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which I desired to devine.”
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Abstract

The computation of massless 5-point 2-loop scattering amplitudes requires the analytical

expressions for about 32400 master integrals. In this thesis, we present a method to evaluate

all these integrals from a much smaller set corresponding to a fix ordering of the external

particles. The integration constants for different leg orderings are determined by using

multiple scaling limits of the associated (canonical) differential equations’ alphabet letters.

The choice of scaling limits is constrained by the requirement the paths they describe in the

kinematic space are generated only by harmonic polylogarithms (HPLs). Such constraint

ensures using scaling limits makes the analytic evaluation of the solutions fast and simple.

Our method is suitable to show the existence of a “web of computational highways” in the

kinematic space relating all evaluated master integrals.
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Abrégé

Le calcul à 2-boucle d’amplitudes de diffusion pour un processus impliquant 5-parton à

hautes énergies requiert l’évaluation d’une base de 32400 intégrales de Feynman en qua-

tre dimensions (master integrals). Dans cette thèse, nous présentons une méthode pour

évaluer toutes ces intégrales à partir d’un ensemble d’intégrales beaucoup plus petit corre-

spondant à une configuration fixée des particules extérieures. Les constantes d’intégrations

pour différentes configurations des états initiaux et finaux sont déterminées en utilisant de

multiples mises à l’échelle (limites cinématiques) des lettres apparaissant dans les équations

différentielles associées. Le choix de ces limites est soumis à la contrainte que les chemins

qu’elles décrivent dans l’espace de cinématique soient générés par des polylogarithmes har-

moniques (HPLs) uniquement. Une telle contrainte assure que l’utilisation de limite rend le

calcul analytique des solutions rapide et simple. Notre méthode est celle qui est privilégiée

pour montrer l’existence d’un réseau dans l’espace de cinématique reliant toutes les con-

stantes d’intégrations.
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Chapter 1

Introduction

As of yet, our best description of all combined experimental data fits into the picture of

both elementary particles and their local interactions. The former are viewed as excitations

of the underlying quantum fields filling up our Universe. The formal framework to formulate

the latter quantitatively is Quantum Field Theory (QFT). In particular, it offers a solid

ground to an early quantum observation1: To scrutinize the most elementary structures,

one needs to observe the properties of very high-energetic particle interactions. Analyzing

phenomena happening at short, or quantum, length scales requires high energy backgrounds,

hence justifying the classical nature of our daily experience of the world.

A powerful theoretical tool we can sometimes use in QFT is perturbation theory, which

makes computations of scattering amplitudes doable. The scattering amplitudes are es-

sentially numbers representing the probabilities a certain set of particles turn into certain

other particles after colliding. In the late 40’s, Richard Feynman noticed that this could be

done with pictures representing the different ways particles can shuffle during an interaction.

Broadly speaking, the contributions to the scattering amplitudes may be labelled by Feyn-

man diagrams. There are two types of contributions to the scattering amplitudes: Classical

tree-level graphs and quantum loop-level graphs (see Fig. 1.1). To understand the difference

1Recall that in primeval quantum mechanics, energy is related to frequency via Planck’s relationship,
E = hf , and frequency is related to wavelength via the speed of light, f = c/λ. Therefore, the higher
the energy, the smaller is the associated wavelength representing the “resolution” with which one makes an
observation.
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Tree Loops

Figure 1.1: Tree-level versus loop-level Feynman diagrams.

between “classical” and “quantum” labels, we must recall that, upon quantization, we have

one more dimensional constant of Nature: The Planck constant, ~. Because Hamilton’s ac-

tion, S, for classical systems has units J·s, and because the Boltzmann factor in the Feynman

path integral must have dimensionless argument, dimensional analysis requires the quantum

action to be S/~. Consequently, the connection between the number of loops, L, and the

powers of ~ for a diagram involving any number of external legs is ∼ ~L−1 [2, §6.2.1-6.2.2];

the classical limit, ~ → 0, is therefore identified with the leading order (LO) diagrams in ~

– i.e., with L = 0.

From the path integral, to each Feynman diagram is associated a mathematical quantity

we can evaluate to a number. On one hand, the tree-level diagrams are generically rational

functions of the kinematic variables. This makes them relatively easy to evaluate in practice.

On the other hand, the higher order corrections are associated with one integral by loop or-

der. These integrals are called Feynman integrals (FI). Often, these are highly non-trivial

integrals, making the complexity of perturbative calculations grow with the number of pa-

rameters present – e.g., loop momenta, number of external legs and masses. Furthermore,

they in general diverge in our four-dimensional spacetime. In order to match the finite results

from physical experiments, a regularization procedure is needed to systematically subtract

them. This can be rigorously done via renormalization protocols.

On many facets, the Standard Model of particle physics (SM) is the most successful QFT

to date. It is a particular type of QFT known as a gauge theory. Broadly speaking, a theory

is gauged if it explains the action of forces by imposing local symmetries on the equation of

motions. For example, imposing a local U(1)-invariance on our equations of motion2 led to

2Meaning they stay the same under phase rescalings in the fields – e.g., ψ(x) → exp(iα(x))ψ(x), for
some real function α : R1,3 → R.

2
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Figure 1.2: Electrons repeal because they exchange photons.

something very real and physical: Electromagnetism. Here, U(1) is called the gauge group of

the theory. The locality requirement entails the coupling of matter fields to force carrying

gauge fields. The gauge theory framework therefore provides a nice explanation to Newton’s

mysterious concept of “forces” [3]. In electromagnetism, for example, electrons repel because

they exchange virtual3 photons (see Fig. 1.2)!

The SM is the gauge theory imposing a local SU(3)C ⊗ SU(2)W ⊗ U(1)Y-symmetry on

its equations of motion. The SU(2)W ⊗ U(1)Y-sector is linked to the theory of electroweak

interaction (EW) also known as the Glashow-Weinberg-Salam theory [5–7]. This sector

has 3 + 1 degrees of freedom corresponding to four massless force carriers. At low collision

energies (E . 100GeV), the electroweak symmetry is spontaneously broken via the Higgs

mechanism [8–11], in which the symmetry group of the vacuum state is a subgroup of the

full gauge group. This leaves a massless U(1) photon field and a massive (broken) SU(2)

field that gives the weak sector W±- and Z-boson force carriers. Finally, the SU(3)C-sector

describes the strong interactions of partons (quarks and gluons), where the force mediating

particles are gluons. It will be much more discussed in Section 2.1.2.

The SM has been carefully analyzed experimentally in the last decades – e.g., [12, 13].

Its last missing piece required to check its consistency, namely the Higgs particle, has been

3According to the uncertainty principle, if we want to measure the energy of a quantum system with
accuracy ∆E, we need a time greater or equal than ~/(2∆E). Virtual particles are, heuristically, those we
“don’t have the time to measure” – i.e., those with propagating time satisfying ∆t ≤ ~/(2∆E). For massive
particles, ∆E ∼ mc2, and so massive virtual particles tend to have very short lives (rare events). See [4] for
more details.

3



observed in 2012 by the most powerful laboratory for studying high-energy collisions to date,

the Large Hadron Collider (LHC) at CERN. On one hand, this is the very first model which

can be extrapolated to the energy scales many orders of magnitude higher than any of its

characteristic scales. On the other hand, it is also clear that the SM is not yet a complete

theory. It fails to address a wide variety of theoretical concerns. For example, it does not

consistently include gravity. Moreover, it lacks giving an explanation of some astrophysical

observations such as the dominance of matter over antimatter in the observable Universe

and the apparent existence of dark matter.

Consequently, the SM should be understood as a low-energy approximation of a more

fundamental, perhaps unknown, theory. It is, therefore, of central importance to exactly

determine the domain of its validity and establish harsh constraints on potential Beyond-

the-Standard-Model (BSM) extensions.

A key ingredient in this quest is the ability to interpret measurements performed in col-

lider experiments as precisely as possible. These have to be compared to precise predictions

of the SM and possibly, new physics models. However, in the absence of such predictions

from theory, new physics may remain undetected, or the SM backgrounds may be falsely

identified as such. The discovery potential of hadron colliders is limited by both experimental

and theoretical uncertainties. Naturally, one4 of the main source of theoretical uncertainties

is the truncation of the couplings perturbation series at some fixed order. The systematic

way to reduce this uncertainty is to include the higher orders.

It is a well-known fact that, at the characteristic energy scales µ of the high-energy scat-

tering at the LHC, the effective strong coupling constant αs(µ) is in the perturbative domain

(e.g., see [16, Fig. 9.3]), but still is relatively large compared to the electroweak couplings.

Thus, the most important corrections are generally expected from higher-order terms in

αs(µ). In this thesis we are interested in high-energy scatterings and we shall, therefore,

focus on the strongly coupled sector of the SM. Given the standard “textbook” techniques

4We could also think about parton distribution functions (PDFs) errors, reflecting a possibly limited
understating of proton structure, as the PDFs encode, by design, information about the proton’s deep
structure (see [14,15]).
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Figure 1.3: Left: Tri-jet event within the CMS detector, as seen in looking down the beam-

pipe (z-axis) in the event-plane (xy-plane). The three protrusions of rectangles together with

the solid and dotted purple lines in the middle circle represent the three jets of partons. The

black lines represent the corresponding hadronized jets. Right: ATLAS and CMS data for

top quark and anti-quark pair production rate σtot(pb) (vertical axis) as a function of the

center of mass energy
√
s (horizontal axis) [1]. The measurements are the colored points,

with bars indicating their experimental uncertainties. The theoretical predictions are given

by the colored bands – the blue for the tree-level prediction (LO), the red after the first

virtual correction (NLO) and grey for the second virtual correction (NNLO). Their widths

indicate the uncertainty of the predictions.

for evaluating multi-loop amplitudes require too many computational resources, we will use

state-of-the-art theoretical methods to study beyond 1-loop processes. In particular, we will

be most interested in 2-loop (next-to-next-to-leading-order (NNLO)) non-planar 5-parton

scatterings at high energies.

This choice of process is directly motivated from collider experiments. For example, in

the case of quark/anti-quark production [1], we observe that the scale dependence of the

first precision order for the predicted cross-section, σtot, is at NNLO – see Fig. 1.3. In the

high-energy limit, where the quark masses can be effectively dropped, computations of 2-

loop 5-gluon amplitudes are the starting point toward a full understanding of color multi-jet

production at the LHC.

To evaluate NNLO scattering amplitudes, we first decompose the integrals in terms of

an integral basis, called master integrals (MI), and evaluate them with cutting-edge tech-

5



niques. The word “decomposition” makes even more sense when one realizes that the space

of Feynman integrals for a diagram topology is, in fact, a vector space – e.g., [17]. Therefore,

as a vector can be decomposed along independent directions, scattering amplitudes can be

decomposed in terms of independent integrals. Consequently, exactly as one decomposes a

vector given a choice of basis and a way to project onto the basis (to extract the coefficients

of the linear combination), so does scattering amplitudes. For a generic multi-loop ampli-

tude, the basis is not known, a priori. By acting with the projector, we should then not only

be able to determine the coefficients, but also the MIs. For any given scattering process the

set of MI’s is also not unique, and, in practice, their choice is rather arbitrary. Usually MI’s

are identified after applying the Laporta’s reduction algorithm [18], based on a Gaußian-

type elimination on a system of equations obtained through integration-by-part identities

(IBP) [19, 20]. The IBP relations imply that the MIs obey a linear system of first order

differential equations in the 2-particle kinematics invariants: The generalized Mandelstam

invariants sij := (pi + pj)
2. Therefore, evaluating Feynman integrals boils down to solving

differential equations [21,22]. Obviously, a proper choice of MI’s can simplify tremendously

the form of the systems of differential equations and so their solution. Nevertheless, no gen-

eral criteria for determining such optimal sets are, to this date, available. Although there

are some known examples where this is not possible [23–28], we generically search for a basis

of MIs that puts the system of differential equations into a canonical form, where the depen-

dence on the ’t Hooft parameter, ε = (4 − d)/2, factors out of the kinematic linearly [29].

This factorization yields tremendous simplifications of the solution space, now spanned only

by Goncharov polylogarithms [30,31]. Thus, the integration is done in a similar way Wilson

lines/loops are computed in familiar non-abelian gauge theories. Finally, we stress that along

a path lying purely in the physical sector, harmonic polylogarithms (HPL) [32] are functions

naturally appearing in the solutions of the system of the differential equations. For 2-loop

5-point scattering amplitudes, a canonical basis of MIs was recently made available (see

Section 3.1.2), allowing us to study these processes further. The ultimate goal of our study

6



is to reveal a network in the kinematic space of invariants relating, via HPLs only, all the

evaluated MI’s for any leg configuration of 2-loop 5-gluon scatterings.

The Structure of the Thesis

In Chapter 2, we provide notations and some theoretical preliminaries required for the

remaining content of the thesis. We review the strong coupling sector of the SM as a QFT,

namely QCD. While focussing on 1-loop, the rest of the chapter aims to give a brief overview

and many examples of standard computational methods for the evaluation of multi-loop

integrals in gauge theory.

In Chapter 3, we discuss various details about the scattering of 5-gluon at 2-loop, such

as the IBPs, the function space and the kinematics in different limits.

In Chapter 4, we present, through examples, the original contributions of the thesis: a

method to find the analytic form of the integration constants contributing to the 5-point

massless amplitudes in QCD at the NNLO approximation.

7



Chapter 2

Scattering Amplitudes in Gauge Theory

In this chapter, we give a brief, but condensed, overview of the theoretical framework

for the work presented in this thesis, as well as the basic notions that we will operate with

in the following chapters. For any details regarding the content of this chapter we refer to

many excellent “textbooks”, such as [33,34].

2.1 Review of Fundamental Concepts

2.1.1 Conventions

Throughout this thesis, we will work in 4-spacetime dimensions and our metric conven-

tion is in the mostly-plus (Est Coast) one – i.e., ηµν = diag(−1, 1, 1, 1), which we extend with

further +-signs when working in d-dimensions, and we will follow the spinor and Clifford

algebra conventions of [35]. In the following, Greek indices are associated with spacetime,

while Roman indices describe the structure in gauge group space. We will also need to

introduce the 4-component Pauli matrices σµ
αβ̇

:= (σ0, σi)αβ̇, for 1 ≤ i ≤ 3, defined via

σ0 =

1 0

0 1

 , σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (2.1)

The last three matrices form a fundamental representation for the three generators of SU(2).

Unitary symmetries and their representations are extensively reviewed in [36–38].

8



2.1.2 Perturbative QCD

Quantum chromodynamics (QCD), the theory of the strong interactions within the SM,

describes the building blocks of strongly interacting particles, like protons (p+) and neutrons

(n0), and the forces acting within and between them.

The fundamental building blocks of these particles are the fermionic spin-1/2 quarks q,

which come in three generations, simply arraying states according to increasing mass: The

three lightest up, down and strange (u+2/3, d−1/3 and s−1/3) quark flavors weigh only a small

fraction of the proton mass, the charm (c+2/3) quark flavor just about the proton mass,

while the two heavy bottom and top (b−1/3 and t+2/3) quark flavors weigh more than 5 and

180 times the proton mass, respectively [16]. The lower indices label their respective electric

charge, relating, together with the masses, the quark flavors together under exchanges (either

decay or production) of charged W -bosons. Baryons are bound states composed of three

quarks qiqjqk – e.g., p+ = uud and n0 = udd –, while mesons are bound states of quark-

antiquark pairs qiqj – e.g., π+ = ud1. A residual strong nuclear force is created between

nucleons by the exchange of mesons; if a proton or neutron can get closer than about the

proton size (∼ 0.8fm [16]) to another nucleon, the exchange of mesons can occur, making

possible for the particles to stick to each other. If they can’t get that close, the strong force

is too weak to make them stick together (see Section 2.1.3), and other competing forces

(usually the electromagnetic force) can influence the particles to move apart.

Rather than start with the mathematical definition of the theory, let’s consider, first, what

our knowledge of Nature is; upon which we will base the theory. We know that the matter

we believe to be composed of quarks have to be strong-force neutral – i.e., the baryonic wave

function is observed to be symmetric under the permutations of quark states [39]. However,

quarks being fermions, this violates the Pauli exclusion principle, or more generally the spin-

statistics theorem [40]. The only way out of this problem is to ask the quarks to be labelled

by (minimally) three new quantum numbers (or charge signs), called the colors : Red, green

and blue.

1Our discussion is excluding bound states with a higher number excitations – e.g., the pentaquarks qqqqq.
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Now, let’s dive into the realm of theory: We are looking for an internal symmetry hav-

ing a 3-dimensional representation which can give rise to a neutral combination of three

particles (otherwise no color-neutral baryons). The simplest such statement is that a linear

combination of each type of charge red, green and blue must be neutral, and, following a

minimalist point of view, the simplest theory describing all the facts must be the correct

one. We now postulate that the particles carrying this force, called gluons, must occur in

color/anti-color units – i.e., 32 = 9 of them. However, as ‘red + green + blue’ is neutral,

or “white”, the linear combination ‘red/anti-red + green/anti-green + blue/anti-blue’ must

be non-interacting, since otherwise the colorless baryons would be able to emit these gluons

and interact with each other via the strong force contrary to the evidence. This constraint

says that a hypothetical particle that can’t interact with anything can’t be detected, and so

doesn’t exist, reducing the number of gluons to eight. The simplest theory describing the

above is a SU(3) Yang-Mills theory.

As for any other theory, to make predictions out of QCD, one starts by writing a classical

Lagrangian and then quantize it by defining the Feynman path integral [35, 41, 42]. For a

non-abelian gauge theory like QCD, the classical theory is well-described by the SU(Nc)

Yang-Mills Lagrangian

L = −1

4
FaµνF

aµν+ψ(i/∂−m)ψ−gfabc(∂µAaν)AbµAcν−
g2

4
(f eabAaµA

b
ν)(f

ecdAcµAdν)+gAaµψγ
µT aψ,

(2.2)

invariant under ψ → Uψ, AaT a → UAaT aU−1−ig−1(∂µU)U−1, for U ∈ SU(Nc), and where

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν , (2.3)

is the field strength tensor, where A is a boson gauge field (a gluon), ψ is a fermion field (a

quark) and g is the strong coupling. The other symbols in (2.2) will be discussed later (see

sections 2.1.3 and 2.1.4). The Feynman rules are constructed in the usual way. Although

this construction from the path integral is somewhat technical to do formally, it is easy so see

what these interactions will be from a heuristic point of view. The first two constituents of

(2.2) will give the gauge and fermion propagators respectively. The third one involves three

10



A’s and represents a 3-gauge boson vertex, while, similarly, the fourth one gives a 4-boson

vertex. Finally, the last term involves one A and two ψ and thus represents a vertex where

two fermions interact with a gauge boson.

Gluons are taken massless, which is consistent with the absence of spinless fields in

(2.2); we can’t trigger a spontaneous symmetry-breaking similar to the Higgs mechanism in

the EW-sector, giving the mass to the W±- and Z-force-carriers in the process. We also

see from (2.2) that gluons self-couple because they carry color charges. This has profound

consequences for the QCD coupling, which will be discussed in Section 2.1.3.

As photons do in QED, our mathematical representation of gluons mathematically comes

with two spurious degrees of freedom2. This makes the quantization procedure complicated

since only field configurations non-equivalent under gauge symmetry should be included in

the path integral [43]. Otherwise, we would overcount. This means that the naive integration

with the classical action is ill-defined. To eliminate the gauge-equivalent configurations, a

(non-propagating) gauge-fixing term is added

L → L− 1

2ξ
(∂µAaµ)(∂νAaν), (2.4)

where ξ is an arbitrary parameter. We can think of this auxiliary field as a Lagrange

multiplier enforcing gauge fixing. Indeed, the ξ-equations of motion are just ∂µA
µ
a = 0, which

is the Lorenz gauge constraint. This particular choice of gauge fixing has the advantage

of being explicitly covariant. However, it keeps one spurious degree of freedom, which is

compensated by adding “ghost” scalar fields, ωa and ωa, as

L → L− 1

2ξ
(∂µAaµ)(∂νAaν)− ∂µωa∂µωa + gfabc(∂µωa)ωbAcµ. (2.5)

They are not physical because they violate spin-statistics theorem: They are scalar fields

under any SO(1, 3)-transformation, but behave like fermions, as they anti-commute in the

path integral. As it will be discussed below, in this thesis we will employ unitarity-based

2More generally, independently of the spin, massive particles have two transverse polarization states, but
also a third state which is longitudinal (direction in which the particle travels). Massless particles cannot
oscillate in their direction of motion because they must move at exactly the speed of light in that direction.
If they oscillated, then their speed would vary; sometimes it would be slower than light and sometimes faster.
This cannot happen. Massive particles can, a priori, move at any speed, as long as it is slower than light,
allowing them to have longitudinal oscillations.
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a, µ b, ν

= −iδab ηµν

k2+i0
(gluon propagator),

i j

= iδij
/k+m

k2−m2+i0
(fermion propagator),

k
k

1, a, µ

2, b, ν

3, c, γ

= −gfabc
[
(k1 − k2)γηµν + (k2 − k3)αηβγ + (k3 − k1)βηγµ

]
,

1, a, µ

2, b, ν 3, c, γ

4, d, δ

= −ig2
[
fabefcde

(
ηµγηνδ − ηµδηνγ

)
+ facefbde

(
ηµνηγδ − ηµδηνγ

)
+ fadefbce

(
ηµνηγδ − ηµγηνδ

)]
.

2, b, ν

1, i

3, j

= −igγνTaij ,

Figure 2.1: QCD Feynman rules (ghost fields excluded).

computational methods, which are formulated in terms of gauge-invariant building blocks.

This allows us to discard ghost contributions explicitly.

Working in the Feynman gauge3, we set ξ = 1 in the general A-propagator

−i
p2 − i0

(
ηµν − (1− ξ)pµpν

p2

)
δab, (2.6)

where the “−i0” enforces time ordering on 2-point functions in a simple way – i.e., it forbids

information to propagate backward in time, as it is equivalent to adding various Θ(t)-factors

[42, §6.2]. The Feynman rules for a SU(Nc) gauge theory are given in Fig. 2.1.

Classical results are obtained from diagrams without any closed loops while quantum

corrections involve an increasing number of loops. Even though gauge theories present

many technical challenges, the way to proceed (at least perturbatively) is in principle well

understood. In practice, however, the computational complexity grows rapidly with the

number of external particles and the number of loops. Even at tree-level, where there is

no loop to consider, the number of Feynman diagrams describing n-particle scattering of

external gluons in QCD grows faster than factorially with n. For instance, from the QCD

3Note, however, that the choice of ξ is invisible in the correlation functions by BRST symmetry [44].
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Feynman rules for gluons, one can check the following numbers

2-gluon→ 2-gluon ⇒ 4 diagrams,

2-gluon→ 3-gluon ⇒ 25 diagrams,

2-gluon→ 4-gluon ⇒ 220 diagrams,

2-gluon→ 5-gluon ⇒ 2485 diagrams,

2-gluon→ 6-gluon ⇒ 34300 diagrams,

2-gluon→ 7-gluon ⇒ 559405 diagrams,

2-gluon→ 8-gluon ⇒ 10525900 diagrams.

2.1.3 A Word on Renormalization and Running Couplings

In the previous section, we introduced a number of parameters in the QCD Lagrangian

(2.2) – e.g., the coupling constant g and the fermion mass m. In any interacting QFT, these

bare parameters of the Lagrangian may not directly correspond to any observable quantities.

In fact, in the context of perturbation theory, most of these parameters contain explicit

divergences associated to the high-energy or ultraviolet (UV) limit of the theory. An idea is

to simply “reparametrized” the bare parameters in terms of measurable quantities, even if no

divergences are encountered. This ‘ad hoc’ procedure is known as renormalization [35,41,42].

In fact, it is only after the renormalization is carried out that the theory can be predictive

for experiments.

Broadly speaking, there are two options for how the renormalization of each bare pa-

rameter can be performed. First, in some cases it might be possible to connect the bare

parameter to an observable quantity by simply multiplying it by a factor, which can be

evaluated from perturbation theory by requiring finiteness. For instance, a renormalized

mass mphys. can be chosen to be the position of the pole of the corresponding two-point

correlation function (particle self-energy), such that the bare mass is m = ZmmR, where R

stands for “renormalized”. Another example is the QED coupling constant, which can be
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defined by the large-distance electric charge, e. This is called on-shell renormalization for

obvious reasons.

Sometimes, it is not possible to find an observable, like mass or charge, to which the

bare parameter can be tied. For instance, this is the case for the gluon self-coupling, g, in

QCD (see below). In such cases, one can conveniently define the renormalized Lagrangian

parameters at an arbitrary renormalization scale µ, given a renormalization prescription,

such as modified minimal subtractions (MS) [45]. This particular scheme has the advantage

of being well defined in the massless limit. All bare quantities predicted from the theory are

then evaluated in terms of the renormalized (or physical) parameters. For example, the bare

gluon self-interaction coupling can be redefined as

g = µε · Zg(µ) · gR(µ). (2.7)

In (2.7), Zg depends on µ trough gR – i.e., Zg(µ) ∼ (gR(µ)/4π)2ε−1 + O(1) at 1-loop [42,

§26.5.3-26.6.1]. The fixed bare quantities must, however, not depend on the renormalization

scale µ, as it is arbitrary. This fact is expressed in terms of the so-called renormalization

group equations (RGE). For example, by writing µε = exp(ε log(µ)), chain rule tells us

d

d log(µ)
g(µ, gR(µ), ε) =

dgR

d log(µ)

∂g

∂gR

+ εg = 0⇒ dgR(µ)

d log(µ)
= −εg ·

(
∂g

∂gR

)−1

, (2.8)

where the LHS of the second equation is called the β-function. We see that the solution

of the RGE relates the parameters defined at two different renormalization scales: The one

at which the bare quantity is defined, µ0, and the arbitrary one, µ. This freedom can be

useful in that it allows to improve the convergence of the perturbation series by making

an appropriate choice of the renormalization scale. This is closely related to the notion of

running (or effective) couplings [35,41,42, §26.6.1].

For the QCD coupling constant αs(µ) := g2
R(µ)/4π, the solution of the 1-loop RGE in

the MS scheme is [42]

αs(µ) =
αs(µ

2
0)

1 + β0αs(µ2
0) log(µ2/µ2

0)
, β0 =

11Nc − 2Nf

3
. (2.9)

Here Nc denotes the number of colors and Nf the number of flavors of quarks, which are con-

sidered massless here. We observe, that at large scales the effective strong coupling constant
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becomes very small, independent of the initial value αs(µ
2
0). On one hand, this implies that

at high energies QCD behaves as a weakly-interacting theory. This phenomenon reflects the

QCD asymptotic freedom. This fact enables the usage of perturbation theory to predict the

scattering of strongly-interacting particles at hadron colliders. On the other hand, at low en-

ergies, the effective strong coupling becomes large, and the application of perturbation theory

is not justifiable. This gives a quantitative explanation to an experimental fact: Free partons

are not observed because they are confined into colorless QCD bound states: The hadrons.

Perturbation theory has nothing to say about confinement, which complicates the theoretical

description of hadron collisions. Fortunately, the short-distance and large-distance effects

can be disentangled using, for example, Feynman’s Parton Models [14–16, 46–48], but we

won’t go into any details here as they won’t be immediately important.

The confinement regime is best captured in terms of the non-perturbative scale of QCD,

ΛQCD, defined as

αs(µ) =
αs(µ

2
0)

1 + β0αs(µ2
0) log(µ2/µ2

0)
≡ αs(µ

2
0)

β0αs(µ2
0) log(µ2/Λ2

QCD)
. (2.10)

Given that a value for ΛQCD only defines αs(µ) once one knows which particular approxi-

mation µ0 is being used, ΛQCD is a rough estimate (µ ∼ 250MeV) of the fuzzy boundary

between the (higher) energies where the perturbative expansions are good, accurate, and

useful, and the (lower) energies where the perturbative approaches don’t work well – i.e.,

beyond which the β-function starts diverging. One can say that for µ � ΛQCD the theory

is strongly coupled—implying confinement—, and for µ � ΛQCD it is weakly coupled—

implying asymptotic freedom. For µ � ΛQCD, this implies the color charges of QCD is not

experimentally measurable! If it wasn’t for hadronization [49, 50] and top quark weak de-

cay [51] (see Footnote 3 for some basic intuition), we’d be able to observe a lone quark, and

so to measure its charge and, up to a messier convention hassle than with electric charges,

its “sign” – i.e., color – from high-energy collisions.
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2.1.4 Color Stripped Amplitudes

In this section, we illustrate that the color structure of pure gluon amplitudes is factor-

izable and, therefore, one can usually focus on color stripped amplitudes [33, 34,42].

In the last section, we saw that complications are experienced in gauge theory calculations

because, in part, expressions need to be gauge invariant. This forces the theory to not just

carry spacetime labels, but also gauge group ones. For a SU(Nc) Yang-Mills theory, the state

of a particle is given by a vector in some vector space on which elements of SU(Nc) act as

linear (in fact unitary) operators. We say the particle “transforms under some representation

of SU(Nc)”. For example, SU(Nc)-gluons, A = AaT a, are the basis states of the SU(Nc) Lie

algebra itself. That is, gluons will transform under the adjoint representation of SU(Nc) (see

[37, p.240-242] for the complete story), labeled by a color Roman index a = 1, 2, ..., N2
c − 1 –

i.e., A = AaT a → Aa(g·T a·g−1) = g·A·g−1, g ∈ SU(Nc). Since the T a are (Nc×Nc)-matrices,

so is any element of SU(Nc) by exponentiation. Each of these elements can act on column

vectors by matrix multiplication. This gives a Nc-dimensional representation of SU(Nc):

The fundamental representation. The SU(Nc)-quarks transform under this representation of

SU(Nc) and, because it is Nc-dimensional, we say quarks come in Nc colors. For example,

in QCD where Nc = 3, there are eight (e.g., Gell-Mann) 3 × 3 hermitian matrices, T 1≤a≤8,

so there exists eight gluon fields A1≤a≤8. The quarks red = (1, 0, 0)>, green = (0, 1, 0)> and

blue = (0, 0, 1)>, will transform under the 3-dimensional fundamental representation.

Now, to avoid a proliferation of factors of
√

2 in the amplitudes, we normalize these such

that tr(T aT b) = δab. The special unitary group is a Lie group and the Lie algebra that

generates it near the identity is by definition

[T a, T b] = ifabcT c. (2.11)

where the fabc are referred as the structure constant. We shall abbreviate T = (T a)ji and

f = fabc whenever it is not confusing. The T -commutators satisfy a Jacobi identity and so

do the f ’s

fadef bcd + f bdcf cad + f cdefabd = 0. (2.12)
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At the tree-level, we can read off from the Feynman rules above that the group theory

manifests itself for each quark-gluon vertex by one factor of T and for each 3-gluon vertex

by a factor of f , while for 4-gluon vertices it is with contracted pairs of f ’s. It is the quark

and gluon propagators that will contract many of the indices together and many of these

combinations will end up as factors of “1” or vanishing due to our choice of T -normalization.

We can simplify the color structure of the amplitudes further by noticing that color factors

in the Feynman rules can all be replaced by linear combinations of strings of T ’s due to the

following identity [41]

fabc = −iTr(T a[T b, T c]). (2.13)

However, as the T ’s are generators, they will form a complete set of traceless Hermitian

matrices. Algebraically, it implies the SU(Nc)-Fierz identity [41]

N2
c−1∑
a=1

(T a)ji (T
a)lk = δliδ

j
k −

1

Nc

δji δ
l
k. (2.14)

We can interpret the term proportional to 1/Nc as the subtraction of the U(Nc) traces

in which SU(Nc) is canonically embedded by the additional constraint that its elements

preserve volumes – i.e., det(A) = 1. This indeed ensures the tracelessness of the T ’s, as

contracting (2.14) with δi
j

shows us. For the interested reader, in reference [34], Dixon gives

a nice Feynman diagrammatic interpretation of identities such as (2.13) and (2.14). We also

already see from (2.14) why it can be computationally appealing to consider theories with a

large number of colors as the second term in the right hand side drops off. However, there’s

a price to pay when we take Nc →∞: We lose non-planarity [36,52,53, §6].

Mathematically, a graph is said to be planar if it can be drawn on a sphere without

selfcrossings. This “topological” definition implies that any tree and 1-loop graph is planar,

because it is not restrictive on the ordering of the external legs (if any). However, as we are

about to see, color stripping the amplitudes forces us to fix a specific ordering for the external

legs. Thus, instead of thinking about planarity topologically, it will be more useful to think

about it in terms of planar/non-planar channels. For example, in 4-point processes, the s-

and t-channels are planar, while the u-channel is non-planar (see Fig. 2.2). This illustrates
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Figure 2.2: s-, t- and u-channel exchanges for a 4-point process.

that a planar topology, here , can have non-planar channels. Consequently, given

an ordering of the external legs, a color stripped amplitude is planar if and only it has no

non-planar channels. In particular, the latter characterization implies that planar amplitudes

have right hand cut singularities only [54] – i.e., planar graphs can only depend on consecutive

Mandelstam invariants sij := (pi + pj)
2.

Now, with the help of (2.14), we can simplify further sums of double-traces appearing,

for example, if we only have external gluons [55]∑
a

tr(T a1 ....T akT a)tr(T a...T ak+1T an) = tr(T a1 ...T akT ak+1 ...T an)− 1

Nc

tr(T a1 ...T ak)tr(T ak+1 ...T an),

(2.15)

and, sums of strings of generators terminated by fundamental indices, for example, if we

have external quarks∑
a

tr(T a1 ....T akT a)(T a...T ak+1T an)ji = (T a1 ...T akT ak+1 ...T an)ji−
1

Nc

tr(T a1 ...T ak)(T ak+1 ...T an)ji .

(2.16)

For pure gluon scatterings, one can check by hand that the terms with 1/Nc all cancel

among themselves after summing over all the permutations. However, we can deduce that

without doing any computation. Indeed, notice that the term would be absent if the gauge

groups were U(Nc) ' SU(Nc)×U(1) rather than just SU(Nc) as the constraint on the traces

are removed. Moreover, for the same reason photons do not self-couple4, the auxiliary U(1)

photon field does not couple to gluons. Therefore, the 1/Nc term only has to be retained

4This is because U(1) is abelian and the additional U(1) Lie algebra generator is proportional to the

identity matrix – i.e., (T aU(1))
j
i = 1√

Nc
δji .

18



only for amplitudes where a gluon can couple to a fermion line at both ends, given quarks

interact with the photons as they are electrically charged. This shows gluonic amplitudes

must contain only single traces. We write the full n-gluon tree-level amplitudes as [33]

Atree
n = gn−2

∑
σ∈Sn/Cn

tr(T aσ(1)T aσ(2) ...T aσ(n))Atree
n [σ(1), σ(2), ..., σ(n)], (2.17)

where Sn/Cn is the permutation group of n letters modulo cyclic ones. It is easy to see

that there are exactly (n − 1)! such permutations. The Atree
n are the color-stripped and

cyclic invariant (sub)amplitudes depending only on one ordering of the external particles,

making them color independent. In particular, color independency implies that Atree
n is

gauge invariant, because they behave like in abelian theory – i.e., they satisfy a Ward-like

identity [56]. Moreover, it is easy to see that Atree
n satisfies a reflection property

Atree
n (1, 2, ..., n) = (−1)nAtree

n (n, ..., 2, 1). (2.18)

An additional property worthwhile noting is what happens when we take one of the T -

generators proportional to the identity, i.e., (T aSU(Nc)
)ji → (T aU(1))

j
i = 1√

Nc
δji . Physically, this

corresponds to replacing one of the gluon by a photon. From there, it is not so hard to show

that the sum of (n− 1)-color-stripped amplitudes vanishes

Atree
n (1, 2, 3, ..., n)+Atree

n (2, 1, 3, ..., n)+Atree
n (2, 3, 1, ..., n)+...+Atree

n (2, 3, ..., 1, n) = 0. (2.19)

For obvious reasons, this is known as the U(1) decoupling identity. This is an indication that

the trace-basis is actually overcomplete. Indeed, the overcompleteness gives rise to many

other linear relations among color-stripped tree-level amplitudes known as the Kleiss-Kuijf

relations [57, 58]. An interesting homologically based proof of such relations is given [59].

Note that for tree amplitudes involving quarks, analogous formulas can be derived where

instead of a trace, the string of matrices will be terminated by the specific T ’s in the quark-

quark-gluon vertices.

With the previous prescriptions, we can write the color-ordered Feynman rules for QCD,

they are readily obtained by the usual Feynman rules just by imposing a given ordering –

i.e., they are given in Fig. 2.1, but without a
√

2igfabc factor.

19



As final comment to this section, we note that this color-ordering decomposition can be

extended to higher loops and multiplicities. For instance, in [60], the trace basis for all-

loop 4-point amplitudes is derived, while in [61], it is the 5-point that is derived. Similar

expressions can by obtained by freezing the number of loops and taking arbitrary multiplicity

– e.g., at 1-loop, we note amplitudes of gluons have double-trace terms as well as single-trace

terms – e.g., see [62, Eq. 4] or [55]. The 2-loop 5-point case for any SU(Nc) gauge theory is

discussed in [63, Eq. 1].

2.1.5 Spinor-Helicity Formalism

A mathematical tool that as been seen to tremendously simplifies computations in gauge

theory is the so-called spinor-helicity formalism [33]. At the tree-level, for instance, it was

shown by Parke and Taylor in the late 80’s that any color ordered n-gluon amplitude could

be written in a one line spinor-helicity expression [64]. Here, we provide a brief summary of

this formalism.

The helicity of a particle is the projection of its spin S on the direction of its 3-momentum

p, and the states ψ±s with helicity ±s are defined as

S · p
|p|

ψ±s = ±sψ±s. (2.20)

The helicity of massless particles is a Lorentz invariant, as its spin is and |p| is characterized

only by the particle frequency. In such a case, helicity and chirality eigenstates coincide.

For massive particles helicity eigenstates can be constructed relative to a chosen reference

frame. Because we are interested in scatterings at high energies, we shall focus on the

massless spinor-helicity formalism, although a massive generalization can be considered –

e.g., see [65–67].

For a null vector pµ = (p0, p1, p2, p3), satisfying pµp
µ = 0, we can derive a spinor repre-

sentation. This is done mathematically by going from the usual 4-vector representation of

SO(1, 3) to the locally equivalent5 to the (1/2, 1/2)-representation of SL(2,C) [42, §10.1.2].

5The Lorentz group SO(1, 3) is locally isomorphic to SU(2)× SU(2), whose finite dimensional represen-
tations are labeled by weights (p, q), taking integer or half-integer values. This isomorphism is true locally
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A central contraction for us will be

pαβ̇ ≡ pµσ
µ

αβ̇
=

p+ (p⊥)?

p⊥ p−

 , (2.21)

where p± = p0 ± p3 and p⊥ = p1 + ip2. The SL(2,C)-action on pαβ̇ is by conjugation – i.e.,

pαβ̇ → p′
αβ̇

:= Λ>
C
·pαβ̇ ·ΛC, for any ΛC ∈ SL(2,C) –, from which equivalence classes det(p′

αβ̇
) =

det(pαβ̇) are determined. This also implies that Pauli matrices transform equivalently as

4-vectors under the usual Lorentz transformation and as 2 × 2 matrices under SL(2,C)-

conjugation – i.e., σµΛµ
ν = Λ>

C
· σν · ΛC. It is straightforward to see that whenever p is null,

det(pαβ̇) = 0. Moreover, if det(pαβ̇) = 0, then pαβ̇ can be written as the Kronecker product

of two 2-vectors

pαβ̇ = λαλ̃β̇. (2.22)

This means a momentum 4-vector should be viewed as an object with one each of the positive-

(undotted-) and negative- (dotted-) chirality labels of the SL(2,C)-spinor representations. In

physics language, this is equivalent to say that λa and λ̃β̇ are, respectively, positive-chirality

and negative-chirality Weyl spinors.

Although the explicit component forms of the spinors are not needed in most cases, we

will see later that for limit parameterizations – e.g., collinear limits –, they turn out to be

useful. Hence, we give their explicit form

λα ≡

−z p⊥√
p−

z
√
p−

 and λ̃β̇ ≡

−1
z

(p⊥)?√
p−

1
z

√
p−


>

. (2.23)

In this decomposition, it is understood that p⊥ = exp(iArg(p⊥))
√
p+
√
p−. In (2.23), z is an

unfixed parameter accounting the non-uniqueness of this representation. In other words, we

have a rescaling freedom

λα → zλα, λ̃β̇ →
1

z
λ̃β̇. (2.24)

because it happens at the level of their Lie algebras. The positive-chirality spinor representation is (1/2, 0),
while the negative chirality spinor representation is (0, 1/2), a notation reminiscent of the su(2) ⊕ su(2)
exponentiation into the universal SL(2,C)-covering of SO(1, 3) – i.e., SO(1, 3) ' SL(2,C)/Z2 [38].
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In the literature, this action of this symmetry is called the little group scaling. This is in fact

a “subgroup” of the Lorentz group transforming the spinors and invisible at the level of the

momentum. In some cases, it is useful to fix z for the problem convenience. For instance,

when pµ ∈ R1,3 and p+ > 0, we can set z ∈ U(1), from which it follows that

λα = (λ̃β̇)?, (2.25)

where the “?” operation stands for complex conjugation. Nevertheless, one is often interested

in the holomorphic properties of the scattering amplitudes – e.g., for crossing symmetry –

and we, consequently, usually avoid such a choice. Another choice one can make that is

sometimes computationally helpful is z =
√
p−. With this choice, we get rid of the square

roots in (2.23).

Moreover, as usual when we deal with spinor objects, we can use the Levi-Civita tensors

εαβ =

 0 1

−1 0

 , εα̇β̇ =

 0 1

−1 0

 , εαβ =

0 −1

1 0

 , εα̇β̇ =

0 −1

1 0

 , (2.26)

to raise and lower the spinor indices6

λα = εαβλβ, λα = εαβλ
β, λα̇ = εα̇β̇λβ̇, and λα̇ = εα̇β̇λ

β̇. (2.27)

Now, given pi for arbitrary i ∈ N is a null vector, we denote the corresponding spinor by

λi. We can make our notation less notatinally bulky by introducing the following “braket”

notation

〈ij〉 := λαi λjα, and [ij] := λ̃iα̇λ̃
α̇
j . (2.28)

This shows spinors of the same chirality contract consistently via epsilon tensors. Conversely,

chirality forbids invariants of the form 〈ij] := λαi λ̃
α̇
j to exist – i.e., they vanish [33]. The

6Recalling that physical left/right Weyl spinors λα/λα̇ are Graßmann-odd, the antisymmetric tensor
εαβ/εα̇β̇ can be viewed as a metric on spinors. It is an invariant tensor under SL(2,C), which can be seen

by how the symplectic form (see (2.28)), 〈λ1, λ2〉 := λ11λ
2
2 − λ21λ12 ≡ λ>1 · ε · λ2, transforms under SL(2,C)

〈λ1, λ2〉 = λ>1 · ε · λ2 = 〈ΛCλ1,ΛCλ2〉 = λ>1 · (Λ>C · ε · ΛC) · λ2, ΛC ∈ SL(2,C) ⇔ ε = Λ>C · ε · ΛC.

This statement in the usual SO(1, 3) representation may be more familiar; the 4 × 4 real Lorentz transfor-
mation, xµ = Λµνx

ν , preserves the Lorentz-invariant Minkowski bilinear form Λ> · η · Λ = η. Hence, if we
have an irreducible representation, λα, of SL(2,C), we can transform it with ε and this will give one in the
same class: It doesn’t matter whether we use λα or λα because both quantities represent the same physical
thing.
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definitions in (2.28) are sensitive to the order of the spinors. For example,

〈ij〉 = εαβλiβλjα = εβαλiαλjβ = εβαλjβλiα = −εαβλjβλiα = −〈ji〉. (2.29)

Similarly, [ij] = −[ji]. From the above, it is now clear that 〈ij〉 = [ij] = 0, whenever i = j.

Note that due to the little-group rescaling, these angle and square brakets are not uniquely

defined. In what follows, it will be useful to have a “parity-flipped” set of Pauli matrices,

σµ,α̇β := (σ0,−σi)α̇β, which is related to the usual ones via

σµ,β̇δ = εδαεβ̇α̇σµαα̇. (2.30)

When there will be no risk of confusion, we may drop the spinor indices and write (2.30)

as σµ = (ε · σµ · ε>)>, where ε := iσ2 is defined in (2.1). The σ and σ matrices satisfy

orthonormal relations in both chiral and spacetime indices

tr(σµσν) = −2ηµν and σµ,αα̇σ
µ,β̇β = −2δβαδ

β̇
α̇. (2.31)

We can use the orthonormal relation to recover the original null-vector pi from the spinors

pνi =
1

2
(λ̃i,β̇σ

ν,β̇αλi,α) =
1

2
(λ̃iσ

νλi), (2.32)

where we identified λ with λα and λ̃ with λ̃β̇. In a similar fashion, the spinors allow us to

construct new intermediate null-vectors such that

(λiλ̃j)
ν =

1

2
(λ̃j,β̇σ

ν,β̇αλi,α) =
1

2
(λ̃jσ

νλi), (2.33)

which makes clear that

(λiλ̃j)νσ
ν
αβ̇

= λi,αλ̃j,β̇ and pνi = (λiλ̃i)
ν . (2.34)

One important identity that follows from (2.29) after taking double contractions of (2.33) is

〈ik〉[`j] = −2(λiλ̃j)
ν(λkλ̃`)ν . (2.35)

It is also easy to see this equation holds using the standard Pauli matrix identities

〈ik〉[`j] = (εαβλi,βλk,α)(εαβλ̃`,α̇λ̃j,β̇)

= (λ>k · ε · λi)(λ̃` · ε · λ̃>j ) = (λ>k · ε · λi)(λ̃` · ε · λ̃>j )>

= (λiλ̃j)µ(λ>k (σµ)>λ̃>` ) = (λiλ̃j)µ(λ̃λσ
µλk)

= tr(σνσµ)(λiλ̃j)µ(λkλ̃`)ν = −2(λiλ̃j)
ν(λkλ̃`)ν .

(2.36)
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When we take k = j and i = ` in (2.35), we see that, if all momenta are outgoing,

sij = (pi + pj)
2 = 〈ij〉[ij], (2.37)

and likewise for higher-point kinematic invariants. This also allows one to write

〈ij〉 = exp(iφij)
√
sij and [ij] = exp(−iφij)

√
sij, (2.38)

for some phase φij. There are numerous other identities one can derive that makes the spinor

formalism a very useful language for calculations in scattering amplitudes. For example, we

already saw that the on-shell conditions are built-in these variables. Another example of a

particularly useful identity is the Schouten’s identity. It follows from the basic fact that 3

vectors in a plane cannot be all linearly independent. Therefore, if we have 3 spinors λi, λj

and λk, it exists some a and b such that λi = aλj + bλk, which can be used to construct

spinor products

〈ik〉 = a〈jk〉 and 〈ij〉 = b〈kj〉. (2.39)

This implies

〈i`〉 = a〈j`〉+ b〈k`〉 =
〈ik〉
〈jk〉
〈j`〉+

〈ij〉
〈kj〉
〈k`〉 ⇒ 〈ij〉〈k`〉+ 〈jk〉〈i`〉+ 〈ki〉〈j`〉 = 0. (2.40)

This identity is particularly useful when one wants to make tree-level amplitudes look nicer,

but as it is a quadratic relation, it does not straightforwardly help to eliminate spinor prod-

ucts by naively using it.

The momentum conservation condition for the scattering of n-massless particles also

takes a quadratic form in these variables
n∑
i=1

(λiλ̃i)ν = 0⇒ 2(λiλ̃j)
ν

(
n∑
i=1

(λiλ̃i)ν

)
= 0⇒

n∑
i=1

〈ki〉[ij] = 0, ∀ k, j, (2.41)

making it harder to use in comparison its formulation where it is the linear sum of external

momenta that vanishes.

When we will talk about parameterizations of limits for the 2-loop 5-gluon scattering in

latter sections, we will find it useful to have already noted that for four7 null-vectors pi, pj,

7The discussion can easily be generalized to five momenta, but for the sake of the illustration we choose
to work with just four.
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pk and p`, we have

tr(σασβσγσσ) = 2(ηαβηγσ + ηασηγβ − ηαγηβσ + iεαβγσ), (2.42)

where εαβγσ is the totally skew-symmetric tensor and so, by a computation similar to (2.36)

using (2.42), we get

〈ij〉[jk]〈k`〉[`i] = 2(pi · p`)(pj · pk) + 2(pi · pj)(pk · p`)− 2(pi · pk)(pj · p`)− 2iε(i, j, k, `), (2.43)

where ε(i, j, k, `) = εαβγσp1αp2βp3γp4σ. One can check that, under ε(i, j, k, `)→ ±ε(i, j, k, `),

(2.43) can be rewritten compactly as a chiral trace, tr
(

1±γ5

2 /pi/pj/pk/p`

)
. Under the parity

action, which is flipping the sings of the spacial momentum vectors (of the helicities)

p : (p0, pi) 7→ (p0,−pi), (2.44)

we observe the Lorentz invariant expression (2.43) is parity-odd. Complimentary, it is often

useful to further define the 4× 4 matrix δ(pi, pj, pk, p`) such that

δ(pi, pj, pk, p`)nm := 2pn · pm, for n,m ∈ {i, j, k`}. (2.45)

Its determinant, ∆(pi, pj, pk, p`), is called the Gram determinant of {pi, pj, pk, p`} and it is

clearly parity-even since it is a perfect square

∆(pi, pj, pk, p`) = −ε(i, j, k, `)2. (2.46)

Note that Gram determinants vanishes if the momenta are linearly dependent [68] – e.g.,

two particles become collinear.

One additional feature of the spinor-helicity formalism is that it makes it easy to con-

struct spin-1 on-shell massless states, like gluons. Given the usual quantum field operator

expansions for massless spin-1 particles Aµ (see , e.g., [42, Eq. 8.76]), the helicity eigenstates

of vector particles can be constructed in both SO(1, 3)- or SL(2,C)-representations

εµi,+ =
√

2
(λkλ̃i)

µ

〈ki〉
or εαβ̇i,+ =

√
2
λαk λ̃

β̇
i

〈ki〉
and εµi,− =

√
2

(λiλ̃k)
µ

[ik]
or εαβ̇i,− =

√
2
λαi λ̃

β̇
k

[ik]
, (2.47)

where k 6= i denotes an arbitrary reference spinor reflecting gauge invariance – i.e., the

freedom in rescaling εi,± → εi,±+κpi, for any κ ∈ C. For given helicity h, a choice of λk then

uniquely determines polarization vectors ε±. The last observation finally makes justice to
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the name “spinor-helicity”: Vector states (pµ, εµ±) are equivalent to the spinor-helicity vector

states (λ, λ̃, h)!

Furthermore, as it should be, the little group scaling for the polarizations is

ε± → t∓2ε±. (2.48)

Note that this does not spoil the on-shellness of pi as it is encoded in the Ward identity

pµiAµ = 0 [41]. We just need to stick with our choice of k for each external gluon until the

very end; summing over all diagrams will kill the k-dependence in the final amplitude A. As

noted in [33], the independence of the choice of reference spinor provides a useful way to check

results, in particular when one proceeds by numerical evaluation, where it is fast to verify

the stability of the amplitudes under various choices of k. From the SL(2,C)-representations

in (2.47), it is easy to see that

pi,αβ̇ε
αβ̇
i,+ ∼ [ii] = 0, pi,αβ̇ε

αβ̇
i,− ∼ 〈ii〉 = 0, ε2i,± = 0, εi,+ · εi,− = −1. (2.49)

The first two equations are the spin-1 analogues of the massless Weyl equations. We can

check the remaining cases can be written as

εµi,+ε
ν
i,− + εµi,−ε

ν
i,+ = −ηµν +

pµi p
ν
k + pνi p

µ
k

pi · pk
. (2.50)

Finally, we note that expressions like (2.43), makes it relatively easy convert spinor-helicity

functions into functions of the Mandelstam variables. For example, for a massless 4-point

process,

〈12〉〈34〉
〈13〉〈24〉

=
〈12〉〈34〉[31][42]

s13s24

=
〈21〉[13]〈34〉[42]

s13s24

=
s12s34 + s24s13 − s23s14

2s13s24

=
s2 − t2 + (s+ t)2

2(s+ t)2

= − s
u
,

(2.51)

which corresponds to a u-channel exchange.
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p5

p4

p1

p2

p3
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q

q

`
g

Figure 2.3: Feynman diagram for e+e− → qgq̄, in which the quark q is shown as radiating

a gluon g. Time flows horizontally.

2.2 Loop-Integral Methods

In this section, we introduce some modern loop-integral methods. They are seen to hugely

facilitate the evaluation of Feynman integrals in QCD and, in particular, our latter study of

the double virtual corrections to masslees 5-parton master integrals.

2.2.1 d-Dimensional Feynman Integrals

By definition, a Feynman integral (FI) is the mathematical quantity we associate to a

loop-level Feynman diagram (a topology) constructed from the Feynman rules of a given

theory. In a generic 4-dimensional theory, a L-loop Feynman integral for a topology T with

P propagators typically takes the following form

IL,T (a1, ..., ap) :=

∫ ( L∧
i=1

d4`

iπ2

)
cT (fabcf

cd
e...)nT (pµi , `

µ
j , γ

µ, εµ, ...)∏P
i=1 D

ai
i

. (2.52)

In (2.52), cT contains the color structure and is not trivial if we are in a gauge theory,

while nT contains the kinematic structure. The denominators D := K2 −m2 are the usual

propagators. In the expression for the propagator D, Kµ stands for a sum of loop and/or

external momenta qj – i.e., Kµ :=
∑

j q
µ
j .

To illustrate how integrals like (2.52) arise in practice, let’s consider a 5-point process:

e+e− → qgq̄ (see Fig. 2.3). This is a mixed QED/QCD process. The Feynman rules for

QED are given in [42, §26.1]. At high enough energies, we can effectively ignore the masses
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of the electron and the light quarks. In a collision experiment, this diagram would eventually

contribute to a 3-jet event (see Fig. 1.3 (Left)), where a high transverse momentum gluon is

emitted before the hadronization of the quarks takes place. The gluon would later hadronize

in its own jet.

The interaction between the QED/QCD sectors is mediated by a photon. From the

Feynman rules in Fig. 2.1, one obtains a complicated Feynman integral

Ie+e−→qgq̄ = −e2g3T aCF v̄(p4)γµu(p5)
1

(p1 + p2 + p3)2

∫
d4`

(2π)4

1

(`− p1 − p2)2
/ε(p2)

× /p1
+ /p2

(p1 + p2)2
γν
/̀

`2
γµ

/̀− /p1
− /p2

− /p3

(`− p1 − p2 − p3)2
γνv(p3),

(2.53)

where CF = (N2
c − 1)/(2Nc) arises from the gluon in the loop and is defined trough CF δij =∑

a(T
aT a)ij. Further /ε(p2) = γµε

µ(p2), where εµ(p2) is the polarisation vector of the outgoing

gluon.

2.2.2 From Tensorial to Scalar Feynman Integrals

Often, Feynman integrals are tensorial. We can see that directly from non-abelian gauge

theory Feynman rules written in previous sections. For example, it is possible to rewrite

(2.53) as

Ie+e−→qgq̄ = −e2g3T aCF v̄(p4)γµu(p5)
1

(p1 + p2 + p3)2(p1 + p2)2
ū(p1)/ε(p2)(/p1

+ /p2
)γνγργµγσγ

νv(p3)

×
∫

dd`

(2π)4

`ρ(`− p1 − p2 − p3)σ

`2(`− p1 − p2)2(`− p1 − p2 − p3)2
.

(2.54)

This illustrates that, more generally, the integrals (2.52) can involve complicated slashed

momenta and tensor arrangements in the numerators. The solution to this obstacle is rather

simple, but often involves a tedious amount of tensor algebra. Indeed, it is done by using

properties of the Dirac algebra and generalized Passarino-Velman (or tensor) reduction [69].

In practice, one is usually able to express any L-loop with arbitrary multiplicity tensor

integrals as a linear combination of constant tensors with coefficients being scalar Feynman

integrals [70]. These are the integrals that would be obtained in a theory of scalar particles
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only. For example, one can check that the tensor part of (2.54) contains only terms of the

form∫
dd`

(2π)4

`µ(`− p1 − p2 − p3)ν

`2(`− p1 − p2)2(`− p1 − p2 − p3)2
⊃ − 1

2(p1 · p3 + p2 · p3)2
pν3(−pµ2(p1 · p3)− pµ1(p2 · p3)

+ pµ3(p1 · p2 + p1 · p3 + p2 · p3)

− pµ1(p1 · p3) +−pµ3(p1 · p3)

− pµ2(p2 · p3)− pµ3(p2 · p3))

∫
dd`

(2π)4

1

`2(`− p3)2
.

(2.55)

Consequently, the only type of integrals we will have to care about are scalar integrals. Up

to a choice of normalization factor, they will always take the form [71]

GL,T (a1, ..., aP ′) :=
1

(iπd/2)L

∫ L∧
i=1

dd`i
1∏P ′

i=1D
ai
i

, (2.56)

where we still have P propagators, but also new8 irreducible propagators coming from tensor

reduction [73]. The latter are inverse denominators – i.e., ai < 0.

2.2.3 Regularizing Feynman Integrals from Dimensions

When studying integrals like (2.56), one quickly encounters the several difficulties

associated with them; the most worrying one being that many loop integrals diverge. The

ceremonial way to make sense of divergent loop integrals is to employ the renormalization

machinery that was quickly discussed in a previous section. This allows some physical

parameters like the bare coupling constants and the bare masses present in the Lagrangian

to be infinite in such a way that they compensate the divergences of the integrals. The

physical results of the calculations are therefore finite. In order to make sense of calculations

containing divergent integrals we have to choose a regularization scheme. They are nowadays

8In fact, there are exactly N such propagators, where N = P ′ − P = EL + L(L + 1)/2 − P and
P ′ := |{`i · qj}|, qj ∈ {`1≤j≤L}∪ {p1≤j≤E}. In the expression for N , P is the initial numbers of propagators,
E + 1 is the number of external momenta and L denotes the loop order. Note that since we can always
blow-up contact terms [72], we can consider Feynman graphs containing only 3-legged vertices. Hence,
P = 3L + E − 2 and so NBlow-Up = (L − 1)(L + 2E − 4)/2. Thus, when L ≥ max(2, 5 − 2E), P ′ > P and
there are more scalar products than there are propagators. [73]. In such a case, it is not possible to express
all the sij as linear combinations of the denominators. For diagrams with E > 1, this starts from L = 2.
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`0

`+0 =
√

`2 +m2 − iε

`−0 = −
√

`2 +m2 + iε

Im

Re

Figure 2.4: Wick rotation. `±0 -poles in Feynman propagators are shown. Integrating over

the real axis is then equivalent to integrating over the pole-free imaginary one.

pretty standard and we can find them in any good QFT textbooks such as [35,41,42]. Among

all of them, a very celebrated one is the scheme of dimensional regularization. It generalizes

our usual 4-dimensional integrals to arbitrary Z-dimension, d, and then analytically continue

it by setting d→ 4−2ε, for any ε ∈ C. Taking the limit ε→ 0 at the end of the computation

gives the regularized evaluations of the integrals in 4-dimensions.

The dimensional regularization procedure for a given scalar Feynman integral in 4-

dimension always goes along the same lines. First, as integration over Riemannian man-

ifolds is easier done than integration over Lorentzian ones, we can exploit the fact that the

Minkowski metric and the 4-Euclidean metric are equivalent if the time components of either

are allowed to have imaginary values [74]. Practically, this amounts to performing a Wick

rotation on each loop momentum: `0 → i`0
E, where “E” stands for Euclidean. The second

step is to drop the iε-prescriptions in propagators, because we do not have a pole anymore

as long as all the masses are real (see Fig. 2.4). In the third step, we invoke the so-called

“Schwinger trick” for which each denominator in the integral is expressed as an integral

over a variable xa measuring the “length” (or proper time) of the corresponding edge of the

Feynman diagram

1

Dai
i

=
1

Γ(ai)

∫
R+

xai−1
i exp(−xiDai

i )dxi. (2.57)
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Following the derivation done in [75], we see that this step turns each of the d-dimensional

loop integrals into a d-fold product of 1-dimensional integrals. In this way, we see that

d-dimensions L-loop scalar Feynman integrals are in fact twisted periods

GL,T (a1, ..., aP ′) =

∫
RP+

exp(εW)φa1,...,aP , (2.58)

where
U = det(Q), F = U(c− L>Q−1L) such that xaDa = `iQij`j + 2Li`i + C,

W = log(F + U) + δa log(xa), δa
∀ a−−→ 0,

φv1,...,vP = Γ(2−ε)(F+U)−2

Γ((L+1)(2−ε)−|v|−ε|δ|)
∧P
a=1

xva−1
a dxa

Γ(va+εδa)
.

(2.59)

This representation is particularly useful for both combinatorial and homological study of

Feynman integrals – e.g., see [75–79].

We can see how this works with a simple example [80]. We consider the bubble integral

with massless lines

p1

p2 p3

p4
`

=
∫

dd`
iπd/2

1
`2(`−p1−p2)2 = I.

Here the external lines p1≤i≤4 are all massless, which is equivalent to one massive external

line on each side, since any massive four-momentum can be written as a sum of two massless

4-momenta. We will rewrite this with the Schwinger variables x0 = `, x1 = 0 and x2 = p1+p2

of (2.57) and make the further generalization by authorizing arbitrary powers α1 and α2 of

the propagators. We easily see

I =

∫
dd`

iπd/2
1

((−(x0 − x1)2)α1((−(x0 − x2)2)α2
. (2.60)

Note that by our choices of x’s, the only possible Lorentz invariant quantity we can expect

at the end of the computation is s := (p1 + p2)2 and by dimensional analysis, we see that it

will be proportional to s(d−2α)/2, where α = α1 + α2. Indeed, after the integration is carried

out (see Appendix B)

I = (−s)(d−2α)/2 Γ(α− d/2)Γ(d/2− α1)Γ(d/2− α2)

Γ(α1)Γ(α2)Γ(d− α)

α1,2→1,d→4−2ε−−−−−−−−−→ 1

2ε
+

1

2
(−2 log(−s)− γE + 2) +O(ε),

(2.61)
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where

γE = lim
n→∞

(
n∑
j=1

1

j
− log(n)

)
' 0.5772156649... (2.62)

is the Euler’s constant. We see that dimensional regularization captures well the logarithmic

UV-divergent behaviour of the IR-finite massive bubble one expects from power counting.

Moreover, as the loop-integral has a definite mass dimension, the divergence must be, by

hand, multiplied by a kinematic invariant with the corresponding dimension, namely −sε.

Because this invariant is proportional to a tree-amplitude, we can remove the divergence

by modifying the constants (such as the overall coupling factors) of the corresponding tree-

amplitudes to absorb it. This modification can, in fact, be translated into what we already

mentioned above: The modification of the coupling constants and masses in the Lagrangian.

In our particular case, multiplying the associated tree-amplitude by εeγE(−s)ε does the trick.

Equivalently, one can trade I for its regulated version

Ireg = εeγE(−s)εI = 1 + 2ε+
1

12
(48− π2)ε2 +

(
−7ζ3

3
+ 8− π2

6

)
ε3 +O(ε4). (2.63)

In the case where the kinematic invariant in front of the loop-divergences is not proportional

to the tree-loop amplitude, one has to modify the theory by adding new operators to the

action in such a way that the divergences can be absorbed.

All the dimensionally regulated n-point 1-loop scalar integrals are known and can be

found in [81].

2.2.4 The Landau Equations

Let’s now discuss the singularity structure of the Feynman integrals in

(2.56). It is helpful to use the generalized Feynman identity, where a :=
∑P

i ai and Xi ∈

[0, 1] ∀ i,

1∏P
i=1A

ai
i

=
Γ (a)∏P
i=1 Γ(ai)

∫
[0,1]

(
P∧
i=1

Xai−1
i dXi

)
δ
(

1−
∑P

i=1 Xi

)
(∑P

i=1AiXi

)a , (2.64)
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on the propagator product. After the dust settles, one sees that (2.56) is rewritten as

GL,T (a1, ..., aP ′) =
Γ (a) eεLγE(µ2)εL

(iπD/2)L
∏P

i=1 Γ(ai)

∫ L∧
i=1

dD`i

∫
[0,1]

P∧
i=1

Xai−1
i dXi

×

(∏P ′

i=P+1(K2
i −m2

i )
ai

)
δ
(

1−
∑P

i=1Xi

)
(∑P

i=1(K2
i −m2

i )Xi

)a .

(2.65)

Although this equation, looks complicated, it highlights in a very simple way the singularity

structure of Feynman integrals. Indeed, given the integrand depends analytically on the

integration variables Xi, the system
P∑
i=1

(K2
i −m2

i )Xi = 0 with
P∑
i=1

Xi = 1, (2.66)

is the only potential source of singularity.

A careful analysis of these equations shows that the conditions for the appearance of

singularities read ∑
i

Kµ
i Xi = 0 along each loop, (2.67)

and

K2
i = m2

i or Xi = 0. (2.68)

These are known as the Landau equations. Considering their importance, these equations

deserve some comments [76,82–84]. Firstly, together with the δ-function constraint,
∑
Xi =

1, Landau equations impose DL + P + 1 conditions on DL + P variables (which are loop

momenta and the Ki’s). This means that a solution may exist only for specific values of

external momenta. Secondly, if it exists, the solution determines the Landau surface for

the position of a singularity of G in the space of invariants sij. This implies the solution

may be resolved – e.g., to determine the position of a singularity in the invariant energy s,

for fixed momentum transfer variables t and vice versa. Thirdly, the condition K2
i = m2

i

enforces locality – i.e., the only possible physical poles in scattering amplitudes occur when

the momentum of a particle goes on-shell, so the particle propagates. Finally, we note

a funny resemblance between (2.67) and the Kirchhoff current law equations for electric
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circuits, with momentum Ki playing the role of the current Ii, and Xi that of resistance Ri.

Analogously, the second equation in (2.68) looks like a “short circuit singularity” associated

with a vanishing resistance allowing charged particles to propagate asymptotically freely.

2.2.5 Algebraic Relations Between Feynman Integrals

From the last section, it is not hard to see that the evaluation of most Feynman integrals

can be rather difficult. Fortunately for us, it turns out that there are many algebraic relations

between Feynman integrals. These relations are useful because they give further and often

simpler Feynman integrals from the ones we already know. A very lavish set of such relations

can be obtained via the so-called integration by parts identities (IBP). They relate different

integrals of a given integral topology. An integral topology is the set of all integrals with a

given propagator structure, but allowing arbitrary integer powers of the propagators. For

example, the set of integrals we get from (2.60) form the bubble integral topology. The use

of IBP’s is motivated by the fact that if we differentiate an integral with respect to some

loop momentum before integration, the integral vanishes by Stokes’ theorem. Let’s see how

this works with an almost trivial example. We consider the family of vacuum bubble integral

=
∫

ddK
(K2−m2)a

≡ G(a).

Since boundary term vanishes, we write∫
ddK

∂

∂Kµ

(
Kµ 1

(K2 −m2)a

)
= 0, (2.69)

which yields a recurrence relation∫
ddK

(
d

(K2 −m2)a
− −2aK2

(K2 −m2)a+1

)
= 0

K2→(K2−m2)+m2

−−−−−−−−−−−→ (d−2a)G(a)−2am2G(a+1) = 0.

(2.70)

The upshot, here, is that there are linear relations between members of an integral family

with different a’s. Similarly, if we consider the family of 1-loop propagator integrals
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=
∫

ddK
(K2)a1 ((q−K)2)a2 ≡ G(a1, a2),

q
K

K − q

we get ∫
ddK

∂

∂Kµ

(
Kµ 1

(K2)a1 ((q −K)2)a2

)
= 0. (2.71)

By performing the differentiation and sending, in order, K → (K − q) + q, rearranging, and

then 2K · q → K2 + q2 − (K − q2), we find

(d− 2a1 − a2)G(a1, a2) + q2a2G(a1, a2 + 1)− a2G(a1 − 1, a2 + 1) = 0. (2.72)

Note that these two examples show that the coefficients depends on both the dimension and

the propagator powers.

More generally, we can find such linear relations by asking [20]∫ L∧
i=1

d`i
∂

∂`µi

(
qµj∏P ′

i=1 D
ai
i

)
= 0, (2.73)

for qj ∈ {p1, ..., pE, `1, ..., `L}. This gives rise to exactly L(L+E) linear relations of the form

c1G(a1, ..., aP ′ − 1) + ...+ cmG(a1 + 1, ..., aP ′) = 0. (2.74)

Similarly, since the scalar Feynman integrals should not change under the infinitesimal

SO(d− 1, 1) transformation [85]

pµ → pµ + δpµ = pµ + δεµνp
ν , (2.75)

with skew–symmetric so(D − 1, 1) generator δεµν = −δενµ, we must have

Ga1,...,aP ′
({pi + δpi}) = Ga1,...,aP ′

({pi}), (2.76)

which we can expand in the so(D − 1, 1) generators as

Ga1,...,aP ′
({pi + δpi}) =

(
1 + δpµ1

∂

∂pµ1
+ ...+ δpµE

∂

∂pµE

)
Ga1,...,aP ′

({pi}). (2.77)

For skew–symmetric δεµν 6= 0, this yields to D(D − 1)/2 Lorentz invariance identities (LI).

E∑
i=1

p
[ν
i

∂

∂pµ]i

Ga1,...,aP ′
({pi}) = 0. (2.78)
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However, the LI identities can always be expressed in terms of the IBP relations [20, 86].

Therefore, the IBP’s by their own can be used to express any integrals in a given topology

in terms of a minimal set of integrals: A master integral basis (MI). In practice, this can be

done in various different ways. A very celebrated one is the Laporta’s algorithm [18,20, §6.3].

It goes along the following lines:

1. Once a family of integrals is chosen, apply IBP and LI relations to a set of arbitrarily

chosen propagator exponents a = (a1, .., aP ′) ∈ ZP
′
. These a are called seeds;

2. Using different seeds yields to relations between different and unknown scalar integrals

in the family;

3. As the number of relations is observed to grow faster than the number of unknown

scalar integrals;

4. Once we use enough seeds, all the required scalar integrals can be reduced to a basis

of integrals, called master integrals (MI), via a Gauß-type elimination

GL,T (a1, ..., aP ′) =

χ∑
j=1

cjM
j
L,T (a

(j)
1 , ..., a

(j)
P ′ ). (2.79)

In the last equation, number, χ, of MI’s is determined entirely by the topology of the

associated moduli space [17]. It was shown in [87], that χ is always finite.

A noteworthy feature of such decomposition is that the set of master integrals is not

unique at all. In practice, it is a really hard exercise to generate “the best”9 basis of

MI’s just from Laporta’s algorithm. Hence, we usually start by finding one randomly and

changing basis to a more convenient one. By construction, Larporta’s algorithm generates

a huge number of complicated equations. For high external legs and loop multiplicities,

it is therefore necessary to use computer implementations10 [88–92]. Amelioration of IBPs

algorithms is still an active area of research – e.g., see [93].

9The definition of “best basis” is flexible in the literature. Nevertheless, for us, it means it makes the
differential equations canonical. This will be discussed in incoming sections.

10However, even for good computers, solving huge systems of linear equations is CPU-, disk-, and RAM-
expensive.
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2.2.6 Example: IPBs for the Massless Box

To illustrate what we discussed in the last section, we derive a master integral

basis for the massless 4-point 1-loop topology using the C++ implementation KIRA [89]. The

integral family is defined by

=
∫

dD`
(`2)a0 ((`+p1)2)a1 ((`+p1+p2)2)a2 ((`−p4)2)a3 ≡ G1,box(a0, a1, a2, a3).

`
p1

` + p1

p2
` + p1 + p2

p4

`− p4

p3

In this example, we want to decompose the triangle integral G1,box(1, 1, 0, 1) and higher-

power box G1,box(2, 1, 1, 1) in terms of MI’s. To do so, there are 4 IBP and 6 LI identities we

can use. A basis of 3 master integrals is found in less than one second. The explicit IBP’s

are listed in Appendix A. The resulting basis decomposition is given by

G1,box(1, 1, 1, 1)

t-channel

G1,box(0, 1, 0, 1)

s-channel

G1,box(1, 0, 1, 0)G1,box(a0, a1, a2, a3) = c1 + c2 + c3

The choice of these three integrals as basis integrals is, as mentioned earlier, not unique

and we could also have taken three different integrals. Traditionally, one would choose the

integrals that are particularly easy to calculate or have some suitable properties, such as

UV-finiteness. The decomposition for the triangle integral and higher-power box in terms of

this basis are therefore seen to be

G1,box(1, 1, 0, 1) =
6− 2d

t(d− 4)
G1,box(0, 1, 0, 1), (2.80)

and

G1,box(2, 1, 1, 1) =
5− d
s

G1,box(1, 1, 1, 1) +
4d2 − 32d+ 60

st2(d− 6)
G1,box(0, 1, 0, 1). (2.81)

The former decomposition shows that the triangle integral related to the bubble, which

explains why it is not appearing in the basis. The latter decomposition shows that higher

powers in the denominator can be removed.
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Figure 2.5: Basis obtained from integral reduction for 1-loop integrals.

The attentive reader may have noticed that, for all the examples given, the coefficients

cj of (2.116) are rational functions of the dimension and of the kinematic invariants. This is

a manifestation of the fact that, for 1-loop integrals, it is always possible to reduce any n-

point Feynman integral as a sum ansatz with respect to the four basis integrals and a rational

function R [69, 80]. These four basis integrals are tadpoles (T), bubbles (B), triangles (∆),

and boxes (�) with an arbitrary number of external legs of the original diagram at each

vertex, see Fig. 2.5

A1-loop
n-point ⊃ I

1-loop
n-point = R+

∑
j�

c�j�I
�
j�

+
∑
j∆

c∆
j∆
I∆
j∆

+
∑
jB

cB
jB
IB
jB

+
∑
jT

cT
jT
IT
jT

+O(δ), (2.82)

where the c’s are coefficients to be determined and the small δ-corrections coming from the

subleading pentagon integrals contributions [94]. Note that this expansion is valid at the

integrand level too, but only for n ≥ 5. The explanation is that, in the n ≤ 4 cases, there

are not enough external momenta to construct a four-dimensional integrand basis. However,

in these cases it can be argued that scalar products of ` with vectors that are perpendicular

to the external momenta – e.g., see [80, Eq. 3.36] –, lead to numerators that vanish, but just

after integration – e.g., see [80, Eq. 3.70]. Thus, (2.82) is valid at the integrand level for

generic n, provided additional transverse degrees of freedom living in the integration kernel

are introduced for n ≤ 4.

Integral reductions like (2.82) can also be found for more than 1-loop. One example is

the planar 2-loop diagram with massless internal propagators. Here, only diagrams with

eleven or fewer propagators can be reduced using this technique [94, 95]. The reason for

this limitation is practical; the bound L ≥ max(2, 5 − 2E) saturates fast passed L = 1

(see Footnote 8). Thus, in contrast to the 1-loop case, for L > 1 there are also diagrams
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Figure 2.6: Visualization of 1-loop unitary cut. External particles are all outgoing.

with loop-dependent irreducible propagators, obscuring the general ansatz for such complete

integral reductions.

2.2.7 Recycling Tree Amplitudes: Unitary Cuts

Unitary cuts are a useful tool in different ways to calculate Feynman loop integrals.

The first application of unitary cuts one is usually exposed to in a QFT course, is the so-

called optical theorem [35,41,42]. It gives a relation between the imaginary part of the loop

amplitudes A1-loop and the integral over tree amplitudes.

Broadly speaking [33, 80], it says that the imaginary part of the loop amplitude, which

probes its branch cut structure, is related to the pole structure of the amplitude integrand

across the unitary cuts of interest (see Fig. 2.6)

ImA1-loop =
1

2

∫
d4`δ(`2)Θ(`0)δ((`− Σleft)

2)Θ((`− Σleft)
0)Atree

leftAtree
right. (2.83)

One can reconstruct the integrand by analyzing different sets of unitary cuts. It is a bit like

“recycling” our knowledge of tree amplitudes to make predictions at the loop-level. Indeed,

the only necessary loop-level input is an ansatz for A1-loop, which is given in (2.82). Note that

the I?j? ’s where the cut propagator is not present will have trivial residue and will therefore

vanish on the cut. By plugging the ansatz in the LHS of (2.83), it easy to see that each cut

we make generates equations where, on the right hand side, we have integrals over tree-level

amplitudes and, on the left hand side, we have linear combinations of the coefficients c?j? .
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Figure 2.7: The sum of all Feynman diagrams localized on the cut where the propagators

(`)−2 and (` − p1 − p2)−2 go on-shell (left) is equal to the product of two tree-amplitudes

(right).

A 5-point example is shown schematically in Fig. 2.7, where the 2-cut is performed on the

momenta flowing between 1 and 5 and between 2 and 3. Solving these linear equations gives

us the coefficients as a combination of products of tree-amplitudes. The only part which

is by construction invisible to this method is the determination of R. Consequently, R is

often referred to the non-cut-constructable part of the scattering amplitudes. Two explicit

and pedagogical examples for (i) the box coefficient of an n-point 1-loop amplitude in d = 4,

and (ii) for the integral coefficients for the fermion-loop correction of the 1-loop 4-gluon

(+,−,+,−)-helicity amplitudes are given in [33, p.128-129].

2.2.8 Generalized Unitarity

It is possible to introduce a generalized version of the method described in the

previous section. Indeed, for a 1-loop amplitudes, to use (2.83) we had to cut only two

propagators, but it is sometimes useful to cut more 11. Cutting an arbitrary number of prop-

agators therefore generalize our previous notion of unitary cuts. One way to determine the

coefficients for a general 1-loop amplitude using generalized cuts is to match the amplitude

and the expansion in Fig. 2.5, but now on the integrand level.

Let’s sketch how this works for 1-loop integrals. Recalling that there is no fixed integrand-

level analogues of (2.82) for the cases where n ≤ 4, this means that we need a more general

11However, there’s always a maximal number of useful cut we can make. For example, because of the
expansion in equation (2.82), the maximal number of propagators we can cut at leading order in δ in a 1-loop
amplitude is four. Otherwise, the right hand side of the expansion always vanishes.
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ansatz. One is given in [80, Eq. 3.125]

A1-loop
n =

∑
1≤i1≤i2≤i3≤i4≤n

�i1i2i3i4(`)

Di1Di2Di3Di4

+
∑

1≤i1≤i2≤i3≤n

∆i1i2i3(`)

Di1Di2Di3

+
∑

1≤i1≤i2≤n

Bi1i2(`)

Di1Di2

+
∑

1≤i1≤n

Ti1(`)

Di1

.

(2.84)

In regards of what has been said previously, the numerators in (2.84) will also inevitably

depend on scalar products of the loop momentum with auxiliary vectors momenta, perpen-

dicular to the external momenta. They are explicitly given in [80, Eq. 3.126-3.129], but

their explicit form is not relevant for the present discussion. The trick is to use these auxil-

iary vectors to determine the coefficients. We start with the maximal number of four cuts,

where all but one of the 1-loop integrands vanish to determine the numerators �i1i2i3i4(`).

We continue and cut three propagators, so that we get contributions of boxes and triangles.

Following this logic, we can also get the bubble numerators and the tadpole numerators.

We stress that all we need to know, a priori, are the tree-level amplitudes and an ansatz

of four topologies (see Fig. 2.5) to determine the whole 1-loop amplitudes, still without the

rational part. No integration is needed. This is an achievement in comparison to the last

method where, for each 2-cut made, we had to perform an integration over tree-amplitudes.

Another difference to the 2-cut method is that we also have to allow complex momenta

since the solution of setting four propagators to zero is unlikely to be real. Using complex

momenta also makes a difference for the tree-amplitudes in the left hand side of equation

(2.84), since amplitudes like the 3-point tree-amplitudes for gluons vanish for real momenta

but not for general complex momenta12. They, therefore, now need to be considered.

The methods of generalized unitary deserve much more attention than what we can offer

in this thesis. For example, finding optimal methods to reconstruct these coefficients at

12Indeed, for on-shell 3-point amplitudes, p1 + p2 + p3 = 0 and so the momenta are strongly constrained:
s12 = s23 = s13 = 0. Recalling sij = 〈ij〉[ij], we see that the two only possible solutions are λ1 ∼ λ2 ∼ λ3
or λ̃1 ∼ λ̃2 ∼ λ̃3. Taking the former solution, we have p1 = λ1λ̃1, p2 = αλ1λ̃2 and p3 = −λ1(λ̃1 + αλ̃2).
This system of momenta has no non-trivial real solution as it would require, for example, λ̃1 +αλ̃2 = (λ1)?.
Therefore, the scattering amplitudes of three physical gluons must vanish. That’s an important input into
on-shell methods [33, 34]
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arbitrary multiplicities is currently an active area of research – see for example [78], where

an interesting dual space is used. See also [93], and [96–98] for reviews.

2.2.9 Leading Singularities and d log Forms

It turns out that the unitary cuts discussed above are not only useful to calculate

the coefficients of the amplitudes, but can additionally help to explore the analytic structure

of Feynman integrals in general. The old-fashioned way of introducing unitary cuts is by

replacing propagators with δ-functions. Another interpretation, more geometric, is to un-

derstand them as taking contour integrals around the poles of the propagators [67]. It is

geometric in the sense that it is equivalent to a product of contour integrals localizing around

the poles of the propagators. For example, in 4-dimension, whenever it makes sense we can

perform 4 cuts and trade the 4 degrees of freedom of the loop momenta `µ with 4 constraints

on propagators, say D1≤i≤4. Explicitly,

Cut4

(∫ ∫
R1,3

dd`

D2
1D

2
2D

2
3D

2
4

· R
)

=
1

(2πi)

4∏
i=1

∮
Di=0

dDi

Di

· R(`)

J(`)

∣∣∣∣
`=`?

, (2.85)

where `? is the four-vector solution to Di = 0, ∀ 1 ≤ i ≤ 4, R is the remaining part of the

original integrand (depending on other external and loop momenta) and J is the Jacobian

accounting for the variables change `µ → {D}4
i=1

J = det

(
∂(D1, D2, D3, D4)

∂(`0, `1, `2, `3)

)
. (2.86)

We stress that the D1≤i≤4 ordering is arbitrary. As a result, a different choice than the

one we made can lead to a different Jacobian sign, which one may interpret as taking the

reverse orientation for the integration contour. Moreover, the ordering of the legs are not

fixed from the beginning. Different orderings can lead to a different sign, which is related

to the orientation of the contour. This choice of orientation is unimportant at the level of

leading singularities. The only difference between calculating unitary cuts and calculating the

integral along the real axis is the path on which we integrate. Thus, it seems heuristically

reasonable to assume that the quantities we get from the unitary cuts and the Feynman

integrals have similar properties. Given that calculating unitary cuts is by construction
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much easier than determining the integral, it is most of the time useful to calculate unitary

cuts in order to learn something about the properties of the Feynman integral.

Now, if we take the residues for all integration variables we obtain the quantity that is

referred to as a leading singularity (LS) of the integrand. In most loop diagrams, however,

the number of propagators is smaller than the number of integration variables. For example,

this is the case for the triangle 4-point diagram, where the former is three and the latter is

four. A natural question is therefore: How practical are leading singularity methods if there

are not enough poles where we can take residues? As a matter of fact, since the propagators

are quadratic in the momenta taking the residue at the pole of one propagator creates new

factors in the denominator, on which residues can be taken. Leading singularities involving

such “pole-under-a-pole” are called composite leading singularities [33]. Composite leading

singularities resolve the subtlety about defining maximal-cut for certain Feynman integrals

and we can take as a theorem that the leading singularities of multi-loop amplitudes are

always well-defined.

The idea, now, is to work with leading singularities that are as simple as possible. We

introduce the concept of unit leading singularities. It is defined such that the maximal-cut

residue of the integral is normalized to either -1, 0 or 1. This idea is illustrated in the next

subsection.

2.2.10 Example: The Leading Singularities of the Massless Box

We consider the planar massless box. Its integrand is given by

dG1,box(1, 1, 1, 1) =
d4`

D1D2D3D4

, (2.87)

with D1 := `2, D2 := (` + p1)2, D3 := (` + p1 + p2)2, D4 := (`− p4)2. A first thing we can

do is to profit of the arbitrariness of the loop momentum ` over integration to write it as

` = a1λ1λ̃1 + a2λ2λ̃2 + a3λ1λ̃2 + a4λ2λ̃1, (2.88)

where (p1,2)αα̇ = λ1,2λ̃1,2. The variables for which we exchanged the four loop momentum

degrees of freedom are a1≤i≤4. Note that since 〈ij] = 0, each of the last two terms in
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(2.88) are both orthogonal the first two. This makes the four components independent. If

we compute the propagators Di in the ai variables, we observe dependencies on angle- and

square-brakets. To avoid this, we can use pµ3 as an internal normalization parameter

a3 →
〈23〉
〈13〉

a3 and a4 →
〈13〉
〈23〉

a4. (2.89)

Now, we only have to deal with s, t, a1≤i≤4-dependent expressions

D1 = s(a1a2 − a3a4),

D2 = s(a2 + a1a2 − a3a4),

D3 = s(1 + a1a2 + a1 + a2 − a3a4), (2.90)

D4 = s(a1a2 + a2 − a3a4 − a4)− t(a1 − a2 − a3 + a4),

d4` = J
4∧
i=1

dai.

Using (2.88), we can compute the determinant, J , of the Jacobian matrix, J, by conjugating

the metric ηµν with the matrix components Jµi = ∂ai`
µ – i.e.,

J = det(J) =

√
− det(JηJ>) =

√
− det([Jµi Jjµ]). (2.91)

As [Jµi Jj,µ] is a symmetric matrix, there are only two non-trivial distinct components: J1·J2 =

p1 · p2 = s/2 and, using (2.35), J3 · J4 = −1
2
〈12〉[12] = −s/2. After the dust settles, we see

the box integrand Jacobian takes the form

J = ±is
2

4
. (2.92)

Combining (2.90) and (2.92), we find

dG1,box(1, 1, 1, 1) =

∧4
i=1 dai

(s(a1a2 − a3a4)(a1a2 + a2 − a3a4)(1 + a2a1 + a1 + a2 − a3a4)
× (s(a2a1 + a2 − a4 − a3a4)− t(a1 − a2 − a3 + a4)))

.

(2.93)

With a bit of work, we can put (2.93) into a d log-form. We can naively do this using partial

fractions [99]. Using Mathematica, we do so algorithmically by using the Apart[] function

on (2.93), first, with respect to a1. From the output, we can collect d log(W a1
i ), where

W a1
i ∈ Aa1 = {a1a2 − a3a4,1 + a2 + a1(1 + a2)− a3a4, a2 + a1a2 − a3a4,

s(1 + a1)a2 + t(−a1 + a2 + a3 − a4)− s(1 + a3)a4},
(2.94)
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out of each fraction. We repeat this step on d log-coefficients, but now with respect to a3
13.

The d log(W a3
i ) associated to this step are such that

W a3
i ∈ Aa3 = {(s+ t)a2 + ta3, a2(1 + a2) + a3a4, a3, 1 + a2 + a3, (2.95)

− ta2(1 + a2 + a3) + a4((s+ t)a2 + ta3)}.

Similarly, if we repeat for a4 and a2 respectively

W a4
i ∈ Aa4 = {a4 − a2, a4(s+ t)− t(1 + a2), a4}, (2.96)

and

W a2
i ∈ Aa2 = {sa2 − t, a2, 1 + a2}. (2.97)

The analysis indicates the box can also be written as a sum of 44 d log 4-forms

dG1,box(1, 1, 1, 1) =
1

st

44∑
i=1

cid log(W a2

σa2 (i)) ∧ d log(W a4

σa4 (i)) ∧ d log(W a3

σa3 (i)) ∧ d log(W a1

σa1 (i)).

(2.98)

where ci ∈ Z/2Z and σaj(i) ∈ {1, ..., |Aaj |}, ∀ i, j. Using (2.98), it becomes much easier

to evaluate (2.85). In fact, the latter example highlights a crucial relation between d log-

forms and leading singularities. Indeed, more generally, in the d log-decomposition of some

integrand dΩ,

dΩ =
N∑
i=1

Cid log(ωi1) ∧ d log(ωi2) ∧ ... ∧ d log(ωik), (2.99)

the values of the Ci’s give the leading singularities of dΩ. For the box, up to a sign, the

leading singularity is therefore 1/st. This fits the result found in [67, 100], yet much more

compact as it is a single 4-form expression

stdG1,box(1, 1, 1, 1) = d log
`2

(`− `?)2
∧ d log

(`+ p1)2

(`− `?)2
∧ d log

(`+ p1 + p2)2

(`− `?)2
∧ d log

(`− p4)2

(`− `?)2
,

(2.100)

where `? = − 〈14〉
〈24〉λ2λ̃1 + λ1λ̃1, which is one of the solutions for D1≤i≤4 = 0.

We finally note that d log-forms were shown to play an important role in a toy theory

known as N = 4 Super Yang-Mills (SYM) theory. Its particle spectrum as well as many of

13Note that we skipped a2. This would in fact lead to square root terms and so to branch cuts, which are
highly unwanted.
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its very basic properties are discussed in [101,102]; a discussion in the context of scattering

amplitudes is given in [33, §5, 6.3, 6.4]. This supersymmetric cousin of QCD [103] makes

many things computable due to large amount of symmetry – i.e., superconformal symmetry,

dual conformal symmetry and its enhancement to the Yangian. For example, the only

non-vanishing contributions in Fig. 2.5 for 1-loop N = 4 SYM amplitudes are the box-

integrals [33, §6.3, p.130-131]. Moreover, all of its planar amplitudes, [33, Eq. 9.1], can be

reformulated with a dual formulation using on-shell diagrams computed as contour integrals

over the positive Graßmannian [33, §9.2], a structure in algebraic geometry analogous to a

convex polytope [33, §10], that generalizes the idea of a simplex in projective space. Using

such objects, it was shown that all planar integrands can be written as d log-forms [104]. This

reformulation of the S-matrix is connected to the geometric concept of the amplituhedron

[105], which, however, is defined in momentum twistor variables (see Appendix C). At a given

loop order, they can only be used in the planar limit14. Since we do not need momentum

twistor variables to express diagrams as d log-forms, they turn out to be a useful tool for the

analysis of non-planar diagrams in N = 4 SYM and also for the investigation of the question

if the concept of the amplituhedron is also valid in the non-planar case [104,106].

For further references on d log-forms and leading singularities, we advert to the recent

article [107].

2.3 On the Evaluation of Master Integrals

As we saw, the master integrals are functions of the kinematic invariants constructed

from the external momenta, of the masses of the external particles and of the particles

running in the loops, as well as of the number of spacetime dimensions. Remarkably, the

14Given a well-defined ordering of the external lines based on the color-ordering, the region variables {yi},
on which momentum twistors depend, are essentially labeling the “regions” that the external lines of the
amplitude separate the plane into. When loops are added, there are new “internal” regions; one for each
loop. In the planar limit, the region, y`i , associated with the ith-loop momentum, `i, is uniquely defined as
the corresponding “hole”, while the position of `i on one of the hole edges isn’t. The region variables (and
so the momentum twistors) thus give an unambiguous definition of the loop-momentum only in the planar
limit.
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existence of algebraic relations between master integrals forces then to obey linear systems

of first-order differential equations in the kinematic invariants, which can be used for their

evaluation. In the most general case, the master integrals are ultimately integrated by using

a generalized version of the Picard–Lindelöf theorem. Indeed, the nested structure of the

Laurent expansion of the linear system of differential equations leads to an iterative structure

for the solution that, order-by-order in ε = (4−d)/2, is written in terms of repeated integrals,

starting from the kernels dictated by the homogeneous solution. The transcendentality of the

solution is associated to the number of repeated integrations and increases by one unit as the

order of the ε-expansion increases. The solution of the system, namely the master integrals,

is finally determined by imposing the boundary conditions at special values of the kinematic

variables, properly chosen either in correspondence of configurations that reduce the master

integrals to simpler integrals or in correspondence of desired thresholds. In this latter case,

the boundary conditions are obtained by imposing the regularity of the master integrals

around spurious singularities, ruling out divergent behavior of the general solution of the

systems. After one obtained a master integral basis from the Laporta’s algorithm described

above, convenient manipulations of the basis may be performed. An important fact is that a

proper choice of master integral can simplify the form of the systems of differential equations

tremendously and, hence, of their solution. A general criterion for determining such optimal

sets is not yet known. However, a considerable step in this direction has been made by

Henn in [29]. The key observation is that a good choice of master integrals allows us to

cast the system of differential equation in a canonical form, where the dependence on ε is

factorized from the kinematics of the connection. The integration of a system in canonical

form trivializes and the analytic properties of its general solution are manifestly inherited

from the differential equation connection, which is the kernel of the iterated integrals. As

pointed out in [29], finding an algorithmic procedure which, starting from a generic set of

master integrals, leads to one fulfilling a canonical system is a harrowing task. In practice, the

quest for the suitable basis of master integrals is determined by qualitative properties required

for the solution, such as finiteness in the ε → 0 limit, and homogeneous transcendentality,
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which turn into quantitative tools like the unit leading singularity criterion and the d log-

representation in terms of Feynman parameters [108], we all discussed in the last few sections.

2.3.1 The (Canonical) Differential Equations

In this section, we give a concise review of [109]. In the previous sections, we started with

a family of Feynman integrals, then expanded the required integrals into a master integrals

basis. To compute them, we can start by writing a differential equation for each master

integrals.

From the very first principles, we need these differential equations to be Lorentz invariant.

Thus, we differentiate with respect to the Mandelstam variables, sij, and not with respect

to external momenta pµi . Still, the master integrals rarely have an explicit dependence on

the sij. Instead, they depend on the external momenta pi. This problem can be sidestepped

by expanding the differential operator ∂
∂sij

in a momenta basis. For a n-particle process, we

have

∂

∂sij
=

n−1∑
i=1

(
n−1∑
j=1

Cijp
µ
j

)
∂

∂pµi
. (2.101)

The coefficients Cij can be determined (not uniquely) by imposing the following minimal

constraints

∂

∂sij
p2

1≤i≤n−1 = 0,
∂

∂sij
(pk · p`)|k, 6̀∈{i,j} = 0,

∂

∂sij
(pi · pj) =

1

2
,

n−1∑
k=1
k 6=i

∂

∂sij
(pk · pj) = −1

2
.

(2.102)

The first of these equations follows from on-shellness, while the others follow from the defi-

nition of sij. For example, for n = 4, we would have, given p2
1 = p2

2 = p2
4 = 0, p1 · p2 = s/2,

p1 · p4 = t/2 and p2 · p4 = −(s+ t)/2, the following ansatz for the ∂
∂t

-operator

∂

∂t
= (C11p

µ
1 +C12p

µ
2 +C14p

µ
4)

∂

∂pµ1
+(C21p

µ
1 +C22p

µ
2 +C24p

µ
4)

∂

∂pµ2
+(C41p

µ
1 +C42p

µ
2 +C44p

µ
4)

∂

∂pµ4
,

(2.103)

with conditions

∂

∂t
p2

1,2,4 = 0,
∂

∂t
(p1 · p2) = 0,

∂

∂t
(p1 · p4) =

1

2
and

∂

∂t
(p2 · p4) = −1

2
. (2.104)
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One simple construction is that

∂

∂t
=

(
1

2t
pµ1 +

1

2(s+ t)
pµ2 +

s+ 2t

2t(s+ t)
pµ4

)
∂

∂pµ4
, (2.105)

and, similarly, for the ∂
∂s

-operator

∂

∂s
=

(
1

2s
pµ1 +

2s+ t

2s(s+ t)
pµ2 +

1

2(s+ t)
pµ4

)
∂

∂pµ2
. (2.106)

Another one is given in [109]. By acting on the master integrals with ∂sij given by (2.101),

we act on propagators with {∂pk}. This causes a power increase in the propagators and also

new numerator factors coming from the Cij.

As a result, we see that the differentiated master integrals are still in the original integral

family – i.e., for each k, we have differential equation of the form

∂

∂sij
Mk({pn}; ε) =

χ∑
`=1

Ak`sijM`({pn}; ε), (2.107)

where each coefficient Ak`sij is a Q-function (analogous to the IBP coefficients) of {pi} and ε.

In a vector notation, this equation will become our principal computational tool

∂

∂sij
M({pn}; ε) = Asij({pn}; ε)M({pn}; ε). (2.108)

It can be easily shown that (2.108) satisfies an integrability condition. That is, we must have

∂sijAsk` − ∂sk`Asij − [Asij ,Ask` ] = 0, (2.109)

for a solution to exist. Moreover, as [Asij ] = 1
2
[E] and [Mk] = (D+ 2(N −P ))[E], where [E]

is an energy unit, dimensional analysis provides an Euler’s relation∑
sij

sijAsij = diag([M1]/2, ..., [Mχ]/2). (2.110)

In practice, equations (2.109) and (2.110) provide two very useful ways for checking the

correctness of the differential equations. That said, it is often convenient to make a change

of integral basis, say M′ = UM for some matrix U. The differential equation transforms as

follows

∂

∂sij
M′({pn}; ε) = Bsij({pn}; ε)M′({pn}; ε), (2.111)

where

Bsij = UAsijU
−1 + ∂sijUU−1. (2.112)
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One may recognize this as gauge transformation, explaining why we call A a connection.

Accordingly, given an initial condition, (2.108) is nothing but a transport equation. We also

notice some practical issues with (2.108). Firstly, Asij({pi}; ε) is usually very complicated,

making physical properties, such as asymptotic behaviors and singularity structure of our

master integrals, not so transparent. Secondly, multivariable cases become quickly compli-

cated, given any big system of coupled partial differential equations is hard to solve. Thirdly,

the integral function space is not apparent.

Mindful of all that, it seems natural to ask: How can we (i) make the differential equations

simpler, and (ii) make the physical and the analytic properties of the integrals visible at the

level of the differential equations? In 2013, Henn partially answered these questions by

observing that this can often be done by looking for a basis of integrals, which identifies to

uniform transcendental (UT) functions [29].

The concept of degree of transcendentality, T , is basically a way of “grading” (classifying)

functions with weights. For our purposes, the weight of a function corresponds to the number

of iterated (contour) integrals it takes to define it. Two prototypical examples we can give

are the logarithmic- and the polylogarithmic-functions

T (log(z)) = 1 and T (Lin(z)) = T
(∫

[0,z]

dt
Lin−1(t)

t

)
= n. (2.113)

Recall that Li1(z) = − log(1 − z). Clearly, T (f1f2) = T (f1) + T (f2) and algebraic factors

are assigned vanishing degree of transcendentality. Numerical constants such as π and ζn are

assigned the value of the corresponding function from which they can be derived. Indeed,

since ζn = Lin(1), we have T (ζn) = n and because ζ2 = π2/2, we also have T (π) = 1.

Similarly, we can see that T (ε) = −1 from zε = 1 + ε log(z) +O(ε2).

Ultimately, we are interested in functions with UT, which are defined as functions that can

be written as a sum of terms having all the same degree of transcendentality. Furthermore,

if some function f satisfies

T
(

d

dz
f(z)

)
= T (f(z))− 1, (2.114)
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then f is referred to as a pure function. With this definition, we can see that if we were to

multiply a pure function with an algebraic function of z the resulting function would still

be of uniform transcendentality but not a pure function anymore, since the derivative would

also hit the algebraic function. However, a fact that will turn out to be useful is that, given

T (f(k)(z)) = k, Laurent expansions of the form

f(z) =
∑
k

εkf(k)(z), (2.115)

are UT pure vector-valued functions. A strong conjecture that will be exploited in this thesis

is that functions with unit leading singularities correspond to integrals that are UT pure

functions [29]. In some sense, that’s something we already explored while studying the d log

decomposition for the massless box. Indeed, we saw from (2.98) that T (G1,box(1, 1, 1, 1)) = 4,

provided the leading singularity was 1/st.

Back to our master integrals, it means that we are looking for a change of basis, guided

by leading singularities, that allows decomposition of the form

Mi({pi}; ε) = ε−m
∑
j∈Z≥0

εjM
(j)
i ({pi}; ε), (2.116)

where M
(j)
i ({pi}; ε) is a pure function of weight j. Note that the IR-behavior of Feynman

integrals with massless corners fixes m = 2L [33, Ch. 6]. We are now ready to state and

prove an important theorem.

Theorem 2.3.1. (Canonical Form) Let M = {Mi}χi=1 be a UT basis of MIs. Then, the

ε-dependence for Asij is linear

∂

∂sij
M({pm}; ε) = εAsij({pm})M({pn}; ε). (2.117)

Proof. The proof is a little computation. It goes as follows

∂

∂sij
M({pm}; ε) =

n−1∑
i=1

(
n−1∑
j=1

Cijp
µ
j

)
∂

∂pµi
M({pm}; ε), from (2.101)

= ε−2L
∑
k∈Z≥0

εk

(
n−1∑
i=1

(
n−1∑
j=1

Cijp
µ
j

)
∂

∂pµi
M(k)({pm}; ε)

)
, from (2.116)
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= ε−2L
∑
k∈Z≥1

εk
n−1∑
i=1

(
n−1∑
j=1

Cijp
µ
j

)
∆µi︸ ︷︷ ︸

Ωsij ({pm})

M(k−1)({pm}; ε),

= εΩsij({pm})

ε−2L
∑

k′∈Z≥0

εk
′
M(k′)({pm}; ε)

 , (k → k′ + 1)

= εΩsij({pm})M({pm}; ε), from (2.116),

where the third equality follows from purity – i.e., the coefficients are invisible for ∂pi . Above,

∆µi is labeling a set of D× (N − 1) binary matrices. The matrix Ω is the “new” connection,

independent of ε. We will rename it A in what follows.

As a direct corollary, the integrability condition (2.109) becomes, to leading order,

∂sk`Asij = ∂sijAsk` and [Asij ,Ask` ] = 0. (2.118)

The first condition implies that all the connections Asij are related to the same connection Ω

via Asij = ∂sijΩ. Consequently, there exists, locally, an exact single valued 1-form A = dΩ.

This is a useful fact since it permits to cast (2.117) into a differential form

dM({pn}; ε) = εdΩM({pn}; ε). (2.119)

In [110], for example, an algorithm to find one transformation matrix B casting the dif-

ferential equation into its canonical form is discussed. Differential forms are suitable for

parameterizations. In what follows, we denote by Kn the space of the kinematics invari-

ants sij for an n-particle process. For example, parametrizing a path γ : [0, 1] → Kn with

0 ≤ t ≤ 1, we have

d

dt
M(t; ε) = ε

dΩ

dt
M(t; ε). (2.120)

Now, supposing the boundary condition t = 0, M(0; ε) is known (we will get back to that

later) to certain orders

M(0; ε) = ε−2L
∑
j∈Z≥0

εjM(j)(0). (2.121)
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Then, the canonical DE is solved immediately by Picard’s method (or Magnus’ theorem [111])

as a path ordered exponential

M(t; ε) = P exp

(
ε

∫
[0,t]

ω(t′)dt′
)
M(0; ε), (2.122)

where ω(t) = dΩ
dt

. The iterative solution is therefore given by

M(k)(t; ε) =
k∑
`=0

∫
[0,t]

dt1ω(t1)...

∫
[0,t`−1]

dt`ω(t`)︸ ︷︷ ︸
` integrations

M(n−`)(0; ε), (2.123)

at the kth-step. This kind of integral is homotopy invariant [112,113]. This means the choice

of γ : [a, b]→ Kn is unimportant as long as the endpoints in Kn are fixed, given no poles of

branch cuts are crossed [114].

We note that if we manage to cast the master integrands into d log-forms, the connection

becomes rather simple

dΩ =
∑
k

Ckd log(Wk), (2.124)

where Ck are constant matrices and Wk are functions of kinematic variables. We emphasize

that the canonical form of the differential equation is obtained automatically when using

a d log integrand basis. The Wk-letters thrive in making explicit the singularity and the

analytic structure of the master integrals. It also is computationally appealing to work with

(2.124) because the function space it is associated to is fairly simple. At the kth iteration,

we would encounter k-fold iterative integrals of the form

G(a1, a2, ..., ak; z) :=

∫
[0,z]

G(a2, ..., ak; t)
dt

t− a1

, with G(z) := 1, (2.125)

for any z ∈ C and where the ai ∈ C are determined from the Wi-letters. They are

known as Goncharov’s polylogarithms (or multiple polylogarithms) [20, 30, 113]. When

a1≤i≤k ∈ {±1, 0}, they degenerate into a pretty handy subset known as harmonic poly-

logarithms (HPL). Feynman integrals evaluating to multiple polylogarithms – i.e., whose

connection can be transformed into the form (2.124) – are, roughly speaking, the easiest

ones we can obtain. The next-to-easiest Feynman integrals being elliptic Feynman integrals.

Such integrals appear, for example, in the massive sunrise diagram. The detailed example is
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given in [112, 115]. The next-to-next-to-easiest Feynman integrals are Calabi-Yau Feynman

integrals [28,116]. N- and NN-easiest Feynman integrals won’t be discussed here.

2.3.2 Determining a Boundary Constant from Physical Consistency

Once a canonical basis is known, the remaining step before integration is to determine

a boundary condition [109, 117]. We determine the required boundary conditions from a

physical requirement on how the solutions behave near singular points. The matrices Ck

in (2.124) have integer (positive and/or negative) eigenvalues. We demand that the vector

of the solutions evaluated at a singular point of the differential equations is in the kernel

of the space spanned by the eigenvectors corresponding to strictly positive eigenvalues of

the associated Ck-matrix. We can illustrate the justification of this constraint as follows.

Because

dΩ
Wi→0−−−→ Cid log(Wi) +O(Wi), (2.126)

the solution of our differential equations to all orders in the dimensional regulator close to

the point Wi = 0 behaves like

lim
Wi→0

M = W ε·Ci
i ·MWi=0, (2.127)

where MWi=0 is a vector of boundary constants. We can use the spectral decomposition of

the c’s and see that

W ε·Ci
i = exp(ε log(Wi)P ·Cdiag

i ·P−1) = P · exp(ε log(Wi)C
diag
i ) ·P−1, (2.128)

where Cdiag
i is the diagonal matrix with entries being eigenvalues of Ci. The UV divergences

appear in the limit ε → 0+. Therefore, our solution (2.127) to the differential equations

would exhibit logarithmic UV-divergences for positive ci-eigenvalues at Wi = 0 for a generic

boundary condition. To cure this aporia, we can tune the boundary vector MWi=0 such

that no such divergences are present in our solution, normalizing it with right factors. Of

course, the same has to be true for the other singular points of our systems of differential

equations. In particular, ∆ = 0 defines the hypersurfaces where these divergences need to
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be cancelled [118, 119]. To close this chapter, we shall work out an explicit example of how

we can use the differential equation program to evaluate master integrals.

2.3.3 Example: Differential Equations for the Massless Box

We found earlier that the basis decomposition for G1,box(a0, a1, a2, a3) was given the

physical box G1,box(1, 1, 1, 1), the t-channel bubble G1,box(0, 1, 0, 1) and the s-channel bubble

G1,box(1, 0, 1, 0). We can naively hit these basis elements with (2.106) and find

∂sG1,box(1, 1, 1, 1) =
tG1,box(0, 1, 2, 1)

2s(s+ t)
+
G1,box(1, 0, 2, 1)

2(s+ t)
− tG1,box(1, 1, 1, 1)

2s(s+ t)

− G1,box(1, 1, 1, 1)

s+ t
+
G1,box(1, 1, 2, 0)

2(s+ t)
− tG1,box(1, 1, 2, 1)

2(s+ t)
,

∂sG1,box(1, 0, 1, 0) =
tG1,box(0, 0, 2, 0)

2s(s+ t)
+
G1,box(1,−1, 2, 0)

2(s+ t)
− tG1,box(1, 0, 1, 0)

2s(s+ t)
(2.129)

G1,box(1, 0, 1, 0)

s+ t
+
G1,box(1, 0, 2,−1)

2(s+ t)
− tG1,box(1, 0, 2, 0)

2(s+ t)
,

∂sG1,box(0, 1, 0, 1) = 0.

This computation can be done in arbitrary dimension with, for example, the help of FeynCalc

[120]. A similar computation is done with (2.105). Next, we use the box IBPs given in (A.5)

and find, after setting d→ 4− 2ε and expanding to leading order in ε,

∂sG1,box(1, 1, 1, 1) =
2(2ε− 1)(sG1,box(0, 1, 0, 1)− tG1,box(1, 0, 1, 0))− stG1,box(1, 1, 1, 1)(s+ tε+ t)

s2t(s+ t)
,

∂sG1,box(1, 0, 1, 0) = −εG1,box(1, 0, 1, 0)

s
, (2.130)

∂sG1,box(1, 0, 1, 0) = 0.

Our first differential equation is therefore

∂s


G1,box(1, 0, 1, 0)

G1,box(1, 0, 1, 0)

G1,box(1, 1, 1, 1)

 =


0 0 0

0 −ε/s 0

−2(1−2ε)
st(s+t)

2(1−2ε)
s2(s+t)

− s+t+εt
s(s+t)

.


︸ ︷︷ ︸

As


G1,box(1, 0, 1, 0)

G1,box(1, 0, 1, 0)

G1,box(1, 1, 1, 1)

 . (2.131)
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Reproducing the same steps for ∂t, we find

∂t


G1,box(1, 0, 1, 0)

G1,box(1, 0, 1, 0)

G1,box(1, 1, 1, 1)

 =


−ε/t 0 0

0 0 0

2(1−2ε)
t2(s+t)

−2(1−2ε)
st(s+t)

− s+εs+t
t(s+t)


︸ ︷︷ ︸

At


G1,box(1, 0, 1, 0)

G1,box(1, 0, 1, 0)

G1,box(1, 1, 1, 1)

 . (2.132)

Note that the Euler’s condition (2.110) is verified. However, it is easy to verify that [As,At] 6=

0 and the basis we got naively from Laporta’s algorithm is not canonical. Furthermore, only

2 out of 3 eigenvalues of these matrices are linear in ε. This means that Q-transforming the

basis is not enough to get a canonical form [109]. We need to find a new one. As discussed

earlier, we do so by choosing integrals with constant (unit) leading singularity. In the exact

same fashion, we computed the leading singularity of G1,box(1, 1, 1, 1), we can compute those

for G1,box(1, 0, 2, 0) and G1,box(0, 1, 0, 2). They are respectively given by s and t. We therefore

propose the following basis [109]
M1 = ε2(eεγE(−s)ε)stG1,box(1, 1, 1, 1),

M2 = ε(eεγE(−s)ε)sG1,box(1, 0, 2, 0),

M3 = ε(eεγE(−s)ε)tG1,box(0, 1, 0, 2).

(2.133)

The different powers of ε are dictated by the number of ε we need to cancel either the soft

and collinear divergences due to the presence of massless corners (for the box) or the UV-

divergences (for the two bubbles) [33]. The extra factor eεγE(−s)ε conveniently normalizes

dimensionality within dimensional regularization. In particular, the factor (−s)ε is set to

make all these integrals dimensionless.

Note that (2.133) is dilatation invariant – i.e., they each depend only on the ratio x = t/s.

This means the only active variable is x, so

d


M1

M2

M3

 = ∂x


M1

M2

M3

 dx = − s
x
∂s


M1

M2

M3

 ds = ε


−dx
x(1+x)

2dx
1+x

−2dx
x(1+x)

0 0 0

0 0 −dx
x



M1

M2

M3

 . (2.134)

This basis looks promising for many reasons: (i) the eigenvalues are linear in ε, (ii) the

coefficients of the connection are rational in {x, 1+x}, which implies that the function space is
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characterized by harmonic polylogarithms, and (iii) the good singularity structure is already

visible in the connection – i.e., x → 0 ⇔ t → 0, x → ∞ ⇔ s → 0 and x → −1 ⇔ u → 0.

Because the planar box topology is not complicated, we can determine fully two elements

of the basis without using the differential equation approach (see Appendix B). We can use

this information about the subtopologies, (2.134) as well as the planar constraint, u 6= 0, to

evaluate the physical box G(1, 1, 1, 1). The first thing we need is an initial condition. Take

it to be at x→ 1 since the point is regular with

ε2


M1(1)

M2(1)

M3(1)

 =


C0

−1

−1

+ ε


C1

0

0

+ ε2


C2

π2/12

π2/12

+ ε3


C3

7ζ3/3

7ζ3/3

+ ε4


C4

47π4/1440

47π4/1440

+O(ε5),

(2.135)

where C0≤i≤4 are to be determined. This can be done by plugging

M(x) =
1

ε2

∑
k∈Z≥0

εkM(k)(x), (2.136)

into the DE and solve for the C’s by imposing u 6= 0 at each order in ε. At weight 0, this is

trivial 
M

(0)
1 (t)

M
(0)
2 (t)

M
(0)
3 (t)

 =


C0

−1

−1

 . (2.137)

At weight 1, we need to evaluate one integral
M

(1)
1 (t)

M
(1)
2 (t)

M
(1)
3 (t)

 =


C1

0

0

+

∫ t

1


−dx
x(1+x)

2dx
1+x

−2dx
x(1+x)

0 0 0

0 0 −dx
x

 ·

C0

−1

−1



=


C1 + log(t)(2− C0) + (log(1 + t)− log(2))(C0 − 4)

0

log(t)

 (2.138)
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x→−1 finite ⇒ C0=4−−−−−−−−−−−−→


C1 − 2 log(t)

0

log(t)

 .

At weight 2,
M

(2)
1 (t)

M
(2)
2 (t)

M
(2)
3 (t)

 =


C2

π2/12

π2/12

+

∫ t

1


−dx
x(1+x)

2dx
1+x

−2dx
x(1+x)

0 0 0

0 0 −dx
x

 ·

C1 − 2 log(t)

0

log(t)



=


C2 − C1(log(t) + log(1 + t))

π2/12

π2/12− log2(t)/2



x→−1 finite ⇒ C1=0−−−−−−−−−−−−→


C2

π2/12

π2/12− log2(t)/2

 .

(2.139)

At weight 3, polylogarithms and ζ-values start appearing
M

(3)
1 (t)

M
(3)
2 (t)

M
(3)
3 (t)

 =


C3

7ζ3/3

7ζ3/3

+

∫ t

1


−dx
x(1+x)

2dx
1+x

−2dx
x(1+x)

0 0 0

0 0 −dx
x

 ·


C2

π2/12

π2/12− log2(t)/2


=

 C3 − (C2 − π2

6
) log(t) + 1

3
log3(t) + C2(log(1 + t)− log(2)) + π2

3
(log(1 + t)− log(2))

+
3ζ3
2
− log2(t) log(1 + t)− 2 log(t)Li2(−t) + 2Li3(−t)

π2/12

π2/12− log2(t)/2

 (2.140)

x→−1 finite ⇒ C2=− 4π2

3−−−−−−−−−−−−−−−→

 C3 + 1
3

log3(t)− log2(t) log(1 + t)− 2 log(t)Li2(−t)

+ 7π2

6
log(t) + π2 log(2/(1 + t)) + 2Li3(−t) +

3ζ3
2

7ζ3/3

1
12

(2 log3(t)− π2 log(t) + 28ζ3)

 .

For k > 3, the Goncharov’s polylogarithms are evaluated analytically using GiNac [121] and

PolyLogTools [31], provided we have an ansatz for the transcendental numbers appearing.

At k = 4, we find C3 = 77ζ3/6, in accordance with [109]. Below, we write the solution for
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our UT basis of MIs, in terms of “classical” functions/numbers up to weight 3

ε2


M1(t)

M2(t)

M3(t)

 =


4

−1

−1

+ ε


−2 log(t)

0

log(t)

+ ε2


−4π2

3

π2/12

π2/12− log2(t)/2



+ ε3



34ζ3
3

+ 1
3

log3(t)− log2(t) log(1 + t)− 2 log(t)Li2(−t)

+7π2

6
log(t) + π2 log(2/(1 + t)) + 2Li3(−t)

7ζ3/3

1
12

(2 log3(t)− π2 log(t) + 28ζ3)


+O(ε4).

(2.141)

We see from the last expression that as ε → 0, it is enough to truncate O(ε3) and higher

contributions on the RHS.

Conversely, given we know both the explicit connection and the boundary constants M(0),

we implemented a code in Mathematica that evaluates M(t) for any values of t. This is,

in essence, the code we will use to compute the DE constants in Chapter 4.
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Chapter 3

Scattering Of 5-Gluon at 2-Loop

As advertised in the introduction, owing to the performance of the LHC, we have

accessed an era of precision high-energy physics. Some of the most recently studied processes

in particle colliders were 3-light-particles- and jet-production [122–124]. These can both be

used, for instance, to test the strong interaction predictions at high-energies and to determine

αs. From the theoretical viewpoint, predictions with compatible precision are needed, which

minimally requires perturbative QCD calculations up to the NNLO. In this chapter, we

present an overview of the significant advances that have been made in the past few years

toward the resolution of NNLO five asymptotically light partons amplitudes.

3.1 Setup and Preliminaries

3.1.1 The Kinematic Space of 2→ 3 Scatterings

The main objective of this thesis is the evaluation of the master integrals contributing

to NNLO five massless partons scattering amplitudes by “moving” between overlapping

kinematic sectors. Before we delve into this problem, we first briefly discuss the kinematics of

these processes and introduce some quantities that will be relevant in the following sections.

We follow the conventions initially introduced in [125]. The associated momenta are all

subject to on-shellness, p2
1≤i≤5 = 0, and we put the kinematic on crossing-symmetric grounds
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Figure 3.1: A 5-gluon process.

by assuming they are all incoming such that momentum conservation reads
∑5

i=1 p
µ
i = 0.

The physical scattering region of 2 → 3 processes (see 3.1) is described by 5 independent

Maldelstam variables sij = (pi + pj)
2, which we choose to be cyclically ordered

X = {s12, s23, s34, s45, s15} with sij, sij ≥ 0 and sij ≤ 0. (3.1)

These variables are not sufficient to characterize the kinematics of the scattering process

[126]. Indeed, there is an additional parity label, generalizing the one discussed in Section

2.1.5, which can be captured by the parity-odd Levi-Civita contraction

tr5 := 4iεαβγδp
α
1p

β
2p

γ
3p

δ
4 = tr(γ5/p4/p5/p1/p2

). (3.2)

This is necessary to have if we assume spacetime parity, as sij
p7−→ sij, but tr5

p7−→ −tr5. As

they indicate possible linear dependencies, is also useful to introduce Gram determinants

when discussing kinematics of scattering processes. For (n + 1)-legged processes, they are

generically given by the determinants, ∆(p1, ..., pn), of the Gram matrix δ(p1, ..., pn) defined

as

δ(p1, ..., pn) = [2pi · pj]|1≤i,j≤n. (3.3)

Another useful and easily verifiable property ∆(p1, ..., pn) satisfies is invariance under shifts

of any of the pi by any of the other momenta. It is also parity-even by construction. We can

expand both (3.2) and (3.3) (for n = 5) in terms of spinor-helicity variables and notice [126]

∆(p1, ..., p4) = [12]〈23〉[34]〈41〉 − 〈12〉[23]〈34〉[41] = (tr5)2. (3.4)

In other words, tr5 is always the square root of a polynomial in the Mandelstam variables

in X. Note, also, that for p1≤i≤5 ∈ R1,3, ∆(p1, ..., p4) ≤ 0. To see this, we can write

∆(p1, ..., p4) = 2 det(V >(p1, ..., p4)ηV (p1, ..., p4)) = − det2(V ), where V (p1, ..., p4) is a 4 × 4
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matrix whose columns are the vectors pµi . This is a particular condition the kinematics of

processes with n = d− 1 satisfy.

We close this section with a brief comment on the analytic structure of the master

integrals that will be present. They evaluate to functions of the Mandelstam variables

sij with a complicated branch cut structure. More precisely, the integrals we compute have

branch cuts starting at zeroes of sij ∈ X. This makes the possibility of crossing the real axis

really hard to see in practice. Nevertheless, we think taking appropriate scaling limits can

make these branch cuts a lot easier to locate and avoid as we move in the kinematic space.

Below, methods to control the approach to such limits will be discussed. We will also refer

as “physical region” any region for which there is a physical configuration of momenta with

timelike (positive) and spacelike (negative) Mandelstam variables. For example, Euclidean

regions where sij > 0, ∀ i, j would not be considered physical, given this corresponds to a

process with no initial (or final) states to scatter.

3.1.2 Massless 5-particle 2-loop Topologies and their IBPs

To obtain the reduction of Feynman integrals for 2-loop 5-gluon scattering am-

plitudes, we only need to consider integrals that originate from the four topologies shown in

Fig. 3.2 [127, 128]. All the other Feynman integrals are 1-loop-like, and can be dealt with

much easier. To explain what kind of Feynman integrals we need to reduce, we will focus on

the DP-topology, which turns out to be the most complicated one. With two loop momenta

`1 and `2, as labeled in Fig. 3.2, a complete1 set of propagators can be chosen as

D1 = `2
1, D2 = (`1 + p2)2, D3 = (`1 + p1 + p2)2, D4 = `2

2, D5 = (`2 + p4)2,

D6 = (`1 + `2 + p1 + p2 + p4)2, D7 = (`1 + `2 − p3)2, D8 = (`1 + `2)2, (3.5)

D
(ISP)
9 = (`2 + p2)2, D

(ISP)
10 = (`2 + p1)2, D

(ISP)
11 = (`2 + p3)2.

1Note that for L = 2 and E = 4, the number of irreducible scalar products (ISP) is N = 3.
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Figure 3.2: All the 8-propagator families.

where the first eight are inverse propagators and the last three are irreducible scalar products

(ISP). Then, the family of integrals defined by the DP-topology are expressed as

GDP(a1, ..., a9) =

∫
dd`1dd`2

(iπ)d
D−a9

9 D−a10
10 D−a11

11

Da1
1 ...D

a8
8

, (3.6)

where the indexes a1, ..., a8 ∈ Z and a9, a10, a11 ∈ N0. It turns out that all the master

integrals for the massless 2-loop 5-particle topologies in 3.2 are known [129]. For the DP-

topology, there are 108 master integrals [130,131], for the HB-topology, there are 73 master

integrals [132–134], for the PB-topology, there are 61 master integrals [127,135] and, finally,

for the HT-topology, there are only 28 master integrals [128]. However, the raw computer

output is not necessarily a basis of canonical integrals. So, to ultimately evaluate these

integrals using the differential equations approach, we need to perform a change of basis. The

choice of transition matrix is strongly guided by the knowledge of the leading singularities.

At L = 2, they suggest the canonical basis of master integrals evaluates to a special kind of

iterated integrals, known as the pentagon functions [125]. This was confirmed in [130, 131].

The upshot is that the only necessary inputs are the ingredients – the alphabet {Wi} –

needed to generate these pentagon functions.
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−1 0 ∞

x := t/s

Figure 3.3: Massless 4-point process singularity structure.

Figure 3.4: 2-loop massless 5-point (pentagon) alphabet.

3.1.3 Function Space and the Pentagon Alphabet

In this section, we will follow [125], where the authors bootstrapped the form the pentagon

alphabet. They use, essentially, two guiding lines to do so. Firstly, since, by definition,

the master integrals know about the kinematics, Wi = Wi(s). Secondly, by locality, the

branch points of the master integrals must correspond to physical and spurious singularities.

Consequently, the zero loci of letters encode, by construction, all possible singularities of the

amplitudes. We enforce that the form of this alphabet is not unique [136, §5.1].

A prototypical example is to consider a 4-point massless process, where the singularities

from Landau equations read as s = 0, t = 0, u = −s − t = 0, see Fig. 3.3. The differential

equations are generated by a single letter x = t/s. The alphabet for massless 5-point

processes at 2-loop is listed in Fig. 3.4. We first observe from the third column that the
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letters W1≤i≤25 contains information about all the physical, soft and collinear divergences

of the scattering amplitudes. Furthermore, since
√

∆ ∈ iR in physical regions, the letters

W26≤i≤30 are pure phases and, in fact, they can be written as product ratios of four alternating

angle- and square-brakets. For example,

W30 =
〈34〉[45]〈51〉[13]

[34]〈45〉[51]〈13〉
. (3.7)

The remaining W26≤i≤30 are obtained by cyclic permutations of {1, 2, 3, 4, 5} of spinor entries

in (3.7). More generally, this form is particularly convenient to see how they transform

under the S5-action. Intuitively, the phases are needed because they ensure the alphabet

reproduces the singularities on all sheets, recalling that Feynman integrals are usually multi-

valued objects. Finally, the inclusion W31 is justified by the need of a parity label. It also

measures, in some sense, the distance with the physical point where ∆ is evaluated and the

boundary of the physical region.

Some additional comments can be made on the pentagon alphabet: (i) we note it splits

into Z/5Z-orbits, (ii) it is closed under the symmetric group S5 action (see [125, Ap. A]),

reflecting non-planarity, and (iii) it splits into parity odd and even parts – i.e.,

∆ ≤ 0⇒ (
√

∆)? = −
√

∆⇒ W ?
i = W−1

i ⇒ log(W ?
i ) = − log(Wi), for 26 ≤ i ≤ 30. (3.8)

Further properties of this alphabet are discussed in [137]. The pentagon functions, G(X), we

get out of the differential equation can be nicely written as Q-linear combinations of iterated

integrals, defined over the pentagon alphabet

S[G(X)] = αI · [Wi1⊗ ...⊗Win−1⊗Win ](X) = αI

∫
γ

d log(Win(ξ))[Wi1⊗ ...⊗Win−1 ](ξ), (3.9)

where αI ∈ C, with I = {i1, ..., in−1, in}, and γ is an integration contour connecting X0 to X.

Summation over repeated indices is assumed. The first tail of tensor products in (3.9) defines

a weight n element of the symbol representation, S[G(X)], of the function G(X) [138]. The

symbol itself does not contain the information of the integration contour or of the values that

the iterated integral has to take at the boundary points. These integration constants have to

be provided once the symbol is known and it then becomes, in principle, possible to express

the function itself in terms of explicit functions such as (Goncharov) polylogarithms. The
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main advantage of working with symbols is their ability to capture the main combinatorial

and analytic properties of iterated integrals, while being significantly easier to deal with.

In particular, if the function G(X) is defined via a differential equation, its symbol is, in a

sense, the general solution to the differential equation – i.e., the solution up to integration

constants. However, in this thesis, these constants are exactly what we are looking for, so

we will need to go beyond the symbolic representations of the MI’s.

Given a symbol, we can always lift to functions, we just need to specify a boundary point.

For example, if we choose the boundary point be sii+1 = −1 ∀ i and let Z := s34

s12
. Then,

W3

W1

⊗ W13

W1

=
s34

s12

⊗
(

1− s34

s12

)
= Z ⊗ (1− Z)

=

∫ Z

1

dlog(1− Z ′)
∫ Z′

1

d log(Z ′′)

= −Li2(1− Z).

Figure 3.5: Color plot of −Li2(1− Z).

We note that the first entry2 of the symbol contains the information about its branch cuts

(see Fig. 3.5). Further constraints, on the arguments that may appear as symbol arguments

are given in [139] – e.g., the first and second entry conditions – but will not be discussed

here.

3.2 Kinematic Sectors

This section is dedicated to the description of two important kinematic limits, the

multi-Regge kinematics (MRK) and the collinear kinematics.

2It is the one associated with the last integral to perform in the iteration.
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Figure 3.6: Visualization of the 5-point multi-Regge kinematics. Each particle has its own

light-cone frame.

3.2.1 The Multi-Regge Kinematics

The multi–Regge kinematics is defined as a scattering process where the final state

particles are strongly ordered in rapidity, tanh(R) = p
‖
i /p

0
i , and have comparable transverse

momenta. A general treatment of such kinematics for 2 → 2 + (n − 4) processes is given

in [140]. We will focus on how it works for n = 5. We work in the s12-channel and assume,

without loss of generality, that we are in a reference frame where the momenta of the incoming

state gluons p1 and p2 lie on the z-axis before colliding, implying p+
1 = p−2 = p⊥1 = p⊥2 = 0.

Usually, it is useful to associate a physical limit with a symmetry of the physical process.

Here, the multi-Regge limit grants that our physical setting is invariant under SO(1, 3)-

boosts along the z-direction. Similar ideas can be applied for collinear limits – e.g., see [141].

Using light cones coordinates pj = (p+
j , p

−
j , p

⊥
j ), where p±j := p0

j ± p3
j and p⊥j := p1

j + ip2
j , we

have

|p+
3 | � |p+

4 | � |p+
5 |, |p−3 | � |p−4 | � |p−5 |, and |p⊥3 | ∼ |p⊥4 | ∼ |p⊥5 |. (3.10)

To quantify these orderings, we use an infinitesimal positive parameter ε, which regulates

the size of the light–cone components as

|p−1 | ∼ |p+
2 | ∼ |p+

3 | ∼ |p−5 | ∼ O(ε−1), (3.11)

|p−4 | ∼ |p+
4 | ∼ |p⊥3 | ∼ |p⊥4 | ∼ |p⊥5 | ∼ O(1), (3.12)

|p−3 | ∼ |p+
5 | ∼ O(ε), (3.13)
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Figure 3.7: Collider geometry for 5-point processes at high energies.

For us, this is conveniently pictured in Fig. 3.6, even though the physical geometry of the

collision much more looks like Fig. 3.7.

Formally, this is done by setting

pµj =
(
p+
j ε

j+ 1
2

(−n−3) p−j ε
n+3

2
−j

√
|p−j |

√
|p+
j |eiφj

√
|p−j |

√
|p+
j |e−iφj

)>
, 3 ≤ j ≤ n,

(3.14)

and momentum conservation implies

pµ1 =
(

0 −
∑n

j=3 p
−
j ε

n+3
2
−j 0 0

)>
, (3.15)

pµ2 =
(
−
∑n

j=3 p
+
j ε

j+ 1
2

(−n−3) 0 0 0
)>

, (3.16)

n∑
j=3

p⊥i = 0. (3.17)

Above, φj := Arg(p⊥j ). Note that these formulas work for any n > 2. To relate to light-cone

coordinates, we can go in the SL(2,C)-representation, where pµi = σµαα̇pi,αα̇ with pi,αα̇ :=

λi,αλ̃i,α̇. We can easily see the correct spinors read

λ1 =
(

0
√
|p−1 |ε

3−n
4

)
, (3.18)

λ2 =
( √

|p+
2 |ε

3−n
4 0

)
, (3.19)

λj =
( √

|p+
j |ε

j
2
−n

4
− 3

4

√
|p−j |eiφjε−

j
2

+n
4

+ 3
4

)
, 3 ≤ j ≤ n. (3.20)

Under reality of momenta condition, recall that λ?i = λ̃i. At leading order, it is not hard to

verify that the Mandelstam variables are given by

s12 = p−1 p
+
2 ≡ s/ε2, (3.21)
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s23 = −|p⊥3 |2 ≡ t1, (3.22)

s15 = −|p⊥5 |2 ≡ t2, (3.23)

s34 = p+
3 p
−
4 ≡ s1/ε, (3.24)

s45 = p+
4 p
−
5 ≡ s2/ε, (3.25)

where z, z ∈ C are defined such that

zz := − t1s

s1s2

and (1− z)(1− z) := − t2s

s1s2

. (3.26)

Note that when we fix the other parameters and take the second scaling defined by z → ε1z

(and similarly for z) for ε� ε1, gluons 2 and 3 become collinear, which we denote by (2‖3).

Similarly, if z and z are near the identity, gluons 1 and 5 are (almost) collinear. Hence, this

parametrization already embeds certain collinear limits. This is consistently visible from

how the MRK parameters relate to light-cone momenta under the constraints of momentum

conservation and on-shellness. Indeed, given e1,2 = s1,2/s,

s := p−5 · p+
3 , e1 := p−4 /p

−
5 , e2 := p+

4 /p
+
3 ,

z := 1 + exp(−i(φ4 − φ5))

√
p−5
√
p+

5√
p−4
√
p+

4

.
(3.27)

We observe that, for example, as (1‖5), p+
5 → ε21p

+
5 which indeed corresponds to z →

1 +O(ε1). At the leading order in the MRK, the Gram determinants becomes

∆ = ε25

ε→0
∼−−→ s2

1s
2
2(z − z)2

ε4
+O(ε−3). (3.28)

Since ∆ ≤ 0, we deduce, choosing the positive branch of the square root, that (z − z)2 ≤ 0

and so z−z is purely imaginary. Thus, in the physical region, z and z are related by complex

conjugation, explaining the notation. Hence, the multi-Regge physical s12–channel region is

defined by

s ≥ 0, s1 ≥ 0, s2 ≥ 0, and z? = z. (3.29)

In the physical region, the pentagon alphabet reduces nicely to only 12 letters, factoring into

the following decoupled orbits

AMRK = {ε}∪{se1e2}∪{s, e1, e2, e1 +e2, e1−e2}∪{z, z, 1−z, 1−z, z−z, 1−z−z}. (3.30)
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Figure 3.8: Visualization of the 5-point collinear limit.

The functional structure of massless 2-loop five particles amplitudes is therefore extremely

simple in the MRK and this makes the symbols particularly handy. As ∆ is a perfect square,

a choice of branch for ±
√

∆ is needed. By choosing the +-branch, z needs to lie in the upper

half of the complex plane, namely Im(z) > 0. Furthermore, we know from the symbols that

for certain non-planar Feynman integrals contributing to the amplitudes, discontinuities

(and even divergence) appears at
√

∆ = 0. This hypersurface corresponds to z = z, namely

Im(z) = 0. Because of this reason, it is important to be careful and always have Im(z) > 0

and Im(z) < 0 when we move in the kinematic space. The loci of the alphabet will tell us the

singularity structure of the corresponding master integrals. Here, we expect from locality

physical singularities at z = 0, z = 1, e1 = 0, e2 = 0 and s = 0. However, some letters of

the alphabet vanish at z + z = 1, z = z and e1 = e2. These singularities have no physical

meaning and therefore are spurious.

3.2.2 Collinear Kinematics

In this section, we discuss the approach a collinear configuration from a generic initial

physical configuration. We will parametrize the limit where gluons 4 and 5 become collinear,

but this discussion is completely general and could be applied to any other pairs of legs,

timelike or spacelike separated. Let εc be the parameter we sent to zero as we approach

(4‖5) (see Fig. 3.8). To control the collinear behaviour, we trade the two light-like momenta

pµ4,5 for the two light-like vectors P and R. The former defines the “collinear direction”, while

the latter defines an auxiliary vector that can be fine-tuned depending on how we want to

approach the limit. We, furthermore, ask for P
εc→0−−−→ p4 + p5 and use the following spinor
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decomposition

λ4 =
√
ζλP − εc

√
1− ζλR, λ̃4 = λ?4. (3.31)

λ5 =
√

1− ζλP + εc
√
ζλR, λ̃5 = λ?5. (3.32)

Then, the associated momenta are easily seen to be given by

p4 = ζP − εcζ(1− ζ)(λP λ̃R + λRλ̃P )︸ ︷︷ ︸
transverse component

+ε2c(1− ζ)R, (3.33)

p5 = (1− ζ)P + εcζ(1− ζ)(λP λ̃R + λRλ̃P ) + ε2cζR. (3.34)

Notice that in the collinear limit, the transverse momentum components of p4 and p5 are

the same, but with opposite signs. This reflects something we physically expect as εc → 0,

namely |p⊥4 /(p+
4 + p−4 )| → |p⊥5 /(p+

5 + p−5 )|. Moreover, using this parameterization, gluons 4

and 5 are exchanged by sending ζ → 1− ζ.

Using spinor identities (see Section 2.1.5), one can verify that our parameterization have

all the expected properties of a collinear process – i.e.,

p4
εc→0−−−→ ζP, p5

εc→0−−−→ (1− ζ)P, (3.35)

p4 + p5 = P + ε2cR. (3.36)

〈45〉 = εc〈PR〉, [45] = εc[PR], (3.37)

s45 = 2ε2cP ·R, (3.38)

k⊥ · P = k⊥ ·R = 0, (3.39)

(k⊥)2 ≤ 0. (3.40)

In the next section, we will see that there are intermediate parameters suitable to link both

MRK and collinear parameterizations.

3.3 Pure Master Integrals in a MRK-background

To find the solution of the canonical differential equation (2.117) in the MRK, we

consider the ε → 0 boundary condition together with the following system of differential
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equations [126] 
∂εM(y, ε; ε) = εAε(y, ε)M(y, ε; ε),

∂yM(y, ε; ε) = εAy(y, ε)M(y, ε; ε).

(3.41)

Here, y ∈ AMRK − {ε} and ε is the t’ Hooft dimensional regularization parameter. We saw

earlier the canonical differential equation exhibits the singularity structure of the Feynman

integrals (see Section 2.2.4) and, as a consequence of locality, it must only have regular

poles in Mandelstam variables. For 2-loop 5-point processes, this is already visible from the

pentagon alphabet. This condition guarantees that the matrix Ax, where x ∈ {ε, y}, has, at

worst, a pole of order one. Hence, for each singular point of the system, we can find a gauge

transformation U(y, ε; ε) such that the gauge equivalent system of differential equations has

a connection which has leading behavior of O(x−1), as x → 0. This is similar to what we

discussed in Section 2.3.2.

For the ε–differential equation, we use U such that the gauge equivalent form of Aε can

be expanded as

Aε(y, ε)→ A′ε(y, ε) =
A0

ε
+
∑
i≥0

εiAi+1(y), (3.42)

where the residue A0 is a constant Q–matrix, independent of y – i.e., the coefficients of

d log(ε) in (2.124) are rational numbers. We recall that Aε and A′ε are related via (2.112) –

i.e.,

ε
A0

ε
+O(ε0) = U−1(y, ε; ε)(εAε(y, ε)− ∂ε)U(y, ε; ε). (3.43)

On the other hand, the solution to the second differential equation is regular in the MRK

parameter ε, since y 6= ε. To solve (3.43), it is useful to assume U is smooth enough to

represent it formally as a Taylor polynomial in ε

U(y, ε; ε) = 1+
∑
k≥1

εkUk(y; ε). (3.44)

In particular, we choose it such that it becomes the identity as ε→ 0. At LO in ε→ 0, the

gauge equation (3.43) reduces to Aε(y, ε = 0) = A′ε(y, ε = 0) = A0/ε. Plugging (3.42) in
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(3.43), we find a contiguous equation

εAk(y)+εUk(y; ε)A0−εA0Uk(y; ε)−kUk(y; ε)+ε
k−1∑
j=1

Ak−j(y)Uj(y; ε) = 0, ∀ k ≥ 1. (3.45)

Since the right hand side is trivial, this relation tells us that kUk(y; ε) ∼ O(ε) ∀k, indicating

that a second expansion, this time in ε→ 0, would be convenient. We take

Uk(y; ε) =
∑
j≥1

εjUk,j(y). (3.46)

Putting (3.46) in (3.45) and comparing order by order in ε gives us a recursion relation
Uk,1 = 1

k
Ak(y),

Uk,j = 1
k

[
A0Uk,j−1(y)−Uk,j−1A0 +

∑k−1
`=1 Ak−`(y)U`,j−1

]
.

(3.47)

This can be solved order by order simultaneously in both ε and ε. Its solution is a formal

double sum expression for the gauge transformation U [126]

U(y, ε; ε) = 1+
∑
k≥1

∑
j≥1

εkεjUk,j(y). (3.48)

Given a canonical basis of master integrals, Aε is obtained explicitly by plugging the basis

into the first equation of (3.41). Using the result, we plug (3.47) and (3.48) and via (3.43),

A0 can be obtained. Because A0 6= A0(ε), we have[
A0,

∫
A0d log(ε)

]
= 0, (3.49)

and the solution of the ε–differential equation is of the form εεA0c. This gives enough infor-

mation to solve this part of the system in the MRK
∂εM

′(y, ε; ε) = εA0

ε
M′(y, ε; ε) +O(ε0),

∂yM
′(y, ε; ε) = εA′y(y, ε)M

′(y, ε; ε),

(3.50)

where M′ = UM. To solve the system (3.50), we integrate it along the piecewise path

(ε = 0, y = y0)
(I)−→ (ε = 0, y)

(II)−−→ (ε, y), (3.51)

for some y0 lying in the s12–channel. In other words, what we first do is to restore the

y–dependence and then the ε one. Hence, the integration along path (I) is given by

M′(y, ε = 0; ε) = P exp

(
ε

∫
γ(I)

A′y(y
′, ε = 0)dy′

)
M′(y = y0, ε = 0; ε), (3.52)
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and integrating further along path (II), with initial condition given by (3.52), yields

M′(y, ε; ε) = εεA0M′(y, ε = 0; ε) = εεA0P exp

(
ε

∫
γ(II)

A′y(y
′, ε = 0)dy′

)
M′(y = y0, ε = 0; ε),

(3.53)

where M′(y = y0, ε = 0; ε) is the boundary constant of

∂yM
′(y, ε = 0; ε) = εA′y(y, ε = 0)M′(y = y0, ε = 0; ε), (3.54)

and where A′y(y, ε = 0) = Ay(y, ε = 0), from (3.44). We can, finally, go back to the original

basis and get

M(y, ε; ε) = U(y, ε; ε)εεA0P exp

(
ε

∫
γ(y0→y)

Ay(y
′, ε = 0)dy′

)
M(y = y0, ε = 0; ε). (3.55)

Intuitively, we can see the solution as an “initial condition transporter” from y0 → y. The

latter expression contains divergent logarithms of ε, generated by the matrix exponential

εεA0 . The transformation matrix U(y, ε; ε) is responsible for power correction in ε according

to (3.48), as we tried to exemplify in Section 2.3.3 to get to (2.133).

In this thesis, the initial condition was chosen to be in the s12-channel near (2‖3) within

a dominant MRK background. It is derived following the outline of Section 2.3.2. Indeed,

dropping log(s), log(s1) and log(s2) from the connection, the initial condition is fixed by

requiring the answer is finite after we take the MRK limit, followed by the (z, z) → (0, 0)

limits.

3.4 A Numerical Method for Crosschecks

In this section, we describe a method we used to systematically avoid integrating harder

than HPL’s Goncharov polylogarithms [136]. See also [24,142]. For us, it permits crosscheck-

ing numerically our analytic evaluation of the master integrals, based on a method discussed

in the last section.

We start with the differential equation in its canonical form along a univariate path (see

(2.120)). We only consider paths that are straight lines. This is achieved by making the
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letters time depandant by setting

Wi(t) := Wi,initial + t(Wi,final −Wi,initial), (3.56)

for t ∈ [0, 1], where the Wi(0) = Wi,initial’s are assumed to be known and Wi(1) = Wi,final

are the letters evaluated where we wish to transport our initial condition. The only active

parameter is t. Consequently, the relevant connection is simply

Ω̇(t) =
∑
k

Ck
d

dt
log(Wk(t)). (3.57)

The iterative solution is still given in (2.123). In general, the form of the symbol alphabet can

make it a daunting task to compute everything only in terms of HPLs and polylogarithms.

Furthermore, it can also be complicated to accurately handle both spurious and physical

branch points. As we saw in the section on the multi-Regge kinematics, a step that is

seen to help in both of these problems is to rationalize the alphabet by using appropriate

parameterizations. Another trick that helps is to consider locally valid solutions written in

terms of power series

M(i)(t) =
Ne−1∑
k=0

χk(t)M
(i)
k (t), (3.58)

where, again, t ∈ [0, 1], Ne is the number of segments Sk = [tk − rk, tk + rk), with center tk

and radius rk, with which we cover [0, 1] and

χk(t) =


1 t ∈ Sk,

0 otherwise.

(3.59)

The solution M
(i)
k is valid in Sk. Indeed, since such solution can easily be constructed from

series expansions of the integrand in (2.123), the series have finite radii of convergence

and so the solutions are valid only locally. Note, also, that the weigth-i final solution is

given by M(i)(1) = M
(i)
Ne−1(1), while the initial one is given by our initial condition – i.e.,

M(i)(0) = M
(i)
0 (0).

There are two things we now need to understand how to do. Firstly, how to construct local

solutions? Secondly, how to perform the segmentation? To address the former question, we

first note that the matrix Ω̇(t) determines the form of the series expansion of the integrand.
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As our alphabet contains both simple poles and square root branch cuts, the series expansion

around tk takes the form

Ω̇(t)
∣∣∣
t→tk

=
∞∑

j=−2

ωj,k(t− tk)j/2, (3.60)

where ωj,k are constant matrices. The latter expression just means the series solution takes

the form of half-integer power series with logarithmic singularity structure

M
(i)
k (t) = c

(i)
k +

∞∑
j=−2

ωj,k

∫
dt(t− tk)j/2M(i−1)

k (t). (3.61)

At k = 0, the local solution M
(i)
0 (t) matches the known boundary condition at t = 0 –

i.e., M
(i)
0 (0) = M(i)(0). The remaining integration constants are then iteratively determined

exploiting the continuity of the full solution, (3.58), at the boundary of each segment

M
(i)
k (tk − rk) = M

(i)
k−1(tk−1 + rk−1), ∀ k ∈ {1, 2, ..., Ne − 1}, (3.62)

which exists by construction. In this way, the integration constants in each local solution

can be determined from M(i)(0).

To make the solution (3.61) practical, we usually truncate the infinite series. This must,

however, be done with care for the numerical error to remains under our control. Conse-

quently, we choose to work with the constraint that segments should never be larger than

half the radius of convergence of the associated solution. We emphasis that the segmentation

will be the same for all weight-i.

To address the latter question, we choose segments S0
k := [tk − rk, tk + rk) such that

[0, 1] ⊂
Ne−1⋃
k=0

S0
k . (3.63)

The choice of (tk, rk) is primarily dictated by the set of singular points of the differential

equation (2.120), call it S. These are the singularities of the log(Wi)’s. These singularities

can either be real or complex. If x ∈ S is complex, we can avoid complex arithmetic by

considering {Re(s) − Im(s),Re(s),Re(s) + Im(s)} for each such singularities. Given our

constraint of only using series solutions in half of their radius of convergence, it is sufficient

to consider points in tk ∈ S such that tk ∈ (−2, 3).
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Therefore, to each tk, we associate a radius rk, chosen to be half the distance between tk

and the closest point in S̄ = S ∪ {−2} ∪ {3}. If this procedure is not covering [0, 1], we add

segments centered at regular points in the middle of the uncovered intervals lying in (−2, 3)

that overlaps with [0, 1]. For example, the mth such regular point, say between S0
k and S0

k+1

for some k, is given by

t1m,regular =
∂rightS

0
k + ∂leftS

0
k+1

2
. (3.64)

When S0
k+1 = ∅, we replace ∂leftS

0
k+1 by 3. The associated radii are chosen to be

r1
m,regular = min

s∈S̄

{∣∣∣∣t1m,regular − s
2

∣∣∣∣} . (3.65)

If, again, this additional step is not covering [0, 1], the procedure continues algorithmically

until it does. At the nth step, the mth regular center is given by

tnm,regular =
∂rightS

i
k + ∂leftS

j
`

2
, (3.66)

where 0 ≤ i, j ≤ n−1 and (∂rightS
i
k, ∂leftS

j
` ) is any yet uncovered subinterval of [0, 1], defined

from previously generated segments. The corresponding radius is given by

rnm,regular = min
1≤i≤n−1,1≤ki≤Ne(i),s∈S̄

{∣∣tnm,regular − ∂rightS
i
ki

∣∣ , ∣∣tnm,regular − ∂leftS
i
ki

∣∣ , ∣∣∣∣tnm,regular − s
2

∣∣∣∣} ,
(3.67)

where Ne(i) is the number of segments obtained from step i. We note that if S does not

contain any point tk ∈ (−2, 3), there is a single regular expansion point at t0 = 1/2. Finally,

we note that the segmentation procedure we described may have produced segments with

no overlap with [0, 1], which we simply remove.

We finally note that the choice of the constraint on the radius of convergence can be made

either weaker or stronger. The price to pay is, respectively, to slow down the convergence

(which is usually unwanted) or to deal with a bigger number of segments (which slows down

the algorithm).
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Chapter 4

Original Contributions

Computing the scattering amplitudes for massless 5-point 2-loop processes requires

the analytic expressions for the integral topologies presented in Fig. 3.2 in all of the 5!

permutations. This means one has to evaluate at least 5!×(108+73+61+28) = 32400 master

integrals prior computing an amplitude. Using differential equations, there are two obvious

ways to proceed. The first one being to work simultaneously with all the 5! permutations

of each topology and consider a set of differential equations for each of them and solve

them directly in physical region. This was the approach used by Chicherin and Sotnikov

in [143]. The other option is to evaluate the master integrals in one ordering and obtain

the others by permuting legs. Our goal is to explore the latter option and, more explicitly,

to find the integration constants of such permutations using multiple scaling limits, each

corresponding to a path in the kinematic space relating two different limiting kinematic

configurations. An important constraint in the choice of scaling limits is that paths they

describe in the kinematic space are generated only by HPLs. This constraint ensures that

using scaling limits makes the analytic evaluation of the solutions fast and simple. Our

method is, therefore, the suitable one to use to prove analytically the existence of a “web

of computational highways” in the kinematic space relating all evaluated master integrals

contributing, ultimately, to full NNLO 5-parton scattering amplitudes correction at high

energies.
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z

z

1− z − z = 0

z − z = 0

1

1

0

0

Figure 4.1: Blowing up the path connecting (0, 0) and (1, 1) with a small corner around

(1, 0).

4.1 θ-parameterization: A Bridge Between Limits

As mentioned above, the way we will move between different sectors of the kinematic

space using differential equations is by using various scaling limits. Each limit is parametrized

in a certain way and induce, via the connection, branch cuts, or boundaries, in the kinematic

space. When several of such boundaries intersect, it is important to clarify how the singular

boundary is approached. In mathematical language, one can perform a blowup that resolves

singular intersections of boundaries. For example, in the MRK limit, 1− z, z and 1− z − z

intersect at (z, z) = (1, 0); thus one has to specify how exactly this point is approached.

The problem of a potential ambiguity can be avoided by switching to appropriate variables

that resolve the way the singularity is approached. The variable transformations can also be

understood as choosing more sophisticated paths near the origin to connect the boundary

values. An example is illustrated in Fig. 4.1.

That said, the MRK and the collinear parameterizations, as discussed in the previous

sections, by construction describe different kinematic sectors within the s12-channel. At

leading order in both εMRK and εc, we easily see that the regions of validity of neither

parameterization overlap clearly in the kninematic space (see Fig. 4.2). The way out of

this problem is to use an intermediate and more flexible parameterization that will allow the

transport of points in the MRK asymptotic to points in the collinear one (see Fig. 4.3).
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s12-channel

LO MRK

LO (4‖5)

MRK

Figure 4.2: At leading order, the MRK and (4‖5) parameterizations won’t overlap. Without

leading order truncation, the MRK alphabet is not practical for computation and cannot be

used to transport points (black dots) from truncated MRK to truncated collinear regions.

s12-channel

LO MRK

LO (4‖5)

Angle

MRK

Figure 4.3: Connecting asymptotics.

In the case where we want to control the approach of (4‖5) starting from a configuration

in the multi-Regge asymptotic, we propose the following spinor parameterization

λ4 =

√√
2(p−5 + p−4 )ζ(θ4, 1)> and λ5 =

√√
2(p−5 + p−4 )(1− ζ)(θ5, 1)>. (4.1)

where ζ := p−4 /(p
−
5 + p−4 ) is the collinear momentum fraction. It is easy to see that the

corresponding bispinors are

p4 = p−4

θ4θ̃4 θ4

θ̃4 1

 and p5 = p−5

θ5θ̃5 θ5

θ̃5 1

 . (4.2)

In these variables, our 5 independent 2-particle invariants are given by

s12 =
(θ4θ̃4p

−
4 + θ5θ̃5p

−
5 + p+

3 )
(
θ4θ̃4(p−4 )2 + p−4 (θ4θ̃5p

−
5 + θ̃4θ5p

−
5 + p+

3 ) + p−5 (θ5θ̃5p
−
5 + p+

3 )
)

p+
3

,
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s23 = −(θ4p
−
4 + θ5p

−
5 )(θ̃4p

−
4 + θ̃5p

−
5 )(θ4θ̃4p

−
4 + θ5θ̃5p

−
5 + p+

3 )

p+
3

,

s34 =
p−4 (θ4θ̃4p

−
4 + θ̃4θ5p

−
5 + p+

3 )(θ4θ̃4p
−
4 + θ4θ̃5p

−
5 + p+

3 )

p+
3

,

s45 = p−4 p
−
5 (θ4 − θ5)(θ̃4 − θ̃5),

s15 = −
θ5θ̃5p

−
5

(
θ4θ̃4(p−4 )2 + p−4 (θ4θ̃5p

−
5 + θ̃4θ5p

−
5 + p+

3 ) + p−5 (θ5θ̃5p
−
5 + p+

3 )
)

p+
3

.

Note that there are five parameters, but two of them, namely the angles, are complex.

4.2 Moving Between Regions: An Example

Our goal being to find the analytic constants between all the permuted diagrams, we

start with a vector of constants determined for specific kinematic setting and from it, we

recover its permuted version by moving along paths generated by multiple scaling limits of

the letters in the DEs. These limits are our kinematics limits. The only constraints on

the choices of scaling limits is that each paths they describe leads to HPLs. Using such

limits makes the analytic evaluation of the solutions fast. By construction, it also induces a

“network” of “computational highways” between all the integrals (ultimately) contributing

to the whole scattering amplitudes.

In this section, we sketch how to, given an initial configuration, we can permute two

timelike separated gluons for the double pentagon (DP) topology. Without loss of generality,

we will exchange gluons 4 and 5. As mentioned earlier, we take our initial condition near

(2‖3) in dominant MRK background – i.e., εMRK � z � 1. This corresponds to the left

Feynman diagram in Fig. 4.4. Then we consider angle-parameterizations for 4 and 5 spinors

given in (4.1). The idea is to use various scaling limits within a MRK background to approach

the (4‖5) (see the right diagram in Fig. 4.4) limit with HPLs (see the bottom diagram in

Fig. 4.4).

The procedure we are about to describe is schematically represented in Fig. 4.5 and

the endpoints ordering of the first row are summarized in Fig. 4.6. In terms of the spinor
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∼−→ O(ε2)
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Scaling 2

θ4 → θ5 1
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MRK� (4‖5)

f|s23→0,s12·s23→∞

f|s45�s34,s12·s45→∞ f|s45→0,s12·s45→0

K5

Figure 4.4: (4‖5) approach within a MRK background.
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MRK� (5‖4)
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1
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MRK� (5‖4)

1
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4+5

(Sc. 1)
−1

p4 ↔ p5
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(
p−5

)Sc. 3:

dΩ→ dΩ|p4↔p5

MRK4

(Sc. 3)
−1

1
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3

5+4

MRK4|p4↔p5

θ4 → O(ε2) θ4 → θ5

Starting point:

Target point:

Figure 4.5: The schematic web of HPLs to follow in order to permute 4 and 5 analytically.



|p−5 | ∼ |p
+
3 | ∼ O(ε−1

0 ),

|θ4| ∼ |p−4 | ∼ O(1),

|θ5| ∼ O(ε0),

ε0 � 1,

p−4 θ4 → −p
−
5 θ5 (or z → 0).

Sc. 1−−−→



|p−5 | ∼ |p
+
3 | ∼ O(ε−1

0 ),

|p−4 | ∼ O(1),

|θ4| ∼ O(ε2),

|θ5| ∼ O(ε0),

ε0 � ε2 � 1.

Sc. 2−−−→


|p−5 | ∼ |p

+
3 | ∼ O(ε−1

0 ),

|p−4 | ∼ O(1),

θ4 = θ5 +O(ε3),

ε3 � ε0 � 1.

Sc. 3−−−→


|p−4 | ∼ |p

−
5 | ∼ |p

+
3 | ∼ O(ε−1

0 ),

θ4 = θ5 +O(ε3),

ε3 � ε0 � 1.

Figure 4.6: Scale orderings for the first row of Fig. 4.5.
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parameters, we initially have the following orderings
|p−5 | ∼ |p+

3 | ∼ O(ε−1
0 ),

|θ4| ∼ |p−4 | ∼ O(1),

|θ5| ∼ O(ε0),

(4.3)

with p−4 θ4 → −p−5 θ5 (or p⊥4 → −p⊥5 ), as z → ε1, with ε0 � ε1 � 1. We want to approach

(4‖5) from this initial kinematic setting. While fixing p−4 , p
−
5 and θ5, we approach (4‖5) using

the following map

θ4(t1) := −(1− t1)p−5 θ5

p−4
+ ε1θ4, 0 ≤ t1 ≤ 1, (4.4)

where θ4 := θ4(t1 = 0) and where it is understood that ε0 � ε1 � 1. We then do similarly

for θ̃4. These maps yield HPLs only, as the symbols arguments lie in {t1, 1− t1}. At t1 = 1,

where (z, z)→ (ε−1
1 , ε−1

1 ), our orderings become

|p−5 | ∼ |p+
3 | ∼ O(ε−1

0 ),

|p−4 | ∼ O(1),

|θ4| ∼ O(ε1),

|θ5| ∼ O(ε0),

(4.5)

describing a dominant MRK background with a subleading (4‖5) one. Next, to make (4‖5)

dominant, we need to send θ4 → θ5 + ε2, where ε2 � ε0 � ε1 � 1. To do this, we need a

“blow up” that enables ones to put θ4 and θ5 on comparable footing (order)

ω = θ4/θ5. (4.6)

This has to be done in a similar fashion for ω̃ = θ̃4/θ̃5. The resulting LO alphabet letters

reducing to

Aθ4→θ5 = {ε0} ∪ {p−5 , p+
3 , p

−
4 } ∪ {ω, ω̃, 1− ω, 1− ω̃, 1− ω − ω̃, ω − ω̃}. (4.7)

Note the resemblance with the initial MRK alphabet in (3.30). The blowup steps are per-

formed by taking ω and ω̃ from∞ to 1. In practice, for example, this is done by the following
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change of variable

θ4 →
θ5

t2 + Λ
, 0 ≤ t2 ≤ 1, Λ→ 0+. (4.8)

Once we integrated up to t2, t̃2 = 1, orderings are

|p−5 | ∼ |p+
3 | ∼ O(ε−1

0 ),

|p−4 | ∼ O(1),

|θ5| ∼ O(ε0),

θ4 = θ5 +O(ε3),

(4.9)

where it is understood that ε3 � ε0 � 1. The last step, once we are at t2, t̃2 → 1, is to

put p4 and p5 on comparable footing to permute them safely. That is, we want to achieve

the following orderings 
|p−4 | ∼ |p−5 | ∼ |p+

3 | ∼ O(ε−1
0 ),

θ4 = θ5 +O(ε3),

ε3 � ε0 � 1.

(4.10)

Again, this is achieved by blowing up the momenta ratio

R = p−4 /p
−
5 , (4.11)

from 0 to 1. More generically, we checked that when R ∼ O(1), even at LO, permuting the 4

and 5 labels locally in our parameters – i.e., p−4 ↔ p−5 – reproduces the action of σ45 ∈ S5 on

the Wi in any kinematic. This shows our end point is an appropriate one to flip gluon 4 and

5. The remaining steps amounts of performing backward the steps we just described, but

with the 4 and 5 labels changed. At the end of the day, one gets the integration constants

for the diagram corresponding to our initial one, but with gluon 4 and 5 permuted. In

particular, the input and output of the calculation being vectors of length 108, we found

it sufficient to only stress that the constants appearing as master integrals’ vector entries

for both unpermuted and permuted diagram lie in the same set of transcendental numbers,

graded by their weights (from 0 to 4) – i.e.,

{M(DP:12345)
1≤i≤108 ,M

(DP:12354)
1≤i≤108 } ⊂ Q ∪ iπQ ∪ π2Q ∪ {iπ3Q, ζ3Q} ∪ {π4Q, iπζ3Q}. (4.12)
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4.3 Permuting Spacelike Separated Gluons: A Word on

Analytic Continuation

In the last section, we discussed how two timelike separated gluons can be flipped by

tracing out an appropriate path in the kinematic space K5. We still have to discuss how

flipping spacelike separated can happen. By definition, in doing so, some of the multiple

particle invariants will change signs. The first step to achieve this is to add a small imaginary

part to the relevant Mandelstams – i.e.,

sij → sij + i0. (4.13)

Once this is done, they can be analytically continued into the complex plane. The goal is

then to trace out the appropriate paths in the complexified kinematic space that reproduce

correctly these sign changes, while being careful we are not crossing any branch cut along

the way. In our case, we are only dealing with massless particles, which implies that all

branch cuts start at the origins in si,i+1 and si,i+1,i+2 [144].

A minimal requirement indicating we are doing the analytic continuation correctly, is to

enforce phase prescriptions on paths endpoints. These prescriptions are easily fixed for any

multi-particle invariants within the multi-Regge kinematics. To see this, we invoke the dual

(region) variables defined in C, where their underlying geometric interpretation is described.

For a 2→ (N − 2) scattering process, we have, in these variables,

si+1,...,j := (pi+1 + ...+ pj)
2 = y2

ij, (4.14)

where yij = yi − yj and 1 ≤ i, j ≤ N . When the limit where (pi‖pi+1) is approached, we see

that the region variables “collide” – i.e., yi−1 → yi+1. Given the strong rapidity orderings

of the MRK, gluons 1 and N are nearly collinear. Because they are spacelike separated in

the initial leg ordering, the region variables can only collide in the transverse space – i.e.,

y⊥1
∼−→ y⊥N−1. We note that momentum conservation allows one to shift

p⊥i → p⊥i = y⊥i−1 − y⊥i−2, (4.15)
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for 3 ≤ i ≤ N , as
N∑
i=3

p⊥i = −y⊥1 + y⊥N−1, (4.16)

goes to zero to arbitrary precision. The non-trivial dynamics will then take place in the

transverse space with respect to the two high-energy incoming particles described by the

shifted ⊥-region variables (4.15) of the N − 2 produced particles. The space of kinematic

configurations in the two-dimensional transverse space of a scattering of N particles in MRK

is captured by the moduli space M0,N−2 of Riemann spheres with N − 2 marked points –

e.g., see [140].

Let’s now see how the signs of multi-particle invariants relate. Without loss of generality,

we suppose gluons 1 and 2 are incoming with positive energy and the signs of the energies

of the remaining gluons are not fixed. A particular physical region is therefore defined by

specifying sign(p0
i ), for 3 ≤ i ≤ N . This initial information about 2-particle invariants is

telling which pairs of gluons are timelike and spacelike separated. Moreover, recalling

sij = p0
i p

0
j(1− cos(θij)), (4.17)

and so sign(sij) = sign(p0
i )sign(p0

j) for massless particles, we see that each 2-particle invariant

has a unique sign in a given physical region. What about multi-particle invariants? To answer

this question, we first note that, in the MRK, where sij ' p+
i p
−
j for 3 ≤ i < j ≤ N , the

strong ordering in rapidities makes si,i+1 more relevant than si,i+j, for any j > 1 – i.e., all

invariants made of k consecutive final state momenta will be comparable in size

si,i+1,...,i+k ' si,i+k, (4.18)

and much larger than invariants made of (k − 1) consecutive momenta. It therefore follows

that

y2
ij

j−1∏
`=i+2

|p⊥` |2 = si+1,...,j

j−1∏
`=i+2

|p⊥` |2 '
j−1∏
k=i+1

sk,k+1, 2 ≤ i < j ≤ N. (4.19)

Using (4.19) and the fact that |p⊥` |2 > 0, we deduce that the sign of any multi-particle

invariant in the MRK is also fixed by the energy signs of the external momenta

sign(si+1,...,j) = sign(p0
i+1)sign(p0

j). (4.20)
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s?4 → −s?4

Figure 4.7: Putting gluon 4 into the past.

The analytic continuation follows from si+1,...,j → si+1,...,j + i0, or equivalently by making

si+1,...,j multi-valued – i.e., the rule any future/past-mixing kinematic path must reproduce

is the following

si+1,...,j = |si+1,...,j| exp(−iπφij), (4.21)

where

φij :=


1 if si+1,...,j > 0,

0 if si+1,...,j < 0.

(4.22)

Let’s now sketch how we can use the above to define appropriate paths to follow to flip

spacelike separated gluons. Here, we illustrate how to put gluon 4 into the past (see Fig.

??). All the 2-particle invariants containing {4} are linked by a constraint

s14 + s24 + s34 + s45 = 0, (4.23)

reducing the number of independent 4-variables to three. This suggests a good choice for

our five independent variable is s14, s34 and s45 in the background defined by s12 and s23.

Initially, s12, s34, s45 ≥ 0 and s23, s14 ≤ 0. Once gluon 4 is put in the past, s34, s45 and s14

change signs. Our goal is to parameterize a set of paths reproducing these signs changes.

The difficulty is that, since s34, s45 and s14 are related by (4.23), transporting a variable in

the kinematic space will change the positions of the others; if no extra care is given, branch

cuts could be crossed resulting in wrong spurious constants in the final answer. To decouple

some of the 2-invariant, we can use kinematic limits. For example, in an effective 4-soft

dominating MRK background, once both (1||4)- and (4||5)-limits are approached (|s14| ∼

|s45| � |s34| ∼ |s24| � |s23| ∼ O(1) � |s12|) we can check that the only coupled letter in
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Re

Im

δδ − ε

s34

s24
s14

s45

ε− δ

γ1

γ′1

γ′2

γ2

0 < ε� ε� δ := |s45 + s14| � 1
0 < δ ∼ |s14|, |s45| � 1� |s34|, |s24|

γ3

γ′3

−ε
ε

−δ

Figure 4.8: Complex section of K5 along the s14 + s24 + s34 + s45 = 0 hyperplane, in the

limit where s14, s45 → 0 in a controlled manner. We sketch the (minimal) paths needed for

the flipping.

the symbols is s14 + s45 ≤ 0. It is negative due to the strong ordering in rapidities, while its

norm, δ := |s14 + s45|, must be small compared to s12 by the effective softness of gluon 4.

Now, a sketch of the paths to follow for the flipping is given in Fig. 4.8. In the first step,

we integrate s34 and s24 along large radius circles γ1 and γ′1, while keeping s14 and s45 fixed.

In the second step, s34 and s24 are taken, by following γ2 and γ′2, from the upper-half-plane

(UHP) and the lower-half-plane (LHP) to the LHP and the UHP, respectively, while s14 and

s45 are still kept fixed. Finally, we follow γ3 and γ′3 to change the sign of the remaining

small invariants. The target configuration is therefore s12, s14 ≥ 0 and s23, s34, s45 ≤ 0, as

predicted by (4.21).

We close this section by noting that once we know how to flip a pair of spacelike and a

pair of timelike separated adjacent gluons, we can, in principle, find any other permutation

by composition. This reflects the fact that S5 is 2-generated. There are therefore many ways

to crosscheck a result using our approach.
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Chapter 5

Summary and Conclusion

In the first part of this thesis, we gave a pedagogical review of some modern tech-

niques used to study scattering amplitudes in the context of gauge theories. Among those,

we discussed integral reduction, generalized unitarity and differential equation methods. For

each new concept, we tried to illustrate the core ideas with the prototypical massless box

diagram.

In the second part of this thesis, we investigated in more details some features of 5-

point 2-loop amplitudes. Our study focused on their characteristic master integrals (see Fig.

3.2). Before our project started, their phenomenological applications were conceivably still

requiring supplemental efforts. Indeed, to the author’s knowledge, the analytic expressions

that could be found in the literature – e.g., see [145] – were mostly valid only in unphysical

Euclidean regions with all negative 2-particle invariants, whereas the physical scattering

region requires some of them to be positive. In [145], the authors reconstructed the analytic

form of the coefficients of pentagon functions, but not of the master integrals themselves.

The former are, of course, unconcerned with the signs of invariants as they have no physical

meaning. The latter, however, do depend on the region. As this wasn’t a conceptual problem

given the methods used in [145], Chicherin and Sotnikov recently repeated the reconstruction

in all physical regions [143]. For the first time, a complete analytic calculation of the Feynman

integrals required for the computation of massless 5-particle 2-loop scattering amplitudes
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was given. They worked simultaneously with all the 5! permutations of each topology and

consider a set of differential equations for each of them. Then, they directly solved them in

each of the 10 physical regions defined in [137, Tab. 1], sidestepping the difficulty of analytic

continuation.

Although this approach has some obvious advantages, it fails, by construction, to make

clear a piece of information the authors think is worthwhile to dig for: The analytic structure

of 2-loop 5-point amplitudes. The goal of the method presented in this thesis is therefore to

reproduce the results they have already acquired, but with considerable additional insights

on the hidden analyticity structure. Ultimately, it would expose analytically a conjectured

network of paths in the kinematic space relating all the permuted configurations, only with

harmonic polylogarithms (HPL).

To do so, we employed the method of canonical differential equations with connections

generated by a basis set of transcendental functions: The pentagon functions. Then we

considered paths in the kinematic space obtained from multiple-scaling limits relating per-

muted configurations (see Fig. 4.5). The canonical differential equations were evaluated

along these paths with the help of a code we wrote in Mathematica. This code makes

multiple uses of PolyLogTools [31]. Provided analytic continuation and the corresponding

paths, the method is sufficient to evaluate all the integral constants contributing to both

planar and non-planar massless 5-point 2-loop amplitudes in the whole physical phase space.

A numerical method for fast crosschecks was discussed in Section 3.4.

Finally, we would like to mention that the application of the techniques discussed in

higher multiplicities amplitudes seems to be also plausible. This is, of course, assuming a

canonical set of master integrals is known. Conceptually no significant new complications

should appear as the increase in complexity is only expected to come from the addition of

new scales. We are looking forward to tackling such challenges in the near future.
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Appendix A

The Massless Box IBPs

The four IBP’s generated by KIRA [89] for the massless 4-point box topology are obtained

after reducing 432 equations. The results are

0 =(−a1 − a2 + d− a3 − 2a0)G1,box(0, 0, 0, 0)− a1G1,box(−1, 1, 0, 0)− a3G1,box(−1, 0, 0, 1)

− a2G1,box(−1, 0, 1, 0) + sa2G1,box(0, 0, 1, 0),

(A.1)

0 =(a0 − a1)G1,box(0, 0, 0, 0)− a0G1,box(1,−1, 0, 0) + a1G1,box(−1, 1, 0, 0)

+ a3G1,box(0, 0, 0, 1) + a2G1,box(−1, 0, 1, 0)− a2G1,box(0,−1, 1, 0)− sa2G1,box(0, 0, 1, 0)

+ a3G1,box(−1, 0, 0, 1)− a3G1,box(0,−1, 0, 1),

(A.2)

0 =a0G1,box(1,−1, 0, 0)− a0G1,box(1, 0,−1, 0) + sa0G1,box(1, 0, 0, 0)

+ (a1 − a2)G1,box(0, 0, 0, 0)− a1G1,box(0, 1,−1, 0) + a2G1,box(0,−1, 1, 0)− a3G1,box(0, 0, 0, 1)

+ a3G1,box(0,−1, 0, 1)− a3G1,box(0, 0,−1, 1),

(A.3)
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0 =(a3 − a0)G1,box(0, 0, 0, 0) + a0G1,box(1, 0, 0,−1)− a1G1,box(−1, 1, 0, 0)

+ a1G1,box(0, 1, 0,−1)− a1G1,box(0, 1, 0, 0)− a2G1,box(−1, 0, 1, 0) + a2G1,box(0, 0, 1,−1)

+ sa2G1,box(0, 0, 1, 0)− a3G1,box(−1, 0, 0, 1).

(A.4)

For the sake of simplicity, the coefficients ai’s in the latter equations are calculated only for

a selected set of master integrals. Here, we focus only on the relevant integral decomposition

for our box example. We find

G1,box(0, 0, 2, 0)→ 0,

G1,box(0, 1, 2, 1)→ (4d− 12)G1,box(0, 1, 0, 1)

(d− 6)t2
,

G1,box(1, 1, 2, 1)→ (4d2 − 32d+ 60)G1,box(0, 1, 0, 1)

(d− 6)st2
+

(5− d)G1,box(1, 1, 1, 1)

s
,

G1,box(1, 0, 2, 1)→ (2d− 6)G1,box(1, 0, 1, 0)

s2
,

G1,box(1, 1, 2, 0)→ (2d− 6)G1,box(1, 0, 1, 0)

s2
,

G1,box(1, 0, 2,−1)→ 1

2
(d− 2)G1,box(1, 0, 1, 0),

G1,box(1, 0, 2, 0)→ (3− d)G1,box(1, 0, 1, 0)

s
,

G1,box(1,−1, 2, 0)→ 1

2
(d− 2)G1,box(1, 0, 1, 0).

(A.5)
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Appendix B

Computation of M2 and M3

We saw earlier that Feynman parameterization for G1,T yields

G1,T (a1, ..., aP ) =
Γ (a) eεγE(µ2)ε

iπd/2
∏P

i=1 Γ(ai)

∫
dd`

∫
[0,1]

P∧
i=1

Xai−1
i dXi

δ
(

1−
∑P

i=1Xi

)
(∑P

i=1

((
`+

∑i
j=1 pj

)2

−m2
i

)
Xi

)a .
If we shift the loop momenta such that

`µ → ˜̀µ := `µ −
P∑
i=1

Xi+1

(
i∑

j=1

pµj

)
,

we find

G1,T (a1, ..., aP ) =
Γ (a) eεγE(µ2)ε

iπd/2
∏P

i=1 Γ(ai)

∫
dd`

∫
[0,1]

P∧
i=1

Xai−1
i dXi

(∑P
i=1Xi

)a−d
δ
(

1−
∑P

i=1Xi

)
(

˜̀2 −∆
)a ,

where

∆ =
∑
i<j

XiXj(m
2
i +m2

j − (pi−1 − pj−1)2)

=
∑
i<j

XiXjSij.

If we Wick rotate ˜̀0 → i˜̀0 to Euclidean space, we can perform the loop integration∫
ddL

iπd/2
1

(˜̀2 −∆)a
=

(−1)aΓ(a− d/2)

Γ(a)
∆d/2−a.
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Therefore,

G1,T (a1, ..., aP ) =
(−1)aΓ(a− d/2)eεγE(µ2)ε

iπd/2
∏P

i=1 Γ(ai)

∫
[0,1]

P∧
i=1

Xai−1
i dXi

(∑P
i=1Xi

)a−d
δ
(

1−
∑P

i=1 Xi

)
(∑

i<j XiXjSij

)a−d/2 ,

with Sij := m2
i +m2

j−(pi−1−pj−1)2. A L-loop generalization of this can be found in [75,109].

This form of the FI makes it trivial to compute G1,box(a1, 0, a3, 0). Given sij = s13 =

−(p1 − p2)2 = s, we have

G1,box(a1, 0, a3, 0) =
(−1)a1+a3Γ(a1 + a3 − d/2)

Γ(a1)Γ(a3)

∫
[0,1]

dx1x
a1−1
1

∫
[0,1]

dx3x
a3−1
3

(x1 + x3)a1+a3−dδ(1− x1 − x3)

(sx1x3)a1+a3−d/2

= (−s)d/2−a1−a3
Γ(a1 + a3 − d/2)

Γ(a1)Γ(a3)

∫
[0,1]

dx1x
d/2−a3−1
1 (1− x1)d/2−a1−1

= (−s)d/2−a1−a3
Γ(a1 + a3 − d/2)

Γ(a1)Γ(a3)
β(d/2− a3, d/2− a1)

= (−s)d/2−a1−a3
Γ(a1 + a3 − d/2)

Γ(a1)Γ(a3)

Γ(d/2− a3)Γ(d/2− a1)

Γ(d− a1 − a3)
.

Therefore, by setting d→ 4− 2ε, expending to leading order in ε and FunctionExpand-ing

in Mathematica, we find

M2 = −ε(eεγE(−s)ε+1)G(1, 0, 2, 0)

ε→0−−→ −1 +
π2

12
ε2 +

7

3
ζ3ε

3 +
47

1440
π4ε4 +O(ε5).

By definition of our basis and from the above computation we see, in D = 4− 2ε,

M2

M3

=
s(−s)−1−ε

t(−t)−1−ε = xε ⇒ G1,box(0, 1, 0, 2) = xεG1,box(1, 0, 2, 0).
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Appendix C

Kinematic Limits and Their Geometries

It is worthwhile to highlight the fact that multi-Regge kinematics has an insightful

geometric interpretation. To see that, we compute the (momentum) dual variables yi defined

by

pi = yi − yi−1. (C.1)

To enforce momentum conservation, we fix yn = 0. Thus, the dual variables can be written

in terms of the momenta as

yi =

j∑
k=1

pk. (C.2)

Using the momenta above, we have1

yn =

0 0

0 0

 , y1 =

0 0

0 −ε−(n−3)/2
∑n

j=3 p
−
j ε

n−j

 , (C.3)

yj =

−ε−(n−3)/2
∑n

k=j+1 p
+
k ε

k−3
∑j

k=3 p
⊥
k∑j

k=3(p⊥k )? −ε−(n−3)/2
∑n

k=j+1 p
−
k ε

n−k

 , 3 ≤ j ≤ n. (C.4)

1It may be tempting at this point to again keep in each individual entry only the leading term in the
limit ε → 0. This, however, would make certain momentum twistor invariants vanish identically. Since we
need to keep track of the leading behavior of every independent invariant, it is essential not to truncate
these expansions prematurely, but rather to keep all orders of ε in the computation of the y’s. The same will
be true for the Z’s.
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Figure C.1: The geometry: The ith edge vector is the momentum pµi of particle i.

In the MRK limit, the dual variables give a “geometry”. For instance, let’s consider the

n = 5 case, where

y1 =

 0 0

0 −εp−3 −
p−5
ε
− p−4

 , (C.5)

y2 =

 −p+
3

ε
− p+

5 ε− p+
4 0

0 −εp−3 −
p−5
ε
− p−4

 , (C.6)

y3 =

 −p+
5 ε− p+

4

√
|p−3 |

√
|p+

3 |eiφ3√
|p−3 |

√
|p+

3 |e−iφ3 −p−5
ε
− p−4

 , (C.7)

y4 =

 −εp+
5

√
|p−3 |

√
|p+

3 |eiφ3 +
√
|p−4 |

√
|p+

4 |eiφ4√
|p−3 |

√
|p+

3 |e−iφ3 +
√
|p−4 |

√
|p+

4 |e−iφ4 −p−5
ε

 ,

(C.8)

y5 =

 0 0

0 0

 . (C.9)

Keep in mind that momentum conservation in the ⊥-direction implies that√
|p−3 |

√
|p+

3 |e±iφ3 +
√
|p−4 |

√
|p+

4 |e±iφ4 = −
√
|p−5 |

√
|p+

5 |e±iφ5 . (C.10)

The geometry is given in Fig.C.1. We can use it to guide us in how to pullback a gluon

from the future to the past and vice versa – i.e., on how to take the possibly correct multiple

scaling limits. Note that the geodesic distance between the yi’s to the bottom light-cone
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measure, in some sense, the strength of the off-diagonal components (⊥-components). For

example, since y1,2,5 lie on the bottom light-cone, their off-diagonal components vanish, while

this is not the case for y3,4.

For example, we can pullback particle 4 in the past, pµ4 → −p
µ
4 . According to the dual

coordinates above for n = 5,this transformation makes y3 a little closer to y5 = 0 than y4 is.

So we effectively flip y3 with y4

p
µ
4 → −p

µ
4

Because gluon 5 is way more energetic than gluon 4, it is not as straightforward than it

is for particle 4 to interpret what happens geometrically as pµ5 → −p
µ
5 , but the underlying

idea is the same.

We can get similar pictures from the corresponding momentum twistors. See [33] for

a comprehensive introduction. We start by computing the µ components of the twistors,

which are defined by the incidence relation

µi,α̇ = −λαi yi,αα̇ = λi,αε
αβyi,βα̇ = (λ>i · ε · yi)α̇. (C.11)

The momentum twistors are then simply defined by

Zi = (λi,α, µi,α̇). (C.12)

Note that the Z’s are projectively invariant (Z ∈ CP3), that is, for every t 6= 0, tZ ∼ Z. We

can use this projective invariance to set the first non-vanishing component of each Zi twistor

to one. In this manner we finally obtain the following momentum twistor parameterization

of the MRK

Zn =

(
1 ε−(n−3)/2

√
p−n p⊥n
p+
n (p⊥n )?

0 0

)>
, (C.13)

Z1 =
(

0 1 0 0

)>
, (C.14)

Z2 =

(
1 0 0 −

∑n
k=3

√
p−k p⊥k
p+
k (p⊥k )?

(p⊥k )?ε(n+3)/2−k
)>

, (C.15)
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Zj =



1

ε(n+3)/2−j
√

p−j p⊥j
p+
j (p⊥j )?∑j

k=3 p
⊥
k +

√
p−j p⊥j
p+
j (p⊥j )?

∑n
k=j+1 ε

k−2p⊥k

(√
p−k p⊥k
p+
k (p⊥k )?

)−1

−ε(n+3)/2−j
√

p−j p⊥j
p+
j (p⊥j )?

∑j
k=3(p⊥k )? −

∑n
k=j+1 ε

(n+3)/2−k
√

p−k p⊥k
p+
k (p⊥k )?

(p⊥k )?


, 3 ≤ j ≤ n− 1.

(C.16)

Broadly speaking, twistor diagrams are conformal compactifications of the dual diagrams

[146]. Thus, to understand geometrically what happens when parameters gets bigger and

bigger, they are more useful than the dual ones, for which points can be pushed at infinity.

These geometric tools do not guarantee the transport in the kinematic space they depict

is easy to do in practice. They simply seem to be insightful on how limits may overlap with

each other. What is really giving this information are the symbols present in each scaling

limit.
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