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Abstract

Research on human cognitive bias has a long tradition, and with the recent ad-

vancements in deep learning, we present a novel problem of whether machines

make mistakes similar to human judgmental biases. It is worth noting that recent

theoretical developments have revealed that even the most advanced deep learning

algorithms have not acquired human-level intelligence, and causality is deemed to

be a revolutionary power due to the fact that causal reasoning is a built-in capac-

ity for humans. In this thesis, we perform a comprehensive literature review of

causal inference methods in the structural and functional model framework as well

as existing causal approaches to explaining both human judgmental bias and deep

network vulnerability. As a preliminary investigation into this new area, our study

is not sufficient to establish the connection between human bias and machine bias.

We hope this thesis provides a good starting point for further interdisciplinary

research on this problem.
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Résumé

La recherche sur le biais cognitif humain est une longue tradition, et avec les

récentes avancées sur l’apprentissage profond, on vous présente un nouveau prob-

lème, celui où les machines font des erreurs de façon similaire au biais du jugement

humain. Il est intéressant de noter que les récents développements théoriques ont

révélé que même les algorithmes d’apprentissage profond les plus avancés n’ont

pas obtenus un niveau d’intelligence égal à l’humain, et le fondement est voué à

devenir un pouvoir révolutionnaire dû au fait que le raisonnement causal est une

capacité innée de l’humain. Dans cette thèse, nous faisons un résumé compréhensif

littéraire des méthodes d’inférences causales dans les systèmes de modèles struc-

turel et fonctionnel, comme les approches causales existantes, pour expliquer le

biais du jugement humain ainsi que la profonde vulnérabilité du réseau. Comme

c’est une enquête préliminaire dans ce nouveau domaine, notre étude n’est pas

suffisante pour établir le rapport entre le biais humain et le biais machinal. Nous

espérons que cette thèse vous fournira un bon point de départ pour une recherche

interdisciplinaire plus approfondit sur ce problème.
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Chapter 1

Introduction

In their theoretical work and pioneering investigation on cognitive psychology, No-

bel Laureate Daniel Kahneman and his collaborator Amos Tversky introduce the

notion of cognitive bias [KT72] based on numerous replicable empirical experi-

ments they conducted. By definition, a cognitive bias is a systematic error that

stems from heuristics and affects people’s judgments. When making decisions un-

der uncertainty, the events of interest are often perceived using terms such as odds

or subjective probabilities. Accordingly, the human brain relies on prior beliefs

to create "mental shortcuts" [Kah11], which reduce the complicated task of cal-

culating probabilities into making intuitive estimations. However, Kahneman and

Tversky [TK74] show that the probabilistic judgments produced with the aid of

these "mental shortcuts" are often biased and are sometimes clear violations to

the logical world.

Inspired by Kahneman and Tversky’s work on human cognitive bias, we are

interested in the bias made by machine learning (ML) algorithms and its potential

connections with human cognitive bias. Among various ML models, the design

of artificial neural networks (ANNs) was directly motivated by the architecture

of biological neural networks in human brains. Although ANNs were initially

created to learn and make decisions in a human-like manner, the resemblance
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between biological and artificial neural networks is rather limited, especially after

the change of focus of ANNs into solving task-oriented problems. Moreover, no

study to date has elucidated how human brains work or how general intelligence

systems reason and learn with high efficiency. Yet, to a certain extent, an ANN

still captures the internal representation and functionality of biological neurons

[Kri15], such as establishing connections between neurons, transferring signals

and triggering neurons with activation functions. Therefore, for this study, it is of

particular interest to investigate neural network models and the potential biases

they lead to.

Recent advances in machine computational power have significantly boosted

the development in deep learning (DL). For the past five years there has been

a rapid rise in the use of DL models to perform complex predictive tasks, and

deep neural networks (DNNs) often outperform classic ML algorithms in many

domains such as image recognition, natural language processing (NLP) and chess

game. Nevertheless, one of the main issues regarding our knowledge of DNNs is

a lack of understanding of how machines come to certain decisions. Much like

biological neural networks, DNN models are perceived as black boxes that don’t

exhibit human-comprehensible decision rules, and the relative influence of an input

feature on the model prediction remains hidden under the network architecture.

This black-box issue is often described as the "interpretability" problem [GBY+18]

in ML community, and it makes troubleshooting and investigating machine biases

even more perplexing. In his critique of explainable artificial intelligence (XAI),

Miller [Mil19] defines the interpretability of a ML model as "the degree to which

an observer can understand the cause of a decision". This points us towards the

interpretation of ML models from a causal perspective. It is believed by many that

causality is the key to explaining the vulnerability of both human and machine

intelligence.

This thesis begins by reviewing some seminal works in cognitive psychology
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and discussing recent advances in causality. These studies motivate us to exam-

ine machine learning bias from the causal perspective and to identify underlying

connections between machine learning bias and human cognitive bias. In each

of the following chapters, we investigate various aspects of causal inference and

machine learning. It is worth pointing out that these theoretical components are

not explicitly connected to each other, but we believe that together they facilitate

studies on machine learning bias.

This chapter is organized as follows. In Section 1.1, we review some typical

psychological studies on human cognitive bias from a probabilistic point of view

and discuss the existing causal explanations for cognitive bias. In Section 1.2 we

introduce existing studies on causality conducted by researchers from two different

domains and compare the different aspects they focus on. Section 1.3 gives a brief

overview of the future of machine learning that is powered by theories of causation.

1.1 Selective Literature Review of the Probabilis-

tic Aspects of Human Judgmental Bias

This section introduces some typical judgmental biases in human cognition. The

pervasiveness of these illusions reveals that humans are not good at making in-

tuitive statistical judgments. In their ground-breaking paper of 1974 [TK74],

Tversky and Kahneman note that even professional researchers with years of ex-

perience are victims of cognitive bias. Although knowledge and heuristics endow

people with the ability to think and reason rationally, they are relatively weak in

reducing systematic errors when people make decisions under uncertainty.
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1.1.1 The Problem of Small Sample Size

One typical bias observed by Kahneman and Tversky [TK74] is people’s "insensi-

tivity to sample size". When a survey is conducted, it is always crucial to have a

sample size that is sufficiently representative of the population of interest. Kah-

neman [Kah11] provides an example considering the "small schools movement"

in the U.S. funded by the Gates Foundation. Results from many related studies

[Mei02][HS03] indicate that students in smaller schools perform better than stu-

dents in larger schools. However, Wainer et al. [WZ06] point out that most of the

worst-performing schools are also small, and the causal relationship between small

schools and better performance is illusory. This example shows that small samples

are more likely to produce extreme results in more than one direction, and it is

simply because small samples are often not representative of the population.

This problem of small sample size is often overlooked by people, as suggested

by a number of psychological experiments in [TK74], and Kahneman highlights

two underlying factors: one is that people tend to be oblivious to the credibility

of information and focus on only the content; the other is that people often try

to explain observed patterns using cause-and-effect relationships, while in many

cases causation should not be applied.

1.1.2 Irregularity and Randomness

Another illusion stemming from people’s causal thinking is the expected associa-

tion between irregularity and randomness. The formal definition of randomness

has been proved to be difficult [Nic02][Bel99], but when we observe a finite se-

quence of events that seems non-uniform, it is intuitive to infer to some extent

that the events are random. On the other hand, upon observing a sequence that

did not seem random, participants in Kahneman et al.’s experiments [TK74] found

it difficult to accept that the events were drawn from a random process.

4



A very famous example regarding this intuitive belief is the gambler’s fallacy,

also known as the Monte Carlo fallacy. In 1913, during a roulette game at the

Monte Carlo casino in Monaco, the ball fell in black 26 times consecutively. Within

this sequence of uniform results, lots of gamblers believed that the next outcome

would be red, since the previous outcomes seemed extremely unbalanced. However,

their misconception of randomness led to them losing more money.

Based on simple calculation and the assumption that each row is independent,

it is straightforward to verify that both sequences of events in Table 1.1 have the

same probability, which is 0.510, but only the first sequence seems random. This

seemingly balanced sequence implies local representativeness of a random process,

and the local randomness is often directly perceived as randomness of the entire

process [Nic02]. The participating gamblers failed to realize that no matter what

the previous outcomes looked like, the next draw will be completely independent

of the previous outcomes, and the colour red and black will always have the same

probability to occur.

Balanced B R B B R B R R B R
Unbalanced B B B B B B B B B B

Table 1.1: Table to "balanced" and "unbalanced" outcomes (B: black, R: red)

To relate the above example to probability theory, when analyzing a random

process, it is worth noting that irregularity and true randomness in outcomes need

to be viewed in different scopes. By the law of large numbers, the overall outcome

of a random process will get infinitely close to a balanced result, hence the tendency

of irregularity is ensured. What leads to the above cognitive bias, as explained

by the law of small numbers [Bel99], is the belief that this irregularity should

be observed in small samples as well. For small samples, extreme distributions

are more likely to be observed (Section 1.1.1), and the unbalanced pattern in the

outcomes of a random process should not be surprising at all.
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As a counterpart of the gambler’s fallacy, the hot-hand fallacy was first intro-

duced by Gilovich, Vallone and Tversky [GVT85] in 1985. It originates from these

researchers’ investigation into the well-known phenomenon of "streak shooting" in

basketball games. Essentially, a player who has scored continually within a short

period of time are often considered to be on a streak. As a result, this player will

receive more pass from his teammates and more defence power from the opposing

team, since everyone believes that there is a good chance that this player will score

again shortly. Interestingly, unlike the gambler’s fallacy, in which people predict

that future outcomes will be inverted due to the previous extreme results, people

in this case believe that the prior pattern will continue, and it is again difficult for

them to accept that the overall process is random.

Contrary to many basketball coaches who believe the hot-hand phenomenon,

Gilovich’s team [GVT85] argue that the hot-hand phenomenon is merely a cogni-

tive illusion and another example of human’s intuition leading to the misconcep-

tion of local representativeness. In an effort to interpret the coexistence of these

two conceivably contradictory fallacies, Gilovich et al. [GVT85] suggest that the

false belief of the law of small numbers explains them both. In the gambler’s

fallacy, people expect the outcomes to be balanced as randomness is presumed

for the entire process. While in the hot-hand fallacy, there is no assumption of

randomness. By assuming the local representativeness of the streaking pattern, it

becomes intuitive for people to conclude that the scorings are dependent and are

hence no longer from a random process.

More recent evidence indicate, however, that the explanation using the law

of small numbers is not conclusive. In his book on rational thinking, Gigerenzer

[Gig00] shows that one single rule is not adequate for explaining two contradicting

phenomena at the same time. This has led authors such as Ayton [AF04], Burns

[Bur01] and Huber [HKS10] to investigate into the difference between the gambler’s

fallacy and the hot-hand fallacy. A more acceptable explanation has been proposed
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[AF04] that, people tend to overestimate the influence of human performance. This

conclusion by Ayton better acknowledges the intuitive belief of causal relationship

between the player’s performance and the hot streak, and it also helps address the

limitation of the representativeness conjecture.

1.1.3 Base Rate Fallacy

Another paradoxical result that has been outlined in Kahneman and Tversky’s

preliminary work [TK74] is the base rate fallacy. The authors’ experiments [ibid.,

Section 1.1] have revealed that when trying to assess the probabilities of two

disjoint events, subjects who were not given extra information tend to utilize the

base rates of the two events properly. However, when given extra information

that potentially supports one of the two events, subjects perceived this event to

be more likely, even when the base rates suggested otherwise.

In Kahneman and Tversky’s experiment, participants were given the following

information [Kah11]:

An individual has been described by a neighbor as follows: "Steve is very

shy and withdrawn, invariably helpful but with little interest in people or

in the world of reality. A meek and tidy soul, he has a need for order and

structure, and a passion for detail."

Is Steve more likely to be a librarian or a farmer?a

aSource: Thinking, Fast and Slow by Daniel Kahneman

Their result shows that almost all the participants chose "librarian", although

the number of male farmers is more than 20 times larger than that of male librar-

ians in the U.S.. The description of Steve matches the stereotype of a librarian,

and its predictive power is obviously overestimated by the participants. The au-

thors suggest that the prior probability, or the base rate, is neglected as a result

of applying the representativeness heuristic.
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To articulate how the base rate is intuitively neglected, a toy probabilistic

problem can be constructed from the above experiment under certain assump-

tions. Suppose that 2% of the U.S. male population are farmers, while librarians

constitute 0.1% of the male population. Among the librarians, 80% of them are

shy and withdrawn, hence the stereotypical impression of the personality of li-

brarians prevails. On the other hand, we assume that 50% of the farmers have

similar introverted personalities described in the former statement. For those who

are neither a farmer nor a librarian, 50% of them have the described personali-

ties. These assumptions are consistent with the fact that the description is closely

associated with a stereotypical librarian, but not a farmer.

Let F be the event that Steve is a farmer, let L be the event that Steve is a

librarian, and let N be the event that Steve is neither a farmer nor a librarian.

Let stereotype be the event that Steve is said to have a stereotypical personality

of a librarian as described in the previous statement.

Integrating the assumptions we have that,

P (F ) = 0.02 P (L) = 0.001 P (N) = 0.979

P (stereotype | F ) = 0.5 P (stereotype | L) = 0.8 P (stereotype | N) = 0.5

Using Bayes’ Theorem,

P (F | stereotype)

=
P (stereotype | F )× P (F )

P (stereotype | F )× P (F ) + P (stereotype | L)× P (L) + P (stereotype | N)× P (N)

=
0.5× 0.02

0.5× 0.02 + 0.8× 0.001 + 0.5× 0.979

≈ 0.020
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P (L | stereotype)

=
P (stereotype | L)× P (L)

P (stereotype | F )× P (F ) + P (stereotype | L)× P (L) + P (stereotype | N)× P (N)

=
0.8× 0.001

0.5× 0.02 + 0.8× 0.001 + 0.5× 0.979

≈ 0.0016

The above calculation shows that given Steve has the stereotypical personalities

of a librarian, it is much more likely that Steve is a farmer than a librarian. More

recent evidence [GH95][HLHG00] suggest that people make more reasonable infer-

ence when provided with probabilistic information such as P(L), P(stereotype|L)

instead of textual information. This provides a possible solution to address the

base rate neglect problem in human judgments.

1.1.4 Conjunction Fallacy

Let A and B be two events, which are not necessarily independent. According to

the laws of probability, we have

P (A ∩B) = P (A)× P (B | A) (1.1)

P (A ∩B) = P (B)× P (A | B)

Since 0 6 P (B | A) 6 1 and 0 6 P (A | B) 6 1, it is straightforward to verify that

P (A ∩B) 6 P (A)

P (A ∩B) 6 P (B)

These two simple inequalities essentially state that the probability of a con-

junction of two events cannot exceed the probability of either single event. How-
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ever, this conjunction rule is easily violated when people make predictions under

intuitive heuristics, and even professionalists have fallen for this trap.

In [TK83] Kahneman and Tversky performed a study involving 115 profes-

sional analysts during the Second International Congress on Forecasting in 1982.

The participants were divided into two groups. One group was asked to predict

the probability that the U.S. and the Soviet Union will terminate their diplo-

matic relations soon. The other group was asked to assess the probability that

Russia will invade Poland and that the U.S. and the Soviet Union will terminate

their diplomatic relations soon. Despite that the resulting probabilities from both

groups were low, the estimates from the second group were significantly higher

than those of the first group, with p-value < 0.01.

It is clear that the conjunctive event from the second group has a lower prob-

ability, i.e.,

P (Russia invades Poland ∩ Suspension of diplomatic relations)

6 P (Suspension of diplomatic relations).

Several possible explanations concerning this error have been provided by Kah-

neman and Tversky [TK83]. First, the event that Russia invades Poland was

perceived as a possible cause of the termination of diplomatic relations. This

enhanced the causal and correlational beliefs [JAR82][CC67] of the conjunctive

event, which therefore appeared to be more representative than any single event.

Second, by adopting the availability heuristic [Kah11], people often retrieve with

ease the probability of a conditional event P (effect | cause) rather than the

joint probability P (cause ∩ effect), while it can be easily verified from (1.1) that

P (cause ∩ effect) 6 P (effect | cause). Consequently, P (effect | cause) has an

anchoring effect [Kah11] on the estimation of P (cause∩ effect), causing the latter

to be erroneously high.
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1.1.5 Causal Interpretations of Human Judgmental Biases

Following their initial work on human judgmental bias, Tversky and Kahneman

[TK77] further investigate into their heuristics and biases theory from a causal

perspective. They note that people’s judgments of probabilities are somewhat

affected by causal reasoning. In particular, their subsequent psychological experi-

ments on base rate neglect [TK15] show that data with more causal significance are

usually overweighed by human subjects, and that [ibid., p. 57] "causal inferences

have greater efficacy than diagnostic inferences". However, there is still consid-

erable ambiguity in their research with regard to how causal interpretations are

associated with probabilistic inference. The authors claim that people merely rely

on causality as an intuitive heuristic rather than a rational inference paradigm.

A more recent study by Krynski and Tenenbaum from MIT [KT07] provides

an alternative framework to interpret people’s judgments under uncertainty. In

contrast to Kahneman and Tversky’s heuristics and biases view that is based

on traditional statistical inference, Krynski and Tenenbaum suggest the use of

Pearl’s structural causal model [Pea00] for the representation of people’s cognitive

inference and decision process. Their study is motivated by the fact that tradi-

tional statistical inference only works well in an ideal case with a small number

of variables and sufficient amounts of observational data, while most real-world

judgmental tasks involve many causally related variables with a limited number

of observations. Several experiments have been conducted by Krynski and Tenen-

baum [KT07], and the results suggest that people’s judgments under uncertainty

are guided by the causal models they construct intuitively. More importantly, the

authors’ experiments reveal that erroneous probabilistic judgments often occur

when the statistics provided in psychological experiments do not fit in the intu-

itive causal models conceived by subjects, and that these judgmental biases can be

reduced if a clear mapping from the statistics to the underlying causal structure
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is available to people.

1.2 Comparative Analysis of Research Interests in

Current Literatures on Causation

To establish the connection between human cognitive bias and machine bias, it

is of interest to investigate whether machines have similar learning and reasoning

mechanisms as humans do. In Section 1.1.5, it has been demonstrated that humans

are able to think and reason in terms of cause and effect by instinct, while most of

the popular ML algorithms are mere exploitations of data correlation. In recent

years, there are growing appeals for applying causal inference to ML studies. In

fact, a number of works [Pea19][Sch19] have suggested that causal modeling has

potential to take ML developments to the next level. Before proceeding to details

of some important work that have been strongly endorsed, we first examine the

difference between the main themes of research on causation in two communities

that are both intrigued by the implementation of causality in their own fields of

specialization.

Statisticians, econometricians and epidemiologists

On the one hand, statisticians, econometricians and medical researchers are

generally interested in distinguishing between statistical association and causation.

In his philosophical analysis of causality, Hume [Hum00][Hum03] suggested three

criteria for examining a presumed causal relationship, including contiguity in space

and time, temporal precedence (the cause must precede the effect in time) and

covariation. Although these criteria have been proved to be insufficient [Hol86],

they remain one of the early contributions to the probabilistic theories of causation.

One of the first systematic studies on the connection between probabilistic cor-

relation and causation was carried out in 1956 by Reichenbach [Rei56]. Reichen-
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bach proposed the Common Cause Principle (RCCP), which states that if two

variables X and Y are statistically correlated, that is, if P (X∩Y ) 6= P (X) ·P (Y ),

then either there exists a causal relationship between X and Y , or there exists

another variable Z, which is a common cause of X and Y . The RCCP highlights

the difficulty of distinguishing causation from association (statistical dependence)

in the bivariate case, as it cannot be determined from the observational data of X

and Y whether X causes Y , Y causes X, or there exists a third variable Z causing

X and Y [Sch19]. Based on the RCCP, Reichenbach introduced [ibid., p. 157] the

notion called screening off. Basically, a variable Z is said to screen X off from Y

if P (Y | X,Z) = P (Y | Z). Inspired by the second law of thermodynamics, Re-

ichenbach proposed [Hit97] three sufficient necessary conditions for inferring that

an event X causes Y : (i) temporal precedence of X, (ii) X and Y are positively

associated, i.e. P (Y | X) > P (Y | ¬X), (iii) there does not exist an event Z

preceding or happening simultaneously with X, such that Z screens X off from

Y .

In the same decade of 1950s, there has been a well-known debate among re-

searchers on whether associational data can provide evidence for the claim that

smoking causes lung cancer, most notably, the studies by Doll and Hill [DH50]

[DH52] and the corresponding criticisms from Fisher [Fis58a] [Fis58b]. It has

later been pointed out in Holland’s comment [Hol86] that Fisher’s argument is an

example of "confusion between attributes and causes", as Fisher hypothesized a

certain genetic attribute that causes the smoking behaviour among subjects. In a

major contribution to public health studies following his initial work on the causal

relationship between smoking and lung cancer, Hill [Hil55] [Hil65] highlights nine

criteria for identifying causations from associations in observational studies, al-

though there has been some disagreement regarding whether Hill’s criteria are

applicable in certain areas [PG06] [War09].

In econometrics, Granger [Gra69] suggests a probabilistic notion of causation
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for time-series data, while the use of time-series data is simply equivalent to the

temporal precedence condition in Hume’s and Reichenbach’s theories. In Cox’s

analysis on causality [Cox92], Granger’s notion of causation is considered as "a

statistical association that cannot be explained as in fact a dependence on other

features". Holland [Hol86] restates Granger’s causation as a more generalized

notion based on conditional independence, that X is a Granger cause of Y if Y is

dependent on X when conditioned on another variable Z. Holland also points out

the limitation of Granger’s causation, that a Granger cause can become a spurious

cause if Z is changed.

It is worth noting that most statisticians and econometricians who have been

investigating causation based on associational data assume that the precursors are

already known in the data, and the temporal precedence condition must therefore

be satisfied to infer causation in traditional statistical analysis. This limitation

has been addressed by Pearl and Verma [PV95], who have presented the inductive

causation (IC) algorithm. Based on the model minimality assumptions powered

by the principle of Occam’s razor, the IC algorithm can identify the simplest pat-

tern of conditional independences from observational data, and hence distinguish

causal relationships from spurious associations with no need of extra chronological

information.

Computer scientists and machine learning researchers

On the other hand, computer scientists, especially experts in machine learn-

ing, have been investigating whether causal inference can be implemented in ma-

chine algorithms. Their studies on causality have greater emphasis on determining

whether X causes Y or Y causes X, that is, the problem of identifying causal di-

rections from empirical data pairs. This has been viewed by many as a rather

challenging problem, because there is no third variable that provides information

on conditional independences. Various approaches have been proposed to solve
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this problem by finding patterns of asymmetry between the two variables.

First, many researchers have suggested the use of functional causal models

(FCMs) to simulate the underlying data-generating process from cause to effect.

Essentially, an FCM is formulated as [GZS19]

Y = f(X, ε;θ), (1.2)

where the effect Y is generated from a function f ∈ F of the cause X and a noise

term ε that is independent of X, and θ is the set of parameters of f . By fitting

the FCM to both candidate directions while assuming no hidden confounders, the

direction that admits the independence between X and ε is the plausible causal di-

rection. To ensure the uniqueness of the independence ε ⊥⊥ X in only one direction,

Hyvärinen et al. [HP99] highlight that further assumptions need to be made on f .

Shimuzu [SHHK06] proposes an acyclic model (LiNGAM) Y = f(X) + ε, which

assumes f is linear and ε is an additive noise term that has a non-Gaussian dis-

tribution with non-zero variance. Shimuzu’s LiNGAM approach does not require

the assumption of temporal precedence, and it guarantees the uniqueness of causal

direction based on Hyvärinen’s independent component analysis theory [Hyv99].

However, there exist causal relationships that are nonlinear in the physical world,

and the linear additive noise models do not have the flexibility to model these

data generating processes. Zhang and Hyvärinen [ZH10] [ZH12] develop a more

generalizable model called post-nonlinear (PNL) causal model Y = f2(f1(X) + ε),

which assumes f1 is nonlinear, and f2 is nonlinear and invertible. Another ap-

proach that accounts for nonlinear causal relationships is the nonlinear additive

noise model Y = f(X) + ε developed by Hoyer et al. [HJM+09]. It is considered

a special case of the PNL model since it is equivalent to the PNL model with f2

being an identity function. Stegle et al. [SJZ+10] propose a novel approach called

probabilistic latent variable model. Their model Y = f(X, ε) assumes that the
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error term ε is unobserved, is not necessarily additive and has a standard normal

distribution. Furthermore, Stegle’s latent variable model does not make assump-

tions on the function f , and it instead uses a non-parametric Bayesian approach

to determine the plausible causal direction. All of the aforementioned approaches

are designed for continuous-valued observational data, while Peters et al. [PJS11]

show that additive noise models can also be applied to discrete data, in which X

and Y either are integer values or have finitely many states.

Second, an increasing number of studies have found that algorithmic informa-

tion theory (Kolmogorov complexity) can help reveal the asymmetry between X

and Y as well. Particularly, in [JS10] and [LJ13] the authors hypothesize that a

necessary condition for X causing Y is that PX and PY |X are algorithmically in-

dependent. In other words, the information on PX does not lower the algorithmic

entropy of PY |X and vice versa. Based on this notion of algorithmic independence,

Janzing et al. [JMZ+12] propose the information-geometric method called IGCI

for determining if X causes Y or vice versa. The IGCI algorithm is designed for

the deterministic case (Y = f(X)) without a noise term, and f is assumed to be

bijective with no explicit assumption on its class. Vreeken [Vre15] reported on a

data-centric method called ERGO, which detects the asymmetry between X and

Y by approximating Kolmogorov complexities from data, and the author shows

[ibid., Section 6.2] that ERGO also works well whenX and Y are high-dimensional.

1.3 Causality and the Future of Machine Learning

The past decade has witnessed numerous breakthroughs in the field of machine

learning (ML), whereas researchers’ opinions on whether machines can achieve

human-level intelligence are divided. In an effort to closely investigate the intel-

ligence that a cognitive system possesses, Pearl [Pea19] summarizes a conceptual

causal framework with 3 levels classified by different capabilities of answering
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queries. Pearl [ibid., Section 2] suggests that a system is capable of answering

questions from level i (i = 1, 2, 3) only if it has acquired information from level j,

where j > i.

Figure 1.1: From Figure 1 of [Pea19] (permission to reuse in a thesis obtained from the
Licensed Content Publisher ACM(Association for Computing Machinery)), the three-
level causal hierarchy.

The bottom level of Pearl’s framework is Association, which involves only

observational data. The queries essentially focus on inference of statistical rela-

tionships using the language of conditional probabilities, such as P (y | x) = p.

Pearl [PM18] argues that ML algorithms, including most of the well-developed

deep neural networks in recent years, are still restricted to this level. Admittedly,

adding more layers to a neural network enhances the model flexibility, so that the

model can fit more complicated nonlinear data. However, the learning process is

solely data-centric. No matter how complex the deep learning architecture is, only

correlational relationships can be learned from the passively collected data.

The second level is Intervention. It enables inference based on experimental

data with the help of the do-operator do(·) proposed by Pearl [Pea00]. A typi-
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cal expression used at this level is P (y | do(x), z) [Pea19], which represents the

probability of Y = y given that X is set to the value x by external intervention

and an observation Z = z is obtained afterwards. Clearly, without information on

designed manipulations, the associational observations from the first level cannot

help answer interventional queries, no matter how much observational data are

available.

The top and most powerful level is Counterfactuals. Pearl [Pea19] claims that

a cognitive system at this level is capable of imagining a fictitious world consisting

of events that have not happened in reality. A representative counterfactual query

is P (yx | x′, y′) [ibid., Section 2], which represents the probability that Y = y

would have happened if X = x had been observed, while in reality there are only

observations of Y = y′ and X = x′. Contrary to those at the Intervention level

where data can be obtained by taking actions or changing the current settings,

systems at the Counterfactuals level do not benefit from previous data or infor-

mation to be obtained in the future. Instead, Pearl suggests [ibid., Section 2] that

retrospective reasoning and the semantics of Structural Causal Models (SCM) are

the essential components for solving counterfactual problems. In Section 2.1, a

detailed investigation into SCM is provided.

Having established that the above causal framework is directional and hierar-

chical, Pearl [PM18] points out that contemporary machine intelligence unfortu-

nately remains at the bottom level of association. Most machines operate based

on observational data and the logic of probability, while humans are capable of

comprehending all three levels of causality in Figure 1.1. Despite numerous break-

throughs in deep learning in the past two decades, the underlying limitations of ML

algorithms have been discussed by a great number of authors in literature. First,

the existing algorithms have many problems in robustness. A typical and nearly

omnipresent problem of overfitting reveals the very nature of any ML models, that

a model may have a perfect fit to the existing samples, while it generalizes poorly
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to unseen data points. Admittedly, techniques such as k-fold cross validation

[MT88] and regularization [Tik63] can reduce overfitting, and they seem to pro-

vide evidence that machines are not merely optimizing with the current instances.

However, these learning systems fail to rise up to the next level of intervention,

as they make no inference for the unseen data. Second, many well developed ML

models remain black boxes [RSG16][SWM17] and lack interpretability [Rud19].

This impediment has caused problems in criminal justice [ALMK16], healthcare

systems [VBC18] and many other fields, where potentially biased results are hard

to troubleshoot due to people’s lack of understanding of the decision-making pro-

cess of machine algorithms. Lastly, machines are generally designed to understand

correlational relationships but not causal ones. In his overview of concerns for deep

learning, Marcus [Mar18] mentions an example regarding the possible association

between height and vocabulary across a general children’s population. ML models

can easily learn a positive correlation between these two variables, since a child

normally grows in height while also acquires new vocabulary. However, if a person

is to investigate into the causal relationships between height and vocabulary, it

is obvious that neither of them acts as a cause of the other. Instead, a latent

variable, which is also a confounding factor in this example, can be concluded. A

straightforward assignment of this latent variable is a child’s physical and mental

growth, as it affects both height and vocabulary. Most machines, nevertheless,

cannot distinguish cause from effect, let alone conceive a latent variable that acts

as a common cause of the two observables. This limitation of identifying cause

and effect is believed to be a major barrier for machines to achieve human-level

intelligence [PM18][LST15]. In Pearl’s exact words [Pea18], "human-level AI can-

not emerge solely from model-blind learning machines; it requires the symbiotic

collaboration of data and models". Within the next decade, theories of causal

inference are destined to become an important component in machine learning

studies.
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In the next chapter, we present a comprehensive literature review of causal

inference and its applications that are pertinent to machine learning problems.

Chapter 3 examines a particular example of selection bias in medical studies and

discusses the limitation of a typical causal discovery model. In Chapter 4, we first

look at machine learning bias and review some well-known adversarial attacks on

deep neural networks. This is followed by a review of some most recent causal

approaches to improving the robustness of machine learning algorithms as well as

a discussion on the possible connections between machine and human intelligence.
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Chapter 2

Selective Literature Review of

Structural Causal Modelling

Methodologies

It is generally accepted that the gold standard for inferring cause and effect rela-

tionships is Randomized Controlled Trials (RCT). In an RCT, subjects are divided

into different groups of an experiment at random, and the effect of the experimen-

tal intervention is assessed in the end. The randomization process aims to reduce

many types of bias that are usually not controllable in other study designs, and

more generally, to reduce confounding. Yet, it is often not feasible or ethical to

conduct certain types of experiments. For example, recall the debate between

Fisher and Hill et al. (Section 1.2), if a research group hypothesizes that smoking

causes lung cancer, they cannot simply conduct an RCT and assign a group of

subjects to smoke for several years. On the other hand, it is more viable to collect

observational data on subjects with past or present smoking history, and the sub-

jects’ medical records can be abstracted to analyze the effect of their smoking be-

haviour. As Cochran [Coc72] points out in his commentary, causal inference based

on observational data aims to approximate the process of randomized trials. In
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scientific researches nowadays, inferring causation from purely observational data

has become a central task, and many recent efforts have been devoted to tackle

the corresponding issues, such as confounding.

The main objective for this chapter is to present a comprehensive review of

causal inference methodologies under the structural causal model (SCM) frame-

work.

2.1 Introduction

Suppose for an observational study involving n variables X1, ..., Xn, the joint dis-

tribution PX = PX1,...,Xn is observed. An SCM is a nonparametric model that

summarizes causal relationships of these n variables into a graphical model. Some

preliminary work [SGS93] on SCMs was carried out in the mid 1990s, and Pearl

[Pea00] was among the first to formalize causality using the causal Bayesian net-

work [Pea95] he proposed.

Definition 2.1 (Structural causal models). A structural causal model (SCM)

M := (X,N,F) contains a set F of d structural functions

Xj = fj(PAj, Nj), j = 1, ..., d, (2.1)

where X is the set of observable variables in the model, PAj ⊆ {X1, ..., Xd}\{Xj}

is the set of parents of Xj, and N = N1, ..., Nd is the set of the hidden noise terms

that accounts for any unexplained factors influencing the observable variables.

The set N contains exogenous variables, which means they are not caused by

any observable variables in the model. The variables in the set X are endogenous,

meaning they must be a descendant of at least one exogenous variable. For any

endogenous variable Xj in an SCM, it is possible that there are multiple contribut-

ing exogenous variables. Thus, a noise variable Nj can be a vector of variables
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Nj = 〈Y1, ..., Yk〉, given that Y1, ..., Yk are all the unobserved causes of Xj.

For every SCM, a graphical causal model can be constructed by translating

the functions in F into nodes and edges. To discuss the properties of graphical

causal models in detail, it is imperative to first introduce some basic terminologies

associated with graphs.

A graph G = (V, E) contains an index set V := {1, ..., d} denoting the d nodes

that correspond to random variables X = (X1, ..., Xd), and E ⊆ V2 is a set of

edges between the nodes, where (v, v) /∈ E for any v ∈ V. Let i and j be two

nodes in a graph G, i.e. i ∈ V, j ∈ V, then i and j are adjacent nodes if either

(i, j) ∈ E or (j, i) ∈ E . The edge between two adjacent nodes i and j is called

an undirected edge if (i, j) ∈ E and (j, i) ∈ E . Accordingly, a directed edge is an

edge between two adjacent nodes that is not undirected. A directed path is a path

between two nodes i1 and im if ik → ik+1 for all k < m. If a graph G has no

directed path from any node i ∈ V to the node i itself, then G is called an acyclic

graph. An acyclic graph G is called a directed acyclic graph (DAG) if all its edges

are directed.

For the graphical causal model G of any SCM, if we assume that there is no

bidirectional causal relationships (e.g. poverty and lack of education can poten-

tially cause each other), then it is straightforward to verify that G is a DAG. First,

G is directed since the edges denote causal relationships, which by definition are

directional from cause to effect. Second, since a variable cannot be the cause of

itself, G cannot contain any cycles, then G must be acyclic.

Example 2.1. Consider an SCM M with X = (X1, X2, X3, X4, X5, X6) and F:

X1 := f1(X3, N1), X2 := f2(N2)

X3 := f3(X2, N3), X4 := f4(X3, X6, N4)

X5 := f5(X4, X6, N5), X6 := f6(N6)
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Figure 2.1: Corresponding causal diagram G of Example 2.1.

The associated graphical model G is shown in figure 2.1. The noise variables

N1, ..., N6 are not included in the model, as they remain unmeasurable factors,

and we simply accept their existence without investigating their further causes.

An arrow pointing from Xi to Xj indicates that Xi is a direct cause of Xj. The

assignments in F are also called structural equations.

SCMs are especially important in causal reasoning, as they can be utilized in

all three levels of the causal hierarchy (Figure 1.1), while common probabilistic

models only entail observational distributions from the level of Association.

Furthermore, an observed joint distribution is not sufficient to identify an

SCM, since an SCM contains interventional and counterfactual information, while

a joint distribution only contains associational information (Section 1.3). For ob-

servational studies involving multivariate data, a fundamental problem of causal

discovery is to infer causal relationships among the variables based on purely obser-

vational data. Using the representation of SCM, this inference task is equivalent to

identifying the underlying causal DAG G based on the observed joint distribution

PX, and it relies on a fundamental assumption called causal Markov condition.

Postulate 2.1 (Local Markov condition). A DAG G with n variables X1, ..., Xn

as nodes is considered as a possible causal structure only if every variable Xj is

statistically independent of its non-descendants when conditioned on the parent

variable(s) of Xj in G, i.e. for every node Xj, we have Xj ⊥⊥ Xk | PAj for every
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Xk that is not a descendant of Xj.

In [Lau96] the author shows that this assumption is equivalent to the factor-

ization of the joint distribution PX into n conditionals:

PX(X1, ..., Xn) =
n∏
j=1

P (Xj | PAj) (2.2)

Consider a DAG G = (V, E) with n variables X1, ..., Xn ∈ V as nodes. A node

Xi is defined as a collider when there exist Xj, Xk ∈ V such that Xj → Xi ← Xk;

otherwise Xi is called a non-collider. A path is blocked by a set of variables Z if

there exists a variable Xi on this path such that either Xi is a collider with no

descendants in Z, or Xi is a non-collider in Z.

Definition 2.2 (d-separation). Given that X,Y,Z are three disjoint sets of vari-

ables, X and Y are said to be d-separated by Z (denoted as X ⊥ Y | Z) if the

paths between any Xi ∈ X and any Xj ∈ Y are all blocked by Z.

Based on the notion of d-separation, Lauritzen [Lau96] shows that the causal

Markov condition is equivalent to the global Markov condition:

Postulate 2.2 (Global Markov condition). Given that X, Y and Z are three

disjoint sets of variables, if X and Y are d-separated by Z, then X and Y are

conditionally independent given Z, i.e. X ⊥⊥ Y | Z.

Clearly, the causal Markov condition determines whether a DAG G can be

admitted as a plausible causal hypothesis for the observed joint distribution, but

it does not guarantee the uniqueness of the DAG. Therefore, more assumptions

are needed to limit the number of DAGs that are acceptable as possible causal

hypotheses.

A joint distribution and a DAG are said to be faithful to one another if the

collection of conditional independences in the joint distribution correspond exactly
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to the set of d-separation properties in the DAG, i.e. for any three disjoint sets

of variables X, Y and Z, we have that X ⊥⊥ Y | Z ⇔ X ⊥ Y | Z. Accord-

ingly, Spirtes et al. [SGS93] formalize another common assumption called causal

faithfulness.

Postulate 2.3 (Causal faithfulness condition). The true causal DAG for a joint

distribution PX is faithful to PX.

The DAGs that are faithful to the observed joint distribution are said to be

Markov equivalent, and they form a Markov equivalence class. The causal Markov

condition, together with the causal faithfulness condition, facilitate the inference

from the conditional independences obtained from observational data to the true

causal relationships of the variables. Many widely used causal discovery algorithms

based on the notion of conditional independence haven been developed, and they

rely on the two aforementioned assumptions to identify the Markov equivalence

class as plausible hypotheses of the true causal structure. We refer readers to

Section 5.4 of [SGS+01] for details on popular approaches such as the PC algorithm

and the Fast Causal Inference (FCI) algorithm.

2.2 Applications of Structural Causal Modelling

Pertinent to Machine Learning

In this section, we demonstrate the role of causality in facilitating statistical studies

that are pertinent to machine learning. We present a comprehensive review of how

causal inference and the SCM framework help address the limitations of current

machine learning approaches. It is believed that [Sch19][Pea18] the transition

from model-blind to model-based algorithms is the key to achieve human-level

performance in machines.
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2.2.1 Simpson’s Paradox

This section reviews a peculiar phenomenon called Simpson’s Paradox and how

it is later considered resolved. Basically, it has been discovered that the asso-

ciation between two variables X and Y that appears in a total population can

be inverted when the data points are segregated into subpopulations based on a

third variable Z. Similarly, an association between X and Y that is consistent in

the segregated groups can be reversed in the combined data. This phenomenon

is named after the statistician E. H. Simpson, who was the first to articulate this

issue in his paper [Sim51] in 1951. This was before the major advancements in

causality over the past few decades, and Simpson, along with many other statisti-

cians [Bly72][BFH75][LN+81] of the 20th century, concluded that it is not possible

to determine the true association in the paradox based on statistical data alone,

and they suggested the use of non-statistical information as well as the notion of

"exchangeability" [ibid., Section 3] to help make the correct judgment.

In an attempt to investigate sex discrimination in graduate admissions at the

University of California, Berkeley, Bickel et al. [BHO75] illustrates a typical ex-

ample of Simpson’s paradox. Table 2.1 shows the admissions data we construct

loosely based on their study. Suppose that there are two departments in a univer-

sity, one is Mathematics and the other is History. Upon looking at the total counts

for men and women, one may conclude that the university is indeed discriminating

in favour of men. However, the acceptance rates for women are higher than men

in each department, and the data table containing these reversals appears to be

"paradoxical".

In the context of human psychology, this paradoxical surprise partly arises from

people’s intuitive belief that associations between the ratios in the divided groups

should be close to the associations between the ratios of sums in the total popula-

tion. To describe it explicitly in arithmetic form, suppose that a1, a2, b1, b2, c1, c2, d1
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Applicants Gender Admit Deny Acceptance Rate
Department of
Mathematics

Men 100 120 0.455
Women 20 20 0.5

Department of
History

Men 20 80 0.2
Women 100 300 0.25

Total Men 120 200 0.375
Women 120 320 0.273

Table 2.1: Synthetic admissions data by gender and field of study.

and d2 are natural numbers. Upon observing the two associations a1
b1
< c1

d1
and

a2
b2
< c2

d2
, one would intuitively expect that a1+a2

b1+b2
< c1+c2

d1+d2
. This is in fact an invalid

conclusion, because the associations between the ratios in the partitioned data

do not guarantee the same regularities in the aggregated population. Specifically,

the ratios are compared equivalently in each subgroup, but they contribute dif-

ferent weights when the data are pooled. Yet, more explanations are required for

people’s strong intuition that such sign reversals are impossible, and philosophers

postulate that human’s intrinsic causal reasoning should be considered apart from

the statistical interpretations. The sure-thing principle in decision theory pro-

posed by Savage [Sav72] is an example that demonstrates people’s causal reason-

ing, and Pearl develops a corrected version of the principle [Pea00] based on the

mathematical expression called the do(·) operator [Pea95]. In terms of definition,

P (Y | do(x)) differs from the observational P (Y | x) in that the former is the

distribution of Y given that we artificially set the value of X to x, while the latter

is for when we observe that X takes value x.

Theorem 2.2.1 (Causal Sure-Thing Principle [PM18]). If both P (Y | do(X), Z) >

P (Y | do(¬X), Z) and P (Y | do(X),¬Z) > P (Y | do(¬X),¬Z) hold, then it must

be true that P (Y | do(X)) > P (Y | do(¬(X)), given that the action on X does not

affect the values of Z.

In other words, if an action do(X) does not affect the distribution of the parti-

tions, our intuitive conclusion is that it is impossible to observe Simpson’s reversal
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in the data. If the action do(X) does influence the distribution of Z, then one

should admit the possibility of Simpson’s reversal. More formally, using the no-

tions in graphical causal models, Pearl [Pea00] presents the back-door criterion to

determine in which scenarios we should accept that a Simpson’s reversal is possi-

ble. Suppose that we construct a DAG G that represents our belief of the causal

structure.

Definition 2.3 (Back-door criterion (ibid,. p 79)). Given a DAG G, a set of vari-

ables Z is said to satisfy the back-door criterion with respect to a pair of variables

(X, Y ) if (i): Z does not contain any variable that is a descendant of X; and (ii):

for any path p that ends with an arrow into X, p is blocked by Z.

If there exists a set of variables Z that satisfies the back-door criterion with

respect to (X, Y ), Pearl [ibid., Theorem 3.3.2] shows that X has an identifiable

causal effect on Y .

For the admissions data example in Table 2.1, we can denote the gender of an

applicant as X, the application status as Y , and the choice of department as Z.

The key to accepting the reversal in the data is the fact that women tend to apply

to departments that are generally difficult to get in, regardless of one’s gender (i.e.

the department of history with relatively low acceptance rates for both men and

women). This creates an arrow from X to Z in the DAG. The causal diagram can

be represented as follows.

Figure 2.2: Example causal DAG of Table 2.1.

Using the back-door criterion, it is clear that neither of the two paths between
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X and Y in the DAG is a back-door path that needs to be blocked. In other

words, there is no spurious paths that requires Z to be conditioned on, and we

should conclude that the true association lies in the combined data. Given a

causal DAG, the back-door criterion indicates whether it is possible to observe

a Simpson’s reversal and identifies the true association from the aggregated and

partitioned data, while traditional statistical methods are insufficient to articulate

the reasoning behind such reversal.

2.2.2 Confounding and Deconfounding

One of the main challenges concerning observational studies is confounding, where

a latent variable Z is the common cause of both treatment X and outcome Y .

This hidden Z can lead to spurious associations between X and Y , and therefore

it must be conditioned on when estimating the effect of X on Y . By definition,

for a data-generating causal model M in which the distribution Y is dependent

on X, the effect of X on Y is not confounded if and only if P (y | x) = P (y |

do(x)), where P (y | do(x)) denotes the causal effect of X on Y , expressed by the

probability of Y = y when we manually manipulate X to have the value x. In

other words, the two variables are not confounded if their observed association is

equivalent to the association obtained from the intervention do(x). To calculate

P (y | do(x)), one can synthesize the intervention that sets the value of X to

x. This is natural for experimental studies but difficult for observational studies.

Under the SCM framework, however, the causal effect can be estimated using

a graphical method derived by Pearl [Pea95] based on the back-door criterion

(Section2.2.1). Essentially, the author shows [ibid., Theorem 3.3] that for any

set of variables Z in a DAG G, if Z satisfies the back-door criterion with respect

to (X, Y ), then the identification of the causal effect of X on Y is possible,

and the following adjustment formula can be applied to estimate the conditional
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interventional distribution.

P (y | do(x)) =
∑
z∈Z

P (y | x, z)P (z) (2.3)

On the other hand, if G does not contain any set of variables that satisfies

the back-door criterion for (X, Y ), Pearl [ibid., Section 3.2] shows that the causal

effect of X on Y can still be computed based on the following front-door criterion.

Definition 2.4 (Front-door criterion). Given a DAG G, a set of variables Z is

said to satisfy the front-door criterion with respect to a pair of variables (X, Y ) if

(i): for any directed path p from X to Y , there exists a variable in Z that lies in p;

(ii): G does not contain any back-door path from X to Z; (iii): for any back-door

path p from Z to Y , p is blocked by X.

If there exists a set of variables Z in the DAG G that satisfies the front-door

criterion with respect to (X, Y ), and P (x, z) 6= 0 for any z ∈ Z, then the author

shows [ibid., Theorem 3.5] that there is an identifiable causal effect of X on Y ,

and the front-door adjustment formula can estimate P (y | do(x)):

P (y | do(x)) =
∑
z∈Z

P (z | x)
∑
x′

P (y | x′, z)P (x′). (2.4)

Both the back-door and front-door conditions make the estimation of causal

effects possible using purely observational data, yet they require relatively restric-

tive assumptions for the structure of a causal model. A more powerful tool for

computing the causal effect P (y | do(x)) has been proposed by Pearl [Pea00] called

do-calculus. It is a collection of inference rules that derives from the interventional

conditionals P (y | do(x)) and produces purely associational probabilities. Con-

sider a DAG G = (V, E) in which X, Y, Z,W ∈ V are any four disjoint sets of

observable variables. The author defines a subgraph GX [ibid., Section 3.4.1] as

the resulting graph by removing from G any directed edges from Xi to Vj, where
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Xi ∈ X and Vj ∈ V \ X. Similarly, GX refers to the subgraph that removes all

the incoming arrows toward the nodes in X. The inference rules of do-calculus

proposed by Pearl [ibid., Theorem 3.5] are as follows.

Rule 1 Insertion/deletion of observations

Consider the subgraph GX , if Y and Z are conditionally independent

given X and W , then

P (y | do(x), z, w) = P (y | do(x), w).

Rule 2 Action/observation exchange

Consider the subgraph GXZ, if Y and Z are conditionally independent

given X and W , then

P (y | do(x), do(z), w) = P (y | do(x), z, w).

Rule 3 Insertion/deletion of actions

Consider the subgraph GX,Z(W ), where Z(W ) denotes the set of variables

in Z that are not ancestors of any Wi ∈ W in GX , if Y and Z are

conditionally independent given X and W , then

P (y | do(x), do(z), w) = P (y | do(x), w).

For any causal effect that is identifiable, Shpitser et al. [SP12] and Huang et al.

[HV12] have proved that the rules of do-calculus are sufficient to produce the equiv-

alent probabilistic expressions without the interventional conditions. Nevertheless,

it has not been determined whether any arbitrary conditional interventional dis-

tribution has an equivalent representation based on probabilities at the level of

Association (Section 1.3). Therefore, the rules of do-calculus are not necessarily

overshadowing the aforementioned graphical methods based on the back-door and

front-door criteria.
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2.2.3 Counterfactual Reasoning

At the top level of the causal hierarchy (Figure 1.1), counterfactual inference re-

quires a cognitive system to imagine a parallel world in which an event A happened,

while in reality it was ¬A that happened. This type of retrospective thinking is

natural for human, but it cannot be interpreted by machines from the Association

level, nor can it be clearly expressed mathematically. Recent advances in causal

inference have provided a potential solution to address this limitation in machines

by the regimentation of counterfactual reasoning in the SCM paradigm.

Based on an SCM, a counterfactual query normally involves two endogenous

variables X and Y , with the objective of computing P (Yx(u) = y | z), which

denotes the probability of the hypothetical event that given that we have observed

the evidence Z = z, Y would have been y (in situation u) if X were set to x

by the action do(x). The situation u refers to a particular realization of the

exogenous variables U (i.e., the noise variables N in Section 2.1). In addition to

the basic notations of SCM, Pearl [Pea00] introduces several terms under the same

framework to help describe the effect of a local action.

First, note that the potential response Yx(u) [ibid., Definition 7.1.4] considers

the local action do(X = x). To express the hypothetical effect of the action do(x),

the author defines [ibid., Definition 7.1.2] a sub-model Mx = 〈V,U,Fx〉 based on

the originally given SCM M , where U is the set of exogenous variables, V is the

set of endogenous variables that contains X, and Fx = {fi : Vi /∈ X} ∪ {X = x}.

Second, the tuple 〈M,P (u)〉 is defined [ibid., Definition 7.1.6] as the probabilistic

causal model, where P (u) is the distribution of the background variable U .

With these terminologies in mind, the author proposes [ibid., Theorem 7.1.7]

a three-step procedure to evaluate the counterfactual query P (Yx(u) = y | z) of a

model 〈M,P (u)〉:

1. Compute P (u | z) to replace the original distribution P (u).
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2. Substitute the model M with the sub-model Mx with the action do(X = x)

imposed.

3. Compute P (y) using the new sub-model 〈Mx, P (u | z)〉.

However, a practical challenge arises from the first step, where the exogenous

variables in U are no longer mutually independent when conditioned on the ob-

served evidence z, and these dependencies need to be explicitly described in the

joint distribution of U given z. Balke et al. [BP11] propose the so-called twin

network algorithm that overcomes this challenge.

Consider an SCMwith n endogenous variablesX1, ..., Xn, letX∗ = {X∗1 , ..., X∗d}

denote the corresponding variables in the counterfactual world. The algorithm

[ibid., Secion 5] constructs a Bayesian network that combines both the real world

and the counterfactual one. Both worlds contain the same set of exogenous vari-

ables U, since any U ∈ U exists prior to the forced action do(X = x) and is

not affected by the hypothetical change. The algorithm [ibid., Secion 5] can be

summarized as follows:

1. Construct a Bayesian network 〈G,P〉, where G is a DAG with 3n nodes V =

{X1, ..., Xn} ∪ {X∗1 , ..., X∗n} ∪ {U1, ..., Un}. G contains all the original edges

of the real world variables {X1, ..., Xn} as well as {U1, ..., Un}, and an arrow

is created for every X∗i → X∗j such that Xi is a parent of Xj. Additionally,

create an arrow for every Ui → X∗i . The set of conditional probability

distributions P is defined based on the structural functions from the original

SCM. In particular, P (xi | PAX(xi), Ui) = 1 if xi = fi(PAX(xi), Ui) and 0

otherwise. For the counterfactual part, let P (x∗i | PAX∗(x
∗
i ), Ui) = P (xi |

PAX(xi), Ui) if xi = x∗i and PAX(xi) = PAX∗(x
∗
i ). The distributions of the

background variables {U1, ..., Un} are the same as in the original SCM.

2. Assign values to the respective real-world variables for the observed evidence

xobs.
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3. Now, to impose a local action do(X∗k = x̂k
∗), simply modify the DAG struc-

ture of the counterfactual part by deleting all the incoming arrows to X∗k

and assigning X∗k with the value x̂k∗.

4. The final output of the counterfactual query P (Xi,x̂k
∗(u) = xi | xobs) is

produced by performing the standard belief propagation algorithm [Pea82]

on the twin network.

Balke et al. [BP11] show that although the distributions of the noise variables

remain undetermined, the twin network algorithm can produce a unique output if

a proper distribution can be assumed for the uncertain noise terms; if not, there

exists a bounded solution based on convex optimization [BP93].
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Chapter 3

Selection Bias and Causation

3.1 Introduction

This chapter examines the information-geometric causal inference (IGCI) method

proposed by Janzing et al. [JMZ+12] in the presence of selection bias. The IGCI

algorithm is designed to infer causal directions from bivariate observational data.

That is, suppose we have the observational distribution PX,Y , where X and Y are

presumably correlated, we would like to infer whether X causes Y or Y causes

X. Suppose the ground truth is that X causes Y , IGCI identifies asymmetric

patterns between cause and effect by examining independence. In particular, it

is assumed [ibid., Section 1] in IGCI that the marginal distribution of cause and

the conditional distribution of effect given cause are independent of each other.

In this case, the marginal distribution PX should not give any information about

the relationship between Y and X and vice versa. However, when certain types

of selection bias exist in the observational data, the aforementioned independence

assumption may no longer hold, and the interpretation of causation using IGCI

can thus be misleading.

In the next section we present a type of selection bias that is observed in

medical studies. In particular, we focus on a nationwide epidemiological study of
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dementia conducted as part of the Canadian Study of Health and Aging (CSHA)

and discuss the bias that arose in the prevalent cohort survival data collected in

the study. Section 3.3 gives a review of the information-geometric approach to

inferring causation. Based on the case study of CSHA, we highlight that IGCI

can be misleading in situations where the observational data are not representative

of the population of interest.

3.2 Sampling Bias and Induced Covariate Bias: A

Case Study of Prevalent Cohort Survival Data

In an effort to investigate the prevalence of dementia in the elderly, the CSHA was

initiated in 1991. The researchers of the CSHA had two main objectives: first,

they would like to estimate the survivor function of people with dementia measured

from the onset of the disease; second, they aimed to identify the variables that are

correlated with the survival time. The first phase of the study (CSHA-1) began

in 1991, during which 821 subjects with existing dementia were recruited across

Canada into the study and underwent a detailed clinical examination. These

subjects each was diagnosed with exactly one of the three types of dementia,

namely, probable Alzheimer’s disease, possible Alzheimer’s disease and vascular

dementia. After the initial cross-sectional study, a follow-up had been conducted

for 5 years. In 1996, the second phase of the CSHA (CSHA-2) started, and the

remaining 21.9% of the original 821 subjects who were still alive were re-evaluated

in a similar way as the subjects of CSHA-1. For each of the 821 subjects, a survival

time can be calculated by the difference between the date of onset and the date of

death or right censoring. Additional data collected from the subjects include age

at onset of dementia, sex, education level and classification of dementia.

However, an issue of selection bias has been noticed by Wolfson et al. when
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examining the data collected in the CSHA. In their seminal article, Wolfson et

al. [WWA+01] point out that the median survival time following the onset of

dementia is overestimated if not adjusted for the bias of the sample. Essentially,

the observational data of survival times are left-truncated in the CSHA, meaning

the dates at onset of the recruited subjects are all prior to the cross-sectional

study in 1991. The prevalent cohort survival data of the CSHA are thus not

from a representative sample of the elderly Canadian population, among which

the dementia patients with longer survival times have a higher chance of being

recruited into the study. If we invoke the stationary assumption that the incidence

rate of dementia has not changed over time, the left-truncated survival data are

defined to be "length-biased" [Wan91].

Apart from the issue of length-bias on the response variable, Bergeron et al.

[BAW08] highlight another issue concerning the covariate bias that is induced by

the length-biased survival data in the CSHA. The authors point out that the sam-

pling distributions of predictor variables such as age at onset and sex are influenced

by the length-biased survival times. Suppose that Y is a random variable that

denotes the true survival time, with mean µ(θ) and probability density function

fY (y). Let X be a covariate, then Bergeron et al. [ibid., Section 3.1] show that

for a subject from the observed sample,

fB(x;θ) =
µ(x;θ)fX(x)

µ(θ)
(3.1)

is the biased density of X, where µ(θ) = E(E(Y | X)) = E(Y ), µ(x;θ) =

E(Y | x), and fX(x) is the true density of X from the population of interest.

Therefore, the sampling distribution of the covariate X carries information about

the relationship between X and the response variable Y . In particular, since

the dementia patients with longer survival times have a higher chance of being

recruited into the prevalent cohort study, the observed values of the covariates are
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biased towards these long-term survivors as well.

3.3 Information-Geometric Causal Inference (IGCI)

Approach and Its Practical Issues

It is clear that the conventional causal inference methods developed by Spirtes et

al. [SGS93] and Pearl [Pea00] are based on the notion of conditional independence

and thus work with at least three observables. These methods also require certain

assumptions of temporal precedence and Gaussianity to construct the graphical

causal model. In this section, we focus on causal discovery involving only two

variables and discuss a fundamental problem, which is inferring causal directions

between two purely observational variables.

Let X and Y be two i.i.d. random variables with a joint distribution PX,Y , and

the observational data contain n pairs of values (x1, y1), ..., (xn, yn). The problem

boils down to inferring whether X causes Y (X −→ Y ) or vice versa. It should be

noted that this problem is challenging yet rather simplified, as it assumes [MPJ+16]

that X 6⊥⊥ Y , and that there is no hidden confounding variable, no selection bias,

and no bidirectional causation between X and Y .

Supposing that the prevalent cohort survival data of the CSHA are used for the

study of causation, one possible objective would be to infer whether a covariate

X causes the response Y , for example, whether age at onset of dementia causes

the survival time. The functional causal models for bivariate data can be applied

naturally to solve this problem. The Information-Geometric Causal Inference

(IGCI) developed by Janzing et al. [JMZ+12] aims to address a rather restrictive

case in which Y = f(X) with f being bijective. Here we review the IGCI method

and discuss its practical issues when applied to biased data.

The main idea of IGCI is based on the following postulate proposed by Schölkopf
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et al. [SJP+12].

Postulate 3.1 (Independent causal mechanisms principle). Within the same sys-

tem of variables, the conditional distribution of each variable given its causes is

generated by an autonomous module that is independent of every other module of

the system.

In the bivariate case, this means that if X causes Y , then the marginal dis-

tribution PX and the conditional distribution PY |X contain no information about

each other. In [JMZ+12] this notion of independence is formalized in terms of

algorithmic information (i.e. Kolmogorov complexity). Recall in Section 2.1 the

set of d conditional distributions PXj |PAj
form the free parameters of the corre-

sponding DAG G. In [LJ13] the authors postulate that if G and these conditional

densities represent the true causal structure, then the shortest description of the

observed joint distribution PX1,...,Xd
can be expressed by distinct descriptions of

the d conditional distributions PXj |PAj
. In other words, the observed joint distri-

bution PX1,...,Xd
satisfies the so-called Algorithmic Independence of Conditionals

[JS10]:

K(PX1,...,Xd
)

+
=

d∑
j=1

K(PXj |PAj
), (3.2)

where K(·) is the Kolmogorov complexity, and K(PXj |PAj
) denotes the shortest

length of the program that computes PXj |PAj
using the values xj and paj. For

the bivariate case, given that X causes Y , then 3.2 can be interpreted as that

PY |X and PX are independent causal mechanisms, and that they generate values

of y and x separately. Subsequently, the asymmetric pattern between X and Y

becomes obvious from the dependence between PY and PX|Y .

In the deterministic case, Mooij et al. [MPJ+16] point out that PY |X contains

the same information as f , since P (Y = y | X = x) can be expressed as the

indicator function 1y=f(x). Therefore, the major assumption of IGCI is equivalent

to saying that PX has no information about f and vice versa given that X causes
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Y .

For any specific inference problem, IGCI requires a reference probability distri-

bution to be specified to restrict the range ofX and Y , so that IGCI can be applied

to a well-defined problem. The authors [ibid., Section 3.1] suggest two choices, one

is the uniform distribution on an interval [a, b] if X and Y are theoretically within

this interval; the other is the Gaussian distribution if the ranges are unbounded.

Let uX and uY be such reference densities for X and Y respectively, and let h(x)

be any function that expresses certain properties of the conditional PY |X at X = x.

Given that X causes Y , then the functions h and pX/uX are uncorrelated, and

the authors show [JMZ+12] that

∫
h(x)p(x)dx ≈

∫
h(x)uX(x)dx. (3.3)

Definition 3.1 (Kullback-Leibler divergence [KL51]). If p and q are two densities

and p is absolutely continuous with respect to q, the Kullback-Leibler divergence

(or relative entropy) from q to p is defined by

D(p ‖ q) :=

∫
log

p(x)

q(x)
p(x)dx ≥ 0. (3.4)

Let uf be the image of uX under f , and let uf−1 denote the image of uY under

f−1. Regarding the choice of h in 3.3, the authors [MPJ+16] consider the function

log(uf−1/uX), which is only related to f and the reference densities but not pX ,

and it is therefore postulated [ibid., Principle 2] that

∫
log

uf−1(x)

uX(x)
p(x)dx ≈

∫
log

uf−1(x)

uX(x)
uX(x)dx. (3.5)

Janzing et al. [JMZ+12] then formalize the IGCI method by defining

CX−→Y :=

∫
log

uf−1(x)

uX(x)
p(x)dx. (3.6)
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When X causes Y , by Definition 3.1 and 3.5 we have that

CX−→Y ≈
∫
log

uf−1(x)

uX(x)
uX(x)dx

= −
∫
log

uX(x)

uf−1(x)
uX(x)dx

=: −D(uX ‖ uf−1) ≤ 0.

Therefore, the IGCI approach by Janzing et al. [JMZ+12] infers that X causes

Y whenever CX−→Y < 0 and that Y causes X if CX−→Y > 0.

Consider the prevalent cohort survival data from the CSHA, in an ideal case,

we can examine if a covariate is a cause of the survival time by estimating CX−→Y

from IGCI. However, this approach requires that the marginal distribution of cause

gives no information about the functional relationship f between cause and effect,

and in Section 3.2 we have discussed that the covariates are correlated with the

mean survival time conditioned on the values of covariates. Therefore, IGCI can be

misleading if it is applied to a dataset that is not representative of the population.
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Chapter 4

Machine Intelligence and Bias

In spite of numerous studies led by researchers in AI [PVH01][LH07], cognitive

science [BT96], neuroscience [CD14] and philosophy [Val20], it has not yet been

established whether machines will be able to achieve human-level intelligence in

the foreseeable future. One of the most accepted theories on this widely-discussed

question is the Turing Test proposed by Alan Turing [Tur09] in 1950. It states

that a computer should be deemed intelligent if the human interrogator cannot

distinguish it from the other human respondent in online chat. After a few decades

following Turing’s claim, there has been remarkable progress in the field of natural

language processing, and the validity of the Turing Test has been challenged by a

very powerful counter-example called the Chinese Room argument. In his argu-

ment, the UC Berkeley philosopher John Searle [J+80] raises doubts about whether

machines that pass the Turing Test can truly understand language and think like

human. He describes a hypothetical room in which there is a person who knows

no Chinese. This person receives questions in Chinese from the outside, and he

needs to output answers to the questions using a complete set of Chinese charac-

ters as well as a manual for handling the characters. Based on the standard of the

Turing Test, a human interrogator will not be able to tell the difference between

this Chinese room and another human respondent who actually knows Chinese,
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while the person in the room is not performing any reasoning or thinking tasks,

as the manual of characters is all he needs to pass the test. To this day, Searle’s

argument has not yet been fully justified [Har01][Hau97][PB02], but it highlights a

major problem facing the machine learning community nowadays: even the most

advanced machines exhibiting human-like intelligence are merely finding patterns

based on certain instructions. These instructions can either be explicitly provided

by human or learnt from data, but just like the person in the Chinese Room who

knows no Chinese, there is no evidence that machines understand the underlying

causal mechanisms that generate the observed data.

Fortunately, more and more researchers have recognized that causality is set

to become a vital factor in the future of machine learning, especially of deep

learning. What is particularly worth noting is the increasing interest of adversarial

vulnerability of deep learning models. By tweaking the feature space of deep

neural networks (DNNs), researchers are able to fool state-of-the-art machines into

producing erroneous predictions with high confidence. This chapter begins by a

brief review of existing adversarial examples, which provide a strong implication

that machines can be fooled just like humans do. In Section 4.2 we provide a

selective review of causal approaches to improving the robustness of DNNs. In

the third section we draw connections between machine bias and human cognitive

bias by comparing the types of intelligence they conform to.

4.1 Adversarial Examples

With the increasing data availability that is unprecedented in history, the past

decade has seen a renewed importance in neural networks, which take advantage

of large amounts of data more than traditional ML algorithms do. In particular,

DNNs are neural networks with more than one hidden layer, and they are known

to have achieved state-of-the-art performance in human-like perception tasks, such
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as image recognition [KSH12], speech recognition [HDY+12] and natural language

processing [BCB14]. However, concerns have arisen that call into question the

robustness of many DNN models towards adversarial attacks. Szegedy et al. in

2013 [SZS+13] are among the first to investigate the adversarial vulnerability of

DNNs. In their study focusing on image classification tasks, an adversary con-

structed slightly modified examples while maximizing the error function, and the

difference between the modified and original examples cannot be detected by hu-

man observers. These mildly perturbed examples were able to fool various ML

models into making false predictions, even when the models were trained on dis-

joint subsets of the training data. Hence, these adversarial attacks are not random

results of model overfitting. Instead, they have been proved to be generalizable,

revealing the blind spots of many ML models.

For the following algorithms, we denote X as an input to DNN and y as the

true label of X. Let J(θ, X, y) be the cost function that is used to train the model,

where θ denotes the parameters of the network. Let ε be a hyperparameter that

denotes the size of the adversarial perturbation, which is usually a small value

that acts as a constraint on the max-norm of the perturbation η (i.e. ‖η‖∞ < ε).

In their seminal article on adversarial examples, Goodfellow et al. [GSS14]

develop a straightforward linear perturbation method for generating adversarial

examples. They postulate that [ibid., Section 3] many DNNs show linear be-

haviours and that an optimized linear perturbation to the input is sufficient to

impair network performance. The fast gradient sign method [ibid., Section 4] they

propose is summarized in Algorithm 1.
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Algorithm 1: Fast Gradient Sign Method
Input: X, y, hyperparameter ε, cross-entropy cost function J(·), network

parameters θ

Output: adversarial example X∗

1 compute ∇XJ(θ, X, y) using back-propagation

2 Optimize the perturbation η based on the L∞ norm constraint and obtain

η = ε · sign(∇XJ(θ, X, y))

3 Generate adversarial example of X as X∗ = X + η

The method in Algorithm 1 is a direct and efficient method to create an adver-

sarial perturbation that is applied to the entire feature space of X. The authors

have shown in their experiments [ibid., Section 4] that Algorithm 1 can cause

various types of neural networks trained on different image datasets to produce

misclassifications with high confidence rates, and their results support the hypoth-

esis on the linearity of DNNs.

As an extension to the fast gradient sign method, Kurakin et al. [KGB16]

propose the iterative least-likely class method (summarized in Algorithm 2), which

achieves a much higher success rate than Algorithm 1. Unlike the non-targeted

approach in Algorithm 1, the method by Kurakin et al. [ibid., Section 2.3] is a

targeted attack, in other words, it is designed to create examples that lead to a

specific misclassification y∗. The authors [ibid., Section 2.3] choose the target label

y∗ to be the least likely output when feeding X into the trained model, so that

the misclassified label is as distinct as possible from the true label y.
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Algorithm 2: Iterative Least-Likely Class Method [KGB16]
Input: X, y, hyperparameters ε and α, cross-entropy cost function J(·),

network parameters θ

Output: adversarial example X∗

1 Obtain the least likely class from the network prediction of X as the

target class y∗ = arg miny′ p(y
′ | X)

2 Initialize α and the number of iterations m heuristically

3 Define CX,ε(X ′) as the element-wise pixel clipping function [ibid., Section

2] of the image X ′ with respect to the L∞ ε-neighbourhood of the

original image X

4 Initialize X∗0 ← X

5 for i ∈ {1, ...,m} do

6 X∗i ← CX,ε{X∗i−1 − α · sign(∇XJ(θ, X∗i−1, y))}

7 Generate adversarial example of X as X∗ = X∗m

It is believed [ibid., Section 2.3] that Algorithm 2 leads to more interesting

misclassifications than Algorithm 1, since for large datasets with more classes,

Algorithm 1 might output a misclassified class that is still similar to the original

one.

Another work on targeted perturbation is the Jacobian-based method devel-

oped by Papernot et al. [PMJ+16], and their approach is summarized in Algorithm

3. The authors [ibid., Section 3] make the same assumption as in Algorithm 1 and

2 that information on the network architecture and parameters are known by the

adversary, and they also assume that the attacked DNN is acyclic. Unlike the

perturbations in Algorithm 1 and 2 that are applied to all the features of X, Algo-

rithm 3 modifies a much smaller subset (4.02% on average) of the input features

while still achieving a high success rate (97% on average) [ibid., Section 8]. It

also relies on a generated adversarial saliency map [ibid., Section 3.2.2] to enable
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the adversary to identify the set of input features that are most significant in

producing a specific misclassified output.

Algorithm 3: Jacobian-based Saliency Map Method[PMJ+16]
Input: X, y∗, trained network expressed by function f , feature variation

parameter η, maximum distortion parameter Υ

Output: adversarial example X∗

1 Initialize the adversarial example as X∗ = X

2 Initialize Γ = {1, ..., |X|}

3 while f(X∗) 6= y∗ and ‖δX‖ < Υ do

4 Compute the forward derivative of X∗ as ∇f(X∗) [ibid., Section 3.2.1]

5 Obtain saliency map S = saliency_map(∇f(X∗),Γ, y∗) [ibid., Section

3.2.2]

6 Identify the most significant feature imax = arg maxi S(X, y∗)[i], i ∈ Γ

7 Add a pre-defined perturbation η to the feature X∗imax
that has the

highest saliency score

8 Update δX = X∗ −X, which controls the magnitude of perturbation

9 Return adversarial example X∗

In addition to the results of the DNN adversary, the authors [ibid., Section 5.3]

also formally evaluate human performance on the generated adversarial examples.

Interestingly, the authors suggest that by tweaking the percentage of features

perturbed in the adversarial examples, Algorithm 3 can fool human observers as

well, although the success rate is not as high as that for DNNs.
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4.2 Recent Causal Approaches to Improving DNN

Robustness

As Schölkopf highlights in [Sch19], most ML algorithms are based on a strong

assumption that the data are i.i.d.. In particular, models for image classifica-

tion tasks are usually trained from benchmark datasets (e.g. MNIST [Den12],

ImageNet [DDS+09] and CIFAR-10 [KH+09]), which provide a typical i.i.d. set-

ting. On the other hand, adversarial attacks apply specifically constructed small

perturbations to the original examples, and the machines are fooled as the i.i.d.

data assumption is violated. This problem of robustness is not restricted to im-

age recognition. Targeted adversarial examples have also been generated for NLP

[JL17] and speech recognition [CW18] DNNs. Accordingly, a number of defence

approaches (e.g. distillation in [PMW+16], input preprocessing in [GRCVDM17]

and adversarial training in [MMS+17]) have been proposed, but more attacks have

also been carried out [CW17][AC18] soon after, and the problem of generalization

to non-i.i.d. settings remains unresolved to this day. In this section we discuss the

potential of causality for improving the robustness of DNNs.

Causal discovery in image datasets

First, causal structures exist in image datasets and can be identified by ma-

chines. In [LPNC+17] Lopez-Paz et al. develop the Neural Causation Coefficient

(NCC) model that identifies the direction of causation from an observed joint dis-

tribution of two variables. NCC can be viewed as a generalization of the bivariate

observational causal discovery algorithms, such as the additive noise model (Sec-

tion 1.2) and IGCI (Section 3.3), since NCC is a trained neural network that is not

restricted to a specific class of causal mechanisms (i.e. the assumption on function

f that generates the effect).

The training data of NCC consist of n samples of synthesized joint observations
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of cause X and effect Y . For each sample Si = {(xij, yij)}mi
j=1, the authors [ibid.,

Section 3.1] sample the values xij of the cause variable X from a Gaussian mixture

distribution, then the values yij are generated from xij using a heteroscedastic

additive noise model. For each pair of xij and yij, the authors include both the

causal (xij, yij) and anticausal (yij, xij) data points in the training set, and a binary

label that indicates the causal direction is added to each data pair. In other words,

NCC is trained on a dataset D of 2n synthesized samples [ibid., Equation 4]:

D = {({(xij, yij)}mi
j=1, 0)}ni=1 ∪ ({(yij, xij)}mi

j=1, 1)}ni=1. (4.1)

Clearly, the output of NCC for a joint distribution PXi,Yi is the predicted

probability that Yi causes Xi.

After tuning the hyperparameters on a synthesized validation set, Lopez et al.

[ibid., Section 4] apply the NCC classifier to real-world image datasets. Instead of

learning a correlation between input image pixels and class labels like most DNNs

are doing, Lopez et al.’s study aims to reason about the causal relationships in

terms of the presence of objects in images. In particular, the authors focus on

a preliminary interventional query that whether the presence of an object in an

image will be affected when another object is removed from the image. To this

end, they [ibid., Section 4.1] choose a subset from the MSCOCO image dataset

[LMB+14], in which each image contains object(s) from at least one of the 20

categories defined in [EVGW+10]. The authors [LPNC+17] use two networks to

generate the inputs for NCC: one is a pre-trained ResNet N to perform feature

extraction on images; the other is an image classifier network N they developed

to identify the 20 categories. For every image xj, the authors [ibid., Section 4.2]

use N to generate fj = f(xj) ∈ Rl, which denotes the high-level features from

the last hidden layer of N. They also applied N to each image input xj and

obtained an activation vector of the output layer of N as cj = c(xj) ∈ R20. The
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NCC model then takes the joint distribution {(fjl, cjk)}mj=1 of each feature score

l and category k and predicts a probability. Based on these probabilities, the

authors [ibid., Section 4.2] were able to identify the set of features that are most

likely caused by the presence of the object corresponding to the labeled category,

and these features are defined to be anticausal. The authors also identified a set of

features that most closely associate with the object labeled by N, and they define

these features as object features. Their experiments [ibid., Section 4.3] show that

anticausal features and object features are statistically dependent. This result

implies that causal information can be inferred from image datasets, and it is one

step towards machine reasoning for real-world scenarios.

The NCC model by Lopez et al. outperforms most bivariate causal discov-

ery algorithms, although Lake et al. [LUTG17] point out that many real-world

datasets contain hidden causal variables, and the current NCC algorithm is clearly

not sufficient to identify latent structures.

Interpretability and explainability of DNNs

Along with the vast range of studies on adversarial vulnerability of DNNs,

there is a growing concern about the reliability and interpretability of the decisions

made by these black-box models. Since 2015, an open letter [RDT15] has been

signed by numerous experts in AI, calling for researchers’ attention to more robust

and secure AI systems. A European Union regulation [GF17] has taken effect in

2018 and requires user-dependent algorithms to explain their decisions. Despite

the doubting attitudes taken by some DL experts [LeC17] towards the complete

explainability of DNNs, many promising attempts have been made to interpret or

explain DNN predictions based on the SCM (Section 2.1) paradigm.

In [NSVM18] Narendra et al. propose using an SCM to represent the convo-

lution layers of a convolutional neural network (CNN). Given the network archi-

tecture of a particular CNN, the authors [ibid., Section 4.1] first construct a DAG

51



(Section 2.1) based on the structure of the convolution layers. For each filter in

each convolution layer, a corresponding node is created in the DAG, and a di-

rected edge is drawn from each filter in the ith convolution layer to every filter in

the (i+ 1)th convolution layer.

Second, the authors [ibid., Section 4.2] define a transformation function φ :

Rp×q → R, so that given a dataset D, the matrix output from each filter can

be mapped to a real number. Narendra et al. [ibid., Section 5.2] suggest two

reasonable choices of φ to capture enough information of the filters: one is the

binary transformation

φ(M
[i]
j ) =


1 ‖M [i]

j ‖ < µ
[i]
j + σ

[i]
j

0 otherwise
(4.2)

where M [i]
j is the matrix output from the jth filter of the ith layer, µ[i]

j and σ[i]
j are

the mean and variance of M [i]
j , respectively; the other choice they propose is the

Frobenius norm transformation

φ(M
[i]
j ) = ‖M [i]

j ‖F :=
∑
p

∑
q

m2
pq, (4.3)

which clearly captures more information than a binary output of (4.2).

Lastly, the authors [ibid., Section 5.2] estimate the set of structural equations

F (Section 2.1) of the SCM. For the ith convolution layer, suppose that there are

k filters, and the output matrices from the k filters are M [i] = {M [i]
1 , ...,M

[i]
k }. Let

~R[i] denote the vector of real numbers computed by applying the transformation

φ to M [i], i.e.,

~R[i] =


r
[i]
1

...

r
[i]
k

 =


φ(M

[i]
1 )

...

φ(M
[i]
k )

 . (4.4)
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Let F [i] = {f [i]
1 , ..., f

[i]
k } denote the structural functions for nodes (the k filters) in

the ith convolution layer, then the authors suggest [ibid., Section 5.3] that each

function f
[i]
j can be estimated by fitting a regression model to r[i]j = f

[i]
j (~R[i−1]),

because according to the DAG, the filters in the (i − 1)th layer are the parent

nodes of the filter for r[i]j . Therefore, an SCM can be generated by combining the

DAG with the set of learnt structural equations. This approach by Narendra et al.

makes interventional and counterfactual queries for the partial structures of DNN

models possible. However, to provide a complete explanation of the decision made

by a CNN, we believe that additional network components need to be considered

apart from the convolutional filters, and the choice of transformation function φ

can be improved to further reduce the loss of information.

Other recent DNN interpretability approaches include an attribution-based

method [CMSB19] that constructs an SCM to estimate the causal effect of an

input neuron on the output neuron. Additionally, Harradon et al. [HDR18] extract

high-level human-interpretable salient concepts from input image data, and they

build an SCM that computes the causal effect of these salient concepts on the

model predictions. We refer readers to [CMSB19] and [HDR18] for further details.

Causal learning and anticausal learning

Lastly, it has been suggested [SJPZ11] that the direction of causation in

the learning task is associated with the robustness of algorithms. In [SJPZ11]

Schölkopf et al. present a preliminary investigation into improving machine ro-

bustness using information on causal direction. Similar to their other studies on

bivariate causal discovery (Section 3.3), the authors’ work in [SJPZ11] focus on

the bivariate case, in which X is the input variable, and Y is the output, and it is

assumed in their work that there is no hidden confounder. Based on the postulate

of independent causal mechanisms (Postulate 3.1), the authors show [ibid., Section

2.1.1] that robustness to adversarial attacks should be guaranteed if the machine
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is solving a causal learning problem, that is, the task of predicting the effect from

cause. Even though adversarial examples are perturbed test examples that are

drawn outside of the original input distribution PX , the new conditional distribu-

tion P ′Y |X is still generated from an independent causal mechanism, and therefore

the authors [ibid., Section 2.1.1] conclude that the output should be unaffected by

the change of PX , i.e. P ′Y |X = PY |X .

However, many state-of-the-art DNNs are solving anticausal problems. In par-

ticular, most image classification tasks are anticausal, since obviously the input

images are observations caused by the output labels describing their respective

entities and not vice versa. As Kilbertus et al. point out in [KPS18], the per-

vasiveness of adversarial vulnerability is not surprising when the machines are

learning in the anticausal direction, because when Postulate 3.1 is not applicable,

the expectation of strong generalization [ibid., Section 3] becomes problematic.

4.3 Connections to Human-Level Intelligence

In Kahneman’s book [Kah11] on cognitive psychology, the author proposes a dual-

system for explaining human’s decision making process. The "fast System 1" is

intuitive, associative and heuristics-based; the "slow System 2" is purposive, intro-

spective and reasoning-oriented. According to Kahneman’s theory, the judgmental

biases discussed in Section 1.1 can be viewed as byproducts of the collaboration be-

tween these two systems. Kilbertus et al. [KPS18] relate this dual-system theory

to the anticausal learning of machines. Motivated by the fact that humans con-

struct causal generative models to solve anticausal problems [JG06], the authors

[KPS18] suggest the implementation of the dual-system to improve robustness of

machines. In particular, they believe [ibid., Section 4] that an anticausal model

that resembles "System 1" should be paired with a causal model as the "slow

System 2", so that the issue of strong generalization (Section 4.2) in anticausal
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learning is rectified by the generalizable causal model.

Apart from the psychological perspectives, recent findings regarding machine

adversarial examples make connections to human intelligence by examining hu-

man performance on adversarial examples. In Section 4.1 we have discussed that

adversarial attacks can be generalized to different classes of models. Elsayed et al.

[ESC+18] show that adversarial examples that are generalizable to different models

can also fool human subjects, given that the examples are displayed to the subjects

for only a very short period of time. On the other hand, these examples failed to

fool subjects with no time limit. Their experiments [ibid., Section 4.2.2] indicate a

certain degree of similarity between DNNs and human visual perception process,

but whether this perception bias is related to human cognitive bias (Section 1.1)

has yet to be determined. In our opinion, time-limited visual perception might be

potentially associated with the "fast System 1" of Kahneman’s theory [Kah11],

whereas subjects with no time limit might make more robust judgments based on

reasoning by the "slow System 2". Harding et al. [HRBG18] present another thor-

ough evaluation of human performance on adversarial examples. By comparing

the fast gradient sign approach (Algorithm 1) with the Jacobian based approach

(Algorithm 3), the authors suggest [ibid., Section 6] that adversarial examples are

not always perceivable by humans, and that non-targeted attacks (perturbations

that are designed with no particular class expected) fool human observers more

than targeted attacks do. Again, the study by Harding et al. [HRBG18] shows

that humans can also be fooled by adversarial examples, but it is recommended

that more in-depth comparative analyses should be undertaken to investigate the

connections between human cognition and DNN algorithms.
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Chapter 5

Conclusion

In this thesis, we reviewed some causal inference methods and examined the role

of causality in explaining systematic errors in both human cognition and ma-

chine learning. In Chapter 1 we discussed human cognitive bias (Section 1.1) and

the existing explanations based on causation (Section 1.1.5), which motivates the

following investigation into causal inference methodologies. Section 1.2 provides

a comparative analysis on the difference of current research directions between

statisticians and computer scientists, and we affirmed in Section 1.3 that causality

is a revolutionary power for the future of machine learning and human-level AI. In

Chapter 2, we presented a comprehensive review of traditional causal inference on

multivariate data in Pearl’s structural causal model framework (Section 2.1), and

we discussed the applications of SCM (Section 2.2) that are pertinent to machine

learning. To present an example of machine bias resulting from unrepresentative

data, in Chapter 3 we reviewed a bivariate causal discovery approach (Section 3.3)

and demonstrated its limitation in the presence of selection bias. In Chapter 4

we reviewed targeted and non-targeted adversarial examples that fool deep neural

networks (Section 4.1) as well as recent causal approaches proposed to improve

machine robustness (Section 4.2). We presented a comparison between machine in-

telligence and human cognition in Section 4.3 based on Kahneman’s conjecture on
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human cognition and existing studies on machine adversarial vulnerability. Even

though these chapters do not seem to be closely related to one another, each of

these aforementioned components has its distinct contribution to further studies

on machine learning bias.

Overall, this thesis highlights the importance of causality for facilitating future

developments in machine learning. Although there exist preliminary investigations

on the connection between human cognitive bias and machine learning bias, our

knowledge on both human brains and black-box neural networks is far from ade-

quate, and we hope that further research on causality will confirm the association

between machine vulnerability and human judgmental bias.
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