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Abstract 
 

 

Any thermal circuit that uses a liquid as an energy transport system is subjected to fluid-structure 

iteration between the coolant and the heat exchanger. In power plants for energy production, such 

as nuclear reactors, this iteration can generate unwanted vibrations of significant amplitude that 

must be investigated for safety and life prediction. Nuclear fuel assemblies of Pressurized Water 

Reactors (PWR) must be able to withstand external excitations ranging from large amplitude 

seismic motions of the reactor to flow-induced vibrations from the surrounding coolant water.  

The present study is an experimental work that investigates the nonlinear vibrations of nuclear fuel 

rods supported by spacer grids: this is a type of support giving nonlinear boundary conditions. The 

experiments consist of measuring the vibration response of different rod configurations - single 

rod with and without tungsten pellets, which simulate uranium pellets, and a 3x3 fuel bundle made 

by a cluster of rods - under a step-sine harmonic excitation at different force levels and in the 

frequency neighborhood of the fundamental mode of vibration. If the excitation is large enough, 

the response of the rod displays nonlinear phenomena such as the shift of the resonant frequency 

and a one-to-one internal resonance. The research investigates the response of the system in air, in 

quiescent water and in axial water flow. The latter was achieved inside a water tunnel. Results of 

a specifically designed test show that spacer grids give a bilinear hysteretic behavior to the system 

dynamics. This is important for a future development of advanced nonlinear numerical models of 

nuclear fuel assemblies. 

 

 

 

  



Abrégé 
 

 

Tout circuit thermique qui utilise un liquide comme système de transport d'énergie est soumis à 

une itération de structure fluide entre le liquide de refroidissement et l'échangeur de chaleur. Dans 

les centrales électriques pour la production d'énergie, telles que les réacteurs nucléaires, cette 

itération peut générer des vibrations indésirables d'amplitude significative qui doivent être étudiées 

pour la sécurité et la prévision de la vie. Les assemblages de combustible nucléaire des réacteurs 

à eau pressurisée (REP) doivent être capables de résister à des excitations externes allant des 

mouvements sismiques de grande amplitude du réacteur aux vibrations induites par l'écoulement 

de l'eau de refroidissement environnante.La présente étude est un travail expérimental qui étudie 

les vibrations non linéaires des crayons de combustible nucléaire supportés par des grilles 

d'espacement: il s'agit d'un type de support donnant des conditions aux limites non linéaires. Les 

expériences consistent à mesurer la réponse vibratoire de différentes configurations de tiges - une 

seule tige avec et sans pastilles de tungstène, qui simulent des pastilles d'uranium, et un faisceau 

de combustible 3x3 fabriqué par un groupe de tiges - sous une excitation harmonique pas à pas à 

différents niveaux de force et dans le voisinage fréquentiel du mode fondamental de vibration. Si 

l'excitation est suffisamment importante, la réponse de la tige affiche des phénomènes non linéaires 

tels que le décalage de la fréquence de résonance et une résonance interne un à un. La recherche 

étudie la réponse du système dans l'air, dans l'eau de repos et dans l'écoulement axial de l'eau. Ce 

dernier a été réalisé à l'intérieur d'un tunnel d'eau. Les résultats d'un test spécialement conçu 

montrent que les grilles d'espacement donnent un comportement hystérétique bilinéaire à la 

dynamique du système. Ceci est important pour un développement futur de modèles numériques 

non linéaires avancés d'assemblages de combustible nucléaire. 

 

  



Chapter 1 

Introduction 
 

 

In this manuscript-based thesis for articles we will see the work done in the vibration and 

hydrodynamics laboratory during my path as a master student. The work consists of three articles 

published or submitted on non-linear vibrations of mechanical components suitable for the 

production of energy through nuclear fission technology. In particular, we investigated the 

dynamic behavior of fuel rods of Pressurized water reactor (PWR) in relation to the Spacer Grids 

designed by Framatome. In this thesis you will find results of various configurations according to 

the most effective technologies present in McGill laboratories. Dynamic understanding of these 

components is of fundamental importance for the operational safety of nuclear reactors. 

Before explaining the content of the chapters of this thesis, it is useful for the reader to 

contextualize the study area, the needs and the purpose of this research. 

This primary circuit consists of a pressure vessel, which contains the core formed by fuel elements 

inside which the control bars slide. The neutron moderator is water, which also acts as a cooling 

fluid. The water, by subtracting energy by conduction from the hot core, pushed by a recirculation 

pump, interacts with the group of fuel rods producing vibrations. These fuel rods are long slender 

tubes (about 4m length and 1cm in diameter) held together by the spacer grids. Therefore, the 

iteration that arises between fluid and structure is that of a body traversed axially by the fluid 

which, given its speed and pressure, is capable of producing vibrations harmful in the long run to 

the structure in use. In the following thesis the contribution given by the spacer grids produced by 

Framatome and kindly granted to our laboratory will be sought. 

A vibrational study of the mechanical components in use makes the engineering design complete, 

especially in terms of safety and life prediction. For the amplitude of the vibrations and for the 

reactions introduced by the spacer grids, it is necessary to collect information of this system with 

original experiments we have made. 

In the first article, Nonlinear vibrations of a nuclear fuel rod supported by spacer grids ( Nuclear 

Engineering and Design , Volume 361, May 2020, 



https://doi.org/10.1016/j.nucengdes.2019.110503 ),  you will find the study of a single bar 

mounted between two spacer grids. The dynamic behavior around the first fundamental frequency 

of the system is investigated in different configurations. Results characterize the dynamics of the 

empty rod or of the rod with pellets inside, free or axially constrained. Experiments are repeated 

both in air and with the rod immersed in water. 

 Understanding the results of a simple system has allowed us to evolve the complexity of our 

experiments and to produce interesting results for a second publication: Nonlinear vibrations of a 

3x3 reduced scale PWR fuel assembly supported by spacer (Nuclear Engineering and Design, 

Volume 364, August 2020, https://doi.org/10.1016/j.nucengdes.2020.110674). In this second 

publication, there are results obtained for a more complex configuration of the system, that is for 

a cluster of fuel rods. We carried out the study in quiescent water and in axial flow conditions, 

testing the system inside a water tunnel at McGill laboratories, with different flowrates. 

The third and final article is Nonlinear vibrations of beams with bilinear hysteresis at supports: 

Interpretation of experimental results (submitted for journal publication). In this chapter, attention 

is on the boundary conditions of the systems studied in the two previous articles. Targeted 

experiments revealed a strongly bilinear behavior of the spacer grids which led to the development 

of a numerical model. The model proved to be optimal for the description of the dynamic behavior 

both in the time domain and in the frequency domain. There is a clear link in the study developed 

the three scientific articles. The degree of complexity of the responses that we measured allows to 

characterize the complex nonlinear dynamics of these components for the nuclear industry. 
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Abstract  

The internal components of Pressurized Water Reactors (PWRs), particularly nuclear fuel 

assemblies, must be able to withstand Flow Induced Vibrations (FIV) during operating conditions 

and during extreme accident conditions, such as earthquakes. Nuclear fuel assemblies are 

composed of long slender tubes, filled with uranium pellets that are bundled together by periodic 

support provided by the spacer grids. Spacer grids are square structures used to increase thermal 

mixing in the core and provide support to the fuel rods and guide tubes allowing for the installation 

and removal of nuclear fuel rods. Nevertheless, spacer grids constitute a nonlinear flexible 

boundary condition experiencing friction forces and impacts complicating the dynamics of the fuel 

rod-spacer grid system. In order to improve safety margins in the design of nuclear fuel assemblies, 

it is of great interest to understand the nonlinear behavior at the interface of the spacer grids with 

the fuel rods, investigating the complexity due to the nonlinear evolution of the system stiffness 

and damping properties. In particular, the effect of the constant evolution of the vibration 



amplitude as a function of the change of the excitation forces on the dynamics of the fuel rod 

response is still undetermined. Experiments were carried out in quiescent water and in air to 

understand the nonlinear vibration response of a single zirconium fuel rod supported by spacer 

grids. The vibration response under a step-sine harmonic excitation at different force amplitude 

levels in the frequency neighborhood of the fundamental mode was measured. The response of the 

rod displayed nonlinear phenomena such as the shift of the resonant frequencies, multiple solutions 

with some instabilities (jumps) and hysteresis, and a weak one-to-one internal resonance. Tests 

were performed on an empty rod and on a rod filled with tungsten pellets representative of nuclear 

fuel. The pellets were let free to move and were subsequently blocked axially to reproduce the 

effect of the beginning-of-life constraint in operational nuclear plants. The experimental data were 

processed by means of a simplified identification procedure to extract the damping parameters of 

the vibrating system. The equivalent viscous damping is found to increase and to be a function of 

the level of excitation and of the peak vibration amplitude.  

 

1. Introduction 

Clusters of arrays of cylindrical elements subjected to external fluid flow, with both axial and cross 

flow components, are common in power generation (Chen, 1985, Païdoussis, 2006; Weaver et.al., 

2000). Fluid-structure interaction is minimized by design, when possible, to avoid large amplitude 

instabilities.  

The cores of Pressurized Water Reactors (PWRs) are constituted of arrays of fuel rods, which are 

slender zirconium alloy tubes containing pellets of fissionable material. Spacer grids are used to 

bundle large numbers of fuel rods in structured arrays forming fuel assemblies, which are prone to 

reaching large-amplitude vibrations due to fluid-structure interaction (Bhattacharya, 2013; 

Dragunov et al., 2013; Païdoussis, 2006), potentially leading to catastrophic consequences. The 

tubes in PWRs and in steam generators are subjected to external parallel flow and, therefore, to  

random vibrations induced by flow noise; flutter and divergence instability may also appear, if the 

design of the exchangers does not properly take fluid-structure interaction into account (Kaneko 

et al., 2013). While empirical formulations are readily available in the nuclear industry for the 

design of fuel bundles subjected to axial flow, a number of details pertaining the physical 

mechanisms of instability remain unknown.  



Choi et al. (2004) investigated numerically and experimentally fuel rods immersed in quiescent 

fluid and supported by spacer grids. Several papers available in literature investigated the flow-

induced vibrations of fuel bundles numerically (Au-Yang and Burgess, 2007 ; Chen, 1975; De 

Santis & Shams, 2017; Hofstede et al., 2017; Kang et al., 2001; Kim and Kim, 2005; Liu et al., 

2012; Liu et al., 2017; Païdoussis and Curling, 1985; Sandström, 1987; Simoneau et al., 2011) as 

well as experimentally (De Pauw et al., 2015). 

Uranium pellets are normally compressed axially inside fuel rods by means of a spring-operated 

system. Modeling the effects of pellets on the dynamics of the fuel rod is difficult; the pellet effects 

are currently addressed with the introduction of dry friction and impact modeling. However, Park 

et al. (2009) related the stability of the system with the change in the natural frequency of the rod 

accounting for the presence of pellets.  In Ferrari et al. (2018), it is clearly shown that there is 

significant correlation between damping and rod vibration amplitude. Similarly, in the present 

study the effect of pellets is not modeled mathematically but observed through its consequences 

on the experimental results.  

Spacer grids (SGs) are employed in nuclear reactors to keep nuclear fuel rods (as well as guide 

and instrumentation tubes) safe at the correct relative position, while allowing for fuel rod thermal 

expansion and the removal of rods when necessary. Spacer grids rely on elastic and rigid contact 

points and surfaces to keep the rods in position by means of preload and friction. In presence of 

large vibrations of the rods, fretting may occur at the contact surface with the spacer grids, leading 

to potential fuel leaking (Bakosi et al., 2013; Hu et al., 2016; Kim, 2010). Moreover, spacer grids 

have an important influence on the fluid flow along the nuclear fuel bundle (Rehme and Trippe, 

1980). Consequently, the design of spacer grids, which is outside of the scope of this article, is 

discussed in detail in the relevant literature. The effect of spacer grids on the dynamics of rods is 

investigated by means of the finite element (FE) method by Choi et al. (2004). However, to the 

knowledge of the authors, no study in the literature investigates in detail the effects of spacer grids 

on nonlinear large-amplitude vibrations. Spring-and-dimple SG feature a continuous contact 

between the elastic element and the fuel rod; moreover, for sufficiently large amplitudes of 

vibrations, their designs allow for (i) gaps at the interface between the rod and spacer grid, and 

impacts with the dimples, and (ii) friction at the dimples and at the spring interfaces resulting from 

axial vibration. Consequently, the spring characteristic for spacer grids is strongly nonlinear 

(Schettino, 2017). Lastly, the importance of Coulomb friction increases with the age of the spacer 



grid because of the decrease in the force exerted by the springs due to creep (Campbell and Chen, 

2017).   

The complex task of identifying the parameters governing the nonlinear vibrations of fuel rods 

was tackled by several authors in the literature (Adams et al., 1998; Adhikari and Woodhouse, 

2001a, 2001b; Bennett et al., 1997). Among the nonlinear parameters, damping and its evolution 

for structures undergoing large amplitude vibrations are objects of abundant speculation. The trend 

of damping for fuel assemblies in flowing water was studied with respect to the first 

eigenfrequency by Viallet and Kestens (2003), with respect to fluid velocity by Connors et al. 

(1982), with respect to multi-span tube instabilities by Hassan (2011) and with respect to response 

nonlinearity by Brenneman and Shah (2000), Collard et al. (2004), Fardeau et al. (1997). Vandiver 

(2012) introduced a dimensionless damping parameter for the flow-induced vibrations of 

cylinders.  The nonlinear elastic parameters and the equivalent modal viscous damping for several 

simple continuous structures were identified by the same research group in the following studies 

(Alijani et al., 2016; Amabili et al., 2016; Amabili & Carra, 2012; Delannoy et al., 2015; Delannoy 

et al., 2016). Finally, the concept and the tools developed for reference structures were employed 

on fixed-fixed nuclear fuel rods by Ferrari et al. (2018). The response of the fuel rod for the case 

with fixed nuclear fuel rod boundary conditions has exhibited: (i) nonlinear hardening behavior; 

(ii) an important one-to-one internal resonance due to the axial symmetry; and, (iii) a nonlinear 

increase of the equivalent modal damping related to the amplitude of vibration. In that study the 

presence of one-to-one internal resonances - the interaction of two modes of vibration with the 

same natural frequency - was investigated. A single degree-of-freedom modified Duffing oscillator 

(Amabili, 2008) can be used to describe the large-amplitude vibrations of single fuel rods excited 

by a harmonic force around the fundamental resonant frequency. The oscillator is capable to 

reproduce several phenomena encountered in experiments, such as hysteresis, jumps in vibration 

amplitude and other instabilities leading to chaotic responses. An additional degree-of-freedom 

can be added to take into account the one-to-one internal resonance due to the axial symmetry and 

to describe the energy transfer between the main vibration mode directly excited (driven mode) 

and the non-linearly coupled orthogonal mode with the same shape (companion mode). 

In the present study, forced small-amplitude and large-amplitude vibration experiments were 

performed on zirconium alloy fuel rods provided by Framatome. Subsequently, damping was 

estimated through an identification method applied to a simplified single degree-of-freedom 



model. While previous studies by the same research group focused on fixed-fixed boundary 

conditions, here the actual constraints found in Framatome PWR bundles were applied. The 

constraints at the rod ends were provided by zirconium spacer grids with springs and dimples. As 

in Ferrari et al. (2018), single fuel rods were tested both in air and in quiescent water. Flowing 

fluid conditions and clusters of tubes are not included in this investigation (they will be included 

in subsequent studies). It was recently shown that damping in the large-amplitude vibration regime 

can be described more effectively by nonlinear damping models (Amabili 2018b; Amabili 2018c; 

Amabili 2019; Balasubramanian et al. 2017 and Balasubramanian et al., 2018). However, in the 

present study a modal viscous damping ratio was preferred for simplicity. Consequently, it became 

necessary to adjust the damping value according to the vibration amplitude to match the 

experiments, which were conducted at several levels of harmonic force excitation. An increase of 

the equivalent viscous damping constitutes an obvious advantage in the view of increased safety 

and reduced vibrations.  

 

 

 

 

 

 

2. Experimental setup 

 

2.1. System under test 

 

Two zirconium spacer grids identical to those employed in PWRs by Framatome were employed 

in this study. Each spacer grid is composed of 17x17 cells allowing the passage of 264 fuel rods 

and 25 tubes (24 guide tubes and 1 instrumentation tube). Specifically, fuel rods are supported by 

springs and dimples present in the spacer grids, as it can be seen in the cross section in Fig. 1. The 

spring preload/force acting on the fuel rods keeps them in position. 

 



 

 

 

a) b) 

  

 
 

c) 
 

Fig. 1: a) Typical PWR Fuel Assembly showing fuel rod and spacer grid (Source: 

energy.gov); b) [A-A Cross section] Boundary condition of fuel rod with spacer grid;  

c) Photograph of fuel rods installed through a spacer grid. 

 

 

In the experimental apparatus the spacer grids were kept parallel at a distance of 900 mm by means 

of four ¾” threaded steel rods. The threaded rods were anchored to an acrylic frame (which is also 

the water tank wall) by means of bolts (see  

Fig. 2). Great care was taken so that the spacer grids were not affected by compression or 

traction/torsional forces due to the bolts connecting the system to the acrylic frame. As the central 

cell of both spacer grids was intended to lodge one special guide tube during nuclear operations, 

an immediately adjacent fuel rod cell was employed to allow the passage of the rod under test. The 

rod was kept in a horizontal configuration; gravity in fact is not expected to play a significant role 

on the dynamics of the rod because of its light weight.  



 

 

 

 

 

Fig. 2: 

Vibrating system complete with boundary conditions: I) Spacer Grid; II) Vibrating zirconium 

alloy rod; III) Structural spacers; IV) Clamps. 

 

Framatome Canada Ltd. provided hollow zirconium rods identical to the ones used in the cores of 

their PWRs, but shorter in length (Fig. 3). The overall length of the rods under test is in fact 988 

mm and the length left free to vibrate is 900 mm. The difference in length between the tested rod 

and the typical length of a span between two spacer grids found in PWRs is not expected to alter 

qualitatively the dynamics of the system. The material properties of the zirconium alloy are 

displayed in Table 1. The external and internal diameter of the rods are 9.50 mm and 8.28 mm 

respectively; however, one end of each rod is flared, to allow the insertion into the spacer grids, 

while the other presents a clamping diameter. The two machined ends of the fuel rods protrude 

beyond the springs and the dimples of the spacer grids. As such, they play no role in boundary 

conditions. 

 

 

Table 1 

Material properties of a zirconium-alloy rod 

 

Density 

(kg.m3) 

Young’s modulus 

(GPa) 

Poisson’s 

ratio 

6450 95 0.37 
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 (a) 

 

  
(b) (c) 

 

Fig. 3: Zirconium fuel rod under test, (a);  

clamping end (b); insertion end (c).  

 

To characterize the preload forces exerted by the spacer grids on the fuel rods, dedicated static 

tests were performed. One rod, identical in diameter to the fuel rods, was installed on one spacer 

grid. A force parallel to the middle plane of the spacer grid was applied and measured, respectively, 

by a Brüel & Kjær electrodynamic exciter, model 4824, and an Interface force transducer, model 

WMC-100, at 81.5 mm from the middle plane of the spacer grid as shown in Fig. 4. The amplitude 

of the force was varied slowly in both directions around the equilibrium position (the fuel rod is 

originally positioned perpendicular to the spacer grid). As a result, it was possible to plot the 

rotational stiffness of the constraint under a torque applied on the fuel rod. Since the spacer grid 

features elastic slots for fuel rods and rigid slots for guide tubes, it was considered likely that the 

apparent stiffness of different cells in the spacer grid would change. Because of this, the test was 

repeated in two different cells, one adjacent to the location of the guide tube and one further away 

from the GT location. The results shown in Fig. 5 indicate that the equivalent rotational spring is 

strongly nonlinear. The loading cycles, moreover, have a wide hysteresis loop. The overall 

stiffness of the cell closer to the guide tube is higher, while its hysteresis is lower. Since all 

materials are expected to behave elastically during the test, the likely cause of the hysteresis is the 

presence of friction. It is noted here that two sets of spring and dimples are present, one acting in 

the direction of the force and one in the perpendicular direction. The latter does not oppose the 

rotation with elastic force but introduces friction during the rotation as it remains in contact with 

the rod. The former does not constitute an obvious source of friction during the rotation, but may 

introduce friction if, for large displacements, an axial sliding of the rod inside the cell happens. 

The loops are closed by rectilinear segments joined by sharp corners. The portions at higher 



stiffness, such as those after the inversion of the load direction, can be justified by the initial 

absence of sliding (static friction). As soon as sliding starts, the apparent stiffness of the spring 

decreases suddenly (dynamic friction). Another cause of the changes in the slope of the loading 

curves is the change in the support given by the dimples. In fact, for a portion of the loading the 

fuel rod is supported by two dimples in the main loading direction. According to the direction and 

to the amplitude of the force, one dimple loses contact and all the load is transferred to the 

remaining dimple. A detailed investigation of the elastic and anelastic constraint given by the 

spacer grids is left to future experimental studies.     

 

 

 

  

a) b) 

 

Fig. 4: Measurement of the spacer grid – fuel rod spring characteristic:  

a), schematics; b), photograph of the experiment.  



 
a) 

 
b) 

 

Fig. 5: Rotational spring characteristic: a), adjacent to guide tube; b), away from guide tube.  

 

Framatome provided both empty rods and rods containing cylindrical tungsten carbide pellets, 

identical in dimension and density to the fissile pellets present in the rods of PWR cores. The fuel 

rods become 5.80 times heavier than in the empty configuration with the addition of the pellets. 

Both empty rods and rods filled with tungsten pellets were tested in the present study. The diameter 

and the overall axial length of tungsten pellets are slightly smaller than the clearance present inside 

the fuel rods. This axial and radial play is present also for real fissile pellets and constitutes a 

necessary precaution against the strong thermal dilation occurring during the plant operation. In 



PWRs, a spring is employed to keep the pellets packed axially while allowing thermal expansion; 

in this study, a threaded device was provided to recreate a similar axial compression (Fig. 6). This 

device recovers the axial gap while the radial one remains unchanged; however, the friction 

between the packed pellets may oppose the radial motion as well. To study the effect of the motion 

of the pellets, the rods were tested in two configurations: i) letting the pellets move freely; and, ii) 

recovering the axial gap through the threaded device.  

 

 

b) 

 

a) c) 

Fig. 6: a) Threaded device used to pack fuel pellets axially;  

b) schematic of the fuel rods as provided by Framatome (free pellets);  

c) schematic of the fuel rods with threaded device packing the pellets axially (fixed pellets).  

Schematics not in scale.   

  

The system was installed inside a clear acrylic tank which has the following dimensions: 1524 mm 

long, 300 mm wide, and 300 mm deep. The tank allows the performance of experiments both in 

air and in quiescent water. The dimensions of the tank are much larger than the diameter of the 

fuel rods, therefore the volume of water contained in the tank can be considered as infinitely 

extended around the vibrating system. Consequently, no fluid-structure interaction is expected, 

besides the virtual mass effect of the liquid displaced by the rods during vibration. Since the rods 

are parallel to the ground and the tank is open on the top, a free surface is available for the access 

of the instrumentation necessary for the excitation. No sloshing was detected on the free surface, 

even during the most severe vibrations of the fuel rods. A distance of 100 mm between the axis of 

the rod under test and the free water surface was kept during tests. 



 

2.2. Instrumentation and data acquisition 

 

The rod under test was subjected to forced excitation. The forced vibration excitation consists of 

one point force exerted in the vertical direction by an electrodynamic exciter (Brüel & Kjær model 

4810) and measured in real time by a force transducer (Brüel & Kjær model 8203). The excitation 

is applied at a distance of 50.8 mm measured from the face of one of the two spacer grids directed 

towards the center of the tank. This distance was chosen according to the following criteria: i) it 

does not coincide with any node of the transversal normal modes of the fuel rod expected in the 

low frequency range, thus the excitation can have an effect on these modes during modal analysis; 

ii) it is far enough from the constraints to give enough energy to the fundamental vibration mode, 

object of nonlinear analysis, expected to have no nodes; iii) it is far enough from the center of the 

rod, which is the likely antinode of the fundamental mode. If the excitation force was applied at 

the antinode, its projection on the modal shape and the consequent energy transfer would be too 

large, resulting in a strong interaction of the motion of the shaker and of the structure. 

Subsequently, this would result in a poor control of the forcing amplitude. The forced vibration 

excitation system is shown in Fig. 7. Between the electrodynamic exciter and the rod a harmonic 

steel wire (stinger) is interposed, as per common practice in modal testing. The stinger, because of 

its high bending flexibility, does not allow the application of loads perpendicular to the axis of the 

exciter and of bending moments. However, its extremely small bending stiffness may increase 

marginally the apparent stiffness for the vibrations perpendicular to the axis of the exciter.    

 



 
 

Fig. 7: Excitation system complete with force transducer:  

I) electrodynamic exciter; II) force transducer; III) stinger. 
 

A no-contact vibration measurement system based on laser Doppler vibrometry was employed to 

measure the motion of the rods even through surrounding water and clear acrylic walls. Laser 

heads by Polytec (Single point laser head model OFV-505 and Scanning laser head model PSV-

400) were employed with velocity and displacement decoders (velocity measurements were 

employed for modal analysis and displacement measurements for nonlinear testing). One OFV-

505 head was employed to measure the vertical vibration of the beam, parallel to the direction of 

excitation, in order to perform modal analysis and reconstruct mode shapes. The laser head was in 

fact aimed manually and in a sequential fashion to each one of a set of points discretizing the 

surface of the fuel rod under test. Pseudo-random broadband excitation was applied at each aiming 

point to obtain the Frequency Response Function of the point with a frequency resolution equal to 

0.193 Hz. The FRF was calculated according to the H1 estimate averaging five responses and five 

excitations. Subsequently, the PolyMAX algorithm by Siemens LMS was employed to reconstruct 

the sum FRF of the structure and the normal modes of vibration and to estimate the modal 

parameters.   Additional laser heads were also used to measure the horizontal (PSV-400) and the 

axial (OFV-505) vibration of the rod during large-amplitude vibration. Because of the axial 

symmetry of the fuel rods, normal modes are expected to appear in perpendicular couples sharing 

the same frequencies. Normal modes perpendicular to the direction of the excitation may appear 

I 



because of nonlinear coupling terms becoming relevant for large excitation amplitudes (one-to-

one internal resonance between the directly driven mode and the companion mode, as discussed 

by Amabili et al. (2016)). This justifies the presence of a laser directed horizontally (perpendicular 

to the direction of excitation). Axial vibration was also measured because, in presence of large-

amplitude vibrations and boundary conditions allowing axial slip, a transversal displacement can 

correspond to important axial motions. The low-frequency vibration modes of the beam are 

expected to be transversal (flexural) in nature and parallel to the direction of the excitation. Since 

the first vibration mode of a beam is expected to have its maximum transversal displacement at 

one half of the length of the rod, the horizontal and vertical laser heads were aimed 

correspondingly. For the symmetric character of the first vibration mode, instead, the maximum 

axial displacement is expected to happen at the two ends of the rod. The vibrating system is 

perfectly symmetrical with respect to a plane perpendicular to the fuel rod under test, parallel to 

the two spacer grids and located at a distance of 450 mm from each spacer grids (where 450 mm 

is one half of the free length of the fuel rods). In particular, the boundary conditions are perfectly 

symmetric with respect to this plane. Therefore, if existent, the axial slips at the two spacer grids 

are expected to be equal and opposite.  Correspondingly, the laser measuring the axial 

displacement was aimed at one end of the rod. The setup of the laser measurement system is shown 

in Fig. 8. 

 

I 

II 



a) 

 

b) 

Fig. 8: a) Transversal measurement,  

I): scanning laser head by Polytec (horizontal velocity and    displacement);  

II): single point laser head by Polytec (vertical velocity and displacement); 

b) Axial measurement,  

III): detail of the laser beam from the single point laser head by Polytec  

(axial velocity and displacement) hitting one end of the test rod. 
 

 

Nonlinear frequency-amplitude and frequency-phase curves were obtained through a stepped-sine 

technique based on the Siemens LMS TEST LAB testing system. A sinusoidal excitation was 

chosen because it provides large energies at specific frequencies; the frequency of the sine varies 

slowly by frequency steps of 0.05 Hz so that a neighborhood of the resonance of interest is 

investigated. At each frequency step, the initial 40 time periods are discarded to make sure that 

any transient has decayed, then 10 periods are recorded and, based on the latter, the frequency 

spectrum is calculated. The variation must be monotonic since nonlinear systems features 

hysteresis and instabilities; tests conducted by increasing the frequency will be named UP tests 

and tests conducted by decreasing the frequency will be named DOWN tests in the following 

III 



sections. A closed-loop feedback control was employed so that the amplitude of the excitation 

remained within a 0.5% tolerance from the constant target value. Uncertainty regarding the force 

excitation value is in fact the largest source of inaccuracy during vibration tests; the use of laser 

Doppler sensors is preferred since they provide excellent measurement accuracy.  

 

3. Experimental results 

 

As anticipated, the rods were tested for: 1) empty configuration; 2) filled with pellets; and 3) filled 

with pellets packed axially, both in (a) air, and (b) in still water, for a total of 6 configurations.  

For each of the following six sub-sections, corresponding to the six experimental configurations 

described previously, the modal analysis will be presented first. It was verified that the modal 

shapes remain the same for all the tests and it was chosen for conciseness to present the frequency 

response function (FRF) and the normal modes for the first case only. The frequency-amplitude 

diagrams that describe nonlinear vibrations are then presented separately for the three directions 

of the measurements.  

As shown in Ferrari et al. (2018), a hardening behavior is expected for fixed-fixed nuclear fuel 

rods. The following cases, however, will be softening in nature (the frequency decreases with the 

forcing amplitude). The decrease in the stiffness of the system for increasing forcing and vibration 

amplitudes has not been explained physically so far. For softening systems, the maximum vibration 

is typically reached by DOWN curves. However, for such damped systems a negligible hysteresis 

(difference between DOWN and UP curves) was measured.  

 

3.1. Empty rod in air 

 

In the frequency range 0 – 400 Hz, the empty rod presents four vibration modes for which the 

number of longitudinal flexural waves equals the order of the mode. This correspondence was 

noticed for all the cases under study; therefore, the normal modes and the Frequency Response 

Function will be presented for the empty rod exclusively. It was noticed that, as the mode number 

and the number of longitudinal half-waves increase, the motion at the boundary conditions (the 

springs of the spacer grids) increases as well. This may suggest that i) the vibration of the spring 

constitutes an important part of the modal shape and ii) the spacer grids allow an important rotation 



and/or an important displacement. However, it must also be noticed that the measurement cannot 

be carried out at the exact location of the boundary conditions (the points of contact between 

springs, dimples and fuel rods) but at a finite distance from them (basically, at the plane that 

constitute the surface of the spacer grids). It can be noted anyway that mode IV presents significant 

rattling at the constraints, which could justify higher damping values. Indeed, a higher modal 

damping was measured for mode IV, not only for the empty rod in air, but in most experimental 

cases treated in the following sections as well. While the determination of the exact shape of the 

normal modes of vibration is outside the scope of this investigation, it was also verified that the 

first four vibration modes and the external excitation share the same plane. The modal damping 

values obtained from modal analysis are shown in Fig. 9 and listed in  

Table 2. Modal damping in this case increases with mode number; this contradicts some results 

found in the relevant literature (e.g., (De Pauw et al., 2015)), where the fundamental vibration 

mode presents the largest damping. However, in the following cases in air and in water, various 

trends of modal damping and mode order are observed and presented. A proper discussion on the 

relationship between mode number and modal damping in PWR cores should take into account 

fluid flow, which is not included in this experimental study. Moreover, the authors have 

encountered several examples of systems where modal damping does not decrease with mode 

order (e.g., (Alijani et al., 2016)).  

 

(a) 

 

 



 

 

 

 

MODE I 
 

MODE II 

 

MODE III 

 

MODE IV 

 

b) 

Fig. 9: FRF (a) and normal modes (b) of the empty rod. 

 

Table 2 

Modal parameters of the empty rod in air 

Mode 
No. half 
waves 

Frequency 
(Hz) 

Damping 
(%) 

I 1 44 0.37 

II 2 120 0.31 

III 3 236 0.45 

IV 4 343 0.51 

 

The rod reaches a vibration amplitude approximately 3 times larger than its thickness during 

stepped sine tests. The nonlinear character of the vibration is manifested by the nonlinear jumps 

present in the amplitude chart for some excitation levels shown in Fig. 10. Such jumps are present 

even for relatively low force amplitudes. The trend of the nonlinear jumps is clearly softening, 

since the peak vibration frequency shifts towards lower values for larger forces. The companion 

mode has a resonant peak at a slightly higher frequency than the driven mode (Fig. 11). This can 

be justified by geometric imperfections (not measured) and by the sag of the rod under its own 

weight (amounting to a maximum value of approximately 2 mm at the middle of the length). It can 

be conjectured that, because of the sag due to weight, the nonlinear spring elements in the spacer 

grids are in a preloaded state that results in a reduced stiffness in the vertical direction.  



The results in Fig. 11 also feature the influence of the driven mode as an additional peak. The 

interaction between the two modes is evident for forces larger than 0.5 N. For a more detailed 

treatment of the internal resonance in axisymmetric structures, the reader is referred to Amabili et 

al. (2016).  No traveling wave is present since the companion mode remains in amplitude much 

smaller than the driven mode. However, the horizontal vibration is given by a vibration mode and 

not by simple measurement noise or poor measurement alignment, because of the following 

reasons: i) the horizontal vibration has a clearly distinct peak amplitude ; ii) the relative phase 

between the vertical and the horizontal vibration is approximately 90 degrees, which is typical for 

one-to-one internal resonances due to axial symmetry (Fig. 13). Since the phase charts do not give 

any additional relevant information, they will be omitted in the subsequent experimental cases. 

Lastly, the axial mode, shown in Fig. 12, is comparable to the companion mode in amplitude, but 

it is influenced mostly by the shape of the driven mode.  

 

 

Fig. 10: Frequency – Amplitude curves for the driven mode of the empty rod in air,  

UP and DOWN directions. 

 

 



 

Fig. 11: Frequency – Amplitude curves for the companion mode of the empty rod in air,  

UP and DOWN directions. 

 

 

Fig. 12: Frequency – Amplitude curves for the axial mode of the empty rod in air,  

UP and DOWN directions. 



 

 

Fig. 13: Frequency – Amplitude and Phase curves for chosen force levels of the driven and 

companion modes. 

 

3.2. Rod with freely moving pellets in air 

 

The mass of the tungsten pellets, not balanced by a stiffness increase, has as a consequence the 

reduction of the natural frequencies of the system. This reduction in the frequency values is 

presented in Table 3. As expected, since energy is dissipated in the free motion of the pellets, 

modal damping values are higher than in the previous case and larger forces are required to reach 

the same amplitude levels in the nonlinear regime.  Hysteresis cycles of very modest amplitude 

and few nonlinear hardening jumps are detected but the overall nonlinear behavior is of the 

softening type (Fig. 14 and Fig. 15). The companion mode remains much smaller than the driven 

mode; the latter is not influenced by the former. The axial vibration is linked to the driven mode, 

but it is not comparable in amplitude (Fig. 16).  

 

 

 



 

 

Table 3 

Modal parameters of the free-pellets rod in air 

 

Mode 
No. half 
waves 

Frequency 
(Hz) 

Damping 
(%) 

I 1 17.2 1.23 

II 2 96.9 0.78 

III 3 157 0.79 

IV 4 233 1.47 
 

 

 
 

Fig. 14: Frequency – Amplitude curves for the driven mode of the free-pellets rod in air,  

UP and DOWN directions.  

 

 



 
 

Fig. 15: Frequency – Amplitude curves for the companion mode of the free-pellets rod in air,  
UP and DOWN directions. 

 

 
 

Fig. 16: Frequency – Amplitude curves for the axial mode of the free-pellets rod in air,  
UP and DOWN directions. 

 



 

3.3. Rod with fixed pellets in air 

 

With respect to the previous case, natural frequencies are mostly lower; an explanation for this 

phenomenon is unclear since the mass is unchanged while the stiffness of the system should be 

increased through the threaded device acting on the pellets. Similarly, the constraint on the 

movement of the pellets should decrease dissipation, but damping values are similar instead (Table 

4). The slots occupied by the rod in the two spacer grids do not change, and the number of cycles 

the rod is subjected to is totally insufficient to justify a change in the retainment force. Since it is 

necessary to remove the rod with free pellets and to install the rod with fixed pellets to pass from 

the tests on the former to the tests on the latter, it is possible to conjecture that the boundary 

conditions are sensitive to assembly conditions.  

Observing the driven mode in the UP and DOWN directions (Fig. 17) it is possible to notice that 

the behavior becomes softening and some nonlinear jumps appear. The resonance of the 

companion mode is higher in frequency than that of the driven mode (Fig. 18). The influence of 

the driven mode on the companion mode is actually higher in amplitude than the resonance of the 

companion mode itself. The axial vibration is extremely modest in amplitude, but it is influenced 

by both transversal vibration modes (Fig. 19).   

 

Table 4 

Modal parameters of the fixed pellets rod in air 

Mode 
No. half 
waves 

Frequency 
(Hz) 

Damping 
(%) 

I 1 19.85 1.34 

II 2 56.9 0.8 

III 3 114 0.8 

IV 4 181 0.73 

 



 

Fig. 17: Frequency – Amplitude curves for the driven mode of the fixed-pellets rod in air,  

UP and DOWN directions. 

 

Fig. 18: Frequency – Amplitude curves for the companion mode of the fixed-pellets rod in 

air, UP and DOWN directions. 



 

Fig. 19: Frequency – Amplitude curves for the axial mode of the fixed-pellets rod in air,  

UP and DOWN directions. 

3.4. Empty rod in water 

 

Predictably, the introduction of water, through a virtual mass effect, decreases the frequencies with 

respect to the same configuration in air (see Table 5). It must be also noted from linear results that 

the values of modal damping are much larger. Frequency-amplitude curves in the nonlinear regime 

show that in presence of water slightly higher forces are required to achieve specific levels of 

vibration amplitude (Fig. 20). A nonlinear softening behavior appears from the lowest levels of 

force, even if the vibration amplitude remains smaller than the external diameter of the rods. The 

companion mode is characterized by higher frequencies and smaller amplitudes than the driven 

mode (Fig. 21). The axial vibration is much smaller and follows the trend of the driven mode (Fig. 

22). 

 

 

 

 



 

Table 5 

Modal parameters of the empty rod in water 

Mode 
No. half 
waves 

Frequency 
(Hz) 

Damping 
(%) 

I 1 34.15 1.06 

II 2 70.52 0.64 

III 3 95.26 0.89 

IV 4 186.93 1.33 

 

Fig. 20: Frequency – Amplitude curves for the driven mode of the empty rod in water,  

UP and DOWN directions. 

 

 



 

Fig. 21: Frequency – Amplitude curves for the companion mode of the empty rod in water,  

UP and DOWN directions. 

 

Fig. 22: Frequency – Amplitude curves for the axial mode of the empty rod in water,  

UP and DOWN directions. 



3.5. Rod with freely moving pellets in water  

 

With respect to the corresponding configuration in air, the resonant frequencies decrease and 

damping increases, with the exception of the first mode (Table 6). The nonlinear curves show a 

monotonically softening behavior of the driven and companion modes, with a negligible hysteresis 

and with no development of jumps (Fig. 23 and Fig. 24). Nonlinearity is already evident beyond 

0.5 N and the softening frequency shift is larger than that in air. The driven and companion modes 

are well separated in the frequency domain; the companion mode remains much smaller in 

amplitude and does not affect the peak amplitude reached by the driven mode. The driven mode, 

however, affects greatly the companion mode. The axial mode is negligible and is affected clearly 

by both the horizontal and by the vertical vibration (Fig. 25).  

Table 6 

Modal parameters of the rod with freely moving pellets in water 

 

No. half 
waves 

Mode 
number 

Frequency 
(Hz) 

Damping 
(%) 

1 I 15.59 0.84 
2 II 44.17 1.13 
3 III 91.34 1.12 
4 IV 148.61 1.66 

 



Fig. 23: Frequency – Amplitude curves for the driven mode of the freely moving pellets rod in 

water, UP and DOWN directions. 

 

Fig. 24: Frequency – Amplitude curves for the companion mode of the freely moving pellets 

rod in water, UP and DOWN directions. 

 



Fig. 25: Frequency – Amplitude curves for the axial vibration of the freely moving pellets rod 

in water, UP and DOWN directions. 

3.6. Rod with fixed pellets in water 

 

The natural frequencies for this configuration are mostly lower than in the corresponding 

configuration in air, while the opposite happens for the modal damping values (Table 7). Both 

behaviors are reasonable in presence of water. The nonlinear curves show a very important 

softening frequency shift, similar to that in air. The amplitude of the nonlinear frequency-

amplitude curves is extremely similar to the amplitude reached in air for an excitation of 2 N (Fig. 

26). Interestingly, the companion mode presents two different nonlinear peak frequencies, both 

higher than that of the driven mode (Fig. 27). At approximately 21 Hz, the companion mode 

presents its resonant peak. While the driven mode vibrates at 14-15 Hz at the largest excitation 

levels, the companion mode has its vibration peak at approximately 17 Hz. The shift between the 

two frequencies is caused, as in the other cases, by a symmetry break between the horizontal and 

the vertical plane, which can be given by the boundary conditions or by the effect of gravity. The 

companion mode, anyway, remains much smaller than the driven mode, and the latter is not 

affected. The axial vibration is negligible and repeats the vibration pattern of the driven and 

companion modes (Fig. 28).  

Table 7 

Modal parameters of the rod with fixed pellets in water 

No. half 
waves 

Mode 
number 

Frequency 
(Hz) 

Damping 
(%) 

1 I 19.19 1.32 
2 II 54.30 1.07 
3 III 109.13 1.20 
4 IV 184.11 1.81 

 

 

 



 

Fig. 26: Frequency – Amplitude curves for the driven mode of the fixed pellets rod in water,  

UP and DOWN directions. 

 

Fig. 27: Frequency – Amplitude curves for the companion mode of the fixed pellets rod in 

water, UP and DOWN directions. 



 

Fig. 28: Frequency – Amplitude curves for the axial vibration of the fixed pellets rod in water,  

UP and DOWN directions. 

 

4. Damping identification 

 

4.1. Identification process 

 

The single or two-degrees-of-freedom identification procedure for nonlinear frequency responses 

developed by Le Guisquet and Amabili (20191) is valid for most geometric nonlinearities arising 

from large-amplitude vibrations. Moreover, if a companion vibration (perpendicular to the 

excitation) is present, it is required that the one-to-one internal resonance between driven and 

companion mode is perfect—i.e., the two modes must share a perfectly identical frequency. 

However, the experimental responses presented before feature a significant frequency split 

between driven and companion mode. Moreover, the evolution of the equivalent nonlinear 

stiffness—discernible from the shift of resonant frequency with increasing excitation levels—is 

too strong to be described by a nonlinear model including only stiffness proportional to the square 
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and the cube of the displacement. This is probably due to the complex boundary conditions at the 

spacer grids and to the internal motion of the pellets, which introduce phenomena that have to be 

taken into account by a more accurate numerical model, which is not available yet. 

Therefore, in order to describe the evolution of damping with vibration amplitude, a single DOF 

linear oscillator is fit on the experimental frequency response curves for the driven mode at the 

minimum and at the maximum levels of excitation. This way, the equivalent modal damping ratio 

of one response in the small-amplitude domain can be compared with the equivalent modal 

damping ratio in the large-amplitude domain. As the vibration of the companion mode remains 

much smaller than that of the driven mode, it was assumed that the former does not affect the 

global energy dissipation of the structure and it was excluded from the study.  

The dimensionless equation of motion of the equivalent single DOF system is 

𝑟2𝑞̈ + 2𝑟𝜁𝑞̇ + 𝑞 = 𝜆 cos(𝑡), (1) 

where 𝑞 is the displacement divided by the wall thickness ℎ of the rod, 𝑟 is the circular frequency 

of excitation divided by the natural circular frequency 𝜔𝑛, 𝜁 is the damping ratio and 𝜆 the 

dimensionless force, defined as 

𝜆 =
𝐹

ℎ𝑚𝜔𝑛
2, (2) 

where 𝑚 is the modal mass. The displacement is approximated by its first harmonic, which in fact 

is the only one experimentally measured during stepped-sine tests. 

The dimensionless equation of motion is applied first on the lowest response and then on the largest 

response. For the lowest responses, the value of 𝜔𝑛 is determined as the frequency corresponding 

to the peak amplitude while, for the largest responses, it is taken as the value giving the best fit; 

consequently, the low-amplitude and the large-amplitude curves have two different values for 𝜔𝑛. 

In the equation of motion, 𝜁 and 𝜆 remain unknown (𝜆 depending on the unknown modal mass). 

Both unknowns could be estimated by means of a least-squares method developed for this purpose, 

which would provide the closest fit of the simulated and of the experimental responses over the 

entire frequency range. However, this would result in an unsatisfactory trade-off between the peak 

amplitude reached and a good fit in the entire frequency range. Nonlinear amplitude responses, in 

fact, are in general not symmetric in the frequency domain with respect to their peak frequency 

𝜔𝑛, so they cannot be fitted closely by a linear model. A discrepancy in the amplitude of the peak 

of the nonlinear curve would be particularly harmful in the scope of this study. Consequently, only 



𝜆 is provided by the least-squares algorithm. The damping ratio, instead, is set so that the simulated 

and the experimental response reach exactly the same amplitude at their peak.  

Table 8 

Identified natural frequencies, dimensionless forces and damping ratios at the minimum and 

maximum excitation amplitude for each experimental case. 
 

Experimental 
case 

Force 
(N) 

Peak 
frequency 

(Hz) 

Frequency 
decrease 

(%) 

Equivalent 
modal 

damping ratio 
𝜁 

Damping 
increase 

Air 

Empty 
rod 

0.01 43.88 
11.14 

0.3710-2 
12.27 

2.50 38.99 4.5410-2 

Free 
pellets 

0.05 17.30 
25.95 

1.4010-2 
5.01 

6.00 12.81 7.0110-2 

Fixed 
pellets 

0.10 20.10 
8.96 

2.5410-2 
2.11 

2.00 18.30 5.3610-2 

Water 

Empty 
rod 

0.10 33.10 
3.99 

1.0010-2 
4.11 

3.00 31.78 4.1110-2 

Free 
pellets 

0.10 14.95 
23.08 

0.7410-2 
8.15 

3.50 11.50 6.0310-2 

Fixed 
pellets 

0.10 19.15 
23.29 

1.5810-2 
6.61 

3.50 14.69 10.4510-2 

 

4.2. Results and discussion 

 

Table 8 shows force, peak frequency and equivalent modal damping ratio for each case both at the 

minimum and at the maximum force level. Fig. 29 and Fig. 30 feature the experimental and the 

simulated responses in terms of amplitude (𝑎1) and phase (𝜙1) of the first harmonic of the 

dimensionless displacement at the highest excitation level for each case. 

Despite some discrepancies between the identified and the experimental responses, the linear 

oscillator enables a first approximation of the frequency response of the rod for a specific 

magnitude of excitation. The natural frequencies obtained for the linear responses are predictably 

close to the ones obtained previously by experimental modal analysis. However, with the exception 

of the empty rod in air, the estimated damping ratios of the linear responses are 8% to 33% lower 

than the ones from experimental modal analysis. This can be explained by the fact that: i) some 

linear responses show one-to-one internal resonance, hence a truncation of the peak amplitude of 

the driven mode; 



ii) the stepped-sine sinusoidal signal provides excitations too large to remain in the linear field; 

and, iii) the system may change slightly, for example because of changes in temperature, between 

the moments of the modal analysis and of the stepped-sine analysis. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 29: Frequency-response of the first harmonic of the dimensionless displacement for the 

experiments in air: (a) amplitude and (b) phase of the empty rod; (c) amplitude and (d) phase of 



the rod with freely moving pellets; (e) amplitude and (f) phase of the rod with fixed pellets. 

Experimental data represented by markers and identified data represented by continuous line. 

 

On the other hand, it is clear that the damping ratios estimated for the largest responses present a 

significant increase (they are 2 to 12 times higher) with respect to the ones extracted from 

responses at the lowest excitation levels. These figures highlight the need of taking into account a 

nonlinear increase of the damping with the magnitude of excitation and with the peak amplitude 

of the response by means of nonlinear models, as applied phenomenologically by Eichler et al. 

(2011); Jeong et al. (2013); Le Guisquet and Amabili (20192); Lu et al. (2019) and as developed 

theoretically by Amabili (2018a, 2018b, 2018c, 2019a). Comparing damping ratios in water and 

in air at the lowest excitation levels does not show any clear trend. The increase of the damping 

value for nonlinear excitation is highest for the empty rod in air and lowest for the rod with fixed 

pellets in air; other configurations feature instead similar values of the increase. The reduction of 

the natural frequencies between linear and nonlinear field is softening, but much larger than that 

modeled by typical Duffing equations with nonlinear quadratic stiffness; in fact, here the decrease 

reaches a value of almost 26% in air.  

  

  
(a) (b) 
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(c) 

(d) 

 

 

 

  
(e) (f) 

 

Fig. 30: Frequency-response of the first harmonic of the dimensionless displacement for the 

experiments in water: (a) amplitude and (b) phase of the empty rod; (c) amplitude and (d) phase 

of the rod with freely moving pellets; (e) amplitude and (f) phase of the rod with fixed pellets. 

Experimental data represented by markers and identified data represented by continuous line. 

 

5. Conclusions 
 

The current work proceeds from the past characterization of single fuel rods with fixed-fixed 

boundary conditions and precedes the study of bundles of fuel rods in quiescent and flowing water. 

Consequently, it does not take into account the fluid structure interaction of flowing water on a 

cluster of fuel rods. Flowing water is, inter alia, the likely cause of broadband excitation. This 



problem is investigated in detail by the same authors in Ferrari et al. (2019). While the present 

investigation provides limited insight on the nonlinear vibrations of operative PWR bundles, it is 

particularly suitable for the determination of the specific influence of spacer grids. Such elements 

showed a remarkably nonlinear static characteristic. It was reasonable therefore to expect an 

important influence of the boundary conditions on the dynamics of the structure. Compared to the 

fixed-fixed boundary conditions discussed by Ferrari et al. (2018), a much larger damping increase 

is in fact observed passing from the linear to the nonlinear field. This is probably due to the friction 

forces and to the impacts occurring at the boundary conditions. The increase of nonlinear damping 

contributes to the overall safety of the system against excessive vibration amplitudes.  

Although axial symmetry is broken and damping increases, the presence of spacer grids does not 

inhibit the appearance of vibrations perpendicular to the direction of the excitation (companion 

mode), along with vibrations parallel to the excitation (driven mode). The composition of driven 

and companion mode for axisymmetric structures is explained in detail in Ferrari et al. (2018). 

However, in presence of spacer grids the companion mode does not reach vibration amplitudes 

comparable to the driven mode; consequently, proper traveling wave phenomena do not appear. 

Nevertheless, this seems to suggest that bi-directional flexural vibrations may appear during the 

operation of nuclear reactors as well. Since spacer grids allow axial displacements, opposed by dry 

friction only, the axial vibration at the constraints was measured. As expected, the measured axial 

displacements were several times smaller in amplitude than those of the driven and companion 

modes. While the driven and the companion modes appear at different frequencies and interact in 

a complex manner (influenced, perhaps, by the vibration of the nuclear fuel pellets as well), the 

axial vibration occurs always at the same frequencies corresponding to the two main vibration 

modes. This seems to suggest that no specific vibration mode is present in the axial direction.    

The presence of nuclear fuel pellets is the main factor influencing the vibration in the linear field 

by means of added mass and stiffness. The trend of nonlinear vibration is always strongly 

softening. This is an important difference with respect to what happened in case of fixed-fixed 

boundary conditions (Ferrari et. al., 2018). The hysteresis here is negligible, most likely because 

of damping phenomena. Similarly, nonlinear jumps are not found, with the exception of small 

areas in the frequency charts.  Highly damped curves without nonlinear jumps and such a softening 

behavior, unfortunately, were not described successfully by the one DOF model based on a 

modified Duffing oscillator developed by this research group. Therefore, it was not possible to 



characterize the trend of the damping increase between the two extreme values of the excitation 

level. Such study will be undertaken in the future as experimentation on friction and impacts at the 

spacer grids is anticipated. Experimental data on the interaction between spacer grids and rods will 

in fact allow the development of lumped parameter models for the nonlinear boundary conditions. 

These models will constitute the inputs for reduced order models of the nuclear systems and for 

modified forms of the single DOF Duffing oscillator proposed in this study. 

The experimental setup, inherited from previous tests without spacer grids, allowed successfully 

the measurement of the linear and nonlinear dynamics of the rods in air and in water. Therefore, 

this system will be adapted to more complex dynamic experiments on nuclear fuel bundles. 

However, the measurement of axial vibrations proved remarkably difficult. In fact, these vibrations 

are not existent in the linear field, while they increase sharply, reproducing the trend of larger 

flexural vibrations. A dedicated in-plane vibration measurement will be developed to measure the 

vibration at the spacer grids instead of the overall extension and contraction of the ends of the rods. 

The availability of reliable non-contact methods for the measurement of the axial motion of nuclear 

fuel rods is particularly important, because it allows the estimation of the amount of friction at the 

boundary conditions.  

Given the moderate difference between free and fixed pellets conditions, the former may not be 

taken into account in future studies. During the operation of nuclear reactors, pellets are in fact 

packed axially. However, the presence of pellets is the primary cause of large softening frequency 

decreases, which indicates the utility of taking pellets into account by the inclusion of additional 

degrees of freedom into future models and simulations.  
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Abstract  
 

The core of Pressurized Water Reactors (PWR) is composed by nuclear fuel assemblies, bundles 

of slender fuel rods containing uranium pellets, kept in position by spacer grids equipped with 

elastic elements for retention, and coupled to an axial flow of coolant pressurized water. Fuel 

bundles are subjected to fluid-induced vibrations causing fretting at the interface with spacer grids; 

events such as earthquakes may also constitute an external excitation resulting in large-amplitude 

vibrations of the fuel rods, which may bring to loss-of-coolant accidents. The relationship between 

the excitation amplitude and the damping during large-amplitude vibrations of nuclear fuel 

assemblies in the presence of flowing fluid is not fully understood. The present experimental study 

investigated the vibrations of a 33 tube assembly composed by eight regularly spaced fuel rods 

installed around a guide tube and supported by spacer grids; tests were performed in quiescent and 

flowing water. In addition to experimental modal analysis under small random excitation, stepped-

sine experiments at different levels of harmonic excitation that caused large-amplitude vibrations 



were performed. The equivalent viscous damping ratios of the fundamental model at different 

excitation levels were extracted by fitting the results with a single degree-of-freedom model. The 

vibrations of the fuel bundle were strongly influenced by the vibrational behavior of the single 

rods, which constitute coupled oscillators. An increase of damping with the excitation amplitude 

was observed both in quiescent and in flowing water and acted in the direction of structural safety. 

The water flow did not cause instabilities in the operational range; instead, the increment of flow 

speed increased the damping ratios in the linear (small-amplitude vibrations) and nonlinear (large-

amplitude vibrations) regime.  

 

1. Introduction 
 

Pressurized Water Reactors (PWRs) are installed in civil plants to produce electricity and to 

produce propulsion in military submarines and vessels. The cores of large PWRs are large vessels 

containing hundreds of nuclear fuel bundles, which in turn are constituted by hundreds of slender 

fuel rods organized in a structured array. Fuel rods are hollow cylindrical zirconium tubes filled 

with pellets of enriched uranium; their typical length is 4 meters while their diameter is 

approximately 10 mm. Uranium pellets are cylindrical, with a length close to 10 mm. Their 

diameter is slightly smaller than the internal diameter of the fuel rods to allow for thermal 

expansion. Axially, they are kept packed inside the rods by means of elastic elements pushing 

axially. Fuel rods are kept in structured arrays by means of spacer grids, square zirconium grids 

perpendicular to the axis of the rods. Spacer grids are spaced regularly along the fuel rods, so that 

in a typical bundle 8 spacer grids may be present. The cells of the spacer grids keep fuel rods at a 

relative distance of few millimeters and accommodate guide and control tubes as well. The cells 

of spacer grids are equipped with elastic elements such as springs, which support fuel rods by 

means of preload and consequent friction, while allowing thermal expansion. Moreover, they are 

equipped with fins to increase the mixing of the coolant water. Fuel bundles and fuel rods are in 

fact installed vertically and traversed by a coaxial flow of light water, which removes the heat due 

to irradiation, reaching typical speeds of 5 - 6 m/s. Water is kept at a pressure around 15 MPa and 

a temperature of 300 degrees Celsius, so that it remains liquid in the reactor. Correspondingly, fuel 

rods are pressurized internally by means of helium.  



Axial water flow causes flow-induced vibrations of single fuel rods and of entire fuel bundles. In 

fact, fuel rods are free to vibrate between each couple of adjacent spacer grids. Axial flow is less 

prone to create instabilities and large amplitude vibrations than cross flow. However, in PWRs 

modest amplitude vibrations are dangerous because i) fuel rods are slender and, therefore, flexible; 

vibrations easily become comparable to the diameter of fuel rods, thus entering a region of 

geometric nonlinearity; ii) the distance between fuel rods and bundles is small, so that during 

vibrations these elements may enter in contact; this reduces momentarily or alters permanently the 

fluid flow of the coolant and damages the metallic surfaces; iii) the elastic elements of the spacer 

grids constitute loose boundary conditions and are the location of friction and impacts during 

vibrations; this may lead to fretting at the interface with the fuel rods with the spacer grids and the 

release of fissile material into the primary circuit. Important vibrations, then, may not be caused 

by fluid-structure interaction alone, but also by external excitations caused by accidents such as 

earthquakes. In these cases, the interaction between forced excitation and fluid-structure 

interaction may result in unexpected responses.  

The Laboratory of Mechanical Vibrations and Fluid Structure Interaction at McGill University has 

undertaken, in collaboration with Framatome Canada, the experimental study of forced large 

vibrations of a 3x3 reduced-scale PWR fuel bundle. Given the complexity of the dynamic study, 

the investigation was divided into three phases: 

1) The first phase involved forced vibrations of single fuel rods in reference boundary 

conditions (fixed-fixed), intended to investigate the relationship between peak vibration 

amplitude and forcing level in the geometrically nonlinear field (Ferrari et al., 2018); 

2) The second phase described forced vibrations of single fuel rods supported by spacer grids 

provided by Framatome, intended to investigate the effect on the vibration amplitude of 

the strongly nonlinear boundary conditions (Ferrari et al., 2019); 

3) The third phase (current paper) presents the results of forced vibrations of a 33 tube 

assembly composed by eight regularly spaced fuel rods installed around a guide tube and 

supported by spacer grids, intended to investigate the dynamics of arrays of identical fuel 

rods and the effect of flowing fluid. 

Phase 3) is the object of the present paper. The main differences of the setup used in the current 

analysis vis-à-vis the setup presented in (Ferrari et al., 2019) are related to the different 

configuration used in the experiments (here, a reduced scale 3x3 fuel assembly is used in the forced 



vibration analysis vs. the single rod used in (Ferrari et al., 2019)) and to the additional tests with 

fluid flow conditions presented in the current analysis (in (Ferrari et al., 2019) the single fuel rod 

was tested only in air and in quiescent water). Because of this, for additional references detailing 

the estimation of damping and other parameters in the linear (small-amplitude vibrations) and in 

the nonlinear (large-amplitude vibrations) regime, the effect of nuclear fuel pellets and the 

dynamics, fretting and creep of spacer grids, the reader is directed to (Ferrari et al., 2018) and 

(Ferrari et al., 2019). The main findings of these two works on single fuel rods are: i) the rods 

exhibit a strongly nonlinear behavior under forced vibrations; this behavior is hardening for fixed-

fixed rods (the peak frequency increases with the excitation amplitude) and softening (the 

frequency decreases) if spacer grids are employed; ii) the equivalent modal damping ratio for the 

fundamental resonant frequency is not constant but increases strongly with excitation amplitude; 

iii) a one-to-one internal resonance due to axial symmetry is present, giving rise to vibrations 

perpendicular to the direction of the excitation.   

 

 Vibrations of fuel bundles in PWRs 

 

Most applications of axial fluid flow through clusters of arrays of cylindrical elements are found 

in the nuclear and energy sector. As a consequence, the flow-induced vibrations of such systems 

were often studied, theoretically and experimentally (Bhattacharya, 2013; Chen, 1975c; De Pauw 

et al., 2015; Dragunov et al., 2013). Notable numerical studies are also available (De Santis and 

Shams, 2017; Hofstede et al., 2017; Kang et al., 2001; Kim and Kim, 2005; Liu et al., 2012; Liu 

et al., 2017; Païdoussis and Curling, 1985).  

A complete discussion of the phenomena experienced by structured bundles of rods with tapered 

ends in axial flow can be found in (Païdoussis, 2004). Axial flow in the energy sector was studied 

first by (Burgreeen et al., 1958; Païdoussis, 1965 a,b,c; Pavlica and Marshall, 1966; Quinn, 1962 

and1965; Roström, 1964; Roström and Andersson, 1964 a and b; Shields, 1960; SOGREAH, 

1962). The first experiments were performed by (Chen and Wambsganss, 1972) and (Païdoussis, 

1966a). Axial flow is inherently less disruptive than cross flow to slender elements; rods may reach 

conditions of buckling or flutter, but for extremely high flow velocities, rarely encountered in 

practical applications (>50 m/s for flowing water (Païdoussis, 1966b)). In subcritical conditions, 

slender cylinders are subjected to stochastic fluid-induced vibrations resulting in the excitation of 



the lowest “dry” vibration modes. The change in the natural frequency induced by flow depends 

on the boundary conditions; however, the added-mass effect on the natural frequency caused by 

quiescent fluid alone is dominant. The phenomenon of subcritical vibrations remains unclear, but 

it may be understood as a random forced vibration of the fuel rods caused by the pressure 

oscillations of the turbulent fluid. Fluid flow in subcritical condition tends to increase the damping 

of externally induced vibrations proportionally to the velocity of the fluid. It must be noted that, 

for flow velocities different from zero, the eigenfunctions of the system are not orthogonal and the 

modal shapes vary with velocity; therefore, the usage of terms such as normal modes and natural 

frequencies is improper, although practically convenient. 

Conditions of confined flow are obviously present because of the finite dimensions of the flow 

section in PWRs and because of the close distance between fuel rods. Confined flow corresponds 

to an increased added-mass effect, an increased flow damping and a lower flutter limit. Clustered 

cylinders were first studied by (Païdoussis, 1979; Païdoussis et al., 1982 and  1983a and b; 

Païdoussis and Besançon, 1981; Païdoussis and Suss, 1977).  

Clustered cylinders in axial flow feature hydrodynamic coupling. The phenomenon was studied 

by (Chen,1975a,b,c; Chung and Chen, 1977; Dalton, 1980; Lin and Chen, 1977; Lin and Raptis, 

1986; Païdoussis et al., 1977; Païdoussis and Besançon, 1981; Païdoussis and Suss, 1977; 

Weppelink, 1979; Yamamoto, 1976). Experiments were conducted by (Chen and Jendrzejczyk, 

1978) and (Moretti and Lowery, 1976).  A cluster of closely spaced cylinders, each one having the 

same sequence of natural frequencies 𝜔1, … , 𝜔𝑚 (truncating the infinite series of normal modes at 

the m-th mode), does not have the same series of frequencies of the rods 𝜔1, … , 𝜔𝑚. Instead, the 

generic i-th mode corresponding to the natural frequency 𝜔𝑖 splits into multiple modes consisting 

in different combinations of the corresponding modal motions of the single rods. Correspondingly, 

the Frequency Response Function of a bundle of n fuel rods will present, in a neighborhood of the 

natural frequency 𝜔𝑖 of the single rods, scattered resonant peaks with very similar natural 

frequencies, resulting in beating phenomena. This is a consequence of the fact that the fluid does 

not introduce a virtual added mass but a virtual added mass matrix due to inertial coupling.  

Further complication is given by the fact that PWR fuel rods are not only clustered in an enclosed 

space, but also interconnected by flexible elements. Such architectures were investigated by 

(Païdoussis et al., 1983 a and b). If a bundle of fuel rods is supported by a number k of spacer 

grids, the 1-st and the k-th spacer grids may be considered as boundary conditions, however a 



number of k-2 spacer grids remains, constituting intermediate flexible supports. Intermediate 

flexible supports may contribute to the scatter of the flexural frequencies of the single rods into 

bands. Loose multi-span supports may result in localized vibration modes (Yeh and Chen, 1990).  

The flow across nuclear fuel bundles is strongly influenced by the presence of the bundles 

themselves; consequently, both in the parallel and in the perpendicular direction to the axis of the 

bundle, it is far from uniform. Contributing to this effect are the following factors:  

• Flow experiences concentrated head losses while it encounters the spacer grids and the 

(tapered) ends of the fuel rods. 

• Flow is accelerated when the presence of spacer grids and nuclear fuel rods reduces the 

flow section. 

• The duct is not infinitely extended around the fuel bundles, therefore overall flow is, at 

various degrees, confined.  

• Spacer grids present fins that impart a transversal mixing component to flow, increasing 

turbulence and random vibrations. 

• Among the fuel rods, flow is strictly confined and is named subchannel flow. Subchannel 

flow velocity is largely different from “bulk” flow velocity; large spatial gradients of flow 

are present, contributing to turbulence and random vibrations.  

• Since flow is confined, large pressure drops due to viscosity are present along the axial 

extension of the bundles. 

Flow calculations are often proprietary, since they are related to the design of spacer grids. 

However, fluid flow across arrays of cylinders was already discussed by (Eifler and Nijsing, 1967) 

and (Hooper and Rehme, 1984). Currently, most investigations are carried out numerically (Chang 

and Tavoularis, 2007).  (Rehme and Trippe, 1980) investigated the effect of spacer girds on the 

flow along fuel bundles. More recent numerical works are also available (Khan et al., 2013; 

Ricciardi, 2016). Notable works on cross flow in heat exchangers (e.g. Brockmeyer et al., 2019) 

also provide useful insight on the numerical approach to fluid-structure interaction problems 

involving bundles. 

Lastly, the buoyancy of fuel bundles is in general may be neglected because 1) typical fuel bundles 

are installed in a vertical configuration; 2) if a horizontal configuration is chosen, the effects of the 

buoyancy and of the weight of fuel rods (which are, anyway, modest) tend to cancel each other 

out.  



 

 Identification of damping 

 

Abundant literature is available about the identification of the parameters describing the vibration 

of nuclear structures immersed in fluid flow (e.g. Adhikari and Woodhouse, 2001a and b; Bennett 

et al., 1997). The reader can refer to (Ferrari et al., 2019). Damping has received particular 

attention as it determines the vibration amplitude in resonant conditions. Damping for fuel 

assemblies in water was studied by (Brenneman and Shah, 2000; Collard et al., 2004; Connors et 

al., 1982; Fardeau et al., 1997; Hassan, 2011; Vandiver, 2012; Viallet and Kestens, 2003). Amabili 

has investigated the apparent increase of modal damping in various structures of practical interest 

and the existence of a unified damping model describing it (Alijani et al., 2016; Amabili 2018a,b,c; 

Amabili et al., 2016; Amabili and Carra, 2012; Balasubramanian et al. 2017 and 2018; Delannoy 

et al., 2015; Delannoy et al., 2016).  

Since the development of a reduced order model of a fuel bundle, including fluid-structure 

interaction, confined flow, hydrodynamic coupling and nonlinear boundary conditions would be 

impractical, it was chosen instead to apply a single DOF approximation; the latter has, as its main 

purpose, the determination of the evolution of damping with the excitation amplitude and with the 

coolant flow. This research group has developed with success a one (Delannoy et al., 2015) or two 

(Delannoy et al., 2016) degree-of-freedom model based on a modified Duffing oscillator with 

linear, quadratic and cubic stiffness and a viscous modal damping ratio. The model describes the 

large amplitude vibrations of PWR fuel rods in reference boundary conditions (Ferrari et al., 2018) 

under forced excitation, provided that the damping parameter is modified at each forcing level 

applied to the structure. For nonlinear systems, in fact, the peak vibration amplitude is not 

proportional to the amplitude of the excitation.  

 

Single DOF model for forced vibrations of fuel bundles around the fundamental frequency 

 

The single DOF model developed in (Le Guisquet and Amabili, 2019) is based on the modified 

Duffing oscillator (here expressed in dimensionless form) describing the modal vibration of the 

system around its fundamental frequency under a forced excitation of dimensionless amplitude  

𝑟2𝑥̈ + 2𝑟𝜁𝑥̇ + 𝑥 + 𝜂2𝑥2 + 𝜂3𝑥3 = 𝜆 𝑐𝑜𝑠( 𝑡), (1) 



where r is the circular frequency of excitation divided by the natural circular frequency 𝜔𝑛, x is 

the first harmonic of the displacement, t is dimensionless time, 𝜁 is the equivalent viscous modal 

damping ratio, 𝜂2 and  𝜂3 are the quadratic and cubic stiffness parameters, respectively. The 

dimensionless forcing amplitude is  

𝜆 =
𝐹

ℎ𝑚𝜔𝑛
2

  , 
 

(2) 

where F is the force amplitude in Newtons, m is the modal mass and h is the characteristic 

dimension of the system. This model captures the vibration of isolated fuel rods with fixed-fixed 

boundary conditions (Ferrari et al., 2018), but not those of isolated fuel rods installed in spacer 

grids (Ferrari et al., 2019). The combination of linear stiffness, quadratic stiffness and cubic 

stiffness cannot follow the large-amplitude responses obtained with a stepped-sine excitation, 

because they feature a strong nonlinearity (manifested by the reduction of the peak frequency with 

the forcing amplitude) starting from the lowest forcing levels, without the appearance of nonlinear 

jumps (regions of unstable solution for nonlinear systems  (Amabili, 2008)). It is believed that the 

springs at the spacer grids are the location of large nonlinear stiffness and damping components, 

which cannot be captured by the stiffness and damping terms in (1). In the future, the direct 

experimental investigation of the interaction spacer grids-fuel rods and the inclusion of higher-

order stiffness and damping terms may solve this issue. In (Ferrari et al., 2019), however, the 

identification of the stiffness evolution is abandoned and a simpler linear equation is applied to the 

lowest and the highest forcing levels of stepped sine experiments:  

𝑟2𝑞̈ + 2𝑟𝜁𝑞̇ + 𝑞 = 𝜆 𝑐𝑜𝑠(𝑡). (3) 

𝜁 is chosen so that the maximum peak vibration is perfectly reproduced;  𝜔𝑛 and m, the only 

unknown parameters, are determined through a least-squares procedure fitting the model on the 

experimental curves on the available frequency range.   

 

 

2. Experimental setup for the fuel assembly 

 

2.1. Experiments in air and quiescent water 

 



A welded assembly of three zirconium spacer grids and one open and hollow guide tube similar to 

those employed in PWRs was employed in this study.  Each spacer grid is composed of 17x17 

cells allowing the passage of 264 fuel rods and 25 guide tubes. The guide tube was point-welded 

to the central cell of each spacer grid. While the guide tube is welded, fuel rods are supported by 

springs and dimples present in the spacer grids (Fig. 1). The spring force acting on the fuel rods 

keeps them in position. For this study eight fuel rods were chosen, since it is the smallest number 

of fuel rods that can give a uniform and symmetrical distribution of rods around the guide tube. 

The middle spacer grid was cut removing vacant empty cells leaving intact only the central 9 cells. 

The two end spacer grids constitute two end conditions similar to the ones used on examining 

single rods in past studies by this same group (Ferrari et al., 2019). Thanks to the middle grid, the 

8 fuel rods move as a bundle and not independently between the boundary conditions at the two 

ends. In any case, in PWRs as well, fuel rods are inserted in spacer grids not only at the two 

extremities, but also in between the full rod length.  

 

 

 

 

a) b) 

  

 
 

c) 
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Fig. 31. (a) Typical PWR fuel assembly showing fuel rod and spacer grid (Source: energy.gov);  

(b) [A-A section] Boundary condition of fuel rod with spacer grid; (c) Photograph of fuel rods 

installed through a spacer grid (Ferrari et al., 2019). 

 

 

The two end spacer grids were kept parallel at a distance of 900 mm by means of four ¾” threaded 

rods. The threaded rods were anchored to an acrylic frame (which has the secondary role of water 

tank if required) by means of bolts (Fig. 32). Great care was taken so that the spacer grids were 

not affected by compression, traction or torsion forces due to the bolts connecting the system to 

the acrylic frame. The axes of the rods were kept parallel to the ground, as gravity does not play a 

significant role in the dynamics of the beams, thanks to their light weight. To increase the realism 

of the tests, short dummy rods of the same diameter as the fuel rods were installed in the cells of 

the two end spacer grids adjacent to the fuel rods. The close presence of the dummy rods is likely 

to increase the stiffness of the constraint felt by the fuel rods under test. Since several cells of the 

spacer grids at the two ends remain unoccupied and unloaded outside the area occupied by fuel 

rods, guide tube and threaded rods, they were removed as necessary by means of pliers (Fig. 33).  

 

 

 

 



I 

II 

III 

IV 

V 

 

Fig. 32: Transversal view of the assembled system: I, acrylic frame/tank; II, left spacer grid; III, 

reinforcement threaded rods; IV, fuel rod bundle; V, middle spacer grid; VI, right spacer grid.  

 
 

 
 

Fig. 33: Axial view of the disposition of the rods in the spacer grids: I, reinforcement 

threaded rods; II, spacer grid; III dummy rods, qty. 12; IV, fuel rods, qty. 8; V, guide tube. 

 

The eight hollow zirconium rods that were sourced and employed for the experiments are shorter 

in length but otherwise identical to the ones used in the fuel assemblies of PWRs. The rods are 988 

mm long and the length left free to vibrate between the two end spacer grids is 900 mm. The 

external diameter of the rods r is 9.50 mm and the wall thickness 0.61 mm. The material properties 

of the zirconium alloy are displayed in Table 1. One end of the zirconium rod is flared to facilitate 

the insertion into the spacer grids. The other end presents a clamping diameter. Fig. 3 shows one 

example of the fuel rod used in the test. At mid-length, the axial portion of the rods occupied by 

the thickness of the central grid is 32 mm.  

 

 

 

Table 9. Material properties of a zirconium-alloy rod. 

 

Density 

(kg.m3) 

Young’s modulus 

(GPa) 

Poisson’s 

ratio 

6450 95 0.37 



 

 

 

 
 (a) 

 

  
(b) (c) 

 

Fig. 34. (a), Zirconium fuel rod under test; (b) clamping end; (c) insertion end (Ferrari et al., 

2018).  

 

 

These test rods were provided by Framatome filled with cylindrical tungsten carbide pellets, which 

model uranium fuel pellets in terms of dimension and density. The weight of one rod complete 

with pellets is 5.80 times larger than in the empty configuration. A radial gap between the pellets 

and the internal wall of the zirconium rod is present. Being that the sum of the axial length of the 

pellets is slightly shorter than the axial clearance present inside the zirconium fuel rods, a modest 

axial gap is also present. In an operating nuclear reactor, axial springs keep fuel pellets tightly 

packed while allowing thermal expansion. The zirconium rods in the present study were tested 

without recovering the axial gap in some experiments, thus leaving the fuel pellets free to move 

axially and radially. In other experiments a simple threaded device (Fig. 6) was installed to keep 

the pellets in a tightly packed axial configuration. It must be noted that such precaution prevents 

axial play but does not prevent the radial motion of the pellets – although the latter becomes more 

difficult as the friction between the pellets limits or anyway modifies the radial motion. 



 

Fig. 35: Threaded device used to pack fuel pellets axially (Ferrari et al., 2019).   

  

Vibration experiments were conducted in presence of air and in presence of quiescent water 

surrounding the nuclear fuel rods. In this study the body of still water was large enough to be 

considered as infinitely extended around the fuel rods. The body of water is contained in the 

transparent acrylic tank, which is 1524 mm long, 300 mm wide and 300 mm deep. The tank 

constitutes the frame for the vibrating system even when it is not filled with water (experiments in 

air). The tank does not include a lid so that water presents a free surface. This allows the access of 

the instrumentation and of the measurement systems, while it was verified that no sloshing waves 

of any meaningful amplitude occur. The distance between the topmost fuel rod and the free surface 

of water is 100 mm.  

An electrodynamic exciter (Brüel & Kjær model 4810) was used to apply in the vertical direction 

a punctual and perpendicular excitation 240 mm away from one terminal spacer grid; this distance 

was chosen so that the low frequency modes of the bundle were excited without giving excessive 

interaction between the exciter and the structure during large amplitude vibrations. In fact, beam-

like transversal vibrations similar to those in (Ferrari et al., 2019) were hypothesized for the entire 

fuel assembly. The excitation was applied to the central rod belonging to the horizontal row of 

three rods located on top in the experimental configuration. A force transducer (Brüel & Kjær 

model 8203) was interposed so that a real-time force measurement is obtained during vibration. 

The forced vibration excitation system is shown in Fig. 36. 

  



 
 

Fig. 36: Excitation system: I, electrodynamic exciter; II, extension rod; III, load cell;  

IV, glued connection to center-top fuel rod. 
 

 

The weight of the vibrating structure is low; therefore, a non-contact measurement system based 

on laser Doppler vibrometry was employed to avoid the application of added massed. Laser 

Doppler vibrometers are capable of measuring the vibration of structures even in presence of 

surrounding water and clear acrylic walls. Laser heads by Polytec (Single point laser head model 

OFV-505 and Scanning laser head model PSV-400) were employed. One OFV-505 head was 

employed to measure the vertical vibration of the bundle, parallel to the direction of excitation. By 

aiming manually the head to several points along the bundle, the reconstruction of the mode shapes 

resulting from modal analysis was made possible. Broadband pseudo-random excitation signals 

were used to obtain the H1 Frequency Response Function averaged over 5 experiments with a 

frequency resolution equal to 0.193 Hz. For large-amplitude vibrations, one additional laser head 

(PSV-400) was also used to measure the horizontal vibration of the beam. Since the transversal 

section of the bundle is axisymmetric, normal modes are expected to appear in perpendicular 

couples sharing the same frequencies. Normal modes perpendicular to the direction of the 

excitation may be excited if the excitation amplitude is sufficient to activate nonlinear coupling. 

This justifies the presence of a laser directed horizontally (perpendicular to the direction of 

excitation). It must be noted that the structure is constituted by several identical rods coupled 



energetically through the three spacer grids. Therefore, the system is coupled and may feature 

various combinations of the vibration modes of the single rods. If water is present, hydrodynamic 

coupling contributes further to the complex coupling of the rods. This study is mostly focused on 

the large-scale vibration modes of the entire bundle as observed on the intermediate spacer grid 

and only secondarily on the individual vibration of the fuel rods between spacer grids. The joint 

vibration of the bundle is allowed by the presence of the intermediate spacer grid. In fact, for all 

the vibration modes where the displacement of the fuel rods does not have a node at mid-length, 

this element tends to force all rods to move together. Since the first vibration mode of a bundle 

was expected (and verified) to be flexural, parallel to the excitation, with a maximum transversal 

displacement at one half of the free length, the horizontal and vertical laser heads were aimed 

correspondingly on the central grid (Fig. 37). The system under test, constituted by one spacer grid 

and two bundle spans moving among two side grids, constitutes the basic module of the multi-

span bundles present in PWRs. The dynamics of multi-span bundles, thus, may be reconstructed 

on the base of experiments on simpler subsystems, such as the ones under discussion, if suitable 

extrapolation models become available in the future.  
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Fig. 37: Laser measurement system: (a), transversal measurement in the vertical and horizontal 

direction; (b) location of the laser beam on the middle spacer grid.  

 

 

 

A stepped-sine excitation technique was used to obtain frequency-amplitude curves at several 

forcing levels. A sinusoidal signal is employed to apply high energy levels at specific frequencies; 

the amplitude of the signal is kept accurately constant by means of a feedback control algorithm 

and the frequency varies slowly (by steps of 0.05 Hz) and monotonically in a neighborhood of the 

resonant frequency of interest – i.e., the fundamental one. At each frequency step, any transient is 

left to decay by discarding the initial 40 periods; afterwards, 10 periods are recorded and the 

frequency spectrum is reconstructed. Force feedback is required because the force generated by 

electrodynamic exciters is not proportional to the driving voltage around resonance. The 

monotonous variation of the frequency is required because hysteresis cycles and instabilities may 

arise. The stepped-sine algorithm is managed by a data acquisition and post-processing system 

(LMS TEST LAB) produced by Siemens. During the experiments the closed-loop control of the 

force was set with a tolerance of 0.5 %. The laser Doppler vibrometers are instead extremely 

precise. 

 

2.2. Experiments in axially flowing water 

 

The experiments in flowing water share several common elements with the setup developed for 

the experiments in quiescent environment. However, several additional pieces of equipment are 



required. The core of the test section (rods and spacer grids, reinforced by axial threaded rods), the 

excitation system and the measurement system were inherited from the experiments in quiescent 

water with minor modifications. However, the experiments in flowing water were performed 

inside a Kempf & Remmers water tunnel available at McGill University (Fig. 38). This closed 

loop tunnel is powered by an impeller with an electric motor and can generate flows as large as 12 

meters per second. Deaeration capabilities are available so that the flowing fluid does not present 

bubbles during the experiments. The test section (Fig. 39), open to measurements, is a 

parallelepiped 260 by 260 by 1000 mm long, with the longest side parallel to the ground. The test 

section is provided with clear acrylic windows through which the beams of the laser Doppler 

vibrometers mentioned in the previous section can operate. The system under test was suspended 

at the center of the test section by means of eyelets and tie rods installed onto the ¾” threaded rods 

(Fig. 40). The suspension is stiff under vibration while not applying considerable forces onto the 

spacer grids. The excitation system constituted by electrodynamic shaker, extension rod, stinger 

and load cell was maintained, however the extension rod had to pass through a neoprene membrane 

in the walls of the test section (Fig. 39).  The presence of the membrane does not affect the results 

of the experiments as: 1) the force sensor is located between the membrane and the system under 

test, so it measures the actual force applied to the bundle; 2) the membrane does not feature 

resonances in the frequency range of interest. The load cell and its cable were protected by a layer 

of silicone for protection against water infiltration. While the excitation was directed vertically to 

exploit the presence of a free surface in still water, it was directed horizontally, instead, in the 

water tunnel because of practical constraints. Consequently, the main vibration direction (direction 

of the modal analysis) was the horizontal one and the secondary vibration direction was the vertical 

one. The load cell is located at a distance of 138 mm from one fixed spacer grid and is glued on 

the middle rod on the side of the rod bundle.   

The water tunnel is equipped with a Venturi flowmeter; its accuracy is ± 0.5 m/s at the velocities 

under exam. The bundle was tested inside water flowing at a maximum velocity of 5 m/s. This 

value was chosen because it corresponds, approximately, to the maximum velocity encountered in 

Framatome PWRs. It has to be noted that the flow velocity values mentioned in this article are 

measured by the Venturi effect and are, therefore, mean values over the inlet of the working 

section. Local velocity varies instead around and across the rods of the bundle because of the 



presence of the rods, of the spacer grids and of the tunnel walls. However, the measurement of 

local speed values is not object of this study and will be included in future works.   

 

 

Fig. 38. Kempf & Renners water tunnel.  

 



 

Fig. 39. Detail of the fuel bundle installed in the test section of the water tunnel. (a) Removable 

acrylic window; (b) passage of the excitation through neoprene membrane. The red arrow 

indicates the direction of the laser Doppler vibration measurement.   
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Fig. 40. (a) Connection of the fuel bundle to the heavyweight walls of the water tunnel; (b) list of 

components. The minimum distance between the walls of fuel rods and the walls of the water 

tunnel is indicated. 

  



2. Experimental results 
 

The fuel assembly was tested in still air, in still water and in flowing water. In the first two cases, 

the pellets were first left free to move axially (freely moving pellets) and then they were blocked 

by an axial screw (fixed pellets). Inside the water tunnel, only fixed pellets were tested, because 

fuel bundles are not operated in PWRs with pellets left free to vibrate. Inside the water tunnel, 

more than one velocity value for the fluid flow was tested. A configuration of quiescent water was 

tested to ensure the compatibility of the experiments in the tank and in the water tunnel. 

Subsequently, a test at 2.5 m/s and a test at 5 m/s were performed. These mean velocities were 

chosen as they are approximately equal to 0.5 and 1 time, respectively, the maximum coolant 

velocity used in Framatome PWRs. Considering the local flow velocity equal to the mean, nominal 

value, and neglecting the mixing effect of the spacer grids, the approximate values of the Reynolds 

number for the subchannel flow can be estimated as 58900 at 5 m/s and 29450 at 2.5 m/s. In total, 

seven configurations were tested (four inside the acrylic tank and three inside the water tunnel). 

For each configuration, both linear (modal) and nonlinear analyses were performed. Linear and 

nonlinear experiments will be presented in two separate sections. Nonlinear experiments in 

quiescent media required the measurement of the vibrations in two directions: parallel to the 

excitation and perpendicular to the excitation. In fact, it was shown that the presence of spacer 

grids does not prevent through additional damping the appearance of vibrations perpendicular to 

the excitation, due to nonlinear coupling or other mechanisms. In flowing water, the vibration 

perpendicular to the excitation was not measured for practical reason: fluid-induced noise is larger 

than the vibration perpendicular to the excitation. 

 

3.1. Small-amplitude vibrations (linear results) 

 

As anticipated, the PWR bundle is composed by identical fuel rods coupled through i) the central 

spacer grid; ii) the spacer grids at the two ends, connected to the frame; iii) hydrodynamic coupling. 

Consequently, the excitation of one fuel rod causes the vibrations of every other rod in the bundle. 

The normal modes of vibration of the bundle can be classified according to the corresponding 

vibration shape of the single rods. In (Ferrari et al., 2019), it is in fact described how for one rod 

installed on spacer grids the i-th normal mode is characterized by i- flexural half-waves along the 



length of the rod (Fig. 41). Each normal mode of the bundle tends to feature all fuel rods vibrating 

with the same number of flexural half-waves; however, several modes of the bundle can share the 

same number of flexural waves of the rods, while differing in the combination of the relative 

motion of the rods (which can be in-phase or with a phase of 180 degrees) and in the relative 

amplitude of the vibration of the single rods. The normal modes of the bundle characterized by the 

same underlying vibration shape of the single rods tend to group in one frequency band. 

Correspondingly, the FRF of the bundle can be divided into the areas of influence of the vibration 

shapes of the single rods. The order of these areas of influence respect the order of the modal 

shapes for the single rod and between these areas of influence there is no overlap. The tabular 

presentation of the modal parameters of each normal mode of the bundle will therefore divide the 

normal modes according to their type (the underlying vibration shape of the single rods) for 

convenience. It must be noted that the fundamental mode of vibration of the bundle is always the 

only one presenting no nodal points of the vibration of the single rods. Therefore, the fundamental 

mode of the bundle is not “split” into various modes of the same type. The study of the fundamental 

mode of vibration is the main objective of the PWR provider; the nonlinear investigation will focus 

correspondingly on the fundamental mode only. Moreover, PWR providers tend to measure the 

vibration in correspondence of the intermediate spacer grids. Thus, the study of modes other than 

the fundamental, and of even modes in particular (where the central spacer grid does not move) is 

considered less relevant. Lastly, it must be noted that it is possible to describe and divide the modes 

according to their number of flexural half-waves only because (as it was verified) the presence of 

quiescent and flowing water does not alter sensibly the shape of the normal modes with respect to 

the case in air.  

 

 



Fig. 41. Lowest four normal modes of vibration for a single PWR fuel rod installed on spacer 

grids (Ferrari et al., 2019).  



Table 10. Modal analysis for the bundle inside the tank. 

 
Bundle with freely moving pellets in air 

 

Mode 
No. half 
waves 

Frequency 
(Hz) 

Damping 
(%) 

1 1 19.42 0.70 

2 2 54.22 0.98 

3 2 64.13 1.68 

4 3 97.32 0.48 
 

Bundle with fixed pellets in air 

 

Mode 
No. half 
waves 

Frequency 
(Hz) 

Damping 
(%) 

1 1 21.47 0.79 

2 2 72.10 1.08 

3 2 91.12 0.3 

4 3 114.63 0.27 

5 3 133.58 1.21 

   

Bundle with freely moving pellets in still water 
 

 

Mode 
No. half 
waves 

Frequency 
(Hz) 

Damping 
(%) 

1 1  17.97 0.97 

2 2  52.93 0.54 

3  2  65.42 0.84 

4 2 71.25 1.46 

5 2 72.69 0.3 

6 3 88.37 0.60 

7 3 133.65 0.88 

8 3 152.1 1.52 

   

Bundle with fixed pellets in still water 
 

 

 

Mode 
No. half 
waves 

Frequency 
(Hz) 

Damping 
(%) 

1 1 19.92 1.73% 

2 2 56.72 2.65% 

3 2 68.22 3.18% 

4 2 83.79 1.36% 

5 3 128.55 1.16% 

6 3 146.49 0.91% 
 

 

  



Table 11. Modal analysis for the bundle inside the water tunnel. 

 

Bundle with fixed pellets inside the water tunnel, 0 m/s 

 

1. Mode 2. No. 

half 

waves 

3. Frequency 

(Hz) 

4. Damping 

(%) 

5. 1 6. 1 20.63 1.02 

7. 2 8. 2 58.28 1.00 

9. 3 10. 2 65.40 0.41 

11. 4 12. 2 68.53 0.77 

13. 5 14. 2 77.80 0.63 

15. 6 16. 2 81.65 0.49 

17. 7 18. 2 86.80 0.73 

19. 8 20. 2 90.96 0.85 

21. 9 22. 3 113.12 0.74 

23. 10 24. 3 114.85 0.21 

25. 11 26. 3 131.82 0.86 

27. 12 28. 3 152.98 0.89 

   

Bundle with fixed pellets inside the water tunnel, 2.5 m/s 

 

 

29. Mode 30. No. 

half 

waves 

31. Frequency 

(Hz) 

32. Damping 

(%) 

33. 1 34. 1 20.50 2.22 

35. 2 36. 2 65.50 0.48 

37. 3 38. 2 68.70 1.19 

39. 4 40. 2 77.56 0.57 

41. 5 42. 2 43. 90.79 44. 0.73 

45. 6 46. 3 47. 113.13 48. 0.80 

49. 7 50. 3 51. 132.00 52. 0.11 

53. 8 54. 3 55. 157.26 56. 1.53 
 

57. Bundle with fixed pellets inside the water tunnel, 5 m/s 

58.  

 

 

59. Mode 60. No. 

half 

waves 

61. Frequency 

(Hz) 

62. Damping 

(%) 

63. 1 64. 1 20.38 2.78 

65. 2 66. 2 65.40 0.41 

67. 3 68. 2 68.53 0.77 

69. 4 70. 2 77.80  0.63 

71. 5 72. 2 81.65  0.49 

73. 6 74. 2 90.96  0.85 

75. 7 76. 3 113.15 0.58 

77. 8 78. 3 129.95  0.96 
 

 

 



Table 10 and Table 11 show in a concise manner the Frequency Response Functions and the modal 

parameters extracted for the seven configurations under exam. The resonances of the FRFs are 

correlated to the rows of the tables of the modal parameters through progressive numbers. As 

anticipated, the modes are also classified according to the number of half-waves. The area of the 

FRFs is divided by two vertical lines into three regions, each one characterized by the same number 

of half-waves in the motion of the rods.  

The modal analysis of the bundle with free rods in air shows a fundamental frequency remarkably 

close to that in (Ferrari et al., 2019). However, the range of frequency of the other modes is 

different. The bundle with fixed pellets in air has higher natural frequencies. The introduction of 

still water gives lower natural frequencies and higher damping ratios for the fundamental mode. 

This is justified by the virtual added-mass effect of water and by the increased viscous dissipation 

in the liquid. The bundle with fixed pellets in water presents the highest damping ratios.  

The bundle was tested in quiescent water in the water tunnel as well. The purpose of this test is to 

ensure the comparability of the boundary conditions in the water tunnel and in the acrylic tank. 

The natural frequencies and the modal damping values in the water tunnel are in effect compatible 

to the corresponding configuration in the acrylic tank. Damping values are slightly lower overall. 

Subsequently an average velocity of 2.5 m/s was chosen as it is intermediate between the quiescent 

condition and the approximate maximum velocity of the fluid flow encountered in Framatome 

PWRs. At this velocity damping increases with respect to the quiescent condition, in particular for 

the first mode (where it increases by more than 100%). At the maximum testing velocity of 5 m/s, 

the damping of the fundamental mode increases with respect to the 0 and 2.5 m/s conditions. This 

seems to suggest that an increasing fluid flow contributes to damping vibrations, at least up to the 

velocities tested in this study. The natural frequencies at 2.5 and 5 m/s remain practically 

unchanged with respect to the quiescent condition in the case under exam. The dependence of 

natural frequencies on the fluid velocity depends, however, on the specific boundary conditions, 

as it can be inferred in (Païdoussis, 1979).  

The number of modes detected in the frequency range of interest increases with the presence of 

water, since the latter adds hydrodynamic coupling to the coupling due to the spacer grids. The 

number of modes is also larger in the tunnel, probably because of the confinement effect. However, 

it decreases with the flow speed as i- overall damping increases and some mode may not appear 

anymore and ii- flow-borne noise prevents the detection of the least prominent modes.  



  



3.1.1 Modal shapes 

 

As mentioned, the coupling between the rods constituting the bundle gives rise to vibration modes 

that can be divided according to the number of flexural waves in the rods. For any normal mode 

of the bundle, every rod presents the same number of flexural waves, but the vibrations of the rods 

are different in relative phase and amplitude. Moreover, the normal modes of the bundle are 

perfectly sorted in terms of the number of half-waves in the rods. Therefore, a normal mode 

characterized by a number i of half-waves in the rods will happen at a frequency lower than a 

normal mode with i+1 half-waves; and, as a consequence, the FRF of the bundle can be divided 

into the areas of influence on the underlying vibration shapes of the rods, and these areas do not 

overlap. As an example, Table 12 shows the vibration shapes corresponding to the normal modes 

presented in the section relevant to the bundle in the tunnel without water flow. This case was 

chosen as it presents the largest number of normal modes of vibration. It must be noted that the 

normal modes that were measured and presented in this section are in no way representative of the 

total number of normal modes that shall be expected in a coupled system. Some modes may, in 

fact, be too damped to be detected by the modal analysis system. Because of the multiple and 

complex sources of coupling, moreover, it would be difficult to predict theoretically the number 

of normal modes that the bundled system should present. 

 

 

 

 

 

 

 

 

 

 

 

  



Table 12. Vibration shapes of the bundle in the water tunnel at a flow of 0 m/s. Only one half of 

the length of the bundle is represented (it has been verified that the vibration of the bundle is 

approximately symmetrical). 

 

79. Mode 
number 

80. Number 
of half-
waves 

81. Frequency 
(Hz) 

82. Damping 
(%) 

83. Mode shape 

84.  
85. 1 

 

1 

 

20.63 

 

1.02 

 
86.  
87. 2 

 

2 

 

58.28 1.00 

 
88.  
89. 3 

 

2 65.40 0.41 

 
90.  
91. 4 

 

2 68.53 0.77 

 
92.  
93. 5 

 

2 77.80 0.63 

 
94.  
95. 6 

 

2 81.65 0.49 

 
96.  
97. 7 

 

2 

 

86.80 

 

0.73 

 
98.  
99. 8 

 

2 

 

90.96 

 

0.85 

 
100.  
101. 9 

 

3 

 

113.12 

 

0.74 

 
102.  

103. 10 
 

3 114.85 0.21 

 
104.  

105. 11 
 

3 131.82 0.86 

 
106.  

107. 12 
 

3 152.98 0.89 

 

  



3.2. Large-amplitude vibrations (nonlinear results) 

 

Non-linear vibrations with stepped-sine excitation can be described by frequency-amplitude 

curves and frequency-phase curves (amplitude and phase diagrams with several curves measured 

at different force amplitude levels). The phase curves are here omitted as they do not show any 

notable phenomenon. Results for an increasing and a decreasing direction of the excitation 

frequency (UP and DOWN curves, respectively) are presented together in the charts. UP and 

DOWN curves differ since the response of non-linear systems depends on the history of the system 

itself. It is anticipated that, as in (Ferrari et al., 2019), the nonlinear behavior is softening in nature 

(the peak frequency decreases with the amplitude of the excitation). All configurations were 

subjected to forces ranging in amplitude from a linear level (0.1 – 0.5 N) to a fully nonlinear level 

equal to 12 N.  

 

3.2.1 Bundle with freely moving pellets in air 

 

Forces up to 12 N were applied to vibrate the bundle up to a vibration amplitude of approximately 

3.5 mm, as shown in Fig. 42. A strong softening shift is present, which confirms the behavior of 

single rods in spacer grids observed in (Ferrari et al., 2019). Hysteresis between UP and DOWN 

curves is negligible and no nonlinear jumps are found. The horizontal vibration is more than 30 

times smaller in amplitude than the excited (vertical) vibration, see Fig. 43. It might be noted, 

anyway, that the peak vibration amplitude of the horizontal mode happens at a higher frequency 

than the vertical mode. This suggests that the horizontal vibration is not given by measurement 

errors but constitutes a proper example of weak internal resonance. However, due to the much 

smaller amplitude, the companion mode participation to the global vibration response results 

negligible. 



 

Fig. 42. Frequency–amplitude curves for the driven mode of the free-pellets rod in air,  

UP and DOWN directions. 

 

Fig. 43. Frequency–amplitude curves for the companion mode of the free-pellets rod in air,  

UP and DOWN directions. 

3.2.2 Bundle with fixed pellets in air 

 

The nonlinear vibration of is similar in character to that with free pellets. The behavior is again 

softening with no hysteresis; slightly lower amplitudes are reached, as shown in Fig. 44. A jump 



behavior seems to develop in the 4 – 7 N range, but it disappears for higher forces.  The horizontal 

vibration is 15 times lower than the vertical vibration in amplitude and the peak is at higher 

frequencies, see Fig. 45. In this case too, the companion mode can be neglected in the system 

dynamic response. With respect to the case with free pellets, the horizontal vibration has vibration 

peaks more clearly distinct from the driven mode.   

 
Fig. 44. Frequency–amplitude curves for the driven mode of the fixed-pellets rod in air,  

UP and DOWN directions.  

 

 
 



Fig. 45. Frequency–amplitude curves for the companion mode of the fixed-pellets rod in air,  
UP and DOWN directions. 
 

3.2.3 Bundle with freely moving pellets in still water 

 

The nonlinear vibration amplitude reached at the resonance peak by the freely moving pellets 

configuration in water for harmonic excitation of 12 N is smaller than for the same system in air, 

as it is shown comparing Fig. 12 and Fig. 46. This is associated with an increase of damping. The 

companion mode shows two main peaks at different frequencies and remains approximately 15 

times smaller than the driven mode as displayed by Fig. 47. Therefore, companion mode is 

practically negligible.  

 

 

Fig. 46. Frequency – Amplitude curves for the driven mode of the free-pellets rod in water,  

UP and DOWN directions. 



 

Fig. 47. Frequency–amplitude curves for the companion mode of the free-pellets rod in water, UP 

and DOWN directions. 

 

3.2.4 Bundle with fixed pellets in still water 

 

The peak vibrations reached by driven and companion vibration are not dissimilar from those 

measured in water with free pellets, see Fig. 48 and 19. Therefore, the companion mode, shown in 

Fig. 19, is practically negligible being one order of magnitude smaller than the driven mode, 

presented in Fig. 18. The amount of softening shift, about 4.5 Hz for the harmonic force of 12 N 

that gives a vibration amplitude of about 2.5 mm, is close to the value measured in air with fixed 

pellets and previously shown in Fig. 14.  

 



 

Fig. 48. Frequency–amplitude curves for the driven mode of the fixed-pellets rod in water,  

UP and DOWN directions. 

 

 

Fig. 49. Frequency–amplitude curves for the companion mode of the fixed-pellets rod in water,  

UP and DOWN directions. 

 

 

 

3.2.5 Bundle with fixed pellets inside the water tunnel, 0 m/s (no flow) 

 



The frequency-amplitude curves in Fig. 50 show again a softening frequency shift without 

nonlinear jumps. The softening frequency shift of about 3 Hz for harmonic excitation of 12 N is 

similar to the one observed in the water tank with fixed pellets at the same peak vibration 

amplitude, around 1.3 mm. However, the peak vibration amplitude reached, which is 1.3 mm, is 

significantly lower than the 2.5 mm obtained in that case for the same harmonic force of 12 N. The 

lower amplitude reached for the same harmonic force is due to the different setup in the tank and 

water tunnel, with different excitation point. In fact, damping of the fundamental mode of the fuel 

assembly is similar in the two cases and the natural frequency slightly increased (about 1 Hz) in 

the water tunnel. 

 

Fig. 50. Frequency–amplitude curves for the driven mode of the bundle inside the water tunnel, 

water velocity 0 m/s. 

 

3.2.6 Bundle with fixed pellets inside the water tunnel, water velocity 2.5 m/s 

 

The peak amplitude of the nonlinear curves in Fig. 51 for the largest harmonic force is almost 

unchanged with respect to the case of zero water flow velocity. This indicates that the equivalent 

damping associated to large-amplitude vibration is not far apart in these two cases. However, the 

peak amplitude for low forces is significantly reduced with respect to the case of no flow in the 

water tunnel. While the lowest forcing level is 0.1 N in quiescent water, with fluid flow it has to 



be increased to 0.5 N. In effect, the random vibrations due to fluid flow appear as random 

vibrations, thus rendering the measurement of the response to low forcing levels excessively noisy 

and not meaningful.  

 

Fig. 51. Frequency–amplitude curves for the driven mode of the bundle inside the water tunnel, 

water velocity 2.5 m/s. 

 

3.2.7 Bundle with fixed pellets inside the water tunnel, water velocity 5 m/s 

 

Again, the peak amplitude and frequency shift of the nonlinear curve for 12 N remain very similar 

to those obtained in the water tunnel for water velocity of 0 and 2.5 m/s. In effect, it is remarkable 

that, by increasing the flow velocity from 2.5 to 5 m/s, the peak frequencies at each forcing level 

change by less than 1% and the peak vibration amplitudes are approximately 3% lower. Also, there 

is absence of nonlinear jumps and nonlinear UP/DOWN hysteresis, as shown in Fig. 52. In 

addition, the curves for all the excitation levels are substantially noisier. This is due to flow-

induced vibration creating “noise” since the water speed is relevant.  

 



 

Fig. 52. Frequency–amplitude curves for the driven mode of the bundle inside the water tunnel, 

water velocity 5 m/s. 

 

 

4. Discussion 

 

4.1. Small-amplitude (linear) experiments 

 

With comparison to the results in (Ferrari et al., 2019), it was found that the bundle has 

fundamental frequencies extremely close, but slightly higher than the equivalent single rod. The 

damping values in the bundle are lower in air, but higher in water. Obviously, the fixed rods in 

(Ferrari et al., 2018) have higher frequencies, but much lower damping values. The comparison of 

modes other than the fundamental is difficult, since in the bundle the rod modes split into several 

modes because of coupling.   

Besides, water tends to increase slightly damping and to reduce natural frequencies. The small 

difference between quiescent conditions in the tank and in the tunnel is not explained, but it must 

be noted that natural frequencies are extremely sensitive to the conditions of the installation and 

to thermal changes. The estimation of modal damping, even if estimated by advanced algorithms 



such as LMS Polymax (Peeters et al., 2004), presents some uncertainty due to the parameters of 

the estimation itself. 

Flowing water appears to reduce the natural frequency by no more than 2.5 % (likely because 

viscous friction creates a state of compression between the constraints) and increases modal 

damping dramatically (by 1.8 times at 2.5 m/s and by 2 times at 5 m/s).     

 

4.2. Large-amplitude (nonlinear) experiments 

 

Nonlinear curves show a softening behavior, extremely similar to the one attributed to single rods 

in (Ferrari et al., 2019). The decrease in the stiffness of the system for increasing forcing and 

vibration amplitudes has not been explained physically, so far, if not by a decrease in stiffness of 

the constraints at the spacer grids. Fuel rods in fixed-fixed boundary conditions show instead a 

hardening behavior (Ferrari et al., 2018), given by the axial tension built during flexural vibration. 

Compared to fixed rods, rods and bundles in spacer grids show a reduced if not negligible 

hysteresis: UP and DOWN curves share an almost identical path and no nonlinear jumps are 

detected. This is attributed to a much higher value of overall damping.  

The damping and the symmetry break introduced by spacer grids is not sufficient to impair 

completely the appearance of vibrations perpendicular to the direction of excitation. These 

vibrations may appear in nuclear reactors as well. However, they do not reach amplitudes 

comparable to those of the directly driven excitation direction. Contrary to what shown in (Ferrari 

et al., 2018) for fixed rods, it is not possible to mention a proper companion mode or proper 

traveling waves due to axial symmetry and one-to-one internal resonance.  

 

 

4.3. Identification of nonlinear parameters 

 

Fig. 53, 24 and 25 feature the experimental responses for different cases and identified linear 

models in terms of amplitude (𝑎1) and phase (𝜙1) of the first harmonic of the dimensionless 

displacement (obtained by dividing by the tube thickness) at the highest excitation level for each 

case. Despite some discrepancies between the identified and the experimental responses, the linear 

oscillator enables a first approximation of the frequency response of the rod for a specific 



magnitude of excitation. In this case, it is used to identify the equivalent damping ratio in nonlinear 

regime.  

Table 13 gives the frequency of the maximum vibration response and the equivalent modal 

damping ratio for each experimental configuration; data obtained for both the minimum and 

maximum levels of harmonic force are presented. The natural frequencies identified at the smallest 

excitations are predictably close to the ones obtained by experimental modal analysis. However, 

the estimated damping ratios of the linear responses are different (mostly higher) than the ones 

from experimental modal analysis. This discrepancy can be explained by the facts that: (i) some 

small responses show one-to-one internal resonance, hence a truncation of the peak amplitude of 

the driven mode; (ii) the stepped-sine test with sinusoidal signal provides excitations too large to 

remain in the linear field; (iii) the system may change slightly, for example because of changes in 

temperature, between the moment when the modal and the stepped-sine analyses are run. 

 

 

 

Table 13. Identified natural frequencies and damping ratios of the minimum and maximum 

excitation for each experimental case. 
 

Experimental 
case 

Force 
(N) 

Vibration 
amplitude 

of the 
peak (mm) 

Frequency 
of the 

peak (Hz) 

Frequency 
decrease 

(%) 

Equivalent 
modal 

damping 
ratio 𝜁 

Damping 
increase 

 

Air 

Free 
pellets 

0.1 0.11 19.35 
12.92 

0.8810-2 
6.06 

12.0 3.32 16.85 5.3310-2 

Fixed 
pellets 

0.1 0.08 21.00 
21.67 

1.1910-2 
5.86 

12.0 2.93 16.45 6.9710-2 

Still 
water 

Free 
pellets 

0.1 0.06 17.80 
14.33 

1.4810-2 
4.26 

12.0 2.72 15.25 6.3010-2 

Fixed 
pellets 

0.1 0.06 19.50 
22.82 

1.4610-2 
5.44 

12.0 2.54 15.05 7.9410-2 

Water 
flow 

- 
Fixed 
pellets 

0 m.s-1 0.1 0.04 20.60 
15.29 

1.3410-2 
6.07 

12.0 1.31 17.45 8.1310-2 

2.5 m.s-1 
0.5 0.10 20.30 

14.29 
2.4110-2 

2.98 
12.0 1.33 17.40 7.1810-2 

5.0 m.s-1 
0.5 0.09 20.10 

13.18 
2.7410-2 

2.60 
12.0 1.28 17.45 7.1310-2 

 



 

 

  
(a) (b) 

  
(c) (d) 

 

Fig. 53. Frequency-response of the first harmonic of the dimensionless displacement for the 

experiments in air: (a) amplitude and (b) phase of the bundle with freely moving pellets; (c) 

amplitude and (d) phase of the bundle with fixed pellets. Experimental data are represented by red 

markers while identified data are represented by continuous black line. 

 

Natural frequencies, as mentioned, are larger for the bundle in the tunnel than in the tank. The 

softening shift of frequency of the peak is very similar in the tank and in the water tunnel when 

taking data for the same vibration amplitude. In fact, the column in Table 5 that gives the frequency 

changes, show data for different vibration amplitudes. Therefore, this column must be considered 

together with the column showing the vibration amplitude of the peak.  

The softening natural frequency shift is also larger with fixed pellets and in presence of water 

instead of in air. While it is expected that water gives an added mass effect resulting in an increased 



softening behavior, the possible stiffness given by the axially fixed pellets should have an opposite 

effect. It must be concluded that the pellets do not increase the stiffness of the system. Flow 

velocity barely affects the natural frequencies and softening behaviour for larger excitation levels. 

With regards to the identified damping, the axial constraint on pellets increases damping for the 

largest responses both in air and in water by approximately 26%. The presence of water affects 

positively the overall damping value as well. At the largest vibration amplitude, damping in water 

is 18% larger in the free-pellets configuration.  

Damping ratios increase in the water tank with respect to the ones of comparable experiments in 

air, with an increase from the 14 % to the 68 %. The effect on the damping ratio of the water 

confinement in the tunnel at 0 m/s is negligible at both the minimum and at the maximum 

excitation levels. However, flowing water influences damping substantially at small excitations 

(linear regime). At the lowest forces, damping presents an 80% increase at 2.5 m/s and a 100% 

increase at 5 m/s. However, at the largest forces, the equivalent damping does not become higher 

than that identified without flow. In fact, at 12 N, the damping values are similar enough, 

considering possible identification errors. In conclusion, damping starts at a value twice higher in 

the water tunnel at 5 m/s with respect to the quiescent condition; afterwards, it increases by one 

half of how much it would increase in quiescent water, with a final result extremely similar to the 

one in still water and not far from the ones identified in the other configurations (the farthest large-

amplitude damping value is measured in air with free pellets, and it is 33% lower). This seems to 

suggest that, in the small-amplitude regime, part of the excitation energy is dissipated because of 

the flow; afterwards, the damping increase is different in still and flowing water, up to reach similar 

values at the maximum excitation level tested.  

As expected, damping ratios estimated for the largest nonlinear responses (12 N) present a 

significant increase with respect to the ones at the lowest excitation levels (0.1/0.5 N) for all the 

cases under investigation. This increase is of the range 400% - 600% in quiescent fluids and 200% 

- 300% in flowing water. These figures highlight the need of taking into account a nonlinear 

increase of the damping with the magnitude of excitation by means of nonlinear models, as applied 

phenomenologically by (Eichler et al., 2011; Jeong et al., 2013; Le Guisquet and Amabili, 2019; 

Lu et al., 2019) and as developed theoretically by (Amabili, 2018b,c and d). This increase of 

damping ensures a safer behavior of nuclear bundles by limiting the increase of amplitude in case 

of large excitation.  
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Fig. 54. Frequency-response of the first harmonic of the dimensionless displacement for the 

experiments in quiescent water: (a) amplitude and (b) phase of the bundle with freely moving 

pellets; (c) amplitude and (d) phase of the bundle with fixed pellets. Experimental data are 

represented by red markers while identified data are represented by continuous black line. 
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(c) (d) 

  
(e) (f) 

 

Fig. 55. Frequency-response of the first harmonic of the dimensionless displacement for the 

experiments in flowing water in the water tunnel for the bundle with fixed pellets: (a) amplitude 

and (b) phase at a velocity of 0 m.s-1; (c) amplitude and (d) phase at a velocity of 2.5 m.s-1; (e) 

amplitude and (f) phase at a velocity of 5.0 m.s-1. Experimental data are represented by red 

markers while identified data are represented by continuous black line. 

  



5. Conclusions 

A recent study investigated experimentally the dynamic response and damping of a single fuel rod 

supported by spacer grids (Ferrari et al., 2019). The experimental procedure was adapted 

successfully with few variations to a 33 cluster of nuclear fuel rods with a central guide tube in 

order to study the effect of the bundled structure and flowing water. The behavior of the fuel bundle 

in quiescent media is remarkably similar to dynamic response of a single fuel rod supported by 

spacer grids around the fundamental frequency.  

The bundled structure reached damping increases in the nonlinear regime similar to those of the 

single rod supported by spacer grids. However, much higher harmonic forces were required to 

develop similar vibration amplitudes. Vibration components orthogonal to the excitation are 

negligible with respect to the flexural vibration parallel to the excitation. Moreover, the periodicity 

of the structure and the presence of intermediate supports and hydrodynamic coupling between the 

fuel rods causes the presence of scattered modes characterized by different combinations of the 

motion of single rods. This effect is particularly important for even modes, which present a node 

at the intermediate (central) spacer grid.  

As observed for a single fuel rod supported by spacer grids, the bundle has a an initial (for 

relatively small vibration amplitudes) very strong softening nonlinear behavior that cannot be 

modeled by the modified Duffing oscillator developed in (Delannoy et al., 2015). This initial 

strong softening behavior seems caused by the nonlinear boundary conditions due to the springs 

installed on the spacer grids. Therefore, the system cannot be described only by quadratic and 

cubic stiffness in the modified Duffing oscillator. In the future, dedicated experiments will be 

performed to characterize the interaction between spacer grids and fuel rods. It is also planned to 

add higher-order stiffness terms to the Duffing oscillator in order to reproduce the strongly 

softening behavior initially observed in the experiments.  

The setup was installed in a water tunnel capable of fluid flows comparable to those existing in 

PWRs. A key factor was the presence of a stiff frame supporting the spacer grids without exerting 

large forces on them. The frame was also engineered to have minimal unwanted resistance to flow. 

Laser Doppler vibrometry was successfully used to measure vibrations without contact through 

water and acrylic walls. Since relatively large forces are required to excite large amplitude 

vibrations, a rubber-membrane was placed to prevent leak at the location of the stinger, which is 

used to excite the fuel assembly immersed in flowing water by means of an electrodynamic shaker. 



The water flow is given as the nominal mean flow traversing the tunnel. However, in the future 

dedicated studies by means of Pitot tubes and/or Particle Image Velocimetry are planned to 

estimate the local flow values around and among the fuel rods. In fact, the close spacing of fuel 

rods and the mixing effect of spacer grids might alter substantially the local flow.  

The presence of water flow does not have an important effect on natural frequencies for the specific 

boundary conditions constituted by spacer grids. As expected, no instabilities were detected in 

operative conditions, since axial flow values are too low to generate phenomena such as divergence 

or flutter. However, the strongly turbulent flow resulted in random noise superimposed onto the 

system vibration response. The damping ratio of the fundamental mode increases with flow. 

Therefore, water flow causes random vibrations, but dampens externally excited vibrations. 

Interestingly, while in quiescent water the damping value increased six times for the force range 

under exam, it increased much less, approximately two times, for tests in water flow. Therefore, 

damping ratio is higher for water flow, but the equivalent damping in the nonlinear regime 

increases less in case of large amplitude vibrations because of flow.  

In conclusion, at the highest flow rate, the equivalent damping for large-amplitude vibrations is 

similar to the value obtained in the water tunnel with still water, while the damping ratio for small-

amplitude vibrations is twice higher; the associated softening frequency shift is unchanged, as well 

as the peak vibration amplitude obtained with the same harmonic force is very similar. Therefore, 

it can be concluded that overall, in the flow and forcing ranges under exam, coolant flow does not 

change significantly the severity of forced vibrations in nonlinear (large-amplitude) regime while 

it reduces vibration in linear (small-amplitude) regime.   
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Abstract 

 

Experimental vibration responses of beams with nonlinear boundary conditions were interpreted 

using a bilinear spring model. Two systems of beams were considered: one is a single rod and the 

second one is a cluster of parallel beams. The boundary conditions at the beam ends, for both 

systems, were given by spacer grids, which are specific supports used in nuclear industry. The 



experiments were conducted with the beams immersed in still water. The spacer grids imposed 

nonlinear boundary conditions to the beams. A bilinear stiffness model with viscous damping was 

used to interpret the experimental results. A dynamic characterization of the nonlinear boundary 

conditions was carried out. The boundary conditions change from being linear at low vibration 

amplitudes to being bilinear with hysteresis at higher vibration amplitudes. The stiffness of the 

supports decreases with increasing vibration amplitude. In addition, the equivalent viscous 

damping of the system grows with the vibration amplitude. Very good agreement between 

numerical and experimental results were obtained for both the beam systems studied. 

 

Introduction 
 

Many physical systems present some form of hysteresis during vibrations and there are numerous 

studies on hysteresis in the literature [1, 2]. The hysteresis could take many different forms [3] and 

bilinear hysteresis is one among them. The bilinear hysteresis is mainly associated to intermittent 

contacts or elasto-plasticity. It could also be due to riveted, bolted or clamped connections 

combined with friction and elastic forces. The systems presenting bilinear hysteresis are not only 

abundant in mechanical, civil, aerospace and nuclear engineering but in other disciplines as well.  

 There are various studies about systems with bilinear hysteresis. First and foremost is the study 

by Caughey [4], in which he used the method of slowly varying parameters to study a single-

degree-of-freedom system with bilinear hysteresis and obtained the frequency response curves. In 

the next paper, Caughey investigated the response of bilinear hysteresis system to a random 

excitation [5]. Subsequently, Iwan [6] studied the response of two-degrees-of-freedom system 

using a similar procedure. Many other scholars analyzed the same system by considering an 

equivalent linear model [7-9]. There are serval approaches available for the description of the 

hysteresis. Models were developed by Preisach [10], Bouc and Wen [11] and Prandtl [3]. Bilinear 

hysteresis models consist of piecewise linear equations. Even though the responses can be found 

analytically around the individual linear areas, the overall response of the system is complicated. 

The method of slowly varying parameters used by Caughey [4] is particularly suitable for bilinear 

systems with hysteresis. The method averages the response of the system during one whole cycle, 

thus eliminating the complexity to deal with nonlinearity. Pratap and co-workers [12] studied the 

bilinear hysteretic oscillator utilizing the piecewise linear nature of the system to find the analytical 



solutions for each linear domain and them patched the solutions to arrive at the total solution. 

Kalmár-Nagy and Shekhawat [13] studied the stability and bifurcations of bilinear hysteresis 

system with hybrid systems framework.  Recently many studies have been conducted to 

understand the complex response of bilinear systems using modern tools, such as harmonic balance 

[14], Poincare maps [15] and non-smooth temporal transformation [16]. 

 There are numerous numerical and analytical studies on the bilinear hysteresis systems. 

However, experimental results of such systems are little, and interpretation of the results using the 

bilinear model is scarce. Many mechanical systems present bilinear hysteresis and the ability to 

characterize their behavior helps to understand and design them effectively. The two beam systems 

with nonlinear boundary conditions under study here exhibited softening type behavior during 

their large-amplitude vibrations. Their nonlinear dynamic responses to harmonic excitation were 

interpreted using a single-degree-of-freedom model with bilinear stiffness and viscous damping. 

  

2. Nonlinear response of beams systems 
 

 Nonlinear response of beams in two different configurations were measured. The beams tested 

here are Zirconium alloy tubes used as nuclear fuel rods in Pressurized Water Reactors (PWR). 

Each beam has a length of 900 mm, a diameter of 9.51 mm and a thickness of 0.3 mm. The first 

system consists of a single beam supported at both ends by spacer grids, as shown in Figures 1(a,b). 

Spacer grids are rectangular grid like structures which supports nuclear fuel rods in the nuclear 

fuel assembly. There are 1717 cells in each spacer grid and each cell is used to house either a fuel 

rod, a control rod or a guide tube.  

 The second system is shown in Figures 1(c,d) and is composed by 9 beams in 33 matrix 

configuration supported at both ends by spacer grids; the beams are linked together by a spacer 

grid placed at mid-length. Both systems were tested immersed in water to simulate the surrounding 

cooling liquid of the PWR. Experimental modal analysis was carried out and subsequently 

nonlinear (i.e. large-amplitude) vibration experiments around the fundamental mode of the 

structure were performed. An electrodynamic shaker was used to give the punctual harmonic 

excitation in the frequency neighborhood of the fundamental mode of the structure. The nonlinear 

response of the beam systems was measured at the middle of the beam (or cluster of beams) using 



a laser Doppler vibrometer and an established stepped sine test procedure. More information on 

both of the beam systems and respective experimental setups can be found in references [17, 18]. 

 

(a)  

(b)  



(c)  

(d)  

Figure 1. Experimental setup of the beams in two different configurations: (a) single beam 

supported by spacer grids at both ends, (b) sketch of the single beam supported by spacer grids 

(c) cluster of beams (33) supported by spacer grids, (d) sketch of the cluster of beam (3x3) 

supported by spacer grids 

 



 

3. Dynamic characterization of boundary conditions 
 

The spacer grids apply nonlinear boundary conditions to the beam systems under test. The mode 

shape of the beams shows that they are neither simply supported nor clamped at both ends by the 

spacer grids. The complex boundary condition given by the spacer grid is due to the nature of its 

design to increase the efficiency of the nuclear fuel assembly. The spacer grid is a grid like 

structure with 1717 cells arranged in a square pattern. The whole structure is made of thin 

Zirconium alloy sheets. Each cell has dimples and springs for supporting the respective beams. 

The dimples are rigid support points with very high stiffness. Whereas, the springs are compliant 

and nonlinear. The dimples and springs are arranged in the cell as per Figure 2(a). There are four 

dimples and two springs supporting each beam. Among these six points of contacts, some might 

lose connection during the vibration of the fuel rods giving rise to intermittent contacts. There is 

also friction between the beam and the points of contacts, thus making the boundary condition 

given by the spacer grid nonlinear.   

(a)  



(b)  

 

Figure 2. Geometry of the spacer grid. (a) Diagram of a single cell of the spacer grid and its cross-

sectional view (A-A); (b) experimental setup for characterizing the nonlinear dynamic behavior 

of the spacer grid. 

 The nature of the nonlinear boundary condition enforced by the spacer grid was quantified 

using an experimental setup as shown in Figure 2(b). For this purpose, a spacer grid was fixed flat 

firmly and a rigid rod with the same dimension of the fuel rod was inserted in to one single cell. 

The whole setup was immersed in water to simulate the condition of the two systems studied here. 

The rigid rod was connected to an electrodynamic shaker via a miniaturized force transducer by 

B&K (model 8203). Harmonic excitation was given from 5 Hz to 50 Hz in steps of 5 Hz to the 

rigid rod. The displacement was controlled, and the corresponding force was measured for five 

displacements levels (0.01, 0.05, 0.1, 0.15 and 0.2 mm). The force-displacement loop for the 

displacement level 0.15 mm at 15 Hz is given in Figure 3(a). It clearly shows the bilinear hysteresis 

behavior of the spacer grid boundary condition. The slope of the loop decreases from its initial 

value due to possible intermittent contacts and friction. The force-displacement of all five levels 

of vibration amplitude at 15 Hz are presented in Figure 3(b). The first two levels (0.01 mm and 

0.05 mm) are characteristics of a simple linear system. Thus, the loops take the shape of an ellipse. 

However, from displacement level 0.1 mm, the system becomes bilinear and presents hysteresis. 

Observing Figure 3(b), it is also clear that the loops rotate clockwise with the increase of the 



excitation level (i.e. increase in size of the loop). Therefore, both stiffnesses of the bi-linear system 

decrease with the increase of the vibration amplitude.  

 

(a)  

(b)  

 

Figure 3. The bilinear response of spacer grids for harmonic excitation at frequency. (a) Single 

loop at a displacement level of 0.15 mm, excitation frequency 15 Hz; (b) the five loops at different 

levels of vibration amplitude, excitation frequency 15 Hz. 



 

Figure 4. Force-displacement response of a bilinear hysteresis system. 

 

 The bilinear hysteresis model introduced by Caughey [4] can be used to fit the force-

displacement loops measured on the spacer grids. The force-displacement hysteresis loop of the 

Caughey model is shown in Figure 4. Assuming an input harmonic displacement of frequency ω 

given by 𝑥 = 𝑋 𝑐𝑜𝑠 𝜔 𝑡where t is the time and X is the vibration amplitude, the steady-state 

response of the bilinear hysteresis model is given by 

𝑓(𝑥) = 𝜇(𝑋 − 𝑥0) + 𝑥,     if  -𝑋 ≤ 𝑥 ≤ −(𝑋 − 2𝑥0),  segment I, 

                         𝑓(𝑥) = 𝜇𝑥0 + (1 − 𝜇)𝑥,    if  − (𝑋 − 2𝑥0) ≤ 𝑥 ≤ 𝑋,  segment II, (1) 

for the loading curve; and  

𝑓(𝑥) = −𝜇(𝑋 − 𝑥0) + 𝑥,     if 𝑋 − 2𝑥0 ≤ 𝑥 ≤ 𝑋,  segment III, 

                       𝑓(𝑥) = −𝜇𝑥0 + (1 − 𝜇)𝑥,  if − 𝑋 ≤ 𝑥 ≤ 𝑋 − 2𝑥0,  segment IV, (2) 

and for the unloading curve, where 𝑥0 is the displacement at which the spring initially (line “0” in 

Figure 4, starting from the equilibrium point at the origin) switches from the initial unitary slope 

to a reduced slope and  is defined in Figure 4. In particular, the slope of the segments I and III is 

one, while the slope of the segments II and IV is 1-. Therefore,  represents the reduction in slope 

of the bilinear system. The parameter  takes values from 0 to 1. There is also the condition that 

𝑋 − 2𝑥0 > 0. 

0 
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0x
  

0( 2 )X x- -   

02X x-   



 

 

Figure 5. Comparison of of the identified models and experimental loops for the dynamic 

responses of the spacer grid. Excitation frequency 15 Hz. 

 

The force-displacement loops measured from spacer grids were fitted with the bilinear hysteresis 

model and the comparisons are shown in Figure 5. The identified parameters are given in Table 1. 

The first two loops are essentially those of a linear system. From the third level onwards, the 

bilinear switch distance 𝑥0 increases and the bilinear parameter (1 − 𝜇) decreases with the 

increasing displacement levels. Excellent agreement between experimental and numerical results 

are obtained. Thus, justifying the use of a bilinear stiffness model in the following section. 

 

Table 1. Extracted parameters from the force-displacement loops measured on the spacer grid. 

Displacement 

level, mm 

Bilinear switch 

distance, 𝑥0 

Bilinear parameter, 

(1 − 𝜇) 

0.01 0.0000 1.00 

0.05 0.0000 1.00 

0.10 0.0520 0.45 

0.15 0.0593 0.37 

0.20 0.0680 0.30 



4. Bilinear spring with viscous damping model 
 

 A bilinear stiffness model can be considered for the interpretation of the experimental results 

of the above-mentioned configurations. This is justified by the fact that spacer grids introduce 

bilinear stiffness at the supports in both systems as shown in the previous Section. Instead of 

representing dissipation by the hysteresis model described by equations (1, 2), viscous damping is 

introduced. In fact, the beam systems have a more complex dissipation mechanism than the single 

spacer grid excited by a rigid rod. The equation of motion of such a single-degree-of-freedom 

model with bilinear stiffness and viscous damping is given by 

 

     𝑚𝑥̈(𝑡) + 𝑐𝑥̇(𝑡) + 𝑘𝑓(𝑥) = 𝐹 𝑐𝑜𝑠( 𝜔𝑡),   (3) 

 

where, 𝑓(𝑥) is the displacement-dependent bilinear stiffness function, 𝐹 is the harmonic force 

excitation, m, c and k are the mass, damping and stiffness parameters of the system. For 

computational convenience, equation (1) was made non-dimensional  

 

     𝑥̈(𝜏) + 2𝜁𝑥̇(𝜏) + 𝑓(𝑥) = 𝜆 𝑠𝑖𝑛( 𝛺𝜏),    (4) 

 

where, 𝜆 = 𝐹/𝑚𝜔2, 𝛺 = 𝜔/𝜔𝑛, 𝜏 = 𝑡𝜔𝑛,  𝜔𝑛 is the natural frequency and 𝜁 is the damping ratio. 

The bilinear function 𝑓(𝑥) considered here is plotted against the displacement 𝑥 in Figure 6. There 

are three (I, II and III) line segments shown in Figure 6. The line segments are defined as follows 

 

    I:     𝑓(𝑥) = 𝑥,           |𝑥| ≤ 𝑥0,     (5) 

    II:   𝑓(𝑥) = (1 − 𝜇)𝑥 + 𝜇𝑥0,           𝑥 > 𝑥0,    (6) 

    III:  𝑓(𝑥) = (1 − 𝜇)𝑥 − 𝜇𝑥0,           𝑥 < −𝑥0.    (7) 

 

The second-order ordinary differential equation (4) can be rewritten in the state space form and 

solved numerically for getting the frequency response using e.g. the Adams-Gear backward 

integration method. A continuation method based on pseudo-arclength and collocation method 



implemented in the software AUTO [19] was used for obtaining frequency responses for both the 

beam systems studied here. 

 

 

Figure 6. Bilinear stiffness model 

 

5. Interpretation of the experimental results 

 

 The experimental responses (linear and nonlinear) of both beam systems were used to identify 

the model parameters in equation (4). For each response curve, the unknown parameters 

(𝑥0, 𝜇,  𝜆, 𝜁) were obtained minimizing the weighted distance between the experimental points and 

the model. 

 The experimental and numerical results of the first beam system (rod supported by spacer grids, 

fully immersed in water) are compared in Figure 7. The values of the unknown parameters used in 

the model to get the numerical responses are given in Table 2.  

 

Table 2. Extracted parameters of the configuration with single beam supported by spacer grids. 

Force 

level, N 

Bilinear switch 

distance, 𝑥0 

Bilinear parameter, 

(1 − 𝜇) 

Damping 

ratio, 𝜁 

0.1 0.02 0.95 0.015 



0.5 0.05 0.84 0.025 

0.7 0.05 0.82 0.027 

1.0 0.05 0.81 0.028 

1.5 0.05 0.80 0.032 

 

 

Figure 7. The numerical and experimental results comparison of the single rod supported by 

spacer grids: ‘o’ experiemental results (sweep up), ‘+’ experimental results (sweep down), ‘-‘ 

numerical results. 

 

 There are five force levels in which the experimental and numerical responses were compared. 

Very good agreement was found between the experimental and numerical results for the first four 

levels, while the largest level has a slightly lower agreement. In particular, the numerical model 

captured the softening response around the resonance very well, which is typical of a bilinear 

system [4]. The first level itself presents a nonlinear response as it is not symmetric around the 

resonance; the identified parameters reflect this behavior. The force-displacement hysteresis loops 

of experimental and numerical results at three different frequencies are compared for the force 

level 1 N in Figure 8.  

 

1.5 N 

1.0 N 

0.7 N 

0.1 N 

0.5 N 



 

 

Figure 8. Comparison of force-displacement hysteresis loops of the single rod supported by spacer 

grids (force level 1 N): ‘o’ experiemental results, ‘-‘ numerical results. 

 

 The three frequencies are 17, 17.85 and 20.5 Hz (corresponding to non-dimensional frequencies 

0.8713, 0.9154 and 1.051) and they are before, at and after the resonance, respectively. The very 

good agreement between numerical and experimental force-displacement loops confirms that the 

numerical model chosen not only captures with accuracy the amplitude of the frequency response 

but also the phase and dissipation of the system. This confirm that the choice of the bilinear 

stiffness and viscous damping is particularly effective to describe the nonlinear dynamics of the 

system. 

 

Table 3. Extracted parameters of the configuration with cluster of beams supported by spacer 

grids. 

Force 

level, N 

Bilinear switch 

distance, 𝑥0 

Bilinear parameter, 

(1 − 𝜇) 

Damping 

ratio, 𝜁 

0.10 0.00 1.00 0.012 

0.30 0.02 0.94 0.016 

1.00 0.04 0.88 0.024 



2.00 0.09 0.81 0.034 

4.00 0.13 0.70 0.042 

7.00 0.16 0.63 0.046 

10.00 0.18 0.58 0.046 

12.00 0.20 0.57 0.048 

 

 

 The comparison between experimental and numerical responses of the second beam system 

(cluster of beams supported by spacer grids and immersed in water) are shown in Figure 9. The 

corresponding values of the model parameters are presented in Table 3. An excellent agreement 

between numerical and experimental results is observed. The numerical responses clearly capture 

the amplitude of the experimental frequency responses at all the seven force levels. It is quite 

interesting to observe that the nonlinear response in the frequency neighborhood of the 

fundamental mode of a relatively complex system can be described with high accuracy by the 

introduced single-degree-of-freedom model with properly identified system parameters. Results 

show that the system behaves as linear for the first force level and then the response becomes 

bilinear for larger force excitations. The force-displacement hysteresis loops of experimental and 

numerical results for excitation of 12 N are compared in Figure 10 for three different frequencies. 

Again, there is a very good agreement between experiments and numerical results. The bilinear 

parameter (1 − 𝜇) obtained from the system identification is plotted against the maximum 

vibration amplitude in Figure 11(a). The graph displays that the bilinear parameter decreases with 

the vibration amplitude. This result is in agreement with the parameter identified from the 

characterization of the spacer grid (see Table 1). The identified bilinear parameters are comparable 

between the two beam systems with the same vibration amplitude. This suggests that the bilinear 

behavior of (i) one cell and (ii) nine cells combined, is comparable at the same vibration amplitude. 

The damping ratios of both systems are plotted against the maximum vibration amplitude in Figure 

11(b). The damping ratios increase with the amplitude: about two times the initial value for the 

single rod and four times for the cluster of rods.   

 



 

 

Figure 9. The numerical and experimental results comparison of the cluster of rods supported by 

spacer grids: ‘o’ experiemental results (sweep up), ‘+’ experimental results (sweep down), ‘-‘ 

numerical results. 
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Figure 10. Comparison of force-displacement hysteresis loops of cluster of rods supported by 

spacer grids (12 N level): ‘o’ experiemental results, ‘-‘ numerical results. 

 

 

(a)  

(b)  

 

Figure 11. (a) Bilinear parameter (1 − 𝜇), which is the slope of the reduced-stiffness spring, versus 

vibration amplitude; (b) viscous damping versus vibration amplitude. Blue line, single rod 

supported by spacer grids; red line, cluster of rods supported by spacer grids. 

 



6. Conclusions 
 

 Nonlinear vibration responses of two different beam systems were interpreted using a model 

based on bilinear stiffness and viscous damping. The beams studied were supported by spacer 

grids at both ends, which imposed nonlinear boundary conditions with bilinear hysteresis. The 

nonlinear response of both beam systems showed softening nonlinear behavior, where the 

resonance frequency decreases with the vibration amplitude. The force-displacement hysteresis 

loops of the spacer grids alone were measured, and the loops an almost perfect bilinear hysteresis 

behavior. The bilinear hysteresis model introduced by Caughey [4] was used to fit these loops. A 

single-degree-of-freedom model with bilinear stiffness and viscous damping was used to interpret 

the experimental nonlinear response of the two systems of beams. The identified parameters show 

that the stiffness of the boundary conditions reduces with amplitude. Moreover, the equivalent 

damping of system increases rapidly, and stabilizes later, with the vibration amplitude. This paves 

the way to a future study that introduces nonlinear damping, as observed in different systems [20-

23]. The model accurately captures the behavior of both systems, leading to an excellent agreement 

between numerical and experimental results. 

 

 

Acknowledgments 

The authors acknowledge the financial support of the NSERC CRD Grant and the Framatome.  

 

 

Conflict of Interest: The authors declare that they have no conflict of interest. 

 

 

References 
 

[1] G. Bertotti, Hysteresis in magnetism: for physicists, materials scientists, and engineers, 

Academic press, 1998. 

[2] D. Hughes, J.T. Wen, Preisach modeling of piezoceramic and shape memory alloy hysteresis, 

Smart materials and structures, 6 (1997) 287. 



[3] M.A. Krasnosel'skii, A.V. Pokrovskii, Systems with hysteresis, Springer Science & Business 

Media, 2012. 

[4] T.K. Caughey, Sinusoidal excitation of a system with bilinear hysteresis, Journal of Applied 

Mechanics, 27 (1960) 640-643. 

[5] T.K. Caughey, Random excitation of a system with bilinear hysteresis, Journal of Applied 

Mechanics, 27 (1960) 649-652. 

[6] W.D. Iwan, The Steady-state response of a two-degree-of-freedom bilinear hysteretic system, 

Journal of Applied Mechanics, 32 (1965) 151-156. 

[7] P.C. Jennings, Equivalent viscous damping for yielding structures, Journal of the Engineering 

Mechanics Division, 94 (1968) 103-116. 

[8] W.D. Iwan, N.C. Gates, Estimating earthquake response of simple hysteretic structures, Journal 

of the Engineering Mechanics Division, 105 (1979) 391-405. 

[9] P.D. Spanos, A. Giaralis, Third-order statistical linearization-based approach to derive 

equivalent linear properties of bilinear hysteretic systems for seismic response spectrum analysis, 

Structural safety, 44 (2013) 59-69. 

[10] F. Preisach, On the magnetic aftereffect, IEEE Transactions on Magnetics, 53 (2017) 1-11. 

[11] Y.-K. Wen, Method for random vibration of hysteretic systems, Journal of the engineering 

mechanics division, 102 (1976) 249-263. 

[12] R. Pratap, S. Mukherjee, F. Moon, Dynamic behavior of a bilinear hysteretic elasto-plastic 

oscillator. Part 1: Free oscillations, Journal of Sound Vibration, 172 (1994) 321-337. 

[13] T. Kalmar-Nagy, A. Shekhawat, Nonlinear dynamics of oscillators with bilinear hysteresis 

and sinusoidal excitation, Physica D: Nonlinear Phenomena, 238 (2009) 1768-1786. 

[14] D. Capecchi, Accurate solutions and stability criterion for periodic oscillations in hysteretic 

systems, Meccanica, 25 (1990) 159-167. 

[15] W. Lacarbonara, F. Vestroni, Nonclassical responses of oscillators with hysteresis, Nonlinear 

Dynamics, 32 (2003) 235-258. 

[16] V.N. Pilipchuk, A.F. Vakakis, M. Azeez, Study of a class of subharmonic motions using a 

non-smooth temporal transformation (NSTT), Physica D: Nonlinear Phenomena, 100 (1997) 145-

164. 

[17] G. Ferrari, G. Franchini, P. Balasubramanian, F. Giovanniello, S. Le Guisquet, K. Karazis, 

M. Amabili, Nonlinear vibrations of a nuclear fuel rod supported by spacer grids, Nuclear 

Engineering and Design, (2020) 110503. 



[18] G. Ferrari, G. Franchini, P. Balasubramanian, F. Giovanniello, S. Le Guisquet, K. Karazis, 

M. Amabili, Nonlinear vibrations of a nuclear fuel bundle supported by spacer grids, Nuclear 

Engineering and Design, (submitted 2020). 

[19] E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B. Sandstede, X. Wang, 

Continuation and bifurcation software for ordinary differential equations (with HomCont), 

AUTO97, Concordia University, Canada, (1997). 

[20] M. Amabili, Nonlinear damping in large-amplitude vibrations: modelling and experiments, 

Nonlinear Dynamics, 93 (2018) 5-18. 

[21] P. Balasubramanian, G. Ferrari, M. Amabili, Identification of the viscoelastic response and 

nonlinear damping of a rubber plate in nonlinear vibration regime, Mechanical Systems and Signal 

Processing, 111 (2018) 376-398. 

[22] M. Amabili, Nonlinear damping in nonlinear vibrations of rectangular plates: derivation from 

viscoelasticity and experimental validation, Journal of the Mechanics and Physics of Solids, 118 

(2018) 275-292. 

[23] M. Amabili, Derivation of nonlinear damping from viscoelasticity in case of nonlinear 

vibrations, Nonlinear Dynamics, 97 (2019) 1785-1797. 

 

 

  



Chapter 5 

Conclusions 
 

Conclusions of this path can be divided into three distinct sets of results. 

The results of the first article (one single rod) are the following: 

• The trend of nonlinear vibration is always strongly softening. This is an important 

difference with respect to what happened in case of fixed-fixed boundary conditions 

(Ferrari et. al., 2018). The presence of nuclear fuel pellets is the main factor influencing 

the vibration in the linear field by means of added mass and stiffness. 

• The hysteresis here is negligible, most likely because of damping phenomena and similarly, 

nonlinear jumps are not found. 

• Although axial symmetry is broken and damping increases, the presence of spacer grids 

does not inhibit the appearance of vibrations perpendicular to the direction of the excitation 

(companion mode), along with vibrations parallel to the excitation (driven mode). The 

composition of driven and companion mode for axisymmetric structures is explained in 

detail in Ferrari et al. (2018).  

• Since spacer grids allow axial displacements, opposed by dry friction only, the axial 

vibration at the constraints was measured. As expected, the measured axial displacements 

were several times smaller in amplitude than those of the driven and companion modes. 

While the driven and the companion modes appear at different frequencies and interact in 

a complex manner (influenced, perhaps, by the vibration of the nuclear fuel pellets as well), 

the axial vibration occurs always at the same frequencies corresponding to the two main 

vibration modes. This seems to suggest that no specific vibration mode is present in the 

axial direction.    

• Highly damped curves without nonlinear jumps and such a softening behavior, 

unfortunately, were not described successfully by the one DOF model based on a modified 

Duffing oscillator developed by this research group, forcing us to follow a new path for 

our future studies  

• Given the moderate difference between free and fixed pellets conditions, the former may 

not be taken into account in future studies. During the operation of nuclear reactors, pellets 



are in fact packed axially. However, the presence of pellets is the primary cause of large 

softening frequency decreases, which indicates the utility of taking pellets into account by 

the inclusion of additional degrees of freedom into future models and simulations.  

 

With the development of the second article we enter the field of fluid iteration structure, studying 

the structure of the 3x3 bundle in the axial flow water tunnel. 

• The behavior of the fuel bundle in quiescent media is remarkably similar to dynamic 

response of a single fuel rod supported by spacer grids around the fundamental frequency. 

The bundle has a an initial (for relatively small vibration amplitudes) very strong softening 

nonlinear behavior that cannot be modeled by the modified Duffing oscillator developed 

in (Delannoy et al., 2015). This initial strong softening behavior seems caused by the 

nonlinear boundary conditions due to the springs installed on the spacer grids. Therefore, 

the system cannot be described only by quadratic and cubic stiffness in the modified 

Duffing oscillator. 

• The setup was installed in a water tunnel capable of fluid flows comparable to those 

existing in PWRs. A key factor was the presence of a stiff frame supporting the spacer 

grids without exerting large forces on them. The frame was also engineered to have 

minimal unwanted resistance to flow. 

• The presence of water flow does not have an important effect on natural frequencies for 

the specific boundary conditions constituted by spacer grids. As expected, no instabilities 

were detected in operative conditions, since axial flow values are too low to generate 

phenomena such as divergence or flutter. However, the strongly turbulent flow resulted in 

random noise superimposed onto the system vibration response. 

• The damping ratio of the fundamental mode increases with flow. Therefore, water flow 

causes random vibrations, but dampens externally excited vibrations. Interestingly, while 

in quiescent water the damping value increased six times for the force range under exam, 

it increased much less, approximately two times, for tests in water flow. Therefore, 

damping ratio is higher for water flow, but the equivalent damping in the nonlinear regime 

increases less in case of large amplitude vibrations because of flow. 



• Therefore, in the flow and forcing ranges under exam, coolant flow does not change 

significantly the severity of forced vibrations in nonlinear (large-amplitude) regime while 

it reduces vibration in linear (small-amplitude) regime.   

 

The third and final article instead focuses attention on the boundary conditions of our problem: the 

spacer grids. After our investigation we can say that: 

• The nonlinear response of both beam systems showed softening nonlinear behavior, where 

the resonance frequency decreases with the vibration amplitude. 

• The force-displacement hysteresis loops of the spacer grids alone were measured, and the 

loops show an almost perfect bilinear hysteresis behavior. The bilinear hysteresis model 

introduced by Caughey was used to fit these loops. 

• A single-degree-of-freedom model with bilinear stiffness and viscous damping was used 

to interpret the experimental nonlinear response of the two systems of beams. The 

identified parameters show that the stiffness of the boundary conditions reduces with 

amplitude. Moreover, the equivalent damping of system increases rapidly, and stabilizes 

later, with the vibration amplitude. 

 

By analyzing the response of fuel rods and rod-cluster to harmonic excitation we can conclude that 

the behavior is certainly nonlinear and of the softening type. That is, we have a decrease in the 

first fundamental frequency by increasing the amplitude of oscillation; this behavior is due to the 

presence of spacer grids. These components allow to obtain an increase in the damping of the 

system producing a real advantage in terms of safety both in operating conditions and in 

exceptional conditions such as earthquakes. The damping values were identified by applying a 

bilinear stiffness model with viscous damping proving to be highly effective for describing the 

nonlinear response of the system. 
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