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ABSTRACT

Starting jets emanating from a straight nozzle and orifices of different orifice-to-tube diameter ratios are investigated using time-resolved par-
ticle image velocimetry. The invariants of the motion, namely, the circulation, the hydrodynamic impulse, and the kinetic energy, are mea-
sured and compared to the classic slug-flow model, and this for both fixed exhaust speed and fixed diameter-based Reynolds numbers. An
extension to the slug-flow model is proposed to account for the contraction the fluid is experiencing when being pushed out through orifice
geometries. The contraction coefficients obtained for two-dimensional jets formed through a slit in a channel are applied to the axisymmetric
problem. This modified slug-flow model is shown to better predict the invariants of the motion with discrepancies of the order of 10% com-
pared to underpredictions of 130%, 50%, and 120% for the circulation, the hydrodynamic impulse, and the kinetic energy, respectively, using
the classic slug-flow model. Moreover, for a fixed target exhaust speed, the model suggests the existence of a maximum in the production of
impulse and energy at an orifice-to-tube diameter ratio of about 0.9, which was also observed experimentally for the kinetic energy.
Practically speaking, this suggests that the most efficient way of producing a starting jet is using an orifice plate of ratio close to 1, but differ-
ent from a straight nozzle. Finally, the overpressure correction of Krueger [“The significance of vortex ring formation and nozzle exit over-
pressure to pulsatile jet propulsion,” Ph.D. thesis (California Institute of Technology, 2001)] is applied and revisited to account for the
orifice-to-tube diameter ratio. Overall, good agreement with the present experimental data is found.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0048813

I. INTRODUCTION

Starting jets can be classified into two categories: parallel or con-
verging starting jets, in which the boundary layer inside the tube thick-
ens in time, and orifice starting jets consisting of a thin orifice plate
covering the exhaust of a straight tube (see Fig. 1). Synthetic (zero-net
mass flux) jets and pulsed jets, both being periodically starting jets,
have proved their utility in regard to flow control and mixing. The
production of such jets is inherently accompanied by the formation of
a discrete train of vortices. One popular design for generating synthetic
jets consists of an orifice plate covering a sealed cavity in which the
flow is driven by a diaphragm or a piston.2 Moreover, the formation
process of orifice-generated vortex rings was shown to differ from the
well-documented nozzle geometry case. In particular, Krieg and
Mohseni,3,4 corroborated and complemented by Limbourg and
Nedić,5 showed that orifice starting jets produce more circulation,
hydrodynamic impulse, and kinetic energy than the equivalent parallel
starting jet; the difference was attributed to the radial component of
velocity at the lip of the orifice, which, in the case of a nozzle geometry,
remains negligible throughout the process. Additionally, the absence
of a boundary layer modifies the formation and growth of the leading
vortex ring, and thus the production of the invariants of the motion.

In order to model the production of circulation of a parallel start-
ing jet, Didden6 proposed a model that assumes the flow to be a uni-
form slug of fluid with parallel streamlines. This slug-flow model was
extended upon the prediction of the hydrodynamic impulse and the
kinetic energy by Gharib et al.7 The model was found to provide an
adequate approximation of the total invariants of the motion gener-
ated by a nozzle, with differences of the order of 30% for circulation.3

An effort was made to reduce the discrepancy with the model by con-
sidering secondary effects highlighted by Didden.6 In particular, a
boundary layer correction was proposed by Shusser et al.,8 revised by
Dabiri and Gharib,9 to account for the thickening of the laminar
boundary layer inside the tube. The model rests upon the unsteady
laminar boundary layer growth over a semi-infinite flat plate impul-
sively started from rest (Stokes’ first problem). Later, an overpressure
correction was proposed by Krueger;1,10–12 applied to both nozzle and
orifice geometries, the additional circulation was found to be propor-
tional to the product of the exhaust speed and the exhaust diameter.
Moreover, in the case of an orifice geometry of orifice-to-tube diame-
ter ratio tending to zero, Krueger10 modeled the centerline velocity to
be increased during ejection due to the creation of a vena contracta.
The model was proved to enhance the prediction of the slug-flow
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model with discrepancies reduced to about 10%, when compared with
simulations of laminar starting jets.11,12 Finally, Krieg and Mohseni3

proposed a semi-empirical model that accounts for the unsteadiness of
the axial velocity and the nonzero radial velocity of orifice starting jets.
However, the latter model necessitates the knowledge of experimental
parameters, such as the velocity profile, which thus limits its use to an
a posteriori analysis.

None of these models, however, address the contraction the flow
is experiencing when exiting orifices of different orifice-to-tube diame-
ter ratios D0=Dp. The steady jet of fluid exiting a large vessel is a classic
problem in hydrodynamics.13–16 Of interest is the contraction coeffi-
cient Cc, defined as the ratio of the area of the contracted section A?,
called vena contracta, mathematically at infinity downstream, to the
exhaust area A0, i.e., Cc ¼ A?=A0 (Fig. 1). For a two-dimensional slot
in an infinite plane, the problem of finding the free streamline emanat-
ing from the exhaust was first solved by Kirchhoff17 who found the
contraction coefficient to be Cc ¼ p=ðpþ 2Þ � 0:611 [Fig. 1(a)]. For
a two-dimensional flow exiting a large vessel through a channel, one is
left with the classic two-dimensional problem of Borda’s mouth-
piece,18 first solved by means of the theory of free streamlines by von
Helmholtz.19 Finally, for a slot in a channel, with or without a conical
exhaust [Figs. 1(b) and 1(c)], the problem was solved in a comprehen-
sive manner by Von Mises,20 and this for different orifice-to-tube
diameter ratios D0=Dp.

If the use of conformal mapping and complex variables makes
the rectilinear two-dimensional problem easy to solve, the axisymmet-
ric problem is a much harder problem and one must rely on approxi-
mate methods. The problem of finding the coordinates of the free
streamline emanating from a circular hole in an infinitely large vessel
was first solved by Trefftz21 who modeled the jet efflux by sources and
dipoles distributed over the surface of an infinitely large vessel. This
results in a Fredholm integral equation of the second kind, of
unknown the velocity potential, which was then solved using a trial
and error procedure. Surprisingly, the contraction coefficient was
found to be very close, nay identical, to the one found by Kirchhoff17

for the two-dimensional problem. Later, Southwell and Vaisey22

applied a relaxation method to the case of an orifice of ratio 1–6, com-
pared to the cylindrical vessel, and found a value of 0.608, thus corrob-
orating the results of Trefftz.21 Finally, Rouse and Abul-Fetouh23 tried
to refine the result of Trefftz21 using a relaxation method and ulti-
mately found very similar results as the original conclusions of
Trefftz.21 Besides, Rouse and Abul-Fetouh23 compared their numerical
results and some experimental results from the literature with the

analytical results of Von Mises20 for the equivalent two-dimensional
problem. Again, minor differences were found, hence concluding on
the validity and the applicability of the two-dimensional analytical
results for the three-dimensional problem. Furthermore, Salamatov24

showed that the contraction coefficient of an infinitely large conical
vessel of angle 40� is about 0.75, close to the value of 0.77 of Von
Mises20 for a two-dimensional flow; this was obtained by modeling the
conical vessel as successive vortex rings.

Later, Garabedian25 put into question the well-accepted result of
Trefftz21 and a rigorous mathematical method was developed to find
the free streamline of the jet emanating from an orifice in an infinite
plane wall. A contraction coefficient noticeably different from previous
investigations was found with a value Cc ¼ 0:58. Hunt,26 in an
attempt to close the debate, used a vortex representation of the interior
surface which leads directly to the Fredholm integral equation of the
second kind. The equation was solved numerically and the contraction
coefficients for orifice-to-tube area ratios of 0.00, 0.25, 0.50, and 0.75
were computed. In particular, a contraction coefficient of Cc ¼ 0:578
was found for an orifice in an infinite plane, close to Garabedian’s25

results, but in contradiction with experiments. Finally, Jeppson27 used
an inverse finite-difference formulation and found the free streamline
emanating from a large vessel to be close to the result of Hunt26 and
the contraction coefficient was found to be Cc ¼ 0:58.

Most recent studies have opted for a reduced contraction coeffi-
cient of Cc ¼ 0:58 in the case of an axisymmetric orifice in an infinite
plane, compared to the value of 0.61 for a two-dimensional slit in an
infinite plane found by Kirchhoff17 or Von Mises.20 Nevertheless, the
results provided by Von Mises20 seem to be a good enough approxi-
mation for the axisymmetric three-dimensional case, all the more as
the model does not account for any secondary effects such as gravity,
viscosity, capillarity, or unsteadiness. Most importantly, Von Mises’20

analytical results are readily available for all orifice-to-tube diameter
ratios D0=Dp and cone angles h, and does not require any numerical
computations. For these reasons, the analytical result of Von Mises20

will be used in the present work to estimate the contraction coefficients
of axisymmetric jets exiting orifices.

The objectives of the paper are twofold. First, a comprehensive
parametric study of the influence of the geometrical parameter D0=Dp

on the production of the invariants of the motion is presented. For a
given exhaust speed, the goal is to determine the influence of the ori-
fice-to-tube diameter ratio D0=Dp on the final production of the invar-
iants of the motion. Second, a modified slug-flow model is proposed
to account for the contraction imposed to the flow by the orifice plate.

FIG. 1. Starting jets emanating from (a) an orifice in a plane (b) an orifice in a straight tube (c) a converging nozzle. Schematics made to scale.
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The structure of the paper is as follows: In Sec. II, the slug-flow
model is presented with, first, a review of the classic slug-flow model
and, second, a description of the method used to estimate the value of
the contraction coefficient. Then, the modified slug-flow model which
incorporates the contraction of the flow is presented (Sec. II C).
Section III presents the experimental conditions with some emphasis
on the velocity program (Sec. III B) and the velocity profile measured
at the exhaust (Sec. III C). Critical observations on the flow field at the
exhaust are made in Sec. IVA. The modified slug-flow model is then
compared to the measurements carried out at a fixed exhaust speed in
Sec. IVB. In particular, the rate of change of the invariants of the
motion is compared to the proposed model. The following Sec. IVC
shows another set of measurements obtained at a fixed exhaust
diameter-based Reynolds number and concludes on the validity of the
model for the range of Reynolds numbers tested. Finally, the nonzero
offset of the invariant of the motion at t¼ 0 is explained by
Krueger’s1,10–12 overpressure model in Sec. V and an extension to this
model is proposed.

II. THE SLUG-FLOW MODEL
A. The classic slug-flow model

For an unbounded axisymmetric flow, the Euler equations pos-
sess a finite number of invariants associated with the symmetries of
the equations. Among them, the kinetic energy corresponds to the
invariance of the Euler equations to time while the hydrodynamic
impulse corresponds to the invariance of the Euler equations to spatial
displacement (provided that no non-conservative forces are applied to
the domain). The invariance of circulation results from the degeneracy
of the equations in two dimensions. For an unbounded axisymmetric
flow with no swirl, and in a cylindrical coordinate system ðx; r; hÞ, the
aforementioned integrals of the motion read

C ¼
ð ð

x dr dx; (1)

I ¼ pq
ð ð

xr2 dr dx; (2)

E ¼ pq
ð ð
ðu2 þ v2Þr dr dx; (3)

where x ¼ @v=@x � @u=@r is the azimuthal vorticity and u and v are
the axial and radial velocities, respectively.

Originally, the slug-flow model, as introduced by Didden,6 aims
at predicting the circulation generated at the lips of a sharp-edged noz-
zle. The model was extended by Gharib et al.7 to estimate the hydrody-
namic impulse and kinetic energy discharged by a parallel starting jet.
The slug-flow model can be summarized as follows:

dCslug ¼
1
2
U2
0 dt; (4)

dIslug ¼
1
4
pqU2

0D
2
0dt; (5)

dEslug ¼
1
8
pqU3

0D
2
0dt: (6)

For a thorough derivation, the reader is referred to the paper of
Krieg andMohseni.3

B. The contraction of the flow

When fluid is pushed through an orifice, the streamlines at the
exhaust are bent toward the centerline and the flow detaches from the
sharp edge to form a tube (or sheet) of fluid of reduced cross section
called vena contracta. For a (rectilinear) two-dimensional flow, the
contraction coefficient reduces to the ratio of the widths, whereas for
an axisymmetric configuration, the contraction coefficient becomes
Cc ¼ D2

?=D
2
0, where D? is the diameter of the vena contracta and D0 is

the diameter of the orifice (see Fig. 1). It was shown in previous litera-
ture that the result for the two-dimensional case is a fair approxima-
tion of the equivalent axisymmetric problem and the analytical results
of Von Mises20 for a two-dimensional conical slit in a channel of given
width [Figs. 1(b) and 1(c)] can therefore be used to estimate the con-
traction a circular orifice is imposing to the flow.

A summary of Von Mises’20 work is presented here. Computing
the velocity potential of a steady inviscid incompressible irrotational
plane flow is made feasible by the use of the complex potential
wðx þ iyÞ ¼ /þ iw, where / is the velocity potential, w is the
Lagrange stream function and x and y are the Cartesian coordinates.
Finding the free streamline is therefore equivalent to finding the func-
tion fðwÞ which satisfies both equation U?dz=dw ¼ fðwÞ, whereU? is
the freestream velocity, and the boundary conditions, which is per-
formed by means of conformal transformations. It can be shown that
solving the two-dimensional problem of a jet forming through a coni-
cal slot of angle h ¼ pj, as shown in Fig. 1, can be parametrized by
the function tj ¼ 1=fðwÞ. The speed at infinity upstream is fixed by
the parameter hj as

U?

Up
¼ U?

dz
dw

� �
1
¼ 1

hj
; (7)

and the contraction coefficient for the two-dimensional problem is
therefore

Cc ¼
A?
A0
¼ D?

D0
¼ Up

U?

Dp

D0
¼ hj

D0=Dp
; (8)

with

D0

Dp
¼ 1� sin pjð Þ l

L
(9)

and

l
L
¼ hj

p

ð1
0

dn
nj

1
nþ h

þ 1
nþ 1

h

� 2
nþ 1

� �
: (10)

Note that there is no need to solve Eq. (8) for h. Instead, it can be
assigned a value from 0 to 1 and the contraction coefficient Cc can be
computed accordingly. For more details on the method, the reader is
referred to the original papers20 or the textbooks of Lamb,13 Birkhoff
and Zarantonello,14 Gurevich,15 or Batchelor.16

Equation (8) results in Fig. 2 and the precise numerical values for
the cases investigated experimentally are given in Table I. For a nozzle
case, the contraction coefficient is identically 1 as no contraction
should occur when the tube is ending flush with the exhaust plane. For
a 90� angle, Eq. (8) gives the contraction coefficient of a straight angle
orifice [Figs. 1(a) and 1(b)]. Noteworthy is the possibility of having dif-
ferent cone angles which can either be applied to model converging
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nozzles, such as the one used by Yu et al.,28 Gao et al.,29 or Rosenfeld
et al.,30 or model the presence of the orifice vortex upstream of the
plate. Indeed, a recirculation region is expected to form ahead of the
orifice plate, hence forcing the flow to exit with a nonnegligible radial
component which can be accounted for by Von Mises’20 model. Bear
in mind that the size of this recirculation region is also expected to
depend on the orifice-to-tube diameter ratio. Finally, the above Eq. (8)
can be used to compute the contraction coefficient of an inverted coni-
cal nozzle, the limiting case being the mouthpiece of Borda with a con-
traction coefficient of 0.5 at the limit D0=Dp ! 0.18,19

C. The modified slug-flow model

Using the conservation of mass (or volume), the geometric quan-
tities (subscript 0) are related to the tube of fluid far downstream (sub-
script ?), the vena contracta, and, for an axisymmetric flow, the
contraction coefficient is

Cc ¼
A?
A0
¼ D2

?

D2
0
¼ L0

L?
¼ U0

U?
: (11)

Making use of the contraction coefficient, a modified slug-flow
model is introduced as

dC? ¼
1
2
U2
0 dt � 1=C2

c ; (12)

dI? ¼
1
4
pqU2

0D
2
0dt � 1=Cc; (13)

dE? ¼
1
8
pqU3

0D
2
0dt � 1=C2

c : (14)

Note that for a parallel starting jet, the contraction coefficient is
1, and the classic slug-flow model of Sec. IIA is resumed.

Time is usually made non-dimensional using the exhaust quanti-
ties as t� ¼ U0t=D0, whereU0 is the exhaust speed andD0 is the diam-
eter of the nozzle or orifice. This dimensionless time is usually referred
to as formation time but the authors prefer the generic term of non-
dimensional time. The present model suggests that the effective slug of
fluid has a different shape and a non-dimensional time can be defined
instead as T� ¼ U?t=D?. The latter is referred to as the corrected non-
dimensional time or the modified non-dimensional time. A paper on
the consequences of such a redefinition of the timescale on the forma-
tion number of orifice-generated vortex rings is available.31

III. MEASUREMENTS
A. Apparatus

Experiments are conducted in a water tank onto which a
101:6mm inner diameter tube is mounted. 2:38mm-thick aluminum
plates with different orifice diameters are attached to the exhaust of
the tube and the orifice-to-tube diameter ratios D0=Dp are therefore
0:375ð0:125Þ1:000, the end case being the straight tube without any
plate. Water is continuously pushed out by a piston actuator sealed
with rubber o-rings. The piston encoder provides the real-time posi-
tion of the actuator. Moreover, the embedded PID controller of the
piston was tuned beforehand in order to mitigate any spurious over-
shoot at the end of the acceleration period.

Time-resolved planar particle image velocimetry (PIV) is used to
measure the velocity field at the exhaust. The field of view extends
equally on each side of the axis of symmetry and is adjusted to visual-
ize at least two diameters downstream of the exhaust. The vertical
plane containing the axis of symmetry is illuminated with a high-
speed Nd:YLF laser (LitronLaser LDY302 PIV Series). Recording is
performed using a high-speed high-resolution CMOS camera
(Photron FASTCAM Mini WX50). Both the laser and the camera are
triggered by a digital delay generator (Stanford Research System
DG645) and the frame rate is adjusted to the exhaust speed to comply
with the requirements of maximum spatial displacement within the
image plane for the PIV processing. For instance, for an exhaust speed
of 100mms�1, the frame rate is chosen to be 160Hz. The PIV proc-
essing is performed using DaVis10 software (LaVision GmbH) which
results in a 170� 170 vector field with a spatial resolution between

FIG. 2. Contraction coefficient as a function of the diameter ratio following the
model of Von Mises.20

TABLE I. Summary table of the experimental conditions performed at a fixed exhaust speed.

Orifice diameter D0=Dp Cc ð90�Þ Cc ð70�Þ Cc ð50�Þ Up ðmms�1Þ �Up ðmms�1Þ U0 ðmms�1Þ �U 0 ðmms�1Þ

4:0 in ¼ 101:6mm 1.000 1.000 1.000 1.000 100.00 99.8676 1.745 100.0 99.8676 1.745
3:5 in ¼ 88:9mm 0.875 0.762 0.779 0.805 �76.56 76.4016 1.304 100.0 99.7896 1.703
3:0 in ¼ 76:2mm 0.750 0.703 0.727 0.765 56.25 56.0706 1.068 100.0 99.6806 1.898
2:5 in ¼ 63:5mm 0.625 0.667 0.698 0.745 �39.06 38.8646 1.091 100.0 99.4936 2.793
2:0 in ¼ 50:8mm 0.500 0.644 0.681 0.735 25.00 24.7926 0.818 100.0 99.1686 3.271
1:5 in ¼ 38:1mm 0.375 0.629 0.670 0.730 �14.06 13.8896 2.148 100.0 98.7696 15.272
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0.90 and 1.8mm, depending on the orifice plate, but always less than
0:02D0. More precisely, a four-pass cross correlation algorithm is
used, ending in a 24� 24 pixel interrogation window, with 50% over-
lap. The uncertainty in the velocity magnitude is estimated to be
0:01U0 on average. The derivatives of velocity in the axial and radial
directions are computed using a finite-difference fourth-order Pad�e
scheme. For more information on the experimental setup, the reader
is referred to Limbourg and Nedić5 or Limbourg.32

Two sets of measurements are performed to validate the pro-
posed modified slug-flow model. In the first set of measurements, for
all orifice-to-tube diameter ratios, the exhaust speed U0 is kept
constant, hence having a varying diameter-based Reynolds
number ReD0 ¼ U0D0=�, with values ranging from 3810 to 10 160
(see Table II). For a given stroke length L0, or equivalently a given dura-
tion T0, the stroke-based Reynolds number ReL0 ¼ U0L0=� is thus
kept constant. In a second set of measurements, the diameter-based
Reynolds number is fixed to ReD0 ¼ 5080 and the exhaust speed, or
rather the piston speed, is modified accordingly (see Table III).

The total circulation, hydrodynamic impulse, and kinetic energy
generated by the apparatus are measured in the control volume
defined by the extent of the field of view whose boundaries are far
enough from the exhaust to encompass the entire discharged quanti-
ties. The invariants of the motion are measured by means of Eqs.
(1)–(3) within the top and bottom half-planes and each contribution
is then averaged out to give a single value.

A total of 15 runs was taken for each orifice plate in both sets of
measurements. The precise quantitative results are presented in Tables II
and III, the uncertainty being the standard deviation over the 15 runs.

B. Velocity program

A step impulse velocity program was used for all orifice-to-tube
diameter ratios. After a short period of acceleration of about 0:1 s the
piston reaches a constant speed �Up with an uncertainty of less than
3%, except for the D0=Dp ¼ 0:375 case (see Table I). The uncertainty
in the piston velocity is primarily due to the limited resolution of the
position sensor of the actuator. For this reason, the nominal piston
velocity program is presented in Fig. 3 alongside the normalized speed
at the exhaust and at the centerline for different orifice-to-tube diame-
ter ratios. Note that Fig. 3 presents the measured centerline velocity
time history averaged over the 15 repeat PIV measurements.
Additionally, a cubic spline interpolation function is used to smooth
the experimental curves. A transient phase is observed for all orifice-
to-tube diameter ratios, the ramp-up period being as large as the ratio
D0=Dp is close to 1. It was estimated to be the duration necessary to
reach 95% of the final value, which is shown in Fig. 3. This initial
ramp-up of the centerline speed is consistent with the theory of start-
ing flows in pipes.33 Moreover, a slight overshoot is visible which can
be attributed to the presence of the leading vortex ring in the close
vicinity of the exhaust which creates a surrounding velocity field pull-
ing the fluid out of the orifice.

The slow ramp-up of the centerline velocity in the case of a noz-
zle has previously been reported by Krueger,10 using the experimental
data of Didden,6 and by Krueger,11 after numerically solving the viscid
axisymmetric incompressible Navier–Stokes equations for a knife-
edged nozzle. The boundary layer thickens in the tube which ulti-
mately leads to a higher-than-expected centerline velocity.
Furthermore, a bend in the centerline velocity was also reported in

both cases without any physical explanation. As rightly pointed out by
Krueger,1 at the very first instants, the front of the material surface
remains flat and the flow behaves like the potential flow in front of a
circular translating disk. The flow then acts as a solid column of fluid
and the exhaust centerline velocity follows the velocity program
closely. After, the effect of the boundary layer becomes substantial and
the centerline speed follows the expected ramp-up to eventually reach
the value of the parabolic profile of a Poiseuille flow.

C. Velocity profile

The available experimental setup enables to take measurements
at the exhaust and the velocity profile is shown for each orifice plate in
Fig. 4. The measurements were taken for exhaust-based non-dimen-
sional times t� ¼ U0t=D0 between 2.5 and 3.0 and were then averaged
out over time and over the 15 runs.

For the nozzle case, i.e., D0=Dp ¼ 1:000, the velocity profile is
relatively “top-hat” as the flow inside the tube is not fully developed.
The velocity profile starts from zero at the straight angle edge, i.e., at
r ¼ D0=2, to reach the prescribed value at about 0:4D0. As expected,
the radial velocity is zero and the velocity magnitude is essentially the
axial velocity, in line with the classic slug-flow model. As time
increases, the boundary layer inside the nozzle generator thickens
which would ultimately produce a parabolic velocity profile. This is
the correction Shusser et al.8 and Dabiri and Gharib9 proposed to
incorporate to the slug-flow model.

For orifices, the velocity profile is far from uniform and extrema
are visible at the edge of the plate. These velocity profiles are similar to
those observed by Didden6 who noted a large axial velocity near the
edge of nozzles at small times, causing a large vorticity production and
an increase in the overall circulation generated. In the case of orifices,
the thickness of the boundary layer is minimal and both radial and
axial velocities exhibit extrema at the edge of the exhaust throughout
the formation process. Krieg and Mohseni3 highlighted the effects of a
nonzero radial velocity component on the integrals of the motion gen-
erated by non-parallel starting jets, and the present measurements
complement their findings by investigating the influence of the orifice-

FIG. 3. Normalized piston velocity program and normalized measured centerline velocity
at the exhaust for orifice-to-tube diameter ratios of D0=Dp ¼ 0:375ð0:125Þ1:000 and
for a fixed exhaust speed. Triangles correspond to the estimated delay.
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to-tube diameter ratio on the flow field. From Fig. 4(b), it is found that
the radial velocity increases as the ratio D0=Dp reduces. In fact, it is
found to reach 60:45U0 at a radial position of about 0:4D0 for orifice-
to-tube diameter ratios of D0=Dp ¼ 0:625 and 0.500.

Finally, the velocity profile is measured to be narrower, with a
magnitude higher than the target speed, and this for both the nozzle
case and the orifice cases, which is in line with the presence of the flow
contraction. Although the model of Von Mises20 assumes the vena
contracta to be reached at infinity downstream, here the increased
speed is visible very close to the exhaust. Moreover, as stated above,
the extrema of the velocity profile are observed at a location of about
0:4D0 which corresponds to the location of the free streamline of a jet
exiting a tube with an orifice of ratio 0.5. Whether the contraction is
due to the orifice plate only, or by the surrounding velocity field
induced by the generated vortices, is unclear at this stage. The leading
vortex ring being at a downstream position of one orifice diameter or
greater (see Fig. 5), its influence on the exhaust kinematics is assumed
to be limited and so the nonzero radial velocity can be attributed to
the presence of the orifice plate only. Also, note that the influence of
the orifice plate decreases downstream with a reduced radial velocity
and an increased axial velocity, which nevertheless results in an
increased velocity magnitude (not shown here); the leading vortex ring
and the following train of vortices generate a surrounding velocity field
similar to pipe flows. Finally, note that it was not possible to show the
D0=Dp ¼ 0:375 case due to limitations in the experimental setup
which prevented from resolving the flow near the orifice edge with
enough confidence. Nevertheless, the centerline velocity presented in
Fig. 3 was well-resolved.

IV. RESULTS AND DISCUSSION
A. Observations

Vorticity field snapshots at an exhaust-based non-dimensional
time of t� ¼ U0t/D0¼ 3.0 are shown in Fig. 5(a) for the different orifice
plates and with a fixed vorticity scale. Although the exhaust speed is cho-
sen to be identical, hence having a fixed stroke-based Reynolds number,
the nozzle geometry clearly shows a difference in the formation mecha-
nism of the starting vortex; a continuous feeding shear layer remains
attached to the leading vortex ring at least up to a non-dimensional time
of t� ¼ 3:0, consistent with the findings of Gharib et al.7 As the orifice
diameter reduces in size, and the ratio D0=Dp decreases, the feeding
shear layer is replaced by a discrete train of vortices of relatively larger
size compared to the leading vortex ring. This observation corroborates
the study of Limbourg and Nedić5 which highlighted this difference in
vortex ring formation; the special boundary conditions of an orifice
geometry force the flow to detach, similarly to vortex shedding, and an
increased production of the invariants of the motion is observed.

Moreover, at an exhaust-based non-dimensional time of
t� ¼ 3:0, the positions of the leading vortex rings are not the same for
all cases, which shows that the formation processes of vortex rings
emanating from different orifice-to-tube diameter ratios differ from
one another. More precisely, the non-dimensional time t� ¼ U0t=D0

does not accurately normalize the kinematics of vortex rings emanat-
ing from orifice geometries. However, the use of the modified slug-
flow model and the non-dimensionalization of time by the corrected
quantities, i.e., T� ¼ U?t=D?, brings all leading vortex rings at an axial
position of about x=D0 ¼ 1:0. This illustrates the validity of the

FIG. 4. Normalized velocity profile; (a) axial velocity, (b) radial velocity, (c) velocity magnitude for orifice-to-tube diameter ratios D0=Dp ¼ 0:500ð0:125Þ1:000 and for a fixed
exhaust speed.
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timescale model proposed by Limbourg and Nedić31 for orifice-
generated vortex rings.

B. Invariants of the motion for a fixed exhaust speed

The time evolution of the measured invariants of the motion, as
defined in Eqs. (1)–(3), are presented in their dimensional form in
Figs. 6(a)–6(c), and this for a fixed target exhaust speed. Besides, the
rate of change of the quantities is measured at large times, and com-
pared to both the classic slug-flow model [Eqs. (4)–(6)] and the modi-
fied slug-flow model [Eqs. (12)–(14)] in Figs. 6(d)–6(f). Moreover, the
contraction coefficient is computed using Von Mises’20 method for
three different cone angles in Eq. (8) which results in three different
curves in Figs. 6(d)–6(f). The values of the contraction coefficients are
reported in Table I and the raw results are reported in Table II.

Compared to the nozzle case, the orifice geometry is producing
more circulation, and this for all orifice-to-tube diameter ratios
[Fig. 6(a)]. Because the exhaust speed is kept constant, the classic slug-
flow model predicts the same rate of production of circulation for all
cases and dCslug=dt, as defined in Eq. (4), is a constant. As shown in
Fig. 6(d), although the classic slug-flow model is a fair approximation
for the nozzle case with an 11% underestimation, the discrepancy with
the model increases as the orifice-to-tube diameter ratio D0=Dp

decreases, to finally reach a value of about 2.3 times the classic slug-
flow model for diameter ratios of 0.625, 0.500, and 0.375. This value is
corroborated by Krieg and Mohseni3 and Limbourg and Nedić.5 On
the other hand, the modified slug-flow model accurately predicts the
increase in the circulation for decreasing orifice-to-tube diameter
ratios D0=Dp, with a maximum discrepancy of about 10% with the
measurements (Table II). Nevertheless, the modified model fails at
predicting the plateau and the slight reduction in the production rate
of circulation for small D0=Dp ratios.

Unlike circulation, the production of hydrodynamic impulse
reduces as the size of the orifice decreases, and the nozzle geometry
provides the largest impulse [Fig. 6(b)]. This is not surprising as, for a
fixed exhaust speed, the volume of fluid discharged increases with
increasing exhaust diameter, which is consistent with the classic slug-
flow model presented in Eq. (5). The classic slug-flow model, however,
does not properly estimate the latter decrease in impulse with decreas-
ing orifice-to-tube diameter ratios. As shown in Fig. 6(e), the classic
slug-flow model underpredicts the rate of production of impulse with
a discrepancy reaching 50% for D0=Dp ¼ 0:625. Again, this corrobo-
rates observations made by Krieg and Mohseni3 and Limbourg and
Nedić.5 Interestingly, not only does the modified slug-flow model bet-
ter estimate the rate of production of the impulse with a maximum dif-
ference of 10% (Table II), but it also predicts that the production of
impulse should reach a maximum at an orifice-to-tube diameter ratio
of D0=Dp ¼ 0:967 for the 90� orifice case, the position of the extre-
mum getting closer toD0=Dp ¼ 1:000 as the cone angle h is reduced.

The evolution of the total kinetic energy is shown in Fig. 6(c). A
surprising observation is that the cases with a ratio of D0=Dp ¼ 0:875
and 0.750 produce more energy than the nozzle case. This is counter-
intuitive and against the classic slug-flow model, as the exhaust speed
is fixed and the diameter of the discharged column of fluid is reduced,
hence suggesting a monotonic decrease in kinetic energy with decreas-
ing ratio D0=Dp [Eq. (6)]. The modified slug-flow model, introduced
in Eq. (14), appears to adequately predict the rate of production
of kinetic energy with a maximum difference of 25% [Fig. 6(f) and

FIG. 5. Vorticity contours at orifice-to-tube diameter ratios of D0=Dp

¼ 0:375ð0:125Þ1:000 for a fixed exhaust speed at (a) an exhaust-based non-
dimensional time of t� ¼ 3:0 and (b) a corrected non-dimensional time of
T� ¼ 3:0. Vorticity scale is the same for all contour plots.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 067109 (2021); doi: 10.1063/5.0048813 33, 067109-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


Table II]. Again, a maximum in the production of kinetic energy is
predicted by the modified slug-flow model at a ratio of D0=Dp

¼ 0:910 for the 90� angle orifice, and D0=Dp ¼ 0:922 and 0.938 for
cone angles of 70� and 50�, respectively. This extremum is also visible
in the measurements to a lesser extent suggesting the occurrence of
other physical phenomena reducing the effect of the contraction at
those large orifice-to-tube diameter ratios.

The existence of this extremum, for both the hydrodynamic
impulse and the kinetic energy, is mathematically explained by the
respective weight of the exhaust diameter and the contraction coeffi-
cient in Eqs. (13) and (14); the contribution of the contraction coeffi-
cient term starts dominating the exhaust diameter squared term at an
orifice-to-tube diameter of 0.872 for the impulse, and 0.681 for the
energy. The product then reaches a maximum at a ratio of 0.967 for
the impulse and 0.910 for the energy, before returning to the classic
slug-flow model value at D0=Dp ¼ 1:000, for which Cc ¼ 1:000.

Overall, the classic slug-flow model, as defined in Eqs.
(4)–(6), provides an adequate approximation of the rate of

production of circulation, hydrodynamic impulse, and kinetic
energy generated by a nozzle geometry with a difference of þ11%,
�4%, and �2%, respectively. The difference becomes substantial
with orifice geometries with measurements reaching þ130%,
þ50%, and þ120% of the predicted value. The corrected slug-flow
model, however, reduces drastically the differences, as shown in
Table II.

In Figs. 6(d)–6(f), the modified slug-flow model curves were
obtained with the contraction coefficient computed from the model of
Von Mises20 for a two-dimensional slit in a channel (Fig. 1). A coarser
approach would be to use a fixed contraction coefficient of
Cc ¼ p=ðpþ 2Þ � 0:611, as was done by Krueger10,12 to estimate the
centerline speed at the exhaust of an orifice. Clearly, this is too coarse
of an approximation. For instance, it would not account for the
increase in production of circulation for decreasing D0=Dp, and the
model would give a constant value of about 134 cm2 s�2 for all diame-
ter ratios, value obtained with Von Mises’20 model at D0=Dp ¼ 0 for
which Cc ¼ 0:611 [Fig. 6(d)].

FIG. 6. Dimensional invariants of the motion; (a) circulation, (b) hydrodynamic impulse, and (c) kinetic energy as a function of time, measured for a fixed exhaust speed. The
classic slug-flow model is shown as color-coded dashed line. Rate of production of the invariants of the motion; (d) circulation, (e) hydrodynamic impulse, and (f) kinetic energy
as a function of the orifice-to-diameter ratio, measured for a fixed exhaust speed. The modified slug-flow model is shown as black lines for different cone angles. The classic
slug-flow model is shown as a black dotted line.

TABLE II. Summary table for the results obtained at a fixed exhaust speed.

D0=Dp U0 ðmms�1Þ ReD0 dC=dCslug dI=dIslug dE=dEslug dC=dC? dI=dI? dE=dE?

1.000 100.0 10 160 1.1116 0.010 0.9646 0.015 0.9796 0.013 1.1116 0.010 0.9646 0.015 0.9796 0.013
0.875 100.0 8890 1.5316 0.009 1.2456 0.014 1.3816 0.010 0.8906 0.005 0.9506 0.010 0.8036 0.006
0.750 100.0 7620 1.9636 0.009 1.3846 0.012 1.8526 0.011 0.9696 0.004 0.9736 0.009 0.9146 0.005
0.625 100.0 6350 2.2796 0.010 1.4736 0.023 2.1436 0.014 1.0156 0.004 0.9836 0.015 0.9556 0.006
0.500 100.0 5080 2.3206 0.008 1.4496 0.038 2.1626 0.018 0.9636 0.003 0.9346 0.024 0.8986 0.008
0.375 100.0 3810 2.2446 0.032 1.4696 0.054 1.9036 0.033 0.8876 0.012 0.9246 0.034 0.7526 0.013
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Finally, although the plate covering the exhaust of the tube has a
geometrical 90� angle, the presence of an eventual orifice vortex ahead
of the plate can be accounted for by the present model. Indeed, the
recirculation region upstream of the plate modifies the angle at which
the fluid is discharged, and this can be modeled by changing the angle
of the conical slit in Eq. (8) [Fig. 1(c)]. This is valid provided that the
two-dimensional results apply to the axisymmetric case, which, in
view of the results of Salamatov,24 seems reasonable. Compared to the
modified model, Figs. 6(d)–6(f) show a relative decrease in the mea-
sured rate of production of the invariants when the ratio D0=Dp

decreases below 0.500 (see also the three last column of Table II). This
can be attributed to the presence of a more pronounced recirculation
region upstream of the orifice plate which reduces the effective angle
of the orifice. As show in Figs. 6(d)–6(f), using a different cone angle h
in Eq. (8) when computing the contraction coefficient results in a bet-
ter estimation of the invariants of the motion for small orifice-to-tube
diameter ratios. In particular, the use of a 70� cone angle enables to

predict accurately the production of circulation for a ratio of
D0=Dp ¼ 0:375. Moreover, the use of the contraction coefficient of a
50�-angle conical slit enables to accurately predict the values for both
the hydrodynamic impulse and the kinetic energy at a ratio
D0=Dp ¼ 0:375. This also highlights a limitation of the present model
as a single value for the cone angle cannot predict accurately the rate
of production of all three quantities at a given orifice-to-tube diameter
ratio. Furthermore, for a given invariant of the motion, a single cone
angle does not fit all measurement points. This is quite expected as the
size of the recirculation region upstream of the plate is a function of
the orifice depth, i.e., the orifice-to-tube diameter ratio D0=Dp.

C. Invariants of the motion for a fixed Reynolds
number

The above results were presented for a fixed exhaust speed of
U0 ¼ 100mms�1, hence a fixed unit-stroke-based Reynolds number

FIG. 7. Dimensional invariants of the motion; (a) circulation, (b) hydrodynamic impulse, and (c) kinetic energy as a function of time, measured for a fixed diameter-based
Reynolds number. The classic slug-flow model is shown as color-coded dashed line. Rate of production of the invariants of the motion; (d) circulation, (e) hydrodynamic
impulse, and (f) kinetic energy as a function of the orifice-to-diameter ratio, measured for a fixed diameter-based Reynolds number. The modified slug-flow model is shown as
black lines for different cone angles. The classic slug-flow model is shown as a black dotted line.

TABLE III. Summary table for the results obtained at a fixed diameter-based Reynolds number.

D0=Dp U0 ðmms�1Þ ReD0 dC=dCslug dI=dIslug dE=dEslug dC=dC? dI=dI? dE=dE?

1.000 50.0 5080 1.1706 0.028 0.9886 0.029 0.9806 0.014 1.1706 0.028 0.9886 0.029 0.9806 0.014
0.875 57.1 5080 1.4836 0.017 1.1946 0.013 1.2916 0.009 0.8626 0.010 0.9106 0.010 0.7516 0.005
0.750 66.7 5080 1.9156 0.017 1.3536 0.019 1.7746 0.018 0.9456 0.008 0.9516 0.013 0.8766 0.009
0.625 80.0 5080 2.2526 0.012 1.4786 0.018 2.0936 0.017 1.0046 0.006 0.9876 0.012 0.9336 0.008
0.500 100.0 5080 2.3306 0.008 1.4326 0.023 2.1606 0.015 0.9686 0.003 0.9236 0.015 0.8976 0.006
0.375 133.0 5080 2.3346 0.048 1.3616 0.026 2.0536 0.045 0.9236 0.019 0.8566 0.016 0.8126 0.018

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 067109 (2021); doi: 10.1063/5.0048813 33, 067109-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


ReLm¼1. As suggested by the modified slug-flow model, the effective
column of fluid has a reduced diameter and a larger speed, the differ-
ence with the exhaust quantities, subscript 0, being as large as the con-
traction coefficient is small. When aiming for a fixed exhaust speed
U0, the Reynolds number ReD0 based on the outlet diameter naturally
changes with the orifice diameter. Therefore, the observations made in
Sec. IVB can a priori be a diameter-based Reynolds number effect.
This section presents measurements carried out at a fixed diameter-
based Reynolds number of ReD0 ¼ 5080, hence adapting the target
exhaust speed to the change in diameter (Fig. 7 and Table III).

As predicted by the classic slug-flow model, the rate of produc-
tion of circulation increases as the orifice diameter decreases because
the exhaust speed is increasing inversely proportionally to the diame-
ter [Fig. 7(a)]. Again, the rate of production is underestimated by the
classic slug-flow model, as shown in Fig. 7(d), with a measured rate
reaching 2.3 times the predicted value for D0=Dp ¼ 0:625, 0.500, and
0.375. Modeling the contraction of the flow using Von Mises’20 results
for a 90�-angle plate enables to accurately estimate the production of
circulation with a maximum error of 10% for D0=Dp ¼ 0:375 and
D0=Dp ¼ 0:875 (Table III).

As shown in Figs. 7(b) and 7(e), the production of hydrodynamic
impulse increases with decreasing orifice-to-tube diameter ratio to
reach a value 50% larger than the classic slug-flow model value at a
ratio of D0=Dp ¼ 0:625. For lower diameter ratios of D0=Dp ¼ 0:500
and 0.375, the production rate decreases; normalized by the classic
slug-flow model, the rate of production of impulse displays the same
trend as in Sec. IVB (see the fifth column of Tables II and III). The
modified slug-flow model, however, reduces the discrepancy with a
maximum difference of 15% for D0=Dp ¼ 0:375.

Finally, the kinetic energy increases with decreasing diameter
ratio as the exhaust speed increase inversely proportionally to the
decrease in orifice diameter [Fig. 7(c)]. Again, as in Sec. IVB, the cor-
rected slug-flow model provides a superior estimate of the production
rate, with differences of less than 25% for all orifice cases, compared to
an underestimation reaching 120% with the classic slug-flow model
[Fig. 7(f) and Table III].

To summarize, the results obtained at a fixed diameter-based
Reynolds number demonstrate the ability of the modified slug-flow
model to estimate the rate of production of the invariants of the
motion independently of the Reynolds number, whether one uses the
definition of the Reynolds number in terms of the stroke length or in
terms of the exhaust diameter (see Tables II and III). Furthermore,
although not shown here for the sake of brevity, measurements were
taken at a fixed orifice-to-tube diameter of D0=Dp ¼ 0:500 and
exhaust speeds ranging from 75 to 500mm s�1. These measurements
are made available in Limbourg.32 Again, the modified slug-flow
model was found to accurately estimate the production of the invari-
ants of the motion, hence demonstrating the validity and the applica-
bility of the model over a wide range of Reynolds numbers.

V. INITIAL OFFSET

After a short transient period, the invariants of the motion follow
a linear trend which can be fitted at large times, say greater than 1 s,
and from which the value of the quantities at the origin can be found.
For instance, the measured circulation is expressed as C ¼ mCt þ pC,
where mC is the production rate, labeled dC=dt, and shown in
Figs. 6(d) and 7(d), and Cp � pC is the initial offset. The results are

shown as circle symbols in Fig. 8 for a fixed exhaust speed and in Fig.
9 for a fixed diameter-based Reynolds number. Interestingly, the circu-
lation offset increases linearly as the orifice-to-tube diameter ratio
increases, even though the nozzle case is observed to have a lower off-
set value [Figs. 8(a) and 9(a), circles]. This trend in the measured cir-
culation offset suggests that for small D0=Dp ratios, a negative offset in
circulation would be obtained. This is attributed to the time delay
observed in the exhaust velocity, estimated to be the duration at which
the centerline velocity reaches 95% of its final value, marked in Fig. 3
by color-coded symbols. After modifying the time origin to incorpo-
rate this delay, the measured circulation offsets are shifted vertically as
shown in Figs. 8(a) and 9(a) (triangles). In the limit of a zero orifice-
to-tube diameter ratio, the circulation offset would now be zero, which
is physically consistent.

This offset may have different origins. Krueger1,10–12 proposed an
overpressure correction to the slug-flow model in order to take into
account the rise of pressure during the unsteady forcing. Making use
of the vorticity transport equation for incompressible flows, Krueger10

expressed the additional circulation due to overpressure as Cp

¼ U0D0=c where c ¼ p for knife-edged nozzles and c¼ 2 for orifices
in an infinite plane. In short, the unsteady contribution of pressure
was related to the velocity potential at the centerline by the unsteady
Bernoulli equation. As a first estimation, the velocity potential of a
translating circular disk was used, leading to the coefficient c ¼ p
[blue dotted line in Figs. 8(a) and 9(a)]. For an orifice in an infinitely
large vessel, i.e., for D0=Dp ! 0, the analytical expression of the veloc-
ity potential at the exhaust was calculated and its value at the center-
line was found close to c¼ 2 (Ref. 34) [red dotted line in Figs. 8(a)
and 9(a)]. Note that because Krueger’s1,10–12 model is only valid in the
limit of zero orifice-to-tube diameter ratios, the red dotted curves are
shown up to D0=Dp ¼ 0:3 in Figs. 8(a) and 9(a). The overpressure
correction of Krueger,10 which assumes a step increase in circulation
at time zero, is shown in its original form in Figs. 8(a) and 9(a) as blue
dotted and red dotted lines. The model is also adapted to account for
the contraction of the flow by replacing the exhaust quantities (sub-
script 0) by the contracted quantities (subscript ?). The impact of the
contraction coefficient on the overpressure correction is observed to
be relatively small [blue solid and red solid lines in Figs. 8(a) and 9(a)].

The initial offsets for the hydrodynamic impulse and kinetic
energy hover about zero (circles). When accounting for the time delay,
the offset of these two quantities becomes substantial, especially for
orifice-to-tube diameter ratios close to 1 (triangles). Most importantly,
the offset increases in a power-law fashion, with a zero offset for a zero
diameter ratio. Following the line of argument of Krueger,1 the initial
offset in impulse and energy can be explained by the overpressure
effect and estimated by the same model. Making use of the velocity
potential of a translating disk the additional hydrodynamic impulse is
estimated by Ip ¼ 1=6qD3

0U0 and the kinetic energy by
Ep ¼ 1=6qD3

0U
2
0 . The results are presented in Figs. 8(b) and 9(b) and

in Figs. 8(c) and 9(c) as blue dotted lines. Krueger’s1,10–12 model accu-
rately accounts for the “power-law-like” increase in the impulse offset
and energy offset for increasing orifice-to-tube diameter ratios, but
clearly underpredicts their absolute value. Again, it is possible to incor-
porate the contraction of the flow to the model of Krueger,1,10–12

which is shown in Figs. 8 and 9 as blue solid lines. The impact of the
contraction coefficient on the overpressure hydrodynamic impulse
and kinetic energy is again minimal.
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Note that the approach of Krueger10,12 to model the velocity
potential at the exhaust at the very first instant by the one of a translat-
ing circular disk was motivated by the observation that the front of the
material surface during the rapid flow initiation is nearly flat.
Nevertheless, this model assumes the presence of a velocity magnitude
maximum at the edges, which is also observed in orifice starting flows
(Fig. 4), and one may argue that this model is also applicable to the
cases of orifices. Overall, the overpressure model of Krueger1 predicts
the general increase in the initial offset for increasing orifice-to-tube
diameter ratios, although it does not account for the ratio per se, but
only for the exhaust diameter. As such, Krueger’s model1,10–12 cannot
differentiate straight nozzles of increasing exhaust diameter from orifi-
ces of increasing orifice-to-tube diameter ratios.

It is clear from Figs. 8(a) and 9(a) that the presence of an orifice
increases the contribution of overpressure on circulation by forcing
the flow to converge through the orifice. The model of Krueger1,10–12

is derived from first principles and seems to be an appropriate meth-
odology for estimating the initial offset in the circulation, the hydrody-
namic impulse, and the kinetic energy by means of the velocity
potential:

Cp ¼ �/ð0; 0Þ; (15)

Ip ¼ �2pq
ð
r
/ð0; rÞr dr; (16)

Ep ¼ �2pq
ð
r
/ð0; rÞU0ðrÞr dr ¼ U0Ip: (17)

Using the velocity potential of a translating circular disk for esti-
mating the velocity potential at the exhaust of the orifice seems to be
too coarse of an approach. For this reason, computations of the veloc-
ity potential inside the tube were undertaken using the software
FreeFEM v4.7.35 Finding the velocity potential in the tube comes back
to solving the Laplace equationr2/ ¼ 0 with pure Neumann bound-
ary conditions. Specifically, the problem was solved on a domain rep-
resenting the top half of the tube, of radius Dp=2 and length 1:5Dp.
The left inlet boundary condition was chosen to be the piston speed
@/=@x ¼ Up ¼ ðD0=DpÞ2U0 and the right outlet boundary condition
was chosen to be the prescribed exhaust speed @/=@x ¼ U0. The no-
penetration condition @/=@r ¼ 0 was imposed on the outer wall and
at the centerline, as well as on the orifice plate covering the exhaust
@/=@x ¼ 0. Because the Laplace equation subject to pure Neumann
boundary conditions is only solvable up to a constant, the condition of
having a zero velocity potential on the centerline at the farthest
upstream location was enforced (red circle in Fig. 10). This condition
is motivated by the fact that, in the case of an infinitely large vessel, the
velocity potential reduces to zero at infinity upstream.10 Moreover,
this condition selects a velocity potential from the infinite number of
solutions in the same manner for all orifice-to-tube diameter ratios,

FIG. 8. Offset of the dimensional invariants of the motion; (a) circulation, (b) hydrodynamic impulse, and (c) Kinetic energy as a function of the orifice-to-diameter ratio, mea-
sured for a fixed exhaust speed. Triangles show the value of the offset after taking into account the time delay. The numerical results are shown as black lines. Overpressure
model of Krueger;1,10–12 blue dotted line Cp ¼ U0D0=p; Ip ¼ 1=6qD3

0U0; Ep ¼ 1=6qD3
0U

2
0 ; blue solid line Cp ¼ U?D?=p; Ip ¼ 1=6qD3

?U?; Ep ¼ 1=6qD3
?U

2
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FIG. 9. Offset of the dimensional invariants of the motion; (a) circulation, (b) hydrodynamic impulse, and (c) kinetic energy as a function of the orifice-to-diameter ratio, measured for a
fixed diameter-based Reynolds number. Triangles show the value of the offset after taking into account the time delay. The numerical results are shown as black lines. Overpressure
model of Krueger;1,10–12 blue dotted line Cp ¼ U0D0=p; Ip ¼ 1=6qD3
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2
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Cp ¼ U0D0=2; red solid line Cp ¼ U?D?=2.
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whether they are formed at a fixed exhaust speed or at a fixed
diameter-based Reynolds number.

Figure 10 shows the numerical result for an orifice-to-tube diam-
eter ratio of D0=Dp ¼ 0:25 and the overpressure circulation, hydrody-
namic impulse, and kinetic energy, computed following the method of
Krueger,1,10–12 are shown as black solid lines in Fig. 8 for a fixed
exhaust speed and Fig. 9 for a fixed diameter-based Reynolds number.
The numerical results show overall good agreement with the experi-
ment after correcting for the time delay (triangles). In particular, the
model accurately predicts the increase in the overpressure circulation
for a fixed target exhaust speed, and the decrease in the quantity for
a fixed diameter-based Reynolds number, and this for increasing ori-
fice-to-tube diameter ratios [Figs. 8(a) and 9(a)]. Besides, the numeri-
cal results also predict the increase in impulse and energy offsets for
increasing D0=Dp. More precisely, the numerical results accurately
estimate the values of the overpressure hydrodynamic impulse, and
this for both fixed exhaust speed and fixed diameter-based Reynolds
number, the differences in the prediction being the highest for the noz-
zle case [Figs. 8(b) and 9(b)]. Finally, modeling the potential flow
inside the tube accurately predicts the trend of the increasing kinetic
energy initial offset, but fails at estimating the exact values. In particu-
lar, for a fixed target exhaust speed, the numerical results show a
“power-law-like” increase whereas for a fixed diameter-based
Reynolds number, the steady increase in the overpressure kinetic
energy is well accounted for [Figs. 8(c) and 9(c)].

For completeness, the computations were undertaken for cone
angles of 50� and 70�. As shown in Figs. 8 and 9, the influence of the
cone angle h on the overpressure quantities remains minimal for all
orifice-to-tube diameter ratios and one may use the 90� curves to esti-
mate the overpressure circulation, hydrodynamic impulse, and kinetic
energy.

VI. CONCLUDING REMARKS

The influence of the orifice-to-tube diameter ratio D0=Dp was
investigated experimentally using time-resolved PIV, and this for both
a fixed unit-stroke-based Reynolds number ReLm¼1, i.e., fixed exhaust
speed U0, and a fixed diameter-based Reynolds number ReD0 . In addi-
tion to the invariants of the motion, namely, the circulation, the
hydrodynamic impulse, and the kinetic energy, the velocity profile was
measured at the exhaust, as well as the time history of the exhaust cen-
terline speed. A clear difference between the nozzle geometry and the
orifice geometry was observed; whereas in the nozzle case the velocity
profile remains flat in the radial direction with a negligible radial com-
ponent of velocity, the velocity profile of orifice geometries presents
extrema close to the edge of the orifice, owing to both the axial and
radial components of velocity. These extrema are as pronounced as
the orifice-to-tube diameter ratio is small. Besides, the time history of
the centerline velocity shows a timescale associated with the initial
ramp-up of the flow speed, the time delay being as large as the ratio
D0=Dp tends to 1. This delay was estimated as the duration required
to reach 95% of the final value.

Furthermore, snapshots of the vorticity field obtained at a fixed
exhaust-based non-dimensional time of t� ¼ U0t=D0 ¼ 3:0 and a
fixed corrected non-dimensional time of T� ¼ U?t=D? ¼ 3:0 show
that non-dimensionalizing time by the corrected speed and diameter
enables to collapse the dynamics of the leading vortex ring. This con-
firms the findings of Limbourg and Nedić31 who showed that the

modified slug-flow model can be used to unify the formation number of
orifice-generated vortex rings with the one found for nozzles36

Also, the slug-flow model was revisited to account for the contrac-
tion of the flow in the case of orifices. The two-dimensional model of
Von Mises20 for a jet exiting a conical slot in a channel was used to pre-
dict the contraction coefficient of the present three-dimensional axisym-
metric starting jet. The modified slug-flow model was proved to
accurately estimate the rate of production of the invariants of the
motion with discrepancies of less than 10% for the circulation. Most
importantly, for a fixed target exhaust speed, the model suggests the
existence of a maximum in the rate of production of hydrodynamic
impulse and kinetic energy which weakly depends on the cone angle.
Experimentally, this maximum was not reached, but an increased pro-
duction of energy was still observed for D0=Dp ¼ 0:875. This paves the
way for further investigations to find the most efficient way of forming
starting jets.

Moreover, the validity of the model was tested against the exhaust
speed, the diameter-based Reynolds number being kept constant at
5080 in a second set of measurements. It was shown that the modified
slug-flow model accurately predicts the production rate of the invari-
ants of the motion, and this independently of the target exhaust speed,
at least in the range of speed considered in this study. To summarize,
the present correction to the slug-flow model enables to accurately
estimate the rate of production of the invariants of the motion for dif-
ferent orifice-to-tube diameter ratios, and appends to the classic slug-
flow model for parallel starting jets. Additionally, it can be used to
model the influence of the radial component of velocity on the pro-
duction rate of the integrals of the motion by tuning the cone angle
depending on the size of the recirculation region upstream of the ori-
fice plate.

Finally, the overpressure correction of Krueger1,10–12 was used to
estimate the positive offset at t¼ 0 in the production of the invariants of
the motion. This simple model, based on potential theory, enabled us to
predict the increase in the additional overpressure invariants of themotion
as the ratio D0=Dp gets closer to 1. The model of Krueger,1,10–12 which
assumes the starting flow to behave as a circular translating disk, was
extended to account for the different orifice-to-tube diameter ratios.
Numerical computations were undertaken to estimate the velocity poten-
tial at the orifice exit of a pipe. Results showed overall good agreement
with the experimental measurements corrected for the time delay.

FIG. 10. Domain of computation and numerical solution for an orifice-to-tube diam-
eter ratio of D0=Dp ¼ 0:25 and a cone angle of h ¼ 90�.
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