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C’est parmi les hommes de cette espéce qu’est née ['idée horrible et dan-
gereuse que la vie humaine tout entiére n’est peut-étre qu’une méchante er-
reur, qu’une fausse couche violente et malheureuse de la Mére des généra-
tions, qu’une tentative sauvage et lugubrement avortée de la Nature. Mais
c’est ausst parmi eux qu’est née cette autre idée, que [’homme n’est peut-
étre pas uniquement une béte a moitié raisonnable, mais un enfant des

dieux destiné a ['immortalité.

— Hermann Hesse, Le Loup des steppes
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Abstract

Producing error-free circuits is of paramount importance in the semiconductor indus-
try. Assertions are becoming an indispensable means of verifying the correctness of
increasingly complex digital designs. Assertions model the proper behavior of a de-
sign, and are expressed in a high level language based on temporal logic. In dynamic
verification, simulation is used to exercise a circuit in order to assess its behavior.
For large designs, simulation times are often prohibitively excessive, and designs are
instead emulated in hardware. Because of their high-level temporal operators, asser-
tion statements do not lend themselves directly to hardware implementations such as
emulation.

This thesis introduces techniques and algorithms for generating resource-efficient
circuit-level checkers from hardware assertion statements. These checkers are added
to the source design, where they monitor the appropriate circuit signals to find faulty
execution sequences. In this work, a finite automaton framework and a set of algo-
rithms are developed and used extensively to create an intermediate representation of
assertions. Implementing the large variety of temporal operators found in properties
is also performed using specially designed rewrite rules.

Checkers are circuit-level implementations of assertions, and thus allow assertions
to be used in hardware emulation and simulation acceleration. The checkers are
not only beneficial in pre-fabrication functional verification, but can also be used for
debugging fabricated silicon, at speed, where timing issues are most prevalent. Using
checkers beyond verification and silicon debug is also explored, by proposing the use of
assertions and a checker generator to automate the design of certain types of circuits.
A variety of enhancements are also introduced to improve the debugging process
with assertion checkers. These enhancements range from additional observability and
metric-reporting features, to behavioral modifications to the checkers.

The tool developed in this work outperforms the best-known checker generator,
namely the FoCs Property Checkers Generator from IBM. Important improvements
compared to FoCs are demonstrated in terms of the circuit-size of checkers, the be-

havioral correctness of checkers and the number of operators supported.

vil






Abrégé

La production de circuits exempts d’erreurs est d’une importance capitale dans le
domaine des semiconducteurs. Avec 'augmentation constante de la complexité des
circuits numeériques, la vérification matérielle basée sur les assertions devient indis-
pensable. Les assertions modélisent le bon fonctionnement d’un circuit, et sont spé-
cifices a l'aide d’un langage faisant appel a la logique temporelle. En vérification
dynamique, la simulation est utilisée afin d’analyser le comportement d'un circuit.
Cependant, les temps de simulation deviennent trop longs pour de gros circuits et
par conséquent, ces derniers sont souvent émulés de facon matérielle. Etant donné
la présence d’opérateurs de logique temporelle de haut niveau, les assertions ne sont
pas directement implantables de facon matérielle.

Cette these présente les méthodes et les algorithmes nécessaires pour générer des
circuits vérificateurs efficaces a partir des assertions. Ces vérificateurs se branchent au
circuit a tester afin d’y observer les signaux, permettant ainsi de déceler un mauvais
fonctionnement. Dans cet ouvrage, une série d’algorithmes ainsi qu’un modéle basé
sur les automates finis sont développés et utilisés comme représentation intermédiaire
pour les assertions. L’implémentation du vaste éventail d’opérateurs se fait aussi
grace a des regles de réécriture.

En créant des circuits vérificateurs, les assertions peuvent dés lors étre utilisés
dans I’émulation matérielle et les accélérateurs de simulation. Les vérificateurs sont
déja fort utiles lors de la vérification préfabrication. Ces circuits peuvent aussi étre
utilisés lors de la vérification de circuits manufacturés ou les problémes de cadencage
sont les plus réalistes. L’utilisation des vérificateurs est aussi applicable au-dela de la
vérification et du déverminage post-fabrication, et peut servir pour la conception de
circuits de haut niveau. Un ensemble d’extensions aux circuits vérificateurs est aussi
développé afin d’améliorer le processus de déverminage. Ces extensions portent autant
sur "augmentation de I’observabilité que sur ’ajout de métriques supplémentaires
fournies a l'utilisateur.

L’outil servant a générer les circuits vérificateurs développé dans ce travail devance
I’outil le mieux connu dans ce domaine, soit le générateur de vérificateurs d’'IBM
nommé FoCs. Les résultats démontrent des améliorations importantes concernant
la taille et le bon fonctionnement des vérificateurs matériels, ainsi que le nombre

d’opérateurs supportés par 1’outil.

X






Contents

List of Figures xiv
List of Tables xvi
List of Algorithms xvii
List of Definitions xviii
List of Acronyms xix
1 Introduction 1
1.1 Context and Motivation . . . .. ... ... ... ... ... ..... 1
1.2 Goals and Contributions . . . . . . . . .. ... ... ... . ..... 4
1.3  External Contributions and Collaborations . . . . . . ... ... ... 6
1.4 Overview of the Thesis . . . . . . ... . ... ... ... ....... 7
2 Background 11
2.1 Hardware Verification, Debugging and Monitoring . . . . . . . .. .. 11
2.2 Assertion Checkers and Checker Generators . . . .. .. ... .. .. 17
2.3 Regular Expressions and Classical Automata . . . . . . .. ... ... 22
2.4 The Property Specification Language . . . . . . . .. ... ... ... 30
3 Related Research 47
3.1 Modular Approach to Checker Generation . . . ... .. ... .... 47
3.2 Automaton Approach to Checker Generation . . . . . . .. ... ... 50
3.3 Automata in Model Checking . . . . ... ... ... ... ... ... 54
3.4 Assertion Support in Simulators and Emulators . . . ... ... ... 56
3.5 Assertion Checkers in Silicon Debugging . . . .. ... ... ... .. 59
3.6 Other Related Research . . . . . ... .. ... ... ... ...... 60

x1



xii CONTENTS
4 Automata for Assertion Checkers 63
4.1 Introduction and Overview . . . . . . . . . . . . ... ... .. .... 63
4.2  Automaton Framework . . . . .. ... ... ... ... ... ... 64
4.2.1 Automaton Definition and the Symbol Alphabet . . . . . . .. 64

4.2.2 Determinization of Automata . . . . .. .. ... ... .... 72

4.2.3 Minimization of Automata . . . . .. ... ... ... .. ... 75

4.2.4 Complementation of Automata . . . . ... ... ... .... 80

4.3 Generating Circuit-Level Checkers from Assertion Automata . . . . . 83

5 Automata Implementation of Assertions 87
5.1 Introduction and Overview . . . . . . . . . .. .. .. ... ... .. 87
5.2 Implementation of Booleans . . . . . . ... ... .. ... ...... 88
5.3 Implementation of Sequences . . . . . . . . .. ... L. 92
5.3.1 Conventional Regular Expression Operators . . . . ... ... 94

5.3.2 Fusion . . . . . ... 96

5.3.3 Length-Matching Intersection . . . . . . ... ... ... ... 98

5.3.4 Repetition with a Range . . . . . .. ... .. ... ... ... 101

5.3.5 Rewrite Rules . . . . . .. . ... ... ... ... 102

5.4 Implementation of Properties . . . .. ... ... .. ... ...... 107
5.4.1 Base Cases for Properties . . . ... ... ... ... ..... 110

5.4.2 Rewrite Rules Based on Suffix Implication . . . ... ... .. 120

5.4.3 Rewrite Rules Based on Sequences as Properties . . . . . . .. 122

5.4.4 Rewrite Rules Based on Property Variations . . . . .. .. .. 124

5.5 Implementation of Verification Directives . . . . . . . ... ... ... 126

6 Enhanced Features and Uses of Checkers 129
6.1 Introduction and Overview . . . . . . . . . ... ... ... ...... 129
6.2 Recursive Compilation Strategies . . . . . ... ... ... ... ... 130
6.3 A Special Case for eventually! . . . . ... ... ... ... ... 135
6.4 Debug Enhancements for Checkers . . . . . .. ... ... ... ... 137
6.4.1 Reporting Signal Dependencies . . . . .. .. ... ... ... 138

6.4.2 Monitoring Activity . . . . . . . ..o 138

6.4.3 Signaling Assertion Completion . . . . . . .. ... ... ... 141

6.4.4 Assertion and Cover Counters . . . . . . . .. ... ... ... 143

6.4.5 Hardware Assertion Threading. . . . . . ... ... ... ... 144

6.5 Checkers in Silicon Debug and On-Line Monitoring . . . . . . . . .. 148

6.5.1 Checkers in Silicon Debugging . . . . . .. .. ... ... ... 149



CONTENTS xiil
6.5.2 In-Circuit On-Line Monitoring . . . . . . . .. ... ... ... 150

6.5.3 Assertion Grouping . . . . . . .. ... oL 152

7 Evaluating and Verifying Assertion Checkers 157
7.1 Introduction and Overview . . . . . . . . . .. .. .. ... ... .. 157
7.2 Non-Synthetic Assertions . . . . . . . . . . .. . ... ... 161
7.3 Evaluating Assertion Grouping . . . . .. .. ... ... ... .... 168
7.4 Pre-Synthesis Results . . . . . .. . ... ... .. .. ... .. ..., 168
7.4.1 Experiments with Hardware Protein Matchers . . . . . . . .. 171

7.4.2 Complex Sequences . . . . . . . . . . .. 173

7.5 Benchmarking Debug Enhancements . . . . ... .. ... ... ... 174
7.6 Benchmarking Sequences and Properties . . . .. .. ... ... ... 179
7.6.1 Comparison of the Two eventually! Approaches . . .. .. .. 179

7.6.2 Occurrence-Matching Sequences . . . . . . . . ... ... ... 180

7.6.3 Failure-Matching Sequences . . . . . . . ... ... ... ... 181

7.6.4 Properties . . . . . . . ... 184

8 Conclusion and Future Work 187
81 Conclusion . . . . . . . . L 187
8.2 Future Work . . . . . . . .. 189
8.2.1 Optimizations and Improvements . . . .. .. ... ... ... 189

8.2.2 Checkers and Debugging . . . . . .. ... .. ... ... ... 190

8.2.3 Testing the Checkers . . . . . .. ... ... ... ... .... 191

8.2.4 Assertion Languages . . . . .. ... .. ... ... ... ... 192

8.2.5 Beyond RTL Assertion Languages . . . . . .. .. ... .... 193

A Example for Up-down Counter 195
Bibliography 201



List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5.1
5.2
5.3

Assertion checkers in verification, debugging and monitoring . . . . .
Checker generator for hardware verification. . . . . . ... ... ...
Formal vs. run-time property checking example. . . . . . . . ... ..
Using checkers in formal and dynamic verification. . . . . . . . . . ..
Automaton construction steps (McNaughton-Yamada construction). .
Determinization and completeness example . . . . . . ... .. .. ..
NFA to DFA example . . . . . . . ... ... ... L.
Complementation example . . . . . .. .. ... 0L
Continuous matching example . . . . . .. .. ... ...
PSL language hierarchy. . . . . . ... ... ... ... ... ...,
Sequence matching example . . . . . . ... ... .. ... ... ...

Traces for property examples. . . . . . .. .. .. ... ... .....

Types of automata used in formal methods . . . . . . . ... ... ..

Example of assertions in simulators . . . . . . .. .. ... ... ...

Effect of alphabet choice on automata. . . . . .. .. ... ... ...
Effects of multiple initial states . . . . . . .. . ... ... ... ...
Automata example for single and dual layer symbols . . . . . . . ..
Strong vs. weak determinization. . . . . . ... ...
Collapsing final states with true edges. . . . . . . . . ... ... ...
Example for collapsing final states. . . . .. ... ... ... .....
Effect of collapsing final states in minimization. . . . . . . . . . ...
Strong determinization with completion. . . . . . .. ... ... ...

Circuit level checker example . . . . . . ... ... ... ... ... ..

Automaton for a Boolean . . . . . . . . ... 0oL
Automata examples for conventional RE operators. . . . . . . . . ..

Sequence fusion example . . . . . ... ... L L

Xiv



LIST OF FIGURES XV

5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

7.1

Sequence intersection example . . . .. ... Lo 99
Range repetition strategies . . . . . . . . . ... 103
True automaton . . . . . . . ... Lo 114
False automaton (null automaton) . . . . . ... ... ... ... ... 114
Sequence matching example . . . . . ... ... oo 115
Sequence failure matching example . . . . . ... .. ... ... ... 115
Example for strong sequence . . . . . . ... ... L. 116
Example for abort operator . . . . .. .. ... oo 117
Complete checker example . . . . . .. ... ... ... 128
Example of recursive compilation strategies . . . . . . . .. .. .. .. 131
Efficient eventually! operator example . . . . ... ... ... .... 137
Example of activity signals . . . . . .. ... ... oL 139
Failure and completion mode automata . . . . . . .. ... ... ... 143
Counter circuits for assertions and covers. . . . . .. ... ... ... 143
Assertion threading strategy. . . . . . . . . . ... ... L. 145
Use of assertion threading in the CPU example. . . . . . . .. . ... 148
Usage scenarios for hardware assertion checkers. . . . . . . .. . ... 149
Debugging and self-test using checkers. . . . . .. .. ... ... ... 150
Traditional BIST vs. self-test using checkers. . . . . . ... ... ... 151
Assertion checkers for redundancy control. . . . . . . ... ... ... 152
Fixed and reprogrammable assertion checkers in SoCs. . . . . . . .. 153

Equivalence checking by model checking. . . . . . ... ... ... .. 159



List of Tables

2.1

4.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16

Commonly used Verilog language operators. . . . . . ... ... ... 31
Example of power set and symbolic alphabets . . . . . ... ... .. 65
Benchmarking of non-synthetic assertions. . . . . .. ... ... ... 167
Resource usage of assertion checkers for grouping. . . . . . . . . . .. 169
Checker partitions for reprogrammable area. . . . . . .. .. ... .. 170
Subset and full-set synthesis of checker groups. . . . . . . . ... ... 170
Hardware protein matching automata metrics . . . . . .. .. .. .. 172
Pre-synthesis benchmarking properties . . . . . . .. ... ... ... 174
Pre-synthesis benchmark results . . . . . ... ... ... ... .... 175
Test assertions for debugging enhancements. . . . . . . .. ... ... 176
Resource usage of checkers with debugging enhancements. . . . . . . 177
Benchmarking implementations of eventually! . . . . ... ... ... 179
Occurrence-matching test sequences. . . . . . . . .. ... ... ... 180
Benchmarking of occurrence-matching sequences. . . . . . .. . . .. 181
Failure-matching test sequences. . . . . . . . . . ... ... ... ... 182
Benchmarking of failure-matching sequences. . . . . . . .. .. . ... 183
Benchmarking of properties. . . . . . . .. ... ... ... ... ... 185
Benchmarking of properties. . . . . . . .. ... ... ... ... ... 186

Xvi



List of Algorithms

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

6.1
6.2

Weak determinization algorithm . . . . . . .. ... ... ... ... 73
Strong determinization algorithm . . . . . . ... ... ... .. 74
Automaton reversal algorithm. . . . . . . ... ... ... ... .. .. 76
Automaton minimization algorithm. . . . . . . .. ... ... ... 7
Algorithm for collapsing final states. . . . . ... ... .. ... ... 78
Automata negation algorithm . . . . . ... ... ... ... ... 81
Algorithm for strong determinization with completion . . . . . . . .. 82
Automaton algorithm for HDL Boolean expressions. . . . . . . .. .. 92
Automata concatenation algorithm. . . . . . . ... ... ... .. .. 95
Automata choice algorithm. . . . . . .. ... ... .00 95
Automaton Kleene-closure algorithm. . . . . . ... ... ... .. .. 96
Automata fusion algorithm. . . . . . .. ... ... 0L 98
Automata intersection algorithm. . . . . . . ... ... ... ... 100
Automata range repetition algorithm. . . . . . . ... ... ... ... 101
Forall algorithm for properties . . . . . . .. ... ... ... ..... 111
Failure matching algorithm. . . . .. .. .. ... ... .. ... ... 113
Strong failure matching algorithm. . . . . . ... .. ... ... ... 116
AddLiteral algorithm. . . . . . . . ... ... ... ... ... .. 117
First-match transformation algorithm. . . . . .. ... ... ... .. 141
Assertion circuit partitioning algorithm. . . . . . . ... ... .. .. 154

Xvil



List of Definitions

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
211
2.12
2.13

3.1

4.1
4.2
4.3
4.4
4.5

Regular expressions . . . . . . . . ... .o 23
Classical finite automaton . . . . . . ... .. ... ... ... ..., 23
Deterministic/Nondeterministic Finite Automaton . . . . . . . . . .. 25
(Corollary) Deterministic/Nondeterministic classical FA . . . . . . .. 25
Complete DFA . . . . . 0 . o 26
(Corollary) Complete classical DFA . . . . ... .. ... ... . ... 26
Booleans . . . . . . . . .. 32
Sequences and SEREs . . . . . ... ... oL oL 34
Degenerate sequences . . . . . . . . . ..o 37
Properties and foundation language properties . . . . . . ... .. .. 37
Verification directives . . . . . . . . ... Lo 43
Default clock declaration . . . . . .. ... ... ... ......... 44
Terminating rewrite rules . . . . . ... ... 0oL 45
Vacuous success . . . . . . ... 25
Power set alphabet . . . . . . ... ... L 64
Symbolic alphabet . . . .. ... oo 64
Finite automaton . . . . . . . . . . ... ... oL 66
Primary symbols . . . . . . . ... oo 67
Extended symbols . . . . . . ... oo 67

xviii



List of Acronyms

ABD:
ABV:
ASIC:
ATPG:
BIST:
BNEF:
CTL:
CPU:
CUT:
CUV:
DFA:
DFF:
EDA.:
EOE:
FF:
FPGA.:
HDL:
IC:
IEEE:
IP:
LTL:
LUT:

MBAC:

NFA:
NOC:
PSL:
RE:

Assertion-Based Design
Assertion-Based Verification
Application Specific Integrated Circuit
Automatic Test Pattern Generation
Built-In Self Test

Backus-Naur Form

Computation Tree Logic

Central Processing Unit

Circuit Under Test

Circuit Under Verification
Deterministic Finite Automaton
D-type Flip-Flop

Electronic Design Automation

End of Execution

Flip-Flop

Field Programmable Gate Array
Hardware Description Language
Integrated Circuit

Institute of Electrical and Electronics Engineers
Intellectual Property

Linear Temporal Logic

Lookup Table

Marc Boulé’s Assertion Compiler
Nondeterministic Finite Automaton
Network On Chip

Property Specification Language

Regular Expression

XixX



RTL:  Register Transfer Level

SERE: Sequential Extended Regular Expression
SOC:  System On Chip

SVA:  System Verilog Assertions



Chapter 1
Introduction

This chapter is intended as a short overview and introduction to the thesis. Many
terms and expressions are used loosely in this chapter, and are explained in more

detail in the Background chapter.

1.1 Context and Motivation

Producing high-quality Integrated Circuits (ICs) is of paramount importance in the
semiconductor industry. In some cases the importance is of an economic nature, as
product recalls and loss of market shares are but some of the consequences of providing
faulty circuits. In military and aerospace applications, the consequences can be more
dire especially when human lives enter the equation. Examples of defects in ICs
range from satellite and rocket malfunctions, to glitches and failures in consumer
applications. One well-known case is the floating point error found on early models
of the Pentium processor by Intel. This “bug”, known as the FDIV bug was not a
fabrication or manufacturing defect, but rather a functional error in the design of the
division algorithm. Although the effect was barely perceptible, the flaw was enough
to cause a large recall of processors, and most estimates place the total cost to Intel
at nearly half a billion US dollars.

With such high prices to pay for producing faulty devices, the electronics industry
is constantly seeking ways to improve quality. Quality is defined as follows in the ISO

8402 standard for quality management and quality assurance [114]:

The totality of features and characteristics of a product or service that

bear on its ability to satisfy stated or implied needs.

In the field of digital systems, the ability of a system to satisfy any stated or implied
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needs is compromised by the presence of faults. Examples of types of faults that may
be present in digital circuits are: design faults, fabrication faults and faults that arise
during usage [120]. A logic bug in a Boolean function is an example of a design fault,
whereas stuck-at-value faults and short circuits are examples of fabrication faults.
When a correct circuit subsequently becomes faulty under unexpected conditions or

prolonged use, these are termed user faults.

Verification aims to ensure that a circuit design behaves according to its intended
specification. Verification deals with functional errors in circuit designs, in contrast to
testing which deals with the detection of fabrication errors in ICs. In today’s complex
hardware digital circuit designs, verification typically requires more effort than the
actual design phase itself. Recently, hardware assertions have become an important
addition to the majority of verification efforts in practice. Assertions are additional
statements that are added to a design to specify its correct behavior. Assertions have
been used in software for many decades, and only in the last decade have they made
a widespread impact in hardware design. In hardware, assertions model the correct

behavior of the design using properties specified in temporal logic.

Assertions can also be seen as a formal documentation language, free of the ambi-
guities inherent to English language specifications. In another view, assertions can be
seen as an executable specification, or a computable specification, when interpreted
by verification tools. Once the assertion language is learned, adding assertions to a
design to perform verification requires low overhead since assertions are text-based
commands. Furthermore, assertions can be added incrementally as needed or as time
permits. Even a single assertion can help find design errors. Engineers seeking to
produce quality designs should have a desire to use mechanisms that help find flaws
in their designs, and assertions are such mechanisms. After all, if an engineer is so
confident in his or her design, there should be no problem with writing assertions
that won’t fail. ..

Hardware assertions are typically processed by simulators in dynamic verification,
or by model checkers and theorem provers in static verification. When large designs
are to be simulated, they are often emulated in hardware where the implicitly parallel
nature of digital circuits can be exploited for faster run-times. To allow assertions
to be used in hardware, a checker generator is required to transform the assertions
into circuit-level checkers. Assertions are written in high-level languages and are
not suitable for direct implementation in circuit form. Generating resource-efficient
assertion-checking circuits is of primary importance when assertion-based verification

is to be used in hardware emulation, post-fabrication silicon debugging and on-line
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monitoring applications.

Assertions are often first viewed as a means of performing, enabling or facilitating
the task of hardware verification, hence the term Assertion Based Verification (ABV).
However, to emphasize that assertions should be adopted in the earliest stages of the
design cycle, the term Assertion Based Design (ABD) was introduced to convey this
philosophy [74]|. Using assertions at the initial specification and design phases can
have important benefits throughout the remainder of the design cycle. One example
of this is when separate design and verification teams work together to fix errors.
Having a formally written set of properties upon which both teams can interact will
help shorten the overall verification cycle.

The method of specifying hardware designs has evolved over the years, ranging
from low-level schematic capture to the behavioral text based design languages that
are currently in use today. However, as predicted by Foster et. al., the proper-
ties used in assertion based design could actually become the essence of design and

verification [74]:

The way design and verification has traditionally been performed is chang-
ing. In the future, we predict that design and verification will become

property-based.

Properties are emerging as a new way of doing things in verification, and have the
potential for becoming the new way of doing things in design. With the emerging
adoption of assertions in verification, and their expected evolution as hardware design
mechanisms, is it no wonder the assertion-based revolution is often referred to as a
paradigm |121].

In this thesis, the Property Specification Language (PSL) is studied and used
as the standard hardware assertion language. The many similarities between PSL
and SVA, such as sequences for example, allow most developments made for PSL
checkers to also apply to creating SVA checkers, as reported in the book based on
this thesis [34]. A few key advantages associated to PSL are listed below, and help

motivate its consideration in this work:

e PSL was the first hardware assertion language to receive IEEE standardization
(IEEE-1850) [111];

e With the use of many flavor macros, PSL offers a language independent means
of specifying assertions, and can be used in VHDL, Verilog, SystemVerilog, GDL
and SystemC designs;
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e PSL incorporates many temporal operators found in formal verification and
model checking, such as Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL), and is therefore well positioned to serve both the formal verifica-

tion community and dynamic verification scenarios (ex: simulation).

e The PSL language is arguably the most complex and expressive of assertion

languages.

The Verilog language is used in this work as the underlying language for expressing
circuit designs, thus the Verilog flavor of PSL will be used throughout. Verilog is the
most widely employed Hardware Description Language (HDL) in use today [55].

The concept of checker generators for PSL was pioneered by IBM and their FoCs
tool [108]. The original assertion language that served as the foundation for PSL
was actually developed by IBM and was called “Sugar”. The FoCs tool was originally
intended for simulation use; however, the circuit checkers that are produced can
also be synthesized in hardware. As witnessed in the history of publications (in
chronological order) [29, 26, 30, 32|, the checker generator developed in this thesis
has consistently been at the forefront of generating resource-efficient checkers for
circuit implementations. In one example, a checker that is three orders of magnitude
smaller in terms of code size was produced, compared to the FoCs tool [29].

Automatic generation of checkers from assertions is much more advantageous than
designing checkers by hand. For one, a single line of PSL can sometimes imply
hundreds of lines of HDL code. Maintaining HDL checker code is also not desirable,
as the specification can sometimes change during the development. Furthermore, if
complex checkers are coded by hand they will likely contain errors themselves, which
will need to be debugged.

The checker generator developed in this research is particularly geared towards
producing assertion checkers that consume the fewest circuit resources when imple-
mented in hardware. Many design choices and optimizations are performed with the
underlying goal of reducing the circuit sizes of the checkers. In this document, un-
less specified otherwise, the expression “the checker generator” refers to the checker

generator developed in this work, called MBAC.

1.2 Goals and Contributions

The principal set of problems addressed in this thesis is presented below as challenges,

to more closely relate to the actual way these interrogations arose throughout the
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various stages of the research. The solutions, or answers to these challenges constitute

the contributions made in this thesis, and are briefly outlined thereafter.

1. How can PSL assertions be converted into resource-efficient hardware checker
circuits? Can all temporal operators suitable for dynamic verification be sup-

ported? If so, how?

2. How can these checkers be enhanced and/or modified to improve the debugging

process?

3. Can assertion and a checker generator be used beyond verification?

The answer to challenge 1 is contained in Chapters 4 and 5, where the automata
framework and the algorithms for converting PSL into automata, and subsequently
into circuits, are developed. Over twenty automata algorithms are developed, and
over thirty rewrite rules are introduced, all of which are specifically tuned to offer
the most appropriate run-time monitoring semantics for hardware assertion checkers.
Although a few algorithms and rewrite rules follow from classical automata theory and
the PSL specification respectively, all are implemented in the context of a new dual-
layer symbol alphabet and an efficient symbolic encoding for edge labels. Other novel
developments include particular optimizations for minimization, and the introduction
of mixed levels of determinism in the automata.

The answer to challenge 2 is contained in Section 6.4, where a series of debugging
enhancements to assertion checkers is elaborated. New findings such as assertion
threading, assertion completion and activity monitors are introduced in the context
of automata-based assertion checkers.

Challenge 3 is explored in Section 6.5, where checkers are extended to silicon
debugging and on-line monitoring scenarios. It is also in that section where the idea of
using assertions and a checker generator to automate certain types of circuit design is
developed, with an example application in redundancy control. The concept of mixing
automata with separate logic gates is introduced in Section 6.3 for implementing a
more efficient form of the eventually! operator, when compared to the rewrite rule
developed in Chapter 5. The results of all challenges are assessed empirically in
Chapter 7.

In this work, a checker generator is devised with particular uses in verification, sil-
icon debugging and on-line monitoring. The verification in question can range from
hardware emulation and simulation acceleration, to software-only interpretation of
assertions as used in traditional simulators, and can even extend into formal verifica-

tion by allowing certain types of properties to be used in model checkers that do not
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support PSL. The techniques used in developing the checker generator can further be
applied to areas as diverse as hardware-accelerated protein matching (Section 7.4.1)
and network intrusion detection, where hardware implementations of regular expres-
sion matching can help improve performance.

Adding circuit-level assertion checkers to a design invariably affects timing and
floor-planning issues. As expected, the integrated circuit must have the necessary
silicon area to implement the checkers. When the total size of a set of checkers exceeds
the remaining area, methods such as assertion grouping (Section 6.5.3) can be used to
help manage partitions of checkers in reprogrammable logic. Careful design practices
can also be employed to help minimize the impact of adding checkers to a design.
The emphasis in this work is placed on the actual checkers that are generated, as
opposed to studying their effect on the source design, to which they can (and should)
be attached.

1.3 External Contributions and Collaborations

The author would like to highlight the contributions made by Jean-Samuel Chenard
regarding three co-authored publications |26, 27, 28|. A very useful partitioning script
was developed to automate the individual synthesis of checkers when grouped in a
single Verilog module. Another script was developed to automatically extract and
convert the synthesis results into BTEX formatted tables. These scripts were used
extensively in the publication for which they were developed [27], and also for the
majority of the experimental results in Chapter 7. The ideas of assertion grouping
and management of checkers in programmable cores was also contributed by Mr.
Chenard. Assertion grouping was also mentioned previously 2], unbeknownst to us
at that time. Figures 6.7 and 6.12 appearing in Chapter 6 were originally designed
by Mr. Chenard.

Jean-Samuel also coded the CPU pipeline and helped work out the related as-
sertion threading example in Section 6.4 (Example 6.4) [28]. The author would also
like to mention the contributions made by this collaborator regarding the debug
enhancements [26, 27|. Many discussions helped develop and organize the debug en-
hancements, and in particular, the ideas of monitoring completion, adding counters
for assertions and the concept of logging signal dependencies were brought forth by
Jean-Samuel.

The message tracing assertion (NOC _ASR) used in Section 7.2 was devised in

a collaboration with Stephan Bourduas, Jean-Samuel Chenard and Nathaniel Azue-
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los |48|, where assertion checkers are explored for debugging hierarchical ring Network-
On-Chip (NoC) designs.

The first versions of the automaton-based checker generator were developed using
an automata library used in speech recognition at the CRIM (Centre de recherche
informatique de Montréal). More specifically, the author acknowledges Patrick Car-
dinal for providing the library and helping with interfacing issues, as well as many
helpful discussions pertaining to automata.

A contribution indirectly comes from IBM when in 2004 a freely available version
of their PSL/Sugar parser was downloaded. This parser was extensively modified, but
did serve as the starting point for the PSL and Verilog parser used in the author’s
work. The parser is used in the front-end of the checker generator and is responsible
for creating a data structure representing the syntax tree of the input assertions.

Katell Morin-Allory from the TIMA-VDS group in France has also begun to per-
form machine assisted proofs of the rewrite rules presented in Section 5.4. At the
time of writing, a handful of rules have already been proven, and the proofs of the
remaining rules are forthcoming. It is during these related exchanges that semantics
problem with the never operator were observed, and independently confirmed in the
PSL issues list [113].

Although their results are not contained in this thesis, the author would nonethe-
less like to acknowledge the graduates and undergraduates at McGill University that

made use of the checker generator in their projects (supervised by Prof. Zilic):

e Nathan Kezar and Smaranda Grajdieru, Graphical User Interface for MBAC,
ECSE 494 — Design Project Laboratory, McGill University, June 12, 2006;

e Alya Al-Dhaher, Course Project — Assertion Test Generation, ECSE 649 — VLSI
Testing, McGill University, May 11, 20006;

e Alya Al-Dhaher, Automated Test Generation for Automata-based Assertion-
Checkers, Non-thesis Masters Project, McGill University, August 16, 2006;

e Hansel Sosrosaputro and Shiraz Ahmad, Automation of Assertion Signal Mon-
itoring, ECSE 494 — Engineering Design Laboratory, McGill University, April
16, 2007.

1.4 Overview of the Thesis

The thesis begins by a presentation of relevant background material in Chapter 2.

Important terms such as checkers, emulation, silicon debugging, on-line monitoring
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and assertion-based verification, to name a few, are explained. This chapter also
contains an introduction to classical automata theory and regular expressions, and
can be very helpful prerequisites to the automata framework and the PSL regular
expressions appearing elsewhere in the thesis. Chapter 2 also contains an introduction
to the PSL language, where its syntax is formally presented. An informal explanation
of PSL’s semantics is also given, and was preferred instead of the formal semantics

contained in Appendix B in the PSL specification [111].

An overview of related research is presented in Chapter 3. Both the automata-
based and interconnected-modular approaches to checker generation are introduced
in the context of related research on assertion checkers. The use of automata in
formal verification, more specifically in model checking, is also surveyed. The existing
uses of assertions in simulators, emulators and in silicon debugging are explored.
Other related research is presented at the end of that chapter, where other assertion

languages are also mentioned.

Chapters 4 and 5 introduce the core notions to generating assertion checkers in this
thesis. Chapter 4 introduces the automata framework used to symbolically represent
assertions. Other important functions that are not specific to assertion automata are
developed, such as determinization and minimization. The conversion of automata
to circuit-level checkers is also developed at the end of Chapter 4.

The automata implementation of all assertion operators is introduced in Chap-
ter 5. The presentation starts with the lowest layer in the language structure, namely
Boolean expressions, then proceeds gradually to the language’s intermediate layers,
consisting of temporal sequences and properties, and concludes with the top-level ver-
ification directives. These two chapters alone represent sufficient material to describe
the checker generation process, from start to finish.

Enhanced features and uses of checkers are then introduced in Chapter 6. The
enhancements range from a more efficient implementation of the eventually! operator,
to various debugging enhancements related to the checkers. The enhancements can be
categorized as either modifications to the behavior of checkers, or as added capabilities
in the observability and the reporting of metrics. Chapter 6 also presents a view of how
checkers can be used beyond verification by proposing their uses in post-fabrication
silicon debugging, as permanent on-line monitors for in-field status assessment, and
even for performing high-level circuit design.

The checker generator is evaluated empirically in Chapter 7, using a variety of
real-world and synthetic assertions. Themes such as assertion grouping, the choice

of a symbol alphabet and the debug enhancements are evaluated. The typical evalu-
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ation consists in synthesizing the checkers for FPGA technology, where the resource
utilization of the checkers can then be compared. Comparisons to the FoCs tool
from IBM are also performed, and show that the MBAC checker generator produces
smaller and faster circuits that offer the correct assertion behavior while supporting
all operators.

Many of the details contained in this thesis were also submitted in a US patent

application in September 2007 [31].






Chapter 2
Background

This chapter begins by positioning the main theme of the work within the areas of ver-
ification, post fabrication silicon debugging and on-line monitoring. The verification
landscape and the assertion paradigm are also introduced. The topic of generating
assertion checking circuits is also explained contextually, and motivated within the
mentioned areas. An overview of regular expresssions and automata theory is then

given, and the chapter ends with a presentation of the PSL language.

2.1 Hardware Verification, Silicon Debugging and

On-line Monitoring

In the field of digital circuit design, designing a circuit for a particular task is one step,
but designing a correct circuit is a whole other endeavor. Correctness has a different
meaning depending on the stage at which it is sought. In the early specification stage,
validation seeks to ensure that the design features meet the user’s requirements: “are
we building the right product?” In the design stage, verification aims to ensure that
the design meets its given specifications: “are we building the product right?” In the
manufacturing stage, testing seeks to detect fabrication faults in integrated circuits.
The tasks of verification and testing are increasing in complexity at a higher rate
than the complexity of the designs themselves. This is known as the verification
gap in the industry, and is also referred to as the verification crisis. The costly
penalties associated to the release of faulty hardware are compounded by increased
competition and decreased time to market. The motivation for performing a thorough
design verification has never been greater, and will only increase in the future.

Assertion-Based Verification (ABV) [74] is emerging as the predominant method-

11
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Figure 2.1: Assertion checkers in hardware verification, silicon debug-
ging and on-line monitoring.

ology for performing hardware verification. Assertions are high-level statements built
on temporal logic that are added to a circuit under verification in order to specify
how the circuit should behave. Assertions can (and should) be added before the veri-
fication step, and should be part of the design process as well. Assertions can also be
used the specification stage to allow the formal documentation of requirements. Fig-
ure 2.1 shows a summary of the main engineering tasks leading to a finished integrated
circuit.

Assertions should ideally be adopted in the first two blocs in Figure 2.1, namely
specification and design. When this is not the case, assertions are prepared during
the verification steps for all three types of verification shown. Synthesizing assertion-
checking circuits is an effective way of allowing assertions to be used in the verification,
silicon debugging and on-line monitoring steps in the flow in Figure 2.1. The use
of checkers in these various applications is overviewed throughout this section, and
the presentation of checkers and checker generation (checker synthesis) is covered in
Section 2.2.

Assertions have been used in software for many decades. In 1966 Robert Floyd
is credited with formalizing assertions and launching the modern use of assertions
when he developed the reasoning of programs based on axioms and predicate calcu-
lus. The history of computing, and more specifically the history of reasoning about
programs |116] reveals that the concept of assertions was introduced in 1947 by Her-
man Heine Goldstine and John von Neumann, where the idea of assertion boxes for
capturing the correct effects of programs were introduced. Two years later, in 1949,

a paper by Alan Turing mentions adding assertions to a program (reported in [116]):

How can one check a routine in the sense of making sure that it is right?
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In order that the man who checks may not have too difficult a task the pro-
grammer should make a number of definite assertions which can be checked
individually, and from which the correctness of the whole programme easily

follows.

Turing’s citation above is surprisingly topical even for digital circuits, and by changing
only a few words it can apply to today’s hardware designs as well.

Assertions have only recently begun to be used in the field of hardware design. In
fact, in 2004 the number of hardware engineers using assertions passed the 50 % mark
(2004 DVCon census [54]). In 2007, the DVCon verification census [55] showed that
68.5 % of engineers were using assertions. It is also widely accepted that between 40
and 70 % of the design effort is actually spent on verification and bug-fixing [178].
With the increasing complexity of integrated circuits and hardware designs, this rela-
tively high number is not surprising, and is not expected to diminish. Design teams are
also increasingly being complemented by separate verification teams in large projects,
where assertions play a key role.

Assertions are also very helpful in post-silicon debugging, where fabricated 1Cs
(Integrated Circuits) are debugged under realistic timing conditions. In silicon de-
bugging with assertions, assertion checkers can be purposely left in the fabricated IC
for debugging purposes. Metrics from Intel show that in 2005, over 20 % of total
design resources are spent on post-fabrication validation [146|. It is also reported
that approximately 70 % of System-on-Chip (SoC) re-spins in the industry are due
to logic bugs.

Various patterns are recurrent in verification [64], whereas others can be cus-
tomized to a particular application. Assertions are a way of formally capturing the
correctness properties (or patterns) of a specification. Hardware assertions are typ-
ically written in a Hardware Verification Language (HVL) such as PSL (Property
Specification Language [111]) or SVA (SystemVerilog Assertions, part of the Sys-
temVerilog language [110]). PSL is standardized by the Institute of Electrical and
Electronics Engineers (IEEE) as the IEEE-1850 standard, and SystemVerilog is stan-
dardized as IEEE-1800.

In verification, assertions are the “golden rules” to which the implementation is
compared. Any deviations from these golden rules constitute design errors. Assertions
are not only beneficial in the verification process, but also represent an unambiguous
way to document a design. Assertions have a formally defined syntax and semantics,
and do not suffer from the inherent ambiguities commonly found in English language

specifications. Formally documenting a design’s specification with assertions can be
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seen as creating an executable specification [111| that can be automatically used by
tools to assist in verification.
For example, the following statement expresses a certain specification that is to

be respected by a bus arbiter (the reset signal is active low).

When the request signal goes from low to high in two consecutive cycles,
then the grant signal must be asserted in at most five cycles and the request

stgnal must remain high until this grant is received, unless a reset occurs.

The same requirement can be expressed much more succinctly using an assertion

language:
assert always ({~req ; req} |=> {req[*0:4] ; gnt}) abort ~reset (2.1)

In fact, the assertion above is actually more precise than the previous textual state-
ment. Depending on the reader’s point of view, the expression “unless a reset occurs”
either only releases the obligation for the request signal remaining high until the grant
is received, or it also releases the condition that the grant signal must be asserted
with five clock cycles. In other words, it is not clear what portion of the statement
the expression “unless a reset occurs” applies to. Furthermore, to what cycle is the
expression “in at most five cycles” related? Is it the second or the first of the two
consecutive cycles that are mentioned? Notwithstanding these ambiguities that are
alleviated by using the formal assertion language, the assertion is also a much more
compact form of documentation and specification.

The assertion shown in the example above was written in PSL, which will be
covered in Section 2.4. The |=> operator is a temporal implication, the [*low:high]
operator is a form of repetition with a range, and the semicolon represents temporal
concatenation. Assertions are typically bound to a design to be verified, which is
called the source design.

The ABV methodology is based on the fact that the observation of an assertion
failure helps to identify design errors, which are then used as a starting point for
the debugging process. The amount of assertions that should be added to the design
depends on the amount of coverage desired. One question that arises often with new
ABYV practitioners is: How many assertions do I need to write? The answer is not
an easy one. Thankfully, assertions can be added incrementally, one at a time. Even
a single assertion can help, and is better than having no assertions at all. However,

in an ABV scenario, the fact that no assertions failed is not an indication that the
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design is entirely free of errors. It is more an indication that the behaviors specified
by the set of assertions are respected.

The two main classes of functional verification are dynamic verification and static
verification, and are visible in Figure 2.1. Static verification is typically associated
with formal verification [11, 120], and is performed by tools such as automated the-
orem provers and model checkers. The term static is indicative of the fact that the
circuit under verification does not need to be exercised. Model checkers and theorem
provers analyze a model of the design, along with its properties or theorems, and are

able to formally prove whether or not these properties or theorems are true.

One of the most popular model checkers is SMV [127|, pioneered by McMillan.
Many formal verification tools such as IBM’s RuleBase and Cadence SMV, are built
upon the SMV model checker. One particularly helpful feature in these tools is their
ability to parse source designs in Verilog, against which formal properties can be
verified. Example applications where RuleBase was used to perform formal prop-
erty verification include: the verification of a processor bus interface unit [81] and a
CoreConnect arbiter core [84]; the verification of bus interfaces such as PCI |7, 46]
and FutureBus [51]; the verification of an MPEG2 decoder circuit [145], an OC-768
framer [63] and an SHA-1 hashing circuit [47].

Other formal verification systems are based on automated theorem provers, such
as PVS [144] and ACL2 [119]. These systems complement their core theorem provers
by adding programming languages and sophisticated proof commands. Among other
applications, ACL2 was used to verify the floating-point arithmetic of the AMD K5
processor 157, and PVS was used to prove the correctness of a modular construction
of checkers for PSL properties [135]. An embedding of PSL for the HOL theorem
prover has been performed, and allows the formal reasoning of PSL properties for
consistency checking (86, 87, 171].

Formal methods indicate a pass/fail result for the assertions, and in the event of a
failure, counterexamples can also be generated. The advantage with formal methods
is that stimuli do not need to be provided, and once a decision is reached, the result
is proven correct. The disadvantage is that proving properties on complex designs
can often be computationally expensive in time and/or processing requirements, or
even impractical for large designs.

Dynamic verification is the predominant verification approach used in practice,
and is most often associated with simulation. In dynamic verification, the design
is exercised with a given stimulus, and its output is observed in order to assess the

design’s behavior. The disadvantage with dynamic verification is that stimuli must
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be provided, and covering hard-to-reach corner cases, let alone all cases, is difficult

or impractical to achieve.

Assertions are also used in dynamic verification. Dynamic verification can be fur-
ther categorized as pre-fabrication verification or post-fabrication debugging. Hard-
ware verification and design verification are often used to refer to pre-fabrication
verification, where simulation and emulation are the principal techniques employed.
In verification by simulation, the simulator analyses the execution run and reports
on the status of the assertions. The advantage with simulation verification is that it
is easier to setup and does not require the more advanced technical and mathemat-
ical skills required to operate model checkers and theorem provers. A minimal skill
set is nonetheless required to use assertions in simulation, as the temporal logics of

assertion languages also have their share of mathematical and formal notions.

Assertions can also play an important role in post-fabrication silicon debugging,
where assertion checkers are purposely left in the fabricated silicon for in-chip at-
speed debugging. The relation between silicon debugging and design verification is
shown in Figure 2.1, where the separation between the two is the fabrication step.
Assertion-checking circuits can even be used for more than verification and debugging,
and can also be incorporated into an IC to perform in-field on-line status monitoring
(Figure 2.1). In this way a device can automatically assess its operating conditions,
whereby the assertion checkers are used as a means of monitoring the device. The
items in gray in Figure 2.1 show the scope of where the checkers developed in this
work apply.

When assertions are interpreted by verification tools, a pass/fail result is the
minimal feedback that a tool must provide. However, by reporting the clock cycle(s)
where the assertions have failed, much more insight is gained to help determine the
causes of the errors.

In dynamic verification with assertions, proper care should also be taken to build
a testbench [13| that covers, as most as possible, a meaningful and relevant set of
scenarios. If an assertion did not fail because of a lack of proper stimulus, this is not
an indication that the design is error-free. Coverage is perhaps the main caveat with
dynamic assertion-based verification, or any dynamic verification scenario for that
matter.

Many simulators such as ModelSim [129] and Synopsys VCS can interpret asser-
tions in order to use ABV in dynamic verification. However, as circuits become more
complex, simulation time becomes a bottleneck in dynamic verification. Hardware

emulation is becoming an important asset for verification, and is increasingly being
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used in the industry to alleviate the problem of excessive simulation time [41]|. Hard-
ware emulation achieves the traditional dynamic verification goals by loading and
executing the design on reprogrammable hardware, typically using programmable
logic devices or arrays of processing elements. Once the design is implemented in
hardware, the emulator fully exploits the inherent circuit parallelism, as opposed to
performing a serial computation in a simulation kernel.

Adding checkers to a design can allow assertions to be indirectly processed by
simulators that do not support the assertion languages. The same can be done in
formal verification, where checkers can be used to allow model checkers to indirectly
support PSL or SVA assertions. In such cases, certain types of assertions can be
checked by stipulating a temporal property stating that the checkers will not report
any errors. The application of checkers in both of these forms of verification was also
illustrated in Figure 2.1.

To summarize, there is a vast array of scenarios where assertions and assertion
checkers play an important role: verification, hardware emulation, post-fabrication
debugging, permanent online monitoring, simulation and formal verification. Synthe-
sizing assertion checkers is beneficial and in most of these cases essential, to allow
the assertion paradigm to be used in these areas. Assertion checkers, and checker
generators are introduced next as a means of enabling assertion usage in this wide

ranging and non exhaustive set of applications.

2.2 Assertion Checkers and Checker Generators

Assertion languages allow the specification of expressions that do not lend them-
selves directly to hardware implementations. Such languages allow complex temporal
relations between signals to be stated in a compact and elegant form. To allow
assertion-based verification to be used in hardware emulation, a checker generator
is used to generate hardware assertion checkers from assertion statements |1, 30].
These checkers are typically expressed in a Hardware Description Language (HDL).
A checker generator can be seen as a synthesizer of monitor circuits from assertions.
An assertion checker (or assertion circuit) is a circuit that captures the behavior of
a given assertion, and can be included in the design under verification for in-circuit
assertion monitoring. The assertion signal is the result signal of a checker and is the
signal that is monitored during execution to identify errors.

Figure 2.2 shows a high-level view of the assertion-based verification methodology,

and the roles played by assertions, checkers and the checker generator. At the left
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Figure 2.2: Checker generator for hardware verification.

of the figure are the given inputs to the tool, namely the Circuit Under Verification
(CUV) and the assertions. In this example the circuit is described in a HDL and the
assertions are specified in PSL. The checker generator produces an assertion circuit (a
checker) for each input assertion. In this example, the checkers are transformed from
an intermediary representation in automaton form. Automata theory facts will be
explained further given that the checker generator developed in this work is automaton
based.

The checker generator must also have access to the source design so that the signal
dimensions can be known and the proper signals can be declared in the checkers. As
is also shown in the figure, the checkers are connected to the CUV to monitor the
proper signals. The output of a checker consists of a single signal, which is normally
at logic-0, and becomes asserted (set to logic-1) in the clock cycles where the assertion
fails. The checker generator developed here assumes that the designs are synchronous
and that a clock signal is always present.

To give more insight into the task that must be performed by an assertion checker,
the following property is analyzed both through the formal and the run-time verifica-
tion paradigms. Boolean signals a and b are used, however without loss of generality
more complex Boolean expressions can be used as well. As will be observed, the
property is handled differently depending on the application; however, the conclu-
sions reached are identical.

always a —> next b (2.2)

The example property above makes use of property implication and the next operator.
The property states that: it should always be the case that if signal a is true in a
given clock cycle, then signal b must be true in the next cycle. The formal syntax of
PSL and its semantics will be explained further in this chapter.

Figure 2.3 shows how the property is interpreted in both formal and run-time
(dynamic) property checking. In formal verification, the property is checked against

a model of the design under verification. This is usually represented by a state
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Figure 2.3: Formal vs. run-time property checking example.

transition graph, and in this example, in Figure 2.3 a) the values inscribed in the
states represent the Boolean signals that evaluate to true in those states. This is a
simplified example and in reality, the model can be much more complex and may
contain branches and cycles. Furthermore, the property shown above employs Linear
Temporal Logic (LTL); however, model checking with the branching time logics of
CTL (Computation Tree Logic) is also possible. Branching time logics such as CTL
are not suitable for the monotonically advancing time of dynamic verification, and

will not be studied here.

In the top part of Figure 2.3 a), the property is decomposed into smaller con-
stituents, and each sub-expression is evaluated in a bottom-up manner. The model
checking starts by evaluating the terminals (the Boolean signals), and then gradu-
ally evaluates larger sub-expressions up to the full property. For example, a is true
in states 2, 4 and 7, and this is represented by a check mark. Boolean b is true in
state 4, thus next b will be true in state 3, and so forth. The implication a —> next b
is true in any state where a is not true (1, 3, 5, 6, 7), and also in state 4 where both

a and next b are true. The sub-property a —> next b does not hold in state 2.

In a given state, the always operator evaluates to true when its argument property
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is true starting in that state and for the remaining states. In this example, state 7 is
a terminal state because it has no outgoing transitions. The always property is true in
states 3 to 7 because from any of those states, a —> next b is true in all the remaining
states. The top-level property fails in states 1 and 2 because the sub-property fails
in state 2. Since the property fails in the initial state (state 1), the property does not
hold. This is the pass/fail answer (i.e. fail), and two counterexamples can be deduced
by observing the sequences starting in state 1 and in state 2.

In Figure 2.3 b), the context is dynamic verification. In dynamic verification, the
model of the design is not required, and an execution trace of the design is instead
used. A trace is a waveform of signals showing their instantaneous values in the
vertical axis, as a function of time (horizontal axis). The assertion must be checked
against this trace, to determine if it passes or if it fails.

One solution for performing dynamic verification consists in storing the entire
trace and building a model to represent the trace, and then using model checking
to verify the property [88|. However, capturing an entire execution trace for long
durations or for many signals is not always practical.

In run-time property checking, the assertion checkers must produce a decision in
real-time, and the trace-storing solution is not applicable. For optimal debugging, the
checkers should provide an output signal of their own, thereby indicating when the
property fails. The convention used in the figure is that a property signal is normally
low, and is asserted in cycles where the property fails. The example property is
interpreted at run-time as shown at the bottom of the figure.

The key observation here is that unlike in static verification, in the run-time
analysis the future value of a signal can not be known in the current cycle. In state 2
in Figure 2.3 a), it is known that b is not true in the next state and that the property
fails in state 2. However, in run-time verification, in clock cycle 2 (c¢2) the future
value for b has not occurred yet, and there is no failure to report. The failure can
only be reported once cycle 3 has taken place and the checker observes that b is not
true. In the example, the run-time checker identified a failure in clock cycle 3.

As a side note, if the always operator was not used in the example property, both
methods would report that the property holds, because a —> next b is true in the
initial state. One of the goals in this work will be to develop the necessary algorithms
to implement circuits that can perform run-time checking of assertions.

To conclude the example, both methods reach the same conclusion: the property
does not hold. In model checking, counterexamples were produced, and in run-time

property checking, the locations of faulty traces (also akin to counterexamples) were
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identified. It is precisely because of these differences in interpretation of properties
that the PSL specification does not dictate the run-time semantics for the interpre-
tation of PSL. This is best explained by the very insightful and evocative remark by
Eisner [67]:

PSL defines whether or not a property holds on a trace — that is all. (2.3)
It says nothing about when a tool, dynamic or static, should report

on the results of the analysis.

An important corollary of this fact is that in dynamic verification, two separate tools
may produce different behaviors in the output traces of their assertion checkers, while
both still being correct. This makes a direct comparison of checkers slightly more
troublesome when a cycle-by-cycle comparison is attempted for checkers from two
different tools.

The example assertion used in (2.2) makes use of the weak temporal operator
next, which places no obligation for the next cycle (or state) to take place. In dynamic
verification, if @ occurs in the last simulation cycle then the property may hold because
the next cycle will never occur. If this is an unacceptable condition, the strong version
of this operator could instead have been used (i.e. next!), thereby indicating that any
antecedent condition has to see its next cycle realize or else the property fails.

For example, if the operator next! was used instead of the weak next in (2.2), the
dynamic verification scenario in Figure 2.3 b) would contain an additional failure in
clock cycle 7. Also, in the formal verification scenario there would be no check marks
in the top row in Figure 2.3 a), and many more counterexamples could be reported.

The use of strong operators leads to the following interrogation: how does a run-
time assertion checker know when the simulation (or execution) is finished? In each
clock cycle a decision is taken and the status of the assertion is reported. Nothing
stops the user from halting the simulation and running an additional number of steps
in the future. In hardware assertion checking, the solution consists in providing
a special end-of-simulation signal that is used to inform the checkers that time is
considered finished and that no further cycles will be run. The checkers that require
this signal utilize it to indicate additional failures when strong obligations are not
met. This technique was developed in the FoCs checker generator [108|, and is also
employed in the MBAC checker generator.

Since in this work the checkers can be used directly in circuits or in emulation
platforms, the end-of-simulation signal will be referred to as the End Of Ezecution

(EOE) signal. It is assumed that when this signal is required, the checkers declare it
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Figure 2.4: Using checkers in formal and dynamic verification.

as an input, and the user normally drives it at logic-0, and raises it to logic-1 for at
least one clock cycle at the end of execution.

The example studied in this section, shown in (2.2) and in Figure 2.3, was ana-
lyzed in both the static and dynamic verification approaches. When simulators or
model checkers do not support PSL, generating assertion checkers and adding them
to the source design is an effective way of allowing the continued use of assertions. In
both cases the checkers are connected to the design under verification, as shown in
Figure 2.4. In the simulation case, the output signal of the checker can be observed
and any violation can be identified in the trace. In the formal verification case, a
simple property is stated to postulate that the checker output(s) are always (G) false.
This is an LTL property that is implicitly checked over all possible execution paths.
Using checkers in formal verification is straightforward for safety-type properties (in-
variants), but would require some adaptation for liveness-type properties, which apply
to infinite executions.

This thesis introduces the algorithms to convert PSL assertions into efficient
checker circuits for use in hardware verification, in-circuit monitoring and post-
fabrication silicon debugging. The checkers are particularly suited for hardware im-
plementation where circuit speed and resource efficiency are paramount. Assertion
circuits should be compact, fast and should interfere as little as possible with the

design being verified, with which the checkers share the hardware resources.

2.3 Regular Expressions and Classical Automata

Assertion languages such as PSL and SVA make heavy use of sequences to specify
temporal chains of events. Regular Expressions (REs) are the basis upon which PSL’s
Sequential-Extended Regular Expressions (SEREs) are built, and are an important
preamble. Conventional automata are presented in this subsection as well, and will

be used further as a base upon which to define the automata framework used for
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creating assertion checkers. Although many differences will arise, a comparison to
conventional automata will help clarify the presentation of the automata developed
for assertions. The themes in this section are based on the theory of automata,
languages and computation [101].

A string is a sequence of symbols from an alphabet ¥, including an empty string,
denoted as €. A regular expression RE is a pattern that describes a set of strings,
or a language of RE, denoted L(RE). For example, if the alphabet consists of the
ASCII characters, regular expressions efficiently represent a set of strings that can be

searched for in string matching.

Definition 2.1: Regular Ezpressions (REs) and their corresponding languages are
described as follows, where r is a regular expression:

e a symbol a from ¥ is a RE; L(«) = {a}

e c and () are REs; L(¢) = {€} and L(0) =0

e r|ry is a RE; L(ry|ry) = L(r1) U L(rs) (set union)
o 1y is a RE; L(ryre) = L(r1)L(r2) (set concatenation)
o rixis a RE; L(ryx) = (L(r))x* (Kleene closure)

The Kleene closure (Kleene star) is an operator that creates the strings formed by
concatenating zero or more strings from a language. Parentheses can also be used for
grouping, and as usual, () denotes the empty set. It should be noted that L(e) # L((),
as the former describes a non-empty language formed by the empty string, whereas
the latter describes the empty language (called null language in this work).

A regular expression’s language can be captured equivalently, in a form suitable

for computation, by a finite automaton that accepts the same language.

Definition 2.2: A classical Finite Automaton (FA) is described by a quintuple
A=(Q,3%,0,q,F) as follows:

e () is a non-empty set of states;
e Y is the alphabet;
d CQx{XU{e}} x Q is the transition relation;

Qo is the initial state;

F C (@ is the set of final states.

The non-empty set @ is a finite set of locations (states). The alphabet X is the

same alphabet that was described above for regular expressions. A transition (or
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edge) is represented by an ordered triple (s, 0, d), and the transition relation consists

of a subset of triples:

{(s,0,d) | s€Q, o0 € {XU{e}}, de Q}

The transition relation is sometimes expressed as the mapping @ x {X U {e}} — 2¢.
The transition relation indicates which destination state(s) to activate, for each state
and for each input symbol that is received. The transition relation does not need to

be complete and a state does not always have to activate other states.

Identifiers s and d refer to the source and destination states of an edge, respectively.
An edge also carries a symbol o taken from the alphabet {3 U{e}}. If an edge carries
the e symbol, then the state transition is instantaneous. When matching against an
input string, no input symbol needs to be processed for an € transition to take place.
For a non-e edge whose source state is active, a given transition takes place when the

input symbol is identical to the edge’s symbol.

The automaton has a single initial state. When the pattern matching begins, this
is the only active state. A subset of states can also be designated as final states. When
a final state is active, the pattern described by the automaton has been matched.
Final states are also called accepting states, and they can be seen as accepting the

language modeled by the automaton.

The automaton represents a pattern matching machine that detects all strings
that conform to the language represented by the automaton. In other words: if A is
an automaton built from a regular expression r, then L(r) = L(A). More generally,
the input string in pattern matching is called a word, and an element of the word is
called a letter. The alphabet’s symbols are all mutually exclusive and one and only
one letter is processed at a time by the automaton. At each step the automaton

transitions into a new set of active states.

The convention used in this work is to represent the initial state using a bold
circle and final states using double circles. A regular expression is converted into an
equivalent automaton in a recursive manner, as shown in Figure 2.5. First, terminal
automata are built for the symbols of the regular expression, as shown in part a).
The empty automaton and the null automaton are acceptors for the languages L(e)

and L(0) respectively, and are shown in parts b) and c).

Next, these terminal automata are inductively combined according to the oper-
ators comprising the given RE. The Kleene closure of an automaton is created by

adding e edges for bypassing the automaton (empty matching), and re-triggering the
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a) terminal symbol b) empty c) null
o™ O~ O O
d) Kleene star (Ax*) e) choice (A|B)

f) concatenation (AB)

(Or ) 40e ()

Figure 2.5: Automaton construction steps (McNaughton-Yamada
construction).

automaton (multiple consecutive matches); this is illustrated in part d) of Figure 2.5.
Choice and concatenation of two argument automata involve combining the automata
using € edges, as shown in parts e) and f).

The construction procedure described above, called the McNaughton-Yamada con-
struction [128], produces a Nondeterministic Finite Automaton (NFA) containing e
transitions. An automaton can be determinized, hence producing a deterministic
finite automaton (DFA).

Definition 2.3: An automaton with a single initial state and no e transitions, and
where no state can simultaneously transition into more than one successor state is
a Deterministic Finite Automaton (DFA), otherwise it is a Nondeterministic Finite
Automaton (NFA).

This definition is broad in nature and will apply equally to the automata intro-
duced in Chapter 4. A corollary to Definition 2.3 can be made for classical automata,
where the alphabet symbols are mutually exclusive entities that are received one at

a time by the automaton, and thus no two symbols can occur at once.

Corollary 2.4: By extension from Definition 2.3, a classical FA is a Deterministic
classical FA when it has a single initial state and no e transitions, and when no more
than one outgoing edge from a given state carries the same symbol, otherwise it is a

Nondeterministic classical Finite Automaton.

The definition for DFAs (Definition 2.3) is consistent with Watson’s work [177],
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but is different than what is proposed by Hopcroft et. al. [101]. For some authors,
the definition of DFAs is such that every state must transition into precisely one
successor state (as opposed to at most one successor state). When every state in a
DFA transitions into precisely one next state, the DFA is said to be complete. In
this work, determinization does not imply completeness and a separate definition is

therefore used.

Definition 2.5: A DFA for which every state transitions into precisely one successor

state at each step is a complete DFA.
The corollary of completeness in the case of classical automata follows naturally.

Corollary 2.6: By extension from Definition 2.5, a classical FA in which every state

has one outgoing transition for every symbol is said to be a complete classical DFA.

The two corollaries above are mainly presented to emphasize a key difference with
the automata that will be introduced in Chapter 4. For now, suffice to say that for
classical automata, the corollaries have the same effect as their related definitions;
however for assertion automata, where the symbol alphabet is not mutually exclusive,
the corollaries are not strong enough.

It will be assumed that a procedure for transforming a DFA into a complete DFA
can be easily devised. In classical automata, this goal can be accomplished by adding
a dead state to a non-complete automaton, then adding transitions to the dead state
for all unused symbols in each state’s outgoing edges, and then adding loopback
edges to the dead state for all symbols. The following example illustrates the nuances
between DFAs and complete DFAs.

Example 2.1: The regular expression a(bx)a describes the pattern of all strings that
start with the character a, followed by any number of bs, and finishing with an a.
Figure 2.6 a) shows a DFA corresponding to the given regular expression. This DFA
is consistent with Corollary 2.4 for deterministic automata, because no state has two
outgoing edges with the same symbol.

Figure 2.6 b) shows a complete DFA that accepts the same language as the DFA
in part a). In each state, precisely one outgoing transition always takes place when a

character is received.

Converting an NFA to a DFA requires that e transitions be removed. The pro-
cedure for removing e-transitions is based on e-closure [101, 172]. Since € transitions
will not be used in the automata developed in this work, e-removal will be not be
treated further.
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Figure 2.6: Determinization does not imply completeness. a) DFA
for a(bx)a, b) complete DFA for a(bx)a.

a) NFA for: (ale)b*b b) NFA after e-removal

S

c) Subset construction steps applied to NFA in b)

© O

Figure 2.7: NFA to DFA example using epsilon removal and subset
construction.

An e-free NFA is converted into an equivalent DFA using the subset construction
technique [101, 172]. Subset construction is the central procedure in the determiniza-
tion algorithm. In a deterministic automaton, at most one outgoing transition must
take place in a given state, for a given symbol. In order for multiple outgoing transi-
tions with the same symbol to activate a single destination state, a state in the DFA
represents a subset of states of the NFA. This way, the criterion for single destination
states is respected. Subset construction yields a DFA that has in the worst case an
exponential number of states compared to the original NFA. The following example

illustrates the conversion of an NFA with e transitions into an equivalent DFA.

Example 2.2: The starting point for the determinization example is the regular
expression (ale)bxb, which describes the pattern consisting of one or more bs optionally
preceded by an a (the Kleene star applies only to b). Figure 2.7 a) shows the NFA
corresponding to this regular expression. Figure 2.7 b) shows the effect of e-removal,
which in this case can be accomplished by replicating the outgoing edges of the second

state in the first state, and removing the € edge.
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Figure 2.7 ¢) shows the steps taken by the subset construction technique to de-
terminize the automaton. The algorithm first starts by building the initial state of
the DFA, which is directly the initial state of the e-free NFA. Since there are two
outgoing edges with symbol b in that NFA, leading to states 2 and 3, a new state
in the DFA is created for this subset, and is labeled “2,3”. The single edge with b in
state 1 in the DFA now adheres to the conditions for determinism in Corollary 2.4.
State “2,3” is marked as a final state because at least one of the states in the subset
is a final state in the e-free NFA. The single outgoing edge with a is not affected and
appears similarly to its e-free NFA counterpart. In state 2 in the e-free NFA, b leads
to the subset {2,3} of states, thus in state 2 in the DFA, the edge with b leads to
state “2,3”. State “2,3” is handled next: when both states 2 and 3 from the e-free NFA
are considered as a whole, edges with b lead to states 2 and 3. A state for this subset
already exists, and the self-loop with b is created. The automaton at the bottom right
is therefore the equivalent DFA for the NFA at the top left, and illustrates a simple

case of e-removal and subset construction.

An operator that does not usually appear in the definition of REs is complemen-
tation. If r is a regular expression and A is the equivalent automaton, and L(A) is
the language accepted by the automaton (hence L(r) also), then the complemented
automaton A accepts the language L(A), where L = ¥ — L. The full language
Y% represents every possible string that can be formed using the alphabet . The

complemented automaton A can be computed from A using the following algorithm:

1. Determinize A;
2. Make A complete;
3. Complement the final states: F'«+— @ — F'.

The determinization and completion of automata are described here without show-
ing full algorithms. These types of algorithms are formally stated and extensively
covered in the automata theory used for PSL checkers in Chapter 4. An example
showing the effect of the automaton complementation algorithm above is shown next,

as a continuation of Example 2.2.

Example 2.3: If the NFA in Figure 2.7 a) is to be complemented, after step one of
the complementation algorithm above, the right-most automaton in Figure 2.7 ¢) is
produced, as was explained in the determinization example (Example 2.2).

In step two of the complementation algorithm, the completion adds a dead state

(state 3) and the necessary edges so that a complete DFA is produced. This is
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Figure 2.8: Complementation example, as a continuation of Exam-
ple 2.2. a) after completion, b) the resulting complemented automaton.

shown in Figure 2.8 a). The last step of the complementation algorithm involves
complementing the set of final states such that final states become non-final states
and vice versa. The resulting automaton that accepts the language L((a|e)bxb) is
shown in Figure 2.8 b). This corresponds to all the strings except those consisting of

one or more bs optionally preceded by an a.

Another operator not typically used in regular expressions is intersection. If rq
and ry are REs, then r&&ry is a RE, where L(ri&&ry) = L(ry) N L(ry). The N
symbol represents set intersection. The double ampersand notation was chosen here
to more closely relate to the length matching intersection operator found in PSL. The
intersection of two regular expressions corresponds to the strings that are in both
languages of the REs. It should be noted that the intersection and complementation
of regular languages also yield regular languages.

In automaton form, the intersection operator is implemented by building a prod-
uct automaton from both argument automata. This product automaton is built by
simultaneously traversing both argument automata and exploring all paths that have
common symbols. In the product construction, a state is labeled using an ordered
pair (i,7) where i represents a state from the first argument automaton and j is a
state in the second automaton. The algorithm starts by creating an initial state that
references both initial states in the input automata. From there, all transitions with
a given symbol that simultaneously advance both automata are explored and used
to construct new states and edges in the product automaton. A new state is a final
state only if both referenced states are final states in their respective automata. In
the worst case, the product construction can create an automaton with mn states,
where m and n are the number of states in both argument automata.

Some RE specifications, such as POSIX regular expressions, add extra operators
to simplify the writing of REs. The “.” is used to match any symbol, the “?” is used
to match zero or one instance of a symbol, the “+” matches one or more instances and

a range of characters can be easily specified in square brackets such as [0-9|, which
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b) NFA for .*abc
a) NFA for: abc c

SR e o e TG
Figure 2.9: Continuous matching example. a) single match starting
in the first input letter, b) continuous matching.

matches any numeric character.

When using automata to perform pattern matching, if the regular expression
describes a pattern to be matched anywhere in the input stream, a prefix repetition
becomes necessary. For example, Figure 2.9 a) shows the automaton for the regular
expression abc. The automaton’s initial state is deactivated after the first input letter
is processed because there are no loopback edges to re-activate it. The pattern abc
will only be checked starting in the first input letter. In order for every occurrence
of the pattern to be matched, the regular expression .xabc should be used, where the
“ matches any symbol in the alphabet ¥. In Figure 2.9 b) the added prefix “.%” in
effect causes the automaton to be retriggered at every step, and allows the intended
expression abc to be matched starting at any point in the input stream.

The next section presents the main features of the PSL language. As will be
shown, regular expressions play a key role in creating temporal regular expressions

over Boolean propositions.

2.4 The Property Specification Language

The Property Specification Language is formally defined as the IEEE 1850 stan-
dard [111]. More pragmatic treatments of PSL are presented in related textbooks |53,
67, 74, 148]. The presentation of PSL contained in this section is based on Appendix A
in the PSL specification [111], which describes the formal syntax of the PSL language
in BNF (Backus-Naur Form). The semantics of each operator is explained informally
in this section, and is formally specified in Appendix B in the PSL specification [111].

The following considerations were made for the PSL used and presented in this work:

e The Optional Branching Extensions (OBE) are not suitable for dynamic verifi-
cation and are omitted from consideration (section 4.4.3 in the PSL specifica-
tion [111]).

e The simple subset restrictions for “simulatable” PSL were taken into account
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Table 2.1: Commonly used Verilog language operators.

Logical negation !
Bitwise negation ~
Logical equality ==
Logical inequality =
Bitwise conjunction (and) | &
Bitwise disjunction (or) |
Logical conjunction (and) | &&
Logical disjunction (or) I

and applied directly to the language definitions herein (from section 4.4.4 in the
PSL specification [111]). These restrictions are necessary for PSL to be used in

dynamic verification.

Expressions appearing in bounds for ranges and numbers are restricted to in-
tegers in this work, as opposed to statically computable expressions. Adding
support for expressions involves additional features in the parser front-end, and

does not affect the algorithms used in the checker generator.

Sequence and property instantiations are omitted for simplicity. In the cur-
rent version of the checker generator, non-parameterized sequence and property

declarations and instantiations are supported.

The two directives that apply to dynamic verification are implemented, namely
assert and cover. Other directives are intended for formal methods and are not
implemented, with the exception of assume, which is implemented in the same

way as assert [74].

The clocking operator in sequences and properties is omitted since its imple-

mentation in the checker generator is beyond the scope of this work.

Although the PSL language defines flavor macros for supporting many HDLs,
the Verilog flavor will be used throughout this work, and all necessary operators

will be shown in the Verilog language.

The Verilog HDL language is used to specify the Boolean expressions that form

the core of PSL’s Verilog flavor. A set of commonly used Verilog operators is shown

in Table 2.1, in decreasing order of operator precedence; the full BNF syntax is avail-

able in standard Verilog textbooks [22|. In the pseudo-code algorithms in upcoming

chapters, comments are specified in the same way as C and Verilog comments, by
using the double forward slash //.
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Verification Verification directives
layer | Commands for verification tOOlS/

Properties

| High-level temporal relationships |

tween n nd Boolean
Temporal between sequences and Booleans

layer
Sequences

| Sequential regular expressions of Booleans

Boolean Booleans
layer \

Base primitives: Boolean expressions |

Figure 2.10: PSL language hierarchy.

Constants in Verilog can be specified directly as numbers, with optional prefixes
for indicating the base and the size of the constant. For example, the constant
4’b1010 is a four-bit binary number, whereas 'h55 is an unsized hexadecimal number.
Verilog parameters are handled by the checker generator and can even be used to
automatically create parameterized assertion checkers.

PSL is intended for both formal and dynamic verification; however, since it is
mostly used for dynamic verification with the checker generator, some operators are
best explained in the context of run-time verification. The top level PSL directives
that are used to capture design intent are presented at the end of this section, and
the elements used to define them are defined gradually starting with Booleans, and
then sequences and properties.

The Property Specification Language is defined in four layers, namely the Boolean
layer, the temporal layer, the verification layer and the modeling layer. The modeling
layer allows the specification of additional signals and variables, as well as the mod-
eling of design inputs for use in formal verification. The modeling layer is not treated
in this work since it has no substantial effect on the assertions themselves.

The Boolean layer in PSL is built around the Boolean expressions of the under-
lying HDL, which reference a set of Boolean-valued signals (Boolean propositions).

Italicized prefixes indicate an additional constraint on a type.

Definition 2.7: If “Number” is a nonnegative integer then Booleans are defined as
follows in PSL (“Sequence” is defined further in this section):
Boolean ::—

boolean Expression
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Expression ::=
Verilog Expression
| Boolean —> Boolean
| Boolean <—> Boolean
| true
| false
| Built-in_function
Built-in _function ::=
prev(Expression)
| prev(Expression, Number)
| rose(bit _Expression)
| fell(bit Expression)
| onehot(bit_wvector Expression)
| onehotO(bit wvector Expression)
| stable(Expression)
| ended(Sequence)

Although not formally part of the specification, symbols true and false are used to
simplify the notation in this work, and are defined respectively as 1'b1l and 1°b0, in
Verilog notation. Built-in functions allow the specification of single or multiple cycle
conditions but are not part of PSL’s temporal layer.

The prev() operator returns the previous value of the expression argument, one
cycle or a specified number of clock cycles previous to the current cycle. The rose(),
fell() and stable() operators compare the values of their arguments in the current
cycle with the previous cycle. The onehot() evaluates to true if exactly one bit in the
argument is at logic-1; the onehotO() operator evaluates to true if at most one bit is
at logic-1. The ended() operator evaluates to true every time its sequence argument
is matched.

Other built-in operators also exist, such as next(), isunknown(), countones(), non-
det(), nondet vector(), but are omitted from Definition 2.7 for a variety of reasons.
The next() operator is non causal and is not suitable for dynamic verification. The
isunknown() function is used to report any values that are not at logic-0 or logic-1, and
is not implemented in the checker generator. The countones() function could be im-
plemented using a population count algorithm; however, instantiating such complex
HDL code could drastically affect the performance of the checker generator, thus the
function is purposely not implemented. The nondet() and nondet vector() operators

represent a nondeterministic choice of a value within a value set, and are also omitted
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for hardware implementation reasons.

Sequential-Extended Regular Expressions (SEREs) and Sequences are used to
specify temporal chains of events of Boolean expressions, and are at the core of PSL’s
temporal layer. Sequences are built upon Booleans, and are a temporal version of
regular expressions. In the remainder of the text, the term sequence (not initially
capitalized) will be used to refer to all of the items in the definition below, in a general
manner; the term Sequence (initially capitalized) will refer to the actual syntax item

in the definition.

Definition 2.8: If “Number” represents a nonnegative integer, and normal typeface
brackets [| represent an optional parameter, then Sequences and SEREs are defined
as follows in PSL:
Sequence ::=
repeated SERE
| {SERE}
SERE ::=
Boolean
| Sequence
| SERE ; SERE
| SERE : SERE
| compound SERE
compound SERE ::=
Sequence
| compound SERE | compound SERE
| compound SERE & compound SERE
| compound SERE && compound SERE
| compound _SERE within compound SERE
repeated SERE ::=
Boolean[*|Count|]
| Sequence[*|Count|]
| [*|Count]]
| Boolean[+]
| Sequence[+]
| [+]
| Boolean[= Count]
| Boolean[->|positive__ Count]]

Count ::—
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Number
| Number : Number

| Number : inf

The operators for sequences and SEREs in the definition above are not listed in
order of operator precedence. Section 4.2.3.2 in the PSL specification [111] lists the
relative precedence, from highest to lowest: [* | and [+] and [-> ] and [= ], within, &
and &&, |, :, ;.

Some aspects of SERE notation are equivalent to conventional regular expressions:
the [*¥] operator is a repetition of zero or more instances (Kleene closure), the | operator
corresponds to SERE disjunction (choice), and ; represents temporal concatenation.
The curly brackets are equivalent to parentheses in regular expressions. In the context
of SEREs for property verification, concatenation of two Boolean expressions b;; b,
produces a match when the Boolean expression b; evaluates to true in one cycle and
b, evaluates to true in the next cycle.

Other SERE operators are seldom used, or have no equivalent in conventional
REs. The : operator denotes SERF fusion, which is a concatenation in which the last
Boolean expression occurring in the first SERE must intersect (i.e. both are true) with
the first Boolean primitive occurring in the second SERE. Empty SEREs in either
side do not result in a match. The length matching SERE intersection operator &&
requires that both argument SEREs occur, and that both SEREs start and terminate
at the same time. The single & represents non-length matching intersection, whereby
SEREs must start at the same time but do not necessarily end at the same time. The
matching thus occurs when the longer of the two SEREs is matched, provided the
shorter SERE was matched. The within operator causes a match when a sequence
occurs within another sequence. The shorter sequence starts after (or at the same
time) and terminates before (or at the same time), compared to the longer one.

In repeated SEREs, the [*Count| operator can be used to model a fixed-length
repetition or a repetition range. A successful range match occurs when the expression
being repeated is matched a number of times contained in the specified interval. The
[+] symbol indicates a repetition of one or more instances. When the various forms
of [¥] repetition or the [+] repetition are used without a Boolean or Sequence, the
Boolean true is implicitly assumed.

The [->] operator is known as goto repetition, and causes a matching of its
Boolean argument at its first occurrence. A fixed-length goto repetition or a range of
goto repetitions can also be specified, whereby the integers used must be greater than

zero. The [=] corresponds to non-consecutive repetition, which is similar to a goto
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Start matching Matched
reset v

busy

Figure 2.11: Sequence matching for {{busy[*|} && {reset[->]}}.

repetition that can cause additional matches for extended cycles where the Boolean

remains false.

Example 2.4: The following sequence causes a match at the first occurrence (logic-

1) of the reset signal, provided that the busy signal is continually asserted.

{{busy[*|} && {reset[->]|}}

Figure 2.11 illustrates how the sequence above causes a match for an arbitrary start
condition. This start condition could originate from the left side argument of a con-
catenation, if the above sequence was used as the right side in the concatenation.
Even though the start condition occurs before the reset becomes true, the goto rep-
etition extends the matching as needed. The length matching intersection with the
variable-length left side (with busy) was also observed and helped to produce the

successful match.

In reality, only a subset of the operators in Definition 2.8 are required to com-
pletely specify SEREs and sequences. The following equations are derived from the
sugaring rules in Appendix B in the PSL specification [111], and help to understand
the semantics of the more convoluted operators mentioned in the previous paragraphs

(b is a Boolean, 7, j are positive integers and k,[ are nonnegative integers)!:

b[*k] = bib;...;b (K times)
oi¥ig]l € b[*] | .| b[*]
ol->] b

>k € {~0[*]:b}*H]

bl->k:l] = b[->k]|...] b[->]]
b=i] = {~bb}: ~b*]
=il = bl=il ] ] b=

!The intervals [i] ... [j] could also be written as [i], [i+1] ...][4].
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The [*0] operator is known as the empty SERE and is equivalent to the € expression
from conventional REs. The empty SERE is a primitive that spans no clock cycles.
When used as a sequence, the empty SERE is also referred to as the empty sequence.
Definition 2.8 also allows the specification of a null sequence, but not directly as an
operator. For example, the following sequence reduces to the null sequence () because
the length matching intersection of two SEREs of different lengths can not produce

a match:

{ {true} && {true[*2]} }

In the PSL specification [111], no symbol is introduced for the null sequence (nor for
the null SERE) as it can not be specified directly by the user. The null sequence is
similar to the () in regular expressions and their languages (Definition 2.1), and the
same symbol will be used in the next chapters to describe such a sequence. The null
sequence does not match anything, while the empty sequence represents an instanta-

neous match (an empty match is a match nonetheless).

Definition 2.9: The empty sequence and the null sequence that can be specified
using the syntax in Definition 2.8, either directly or indirectly, as described in the

previous paragraphs, are known as degenerate sequences [110).

PSL’s temporal layer also defines properties built on sequences and Booleans.
The PSL foundation language properties are shown below in the Verilog flavor, and
are presented with the simple subset modifications for dynamic verification [111].
Similarly to SEREs, properties are built from a reasonably compact set of operators
to which sugaring operators are also added. However, because the simple subset
imposes many modifications to the arguments of properties, the distinction between

sugaring and base operators becomes much less relevant and will not be made.

Definition 2.10: If “Number” represents a nonnegative integer, then PSL properties
and foundation language properties are defined as follows in the simple subset:
Property ::=
forall ident in boolean: Property
| forall ident in {Range}: Property
| FL_ Property
FL _Property ::=
Boolean
| (FL_ Property)

| Sequence !
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| Sequence

| FL._ Property abort Boolean

| | Boolean

| FL_Property && FL _Property

| Boolean || FL_Property

| Boolean —> FL_ Property

| Boolean <—> Boolean

| always FL._ Property

| never Sequence

| next FL._ Property

| next! FL._ Property

| eventually! Sequence

| FL_Property untill Boolean

| FL._ Property until Boolean

| FL_ Property until!  Boolean

| FL_Property until  Boolean

| Boolean before! Boolean

| Boolean before Boolean

| Boolean before!  Boolean

| Boolean before  Boolean

| next[Number|(FL_Property)

| next![Number](FL_ Property)

| next a[Range](FL_ Property)

| next_al[Range](FL _Property)

| next _e[Range](Boolean)

| next_e![Range](Boolean)

| next _event!(Boolean)(FL _Property)

| next__event(Boolean)(FL_Property)

| next__event!(Boolean)[positive Number](FL _Property)
| next__event(Boolean)[positive  Number|(FL _Property)
| next _event _al!(Boolean)[positive Range](FL _Property)
| next _event_a(Boolean)[positive  Range|(FL _Property)
| next_event el(Boolean)[positive_Range](Boolean)

| next_event _e(Boolean)[positive Range](Boolean)

| Sequence |-> FL_ Property

| Sequence |=> FL_ Property
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Range ::=

Number : Number

The term property (not capitalized) will be used to refer to all of the items in the
definition, in a general manner. The term Property (capitalized) refers to the actual
syntax item in the above definition. Property instantiation and sequence instantiation
can be implemented in the parser front-end, and are omitted from the presentation

because they do not add any computational complexity to checker generation.

The properties in Definition 2.10 are not listed in order of operator precedence.
Section 4.2.3.2 in the PSL specification [111] lists the relative precedence, from highest
to lowest: abort, the next family and eventually!, the until and before families, |-> and

|=>, —> and <->, always and never.

The forall operator has more variations than what was shown above; however, the
two versions in the definition are used to convey the main idea behind replicated
properties. The ident parameter is simply a unique identifier that is used as a vari-
able in the argument property. The forall operator replicates the property with each
successive version taking a different value for the ¢dent variable. Each instantiation
of the replicated property is expected to hold, thus the replication creates a multiple

conjunction of properties.

Since a braced SERE is a valid sequence, the foundation language property:
{SERE}(FL_ Property)

was not listed, as it is semantically equivalent to the foundation language property

shown below:
{SERE} |-> FL_ Property

The standard LTL operators X, X!, G, F, U and W are equivalent to operators
next, next!, always, eventually!, until! and until, respectively, and for simplicity were
omitted in Definition 2.10. Furthermore, as indicated in the working group issues for
PSL [112], the left side arguments of the operators until _ and untill_ do not need
to be restricted to Boolean expressions in the simple subset [111|. This change is
expected to appear in the next revision of the PSL standard. The async abort and
the sync_abort are treated the same way as abort in the checker generator, and were
omitted. The never and eventually! operators also accept a direct Boolean as their

arguments, but for simplicity was omitted from the syntax above.
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Parentheses around a property are used only for grouping. The definition also
shows that Booleans and sequences can be used directly as properties, thereby indi-
cating that the sequence or Boolean expression is expected to be matched, and that a
non-occurrence constitutes a failure of the property. The matching is weak, meaning
that if the end of execution occurs before the matching is complete, then the prop-
erty holds. A sequence can be made to be a strong sequence using the ! operator,
thereby specifying not only that the sequence should be matched, but that it should

be matched before the end of execution.

The abort operator can be used to release an obligation on a property, when a given
Boolean condition occurs. This operator is particularly useful for re-initializing prop-
erties when an external reset occurs in the design under verification. This prevents

the checker from continuing to monitor a property across a reset event.

In the simple subset, negation and equivalency of properties are not defined and
must be performed only with Booleans. These operators have the same semantics
as in the Boolean layer, and the resulting top-level Boolean is expected to hold as a

property. Therefore, if the Boolean is not matched then the property fails.

Property implication and property disjunction allow at most one of their argu-
ments to be a property. In the case of the implication operator, the antecedent must
be a Boolean. If the antecedent of the implication occurs, then the consequent prop-
erty is expected to hold. If the antecedent does not occur, the consequent property
holds vacuously. A behavior similar to implication also exists for disjunction. If the
Boolean is false then the argument property is expected to hold, and if the Boolean
is true then the property holds. In the definition of properties, even though the
Boolean is shown as the left side argument of ||, permuted arguments are also accept-
able. Property conjunction &&, not to be confused with SERE intersection, is used

to specify that two properties must both hold.

The always operator specifies how its argument property should behave. When
the always property receives an activation it will continually activate (retrigger) its
argument property, consequently causing it to always be checked. The activation
comes from the next outermost expression in the given PSL statement. The retrig-
gering aspect of this temporal operator is analogous to the sliding window 57| used in
certain string matching algorithms, where the matching is to be performed at every

position afterwards.
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Example 2.5: This example shows different types of activations and their effect on

the always operator.

assert f p (2.4)
assert always f p (2.5)
assert b —> (always f_p) (2.6)

In (2.4), the property f p is only activated in the initial clock cycle (the first one
after the reset is released). The property is only expected to hold starting in that
cycle, and depending on its temporal length and the circuit conditions, it may signal
an assertion failure at that time, or any amount of clock cycles in the future. In (2.5),
the property always f p is itself activated on the initial clock cycle, and proceeds to
continually activate the checking of property f p. The property is thus expected to
hold starting in all clock cycles. In (2.6), the temporal implication causes the always
sub-property to be activated only when the antecedent b is observed. Hence, once b
is observed the property f p is expected to hold in this clock cycle and all cycles to

come.

The never operator behaves similarly, with the exception that it continually ex-
tends the matching of its sequence argument, relative to its activation. Once acti-
vated, any future matching of the sequence causes the property to fail. The next
operator starts a checking of its property argument in the cycle following its own
activation. This is a weak property, meaning that if the next cycle does not occur
then the property holds. The strong version of this operator, namely next!, does not
allow the end of execution to occur in the next cycle. In other words, the next cycle
must be a valid execution cycle and the argument property must hold, in order for

the next property to hold. Incidentally, next[0](f _p) is equivalent to f p.

The eventually! property states that its argument sequence will be observed be-
fore the end of execution occurs. Once again, activations affect the behavior of this

property, as shown below.

assert eventually! {b;c;d};

assert a —> eventually! {b;c;d};

In the first assertion above, the sequence is expected to be observed before the end-
of-execution. In the second example, once a is observed, the sequence is expected to

be observed before the end-of-execution.
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The end of execution is a special signal that must be provided by the user to
indicate that no further clock cycles will occur. This signal is not part of the PSL
specification, and is used in dynamic verification tools to implement strong properties.
All properties with the ! symbol are temporally strong properties. Weak properties
do not require the end of execution signal.

The until family of properties in Definition 2.10 cause the continual checking of
their argument property until the releasing Boolean occurs. In the overlapped versions
(with the ), the argument property is also checked in the clock cycle were the Boolean
occurs. In the strong versions (with the !), the Boolean must occur before the end of
execution.

The before family of operators specify how two Booleans should relate temporally
to one another. In the first of such operators in Definition 2.10, the left side Boolean
should occur strictly before the right side Boolean, or else the property fails. In the
overlapped versions, the left side Boolean is also allowed to occur in the same clock
cycle as the right side Boolean. In the strong versions, the right side Boolean must
occur before the end of execution.

The next[]() properties are extensions of the next properties mentioned previously,
with a parameter for specifying the n'" next cycle. This applies to both the weak
and the strong versions. The next a properties cause the checking of the argument
property in a range of next cycles, specified with a lower and upper bound integer.
The next e properties apply only to Booleans, and are used to indicate that the given
Boolean must be observed at least once within a specified range of next clock cycles.

Up to this point, a total of eight variations of next properties have been encoun-
tered. The basic “unit of measurement” that is implied when referring to “next” is
the clock cycle. The remaining eight next-type properties in Definition 2.10 are based
on a different unit, namely the next event. The next event properties are similar to
the next properties, except that the “next” being referred to is not clock cycles but
rather the occurrence of a given Boolean. For example, next event a! is used to
specify that an argument property must be true within a range of next occurrences
of an argument Boolean, and that all next occurrences of the Booleans specified in
the range must occur before the end of execution. A subtlety worth mentioning is

that the next event of a Boolean can be in the current cycle.

Example 2.6: This example illustrates the behavior of two forms of next properties.

next[2](~busy)
next event a(flag)[2:4](~busy)
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Activation
flag ¥

busy

1.2 3 4 5 6 7 8 9 10 11 12

Figure 2.12: Traces for next properties in Example 2.6.

The first property makes use of the plain next operator, with a parameter to indicate
that the argument property, in this case ~busy, must hold in the second next cycle,
with respect to when the property is activated. In the example trace in Figure 2.12,
the property does not hold because its argument property does not hold in cycle 3
(busy is not false). The second property indicates that its argument property (~busy)
must hold in all of the next two to four occurrences of the flag event. In the example
trace in Figure 2.12, this property is true because in cycles 6, 7 and 10, busy is false.
In these examples the activation would come from the parent operator when the
properties are used in more complex expressions. For example, if the two properties

above are used in place of p in:
always b —> p

then the activation being referred to in the figure corresponds to an occurrence of the

Boolean b.

The two forms of temporal implications (|-> and |=>) are referred to as over-
lapped and non-overlapped suffix implication respectively. In overlapped suffix im-
plication, for every matching of the antecedent sequence, the consequent property
is expected to hold. The property must hold starting in the last cycle of all the
antecedent sequence’s matches. In the non-overlapped suffix implication, for each
successful matching of the antecedent sequence the consequent property is expected
to hold starting in the cycle after the last cycle of the antecedent’s match.

Properties and sequences as such accomplish nothing for verification and have no
effect. The verification layer in PSL is used to instruct tools on what to do with these
properties and sequences. The two most often used verification directives are shown

below.

Definition 2.11: PSL verification directives are defined as follows:
Verification _Directive ::=
assert Property ;

| cover Sequence ;
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The assert directive instructs a verification tool to verify that the argument prop-
erty holds, whether it is checked formally or in run-time verification. The cover
directive instructs a tool to verify that the argument sequence must occur at least
once during the verification process. Although the word assertion should strictly be
used to refer to an assert directive, the term assertion is also used more generally to

encompass all verification directives.

To specify the clock reference, the default clock must be declared before any
verification directive can be used. In this work, the scope of the clock declaration
extends to all directives below it, until it is redefined; however, according to the
PSL specification, at most one clock declaration can be specified in a vunit. The
clock _signal used usually corresponds to one of the clock domains in the source

design.

Definition 2.12: In PSL, the default clock declaration can be specified using either
of the following statements:
Clock Declaration ::=
default clock = (posedge clock _signal);
| default clock = (negedge clock _signal);

The items in both preceding definitions are grouped in a vunit when PSL com-
mands are to be specified in a separate file. The vunit’s prototype is used to bind the
items to a source design. PSL items can also be declared using comments directly in
the source design’s code (in-line assertions). In both cases, all signal names used in

the items must be valid signal names from the source design.

PSL does not have a formally defined run-time semantics for its interpretation.
The language reference manual [111] specifies only the conditions under which proper-
ties pass or fail, and the run-time interpretation of PSL as used in a checker generator
or a simulator is not imposed. For example, for a given assertion, the semantics of
PSL described in the reference manual dictate the conditions under which the asser-
tion holds, but does not mention how/when/where to report failures, and how many

failures must be reported.

The run-time semantics used in the checker generator are sometimes different
than those used in simulators capable of interpreting PSL. Interpreting assertions by
specialized hardware is different than interpreting assertions in a simulation kernel,
where processes and dynamic memory allocation are readily available. In both cases,
efficiency is a driving parameter in design choices for PSL interpreters. The run-time

semantics resulting from the implementation of PSL in Chapter 5 is well suited to
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hardware checkers. Dynamic property checking semantics can also be derived from
the operational semantics presented by Claessen and Martensson [50].

Some implementations of sequences and properties will be described using rewrite
rules in Chapter 5. Rewrite rule have the form = — gy, where the operator in the
left side (z) is syntactically rewritten to the expression in the right side (y). This
is normally done in a tool’s front-end to rewrite an operator to another one that is
already supported, such that the left side operator does not have to be explicitly
implemented in the tool’s kernel. Proper care must be taken when devising a set of

rewrite rules, such that the set is terminating [62].

Definition 2.13: A set of rewrite rules is said to be terminating if there is no infinite

sequence of application of the rules.

To complete the presentation of the PSL language, a summary example illustrates

how assertions can be used in practice.

Example 2.7: To illustrate the use of assertions in a more complete example, a
width-parameterized up-down counter is verified. The counter has a signal to enable
counting (en_ud), and another signal to control the counter direction (up ndown).
The counter can also be loaded with an external value (load), which has higher
priority than the counting-enable signal. The load is performed when en_load is
true, whereby the counter is synchronously loaded with the load value in effect at
that time. The loaded value then appears on the counter’s output (cnt) in the next
cycle. The Verilog parameter width is used to control the size of the signal vectors
cnt and load. The counter is designed in RTL using the clk signal as a reference
for its sequential elements (flip-flops). The four assertions shown below are used to
perform the verification, although more assertions could be added to cover different

features of the counter.

UDCNT ASRa - UDCNT _ASRd:

assert always {“en_load & “en_ud} |=> stable(cnt);
assert always en_load -> next (cnt == prev(load));
assert always “en_load ->
next (!(cnt=="prev(cnt) && cnt[width-1]==cnt[0]));

assert never (“en_load & ~“en_ud) [*10];

The first two assertions are used to ensure the proper operation of the counter.

If the counter is not being loaded with a new value and it is also not counting, then
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the output value should not change. In the second assertion the loading process is
verified to ensure that the new value takes effect. The third and fourth assertions
are not based on properties of the counter as such, instead they describe the way the
counter is actually used. In this example, the use of the counter is such that rollover
should never occur (third assertion), and the environment should be updating the
counter periodically (fourth assertion). Assertions can be used to verify the intrinsic
operation of a circuit, and also to verify that the circuit is properly used in its intended
environment.

When considering only the assertions above, the signal dimensions can not be
deduced. For example, ent and load are actually declared with dimensions [width-
1:0] in the source design. In order for the checker generator to produce the correct
circuit for prev(cnt) for example, the vector width of the ent signal must be known.
It is for these reasons that the checker generator must also have access to the source
design when generating assertion checkers, as was illustrated in Figure 2.2. The code
for the PSL assertions, the source design and the generated checkers in this example

is shown in Appendix A.

In Example 2.7, a checker generator would be used to create a monitoring circuit
from the assertions for inclusion into hardware emulation, silicon debug or post-
fabrication diagnosis. Special considerations such as assertion multiplexing and as-
sertion grouping must be made when a large amount of checkers are to be emulated
and probed. Although in this example assertions may not be required by experienced
designers to help verify such a simple counter, the benefits of assertions are quickly

amplified in larger designs.
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Related Research

This section presents research related to the automated generation of checkers from
assertions. The first two sections deal with two fundamentally different approaches to
checker generation, namely the modular and automata-based approaches. Although
automata-based methods are currently used in the checker generator, the modular
approach was used in the initial versions of the tool [29]. Formal verification and
model checking techniques make heavy use of various types of automata, and these
are surveyed in Section 3.3.

Section 3.4 describes how assertions are typically used in simulators and emulators.
Assertion checkers also play a key role in silicon debugging scenarios, and different
techniques used to improve the usability of assertions are explored in Section 3.5.
Miscellaneous topics are relegated to the final section, where a variety of different

languages are also briefly presented.

3.1 Modular Approach to Checker Generation

In the modular approach to checker generation, each PSL operator is implemented as
its own separate sub-module (or sub-circuit), and is connected to other modules to
form a checker for a complete PSL assertion. Typically, the modules have a predefined
signaling protocol whereby activations and result signals are exchanged. This often
consists of a single wire, or a pair of wires. The main feature of this approach is
that each sub-module retains its internal integrity and is used as a black box for the
operators it implements. The actual content of the black box is transparent to the
other modules to which it is connected. The sub-modules are interconnected according
to the syntax tree of the assertion, in a recursive process. Once the complete circuit

is constructed, a checker is produced and the output signals can be observed during
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verification for finding errors.

The HORUS checker generator is being developed at the TIMA-VDS laboratory
in France by researchers Borrione and Morin-Allory, and their associates. Besides
generating Verilog or VHDL observation monitors, the tool also generates code for
test sequence generation [140]. Although their tool is still under development, a
number of publications detail their approach to checker generation. These are briefly

overviewed in the next two paragraphs.

Implementing SEREs using the modular approach first consists of building a li-
brary of sub-modules to represent the different SERE operators, which are then used
to build a network according to the syntax tree of the SERE being implemented [134].
The interconnection protocol is based on tokens that are passed from one module to
the next. Colored tokens are used when sequences are used as properties (in the
consequent of a suffix implication for example). The colored tokens are used to main-
tain the correspondence between different overlapping activations. Although it is
mentioned that all SERE operators are supported, no benchmarks are performed.
Furthermore, when multiple concurrent matches are taking place, a large number of
colors must be supported in the tokens, which represents a non-negligible hardware
overhead in the circuit representation. The token approach shares a commonality with
the assertion threading debug enhancement developed in Section 6.4.5 because both
techniques can help correlate a failure with its given start condition. Although the
techniques involved are very different, the parallel between the two is very interesting

and was observed by Borrione [23].

Another set of publications from the TIMA group presents a modular implemen-
tation of PSL foundation language properties [24, 25, 133, 135]. A pair of interconnect
signals is used, and assertions produce a pair of signals that indicate the status of
the assertion. The approach consists of developing sub-modules for each property
operator and interconnecting the appropriate modules to form a complete checker for
an assertion. Moreover, the functional correctness of the methods is proved using
formal methods in the PVS proof system. The library of components for property
operators is proven correct, and then the interconnection scheme is proven correct,
and by induction the checkers that are generated are proven correct. The earlier
publications reference Gascard’s work [79] for the implementations of SERE, which
is reviewed in the next section. Experimental results are reported [24, 25| for proper-
ties, whereby the checkers produced are compared to those produced by FoCs v2.02.
Although both strong and weak properties are supported, strong properties are not

benchmarked. The checkers are implemented using the Synopsys Design Compiler
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and the size metric reported is based on two-input NAND gates.

Generating interface monitors for verifying proper protocol between design mod-
ules is the topic of the research work by Oliveira and Hu [142, 143]. This work is based
on conventional regular expressions with an added pipelining operator and storage
variables, and does not use PSL nor SVA. The modular scheme is also employed,
and activations are passed from one sub-circuit to the next to perform the required
pattern matching. Restrictions on pipelining and threading in the monitoring circuits
are imposed such that efficient monitors can be built. Experimental results are per-
formed [142| for the AHB and OCP bus protocols, where items from the respective
specifications are modeled in the custom language. Only the number of flip-flops is
reported in the hardware metrics for the monitor circuits that are produced.

The checker generation of SVA (SystemVerilog Assertions) is explored by Das
et. al. [60]. Sub-modules corresponding to the different sequence! constituents are
interconnected with wires labeled “start” and “match”. Sequence operators are clas-
sified into subsets that have different synthesis approaches, and a special subset for
sequences containing unbounded repetition operators is declared. An indication that
the modular approach has its challenges is exemplified by the fact that the authors
make mention of cases where expressions from the unbounded subset can not be syn-
thesized into a finite amount of hardware resources. As will be shown in the following
chapters, this limitation is not present when automata are used. Synopsys Design
Compiler is also used to synthesize a set of benchmark assertions, and the Synopsys
VCS simulator is used to compare the checkers with OVA checkers (OpenVera Asser-
tions [166]). In those results, assertions for the ARM AMBA AHB bus interface are
used. Among the interesting findings [60] is the description of the “not” operator for
matching sequences in the consequent of suffix implications. Separate rules are given
to implement the “not” operator for each sequence operator, however no explanations
nor insights into the correctness of the proposed rules are given. The run-time se-
mantics produced by the rules is also not addressed. The only SVA properties that
are supported are the two forms of suffix implication.

The implementation of SVA checkers is also explored by Pellauer et. al. [147].
The “first-match” operator is used as a basis for implementing sequences in the con-
sequent of suffix implications. Checkers are produced in the BlueSpec SystemVerilog
language, which is an unclocked language where models are subsequently translated
into sequential hardware. The implementation is not fully modular as such, but does

share a similar barrier that was observed in other modular approaches. The SERE

1SVA also defines sequences, which are similar to PSL sequences.
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matching is performed using FSMs (Finite State Machines), whereby a single FSM
is used to implement the antecedent in suffix implications, and multiple FSMs are
used in the consequent. Since a finite number of FSMs in the consequent are used to
process the matches triggered by the antecedent, unbounded repetition is disallowed
in the antecedent FSM. The authors also introduce the concept of statistic-gathering
assertions by integrating counters within the checkers. A case study on a cache con-
troller is presented, and hardware synthesis results showing the overhead added to
the design are measured, both for the normal functional assertions and the statistic-
gathering assertions.

Assertion checkers must be able to handle multiple concurrent sequences of events
that can overlap temporally. In general, the interconnected module approach shows
difficulties for implementing certain operators, especially when dealing with the fail-
ure matching of SEREs that use unbounded repetitions and intersection (the [*] and
&& operators). This difficulty was observed in the first version of the checker gen-
erator in this work |29]. Using automata-based methods is one possible way around
this problem, and the checker generator developed in this work does not have the

limitations mentioned throughout this section.

3.2 Automaton Approach to Checker Generation

Regular Expressions (REs) are used in a temporal manner in assertion languages.
As a first step to producing hardware assertion checkers, hardware for the matching
of regular expressions is first explored. Although hardware RE matchers are not
assertion checkers as such, they can still be considered as checkers in some respect.
Among the earliest work in designing custom circuitry for performing hardware
RE matching is the compilation REs into integrated circuits by Floyd and Ullman [73].
One of the target applications is the PLA (Programmable Logic Array), which imple-
ments logic by interconnecting fixed rows and columns of wires and gates. In another
implementation, the circuit’s layout structure is directly guided by the hierarchical
NFA construction from REs (as shown in Figure 2.5 in the previous chapter). The hi-
erarchical nature of the circuit construction uses signals to interconnect sub-automata,
and has similarities to the modular approach; however, the modular implementation
of RE intersection (not treated) would likely not be possible given that no simple pic-
torial representation of NFA intersection exists, as does exist for the conventional RE
operators (Figure 2.5). The experimental results show that the area of the generated

circuits grows linearly with the size of the regular expression.
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A more modern hardware implementation of regular expression matchers is pre-
sented by Sidhu and Prasanna [163] for FPGA technology. This approach is also based
on the McNaughton-Yamada construction of NFAs from REs. The surprising theme
in their work is that the actual NFA construction can be performed in hardware,
and the Self-Reconfigurable Gate Array (SRGA) can be automatically reconfigured
in real time to pattern-match a new expression. Many comparisons are performed
in the experimental results, one of which is a comparison to software-based pattern
matching with DFAs. Software pattern matching often makes use of DFAs so that a
single state can be tracked more easily, with the disadvantage that the DFA may be
exponentially larger then its NFA counterpart. In hardware, simultaneously tracking
multiple states is inherently done by the parallel circuitry, thus the smaller NFAs are
often preferred. FPGA-accelerated pattern matching is used [165] to perform efficient

network intrusion detection based on regular expressions.

Both instances of previous work |73, 163] have in common that NFAs are imple-
mented in hardware to performs RE matching, and that e transitions can be han-
dled. The intersection and complementation operators in regular expressions are not
treated. The work by Sidhu and Prasanna [163] is perhaps the most influential for

the translation to circuits of the automata developed in the next chapter.

Other research by by Gheorghita and Grigore [82, 83| deals with the translation
of PSL into automata. SERE intersection and fusion are treated, and their fusion
algorithm [83| has similarities to the one developed in this work in Chapter 5. The
details for the implementation of property operators are not given, with the exception
of suffix implication [83]. Although a separate algorithm is used to implement suffix
implication, in Chapter 5 it will be shown that suffix implication does not require
a separate algorithm and can actually be implemented using the automata fusion
algorithm. Moreover, in the most detailed reference [82], only SERE intersection is
explained in algorithmic form. Although Boolean expressions are used on the edges of
the automata, the implications for conventional automata theory are not developed.
The minimization technique that is used consists of a set of ad-hoc rules, and no
link is made to conventional DFA minimization. Experimental results show that the
automata that are produced have more states compared to the checkers generated by

the FoCs tool, which is presented further in this section.

PSL has been modeled in higher order logic for the HOL theorem prover by Gordon
et. al. [88]. Once the semantics of PSL are captured in this formal reasoning tool,
various proofs and “sanity checking” experiments can be make. In this framework, the

semantics of PSL is said to be executable. HOL can also be used to produce a DFA
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from a PSL expression. The DFA can then be used to process a simulation trace in
HOL to determine whether a given PSL assertion holds. In another application [88],
a DFA can be converted to HDL thereby producing an assertion checker.

The automata produced in the work by Gheorghita and Grigore [83] and Gor-
don [88] can be used to check a property during simulation. These types of checkers
indicate the status of the property at the end of simulation only, and are not ideal for
debugging purposes. It is much more informative to provide a dynamic trace of the
assertion and to signal each assertion failure: having a choice of violations to explore
eases the debugging process, as some errors may reveal more than others. The time

required to generate checkers is larger [83|, sometimes significantly so [88] than with
FoCs.

The tool that compares the most to the one developed in this thesis is the FoCs
checker generator from IBM [1, 58, 108]. Since FoCs is a commercial tool, very few
publications disclose its inner-workings. One particular characteristic that can be
deduced from the literature |58, 106| is that FoCs also employs automata to generate
HDL checkers from PSL assertions. The checkers produced by FoCs utilize an end-
of-simulation signal which marks the end of time when strong properties are used.
This signal is supplied by the user, and is used by the checkers so that any unfulfilled
obligations can be reported as errors when no further cycles will be run. The end-
of-simulation signal is also used in this work in Chapter 5, and is referred-to as an
End-Of-Execution (EOE) signal.

At the time of this writing, the current version of FoCs is 2.04. FoCs does not
currently support all property operators, and supports very few strong properties.
The abort keyword is also not fully supported. In Chapter 7, the checkers produced
by FoCs are compared to those produced by the tool developed in this work. The
comparison involves generating checkers for a suite of assertions, and then synthesizing
the checkers using FPGA implementation tools. The circuit size of the checkers is
then compared using the number of flip-flops and combinational logic cells as metrics.
Dating back to the early version of the checker generator [29], benchmarking against
the FoCs tool has been a driving factor that has actually led to improvements in both
tools. The results in Chapter 7 will show that the checker generator developed in this

work outperforms FoCs.

In the PROSYD work [106], it is stated that the algorithms contained in that
document are based on the algorithms implemented in the FoCs tool. The PSL al-
gorithms are introduced in the context of generating checkers for simulation. The

conversion of an NFA to a Discrete Transition System (DTS) is presented as the
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central result. A DTS is a symbolic program that represents an NFA, and is used
during simulation for performing the assertion monitoring. The conversion of PSL
assertions to NFAs is not developed, and only references other related model check-
ing work [17]. The automata therein are developed for model checking and in the
PROSYD document [106] it is not stated how they are adapted for use in dynamic

verification.

In the IBM technical report [17]| that serves as the basis for the PSL to NFA
conversion used in the PROSYD project [106], two important issues are not treated:
length-matching intersection of SEREs, and the use of a sequence directly as a prop-
erty (as the right-hand side of temporal implication, for example). An important
characteristic of the automata used is that Boolean expressions are used to form a
non-mutually exclusive symbol alphabet, a theme that is central to the automata

defined in the next chapter.

Other research was conducted by Gascard [79] on the transformation of SEREs
to DFAs. This work is based on derivatives of regular expressions introduced by
Brzozowski [38]. The derivative of a regular expression is a way of removing a given
prefix in the language described by the regular expression. The result is also a regular
expression. When applied repeatedly, this technique can be used to create a DFA
from a regular expression. As will be shown in the next chapter, derivatives are
not required to transform SEREs into DFAs. For one, algorithms will be devised
to transform SEREs directly to NFAs that can subsequently be determinized when
needed. Second, producing DFAs is not a prerequisite for RTL implementations since

it was shown that NFAs are perfectly suitable for a circuit-form implementation [163].

It is a common solution to create a symbol encoding which represents the power
set of the Boolean primitives, such that one and only one symbol is received at each
step during the matching |79, 120|. This is referred to as the power set alphabet in
the next chapter, and allows conventional automata theory to be used over Booleans.
The power set alphabet will not be used; however, it is formally defined in the next
chapter so that it can be compared to the symbolic alphabet. In essence, the power
set, alphabet maps all the possible valuations of the Booleans to distinct, mutually
exclusive symbols, akin to the symbols in pattern and string matching. As will be
shown, the disadvantage with the power set method is that an exponential number
of edges are required to model a transition for a give Boolean. No benchmarks are
performed for the SERE-to-DFA work in Gascard’s publication [79].
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Figure 3.1: Relations between the types of automata used in formal
methods and conventional NFAs/DFAs.

3.3 Automata in Model Checking

Various types of automata have been used to implement PSL in the context of model
checking [52|. Figure 3.1 shows how these different types of automata are related,
and where the conventional NFAs and DFAs intervene. The definition of alternating
Biichi automata is adapted from a document related to the PROSYD project [169].
The function B(Q) represents the set of all Boolean functions obtained by using
conjunction (A) and disjunction (V) on the set of states ). At the top of the hierarchy
is the alternating Biichi automaton, which defines the transition function in the most
general manner using B(Q). Biichi automata accept omega-regular languages and
are used in the context of infinite words, which differs from the behavior required for
dynamic verification. The automaton defines a set of accepting states and a set of
final states. An accepting state (as opposed to a final state) must be visited infinitely
often in order for the automaton to accept the infinite run. Biichi automata are often
used in automata construction for PSL model checking 40, 49, 169, 181]. Extensions
to run-time property monitoring are also explored through the notion of testers [181].

As shown in Figure 3.1, Biichi automata are a particular case of alternating Biichi
automata where the transition function maps only to subsets of states in the automa-
ton (as opposed to Boolean functions of states). Alternating automata [174] are also
a particular type of alternating Biichi automata, and are suitable for finite traces.

Alternating automata do not define a set of accepting states, only the set of final



3.3. Automata in Model Checking 55

states is used. Universal automata are a particular type of alternating automata in
which only Boolean conjunction is allowed in B(Q). Universal automata are also used

in formal property verification [19, 153].

Existential automata are another particular type of alternating automata, and
in this case only Boolean disjunction is allowed in B(Q). The NFAs and DFAs
introduced in the previous chapter fall into this category, as do the automata for
assertions developed in the next chapter. In the transition function Q x ¥ — 29
(shown in Section 2.3), the disjunction is implicit between the members in the set of

states that appear in the range of the function.

Alternating automata are used in the Sugar translator developed by Kargl [118],
and in the VIS tool [170]. These types of automata are not suitable for a direct imple-
mentation in hardware since they must be de-universalized. Furthermore, although
such procedures exist for converting alternating automata into existential automata,
the run-time semantics exhibited by the automata developed for model checking are

generally not suitable for creating checkers for run-time verification.

One aspect of some of the automata used in model checking [19, 153] that is also
very relevant to the automata developed in the next chapter, concerns the nuances
between semantic and syntactic alphabets. In conventional REs and languages, the
symbol alphabet consists of a set of mutually exclusive tokens, and can be referred
to as a syntactic alphabet. In SEREs, the syntactic elements are Boolean expres-
sions whose truth values are independent and hence not mutually exclusive. In these
cases, the semantic alphabet is different than the syntactic alphabet, and automata
algorithms must take this into account. In automata that are based on semantic al-
phabets, determinization must take into account the fact that different symbols can
simultaneously be true (as mentioned by Ruah, Fisman and Ben-David [153], without
the explicit construction algorithm). In the next chapter, semantic alphabets are also
called symbolic alphabets.

The notion of vacuity in model checking is treated by Kupferman and Vardi [123].
An informal definition of vacuity is given next, and applies to both static and dynamic

verification.

Definition 3.1: A property implication is vacuously true (a vacuous success) when

the conditions in its antecedent are never satisfied.

In static verification, if an antecedent condition can never be true in a model, this
indicates either a problem in the model or that the property is irrelevant. In dynamic

verification, if an antecedent condition never occurs, this indicates either that the test
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scenario is not exercising the design sufficiently, or that the property is also irrelevant.
Identifying vacuity in circuit-level assertion checkers can be accomplished using two
debug enhancements that will be presented in Section 6.4.

The notion of vacuous success is associated to properties that make use of property
implications. The notion of trivial validity is developed for model checking by Beer
et. al. |10], and extends the definition of vacuity to cover other cases where properties
are trivially true. Examples of vacuity and trivial validity are shown next, with their

reasoning.

Example 3.1: The following properties are assumed to be relevant to the design

being verified:

always {a&b} |=> (p until ¢)

never {{[*1]} && {[*2]}}

The first property is used to exemplify vacuous success and trivial validity. If signals
a and b can never simultaneously be true in the model, then the entire property holds
vacuously and is of no use. In simulation, if a and b are never simultaneously true
then the effectiveness (and coverage) of the testbench can be questioned. If a and b
do occur simultaneously, but ¢ always occurs in the next cycle then the sub-property
p is never checked and is deemed trivially valid. The second property is a tautology
because the length matching intersection of two different-length SEREs can never

hold, and is also trivially valid.

A common theme in the automata used in the next two chapters and much of
the referenced work [17, 19, 106, 118, 153, 170] is that Boolean expressions are used
on automata edges. As will be shown, one aspect where the current work diverges
from the previous work is in the encoding of symbols for automata. Furthermore,
the checkers produced by the algorithms in this thesis exhibit a run-time assertion-

monitoring behavior that is well suited for the hardware execution of checkers.

3.4 Assertion Support in Simulators and Emulators

When assertion-based verification is to be performed dynamically, HDL simulators
capable of interpreting PSL are often used. Examples of such tools are Synopsys
VCS, Cadence’s Incisive Unified Simulator and Mentor Graphics’ ModelSim. The

main task of the simulator is to process the assertions that are either embedded in
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Figure 3.2: Example of assertions interpreted by simulators for dy-
namic verification.

the source code of the design or specified in a separate file, in order to monitor the

simulation and to report any circuit behavior that violates the assertions.

An example simulation with ModelSim SE version 6.1f is shown in Figure 3.2 for
the assertions in Example 2.7. The assertions are interpreted by the simulator during
the execution of the testbench. The testbench instantiates the design under verifi-
cation, which in this case is the up-down counter from Example 2.7. In Figure 3.2,
the simulation shows that the two “environmental” assertions failed: the environment
did not respect the inactivity and rollover criteria established (the third and fourth
assertions in the example). The first two intrinsic-functionality assertions did not fail;
however, to increase the confidence in the design, more test cases should be executed

to improve the coverage of the dynamic verification.

The wave section at the top of the figure shows the time points where the assertions
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failed (downward-pointing triangles), and the transcript at the bottom shows for
which start times the assertions actually failed. The analysis pane in the center
shows the kind of supplemental information that can be provided by simulators.
The tool is able to report the number of times each assertion failed, and is also
able to report the number of times each assertion completed successfully. Successful
completions are indicated by the lighter upward-pointing triangles in the waveforms.
Assertion completion and assertion counters are two of the debug enhancements that
are also implemented in the hardware checkers in this work, and will be introduced
in Section 6.4.

To continue the discussion on run-time semantics from Section 2.2, it should be
emphasized that the PSL specification does not dictate how and when the assertion
failures are to be reported in dynamic verification. Some assertions interpreted by
simulators only report one failure for a given start condition. For example, in the
following assertion,

assert never {a;b[*0:1]};

for every cycle in which a is asserted an error will be reported. However, if the cycle
that follows a has b asserted, in ModelSim a supplemental error will not be reported.
This is perfectly acceptable given that the run-time semantics of PSL is not specified.
If an assertion fails at one or more time points, it has failed globally. One possible
reason for this behavior in ModelSim is that in the simulation kernel, the threads that
monitor assertions are kept as short as possible for performance reasons. In hardware,
this is not a concern because the assertion is implemented as a circuit. In the checker
generator developed in this work, a failure is reported when a is observed and when
a ;b is observed. In other words, in software it is more computationally efficient to
stop monitoring the thread when a has occurred, and in hardware it is more resource
efficient to let the pattern matching circuit follow its regular flow.

As was just observed, interpreting assertions in software is very different than
in hardware. In software approaches, one can take advantage of features such as
stack-based function calls, recursive functions, threads and event lists, and most im-
portantly, dynamic memory allocation. An example of software-based PSL interpre-
tation is published by Chang et. al. [45] where threads and event lists play a central
role.

When excessive simulation time becomes a bottleneck for dynamic verification,
hardware emulation and simulation acceleration are often used. In order for the
ABV methodology to be used in hardware emulation, assertions must be supported

in hardware. Traditional emulators are based on reconfigurable logic and FPGAs. To
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increase flexibility and to ease the debugging process, which requires the ability to
instrument assertions, current-generation emulators and simulation accelerators are
typically based on an array of processing elements. The Cadence Palladium [42] and
the Tharas Hammer [78] are examples of such emulators and simulation accelera-
tors. Mentor Graphics also recently introduced the Veloce accelerator and emulator,
with support for transaction level verification [130]. These tools support the use of
assertions.

The ZeBu FPGA-based emulator family from Eve supports the use of SystemVer-
ilog assertions in hardware in a variety of emulation products [71]. A commonality
with the simulators and emulators described in this section is that since they are
all commercial products, the internal details of how PSL is implemented are not
published.

3.5 Assertion Checkers in Silicon Debugging

In the emerging Design for Debug (DFD) paradigm, several EDA companies are pro-
moting a variety of solutions. Tools from companies such as Novas support advanced
debugging methods to help find the root cause(s) of errors by back-tracing assertion
failures in the RTL code [102, 167]. Temento’s DiaLite product accepts assertions
and provides in-circuit FPGA debugging features. Synopsys’ Identify Pro allows as-
sertions to be synthesized into hardware (FPGA or ASIC), and for these assertions to
be used as a triggering mechanism for capturing the state of the design when failures
occur. However, as these tools are from commercial ventures, papers seldom disclose
their actual inner-working.

As increasing transistor counts and smaller process technologies make it difficult
to achieve correct silicon, techniques for post-fabrication debugging, known as silicon
debugging, are receiving much attention. DAFCA’s ClearBlue solution [2] offers sili-
con debugging instruments such as signal probe multiplexers, logic analyzer circuitry,
and in-circuit trace buffers for capturing signals or supplying test vectors. To ensure
flexibility in providing these post-silicon debug instruments, they are implemented in
small blocks of additional programmable logic. Assertions can also be instrumented
and changed dynamically in the specialized reprogrammable logic cores. The status of
the RTL silicon-debug instrumentation that is added to the source design can be read
back through the JTAG interface. Special debug circuitry and read-back is also part
of the research on assertion-based debugging presented by Peterson and Savaria [149].

When many assertion checkers are to be used in a modestly-sized programmable
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logic core, within a System-on-Chip for example, checkers must be managed in groups.
The idea of assertion grouping is also mentioned by Abramovici et. al. 2|, and
is explored further in Section 6.5. The debugging instruments also introduced by
Abramovici et. al. [2] and the checker enhancements presented in Section 6.4 en-
compass a collection of techniques that share a common goal: to help increase the
efficiency of the debugging process with assertions.

Recent work has shown that specifying various types of transfer sequences, phases
and corner cases in a hierarchical and higher-level manner can be used to more effi-
ciently automate the generation of protocol monitors [137]. Graphical user interfaces
are also shown to play a key role in facilitating the debugging process with assertions,
and can even be used in the specification of test sequences.

Cross-product functional coverage is explored by Ziv [182] to reduce the amount of
assertions that need to be specified for verification. Auxiliary variables are assigned to
sub-expressions and are incremented when these sub-expressions are executed. In this
way, various combinations of expressions can be reported and a much larger coverage
space can be measured. However, the statement made in that work that is the most
relevant to the checker generator concerns the semantics of the cover operator in
PSL. Tt is stated that expressing a coverage task for an expression e is equivalent
to asserting (in LTL notation): F e. In PSL, the previous statement implies that
covering a sequence is equivalent to asserting that it must eventually be observed.
This is the basis of the rewrite rule that will be used in Section 5.5 to implement the

cover directive.

3.6 Other Related Research

Given the parallels between conventional REs and SEREs over Booleans, the vast
literature on converting regular expressions into automata is summarized through a
few key references. Berry and Sethi [21| show how to build DFAs from REs using the
notion of derivatives of regular expressions [38]. In Raymond’s work [152], although
the object of the RE transformations are not automata but rather Boolean dataflow
networks, the modularity of the approach has parallels to the modular approaches
discussed in Section 3.1. The McNaughton-Yamada construction [128] shows how to
produce an NFAs containing e transitions from REs. The first four chapters in the
Hopcroft textbook [101] also present automata, regular expressions and languages,
and is the classic reference used for when these topics are introduced to students.

Generating monitor circuits from Generalized Symbolic Trajectory Evaluation
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(GSTE) specifications is researched by Hu et. al. [103, 139]. GSTE specifications
are represented using assertion graphs, and consist of automata with antecedent and
consequent symbols on the edges. Symbolic constants can also be used to allow more
general and powerful properties to be specified. The monitor construction is based
on a modular assembly of sub-circuits corresponding to the structure of the assertion
graph. A token-based approach is also used, and is evocative of the token-based im-
plementation of SEREs described in Section 3.1. An important topic covered by Hu
et. al. is the development of a simulation-friendly specification for GSTE to allow
efficient monitor circuits to be built. This is not unlike the simple subset restrictions

defined for PSL in order for assertions to be suitable for dynamic verification.

Production Based Specification (PBS) developed by Seawright and Brewer, ad-
vocates the use syntax productions to perform actual circuit design [158, 159, 160].
The language used has many similarities to SEREs, however certain operators do not
behave the same way as in PSL. The sequential-and operator consists in performing
the Boolean conjunction of the result of sequences (i.e. in their final cycle), and does
not equate to the length-matching intersection found in assertion languages. Fur-
thermore, the sequential-not operator does not correspond to the type of negation
required to perform sequence-failure detection, as the negation is performed on the
result signal of a sequence. An interesting statement by Seawright [160] reveals that
using Boolean expressions as tokens allows an efficient symbolic alphabet to be used.

Experimental results include the high-level design of a mouse decoder circuit.

As its name implies, the SystemVerilog Assertions (SVA) language is an assertion
language that is part of SystemVerilog [110]. Many similarities exist between SVA
and PSL assertions |96], most notable of which are sequences. Interestingly, SVA
defines an operator called first match that is used to report the first match of a
sequence. Although this operator has no direct equivalent in PSL, a corresponding
algorithm will be devised in Section 6.4 to implement the completion-mode debugging
enhancement. Contrary to the sequences in both languages, SVA properties are not
as similar to PSL properties. Although SVA properties define suffix implication and

an abort operator, LTL constructs are not currently available.

One advantage with SVA assertions is that an action block allows arbitrary HDL
code to be executed when a property fails. Currently, there is no provision for this in
the PSL specification; however, using the circuit-level checkers to interpret assertions
can be a way around this problem. In checkers, assertion signals are regular HDL
signals and they can be used for any purpose, including providing feedback to a

testbench to guide the stimulus generation in a closed-loop test scenario.
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Open Vera Assertions (OVA) is an open source assertion language based on LTL
and regular expressions [166|. The language also provides feature to reuse libraries of
pre-built assertions that can be shared across the verification community. The For-
Spec language developed by Intel [6] is also based on regular expressions and linear
temporal logic, and was actually a candidate along with IBM’s Sugar language for
the first version of PSL that was developed by Accellera (incidentally, it was IBM’s
language that was selected). Both the OVA and ForSpec languages are suitable for
formal and dynamic verification. Many automata-based implementations of LTL are
also developed for formal verification, where properties in finite LTL can be imple-
mented in automaton form for simulation purposes [155].

In certain scenarios it may be preferable to avoid using assertion languages al-
together, and instead rely on a pre-compiled set of checkers. Omne such library is
the Open Verification Library (OVL) [75]. In this methodology, assertion checkers
are simply instantiated in the design under verification, and connected to the appro-
priate design signals. The types of properties that can be used range from generic
“always”-type properties to complex bus protocol monitors. Some EDA vendors also
have proprietary verification IP (Intellectual Property), such as Mentor’s Checker-
Ware verification IP library. The disadvantage of these libraries is that pre-defined
components may not always be found for certain specialized applications. The checker
generator developed in this work can be an ideal way to build and maintain a library
of pre-compiled checkers.

The e-Language [109] is a programming language used to assist in the verification
of hardware designs. It is used to create complex testbenches and functional verifica-
tion environments for stimulating and analyzing a design’s behavior. Many high-level
features allow coverage driven verification and constrained random verification to be
performed. The language is built upon a variant of linear temporal logic, and also
defines temporal expressions that are somewhat similar to PSL sequences.

Hardware monitors are somewhat analogous to the observers developed for mon-
itoring properties of distributed software, as modeled in SDL (Specification and De-
sign Language) for example [93]. Generating monitors from visual specifications
and timing diagrams has also been explored |77, 141|. Research is also being per-
formed to incorporate assertions into the SystemC modeling environment |58, 89, 90|.
Transaction-level assertions [65] and system level assertions [126] are also being de-

veloped but are outside the scope of this work.



Chapter 4

Automata for Assertion Checkers

4.1 Introduction and Overview

The goal of Chapters 4 and 5 is to develop the methods for generating circuit-level
assertion checkers from high-level assertion statements. This chapter introduces the
automaton framework used for implementing assertion checkers, while the next chap-
ter explains how automata are built for the various syntactic elements of PSL, ranging

from Booleans to full verification directives.

Utilizing classical automata theory directly for pattern matching over Boolean
propositions implies a power set symbol mapping that can impose a high penalty on
the number of edges required in the automata. For this reason, a symbolic alphabet
will be developed and used as the alphabet. This is not without consequence however,
as many of the conventional automata algorithms can not be used with a symbolic
alphabet. The problem is that conventional RE pattern matching is defined upon a
mutually exclusive symbol alphabet, where one and only one symbol is received at
each step. This is not the case with Boolean expressions, which can simultaneously
and independently evaluate to true. Modifications to well established automata algo-
rithms will be a recurring theme in Chapters 4 and 5, for operators that are common
both to REs and SEREs. For other operators that are not used in SEREs, special
algorithms will be devised, also taking under consideration the symbolic alphabet.
It is also at the end of the present chapter that the conversion of automata to RTL

circuits is performed.
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4.2 Automaton Framework

In this section, the automaton framework used for creating assertion checkers is for-
mally defined. Of primary importance is the introduction of a dual layer symbolic
alphabet, and its effects on conventional automata algorithms such as determiniza-
tion and minimization. The underlying goal is to generate smaller automata, so that
when expressed as a circuit, the generated assertion checkers utilize fewer hardware

resources, and are implemented less obtrusively in FPGAs or ASIC hardware.

4.2.1 Automaton Definition and the Symbol Alphabet

Contrary to the automata for conventional regular expressions presented in Defini-
tion 2.2, the automata for assertion checkers are not defined over a mutually exclusive
alphabet. In order to use the defined automaton formalism for the case of Booleans,

the power set alphabet is traditionally used [120].

Definition 4.1: The power set alphabet corresponds to all the possible valuations
of the Booleans used in an assertion. If there are B Booleans, it follows that the
cardinality of the alphabet is |X|= 2!7I,

When an assertion references many Booleans, the exponential increase in the num-
bers of symbols and edges make this approach difficult to scale. The advantage of
the power set alphabet is that symbols become mutually exclusive, and conventional
automata algorithms can be used directly; the framework becomes analogous to con-
ventional string matching where one and only one character is received at a time.
In sum, the power set alphabet brings the non-mutually-exclusive Booleans into the
realm of the mutually exclusive symbols of traditional pattern matching. The disad-
vantage is that an exponential number of edges are required to model a transition.

To avoid the exponential number of edges required in the power set alphabet, a

symbolic alphabet is developed.

Definition 4.2: The symbolic alphabet corresponds to a direct mapping of the
Booleans used in an assertion, such that each symbol represents a given Boolean

directly.

Although simple in appearance, this alphabet is not mutually exclusive and re-
quires special modifications to algorithms such as intersection and determinization.
In the symbolic alphabet, edge symbols represent complete Boolean-layer expressions

that are not mutually exclusive because any number of separate expressions can si-
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Table 4.1: Power set and symbolic alphabets for Example 4.1.

‘ c ‘ b ‘ a ‘ Power set alphabet ‘
F F F o0
F [F [T i [ Symbolic alphabet |
F T F o) O =0
F T T o3 o, =10
T F F 04 O.=2¢
T F T os Oppe =bAcC
T T F 06
T T T o7

multaneously evaluate to true. This creates nondeterminism because a given state
may transition to more than one state. While adding inherent nondeterminism in
this alphabet, certain determinizations throughout the operations on automata can

be avoided, which helps create smaller automata.

The alphabet stated above is only partially complete, and may grow as new sym-
bols are required. The following example based on sequence fusion illustrates the
fundamental differences between the two alphabet approaches, and the effects on the

number of edges required.

Example 4.1: The fusion of two sequences defined from Booleans a, b and ¢ follows:

{a;b}:{c;a}

Table 4.1 shows how the power set alphabet is defined for this example. The symbolic
alphabet is also shown; however, before the fusion is actually performed, only the
symbols o,, 0, and o, exist. In the table A is Boolean conjunction, V is disjunction,
T is short for true and F is false. In the power set alphabet (left), only one line
(symbol) is active at any given time, thus four symbols (and edges) are required to
model a transition for a given Boolean; in the symbolic alphabet, only one symbol is
required. For example, to model a transition on Boolean b in the power set alphabet,
four edges are required for symbols o4, 03, 0¢ and o7.

Figure 4.1 illustrates the effect of the choice of symbol alphabets on the automata
for the current example. Although the fusion algorithm is presented in the next
chapter, the emphasis here is more on the number of edges required than the actual

fusion operator.

The symbolic approach is more efficient in terms of the number of edges required,
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{a;b} {c;a} {a;b&c;a}
0‘0‘0 0‘0‘0 “wewe

c, c G, c, G, Gpre a

O D545 o o) = D o oD
Figure 4.1: Effect of alphabet choice on automata for Example 4.1
using: a) power set alphabet, and b) symbolic alphabet.

and the number of states is unaffected. In general, when n Booleans are used in an
assertion, a transition on a given Boolean actually requires 2"~ ! edges, whereas only
one edge is used in the symbolic alphabet. The symbolic alphabet developed in this
work is actually based on a two-layer symbolic alphabet, using primary and extended
symbols. Henceforth the expression symbolic alphabet will refer to the actual two

layer alphabet described below as part of the formal automaton definition.

Definition 4.3: In this work, a Finite Automaton A is described by the six-tuple
=(Q,11,%,0, I, F), where:

e () is a nonempty finite set of states;

e [l is a set of primary symbols that represent Booleans;

e ) is a set of extended symbols defined from II;

e ) C (Q x X x (@ is a transition relation consisting of a subset of triples from
{(s,0,d) | s€Q,0€X, de Q};

e [/ C () is a nonempty set of initial states;

e [1C (@) is aset of final (or accepting) states.

In contrast, the conventional automaton in Definition 2.2 has a single initial state
(as opposed to a set of initial states); the conventional automaton also allows the
use of € transitions, and has a mutually exclusive symbol alphabet, not to mention a
single-level alphabet. In Definition 4.3 above, the alphabet is defined by the II and
¥ sets, which represent non-mutually-exclusive Booleans. The IT and ¥ sets (defined
below) are global symbols that are shared across multiple automata. Henceforth the
shortened notation A = (Q, 4, I, F') will be used.

The term edge is used to refer to an element of the transition relation ¢, and is

represented by an ordered triple (s, o, d), where an edge’s extended symbol is denoted
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o, and s and d are used to denote the source and destination states of an edge
respectively. The transition relation is not complete, and there does not have to be a

transition for each symbol in each state.

Each state also has a label, consisting of either an ordered pair, or a totally or-
dered set, depending on the application. Labels are an essential part of some of
the algorithms appearing further. In the automaton definition for assertion checkers
over Booleans, the language accepted by the automaton actually represents a set of
traces. This set of traces violates the behavior given by the assertion, and it is the

automaton’s purpose to report such traces.

The notation A(z) is used to denote the construction of an automaton from an
argument expression z, where x can range from a simple Boolean to a full verification
directive based on properties and sequences. The Booleans appearing in sequences and
properties are used to form the primary symbols in the automaton’s symbol alphabet,
and primary symbols are then used to construct the actual extended symbols that

appear on the edges in the automata.

Definition 4.4: A primary symbol m represents the HDL code of a Boolean expres-
sion appearing in a sequence or property, with any outermost negation(s) removed.

The set of primary symbols is denoted II.

Definition 4.5: An extended symbol o is a single literal, or a conjunction of multiple
literals, where a literal is a negated or non-negated primary symbol. A literal has a
negative polarity if and only if its corresponding primary symbol has an odd number of
outermost negations removed when entered as a primary symbol. The set of extended

symbols is denoted ..

The e symbol from conventional regular expressions represents the empty match,
and when used as an edge’s symbol, € transitions are in effect instantaneous transitions
that do not require an execution step of the automaton. As a result of Definition 4.5
however, € symbols and transitions are not allowed in the automaton framework for

assertion checkers.

Disjunction of literals is not handled in the extended symbols because disjunction
can be performed by two parallel edges that originate (and terminate) at the same
pair of states. When the automaton is constructed for a given assertion, the Boolean
primitive true may be added to the set of primary symbols, even when it is not
used directly in an assertion. For example, the primitive m = true is required for

implementing the always property (as will be shown in an example in Section 4.3),
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and is eventually added to II during the construction of the automaton.

Example 4.2: To show how Booleans and symbols interact, the following assertion

based on a two cycle sequence and the never operator is used:
assert never { req & gnt ; ~(ack | ~gnt) };
The primary and extended symbol sets built from this assertion are, respectively:

Il = {m,m} where: m = “req & gnt” and my = “(ack | ~gnt)”

Y. ={o1,09} where: 01 = m and 09 = -y

The extended symbols in Example 4.2 require only single literals; however, for
further processing in an automaton form, other symbols may be added, some possibly
referencing a set of conjoined literals. The set of literals comprising an extended
symbol is totally ordered, such that no duplicate symbols are kept for equivalent
conjunctions that have a different ordering of literals. In the implementation, the
total order relation is that which is produced by sorting the actual data elements
that represent literals.

For convenience, most often when automata are illustrated the expressions rep-
resented by the extended symbols on each edge are constructed from the symbol
tables and are shown above or below their corresponding edges, as opposed to show-
ing extended symbol identifiers o; themselves, which require that the sets II and X
be explicitly specified. This way an automaton can be understood quicker and the
symbol alphabet tables do not need to be shown. Example 4.2 can also be used to
illustrate how the dual-layer symbols can be assembled in reverse to construct the
Boolean expressions of an assertion.

An extended symbol can be interpreted with a truth assignment w over its refer-
enced primary symbols. The truth value of an extended symbol o, under assignment

w, is denoted (), and evaluates to either true or false. For example:

o =T N\ Ty
w «— [m = true, m = true]

(0), = false

By definition, if o = true then (¢), = true, where x represents any assignment possible.

In the symbolic alphabet, any given symbol o from Y represents a Boolean expres-
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sion. A transition on o takes place when the Boolean expression represented by o is
true and the source state of the transition is active. The output signal of the assertion
checker corresponds to a disjunction of all final states. When a final state is active
in a given clock cycle, the pattern described by the automaton has been matched. In
this light, constructing an automaton for assertions actually means constructing an
automaton to detect all faulty traces that do not conform to the behavior dictated

by an assertion.

The clock does not appear in the automaton definition, but is implicitly used to
regulate the transition from one set of active states to another. This is analogous
to conventional automata for string matching, where reading a character causes the
automaton to transition. The definition of deterministic automata made in Defini-
tion 2.3 for conventional automata also applies to the symbolic automata defined in
this section.

By extension, Corollary 2.4 states that conventional FAs are deterministic (DFA)
when they have a single initial state and no more than one outgoing edge from a
given state carries the same symbol. Since the Boolean expressions represented by
automaton symbols are not mutually exclusive, the corollary does not work with
the symbolic alphabet, and Definition 2.3 must be adhered to. This fundamental
difference between both automata models influences many operations, not the least
of which is the determinization function.

The symbolic automata introduced in this chapter do not have to be complete
(Definition 2.5), and in a given state, it may be the case that no outgoing transitions
are taken in a given cycle. As illustrated in Example 2.1, a complete DFA accepts
the same language as a DFA. Since a complete DFA has more edges (and possibly
more states) than a DFA, complete DFAs are avoided when possible.

It is also observed in this work that automata with multiple initial states can be
more compact than automata that are restricted to having a single initial state. When
automata are expressed in a circuit form, having a set of active states is perfectly
acceptable. In such cases the initial states are the only active states when the reset is
released. It is for this reason that the automaton definition has a set of initial states,
as opposed to the automata with single initial states from Definition 2.2. Figure 4.2
shows an example whereby allowing a set of initial states produces an automaton
with fewer edges.

The dual symbol alphabet allows the automaton to be “aware” of the polarity of
signals and also of more Boolean simplifications when conjunctions of edge symbols

occur. Since the intersection, fusion and determinization operations require the inter-
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O e O )
Figure 4.2: Effects of multiple initial states for the sequence

{a[*1:2];b} : a) restricted to a single initial state; b) set of initial states,
thus requiring fewer edges.

section of symbols (and also polarity manipulations in determinization), new primary
symbols do not have to be declared for a conjunction. For example, in Section 2.4
it was shown that a goto repetition a[->] is equivalent to (~a)[*];a. The following
example builds on this case and illustrates why the two-layer symbol alphabet is ben-
eficial for reducing the size of the automata. For now, understanding the rewrite rule
used and the automaton construction from PSL statements is not required, and will

be presented in the next chapter.

Example 4.3: The following circuit assertion stipulates that two given subsequences
must never simultaneously occur, starting and terminating at the same time. The
second assertion’s SERE was modified by a rewrite rule, and is more representative

of what is actually seen by the checker generator algorithms.

assert never {{a[->];b[*|} && {a;c;d}};
assert never {{{(~a)[*];a}:b[*]} && {a;c;d}};

The rewritten assertion is expressed in automaton form as shown in Figure 4.3 a),
using dual-layer symbols. The never property has the effect of creating the true
self-loop in state 1. The automaton has four states, compared to six states when
single-layer symbols are used. With only one level of symbols, a new symbol must be
created for (~a), and the automaton is not “aware” that (~a) and a are related, as

can be seen in Figure 4.3 b) in the edge from state 1 to state 2.

The automaton approach to checker generation allows many types of optimiza-
tions to be performed. The following examples show different cases where a modular
approach will generate more RTL checker code for the assertions on the left, even

though in dynamic verification the assertions on the left are semantically equivalent
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Figure 4.3: Automata for assertion in Example 4.3 using: a) dual-level
symbols, b) single-level symbols.

to their counterparts on the right.

assert always {a[->]} |[=>b; = assert always {a} |=> b

assert never {b[*1:2];c}; = assert never {b;c};

In the first example above, in the assertion on the left, the goto matching related to a
is not required because the always continually retriggers the matching of its argument,
thus the extension created by the goto operator is redundant. In the second example
above, the never operator also continually triggers the matching of its argument, and
in such cases the sequence {b;c} is guaranteed to be matched when the sequence

{b; b; ¢} is matched, hence the first b is redundant in the range repetition.

Another type of example appears next, which yields identical five-state automata
in both cases, as opposed to the modular approach that would generate much larger

code in the first case, where a link between the arguments of next event a is not
made (b vs. ~b).

assert always a —> next__event _a(b)[1:2]({{~b;c[*200];d}|{e;d}});
= assert always @ —> next_event _a(b)[1:2]({e;d});

Although synthesis tools can perform the necessary optimizations to reduce circuits
like the one in Figure 4.3 b), in general, not all sequential reductions can be performed
this way. Notwithstanding the synthesis aspect, the automata should also be kept as
small as possible because operations such as intersection and determinization have
worst case behaviors that are product and exponential, respectively, in the number

of states.
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Figure 4.4: Strong vs. weak determinization.

4.2.2 Determinization of Automata

Classical determinization typically does not consider the possibility that edge sym-
bols represent Boolean expressions, many of which can simultaneously be true. Usual
determinization procedures [101]| have the effect of creating an automaton with a sin-
gle initial state, and for which no state has two outgoing transitions using the same
symbol. In conventional automata, this is a sufficient criterion to ensure determinism
(Corollary 2.4); however, this is not sufficient given the requirement for determinism
that was made in Definition 2.3. Therefore, in this work the usual determinization
algorithm is said to create weakly deterministic automata; although strictly speak-
ing the automata produced may in fact not be deterministic. The nondeterminism
that is left by weak determinization will be used advantageously in the minimization

algorithm in the next subsection to help keep the automata as small as possible.

The effect of the WEAKDETERMINIZE() algorithm is first illustrated in Figure 4.4
using a small example. The top of the figure shows a portion of a NFA and the bottom
left shows the weakly determinized version. In general, a new state in the DFA is
labeled as “1, 7, k,...”, where 7, j, k, . .. are states of the input NFA. When the NFA at
the top of the figure is weakly determinized, only the symbols appearing directly on
the edges are considered. In the automaton at the bottom left, no two outgoing edges
carry the same symbol. If the symbols were mutually exclusive, as in string matching

for example, the weakly determinized automaton would be truly deterministic.

Some of the algorithms in the next chapter actually require proper determiniza-
tion, which is referred to as strong determinization. The effect of this algorithm is
also illustrated in Figure 4.4. In the strongly determinized automaton at the bot-
tom right in the figure, no conditions allow state 1 to transition into more than one

state. The strong determinization creates new symbols by manipulating polarities of
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1: FUNCTION: WEAKDETERMINIZE(.A)

2: //a label is a totally ordered set 7' C @

3. apply total order to [

4: create new state ¢ labeled with 1

5: create new automaton Ap = ({¢},0,{q},0) //Qp,0p,Ip,Fp
6: add ¢ to an initially empty set C' //C' is “to-construct”
7: while C' # ) do

8: remove a state r (with its label T), from C

9: if TNF # () then

10: Fp+— FpuU {T}

11:  create set of extended symbols F = ()

12:  for each edge (s,0,d) €| s €T do

13: addo to E

14:  for each extended symbol o; in £ do

15: create a new label U = ()

16: for each edge (s,0,d) €0 |se€T,o0=0; do
17: U—Uu {d}

18: if U # () then

19: find state u € QQp with label U

20: if Fu then

21: create new state u € (Qp labeled with U
22: C — CU{u}

23: //

24: (5D<—5DU{(’/’,O'Z',U)}

25: return Ap //|Ip|=1, as required for INTERSECT()

Algorithm 4.1: Weak determinization algorithm. Differences with
the strong determinization in Algorithm 4.2 are highlighted in gray.

other symbols. During these manipulations, the dual-layer symbol alphabet helps to

perform Boolean simplifications not seen by a single layer alphabet.

Algorithms 4.1 and 4.2 present the algorithms for creating weakly and strongly
deterministic automata respectively, using the symbolic alphabet. Both algorithms
are based on the subset construction technique, and although they may appear similar,
the main difference between the two concerns the depth of symbols they manipulate.
The algorithm for weak determinization only analyses the extended symbols, whereas
the strong determinization pushes deeper into the primary symbols. A state in the
determinized automaton is labeled by a totally ordered subset of states from the input
automaton. In the implementation, the total order relation is that which is produced

by sorting the actual data elements that represent states (state numbers).

Both algorithms start by applying the total order to the set of initial states in
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1: FUNCTION: STRONGDETERMINIZE(A)
2: //a label is a totally ordered set 7' C @
3. apply total order to [
4: create new state ¢ labeled with 1
5: create new automaton Ap = ({¢},0,{q},0) //Qp,0p,Ip,Fp
6: add ¢ to an initially empty set C' //C' is “to-construct”
7: while C' # ) do
8: remove a state r (with its label T), from C
9: if TNF # () then
10: Fp+— FpuU {T}
11:  create set of primary symbols P = ()
12:  for each edge (s,0,d) €| s €T do
13: add ¢’s primary symbol(s) to P
14: for each assignment w of primary symbols in P do
15: create a new label U = ()
16: for each edge (s,0,d) €0 | s €T, (o), = true do
17: U—Uu {d}
18: if U # () then
19: find state u € QQp with label U
20: if Fu then
21: create new state u € (Qp labeled with U
22: C — CU{u}
23: 0; «— create or retrieve symbol in X for w
24: dp — dp U{(r,o;,u)}

25: return Ap

Algorithm 4.2: Strong determinization algorithm. Differences with
the weak determinization in Algorithm 4.1 are highlighted in gray.

their argument automaton (line 3). The first state ¢ in the determinized automaton
is created, and labeled with this ordered set of initial states (line 4). The state actually
comprises the result automaton’s initial topology, where it is also added to the set
of initial states (line 5). This state is then used to initiate the subset construction
loop in line 7, whereby the central element is the state creation set C. The subset
construction implicitly creates an automaton with a single initial state, a feature that

is required by the intersection algorithm’s use of weak determinization.

Inside the state creation loops in both algorithms (lines 8 to 24), new states are
created to represent subsets of states in the input NFA to be determinized (hence the
name subset construction). When any state in a subset is a final state in the input

automaton, the state corresponding to the subset is also a final state (lines 9 and 10).

The differences between strong and weak determinization start in line 11 in both
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algorithms. In weak determinization, lines 11 to 13 build the set of extended symbols
that are used in the outgoing edges of the subset of states. The subset being referred
to is from the input automaton, and is being used to construct the new state in the
determinized automaton. In strong determinization, lines 11 to 13 instead build the
set of primary symbols used in the outgoing edges of the subset of states. In both
algorithms, if the set P is the empty set, then no edges are created for the state and
the for loop in line 14 does not execute its block of statements.

In the strong (weak) algorithm, for each unique assignment of primary symbols
(for each extended symbol), the set of destination states is built in lines 15 to 17; this
becomes the label for the destination of a new edge that is to be created for the given
assignment of primary symbols (extended symbol). If this destination state already
exists, it is used, else it is created (lines 19 to 21) and is added to the construction
set C'in line 22. The new edge is created in lines 23 and 24, and the entire process is
repeated until there are no more states left to create in C. The algorithms are proven
to terminate since only a finite number of states (although exponential) can be added
to the construction set. Determinization produces an automaton with O(2") states in
the worst case, where n is the number of states in the input automaton. In practice,

the resulting automaton is often reasonable in size.

4.2.3 Minimization of Automata

Procedures exist for minimizing conventional automata, such as Hopcroft’s nlogn

algorithm |100|, and Brzozowski’s
Reverse — Determinize — Reverse — Determinize (4.1)

algorithm |37, 177|, called the RDRD algorithm herein. The Hopcroft algorithm ap-
plies to complete DFAs, where the transition relation 0 is completely specified for
every symbol at every state, whereas the RDRD algorithm can accept an incomplete
NFA. In both cases, a minimized DFA is produced. As a side note, the RDRD algo-
rithm does not modify the language accepted by an automaton given that the reversal
is performed twice, and that determinization itself does not change the language ac-
cepted.

The REVERSE() algorithm used in minimization exchanges s with d for all edges
(s,0,d) € 0, and also exchanges the initial and final state sets, as shown in the
algorithm in Algorithm 4.3. Since the automaton definition (Definition 4.3) allows

the set of final states to be empty, which occurs in the automaton for the null sequence
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1: FUNCTION: REVERSE(A) //(Q,6,1,F)
2: if F = () then
3:  create new automaton A; = ({¢:},0, {¢1},0)
4: else
5. create new automaton A; = (Q, 4, F, I)
6: for each edge (s,0,d) € §; do
7 (s,0,d) « (d,o,s)
8 return A,

Algorithm 4.3: Automaton reversal algorithm.

for example, the algorithm treats this case separately in line 3. A subtlety also exists

in line 5 in the reversal algorithm, where sets [ and F' are swapped.

In this subsection, the minimization of automata based on the symbolic alphabet
is developed. Although conventional DFAs can be provably minimized, no claim is
made about the minimalism of the automata used in this work, which can be non-
deterministic in some cases. Producing minimized NFAs [115], let alone NFAs with
Boolean expressions encoded in the symbols, is a hard problem. The approach used

here is more a heuristic for reducing the size of automata with symbolic alphabets.

The minimization procedure has the effect of pruning any unconnected or use-
less connected states which can result from the application of other algorithms. The
minimization of symbolic automata is based on an observation that even though
conventional minimization only applies to DFAs, in many cases the required deter-
minization (worst case exponential) is not a big penalty. In most cases the increase
in states is quite modest, and in some cases determinization even produces smaller
automata; this behavior is also observed in the weighted automata used in speech
recognition |39].

Algorithm 4.4 presents the algorithm used to minimize symbolic automata. The
minimization approach is based on the RDRD algorithm from (4.1), which corre-
sponds to lines 2, 3, 5 and 7 in Algorithm 4.4. Weak determinization is employed for
the determinization step, as opposed to strong determinization. The guiding prin-
ciple in minimizing automata is that any form of nondeterminism is tolerated, and
even sought when it causes the resulting automaton to be smaller. Because of this
principle, the final determinization in the RDRD strategy is only applied if it reduces
the number of states (lines 9 and 10).

Circuits are well suited for implementing nondeterministic conventional RE pat-
tern matchers [163], and in this respect, the automata used here with Booleans as the

alphabet are no different. Surprisingly, the weak determinization used implies that
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FUNCTION: MINIMIZE(.A)
A — REVERSE(A)
A — WEAKDETERMINIZE(A)
COLLAPSEFINALSTATES(.A)
A — REVERSE(A)
COLLAPSEFINALSTATES(.A)
As +— WEAKDETERMINIZE(A)
COLLAPSEFINALSTATES(.A)
if |Q2] < |Q| then

.A — Az

: return A

—_ =
= O

Algorithm 4.4: Automaton minimization algorithm.

the minimization algorithm, when applied to an NFA, can produce an automaton

that in the worst case has an exponential number of states.

As will be seen in Chapter 5, when a sequence is used as a property, a strongly
deterministic automaton is produced for that sequence. When the minimization al-
gorithm is applied to a property’s automaton that contains a strongly deterministic
sub-portion, the weak determinization used in minimization has no effect on that
portion of the automaton; however, when other parts of a property automaton that
have not undergone strong determinization are minimized, the weak determinization
preserves a certain amount of nondeterminism, and helps keep the checkers more
compact.

Another key factor in the minimization algorithm is the collapsing of final states
in presence of self-loop edges with the true symbol (lines 4, 6 and 8 in Algorithm 4.4).
The true edge differentiates itself from other edges because it is guaranteed to cause a
transition at each cycle in the automaton. Incorporating knowledge of this fact in the
minimization algorithm helps to implement another type of optimization, namely the
collapsing of final states. The reason there are two calls to this function in the second
half of the RDRD strategy is that depending on the outcome of the comparison, the
algorithm may if fact implement RDR, and in this case the final reversal should also
have a collapsing of final states. These are performed separately after the last reversal
and after the last determinization in order for the automaton size comparison to be
the most meaningful.

The COLLAPSEFINALSTATES() algorithm used in minimization is presented in
Algorithm 4.5. This algorithm removes a subset of states that is closed under the
true self-loop. The first part of the algorithm (lines 2 to 5) works by detecting a true

transition (s, true, d) between two final states, where state d has a true self-loop. The
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1: FUNCTION: COLLAPSEFINALSTATES(A) //(Q,0,1,F)
2: while 3 pair of edges (s1,01,d1) and (sg,09,ds) | {$1,592,d1,d2} C F, 01 = 09 =
true, d; = s = dy do

for each edge (s3,03,d3) | s3 = 51 do

60— {(83,03,d3)}

d—oU{(s1,01,51)}
while 3 pair of edges (s1,01,d1) and (s9,09,ds) | {s2,d1,ds} C F, s; € F,
01 = 09 = true, dl = S9 = d2 do

for each edge (83,03,d3) ‘ S3 = S1, 03 7& gy, d3 7& d1 do
8: §«— 06 —{(s3,03,d3)}
9: return A

ot

Algorithm 4.5: Algorithm for collapsing final states.

true true
O et 2 s s @
true COLLAPSEFINALSTATES()

Figure 4.5: Collapsing final states with true edges.

true self-loop can be safely replicated on the source state because it adds nothing to
the language accepted by the automaton (line 5). Any other outgoing edges from
this source state can be safely removed in lines 3 and 4 because once a final state
becomes active, the true self-loop will perpetually keep it active, and there is no point

in triggering other states.

The second part of the algorithm in lines 6 to 8 performs another type of opti-
mization with regards to the true edge. It is very similar to the first part, with the
exception that the first state in the state pair is not a final state. The second opti-
mization works by detecting a true transition (s, true,d) between two states, where
state s is non-final and state d is a final state with a true self-loop. In such cases, any
other outgoing transitions from state s are pointless because the true transition will
activate a perpetually active final state in the next transition, thus the other outgoing
transitions can be removed (lines 7 and 8). If any state becomes unconnected during
the collapsing of final states, it is removed from the automaton (not shown in the
algorithm). The second type of optimization is illustrated in Figure 4.5, where the a
edge can be removed given the simultaneous true transition to a perpetually active

final state. The first type of optimization is illustrated in a complete example.

Example 4.4: The following assertion is used to show the effect of collapsing final
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|
|
I COLLAPSEFINALSTATES() true
|
|

_____ > @L@_C,

Figure 4.6: Example for collapsing final states.

states in minimization.
assert never {c[*1:2];d};

This example is illustrated in Figure 4.6 and Figure 4.7. The actual steps used to
create the automaton require the notions in Chapter 5, and are not topical at this
point. The top part of Figure 4.6 shows the automaton as it appears after the first
determinization in the minimization algorithm (hence it was also reversed). The true
self-loop on state 5, and the true edge from state 3 to 5, combined with the fact that
states 3 and 5 are final states implies that once state 3 is reached, the automaton
will remain active for the remainder of execution, or until the checker is reset. Since
this automaton has undergone a reversal, this is expected in the example; i.e. the
loop created by the never operator is now at the end of the automaton. As a result,
the transitions to and from state 4 are in effect useless. Consequently, the smaller
automaton at the bottom of Figure 4.6 is produced when the collapsing of final states
is performed. That automaton shows the state of the computation after line 4 is

executed in the minimization algorithm.

To show the global effect of collapsing final states in presence of true edges, if it is
not performed when minimizing the automaton for the assertion above, the four-state
automaton in Figure 4.7 a) is generated. With the optimization, the smaller three-
state automaton in Figure 4.7 b) is produced. This reduction actually reveals more
insight into the run-time semantics of PSL for dynamic verification. If the assertion
did not have the never operator, the sequence would only be checked starting in
the first cycle of execution, and the full language defined by the sequence {c[*1:2];d}
would apply. However, in presence of the never operator, this optimization shows that
only the {c;d} portion needs to be detected. In other words, when it is continually

triggered, {c;d} temporally subsumes the larger {c;c;d}.

The minimization algorithm will not be called explicitly in the automaton imple-
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a) true b) true
L SERORNG

Figure 4.7: Effect of collapsing final states in minimization, for ex-
ample 4.4. a) Without CollapseFinalStates(), b) with CollapseFinal-
States().

mentation of properties and sequences in the next chapter. In the checker generator,
minimization is applied to top-level sequences, as opposed to recursively at each level
in a sequence’s operators, with one exception. Intersection involves a product automa-
ton construction and it is beneficial to minimize the argument automata beforehand.
As will be seen in the implementation of sequences, all other sequence operators have
a linear space complexity, and minimization can be safely relegated to its highest-level
point in the sequence’s expression. Minimization is also applied at the property level,
but for simplicity will also not explicitly appear in the implementation of properties.
Functionally, minimization could in fact only be called once before the automaton is

actually converted to RTL code to form the checker.

4.2.4 Complementation of Automata

Complementing (or negating) an automaton corresponds to creating a new automa-
ton that matches the complement language. In the case of symbolic automata over
Booleans, the complement language corresponds to all the traces that are not accepted
by the original automaton.

Algorithm 4.6 presents the algorithm used to complement automata with the
symbolic alphabet. This algorithm is also used in an example in the next chapter
(Example 5.1). The strong determinization with completion is performed by a sepa-
rate algorithm that is explained thereafter. Although the automata complementation
algorithm is not used in the checker generator, it is presented nonetheless so that the
automaton framework over Booleans is fully defined for the conventional operators.

The NEGATE() algorithm implements the same type of procedure as described
in Section 2.3 for complementing conventional automata. The two steps for de-
terminization and completion are implemented in one function in line 2, and the
complementation of final states is performed in line 3.

A strong determinization algorithm that produces complete DFAs is presented in
Algorithm 4.7. Although lines 28 and 31 can be factored from the if/else in lines

23 and 30, they are kept redundant in order for the algorithm to appear as similar
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1: FUNCTION: NEGATE(.A)
2: A «— STRONGDETERMINIZEWITHCOMPLETION(A) //Q,d,1, F
3 F—Q—F
4: return A
Algorithm 4.6: Automata negation algorithm.
o= 7, 0,= 7, o, = true
0= A, C,= T AT, STRONGDETERMINIZE-
Ox= =T, A T, Og= =TT A T, WITHCOMPLETION()

Figure 4.8: Strong determinization with completion.

as possible to the strong determinization algorithm in Algorithm 4.2; only 6 lines
were added (shown in light gray) to that algorithm to yield a version which produces
complete DFAs for the symbolic alphabet. The algorithm adds a dead state f whereby
all Boolean conditions not taken by outgoing edges in a state are routed to this dead
state using supplemental edges (lines 31 and 32). The dead state f does not require
a label because it does not take part in the subset construction, and is directly added
to the resultant automaton (lines 5 and 7). In order for the dead state to also adhere
to the requirements of completeness, a self-loop with a true edge is added in line 7.

The key to proving that the algorithm produces complete automata is that for
every state that is created in the new automaton in the subset construction, the for
loop in line 19 combined with the if/else in lines 23 and 30 add the necessary edges
for covering all the Boolean possibilities for outgoing transitions in a given state.
The only state that is not part of the subset construction is also complete given the
self-loop with true that is added at the beginning of the algorithm.

Normally the complete-determinization algorithm is not used because the dead
state f would get pruned during minimization. It is therefore important that mini-
mization must not be performed between lines 2 and 3 in the NEGATE() algorithm,
in order for the complete DFA to remain intact.

Figure 4.8 shows how the complete-determinization algorithm operates on a sub-
portion of an automaton. The automaton on the left is identical to the one in Fig-
ure 4.4 used to illustrate the differences between strong and weak determinization;

it is used here to show how a complete strongly deterministic automaton can be
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1: FUNCTION: STRONGDETERMINIZEWITHCOMPLETION(.A)
2: //a label is a totally ordered set T C

3. apply total order to [

4: create new state ¢ labeled with I //Qp,dp, Ip, Fp

5. create new state f

6: o < create or retrieve symbol in X for true

7. create new automaton Ap = ({q, f},{(f,00, )}, {q},0)
8: add ¢ to an initially empty set C' //C' is “to-construct”
9: while C' 7& ) do

10:  remove a state r (with its label T), from C

11: if TNF # () then

12: Fp+— FpuU {T}

13:  create set of primary symbols P = ()

14:  for each edge (s,0,d) €6 | s €T do

15: add o’s primary symbol(s) to P

16: if P =1 then

17: op H5DU{(7’,0't,f)}

18: else

19: for each assignment w of primary symbols in P do
20: create a new label U = ()

21: for each edge (s,0,d) €0 | s €T, (o), = true do
22: U«—UU{d}

23: if U # () then

24: find state u € Qp with label U

25: if Fu then

26: create new state u € (Qp labeled with U

27 C— CU{u}

28: 0; «— create or retrieve symbol in ¥ for w

29: (5D<—(5DU{(’/’,O'Z',U)}
30: else
31: 0; «— create or retrieve symbol in Y for w
32: op <—5DU{(T,O'Z',f)}

33: return Ap

Algorithm 4.7: Algorithm for strong determinization with comple-
tion. Additions compared to the strong determinization algorithm in
Algorithm 4.2 are highlighted in gray.
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produced. As before, only one state is explored in full detail and the remainder of
the automaton is not shown. The complete strongly deterministic version is similar
to the strongly deterministic one, with the exception that an extra outgoing edge is
added to state 1. This edge leads to the dead state, which is not labeled because
it does not represent a subset of states of the input automaton. For the two states
that are completely defined in the automaton in the right side of the figure, namely
the unlabeled state and state 1, it can be verified that a single outgoing transition is
taken in each state for any given status of the Boolean primitives; this is consistent
with the definition of complete DFAs (Definition 2.5).

4.3 Generating Circuit-Level Checkers from Asser-

tion Automata

Even though the algorithms for expressing PSL statements in automaton form are
treated in the next chapter, the automaton definition and examples contained in this
chapter are sufficient prerequisites for introducing the transformation of automata
into circuit-level checkers. The main result that must be developed is a procedure
for transforming the automaton into a form suitable for in-circuit assertion monitor-
ing. Furthermore, the automata may not be entirely (if at all) strongly deterministic.
Circuits composed of combinational and sequential logic represent an ideal implemen-
tation because each state’s computations can be performed in parallel. In contrast,
traditional software implementations make heavy use of deterministic automata so
that the software can easily track a single active state.

The procedure described in this section defines the operator H(A), which rep-
resents the creation of HDL code from a given argument, which in this case is an
automaton. If b is a PSL Boolean, the notation H(b) is also valid and will be used in
the automaton implementation of Booleans in the next chapter. The resulting circuit
descriptions from H() become the checkers that are responsible for monitoring the
behavior expressed by the assertions.

Implementing an automaton in RTL is performed using the following encoding

strategy for each state:

1. A state signal is defined as a Boolean disjunction of the edge signals that hit a
given state;
2. An edge signal is a Boolean conjunction of the expression represented by the

edge’s symbol with the sampled state signal from which the edge originates;
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3. A state signal is sampled by a flip-flop, and the flip-flop’s output is referred to

as the sampled state signal,;

4. If a state is an initial state, the flip-flop defined in step 3 is initially set, else it
is initially reset;

5. The assertion signal (or checker output) is a Boolean disjunction of the state

stgnals of all the final states.

In sum, automata are implemented in hardware using combinational logic and
flip-flops. Since an entire automaton is rarely ever strongly deterministic, any subset
of its n states can simultaneously be active, thus one flip-flop per state (i.e. n flip-
flops) is the most efficient encoding. Even if a portion of an automaton is strongly
deterministic, multiple activations from other portions could retrigger it (and overlap
within it) thus allowing more than one active state, and consequently, disallowing
the [log, n] flip-flop encoding. It is true however, that if an entire assertion automa-
ton with n states is strongly deterministic, then at most [log,n| flip-flops could be
used to keep track of the active state; however, this comes at the expense of more
combinational logic since the state vector needs to be decoded for use in the edge
signals.

The flip-flops in the automaton states have the additional property that they can
be reset by the global reset signal. This way, when the circuit under verification is
reset, the checkers can also be reset to provide the correct monitoring. Expressing the
RTL circuit as HDL code in the desired language, or even in schematic form, follows
naturally. The following example shows how automata are converted to circuit form

to produce circuit-level assertion checkers.

Example 4.5: The following bus arbiter assertion states that when the request (req)
signal goes high, the arbiter should give a bus grant (gnt) within at most three
cycles, and req must be kept high until (but not including) the cycle where the grant
is received.

assert always {~req ; req} |=> {req[*0:2] ; gnt};

The example assertion is compiled into the automaton shown at the top of Figure 4.9.
The automaton is then expressed in RTL as the circuit shown in the bottom of the
figure. The labels containing Boolean expressions can also be expressed using logic
circuits, but are kept in text form for simplicity in this example. The always operator
has the effect of creating the self loop on state 1, which continually activates the
automaton in search of a faulty trace. This state is optimized away given that it is an

initial state and that the true self loop perpetually keeps it active. As was shown in
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req & ~gnt
true req & ~gnt ° 2 ~gnt
~req req ~req & ~gnt
~req & ~gnt
[N

req & ~gnt

~req

~req & ~gnt

Figure 4.9: Circuit-level checker for assertion in Example 4.5.

~req & ~gnt Asr.

Figure 2.2, such RTL checkers can then be connected to the circuit-under verification

to detect functional errors.

performance of the checker (not shown in the example). This is particularly useful

By default a flip-flop is added to the assertion signal to improve the frequency

when a checker has many final states or when final states have many incoming edges.

The flip-flop is also beneficial when the assertion signal is routed to a pin or a register

file elsewhere on the circuit being tested. The checker should interfere as little as

possible with the source design’s timing, and the flip-flop helps reduce the chance

that the assertion signals are on the critical path. The penalty is a one cycle delay in

the response of the checker. The FF can be avoided by using the appropriate switch

in the checker generator, when desired.






Chapter 5

Automata Implementation of

Assertions

5.1 Introduction and Overview

The automaton framework for checkers was outlined in the previous chapter, where
determinization and minimization issues were the two most significant issues treated.
The current chapter presents the construction of automata for representing PSL ex-
pressions. The four main constituents of the PSL language, namely Booleans, se-
quences, properties and verification directives are each handled in separate sections.
Boolean expressions, sequences and properties alone accomplish nothing in most veri-
fication tools, and must be used in verification directives. The bottom-up construction
therefore begins with PSL Booleans and ends with verification directives. The un-
derlying expectation is to produce the smallest automata so that when converted to

RTL circuits, the checkers utilize fewer hardware resources.

Automata for Booleans are constructed by first converting their expressions to
HDL code, and then building a simple two-state automaton with the Boolean’s symbol
on the edge. Automata for Booleans are the building blocks of sequences, both
of which are building blocks of properties. Automata for sequences and properties
are constructed directly using a variety of algorithms, or indirectly using rewrite
rules. Rewrite rules are a syntactic transformation and are used to avoid the need
for explicitly supporting an operator. When no rewrite rules apply, operators are

handled with specific algorithms.

To provide more useful debug information, the automata algorithms are designed

such that the assertion signal does not simply indicate a yes/no answer obtained at

87
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the end of execution, but rather a continuous and dynamic report of when the asser-
tion has failed throughout the execution run (as discussed in Section 2.2). Although
this chapter focuses on automata construction for PSL statements, building the ac-
tual checkers requires only the subsequent application of the automaton-to-circuit

conversion developed in Section 4.3.

5.2 Implementation of Booleans

The building blocks of an assertion are Boolean expressions over the signals in the
circuit under verification. Whether in sequences or properties, Booleans are the lowest
constituents in the PSL language hierarchy. The goal in this section is to implement
all the Booleans items in Definition 2.7 as HDL code, and subsequently to implement
automata for Booleans.

In the following, H represents a portion of HDL code, and H(x) represents the
conversion of an argument x into HDL code, and thus also represents a portion of
HDL code. The argument can be a PSL expression or an automaton, depending on
the case. The conversion of an automaton to HDL code, denoted H(.A), was presented
in Section 4.3. The construction of an automaton from a never property is used below
in the implementation of ended(), but will be presented further in Section 5.4. The
default clock declaration is implemented in Section 5.5, and for now it is assumed that
a global clock string holds the name of the clock signal in effect.

To recall, the symbol A is used to represent an arbitrary automaton, as defined
in Definition 4.3, and the functional form A(x) represents the construction of an
automaton from an argument expression x, and is also an automaton because the
return value is an automaton. A superscript, such as in A”(x), represents additional
information to indicate what type of construction is desired (in this case Boolean).
The other superscripts used are *,  and ¥ for sequences, properties, and verification
directives respectively. The resulting automata with superscripts also conform to the
definition of automata given in the previous chapter.

Implementing the Boolean layer is done in two parts: first the conversion of a
Boolean to HDL is presented, and afterwards the expression of an automaton for a
Boolean, as used in a sequence or a property, is derived.

The conversion of Booleans to HDL is presented below in Proposition 5.1, in
a manner that resembles the syntax from Definition 2.7 as closely as possible, so
that the link between syntax and implementation can be better observed. In the

following, non-italicized prefixes separated by an underscore represent an additional
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type constraint, and do not represent a new type as such.

Proposition 5.1: If b is a Boolean, 7 is a nonnegative integer, e is an Expression,
f is a built-in function and s is a Sequence then the HDL conversion of Booleans
defined in Definition 2.7 is denoted H(b), and is performed as follows:

H(b) :

e H(boolean e) = |defined in next line]
H(e) :
e H(Verilog _e) = e
o H(by —> by) = (~by1 | b2)
o H(by <—>by) = ((~b1]|b2) & (~bs|b1))
e H(true) = 1'bl
e H(false) = 1'b0
e H(f) = |defined in next line]
H(f) :
e H(prev(e)) = DFF(e)
e H(prev(e, 1)) = DFF'(e)
e H(rose(bit_e)) = (~DrF(e) & e)
e H(fell(bit_e)) = (DFF(e) & ~e)
e H(onehot(bit_vector_e)) = (((e—1) & e) == 0)
e H(onehotO(bit_vector_e)) = ( H(onehot(e)) || (¢ ==0) )
. H(stable( )) = (DFF(e) == e)
H(

ended(s)) = H(A(never s))

The items that have italicized comments in brackets do not actually need to be
implemented and are only left to show the correspondence to Definition 2.7. Each item
from Proposition 5.1 will be presented and explained below, immediately following
its appearance.

H(Verilog_e) = e

In the case where a Verilog expression is used as a Boolean, it is simply returned
directly given that the Boolean layer is built upon the underlying HDL, which corre-
sponds to Verilog HDL code in this case.

H(bl -> bg) - (Nb1 | bg) (51)
H(by <=>bs) = ((~b1|ba) & (~by | b1))

Implication and equivalence are not part of the Verilog language as such, and are
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added to the definition of Booleans. These operators are expressed in Verilog using

their respective Boolean equivalencies, as shown on the right above.

H(true) = 1'bl
H(false) = 1'b0

Symbols true and false are expressed in HDL as single digit binary constants. The

remaining cases from Proposition 5.1 are the built-in functions, described next.

H(prev(e)) = DFF(e)
H(prev(e, i)) = DFF'(e)

In any given clock cycle n, the prev operator evaluates to the value of the argument
expression at cycle n—i. The implementation for this operator is denoted symbolically
above using the DFF’(e) function, and in reality corresponds to the instantiation of a
register chain (or pipeline) with i stages in depth. The default clock is implicitly used
as the clock signal for any flip-flop represented by the DFF() notation; the input of the
flip-flop is the argument and the return value of DFF() represents the output of the
flip-flop. Thus, the resulting expression of DFF() evaluates to the signal or vector of
the last register(s) in the chain. When the exponent is not specified, i = 1 is assumed.
The register pipeline has the same width as the argument expression e. This register
chain is created as actual HDL code using Verilog non-blocking assignments and the
clock signal that exists in the global clock string at that time. For the case 1 = 0, no

registers are created and the expression is returned directly.

It should be noted that the flip-flops generated by DFF'(e) are not reset with the
checker’s reset, and even if a builtin function is used under the scope of an abort
operator, the abort has no effect on the flip-flops. In other words, these flip-flops
are never reset, and are used purely to create a clock cycle delay. It is up to the
implementation to determine their initial state. A flip-flop is in an undetermined

state until a proper input value can be latched by the flip-flop.

H(rose(bit_e)) = (~DFF(e) & e)
H(fell(bit_e)) = (Drr(e) & ~e)
H(stable(e)) = (DFF(e) == ¢)

The above functions relate the value of an expression to the value in its previous clock
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cycle, and also use the HDL flip-flop declaration mentioned above. The rose() and
fell() functions operate on single-bit expressions only, whereas bit vectors can be used
in stable().

H(onehot(bit vector e)) = (((e—1) & e¢) ==0)
H(onehotO(bit vector e)) = ( H(onehot(e)) || (¢ == 0) )

The implementation of the onehot function takes advantage of the arithmetic oper-
ators that can be specified in languages such as Verilog. Detecting the cases where
a single bit is active in a sequence of bits is performed with the “bit trick” involv-
ing decrementation and word-level intersection. The onehotO function also allows for
all-zeros to occur, and is implemented using onehot() with an additional Boolean

expression.

H(ended(s)) = H(A"(never s))

The ended function evaluates to logic-1 every time the argument sequence is matched.
This is modeled using the never property, which triggers whenever its sequence argu-
ment is detected. The implementation of properties is treated further in this chapter,
and must unavoidably be assumed at this point.

The items contained in Proposition 5.1 show how any PSL Boolean can be ex-
pressed at the HDL level. Constructing an automaton for the matching of a Boolean,

as required in sequences and properties, is described next in Proposition 5.2.

Proposition 5.2: If b is a Boolean and H(b) represents the HDL expression for b,
as presented in Proposition 5.1, then the construction of an automaton for Boolean
b, denoted AP (b), is performed as follows:
AB(b) :

o AB(h) = BASECASE(H()))

An implicit consequence of the separate implementations in Proposition 5.1 and
Proposition 5.2 is that automata are built only for top-level Booleans as opposed to
building automata for arbitrary sub-expressions of a complex Boolean expression.

The algorithm for creating an automaton for a Boolean’s HDL expression is de-
scribed in Algorithm 5.1. This is the base case for the inductive automaton construc-
tion procedure for sequences. The algorithm takes an HDL expression as argument,
and proceeds to build an extended symbol to represent it. Top-level negations are
removed in line 2 and added in line 5 when necessary. The primary symbol table is

used in line 3, whereas the extended symbol table is used in lines 5 and 7. This is
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FUNCTION: BASECASE(H)

‘H < remove outermost negations from H

m < create or retrieve existing symbol in II for ‘H

if odd number of outermost negations were removed in line 2 then
o « create or retrieve existing symbol in > for -7

else
o < create or retrieve existing symbol in ¥ for 7

return new automaton A = ({q1, ¢}, {(¢1,0,¢)}, {a1 }, {@})

Algorithm 5.1: Automaton algorithm for HDL Boolean expressions.

~req Gl O'1= _|ﬂ'1
O e (D 7= req

Figure 5.1: Automaton for Boolean ~req, denoted AP (~req), using
Proposition 5.2. Simplified representation (left) and detailed represen-
tation (right).

where the dual-layer symbol alphabet takes form. The automaton that is returned in
line 8 has two states, the first is an initial state and the second is a final state. A single
edge connects the two in the proper direction. An example is shown in Figure 5.1
for the Boolean ~req, where req is a valid signal in the design to be verified. The
simplified representation on the left will be used more often; however, the detailed

representation shows how the symbol tables are actually used.

5.3 Implementation of Sequences

A sequence is converted to an equivalent automaton in an inductive manner. First,
terminal automata are built for the Booleans in a sequence. Next, these automata
are recursively combined according to the sequence operators comprising the given
expression.

Sequences are an important part of the temporal layer in PSL, and are imple-
mented using either rewrite rules or separate algorithms. Although no distinction is
made here as to what operators are sugaring rules and which are base cases, as will
be pointed out further, some of the rewrite rules are based on the sugaring defini-
tions in Appendix B of the PSL specification [111]. Other sequence operators are
implemented with specialized algorithms, such as fusion and intersection. These two
operators are not often used in automata for conventional regular expressions, and

the related algorithms will each be treated in their own subsection. An important
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factor that must be considered in these and other automata algorithms is the symbolic
alphabet used to perform pattern matching over Boolean expressions.

The automaton implementation of sequences is shown below in Proposition 5.3.
Items with an italicized comment in square brackets are part of the BNF syntax
specification and were maintained to keep Proposition 5.3 as similar as possible to its
related definition (Definition 2.8).

Proposition 5.3: If ¢ and j represent nonnegative integers with j > ¢, and k
and [ represent positive integers with [ > k, b represents a Boolean, s represents a
Sequence, r represents a SERE, »_r represents a repeated SERE, ¢_r represents a
compound _SERE, then the automaton implementation of sequences, denoted A°(s),

is performed as follows:

AS(s)
e A%(r_r) = |defined below|
o A5({r}) = A%(r)
AS(r)
e A%(b) = AP(b)
o A%(s) = |defined above]

(
(
o A%(ry ;1) = CONCATENATE(A(ry), A%(rs))
e A%(r1 1 1) = FUSE(A%(ry), A%(r2))

(

o A%(c_r) = |defined in next line]
A(c_r)
o A5(s) = |defined above]

(
e A%(c_ry|c_m) = CHOICE(A®(c_ 1), A%(c_13))
o A(c_m &c_r) = AS({{c_m}&&{c_ro[*I}} [ {{c_ru[*]}&&{c_r:}})
(
(

e A5(c_ry && ¢ _15) = INTERSECT(A%(c_711), A%(c_713))

o A%(c_ry withinc_ 1) = AS{[M;c_ri;[*]} && {c_r2})
A%(r_r) -

o A%(b[*]) = KLEENECLOSURE(AZ(D))

(
o AS(O[*i]) = AS(b[*i:])

o AS(b[*i:j]) = RANGEREPEAT(4, j, AZ(D))
o AS(b[*isinf]) = AS(b[*]:b[*])

o A%(s[*]) = KLEENECLOSURE(A®(s))

o AS(s[*i]) = AS(s[*ii])

o A5(s[*i;j]) = RANGEREPEAT(i, j, A%(s))
o AS(s[*i:inf]) = AS(s[*];s[*])

o AS(¥) = A¥(true[*])
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o A5([*]) = A%(true[*i])
o A5([*i:7]) = A%(true[*i:j])

o AS([*i:inf]) = A%(true[*i:inf])

o AF(B[+]) = A%(b;b[*])

o A(s[+]) = A%(sis[*])

o A5([+]) = A%(true; true[*])

o AS(b[=i]) = AS(b[=ii])

o A%(b[=i:j]) = A ({~0[*];b}*i:j] ~0[*])

o A%(b[=i:inf]) = A%(b[=i]; [*])

o AS(B[->]) = A%([->1])

o AS(b[->K]) = A(b[->k:k])

o AS(b[->K:1]) = AY{~b[*];b}*k:])

o AS(b[->kinf]) = AS{b[->A]} ; {[*O1H{[*]:b})

The item A%(b) = AB(b) uses the automata construction for Booleans defined in
Proposition 5.2. All other items fall into two categories, namely those with direct al-
gorithm implementations, and those that are implemented using rewrite rules. Those
with rewrite rules can be easily identified since they have the form A%() = A%(), and
will be treated in Section 5.3.5.

5.3.1 Conventional Regular Expression Operators

The conventional regular expression operators are concatenation, choice and Kleene
closure (Kleene star), and are also used in sequences. The Boolean expression sym-
bol alphabet produces nondeterministic automata because from a given state, two
distinct symbols can cause simultaneous outgoing transitions when their respective
Boolean expressions are both true. The NFA construction for conventional operators
that was presented in Figure 2.5 can be reused given that both types of automata
are nondeterministic. Since the automata for assertions (Definition 4.3) allow mul-
tiple initial states and do not use € transitions, alternate algorithms for the three
conventional operators must be developed.

The concatenation of two compound SEREs is implemented as follows.
A%(ry i) = CONCATENATE(A®(ry), A%(r2))

Algorithm 5.2 presents the algorithm used for the concatenation of two argument

automata. In concatenation, for each final state in the left-side automaton, a copy of
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FUNCTION: CONCATENATE(AL, Ag)
create new automaton A = (Qp UQRg, 6, Udg, I, Fr) //Q,0,1, F
for each state f; € F, do
for each edge (sg,0r,dg) € 0r | Sg € Ig do
00U {(va OR, dR)}
if sgp € Fg then
F—FU{fr}

return A

Algorithm 5.2: Automata concatenation algorithm.

1: FUNCTION: CHOICE(A;, As)
2: return new automaton A = (Qp U Qg, 0 Udg, [ U IR, Fr U FR)

Algorithm 5.3: Automata choice algorithm.

all edges that originate from the initial states in the right-side automaton is made,
whereby the new edges originate from the given final state in the left side (lines 3 to
5). In this manner, each time the left side is matched, the right side is triggered. The
final states correspond to the right-side automaton’s final states (line 2). When the
right side has an initial state that is also a final state, final states in the left side are
kept final so that the left side can also cause a successful match (lines 6 and 7).

The disjunction of two compound SERESs is similar to the choice operation of

conventional regular expressions, and is implemented as follows.
AS(c_ri|c_ry) = CHOICE(A®(c_r1), AS(c_13))

Automata choice is rather straightforward, given that multiple initial states are per-
mitted by the automaton definition (Definition 4.3). The algorithm for performing
automata choice is presented in Algorithm 5.3. With multiple initial states, automata
choice amounts to integrating both argument automata into the same result automa-
ton, such that both are disjoint, and the set of states, the set of transitions, the set

of initial states and the set of final states are merged (line 2).

Two items in Proposition 5.3 make use of Kleene closure:

A(b[*]) = KLEENECLOSURE(AZ(D))
A%(s[¥]) = KLEENECLOSURE(A®(s))

The Kleene closure (or star repetition) of a Sequence or Boolean is performed using
the KLEENECLOSURE() algorithm, presented in Algorithm 5.4. Each edge that hits a
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1: FUNCTION: KLEENECLOSURE(.A)
2: create transition relation 6; = 0
3: for each edge (s,0,d) €| d e F do
4;:  for each state 1 € [ do
5: 0y «— 01 U{(s,0,7)}
6: 6 — U
7 F—FUI
8: return A

Algorithm 5.4: Automaton Kleene-closure algorithm.

final state is replicated using the same symbol, whereby the destination states of the
new edges correspond to the initial states (lines 3 to 5). Thus, each time a final state
is activated, the automaton is also automatically retriggered. In line 7, the initial
states are made final states, such that the empty match is performed as required for
Kleene closure. The transition relation d; used in lines 2, 5 and 6 ensures that the
algorithm operates correctly and does not enter a potentially infinite loop.

All three algorithms for the concatenation, choice and Kleene closure operators are
linear in the size (number of states) of the input automata. An indication that these
algorithms are not restricted to automata that use the two-layer symbol alphabet lies
in the observation that no symbol sets (I nor X) are affected by these algorithms,
and they could well be used in the context of conventional regular expressions.

Examples for the three conventional operators are shown in Figure 5.2. The
automata for the empty and null sequences (Definition 2.9) are also illustrated to
show the nuance with how they were defined in Figure 2.5 for conventional NFAs.
The automaton for matching the empty sequence consists of a single state which is
both an initial state and a final state. This automaton is produced when the sequence
[*¥0] is used. The automaton for matching the null sequence consists in a single initial
state with no final states, and is a valid automaton according to Definition 4.3. This

automaton is produced when the sequence {[*1]&&[*2]} is used, for example.

5.3.2 Fusion

In Proposition 5.3, the fusion of two SEREs was implemented as follows.
A%(ry 1 r5) = FUSE(A%(ry), A%(13))

As observed in Section 2.4, SERE fusion corresponds to an overlapped concatena-

tion. The algorithm for performing the fusion of two automata is presented in Al-
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a) terminal symbol
O
b) empty

c) null

©

d) Kleene closure A[*]

e) choice A|B
@ a . b | @ c C d _
O -
© e
f) concatenation A;B

Oa.b;®CCdl=

Figure 5.2: Automata examples for conventional RE operators. In
the examples, a, b, ¢ and d are Booleans, automaton A matches the
sequence {a;b[*0:1]} and automaton B matches the sequence {c;d}. In
the concatenation example, the state in light-gray is pruned during
minimization.
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FUNCTION: Fuse(Ar, Ag)
create new automaton A = (Qp UQRg, 6, Udg, I, Fr) //Q,0,1, F
for each edge (sp,op,dr) € 6r, | dp € F, do
for each edge (sg,0r,dg) € 0r | Sg € Ig do
o « create or retrieve symbol in X for oy A op
if EOE signal ¢ o’s primary symbols then
0«—ouU {(SL,O', dR)}

return A

Algorithm 5.5: Automata fusion algorithm.

gorithm 5.5. The algorithm starts by incorporating both argument automata into a
new automaton such that they are disjoint (line 2). From there, intersection edges are
created from edges that hit final states in the left-side automaton and edges that leave
the initial states in the right-side automaton. The intersection of symbols in line 5
benefits from the polarity that is encoded in the dual symbol tables, and can detect
conditions where Boolean conjunctions simplify to false. In such cases no edge is
actually created in line 7 (not shown in the algorithm). The extended symbol created
or retrieved in line 5 does not affect the set of primary symbols II. The condition in
line 6 has no effect and is always true in SEREs because the End of Execution (EOE)
signal applies only at the property level. This line is required to ensure the proper
behavior of certain strong properties that also make use of the fusion algorithm, and

is explained in Section 5.4.1.

An illustration of SERE fusion is shown in Figure 5.3 for the SERE {a;b[*]}:{c;d}.
SERE fusion produces an automaton that has O(m + n) states, where m and n are
the sizes of the input automata. Because empty SEREs on either side do not result
in a match, final states in the left-side automaton are not final states in the resulting
automaton. Similarly, the initial states in the right-side automaton are not initial
states in the resulting automaton (line 2). Thus, if an initial state in the right side
is a final state, it will not result in an instant match. The number of edges that are

added can be determined by examining the two for loops in the algorithm.

5.3.3 Length-Matching Intersection

The length-matching intersection of two compound SEREs was implemented as fol-

lows in Proposition 5.3.

A%(c_r && ¢ 1) = INTERSECT(A®(c_11), A%(c_15))
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OO NN O OR O

Y S
O

Figure 5.3: SERE fusion example for {a;b[*]}:{c;d}. The state in
light-gray is pruned during minimization.

a
and '

anc @ : (1,3)

Figure 5.4: Sequence intersection example for {a[*];b}&&{c;d}.
States in light-gray are pruned.

Typical automata intersection [101], which equates to building a product automaton
of both arguments, is incompatible with the symbolic alphabet and can not be used
directly in the intersection algorithm. If the traditional intersection procedure is
applied to two automata that have no symbol in common (i.e. no syntactically equal
symbols), an empty automaton results. This automaton can obviously not detect the

intersection of two SEREs which use disjoint sets of extended symbols.

To implement the intersection algorithm correctly, the condition on syntactic
equality of symbols must be relaxed and the conjunction of symbols must be con-
sidered by the algorithm. To consider all relevant pairs of edges, the product au-
tomaton is constructed in such a way as to perform Boolean intersection between
pairs of edges, where each edge in a pair is from a separate automaton. As shown in
the intersection algorithm in Algorithm 5.6, a state in the intersection automaton is
labeled by an ordered pair (u,v), where u and v correspond to states from the first

and second argument automata respectively.

The state creation set (line 8) is the key component in the algorithm, and is
initialized to the pair of initial states (line 6) of both argument automata. The two

input automata are weakly determinized in lines 2 and 3; a side-effect of this is that
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1: FUNCTION: INTERSECT(A;, As)

2: A; «— WEAKDETERMINIZE (A, );

3: Ay «— WEAKDETERMINIZE(A,);

4: //here ‘Il‘:‘fﬂzl, i.e. ]1 = {il}, ]2 = {’LQ}

5: //alabel is an ordered pair (u,v) | u € Q1, v € Q3

6: create new state ¢ labeled with (i1, 42)

7: create new automaton A = ({¢},0,{q¢}.0) //Q,4,I,F
8: add ¢ to an initially empty set C' //C' is “to-construct”
9: while C' # () do

10:  remove a state r (with its label (u,v)), from C

11: if w € F} and v € F; then

12: F— FU{r}

13:  for each edge (s1,01,d1) € 01 | $1 = u do

14: for each edge (s9,09,ds) € 65 | s2 = v do

15: find state ¢t € Q with label (d;, d2)

16: if #t then

17: create new state t € ) labeled with (dy, ds)

18: C— CuU{t}

19: o < create or retrieve symbol in ¥ for o1 A o9
20: §—oU{(r,o,t)}

21: return A

Algorithm 5.6: Automata intersection algorithm.

each resulting automaton has a single initial state. The automata are made weakly
deterministic so that when considering a symbol from an edge in each automaton, o,
and oy for instance, there is one and only one destination state in each automaton,
such that a state pair (dy,dy) represents a new state in the intersection automaton.
The two for loops in lines 13 and 14 intersect two states, and the while loop together
with the set C' create the entire intersection automaton. A new state (u,v) is a final
state if and only if states v and v are final states in their respective automata. The

symbol created or retrieved in line 19 affects only the set of extended symbols X..

The algorithm creates new states and edges only for the reachable states of the
resulting automaton. The symbol intersection in line 19 also benefits from the po-
larity encoded in the dual symbol tables, and can detect conditions where Boolean
conjunctions simplify to false. In such cases no edge is created, and the block of
statements in lines 15 to 20 is not executed (not shown in the algorithm).

An example depicting intersection is shown in Figure 5.4 for {a[*];b}&&{c;d}.
Sequence intersection produces an automaton that has in the worst case O(mn) states,
where m and n are the number of states in the input automata. The algorithm is

proven to terminate because only a finite number of states can be added to the
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1: FUNCTION: RANGEREPEAT(low, high, A)

2: if high = 0 then //high > low is assumed

3. create new automaton A; = ({¢1}, 0. {1}, {a1}) //Q1,01, 11, Fi
4: else

5. create new automaton A; = A

6: for ¢« 2 to high do

7: A; — CONCATENATE(A;, A)

8: if ¢ < (high — low + 1) then

9: I — LU{s|s€Q,swasin I (in A) before the concatenation}
10:  if low = 0 then

11: F1 — F1 U ]1

12: return A,

Algorithm 5.7: Automata range repetition algorithm.

construction set.

5.3.4 Repetition with a Range

Sequence and Boolean repetition with a range is required to implement the two such

items from Proposition 5.3:

A%(b[*ij]) = RANGEREPEAT(i, j, A®(b))
A%(s[*i:j]) = RANGEREPEAT(i, j, A®(s))

The PSL specification indicates that sequence repetition with a range can be defined

using sequence disjunction as follows:
.. def . .
s[*ig] = s[M] -] s[*] (5.2)

The above equation could be used to form a rewrite rule in the next section; however,
since the actual syntactic size of the expression on the right side is not fixed in size
and is a function of the parameters ¢ and j, it is more efficient to develop a particular
algorithm for the range repetition, both in the interest of efficient rewriting and for
the actual creation of automata. Whether for a Boolean or a sequence, the range
repetition of an automaton is performed using the algorithm in Algorithm 5.7.

The algorithm assumes that the upper bound for the repetition is greater or equal
to the lower bound. The special case high = 0 is handled separately in line 3, and
produces the empty automaton that was shown in Figure 5.2 b). When high > 0,

the returned automaton is initially formed as a copy of the argument automaton
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(line 5). Lines 6 and 7 concatenate additional copies of the argument automaton
high — 1 times (line 6: for loop from 2 to high). When high < 2, this block of lines
has no effect since no concatenations are needed. Normally, concatenation does not
include the initial states of the right-side automaton in the set of initial states of the
resulting automaton. Lines 8 and 9 counteract this and are the mechanism by which
the repetition range is implemented. The first high — low + 1 concatenations’ initial
states will remain as initial states for the resulting automaton. This has the effect of
triggering the concatenation chain for a certain prefix of copies of the concatenated
argument automata, such that different lengths of matching can be produced. This
technique is referred to as initial-state prefix triggering.

Another technique for implementing range repetition consists in instead adding
the final states of the left-side automaton in the concatenation step to the set of final
states when ¢ > low. This is not optimal as the further concatenations in the loop
involve progressively more and more final states from the growing left side automaton,
and hence more edges are generated. Even though minimization can reduce the size of
the automaton, the algorithm should strive to be the most efficient possible especially
when a large range is used. This technique is referred to as final-state suffix signaling.

The two range repetition techniques introduced above are illustrated in Figure 5.5.
In this figure the concatenation symbols are meant to indicate that concatenations
were performed, and for simplicity no edges were actually represented. The focus of
this figure is on the initial states and the final states that remain after the concate-
nations have been performed.

In both techniques, the resultant automata match anywhere from two to five
instances of the argument automaton A. The only disadvantage is that with final-
state suffiz signaling (at the bottom of the figure), concatenations are performed on
a left-side automaton that has more and more final states, and a growing number
of edges come into play. For example, if a sixth instance of automaton A is to be
concatenated at the end of the graphs in Figure 5.5, the concatenation algorithm in
Algorithm 5.2 will cause many more edges to be added in part b) than in part a).
The range repetition algorithm creates an automaton that is linear in size complexity

with respect to the size (number of states) of the argument automaton.

5.3.5 Rewrite Rules

The items in Proposition 5.3 that have not been treated thus far have a common

characteristic: they have the form A%(z) = A%(y). More generally, the link between
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a)
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b)
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Figure 5.5: Range repetition strategies for: a) initial-state prefix trig-
gering and b) final-state suffix signaling. The automaton A was re-
peated with the range low = 2, high = 5.

the arguments can be expressed as a rewrite rule of the form = — y, where x is
rewritten to y. Expression rewriting (or term rewriting) is a practical way of allowing
the checker generator to handle the large amount of sequence operators, while actually
only implementing algorithms for a much smaller number of operators in the tool’s

kernel.

The rewrite rules used are either derived from the SERE sugaring definitions
in Appendix B in the PSL specification [111]| directly, or with small modifications.
Although a few rewrite rules may appear intuitive, they are nonetheless included for

completeness. Each rule is explained immediately following its appearance.

{r} — r

The above rule is straightforward, given that semantically the curly brackets are used

only for grouping and their main effect is instead in the syntax of SEREs.
c r1&c_ry — {{c_rm}&&{c_ri[*I}} | {{c_ri:[*|}&&{c_r2}}

The preceding rule for non-length matching SERE intersection attempts to extend
the shortest of the two SEREs with a [*] in order to use length matching intersection.
Since the shorter of the two SEREs can not be known a priori, the two possibilities

are modeled and connected with SERE disjunction.
c_rywithine ro —  {[*ic_ri;[*]} && {c_r}

When a compound SERE must be matched within the matching of another, the
first SERE is made to start at a varying point with respect to the second SERE by
concatenating a leading [*]. The SERE is also lengthened with a trailing [*] so that
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mapping to length matching intersection can be performed. The within rewrite and
the non-length matching intersection rewrite (&) both follow directly from the PSL
specification [111].

b¥]  —  b[*i]

s —  s[*iw]

The single number repetition, whether for Booleans or sequences, is rewritten to the

range repetition given that the range repetition must also be implemented.

b[*i:inf]  —  b[*i];b[*]

s[*:inf]  —  s[*i];s[*]

When the upper bound in a range repetition is infinite, the sequence or Boolean is
repeated the minimum number of times, and is subsequently allowed to be matched
any additional number of times (including 0 times), hence the concatenated Kleene

closure of the sequence or Boolean.

[l —  truel*]
[¥i] —  true[*i]
[*i:j)] —  true[*i:j]
[¥¢:inf] —  true[*::inf]

The various forms of [*] repetition that do not specify a sequence or Boolean implicitly

apply to the Boolean true, and can be rewritten as such, as shown above.

U I
s+l — sis[¥]
[+] —  true; true[*]

The various forms of [+] repetition above correspond to repetitions of one or more
instances, and can be rewritten using [*] repetition. The three previous groups of

rewrites follow directly from the PSL specification [111].

b—>] — b[—>1]
bl->k] — b[->kk]
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Both forms of goto repetition above are rewritten to more complex forms of goto
repetition. The goto repetitions are actually defined differently in the PSL specifica-

tion [111], as shown below:

o->] = ~*b (5.3)
>k = {~[*]b}[*K] (5.4)

The form chosen in this work is equivalent to the one in the PSL specification, and
more closely reflects how those operators are actually implemented in the checker
generator. In some cases, mapping an operator to a more complex variant of the

same operator can be a simpler solution.
b[->k:l]  —  {~b[*];b}[*k:l] (5.5)

The goto repetition with a range is the most complex of goto repetitions, and is
rewritten using a different approach than in the PSL specification. In the PSL spec-
ification [111], this operator is defined as:

D>kl b=>k] ... | b[->1]
The expression on the right side has the disadvantage that its size depends on the
values of k and {. The form chosen in (5.5) is more efficient for term rewriting because
of its fixed size. The following proof shows the equivalency of the version in the PSL

specification [111] with the version used in (5.5):

b[->k] | ...| b[->]
& A~OLOFR |- {03 //using (5.4)
& {~O[*]0H* K //using (5.2); Q.E.D.

All rewrite rules developed in this work do not have variable right-hand sizes, and a
more static form is preferred for performance reasons and for simplicity of implemen-

tation in the checker generator.

It should also be stated that when devising rewrite rules, proper care must be
taken to ensure that the set of rewrite rules is terminating (Definition 2.13). A non-
terminating set of rewrite rules runs the risk of entering an infinite substitution cycle,
which is obviously not desired. For example, if the right side in (5.5) was {b[->]}[*k:[],

the set would be non-terminating. Here is how the non-terminating, thus incorrect
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set of goto rules would appear:

b->] —  b[->1]
b->k] — [->kik]
b->k:l]  —  {b[->]}*k:]

In the above rules, there is an infinite loop as the first rule uses the second, the second
uses the third, and the third rule uses the first.

b=>kinf] — —  {b[->k]} ; {{*OIHH{[*]:b} (5.6)

Goto repetition with an infinite upper bound is rewritten above in a slightly different
manner than the definition in the PSL specification [111]. The PSL specification has

the following expression as the right side:

b->kinf] < b=>k] | {b[->K]:[*]:0} (5.7)
The forms in (5.7) in (5.6) are equivalent because the expression b[->k] can be tem-
porally factored. Temporally factoring a sequence corresponds to removing a common
temporal prefix in two subsequences, and concatenating it with the reduced subse-
quences. In the case used above, the temporal factoring of b[->k] from the disjunction
requires the use of the empty SERE, and yields the form in (5.6). The factored form
was chosen for efficiency reasons to avoid building an automaton for b[->k| twice.

Temporal factoring can also apply to common suffixes in sequences.
bj=i] — b[=i:] (5.8)

The single parameter non-consecutive repetition shown above is rewritten to a more
complex form of the same operator. This operator is defined differently in the PSL
specification [111]:

b=i] = {~ Y~ (5.9)

The approach chosen for this operator was also to map it to a more complex version

of the same operator.
b=i:j]  —  {~O[*:}[*izg; ~0[*] (5.10)

Non-consecutive repetition with a range, as shown above, is implemented with a
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rewrite that differs from the PSL specification |[111]. The documented definition of

non-consecutive repetition with a range is:

.. def . .

b=ij] = b[=i]|...] b[=]]
The expression on the right side once again has the disadvantage that its size depends
on the values of the parameters. Similarly to the goto repetition case, the form chosen
in (5.10) is more efficient for term rewriting because of its fixed size. The following
proof shows the equivalency of the definition in the PSL specification [111] with the

version used in (5.10):

O[=i] | ...| b[=J]
& {0 | {0 F T~/ /using (5.9)
& { {~b[*]:0}*e) | - | {~b[*];b}[*7] 5 ~b //temporal suffix factoring

& {~0[*]:b}[*i:5] ; ~b //using (5.2); Q.E.D.

The above derivation is used to create a rewrite rule with a fixed size on the right

side.
b[=i:inf] = b[=1]; [¥]

The final rewrite rule left to cover is the goto repetition with an infinite upper bound,
which follows directly from its definition in the PSL specification [111].

This concludes the implementation of rewrite rules for sequences, and together
with the algorithms from the previous subsections, automata for recognizing PSL
sequences can be constructed. Sequences form an important part of properties, which
are implemented next. Surprisingly, many algorithms devised for sequence operators
are also reused at the property level. Rewrite rules also play a very important role

for handling the large amount of property operators.

5.4 Implementation of Properties

Continuing the bottom-up construction of PSL directives now leads to the imple-
mentation of properties. The automaton for a property p is denoted A”(p). The
superscript © is used to indicate the context of properties. It does not represent a
new automaton type, and is used to remove the ambiguity between the automaton
for a Boolean used as a property and the automaton for a plain Boolean, from Sec-

tion 5.2. An automaton A’ is defined exactly the same way as an automaton A
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from the previous chapter, and all automata algorithms from that chapter can be
used here with A” automata as arguments. The superscript is particularly important
in properties because A”(b) # AP(b) : the left side builds an automaton from a
Boolean b appearing as property, whereas the right side builds an automaton for a
plain Boolean, appearing in a Sequence for example.

The automaton implementation of properties is presented below in Proposition 5.4,
in a form that resembles the definition of properties (Definition 2.10) as most as

possible, so that the link between syntax and implementation can be better observed.

Proposition 5.4: If ¢ and j represent nonnegative integers with j > ¢, k£ and [
represent positive integers with [ > k, b is a Boolean, s is a Sequence, f p is a
FL_Property, p is a property, then the automaton implementation of properties,

denoted A”(p), is performed as follows:

AP (p) :
o AP (forall ident in boolean: p) = CHOICE(A”((D)igent—true)s A" (D) igons false))
o AP (forall ident in {i:j}: p) = FORALLRANGE(:, j, ident, p)
o A”(f p) = |defined in next line]
AP(f _p
o A”(b) = FIRSTFAIL(AZ(D))
e A”((f_p)) = A"(f_p)
e AP(s!) = FIRSTFAILSTRONG(A”(s))
o AP(s) = FIRSTFAIL(A®(s))
o AP(f pabortb) = ADDLITERAL(AT(f p), H(~D))

(

(

) :

(

(

(

(

(f

e AP(1b) = FIRSTFAIL(AP(~D))

o AP(f_p1 && f_p2) = CHOICE(A”(f_p1), A"(f _p2))
e AP(b || f_p) = AT({~b}|-> f_p)

o AP(b—> f_p) = A"({b} [-> f_p)

o AP(b; <=> by) = FIRSTFAIL(AB(b; <> by))

o A"(always f_p) = A"({[+]} |-> f_p)

o AP(never s) = AP({[+]: s} |-> false)

o Af(next f p) = AP(next[1](f _p))

o Af(next! f p) = AP(next![1](f _p))

o AP (eventually! s) = AP({[+]:s})

e AP(f puntill b) = AP((f_p until b) && ({b[->]}!))

o AP(f_puntilb) = AT({(~0)[+]} [-> f_p)

e AP(f puntill _b) = AP((f_p until_ b) && ({6[->]}"))
o AP(f_puntil_b) = A"{{(~0)[+]} | {o[->]}} |-> f_p)
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o AP(by beforel by) = AP({(~b1&~b2)[*] ; (b1&~b3)}!)
o AP(by before by) = AP({(~b1&~b2)[*] ; (b1&~D2)})
[ AP b1 before!_ bg) = AP({(Nbl&Nbg)[*] , bl}l)

o AP(by before  by) = AP ({(~b1&~b5)[*] ; b1})

o AP(next[i](f _p)) = AP(next_event(true)[i + 1](f _p))

o A (next![i](f _p)) = AP(next event!(true)[i + 1](f _p))

o A(next_a[i:j](f _p)) = AP(next event a(true)[i +1:5+1](f _p))
p)) AP (next_event _al(true)[i +1:5 + 1](f_p))

o A"(next efi:j](b)) = AP(next event e(true)[i +1:j + 1](b))

o A(next_el[i:f](b)) = AP(next event el(true)[i + 1:j + 1](b))

o AP(next_event!(b)(f_p)) = AP(next_event!(b)[1](f _p))

o AP(next_event(b)(f_p)) = AP (next_event(b)[1](f _p))

o A”(next_event!(D)[K](f _p)) = AF(next event al(b)[k:k](f p))

o AP (next_event(b)[k](f_p)) = AF(next_event a(b)[k:k](f_p))

o AP(next_event_a!(b)[k:|(f_p)) =

AP (next_event a(b)[k:1](f _p) && {b[->1]}))

o A(next_event a(D)[k:A](f_p) = AP{b[->K:0} |-> f _p)

o AP(next_event el(by)[k:l](b2)) = AP({bi[->k:l] : be}!)

o A(next_event e(by)[k:l](b2)) = AP({bi[->k:] : bo})
(
(

(b1
(
(
(
(
(
(
o AP(next_alli:j](f_
(
(
(
(
(
(
(

]
b

e AP(s |-> f p) = Fuse(AS(s), AP(f_p))
e AP(s|=> f_p) = A"({s;true} |-> [_p)

The following example motivates the importance of the superscript symbols in the

automata construction formalism.
AP(Sl |—> 82)

In the expression above, s; and sy are sequences; however, sy is used directly as
a property whereas s; is the antecedent of a suffix implication (which must be a
sequence proper). After one step of processing using the results above, the property

reduces to:

FUsE(A%(s1), A" (s2))

Here it is apparent that s; and sy are not interpreted in the same manner (super-

scripts). Continuing one step further:

Fuse(A®(s1), FIRSTFAIL(A®(s5)))
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Now both sequences can be constructed using the procedures in the previous section.

Many properties are implemented by either directly expressing them as sequence
expressions, or by using the algorithms developed for sequences. In general, the
implementation of properties falls in two categories: base cases or rewrite rules. In
the following subsections, each property will be explained immediately following its

appearance.

5.4.1 Base Cases for Properties

In this subsection, properties that require separate algorithms are treated. Some
properties make direct use of sequence algorithms but can not be expressed as rewrite

rules, therefore these properties are also treated here.
AP (forall ident in boolean: p) = CHOICE(A” ((p)ident—true), AP((p)identhfaBe))

The forall property repetition over a boolean is implemented by disjoining the au-
tomata for two versions of the property, one where the identifier is substituted with
true and the other with false. The following rewrite is not a syntactically valid rule,

although it appears logical:
forall ident in boolean: p —  (D)igent—true && () 4oni false

Rewrite rules must adhere to the formal definitions of the language, and in the case
above, the FL_Property conjunction operator && can not be used because forall
operates on the type “Property”.

As will be explained further, property conjunction is actually implemented us-
ing automata disjunction. Since two failure matching automata representing sub-
properties must both hold, both automata must be triggered to find any possible
failure. This explains why the CHOICE() algorithm was invoked in the first rule in
this subsection (forall), while intuitively the forall property operator implies that each

replication must hold (i.e. that their conjunction must hold).
AP (forall ident in {i:j}: p) = FORALLRANGE(, j, ident, p)

Implementing the forall operator over a range of integers is performed using the
FORALLRANGE() algorithm presented in Algorithm 5.8. The algorithm closely resem-

bles the implementation of the Boolean version of forall, except that multiple choice
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1. FUNCTION: FORALLRANGE(low, high, ident, p)
2: create new automaton A = A" ((p)ident—iow )

3: for i < low + 1 to high do

4. A« CHOICE(A, AT ((D)ident—i))

5. return A

Algorithm 5.8: Forall algorithm for property p that uses identifier
tdent; © and j are nonnegative integers.

operations are required to handle the range of values required. This is performed by
the for loop in line 3. The loop starts at low + 1 because a choice operation is not

required for the first instance corresponding to the case ident < low (line 2).

AP((f_p) = A"(f_p)

Parentheses are used only for grouping and can be dropped as shown in the imple-

mentation above.

AP(1b) = FIRSTFAIL(A®(~b))
AP(by <=>by) = FIRSTFAIL(A®(by <—> by))

Certain properties such as negation and equivalence are relegated to the Boolean layer
in the simple subset. The negation and equivalency of properties, as allowed in full
PSL, create properties that are not suitable for monotonically advancing time. The
FIRSTFAIL() algorithm is used when Booleans and sequences are used at the property

level, as explained next.

AP(b) = FIRSTFAIL(AP(b))
AP(s) = FIRSTFAIL(A®(s)) (5.11)

When Booleans and sequences are used as properties (above), their non-occurrence
must be detected. The automata built by the algorithms from the previous chapter
perform precisely the task of Boolean and sequence matching. When used as proper-
ties however, a Boolean or sequence’s non-fulfillment indicates an error. In dynamic
verification this can be interpreted as the matching of the first failure. Therefore,
a separate procedure is required to transform the matching automaton into a first-
failure matching automaton.

The failure algorithm implements a form of negation; however this does not cor-

respond to classical automata negation because for run-time monitoring, it is more
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practical to report only the first failure for a given activation. The following example

shows why negation is not appropriate in dynamic verification.

Example 5.1: Consider the following assertion that states that whenever a is true,

b must be true in the next two cycles:
assert always {a} |[=> {b[*2]};
The sequence {b[*2]} is modeled by the automaton
A = A% ({b[*20})

and describes the language
L(Ay) = { {0:b} }

Because the sequence is used as a property, its non-occurrence must be detected
because it is expected to hold. The language desired by this property is modeled by
the automaton

Ay = FIRSTFAIL(A;) = A”({b[*2]})

whose language should intuitively correspond to

L(Az) = { {~b}, {bi~b} }

As will be shown further, the FIRSTFAIL() algorithm transforms an automaton to
match the first non-occurrence instead. In this example, the first failure occurs when
b is false in the first cycle of the right side, or when b is true then followed in the
next cycle by a false b. This represents the optimal error reporting behavior desired
for run-time debugging using the assertion. The point of the example is to show that
negation is not appropriate for this type of failure transformation. Below is the actual
language that would be matched if negation was used (the NEGATE() algorithm was
described in Section 4.2.4):

As = NEGATE(A,)
L(A3) - Z(A1> - { {[*01}7 {b}7 {Nb}7 {b'Nb}7 {Nb'b}v {Nb'Nb}u {b’b’b}7 .- }
The problem is that L(Aj) represents all traces except {b;b}, and thus reports a

series of false failures, ranging from a failure in the first cycle of a successful trace,

and infinite failures after three cycles or more. For these reasons the first completed



5.4. Implementation of Properties 113

1: FUNCTION: FirRsTFAIL(A) //Q.,6,1, F
2 if [N F + 0 then
3:  create new automaton A; = ({¢:1},0, {¢:},0)

4: else

5. A; < STRONGDETERMINIZE(.A)

6: add a new state gf to Q1 //qs used as the fail state

7. for each state ¢; € Q1 — {qs} do

8: create set of primary symbols P = ()

9: for each edge (s,0,d) € 01 | s =¢; do

10: add o’s primary symbol(s) to P

11: if P # () then

12: for each assignment w of primary symbols in P do
13: if #(s,0,d) €6, | s=q, (0), = true then

14: o « create or retrieve symbol in ¥ for w

15: 0 — 6 U{(¢,0.q7)}

16: else

17: o < create or retrieve existing symbol in ¥ for true
18: 0 — 0 U{(¢,0,q97)}

19:  remove all edges (s;,0;,d;) € 6; for which d; € Fy
20:  Fy —{qr}
21: return A; //|Fi| <1, as required for FIRSTFAILSTRONG()

Algorithm 5.9: Failure matching algorithm.

failure represents much more appropriate information that should be reported by the
automata. In this example L(Ay) C L(A3).

The transformation algorithm used to produce a failure matching automaton from
a normal occurrence-matching automaton is shown in Algorithm 5.9. The algorithm
first starts by checking for the empty match. If the argument automaton accepts
the empty match (i.e. if an initial state is also a final state), then the automaton
can never fail, thus the failure automaton that is returned corresponds to the null

automaton (line 3).

When the input automaton does not admit the empty match, the argument au-
tomaton is determinized (line 5) and a special failure state is added (line 6). In the
automata used in this work, the term deterministic does not imply completeness, thus
an edge does not have to exist for each symbol in each state. To be able to detect
only the first failure, the resulting automaton has to have only one active state for
a given activation. In order for the automaton to be in only one state, it must be

(strongly) deterministic.

The FIRSTFAIL() algorithm works by identifying the conditions where a state does
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0 true @

Figure 5.6: Automaton for A”(true) and FIRSTFATL(A® (false))

©

Figure 5.7: Automaton for A”(false) and FIRSTFAIL(AZ (true))

not activate a successor state. This process is repeated for each state except for the
special failure state (line 7). When a state has outgoing edges, the for loop in line 12
and the if statement in line 13 add precisely the Boolean conditions where a given
state does not activate a successor state. The failure conditions are incorporated onto
an edge leading to the failure state, hence the failure automaton is produced. When a
state has no outgoing edges, it fails for every condition therefore it directly activates
the final state thru a true edge (lines 17 and 18). Line 19 performs the necessary
pruning, given that former final states are no longer true final states. Consequently,
former final states become unconnected and in line 13 the special final state that was

added in line 6 becomes the true final state.

The failure transformation algorithm is exponential (worst case) in the number
of states in the argument automaton because of the required strong determinization,
although in practice the increase in number of states is manageable. The requirement
for beginning in a single state for a given activation does not preclude the automaton
from being retriggered at a further clock cycle for another failure matching, or even
retriggered while a previous matching is taking place. In automata, multiple succeed-
ing activations can be processed concurrently. This allows failures to be identified in

a continual and dynamic manner during execution.

Figure 5.6 shows how the true automaton appears using the Boolean construction
from the previous chapter. When used as a property, the failure transformation
algorithm is applied to the true automaton and the null automaton in Figure 5.7 is
produced. No failures can result from a matching for true, hence the null automaton

results.

Alternately, Figure 5.7 also shows the false automaton (null automaton), and
Figure 5.6 shows the result of applying FIRSTFAIL() to the null automaton. Since the
null automaton does not match anything, it fails directly, hence the true automaton

is produced by the failure algorithm.
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Figure 5.8: Automaton for A%({b[*0:1];c})

Figure 5.9: Automaton for FIRSTFAIL(A®({b[*0:1]; c}))

Example 5.2: To illustrate the effects of the FIRSTFAIL() algorithm, a sequence that

matches the Boolean ¢ optionally preceded by Boolean b is analyzed.
{b[*0:1]; ¢}

Figure 5.8 shows the normal matching automaton for the example sequence. The
automaton’s final state is activated when the trace behaves as the sequence indicates.
Figure 5.9 shows how the same sequence’s failures are detected, as required when the
sequence is used as a property. In this case the automaton’s final state is activated

when the trace does not respect the behavior dictated by the sequence.

AP(s!) = FIRSTFAILSTRONG(A”(s)) (5.12)

Implementing the strong sequence from Proposition 5.4 also involves constructing a
failure automaton, as shown above, but with a slight modification. The FIRSTFAIL-
STRONG() algorithm calls the FIRSTFAIL algorithm, and subsequently adds edges
that cause the failure automaton to transition from any active state to the final state
when the end of execution (EOE) signal is active (logic-1). If the automaton is pro-
cessing a sequence when the EOE occurs, an error is detected and the automaton
activates a final state. When a sequence completes successfully, no states are active
in the failure automaton for the corresponding activation, and the EOE signal has no
effect. The semantics of the EOE signal are such that the last valid cycle of execution

in the finite trace is the cycle immediately before the EOE is asserted.

For example, applying the strong failure algorithm to the automaton in Figure 5.8

yields the automaton in Figure 5.10. The FIRSTFAILSTRONG() algorithm that is
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Figure 5.10: Automaton for FIRSTFAILSTRONG(A®({ b[*0:1];c}))

FUNCTION: FIRSTFAILSTRONG(.A)
A — FIRsTFAIL(A) //(Q,6,1,F)
//here |F| <1
if |[F|=1 (i.e. F={f}) then
0, < create or retrieve symbol in Y for the EOE signal
for each state ¢ € Q do
6 —0U{(q, 00, f)}

return A

Algorithm 5.10: Strong failure matching algorithm.

presented in Algorithm 5.10 first builds the failure matching automaton by calling
the FIRSTFAIL() algorithm (Algorithm 5.9). If the failure automaton has no final
states, it is returned directly. In such cases the property can not fail, therefore the
end of execution is irrelevant and there are no edges to add. If the automaton has
one final state (it can have at most one, according to the FIRSTFAIL() algorithm),
then lines 5 to 7 add an EOE edge from each state to the final state. This way, when
the EOE signal is true and a state is active, the automaton indicates a failure by
activating its final state.

The semantics produced by the algorithm are such that when the end of execution
occurs, even if the Boolean conditions are actually satisfying the sequence, an error

is signaled none the less. For example, in the property
always a —> next! b

if a occurs on the cycle before EOE is asserted, even though b may be true in the
EOF cycle, it is too late and the automaton reports an assertion failure because the
next cycle for a did not occur. In this case, it was not because b did not manifest

itself, but rather because the execution ended before b’s cycle.
AP(f pabort b) = ADDLITERAL(AT(f p), H(~D))

Handling the abort property also involves modifying the automaton of the property
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FUNCTION: ADDLITERAL(A, H)

o; < create or retrieve symbol in X for H

for each edge (s,0,d) € 0 do
o, < create or retrieve symbol in X for o A o;
(s,0,d) < (s,04,d)

return A

Algorithm 5.11: AddLiteral algorithm.

Figure 5.11: ADDLITERAL(FIRSTFAIL(A%({b[*0:1];c}), H(~a)))

argument, as illustrated above. When the abort operator is encountered in the syntax
tree, the automaton for the argument property f p is built and a new primary
symbol for the negated Boolean of the abort condition is created. The function
ADDLITERAL() then adds a literal (a conjunct) to each edge symbol in the property
automaton. The added literal corresponds to the negation of the abort’s Boolean such
that when the abort condition becomes true, all edges are inhibited from activating
successor states, and the automaton is reset.

Since the transformation of properties to automata is also recursive in nature,
for a larger property only the portion of the automaton that the abort operator was
applied to will have the added literals. Furthermore, when multiple abort operators
are nested in a property, each abort will contribute its own additional literal only to
the portion of the whole automaton to which it applies.

The ADDLITERAL() algorithm is presented in Algorithm 5.11. The algorithm
starts by creating an extended symbol for the HDL expression of the literal to be
added (line 2). Then for each edge in the input automaton (line 3), a new symbol
is formed with the given edge’s symbol and the added literal’s symbol (line 4). This
new symbol replaces the old one on the given edge (line 5). An example for the abort
implementation is shown in Figure 5.11. Aborting the automaton in Figure 5.9 yields
the automaton in Figure 5.11. In the resulting automaton, the abort condition a

inhibits all edges from activating their successor states, and the automaton is reset.

AP(f_p && f_ps) = CuOICE(A"(f_p1), A”(f_p2))

Property conjunction, not to be confused with the length matching sequence intersec-
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tion, is implemented using the same algorithm that was used for sequence disjunction,
namely CHOICE(). The disjunction is required because a failure by either argument
property is a failure for the && property. Both argument automata are simultane-
ously activated by the parent node’s sub-automaton in the syntax tree, and when

either one reaches a final state, a failure has been detected.

The discussion on negation made earlier becomes even more relevant here, given
that the implementation of property conjunction uses automata disjunction. This
is reminiscent of De Morgan’s law where a complemented conjunction becomes a
disjunction. Negation is present in implementations of PSL for formal methods, and
it should not be surprising to see it here as well. Given the run-time semantics desired

for the implementation targeted by this work, the negation is not ideal.
A(s |-=> f_p) = Fuse(A>(s), A"(f_p)) (5.13)

Overlapped suffix implication is implemented using a sequence matching automaton
directly for the antecedent sequence, which is then fused with the automaton for the
consequent property, as shown above. When used in the context of properties, the
fusion algorithm is the same algorithm that was devised for sequences in the previous
section. The fusion algorithm introduced in Algorithm 5.5 avoids building fusion
edges containing the EOE primary symbol, such that activations (antecedents) that
occur at the end of execution do not cause a failure in strong properties. This was

implemented by the extra condition in line 6 in the fusion algorithm.

Using fusion in properties does not create unwanted side effects, considering that
the empty sequence can not cause a match in the antecedent of suffix implication.
The fusion in effect ignores the empty match in both sides, which creates an automata

behavior that is consistent with the formal semantics of PSL [111].

As an example, when a sequence automaton’s initial state is a final state, and
this sequence is used as the antecedent to overlapped suffix implication, the empty
match can not cause the consequent to be checked. As was observed previously, the
failure transformation algorithms can not produce automata where an initial state is
also a final state (i.e. no sequence automaton, when used as a property, can accept
the empty match). For these reasons, the fusion has no undesirable side effects for

implementing suffix implication.

Example 5.3: Fusion allows the proper processing of the following assertions:

assert always {a} |-> { {b} && {b;b} };
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assert always {0[*0:1]} |-> p;

In the first line, the length-matching intersection results in a property automaton for
the consequent that is identical to Figure 5.6 (the true automaton). The assertion
thus fails whenever a is observed. In the second line, b must be asserted once in order

for the consequent to be checked.

[tems in Proposition 5.4 not treated thus far do not need to be explicitly handled
in the checker generator kernel. If such properties can be expressed using other
properties or sequences, they are rewritten when they are encountered during checker
generation. In such cases, these operators are transparent to the checker generator
kernel. The properties that can be implemented by rewrite rules all have the form
AP(z) = AP (y), and are implemented with a rewrite rule of the form x — v, similarly

to what was done for sequences.

Using the sugaring definitions for properties from Appendix B in the PSL specifica-
tion [111] as rewrite rules is generally not feasible because of the restrictions imposed
by the simple subset. For this purpose, a set of rewrite rules is introduced that is
suitable for the simple subset of PSL, within the context of dynamic verification. The

rules are not intended to extend upward to full PSL.

The following sugaring definition shows an example of why such definitions can

generally not be used as rewrite rules:

always p & — eventually! —p (Gp e [111])

The above definition for always can not be used in the simple subset because negating
a full property is not defined. Moreover, the argument of the eventually! operator is
restricted to a sequence, and sequences can not be negated. Rewrite rules that are

compatible with the simple subset must be developed for the checker generator.

In some cases, the easiest way to handle an operator is by rewriting it using a more
complex operator. Since the more complex operator has to be handled, particular code
for the simpler cases is avoided. For example, rewriting next a using next event a
may appear overly complex; however, since the next event a operator already exists
and must be supported, it subsumes all simpler forms of this family of operators.
The rewrite rules for properties are categorized in three groups and are treated in
the following three subsections. Although a few rewrite rules may appear intuitive,
they are nonetheless included for completeness. Each will be explained immediately

following its appearance.
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5.4.2 Rewrite Rules Based on Suffix Implication

The rewrite rules in this subsection all have the common characteristic that the right
side makes use of the overlapped suffix implication operator defined in properties.
Unless specified, the term suffiz implication is meant as a short form for overlapped
suffix implication (as opposed to non-overlapped suffix implication). As was the
case in sequences, proper care must be taken to ensure that the rewrite rules are

terminating (Definition 2.13), and that no infinite loop is possible.

bl fp — {~0} > f_p

In the simple subset, one of the properties used in disjunction must be Boolean. The
rewrite rule is based on the fact that if the Boolean expression is not true, then the
property must be true; otherwise the property is automatically true. For simplicity
in the presentation of the || operator in Proposition 5.4 (and in Definition 2.10), the
Boolean expression is shown as the left argument; an equally acceptable disjunction
could have the form f p || b.

b—>f p — {b}|->f_p

Since a Boolean in curly brackets is a valid sequence, the property implication above

can be rewritten using a suffix implication.

sl=>f p — {s;true} |->f p

The rewrite rule for non-overlapped suffix implication above follows from its sugaring
definition in Appendix B in the PSL specification [111]. The simple subset does not
affect this definition, therefore it can be used directly as a rewrite rule. The approach

consists of concatenating an extra true cycle at the end of the antecedent sequence.

always f_p — {[+]} |-> f_p (5.14)

As explained in Chapter 2, suffix implication has a sequence as the antecedent, and a
property as a consequent. When a property must always be true, it can be expressed
as the consequent of a suffix implication with a perpetually active antecedent ([+] is
sugaring for true[+]).

never s — {[+]:s} |-> false
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When a sequence must never occur, a property that fails instantly is triggered upon
detection of the sequence. Since the sequence must never occur, it is continually
activated by the fusion with [+]. The overlapped suffix implication does not have
a clock cycle delay between antecedent and consequent thus the rewrites for never
and always offer the correct timing. The never operator also accepts a Boolean as its
argument but for simplicity was not treated. In that case, the following rewrite rule

can be used to express the Boolean as a simple sequence.
never b —  never {b}

It should be noted that the implementation of never described above does not respect
the semantics defined in the PSL specification [111]. As stated in an issue to be
addressed in the next revision of PSL [113|, if r is a SERE, “never {r}” behaves in
a counter-intuitive manner when a finite trace terminates while 7 is being matched.
Intuitively, it is instead the strong form “never {r}!” that should be specified. The
rewrite rule above has been proven to align with the strong never, and thus offers the
correct semantics. The proof was conducted by Morin-Allory using the PVS theorem
prover [132|. To summarize the problem, the strong never is not allowed in the simple
subset of PSL, yet it is its semantics which are the most appropriate for the run-time

behavior of the never operator.

fopuntild — {(~O)[+]} |-> f_p

The until operator states that the property f p must be true on each cycle, up-to,
but not including, the cycle where the Boolean b is true. In the rewrite rule above, the
implication has the effect of enforcing the property f p for each cycle of consecutive
~bs. In the run-time semantics used in this work for the until operator, the property

is allowed to fail for multiple start times when the Boolean b is continuously false.

fopuntil b = {{(~O)+]} O[>} > fp

The implementation of the overlapped operator until is similar to the non-overlapped
until operator with the addition of a condition for enforcing the checking of the prop-

erty f p, namely that it must also hold for the cycle where the Boolean b is true.

next event a(b)[k:A](f _p) — {b[->KI} |-> f »p
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The next _event a property above states that all occurrences of the next event within
the specified range must see the property be true. This can be modeled using a goto
repetition with a range as an antecedent to the property. The antecedent triggers the
monitoring of the property f p each time b occurs within the specified range. Once

more the suffix implication operator was used as a key component in a rewrite rule.

5.4.3 Rewrite Rules Based on Sequences as Properties

Some properties from Proposition 5.4 can be implemented by expressing their seman-
tics using sequences. Since the property is rewritten to a sequence, the sequence takes
the place of the property; the sequence is thus interpreted as a property, using the
implementation in (5.11) that makes use of the FIRSTFAIL() algorithm.

bl before bg — {(Nbl&Nbg)[*] , (bl&NbQ)}

The before property above can be modeled by a sequence. When b; should happen
strictly before bg, it can be expected that by will occur simultaneously with ~b, (right
side of the concatenation). However, this does not need to happen immediately,
therefore the condition can be preceded with an arbitrary number of cycles where
both Booleans are false (left side of the concatenation). All other outcomes indicate
a violation the expected behavior, and since this sequence is used as a property, the

FIRSTFAIL() algorithm resulting from (5.11) will detect these violations.
bl before_ bg — {(Nbl&Nbg)[*] , bl}

The overlapped operator before  states that b; must be asserted before or simultane-
ously with by. This rewrite is very similar to the previous rewrite, with the exception
that the constraint on b, is relaxed on the right side of the concatenation. This indi-
cates that when b; is matched, by could have been true also, and the overlapped case

is therefore allowed, as required by the property’s semantics.

bl before! b2 — {(Nbl&Nbg)[*] ' (bl&Nbg)}l
b1 before!_ b2 — {(Nbl&Nbg)[*] ' bl}l

The rewrite rules for the strong versions of the before properties are very similar to
the rules for the weak versions presented previously, with the exception that strong

sequences are used, thereby indicating that they must complete before the end of
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execution. Strong sequences are implemented in (5.12).
next_event e(by)[k:l](b2) — {bi[->k:] : bo}

The next _event e property states that the Boolean by should be asserted at least
once in the specified range of next events of the Boolean b;. This behavior is modeled
using a goto repetition that is fused with the by consequent. Since the sequence is used
as a property, once the by consequent is observed in the proper range, the sequence
has completed successfully and will not indicate a failure. All other conditions will
be reported as failures by the implementation of sequences at the property level in
(5.11).
next event el(by)[k:l](b2) — {bi[->k:l] : bo}!

The strong version of the next event e property is implemented similarly to its weak

counterpart, with the exception that a strong sequence is instead used.
eventually! s —  {[+]:s}! (5.15)

Rewriting the eventually! operator is done by enforcing that the sequence s must
complete before the end of execution. The sequence may start at any cycle after
the eventually! property is activated, hence the fusion with [+]. For non degenerate
sequences s, the semantics of the rewrite are such that if the sequence is not observed

when the end of execution occurs, the property fails.

For degenerate sequences s, the failure can be reported sooner than at the end of
execution. If an empty or null sequence is used for s, the fusion with [+] returns a null
automaton (no final state; Figure 5.2). Subsequently, when the FIRSTFAILSTRONG ()
algorithm is applied in (5.12), the true automaton is returned. The true automaton
was shown in Figure 5.6, and corresponds to a simple two state automaton with the
Boolean true as its edge symbol. When a property corresponds to the true automaton
(the true property), it fails on the cycles were it is activated. Moreover, if the true
property is the top-level argument of an assert directive, the property fails on the first

cycle after the reset is released.

The eventually! operator also accepts a Boolean as its argument but for simplicity
was not treated. In that case, the following rewrite rule can be used to express the

Boolean as a sequence.

eventually! b —  eventually! {0}
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The following example illustrates the semantics of the eventually! rewrite.

Example 5.4: The assertions below are used to illustrate the semantics of the

eventually! rewrite when degenerate sequences are used.

assert eventually! {[*0]};
assert eventually! {{true} && {true[*2]}};

assert always (a —> eventually! {[*0]});
assert always (a —> eventually! {{true} && {true[*2]}});

The first two assertions fail in the cycle immediately after reset is released, and the end
of execution signal (EOE) does not have to be monitored. In the last two assertions
above, the assertions fail in any cycle where a is true, because it is known that the
degenerate sequences will never be matched (the empty sequence is not a valid match
at the property level). The EOE signal is also not required in those cases. To put

the above examples in context, consider the following assertion.
assert always (a —> eventually! {6[*0:1]});

This assertion can only fail when the end of execution occurs, provided a has occurred

at least once and that the last occurrence of a has not seen its future occurrence of b.

If it is desired that all the failures for the eventually! operator be only reported at
the end of execution, whether degenerate or normal sequences are used, an alternate

but also valid solution can be devised using the strategy below.

AP {[+]:s}) if s is non-degenerate

, (5.16)
AP (never {EOFE}) otherwise

AP (eventually! s5) — {

The first case corresponds to the rewrite introduced previously. The second case
represents a compact way of building an automaton that triggers every time the end

of execution signal (FOFE) is activated.

5.4.4 Rewrite Rules Based on Property Variations

The rewrite rules in this subsection are based on variations of other properties.

f puntil b —  (f_puntil b) && ({o[->]}")
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f puntill b —  (f_puntil_ b) && ({b[->]}")

The strong versions of the until properties are created by using the weak versions and
adding a temporal obligation for the releasing condition to occur, namely b. This
can be modeled by the strong single-goto of the Boolean condition b. If the end of
execution occurs before the releasing condition b occurs, the assertion will trigger

even though the weak until may have always held.

next f_p — next[1](f_p)

next! f p — next![1](f p)
next event!(b)(f_p) — next_event!(b)[1](f_p)
next_event(b)(f_p) — next_event(b)[1](f_p)

The rewrites above implement the basic next and next event operators by rewriting
them to slightly more complex forms. These rules are based on the fact that when
no count is specified, a count of 1 is implicit. Since the right sides of these rules
are not terminal, they are subsequently rewritten using other rules, until no more
rewrites apply and either sequences, Boolean expressions or base cases of properties

are reached.

next[i](f _p) — next_event(true)[i + 1](f _p)
next![i](f _p) — next_event!(true)[i + 1](f _p)
next_ali:j](f _p) — next_event a(true)[i+ 1:5+ 1](f _p)
next_allij](f _p) — next_event al(true)[i+1:5+ 1](f _p)
next e[i:j](b) — next event e(true)[i + 1:7 + 1](b)
next el[i:j](b) — next event el(true)[i + 1:j + 1](b)

The family of six rewrite rules above is all based on the fact that next event is a more
general case of next. The “+1” adjustment is required to handle the mapping to the
Boolean true. When converting a next property to a next event property, there is a
slight nuance as to what constitutes the next occurrence of a condition. The next
occurrence of a Boolean expression can be in the current cycle, whereas the plain next

implicitly refers to the next cycle.

Another reasoning shows the consistency between the operators: next[0](f p)

could not be modeled without the increment because next _event(b)[k](f _p) requires
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a positive count for k. The operator next[0](f _p) is also equivalent to f p.

next_event(D)[k](f_p) — next_event_a(b)[k:E](f_p)
next_event!(D)[k](f _p) — next_event al(b)[k:k](f _p)

The strategy behind the above rewrite rules is to utilize the next event a form, with

identical upper and lower bounds for the range.
next _event al(b)[k:l](f _p) — next_event a(b)[k:l](f_p) && {b[->I]}!

The rewrite above implements the next event a! property. Similarly to the rewrite
for the untill property, it is rewritten using the weak version, to which a necessary
completion criterion is conjoined. The addition of the strong goto sequence with the
[ bound indicates that all [ occurrences of the b event must occur before execution

terminates.

5.5 Implementation of Verification Directives

The automaton implementation of the verification directives from Definition 2.11 is

presented below in Proposition 5.5.

Proposition 5.5: If s is a Sequence, p is a Property and v is a verification directive,
then the automaton implementation of verification directives, denoted AV (v), is per-

formed as follows:

AV (v) -
o AV (assert p;) = AF(p)
o AV (cover 5;) = AV (assert eventually! s;)

The assert directive is implemented by directly returning the automaton created
for its argument property. The property identifies all faulty traces, and nothing more

needs to be done for implementing the assert directive.
cover s — assert eventually! s

The cover directive provides a way to ensure that a given sequence has eventually
manifested itself during the verification. It is therefore natural to rewrite the directive
using the eventually! property.

Although the default clock declaration is not a PSL directive as such, clock decla-
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rations and verification directives are the items that are used in verification units in
the PSL presented in this work. Verification items and default clock declarations are
the minimum statements that must be specified by the user to get the verification
process up-and-running. An example vunit is shown in Appendix A. To conclude the
chapter, a summary example is presented to show the multiple steps required to build

an automaton for an assertion.

Example 5.5: The following assertion states that whenever ~a is followed by a,
then in the cycle where a was true the sequence {b[*0:1];c} must occur. This sequence
states that ¢ must occur, possibly preceded by b. For simplicity the example assertion
uses simple Booleans; however, complex Boolean expressions over real circuit signals
can also be used.

assert always {~a ; a} |-> {b[*0:1] ; c};

In dynamic verification, the assertion output will trigger in every cycle where a non-
compliance to the assertion is observed in the input signals. Figure 5.12 shows six
steps for creating the automaton for the assertion above. Each part of the figure is

explained below.

a) The terminal Boolean automata are built for the Booleans used in the assertion
according to the BASECASE() algorithm in Algorithm 5.1.

b) The repetition range and concatenation algorithms are used with the Boolean
automata in part a) to construct the automata for the two sequences used in the
suffix implication. Since these sequences are top-level sequences, minimization

was applied.

¢) The right side sequence is used as a property therefore the first failure must
instead be matched. This transformation is provided by the FIRSTFAIL() algo-
rithm according to (5.11).

d) The suffix implication in the assertion is implemented using the FUSE algorithm,

as shown in (5.13).

e) The always operator is rewritten according to (5.14), and is implemented as a
suffix implication using the sequence {[+]} as the left side, and the property
that is the argument of always as the right side. The automaton for {[+]} is
shown in the left side of part e), and requires a few steps to build (not shown).
The suffix implication that is part of the always rewrite is implemented with a

fusion.

f) The fusion mentioned at the end of part e) is performed, and after minimization
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the final resulting automaton for the example assertion is produced.

Converting the automaton to RTL can subsequently be performed as explained in

Section 4.3. The checker is then ready to be used for in-circuit assertion monitoring.

a) Terminal Booleans

b) Sequences (antecedent and consequent)

O OO

Consequent sequence used as property

d) Suffix implication

~b & ~c

e) Before suffix implication in “always” rewrite
true

true ‘
f) Final result

true
~a

Figure 5.12: Complete checker for example: assert always {~a;a} |[->
{b[*0:1] ; c};. Steps a) to f) show the bottom-up construction starting
with terminal Booleans and ending with the resulting automaton.




Chapter 6

Enhanced Features and Uses of
Checkers

6.1 Introduction and Overview

The topics contained in Chapters 4 and 5 show how a circuit-level checker can be
generated from a PSL assertion for use in the ABV paradigm. In this chapter, a
set, of enhancements to assertion checkers is introduced. The first enhancement is a
more resource-efficient implementation of the eventually! operator, and is presented

in Section 6.3.

Section 6.4 introduces a multitude of debug enhancements for checkers, which all
share a common goal of improving the debugging process through improved observ-
ability in the checkers. Finding a failure is only the first step in the bug fixing process,
and the exact cause of the failure must be determined before performing subsequent
design changes. Specifically, Section 6.4 proposes a set of additions and modifications
to the checkers to help identify the causes of errors more easily and to help decrease
the time spend debugging a circuit. Assertions themselves are only a “foot in the
door” for the debugging process, as engineers still need to invest time to explore the
reasons why an assertion failed. Assertions help to find the existence of errors, and
with more sophisticated techniques, assertions should also help to identify the true
causes of the errors, since the implicit goal is often to fix any errors that are found.
For example, knowing that a bus grant was not given in the proper time frame by an

arbiter doesn’t directly reveal the actual functional reason for that error.

In order for some of these checker enhancements to be possible, a modified re-

cursive compilation strategy must be introduced. This is done in the next section,

129
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where the necessary modifications to perform automata splitting (or modularizing)
are introduced. Automata splitting is a technique whereby a subset of an automaton
is kept isolated from the remainder of an assertion’s automaton. In order for the iso-
lated automaton to be properly triggered, it is given a precondition automaton during
compilation, which represents its activations. The use of precondition automata is a
prerequisite for automata splitting. Automata splitting is required for the assertion
threading and the activity monitoring enhancements, and also for the more efficient
form of eventually!. The efficient eventually! implementation described in this chapter
is used by default in the checker generator, as opposed to the rewrite rule developed
in the previous chapter.

The checker generator also has an option to force the use of a single automaton
to represent an assertion’s checker. In such cases, the efficient form of eventually! is
not used, and the rewrite is applied. Automata threading and activity monitors are
also overridden, when a single automaton checker is desired.

The use of assertion checkers beyond verification purposes is explored in Sec-
tion 6.5. There, it is shown that assertion checkers also play an important role in
post-fabrication silicon debug and on-line monitoring, and that using assertions and a
checker generator can even be used for performing certain types of circuit design. Al-
though these themes are not fully checker enhancements as such, they can nonetheless

be considered as enhanced applications of checkers.

6.2 Recursive Compilation Strategies

The implementation of PSL properties in Section 5.4 was presented in functional
form, where functions are called with automata as arguments, and the functions
each return an automaton. The functional form also applies to the base cases in
Section 5.4.1, whereas the rewrite rules revert to the bases cases after one or more
applications. Functions such as CHOICE(), FUSE(), ADDLITERAL() were used to
implement property operators when rewrite rules were not used. This compilation
strategy yields the simplest and most direct architecture in the checker generator.
However, for many of the enhancements presented in this chapter, this recursive
strategy is not appropriate.

In certain cases, a node in the recursive compilation may require that its sub-
automaton be instantiated as a module, and not be merged with it’s parent’s au-
tomaton. The most evocative example of this is when monitoring sequence activity

is to be performed. In order for a sequence’s activity to be monitored properly, its
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Figure 6.1: Example of recursive compilation strategies: a) without
precondition automata, b) with precondition automata.
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automaton must retain its structural integrity, and it must not be merged with other
automata. In these cases, the parent node has to supply the child with a precondition
automaton, such that if the child node decides that its automaton needs to be a mod-
ule, the child has everything at its disposal to instantiate its activation automaton.
This recursive compilation strategy is also required for implementing the more effi-
cient form of eventually! in Section 6.3, as well as the activity monitors and assertion
threading in Section 6.4.2 and Section 6.4.5.

The following assertion is used as a running example to illustrate the two recursive
compilation strategies.
assert always a —> {b[*0:2];c}; (6.1)

When the assertion is compiled using the algorithms presented in the previous chapter,
the compilation graph shown in Figure 6.1 a) applies. This graph is not explicitly
stored in memory; it only represents the recursive function calls that are made, as
dictated by the syntax structure of the assertion (syntax tree). The compilation
strategy is characterized by the fact that a parent sends no information to its child,
which is itself responsible for building an automaton for its sub-property, and nothing
more. The child is not aware of the upper level context and it is the parent that is
responsible for building its own property automaton. This strategy is said to be
without precondition automata.

In the recursive strategy with precondition automata, as shown in Figure 6.1 b), a
parent node must send each child an automaton representing the child’s activations. If
the child does not require its sub-property automaton to be isolated, this automaton
is built and the precondition automaton is fused with it (by the child) so that it may
be activated properly. Preconditions may be void, in which case the fusion is not

required. A woid precondition can only be produced by the assert operator, and is
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equivalent to indicating that the child property must only hold starting in the first

cycle of execution.

Analyzing more deeply the example without precondition automata in Figure
6.1 a), it can be observed that the terminal property elements are the antecedent
Boolean and the consequent sequence for the implication. Each of these elements is
assembled in an automaton form using the techniques for Booleans and sequences

from the previous chapter. The A; and A, automata are built as follows:

A1 = AB(G)
Ay = A5 ({b[*0:2];c})

These automata are returned to the implication node, where the resulting automaton
for the implication is built. Using the techniques from the previous chapter, it follows
that:

As = FUSE(A;, FIRSTFAIL(A))

This automaton is returned to the always node, where it is perpetually activated as a

result of the always rewrite:
Ay = FUSB(A*({[+1}), 4s)

The resulting automaton is A4, and is left intact by the assert operator.

The same automaton can also be built using the precondition-automata strategy.
In Figure 6.1 b), the automata indices are not related to those in Figure 6.1 a), and
are analyzed in detail next. The assert operator implicitly represents an activation
for the first cycle only, and does not require a precondition automaton for its child
property (hence the void automaton). The always node prepares its precondition

automaton as follows, to indicate that its child should be perpetually checked:
Av = A{[+]})

Once received by the implication node (—>), the precondition automaton Ay, is redi-
rected to the antecedent node a. The result automaton from the antecedent child is

formed as follows:
AQ! = ]Z—“USE(qul7 AB(CL))

The result automaton Ay is returned to the implication node, where it is redirected

to the other child to serve as its precondition automaton. The right-side child in the
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syntax tree builds the sequence automaton Az as follows:
Az = FUSE(Ay, FIRSTFAIL(A® ({0[*0:2];¢})))

An important subtlety is that the child sequence has to be made aware that it is
being used as a property, and that its failure matching must be performed. In the
approach without precondition automata, the FIRSTFAIL() was not performed by the
child, but rather by the parent (i.e. the implication). Getting back to the example
in Figure 6.1 b), now that the consequent node’s automaton is ready, it is returned
back to the implication node, that directly returns it to the always node. In this
strategy, the child has done the implication’s fusion, and nothing else needs to be
done at the —> node. The always node also does not have to do anything, since its
continual activation was modeled in the precondition automaton that was sent to its

child. Thus Ag is returned as the resulting automaton.

Substituting A; and A, into Az, and then substituting the result into A, yields
the following computation for the assertion’s automaton (without using precondition

automata):
FUSE(AY({[+]}), FUSE(A®(a), FIRSTFAIL(A® ({b[*0:2];c})))) (6.2)

Performing the same type of substitutions for Az yields the expression (for the pre-

condition automata strategy):
FUse(FUse(A® ({[+]}), A®(a)), FIRSTFAIL(A® ({0[*0:2];c})))

Because the fusion operator is associative, the expression above is functionally equiv-
alent to the expression in (6.2). This shows that both recursive compilation strategies
are equivalent in this example. Although both strategies have the same effect, the
method using precondition automata is more flexible and allows automata to be mod-

ularized, as required by some of the enhancements introduced in this chapter.

Precondition automata are used only at the property level, and SEREs and
Booleans are compiled as implied by the functional notation in the previous chapter.
Only a few other property operators from Proposition 5.4 require special treatment
for the precondition automaton strategy. For unary operators, a child node incorpo-
rates the precondition automaton to its own automaton using automata fusion. The
precondition in effect represents the activations of the child node’s expression. In the

fusion, the precondition automaton is the left argument, and the right argument is
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the automaton for the sub-property rooted at the child node.

For the binary operators corresponding to overlapped suffix implication and prop-
erty implication, the strategy consists in: 1) sending a precondition automaton to the
antecedent; 2) using the result automaton from the antecedent as the precondition
automaton for the consequent; 3) using the result automaton from the consequent
as the result automaton for the implication itself. In the compilation strategy with
precondition automata, the parent actually tells a child node whether or not it is in
normal matching mode (ex: antecedent) or in failure mode (ex: consequent). This
nuance was observed when comparing both strategies in the example for the asser-
tion in (6.1), where the FIRSTFAIL() for the consequent sequence is applied by the
implication node when preconditions are not used, and the FIRSTFAIL() is applied in
the consequent sequence node when preconditions are used.

For the property conjunction operator &&, the node sends its precondition au-
tomaton simultaneously to both arguments, and applies the CHOICE() algorithm to
the automata returned by its children nodes. The abort operator still uses the AD-
DLITERAL() algorithm to reset a sub-automaton, except that the abort is implemented
by the children nodes before the fusion with the precondition automaton. The abort’s
Boolean must be kept in a global string, where nested aborts are added as disjunc-
tions to the global abort string. The abort string starts out as the null string, and
grows /shrinks as the recursive traversal in the syntax tree progresses.

To summarize, the essential points of the two recursive compilation strategies are
stated below. In both cases, the compilation of a PSL property involves recursively

scanning the syntax tree of the PSL expression.

1. Without precondition automata: Each node returns an automaton describing
the behavior of the expression rooted at that node. The parent node then
builds its own automaton from its children automaton(s), using a variety of

transformations and operations.

2. With precondition automata: Each node sends a precondition in automaton
form to a child, whereby the child node is responsible for building the sub-
automaton (with its activations) and returning it to the parent. If other child
nodes exist, the parent forms other precondition automata, possibly using the
automata returned by previous child nodes. When finished, the parent returns
an automaton formed from the children automata (directly or with modifica-

tions) to its parent.

The first recursive strategy is implied by the functional form used in the previous
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chapter, and was initially used in the checker generator. When the debug enhance-
ments were added, the precondition method was implemented, and is currently the
technique used in the checker generator. The precondition/result framework has its
roots in the first version of the checker generator [29], which implemented properties

and sequences modularly using precondition and result signals.

6.3 A Special Case for eventually!

In the previous chapter it was stated that rewriting the eventually! operator can be

performed with the rewrite rule in (5.16), recalled below:

AT (eventually! s)

{ AP ({[+]: s}) if s is non-degenerate (6.3)

AP (never {EOFE}) otherwise

This strategy has the advantage of preserving the full automaton approach; however,
given that the sequence in the right-hand side of the non-degenerate case is used as
a property, the FIRSTFAILSTRONG() algorithm has to be applied to the sequence.
That algorithm requires a proper determinization, and thus does not represent the
most efficient solution. This section details the use of a more efficient procedure for
implementing the eventually! property, in cases where automata splitting is allowed
and the use of separate logic and wire declarations are permitted. An efficient imple-
mentation of eventually! is also important for the cover directive which is rewritten to
the eventually! operator in dynamic verification. Although automata optimizations
can no longer cross the boundaries of split automata, the improvements brought upon
by the split approach outweigh this disadvantage.

In the split automata approach, implementing the “eventually! s” property is done
with a normal occurrence-matching automaton. After the automaton for the sequence
s is built, its initial states are made non-final. At this point, if the sequence automa-
ton has no final states, the sequence can not eventually occur, and the failure must
be signaled at the end of execution. In this case the automaton corresponding to
AF (never {EOFE}) is returned to the parent node in the syntax tree of the assertion,
similarly to the degenerate case of the rewrite rule in (6.3).

If the sequence automaton is not degenerate, then a more complex algorithm is
applied. First, the automaton is weakly determinized such that it has only one initial
state. Then, any incoming edges to the initial state are removed, and outgoing edges

from the final states are removed. Incoming edges to the initial state are redundant
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since the state will remain active until the sequence is matched. Outgoing edges of the
final states can be safely removed since the first match of the sequence is sufficient to
satisfy the eventually!. The automaton must be implemented as a module, for which a
result signal is declared. This result signal is then used, complemented, as the symbol
of a self-loop on the initial state. This has the effect of keeping the initial state active

until at least one occurrence of the sequence has manifested itself.

The actual result signal of the eventually! operator corresponds to the output of
the initial state’s flip-flop. In this manner, no extra states (hence flip-flops) are used.
The actual result signal is implemented in automaton form before being returned to
eventually!’s parent node. This consists in preparing a two-state automaton where the
second state is a final state, the initial state has a true self-loop, and an edge from the

initial state to the second state carries a symbol corresponding to the result signal.

When a precondition automaton is passed to the eventually! node in the recur-
sive compilation, the precondition automaton is implemented as a module, for which
a result signal is declared. This signal constitutes the precondition signal for the
eventually! automaton. Each time the precondition is asserted, the conditional mode
automaton for eventually! is flushed, with the start and final state’s edges modified
as described previously. Automaton flushing consists in deactivating the edges for all
states except the initial state. This is accomplished by AND-ing a negated literal of
the precondition signal to each outgoing edge symbol of each non-initial state. In this
manner, each new precondition guarantees a new complete obligation. The precon-
dition automaton used in this technique implies that the recursive mechanism with

precondition automata must be used.

Example 6.1: Figure 6.2 shows an example of the efficient eventually! strategy for

the following property:
always (a —> eventually! {b;c;d})

The property is actually implemented as two automata, and the automaton at the
top right in the figure is returned by the always node in the compilation tree. Since
the always property is the argument of the assert directive, the returned automaton is
directly implemented in RTL. The grey state also serves as the memory state, which is
deactivated once the obligation is fulfilled (once the sequence occurred). Automaton
flushing is also visible with the added “~s2” literals. If the always property was part
of a more complex assertion, the returned automaton would be used by the parent

property to continue to build the complete automaton for the assertion.
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Figure 6.2: Efficient implementation of the eventually! assertion in
Example 6.1.

Automata splitting and the addition of separate logic gates could also be used
for performing efficient automata negation by avoiding the determinization step. In
hardware, an NFA could be easily negated by adding a not gate to the output signal
of the NFA; however, because the not-gate is not part of the automaton formalism,

further automaton operations such as concatenation would be undefined.

6.4 Debug Enhancements for Checkers

In their default form, assertion checkers provide feedback on violations through the
assertion signal (result signal). In this section, different enhancements to checkers are
explored, all of which share the goal of improving the debugging process. The debug

enhancements introduced for assertion checkers are:

—_

Reporting Signal Dependencies;
Monitoring Activity;
Signaling Assertion Completion;

Assertion and Cover Counters;

BAREE S

Hardware Assertion Threading.

The different techniques range from source-code comments (1) to actual modifications
in the response of the checkers (3). Other enhancements constitute hardware additions

and thus preserve the behavior of the checker outputs (2, 4 and 5). The overall goal
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is to increase the observability in the assertion monitoring in order to better assess

the causes of a failure, or the causes of suspicious inactivity in a checker.

6.4.1 Reporting Signal Dependencies

When debugging failed assertions, it is useful to quickly determine which signals
and parameters can influence the assertion output. In the generated checkers” HDL
code, all of the signal and parameter dependencies are listed in comments before
each assertion circuit. When an assertion fails, the signals that are referenced in an
assertion can be automatically added to a wave window and/or extracted from an
emulator, in order to provide the necessary visibility for debugging. Dependencies
are particularly helpful when complex assertions fail, especially when an assertion
references other user-declared sequences and/or properties, as allowed in PSL [111].
In such cases, assertion signal dependencies help to narrow down the causes of an error.
Signal dependencies can also help to determine which signals must be stimulated in

order to properly exercise an assertion that is found to be trivially true.

6.4.2 Monitoring Activity

The Booleans and sequences appearing in assertions can be monitored for activity
to provide added feedback on the matching process. Monitoring the activity of a
sequence is a quick way of knowing whether the input stimulus is actually exercising
a portion of an assertion. The monitoring is performed on the states of the automata
that represent the sequences and Booleans. Activity is defined as a disjunction of
all states in an automaton. Anytime a state is active, the automaton is considered
to be active. A sequence’s automaton can exhibit internal activity when undergoing
a matching, even if its output does not trigger. Conversely, if a sequence output
triggers, the automaton representing it is guaranteed to show internal activity.
Using the appropriate compilation option, the checker generator declares activity
signals for each sequence sub-circuit. The only states that are excluded from consid-
eration for activity monitors are: initial states that have a true self-loop, and the final
state when a sequence is the antecedent of the |=> operator. The reason for these
exceptions is that any initial state with a true self-loop does not represent meaningful
activity. Furthermore, when a sequence appears as the antecedent of a non-overlapped
suffix implication, it is rewritten to an overlapped implication by concatenating an
extra {true} sequence element to the end of the sequence, as shown in Section 5.4.2.

This added sequence element creates a single final state in the antecedent, which also
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Figure 6.3: Activity signals for assertion: assert always ({a;b} |=>
{c[*0:1];d});. The label aseq corresponds to the antecedent sequence,
and cseq to the consequent sequence.

does not represent meaningful activity.

Under normal conditions, each assertion is represented by a single automaton
before its transformation to RTL. To implement activity monitors, it is necessary
to isolate the automaton of a sequence so that it is not merged with the remainder
of the assertion’s automaton during minimization. The automata that are isolated
correspond to the sub-expressions that are being monitored, which in turn correspond

to top-level sequences or Boolean expressions appearing in properties.

Example 6.2: The following assertion is used to illustrate activity monitors.
assert always ({a;b} |=> {c[*0:1];d});

Figure 6.3 a) shows how the example assertion normally appears as a single automa-
ton when activity monitors are not desired. In Figure 6.3 b) activity monitors are
produced, whereby the antecedent and consequent sequences must be kept isolated.
The shaded OR~gates implement the disjunction of the state signals used to form the
activity signals. The two types of exceptions that were stated previously apply in
this example, namely that state 3 is not used in the antecedent’s activity and state 0
is not used in the consequent’s activity. It should also be stated that contrary to

other signals that connect to the output of a state, the out_ mbac signal connects to
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the input of the flip-flop contained in the state, as was also shown in the example in
Figure 4.9.

An example of activity traces is visible in Figure 6.3 ¢) for the example assertion.
The activity signals for both sequences are visible, along with the assertion signal
(out_mbac), and the assertion as interpreted by the ModelSim tool (gold1). As can
be observed, the union of both activity signals coincides with ModelSim’s activity
indication. Since the checker’s assertion signal is registered by default (not shown),

it is asserted on the clock cycle following ModelSim’s failure marker.

Monitoring the activity of a Boolean does not revert to monitoring the Boolean

itself. In the following property
always a —> next b

activity on b is conditional to an activation from the antecedent a occurring in the

previous clock cycle.

Monitoring activity signals eases debugging by improving visibility in assertion-
circuit processing. An implication in which the antecedent is never matched is said to
pass vacuously (Definition 3.1). When monitoring antecedent activity, a permanently
inactive antecedent does indeed indicate vacuity; however, this seldom occurs given
that a single Boolean condition is enough to activate a state within the antecedent’s
automaton. An example to illustrate this is shown in Figure 6.3 b), where state 1 in

the antecedent automaton is active every time a is true.

In order for activity monitors to be the most effective for vacuity detection, the
consequent needs to instead be monitored because an inactive consequent means that
the antecedent was never fully detected, and thus never triggered the consequent.
If no activity was ever detected in the consequent of a temporal implication, this
indicates that the implication is vacuously true. The fact that the antecedent never
fully occurred does not mean that there was no activity within it; conversely, activity

in the antecedent does not mean that it fully occurred.

Activity monitors does not apply to sequences resulting from the application of
rewrite rules. The rewrite rules are not implemented in true pre-processor fashion
using syntactic replacement, and are implemented in the checker generator’s internal
functions. The checker generator actually creates new sub-trees in the syntax tree,
corresponding to the rewritten expressions. The tool is therefore able to distinguish

user-defined sequences from those resulting from rewrite rules.
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FUNCTION: FIRSTMATCH(.A)

A «— STRONGDETERMINIZE(.A)

remove all edges (s;,0;,d;) € 6 for which s; € F
return A

Algorithm 6.1: First-match transformation algorithm.

6.4.3 Signaling Assertion Completion

For a verification scenario to be meaningful, the assertions must be exercised rea-
sonably often. Assertions that do not trigger because the test vectors did not fully
exercise them are not very useful for verification or debug. In cases where the as-
sertions are trivially true, the true cause of a non-failure could be overlooked. On
the contrary, assertions that are extensively exercised but never trigger offer more

assurance that the design is operating as specified.

In the checker generator, assertions can be alternatively generated in completion
mode to indicate when assertions complete successfully. This alternate assertion be-
havior can be very useful when assertion coverage is to be monitored, and to determine
when assertions are not trivially true; these two factors that are important for creating
effective test scenarios and testbenches. In general, by signaling successful witnesses,
completion mode assertions provides an indication that if an assertion never failed, it
was not because of a lack of proper stimulus.

Borrowing existing terminology [10], the completion mode identifies interesting
witnesses to the success of a property. Vacuity, defined as antecedent non-occurrence
in Definition 3.1, is only one possible cause for trivial validity. Completion mode can

also be referred to as pass checking, success checking and property coverage.

Implementing completion mode requires the development of a first-match trans-
formation algorithm. Creating an automaton that reports the first match, and only
the first match of a sequence or a Boolean, for a given activation, requires strong
determinization. Algorithm 6.1 shows the transformation algorithm used to produce
a first-match automaton from a normal matching automaton. The completion mode
transformation algorithm first determinizes the automaton such that each activation
is represented by only one active state (line 2). From any given state, a deterministic
automaton transitions into at most one successor state. The strong determinization
algorithm from Algorithm 4.2 must be used, as opposed to the weak determinization
algorithm. The determinization step is required so that when the first completion is
identified, no other subsequent completions will be reported for the same activation.

The second step in the algorithm removes all outgoing edges of the final states, when
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applicable (line 3). Any unconnected states resulting from this step are removed

during minimization.

The completion mode affects assertions that place obligations on certain sub-
expressions, such as in the consequent of temporal implications for example. In
temporal implications, for each observed antecedent, the consequent must occur or
else the assertion fails. As opposed to indicating the first failure in each consequent,
as is usually done, the completion mode assertion indicates the first success in the

consequent. The completion mode has no effect on assertions such as
assert never s;

given that no obligations are placed on any Boolean expressions. This assertion states
that the sequence argument s should not be matched in any cycle. Every time the

sequence is matched, a violation occurs and the assertion output triggers.

The actual elements of PSL that are affected by the completion mode are sequences
and Boolean expressions when used directly as properties. More specifically, the com-
pletion mode is implemented by using the FIRSTMATCH() algorithm in place of the
FIRSTFAIL() and FIRSTFAILSTRONG() algorithms appearing throughout Proposi-
tion 5.4 (properties). Strong sequences are treated as weak sequences in completion
mode because the assertion signal, which now indicates successful completions, should
not simultaneously be used to also indicate failures to comply with a strong opera-
tor. Implementing a completion mode with strong operators could be done using two
separate output signals for assertion checkers, one indicating successful completions,

and the other indicating failures of strong obligations at the end of execution.

Example 6.3: The following assertion is used to illustrate failure and completion

mode automata:
assert always ({a} |=> {{c[*0:1];d}|{e}});

The assertion is normally compiled as the automaton shown in Figure 6.4 a), whereby
the output signal (or final state) triggers each time the assertion fails. The completion
mode automaton for this example is shown in Figure 6.4 b). When creating a comple-
tion mode checker, the automaton for the consequent of the implication is modified
to detect the completion of the sequence, according to Algorithm 6.1. For a given
activation (in this case a), only the first completion is identified by the automaton.
The sequence of events a; c; d, makes the completion automaton trigger; however, the

failure automaton does not reach a final state given that the sequence conforms to
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Figure 6.5: Counter circuits for: a) assertions and b) covers.

the specification indicated by the assertion.

The completion mode can be used with assertion counters to provide more detailed

metrics in a test scenario.

6.4.4 Assertion and Cover Counters

The checker generator also includes options to automatically create counters on assert
and cover statements for counting activity. Counting assertion failures is straightfor-
ward, as observed in the top half of Figure 6.5; however, counting the cover directive
requires some modifications. In dynamic verification, cover is a strong property that
triggers only at the end of execution. In order to count occurrences for coverage
metrics, a plain matching (detection) automaton is built for the sequence argument,
and a counter is used to count the number of times the sequence is matched. The
cover’s result signal only triggers at the end of execution if the counter is at zero, as
shown in the lower half of Figure 6.5. If no counters are desired, a one-bit counter is
implicitly used. The counters are width parameterized, and by threshold arithmetic
do not roll-over when the maximal count is reached. The counters are also initialized

by a reset of the assertion checker circuit.
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Counters can be used with the completion mode from Section 6.4.3 to construct
more detailed coverage metrics for a given test scenario. Knowing how many times
an assertion completed successfully can be just as useful as knowing how many times
an assertion failed. For example, if a predetermined number of a certain type of bus
transaction is initiated, the related assertion should complete successfully the same

number of times.

6.4.5 Hardware Assertion Threading

Assertion threading is a technique by which multiple copies of a sequence checking
circuit are instantiated. Each copy (or thread) is alternately activated one after the
other, as the sequence receives activations. This allows a violation’s condition to be
separated from the other concurrent activity in the assertion circuit, in order to help
visualize the exact start condition that caused a failure. In general, using a single
automaton mixes all the temporal checks in the automaton during processing. The
advantage with this is that a single automaton can catch all failures; however the
disadvantage is that it becomes more difficult to correlate a given failure with its
input conditions. The assertion threading in effect separates the concurrent activity
to help identify the cause of events leading to an assertion failure. Threading applies
to PSL sequences, which are the typical means for specifying complex temporal chains
of events.

By extension, threading applies to any PSL property in which one or more se-
quences appear. The threading of Booleans used as properties is not performed given
the temporal simplicity of Booleans. The following property is used as a running

example to illustrate the mechanisms behind assertion threading:
always a —> {b[*0:2];c} (6.4)

In this property the consequent sequence can last at most three clock cycles, and thus
three threads will be used. For very long sequences, or even unbounded sequences
that use the [*] operator (Kleene star), a larger but finite number of threads can
be instantiated. When the number of threads is smaller than the maximum length
of the sequence, it may not always be possible to completely separate the activity
into different threads. If a thread is undertaking a matching and it receives another
activation, identifying the precise cause of a failure becomes more difficult. When the
resources allow it, increasing the number of hardware threads can help to properly

isolate a sequence. In all cases, it is important to state that no matches can ever be
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Figure 6.6: Assertion threading strategy. Ex: always a —> {b[*0:2];c}.

missed, as a single automaton can concurrently handle all activations.

The assertion in (6.4) is threaded as shown in Figure 6.6. Although a property im-
plication with a simple Boolean antecedent is used in this example, the sequence could
also have been activated by more complex properties, such as a sequence antecedent
when suffix implication is used, or complex Boolean events when the next event a
property is used, for example. The first step in threading is to separate the sequence
automaton from its precondition automaton. In this case the precondition automaton
is a simple two state automaton with an edge for the Boolean a. Since a is under the
scope of the always operator, it is continually triggered, hence the self-loop with true
in the initial state.

The second step in threading is to build the dispatcher, shown in the left side
of the figure. The hardware dispatcher redirects the activations coming from the
precondition to the multiple sequence-checking units in a round-robin manner. The
dispatcher flip-flops form a one-hot encoded register such that each activation is
sent to only one of the hardware threads. Each signal from the dispatcher (pc|0]
to pc[2]) activates its own copy of the sequence by using automata fusion, denoted
“” in Figure 6.6. The fusion is the same algorithm that was devised for SEREs
in the previous chapter. The effect of the fusion with the small pc|z| automaton

is that each time a precondition signal is true, it will trigger the matching in the
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sequence automaton for the corresponding thread. The sequence automaton on the
right side of fusion corresponds to the sequence that is to be threaded, which in
this case is used as a property. The automaton for this sequence corresponds to
FIRSTFAIL(A({b[*0:2];c})).

An alternate design choice for the dispatcher is also possible, by using a counter
and a decoder. The counter requires [log,(n)] flip-flops, compared to n flip-flops in
the first approach, where n is the number of threads. Although the number of flip-
flops is reduced in the counter approach, a decoder circuit is required, and for many
threads a non-trivial amount of logic would be required. The first approach strikes a
good balance between combinational logic and flip-flops, as is visible in the left side
of Figure 6.6, and is well suited for FPGA implementations; the absence of decoding

logic also improves its maximum operating frequency.

The result signals of the threads are combined in an OR-gate, such that if any
thread fails, the property fails as a whole. The automaton that is returned is a small
two-state automaton as shown at the top right in the figure. The symbol on the
edge between the initial and final states is precisely the result signal from the OR-
gate. The result signal of a thread’s automaton is formed as shown in the top right
portion of Figure 6.3 (as a disjunction of incoming edges, before the FF in the state).
Threading also applies to the plain matching sequence automata, as opposed to the

failure matching automaton discussed above.

Seen from the sub-circuit boundary, a multi-threaded sub-circuit’s behavior is
identical to that of a non-threaded sub-circuit. To implement threading, it is neces-
sary to isolate a sub-automaton so that it is not merged with the remainder of the
assertion’s automaton during automata optimizations. Threading does not apply to
sequences resulting from the application of rewrite rules. As mentioned, rewrite rules
are not implemented using syntactic replacement in a pre-processor step and are in-
stead implemented in the checker generator’s internal functions. This way the tool is

able to distinguish user-defined sequences from those resulting from rewrite rules.

An example scenario where assertion threading is useful is in the verification of
highly pipelined circuits such as a CPU (Central Processing Unit) pipeline or a net-
work processor, where temporally complex sequences are modeled by assertions. In
such cases, it is desirable to partition sequences into different threads in order to sep-
arate a failure sequence from other sequences. Once temporally isolated, the exact
cause of a failure can be more easily identified. The following example shows how
assertion threading can be used to quickly identify the cause of an execution error in

a CPU pipeline.



6.4. Debug Enhancements for Checkers 147

Example 6.4: In this example the design under verification is a simplified CPU ex-
ecution pipeline, inspired by the DLX RISC CPU [97|. The execution unit has a
five-level pipeline and executes instructions that perform memory and register ma-
nipulations. In the example, only memory writes and register writes are considered.
An error injection mechanism is also incorporated in the instruction decoder, such
that errors can be inserted for testing purposes. For a given write instruction only
two possible destinations are allowed by the architecture, either the memory or the
register file, but not both. The following block of PSL statements form an assertion

that can be used to detect a faulty write operation.

CPU_ASR:

default clock = ( posedge Clk );
sequence Swr_instr = {InstrValid && (Instr[31:29]==3’b110 ||

Instr[31:29]==3b101)}; //write instruction
sequence Smemwr = {[*2] ; MemWr ; “RegWr}; //memory write only
sequence Sregwr = {[*2] ; “MemWr ; Reglir}; //register write only

assert always { Swr_instr } [=> { {Smemwr} | {Sregwr} }; //write works

Three sequences are declared, along with the default clock. The first sequence spans
one clock cycle and specifies the Boolean conditions for the issuing of a write instruc-
tion. The next two sequences specify the proper behavior of memory and register
writes. The assertion states that whenever a write instruction is issued, either a
memory-only or register-only write should ensue. When a write instruction is issued,
either of these two sequences should hold, hence the use of SERE disjunction in the
consequent of the suffix implication.

In the memory and register write sequences, it can be observed that memory
writes are committed in the fourth stage, and register writes in the fifth stage. The
first stage is the issued instruction. The non-overlapping suffix implication and the
[*2] prefix in the sequences cause the MemWr signal to be tested in the fourth stage
and the RegWr to be tested in the fifth stage, as required.

The PSL statements are given to the checker generator to produce an assertion
circuit, which is then instantiated in the CPU’s RTL code. The checker runs in
parallel with the CPU and monitors its signals for faulty executions. Figure 6.7 shows
the resulting simulation trace, as exercised in a testbench. The “Faulty instruction”
signal is used to create an error to illustrate how assertion threading can be used in

the debugging process.
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Figure 6.7: Use of assertion threading in the CPU example.

The AssertFailOut signal triggers at a given time point (at the right in the figure),
thereby indicating that a violation occurred in the behavior of the write instruction.
Since the assertion signal is registered, the thread that caused the error can be iden-
tified in the preceding cycle; in this case the error came from thread number two.
Tracing back to the clock cycle where this thread was activated, and knowing that
the instruction was issued in the previous cycle, it can be deduced that the faulty
instruction occurred in the clock cycle where the cursor is located in the figure (which

happens to correspond to the cycle in which the error was injected).

Assertion threading can be especially beneficial in more complex pipelines such as
in superscalar processors, and even in non-processor designs where a large amount of

concurrent activity is taking place.

6.5 Checkers in Silicon Debug and On-Line Monitor-
ing

Circuit-level assertion checkers can be used not only for pre-fabrication functional ver-
ification, but also for post-fabrication silicon debugging, as illustrated in Figure 6.8 b).
Assertion checkers can be purposely left in the fabricated circuit to increase debug
visibility during initial testing of the device. Assertions compiled with a checker gen-

erator can also be used as on-line circuits for various in-field status monitoring tasks,
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Figure 6.8: Usage scenarios for hardware assertion checkers.

as shown in Figure 6.8 c).

Section 6.5.1 expands on how assertion checkers can be used beyond the verifi-
cation stages, and into full silicon debugging. Section 6.5.2 shows how assertions,
combined with a checker generator, can be used to automatically design certain types
of circuits. Example scenarios are shown in self-test and in-field monitoring applica-
tions. Section 6.5.3 introduces an algorithm for assertion grouping and shows how

checkers can be managed in a dedicated reprogrammable logic core.

6.5.1 Checkers in Silicon Debugging

Assertion checkers produced by the checker generator can not only be used for em-
ulation and simulation verification before fabrication, but can also be used post-
fabrication, when a set of assertion checkers is purposely left in the design. The goal
of the silicon debugging process is to find and possibly correct design errors in a post-
fabricated Integrated Circuit (IC), usually referred to as first silicon. The checkers
can test for functional faults and timing issues which can not be fully tested pre-
fabrication. By connecting the checker outputs to the proper external test equipment
or on-board read-back circuits, the user can get immediate feedback on assertion fail-
ures in order to undertake the debugging process. A checker generator capable of
producing resource-efficient checkers is clearly an advantage when checkers take up
valuable silicon area in the device.

Assertion-based silicon debug differentiates itself from emulation based verification
because in silicon debug, the design is implemented in its intended technology, as
opposed to being implemented in reprogrammable logic during hardware emulation.
This allows at-speed debugging under expected operating conditions, and assertion
checkers play an important role here as well. Figure 6.9 a) shows how assertion

checkers in silicon are used to monitor the state of the device under test during the
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Figure 6.9: Debugging and self-test using checkers.

entire execution. This monitoring mode is identical to that which is used verification,
with the nuance that the checkers exist in permanent silicon and can be used during
the lifetime of the device, as opposed to temporary verification checkers that are

removed before fabrication.

6.5.2 In-Circuit On-Line Monitoring

The checkers for silicon debugging mentioned above serve their purpose, but can
ultimately be removed for mass production of the IC. In a more general usage scenario,
the expressive power of assertions, combined with a checker generator can be used
to actually perform explicit circuit design, going beyond the bounds of verification
and debugging. In this view, any form of monitoring circuit that can be expressed by
an assertion, once fed into the checker generator, can produce a complex error-free
circuit instantly. These circuit-level checkers are in fact more akin to actual design
modules rather than verification modules.

A checker generator allows the flexibility of automatically generating custom mon-
itor circuits from any assertion statement. Coding checkers by hand can be a tedious
and error-prone task. In certain cases, a single PSL statement can imply tens or even
hundreds of lines of RTL code in the corresponding checker. Using assertions and
a checker generator can be a very efficient way of automating the design of certain
types of circuits. An example where this technique can be utilized is in designing
certain portions of self-test circuits. Off-line Built-In Self Test (BIST) techniques are

well established [3], and are based on the traditional flow:

TPG — CUT — ORA
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Figure 6.10: Traditional BIST vs. self-test using checkers. TPG =
Test Pattern Generation, TSG = Test Sequence Generation, ORA =
Output Response Analyzer.

where TPG symbolizes Test Pattern Generation and ORA is the Output Response
Analyzer. This architecture is shown in Figure 6.10 a). Off-line BIST techniques
typically employ a mixture of pseudo-random and deterministic TPG.

Assertion checkers can also benefit the implementation of self test circuitry, albeit
at a higher level. Test pattern generation is instead referred-to as test sequence gen-
eration (T'SG). Figure 6.10 b) shows an assertion-based off-line self-test architecture,
whereby test sequences are applied to the input of the Circuit Under Test (CUT),
and assertion checkers are used as the response analysis circuit. In this approach
the signature can be encoded as one bit, representing success or failure. The offline
self-test, when executed prior to device startup is considered non-concurrent, and is
illustrated in Figure 6.9 ¢). The use of assertions and a checker generator allows the
response analysis circuitry to be designed with greater ease.

Checker-based techniques also apply to the design of on-line self-test circuits [4],
as shown in Figure 6.9 b). In this scenario, the checker generator is used to design
the analysis circuits that correspond to the given test sequences. Contrary to silicon
debug and the other self-test techniques mentioned previously, a checker for a given
test sequence is only used as a response analyzer when the test sequence is being
exercised. In the concurrent self-test model, the device is momentarily interrupted
for testing, or alternately, unused resources are concurrently tested during runtime.

Using assertions and a checker generator as a means of circuit design poses dif-
ficulties when it comes to generation signals; however, the design of many types of
monitoring and analysis circuitry can benefit directly from this technique. The high-
level expressiveness of an assertion language combined with a checker generator can

be used as a quick method to automatically design circuits.

If checkers are incorporated in the final design, in-circuit diagnostic routines that
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Figure 6.11: Run-time status monitoring using assertion checkers for
redundancy control.

utilize the checker output can be implemented. Assertion checkers can be an integral
part of any design that attempts to assess its operating conditions on-line in real time.
Run-time assertion monitoring can be performed by the checkers, and the results can
be analyzed by an on-board CPU that can then send regular status updates off-
chip. Real-time monitoring based on in-circuit checkers can be especially important
in mission critical environments. For example, if a multitude of assertion checkers
running concurrently with the device were to detect an error, a secondary redundant
system could be instantly activated. Figure 6.11 shows an example of how checker
generator can be used to design the monitoring circuits for switching in redundant
systems. Designing an array of safety-checking circuits can be more easily performed

using assertions and a checker generator.

6.5.3 Assertion Grouping

With increasing device complexity and the advent of System-on-Chip (SoC) and
Network-on-Chip (NoC) designs, small blocks of reprogrammable logic are commonly
added to ICs. This allows a certain amount of flexibility for correcting post-fabrication
defects, and also allows a certain amount of further design modifications to be per-
formed. When a large amount of assertion checkers is to be instantiated in a design,
space constraints can limit their applicability. If the device utilization is near max-
imum capacity, there may not always be room for all the checkers. Furthermore, if
the device has the necessary free space for adding a small area of reprogrammable
logic (if not already present), and if the logic can be connected to the main signals
of interest throughout the device, then in such cases assertion grouping must be per-
formed to manage a large set of checkers. In assertion grouping, the set of checkers

is partitioned into groups whereby each group is guaranteed not to exceed the size of
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Figure 6.12: Fixed and reprogrammable assertion checkers in SoCs.

the reprogrammable logic area. Ideally, the number of groups should be minimized
so that fewer reconfiguration steps are necessary.

In SoC designs, some modules are often carried over from a previous design and
do not require a detailed verification. Newly designed modules will require greater
interoperability with the reprogrammable fabric, in order to perform assertion-based
debugging. Protocol monitors may also be required to debug complex interactions
between cores. The reprogrammable logic can also be used for assertion checking in
offline unit testing before the device is fully operational.

Figure 6.12 shows an example scenario where a reprogrammable logic core was
added to a SoC. In this example, the CPU and Core 1 were part of a previous de-
sign and were known to be bug-free. Consequently, their interconnection with the
reprogrammable logic is rather limited. Cores 2 and 3 are newer modules and have
more connections to the logic, in the event that circuit corrections need to be per-
formed in the fabricated IC. In the example figure, two assertion checkers are placed
in permanent silicon, and four are temporarily programmed in the reprogrammable
fabric.

The reprogrammable logic core can even be used to perform the assertion-based
concurrent BIST described in Figure 6.9 ¢). In this scenario, the CPU can coordinate
the instantiation of the proper checkers for each test set in the reprogrammable fabric.
Checker groups (also called partitions, or subsets) are instantiated one after the other
in the reconfigurable area, corresponding to the set of test sequences being executed.
Reprogramming reconfigurable logic on-the-fly for different tasks is known as run-time
reconfiguration [150].

The checker generator typically processes a set of PSL statements and transforms
them into an RTL module of synthesizable code. In the generated checker, each

assertion circuit’s RTL code is clearly marked. A set of Python scripts was developed
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1: FUNCTION: SUBSET-CIRCUIT(set C' of circuit metrics (FF, LUT), areapr,
arearyr)
D—C
while there are circuits left in C'do  //phase 1 (dominant metric is #FFs)
sort circuits C' according to #FF's
build dynamic programming table 7" for subset-sum on # F F's
search T for best subset S such that Zsies #LUTs(s;) < arearyr
log subset circuits in S as a group in phase 1 results
remove circuits S from C
while there are circuits left in D do  //phase 2 (dominant metric is #LUTs)

10:  sort circuits D according to #LUT's

11:  build dynamic programming table 7" for subset-sum on #LUT's

12:  search T for best subset S such that >, _¢#FFs(s;) < areapr

13:  log subset circuits in S as a group in phase 2 results

14:  remove circuits S from D

15: if number of subsets in both phases differs then  //analysis

16:  return results of phase which has the fewest subsets (groups)

17: else

18:  return results of phase for which the subset-sum was performed on metric with

smallest freedom

Algorithm 6.2: Assertion circuit partitioning algorithm.

to extract each assertion circuit from the checker’s RTL module, and to automate
the individual synthesis of these checkers. This is performed so that circuit-size
metrics can be obtained for each checker. Another script is responsible for logging
these metrics in a file, which is then used as an input to the partitioning algorithm,
described next. FPGA synthesis tools are used in this example scenario.

Once the checkers have been individually synthesized and their sizing metrics are
obtained, the partitioning algorithm shown in Algorithm 6.2 is used to create subsets
of checkers suitable for multiple reconfigurations in the reprogrammable logic area.
This algorithm is based on solving the subset-sum problem by dynamic program-
ming [56]. However, because the circuit metrics comprise two variables, namely # of
flip-flops (FF) and # of lookup tables (LUT), the typical subset-sum procedure can
not be employed directly on its own. A two-phase algorithm is developed, which
returns a near-optimal partition. The inputs of the algorithm are the circuit metrics
and the size of the reprogrammable area (also specified as # of flip-flops and # of
lookup tables).

Phase 1 in the algorithm (lines 3 to 8) uses flip-flops as the dominant metric
and performs a subset-sum computation on this metric (line 5). The subset-sum

algorithm requires that the circuits be sorted in increasing order according to the
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dominant metric (line 4). A search is then performed for the best subset according
to the size limit of this dominant metric, while also respecting the maximum size for
the secondary metric (line 6). Once the best subset has been determined, it is logged
and removed from the set (lines 7 and 8). This procedure continues until the set of
checkers is empty (line 3).

The dominant and secondary metrics are interchanged and the same procedure is
repeated (lines 9 to 14). A comparison is then made between both phases (lines 15
to 18), and the solution with the fewest subsets is logged. When both phases have the
same number of subsets, it was empirically observed that the more balanced partition
is the one for which the dominant metric is the most constrained by the area limits
(smallest freedom).

It can be shown by counterexample that the algorithm is not guaranteed to create
an optimal partition; however, experiments show that it drastically outperforms the
brute force approach in computation time. Furthermore, when one of the metrics
has a large amount of freedom with respect to its area constraint, the problem tends

toward a single variable subset sum for which the algorithm is optimal.






Chapter 7

Evaluating and Verifying Assertion
Checkers

7.1 Introduction and Overview

In this chapter the assertion checkers produced by the MBAC checker generator are
empirically evaluated. The MBAC tool incorporates the techniques introduced in the
three previous chapters, and is coded in C++. MBAC is a standalone executable
invoked at the command line. The experiments performed herein have the goal of

evaluating three principal factors associated with assertion checkers:

1. Hardware resource usage and operating frequency of checkers;
2. Functional correctness of checkers;

3. Support of PSL operators in the checker generator.

The checkers should utilize the fewest circuit primitives as possible and should run
at the highest possible clock speed. Resource efficient checkers are important so
that the in-circuit debugging capabilities resulting from the ABV methodology can
be performed less obtrusively when checkers are added to a circuit under test. The
small circuit size of checkers is also beneficial when the checkers are used as permanent
status monitors, and more generally when checkers are used as actual design modules.
The checkers should also correctly implement the behavior specified by their respective
assertions, and the checker generator should support all the PSL operators in the
simple subset.

In the majority of the experimental results, the checkers produced by MBAC are
compared to the FoCs checker generator from IBM, which is the only available stand-

alone checker generator. The versions of the tools that are the most recent at the
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time of writing are MBAC version 1.75 and FoCs version 2.04 [108]. When evaluated
in hardware, the checkers are synthesized with Xilinx XST 8.1.03i for an XC2V1500-6
FPGA, and the synthesis is optimized for speed (as opposed to area). The number
of FFs and lookup tables (LUTS) required by a circuit is of primary interest when
assertion circuits are to be used in hardware emulation and silicon debugging. Because
speed may also be an issue, the maximum operating frequency after synthesis for
the worst clk-to-clk path is reported. Although in this technology the fundamental
metrics are the number of Flip-Flops (FF) and four-input lookup tables (used for
implementing combinational logic), the checkers could also be synthesized in other

technologies such as standard cell ASICs (Application Specific Integrated Circuits).

When a vunit contains multiple assertions, an HDL module containing the checkers
is created. A vector of output signals is declared, where each bit in the output vector
corresponds to an assertion signal. For synthesis metrics to be meaningful, each
assertion checker must be synthesized individually to avoid any resource sharing at
the hardware level. This is accomplished by redefining the output vector as a one-bit
signal, and synthesizing the module multiple times, whereby the desired assertion
signal is routed to the output. In this way, any unused logic is trimmed. The only
exception to this is when groups of assertion checkers are synthesized, as in Section 7.3

for example, where assertion grouping is evaluated.

When evaluated in software, the RTL checkers are simulated in the ModelSim
simulator from Mentor Graphics (version 6.1f SE) [129]|, where the behavior of the

checkers can be compared to the assertions as interpreted by ModelSim.

Functional equivalence of checkers can also be verified formally using model check-
ing. This procedure can be used to assess whether two checkers for the same assertion
are actually behaving the same way, and will be used in this chapter both to com-
pare MBAC checkers with FoCs, and to compare the two different implementations

of checkers for the same assertion in the MBAC tool.

The model checking technique for performing sequential equivalence checking
is illustrated in Figure 7.1. The model checker used in the experiments is Ca-
dence SMV [43|. The central element is the exclusive-or gate that evaluates to logic-1
when both inputs are not equal. The additional inverter is used because the assertion
polarity of FoCs’ circuits is different than with MBAC’s circuits. The outputs of
MBAC’s checkers are normally at logic-0 and momentarily rise to logic-1 to signal
assertion errors; the opposite polarity is used in FoCs. A testbench instantiates both
checkers and postulates that the output of the xor gate is always at logic-0 (i.e. the

circuits are equivalent). The assertion statement used to specify the equivalence has
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Equivalence checking by model checking

o Checker #1
/" (MBAC)
Assertion Output
e Checker #2
(FoCs)
assert Al: (~reset | ~Output):;

Figure 7.1: Equivalence checking by model checking.

the form:
assert reset —> ~XOR_Output;

where the reset signal is active low. The assertion above states that when the reset
is not active (i.e. logic-1), then the output of the xor gate should always be at
logic-0. In the Cadence SMV model checker, the assert directive, when placed in
an always procedural block, specifies a design invariant and is checked in all possible
executions. This means that no temporal operators need to be used, such as G in
LTL or AG in CTL, to ensure that the property holds globally (always) and for all

possible executions.

In Figure 7.1, the implication is rewritten using disjunction as shown in (5.1), such
that it can be understood by the model checker. When the circuits are functionally
equivalent, the model checker returns true, otherwise it returns false and produces
a counterexample. It should be emphasized that this is a static verification with

implicit complete coverage, and no test vectors need to be supplied.

In the following two sections, non-synthetic assertions are used to evaluate the
checker generator. The term non-synthetic is used to refer to real assertions appear-
ing throughout the literature and related research. This is in contrast to synthetic
assertions appearing in the remainder of the chapter. As will be explained further,
common real-world assertions are not temporally complex enough to truly benchmark
the effectiveness of a checker generator, and a set of hand-designed assertions over
plain Booleans will also be devised.

In the experiments, the actual source design is not implemented and the emphasis
is placed on the actual checkers that are generated from the assertions. For exam-
ple, in the PCl-read assertion from the book “Assertion-Based Design” [74], the PCI

interface to which the assertion refers to is not given, and is not required. Incorpo-
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rating the entire source design in the circuit metrics does not allow the size of the
checkers to be discerned properly, and diverts attention from the size of the checkers
themselves. Furthermore, the source design could be coded in a variety of ways, some
more efficient than others, and would not represent a universal metric. In general,
an upper bound on the hardware overhead associated with assertion checkers can be
obtained by adding the size of the checkers to the size of the source design. When
the checkers are synthesized with the source design however, resource sharing helps
to reduce the total circuit size. This resource sharing can occur between the checkers

and the source design, or between the checkers themselves.

When the source design is not available, all that must be done for the checker
generator to function correctly is to define a declaration module containing only the
declarations of the signals used in the assertion. This HDL module does not have any
actual functionality, and is the minimal requirement for the MBAC and FoCs checker
generators to operate properly. The vunit containing the assertions is then bound to

the declaration module.

In all experiments, the outputs of the checkers are sampled by a flip-flop (FF)
sensitive to the rising edge, such that equivalence checks and simulation results are
glitch-free. In some cases in equivalence checking, the flip-flop is made to be a monos-
table flip-flop that perpetually remains in the triggered state once the assertion signal
has triggered. This does not affect the validity of the equivalence check and is used
when the run-time semantics of two checkers are different, while still both being cor-
rect, as discussed in Section 2.2 regarding (2.3). When the monostable flip-flops are
used at the outputs of the checkers, a verified equivalence indicates that both circuits
are identical when the pre-FF output does not trigger, and indicates that both find
the first error at the same clock cycle, for all possible error traces. Once an asser-
tion has failed, it has failed as a whole, and one could in fact stop reporting errors

altogether, although this would not be ideal for debugging purposes.

The majority of the experimentations compare the checkers produced by MBAC to
those produced by the FoCs tool after synthesis to FPGA technology. Exceptions to
this are Sections 7.4 and 7.5. In Section 7.4, the checkers are compared by evaluating
the RTL code before synthesis. This reveals insight into the size of the checkers
that are generated in HDL, before any of the optimizations brought upon by the
synthesis tool are applied. In Section 7.5, the debugging enhancements for hardware
assertion checkers that were introduced in the previous chapter are novel and can not

be compared to any other tool.
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7.2 Non-Synthetic Assertions

In this section, non-synthetic, or real-world assertions, are used to evaluate the checker
generator. The non-synthetic assertions are meant to verify particular aspects of real
design modules, and their Boolean layer expressions do not typically consist purely
of simple signals. In the majority of test cases, a declaration module is created to
represent the CUT, where only the signal declarations are defined. The simplified
Booleans have the advantage of more clearly revealing the temporal complexity of
the checkers, since the implied hardware is not bloated with combinational logic for
complex Boolean expressions.

The assertions used in the test cases are shown below, and the synthesis results
and the comparisons to the FoCs checkers are presented at the end of the section. The
default clock declarations are omitted, and all signals are sensitive to the rising edges
of the clock. In all cases an active low reset was used. The vector widths of signals are
specified, and all signals that are not mentioned are assumed to be single-bit entities.

The first assertion used to evaluate the checker generator is the PCI assertion
adapted from page 102 of Foster’s book [74]. This assertion models the correct be-
havior of a read transaction for the PCI bus, and is specified using multiple sequence
declarations. Different phases of the transfer are modeled separately, such as turn-

around and the address and data phases. The cbe n signal is three bits wide.

PCI_ASR:

‘define IO_READ 4°b0010

‘define MEM_READ 4’°b0110

‘define CONFIG_RD 4°b1010

‘define MEM_RD_MULTIP 4’b1100

‘define MEM_RD_LINE 4°b1110

‘define data_complete ((!trdy_n || !'stop_n) && 'irdy_n && 'devsel_n)

‘define end_of_transaction (‘data_complete && frame_n)

‘define adr_turn_around (trdy_n & !irdy_n)

‘define data_transfer (!trdy_n && !irdy_n && 'devsel_n && !'frame_n)

‘define wait_state ((trdy_n || irdy_n) && !devsel_n)

‘define cbe_stable (cbe_n==prev(cbe_n))

‘define read_cmd ((cbe_n == ‘I0_READ) || (cbe_n == ‘MEM_READ) ||
(cbe_n == ‘CONFIG_RD) || (cbe_n == ‘MEM_RD_MULTIP) ||
(cbe_n == ‘MEM_RD_LINE))
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sequence SERE_RD_ADDR_PHASE = {frame_n;!frame_n && ‘read_cmd};
sequence SERE_TURN_AROUND = {‘adr_turn_around};
sequence SERE_DATA_TRANSFER = {{‘wait_state[*];‘data_transfer}[+]};
sequence SERE_END_OF_TRANSFER = {‘data_complete && frame_n};
sequence SERE_DATA_PHASE = { {{SERE_DATA_TRANSFER} ;
{SERE_END_OF_TRANSFER}} && {‘cbe_stable[*]} };
property PCI_READ_TRANSACTION = always ({SERE_RD_ADDR_PHASE} [=>
{SERE_TURN_AROUND; SERE_DATA_PHASE}) abort !rst_n;
assert PCI_READ_TRANSACTION;

The only change done in the assertion above concerns the addition of the [*] repeti-
tion in the right side of the intersection (&&) in the SERE_DATA PHASE sequence.
When the assertion is used as presented in the Foster book [74] (i.e. without the [¥]),
the checker generator produces a suspiciously small checker where the majority of
the Boolean layer signals are not used. This reveals a potential error in the assertion
itself, and upon closer inspection, it can be seen that when the ‘cbe stable sequence
is not repeated, the length matching intersection in the SERE_DATA PHASE can
never produce a match. This is because the ‘cbe stable is a sequence that spans one
cycle, and the left side of the length-matching && spans at least two clock cycles.
The corrected version of the assertion is used in the experiment, and the original one
likely contained a typographical error.

The next two assertions are used to ensure correctness of the AMBA bus proto-
col, and are from Chapter 8 in “Using PSL/ Sugar for Formal and Dynamic Verifi-
cation” [53]. Each assertion represents the most temporally complex assertion from
the two main AMBA test suites, each comprising a set of 26 assertions. The first
assertion, AHB ASR, captures the requirement that a bus transaction must never
stall for more than 16 cycles. The hResp signal is a two-bit vector indicating the
outcome of the transaction (other outcomes are ERROR, RETRY and SPLIT).

AHB_ASR:

localparam OKAY = 2°b00;

property NeverMoreThanl6WaitStates = always (
{(hReady == 1);(hReady == 0)} |=>
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{{(hReady == 0) [*x0:15]};{hReady == 1}}
abort (hResp != OKAY));

assert NeverMoreThanl6WaitStates;

The second AMBA bus protocol assertion verifies the correct operation of the
state machine used to decode a read transaction, as seen from a bus slave interface.
The fsm_read and hburst vectors are three bits wide, and htrans is two bits wide.

The localparam keyword was changed to parameter in the test files used.

MemSlave ASR:

localparam NONSEQ = 2’b10;

localparam SINGLE = 3°b000;

localparam FSMR_IDLE = 3°b000; // no ahb activity
localparam FSMR_READ_P1 = 3°b001; // ahb in read mode, pipe 1
localparam FSMR_READ_P2 = 3°b010; // ahb in read mode, pipe 2
localparam FSMR_READ_P3 = 3’b011; // ahb in read mode, pipe 3

sequence gNonSeqReadTransferSingle = {hburst==SINGLE &&
htrans==NONSEQ && hwrite==1’b0 && hsel_On==1’b0 && done_xfrn==1’b0};
property ReadFsmPipelineSingle = always(
{gNonSeqReadTransferSingle} [=>
{fsm_read==FSMR_READ_P1 && hready==1’b0;
fsm_read==FSMR_READ_P2 && hready==1’b0;
fsm_read==FSMR_READ_P3 && hready==1’b1;
(fsm_read==FSMR_IDLE)});

assert ReadFsmPipelineSingle;

The Open Verification Library (OVL) [75] consists of a set of parameterized HDL
assertion checkers, for use in various scenarios from general (ex: always and never
checkers) to particular (ex: parity and FIFO checkers). Version 2.0 beta of the OVL
was used in the experiments. Here also, the most temporally complex assertions
were selected, and in this case four assertions were retained for benchmarking. The
test _expr2 signal is width bits wide (i.e. |width-1:0]).

OVL_ASRa - OVL_ASRd:
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parameter num_cks 2;

parameter max_cks 2;

parameter width = 8;

property ASSERT_FRAME_RESET_ON_START_MAX_CHECK_P = always (
({(max_cks > 0) && reset_on_new_start &&
rose(start_event) && !test_expr} |=>
{!test_expr[*0:1]; (test_expr || rose(start_event))})
abort (!reset));

assert ASSERT_FRAME_RESET_ON_START_MAX_CHECK_P;

property ASSERT_HANDSHAKE_ACK_WITHOUT_REQ_SUBSEQUENT_REQ_P = always (
( {fell(ack)} |-> {{[*];rose(req);[*]} && {!ack[x];ack}} )
abort (!reset));

assert ASSERT_HANDSHAKE_ACK_WITHOUT_REQ_SUBSEQUENT_REQ_P;

property ASSERT_UNCHANGE_RESET_ON_START_P = always (
{(num_cks > 0) && reset_on_new_start && start_eventl} |=>
{(test_expr2 == prev(test_expr2)) [*]; !window}
abort (!reset));

assert ASSERT_UNCHANGE_RESET_ON_START_P;

property ASSERT_WIN_CHANGE_P = always ( ({start_event && !window ;
stable(test_expr2) [*1:inf]} [-> {!end_event})
abort (!reset) );

assert ASSERT_WIN_CHANGE_P;

Another real-world assertion comes from the area of Network-on-Chip (NoC) ap-
plications, where an entire system and its network infrastructure are contained on
the same integrated circuit. The test assertion used is from a Network-On-Chip ap-
plication 48], and is used to ensure that a network message (flit) reaches its intended
destination node. The assertion is parameterized through a set of register variables,
such that it can be reprogrammed by the on-board CPU to track different flits. The
network architecture is a Ring-of-Rings structure 35|, comprised of one central ring
and four satellite rings. The assertion ensures that a triple of flits is observed in the

proper order in an interface. The z_SrcGlobal and x_SrcLocal signals are four-
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bit signals, and the x Data signals are 32 bit vectors (xr_DataValid signals are

single-bit).

NOC_ASR:

sequence NR_P1 = {NR_Datalng_p_DataValid ==
&& NR_Datalng_p_SrcGlobalRing == Reg_SrcGloball
&& NR_Datalng_p_SrcLocalRing == Reg_SrcLocall
&% NR_Datalng_p_Data == Reg_SrcDatal};

sequence NR_P2 = {NR_DatalIng_p_DataValid ==
&& NR_Datalng_p_SrcGlobalRing == Reg_SrcGlobal2
&& NR_Datalng_p_SrcLocalRing == Reg_SrcLocal2
&& NR_Datalng_p_Data == Reg_SrcData2};

sequence NR_P3 = {NR_DatalIng_p_DataValid ==
&& NR_Datalng_p_SrcGlobalRing == Reg_SrcGlobal3
&& NR_Datalng_p_SrcLocalRing == Reg_SrcLocal3
&& NR_Datalng_p_Data == Reg_SrcData3};

assert always {NR_P1} [-> eventually! {NR_P2; [*]; NR_P3};

A large amount of assertions is used in the PROSYD project [107] to verify a
data receiver block. The block is connected to a consumer and a producer, and
various forms of assertions are explored, some which are equivalent to others. Five
of the most temporally complex assertions are reported below and are used in the
evaluation. The STATE vector is a two-bit enumerated type, RESERVED is an 8-bit
vector, and DATA IN and DATA OUT are 64-bit vectors.

DATARX ASRa- DATARX ASRe:

assert never {END; {(!START)[*]; START; true} && {ERROR[=11}};
assert { [*]; { rose(ENABLE) && STATE==activel; (rose(ENABLE) &&
STATE==activel) [->]} && {START[=01}} |=> {[*0:2] ; START};
assert always ((STATE==data && DATA_IN[63] &&
(DATA_IN[7:0] == RESERVED[7:0]) && !STATUS_VALID) ->
next_e[1:3] (STATUS_VALID && (DATA_OUT[41] ||
DATA_OUT[34] || DATA_OUT[371)));
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assert {[*]; (REQ && STATUS_VALID)[=3]; STATUS_VALID[->]1} |-> {ACK};

assert {[*]; {READ[=3]} && {WRITE[=2]1}} |=>
{('READ && 'WRITE) [*]; READY}! ;

Other non-synthetic assertions appearing throughout the previous chapters are
also used to evaluate the checker generator. The up-down counter from Exam-
ple 2.7 on page 45 contains four assertions respectively labeled UDCNT ASRa to
UDCNT ASRd. The full HDL and PSL code of this example is given in Appendix A.
The default width is assumed for the counter output and load buses (eight bits). The
assertion contained in the CPU-write case study for assertion threading on page 147
(Example 6.4) is used, and is labeled CPU_ASR. The arbiter assertion in (2.1) on
page 14 is also used, and is labeled ARB_ASR.

Table 7.1 shows the hardware synthesis results of the checkers for each assertion
mentioned in this section, as produced by both the MBAC and FoCs checker gener-
ators. It should be noted that for assertions OVL ASRd and UDCNT _ASRa, the
stable() function is not supported by FoCs and was rewritten as shown in Proposi-
tion 5.1. Furthermore, the consequent of the suffix implication in UDCNT ASRa
and the argument of never in UDCNT _ASRd were braced {...}, as FoCs does not
seem to support the non-braced versions. In all of these cases, FoCs did not support
the original assertions and could have been marked as not supported in the table.

For the AHB_ASR assertion, the equivalence check failed and the counterexample
below reveals a slight problem with the FoCs checker:

CEy: { hready A (hresp '=OKAY) ; [*17] }

In the counterexample above, signals not listed are assumed to be at logic-0, and in
the 17 cycles symbolized by [¥17], all signals are at logic-0, including hresp. In the
assertion, by operator precedence the abort applies only to the consequent sequence
(as opposed to the entire suffix implication). It is likely that in FoCs the abort is
erroneously applied to the antecedent also. When simulating the checkers with the
counterexample trace, in the FoCs checker the abort condition cancels the hready
and the assertion does not trigger. In the MBAC checker the assertion signal triggers
(as it should); this was confirmed in simulation where ModelSim’s interpretation of
the assertion on the counterexample trace also triggers.

For the MemSlave ASR and ARB_ASR test cases, the equivalence verification

succeeded with the monostable output FF only. As stated in the previous section,
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Table 7.1: Benchmarking of non-synthetic assertions ( N.S.Y. = Not
Supported Yet).

Hardware Metrics Equivalence

MBAC FoCs Check
Assertion FF LUT MHz | FF LUT MHz | MBAC < FoCs
PCI_ASR 9 20 317 | 9 19 317 pass
AHB ASR 18 17 611 | 18 18 665 fail — CE;
MemSlave ASR 5 16 456 | 5 11 338 pass
OVL_ASRa 4 5 606 | 4 5 606 pass
OVL_ASRb 4 4 474 | 4 3 474 pass
OVL_ASRc 10 8 311 |10 9 311 pass
OVL_ASRd 11 9 332 | 11 8 311 pass
NOC ASR 3 69 559 N.S.Y. -
DATARX ASRa || 5 5 598 | 5 5 598 pass
DATARX ASRb || 6 7 610 | 6 7 610 pass
DATARX ASRc || 4 11 667 | 4 11 667 pass
DATARX ASRd | 5 5 559 ) 6 441 pass
DATARX ASRe || 13 21 439 N.S.Y. -
UDCNT _ASRa 10 7 348 | 10 7 348 pass
UDCNT _ASRb 10 6 349 | 10 6 349 pass
UDCNT ASRc 10 6 366 | 10 7 348 pass
UDCNT _ASRd 10 10 667 | 10 10 667 pass
CPU_ASR 6 4 564 | 6 4 564 pass
ARB_ASR 7 9 434 | 7 9 434 pass

the monostable does not affect the validity of the equivalence verification, and only
indicates that the checkers have differences in their run-time semantics after the first
error is reported. The difference in behavior explains the difference in the LUT metric

in the table for this example.

The NOC _ASR and DATARX ASRe test cases are not supported by FoCs. In
the first case, FoCs does not support the use of eventually! in the consequent of the
suffix implication, and in the second case it is likely that the strong sequence is the
cause. In the second case no output is generated by FoCs even though the assertion
is properly recognized in its user interface. The hardware metrics for the NOC _ASR
assertion are heavily biased towards LUTs because of the many vector comparisons
in the sequences. In the remaining test cases in the table, both tools perform very

similarly in terms of circuit sizes, and are shown to be functionally equivalent.



168 Chapter 7. Evaluating and Verifying Assertion Checkers

7.3 Evaluating Assertion Grouping

In this section the assertion partitioning algorithm presented in Section 6.5 is eval-
uated. The MBAC checker generator is used to produce assertion checkers for two
suites of assertions. The assertions are used to verify an AMBA slave device and
AMBA AHB interface compliance, and are from Chapter 8 in “Using PSL/ Sugar
for Formal and Dynamic Verification” [53]. Because of the temporal nature of the
assertions, the checkers utilize more combinational cells than flip-flops. However, the
partitioning algorithm can operate on any type of circuits whether they are balanced
or biased towards either flip-flops or combinational logic.

Table 7.2 shows the individual resource usage of checkers for the assertions in the
AHB and MemSlave examples. In the table, N.A. means Not Applicable, and occurs
for circuits containing only one FF with no feedback path (the MHz is a clk-to-clk
figure). Table 7.3 shows how the assertion circuits from Table 7.2 are partitioned
into a minimal number of sets by the subset-circuit algorithm (Algorithm 6.2), for a
target area of 50 FFs and 50 four-input LUTs. In both cases, results of phase two in
the algorithm were logged (dominant LUTs). The right-most column lists the sums
of the circuit metrics in each group.

Table 7.4 shows how the actual resource usage can be slightly diminished when
the circuits that form a subset are actually synthesized together. As a general result,
it can be expected that as the number of circuits per subset increases, the resource
sharing becomes more important, and the overall metrics for a given subset become
smaller. For comparison purposes, Table 7.4 also lists the full-set metrics, which
are obtained by synthesizing all checkers as a single module. In both cases resource
sharing is greater for LUTs than FFs, and is more prominent in the MemSlave case.

The end result is an efficient partition of checkers which minimizes the number
of times the reprogrammable logic area must be reconfigured. A test procedure can
then run a batch of test sequences with a given subset of checkers, then instantiate
a new set of checkers, re-run the test sequences, and so forth. Once the verification
with checkers is finished, the reprogrammable fabric can be used for the functionality

of the intended design.

7.4 Pre-Synthesis Results

In this section the effects of the alphabet choice on the automata produced are eval-

uated. The automata metrics that are reported are the number of edges and the
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Table 7.2: Resource usage of assertion checkers for grouping.

AHB example:

‘ Assertion ‘ FFs ‘ LUTs ‘ MHz H Assertion ‘ FFs ‘ LUTs ‘ MHz ‘
AHB Al 2 2 667 AHB Al4 1 12 | NA.
AHB A2 2 3 611 AHB Al5 1 36 | N.A.
AHB A3 2 3 667 AHB A16 2 20 667
AHB A4 2 2 611 AHB A17 2 2 611
AHB_ A5 2 2 667 AHB A18 3 2 667
AHB A6 2 2 667 AHB A19 3 3 667
AHB A7 2 2 667 AHB A20 3 2 667
AHB_AS 2 2 667 AHB A21 1 23 | N.A.
AHB A9 2 2 667 AHB A22 1 21 | N.A.
AHB_A10 1 6 | N.A. AHB_ A23 1 21 | N.A.
AHB Al1 2 30 667 AHB A24 1 19 N.A.
AHB Al2 2 18 | 667 AHB_ A25 1 6 | N.A.
AHB A13 2 18 611 AHB A26 18 17 611

MemSlave example:

‘ Assertion ‘ FFs ‘ LUTs ‘ MHz H Assertion ‘ FFs ‘ LUTs ‘ MHz ‘
MemSlave Al 1 4 N.A. | MemSlave Al4 | 2 3 667
MemSlave A2 2 4 667 || MemSlave Al5 | 2 3 667
MemSlave A3 2 2 667 || MemSlave A16 | 2 7 667
MemSlave A4 2 2 667 | MemSlave Al17 | 1 2 N.A.
MemSlave A5 1 2 N.A. | MemSlave A18 | 4 12 442
MemSlave A6 1 7 N.A. | MemSlave A19 | 1 5 N.A.
MemSlave A7 1 2 N.A. | MemSlave A20 | 1 6 N.A.
MemSlave A8 1 7 N.A. | MemSlave A21 | 1 6 N.A.
MemSlave A9 4 9 417 | MemSlave A22 | 1 1 N.A.
MemSlave A10 | 5 16 456 || MemSlave A23 | 2 5 667
MemSlave A1l | 5 22 469 || MemSlave A24 | 1 4 N.A.
MemSlave Al12 | 2 3 667 | MemSlave A25| 1 3 N.A.
MemSlave Al13 | 2 3 667 | MemSlave A26 | 1 18 N.A.
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Table 7.3: Checker partitions for reprogrammable area.

AHB example:
‘ Subset ‘ Assertion circuits in partition ‘ YFF,>LUT ‘

#1 | {A9, Al4, A15} 1, 50
22 | {A8, A22, A23, A25] 5, 50
23 | {AT, A10, A21, A24} 5, 50
#4 | {A6, A1, A13] 6, 50
#5 | {Al, A2, A3, A, A5, A12, A16} 14, 50
#6 | {A1T, A18, A19, A20, A26} 29, 26
Total: | 63, 276

MemSlave example:
| Subset | Assertion circuits in partition | XFF,XLUT |

#1 {A6, A8, A19, A20, A21, A22, A26} 7, 50
#2 {A1, A11, A15, A18, A23, A24} 15, 50
#3 {A2, A3, A5, A7, A9,
A10, Al4, Al16, A17, A25} 21, 50
#4 {A4, A12, A13} 6, 8
Total: 49, 158

Table 7.4: Subset and full-set synthesis of checker groups.

AHB example: MemSlave example:
‘ Subset ‘ FFs, LUTs ‘ ‘ Subset ‘ FFs, LUTs ‘

#1 4, 50 #1 7,43
#2 5, 50 #2 15, 47
#3 5, 49 #3 21, 47
#4 6, 34 #4 6, 8
#5 13, 48 Total: 49, 145
#6 29, 26
Total: 62, 257

Full-Set (FFs, LUTs) Full-Set (FFs, LUTs)

60, 250 48, 129
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number of states. In the tables to follow, the two columns titled “Edges >p” and
“Edges >¢” represent the number of edges when either the power set or symbolic
approaches are used, as defined in Definitions 4.1 and 4.2 respectively. Since the
number of states is identical in both approaches, the number of states is reported
in one column. After having considered Example 4.1, the power set alphabet can
be expected to be worse; however, this section presents broader quantitative data to
confirm this.

The goal of this section is two-fold: first, the efficiency of the two alphabet ap-
proaches is compared, and second, an example of how assertions and a checker gener-
ator can be used to create hardware pattern matchers is shown. Although this second
case is illustrated using hardware protein matchers as examples, the purpose is not to
compare with existing protein matching machines, whether hardware or software, but
rather to show that assertions and a checker generator can be used to perform other

types of automated circuit design, going beyond the intended task of verification.

7.4.1 Experiments with Hardware Protein Matchers

The string matching theme is explored here, with a particular application in protein
matching. The checker generator can be used to generate protein matching circuits
that could potentially perform the matching faster than software approaches [138] and
require less computing infrastructure. The protein sequences that are to be matched
are described by regular expressions in a slightly different notation than conventional

«

regular expressions: represents concatenation, “x” represents any symbol, symbols
inside “[|” denote choice and parentheses represent repetition (with a count or a
range). The proteins used in the experiments are from the PROSITE list [99].

The typical task of protein matching software consists in finding a given protein in
a longer protein. A protein is a sequence of amino acids, and there are twenty standard
amino acids each represented by a single capitalized character. For example, here is

the expression for Protein Site (PS) # 00007:
PS00007: |RK|-x(2)-[DE]-x(3)-Y
A pattern matcher for this regular expression can be expressed in PSL as the assertion:
assert never {{t=="R’}|{t=="K’};[*2]; {t=="D’}{t=="E’};[*3];t=="Y'}; (7.1)

The characters in quotes represent ASCII values for the corresponding protein sym-
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Table 7.5: Hardware protein matching automata generated by MBAC.

7# Edges | ## States

Site #  Protein Xs | Bp

PS00007:  [RK]-x(2)-|DE]-x(3)-Y 9 | 60 9
PS00112: C P x(0,1) [ST[ N [ILV[ G T 10 | 768 9
PS00259: Y x(0,1) |GD] [WH| M _[DR] F 9 | 352 8
PS00328: H-R- IR G Hx(2) [DE|(7) 16 | 152 16
PS00354:  [AT| x(L,2) [RK]|(2)-[GP| R-GR-P[RK| x || 14 | 576 13
PS00831: G-—x-|LIVM|(2)-x-R-Q-R-G—x(5)-G 16 | 192 16
PS01088:  [LIVM]|(2)x R-L-[DE[ x(4) R-L-B 14 | 320 14

bols. The assertion in (7.1) postulates that the protein sequence is never matched.
When it is matched, the assertion output signal triggers and indicates when the string
is detected. Normally, an assertion failure indicates a problem in the device being
verified, but in this case the checker is used as a pattern matcher that must report
occurrences of a given sequence. Every time the checker output triggers, the pattern
has been detected.

It should be noted that the circuit—under—verification need not be completely
defined for the checker generator to operate correctly: all that must be done is to
bind the assertion to a module that defines an 8-bit signal called t. The actual
circuit would be a text reader that scans one character per clock cycle. The never
property has the effect of continually starting a match for the sequence, such that

every time the sequence manifests itself, the assertions output triggers.

Table 7.5 shows the automata metrics of the hardware protein matchers generated
by MBAC, for a selection of protein sites. Each protein is expressed as an assertion
in a similar manner to PS00007 shown in (7.1). As can be observed, the number of
edges is noticeably smaller in the symbolic encoding. The hardware string (protein)
matching created here runs in O(m) time, where m is the number of characters (amino

acids) to be searched.

Hardware accelerated protein matching could be used for efficiently searching large
protein databases (for example, the TIGR Microbial Database), and could also be
adapted to DNA sequence matching, given that a DNA sequence uses only four types
of amino acids. Whether for string or protein matching, and even network intrusion
detection, the general area of hardware accelerated pattern matching is related to the

checker generators used in assertion-based verifications through sequences.
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7.4.2 Complex Sequences

For high performance applications, the technique used in the previous subsection
to create a hardware circuit for pattern matching would represent a first step, and
could be improved by such measures as pipelining and further parallelism. Handling
more than one character per clock is a common solution to improve throughput. The
previous experiment nonetheless shows the scope of how assertions and a checker
generator can be used to create other kinds of hardware, not only checker hardware
for assertion verification. In this section complex sequences are evaluated, and the
effect of symbol alphabet choice is compared.

As observed in Table 7.2 in the previous section, typical assertions such as most
of the assertions used for verifying bus protocols span few clock cycles and do not
showcase the strength the checker generator because they are easily handled. In
the remainder of this chapter, synthetic assertions designed to benchmark complex
sequences and properties are employed. Because the Boolean layer does not add
to the temporal complexity of assertion automata, without loss of generality the
Boolean layer is abstracted away using simple signal names a, b, etc. As assertions
become more popular and verification engineers become more adept at writing them,
checker generators must be able to handle all language features and scale efficiently
for temporally complex assertions.

Table 7.6 shows a set of test assertions used to evaluate the pre-synthesis metrics
of the checkers produced by the MBAC and FoCs tools. The automata metrics for
this set of properties, as implemented in RTL code, are presented in Table 7.7. The
number of states is inferred by looking at the width of the register vector used to
encode a given automaton in Verilog. In the other sections in this chapter, hardware
metrics are compared after each checker is synthesized for FPGA technology. In this
section, results are presented that more closely relate the size of the automata that
are actually generated, before any hardware synthesis optimizations.

The number of edges using both alphabet approaches in MBAC is shown in the
second and third columns. As can be observed, the symbolic alphabet produces a
much simpler automaton. In both cases the number of states is identical, as reported
in the fourth column. The number of states is reported for the FoCs checker generator
in the last column. As stated in the literature, FoCs is also automata-based [58, 106].
A comparison to FoCs was not attempted for the number of edges, given that their
automata-to-RTL encoding is not documented, and inaccurate data could be inferred.
From the results, it can be observed that the automata produced by MBAC are more

compact than those produced by FoCs, and in some cases by more than an order of
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Table 7.6: Pre-synthesis benchmarking properties.

‘ Assertion “assert Pz;”, where Px is:

P1  never {{a[«0:1] ; b[x0:2]} : {c[*0:1] ; d}}

P2 never {{a]]; b[x1:3]} | {c; d[x1:2] ; e}}

P3  never {{a|x]|} : {b|*|}}

P4 never {{a | b} ; {{c[*]} && {d[*1:3]}} : {e}}

P5  never {{a; b[«]} : {c[*] ; d} ; e}

P6  never {{{b; c[x2:4] ; d}[+]} && {b ; {e[->2:4]} ; d}}
P7  never {{a; b[x1:3| ; c[*0:1|} & {d[*2:4] ; e[->]}}

P8  mnever {{a|x0:1] ; b[x1:2] ; c[*|} : {d[*0:1] ; e[«2:4]}}

P9 mever {{a; blx| ; c[+]} : {d[+]; e[+]} ; f[+]}

P10 never {{a; b|x|; c[x|} : {d]|*] ; e[*2:4]} ; f|->]}

P11 never {{a|*] ; b[x| ; c[*]} && {d[x5:7]|}}

P12 never {{{a[*] ; b|] ; c[*]} && {d[#5:7]}} : {c[->]}}

P13 always {a} |=> {{{c[*1:3] ; d}|+]} && {{e[->2:3|} ; d}}
P14 always {a} [=> {{{b; c[*1:2] ; d}[+]} : {{e[>]} ; d}}
P15 always {a} |=> {{{b; c[x1:2] ; d}[+]} : {b; {e][->2:3]} ; d}}
P16 always {a} [=> {b ; {{c[+0:2]} ; {d[*0:2]} }[+] ; e}

P17 always {a} |[=> {b; {c; d}[+| ;e ; {f; b}[+]; g}

P18 always {a} [=> {{b; c[+]} : {d[+]; e} ; f}

magnitude. For test cases P13 to P15, no output was produced by FoCs.

The actual run times required to compile the assertions are also interesting to
compare. To compile the most demanding case fifty times (P13 in the table), FoCs
requires approximately 22 seconds, while MBAC requires less than 1/8 of a second.
An intermediate test case is P12, where FoCs requires approximately 2 seconds and
MBAC takes less than 1/10 of a second, where the assertion is also compiled fifty
times. These results were obtained on a 2.4 GHz Pentium 4 with 512MB RAM.

7.5 Benchmarking Debug Enhancements

The effects of assertion threading, assertion completion and activity monitors are
explored in this section by synthesizing the assertion circuits produced by the checker
generator. The signal-dependency logging that was presented in Subsection 6.4.1 does
not influence the circuits generated by the checker generator, while the assertion and
coverage counters from Subsection 6.4.4 contribute a hardware overhead that is easily
determined a priori (i.e. n-bit counter with saturation logic).

Some of the assertions used in this section are from the Cohen [53] and Foster [74]
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Table 7.7: Pre-synthesis benchmark results for checkers generated by
MBAC and FoCs (N.O. = No Output).

MBAC FoCs
Assertion | Edges X5 | Edges Yp | States | States
P1 6 40 3 19
P2 7 64 5 16
P3 3 7 2 6
P4 7 50 5 10
P5 10 144 5 12
P6 68 324 27 98
p7 26 320 11 74
P8 19 112 7 101
P9 27 656 6 69
P10 33 800 9 44
P11 28 124 14 109
P12 33 140 15 736
P13 90 296 21 N.O.
P14 114 624 23 N.O.
P15 221 760 66 N.O.
P16 7 96 4 8
P17 32 1216 11 15
P18 42 480 10 18

books, while others were created during the development of MBAC to exercise the
checker generator as thoroughly as possible. In the AMBA, PCI and CPU example
assertions appearing in the tables in this section, complex Boolean layer expressions
are replaced by simplified Boolean symbols. Synthesizing the full expressions does not
change the temporal complexity of the automata because the Boolean layer expres-
sions are not incorporated directly into assertion automata, but rather instantiated
separately in HDL, where a result signal is used. Synthesizing assertions with simple
Boolean expressions actually emphasizes the logic required for capturing the temporal
structure of an assertion, and is the preferred method.

Table 7.8 shows a set of test assertions used to benchmark the debugging enhance-
ments that were introduced in Section 6.4. The assertions checkers are synthesized in
the normal operating mode of the checker generator; these results are shown in the
first column of triples in the top half of Table 7.9.

As described in Section 6.4.3, assertions can alternately be compiled in completion
mode as opposed to the typical failure mode. Synthesis results for the completion

mode checkers are shown in the second group of triples in the top half of Table 7.9.
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Table 7.8: Test assertions for debugging enhancements. (/ = Simpli-
fied Booleans.)

| Assertion |
Al assert always {a&b} |[—> {~c; {d&~c}[*0:4]; c&~d};

A2 assert always ({a} |=> {{c[*0:1];d}|{e}});

A3 assert always ({a;b} |=> {c[*0:1];d});

A4 assert always {a} [=> {{[*2];b;~c} | {[*2];~bic}}; (Example 6.4) /

A5 assert always {a} |=> {b;c;d;e}; (AMBA asr. |53]) /

A6 assert always {a;~a} |=> {(~a)|*0:15];a} abort b; (AMBA asr. |53]) /
A7 assert always {a;b} |=> {c;{{d|*|;e}|+];f}&&{g|*|}} abort h; (PCI [74])
A8  assert always {a} |=> {e;d;{b;e}[*2:4];c;d};

A9 assert always {a} |=> {b; {c[*0:2]} | {d[*0:2]} ; e};

A10 assert always {a} |=> {{{c[*1:2];d}[+]|} && {{e[->2:3]|};d}};

A1l assert always {a} |=> {{{b;c[*1:2|;d}|+]|} & {b;{e[->2:3]};d}};

Al12  assert always {a} |=> {{{b;c[*1:2|;d}|+]|} && {b;{e|->2:3]|};d}};

A13 assert never {a;d;{b;a}[*2:4];c;d};

Al4  assert never { {{b;c[*1:2|;d}[+]} && {b;{e[->2:3]|};d} };

A15 assert always {a} |=> {{{b;c[*1:2];d}[+]} : {b;{e[ >]};d}};

From the table, it can be observed that a completion-mode assertion utilizes slightly
less combinational logic (LUTs), and on average runs slightly faster than its normal-
mode version (i.e. regular failure matching). Test assertions Al3 and Al4 have
exactly the same metrics as in the normal mode since the completion mode has no

effect on those types of properties (assert never seq).

The activity monitors introduced in Section 6.4.2 are used to observe when se-
quences are undertaking a matching. The third set of triples in the top half of
Table 7.9 shows the hardware metrics of the checkers with activity monitors, for the
example assertions. Unless specified, the default mode is not completion mode but
rather the typical failure mode. Experiments could also be performed for the combi-
nation of activity monitors with completion mode. As can be noticed in the table, the
maximum operating frequency is slightly diminished compared to the normal check-
ers, and in some cases, an additional flip-flop is required. The effect of the OR-gate
appearing in the state-signal disjunction that is used to form the activity signal is

visible in the slight increase in the LUT metric.

The checkers produced in the assertion threading experiments, which are reported
in the bottom half of the table, were formally verified by model checking and were
proven to be equivalent to their normal counterparts in the top-left column in the

table. All equivalence verifications succeeded with the exceptions of the 8-way thread-
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Table 7.9: Resource usage of checkers with debugging enhancements.

Normal Completion Activity
Assertion || FF \ LUT \ MHz | FF \ LUT \ MHz | FF \ LUT \ MHz
Al 6 8 433 6 7 444 6 11 429
A2 3 3 610 3 2 610 3 4 610
A3 4 3 611 4 3 553 4 bt 564
A4 6 3 564 6 3 564 6 Y 959
Ab bt 5 514 bt 4 611 5 6 509
A6 18 | 17 611 | 18 17 502 | 18 23 564
AT 5 10 468 5 7 470 5 12 411
A8 15| 21 329 | 15 15 430 | 15 26 312
A9 7 12 333 7 8 412 7 14 331
A10 16 | 38 304 | 16 31 386 | 17 | 40 293
All 44 1 141 | 260 | 44 | 139 | 250 | 44 | 150 | 259
A12 35| 118 | 251 | 35 | 100 | 281 | 35 | 128 | 243
A13 12 | 11 559 | 12 11 559 | 12 15 559
Al4 12 | 12 456 | 12 12 456 | 13 17 452
Al5 26 | 80 246 | 26 79 250 | 27 87 249
Assertion Threading
2-way 4-way 8-way

FF \ LUT \ MHz | FF \ LUT \ MHz | FF \ LUT \ MHz
Al 15| 18 [ 386 | 29 | 33 | 306 | 57 | 62 | 241
A4 15| 11 442 | 29 20 362 not required
A5 13| 16 323 | 25 24 326 not required
A6 39 | 38 442 | 77 75 364 | 153 | 144 | 297
AT 13| 23 297 | 25 39 287 | 49 67 235
A8 33 | 44 298 | 65 83 252 | 129 | 164 | 235
A12 73| 235 | 239 | 145 | 430 | 213 | 289 | 900 | 186
Al13 25| 23 564 | 49 46 433 | 97 91 408
Al4 29 | 35 410 | 57 70 410 | 113 | 139 | 408
A15 57 | 165 | 252 | 113 | 301 | 205 | 225 | 570 | 177
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ing of A8, the 4-way and 8-way threading of A15 and all versions of A12, which
exceeded the maximum memory capacity of the model checker. However, in these
exceptions, no counter-example was produced during the run time of the tool. The
verification performed here shows that threading preserves the intended functionality
of the checker circuit, while increasing the observability in the checking process. The
equivalence check also confirms that the dispatcher circuit and the overall threading

strategy is correct, on the examples tested.

As presented in Section 6.4.5, assertion threading replicates sequence circuits in
order for the failure conditions to be isolated from other activations. This was shown
to ease the debugging process considerably, particularly when temporally complex
assertions are used. The lower half of Table 7.9 shows how the resource utilization
scales as a function of the number of hardware threads. Because 8-way threading is
only useful for sequences that span at least eight clock cycles, the assertions used must
have a certain amount of temporal complexity for the results to be meaningful. Since
the assertion derived from Example 6.4 in A4 and the AMBA assertion in A5 both
contain simple left-sides for the suffix implication, along with right-side sequences that

span four clock cycles, these assertions do not benefit from 8-way assertion threading.

In the current version of the checker generator, when a sequence is a simple se-
quence such as {a}, it is still threaded even though doing this is useless. The threading
results in the table could be improved if this was detected, and such simple sequences
were not threaded. As anticipated, the experimental data shows that the resource

utilization scales linearly with the number of hardware threads.

Test case A7 corresponds to the PCI__ASR test case from Section 7.2 with simple
Booleans. The full assertion was shown to require 9 FFs and 20 LUTSs, as opposed
to 5 FFs and 10 LUTs in Table 7.9. The full PCI assertion exhibits particularly
large overhead compared to the simplified one, as some intermediate variables are
sequential (e.g., cbe_ stable).

The 4-way threaded assertion circuit as used in the CPU execution example (Ex-
ample 6.4) with non-simplified Boolean expressions actually synthesizes to 29 FFs
and 21 LUTs, with a maximum frequency of 362 MHz. This corresponds to virtually
the same metrics as the simplified version used in test case A4. The non-threaded
checker for this test case required only 1 less LUT, compared to the non-simplified
version in Section 7.2. Test cases A5 and A6 are based on the MemSlave ASR and
AHB_ ASR test cases from Section 7.2, with simplified Booleans. In the simplified
cases, the number of LUTs was reduced from 16 to 5 for the MemSlave ASR checker
and remained identical for the AHB _ASR checker.
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Table 7.10: Benchmarking implementations of eventually!.

Property Splitting Rewrite
(F = eventually!, G = always) FF | LUT | MHz | FF | LUT | MHz
eventually! {b;c;d} 4 4 559 | 5 11 | 388
eventually! {a;b;c;d;e} 6 6 559 | 17 | 52 237
always (a—> eventually! {b;c;d}) 4 4 559 | 5 10 | 395
G (a—> eventually! {a;b;c;d;e}) 6 5 564 | 17 | 44 236
G (a—> eventually! {b[*5:10]|}) 6 6 559 | 6 5 548
G (a—> F {b; {c[*0:2]} | {d[*0:2]} ; e}) 6 8 | 444 | 7 | 20 | 329
G (a—> F{{{c[*1:2];d}[+]} | {e[->2]} }) 6 8 | 434 | 5 9 392
G (a—> F {{{c[*1:2];d}[+|}:{{e[->]}:d}}) | © 7T | 417 | 5 7 395
G (a—> F {{{c;d}*|} &&{~e[*[;e;~e[*]}}) | 4 5 | 474 | 4 7 465
G ({a;b[*0:2|;c} |-> F {d;e[*1:3];{}) 9 9 473 | 10 | 17 | 309
G (a—> F { {{bc[FL2[d}[ ]} && 17 | 27 | 395 | 68 | 245 | 207
{b:{e[->2:3]}:d} })

7.6 Benchmarking Sequences and Properties

In this section the two eventually! approaches, namely the rewrite rule and the au-
tomata splitting technique, are compared. The assertion circuits produced by the
MBAC checker generator are also compared to those produced by FoCs for complex
sequences and properties. In the experiments, simple Boolean expressions are used
because the emphasis is placed on the temporal behavior of the checkers. Ideally, the
assertion circuits that are produced should be small, fast, should support all simple

subset operators and should exhibit the correct behavior.

7.6.1 Comparison of the Two eventually! Approaches

Table 7.10 shows the advantages of the split-automata method in the implementation
of eventually!, as presented in Section 6.3, compared to the rewrite rule presented
in Section 6.3. The split-automata method scales much better because a typical
matching automaton can be employed as opposed to a failure matching automaton,
which can be exponentially larger given the required strong determinization. In the
test cases, the split-automata method produces faster circuits, and except for a few
small examples, requires less hardware. In all eleven test cases, functional equivalence
of the checkers was formally verified by model checking. These examples show that
in general not all sequential optimizations can be performed by traditional synthesis

tools, and efforts to optimize the checkers pre-synthesis should always be made.
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Table 7.11: Occurrence-matching test sequences.

Assertions

“assert never Sx;”, where Sx is

ST { {a[#|;b[*1:3|} | {c;d[*1:2];e} }

52 {{ab}; {{c[+]} && {d[x1:3]}} : {e} }

S3  { {a;|x|;b} && {c[x1:5];d} }

5S4 {{ab}i{{c[+]} && {d[x1:3|}}:{e} }

S5 {{ab}i{{cl[+|} && {d[x1:6]}}:{e} }

S6  {a;{b;ci];d;{e;a}[+];f}

S7  { {e;e} within {c;d;a;b;c} }

S8 { {a;b[x1:3]} & {c[*2:4]} }

S9  { {a;b[x1:3];c[x0:1]} & {d[«2:4];e[->]} }
S10  { {{b;c[«1:2];d}[+]} && {b;{e[->2:3]};d} }
S11  { {{b;c|*2:4];d}|+]} && {b;{e|->2:4]};d} }
512 {{a;b[|} : {c[+];d};e}

S13 {{a; blx| ;5 c[+|} : {d[*] ; e[*]} ; f]] }

514 { {a; bl«| 5 e[|} : {d[«] ; e[*2:4]} ; f[->] }
S15  { {a[*0:1];b[x0:2]} : {c[x0:1];d} }

S16  { {a[0:1];b[x1:2];c[+|} : {d[*x0:1];e[«2:4]} }
S17  { {a[*];b[x];c[*]} && {d[*5:7|} }

S18  { {{al*[;bl*]sc[+|} && {d[5:7]}} : {c[->]} }

7.6.2 Occurrence-Matching Sequences

The FoCs and MBAC checker generators are evaluated with the set of assertions
shown in Table 7.11, and the results appear in Table 7.12. These results illustrate
the efficiency of the implementation of occurrence-matching SEREs, with partial em-
phasis on intersection and fusion operators. In the comparison table, N.A. (Not
Applicable) appears when an assertion circuit contains only one FF and the FF has
no feedback path (the MHz is a clk-to-clk figure). In all cases, the circuits produced
by MBAC are smaller or equal in size, and in all but two cases have an equal or higher
operating frequency.

For test cases S15, S16 and S18, the FoCs and MBAC checkers do not have
the same behavior. The counterexamples reported by the model checker show that

immediately upon releasing the reset, when the sequences

CEy: { ~reset ; bAd }
CE3: { ~reset ;bNe ;e }
CEy: { ~reset ;and;d;d;d;cnd}

execute (signals not listed are assumed false), the assertion signals from FoCs fail to
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Table 7.12: Benchmarking of occurrence-matching sequences.

Hardware Metrics Equivalence Check
MBAC FoCs
Sz || FF LUT MHz | FF LUT MHz MBAC < FoCs
S1 4 3 564 | 4 3 564 pass
S2 4 3 665 | 4 4 610 pass
S3 6 6 667 | 6 6 559 pass
S4 4 3 665 | 4 4 610 pass
S5 7 6 665 | 7 8 444 pass
S6 6 6 564 | 6 6 564 pass
S7 11 10 564 | 11 10 564 pass
S8 5 6 504 | 6 10 332 pass
S9 10 16 325 | 10 21 331 pass
S10 || 12 12 456 | 14 16 429 pass
S11 120 21 456 | 32 39 383 pass
S12 || 4 5 418 5) 6 469 pass
S13 || 5 7 352 | 32 56 261 pass
S14 || 8 15 338 | 26 32 332 pass
S15 || 2 2 665 | 6 7 395 fail — CE5 FoCs
S16 || 6 7 392 | 38 43 340 fail — CE3 FoCs
S17 113 15 506 | 19 33 412 pass
S18 || 14 16 445 | 65 127 257 fail — CE4 FoCs

report the error. In these cases, the sequences exhibit a violation of the respective
properties, and must be detected as such by the assertion checker circuits. The reset
signal is active low and is declared as an input to the checkers generated by both

tools.

7.6.3 Failure-Matching Sequences

Both tools are evaluated using sequences that require failure matching, using the
assertions shown in Table 7.13. Synthesis results are presented in Table 7.14. 1In the
comparison table, “N.O.” (No Output) denotes the cases when FoCs was not able to
generate checkers for given assertions and no code was produced (5 of 18 cases).

In more than half of the test cases, large differences in checker behavior were
observed between both tools. In such cases the confidence in the correctness of the
MBAC checkers is further increased by comparing checker outputs in simulation to
ModelSim’s interpretation of PSL.

The trace distance is introduced to compare the behavior of two assertion-circuit
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Table 7.13: Failure-matching test sequences.

Assertions
“assert always {a} |=> Sz;”, where Sz is
ST { biclx[id }

52 { {bic;d} & {e;d;b} }

S3 { exd;{bse}[*2:4];c;d }

S4  {b;{c[x0:4]} & {d} ;e }

S5 { b; {c[x0:6]} & {d} ;e }

56 { {{od}[+]} && {e[>2]} }

ST { {{ad}[+]} && {e[>4]} }

S8 { {{ad}[+]} && {e[->6]} }

S9  { {{clx1:2]}[+]} && {e[->2]} }

S10  { {{c[*1:2;d}+]|} && {e[->2]} }

S1T { {{c[*1:3];d}+|} && {{e|[->2:3]};d} }
512 { {{bsc[+1:2;d}[+]} : {{e[>]}d} }
513 { {{bsc[x1:2;d}[+]} : {bs{e[->2:3]};d} }
S14  { b; {{c[x0:2]} ; {d[x0:2]} }[] ;5 e }

S15  { {{c[*1:2];d}[+]} & {e[->2]} }

S16  { {e;e} within {c;d;asb;c} }

S17 {b;{c;d}[*[;e; {f;b}[+]:g}

S18 {{bsc[*[} - {d[*]se}sf}

outputs. For two given traces of assertion signals, the trace distance is defined as
the number of clock cycles in which the two signals disagree. The comparison is
done at the rising edge of the clock. The assertion signals in question are typically
from two different implementations of the same PSL assertion. The discrepancies
between MBAC and ModelSim are shown in the right-most column, by measuring
the number of cycles in the assertion output traces for which the two differ. For the
software metrics to be meaningful, the assertions are made to trigger often during a
simulation run. To accomplish this, primary signals supplied by the testbench are

pseudo-randomly generated with different probabilities.

Regarding the semantics of PSL in dynamic verification, it should be noted that
some assertions interpreted by simulators such as ModelSim will only trigger once for

any given start condition. For example, in the following assertion,
assert never {a;b[*0:1]};

for a given cycle in which a is asserted, the assertion will trigger. However, if the cycle

that follows a has b asserted, the assertion will not trigger. This is perfectly acceptable
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Table 7.14: Benchmarking of failure-matching sequences (M.C. =
proven equivalent in Model Checking).

Hardware Metrics Assertion Distances
MBAC FoCs MBAC- | MBAC-
Sz | FF LUT MHz | FF LUT MHz | FoCs MSim
S1 3 4 514 3 3 610 | 3272 0
S2 4 5 445 | 4 8 393 |0 (M.C.) | 0O
S3 15 21 329 | 15 22 292 |0 (M.C.) | O
S4 7 9 441 | 7 10 333 | 3973 0
SH 9 13 395 | 9 15 283 | 3973 0
S6 5 6 509 | 6 8 395 | 0 (M.C.) |0
S7 9 13 326 | 10 14 325 |0 (M.C.) | 0O
S8 13 18 324 | 14 19 324 |0 (M.C.) |0
S9 3 3 564 | 4 4 429 |0 (M.C) |0
S1I0| 9 22 311 No Output — 0
S11 || 20 52 278 No Output — 209
S12 || 22 59 259 No Output — 0
S13 || 65 222 250 No Output — 0
S14 || 3 4 610 | 7 12 331 | 26 0 r2061
S15 || 4 4 472 No Output - 0
S16 | 12 16 386 | 17 26 302 | 236 270
S17 | 10 22 314 | 14 33 281 |0 (M.C.) | O
SI8 | 9 17 280 | 17 44 258 |0 (M.C.) | O

given that the run-time semantics of PSL is not specified. If an assertion fails at one or
more time points, it has failed globally. One possible reason for ModelSim’s behavior
is that in the simulation kernel, the threads which monitor assertions are kept as short
as possible for performance reasons. In hardware this is not a concern; in MBAC the
assertion triggers when “a” is observed, and when “a;0” is observed. Because of this

difference, measuring distances between MBAC and ModelSim is more involved.

Between MBAC’s assertion circuits and ModelSim, the distance is not incremented
when an assertion circuit output triggers and ModelSim’s assertion does not. When
such a condition occurs, a residual distance is instead incremented. Residual distances
are an indication that MBAC is reporting more failures, which can then be exploited
for debugging purposes. Residual distances are noted “rn”. When applicable, the
residual distance is well anticipated because of the multiple paths in the corresponding

sequence. In all cases, 10° pseudorandom test vectors are supplied by the testbench.

The random stimulus comparison to ModelSim is obviously not a proof that the

circuits generated by MBAC are correct, however it does offer reasonable assurance
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given the length of test sequences. The eight test cases with a distance of zero to
FoCs were formally verified in model checking and are equivalent to FoCs’ checkers.

The two cases of non-zero distances to ModelSim (S11 and S16) occur because
MBAC’s circuits are able to identify certain failures earlier than ModelSim. This
arises when the automata are able to reach a final state earlier when evaluating a given
sequence. The strength of the checker generator becomes apparent when increasing
the complexity of sequences. The dual-level symbol tables, and the particularities
in the minimization function pertaining to true edges and nondeterminism are the
driving factors behind the efficient checkers produced by the tool. In all experiments,

checkers are generated instantly by MBAC.

7.6.4 Properties

The assertion circuits produced by the MBAC checker generator are also evaluated us-
ing various test cases involving a variety of property operators. The FoCs and MBAC
checker generators are compared using the set of assertions shown in Table 7.15, and
the synthesis results are reported in Table 7.16. Properties P18 and P20-P24 are
from a TIMA publication |24]. For cases P1 to P12 and P16, no synthesis results are
given because the properties are not supported by FoCs. Property P14 exceeded the
internal limits in FoCs and no output was produced.

With the exception of P13, when FoCs is able to produce a checker both tools
produce functionally equivalent checkers. Functional equivalence was formally verified
using model checking. Test cases P20 and P24 exceeded the maximum memory
capacity of the model checker, and were compared in simulation instead. The FoCs
checkers for those two cases have 309 and 175 state elements respectively in the HDL
code, versus 27 and 9 respectively in MBAC’s checkers.

Test cases P20 and P24 were compared using a testbench of 10° biased pseudo-
random test vectors. For each assertion, the circuits produced by both tools exhibit
the same behavior on every clock cycle. In biased random vector generation, signal
probabilities are adjusted in order for the assertions to trigger reasonably often. This
method is not a proof that the circuits are functionally equivalent; however, combined
with the fact that model checking produced no counterexample before reaching its
limit, this does offer reasonable assurance.

For test case P13, slight differences in behavior were noticed due to the unspecified
run-time semantics of “p until b”, where it is up to the tool’s architect to decide whether

to flag all failures of p before b occurs, or to flag only the first one. This flexibility is
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Table 7.15: Benchmarking of properties.

Property (“assert Pz;”, where Pz is:)

Pl always ({a;d} |[->next_e[2:4](b)) until ¢

P2 always ({a;b} |-> eventually! {c;d}) abort e

P3  always {a;b[*0:2];c} |=> ({d[*2]} |-> next ~e)

P4 always (a —> ( (eventually! b[*5]) abort c¢) ) abort d

P5  always ( (a —> (b before ¢)) && (¢ —> eventually! {b;d}) ) abort e

P6  always {a;b;c} |=> never {d[*0:3];e}

P7  always a —> next_ a![2:4](b)

P8  always (a —> {[*0:7];b}) abort ~c

P9  always a —> next_ e![2:4](b)

P10 always a —> next_event_e!(b)|2:4(c)

P11 always a —> ({b;c} until! d)

P12 always a —> next_event_al(b)[5:10](c)

P13 always a —> (b until! ¢)

P14 always {a} [ > {{bic[*[}:{d[*];e;f}}

P15 never {a;[*[;{b;c}[+]}

P16 always (e || (a —> ({b;c} until d)))

P17 always a —> (b before! ¢)

P18 always (a —> next_event e(b)[1:6](c))

P19 always a —> eventually! b

P20 always (a —> next (next_a[2:10](next_event(b)[10]((next_e[1:5](d))
until (c)))))

P21 always ((a —> next(next[10](next_event(b)((next_e[1:5](d)) until (c)))))
B

P22 (always (a —> next(next[10](next_event(b)((next_e[1:5](d)) until (c))))))
&& (always (e —> (next_event a(f)[1:4](next((g before h) until (i))))))

P23 always (a —> (next_event a(b)[1:4|(next((d before e) until (c)))))

P24 always (a —> (next_event(c)((next_event e(d)[2:5](e)) until (b))))

expected in dynamic verification with PSL, and may occur with other operators.

With test cases P17 and P19, the behavior of the checkers is identical between both
tools, and only a slight difference occurs when the End-Of-Execution (EOE) signal

activates. This was circumvented by using a monostable flip-flop on the assertion

outputs such that when the assertion triggers, the output remains in the triggered

state. The monostable FF was used because the semantics of the checkers does not
have to be defined after the EOE occurs. In all test cases where FoCs is able to
produce a checker, the circuits produced by MBAC are more resource-efficient than
those produced by FoCs.

A subset of the test cases contained in Section 7.6 was also evaluated with another
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Table 7.16: Benchmarking of properties (P1-P12 are not supported
by FoCs yet).

MBAC MBAC FoCs

Pz | FF |LUT | MHz | Pz | FF[LUT [ MHz | FF [ LUT | MHz
Pl [ 6] 5 [611 [P13] 2] 3 [612] 3 | 4 | 474
P2 | 4| 6 |470 [P14] 8 | 23 | 295 No Output
P3 | 7] 6 |611 P15 3 | 2 |611] 4 | 3 | 564
P4 | 6 | 9 [460 [P16] 3 | 5 | 469 | Not Supported Yet
P> | 4| 7 | 473 |P17[ 2 | 3 | 610 | 3 | 4 | 474
P6 | 7| 7 |[419 [P18| 7 [ 8 | 445 [ 12| 12 | 564
P7T [ 5] 2 [445 [P19] 2 | 2 [564 [ 2 | 2 564
P8 | 8 | 8 | 667 |[P20|26| 10 | 375 [200| 106 | 299
PO [ 5] 4 [433 | P21[17] 7 [ 564 | 23| 13 | 564
PI0| 5 | 6 [ 456 [[P22[23] 11 | 513 | 46 | 43 | 312
P11/ 3| 4 |[505|P23| 7 | 5 |552 |24 | 24 | 311
P12 [ 11| 7 [326 [ P24 8 | 11 | 439 [ 40 | 40 | 408

synthesis tool for added confidence in the results. Test cases for which the differences
in metrics are the greatest between the MBAC and FoCs circuits were selected. The

test cases in question are:

e The second, fourth, and eleventh (last) assertion in Table 7.10 (comparison of

the two eventually! approaches);
e S11, S13, S14 and S17 in Table 7.11 (occurrence-matching sequences);
e S14, S16, S17 and S18 in Table 7.13 (failure-matching sequences);
e P18 and P20 to P24 in Table 7.15 (properties);

The checkers for the assertions mentioned above were further synthesized using Altera
Quatusll, for a StratixIl EP2S15F672C3 FPGA. Because the Xilinx and Altera tech-
nologies differ, the number of LUTSs is not directly comparable; however, qualitatively
the results are coherent with the Xilinx metrics. The number of flip-flops is directly
comparable and in all but two cases was identical in both the Altera and Xilinx ex-
periments. For FoCs’ checkers, test cases S13 and S14 in Table 7.11 synthesize to 15
and 25 FFs respectively in the Altera synthesis tool, compared to 32 and 26 FFs in
the Xilinx tool. In both cases though, the checkers produced by MBAC are still three

times smaller.
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Conclusion and Future Work

8.1 Conclusion

As assertion-based verification and emulation become increasingly important in ver-
ification, a tool for generating efficient hardware assertion checkers is required. This
thesis has introduced the methods and algorithms behind checker generation for hard-
ware assertions, and has also introduced a variety of enhancements to the checkers
for improving the debugging process and usability in assertion-based verification. It
is also shown how checkers can be used to facilitate the debugging of post-fabricated
silicon, and also as permanent additions for on-line monitoring. Since assertions can
be converted into circuit-level checkers, any simulator can easily be made to support
assertions as well.

A two-level symbol alphabet was devised and is used at the core of the automaton-
based approach. Minimization and nondeterminism were also shown to play an im-
portant role in producing resource-efficient checkers. The nondeterminism brought
upon by the symbolic alphabet encoding was also a major point taken into account in
the development of the automata algorithms. The semantics of all implementations,
whether by algorithms or rewrite rules, was particularized for optimal error reporting
as required in run-time verification scenarios.

The implementation of sequential-extended regular expressions required the devel-
opment of particular algorithms for fusion and length-matching intersection, operators
that are not typically used in conventional regular expressions. Sugaring rules in se-
quences helped to reduce the number of operators that needed to be supported in the
kernel of the checker generator. Although these sugaring rules were used directly as
rewrite rules, the same approach was generally not possible for the sugaring operators

in properties. Restrictions are made to the full language of PSL to obtain properties

187
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suitable for dynamic verification, with non-branching time. A set of rewrite rules was
devised to implement the majority of PSL’s large array of property operators. This
was an important aspect that allowed all of the PSL operators to be supported in the

tool.

In the debugging enhancements portion of the research, multiple additions and
modification were proposed to facilitate debugging with checkers. Activity monitors
play a key role in observing trivial validity, and completion mode helps to build
confidence in the coverage of the test suite. Assertion and cover counters help build
more detailed result metrics, and signal dependencies help converge to the true cause
of an assertion failure by indicating the relevant signals used in an assertion. A more
efficient implementation of the eventually! operator, compared to the rewrite rule,
was also developed and was based on automata splitting and the use of logic gates
mixed with automata.

Extending the use of checkers beyond pre-fabrication verification was also explored
by presenting various on-line and off-line self test scenarios based on the inclusion of
assertion checkers. Post-fabricated silicon can benefit from the inclusion of checkers,
whereby assertions can be exercised under realistic operating conditions, where timing
issues can be truly revealed. The idea of using a checker generator and assertions as
a means of performing certain types of circuit design was also put forth, where an
example scenario in redundancy control was shown.

Many of the themes explored in this work can be applied to other assertion lan-
guages as well, and have already been applied to checker generation of SystemVerilog
Assertions [34]. Sequential regular expressions are used in many verification lan-
guages, and the automata framework and algorithms devised apply to those cases as
well. The rewrite rules developed for properties can also be used in other verification
tools to allow a quick implementation of the majority of operators.

In general, adding checkers to a Device Under Verification (DUV) can not be
done without impacting the timing of the signals in the original circuit. The effects
on specific DUV circuits were not explored in this thesis, and the emphasis was placed
on the complexity of checkers that are instrumented within them. When comparing
to other tools, smaller assertion checkers lessen the negative impacts on the DUV.

An upper bound on the area penalty of checkers in hardware is obtained by as-
suming that no sharing of common circuit primitives takes place. Since the checkers
only monitor the internal circuit signals, the extra loading can at worst add small
delays, which can be kept low by following standard design techniques. For instance,

for the signals in the critical path that are monitored by an assertion, small buffers
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can be inserted to minimize the loading of the circuit under debug.

This thesis has shown how to create resource-efficient circuit-level checkers from
assertions, for use in hardware verification, silicon debugging and on-line monitoring.
Compared to the only available checker generator, the MBAC checker generator shows
important improvements in terms of the resource usage, behavior and capability of
the assertion circuits that are produced. The circuit size of checkers is a particularly
important parameter when multiple checkers are to be included in valuable silicon
area.

As assertions become ubiquitous in design verification, silicon debugging, on-line
monitoring, and also as potential new ways of performing design specification, the
ability to synthesize assertions into circuits will continue to grow in importance in
the field of electronic design automation. With human ambition constantly pushing
back the bounds of design complexity, we should not forget that the task of producing

quality electronic designs will also become increasingly more challenging.

8.2 Future Work

The research on checker generation that was performed in this work can be extended
in a variety of directions. The following lists show examples of particular aspects that

can be continued in future research, and are grouped into five themes.

8.2.1 Optimizations and Improvements

The efficient implementation of eventually! leads to a few thoughts regarding opti-
mizations in the checker generator, while other proposed optimizations are related to

automata and counters.

e The fourth assertion in the up-down counter example (Example 2.7) is of the
form assert never b[*10];, where b is a Boolean expression. The implementation
requires ten states, thus ten flip-flops are used. However, because this assertion
is non-overlapping, i.e. there are no activations coming from an arbitrarily
occurring antecedent, a four bit counter could be used instead. In this example
the counter would count the number of consecutive bs, and if 10 or more are
seen, an error would be signaled. Such optimizations could be implemented, and
were mentioned also in a document pertaining to the PROSYD project [106],

where optimizing checkers with non-overlapping instances is proposed.
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e The more efficient implementation of eventually! required the use of automata

splitting, and was shown to be an improvement to the rewrite rule also developed
for this operator. However, when the user enters a property using the same
syntax as the right side of the rewrite rule, namely {[+]:seq}!, the tool could
be made to automatically detect this and also switch to the technique using
splitting.

The efficient implementation of eventually! using automata splitting was made
possible by the addition of logic gates to the signals in the automata. Further
exploration might reveal other instances where breaking up automata and using

logic around these could produce smaller checkers.

Table 7.10 (and many other tables in Chapter 7) revealed that although two
different checkers may be proven to be functionally equivalent, the synthesis
tools are not always able to reduce both to circuits of the same size. In these
examples, the checkers produced as a result of using the rewrite rule were larger.
Logic then dictates that if the checker generator was able to produce one version
that yielded a smaller circuit than its equivalent other version, then the checker
generator must be doing an optimization that the synthesis tool is not doing.
This fact could be the starting point for perhaps more optimizations in synthesis

tools.

In general, NFAs are more compact than their equivalent DFAs. Adding a form
of DFA to NFA conversion could help produce even smaller checkers; however,
converting DFAs to NFAs and minimizing NFAs [117] is not computationally ef-
ficient, not to mention a hard problem [115]. A heuristic approach could perhaps
allow some form of nondeterminism to be applied even if not complete. DFA
to NFA conversion could benefit the automata that undergo weak determiniza-
tion (in minimization), and also those that undergo strong determinization (in

failure matching).

8.2.2 Checkers and Debugging

The debug enhancements presented in Section 6.4 can be furhter extended as proposed

below. Another example application of checkers is also proposed, for use in embedded

logic analyzers.

e The assertion threading enhancement could benefit from more aggressive eval-

uations in the checker generator where multiple aspects of assertion threading

could be automatically controlled. For example, automatically calculating the
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appropriate number of threads to instantiate could be performed. If sequences
are finite, then perfect separation of concurrent activity could be achieved. If
infinite sequences are to be threaded, an estimation could be made to trade-
off circuit size with visibility. Currently, the number of threads to be used is

controlled via a command line parameter to the tool.

e In the same line of thought as the previous point, assertion threading could also
be augmented with concurrency detection logic, to show when activity is being
overlapped in a thread. For example, if an activation enters a thread that is
still processing the previous activation, no guarantees can be made as to the

order of the failures, therefore determining the exact cause of a failure is more
difficult.

e Currently, top-level sequences can be threaded and/or monitored. Activity
monitors could be generalized for arbitrary sub-properties and sub-sequences,
so that any valid sub-expression in an assertion could be monitored. For ex-
ample, in the property always a —> p until b, generating an activity signal for
property p could allow it to be checked for trivial validity. Generalizing assertion
threading in the same manner could also be explored. The difficulty with these
types of refinements is that after applying automata operators such as sequence
intersection, the argument automata are no longer intact and separable. This

makes monitoring arbitrary sub-expressions more challenging.

e The checker generator could be a central component in a debugging tool that
would automate the instrumentation of embedded logic analyzers into designs
under test. The assertion checkers would play the role of implementing the
triggering mechanism. In this way, the user could specify triggering conditions
using assertions, and the checkers would be instrumented as part of the embed-

ded trace memory and would serve to control the sampling points.

8.2.3 Testing the Checkers

Test generation and testbenches are essential when testing the checkers themselves,

in dynamic verification; related developments include:

e [t would also be important to develop universally accepted set of benchmark
assertions for evaluating the performance of checker generators. The test asser-
tions would be shared between researchers and would be used extensively for
benchmarking, analogous to the TPTP library [164] (Thousands of Problems

for Theorem Provers), used in the field of automated theorem proving.
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e When the checkers themselves need to be tested in dynamic verification, it is
often necessary to drive their inputs such that their output trigger reasonably
often. This is useful when two different checkers for the same assertion are
exercised to determine behavioral differences, such as in Section 7.6.3 where
failure-matching sequences were benchmarked. For the simulation based com-
parison to be the most meaningful, the testbench often performs biased random
simulation, whereby the probabilities of signals are adjusted. With inappropri-
ate signal probabilities, an assertion signal could only trigger a handful of times
in a million cycles of simulation, thus not allowing any meaningful information
to be deduced. The development of an automatic process to determine signal
probabilities would allow greater automation and effectiveness in testbenches,
where multiple checkers could be tested in sequence. The determination of ran-
dom weightings for checker inputs is referred to as probabilistic test generation,
as opposed to the explicit test generation that aims to enumerate separate test
vectors for stimulating the checkers. Explicit test generation can be performed
by traversing the automata representing checkers, or by applying sequential
ATPG (Automatic Test Pattern Generation) to circuit-level checkers. Includ-
ing the DUV in the process would produce the test vectors to exercise the
entire design with the checkers, but would require much more computation for

any reasonably sized design.

8.2.4 Assertion Languages

The assertion languages themselves, whether PSL or SVA, also present some chal-

lenges for future developments.

e Many designs make use of multiple clock signals, especially in heterogeneous
SoC designs. Adding support for the “@Q” clocking operator would allow the
specification of assertions with multiple clock domains [136]. The support of
Boolean clocks that are level sensitive, as opposed to edge sensitive, could also

be developed.

e As witnessed in Section 2.4 where the overlapping until was relaxed to allow a
full property as its left argument, one can be led to the question of whether
simple subset restrictions on other operators can be lifted as well. This leads
to the idea of developing a formal derivation of precisely what is and what is
not simulatable, and what are the precise language bounds that can be placed

on PSL while still remaining suitable for dynamic verification.
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e Many of the techniques developed in this work also apply to checker generation
for SystemVerilog Assertions (SVA); this is reported in the book based on this
thesis [34]. The automata framework and symbol alphabet strategy is identical
for generating SVA checkers, as well as determinization and minimization. The
disable iff operator in SVA is very similar to PSL’s abort operator, and both
forms of suffix implication are identical in both languages. Property conjunction
and disjunction are also similar; however, the disjunction operator allows both
arguments to be properties. Negation is also defined for full SVA properties,
and combined with the more expressive disjunction operator, has required the
development of a new strategy whereby negations are pushed down to sequences.
Many interesting rules are developed, notably an application of De Morgan’s law
applied to temporal sub-properties and their automata. SVA sequences have
many similarities with PSL sequences, and the suite of automata operators
can be readily used to map SVA sequences into PSL sequences. All that must
be added is a particular algorithm to handle the SVA cycle delay operator
(#+4n or #4t[n:m]). The FIRsSTMATCH() algorithm (Algorithm 6.1) can be
used to implement the SVA sequence operator of the same name. Exploring
the mapping of SVA into PSL |96] offers some insights into adapting the PSL
checker generator kernel for another assertion language, although the translation
is not always direct. For example, recursive property declarations are allowed
in SVA, and are used to model certain types of temporal operators. In SVA,
local variables can be assigned and sampled within assertions, and have no
equivalent in PSL. The implementation of local variables in SVA for formal
verification [124] could be a starting point for their implementation in hardware
checkers for dynamic verification. Although the MBAC checker generator does
currently handle SVA statements, the support for local variables and recursive

property declarations remain as future challenges [34].

8.2.5 Beyond RTL Assertion Languages

Applying the concepts in this thesis beyond RTL (Register Transfer Level) assertion

languages also presents opportunities to further enlarge the scope of this research.

e The use of PSL and a checker generator could be explored for use in high-level
synthesis, similar to the Production Based Specification work [160] and the
high-level synthesis of synchronous languages such as Esterel [66]. Exploiting

the high-level expressiveness of PSL and the circuit-synthesis capabilities of the
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checker generator could lead to new high-level hardware design practices.

e [t would also be interesting to see how the developments introduced in this

thesis could be applied to create checkers for transaction-level assertions [65].



Appendix A

Example for Up-down Counter

In this appendix the source files used in the up-down counter studied in Example 2.7
are shown. The counter to be verified is shown below in the Verilog language. The
assertions used to verify the counter are coded in PSL in the udcounter.psl file that
follows. The third file in this example contains the assertion checkers produced by
the checker generator (udcounter psl.v). The checkers are also expressed in Verilog
HDL, and allow the assertions to be embedded in the circuit under verification during
hardware emulation in the verification stages, or in the fabricated integrated circuit
for at-speed silicon debugging.

The command given to the checker generator in this example is as follows:

MBAC udcounter.v udcounter.psl

udcounter.v:

module udcounter(cnt, load, en_load, en_ud, up_ndown, clk, reset);
parameter width = 8;
output reg [width-1:0] cnt;
input [width-1:0] load;

input en_load, en_ud, up_ndown, clk, reset;

always @(posedge clk)
if ('reset)
cnt <= 0;
else if (en_load)
cnt <= load;

else if (en_ud)

195
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if (up_ndown)
cnt <= cnt+1;
else
cnt <= cnt-1;

endmodule //udcounter

udcounter.psl:

vunit vul(udcounter){

default clock = (posedge clk);

//if no count nor load, value should not change
property astab = always {“en_ud & “en_load} |=> stable(cnt);

assert astab;

//ensure load works
property ald = always en_load -> next (cnt == prev(load));

assert ald;

//no roll-over
property nro = always “en_load -> next (!(cnt == “prev(cnt) &&
cnt [width-1]==cnt [0]));

assert nro;

//no inactivity
property ninac = never (“en_load & “en_ud) [*x10];

assert ninac;

udcounter psl.v:

//Generated by MBAC v1.75
//15-6-2007, 15h 18m 49s

//RESET_POLARITY_SYMBOL, set to ! (or blank) for active low (high)
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‘define MBACRPS !

//Assertion circuit for vunit: vul
//vunit is bound to module: udcounter
module udcounter_psl_vul (udcounter_psl_vul_out, reset, clk, en_ud,
en_load, cnt, load);
parameter width = 8;
output [4:1] udcounter_psl_vul_out;
input reset, clk, en_ud, en_load;
input [width - 1:0] cnt;
input [width - 1:0] load;

reg [width - 1:0] si;
wire [2:0] s3s;

reg [2:0] s3sq;

reg [width - 1:0] s4;
wire [2:0] sbs;

reg [2:0] sbsq;

reg [width - 1:0] s6;
wire [2:0] s7s;

reg [2:0] s7sq;

wire [10:0] s8s;

reg [10:0] s8sq;

wire s2;

reg ASR_1, ASR_2, ASR_3, ASR_4;

assign udcounter_psl_vul_out={ASR_4, ASR_3, ASR_2, ASR_1};

//ASR_1 : assert always {~ en_ud & ~ en_load} |=> stable(cnt);

always @(posedge clk) if (‘MBACRPS reset) s1<=0; else
sl<=cnt;

assign s2 = sl == cnt;

always @(posedge clk) if (‘MBACRPS reset) s3sq<=3’h4; else
s3sq<=s83s;
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assign s3s={1’bl,

((" en_ud) & (7 en_load)),

(s3sq[1] & ~(s2))3};

always @(posedge clk) if (‘MBACRPS reset)
ASR_1 <= (s3s[0]1);

[/===mmmmm -

//ASR_2 : assert always en_load -> next (

[/==mmmmmm -

always @(posedge clk) if (‘MBACRPS

s4<=load;

always @(posedge clk) if (‘MBACRPS

sbsq<=sbs;

assign sbs={1’bl,
en_load,
(sbsql1] & ~((cnt

always @(posedge clk) if (‘MBACRPS

ASR_2 <= (s5s[0]);

//ASR_3 : assert alway

reset)

reset)

s4)))};

S

reset)

en_load -> next

&% cntl[width - 1] == cnt[0] )

always @(posedge clk)
s6<=cnt;

always @(posedge clk)
s7sq<=s7s;

assign s7s={1’bl,
~“(en_load),
(s7sq[1] & ((cnt

always @(posedge clk)
ASR_3 <= (s7s[01);

//ASR_4

if

if

if

(*MBACRPS reset)

(*MBACRPS reset)

s6)) && (cnt[width - 1]

(*MBACRPS reset)

ASR_1<=0;

else

cnt == prev(load) );

s4<=0; else

s589<=3’h4; else

ASR_2<=0; else

(' ( cnt == ~ prev(cnt)

)

s6<=0; else

878q<=3’h4; else

cnt [0]1)))};
ASR_3<=0; else

. assert never ( ~ en_load & ~ en_ud )[*10];
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always Q(posedge
s88s8q<=s8s;

assign s8s={1’b1
((" en_load) & (~

(s8sql9]
(s8sq[8]
(s8sql7]
(s8sql6]
(s8sql5]
(s8sql4]
(s8sql3]
(s8sql2]
(s8sql1]

always Q(posedge
ASR_4 <= (s8s[01);

endmodule //udcounter_psl_vul

/*Instantiation code:

[ S S I S S S
5 S = S S S

clk) if (‘MBACRPS reset) s8sq<=11’h400; else

en_ud))),
en_ud))),
en_ud))),
en_ud))),
en_ud))),
en_ud))),
en_ud))),
en_ud))),
en_ud)))};

clk) if (‘MBACRPS reset) ASR_4<=0; else

udcounter_psl_vul #(width) i_udcounter_psl_vul (udcounter_psl_vul_out,

reset, clk, en_ud, en_load, cnt, load);

*/

//End of circuit(s) for vunit: vul
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