assessment, many automated modeling approaches rely on the

manual evaluation of domain models during research on the modeling ability of LLMs. The

manual evaluation process is time-consuming and hinders further related research to match

the progress of ever-changing LLMs. Therefore, there is a need for automated assessment of

domain models which alleviates instructors of the burdensome grading process and benefits

automated modeling research. In this thesis, we propose a novel embedding-based approach

that automatizes the assessment of domain models in a textual domain-specific language,

against reference solutions created by modeling experts. The proposed algorithm showcases

remarkable proficiency in matching model elements across domain models, achieving an

impressive F1-score of 0.82 for class matching, 0.75 for attribute matching, and 0.80 for

relationship matching. Furthermore, our algorithm yields grades highly correlated with

manual assessments, with correlations exceeding 0.8 and mean absolute errors below 0.05.

i

However, of the statistical tests related to grades, only those related to attributes show

no statistically significant di�erence when compared to manual grading. In contrast, those

related to classes and relationships reveal statistically significant di�erences, highlighting

areas for potential improvement.

ii

Résumé

La modélisation de domaine est une partie essentielle du génie logiciel et sert de moyen de

représenter et comprendre les concepts et relations dans un domaine problématique. Typ-

iquement, les étudiants apprennent la modélisation de domaine en interprétant des descrip-

tions de problèmes en langage naturel et en les traduisant manuellement en un modèle de

domaine tel qu’un diagramme de classes UML. Les instructeurs évaluent ces diagrammes

générés par les étudiants manuellement, en les comparant à une solution de référence et en

fournissant des commentaires. Cependant, avec l’augmentation des inscriptions aux cours

de génie logiciel, la notation manuelle de nombreuses soumissions d’étudiants devient une

tâche écrasante et intensive en temps pour les instructeurs. Récemment, les grands modèles

de langage (LLM) ont montré une capacité impressionnante à comprendre les domaines. En

raison du manque d’évaluation automatisée, de nombreuses approches de modélisation au-

tomatisée reposent sur l’évaluation manuelle des modèles de domaine lors de la recherche sur

la capacité de modélisation des LLM. Le processus d’évaluation manuelle est chronophage

et entrave la recherche connexe pour suivre les progrès des LLM en constante évolution. Par

conséquent, il est nécessaire d’avoir une évaluation automatisée des modèles de domaine qui

soulage les instructeurs de la tâche fastidieuse de notation et profite à la recherche sur la

modélisation automatisée. Dans cette thèse, nous proposons une approche novatrice basée

sur l’incorporation qui automatise l’évaluation des modèles de domaine dans un langage

spécifique au domaine textuel, par rapport à des solutions de référence créées par des ex-

perts en modélisation. L’algorithme proposé démontre une compétence remarquable dans la

mise en correspondance des éléments de modèle entre les modèles de domaine, atteignant un

iii

impressionnant score F1 de 0.82 pour la mise en correspondance de classes, 0.75 pour la mise

en correspondance d’attributs et 0.80 pour la mise en correspondance de relations. De plus,

notre algorithme produit des notes fortement corrélées avec les évaluations manuelles, avec

des corrélations dépassant 0.8 et des erreurs absolues moyennes inférieures à 0.05. Cepen-

dant, parmi les tests statistiques liés aux notes, seuls ceux concernant les attributs ne mon-

trent aucune di�érence significative par rapport à la notation manuelle. En revanche, ceux

concernant les classes et les relations révèlent des di�érences statistiquement significatives,

soulignant des possibilités d’amélioration.

iv

Acknowledgements

I want to extend my deepest gratitude to my respected supervisors, Professor Gunter Muss-

bacher and Professor Dániel Varró, whose generous support, valuable guidance, and insightful

feedback have been pivotal throughout my master’s studies. I have learned about them since

my undergraduate years, and it is truly an honor to have them as my supervisors during my

graduate studies. Their expertise and encouragement have profoundly shaped my research

and refined my ideas.

I also want to thank my dedicated lab mates and co-workers: Boqi Chen and Yujing Yang.

Boqi Chen is a Ph.D. candidate who has been a wonderful mentor in shaping my academic

life. Yujing Yang is a master’s student and a friend with whom I share a longstanding

friendship. Their assistance and collaboration were essential during my research. Their

ongoing support was vital in sustaining my motivation and focus throughout this journey.

My heartfelt appreciation extends to our esteemed industrial collaborator, Dr. Amir

Feizpour, the CEO and co-founder of Aggregate Intellect, and to our funding source, Mitacs

Canada, for their generous financial support. Without their generous funding, this work

would not have been possible.

Lastly, I am sincerely grateful to my beloved family and my girlfriend, Qinyi Wang.

Their unconditional love, understanding, and support have been the bedrock of my academic

pursuit. Their faithful encouragement and belief in me have fueled my determination and

drove me forward.

v

Table of Contents

Abstract . ii

Résumé . iv

Acknowledgements . v

List of Figures . xi

List of Tables . xiii

List of Listings . xiv

List of Abbreviations . xv

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Research Questions, Objectives, and Contributions 4

1.3 Thesis Organization . 6

1.4 Summary . 8

2 Background 9

2.1 Domain Modeling . 9

2.1.1 Domain Model Elements . 10

2.1.2 Domain Model Representation . 11

2.2 Embeddings . 12

2.2.1 Word Embeddings . 12

2.2.2 Sentence Embeddings . 16

2.2.3 Cosine Similarity . 17

vi

2.3 Graph Similarity Measures . 18

2.4 Evaluation Metrics . 19

2.5 Summary . 21

3 Method 22

3.1 Overview . 22

3.2 Pre-processing . 24

3.3 Stage 1: Class Matching . 28

3.3.1 Stage 1.1: Class Matching within Types 29

3.3.2 Stage 1.2: Class Matching with All Information 34

3.4 Stage 2: Attribute Matching . 35

3.4.1 Stage 2.1: Attribute Matching Between Matched Classes 35

3.4.2 Stage 2.2: Attribute Matching Between Any Classes 37

3.4.3 Stage 2.3: Reference Attribute to Candidate Class Matching 38

3.4.4 Stage 2.4: Reference Class to Candidate Attribute Matching 38

3.5 Stage 3: Relationship Matching . 38

3.6 Stage 4: Result . 40

3.7 Grading . 42

3.8 Summary . 42

4 Algorithm Evaluation 44

4.1 Evaluation of Generated Matches . 45

4.1.1 Human Matches . 45

4.1.2 Comparison of Matches . 46

4.2 Evaluation of Generated Statistics . 51

4.3 Summary . 52

5 Experiments 53

5.1 Experimental Settings . 54

vii

5.1.1 Modeling Problem and Solution . 54

5.1.2 Test Set . 54

5.1.3 External Libraries . 54

5.2 RQ 1: Matching Performance of the Algorithm 55

5.3 RQ 2: Grading Performance of the Algorithm 57

5.3.1 RQ 2.1: Internal Comparison . 58

5.3.2 RQ 2.2: External Comparison . 63

5.4 Discussion . 66

5.4.1 RQ 1 . 66

5.4.2 RQ 2 . 66

5.5 Threats to Validity . 68

5.5.1 Internal Validity . 68

5.5.2 External Validity . 68

5.5.3 Construct Validity . 69

5.6 Summary . 69

6 Related Work 71

6.1 Domain Model Evaluation . 71

6.2 NLP for MDE . 74

6.2.1 Automated Domain Modeling . 76

6.2.2 Automated Goal Modeling . 76

6.2.3 Large Language Models . 77

6.3 Use Cases of Knowledge Representation . 80

6.3.1 Knowledge Graph for Explainable Information Retrieval 80

6.3.2 Taxonomy . 84

6.3.3 Named Entity Recognition (NER) . 87

6.4 Summary . 88

viii

7 Conclusion 89

7.1 Contributions and Findings . 89

7.2 Opportunities for Future Research . 92

A Modeling Problem Description and Reference Model 94

A.1 Problem Description . 94

A.2 Reference Domain Model . 95

ix

List of Figures

2.1 Example domain model (left) and its textual representation (bottom right)

with the problem description (top right) . 10

2.2 EBNF format of a domain model . 11

2.3 The skip-gram model architecture . 14

2.4 Examples of graphical representation of cosine similarity 18

3.1 Overview of the proposed algorithm . 23

3.2 Overview of the data structure . 25

4.1 Workflow of evaluating matches . 47

5.1 Three plots showing class precision, recall, and F1-scores generated by the

algorithm and generated by the human . 59

5.2 Three plots showing attribute precision, recall, and F1-scores generated by

the algorithm and generated by the human 59

5.3 Three plots showing relationship precision, recall, and F1-scores generated by

the algorithm and generated by the human 59

5.4 Internal comparison of grades . 60

5.5 External comparison of numerical grades . 64

5.6 External comparison of letter grades . 64

6.1 An example of the hierarchical relationship between hyponyms and hypernym

(adapted from [1]) . 84

x

A.1 Class diagram of the reference domain model 98

xi

List of Tables

3.1 Example of domain model representation . 26

4.1 Scheme for comparing two domain models [2] 45

4.2 Di�erent scenarios of evaluating matches, where a, b, and c represent model

elements . 49

5.1 Performance scores for matching over 20 student submissions; highest values

in each column are highlighted in blue, while lowest values are highlighted in

red . 56

5.2 Average performance scores for matching each model element 56

5.3 The number of domain models which receive algorithm-generated results greater

than or equal to the human-generated results 60

5.4 The Mean Absolute Error (MAE) between algorithm-generated data and

author-generated data; MAE values closer to 0 signify better performance,

while a correlation (Pearson correlation) approaching 1 indicates a stronger

alignment between the datasets . 61

xii

5.5 Inferential statistics for algorithm and human grading results; Normality refers

to if data are normally distributed; SD refers to if there is a statistically

significant di�erence; the p-values in the Algorithm and Human columns are

derived from the Shapiro-Wilk test for normality for each data group; the

p-values in the T-test / U-test column are derived from either a T-test or a

Mann-Whitney U test (with the U-test specifically applied to the Attribute-

Recall row) . 62

5.6 Grading scheme . 63

6.1 Summary of automated domain model assessment 72

6.2 Summary of NLP research used for MDE; labels in the second column indi-

cate: Part-of-speech Tagging (POS), Named Entity Recognition (NER), Em-

beddings (E), Large Language Model (LLM); Generation indicates complete

model generation and Assistant indicates modeling assistant 75

xiii

List of Listings

3.1 Snippet of the hash map of classes . 27

3.2 Snippet of the list for relationships . 27

3.3 Pseudo-code for class matching process . 29

3.4 Example of class matches . 34

3.5 Pseudo-code for relationship matching . 39

A.1 Reference domain model in EBNF format 96

xiv

List of Abbreviations

EBNF Extended Backus-Naur Form

FN False Negative

FP False Positive

GED Graph Edit Distance

IR Information Retrieval

KG Knowledge Graph

LLMs Large Language Models

MAE Mean Absolute Error

MDE Model-driven Engineering

ML Machine Learning

NLP Natural Language Processing

TN True Negative

TP True Positive

UML Unified Modeling Language

NER Named Entity Recognition

xv

Chapter 1

Introduction

This chapter introduces the thesis starting by stating the context and motivation of domain

modeling and domain model assessment in Section 1.1 and then describing the proposed

research questions, objectives, and contributions for this thesis in Section 1.2. In the end,

this chapter will provide an overview of the organization of the thesis in Section 1.3.

1.1 Context and Motivation

Domain modeling is a core process in software engineering that builds a domain model

from various sources of information, including documents, stakeholder interactions, etc., to

encapsulate the intricacies of a system into a coherent representation. A domain model

o�ers a high-level abstraction of the system’s structure to support the system’s behavior and

functionality tailored to the specific requirements of the target domain. It is represented as

a UML class diagram [3] which typically comprises a set of system classes, a set of attributes

of every class, and has relationships between classes but excludes any operations in classes.

These relationships provide valuable insights into the interactions within the system. Classes,

attributes, and relationships are called model elements. A typical software development life

cycle begins with the design of a domain model with various sources of information. This

domain model acts as a blueprint for the software. Developers then utilize code generation

1

tools to create skeleton code in Java or other programming languages based on the domain

model, providing a foundation for implementing the business logic.

Software engineering students usually learn domain modeling by interpreting natural lan-

guage problem descriptions and manually building a domain model by incrementally com-

bining model elements together. These domain models need to be graded so that students

can enhance their modeling ability. In university undergraduate-level modeling exercises,

instructors play an essential role in assessing domain models created by students. Typically,

the course instructor creates a reference domain model, against which each student submis-

sion is graded. The grading process is usually a matching process. Course instructors usually

attempt to identify the occurrence of model elements in the reference model presented within

the student’s model. As the number of students taking software modeling courses increases,

the grading gradually becomes an overwhelming workload for course instructors. This serves

as the first motivation for researching on automated domain model assessment.

The second motivation for developing the automated domain model assessment is to fa-

cilitate research progress on domain modeling. In the research of domain modeling, most

researchers have to evaluate the domain models generated from their proposed techniques.

The manual evaluation is typically time-consuming and highly dependent on human exper-

tise. This evaluation process limits the number of samples in the evaluation and requires

researchers to dedicate a significant amount of time for manually evaluating the quality

of generated models. This problem is even more significant when Large Language Mod-

els (LLMs) are used for automated domain modeling. LLMs have recently become a hot

topic of many research areas since they demonstrated remarkable proficiency in language

comprehension, generation, reasoning tasks, and especially powerful generalizability to tasks

beyond natural language processing [4]. LLMs can perform di�erent tasks without super-

vised training on the specific task using carefully designed input (called prompt). Using

di�erent prompt engineering [5] techniques, LLMs can achieve impressive performance on

di�erent tasks by only using a few labeled examples in the prompt. Their advanced ca-

pabilities represent a significant advancement in natural language processing, o�ering new

2

opportunities for applications in domain modeling. Extensive research has been denoted to

investigate the modeling ability of LLMs and researchers can generate domain models more

easily and rapidly with the help from LLMs [2, 6, 7]. However, they usually have to spend

a large amount of time in evaluating the generated domain model manually due to a lack

of a proper automated assessment of generated domain models. This issue hinders the re-

search progress on investigating the modeling ability of LLMs. For example, in our previous

research attempt [2], we employed a matching-based evaluation scheme to manually evalu-

ate domain models generated by LLMs. The tedious evaluation process prevented us from

investigating other directions of using LLMs due to time constraints. The aforementioned

observations emphasize the necessity for an automated domain model assessment approach.

Before the era of LLMs, many approaches have attempted to automate the process of

evaluating domain models to mitigate this intensive manual e�ort [8–15]. However, these

approaches typically have one or two main limitations: (1) they require significant technical

debt to implement, or (2) these approaches typically require the input model in a specific

format, such as Ecore files. A domain model can be expressed by graphical or textual

modeling languages such as UML [3], Umple [16], and Ecore [17]. These languages have

strict syntax rules for representing various model elements. However, students may make

syntactic mistakes while still being correct in the rest of the model, while existing evaluation

approaches do not work for these scenarios. Similarly, because LLMs are trained on a large

corpus of text, it is di�cult to constrain them to adhere to such strict syntax, particularly

when modeling examples may infrequently appear in the training set. As such, no existing

approaches can smoothly perform fully automated domain model assessments to incorporate

the era of LLM-empowered research on domain modeling.

Meanwhile, existing automated domain model assessment approaches rely on rule-based

techniques for grading, while the machine-learning-based approaches applied are rather rare.

One reason behind this is the lack of properly labeled training examples. Additionally, any

domain model can be represented as graphs (not only the ones already in graphical notation).

3

Graph comparison techniques are widely used to compare simple and complex graphs. As a

result, graph comparison techniques have been utilized for assessing domain models.

Problem Statement. This thesis aims to address the problem of fully automated

domain model assessment. It aims to derive a complete domain model assessment

algorithm from plain text input without any human interaction or supervised training

while aiming to reduce technical debt.

1.2 Research Questions, Objectives, and Contributions

To assist course instructors in reducing the grading workload for domain models in educa-

tional exercises, and to advance the research progress of LLM-empowered domain modeling,

this thesis proposes a novel algorithm for automatically assessing a domain model against

a reference domain model. The proposed algorithm takes two models as inputs: the can-

didate domain model to be assessed and the reference model which is usually created by

modeling experts. The algorithm iterates over all the elements in both models and performs

graph-based matching and checks. The proposed algorithm can automatically match model

elements between two models, assign a score to each element, and generate a final grade for

the candidate model to provide insightful assessments of domain models.

The matching process relies on text embedding and graph comparison. Di�erent word

embedding and sentence embedding techniques are employed to identify similarities between

model elements. The algorithm determines cosine similarities between each model element

pair using embeddings and subsequently identifies the optimal graph edit distance to match

elements. Once a match is established, the algorithm assigns a grade based on pre-defined

rules.

The algorithm employs a multi-stage process to match classes, attributes, and relation-

ships separately. Producing suitable matches for elements is essential for generating mean-

ingful assessments of domain models. After the matching process, the algorithm calculates

4

metrics for each type of model element and generates a final grade using weighted averages

of the metrics. This leads to the proposed research questions.

Research Questions

The fundamental mechanism in the proposed algorithm is to match model elements between

two domain models. Without a reasonable element matching, the algorithm would not

be able to produce grades that truly reflect the correctness of the assessed domain model.

Therefore, it is necessary to investigate whether the algorithm can match elements correctly.

RQ 1

What is the performance of the algorithm in matching a candidate domain model to

a reference model regarding classes, attributes, and relationships?

After the element matching process, the algorithm generates precision, recall, F1-scores,

and a final grade for each assessed domain model. Therefore, this thesis also wants to

investigate whether these generated statistics align with human-generated statistics.

RQ 2

To what extent do the algorithm-generated statistics compare with those produced by

human grading?

Objectives

The objective of this thesis is to propose and evaluate the feasibility of fully automating

domain modeling assessment using the proposed algorithm. Specifically, this thesis evaluates

the algorithm’s performance in matching model elements and generating grades for domain

models. Additionally, this thesis aims to identify both the advantages and limitations of the

approach for fully automated domain model assessment.

5

Contributions

Given two domain models, this thesis presents a novel approach for fully automated domain

model assessment using embeddings and graph comparison techniques. Compared to existing

methodologies, the proposed algorithm leverages word embeddings, sentence embeddings and

graph matching algorithms to match model elements, enabling automated domain model

assessment. It assigns scores to each model element and calculates precision, recall, and

F1-scores separately for classes, attributes, and relations. To the best of my knowledge, this

is the first kind of approach which applies a combination of embeddings and graph matching

for automated assessment of domain models. The specific contributions of this thesis are the

following:

• This thesis proposes a novel fully automated model element matching pipeline by

framing the automated domain model assessment as a graph matching problem.

• This thesis proposes a model based on hash maps for storing the matching information

generated by the algorithm.

• This thesis provides a new data set of 20 real student solutions for evaluating automated

domain model assessment. The data set includes detailed matching information of each

student solution, which can be used for validating the algorithm’s performance.

• An automated evaluation pipeline of comparing modeling matches is proposed and

utilized.

• This thesis conducts an experiment using 20 real student solutions to analyze the

precision, recall, and F1-scores of the algorithm.

1.3 Thesis Organization

This section provides an overview of the organization of the thesis.

6

• Chapter 2: This chapter provides background information and defines fundamental

concepts used throughout the thesis. This chapter explains domain model representa-

tion, embeddings, graph similarity measures, and evaluation metrics. I contribute to

the full chapter except for the domain representation which is adopted from our pre-

vious publication [2], a joint work with all authors of the paper. This paper conducts

a comprehensive investigation into the modeling capabilities of contemporary LLMs

and examines how prompts influence their e�ectiveness in generating domain models.

The co-authors of this paper include the supervisors of this thesis, Professor Gunter

Mussbacher and Professor Dániel Varró, as well as Yujing Yang, a master’s student,

and Boqi Chen, a PhD candidate, both of whom are students at McGill University

and share the same supervisors with me. Another co-author, José Antonio Hernández

López, is a PhD candidate who has a long-standing collaboration with our research

group.

• Chapter 3: This chapter presents the proposed algorithm and explains each compo-

nent in detail, including the matching mechanism with the usage of embedding and

graph similarity measures. It also covers the scoring for each element and the calcu-

lation of final grades. The proposed algorithm is designed and implemented by the

author of this thesis independently. I make a full contribution to this chapter.

• Chapter 4 This chapter demonstrates the evaluation procedure of the algorithm,

including the evaluation pipeline and calculation of metrics. The manual evaluation

procedure is adopted from our joint work [2]. The evaluation pipeline of comparing

matches and calculation of metrics are developed and written solely by the author of

this thesis.

• Chapter 5: This chapter focuses on addressing proposed research questions and dis-

cusses the experimental setup, dataset preparation, and results concerning the algo-

rithm. Towards the end, it also discusses threats to validity. The author makes a full

contribution to this chapter.

7

• Chapter 6: This chapter presents research related to this thesis, including a survey

of research on domain model assessment and Natural Language Processing (NLP) for

Model-driven Engineering (MDE). Additionally, other research activities conducted

during my master’s studies are discussed, including a joint publication on NLP [18].

Some of the related work on domain model assessment and NLP for MDE are referenced

from our joint publications [2, 7]. The author of this thesis contributes to the rest of

this chapter.

• Chapter 7: This chapter presents a summary of the key accomplishments of the thesis

and outlines future work. The author makes a full contribution to this chapter.

1.4 Summary

In conclusion, this chapter provides a comprehensive overview of the thesis. It begins by

explaining the context and motivation of automated domain model assessment in Section 1.1,

followed by the proposed research questions, objectives, and contributions in Section 1.2.

Finally, the organizational structure of this thesis is demonstrated in Section 1.3. In the

subsequent chapter, this thesis will delve into the fundamental concepts and techniques

upon which the algorithm is founded.

8

Chapter 2

Background

In this chapter, we describe the foundations for the relevant research areas of this thesis.

As a starting point, we define fundamental concepts and a representation of domain models

in Section 2.1. Subsequently, we examine the essential topics of embeddings (Section 2.2)

and graph similarity measures (Section 2.3), both of which form integral components of the

proposed algorithm. These discussions aim to provide a comprehensive understanding of the

building blocks essential for the development and application of the approach. To culminate

this exploration, we introduce evaluation metrics in Section 2.4, explaining di�erent levels

of evaluation.

2.1 Domain Modeling

In domain modeling, engineers typically convert a textual domain specification into a domain

model represented as a class diagram [3]. Domain modeling is a challenging and time-

consuming task that requires expertise and experience. A domain model uses a subset of

class diagram concepts to capture essential elements of a domain, their attributes, and their

relationships but does not cover elements related to a more detailed design (e.g., operations

and interfaces).

9

7H[WXDO� 'RPDLQ� 'HVFULSWLRQ�� 7KH� +HOSLQJ� +DQG� 6WRUH� �+�6�� FROOHFWV� VHFRQG� KDQG� DUWLFOHV� DQG� QRQ�
SHULVKDEOH�IRRGV�IURP�UHVLGHQWV�RI�WKH�FLW\�DQG�GLVWULEXWHV�WKHP�WR�WKRVH�LQ�QHHG��+�6�RSHUDWHV�LQ�PDQ\�FLWLHV�
EXW� HDFK� ORFDWLRQ� LV� UXQ� LQGHSHQGHQWO\�� 7R� LQFUHDVH� WKH� QXPEHU� RI� LWHPV� DYDLODEOH� IRU� GLVWULEXWLRQ�� +�6� LV
VHHNLQJ�WR�RIIHU�D�3LFNXS�DQG�'HOLYHU\�6HUYLFH� WR� LWV�FXVWRPHUV��ZKLFK�ZRXOG�DOORZ�D�UHVLGHQW� WR�VFKHGXOH�D
SLFNXS�RI�LWHPV�IURP�D�VWUHHW�DGGUHVV�RQOLQH�DW�WKH�+�6�ZHEVLWH��

$�UHVLGHQW�HQWHUV�D�QDPH��VWUHHW�DGGUHVV��SKRQH�QXPEHU��RSWLRQDO�HPDLO�DGGUHVV��DV�ZHOO�DV�D�GHVFULSWLRQ�RI
WKH�LWHPV�WR�EH�SLFNHG�XS��+�6�KDV�D�IOHHW�RI�SLFNXS�YHKLFOHV��ZKLFK�LW�XVHV�WR�FROOHFW�LWHPV�IURP�UHVLGHQWV��$
SLFNXS� URXWH� IRU� WKDW� GD\� LV� GHWHUPLQHG� IRU� HDFK� YHKLFOH� IRU�ZKLFK�D� YROXQWHHU� GULYHU� LV� DYDLODEOH��9ROXQWHHU
GULYHUV� LQGLFDWH� WKHLU�DYDLODEOH�GD\V�RQ� WKH�+�6�ZHEVLWH��7KH�URXWH� WDNHV� LQWR�DFFRXQW� WKH�DYDLODEOH�VWRUDJH
VSDFH� RI� D� YHKLFOH� DQG� WKH� GLPHQVLRQV� DQG� ZHLJKWV� RI� VFKHGXOHG� LWHPV�� $� VFKHGXOHG� SLFNXS� PD\� RFFXU
DQ\WLPH� EHWZHHQ� ����� DQG� �������$IWHU� FRPSOHWLQJ� DOO� VFKHGXOHG� SLFNXSV�� WKH� GULYHU� GURSV� RII� DOO� FROOHFWHG
VHFRQG� KDQG� DUWLFOHV� DW� +�6¶V� GLVWULEXWLRQ� FHQWHU�� 1RQ�SHULVKDEOH� IRRGV�� RQ� WKH� RWKHU� KDQG�� DUH� GLUHFWO\
GURSSHG�RII�DW�WKH�IRRG�EDQN��ZKLFK�WKHQ�GHDOV�ZLWK�WKHVH�LWHPV�ZLWKRXW�IXUWKHU�LQYROYHPHQW�IURP�+�6����

+�6

3HUVRQ

VWULQJ�QDPH
VWULQJ�DGGUHVV
VWULQJ�SKRQH1XPEHU
VWULQJ�HPDLO$GGUHVV

��DEVWUDFW!!
8VHU5ROH

� ���

9ROXQWHHU 5HVLGHQW

5RXWH

'DWH�GDWH

��DEVWUDFW!!
,WHP

VWULQJ�GHVFULSWLRQ
VWULQJ�GLPHQVLRQ
LQW�ZHLJKW
'DWH�UHTXHVWHG3LFN8S'DWH

6HFRQG+DQG$UWLFOH
VWULQJ�FRGH5),'
ERROHDQ�GLVFDUGHG
,WHP&DWHJRU\�FDWHJRU\

)RRG,WHP

'DWH

��HQXPHUDWLRQ!!
,WHP&DWHJRU\

%DE\�&ORWKLQJ
)ULGJH
���

���

���

GURS2IIV

�����GURS2II5RXWH

�����SLFN8S5RXWH

�

���

���

SLFN8SV

�

���

���

9HKLFOH

VWULQJ�GLPHQVLRQ
LQW�ZHLJKW5HVWULFWLRQ

�

&OLHQW
,WHP&DWHJRU\>@�QHHGHG&DWHJRU\

����

���

(QXPHUDWLRQV�
,WHP&DWHJRU\�%DE\B&ORWKLQJ��)ULGJH������
&ODVVHV�
+�6��
3HUVRQ�VWULQJ�QDPH��VWULQJ�DGGUHVV��VWULQJ�SKRQH1XPEHU��VWULQJ
HPDLO$GGUHVV�
DEVWUDFW�8VHU5ROH��
&OLHQW�,WHP&DWHJRU\>@�QHHGHG&DWHJRU\�
9ROXQWHHU��
5HVLGHQW��
'DWH��
)RRG,WHP��
6HFRQG+DQG$UWLFOH�VWULQJ�FRGH5),'��ERROHDQ
GLVFDUGHG�,WHP&DWHJRU\�FDWHJRU\�
9HKLFOH�VWULQJ�GLPHQVLRQ��LQW�ZHLJKW5HVWULFWLRQ�
DEVWUDFW�LWHP�VWULQJ�GHVFULSWLRQ��VWULQJ�GLPHQVLRQ��LQW�ZHLJKW��'DWH
UHTXHVWHG3LFN8S'DWH�
5RXWH�'DWH�GDWH�

5HODWLRQVKLSV�
��+�6�FRQWDLQ�
�,WHP
��+�6�FRQWDLQ�
�9HKLFOH
��+�6�FRQWDLQ�
�5RXWH
��+�6�FRQWDLQ�
�8VHU5ROH
��+�6�FRQWDLQ�
�3HUVRQ
��9ROXQWHHU�FRQWDLQ�
�'DWH
&OLHQW�LQKHULW�8VHU5ROH
9ROXQWHHU�LQKHULW�8VHU5ROH
5HVLGHQW�LQKHULW�8VHU5ROH
6HFRQG+DQG$UWLFOH�LQKHULW�,WHP
)RRG,WHP�LQKHULW�,WHP
��3HUVRQ�DVVRFLDWH�
�8VHU5ROH
�����&OLHQW�DVVRFLDWH�
�6HFRQG+DQG$UWLFOH
��9ROXQWHHU�DVVRFLDWH�
�5RXWH
��9HKLFOH�DVVRFLDWH�
�5RXWH
�����5RXWH�DVVRFLDWH�
�,WHP
�����5RXWH�DVVRFLDWH�
�6HFRQG+DQG$UWLFOH
��5HVLGHQW�DVVRFLDWH�
�,WHP

Figure 2.1: Example domain model (left) and its textual representation (bottom right)
with the problem description (top right)

2.1.1 Domain Model Elements

Figure 2.1 shows an example domain model for a system called H2S on the left based on the

problem description for which an excerpt is shown on the top right. It is a delivery and pickup

system. This example covers the key concepts of domain models such as classes and enu-

merations (e.g., Person and ItemCategory, respectively), attributes (e.g., name), and three

types of relationships among classes: a basic relationship called association (e.g., between

Resident and Item), a whole-part relationship called composition (e.g., between Volunteer

and Date), and an is-a relationship called generalization (e.g., between Item and FoodItem).

An association relationship is represented as an undirected link in the diagram. A compo-

sition relationship is represented as a directed link with a diamond shape near the parent

class. A generalization relationship is represented as a directed link with a triangle near the

parent class. Classes may be abstract (i.e., they cannot be instantiated). Multiplicities are

specified for associations/compositions and indicate how many instances of one class may

be related to instances of the other class (e.g., 0..1, 0..*). Role names may be specified for

the classes in an association/composition (e.g., pickUpRoute). Compositions may also be

specified by placing classes inside a composite class (e.g., H2S). In that case, multiplicities

are shown next to the name of the contained class (e.g., Person*). Association classes and

10

ʳ�����Ş�������ʴ�śśʰ�ƃʳ������������ʴƄ�ʳ�������ʴ�ʳ�������������ʴ
ʳ������������ʴ�śśʰ�ɑ������������ś�ɑ�ſʳ�����������ʴƀʫ
ʳ�����������ʴ�śśʰ�ʳ������ʴ�ɑſɑ�ʳ��������ʴ�ɑƀɑ
ʳ��������ʴ�śśʰ�ʳ������ʴ�Ŷ�ʳ������ʴ�ɑř�ɑ�ʳ��������ʴ
ʳ�������ʴ�śśʰ�ɑ�������ś�ɑ�ſʳ�����ʴƀʫ
ʳ�����ʴ�śśʰ�ƃɑ��������ɑƄ�ʳ������ʴɑſɑ�ƃʳ����������ʴƄ�ɑƀɑ
ʳ����������ʴ�śśʰ�ʳ���������ʴ�Ŷ�ʳ���������ʴ�ɑř�ɑ�ʳ����������ʴ
ʳ���������ʴ�śśʰ�ʳ����ʴƃɑƃƄɑƄ�ʳ������ʴ
ʳ�������������ʴ�śśʰ�ɑ�������������ś�ɑ�ƃʳ�����������ʴƄƋ�ƃʳ�����������ʴƄƋ�ƃʳ�����������ʴƄƋ
ʳ�����������ʴ�śśʰ�ʳ���ʴ�ʳ������ʴ�ɑ�������ɑ�ʳ���ʴ�ʳ������ʴ
ʳ�����������ʴ�śśʰ�ʳ������ʴ�ɑ�������ɑ�ʳ������ʴ
ʳ�����������ʴ�śśʰ�ʳ���ʴ�ʳ������ʴ�ɑ���������ɑ�ʳ���ʴ�ʳ������ʴ
ʳ����ʴ�śśʰ�ʳ������ʴ
ʳ���ʴ�śśʰ�ɑƋɑ�Ŷ�ʳ���ʴ�Ŷ�ʳ���ʴɑŜŜɑſɑƋɑŶʳ���ʴƀ

Figure 2.2: EBNF format of a domain model

n-ary associations are excluded since they are not always supported (e.g., Ecore [17] does

not support them).

2.1.2 Domain Model Representation

Our prior work on automated domain modeling [2] provides a comprehensive study on how

LLMs generate domain models from textual problem descriptions and examines how prompts

influence the quality of these models. The study finds that while LLMs demonstrate impres-

sive modeling capabilities, they still fall short of matching the expertise of human profes-

sionals. Motivated by this work, instead of depicting a domain model using a graphical view

or any other modeling language, the focus of this thesis lies in developing an algorithm built

upon the textual domain model representation established in our previous publication [2].

There are many other graphical or textual modeling languages such as UML [3], Umple [16],

and Ecore [17] to express a domain model. They typically include strict syntax rules and

domain-specific languages. The proposed algorithm builds on top of text embeddings which

are trained and are expected to be used in natural languages. The domain model represen-

tation is explained in detail in the following paragraphs.

11

Figure 2.2 presents our domain model representation in Extended Backus-Naur Form

(EBNF) format [19]. The specification defines enumeration and two types of classes, regular

and abstract, with the latter indicated by the keyword abstract. Enumeration literals are

specified in brackets for each enumeration, while attributes (if any) can be multi-valued in-

dicated by square brackets. Keywords identify three relationship types between two classes:

associate for an association relationship, inherit for a generalization relationship, and con-

tain for a composition relationship. Multiplicity is required and positioned before each class

name for association and composition. We ignore the role names for associations and compo-

sitions in the representation for simplicity. Figure 2.1 (bottom right) shows the H2S example

following the EBNF format.

2.2 Embeddings

Embedding is a means of representing objects like text, images, and audio as points in a con-

tinuous vector space where the locations of those points in space are semantically meaningful

to Machine Learning (ML) algorithms [20]. In the context of this thesis, embedding is used

to translate words and sentences, e.g., class names and relationships, into continuous vector

space so that they can be used for finding and matching their counterparts by measuring

cosine similarities between each pair.

2.2.1 Word Embeddings

Word embeddings, as the name suggests, is a means of representing individual words into

a fixed-length vector space so that the computer can understand. It has been proven to

be useful in many natural language processing tasks [21]. It is also useful in the context

of encoding model elements into vectors. Many researchers have dedicated considerable

e�orts to the development of word embeddings which can be broadly classified into 2 distinct

categories proposed by Almeida and Xexéo [21]. Prediction-based models leverage local data

like a word’s contextual information and bear a resemblance to neural language models.

12

Conversely, count-based models rely on global information, such as corpus-wide statistics

including word counts and frequencies.

Count-based Methods

This type of embedding method is based on certain statistical measures of global word

context co-occurrence counts and frequencies to derive word embeddings. These methods

aim to capture the semantic relationships between words by analyzing their patterns of

occurrence in a large corpus of text. Some examples of count-based methods include one-hot

encoding, Term Frequency-Inverse Document Frequency (TF-IDF), Co-occurrence Matrix,

Global Vectors (GloVe), etc. Among these methods, one of the most popular methods is

GloVe proposed by Pennington et al. in 2014 [22].

The GloVe model is an unsupervised learning algorithm for obtaining vector embedding

of words, leveraging global corpus statistics, specifically a word-word co-occurrence matrix.

Firstly, let us define X as the word-word co-occurrence matrix and Xij in this matrix is

the number of times word j appears in the context of word i. The authors propose a cost

function to learn word embedding with a global co-occurrence matrix:

J =
Vÿ

i,j=1
f(Xij)

1
wT

i wj + bi + bj ≠ log(Xij)
22

(2.1)

where

• wi and wj are the word embeddings to be learned while minimizing the cost function.

• bi and bj are biases.

• V is the size of the vocabulary.

• f(Xij) is a weighting function, giving importance to very frequent word pairs. It is

defined as:

f(x) =

Y
___]

___[

1
x

xmax

2–
if x Æ xmax

1 otherwise
(2.2)

13

,QSXW

Z�W�

3URMHFWLRQ

2XWSXW

Z�W��� Z�W��� Z�W��� Z�W���

Figure 2.3: The skip-gram model architecture

where xmax is a predefined maximum co-occurrence count (often set empirically), and –

is a weighting exponent (typically between 0.5 and 1.0) that controls the strength of the

weighting.

Overall, the GloVe model learns word embeddings by minimizing the square error between

the dot product of the word embeddings and the log of the co-occurrence counts Xij, weighted

by f(Xij).

Prediction-based Methods

Prediction-based methods are deeply linked with neural networks and utilize their internal

weights as the embeddings of the words. A word’s embedding is just the projection of the

raw word vector into the first layer of such models, the so-called embedding [21]. One of the

well-known methods belonging to this category is Word2Vec which can be further divided

into two specific techniques: continuous bag-of-words [23] and skip-gram [24]. For the former,

its main goal is to predict the center target word given its surrounding words by training

and using a neural network. For instance, given a sentence, The fox jumps over the dog, the

word jumps can be masked and the neural network is trained to predict this word with the

input The fox over the dog. The latter method, skip-gram, possesses a similar but flipped

mechanism. Given a word, a neural network is trained to predict the surrounding words, as

shown in Figure 2.3. We describe the mechanism in more detail in the following paragraphs.

The training objective of the Skip-gram model is to find word representations that are

useful for predicting the surrounding words in a sentence or a document [24]. Let us define a

14

window size of c and center word wt. This means there are c words on the left and right of wt,

i.e., W = [wt≠c...wt≠1, wt, wt+1, wt+c]. The objective of the Skip-gram model is to maximize

the average log probability:

max
Tÿ

t=1

ÿ

≠cÆjÆc,j ”=0
log p(wt+j|wt) (2.3)

where T is the total number of the vocabulary and p(wt+j|wt) means the probability of

observing word wt+j given the center word wt. This conditional probability is often modeled

using the softmax function:

p(wO|wI) = eu
Õ
T

wO
·uwI

qV
v=1 euÕT

wv
·vwI

(2.4)

where u and u
Õ are vector representations of words.

This paragraph explains the implementation details of getting the word embedding in the

Skip-gram model. There are two matrices U with dimension N by V and U
Õ with dimension

V by N , where N is the dimension of the embedding. Initially, the word wt is converted to

one-hot encoding into a vector x of dimension 1 by V . Then x is multiplied with the first

matrix U
Õ resulting in a vector y of dimension 1 by N . Then the vector y is multiplied with

the second matrix U and produces the final output, a vector z of 1 by V . Each element in z

represents a score or likelihood associated with each word in the vocabulary. Higher values

typically indicate a higher likelihood that a particular word is appearing in the surrounding

context of the input word wt. The rows of matrix U and the columns of U
Õ are the word

embeddings. They are initialized randomly and updated during training with stochastic

gradient descent. Eventually, a common approach for getting the final embedding is to take

the average of both embeddings from the 2 matrices.

Both continuous-bag-of-words and skip-gram methods were originally pre-trained on gen-

eral text sources like Wikipedia and Twitter. Therefore, when applying them to a specific

domain, they may misinterpret some words in such domain. For example, the word state is

usually associated with a country or nation, but in the domain of model-driven development

(MDE), the state is more associated with state-machine. In 2023, Hernández et al. [25]

15

applied these two embedding methods with a large corpus of modeling texts and released

WordE4MDE (Word Embeddings for MDE). They collected a corpus of MDE texts from

well-known modeling conferences and journals and trained a skip-gram model as described

above over this collected corpus. Since this skip-gram model specifically targets MDE, it is

used in this thesis.

2.2.2 Sentence Embeddings

Similar to word embedding, sentence embedding refers to the process of representing a sen-

tence as a fixed-size vector in a continuous vector space which a machine can understand.

The goal is to capture the semantic meaning of the sentence in a way that allows compar-

isons and computations to be performed easily. One type of sentence embedding is averaging

word embeddings. This type of method involves averaging or weighted averaging the word

embeddings of all the words in a sentence. While these methods demonstrate high simplicity,

they are unable to capture the relationships and nuances between words in a sentence. For

instance, “My dog likes my cat” would be embedded the same as “My cat likes my dog”.

Therefore, these methods are unable to handle the change of order of words. Moreover, they

are unable to consider the context of the word. The above-mentioned word embeddings are

usually static. Thus the sentence embedding based on them would be static as well. How-

ever, the same word or the same sentence represents di�erent meanings in di�erent contexts,

for example, in an ironic context.

Therefore, researchers introduced a more contextualized embedding approach. This well-

known type of contextual sentence embedding method is pre-trained model embedding, typ-

ically empowered by transformer models like BERT (Bidirectional Encoder Representations

from Transformers) [26] and GPT (Generative Pre-trained Transformer) [27]. These two

major types of transformers show a lot of training processes in common. Both types of

transformers are pre-trained on massive amounts of text data. The BERT models are pre-

trained to learn to predict missing words in sentences (also known as masked language

modeling), whereas GPT models are pre-trained to generate appending text (also known as

16

autoregressive language modeling). This pre-training process enables transformers to learn

various presentations of words in di�erent contexts. After pre-training processes, the trans-

former can be fine-tuned for specific downstream tasks such as text classification, information

retrieval, etc to obtain better sentence embeddings. For the BERT model, when a sentence

or sequence of tokens is fed into it, the [CLS] classification token is prepended to the input.

These models are typically trained to have semantically similar sentence pairs to possess

embeddings that are close together and dissimilar pairs to possess embeddings that are far

apart. The output representation of the [CLS] token is used as the aggregated representation

of the entire input sequence. This representation captures the semantic understanding of the

entire sentence, considering the bidirectional context learned during pre-training. For GPT

models, the last token in them is used as the sentence representation.

2.2.3 Cosine Similarity

Cosine similarity measures the similarity between two vectors of an inner product space [28].

It is measured by the cosine of the angle between two vectors and determines whether two

vectors are pointing in roughly the same direction [28]. The range of cosine similarity is from

-1 to 1, where 1 reflects that two vectors are pointing in the same direction, and -1 represents

that two vectors are pointing in exactly the opposite direction as shown in Figure 2.4. Cosine

similarity is often used in data analysis for measuring the similarity of two items, with the

help of embedding. Given a good embedding, texts that share similar meanings will have a

larger cosine similarity value. For example, in information retrieval tasks, cosine similarity is

often used as a key metric for retrieving documents whose embedding representations have

a high similarity with that of the user input query.

Let us define n-dimensional vectors A and B mathematically as:

A = [A1, A2, A3, . . . , An] (2.5)

B = [B1, B2, B3, . . . , Bn] (2.6)

17

$

%

6LPLODU

$

%

8QUHODWHG
$

%

2SSRVLWH

Figure 2.4: Examples of graphical representation of cosine similarity

the cosine similarity is calculated as:

A · B = ÎAÎÎBÎ cos(◊) (2.7)

cosine similarity(A, B) = cos(◊) = A · B
ÎAÎÎBÎ =

qn
i=1 AiBiÒqn

i=1 A2
i ·

Òqn
i=1 B2

i

(2.8)

where Ai and Bi refer to the values at the i-th dimension and ||A|| and ||B|| represent the

norms of vector A and B. ◊ is the angle between vector A and B.

2.3 Graph Similarity Measures

In classical graph theory, a simple graph is defined as a set of vertices V and a set of edges

E that connect pairs of distinct vertices (with at most one edge connecting any pair of

vertices) [29]. Two graphs can have dramatically di�erent visual outlooks even though they

have the same vertices, edges, and underlying structure. This proposed the idea of graph

isomorphism [30].

Definition 1. Two graphs are isomorphic if there exists a function f from the vertices of

G1 to the vertices of G2 (i.e., f : V (G1) æ V (G2)), such that:

• f is a bijection and

• For any two connected vertices u and v of G1, the connectivity also exists in G2 for

f(u) and f(v). EG1(u, v) =∆ EG2(f(u), f(v))

18

The concept of graph isomorphism determines whether two graphs have the same struc-

ture. With this knowledge of isomorphism, we can intuitively gauge their similarity. A

widely used metric for graph similarity is the Graph Edit Distance (GED).

Definition 2. The GED of two graphs is defined as the minimum cost of an edit path between

them, where an edit path is a sequence of edit operations (inserting, deleting, and relabeling

vertices or edges) that transforms one graph into another [31].

The costs associated with each edit operation can be customized individually for vertices

and edges. Mathematically, GED can be defined as follows:

GED(g1, g2) = min
(e1,...,ek)œP(g1,g2)

kÿ

i=1
c(ei) (2.9)

where P(g1, g2) represents the sequence of edit paths transforming g1 into an isomorphic

graph as g2, and c(e) Ø 0 is the cost associated with each graph edit operation e. We rely

on an existing Python library NetworkX1 [32] whose GED algorithm is developed based on

the work by Abu-Aisheh et al. [33].

2.4 Evaluation Metrics

The thesis incorporates two distinct evaluation processes. Initially, the proposed approach

focuses on assessing a domain model against a reference domain model, which we refer to as

the “grading” phase for clarity. Subsequently, this grading is compared to a ground truth

grading assigned by a human grader. Therefore, this step evaluates the algorithm’s per-

formance by assessing the alignment between the algorithm-generated grading and human

grading. We designate this phase as the “evaluation of the algorithm”. Both evalua-

tions employ common metrics for classification tasks such as precision, recall, and F1-score.

While the specific calculations may vary across scenarios, the fundamental principles remain

constant. Precision is dependent on true positive (TP) and false positive (FP) according to
1https://networkx.org/documentation/stable/reference/algorithms/similarity.html

19

https://networkx.org/documentation/stable/reference/algorithms/similarity.html

Equation 2.10, whereas recall is dependent on true positive (TP) and false negative (FN)

according to Equation 2.11, and F1-score is dependent on precision and recall according to

Equation 2.12.

Precision = TP

TP + FP
(2.10)

Recall = TP

TP + FN
(2.11)

F1 = 2 ◊ Precision ◊ Recall

Precision + Recall
(2.12)

Since the domain model grading problem is not as simple as the binary classification task, the

definitions of true positive, true negative, false positive, and false negative must be adapted

accordingly as explained in more detail in Section 3.6. For the grading phase, the algorithm

produces precision, recall, and F1-scores for each type of model element as assessments of a

domain model.

For the evaluation of the algorithm, more metrics are used in addition to precision,

recall, and F1-scores. The algorithm matches model elements between two domain models.

To evaluate the performance of matching, we utilize precision, recall, and F1-scores. The

algorithm also generates statistical results as assessments of a domain model. We evaluate

the algorithm based on how algorithm-generated results align with human-generated results.

Therefore, we also employ other metrics including Kendall ranking correlation coe�cient

(Kendall’s ·) [34] and Mean Absolute Error (MAE) (see Equation 2.13) to measure the

performance of the algorithm in producing statistical results. Kendall’s · evaluates the

alignment between the rankings. A value close to 1 indicates strong agreement, whereas a

value close to -1 indicates strong disagreement.

MAE = 1
n

nÿ

i=1
|Actuali ≠ Predictedi| (2.13)

where n is the number of samples in the dataset, Actuali represents the actual (ground truth)

value for the i-th sample in the dataset, and Predicti represents the predicted value for the

i-th sample in the dataset.

20

How to evaluate the algorithm’s matching performance using precision, recall, and F1-

score will be presented in Section 4.1 and Section 5.2. How we validate the statistical

results from the algorithm using MAE and Kendall’s · will be presented in Section 4.2 and

Section 5.3.

2.5 Summary

In summary, this chapter describes the essential concepts and techniques that form the

bedrock for the proposed algorithm in automating the assessment of domain models. Specif-

ically, Section 2.1 drafts the textual domain model representation in EBNF format which

will be input to the algorithm. Section 2.2 and Section 2.3 describe embedding techniques

and graph comparisons which are fundamental to the algorithm in matching model elements.

Furthermore, Section 2.4 illuminates metrics including precision, recall, and F1-scores in the

grading phase and metrics including precision, recall, F1-scores, Kendall’s · , and MAE in

the evaluation of the algorithm.

The forthcoming chapter provides an in-depth exploration of the proposed algorithm,

o�ering detailed insights into the integration of these foundational concepts and techniques.

Through this exploration, we aim to illustrate how each element contributes to the e�ective-

ness and innovation of the automated domain model assessment approach.

21

Chapter 3

Method

This chapter introduces the proposed algorithm designed for the automated assessment of a

domain model against a reference domain model backed by model element matching. The

chapter begins with an overview of the algorithm in Section 3.1, then continues with a dis-

cussion of pre-processing the algorithm’s input (see Section 3.2). Following this, Section 3.3,

Section 3.4, and Section 3.5 explain the process of how the algorithm matches each type

of model element between two models: classes, attributes, and relationships, respectively.

Eventually, Section 3.6 and Section 3.7 illustrate the statistical outcomes of the algorithm.

3.1 Overview

The algorithm overview is shown in Figure 3.1. It consists of four main stages, Stage 1

for class matching, Stage 2 for attribute matching, Stage 3 for relationship matching, and

Stage 4 for computing primary statistical results. There is also a Stage Pre-processing before

entering the main stages (i.e., before Stage 1 Class Matching) and a Stage Grading after ex-

iting the main stages (i.e., after Stage 4). The algorithm takes two domain models as input,

one candidate model and one reference model, and produces nested hash maps containing

element matches for calculating precision, recall, and F1-score of each kind of model element

(classes, attributes, and relationships). In general, each stage matches model elements be-

tween the candidate model and reference model based on graph similarity measures (refer

22

6WDJH������&ODVV
PDWFKLQJ�IRU�HDFK
W\SH�HQXP�UHJXODU

6WDJH������&ODVV
PDWFKLQJ�ZLWK�DOO

LQIRUPDWLRQ�

6WDJH������$WWULEXWH
PDWFKLQJ��EHWZHHQ
PDWFKHG�FODVVHV�

6WDJH������$WWULEXWH
PDWFKLQJ��EHWZHHQ

DQ\�FODVVHV�

6WDJH����&ODVV�0DWFKLQJ

6WDJH����$WWULEXWH�0DWFKLQJ

6WDJH������$WWULEXWH
PDWFKLQJ��DWU�WR�FOV�

6WDJH������$WWULEXWH
0DWFKLQJ��FOV�WR�DWU�

6WDJH����5HODWLRQVKLS
0DWFKLQJ

6WDJH�����
,QKHULWDQFH
PDWFKLQJ

6WDJH�����
$VVRFLDWLRQ��
FRPSRVLWLRQ
PDWFKLQJ�

6WDJH����5HVXOW

3UHFLVLRQ 5HFDOO)��VFRUH

Figure 3.1: Overview of the proposed algorithm

23

to Section 2.3). Nested hash maps are introduced to keep track of the status of each model

element from the two models, respectively, including their matching information. The hash

maps also contain scores for each model element, which will be used for calculating the final

results and grades. For instance, a hash map for the reference model uses its class names

as the keys and if there exists a suitable counterpart class from the candidate model for a

particular class in the reference model, the counterpart class will be added to this hash map

and the scores will be updated accordingly.

At the pre-processing stage (Stage Pre-processing), the algorithm takes two domain mod-

els represented in the EBNF format (refer to Section 2.1.2) and transforms them into the

desired data structures, including hash maps and lists. This preparatory step lays the foun-

dation for subsequent stages of the algorithm by organizing the model data into accessible

and manipulable formats. Then the algorithm enters Stage 1 where it tries to match classes

from the candidate model with classes from the reference model based on graph similarity

measures. Once a match is found, their matching scores are determined based on pre-defined

rules. After that, attributes and relationships are matched in sequence and their matching

scores are calculated based on the class matching. Attribute matching also relies on graph

similarity measures, whereas relationship matching is purely rule-based. At this point, the

basic matching process is completed. Any unmatched model elements whose counterparts

are null are considered redundant in the candidate model or missing in the reference model.

Eventually, hash maps with matching information are produced. The score information in

them is used to calculate precision, recall, and F1-scores for classes, attributes, and relation-

ships separately. The final grade is represented as a weighted average of F1-scores.

3.2 Pre-processing

The pre-processing stage starts with initializing all the data structures needed for model

comparison. To better encapsulate all the information, a model is introduced as shown

in Figure 3.2. The Grader class has two di�erent associations with the Model class. One

24

UHIHUHQFH0RGHO
�

FDQGLGDWH0RGHO
�

*UDGHU

0RGHO

UDZBGVO��/LVW>VWU@

FOVBQDPH��/LVW>VWU@

�

$OJRULWKP

&ODVV

QDPH��VWULQJ

VFRUH��LQW

W\SH��&ODVV7\SH

GVO��VWULQJ

����

����
WDUJHW

VRXUFH

��HQXPHUDWLRQ!!�
&ODVV7\SH

HQXP

UHJXODU

DEVWUDFW

$WWULEXWH

QDPH��VWULQJ

VFRUH��LQW

W\SH��VWULQJ

����

����
WDUJHW

VRXUFH

����

����
WDUJHW

VRXUFH

�

VRXUFH&OV

�
WDUJHW&OV

5HODWLRQVKLS

VRXUFH0XOWLSOLFLW\��VWULQJ

WDUJHW0XOWLSOLFLW\��VWULQJ

VFRUH��LQW

����

����
WDUJHW

VRXUFH

W\SH��5HODWLRQVKLS7\SH

��HQXPHUDWLRQ!!�
5HODWLRQVKLS7\SH
DVVRFLDWH

FRQWDLQ

LQKHULW

���

���

���

���

�
VRXUFH&OV

���

DWWULEXWHV

Figure 3.2: Overview of the data structure

association navigates to the reference model and the other navigates to the candidate model.

The Model class stores information on a domain model and it has two attributes, including a

list of strings storing each line of the textual domain model representation and a list of strings

for class names in the model. Additionally, it possesses containment relationships with the

Class class, Attribute class, and Relationship class. These three classes represent the

three types of model elements, respectively. There exist some commonalities among them.

First of all, they all have a score attribute, indicating the matching score. Additionally,

each class incorporates a self-association to denote potential matches within its category. A

match can be found between a class and an attribute. Therefore, there is an association

25

Table 3.1: Example of domain model representation

Domain model in EBNF format
Enumerations:
DeviceStatus(Activated, Deactivated)
CommandType(lockDoor, turnOnHeating)
...
Classes:
User(string name)
Address(string city, string postalCode, string street, string aptNumber)
abstract Device(DeviceStatus deviceStatus, int deviceID)
...
Relationships:
1 SHAS contain * SmartHome
* SensorReading associate 1 SensorDevice
SensorDevice inherit 1 Device
...

between the Class class and the Attribute class. Furthermore, all three classes possess a

type attribute, although the data type associated with this attribute varies. In the case of

the Class and Relationship classes, enumeration classes define the possible values for their

type. The Attribute class utilizes a string for the type attribute because there are too

many possible data types for the Attribute class, e.g., int, date, float, string, etc. On the

other hand, the Class class employs a string attribute named dsl, containing the EBNF-

formatted textual representation of a class from the domain model. The Relationship class

has additional attributes sourceMultiplicity and targetMultiplicity, providing further

information about the multiplicities of the source class and target class. The source class

and target class can be navigated from associations to Class class.

The algorithm reads two domain models in the EBNF format stored in the text files and

pre-processes the textual representation of the domain models into the desired data structure

for subsequent element matching. Each class in the textual EBNF format is expressed in

one line and can be easily parsed to separate class names and attributes based on special

characters. An example is shown in Table 3.1. In practice, the implementation of the Model,

Attribute, and Relationship classes is achieved by the Python native Dictionary class.

The concept of Dictionary is also known as hash map. To avoid confusion, this thesis will

26

use the term hash map throughout this thesis. Since class names are unique within a domain

model and attribute names are unique within one class, class names can be used as the first

level keys in the hash map classes attributes.

1 # Hash map for classes_attributes
2 {
3 " DeviceStatus ": {
4 "score ": 0,
5 "type": "enum",
6 "dsl": " DeviceStatus (Activated , Deactivated)",
7 " counterpart ": None ,
8 " attributes ": {
9 " Activated ": {" score": 0, " counterpart ": None},

10 " Deactivated ": {"score": 0, " counterpart ": None},
11 },
12 },
13 ...
14 " abstract Device ": {
15 "score ": 1,
16 "type": " abstract ",
17 "dsl": " abstract Device (DeviceStatus deviceStatus , int deviceID)",
18 " counterpart ": None ,
19 " attributes ": {
20 " DeviceStatus deviceStatus ": {" score": 0, " counterpart ": None

},
21 "int deviceID ": {" score": 0, " counterpart ": None},
22 },
23 },
24 ...
25 }

Listing 3.1: Snippet of the hash map of classes

An example of the hash map is shown in Listing 3.1. This example presents relevant in-

formation for the DeviceStatus enumeration class and the abstract Device class. Meanwhile,

since relationship names are not specified in the EBNF format, there could be duplicated re-

lationships in one model. Therefore, each relationship is stored in one individual hash map,

and all the hash maps for the relationships are kept in the list relationships as shown

in Listing 3.2. The scores and counterparts for all hash maps are initialized with 0 and None,

respectively, which will be updated once a match is found. The above-mentioned procedure

of initializing hash maps is executed twice: once for the candidate model and once for the

reference model.

27

1 # List of hash maps for relationships
2 [
3 {
4 "dsl": "1 SmartHomeApplicationSystem contain * SmartHome ",
5 "score ": 0,
6 " counterpart ": None ,
7 },
8 {
9 "dsl": "1 SensorDevice associate * SensorReading ",

10 "score ": 0,
11 " counterpart ": None ,
12 },
13 {
14 "dsl": " SensorDevice inherit Device ",
15 "score ": 0,
16 " counterpart ": None ,
17 },
18 ...
19]

Listing 3.2: Snippet of the list for relationships

3.3 Stage 1: Class Matching

In the first stage of the model assessment process, the algorithm focuses on matching classes

between the candidate model and the reference model (referred to as candidate classes and

reference classes for simplicity). This process starts with calculating the class embeddings.

The embeddings of a class are derived from the embeddings of its class name, attributes,

and relationships. The next step is calculating pair-wise cosine similarities between classes

based on the class embeddings. Then the algorithm matches classes by deriving a list of

operations to bring the candidate model to the reference model. In practice, the algorithm

converts domain models into two graphs. Then it matches vertices (represents classes in

the corresponding domain model) by the candidate graph isomorphic to the reference graph

where the cost of each operation is derived from the similarity score between the matched

graph elements.

This stage can be divided into two smaller stages: matching classes of the same type and

matching classes of any type with all available information.

28

3.3.1 Stage 1.1: Class Matching within Types

In Stage 1.1, the algorithm focuses on matching classes based on names and attributes

within the same type. There are three types of classes: regular classes, abstract classes, and

enumeration classes. Regular classes and abstract classes share numerous commonalities,

whereas enumeration classes demonstrate di�erences between the others. For instance, both

regular classes and abstract classes can have relationships with other classes, but this does

not happen in enumeration classes. Meanwhile, it is often the case that there are only a very

limited number of abstract classes presented in the domain model. Therefore, in this sub-

stage, the algorithm groups regular classes and abstract classes into one matching pool and

treat enumeration classes in another matching pool. In other words, the algorithm matches

enumeration classes to enumeration classes and non-enumeration to non-enumeration classes.

1 # Input : reference classes in reference_classes
2 # candidate classes in candidate_classes
3 # Return : Enumeration class match in enum_mapping
4 # Non - enumeration class match in cls_mapping
5 similarities = dict ()
6 for ref_cls in reference_classes :
7 E_c_r = E_c(ref_cls .name) # Class -name -only embedding for reference

class . See Equation 3.4
8 E_c_A_r = E_c_A (ref_cls .name , ref_cls . attributes) # Class -name -with -

attributes embeddings . See Equation 3.5
9

10 for can_cls in candidate_classes :
11 E_c_c = E_c(can_cls .name) # See Equation 3.4
12 E_c_A_c = E_c_A (can_cls .name , can_cls . attributes) # See Equation

3.5
13 s_name = cosine_similarity (E_c_r , E_c_c) # similarity from class -

name -only embeddings
14 s_attribute = cosine_similarity (E_c_A_r , E_c_A_c) # similarity

from class -name -with - attributes embeddings
15 similarity = percentage * s_name + (1- percentage) * s_attribute
16 similarities [reference_cls][candidate_cls] = similarity
17

18 enum_mapping = match_classes (reference_enumeration_classes ,
candidate_enumeration_classes , ...)

19 cls_mapping = match_classes (reference_non_enumeration_classes ,
candidate_non_enumeration_classes ,...)

Listing 3.3: Pseudo-code for class matching process

29

Listing 3.3 demonstrates the pseudo-code for the class matching process. The algorithm

starts with utilizing word embeddings to convert class names and attributes into vector

space. Specifically, each class name or attribute name is converted into an N-dimensional

vector using Equation 3.4 and Equation 3.5, respectively. Then the algorithm averages all the

embeddings to produce the class embeddings. Subsequently, pair-wise similarities between

classes can be calculated using cosine similarity discussed in Section 2.2.3. With pair-wise

cosine similarities, the algorithm matches classes using the match classes() function.

We want to match classes of the same type. Therefore, candidate classes and reference

classes are divided into four lists:

• reference enumeration classes

• reference non enumeration classes (regular and abstract)

• candidate enumeration classes

• candidate non enumeration classes (regular and abstract)

and they will be passed into the match classes() function to compute the class matches.

Embedding Approaches. Embedding a class name or attribute name sometimes can be

cumbersome if the word is not recognizable by the word embedding method. For example, a

class name may consist of several words in camel case and there could be multiple attributes

for a class. The algorithm addresses words in the camel case by dividing them into individual

words and taking average embeddings of each word to represent this model element. Let us

define a function for calculating word embeddings:

E = word embedding(word) (3.1)

where E œ Rd. d is the dimension of the word embedding (refer to Section 2.2). We have a

function called split camel case(), which takes a model element e in camel case and splits

30

it into a list of individual words W where Wi represents the i-th word in the list.

W = split camel case(e) (3.2)

Then the embedding of e is defined as the element-wise average embedding of words in W

using the get embedding function:

get embedding(e) =
qn

i=1 word embedding(Wi)
n

(3.3)

where n is the length of the list of split words W and Wi is an individual word among split

words. The same strategy is applied to embed each attribute as well, which is to split the

attribute name first, get split words embedded separately, and then find the average. Fur-

thermore, it is possible that a special class name or attribute name might not be recognized

by the employed word embedding technique. For instance, this could occur with compos-

ite names formed by concatenating the initial letters of multiple words. In such cases, the

algorithm uses the average of embeddings of each letter in the name.

There are two types of embedding to be calculated.

• Class-name-only embeddings

• Class-name-with-attributes embeddings

For the class-name-only embeddings, since each class only has one name, the algorithm can

use the above-mentioned embedding approaches to embed the class name into a vector and

use the vector as the embedding representation of the class. Let us refer to a class name as

c.

Ec = get embedding(c) (3.4)

For the second type of embedding, the algorithm needs to take class names and attributes

into account. Therefore, after calculating vectors representing the class name and each

attribute separately, the algorithm takes the average of all the vectors as the final vector

31

representation of the class. Let us define a list of attributes A where Ai represents the i-th

attribute for a class. Let us refer to a class name as c. The class-name-with-attributes

embeddings of a class can be calculated as the following:

Ec,A = get embedding(c, A) = get embedding(c) + qn
i=1 get embedding(Ai)

1 + n
(3.5)

where n is the length of the list of attributes A for the class.

Cosine Similarities The algorithm calculates the class-name-only and class-name-with-

attributes cosine similarities separately between each pair of classes in the reference model

and candidate model based on their respective class embeddings. The cosine similarity

between a pair of classes can be defined as the following:

ci,j = cosine similairy(ei, ej) (3.6)

where ei is the embedding of i-th class ci in the reference model and ej is the embedding of

j-th class cj in the candidate model (refer to Section 2.2.3). Notably, two types of embed-

ding result in two cosine similarities. A weighted average is applied to combine the similarity

scores from class-name-only embeddings and class-name-with-attributes embeddings for ag-

gregation. The weight is represented by the variable percentage, which can be adjusted to

control the importance of each similarity:

ci,j = percentage ú c
Õ

i,j + (1 ≠ percentage) ú c
ÕÕ

i,j (3.7)

where c
Õ
i,j is a similarity from class-name-only embeddings and c

ÕÕ
i,j is a similarity from class-

name-with-attributes embeddings. Eventually, all the cosine similarities are stored in a hash

map where the first-level keys are reference class names, the second-level keys are candidate

class names, and values are cosine similarities. It can be represented as the following:

similarities[ci][cj] = vi,j (3.8)

32

where ci is a reference class; cj is a candidate class; and vi,j is the aggregated similarity.

One more data processing task is finding the exact match between classes. The algorithm

iterates through all the cosine similarities and looks for similarity values larger than 0.99. A

class pair with a similarity value larger than 0.99 is considered an exact match. If such an

exact match is found between a reference class and a candidate class, the cosine similarities

between this reference class and all the other candidate classes are set to 0. Practically,

this data processing task means exact match class pairs will not be considered for any other

matching.

match classes() Function. In the next step, the match classes function matches classes

with graph edit distance and similarities. This function requires five inputs: a list of ref-

erence class names, a list of candidate class names, a hash map where cosine similarities

are stored, a float parameter named threshold, and a boolean parameter named verbose.

Inside this function, two graphs are initialized. One contains vertices representing reference

classes and the other contains vertices representing candidate classes. This function finds the

optimal graph edit distance (refer to Section 2.3) between the two graphs. Since both graphs

only contain vertices, possible graph edit operations include vertex insertion, deletion, and

substitution. The cost of insertion and deletion is set to one by default, whereas the cost of

substitution is defined as 1 - cosine similarity. The intuition behind this is to match vertices

with high similarities. The optimal graph edit distance includes a list of operations with

the lowest cost. Therefore, high-similarity vertex pairs have low cost and they are more

likely to get matched. Since the algorithm wants to filter some class pairs whose similarities

are low, a threshold parameter is utilized. If the similarity is lower than the threshold, the

cost of substitution will be adjusted to 3, which is larger than the total cost of one deletion

and one insertion combined (cost of 2). This prevents substituting low-similarity class pairs

and instead performs one deletion and one insertion. Overall, this function optimizes the

sequence of vertex edit operations transforming one graph to the other graph with the lowest

cost. It returns a list of tuples containing class matches including None-match. Each tuple

33

contains two elements: one reference class and one candidate class. Only one of them can be

None. One example is shown in Listing 3.4. DeviceStatus class is matched with DeviceType,

whereas RuleStatus is matched with None.

1 [(" DeviceStatus ", " DeviceType "),
2 (" CommandType ", " CommandType "),
3 (" CommandStatus ", None),
4 (" RuleStatus ", None),
5 (" BinaryOp ", " Operator ")]

Listing 3.4: Example of class matches

3.3.2 Stage 1.2: Class Matching with All Information

Stage 1.2 involves matching leftover classes in the candidate model and the reference model

from the previous stage using all available information, including attributes and relationships.

A leftover class is one that lacks a match. This can occur when a candidate class has no

corresponding reference class, or when a reference class has no corresponding candidate class.

For each class, the algorithm gathers its raw class representation in EBNF representation,

along with all associated relationships. This information is stored in the string format.

Subsequently, the algorithm employs sentence embedding techniques (refer to Section 2.2.2)

to transform the aforementioned strings into vector representations, thus representing each

class in vector space. Next, the algorithm uses the class embeddings to calculate the pair-

wise cosine similarities between the reference classes and the candidate classes. This class

matching process is similar to Listing 3.3 with di�erences in the class embedding part.

To match leftover classes, the match classes() function is used again, but with di�erent

inputs. The inputs now include a list of leftover reference classes, a list of leftover candidate

classes, and a hash map containing their pair-wise cosine similarities based on sentence

embeddings. A threshold parameter is also utilized to prevent matching low-similarity class

pairs. This function matches leftover classes and returns class matches in a list of tuples.

Score Assignment. The algorithm assigns scores to each element in the matches. For

both Stage 1.1 and Stage 1.2, after finding class matches with the match classes function,

34

the algorithm checks whether class pairs possess the same type (enumeration, regular, or

abstract). If both classes in a class pair have the same type, they are assigned a score of one.

The hash maps classes attributes are updated where the scores are changed to one and

the counterparts are also updated accordingly. If two classes in a pair have di�erent class

types, the score is changed to 0.5.

3.4 Stage 2: Attribute Matching

In Stage 2, the algorithm focuses on matching the attributes between the reference and

candidate models (referred to as reference attributes and candidate attributes for simplicity).

Leftover classes from previous stages are also considered with a low priority. This stage is

further divided into four sub-stages:

• Stage 2.1 Attribute matching between matched classes

• Stage 2.2 Attribute matching between any classes

• Stage 2.3 Reference attribute to candidate class matching

• Stage 2.4 Reference class to candidate attribute matching

In general, attribute matching follows a similar logic to class matching, which is based on

embeddings, cosine similarities, and optimal graph edit distance.

3.4.1 Stage 2.1: Attribute Matching Between Matched Classes

In this stage, reference attributes and candidate attributes that are in the matched classes

are considered for matching. Therefore, the first step is to get all the class matches from

Stage 1. To achieve this, the algorithm iterates through the hash map classes attributes

(refer to Listing 3.1) containing the matching information to find all reference classes whose

counterpart is not None. If such a counterpart exists, it creates a pair [reference class,

counterpart] and appends it to the pairs list. After getting this list, the algorithm starts

a for loop to proceed to map attributes between the class pairs.

35

match attributes Function. For each class pair, the algorithm collects reference at-

tributes and candidate attributes in two separate lists. These two lists are passed into the

create cosine similarity dict function along with a word embedding. Inside this func-

tion, attributes are embedded using the get embedding function (refer to Equation 3.3) for

computing pair-wise cosine similarities which are stored in a nested hash map. Subsequently,

the two lists and the hash map are passed to the match attributes function to compute

attribute matching. This function is similar to the match classes function. Two graphs

are initialized where vertices represent reference attributes and candidate attributes, respec-

tively. The optimal graph edit distance is computed with deletion and insertion cost to be

one and substitution cost to be 1 - cosine similarity. A threshold is set to filter out matching

low-similarity pairs. The match attributes function also returns a list of attribute matches

in tuples.

Score Assignment. The algorithm assigns matching scores to each attribute in the re-

turned matches. The algorithm iterates through the obtained matches and updates the

attribute information for both the reference hash map and the candidate hash map named

classes attributes. Each attribute includes a type, e.g., int, string, or enumeration class.

Sometimes there could be an anti-pattern in the type. For instance, using a regular class

name as a type is a common anti-pattern. Therefore, the algorithm conducts type checking

on matched attributes in each pair with three rules:

• Rule 1: If any type is a regular class or abstract class, mark them as partially correct.

• Rule 2: If both types are a matched enumeration class, mark them as correct. Oth-

erwise, it is partially correct.

• Rule 3: If both types are matched primitive types, mark them as correct. Otherwise,

they are matched as partially correct. For instance, the int type can be matched with

a float type or a double type but cannot be matched with a string type.

36

For attribute pairs with correct type checking, their scores are assigned to one. Otherwise,

their scores are assigned to 0.5. This score assignment is also used for Stage 2.2, Stage 2.3,

and Stage 2.4.

3.4.2 Stage 2.2: Attribute Matching Between Any Classes

Some attributes can be misplaced in the incorrect classes but they can still make sense to

the overall domain modeling. Therefore, this stage focuses on matching leftover attributes

without restricting their source classes. The first task is getting unmatched reference at-

tributes and candidate attributes in two lists. The algorithm wants to prioritize matching

attributes whose source classes are more similar. Therefore, source classes are also collected

in two lists. Next, two sets of cosine similarity scores are calculated and stored in two nested

lists. One is class-to-class pair-wise cosine similarity, and the other is attribute-to-attribute

cosine similarity. Both types of similarity are based on word embedding. After that, two

nested lists of cosine similarities are combined into a nested hash map whose first level key

is in the format of a tuple (reference attribute, source class) and the second level

key is also in the format of a tuple (candidate attribute, source class) and the value

is the cosine similarity. A weighted average is used in combining pair-wise attribute-to-

attribute and class-to-class similarity into one value. Attributes are unique within a class.

However, di�erent classes can have the same attribute name. This is why the keys need to be

combined with class names to ensure each attribute will have a unique representation even

if they have the same name across di�erent classes. Once the combined cosine similarity

is obtained, they are passed to the match attributes function (the same one used in the

previous stage) for matching. Then the algorithm iterates through generated matches and

updates the attribute-matching information. The algorithm also conducts the same type

checking as described in Section 3.4.1.

37

3.4.3 Stage 2.3: Reference Attribute to Candidate Class Matching

One common anti-pattern in domain modeling is mistakenly having an attribute instead of a

class. For instance, an address class is more suitable in some contexts rather than an address

attribute. Despite being an anti-pattern, it can still bring partial value to the modeling

practice. This stage is intended to identify any match between a reference attribute and a

candidate class. First of all, leftover reference attributes and leftover candidate classes are

collected into two separate lists. Two sets of similarity scores are created attribute-to-class

and class-to-class similarities based on word embeddings. The class-to-class similarity is the

same as for the previous sub-stage. The attribute-to-class similarities are calculated between

the reference attributes and the candidate classes. Reference attributes and candidate classes

are embedded with a word embedding approach and the algorithm calculates the pair-wise

similarities between them. Then the algorithm follows the same procedure of combining

two similarities lists into one hash map and then utilizes the match attributes function to

match attributes to classes. For each matching pair, since this is an anti-pattern, the score is

set to 0.5 and the matching information is updated at the classes attributes hash maps.

3.4.4 Stage 2.4: Reference Class to Candidate Attribute Matching

In Stage 2.4, the algorithm finds a reference class matching a candidate attribute. It follows a

similar logic to Stage 2.3 whereas now the class-to-attribute similarity is calculated between

leftover reference classes and leftover attributes. The other steps are identical to Stage 2.3.

3.5 Stage 3: Relationship Matching

In Stage 3, the algorithm matches relationships based on class matches. This process is

illustrated in pseudo-code in Listing 3.5. Relationship matching is rule-based, which is

di�erent from class or attribute matching. The algorithm utilizes nested loops to iterate

through all combinations of relationships from the candidate model and the reference model.

For each relationship in the reference model, a list called matchings is initialized. Then, for

38

each relationship in the candidate model, if both relationships are unmatched, a potential

match is examined using the compare edges function. The matching is appended to the

list of matchings. After comparing all possible combinations, the best match among the

matches is found. The algorithm keeps track of the matching status using a list of hash maps

for relationships (refer to Listing 3.2). This ensures that relationships that have already been

matched are not compared again.

1 for reference_rel in reference_rels :
2 matchings = set ()
3 for candidate_rel in candidate_rels :
4

5 if (reference_rel , candidate_rel) not in matchings :
6 matching = compare_edges (reference_rel , candidate_rel)
7 matchings . append (matching)
8

9 Find the matching with the highest score among matchings
10 update the hash map for reference_rel
11 update the hash map for candidate_rel

Listing 3.5: Pseudo-code for relationship matching

compare edges() Function. Stage 3 relies on the compare edges() function to examine

whether two relationships can be matched. This function takes two relationships in string

format as input and tries to find an exact match, a partial match, or no match. There are

three kinds of relationships defined in the EBNF format: inherit, contain, and associate.

An inherit relationship only consist of three elements: child class, inherit, and parent class,

e.g., SensorDevice inherit * Device. On the other hand, both associate and contain re-

lationships consist of five elements: multiplicity 1, class 1, relationship type, multiplicity 2,

and class 2, e.g., 1 Room contain * SensorDevice. Therefore, the input relationships are

classified based on the di�erence in the number of elements at first. If both relationships

contain three elements, they enter Stage 3.1 Inheritance matching. In this stage, the algo-

rithm checks whether the second element is inherit. Meanwhile, the algorithm checks if

the first elements (child classes) in both relationships are the counterparts of each other.

In other words, the classes are matched from previous stages. The third elements (parent

39

classes) are also checked to confirm whether they are counterparts of each other. If all three

conditions are satisfied, an exact match between these two relationships is established.

On the other hand, if both relationships contain five elements, they enter Stage 3.2

Association/composition matching. An exact match is found if and only if all the five

elements match each other. Two relationships have the same type. Multiplicities are equal,

and classes are counterparts of each other. Notably, for associate relationships, a situation

that should considered is that the position of classes and multiplicities can be flipped. For

instance, 1 SensorDevice associate * SensorReading is identical to * SensorReading associate

1 SensorDevice. Additionally, partial matches are considered. If the above exact match fails,

the function ignores multiplicities and types but only checks whether classes are counterparts

of each other. For example, 1 Room contain * Device and * Room associate * Device make

up a partial match.

The compare edges function eventually returns a boolean and one score. The boolean

indicates the matching status, while the two scores represent the matching scores for the

input relationships. If two relationships are matched or partially matched, a boolean value

of True is returned. The score is the matching score for both the input reference relationship

(denoted as reference rel in Listing 3.5) and for the input candidate relationship (denoted

as candidate rel in Listing 3.5). It returns (True, 1) for exact matches, (True, 0.5) for

partial match, and (False, 0) for no match. If a reference relationship is matched with

multiple candidate relationships, the algorithm finds the match with the highest matching

score and ignores other matches. After that, the scores and counterparts are then stored in

the hash map for each relationship based on the best match.

3.6 Stage 4: Result

In Stage 4, the algorithm calculates precision, recall, and F1-scores as the evaluation of the

domain model. In general, the above stages match each model element and assign it a score

from the set {0, 0.5, 1}. All the matching information is stored in the designed data structure

40

(See Listing 3.1 and Listing 3.2) with a score for each model element. The scoring function

S for an element x can be expressed as follows:

S(x) =

Y
________]

________[

1 if x is in a perfect match

0.5 if x is in a partial match

0 if x is in no match

(3.9)

To generate a comprehensive assessment of a domain model, the algorithm uses a modified

version of the precision, recall, and F1-scores metrics over the classes, attributes, and re-

lationships. Precision measures the overall correctness of model elements in the candidate

model. For example, let C be the set of all classes and enumerations in the candidate model

of size m = |C|, the precision of classes in the candidate model can be expressed as

PrecisionC =
qm

i=0 S(Ci)
m

, (3.10)

where S is the scoring function defined in Equation 3.9.

Recall measures the degree of the reference model covered by the candidate model. Let

Cref be the set of classes and enumerations in the reference model (ground truth) of size

n = |Cref |, the recall of classes can be expressed as

RecallC =
qn

i=0 S(Ci)
n

. (3.11)

Finally, the algorithm uses the classical F1-score definition:

F C
1 = 2 ◊ PrecisionC ◊ RecallC

PrecisionC + RecallC
. (3.12)

Metrics for attributes or relationships can be computed by substituting C with the set of

attributes or relationships.

41

3.7 Grading

The algorithm needs to return a final grade for an evaluated domain model. F1-scores are

calculated for each model element type, and the algorithm uses the weighted average of F1-

scores to produce the final grade of this domain model. The weights can be easily adjusted

to adapt to di�erent real-world grading schemes using the following formula:

grade = wc

wc + wa + wr
F C

1 + wa

wc + wa + wr
F A

1 + wr

wc + wa + wr
F R

1 (3.13)

where wc, wa, and wr are weights for classes, attributes, and relationships, respectively. F C
1 ,

F A
1 , and F R

1 are the F1-scores for classes, attributes, and relationships, respectively.

Based on the experiment in assessing students’ submissions in university-level modeling

practice, a class typically weighs four points whereas an attribute or a relationship weighs one

point each. Motivated by this observation, the final grade of a domain model is calculated

with wc = 4, wa = 1, and wr = 1.

3.8 Summary

In conclusion, this chapter explains how the proposed algorithm assesses a domain model

against a reference model based on model element matching. Section 3.1 gives a high-level

overview of the algorithm and briefly introduces di�erent stages of the algorithm. It also

mentions the core logic of the algorithm, which is matching model elements between the

candidate model and reference model based on graph similarity measures. Section 3.2 ex-

plains the data structure needed for information storage through the algorithm. A model

is proposed for encapsulating all the information with a practical implementation using the

Python native Dictionary class. This section also discusses how to process the textual

domain model input into the designed data format. Then Section 3.3 explains how the algo-

rithm matches classes between the candidate model and the reference model. The algorithm

embeds classes into vectors and then finds pair-wise cosine similarity scores between classes.

42

With cosine similarity scores, the algorithm matches classes based on graph similarity, i.e.,

a GED algorithm. Section 3.5 talks about how the algorithm matches attributes between

the two models. The process of attribute matching employs a logic similar to that used

in class matching with minor di�erences. The calculation of the pair-wise cosine similarity

score between attributes is slightly di�erent because the algorithm needs to consider the

source class of an attribute in certain sub-stages. Section 3.5 employs a rule-based matching

process, which is di�erent from those used in class matching or attribute matching. Con-

crete rules are defined to determine whether two relationships are in an exact match, partial

match, or no match. This stage does not involve embeddings or graph similarity measures.

Subsequently, Section 3.6 discusses how to use the matching results to calculate precision,

recall, and F1-scores for each type of model element as the evaluation of the domain model.

Eventually Section 3.7 discusses how to use F1-scores for classes, attributes, and relation-

ships to produce an aggregated final grade. A generalized formula is proposed. The next

chapter provides insights into how the algorithm is evaluated.

43

Chapter 4

Algorithm Evaluation

This chapter covers how to evaluate the algorithm with an automation pipeline to compare

matches. This thesis focuses on automated domain model assessment, in which a clear

reference model and a candidate model are given. The essence of the proposed algorithm is

to match model elements in the candidate model to those in the reference model. Therefore,

an ideal algorithm should match all the model elements perfectly and align with matches

made by a human grader. Therefore, Section 4.1 demonstrates how the algorithm is evaluated

in terms of the matches it produced against the matches generated by the author.

Moreover, the algorithm generates statistical results for the candidate model based on

the matched matches. A domain model can be assessed with di�erent metrics. For instance,

in our previous work [2], we manually evaluated LLM-generated domain models with preci-

sions, recalls, and F1-scores to analyze the modeling ability of LLMs. For modeling practices

in undergraduate-level, model-driven programming courses (e.g., exams, projects), it is more

typical to assign numerical grades or letter grades to domain models submitted by students.

The proposed algorithm assesses a domain model against a reference model in precisions,

recalls, and F1-scores. Additionally, an aggregated grade is also produced. Therefore, Sec-

tion 4.2 presents how the algorithm is evaluated in terms of the statistical results it produced

against the same set of statistical results produced by human graders.

44

Table 4.1: Scheme for comparing two domain models [2]

Category Description Examples
c1 Direct match H2S():H2S(), Person(...):User(...)

c2 Semantically
equivalent

SecondHandArticle(boolean discarded,...):
SecondHandArticle(Status status,...),
Status(AVAILABLE, DISCARDED)

c3 Partial match
0..1 Route associate * Item:
(1) 1 Route associate * Item
(2) 0..1 Route associate * FoodItem

c4 No match abstract UserRole():(No role class)

4.1 Evaluation of Generated Matches

This section explains how to evaluate the algorithm by comparing matches the algorithm

produced with matches made by a human grader.

4.1.1 Human Matches

Element matches are made manually by the author of this thesis. The manual matching

follows the same procedure as proposed in our last paper [2]. Each model element is matched

into one of four categories as shown in Table 4.1.

c1 Category c1 includes all domain elements that have an exact match with the elements

of the same type in the reference model. It is important to note that this match is

based on semantics rather than string comparison.

c2 Elements in category c2 are matched with an element that may not be the same type

in the reference model but are semantically equivalent to the matched element.

c3 Category c3 is for elements that only partially match the element in the reference

model. This category also includes elements without a match in the reference model

due to another incorrect design decision (i.e., consequential mistakes) that are otherwise

correct.

45

c4 Category c4 captures incorrect elements that do not match any elements in the refer-

ence model.

All elements are matched in both the candidate and reference model to compute the precision

and recall. Each element is assigned a score. Specifically, elements in the first two categories

are awarded 1 point, while elements in c3 receive 0.5 points, and those in c4 receive 0 points.

The scoring function S for an element x can be expressed formally as follows:

S(x) =

Y
________]

________[

1 if x is in c1 or c2

0.5 if x is in c3

0 if x is in c4

(4.1)

Human-generated matches are also kept in the same data structure (see Section 3.2) for

automatizing the evaluation process. Once the two collections of element matches are pre-

pared, the algorithm’s matching performance can be evaluated using precision, recall, and

F1-scores.

4.1.2 Comparison of Matches

The general workflow of evaluating matches is shown in Figure 4.1. For one assessment

of a domain model, there is a collection of matches produced by the proposed algorithm.

There is another collection of matches produced by a human grader following the procedure

in Section 4.1.1. Let us define two collections of matches as MA (algorithm matches) and

MH (human matches), where MA = {ma1, ma2...man} and MH = {mh1, mh2...mhn}. Then

let us explain the component of an individual match: mi. All the matching information is

stored in the hash maps as mentioned in Section 3.2. To remove unnecessary information,

the pipeline extracts matches from the hash maps and reformats each match into the form of

a tuple data structure: (element name, counterpart, matching score). This is a basic

form of mi. Notably, the algorithm assigns a score of {0, 0.5, 1} to each element in a match.

46

$OJRULWKP�PDWFKHV�RI
GRPDLQ�PRGHO

+XPDQ�PDWFKHV�RI
GRPDLQ�PRGHO

)LQG�71�DQG�73

/HIWRYHU�KXPDQ
PDWFKHV

)LQG�)1�DQG�)3

/HIWRYHU�DOJRULWKP
PDWFKHV

)LQG�)1�DQG�)3

3UHFLVLRQ���5HFDOO��
)��VFRUH

)LQG�DOJRULWKP
PDWFKHV�EDVHG�RQ

ILUVW�HOHPHQW

)LQG�DOJRULWKP
PDWFKHV�EDVHG�RQ
VHFRQG�HOHPHQW

)LQG�KXPDQ�PDWFKHV
EDVHG�RQ�ILUVW

HOHPHQW

)LQG�KXPDQ�PDWFKHV
EDVHG�RQ�VHFRQG

HOHPHQW

Figure 4.1: Workflow of evaluating matches

47

This is the matching score in the tuple. To keep matches consistent, the first element in

the tuple is always an element from the reference model or None.

Specifically, the pipeline first iterates through reference model elements. For each ele-

ment, a tuple is created in the form of (element name, counterpart, matching score).

Then the pipeline iterates through candidate model elements and creates matching tuples

in the form of (counterpart, element name, matching score) so that the first element

in the tuple is either from the reference model or None. To prevent double counting, any

matching tuple created during iterating candidate model elements will be checked for du-

plication before appending to the list MA or MH . MA and MH are shown in the top part

of Figure 4.1: Algorithm matches of domain model and Human matches of domain model.

The following paragraphs will explain how to compare these two collections of matches in

the context of domain model evaluation.

Labeling Strategy

After getting two collections of matches, the pipeline can proceed to compare them by

classifying them into: True Positive (TP), False Positive (FP), True Negative (TN), and

False Negative (FN). The pipeline only focuses on the first two elements in the match in

Matching Comparison, while considering the matching score in Score Assignment.

Match Comparison. Let a match mi contain two elements (m1
i , m2

i), where the first

element, m1
i , represents a model element from the reference model or None, and the second

element, m2
i , represents a model element from the candidate model or None. Only one of them

can be None. Assume a match from MA as mai and a match from MH as mhi. Then all the

situations of mai and mhi pairs and their corresponding evaluation labels are demonstrated

in Table 4.2. For example, consider a reference class SensorDevice, a candidate class Sensor,

another candidate class ActuatorDevice, and a correct human match (SensorDevice, Sensor).

If the algorithm match is (SensorDevice, Sensor), this represents a TP in situation (1). If

the algorithm match is (SensorDevice, None), this represents an incorrect match pair in

48

Table 4.2: Di�erent scenarios of evaluating matches, where a, b, and c represent model
elements

Situation Human Matches Algorithm Matches Score Labelreference candidate reference candidate
1 a b a b 1 TP
2 a b a None 0 FN
3 a b a c 0 FP
4 a None a b 0 FP
5 a None a None 1 TN
6 None a b a 0 FP
7 None a None a 1 TN
8 b a None a 0 FN
9 c a b a 0 FP

situation (2). If the algorithm matches (SensorDevice, ActuatorDevice), this represents an

incorrect match pair in situation (3). It should be noted that, at this point, there are no

match pairs that receive partial scores. Each match pair either scores 0 or 1. Partial scores

are considered later when taking the matching score of each match into account. The details

of each situation and its label are explained below.

1. (a, b) vs. (a, b). The human grader matches element a with element b, and the algo-
rithm also matches element a with element b. This is considered as a true positive TP
with a score of 1.

2. (a, b) vs. (a, None). The algorithm matches element a with nothing (i.e., None).
However, a is supposed to be matched with something (i.e., b). Therefore, this is
considered as a false negative FN with a score of 0.

3. (a, b) vs. (a, c). The algorithm matches element a with c. However, a is supposed to
be matched with another element b. Therefore, this is considered as a false positive
FP with a score of 0.

4. (a, None) vs. (a, b). The algorithm matches an unnecessary element to a. Therefore,
this is a false positive (FP) with a score of 0.

5. (a, None) vs. (a, None). Both the human grader and the algorithm also match element
a with nothing. Therefore, this is considered as a true negative TN with a score of 1.

6. (None, a) vs. (b, a). Assume the second element is the focus point. This situation is
the same as the fourth situation with an FP and a score of 0.

7. (None, a) vs. (None, a). This situation is the same as the fifth situation with a TN
and score of 1.

49

8. (b, a) vs. (None, a). This situation is the same as the second situation with an FN and
a score of 0.

9. (c, a) vs. (b, a). This situation is the same as the third situation with an FP and a
score of 0.

Score Assignment. For match pairs labeled as TP or TN, the pipeline further examines

whether the third element matching score is consistent in both matches. If they are consis-

tent, the pipeline assigns a score of 1 to the match pair. If not, the pipeline assigns a score

of 0.5 to the match pair. In other words, TP and TN are sometimes only worth 0.5 instead of

1. Meanwhile, the pipeline marks these match pairs as evaluated. Subsequently, the pipeline

obtains leftover MA and leftover MH whose mi have not been evaluated.

Evaluation Workflow

Using the labeling strategy, the pipeline proceeds to the step of Find TN and TP as shown

in Figure 4.1. This step is finding the intersection of MA and MH with the comparison rule

defined as an mai is considered to be identical to an mhi if m1
ai (the first element) in mai

is identical to m1
hi (the first element) in mhi and m2

ai (the second element) in mai is also

identical to m2
hi (the second element) in mhi. After finding a pair of identical matches, the

pipeline needs to determine if it is TP or TN. If there exists None in this pair of matches, then

this pair is considered as TN. Otherwise, this pair is TP.

After the previous step, the pipeline focuses on the Leftover human matches and proceeds

to Find FN and FP in the leftover MH (see Figure 4.1). This step can be further divided into

two small steps. (1) For each leftover human match mhi with elements (a, b), the pipeline

can try to find an algorithm match maj with elements (a, x) where x ”= b. This is finding an

algorithm match based on the first element. (2) If the pipeline cannot find such a maj, it

shifts the focus to the second element and tries to find an algorithm match maj with elements

(x, b) where x ”= a. After finding such a match pair, the pipeline classifies them into FP or

FN.

50

After the previous step, there may still exist some leftover algorithm matches. The

pipeline focuses on the Leftover algorithm matches (see Figure 4.1). The pipeline applies

the same strategy of finding a human match mhi for each leftover algorithm match maj as

mentioned in the last paragraph. Eventually, the pipeline collects a list of match pairs with

labels. Then the pipeline calculates the precision, recall, and F1-score as defined in Section 3.6

with the labeled match pairs as the last step in Figure 4.1.

4.2 Evaluation of Generated Statistics

This section explains how to evaluate the algorithm by comparing the statistics it produced

with the same set of statistics from human graders for the domain model assessment. Beyond

producing matches, the proposed algorithm goes a step further by providing a detailed set

of statistics including precision, recall, and F1-scores for each type of model element, along

with final grades (refer to Section 3.6 and Section 3.7). This numerical assessment o�ers

intuitive feedback on the domain model. Therefore, it can be reformulated as a regression

problem. The algorithm should generate or predict statistics that are as close as possible

to the statistics produced by human graders. To evaluate the performance of the algorithm

in generating meaningful statistics, MAE is applied (see Section 2.4). Ranking students’

submissions is also a common technique to reveal the relative qualities of their work. There-

fore, the alignment between the ranking of domain models based on the algorithm-generated

grades and the ranking based on grades from a human grader is also examined. The align-

ment is measured using Kendall’s · . Furthermore, numeric grades are translated into letter

grades following the scheme of McGill University1 which is commonly used in North America,

and this thesis also evaluates the deviation in letter grades.
1https://www.mcgill.ca/study/2023-2024/university_regulations_and_resources/

undergraduate/gi_grading_and_grade_point_averages

51

https://www.mcgill.ca/study/2023-2024/university_regulations_and_resources/undergraduate/gi_grading_and_grade_point_averages
https://www.mcgill.ca/study/2023-2024/university_regulations_and_resources/undergraduate/gi_grading_and_grade_point_averages

4.3 Summary

In conclusion, this chapter demonstrates how to evaluate the performance of the algorithm

from two major aspects. Section 4.1 emphasize a more rigid evaluation setting of comparing

algorithm-generated matches with human-grader-generated matches. Matches are evaluated

in pairs to calculate the precision, recall, and F1-score. Section 4.2 presents a loose evaluation

setting by treating it as a regression problem, only focusing on the numbers it generates,

while ignoring the matching part. The upcoming chapter delves into an exploration of the

experiments conducted throughout this thesis.

52

Chapter 5

Experiments

This chapter aims to evaluate the algorithm’s performance in assessing domain models and

identify areas of the matching and grading task where the algorithm may encounter chal-

lenges. More concretely, this chapter aims to investigate the following research questions

(RQ):

RQ 1

What is the performance of the algorithm in matching a candidate domain model to

a reference model regarding classes, attributes, and relationships?

RQ 2

To what extent does the algorithm-generated grade compare with those produced by

human grading?

This chapter begins by describing the experimental settings in Section 5.1. Subsequently,

each research question is addressed, and the findings are reported in Sections Section 5.2 and

Section 5.3. Finally, this chapter provides an in-depth analysis and discussion of the results

including qualitative results in Section 5.4 and state threats to validity in Section 5.5.

53

5.1 Experimental Settings

5.1.1 Modeling Problem and Solution

This thesis has chosen a modeling problem within the smart home domain that originally

served as an assignment in an introductory-level, undergraduate modeling course. The as-

signment requires students to create a domain model for a smart home automation system

(SHAS) that allows various users to automatically manage smart home automation tasks.

The complete textual problem description can be found in Appendix A.1. The class diagram

of the reference domain model created by the course instructor, along with the textual do-

main model in the EBNF format can be found in Appendix A.2. There are 5 enumeration

classes, 15 regular classes, 3 abstract classes, 13 enumeration literals, 13 attributes, and 32

relationships in the reference domain model.

5.1.2 Test Set

20 out of 104 student solutions to the modeling problem are randomly selected to perform an

analysis of the algorithm. The author of this thesis had no relationship to the course which

featured the SHAS assignment and hence had not seen the student solutions prior to the

analysis. To establish the ground truth for the experiments, at first, each student’s solution

is converted to the customized model representation manually from the original Umple file.

Then the author of this thesis manually matches the candidate model against the reference

model at the granularity of the element level (see Section 4.1). The complete algorithm and

supplementary materials are available1.

5.1.3 External Libraries

The algorithm relies on some external libraries for embeddings and graph comparison. Em-

beddings play a fundamental role in the algorithm. There are several places where word
1https://github.com/ChenKua/Domain_Model_Evaluation

54

https://github.com/ChenKua/Domain_Model_Evaluation

embeddings and sentence embeddings are needed. For the choice of word embedding,

sgram mde (skip-gram for MDE) from the WordE4MDE library2 created by Hernández et

al. [25] is selected. This word embedding approach can embed an individual word into a

300-dimensional vector. For the choice of sentence embedding, one of the OpenAI embed-

ding models, text-embedding-ada-002, is used via the API provided by OpenAI3, which

embeds a sequence of up to 8191 tokens into a 1,536-dimensional vector. Meanwhile, cal-

culating graph edit distance is also essential to the algorithm, which relies on the Python

library NetworkX4 [32] to find the optimal graph edit distance between two graphs.

5.2 RQ 1: Matching Performance of the Algorithm

RQ 1 aims to evaluate how the algorithm performs in matching model elements from the

candidate model to elements from the reference model. This thesis is interested in how far

the algorithm is from a perfect performance score for this task. This will show if there is room

for improvement and whether the automated domain model assessment problem is solved

with the approach. Furthermore, a more fine-grained analysis is carried out by highlighting

with which modeling aspects the algorithm struggles. Particularly, this thesis compares the

performances of the algorithm when matching classes, attributes, and relationships; and

studies for which evaluation metrics (precision, recall, and F1-score) the algorithm struggles.

Table 5.1 shows the individual precision, recall, and F1-scores of matching 20 student

submissions. The highest class precision, recall, and F1-score reach 1.0, 1.0, and 1.0, while

the lowest values are 0.5714, 0.8333, and 0.6857, respectively. The highest attribute precision,

recall, and F1-score achieve 0.9, 1.0, and 0.9231. The lowest ones are 0.4375, 0.5, and 0.5833.

Meanwhile, the highest relationship precision, recall, and F1-score are 1.0, 1.0, and 1.0, while

the lowest ones are 0.5556, 0.3846, and 0.4545. It can be observed that the minimum values of

class precision, recall, and F1-score exceed those of attributes and relationships, respectively.
2https://github.com/models-lab/worde4mde
3https://platform.openai.com/docs/guides/embeddings/embedding-models
4https://networkx.org/documentation/stable/reference/algorithms/similarity.html

55

https://github.com/models-lab/worde4mde
https://platform.openai.com/docs/guides/embeddings/embedding-models
https://networkx.org/documentation/stable/reference/algorithms/similarity.html

Table 5.1: Performance scores for matching over 20 student submissions; highest values in
each column are highlighted in blue, while lowest values are highlighted in red

Class Attribute Relationship
Precision Recall F1 Precision Recall F1 Precision Recall F1

1 0.6818 1.0 0.8108 0.7143 0.5556 0.625 0.9286 0.7647 0.8387
2 0.9 1.0 0.9474 0.8182 0.8182 0.8182 1.0 1.0 1.0
3 0.7647 0.8667 0.8125 0.8333 0.7895 0.8108 0.8462 0.6875 0.7586
4 1.0 1.0 1.0 0.6818 0.75 0.7143 1.0 0.8462 0.9167
5 0.6667 0.8889 0.7619 0.74 0.74 0.74 0.9286 0.8125 0.8667
6 0.8095 0.9444 0.8718 0.76 0.7037 0.7308 0.875 0.6364 0.7368
7 0.6522 0.9375 0.7692 0.75 0.6667 0.7059 0.8889 0.7273 0.8
8 0.8947 1.0 0.9444 0.7143 0.75 0.7317 1.0 1.0 1.0
9 0.75 1.0 0.8571 0.9 0.8438 0.871 0.6364 0.875 0.7368
10 0.9048 1.0 0.95 0.875 0.8235 0.8485 0.8333 1.0 0.9091
11 0.5714 0.9231 0.7059 0.7308 0.5 0.5937 0.6667 0.4 0.5
12 0.7647 0.9286 0.8387 0.9 0.9474 0.9231 1.0 0.7778 0.875
13 0.6087 0.875 0.7179 0.6346 0.9706 0.7674 1.0 1.0 1.0
14 0.6667 0.8571 0.75 0.4706 0.8 0.5926 0.75 0.6667 0.7059
15 0.75 0.8333 0.7895 0.5526 0.7 0.6176 1.0 0.5 0.6667
16 0.5714 0.8571 0.6857 0.4375 0.875 0.5833 0.5556 0.3846 0.4545
17 0.7619 0.9412 0.8421 0.8913 0.8913 0.8913 0.8333 0.7692 0.8
18 0.7647 1.0 0.8667 0.6875 0.8462 0.7586 0.5833 0.875 0.7
19 0.6818 0.8824 0.7692 0.6667 0.75 0.7059 0.7857 0.6875 0.7333
20 0.6842 0.9286 0.7879 0.7895 1.0 0.8824 1.0 0.8462 0.9167

Table 5.2: Average performance scores for matching each model element

Metric Average ± Standard Deviation

Class
Precision 0.7425 ± 0.1156

Recall 0.9332 ± 0.0587
F1-score 0.8239 ± 0.0873

Attribute
Precision 0.7274 ± 0.1318

Recall 0.7861 ± 0.1265
F1-score 0.7456 ± 0.1067

Relationship
Precision 0.8556 ± 0.1492

Recall 0.7628 ± 0.1847
F1-score 0.7958 ± 0.1505

In terms of performance scores for class matching and relationship matching, the algorithm

achieves a perfect performance score in certain cases. However, it is worth noting that such

perfection is not attainable in attribute matching. Table 5.2 shows the average precision,

recall, and F1-scores for the matching results generated by the algorithm compared with

56

human-generated matches of 20 student submissions. It is evident that the algorithm excels

in class matching with an F1-score of 0.8239, surpassing those for attribute matching (0.7456)

and relationship matching (0.7958). Notably, the F1-score for attribute matching is the

lowest among the three types of model elements. The precision of relationship matching is the

highest among the three, while the recall of class matching highly surpasses those of the other

two elements. Based on the trend of F1-scores, it can be inferred that the algorithm excels

in matching classes compared to matching relationships and it performs better in matching

relationships than in matching attributes. Additionally, the recall for matching classes and

attributes is notably higher than their respective precision, while the phenomenon is reversed

for matching relationships. Class matching and attribute matching share a similar logic of

embedding-based graph edit distance to match elements, whereas relationship matching

is rule-based with dependency on class matching. Relationship matching relies on class

matching, which might be why relationship matching has a higher precision than recall.

This phenomenon implies a potential further optimization direction on balancing precision

and recall in class matching and attribute matching. A more detailed discussion on this can

be found in Section 5.4.

Answer to RQ 1. While the algorithm demonstrates impressive capability in match-

ing model elements, there is still room for improving the performance. The algorithm

achieves F1-scores of 0.82 for class matching, 0.75 for attribute matching, and 0.80

for relationship matching. Moreover, the algorithm struggles the most with matching

attributes (compared to classes and attributes).

5.3 RQ 2: Grading Performance of the Algorithm

In addition to generating element matches, the algorithm produces a set of statistics as nu-

merical assessments for each assessed domain model. RQ 2 seeks to explore whether these

statistics can serve as meaningful grades for evaluated domain models. It aims to investi-

57

gate the extent to which the algorithm is capable of generating statistics that reasonably

approximate the ground truth values.

Two primary sources provide ground truth values for comparison on this research ques-

tion. Initially, the author manually matches model elements and assigns corresponding

matching scores. Consequently, based on these human-generated matches and matching

scores, precision, recall, and F1-scores are calculated for each assessed domain model. Lever-

aging these calculated F1-scores, the final grade can be calculated using the weighted average

method as previously discussed in Section 3.7. This constitutes the first type of ground truth

value. Given that these values are directly from the author of this thesis, the process of com-

paring them against algorithm-generated data is denoted as internal comparison.

Meanwhile, this thesis compares the final grades generated by the algorithm with those

from another existing benchmark on automated domain model assessment [8]. This serves

as the second source of ground truth values. Henceforth, it shall be referred to as external

comparison.

5.3.1 RQ 2.1: Internal Comparison

In RQ 2.1, an internal comparison is conducted where algorithm-generated precision, recall,

F1-scores, and grades are compared with the same set of results produced by the author of

this thesis. Inferential statistics are conducted to support the results.

Figure 5.1, Figure 5.2, Figure 5.3, and Figure 5.4 demonstrates statistic results on preci-

sion, recall, F1-scores, and grades, respectively, for each student submission. The blue bars

illustrate data generated by the algorithm, while the orange bars represent data sourced from

the author of this thesis. From Figure 5.1, it seems that the algorithm is always more gener-

ous in giving higher values than the ground truth values when evaluating classes. To confirm

this observation, the number of domain models which receive higher algorithm-generated re-

sults compared with human results are counted as shown in Table 5.3. For class precision,

recall, and F1-scores, 20 out of 20 domain models demonstrate algorithm-generated values

58

(a) Class Precision (b) Class Recall (c) Class F1-scores

Figure 5.1: Three plots showing class precision, recall, and F1-scores generated by the
algorithm and generated by the human

(a) Attribute Precision (b) Attribute Recall (c) Attribute F1-scores

Figure 5.2: Three plots showing attribute precision, recall, and F1-scores generated by the
algorithm and generated by the human

that are greater than or equal to their human-generated counterparts. Such a situation does

not exist for attributes or relationships.

(a) Relationship Precision (b) Relationship Recall (c) Relationship F1-scores

Figure 5.3: Three plots showing relationship precision, recall, and F1-scores generated by
the algorithm and generated by the human

59

Figure 5.4: Internal comparison of grades

Table 5.3: The number of domain models which receive algorithm-generated results greater
than or equal to the human-generated results

Metric Algorithm Results Ø Human Results

Class
Precision 20 / 20

Recall 20 / 20
F1-score 20 / 20

Attribute
Precision 10 / 20

Recall 8 / 20
F1-score 7 / 20

Relationship
Precision 7 / 20

Recall 6 / 20
F1-score 6 / 20
Grade 15 / 20

Table 5.5 demonstrates the results of various inferential statistical tests. To determine

if the samples are normally distributed, the Shapiro-Wilk test [35] is employed. This test

yields a p-value that guides the decision-making process: if the p-value is greater than the

significance level of 0.05, the null hypothesis is not rejected, indicating that the data follows a

normal distribution; conversely, if the p-value is less than 0.05, the null hypothesis is rejected,

suggesting the data is not normally distributed. When the data is normally distributed, the

paired T-test [36] is used to evaluate di�erences; otherwise, the Mann-Whitney U-test [37] is

applied. A significance level of 0.05 is used for both T-tests and U-tests in this thesis. These

60

Table 5.4: The Mean Absolute Error (MAE) between algorithm-generated data and author-
generated data; MAE values closer to 0 signify better performance, while a correlation
(Pearson correlation) approaching 1 indicates a stronger alignment between the datasets

Metric MAE Correlation

Class
Precision 0.04923 0.8146

Recall 0.04130 0.9418
F1-score 0.04507 0.8702

Attribute
Precision 0.04723 0.8702

Recall 0.04712 0.9193
F1-score 0.04427 0.8439

Relationship
Precision 0.04110 0.8272

Recall 0.02891 0.8306
F1-score 0.03397 0.8006
Grade 0.03096 0.8714

tests output a p-value, which is then used to determine whether to reject the null hypothesis.

If the observed p-value is less than 0.05, it provides strong evidence to reject the null hypoth-

esis. The null hypothesis typically suggests that there is no significant di�erence between

groups, or that any observed e�ect is likely due to random chance. Therefore, rejecting the

null hypothesis indicates that there is a significant di�erence between the data. Conversely,

if the p-value exceeds 0.05, there is insu�cient evidence to reject the null hypothesis, sug-

gesting that any di�erence between the two groups may not be statistically significant. In

this experiment, the algorithm is expected to grade domain models in a manner consistent

with human graders. Ideally, the metrics or grades it generates should closely align with

those given by human graders, without showing any statistically significant di�erences. Our

analysis reveals that out of ten evaluated metrics, only three show no statistically significant

di�erence between the algorithm’s results and human evaluations. Specifically, there is no

significant di�erence in the three metrics related to attribute matching, indicating that the

algorithm performs comparably to human graders in this area. However, significant di�er-

ences are observed in metrics related to class matching, relationship matching, and the final

grade, highlighting discrepancies between the algorithmic assessments and those made by

human graders. These findings suggest that while the algorithm shows potential, it currently

cannot replace human graders and requires further improvement.

61

Table 5.5: Inferential statistics for algorithm and human grading results; Normality refers
to if data are normally distributed; SD refers to if there is a statistically significant di�erence;
the p-values in the Algorithm and Human columns are derived from the Shapiro-Wilk test
for normality for each data group; the p-values in the T-test / U-test column are derived
from either a T-test or a Mann-Whitney U test (with the U-test specifically applied to the
Attribute-Recall row)

Algorithm Human T-test / U-test
P-Value Normality P-Value Normality P-Value SD

Class
Precision 0.2621 X 0.1066 X 0.00004 X

Recall 0.3235 X 0.1710 X 0.000009 X
F1-score 0.2022 X 0.6986 X 0.00001 X

Attribute
Precision 0.2326 X 0.7323 X 0.7569 ◊

Recall 0.0398 ◊ 0.4731 X 0.5692 ◊
F1-score 0.2284 X 0.1876 X 0.2383 ◊

Relation-
ship

Precision 0.4945 X 0.5929 X 0.03809 X
Recall 0.2661 X 0.4167 X 0.01577 X

F1-score 0.4483 X 0.7874 X 0.02155 X
Grade 0.4376 X 0.9531 X 0.002873 X

Table 5.4 shows the mean absolute error (MAE) (refer to Section 2.4) between precision,

recall, and F1-scores generated from the algorithm compared with the same metrics from a

human grader. The MAE consistently remains below 0.05, which is 5% in terms of percent-

age. In many universities, a 5% grading scale range is commonly used for undergraduate

course assessments. For example, an A- is typically assigned to numerical grades ranging

from 80% to 85%, while a B+ corresponds to grades between 75% and 80%. The algorithm

combines three F1-scores through weighted averaging to derive the final grade. Employing

identical weights as those utilized in the algorithm, the weighted average of F1-scores from

human graders is computed, thereby establishing them as the ground-truth F1-based grades.

Consequently, the MAE between the algorithm-generated grades and the ground truth F1-

based grades are calculated, as shown in the final row of Table 5.4. This computed MAE

stands at 0.03096, indicating a small deviation. Furthermore, the correlation between met-

rics derived from the algorithm and those from human graders is computed and exhibited

in the last column of Table 5.4. All correlation coe�cients surpass 0.8, indicating a robust

correlation between metrics generated by the algorithm and those by human graders.

62

Evaluating students’ submissions through ranking is a widely adopted practice in edu-

cation. Consequently, the rankings of the 20 student submissions are calculated based on

grades generated by the algorithm and those from human graders. To measure the alignment

in ranking, the Kendall · coe�cient is employed (refer to Section 2.4). The resulting Kendall

· coe�cient between the two rankings stands at 0.6526 with a p-value near zero, signifying

a robust alignment between the two rankings.

Answer to RQ 2.1. The algorithm excels in accurately evaluating domain

models, demonstrating precision, recall, F1-scores, and grades that closely

align with the ground truth values. Across all metrics, the Mean Abso-

lute Error (MAE) remains consistently below 0.05, accompanied by strong

correlations exceeding 0.8. However, only the metrics related to attributes

but not the metrics related to classes, relationships, and the overall grade

show no statistically significant di�erence between the algorithm’s results

and human evaluations, indicating that there is room for improvement.

5.3.2 RQ 2.2: External Comparison

RQ 2.2 aims to evaluate how well the algorithm produces a grade for an assessed domain

model that approximates an existing external benchmark from Singh et al. [8].

Table 5.6: Grading scheme

Letter Grade Integer Value
A 10
A- 9
B+ 8
B 7
B- 6
C+ 5
C 4
D 3
F 2

63

Figure 5.5: External comparison of numerical grades

Figure 5.6: External comparison of letter grades

The comparison is conducted on two levels: the first level involves comparing numerical

grades ranging from 0 to 1 in decimals, while the second level entails comparing letter grades.

The algorithm-generated grades are compared with the same set of domain model grading

results in the benchmark as shown in Figure 5.5. Inferential statistics are also conducted to

compare algorithm results with the external benchmark. The Shapiro-Wilk tests confirm that

both groups of data are normally distributed. Consequently, a paired T-test is performed,

yielding a p-value of 0.5613. This result indicates that there is no significant di�erence

between the two groups of data, highlighting the impressive performance of the algorithm

in generating results that closely align with the external benchmark. The numerical grades

64

for the same set of student submissions are obtained and the MAE between their grades and

ours are calculated. The largest di�erence in numerical grades (absolute error) among the

domain model assessments is 0.1317, while the smallest di�erence is 0.004. The resulting

MAE of 0.0456 is deemed reasonably small and falls within the spectrum of a typical letter

grade range.

Additionally, both sets of numerical grades are converted into letter grades using the

grading scheme adopted by McGill University5 for undergraduate courses. Subsequently,

integers are assigned to the letter grades according to the scheme in Table 5.6, where ad-

jacent letter grades di�er by 1, allowing the calculation of the MAE between the two sets

of letter grades. The letter grades for each domain model in two assessments are presented

in Figure 5.6. The largest di�erence in letter grades is 2, while the smallest di�erence is

0. There are 7 out of 20 domain models whose letter grade di�erence is exactly 0. There

are 6 out of 20 domain models with a letter grade di�erence of 1, and 7 out of 20 domain

models with a letter grade di�erence of 2. The MAE is exactly 1. This indicates a reasonably

close resemblance between the grades generated by the algorithm and those given by human

graders, although there is still room for improvement.

Answer to RQ 2.2. The algorithm showcases its proficiency in producing

meaningful precision, recall, F1-scores, and grades for domain model assess-

ments, which closely approximate those of the external benchmark. The

Mean Absolute Error (MAE) between the data and the benchmark stands

at 0.0456 for numerical grades and 1 for letter grades. The t-test con-

firms the absence of a statistically significant di�erence between the grades

produced by the algorithm and those from the benchmark.

5https://www.mcgill.ca/study/2023-2024/university_regulations_and_resources/
undergraduate/gi_grading_and_grade_point_averages

65

https://www.mcgill.ca/study/2023-2024/university_regulations_and_resources/undergraduate/gi_grading_and_grade_point_averages
https://www.mcgill.ca/study/2023-2024/university_regulations_and_resources/undergraduate/gi_grading_and_grade_point_averages

5.4 Discussion

This section discusses several aspects of the experiments and possible implications for each

research question.

5.4.1 RQ 1

The experiments show that the algorithm is still not able to match the model elements

completely the same as a human grader. However, the results obtained are promising and

there is still room for improvement. The results in RQ 1 reveal that the algorithm struggles

to match attributes correctly. Meanwhile, class matching and attribute matching, both

su�er from lower precision and higher recall. This suggests a higher percentage of false

positives compared to false negatives in the matches. Based on the discussion of FP (refer to

Table 4.2), the situation for FP can be summarized. Ideally, a model element a is matched

with b as a ground truth match (a, b). The element a cannot be None but b can be

None. The reason for a false positive is that the algorithm mistakenly matches a with some

elements other than b. More specifically, there can be two cases depending on the element

b: (1) b = None, and a is matched with c where c ”= None, or (2) b ”= None, and a is

matched with c where c ”= b and c ”= None. Therefore, one future direction can be aiming to

reduce the false positives by better identifying None matching by defining more rule-based

or embedding-based mechanisms to identify None matching, i.e., (a, None). At the same

time, given the algorithm is a multi-stage approach, its behavior in an interactive setting can

also be studied. In this case, a human grader can continuously provide feedback or tweak

the generated matches at each stage to continuously improve the overall performance.

5.4.2 RQ 2

By addressing the second research question, this thesis aims to provide insight into the extent

to which the algorithm produces statistics that reasonably approximate the ground truth.

This thesis performs an internal comparison and an external comparison. For internal com-

66

parison, the algorithm tends to be overly generous in its evaluations of classes. Specifically,

all domain models assessed by the algorithm receive higher class precision, recall, and F1-

scores than their human-generated counterparts. This may imply the algorithm needs higher

thresholds or other mechanisms to reduce false positives. Nevertheless, through meticulous

evaluation and comparison, it can be observed that the algorithm’s outputs exhibit a high

degree of correlation with the ground truth values. The Mean Absolute Error (MAE) for

the ten metrics related to class matching, attribute matching, relationship matching, and

final grading is less than 0.05, indicating a small error relative to human evaluations. Addi-

tional statistical tests were conducted to determine whether there is a significant di�erence

between the algorithm’s results and human evaluations. However, only three out of the ten

metrics pass the statistical tests, failing to reject the null hypothesis and showing no statisti-

cally significant di�erence in the algorithm’s grading and human grading. The three metrics

showing no significant di�erence are related to attribute matching, which had the lowest

performance in RQ 1. This contrast may be because RQ 1 focuses on evaluating individual

matches, while RQ 2 assesses the overall score. Therefore, errors in individual matches may

o�set each other, resulting in a more balanced overall score. Conversely, the remaining seven

metrics fail to pass the statistical tests and exhibit statistically significant di�erences in the

grading. This indicates that, although the algorithm demonstrates impressive capability

in grading domain models, it cannot currently replace human graders and requires further

enhancement. For the external comparison, the MAE between the numerical grades from

the algorithm and the external benchmark is less than 0.05. The results from the additional

T-test also confirm that there is no statistically significant di�erence between the two groups

of data. When the grades are converted to letter grades, the MAE becomes 1, indicating a

di�erence between the grades.

Overall, the algorithm demonstrates its e�ectiveness by generating meaningful precision,

recall, F1-scores, and grades that closely align with the ground truth values internally and

externally, indicating its capability to accurately assess domain models. This alignment

between the algorithm’s outputs and the ground truth values highlights its e�ectiveness

67

and potential in providing insightful assessments of domain models. Nevertheless, seven

statistical tests indicate a significant di�erence between the algorithm’s grading and human

grading. Besides, the algorithm is unable to predict letter grades to the same extent as

human grading. This implies that the algorithm cannot fully replace human grading in

real-world scenarios and underscores the need for further improvement to reach that level of

expertise.

5.5 Threats to Validity

5.5.1 Internal Validity

The matching dataset is constructed by the author, which may introduce bias. This thesis

mitigates this bias by comparing the algorithm outputs with a human-grading benchmark

created by another set of researchers [8]. This benchmark includes the assignments used in

this thesis. Meanwhile, the selection of scores for model elements and weights for F1-scores

can influence the final grades. The scores follow our previous work and the weights are

chosen based on those commonly used to evaluate university-level assignments. There are

typically multiple ways to represent a domain model, which may influence the performance

of the algorithm. To be consistent with our previous work, this thesis follows the same text-

based domain model representation that is based on natural language and uses it across all

experiments.

5.5.2 External Validity

There are benchmarks [8] for grading in the automated domain model assessment research.

However, to the best of my knowledge, there are no benchmark data sets available for model

element matching. Therefore, the author of this thesis curates such a data set manually. This

thesis only includes a limited number of data points in the evaluation of the algorithm, which

may increase the risk of obtaining false positives in the statistical tests. Furthermore, models

68

are collected from an undergraduate modeling course representing modeling in education

scenarios. The algorithm may perform di�erently if used in a di�erent scenario. Many third-

party libraries are used in the algorithm, specifically on embedding approaches. There could

be risks regarding unexpected changes or updates of OpenAI embedding approaches. The

OpenAI embedding result of model elements used in the experiments has been saved in a

public GitHub repository6 to ensure reproducibility and enable future researchers to validate

and build upon the findings. Additionally, the letter grade range is based on the system used

by McGill University, which may limit generalizability to other letter grade systems.

5.5.3 Construct Validity

The selection of metrics is important to reflect the performance of the algorithm. For in-

stance, using precision and recall for a regression problem cannot correctly evaluate the

performance of the model. There are various metrics employed across di�erent sections of

this thesis. To evaluate the matching performance of the algorithm, this thesis adapts metrics

widely used for evaluating domain models [2, 8, 38] including precision, recall, and F1-score.

To evaluate the grading performance of the algorithm, this work adapts MAE [39, 40] and

correlation [41, 42] which are also commonly used in the evaluation methods for regression

problems.

5.6 Summary

In summary, this chapter answers the proposed research questions and evaluates the perfor-

mance of the algorithm. It begins by describing the experimental settings in Section 5.1,

where evaluation datasets and external libraries are introduced. Then, Section 5.2 investi-

gates RQ 1, i.e., the capability of the algorithm to match model elements. The findings reveal

that the proposed algorithm is impressive in matching model elements with F1-scores of 0.82

for class matching, 0.75 for attribute matching, and 0.80 for relationship matching. Yet, it
6https://github.com/ChenKua/Domain_Model_Evaluation

69

https://github.com/ChenKua/Domain_Model_Evaluation

is still far from a perfect expert on matching model elements. In Section 5.3, RQ 2 proposes

two sub-questions, addressing internal and external comparisons, respectively. In both sce-

narios, the algorithm showcases its proficiency in assessing domain models, yielding metrics

that closely correspond to the ground truth values. The mean absolute error (MAE) remains

consistently below 0.05 across all metrics, a�rming the algorithm’s accuracy. During the

internal comparison, the correlation between the algorithm-generated metrics and those from

a human grader consistently exceeded 0.8. The Kendall · coe�cient reaches 0.65, indicating

a strong alignment between the rankings of student submissions derived from algorithm-

generated grades and those from human grading. The algorithm performs well in producing

metrics for attribute matching, showing no statistically significant di�erence compared to

human grading. However, it struggles with class matching and relationship matching, where

statistically significant di�erences are observed between the algorithm’s results and human

evaluations. The algorithm generates final grades with a statistically significant di�erence

compared to the grading provided by the author of this thesis but shows no statistically

significant di�erence when compared to the external benchmark. The MEA of 1 in letter

grades suggests a remarkable performance of the algorithm in assigning letter grades reason-

ably close to human grading. However, it still needs further improvements to replace human

grading.

Section 5.4 discusses the implications of each research question, while Section 5.5 illus-

trates threats to validity. The next chapter discusses the related work of this thesis.

70

Chapter 6

Related Work

This chapter delves into the existing literature concerning the automated evaluation of do-

main models, as detailed in Section 6.1. Furthermore, we explore the intersection of Natural

Language Processing (NLP) research with Model-Driven Engineering (MDE), as highlighted

in Section 6.2 where the first two subsections talk about automated domain modeling and

goal modeling, and the last subsection focuses on Large Language Models (LLMs). The

next section Section 6.3 demonstrates related research endeavors undertaken throughout my

master’s academic journey.

6.1 Domain Model Evaluation

Evaluating generated domain models can be challenging due to the variety of model elements

and intricate design patterns involved. Many approaches have been investigated to assess

the candidate solution in comparison to the reference solution. A table summarizing the

papers with techniques behind the scenes is shown in Table 6.1

Rule-based Approaches. Yang and Sahraoui [10] combine learning-based and rule-based

approaches for the extraction of UML class diagrams from natural language software spec-

ifications. Yet, the evaluation of extracted UML class diagrams is still rule-based. Specifi-

cally, they implemented an NLP pipeline that uses a trained classifier to tag each sentence

71

Table 6.1: Summary of automated domain model assessment

Paper Heuristics Graph Machine Learning
/ Rules Matching Training Embedding

Yang and Sahraoui [10] X
Bien et al. [11] X
Jayal and Shepperd [12] X
Hasker [13] X
Tselonis et al. [14] X X
Ludovic et al. [15] X X
Boubekeur et al. [9] X X
Singh et al. [8] X
Our proposed approach X X X

from the specification as describing either a class or a relationship, mapped each sentence

into a UML fragment, and assembled the fragments into a complete UML diagram using a

composition algorithm. In their evaluation, they evaluate the result with reference solutions

using exact matching, relaxed matching, and general matching over classes and relationships.

However, in the evaluation, they do not deal with the synonyms issue in the generated so-

lution, resulting in low performance of their approach. Bien et al. [11] present an approach

for automated grading of UML class diagrams, which uses a grading algorithm with syn-

tactic, semantic, and structural matching between two class diagrams. A metamodel was

introduced to store mappings and grades for mapping each model element, e.g., classes, at-

tributes, and associations so that it is possible to update the grading scheme later on. Jayal

and Shepperd [12] explore the problem of class name matching with various test transforma-

tions including: trimming, stemming, lowercase, replacing punctuation characters on class

names etc. Hasker [13] proposes a rule-based approach named UMLGrader to grade UML

diagrams. Some rules include: Class names only match if they match the whole name, Spaces

and underscores are stripped before matching names, and capitalization is ignored, etc. Singh

et al. [8] introduce a Mistake Detection System (MDS) designed to identify errors and o�er

feedback to students by comparing their submissions with a solution. This system is able to

detect a wide range of potential pre-defined mistakes (e.g., plural class name violation, com-

position violation) present in a submission. This work also focuses on matching attributes

72

and relationships. The core mechanism of their system is identifying the matching of class

names between a student solution and an instructor solution through rule-based approaches,

such as exact match, attribute overlap, Levenshtein distance (i.e., the minimum number

of single-character edits (insertions, deletions, or substitutions) required to transform one

string into the other [43]).

Graph-based Approaches. Tselonis et al. [14] propose the idea of treating various types

of diagrams including UML class diagrams as graphs and then using graph matching al-

gorithms to measure the similarity between such translated graphs. Diagrams are nothing

but boxes linked by connectors, which can be easily converted to graphs. More importantly,

graphs can be matched against each other for similarity, and the results used in various

ways. One of the matching algorithms investigated by the author is graph isomorphism.

Two graphs are isomorphic if we can change the vertex labels on one to make its set of edges

identical to the other [29]. In this context, a correct answer would most likely be isomorphic

to, or at least contain an isomorphic subgraph of, a model answer [14]. Similarly, Ludovic et

al. [15] also apply a graph-matching approach for assessing class diagrams. Their proposed

algorithm is based on graph-matching techniques, using characteristic structural patterns

depicted in diagrams. Similarity functions compare these structures, generating similarity

scores for each pair. The algorithm categorizes matches into univalent and multivalent based

on a taxonomy of di�erences.

Machine Learning Approach. Boubekeur et al. [9] propose an approach based on a

simple heuristic and machine learning that helps categorize simple domain model submissions

from students according to their quality. The system determines if submissions are above a

quality threshold to assign them a letter grade. The predicted letter grades are comparable

with the letter grades of the human graders. Still, their approach lacks explainability and

does not give a specific score for each submission or contain any detail for each component

within the system.

73

In comparison to existing methodologies, this thesis introduces an algorithm utilizing

word embedding and sentence embedding for automated domain model assessment by as-

signing scores for each model element and calculating the precision, recall, and F1-scores for

classes, attributes, and relations individually. To the best of my knowledge, this is the first

kind of approach which applies a combination of embeddings for automatic assessment of

domain models.

6.2 NLP for MDE

Extensive downstream applications from the field of NLP have been directly applied to

model-driven engineering. A table summarizing di�erent NLP research applied in MDE is

shown in Table 6.2. Numerous MDE practices involve the extraction of information from

natural language documents to create abstract models, and here, the contributions of NLP

research are substantial. Named Entity Recognition (Named Entity Recognition (NER)), a

key NLP technique aiming to automatically identify and categorize text entities into prede-

fined labels [44], plays a crucial role in extracting potential classes and relationships from

documents. For instance, Gala [45] e�ectively employs NER in the generation of class dia-

grams from user requirements. Another relevant NLP research area is part-of-speech tagging,

a process involving the automated assignment of part-of-speech tags (such as verbs, adjec-

tives, adverbs, nouns, etc.) to words in a sentence [46]. This technique also contributes

significantly to the information extraction processes within the context of MDE. Recently,

with rapid advances in auto-regressive language models, LLMs have shown powerful gener-

alizability to tasks beyond NLP [4]. LLMs can perform di�erent tasks without supervised

training on the specific task using carefully designed input (called prompt). Using di�erent

prompt engineering [5] techniques, LLMs can achieve impressive performance on di�erent

tasks by only using a few labeled examples in the prompt. Such advances raise the natural

question of whether these LLMs can be used to fully automate domain modeling. Therefore,

our previous research evaluated to what extent domain modeling and goal modeling can be

74

Table 6.2: Summary of NLP research used for MDE; labels in the second column indicate:
Part-of-speech Tagging (POS), Named Entity Recognition (NER), Embeddings (E), Large
Language Model (LLM); Generation indicates complete model generation and Assistant
indicates modeling assistant

Paper NLP Method Domain Modeling Goal Modeling
Research Generation Assistant Generation Assistant

[38] POS Rule-based X
[47] POS Rule-based X
[48] POS Rule-based X
[49] POS Rule-based X
[50] POS, LLM Rule-based X
[51] POS Rule-based X
[52] NER Rule-based X
[45] NER Statistical X
[53] E Statistical X
[10] E Statistical X
[54] LLM Statistical X
[2] LLM Statistical X
[6] LLM Statistical X
[55] LLM Statistical X
[56] LLM Statistical X
[57] LLM Statistical X
[7] LLM Statistical X

fully automated using an LLM without supervised training [2, 7]. The work on goal mod-

eling [7] explores GPT-4’s current knowledge and mastery of a specific modeling language,

the Goal-oriented Requirement Language (GRL). We also conduct case studies using GPT-4

to create goal models. Our results suggest that GPT-4 preserves considerable knowledge

on goal modeling, and although many elements generated by GPT-4 are generic, reflecting

what is already in the prompt, or even incorrect, there is value in getting exposed to the

generated concepts. The work on domain modeling [2] evaluates how the expressiveness of

LLMs and di�erent prompt engineering techniques can a�ect the quality of generated do-

main models. Furthermore, we identified the advantages and limitations of current LLMs

for fully automated domain modeling. More importantly, our experiments in this research

su�ered from the lack of a proper automated domain model assessment tool, which directly

motivated this thesis.

75

6.2.1 Automated Domain Modeling

Many existing works on automated domain modeling utilize statistical methods or rule-based

methods to directly derive complete domain modeling solutions like UML class diagrams

[10,38,47,51] or provide modeling assistance and suggestions [53,54] from textual descriptions

in natural language. Table 6.2 summarize di�erent methods for automated domain modeling.

Statistical methods emphasize using NLP techniques to extract domain models. Bur-

gueño et al. [53] design a framework to suggest new model elements for a given partially

completed model, by using word embeddings to capture the lexical and semantic informa-

tion from textual documents. Several other existing approaches also combine NLP and

machine learning techniques to automate the model creation process [10,38].

Rule-based methods include using hand-written grammatical templates and heuristics.

An example of a rule-based method presents an algorithm with 23 heuristics which pre-

define a particular syntactic structure to follow and automatically identify model elements

from user stories [47]. Another example of such rule-based methods is proposed by Herchi et

al. [48]. The authors begin by using an NLP toolkit including a sentence splitter, tokenizer,

and syntactic parser to decompose the input text and then use linguistic rules (e.g., All

nouns are converted to entity types) to extract UML concepts.

These studies focus on generating domain models with new techniques and primarily

rely on manual evaluation to assess their proposed approaches. This reliance motivates this

thesis work to develop an automated domain model assessment system to replace the tedious

process of manual evaluation.

6.2.2 Automated Goal Modeling

Güneş et al. [49] construct a goal model from a set of user stories by using NLP techniques to

extract role names, actions, and benefits information from user stories, and then combine this

information in di�erent ways to build goal models. Zhou et al. [57] present an interactive and

iterative modeling approach that merges human decision-making with deep learning, specif-

76

ically BERT. This approach reduces goal modeling costs while maintaining model quality.

Through interviews, the authors identified practical needs of goal modelers for automating

modeling using the iStar goal modeling notation [58]. Based on these findings, the proposed

hybrid approach combines deep learning-based entity and relational extraction with logical

reasoning using dependency and statistical rules. Wu et al. [50] propose an approach to

generate iStar goal models [58] from user stories. The first step is node identification, where

NLP techniques are used to extract ‘who’, ‘what’, and ‘why’ components from user stories.

Node merging is then performed using BERT to calculate node embeddings. Pairs of nodes

with a cosine similarity score above a certain threshold are merged. Finally, various kinds

of relationships between nodes are identified based on predefined rules.

6.2.3 Large Language Models

Language modeling is a traditional task in natural language processing that aims to estimate

the conditional probability of a sequence of tokens. Depending on the pre-training task, they

can be roughly classified into the following categories [59]: autoregressive language models,

masked language models, and encoder-decoder language models. Autoregressive language

models’ objective is to learn to predict the next word given the previous words of a sentence

(e.g., GPT-3 [5], GPT3.5 [60]1, Codex [61]). Masked language models are trained with

the objective to predict a masked word given the rest of the sequence as context (e.g.,

BERT [26], RoBERTa [62]). Finally, encoder-decoder language models can be trained on

a sequence reconstruction or translation objective (e.g., T5 [63], BART [64]). Recently,

large language models (LLMs) have gained significant attention for this task. LLMs use

deep neural networks, typically with transformer architecture [65] and pre-trained in an

autoregressive manner, to estimate this probability distribution.

Given a sequence of tokens s = {s1, s2, ..., sk≠1}, LLMs estimate the conditional probabil-

ity of the next token P (sk|s1, ..., sk≠1). These models are typically used for text generation
1https://openai.com/blog/chatgpt

77

https://openai.com/blog/chatgpt

through auto-regression. Specifically, in each time step, the LLM predicts a new token that

is added to the input.

Traditional NLP systems were initially designed to be task-specific, that is, trained from

scratch using specific data and training objectives. However, this paradigm has changed,

and currently, the state-of-the-art results are achieved by pre-trained LLMs. Such huge deep

learning models (i.e., models with an extensive number of parameters) are pre-trained with

a large corpus (pre-training phase). Then, those models are usually fine-tuned using a par-

ticular data set and task. After the fine-tuning phase, the generalization capabilities of those

models are impressive [59]. As the scale of LLMs (i.e., the number of parameters) increases,

some models can be fine-tuned to perform other specific tasks beyond text generation [66].

Fine-tuning and Prompting

Fine-tuning of an LLM involves updating some of the parameters to fit a given task and

a given data set [59]. This fine-tuning approach enhances the generalization ability of the

trained models [59] but has two major drawbacks: (1) the training process can be computa-

tionally expensive, and (2) some tasks may not have su�cient training data for fine-tuning.

Recently, LLMs have been used as few-shot learners [5], where the training examples are

used as input rather than parameter updates. As an alternative to fine-tuning, prompt-

based learning methods [67] involve constructing examples used as input (i.e., prompt) to

LLMs. Research has shown that, when trained on a su�ciently large corpus, an LLM has the

capacity to preserve a substantial amount of knowledge implicitly within its parameters [68].

The resulting LLM can be queried for di�erent kinds of knowledge and can answer questions

in a domain without further fine-tuning or training but through prompt engineering [69,70].

Given an input and a set of examples, a typical prompt-based learning method consists of

three steps [67]: (1) transform the input and the examples into task context using a template

that contains unfilled slots (a process known as prompt engineering), (2) fill the slots with

an LLM to generate an output text, and (3) extract the final output from the output text

using a post-processor. In this approach, the parameters of an LLM are fixed. Depending

78

on the prompt engineering strategy, either a small number of labeled examples are needed,

or no labeled examples are required.

LLMs for MDE

With the advancement of LLMs, various language models have been incorporated within

model-driven engineering (MDE), yielding significant improvements in various aspects of

the development process.

Weyssow et al. [54] propose a learning-based approach to recommend relevant domain

concepts to a modeler during a meta-modeling activity by training a deep-learning model.

Specifically, the authors take a RoBERTa model with weights randomly initialized and train

it on thousands of independent meta-models. Their experiments show that the trained model

can learn meaningful domain concepts and relationships and recommend relevant classes,

attributes, and associations. Chaaben et al. [6] propose an approach for model completion

by generating related elements using GPT-3. They formulate examples using classes and

their relationships with other classes and then create prompts with few-shot learning. They

also rank the generated classes by frequency in multiple runs. Others discuss the potential

of ChatGPT in software engineering [55,56]. For example, Cámara et al. [55] present the use

of ChatGPT to build UML class diagrams enriched with OCL constraints in an interactive

mode.

The evaluation of all of these approaches requires manual matching in the absence of

reliably automated matching. LLMs often fail to accurately match model elements and may

omit certain elements during the text generation process. This limitation motivated the

adoption of a more structured, matching-based approach. Consequently, the algorithm pro-

posed in this thesis integrates word embeddings, sentence embeddings, and graph-matching

mechanisms to match model elements, ultimately moving closer to automated domain model

assessment.

79

6.3 Use Cases of Knowledge Representation

Knowledge representation is the study of how to put knowledge into a form that a com-

puter can reason with [71]. In the era of Good Old-Fashioned AI, rule-based approaches

or symbolic-based approaches like first-order logic were popular in the field of knowledge

representation. However, with the increasing popularity of machine learning, the trend has

been shifted to the embedding-based approaches. Many downstream applications of this are

closely related to software engineering and domain modeling because they can help software

engineers understand the system and develop software systems with written documentation

more e�ciently. In this section, we present some use cases of knowledge representation which

we have dived into during our previous research. These use cases in the fields involve certain

types of embedding-based techniques, which have further inspired the proposed approach in

this thesis of applying word embeddings and sentence embeddings for automated domain

model assessment.

6.3.1 Knowledge Graph for Explainable Information Retrieval

Text-based Information Retrieval (IR) is the task of accessing the most relevant documents,

given a query in natural language as input. Modern IR systems usually exploit text embed-

dings, which map text into a vector such that the distance between the vectors represents the

similarity of the text [18]. Thanks to recent advancements in machine learning, embedding-

based methods have been adopted in many modern information retrieval systems. One of

the most famous examples of IR systems is the search engine [72], which most software engi-

neers rely heavily on to solve technical issues encountered during the software development

process. While showing promising retrieval performance, these embedding-based approaches

typically fail to explain why a particular document is retrieved as a query result to address

explainable information retrieval, because embedding is di�cult for humans to understand.

In real-world IR use cases, a user can make better decisions if an additional explanation

is provided for the retrieved results. For example, when a user queries what contributes

80

to heart disease, an explanation stating the reason helps the user decide the relevance of a

result.

Extensive research has been conducted to investigate the domain of explainable infor-

mation retrieval. Explainability in information retrieval can be categorized by the form

of the outcome: highlighting-based, feature-importance-based, rules-based, and mixed ap-

proaches [73].

One famous example for highlighting-based explanation is Google Search, where content

snippets and keywords are shown along with the search result. Similarly, Chios and Verberne

[74] proposed highlighting most important snippet for deep IR models. Feature importance

based explanation methods may calculate scores from queries and documents [74–76]. Some

approaches operate on term importance from the query, while others focus on re-ranking the

documents with explainable features [76]. Rule-based explanation aims to answer specific

properties about the internal mechanism of the IR model [77] by providing a simplified

model to explain decisions. Finally, mixed explanation combines all methods to provide

comprehensive explainability [74,76].

While explainable IR is mostly post-hoc, there also exist approaches using explainable

embedding to rank documents [78, 79] such that the distance in the vector space explains

the relatedness of the query and document.

A Knowledge Graph (KG) is a directed labeled graph where nodes represent entities, and

edges capture relationships between nodes. Therefore, KGs record structured information

about entities and inherently explainable relationships. KGs provide explicit semantic rela-

tions between entities, which can serve as an explanation, or help clarify the intent of the

query. Normally, such semantic relations also appear in the text. For example, the sentence

“obesity contributes to heart disease” reflects two entities obesity and heart disease related

by the contribute relation.

Considerable research e�orts have been devoted to the utilization of knowledge graphs

for information retrieval. Meanwhile, KGs have been shown to be e�ective in improving the

performance of information retrieval systems [80] and generating explanations for other ma-

81

chine learning algorithms [81]. However, the use of KG for explainable information retrieval

is still restricted to domain-specific use cases [82, 83].

Entities from a knowledge graph can be used within an IR system in order to help

understand a user’s intent, queries, and documents beyond what can be achieved through

word tokens on their own [80]. Reinanda et al. [80] summarised approaches on how to

leverage entity-oriented information in KG: expansion-based, latent factor modeling, language

modeling, and deep learning approaches. At the same time, KG is also being used in some

domain-specific applications for explanation of IR systems.

Expansion-based approaches enrich entity-oriented information in the retrieval process by

expanding queries and/or documents [84], for example, expanding the query with synonyms.

Latent factor modeling attempts to find concepts in queries and documents. Xiong et

al. [85] presented a new technique for improving ranking using external data and knowl-

edge bases. This technique treats the external objects as a latent layer between query and

documents to learn judging document relevance.

Language modeling approaches consider semantic information when building language

models of queries and documents. For example, Ensan et al. [86] proposed a document re-

triever which uses semantic linking systems for forming a graph representation of documents

and queries, where nodes represent concepts from documents and edges represent semantic

relatedness between concepts.

Deep learning approaches use knowledge graph embeddings in neural ranking systems.

Examples are embedding queries and documents in the entity space [87] and constructing

an interaction matrix between queries and entity representations [88,89].

KG are used for Explainable IR. Hasan et al. [83] proposed a framework for generating

explanations in domain-specific IR applications by incorporating domain knowledge graphs.

Yang [82] applies KG to explain the IR model by building knowledge-aware paths with the

help of attention scores. Similarly, Xian et al. [90] design an explainable recommendation

system which contains explicit reasoning with KG for decision-making to make recommen-

dations explainable.

82

A well-known challenge in the field is linking entities and relationships, i.e., identifying

and connecting the matching parts of a KG and a piece of text [91,92]. While existing entity

linking tools can be used as a starting point, improving the explainability of IR by using

KGs also necessitates (1) a general integrated architecture and (2) a detailed recipe on how

to use KG information to improve specific types of explanations.

Therefore, our previous work proposed a novel general architecture for incorporating

knowledge graphs for explainable information retrieval in various steps of the retrieval process

[18]. We instantiate the general architecture in two parts for explainable IR by integrating

an open knowledge graph Wikidata and various entity linking approaches. The first part

applies KG to identify the most important sentence of a passage, which explains how the

passage is related to the query. Specifically, we use extra information about the linked entity

from the KG to perform query expansion in several di�erent ways to better identify the

most important sentence. The second part incorporates the idea of re-ranking documents

along with explainable features to better explain the ranking of a document. We propose

a new explainable feature used for re-ranking candidate documents based on the KG with

entity matching. Moreover, we conduct initial experimental evaluations on the two specific

explanation approaches on two datasets: WIKIQA [93] and Robust04 [94]. Assuming an ideal

entity matcher, our technique improves the performance of identifying the most important

sentence by 6.96% and the base retrieval performance by 0.45%.

Explainability is also a key factor in domain model assessment. In real-world assignment

grading, instructors not only assign a grade to the domain model but also provide explana-

tions or highlight the reasons for score reductions. In the early phase of this work, LLMs are

used to grade domain models against a reference model. Although LLMs can generate free-

form text feedback, this feedback is often too generic. This inspired the author to explore

how explainability can be derived at the model element level. Therefore, this thesis work

explains the grading by the matching of model elements. Additionally, the investigation into

various sentence embedding models further inspires the use of text embeddings for matching

model elements in this thesis work.

83

&RORU

3XUSOH 5HG %OXH *UHHQ

&ULPVRQ 9LROHW /DYHQGHU

K\SRQ\PV

K\SHUQ\P

Figure 6.1: An example of the hierarchical relationship between hyponyms and hypernym
(adapted from [1])

6.3.2 Taxonomy

With the increasing use of natural language processing techniques to improve explainability,

semantic analysis of text resources has become a key challenge. Taxonomy construction

aims to organize and classify entities according to their attributes and relations, which can

simultaneously improve the e�ciency of information retrieval and increase explainability.

One of our previous research projects focuses on constructing a hierarchical taxonomy from

the concepts.

A taxonomy is a partially ordered classification of entities according to their internal

attributes and relations. A taxonomy is composed of hierarchical relationships (e.g., is-a or

superclass-of relations) between entities. In linguistics terminology, a hyponym is a subtype

or subclass of a hypernym. An example is shown in Figure 6.1.

Constructing such taxonomies can largely contribute to the semantic analysis of data

sources, e.g., text corpus. It is an important tool to organize and manage information,

which could enable users to easily navigate to their concepts of interest and improve in-

formation retrieval e�ciency. For example, Velardi et al. [95] designed a semi-automated

methodology to facilitate the design of a domain taxonomy and used the taxonomy to im-

prove the accessibility of knowledge and data repositories in a Web community. Meanwhile,

hierarchical relationships also commonly appear in domain modeling such as inheritance and

a use case can be identifying super-classes and sub-classes from textual domain description

for modeling purposes.

84

Our previous work proposes a general framework for automatically constructing a taxon-

omy using a language model and soft prompting. The general workflow has three steps: (1)

concept extraction from the text corpus, (2) hierarchical relation prediction between concept

pairs using language models with probing and soft prompt tuning [96] as a supervised learn-

ing task, and (3) tree taxonomy construction with hierarchical concept pairs using maximum

spanning tree algorithm.

Generally, there are two categories of approaches for taxonomy construction, manual

approach and automatic approach. In the manual approach, both construction and mainte-

nance of the taxonomy rely on domain experts to decide the choice of the terminology and

supervise the construction process [97]. Relying on human decisions makes this approach

precise, but also makes it time-consuming, expensive, and unable to scale [98].

Due to the disadvantages of the manual approach, recent research mostly focuses on

the automatic approach, which is large-scale and uses various natural language processing

and machine learning techniques. Existing automatic taxonomy construction methods are

classified into two categories: (1) pattern-based methods and (2) embedding-based methods.

Pattern-based methods construct taxonomies by using pre-defined lexico-syntactic pat-

terns to extract hyponymy lexical pairs from the text corpus and then build the taxonomy

tree. Hearst [99] is the pioneer of this approach, who identified a set of such patterns for

the automatic acquisition of the hyponymy lexical relation from unrestricted text. An ex-

ample of such patterns is a “such as” pattern, i.e., “NP0 such as NP1, NP2...,NPN” implies

that for all NPi, 1 Æ i Æ n, NPi is a subclass of NP0. One clear limitation of Hearst’s

work is that both terms are required to appear in the same sentence. Inspired by previous

work, Snow et al. [100] designed a system to automatically extract large numbers of useful

lexico-syntactic patterns by using examples of known hypernym pairs. Besides, Nakashole et

al. [101] proposed an e�cient algorithm for mining textual patterns and built a subsumption

taxonomy for a large lexical resource of such textual patterns. Recently, one participant

in the SemEval-2018 Task 9 also presented an approach for automatic extraction of hyper-

nymy relations from a corpus by using dependency patterns [102]. The commonality of

85

these pattern-based methods is that they rely on a large text corpus and integrate extensive

linguistic knowledge. Secondly, natural language is consistently evolving and pattern-based

methods may fail when expressions of parent-child relations change [103].

Embedding-based methods firstly learn an embedding representation of terms from text

corpus or nodes from knowledge graphs and use embeddings to predict the is-a relation. For

example, another participant to the SemEval-2018 Task 9 first used the skip-gram model

to acquire word embeddings and then predict hypernyms for a given word based on cosine

similarity scores [104]. Many other works [105,106] also employed word embeddings to attack

this problem. However, it is argumentative whether these methods could learn hierarchy

information, and the authors [107] also claimed that they do not learn a relation between

two words.

With the help of embedding representations, it is possible to calculate various types of

distance. Therefore, hierarchical clustering is also frequently adopted for taxonomy construc-

tion [103, 108, 109]. For example, Zhang et al. [103] used term embeddings and hierarchical

clustering to recursively construct a taxonomy from a text corpus, whereas Martel et al. [108]

construct a taxonomy with knowledge graph embeddings and hierarchical clustering. How-

ever, the problem is that hierarchical clustering can only separate entities into several clusters

but it could not reveal the is-a relation between entities. Specifically, the result of hierarchi-

cal clustering is usually a tree where all input entities are assigned to di�erent leaf nodes.

Thus, non-leaf nodes have no assigned entities and one cannot identify the parent-child re-

lationship by only observing the tree. Some addressed this problem by designing complex

heuristic functions to decide how to assign entities to non-leaf nodes [103, 108]. While the

above-mentioned methods are based on Euclidean distance, some attempted hyperbolic em-

bedding models (non-Euclidean geometries) and claimed that hyperbolic embeddings could

be more e�cient in learning hierarchy information [110–112].

Following the advent of LLMs, Chen et al. also attempt to leverage LLMs for taxon-

omy construction [113]. They systematically compare the e�ectiveness of using LLMs for

taxonomy construction at a novel computer science taxonomy dataset.

86

6.3.3 Named Entity Recognition (NER)

Named entity recognition is one of the primary tasks in information extraction. It aims

to automatically identify and classify text entities into predefined categories [44], so that

machines or humans can better understand the meaning of the text, and ultimately extract

useful information from documents. This process can be time-consuming and error-prone if

done manually. With high-quality NER tools, the performance of many NLP applications

can be further improved, such as information retrieval, question answering, and machine

translation [114].

Various approaches have been proposed to achieve NER and can generally be classified

into two categories, rule-based approaches and learning-based approaches [115]. Rule-based

approaches use a part-of-speech tagging process to identify the type of words and explore

contextual features rules [116]. This type of approach generally does not require annotated

corpus resources for training but is hard to transfer to other domains.

Learning-based approaches are explored to detect entities and classify entities into the cor-

rect categories, including support vector machines (SVM), conditional random fields (CRF),

and various large language models (LLMs) [117]. These approaches generally require learn-

ing an embedding representation of the input text for the final classification. Giorgi et

al. [118] explore the e�ectiveness of using pre-trained transformer-based language models

and BioBERT for the task of NER. They conclude that their pre-trained language models

can identify features of entities in their dataset, CoNLL04 [119], which contains approxi-

mately two entities per sentence, and are able to exploit this pattern to get near-perfect

performance on the majority of sentences in the corpus.

Our previous research explored the e�ectiveness of various LLMs for the task of NER.

Our investigation on LLMs can also be further divided into encode-only models and decoder-

only models. BERT-based models [26] are selected as the encode-only models and GPT-2

models proposed by OpenAI [27, 60, 120] are employed as the decoder-only models. Both

types of models have similar basic mechanisms for converting natural language words into

embedding representations and then classifying them.

87

Another early attempt by the author at automated domain model assessment involves

using NER to extract entities from the natural language modeling problem text and assess

the overlap between these entities and model elements, particularly class names. However,

this approach works partially for class names and struggles to accurately assess relationships,

especially multiplicities. As a result, this thesis does not follow the above-mentioned idea

and instead focuses on matching model elements between a candidate model and a reference

model. Additionally, since most NER approaches convert entities into text embeddings before

classifying them into predefined labels, this thesis also adopts similar embedding techniques

to obtain vector representations of model elements to find element matches.

6.4 Summary

In summary, this chapter first examines the related work on automated domain model

evaluation, as outlined in Section 6.1. Herein, we comprehensively explore various exist-

ing approaches, explaining their intricacies and distinguishing them from our proposed ap-

proach. Subsequently, we present related NLP research applied to model-driven engineering,

as demonstrated in Section 6.2. The first two subsections of Section 6.2 examine automated

domain modeling and goal modeling, while the last subsection highlights applying LLMs for

MDE. Furthermore, we shed light on additional research endeavors undertaken throughout

the course of my master’s academic journey, detailed in Section 6.3. This experience has

further inspired our proposed approach in this thesis of applying embedding for automated

domain model assessment. In the next chapter, we will synthesize the findings and formulate

a concluding statement for this thesis. We will also discuss potential future directions.

88

Chapter 7

Conclusion

This chapter summarizes the primary contributions and findings of this thesis in Section 7.1,

through the exploration of the proposed research questions. Furthermore, this thesis is

concluded by discussing potential avenues for future research in Section 7.2.

7.1 Contributions and Findings

This thesis introduces a novel algorithm for fully automated domain model assessment uti-

lizing embeddings and graph comparison techniques. The algorithm automatically matches

model elements between a candidate model and a reference model in textual representation,

subsequently generating a grade for the candidate model without human intervention. This

thesis evaluates the algorithm using a dataset comprising 20 real-world student submissions

from a university undergraduate-level modeling course. A reusable evaluation pipeline is

designed to compare the element matches produced by the algorithm with those generated

by a human grader.

The following paragraphs review the findings from addressing each research question.

RQ 1

What is the performance of the algorithm in matching a candidate domain model to

a reference model regarding classes, attributes, and relationships?

89

RQ 1 aims to evaluate the performance of the algorithm in matching model elements

between two domain models. RQ 1 also evaluates the performance of the algorithm in

matching classes, attributes, and relationships using precision, recall, and F1-scores. The

algorithm achieves an average precision of 0.7425, recall of 0.9332, and F1-score of 0.8239

for class matching. Additionally, it achieves average precision, recall, and F1-score values

of 0.7274, 0.7861, and 0.7456, respectively, for attribute matching, and 0.8556, 0.7628, and

0.7958, respectively, for relationship matching. These results indicate that although the pro-

posed algorithm exhibits impressive performance in matching model elements, there remains

potential for enhancement in its performance. While the domain elements matched by the

algorithm are generally correct, there are instances of mismatches between elements. Addi-

tionally, the algorithm encounters the greatest di�culty in matching attributes, compared

to classes and relationships.

RQ 2

To what extent does the algorithm-generated grade compare with those produced by

human grading?

RQ 2 aims to investigate whether the statistics generated by the algorithm can approxi-

mate those from other approaches including manual grading. An internal comparison is con-

ducted wherein the precision, recall, and F1-scores generated by the algorithm are compared

with those derived from human grading by the author of this thesis. The Mean Absolute

Error (MAE) for each metric is small, all below 0.05. Specifically, the MAE for class preci-

sion is 0.04923, for class recall it is 0.04130, and for class F1-score it is 0.4507. For attribute

precision, the MAE is 0.04723, for attribute recall it is 0.04712, and for attribute F1-score

it is 0.04427. Regarding relationship metrics, the MAE for relationship precision is 0.04110,

for relationship recall it is 0.2891, and for relationship F1-score it is 0.03397. Notably, the

MAE between grades is only 0.03096. To further validate the algorithm’s results, statistical

tests are performed. The analysis reveals no statistically significant di�erences in the pre-

cision, recall, and F1-scores for attribute matching when comparing the algorithm’s output

90

to the author’s manual grading. However, statistically significant di�erences are identified

in the precision, recall, and F1-scores related to class matching and relationship matching.

Such a statistically significant di�erence also extended to the final grades generated by the

algorithm, as contrasted with the author’s grading.

RQ 2 additionally conducts an external comparison, wherein it compares the grades

generated by the algorithm with those from an existing benchmark. The MAE for numer-

ical grades is similarly small, at 0.0456, and the MAE for letter grades is exactly 1. The

algorithm-generated numerical grades also exhibit no statistically significant di�erence when

compared to the external benchmark. The results illustrate that the algorithm is capable of

generating meaningful precision, recall, F1-scores, and grades that closely approximate the

ground truth values for assessing a domain model. However, further improvement is neces-

sary for the algorithm to fully substitute human grading in real-world applications, such as

in educational scenarios.

Conclusion Statement

This thesis has significantly contributed to the research area of automated assessment of do-

main models against reference models. It innovatively integrates word embeddings, sentence

embeddings, and graph comparison techniques to match two domain models and ultimately

provides insightful assessments.

Moreover, this approach is available as a Python script, addressing the issue of technical

debt found in some previous research attempts in the field. The primary goal of automated

domain model assessment is to reduce the workload for researchers to manually evaluate

domain models. It is counterproductive if researchers still have to spend considerable time

installing and preparing the environment for the automated assessment approaches. Fur-

thermore, this approach does not require input domain models to be in a rigid modeling

language or specific file formats; it only requires them to be provided as natural language

text, thereby enhancing adaptability.

91

This work impacts both the research and educational communities. For instance, the

algorithm can evaluate domain models generated by LLMs against reference models curated

by modeling experts, reducing the time and e�ort needed for manual evaluation and providing

researchers with immediate feedback on their modeling approaches. Although experiments

indicate that the algorithm does not yet reach human graders’ assessments in educational

scenarios, it can still serve as a valuable starting point for grading. Additionally, students

can use the algorithm as a starting point to review their work for practice when reference

models are provided.

7.2 Opportunities for Future Research

Numerous promising avenues for future work can build upon the foundations laid in this

thesis. One potential application of this algorithm is in educational settings, where instruc-

tors could employ it to streamline the grading process of student submissions. Currently,

no graphical user interface (GUI) has been implemented. An exciting direction for future

research would be to develop an end-to-end software solution capable of grading two do-

main models using the algorithm and utilize it in real-world educational scenarios. This

software would require user interfaces to e�ectively manage the inputs and demonstrate

the algorithm’s outputs. Additionally, the algorithm-generated matches should be visually

represented to provide more intuitive feedback to users.

The algorithm implements a multi-stage and cascading process to match model elements.

One promising avenue for enhancement involves integrating human feedback into the loop.

For instance, the algorithm initiates the matching process by dealing with enumeration

classes, with subsequent matches influenced by these initial resulting matches. Consequently,

incorporating human feedback into the matches produced at each stage holds the potential

to improve subsequent matches and enhance overall performance.

Another avenue of potential improvement involves integrating the problem description

directly into the algorithm. Currently, the algorithm operates independently of the modeling

92

problem description, which contains rich information about the problem domain. By incor-

porating this description into the algorithm, it can augment the information available for

element matching. For example, the algorithm could extract sentences that specifically de-

scribe each model element and incorporate them into the element embeddings. This enriched

context may potentially enhance the accuracy and relevance of the matching process.

93

Appendix A

Modeling Problem Description and

Reference Model

A.1 Problem Description

A smart home automation system (SHAS) allows various users to automatically manage

smart home automation tasks. A smart home (located at a physical address) consists of

several rooms, each of which may contain sensor devices and actuator (controller) devices of

di�erent types (e.g., temperature sensor, movement sensor, light controller, lock controller).

Each sensor and actuator has a unique device identifier. Once a new sensor or actuator is

activated or deactivated, SHAS will recognize the change and update its infrastructure map.

When SHAS is operational, a sensor device periodically provides sensor readings (recording

the measured value and the timestamp). Similarly, a predefined set of control commands

(e.g., lockDoor, turnOnHeating) can be sent to the actuator devices with the timestamp

and the status of the command (e.g., requested, completed, failed, etc.). All sensor readings

and control commands for a smart home are recorded by SHAS in an activity log. Relevant

alerts in a smart home can be set up and managed by its owner by setting up automation

rules. An automation rule has a precondition and an action. The precondition is a Boolean

expression constructed from relational terms connected by basic Boolean operators (AND,

OR, NOT). Atomic relational terms may refer to rooms, sensors, actuators, sensor readings,

94

and control commands. The action is a sequence of control commands. For example, a

sample rule could specify: when actualTemperature by Device #1244 in Living Room <

18 and window is closed then turnOnHeating in Living Room. Automation rules can be

created, edited, activated, and deactivated by owners. Only deactivated rules can be edited.

Rules can also depend on or conflict with other rules, thus a complex rule hierarchy can be

designed. SHAS records whenever an active rule is triggered using a timestamp.

A.2 Reference Domain Model

The class diagram of the reference domain model to the modeling problem in Appendix A.1

is shown in Figure A.1. It is created by a modeling expert. Additionally, the textual

representation of the domain model in our EBNF format is demonstrated in Listing A.1.

95

1 Enumerations :
2 DeviceStatus (activated , deactivated)
3 CommandType (lockDoor , turnOnHeating)
4 CommandStatus (requested , completed , failed)
5 RuleStatus (created , edited , activated , deactivated)
6 BinaryOp (AND , OR)
7

8 Classes :
9 SHAS ()

10 SmartHome ()
11 User(string name)
12 Address (string city , string postalCode , string street , string aptNumber)
13 Room ()
14 abstract Device (DeviceStatus deviceStatus , int deviceID)
15 SensorDevice ()
16 ActuatorDevice ()
17 ActivityLog ()
18 abstract RuntimeElement (time timestamp)
19 SensorReading (double value)
20 ControlCommand (CommandType commandType , CommandStatus commandStatus)
21 AlertRule (RuleStatus ruleStatus)
22 abstract BooleanExpression ()
23 RelationalTerm ()
24 NotExpression ()
25 BinaryExpression (BinaryOp binaryOp)
26 CommandSequence ()
27

28 Relationships :
29 1 SHAS contain * SmartHome
30 1 SHAS contain * User
31 1 SmartHome contain 0..1 Address
32 1 SmartHome contain * Room
33 1 SmartHome contain 0..1 ActivityLog
34 * SmartHome associate * User
35 1 SmartHome contain * AlertRule
36 1 Room contain * SensorDevice
37 1 Room contain * ActuatorDevice
38 1 ActivityLog contain * SensorReading
39 1 ActivityLog contain * ControlCommand
40 * SensorReading associate 1 SensorDevice
41 * ControlCommand associate 1 ActuatorDevice
42 1 AlertRule contain 0..1 BooleanExpression
43 1 AlertRule contain * CommandSequence
44 * RelationalTerm associate 0..1 Room
45 * RelationalTerm associate 0..1 SensorDevice
46 * RelationalTerm associate 0..1 ActuatorDevice
47 * RelationalTerm associate 0..1 SensorReading
48 * RelationalTerm associate 0..1 ControlCommand
49 0..1 NotExpression associate 1 BooleanExpression
50 0..1 BinaryExpression associate 1 BooleanExpression
51 0..1 BinaryExpression associate 1 BooleanExpression
52 * CommandSequence associate 0..1 CommandSequence
53 1 CommandSequence contain 0..1 ControlCommand
54 SensorReading inherit RuntimeElement

96

55 ControlCommand inherit RuntimeElement
56 NotExpression inherit BooleanExpression
57 BinaryExpression inherit BooleanExpression
58 RelationalTerm inherit BooleanExpression
59 SensorDevice inherit Device
60 ActuatorDevice inherit Device

Listing A.1: Reference domain model in EBNF format

97

��HQXPHUDWLRQ!!�
'HYLFH6WDWXV

DFWLYDWHG

GHDFWLYDWHG

��HQXPHUDWLRQ!!�
&RPPDQG7\SH

ORFN'RRU

WXUQ2Q+HDWLQJ

��HQXPHUDWLRQ!!�
&RPPDQG6WDWXV

UHTXHVWHG

FRPSOHWHG

IDLOHG

��HQXPHUDWLRQ!!�
5XOH6WDWXV

FUHDWHG

HGLWHG

DFWLYDWHG

GHDFWLYDWHG

6+$6

6PDUW+RPH 8VHU

QDPH��VWULQJ

$GGUHVV

FLW\��VWULQJ

SRVWDO&RGH��VWULQJ

VWUHHW��VWULQJ

DSW1XPEHU��VWULQJ

��DEVWUDFW!!�
'HYLFH

GHYLFH6WDWXV�
'HYLFH6WDWXV
GHYLFH,'��LQW

����

6HQVRU'HYLFH$FWXDWRU'HYLFH

$FWLYLW\/RJ

��DEVWUDFW!!�
5XQWLPH(OHPHQW
WLPHVWDPS��WLPH

����

6HQVRU5HDGLQJ

YDOXH��GRXEOH

����

&RQWURO&RPPDQG

FRPPDQG7\SH���
&RPPDQG7\SH
FRPPDQG6WDWXV��
&RPPDQG6WDWXV

$OHUW5XOH

UXOH6WDWXV�
5XOH6WDWXV

��DEVWUDFW!!�
%RROHDQ([SUHVVLRQ

����

5HODWLRQDO7HUP

����

1RW([SUHVVLRQ

��HQXPHUDWLRQ!!�
%LQDU\2S

$1'

25

%LQDU\([SUHVVLRQ

ELQDU\2S��%LQDU\2S

&RPPDQG6HTXHQFH

����

����

5RRP

 ����

�

�

����

����

����

�

����

�

����

�

Figure A.1: Class diagram of the reference domain model

98

Bibliography

[1] Y. Verma, “A complete guide to using wordnet

in nlp applications.” https://analyticsindiamag.com/

a-complete-guide-to-using-wordnet-in-nlp-applications/, 2021 (accessed

December 7, 2023).

[2] K. Chen, Y. Yang, B. Chen, J. A. H. López, G. Mussbacher, and D. Varró, “Auto-

mated domain modeling with large language models: A comparative study,” in 2023

ACM/IEEE 26th International Conference on Model Driven Engineering Languages

and Systems (MODELS), pp. 162–172, IEEE, 2023.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language Reference Man-

ual, The (2nd Edition). Pearson Higher Education, 2004.

[4] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang,

Z. Dong, et al., “A survey of large language models,” arXiv preprint arXiv:2303.18223,

2023.

[5] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakan-

tan, P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot learners,”

Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[6] M. B. Chaaben, L. Burgueño, and H. Sahraoui, “Towards using few-shot prompt learn-

ing for automating model completion,” in Proceedings of the 45th International Con-

99

https://analyticsindiamag.com/a-complete-guide-to-using-wordnet-in-nlp-applications/
https://analyticsindiamag.com/a-complete-guide-to-using-wordnet-in-nlp-applications/

ference on Software Engineering: New Ideas and Emerging Results, ICSE-NIER ’23,

p. 7–12, IEEE Press, 2023.

[7] B. Chen, K. Chen, S. Hassani, Y. Yang, D. Amyot, L. Lessard, G. Mussbacher, M. Sa-

betzadeh, and D. Varró, “On the use of gpt-4 for creating goal models: an exploratory

study,” in 2023 IEEE 31st International Requirements Engineering Conference Work-

shops (REW), pp. 262–271, IEEE, 2023.

[8] P. Singh, Y. Boubekeur, and G. Mussbacher, “Detecting mistakes in a domain model,”

in Proceedings of the 25th International Conference on Model Driven Engineering Lan-

guages and Systems: Companion Proceedings, MODELS ’22, (New York, NY, USA),

p. 257–266, Association for Computing Machinery, 2022.

[9] Y. Boubekeur, G. Mussbacher, and S. McIntosh, “Automatic assessment of students’

software models using a simple heuristic and machine learning,” in Proceedings of the

23rd ACM/IEEE International Conference on Model Driven Engineering Languages

and Systems: Companion Proceedings, MODELS ’20, (New York, NY, USA), Associ-

ation for Computing Machinery, 2020.

[10] S. Yang and H. Sahraoui, “Towards automatically extracting UML class diagrams from

natural language specifications,” in Proceedings of the 25th International Conference on

Model Driven Engineering Languages and Systems: Companion Proceedings, MODELS

’22, (New York, NY, USA), p. 396–403, Association for Computing Machinery, 2022.

[11] W. Bian, O. Alam, and J. Kienzle, “Automated grading of class diagrams,” in Pro-

ceedings of the 22nd International Conference on Model Driven Engineering Languages

and Systems, MODELS ’19, p. 700–709, IEEE Press, 2021.

[12] A. Jayal and M. Shepperd, “The problem of labels in e-assessment of diagrams,” Jour-

nal on Educational Resources in Computing (JERIC), vol. 8, no. 4, pp. 1–13, 2009.

[13] R. Hasker, “Umlgrader: an automated class diagram grader,” Journal of Computing

Sciences in Colleges, vol. 27, pp. 47–54, 10 2011.

100

[14] C. Tselonis, J. Sargeant, and M. McGee Wood, “Diagram matching for human-

computer collaborative assessment,” in Proceedings of the 9th International Computer

Assisted Assessment Conference, pp. 1–15, Loughborough University, May 2005.

[15] L. Auxepaules, D. Py, and T. Lemeunier, “A diagnosis method that matches class

diagrams in a learning environment for object-oriented modeling,” in Proceedings of

the 2008 Eighth IEEE International Conference on Advanced Learning Technologies,

ICALT ’08, (USA), p. 26–30, IEEE Computer Society, 2008.

[16] M. A. Garzón, H. Aljamaan, and T. C. Lethbridge, “Umple: A framework for model

driven development of object-oriented systems,” in IEEE 22nd International Confer-

ence on Software Analysis, Evolution, and Reengineering (saner), pp. 494–498, IEEE,

2015.

[17] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse Modeling

Framework. Pearson Education, 2008.

[18] B. Chen, K. Chen, Y. Yang, A. Amini, B. Saxena, C. Chávez-Garćıa, M. Babaei,

A. Feizpour, and D. Varró, “Towards improving the explainability of text-based infor-

mation retrieval with knowledge graphs,” arXiv preprint arXiv:2301.06974, 2023.

[19] R. S. Scowen, “Generic base standards,” in Proceedings 1993 Software Engineering

Standards Symposium, pp. 25–34, IEEE, 1993.

[20] J. Barnard, “What is embedding?.” https://www.ibm.com/topics/embedding, Dec

2023. Accessed on 2024-02-13.

[21] F. Almeida and G. Xexéo, “Word embeddings: A survey,” arXiv preprint

arXiv:1901.09069, 2019.

[22] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for word repre-

sentation,” in Proceedings of the 2014 Conference on Empirical Methods in Natural

101

https://www.ibm.com/topics/embedding

Language Processing (EMNLP) (A. Moschitti, B. Pang, and W. Daelemans, eds.),

(Doha, Qatar), pp. 1532–1543, Association for Computational Linguistics, Oct. 2014.

[23] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed repre-

sentations of words and phrases and their compositionality,” in Proceedings of the

26th International Conference on Neural Information Processing Systems - Volume 2,

NIPS’13, (Red Hook, NY, USA), p. 3111–3119, Curran Associates Inc., 2013.

[24] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “E�cient estimation of word repre-

sentations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[25] J. A. H. López, C. Durá, and J. S. Cuadrado, “Word embeddings for model-driven

engineering,” in 2023 ACM/IEEE 26th International Conference on Model Driven En-

gineering Languages and Systems (MODELS), pp. 151–161, IEEE, 2023.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-

rectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,

2018.

[27] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al., “Language

models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[28] J. Han, M. Kamber, and J. Pei, “2 - getting to know your data,” in Data Mining (Third

Edition) (J. Han, M. Kamber, and J. Pei, eds.), The Morgan Kaufmann Series in Data

Management Systems, pp. 39–82, Boston: Morgan Kaufmann, third edition ed., 2012.

[29] R. Sedgewick, Algorithms in java, part 5: Graph algorithms. Addison-Wesley Profes-

sional, 2003.

[30] M. Grohe and P. Schweitzer, “The graph isomorphism problem,” Commun. ACM,

vol. 63, p. 128–134, Oct 2020.

[31] X. Chen, H. Huo, J. Huan, and J. S. Vitter, “An e�cient algorithm for graph edit

distance computation,” Knowledge-Based Systems, vol. 163, pp. 762–775, 2019.

102

[32] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics, and

function using networkx,” tech. rep., Los Alamos National Lab.(LANL), Los Alamos,

NM (United States), 2008.

[33] Z. Abu-Aisheh, R. Raveaux, J.-Y. Ramel, and P. Martineau, “An exact graph edit

distance algorithm for solving pattern recognition problems,” in Proceedings of the

International Conference on Pattern Recognition Applications and Methods - Volume

1, ICPRAM 2015, (Setubal, PRT), p. 271–278, SCITEPRESS - Science and Technology

Publications, Lda, 2015.

[34] M. G. Kendall, “The treatment of ties in ranking problems,” Biometrika, vol. 33, no. 3,

pp. 239–251, 1945.

[35] S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality (complete

samples),” Biometrika, vol. 52, no. 3-4, pp. 591–611, 1965.

[36] A. Ross, V. L. Willson, A. Ross, and V. L. Willson, “Paired samples t-test,” Basic and

Advanced Statistical Tests: Writing Results Sections and Creating Tables and Figures,

pp. 17–19, 2017.

[37] P. E. McKnight and J. Najab, “Mann-whitney u test,” The Corsini encyclopedia of

psychology, pp. 1–1, 2010.

[38] R. Saini, G. Mussbacher, J. L. C. Guo, and J. Kienzle, “Machine learning-based incre-

mental learning in interactive domain modelling,” in Proceedings of the 25th Interna-

tional Conference on Model Driven Engineering Languages and Systems, p. 176–186,

ACM, 2022.

[39] T. Chai and R. R. Draxler, “Root mean square error (rmse) or mean absolute error

(mae)? – arguments against avoiding rmse in the literature,” Geoscientific Model

Development, vol. 7, no. 3, pp. 1247–1250, 2014.

103

[40] C. J. Willmott and K. Matsuura, “Advantages of the mean absolute error (mae) over

the root mean square error (rmse) in assessing average model performance,” Climate

research, vol. 30, no. 1, pp. 79–82, 2005.

[41] G. Liu, C. Wang, H. Qin, J. Fu, and Q. Shen, “A novel hybrid machine learning model

for wind speed probabilistic forecasting,” Energies, vol. 15, no. 19, p. 6942, 2022.

[42] V. Bewick, L. Cheek, and J. Ball, “Statistics review 7: Correlation and regression,”

Critical care, vol. 7, pp. 1–9, 2003.

[43] V. I. Levenshtein et al., “Binary codes capable of correcting deletions, insertions, and

reversals,” in Soviet physics doklady, vol. 10, pp. 707–710, Soviet Union, 1966.

[44] J. Santoso, E. I. Setiawan, C. N. Purwanto, E. M. Yuniarno, M. Hariadi, and M. H.

Purnomo, “Named entity recognition for extracting concept in ontology building on

indonesian language using end-to-end bidirectional long short term memory,” Expert

Systems with Applications, vol. 176, p. 114856, 2021.

[45] M. Gala, “Unified modeling language (UML) generation from user requirements

in natural language.” https://uu.diva-portal.org/smash/get/diva2:1809096/

FULLTEXT01.pdf, 2023.

[46] A. Chiche and B. Yitagesu, “Part of speech tagging: a systematic review of deep

learning and machine learning approaches,” Journal of Big Data, vol. 9, no. 1, pp. 1–

25, 2022.

[47] M. Robeer, G. Lucassen, J. M. van der Werf, F. Dalpiaz, and S. Brinkkemper, “Auto-

mated extraction of conceptual models from user stories via nlp,” in 2016 IEEE 24th

International Requirements Engineering Conference (RE), (Los Alamitos, CA, USA),

pp. 196–205, IEEE Computer Society, September 2016.

[48] H. Herchi and W. B. Abdessalem, “From user requirements to UML class diagram,”

arXiv preprint arXiv:1211.0713, 2012.

104

https://uu.diva-portal.org/smash/get/diva2:1809096/FULLTEXT01.pdf
https://uu.diva-portal.org/smash/get/diva2:1809096/FULLTEXT01.pdf

[49] T. Güneş and F. B. Aydemir, “Automated goal model extraction from user stories

using NLP,” in 2020 IEEE 28th International Requirements Engineering Conference

(RE), pp. 382–387, IEEE, 2020.

[50] C. Wu, C. Wang, T. Li, and Y. Zhai, “A node-merging based approach for generating

iStar models from user stories,” Software Engineering and Knowledge Engineering,

pp. 257–262, 2022.

[51] J. Franc̊u and P. Hnětynka, “Automated generation of implementation from textual

system requirements,” in Software Engineering Techniques: Third IFIP TC 2 Central

and East European Conference, CEE-SET 2008, Brno, Czech Republic, October 13-15,

2008, Revised Selected Papers 3, pp. 34–47, Springer, 2011.

[52] S. Amdouni, W. B. A. Karaa, and S. Bouabid, “Semantic annotation of requirements

for automatic uml class diagram generation,” arXiv preprint arXiv:1107.3297, 2011.

[53] L. Burgueño, R. Clarisó, S. Gérard, S. Li, and J. Cabot, “An NLP-based architecture

for the autocompletion of partial domain models,” in Advanced Information Systems

Engineering: 33rd International Conference, CAiSE 2021, Melbourne, VIC, Australia,

June 28–July 2, 2021, Proceedings, pp. 91–106, Springer, 2021.

[54] M. Weyssow, H. Sahraoui, and E. Syriani, “Recommending metamodel concepts during

modeling activities with pre-trained language models,” Software and Systems Modeling,

vol. 21, no. 3, pp. 1071–1089, 2022.

[55] J. Cámara, J. Troya, L. Burgueño, and A. Vallecillo, “On the assessment of generative

ai in modeling tasks: An experience report with chatgpt and uml,” Softw. Syst. Model.,

vol. 22, p. 781–793, May 2023.

[56] B. Combemale, J. Gray, and B. Rumpe, “Chatgpt in software modeling,” Softw. Syst.

Model., vol. 22, p. 777–779, May 2023.

105

[57] Q. Zhou, T. Li, and Y. Wang, “Assisting in requirements goal modeling: a hybrid

approach based on machine learning and logical reasoning,” in Proceedings of the 25th

International Conference on Model Driven Engineering Languages and Systems, MOD-

ELS ’22, (New York, NY, USA), p. 199–209, Association for Computing Machinery,

2022.

[58] E. Yu, P. Giorgini, N. Maiden, J. Mylopoulos, and S. Fickas, “Modeling strategic rela-

tionships for process reengineering,” in Social Modeling for Requirements Engineering,

pp. 66–87, The MIT Press, 2011.

[59] B. Min, H. Ross, E. Sulem, A. P. B. Veyseh, T. H. Nguyen, O. Sainz, E. Agirre, I. Heinz,

and D. Roth, “Recent advances in natural language processing via large pre-trained

language models: A survey,” arXiv preprint arXiv:2111.01243, 2021.

[60] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang,

S. Agarwal, K. Slama, A. Ray, et al., “Training language models to follow instructions

with human feedback,” arXiv preprint arXiv:2203.02155, 2022.

[61] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards,

Y. Burda, N. Joseph, G. Brockman, et al., “Evaluating large language models trained

on code,” arXiv preprint arXiv:2107.03374, 2021.

[62] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,

and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv

preprint arXiv:1907.11692, 2019.

[63] C. Ra�el, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li,

and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text

transformer,” The Journal of Machine Learning Research, vol. 21, no. 1, pp. 5485–

5551, 2020.

[64] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov,

and L. Zettlemoyer, “BART: denoising sequence-to-sequence pre-training for natural

106

language generation, translation, and comprehension,” in Proceedings of the 58th An-

nual Meeting of the Association for Computational Linguistics, ACL 2020, Online,

July 5-10, 2020, pp. 7871–7880, Association for Computational Linguistics, 2020.

[65] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Proceedings of the 31st Interna-

tional Conference on Neural Information Processing Systems, NIPS’17, (Red Hook,

NY, USA), p. 6000–6010, Curran Associates Inc., 2017.

[66] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., “Improving lan-

guage understanding by generative pre-training.” https://openai.com/research/

language-unsupervised, 2018.

[67] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, prompt, and

predict: A systematic survey of prompting methods in natural language processing,”

ACM Computing Surveys, vol. 55, no. 9, pp. 1–35, 2023.

[68] B. AlKhamissi, M. Li, A. Celikyilmaz, M. Diab, and M. Ghazvininejad, “A review on

language models as knowledge bases,” arXiv preprint arXiv:2204.06031, 2022.

[69] J. White, Q. Fu, S. Hays, M. Sandborn, C. Olea, H. Gilbert, A. Elnashar, J. Spencer-

Smith, and D. C. Schmidt, “A prompt pattern catalog to enhance prompt engineering

with ChatGPT,” arXiv preprint arXiv:2302.11382, 2023.

[70] H.-G. Fill, P. Fettke, and J. Köpke, “Conceptual modeling and large language models:

impressions from first experiments with ChatGPT,” Enterprise Modelling and Infor-

mation Systems Architectures (EMISAJ), vol. 18, pp. 1–15, 2023.

[71] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. USA: Prentice

Hall Press, 3rd ed., 2009.

[72] E. H. Y. Lim, J. N. K. Liu, and R. S. T. Lee, Text Information Retrieval, ch. Text

Information Retrieval, pp. 27–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011.

107

https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised

[73] M. R. Islam, M. U. Ahmed, S. Barua, and S. Begum, “A systematic review of explain-

able artificial intelligence in terms of di�erent application domains and tasks,” Applied

Sciences, vol. 12, no. 3, p. 1353, 2022.

[74] I. Chios and S. Verberne, “Helping results assessment by adding explainable elements

to the deep relevance matching model,” arXiv preprint arXiv:2106.05147, 2021.

[75] J. Ramos and C. Eickho�, “Explainability in transparent information retrieval sys-

tems.” https://api.semanticscholar.org/CorpusID:147702637, 2019. Accessed on 2024-

01-19.

[76] S. Polley, A. Janki, M. Thiel, J. Hoebel-Mueller, and A. Nuernberger, “Exdocs:

Evidence-based explainable document search,” in Proceedings of the ACM SIGIR

Workshop on Causality in Search and Recommendation, vol. 2911, pp. 1–7, Associ-

ation for Computing Machinery, 2021.

[77] J. Singh and A. Anand, “Exs: Explainable search using local model agnostic inter-

pretability,” in Proceedings of the Twelfth ACM International Conference on Web

Search and Data Mining, WSDM ’19, (New York, NY, USA), p. 770–773, Associa-

tion for Computing Machinery, 2019.

[78] M. A. Qureshi and D. Greene, “Eve: explainable vector based embedding technique

using wikipedia,” Journal of Intelligent Information Systems, vol. 53, no. 1, pp. 137–

165, 2019.

[79] A. Panigrahi, H. V. Simhadri, and C. Bhattacharyya, “Word2Sense: Sparse inter-

pretable word embeddings,” in Proceedings of the 57th Annual Meeting of the Associ-

ation for Computational Linguistics (A. Korhonen, D. Traum, and L. Màrquez, eds.),

(Florence, Italy), pp. 5692–5705, Association for Computational Linguistics, July 2019.

[80] R. Reinanda, E. Meij, M. de Rijke, et al., “Knowledge graphs: An information re-

trieval perspective,” Foundations and Trends® in Information Retrieval, vol. 14, no. 4,

pp. 289–444, 2020.

108

[81] I. Tiddi and S. Schlobach, “Knowledge graphs as tools for explainable machine learning:

A survey,” Artificial Intelligence, vol. 302, p. 103627, 2022.

[82] Z. Yang, “Biomedical information retrieval incorporating knowledge graph for explain-

able precision medicine,” in Proceedings of the 43rd International ACM SIGIR Confer-

ence on Research and Development in Information Retrieval, (New York, NY, USA),

pp. 2486–2486, Association for Computing Machinery, 2020.

[83] H. Abu-Rasheed, C. Weber, J. Zenkert, M. Dornhöfer, and M. Fathi, “Transferrable

framework based on knowledge graphs for generating explainable results in domain-

specific, intelligent information retrieval,” Informatics, vol. 9, no. 1, p. 6, 2022.

[84] S. Balaneshinkordan and A. Kotov, “An empirical comparison of term association

and knowledge graphs for query expansion,” in European conference on information

retrieval, pp. 761–767, Springer, 2016.

[85] C. Xiong and J. Callan, “Esdrank: Connecting query and documents through external

semi-structured data,” in Proceedings of the 24th ACM international on conference on

information and knowledge management, (New York, NY, USA), pp. 951–960, Associ-

ation for Computing Machinery, 2015.

[86] F. Ensan and E. Bagheri, “Document retrieval model through semantic linking,” in

Proceedings of the tenth ACM international conference on web search and data mining,

(New York, NY, USA), pp. 181–190, Association for Computing Machinery, 2017.

[87] C. Xiong, R. Power, and J. Callan, “Explicit semantic ranking for academic search via

knowledge graph embedding,” in Proceedings of the 26th international conference on

world wide web, (Republic and Canton of Geneva, CHE), pp. 1271–1279, International

World Wide Web Conferences Steering Committee, 2017.

[88] Z. Liu, C. Xiong, M. Sun, and Z. Liu, “Entity-duet neural ranking: Understanding

the role of knowledge graph semantics in neural information retrieval,” arXiv preprint

arXiv:1805.07591, 2018.

109

[89] C. Xiong, J. Callan, and T.-Y. Liu, “Word-entity duet representations for document

ranking,” in Proceedings of the 40th International ACM SIGIR Conference on Re-

search and Development in Information Retrieval, SIGIR ’17, (New York, NY, USA),

p. 763–772, Association for Computing Machinery, 2017.

[90] Y. Xian, Z. Fu, S. Muthukrishnan, G. de Melo, and Y. Zhang, “Reinforcement knowl-

edge graph reasoning for explainable recommendation,” in Proceedings of the 42nd

International ACM SIGIR Conference on Research and Development in Information

Retrieval, SIGIR’19, (New York, NY, USA), p. 285–294, Association for Computing

Machinery, 2019.

[91] P. Ferragina and U. Scaiella, “Fast and accurate annotation of short texts with

wikipedia pages,” IEEE Software, vol. 29, no. 1, pp. 70–75, 2011.

[92] F. Piccinno and P. Ferragina, “From tagme to wat: A new entity annotator,” in Pro-

ceedings of the First International Workshop on Entity Recognition and Disambigua-

tion, ERD ’14, (New York, NY, USA), p. 55–62, Association for Computing Machinery,

2014.

[93] Y. Yang, W.-t. Yih, and C. Meek, “WikiQA: A challenge dataset for open-domain

question answering,” in Proceedings of the 2015 Conference on Empirical Methods in

Natural Language Processing (L. Màrquez, C. Callison-Burch, and J. Su, eds.), (Lisbon,

Portugal), pp. 2013–2018, Association for Computational Linguistics, Sept. 2015.

[94] E. M. Voorhees, “The trec robust retrieval track,” SIGIR Forum, vol. 39, p. 11–20,

June 2005.

[95] P. Velardi, A. Cucchiarelli, and M. Petit, “A taxonomy learning method and its appli-

cation to characterize a scientific web community,” IEEE Transactions on Knowledge

and Data Engineering, vol. 19, no. 2, pp. 180–191, 2007.

[96] B. Lester, R. Al-Rfou, and N. Constant, “The power of scale for parameter-e�cient

prompt tuning,” arXiv preprint arXiv:2104.08691, 2021.

110

[97] R. Sujatha, R. Bandaru, and R. Rao, “Taxonomy construction techniques–issues

and challenges,” Indian Journal of Computer Science and Engineering, vol. 2, no. 5,

pp. 661–671, 2011.

[98] M. Centelles, “Taxonomies for categorisation and organisation in websites.” https:

//arxiu-web.upf.edu/hipertextnet/en/numero-3/taxonomias.html, 2005. Ac-

cessed on 2024-01-25.

[99] M. A. Hearst, “Automatic acquisition of hyponyms from large text corpora,” in Pro-

ceedings of the 14th Conference on Computational Linguistics - Volume 2, COLING

’92, (USA), p. 539–545, Association for Computational Linguistics, 1992.

[100] R. Snow, D. Jurafsky, and A. Y. Ng, “Learning syntactic patterns for automatic hy-

pernym discovery,” in Proceedings of the 17th International Conference on Neural In-

formation Processing Systems, NIPS’04, (Cambridge, MA, USA), p. 1297–1304, MIT

Press, 2004.

[101] N. Nakashole, G. Weikum, and F. Suchanek, “Patty: a taxonomy of relational patterns

with semantic types,” in Proceedings of the 2012 Joint Conference on Empirical Meth-

ods in Natural Language Processing and Computational Natural Language Learning,

EMNLP-CoNLL ’12, (USA), p. 1135–1145, Association for Computational Linguis-

tics, 2012.

[102] M. Onofrei, I. Hulub, D. Trandabăt, , and D. Gı̂fu, “Apollo at SemEval-2018 task 9: De-

tecting hypernymy relations using syntactic dependencies,” in Proceedings of the 12th

International Workshop on Semantic Evaluation (M. Apidianaki, S. M. Mohammad,

J. May, E. Shutova, S. Bethard, and M. Carpuat, eds.), (New Orleans, Louisiana),

pp. 898–902, Association for Computational Linguistics, June 2018.

[103] C. Zhang, F. Tao, X. Chen, J. Shen, M. Jiang, B. Sadler, M. Vanni, and J. Han,

“Taxogen: Unsupervised topic taxonomy construction by adaptive term embedding

and clustering,” in Proceedings of the 24th ACM SIGKDD International Conference on

111

https://arxiu-web.upf.edu/hipertextnet/en/numero-3/taxonomias.html
https://arxiu-web.upf.edu/hipertextnet/en/numero-3/taxonomias.html

Knowledge Discovery & Data Mining, KDD ’18, (New York, NY, USA), p. 2701–2709,

Association for Computing Machinery, 2018.

[104] A. Maldonado and F. Klubička, “Adapt at semeval-2018 task 9: Skip-gram word

embeddings for unsupervised hypernym discovery in specialised corpora,” in Pro-

ceedings of The 12th International Workshop on Semantic Evaluation, (New Orleans,

Louisiana), pp. 924–927, Association for Computational Linguistics, 2018.

[105] R. Fu, J. Guo, B. Qin, W. Che, H. Wang, and T. Liu, “Learning semantic hierarchies

via word embeddings,” in Proceedings of the 52nd Annual Meeting of the Associa-

tion for Computational Linguistics (Volume 1: Long Papers), (Baltimore, Maryland),

pp. 1199–1209, Association for Computational Linguistics, June 2014.

[106] A. T. Luu, Y. Tay, S. C. Hui, and S. K. Ng, “Learning term embeddings for taxo-

nomic relation identification using dynamic weighting neural network,” in Proceedings

of the 2016 Conference on Empirical Methods in Natural Language Processing, (Austin,

Texas), pp. 403–413, Association for Computational Linguistics, Nov. 2016.

[107] O. Levy, S. Remus, C. Biemann, and I. Dagan, “Do supervised distributional methods

really learn lexical inference relations?,” in Proceedings of the 2015 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, (Denver, Colorado), pp. 970–976, Association for Computa-

tional Linguistics, May–June 2015.

[108] F. Martel and A. Zouaq, “Taxonomy extraction using knowledge graph embeddings

and hierarchical clustering,” in Proceedings of the 36th Annual ACM Symposium on

Applied Computing, SAC ’21, (New York, NY, USA), p. 836–844, Association for

Computing Machinery, 2021.

[109] H. Bai, F. Z. Xing, E. Cambria, and W.-B. Huang, “Business taxonomy construction

using concept-level hierarchical clustering,” arXiv preprint arXiv:1906.09694, 2019.

112

[110] M. Nickel and D. Kiela, “Poincaré embeddings for learning hierarchical representa-

tions,” in Proceedings of the 31st International Conference on Neural Information

Processing Systems, NIPS’17, (Red Hook, NY, USA), p. 6341–6350, Curran Associates

Inc., 2017.

[111] R. Aly, S. Acharya, A. Ossa, A. Köhn, C. Biemann, and A. Panchenko, “Every child

should have parents: a taxonomy refinement algorithm based on hyperbolic term em-

beddings,” arXiv preprint arXiv:1906.02002, 2019.

[112] M. Le, S. Roller, L. Papaxanthos, D. Kiela, and M. Nickel, “Inferring concept hierar-

chies from text corpora via hyperbolic embeddings,” arXiv preprint arXiv:1902.00913,

2019.

[113] B. Chen, F. Yi, and D. Varró, “Prompting or fine-tuning? a comparative study of large

language models for taxonomy construction,” in 2023 ACM/IEEE International Con-

ference on Model Driven Engineering Languages and Systems Companion (MODELS-

C), (Los Alamitos, CA, USA), pp. 588–596, IEEE Computer Society, 2023.

[114] B. Mohit, “Named entity recognition,” in Natural language processing of semitic lan-

guages, pp. 221–245, Springer, 2014.

[115] A. Goyal, V. Gupta, and M. Kumar, “Recent named entity recognition and classifica-

tion techniques: a systematic review,” Computer Science Review, vol. 29, pp. 21–43,

2018.

[116] R. Alfred, L. Leong, C. On, and P. Anthony, “Malay named entity recognition based

on rule-based approach,” International Journal of Machine Learning and Computing,

vol. 4, pp. 300–306, 06 2014.

[117] M. Jiang, Y. Chen, M. Liu, S. T. Rosenbloom, S. Mani, J. C. Denny, and H. Xu,

“A study of machine-learning-based approaches to extract clinical entities and their

assertions from discharge summaries,” Journal of the American Medical Informatics

Association, vol. 18, no. 5, pp. 601–606, 2011.

113

[118] J. Giorgi, X. Wang, N. Sahar, W. Y. Shin, G. D. Bader, and B. Wang, “End-to-end

named entity recognition and relation extraction using pre-trained language models,”

arXiv preprint arXiv:1912.13415, 2019.

[119] D. Roth and W.-t. Yih, “A linear programming formulation for global inference in nat-

ural language tasks,” tech. rep., Illinois Univ at Urbana-Champaign Dept of Computer

Science, 2004.

[120] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-

lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,

T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,

E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,

I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Proceedings

of the 34th International Conference on Neural Information Processing Systems, NIPS

’20, (Red Hook, NY, USA), pp. 1877–1901, Curran Associates Inc., 2020.

114

	Abstract
	Résumé
	Acknowledgements
	List of Figures
	List of Tables
	List of Listings
	List of Abbreviations
	Introduction
	Context and Motivation
	Research Questions, Objectives, and Contributions
	Thesis Organization
	Summary

	Background
	Domain Modeling
	Domain Model Elements
	Domain Model Representation

	Embeddings
	Word Embeddings
	Sentence Embeddings
	Cosine Similarity

	Graph Similarity Measures
	Evaluation Metrics
	Summary

	Method
	Overview
	Pre-processing
	Stage 1: Class Matching
	Stage 1.1: Class Matching within Types
	Stage 1.2: Class Matching with All Information

	Stage 2: Attribute Matching
	Stage 2.1: Attribute Matching Between Matched Classes
	Stage 2.2: Attribute Matching Between Any Classes
	Stage 2.3: Reference Attribute to Candidate Class Matching
	Stage 2.4: Reference Class to Candidate Attribute Matching

	Stage 3: Relationship Matching
	Stage 4: Result
	Grading
	Summary

	Algorithm Evaluation
	Evaluation of Generated Matches
	Human Matches
	Comparison of Matches

	Evaluation of Generated Statistics
	Summary

	Experiments
	Experimental Settings
	Modeling Problem and Solution
	Test Set
	External Libraries

	RQ 1: Matching Performance of the Algorithm
	RQ 2: Grading Performance of the Algorithm
	RQ 2.1: Internal Comparison
	RQ 2.2: External Comparison

	Discussion
	RQ 1
	RQ 2

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Summary

	Related Work
	Domain Model Evaluation
	NLP for MDE
	Automated Domain Modeling
	Automated Goal Modeling
	Large Language Models

	Use Cases of Knowledge Representation
	Knowledge Graph for Explainable Information Retrieval
	Taxonomy
	Named Entity Recognition (NER)

	Summary

	Conclusion
	Contributions and Findings
	Opportunities for Future Research

	Modeling Problem Description and Reference Model
	Problem Description
	Reference Domain Model

