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Abstract
The work in this thesis is dedicated to creating and manipulating topological states

of matter in condensed matter systems through the use of external fields. In particular, the
research in this dissertation is focused on topological superconductors and topological insu-
lators. These states of matter are of interest because of their unique edge-states. In a topo-
logical superconductor the edge-states are Majorana modes and have potential applications
in quantum computation. Meanwhile, in a topological insulator the edge-states amount to
counter propagating, helical channels with interesting transport and photo-voltaic proper-
ties. Topological states of matter are also of interest for more fundamental reasons. This
is because they represent a strong departure from our standard understanding of states of
matter.

The ability to tune a topological state of matter is of vital importance to both isolat-
ing these states in the laboratory, and to utilizing the properties of these states in physical
applications. The work in this document begins by focusing on creating a topological su-
perconductor by using an externally applied (and therefore tunable) magnetic field. The
remainder of the thesis will be dedicated to using externally applied electromagnetic radi-
ation to create and manipulate the properties of a topological insulating state.
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Résumé

Les travaux de cette thèse sont consacrés à la création et la manipulation des états
topologiques de la matière dans les systèmes de matière condensée par l’utilisation de
champs extérieurs. En particulier, la recherche dans cette thèse se concentre sur les supra-
conducteurs topologiques et les isolants topologiques. Ces états de la matière sont d’intért
en raison de leurs états de bord uniques qui peuvent tre utiles pour des applications tech-
nologiques. Dans un supraconducteur topologique, les états de bord sont des modes de
Majorana et ont des applications potentielles dans le calcul quantique. Par ailleurs, dans
un isolant topologique, les états de bord sont des canaux hélicoı̈daux qui propagent dans
le sens inverse avec des propriétés photovoltaı̈ques et de transports intéressants. Les états
topologiques de la matière sont également intéressants pour des raisons plus fondamen-
tales. En effet, ils dévient énormément de notre compréhension standard des états de la
matière.

La capacité de manipuler un état topologique de la matière est importante pour isoler
ces états dans un laboratoire et pour utiliser les propriétés de ces états dans des applica-
tions physiques. Ce document commence en décrivant la création d’un supraconducteur
topologique en utilisant un champ magnétique appliqué. Le reste de la thèse sera consacré
à l’utilisation du rayonnement électromagnétique pour créer et manipuler les propriétés
d’un état isolant topologique.
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Introduction

1.1 Topological States of Matter

The last several years of research in the field of condensed matter physics have seen rapid

expansion in, and unrelenting excitement about, topological states of matter. This enthu-

siasm is rooted not only in the important potential applications of these states, but also in

the deep shift in our fundamental understanding of matter that they represent. This the-

sis contains a collection of manuscripts that all share the common goal of creating and

manipulating topological states of matter through the use of applied fields.

As stated above, topological phases of matter represent a paradigm shift in our under-

standing of states of matter. This is rooted in the fact that until recently it was believed

that all quantum states of matter could be classified using the principle of spontaneous

symmetry breaking[1]. As an example of this classification scheme, consider a crystalline

solid. The solid is made up of atomic centers whose interactions are translational invariant.

Nonetheless, the solid breaks this translational symmetry; its atomic centers occupy fixed

points in space.

The paradigm of classifying a quantum state of matter only in terms of its spontaneously

1
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broken symmetries has recently been disrupted. Physicists have begun to appreciate that

two states with the same broken symmetry properties can have significantly different phys-

ical properties. These differences can be understood by allowing for another distinguishing

characteristic between the states, their topology.

The notion of topological classification is borrowed from mathematics. Mathematicians

originally introduced the concept of topological invariance to classify different geometrical

objects into broad categories. The simplest example of this scheme is 2D surfaces. These

surfaces are classified by the number of holes in them, a measure called the genus of the

surface. Surfaces that can be transformed into one another without creating new holes are

said to be topologically equivalent. This leads to the famous example that a coffee cup is

topologically equivalent to a doughnut; these two surfaces can be smoothly deformed into

one another without creating any new holes.

In order to understand the topological classification of quantum states of matter one

must generalize the concepts of a smooth deformation and therefore what it means to create

holes. Systems that can be connected to one another without creating holes can then be said

to belong to the same topological class.

In a quantum system these concepts are defined in relation to the Hamiltonian. In a

many-particle system we consider a Hamiltonian with an energy gap separating the ground

state and the excited states. The available deformations are then all of the ways in which

we can change this Hamiltonian. The analogue of creating a hole is closing the energy gap

in this Hamiltonian. Smooth deformations are then all of the changes that we can make

to the Hamiltonian that do not close the energy gap. In this way two quantum mechanical

states that are connected through changes to the Hamiltonian that leave the gap intact are

said to be topologically equivalent [2, 3]. The above understanding leads to the conclusion

that two states of matter that both spontaneously break the same symmetries can still be

topologically distinct and therefore have different properties. This is possible if the two
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states have Hamiltonians that are not connected through smooth deformations.

The implication of a state’s topology are most profound when studying its boundary.

When two states in a different topological class are put in contact with one another nature

must find a way to accommodate for the change in topology in moving from one state to

another. This is done by closing the quantum mechanical gap only on the boundary between

the systems, giving rise to edge or surface states whose energies lie within the (bulk) gap

of the system. Depending on the system of interest, these edge-states can have very rich

physical properties. One ubiquitous property is their robustness. These states exist because

of a difference in topology between two systems. As long as this difference in topology

exists the states will persist. The difference in topology will of course be maintained so

long as only smooth deformations are made to the Hamiltonians of the respective systems.

Therefore making changes to the system of interest (e.g. adding disorder or applying a

field) will not destroy the edge states unless these changes are drastic enough to close the

gap in the system.

It has become common to call certain states topological states of matter. In keeping

with the discussion above, this designation can be thought of as being short-hand for states

that belong to a different topological class than the vacuum. Thus the natural boundary of

the materials in these states play host to interesting edge physics.

Topological states of matter come in several flavours depending on how they are re-

lated to their trivial counterparts[4]. Topological states that are only different from their

trivial counterpart because a symmetry that forbids deformations that would change the

topological system into the trivial system are called symmetry-protected topological states.

Such states will be the focus of this work. Specifically, this thesis will be concerned with

two such topological materials: topological superconductors, protected by particle-hole

symmetry, and topological insulators, protected by time-reversal symmetry. The following

two sections will introduce the key features of these states, outline present challenges and
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discuss the problems addressed in this thesis.

1.2 Externally Induced Topological Superconductivity

The first topological state this thesis will focus on will be a topological superconductor.

As discussed in the previous section, this topological state will play host to edge-states.

In the case of a topological superconductor these edge-states are very special, as they are

predicted to be Majorana modes.

To understand why Majorana modes are special we must first make a brief digression

into the field of particle physics, and in particular the Dirac equation. Complex valued

solutions to Dirac’s equation provide a description of relativistic, spin-1
2

particles, such as

electrons and protons. These complex valued solutions provide a description of particles

that have unique anti-particles.

Shortly after Dirac proposed his now famous relativistic wave-equation an Italian physi-

cist known as Ettore Majorana proposed a modification to the Dirac equation which would

lead to purely real solutions [5]. These real valued solutions, since termed Majorana

fermions, have the novel property that they describe spin-1/2 particles (i.e. fermions) that

are their own anti-particles. After Majorana published his findings in 1937, experimental-

ists became interested in the possible existence of a Majorana fermion and began searching

for a fundamental particle having these unique properties. Despite these effort, all fun-

damental fermions discovered to date (perhaps excepting the neutrino) have had unique

anti-particles.

In addition to being elusive and fundamentally interesting, Majorana fermions are of

interest for more practical reasons. In a condensed matter context the analogue of these

particles may be created as quasiparticle excitations, these quasiparticles can then bind

to a defect at zero energy to create an object known as a Majorana mode. These Majo-
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rana modes are expected to belong to a group of particles known as non-abelian anyons[6,

7]. Non-abelian anyons have non-trivial exchange statistics; the exchange of two of these

particles changes the ground state of the system by more than just a phase. Moreover,

the exchange of non-abelian anyons is non-commutative. Owing to these properties, non-

abelian anyons (e.g. Majorana modes) are largely believed to be important components in

the design of quantum computers; as the exchange of these particles can be used to store

information in a many-body system [7].

Moving back towards topological superconductors, these materials are believed to be a

promising route for realizing Majorana modes. This is because in superconductors Gauge

symmetry is spontaneously broken and as a result particle number is not conserved. In

such a system the fundamental excitations of interest are a superposition of particles and

holes. In condensed matter systems, holes can be thought of as antiparticles and therefore

the excitations in a superconductor are a superposition of particles and anti-particles. One

can imagine that an equal superposition of particle and hole would then result in a particle

that is its own antiparticle, and therefore potentially a Majorana fermion and eventually a

Majorana mode.

Unfortunately typical superconductors, i.e. spin-singlet superconductors, are described

by a superposition of electrons and holes with opposite spin and therefore do not provide

the proper superposition to constitute a Majorana fermion. The proper conditions for this

superposition are met in a topological, spin-triplet px + ipy superconductor. Alas, with

a few unverified exceptions[8], there are currently no naturally occurring materials with

topological p-wave pairing. Nonetheless, many proposals have focused on indirect routes

to creating this important type of pairing [9–18]. Understanding these proposals will be the

prerequisite to the first manuscript in this thesis.

The pioneering proposal for how one can create an effective p+ip-wave superconductor

was made by Fu and Kane[9]. Their proposal showed that a three dimensional topologi-
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cal insulator placed near a conventional s-wave superconductor will develop topological

superconductivity. One can understand this phenomenon at a high level by realizing that

the topological insulator already has non-trivial topology, and the pairing necessary for

superconductivity is induced by its proximity to the superconductor.

The proposal of Fu and Kane has been continually refined by several groups [12–

18]. The most relevant for understanding the work in this thesis are the proposals of Sau,

Lutchyn, Tewari [10] and Das Sarma, and also the work of Alicea [11]. Sau and cowork-

ers envisioned a two-dimmensional electron gas (2DEG) with Rashba spin-orbit coupling.

They then imagined connecting one side of this system to a ferromagnetic insulator and

the other to a conventional s-wave superconductor. The combination of these three puzzle

pieces creates a topological p-wave superconductor without the need for the potentially dif-

ficult to work with topological insulator involved in the original proposal of Fu and Kane.

Shortly after the work of Sau et al, Alicea set out to further simplify this set-up[11]. The

main success of Alicea’s work was the elimination of the ferromagnetic insulating layer in

favour of an external, and therefore tunable, magnetic field. This was accomplished by

considering a 2DEG with a mix of Dresselhaus and Rashba spin-orbit coupling.

The ability to add tunability to a potentially topological system is one of the two main

themes of this thesis. In the case of topological superconductors our main inspiration comes

from Alicea’s work. The principle goal of the first manuscript in this thesis will be to further

simplify the process of inducing a p-wave superconductor.

The key features of creating an effective topological state in the proposals discussed in

the last several paragraphs is the proper combination of spin-orbit coupling and Zeeman

field. We are interested in determining if the need for the superconducting layer can be

alleviated by allowing for the spin-orbit coupled, two-dimensional electrons to interact

with each other. The motivation for this work is to find a material that is either a trivial

superconductor or in some other phase to start with. The hope is then that by properly
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applying a Zeeman field (either via a magnetic field or some other effective means) we can

induce a topological superconducting phase.

The groundwork for this problem has been laid in a collection of preliminary papers

written during the author’s Master of Science study[19–21]. These preliminary studies

take a relatively simple approach to the problem in order to establish proof-of-principle.

The manuscript presented in Chapter 2 of this thesis should be considered a rigorous and

culminating work on this problem. It reviews these earlier studies as well as providing a

detailed description of the proposals for topological superconductivity surveyed at a high

level in this introduction. It then dives deep into the problem of interest by analyzing the

system from a Renormalization Group point of view. This analysis concludes that topolog-

ical superconductivity induced by an applied field is possible in a system with interaction

driven superconductivity. Such a set-up represents the opportunity to drive and manipulate

a topological state with an externally applied mechanism without the need for the additional

superconducting layer.

The study of topological superconductivity outlined above constitutes the first part of

this thesis. The second part will focus on the driving and manipulation of a topological insu-

lator (TI). Here our drive of interest will be a time-periodic perturbation, typically assumed

to be electromagnetic radiation. The two main experimental tools that have historically

been used to probe topological insulators are transport measurements and angle-resolved

photoemission spectroscopy (ARPES). We study how the expected results of both of these

methods change in the presence of time-periodic modulations. A more detailed introduc-

tion to this system will be the central point of the next section.
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1.3 Non-equilibrium Topological Insulators

1.3.1 Introduction

The beginning of the story of topological insulators can probably be placed at the discovery

of the quantum Hall effect (QHE) in 1980[22]. A quantum Hall state is realized in a 2DEG

with an applied magnetic field. In the quantum Hall state the bulk of the two-dimensional

system is insulating, but nonetheless the edge plays host to a unidirectional current. This

unidirectional current is topologically protected (see the first section of this introduction)

and gives rise to a precise quantization of the Hall conductance in the sample[23, 24].

In the two decades following the discovery of the QHE a great deal of effort was put into

finding a new state of matter with similar conduction properties to the QHE, but without

the presence of the applied magnetic field, i.e. a system with time-reversal (TR) invariance

[25–28]. This search ultimately led to the discovery of topological insulators.

In a topological insulator time-reversal invariance is maintained and so there is no ap-

plied magnetic field. An essential component in topological insulators (at least up until the

time of writing) has been the role of spin-orbit coupling (SOC). Spin-orbit coupling can be

thought of as playing the same role as the applied field in the QHE. The crucial difference

in a TI is that the effective magnetic field felt by electrons in the presence of SOC has a

different direction depending on the spin of the electrons. That is to say, if a spin-up elec-

tron sees an effective field in the z-direction, then a spin-down electron will see an effective

field in the negative z-direction. This feature not only maintains TR-invariance, but also

permits the transport properties of a TI to be thought about as two copies of a QH state. In

these copies, spin-up electrons have a unidirectional flow in one direction while spin-down

electrons flow in the opposite direction. This state is commonly called the spin-QHE.

The discussion so far has been focused on 2D systems, however three dimensional gen-

eralizations of topological insulators also exist[29, 30]. Both 2D and 3D TIs demonstrate
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Dirac-like, in-gap, spectra along their edges. Depending on the dimensionality of the TI,

there are different experimental signatures of the topological state that are easiest to observe

experimentally. In a 2D system the topologically robust transport properties of the system

are easiest to observe[31], meanwhile in a 3D dimensionality the spectral properties of the

edge-states are the signature that is looked for. These experiments will be the central focus

of the second part of this thesis and we will briefly outline them here before introducing

the notion of driven topological insulators.

We will first focus on the transport properties of topological insulators. Here we will

give a general overview of these properties, a detailed description can be found in the excel-

lent review article [2]. First, we will discuss two-terminal transport in these systems. This

involves biasing the left and right edges of a sample relative to each other and measuring

the resulting conductance. In a TI the bulk is insulating and provided the bias lies in the

bulk gap charge can only be carried by the edge modes. As discussed above, these edge

modes amount to spin-up electrons circulating in one direction, while spin-down electrons

circulate in the opposite direction, see Fig. 1.1. In the absence of magnetic impurities

these edge states do not interact with each other and therefore amount to two copies of

1D channels that carry charge from a source to a drain. Each 1D edge channel comes

with a conductance of e2/h and so TIs are expected to have a two-terminal conductance of

2e2/h[2, 26]. This robust conductance signature has been measured for a 2D TI[31].

To close this subsection we will quickly discuss a second experimental confirmation of

the properties found in topological insulators. This signature comes from ARPES experi-

ments conducted on 3D TIs. ARPES experiments have been able to confirm the 3D in-gap,

Dirac cone structure of the surface states in these materials [30].
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V

Figure 1.1: Edge channels in a two-terminal conduction set-up in a 2D topological insulator.

1.3.2 Floquet Topological Insulators

Despite the numerous experimental successes surrounding the discovery of TIs, there are

still numerous challenges surrounding these materials. One of the central challenges in-

volves isolating a TI. Finding a material with the correct properties to support a topological

band-structure relies to a great degree on good fortune. The tunability of these devices, both

in the sense of creating the topological state and manipulating it, remains an experimental

hurdle.

In addition, the topological states of matter discussed so far have been limited to time-

independent, or equilibrium, systems. An interesting question is how the topological prop-

erties of the system will behave in a time-dependent scenario. One can imagine both trying

to understand how these topological properties can be manipulated using a time-dependent

perturbation, and also if the time-dependent perturbation can be used to create new topo-

logical properties of the system.

In an effort to begin to explore both of the avenues outlined above, the group of Refael

et al [32] proposed a way to start with a trivial (in the topological sense) material and

drive this material into a topological state using a time-periodic external field. Topological
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insulators created in this way have been named Floquet Topological Insulators (FTI).

This proposal to create a topological state using a time-periodic perturbation has great

experimental potential. That fact notwithstanding, the manner in which the experimental

signatures of a topological insulator generalize to a FTI must be established. This task is

the focus of the second, third, and fourth manuscripts of this thesis.

In the second and third manuscripts we address the problem of transport in FTIs. We

begin with an understanding of the transport behaviour of an equilibrium TI under a pe-

riodic perturbation. This involves generalizing a sum rule established previously in the

context of a topological superconductor[33]. We then use this intuition, and sum rule, to

build an understanding of transport in a FTI. In the end, we find that the time-periodic

perturbation can be used to manipulate the signature two-terminal conductance of 2e2/h to

take on significantly smaller values. In spite of this reduction in the signature conductiv-

ity, we establish that by using a sum rule, which sums the conductance over several bias

voltages, we can recover the signature conductivity value of 2e2/h.

The fourth manuscript of this work builds on the physical understanding established in

manuscripts 2 and 3 in order to build a theory of ARPES in TIs in the presence of a time-

periodic perturbation. With this work in place we are able to make connection to recent

experimental time-resolve ARPES work[34].

1.4 Outline of this Thesis

The remainder of this manuscript based thesis is organized as follows. Chapter 2 contains

a Renormalization Group Flow calculation in a spin-orbit coupled 2D system of interaction

electrons. The focus of this study is to establish whether an applied Zeeman field can be

used to drive and manipulate a topological superconducting state. Chapter 3 begins the

second focus of this thesis, which is the use of electromagnetic radiation to drive and/or
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manipulate a topological insulating state. Chapter 3 itself begins the first step of this study

by delving into how a time-periodic perturbation may be used to manipulate the now fa-

mous transport properties of a 2D topological insulator. Chapter 4 continues this work, but

shifts gears to a system where the topological state itself only exists because of the applied,

time-periodic field. Chapter 5 remains focused on the manipulation of a topological insu-

lator with applied electromagnetic radiation. Unlike the previous two chapters, this chapter

focuses on 3D topological insulators. Chapter 5 explores how a time-periodic perturba-

tion changes the edge-states of a 3D TI and makes connection with recent time-resolved

ARPES experiments. Finally, Chapter 6 closes this thesis with a summary and concluding

remarks.

Before moving on to the first manuscript of this thesis, some remarks on organization

are in order. Each of the four manuscripts is written to be both self-contained but also to

provide a natural progression in the theme of this work. In an effort to make the manuscripts

self-contained, each work has its own bibliography and appendices. To aid in the flow of the

thesis, each chapter contains a preface which sets the stage for the manuscript by providing

context to the work, and by connecting it to preceding and proceeding chapters.
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Preface to Chapter 2

The first manuscript of this thesis is concerned with driving a topological superconducting

state in a system of interacting, spin-orbit coupled electrons. This work builds on the

previous work in [1] which was done in the mean field context. This opening manuscript

employs renormalization group (RG) methods to provide a more rigorous treatment of the

problem. This RG approach establishes that an externally applied Zeeman field may be

used to drive, and manipulate, a topological superconducting state.
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Abstract

The hope to realize Majorana fermions at the vortex core of a two dimensional topologi-

cal superconductor has led to a variety of proposals for devices which exhibit topological

superconductivity. Many of these include superconductivity through the proximity effect

and therefore require a layer of a conventional superconductor deposited on top of another

system, which lends its topological properties. The necessity of the superconducting layer

poses some technical complications and, in particular, makes it harder to probe the Ma-

jorana state. In this work we propose to replace the proximity effect pairing by an innate

tendency for pairing, mediated by interactions. We use a model system with spin orbit cou-

pling and on-site repulsion and apply renormalization group to the interaction vertex. With-

out a Zeeman field this model exhibits pairing instabilities in different channels depending

on the tuning of parameters. Once a Zeeman field is introduced the model favors topologi-

cal superconductivity where the order parameter winds an odd number of times around the

Fermi surface. This suggests that certain superconductors, with strong spin-orbit coupling,

may go through a topological phase transition as a function of applied magnetic field.
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SPIN-ORBIT COUPLED SUPERCONDUCTOR

2.1 Introduction

Majorana fermions, interesting in their own right, are desirable components of topological,

fault tolerant, quantum computations. In order to perform such computations it is necessary

to move Majorana fermions and in particular exchange their position in a braiding fashion.

While it is probably easiest to achieve Majorana fermions in one dimensional systems[2–

4], controlling their motion seems more natural in two dimensions. This reason and others

inspire the search for two dimensional topological superconductors which are known to

support Majorana fermions at their vortex cores[5, 6].

Some of the prominent ideas for two dimensional topological superconductivity include

a multi-layer heterostructure[7–14]. In the proposed structures one or more layers provide

the topological properties, i.e, a winding of the electron spin around the Brillouin zone

while another layer provides the tendency for pairing through the proximity effect. For

example, in a heterostructure of spin-orbit coupled semiconductors in proximity to a simple

s-wave superconductor topological superconductivity arises as the pairing gap inherits the

winding of the spins and forms a px+ipy state. Besides SOC and pairing, a key ingredient in

the above proposal is a Zeeman field. The importance of the Zeeman field is in ensuring that

only one Fermi surface with spin-momentum locking participates in the pairing. Without

the Zeeman field there are two spin-orbit coupled bands with opposite spin chirality in each

energy. This leads to an overall cancelation of the topology which is manifested in a trivial

Z2 invariant.

Inspired by the above proposals we set out to answer the following question. Can the

combined effect of spin-orbit coupling and electron-electron interaction lead to topological

superconductivity? Our study suggests that the answer is affirmative with the help of a

Zeeman field. Similarly to the semiconductor proposals, in our system the Zeeman field

ensures that only one spin orbit coupled band is paired, producing a topological supercon-

ductor. We therefore speculate that there may exist a spin-orbit coupled superconductor
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whose topology is trivial due to the multiplicity of Fermi surfaces[15, 16]. This super-

conductor can be rendered topological by the application of a magnetic field. Of course

one may worry that the magnetic field has an orbital effect which ultimately leads to the

suppression of superconductivity. We therefore look at interaction driven superconductors

which has the potential for a high critical field such that a topological superconductor phase

may appear before superconductivity is completely turned off.

The model we use is an extension of the Hubbard model on the square lattice with

Rashba spin orbit coupling (SOC). Without SOC this model leads to a d-wave supercon-

ductor when treated in the strong coupling limit away from half filling[17–19]. In the

presence of SOC coupling there are various phases depending on parameters. While we

have recently analyzed a similar model in weak[1] and strong coupling[20], in this paper

we focus on its continuum analogue and find the possible pairing channels in an RG anal-

ysis. We find that when the Fermi level cuts only one of the spin-orbit coupled bands the

interaction induces topological superconductivity. This superconductor is of either f -wave

or p-wave symmetry, depending on the direction of the Zeeman field relative to the spin

winding. This type of pairing comes about as a combination of two effects. Without SOC

the preferred channel of pairing is a spin-singlet d-wave. The SOC couples the two spin

directions and produces two bands in which the spin winds by 2π as one encircles the Bril-

louin zone mid point. This winding is superimposed on the ±4π phase winding of the

d-wave order parameter and leads to either a 2π (p-wave) or a 6π (f -wave) winding of the

order parameter as seen by the band electrons. Our renormalization group analysis shows

that the above topological channels are dominant when there is a single Fermi surface.

This paper is laid out as follows. In Section 2.2 we discuss and review past heterostruc-

ture devices. In particular, we highlight the necessity for a description of the problem in a

band basis. In this case the wave function of Cooper pairs is a mixture of singlet and triplet

pairing[21]. This section aims to frame the results we present in relation to the current
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literature on this problem. It also gives an overview of our main results. Section 2.3 defines

the model we study and reviews the basics of the RG method we will employ. We then

begin discussing our results in Section 2.4 by first looking at the general problem and then

specializing to systems with a single Fermi surface. After finding the potential for topolog-

ical superconductivity in Section 2.4 we follow up in Section 2.5 by developing a simple

mean-field model from our RG results and showing that for the correct combinations of

parameters we get a topological superconductor. We close the main text in Section 2.6 with

some concluding remarks. A detailed appendix gives an overview of more technical details

of our RG analysis.

2.2 Preliminary Discussion

2.2.1 Superconductivity with lifted spin degeneracy

As discussed in the introduction the goal of this paper is to address interaction driven su-

perconductivity in a system of spin-orbit coupled electrons. We would first like to acquaint

the reader with superconductivity in systems with a “lifted spin degeneracy”. Without spin-

orbit coupling (and Zeeman field) the model we will use in this work simplifies to a tight

binding model with spin-degenerate bands. Such a dispersion is typical in the studies of

superconductivity with which most readers are familiar. In this case it is natural to discuss

the formulation of Cooper pairs in singlet or triplet spin configurations.

Once spin-orbit coupling is introduced the two-fold spin-degeneracy of the bands is

lifted and singlet and triplet pairings become mixed in the wave function of the Cooper

pairs[21]. Put another way, once spin-orbit coupling is considered the z projection of the

electron spins is no longer a good quantum number. Instead we are left with what will

be referred to as a band index. We can then see Cooper pairs form between two electrons

in the same band (intraband pairing) or between electrons in different bands (interband
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pairing). These two types of pairs can, of course, be thought of as superpositions of the

more traditional singlet and triplet pairs.

A clear illustration of this was given by Alicea in Ref. [8]. If one considers a system of

spin-orbit coupled electrons, in this case a quantum well system, placed in proximity to an

s-wave (singlet) superconductor an interpretation of such a system in terms of interband and

intraband pairs is as follows. Proximity effect forces the electrons to pair in a spin-singlet

state, symbolically we can think of this as adding a term ∆0

∫
dk
(
ψ†↑(k)ψ†↓(−k) + h.c.

)
to the Hamiltonian. However, in the quantum well the states (k, σ) (where σ =↑ or ↓) are

no longer good states and one must instead describe the system in a “band” basis. Quantita-

tively this amounts to transforming the operators ψ†σ(k) into operators creating/destroying

electrons in each band which we denote as ψ±(k). Carrying out this transformation the

superconducting contribution to the Hamiltonian becomes (schematically)

HSC =

∫
dk(∆++(k)ψ†+(k)ψ†+(−k) (2.2.1)

+ ∆−−(k)ψ†−(k)ψ†−(−k) + ∆+−(k)ψ†+(k)ψ†−(−k) + h.c.)

The functions ∆++(k),∆−−(k), and ∆+−(k) play the role of the superconducting order

parameter for, respectively, intraband pairing between two electrons in the upper band, two

electrons in the lower band, and inter band pairing between one electron in the upper band

and one in the lower band.

One additional, important observation when dealing with superconductivity with lifted

spin degeneracy is that the symmetry of the pairing in the spin basis is not generally the

same as the symmetry in the band basis. For the example above, Alicea begins with a

system that has simple s-wave pairing in the spin basis; however, this pairing drives band

Cooper pairs to form with the order parameters ∆++(k),∆−−(k), and ∆+−(k) which are

non-trivial functions of k. In particular, ∆++(k) and ∆−−(k) are odd under k→ −k while
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∆+−(k) is even.

2.2.2 Spinless p-wave Pairing in the band basis

Superconductivity with p ± ip pairing is highly desirable as it is the canonical example

of a topological superconductor[5]. The example above can be argued to be a spinless

p− ip superconductor. In order to review this argument let us first quickly review the band

structure of these systems. One begins with two, spin degenerate, quadratic bands. When

spin-orbit coupling is added these bands are split and the degeneracy is lifted. If the bands

are parabolic they cross at k = 0. When a Zeeman field is applied the crossing is avoided

and a gap is opened around k = 0. Therefore, for any energy within this k = 0 gap there is

a single circular contour of constant energy on which the spin is locked to the momentum

direction. Please note that when we discuss a Zeeman field opening a gap in the rest of

this paper we are referring to this scenario. An example of this type of band structure

can be seen in Fig. 2.1. If the chemical potential of the system is tuned so that the Fermi

surface lies in this gap, and superconductivity is not strong enough to induce transitions

between bands (through ∆+−(k)) then the upper band of the problem plays no role and can

be projected out. This leaves only a Hamiltonian

Heff =

∫
dk(ε−(k)ψ†−(k)ψ−(k) (2.2.2)

+ ∆−−(k)ψ†−(k)ψ†−(−k) + ∆∗−−(k)ψ−(−k)ψ−(k))

where ε−(k) is some dispersion. This is exactly a spinless p− ip superconductor.

While the above idea was proposed for a system with s-wave pairing the same principle

can be applied for other singlet superconductors. Of interest for the current work is that

d ± id-wave singlet pairing leads to f + if and p − ip intraband pairing which are both

topologically non-trivial[1, 22].That is, as in the example of Alicea[8] above, one begins
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with a d ± id-wave superconductor in the traditional sense. We can think of this schemat-

ically as a term in the Hamiltonian of the form Hd−wave
SC =

(
∆d(k)ψ†↑(k)ψ†↓(−k) + h.c

)
where ∆d(k) has either d+ id or d− id-wave symmetry. Once spin-orbit coupling is added

the hamiltonian is no longer diagonal in the usual Nambu space and we should transform

the states to describe them in the band basis discussed above. Projecting onto a band basis

yields a superconducting contribution of the form of Eq. (2.2.1). During this projection the

phase e±iθk coming from the spin-orbit coupling is attached to the original ∆d(k) to give

∆−−(k) ∼ eiθk∆d(k) and ∆++(k) ∼ e−iθk∆d(k), meanwhile ∆+−(k) is just proportional

to ∆d(k). Similar to the s-wave case, when the chemical potential lies in the gap one can

focus on the lower energy band and the problem is mapped to a spinless superconductor

with the sole order parameter ∆−−(k). If we begin with d−id symmetry then ∆−−(k) will

have p − ip symmetry while beginning with ∆d(k) being a d + id-wave order parameter

leads to a ∆−−(k) with symmetry f + if .

The approach taken in this paper, although highly motivated by the above discussion,

works in the opposite direction. Instead of inducing pairing via proximity effect we look

at driving pairing by interactions. Rather than forcing pairs to develop in, say, the s-wave

singlet channel as the heterostructure devices above do, we utilize renormalization group

methods to look at instability for pairing between band electrons. We focus on the topo-

logically relevant band structure discussed above, that is not just a spin-orbit split band

structure but one with a gap opened via a some sort of mass (Zeeman) term.

It has been shown in Refs. [15, 16] that spin-orbit coupling in an otherwise quadratic

band structure leads to enhancement of superconductivity. These works find an instability

towards pairing with the symmetry of the order parameter (or at least the dominant term)

dependent on how the relative strength of the spin-orbit coupling and fermi energy are

tuned. Here we follow a similar program but with the introduction of a mass term into

the model. This term opens a gap between the spin-orbit split bands in the non-interacting
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band structure and we focus on what happens when the chemical potential is tuned to lie

in the gap. For this choice of parameters there is only a single Fermi surface and we find

that the pairing that develops has either p − ip or f + if symmetry depending on the sign

of the Zeeman mass term. In either case we expect the superconductivity that develops to

be topological in nature, i.e., to support Majorana fermions in its vortex cores.

2.3 Model and Method

2.3.1 Model

Definition

Here we would like to introduce our model and the language of a band basis that the rest of

this work will be framed in. Our initial focus is on the Hamiltonian studied in [1] and [20]:

H = H1 +Hint (2.3.1)

where H1 = HKE +HSO is a quadratic Hamiltonian and Hint contains interactions effects.

For H1 we take the following model

H1 =
∑
k,α,β

c†k,α (ξkδα,β + dk · ~σα,β) ck,β (2.3.2)

where ξk = εk − µ̃ with εk = −2t(cos(kx) + cos(ky)) and dk = (d1(k), d2(k), d3(k)) =

(A sin kx, A sin ky, 2B(cos kx+cos ky−2)+M) where t, A,B,M, µ̃ are material parame-

ters giving the strength of the hopping amplitude, in plane spin-orbit coupling, out-of-plane

spin-orbit coupling, Zeeman field and chemical potential respectively. Above ~σ is a vector

of Pauli matrices and α and β are spin labels.

The model above has been chosen for the sake of versatility. We have discussed numer-
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ous possible applications in past work[23], they include cold atomic systems with synthetic

gauge fields, transition-metal oxides (e.g. pyrochlore iridates), quantum wells, and insu-

lating oxide interfaces (e.g. the interface of LaAlO3 and SrTiO3). From this point of view

the parameters A and B could come from traditional spin-orbit coupling such as Rashba or

Dresselhaus, they could find their origins in systems like quantum wells[24], or they could

be created in a cold atomic system. Further, the parameter M could also have numerous

origins, here we outline only a few possible sources. An applied magnetic field is perhaps

the most obvious choice. In this case one must be dealing with a system where orbital

effects are small so as to minimize the suppression of superconductivity. Additionally, this

Zeeman field may come from a band gap, which would be the case if we are dealing with

quantum well like structures[24]. In the case of a band gap the orbital effects are avoided

altogether. Finally, this term may come from proximity to a FM insulator, similar to het-

erostructure proposals in the past[9] .

To account for interactions we take a simple on-site coulomb repulsion given by

Hint =
∑

k1,k2,k3,k4

∑
α1,α2,α3,α4

δk1+k2,k3+k4 (2.3.3)

× Uα1,α2,α3,α4(k1,k2,k3,k4)c†k1,α1
c†k2,α2

ck3,α3ck4,α4

where

Uα1,α2,α3,α4(k1,k2,k3,k4) = (2.3.4)

U

4N

(
σxα1,α2

δα1,α4δα2,α3 − σxα2,α1
δα2,α4δα1,α3

)
.

Note that it is enough to take a repulsive interaction since it leads to pairing in a strong

coupling treatment (in contrast to Ref. [1] where near-neighbor attraction was introduced

to mimic this effect in the weak coupling treatment).
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Transformation to the Band Basis

We now diagonalize H1 in order to recast our problem in terms of band electrons. This is

done by making the unitary transformation

ck,↑
ck,↓

 =

 f+1(k) f−1(k)

eiθkf−1(k) −eiθkf+1(k)


bk,+
bk,−

 (2.3.5)

where the +1,−1 label a band and we have defined the following

eiθk =
d1(k) + id2(k)√
d1(k)2 + d2(k)2

(2.3.6)

fλ(k) =

√
d+ λd3

2d

where λ = ±1 and d = |dk|. Written in the new basis,

H1 =
∑
k,λ

Ek,λb
†
k,λbk,λ (2.3.7)

where bkλ are annihilation operators in the band λ and Ek,λ = ξk + λd labels the energy of

the bands relative to the Fermi energy µ.

Before we move on to the RG calculations we express Hint in terms of band electrons.

This requires some tedious manipulation which we defer to the Appendix. After some work

we obtain:

Hint =
∑

k1,k2,k3,k4

∑
λ1,λ2,λ3,λ4

δk1+k2,k3+k4 (2.3.8)

× Wλ4,λ3,λ2,λ1(k4,k3,k2,k1)b†k4,λ4
b†k3,λ3

bk2,λ2bk1,λ1
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where

Wλ4,λ3,λ2,λ1(k4,k3,k2,k1) = − U

4N
wλ4,λ3(k4,k3)

× w∗λ2,λ1
(k2,k1) (2.3.9)

where wλi,λj(ki,kj) = λie
−iθkiFj,i − λje

−iθkjFi,j with Fi,j = fλi(ki)f−λj(kj). We see

that in the band basis electrons in bands λ2 and λ1 can scatter to bands λ3 and λ4, that is to

say there is no “band conserving condition”. The δ-function ensures that the momentum is

conserved.

Partition Function

We can now recast our model in the language of coherent state path integral. First we define

the quadratic part of the action as

S0 =

∫ β

0

dτ
∑
k,λ

b∗k,λ(τ)

(
∂

∂τ
+ Ek,λ

)
bk,λ(τ) (2.3.10)

with Grassman variables b∗k,λ(τ) and bk,λ(τ) and inverse temperature β. The interaction

part is:

Sint =
∑

1,2,3,4

V (4, 3, 2, 1)b∗(4)b∗(3)b(2)b(1) (2.3.11)

where we simplified the notation by defining i = (λi,ki, τi) and

V (4, 3, 2, 1) = − U

4N

∫ β

0

dτ

(
4∏
j=1

δ(τ − τj)
)
δk1+k2,k3+k4

× wλ4,λ3(k4,k3)w∗λ2,λ1
(k2,k1). (2.3.12)
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The partition function is given by:

Z =

∫
D(b∗λ(τ), bλ(τ))e−S0−Sint (2.3.13)

2.3.2 Renormalization Group Approach

We now take the standard steps in finding the renormalization group flow of our model[25].

We begin by separating the Grassman variables into fast and slow modes:

bk,λ(τ) = θ(Λ/s− |Ek,λ|)b<k,λ(τ) (2.3.14)

+ θ(Λ− |Ek,λ|)θ(|Ek,λ| − Λ/s)b>k,λ(τ)

where Λ is our energy cut-off and s is a flow-parameter. While fast and slow modes are

decoupled in S0, they are coupled in Sint

S = S0 + Sint = S0(<) + S0(>) + Sint(<,>) (2.3.15)

Integrating over all of the fast modes gives

Z =

∫
D(b<, b

∗
<)e−S0(<)−S′int(<) (2.3.16)

where −S ′int(<) = ln
[
〈e−Sint(<,>)〉0,>

]
where the average is over fast modes with respect

to e−S0(>). We can obtain an approximation of S ′int by performing a cumulant expansion:

−S ′int(>) = −〈Sint(<,>)〉0,> (2.3.17)

+
1

2

(
〈S2

int(<,>)〉0,> − 〈Sint(<,>)〉20,>
)

− 1

3!
〈〈S3

int(<,>)〉〉0,> +
1

4!
〈〈S4

int(<,>)〉〉0,>
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where the double angled brackets denote, respectively, the third and fourth order cumulants

of Sint (with respect to e−S0(>)). Using the above perturbative expression we calculate a

new effective interaction for the slow modes of the theory. We would like to point out that

all of the results we derive are perturbative only in the interaction strength U , while t, A,

B, M and µ̃ are not assumed small in any way.

We use Feynman diagrams in order to evaluate the above expression[25]. The relevant

Feynman rules are as follows:

• Each vertex diagram contains 4 external lines, two incoming and two outgoing. All

other lines will be referred to as internal.

• Label every line with a momentum k, a band index λ and a Matsubara frequency

iωm.

• For every internal line write a bare propagator Gk,λ(iωm) = 1
iωm−Ek,λ

.

• Every vertex in the diagram has a factor of

Vλ4,λ3,λ2,λ1(k4,k3,k2,k1) = −U
(
λ4e
−iθk4F3,4−λ3e

−iθk3F4,3

)(
λ2e

iθk2F1,2−λ1e
iθk1F2,1

)
4N

where the numbers 1 through 4 must be assigned in the following way: For propaga-

tors coming into the vertex, the one from the left is 1 and the one from the right is 2,

for propagators leaving the vertex the one to the left is 3 and to the right is 4.

• Conserve total momenta and frequency at each vertex.

• Sum over all internal frequencies 1
β

∑
iωm

.

• Sum over all internal momenta, with the restriction that these are fast modes
∑

k,>.

• Sum over all internal band indices.

• Determine the overall multiplicative factor by multiplying by how many independent

ways there are of drawing a specific diagram and for nth order diagrams divide by n!.
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• Multiply by the appropriate sign in the cumulant expansion and determine the sign

coming from the contractions required to draw a given diagram

Once the above steps have been completed we have a general expansion. We focus on

the “BCS” (pairing) channel by setting the incoming external momenta to ±k′ and band

indices to λ′ and the outgoing external momenta to ±k and band indices to λ. We focus

solely on the BCS pairing channel for several reasons. First, as mentioned before, we have

studied the same model outlined above in a mean field context[1] and have found that there

is an instability to superconductivity over much of parameter space. There is one excep-

tion to this where an antiferromagnet is found but only for larger B and large interaction

strength. Second, in models similar to ours without spin-orbit coupling it is known[26] that

for weak, repulsive interactions the Cooper instability is the only generic instability un-

less model parameters are fine-tuned. Finally, from a practical point of view our goal is to

establish that topological superconductivity could possibly be driven by repulsive electron-

electron interactions. Thus we focus only on this problem.

Further, here we are interested in only intraband pairing and so we set both incoming

external band indices to λ′ and the outgoing ones to λ. In mean-field this describes pairing

between electrons in the same band index (intraband pairing) whereas setting band indices

to±λ on the incoming (or outgoing) electrons would represent interband pairing. We focus

only on intraband pairing both because it is the interesting pairing from a topological stand-

point and because we expect interband pairing to be suppressed relative to its interband

counterpart. For example, for the BCS diagram (see the appendix of this paper) we find a

relative suppression of
(

M
Akf

)2

when comparing interband pairing to intraband pairing. The

calculation is also further simplified by only considering diagrams that contain logarithmic

divergences as s→∞[15, 16], as these dominate the vertex function.
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2.4 Summary of RG Analysis

2.4.1 General Results

Here we discuss the results of our analysis. We will only include details where it is abso-

lutely essential; a full treatment and discussion of our analysis is included in the appendix.

We have calculated diagrams up to fourth order in the interaction parameter U and with

logarithmic divergences for our lattice model. The need to go to 3-loops in our calculation

is rooted in the flow the interaction channels. Our goal is to find a pairing instability in this

system, we therefore look for couplings which flow to large negative values. At one-loop

and at two-loop we find couplings that are only marginal, or marginally irrelevant[25]. It is

not until 3-loop that we find marginally relevant flow, and therefore instability.

Although we have successfully obtained an expression of the renormalized interaction

up to this order it is rather intractable to work with this form. In order to make analytic

progress we take the continuum limit by replacing sin ki → ki, cos ki → 1− k2
i /2. Taking

the continuum limit not only makes our mathematical expressions analytically tractable

but also makes the dispersion a function of k = |k| only, such that the contours of constant

Ek,λ are circular in k-space. This enables two simplifications[16, 25]: (1) We can set all

external momenta to lie on the Fermi surface (or Fermi surfaces) as any other external

momenta correspond to processes that are irrelevant under RG flow and (2) due to the

circular symmetry the coupling function in the BCS channel can be a function of φ =

θk − θk′ only.

When considering the BCS channel we can think of the RG procedure as renormalizing

the interaction as Heff
int =

∑
k,k′,λ,λ′ V

′
λ,λ′(k,k

′, s)c†k,λc
†
−k,λc−k′,λ′ck′,λ′ . In the continuum

limit the interaction takes the form

V ′λ,λ′(k,k
′, s) ≡ V ′λ,λ′(φ, s) =

eiφ

N
v′λ,λ′(φ, s) (2.4.1)
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Where we have used primed variables to distinguish renormalized parameters from the

non-primed bare variables. The indices λ and λ′ label the Fermi surface of the outgoing

and incoming band electrons.

Using this symmetry of the coupling allows us to decouple the interaction into angular

momentum channels:

v′λ,λ′(φ, s) =
∑
mz

eimzφv′λ,λ′(mz, s) (2.4.2)

v′λ,λ′(mz, s) =
1

2π

∫ 2π

0

e−imzφv′λ,λ′(φ, s)

We now address the question of how does the function v′λ,λ′(mz, s) flow as the RG

parameter s is tuned and calculate its beta-function. In our full expression for v′λ,λ′(mz, s)

(see the appendix of this paper) the matrix entries for different λ’s are coupled. Fortunately

we can obtain a simple beta function by following a method proposed by Raghu et al[26]

and further employed by Vafek and Wang[15, 16]. To this end we define the g′ matrix

g′ν,µ(s,mz) =
√
NνNµv

′
ν,µ(s,mz) (2.4.3)

In this definition Nµ is the density of states at the Fermi energy for the band µ. We then

obtain the following beta function for the eigenvalues of each g′-matrix

dλmzi (s)

d ln(s)
= −2(λmzi (s))2 (2.4.4)

where λmzi (s) is the ith eigenvalue of g′ν,µ(s,mz). With the above beta-function,

λmzi (s) =
λmzi (1)

1 + 2λmzi (1) ln(s)
. (2.4.5)

From this solution we see that if λmzi (1) < 0 the renormalized coupling diverges at s =
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e
− 1

2λ
mz
i

(1) . Thus for any i or mz, if λmzi (1) < 0 superconductivity will develop in this chan-

nel[16] with a superposition of intraband pairing given by the eigenvector corresponding

to λmzi (1). The temperature scale at which it will develop is given by the value of the lower

cut-off Λ/s at which the above solution diverges, namely [15, 16, 26] Tc ∼ Λe
1

2λ
mz
i

(1) . Al-

though this argument does not allow us to quantitatively determine Tc due to the lack of a

proportionality constant, it does allow us to compare the transition temperatures of different

channels (i andmz) for a given set of parameters. The more negative the eigenvalue λmzi (1)

the higher Tc will be. Therefore we can think of λmzi (1) as a measure of the instability of

a particular channel. For a given set of parameters, the value of mz and i with the most

negative λmzi (1) is the dominant superconductivity channel.

In addition to the above it is worth noting that our results, like those of Refs. [15, 16],

show a BCS instability that is enhanced by the presence of spin-orbit coupling. Namely, in

a purely parabolic system repulsive interactions cannot create an instability at second order

in U , but such an instability occurs in the presence of spin-orbit coupling. Therefore this

system falls in the line of reasoning of Ref. [27] where it has been shown that perturbations

can significantly enhance superconductivity. Owing to this we note that, as proposed in Ref.

[15], the spin-orbit coupling results in stronger superconductivity than would otherwise be

present.

The above discussion is general for intraband pairing for any choice of parameters in

the model. Let us now specialize to the case of interest, a single Fermi surface.

2.4.2 Pairing on a Single Fermi Surface

First let us describe the two band dispersion εk,±1. The upper band λ = +1 is a mono-

tonically increasing function of k and parabolic like. For λ = −1 there are two possible

functional forms depending on parameters. The first is a parabolic-like, monotonically in-

creasing function of k. The second has a Mexican hat shape with a value of −|M | at k = 0
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Figure 2.1: Schematic picture of our linearized bands. The different horizontal lines correspond to
values of the chemical potential creating a single Fermi surface (µA) and to two Fermi surfaces (µB
and µC).

and a minimum at some finite momentum k = kmin. Above this value of k the band energy

is monotonically increasing. A schematic plot of εk,±1 is shown in Fig. 2.1.

Regardless of the functional form of εk,−1 the two bands are separated at k = 0 by an

energy 2|M |. The interesting regime is when |µ| < |M |. In this regime there is a single

fermi surface, marked by the line µA in Fig. 2.1. For |µ| > |M | we have either two or zero

Fermi surfaces; these regimes are marked by the lines µB and µC in Fig. 2.1.

Here we focus on the region |µ| < |M | where there is a single, circular Fermi surface

with radius k = kF . For this band structure slow modes must belong to the λ = −1

band. We thus focus on intra-band pairing of electrons in the λ = −1 band. This is the

interacting analogue of the intraband pairing discussed in Refs. [8, 9]. Note that our RG

description naturally dispenses with interband pairing for this choice of parameters, i.e the

Fermi surface contains only λ = −1 electrons and so we do not expect any interesting flow

between electrons in opposite bands. In the language developed in Section 2.2 this would
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seem to suggest we would not expect to see ∆+−(k) type pairings. Additionally, for similar

reasons we do not expect to see ∆++(k) type pairings either.

For this particular choice of parameters N+1 = 0 as there are no states in the band +1

inside the Fermi surface. The matrix g reduces to a scalar which is obtained by setting

λ = λ′ = −1 and

λmz(1) =
U2

26
N−1v−1,−1(mz). (2.4.6)

Where v−1,−1(mz) is a numerical constant for a given set of material parameters and

is defined in the appendix. From the above we see that the channel mz with the most

negative value of v−1,−1(mz) will be the dominant channel for pairing, as U2

26 N−1 is a

positive constant. The corresponding critical temperature can be roughly estimated as

Tc ∼ e
25

U2N−1v−1,−1(mz) .

As shown in the appendix v−1,−1(mz) is a complicated integral. Setting B = 0.0 for

both simplicity and to make a closer analogy with the work in [9], we have evaluated

v−1,−1(mz) numerically over the range of values, A ≤ t, |M | ≤ .3t and |µ| < |M |. For

the parameters we have looked at, we find quite generally that for M > 0 the dominant

angular momentum channel is mz = 2 while for M < 0 it is mz = −2. As an example

of the data we have plotted v−1,−1(mz) as a function of A in Fig. 2.2. We note that in the

absence of the mass term M there is a degeneracy between v−1,−1(mz) and v−1,−1(−mz),

quite simply v−1,−1(mz) = v−1,−1(−mz) for all parameter values[16]. This means that for

M = 0 the mz channel and the −mz channel are equally favorable. When we allow for

a finite M this degeneracy lifts. For the choice of parameters in Fig. 2.2 there is a large

difference between themz and−mz couplings and there is only a single dominant channel.

Looking back at the original pairing function V ′λ,λ′(φ, s) = eiφ

N
v′λ,λ′(φ, s) and replacing

v′λ,λ′(φ, s) with its most dominant mz = ±2 component we see that for |M | > 0 our
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Figure 2.2: Plot of the integral v(mz) = v−1,−1(mz) as a function of A. Above we have set
B = 0, M = −0.3t and µ = 0. We note that for the range of parameters chosen the mz = −2

channel is by far the most negative channel.

RG analysis gives an attractive interaction with f -wave (p-wave) symmetry. Owing to the

extra phase factor in this basis, this leads, in a mean field description (discussed in the next

section) to an order parameter ∆−−(k) with f -wave or p-wave symmetry. In Section 2.2

we argued that a p-wave (and later an f -wave) ∆−−(k) intraband order parameter with the

chemical potential tuned in the gap should constitute a spinless topological superconductor.

Here the same argument holds and we have found, within our analysis, that neither ∆++(k)

nor ∆+−(k) type pairing develops.

Another encouraging comparison comes from connecting our RG calculation with the

earlier mean-field work on the same model in [1]. The dominant mz = ±2, representing

f -wave or p-wave band pairing leads to d ∓ id-wave spin-singlet pairing and p + ip and

f + if -wave spin-triplet pairing when transformed back to the usual spin basis. Therefore,

as we’ve seen in Section 2.2, once spin degeneracy is broken superconductivity may be
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a superpositions of spin-singlet and spin-triplet. The connection to Ref. [1] comes from

noting that in this study d + id singlet pairing was found using a variational mean field

theory technique. That study did not include p- or f - triplet pairing in the variational wave

function and therefore those were not obtained.

2.5 Mean Field Topological Classification

In order to gain more intuition and allow a simple evaluation of the topological invariant

we resort to an effective mean field theory. The RG analysis above points to the important

component of the interaction and we therefore include only this component in the effective

model. To this end, we dispense with any interactions between λ = +1 band electrons

and furthermore only consider the dominant mz = mopt
z interaction channel between our

λ = −1 band electrons. We therefore write the following dominant channel Hamiltonian,

Heff =
∑
k,λ

(εk + λdk − µ)b†k,λbk,λ (2.5.1)

+
∑
k,k′

Veff (φ)b†k,−1b
†
−k,−1b−k′,−1bk′,−1

where Veff (φ) represents the part of the interaction which favors superconductivity in the

dominant channel, denoted bymz ≡ mopt
z = ±2 and therefore Veff (φ) ' ei(m

opt
z +1)φ

N
veff (m

opt
z ).

We perform a mean-field decoupling of the interaction term:

Heff,MF =
∑
k,λ

ξk,λb
†
k,λbk,λ (2.5.2)

+
1

2

∑
k

(
∆0e

−i(mz+1)θkb†k,−1b
†
−k,−1

+ ∆0e
i(mz+1)θkb−k,−1bk,−1

)
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where we have dropped the ‘opt’ superscript on mz, defined ξk,λ ≡ εk + λdk − µ, and the

parameter ∆0 must be determined self-consistently through the equation

1 = −veff (m
opt
z )

N

∑
k

tanh
(

Ek

2kBT

)
Ek

(2.5.3)

where Ek =
√
ξ2
k,−1 + ∆2

0. The wave function of the above is also of interest. For µ set

in the gap in the spin-orbit split bands we have a vacuum of bk,+ particles, as all possible

‘+’ states lie above µ, meanwhile we have a superconducting condensate of bk,− particles.

These two observations give rise to the ground state

|ψ〉 =
∏

k

(
uk,− + exp (−i(mz + 1)θk) vk,−b

†
k,−1b

†
−k,−1

)
|0〉 where |0〉 is the vacuum of

band electrons, uk,− =
√

Ek+ξk,−1

2Ek
and vk,− =

√
Ek−ξk,−1

2Ek

To obtain a description in terms of traditional spin states we transform Heff,MF back to

a spin basis by inverting the transformation in Eq. (2.3.5) and arrive at

Heff,MF =
1

2

∑
k

ψ†kHkψk (2.5.4)

where ψk = (ck,↑, ck,↓, c
†
−k,↓,−c†−k,↑)T and

Hk =

hk ∆̂k

∆̂†k −σyh−kσy

 (2.5.5)

with hα,β = (εk − µ)δα,β + d(k) · ~σα,β and

∆̂k =

∆s −∆↑t

∆↓t ∆s

 (2.5.6)
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where

∆s =
∆0

2

(
Ak

d

)
e−imzθk (2.5.7)

∆↑t =
∆0

2

(
d− d3

d

)
e−i(mz+1)θk (2.5.8)

∆↓t = −∆0

2

(
d+ d3

d

)
e−i(mz−1)θk (2.5.9)

where d and d3 are functions of k = |k|. From this we can see that for mz = ±2 we get

d∓ id-wave singlet pairing and f ∓ if and p± ip-wave triplet pairing.

We now calculate the Chern number of this effective mean field Hamiltonian. The

BdG Hamiltonian Hk has particle-hole symmetry which greatly simplifies the evaluation

as noted by Ghosh et al[28]. We define

Q(k) = −sgn (Pf(HkΓ)) (2.5.10)

where Γ = σy ⊗ τy and ‘Pf’ stands for the Pfaffian of the matrix argument. The Chern

number is a function of Q(k) evaluated at the time reversal invariant momenta (TRIM) and

in the square lattice this amounts to

C1 =
1

iπ
ln

[
Q(0, 0)Q(π, π)

Q(π, 0)Q(0, π)

]
(2.5.11)

where in the logarithm we have taken a branch such that ln(−1) = iπ. We can easily

calculate Q and find

Q(k) = sgn
(
|∆s(k)|2 + (εk − µ)2 − d2

k

)
(2.5.12)

Evaluating this at the TRIM points we note the following interesting observations. The first

is that Q(0, π) = Q(π, 0) and so the denominator in Eq. (2.5.11) does not contribute to C1.



41
CHAPTER 2. ZEEMAN FIELD INDUCED NON-TRIVIAL TOPOLOGY IN A

SPIN-ORBIT COUPLED SUPERCONDUCTOR

Second, at the point (π, π) we can make a similar argument to that made in Ref. [28]. In

units of the lattice constant, if π2 �M,B,∆0, µ then we can focus only on the k4 term in

Q(π, π). This term is simply t2 − B2. Finally we have Q(0, 0) = µ2 −M2 leading to our

result for C1

C1 =
1

iπ
ln sgn

[
(t2 −B2)(µ2 −M2)

]
(2.5.13)

If |B| < t then the topology of the system is entirely determined by whether or not µ falls

in the gap in the spin-orbit split bands opened by M . If |µ| < |M | (Fermi surface in the

gap) then C1 = 1 and the system has non-trivial topology. Note that ∆s is not technically

defined at (0, 0), this is likely an artifact of our continuum theory and we have replaced it

with its limiting value here. We have checked our observations here using the numerical

formula for the calculation of C1 given in Eq. (11) of Ref. [1].

The parameter range |M | > |µ| is of course the type of system we have considered in

our renormalization group approach in the previous section. Thus any superconductivity

that develops in the system for this range of parameters will have non-trivial topology.

Although we have performed our calculation on a clean system, we expect our results

to be robust against disorder. Our confidence in this comes from our finding that C1 is

non-zero for the relevant parameter regime. A topological system is, by its nature, resilient

to disorder[29, 30]. In addition to this, the state we find is a fully gapped superconductor

and should therefore be robust to defects for this reason as well.

The effect of temperature has also not been studied here and is left for subsequent

studies. We expect that the above topological superconductor be stable at temperatures

lower than the mean field gap scale.
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2.6 Conclusion

We have studied a model of interacting, spin-orbit coupled electrons using renormalization

group methods. After simplifying the model of Ref. [1] by taking the continuum limit,

we have applied the methods developed in Refs. [15],[16],[26],[27] to our model and

focused on a system with a single Fermi surface. Our analysis shows that for this range of

parameters the most dominant angular momentum pairing channel under RG has p-wave or

f -wave symmetry depending on the sign of the Zeeman parameter M . Such an interaction

should lead to a superconductor with intraband Cooper pairs and a p-wave or f -wave order

parameter.

To verify the topology of the state we simplified our model to include only the dominant

interaction channel and performed a mean field analysis of the resultant effective Hamil-

tonian. This analysis shows that the system develops topological superconductivity. The

condition for non-trivial topology in the physical case, |B| < t, is that |µ| < |M |, that is

that the Fermi surface must lie in the gap in the spin-orbit split bands opened by M . This

is similar to the condition discussed by Sau[9] and Alicea[8] in the context of spin-orbit

coupled bands in proximity to a superconductor. Thus the results here provide added jus-

tification to the case that interactions, rather than proximity effect, may be used to obtain

topological superconductivity[1, 20, 31]. Moreover, we see the potential for the following

physical scenario. In a topologically trivial superconductor with spin-orbit coupling the

topology may change to a non-trivial one upon applying a Zeeman field. This occurs since

the Zeeman field provides the necessary gapping of one of the bands, leaving one band

whose electron spins are locked to the momentum direction.
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2.A Interaction Vertex in the Band Basis

We now write the interaction Hamiltonian in terms of the new band operators. We note that

our unitary transformation can be written as

ck,α =
∑
λ

Wα,λ(k)bk,λ (2.A.1)

where Wα,λ(k) = exp
((

1−σzα,α
2

)
θk

)
fσzα,αλ(k)ησ,λ with η↓,− = −1 and ηα,λ for all other

combinations of α and λ. Meanwhile we have

c†k,α =
∑
λ

W ∗
α,λ(k)b†k,λ (2.A.2)

Making use of the above we then have the interaction contribution

Hint =
∑

k1,k2,k3,k4

∑
λ1,λ2,λ3,λ4

δk1+k2,k3+k4 (2.A.3)

× Vλ1,λ2,λ3,λ4(k1,k2,k3,k4)b†k1,λ1
b†k2,λ2

bk3,λ3bk4,λ4
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where

Vλ1,λ2,λ3,λ4(k1,k2,k3,k4) =
∑

α1,α2,α3,α4

Uα1,α2,α3,α4(k1,k2,k3,k4) (2.A.4)

W ∗
α1,λ1

(k1)W ∗
α2,λ2

(k2)Wα3,λ3(k3)Wα4,λ4(k4).

The above describes scattering events between electrons in the two bands; electrons in

eigenstates (k4, λ4) and (k3, λ3) scatter to states (k2, λ2) and (k1, λ1) with some associ-

ated interaction strength Vλ1,λ2,λ3,λ4(k1,k2,k3,k4) which depends on momenta and band

index. Finally the delta function conserves momentum in this scattering process. A more

convenient form for the interaction strength V is given by

Ṽλ1,λ2,λ3,λ4(k1,k2,k3,k4) =
U

2N

∑
α1

W ∗
α1,λ1

(k1)W ∗
ᾱ1,λ2

(k2)

× Wᾱ1,λ3(k3)Wα1,λ4(k4) (2.A.5)

where we have used a bar symbol, ᾱ to indicate the compliment to spin α. Writing out the

sum over α explicitly and defining Fi,j = fλi(ki)f−λj(kj) we then obtain

Vλ1,λ2,λ3,λ4(k1,k2,k3,k4) = (2.A.6)

U
(
λ2e

−θk2F1,2 − λ1e
−θk1F2,1

) (
λ3e

θk3F4,3 − λ4e
θk4F3,4

)
4N

We see that V is antisymmetric under the exchange of either indices 1 and 2 or 3 and 4 and

symmetric under the exchange of both.
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Figure 2.3: Diagrams contributing to the renormalization of the BCS coupling function up to one-
loop.

2.B Three-Loop Expansion for S ′int on the Lattice

2.B.1 Tree Level and One-Loop

We now give expressions for the first few terms in the cumulant expansion for S ′int. Here

we give general expressions in terms of unsolved integrals and later on we make some

simplifying specializations in order to perform these integrals approximately. As we are

interested in superconductivity in this model we will be invested in how the BCS channel

of the original interacting action evolves under renormalization. This channel is specified

by k4 = −k3 = k, λ3 = λ4 = λ, k1 = −k2 = k′ and λ2 = λ1 = λ′ in the original (bare)

interaction Sint. To this end we will set all external momenta accordingly.

Let us begin our discussion with the effective interaction up to one-loop, afterwards we

will extend this to three-loops. The diagrams contributing to this effective action are shown
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in Fig. 2.3. We have

S ′int,1` = δS tree
int + δSone-loop

int (2.B.1)

=

∫ β

0

dτ
∑

k,k′,λ,λ′

(V tree
λ,λ′(k,k

′) + V one-loop
λ,λ′ (k,k′))

× b∗k,λ,<(τ)b∗−k,λ,<(τ)b−k′,λ′,<(τ)bk′,λ′,<(τ)

where the tree level term gives the contribution V tree
λ,λ′(k,k

′) = U
N
ei(θk′−θk)λλ′Fλ,λ(k,k)Fλ′,λ′(k

′,k′)

and the one-loop contribution is

V one-loop
λ,λ′ (k,k′) =

U2

64N
(Π(−k,k′)− Π(k,k′))

− U

2
V tree
λ,λ′(k,k

′)P (Λ, s) (2.B.2)

In the above we have defined the following integral

Πλ,λ′(k,k
′) =

∑
λ5,λ6

∫
>

d2p

(2π)2

(
nF (Ep,λ5)− nF (Ep+k+k′,λ6)

Ep,λ5 − Ep+k+k′,λ6

)
× Gλ,λ′,λ5,λ6(k,k′,p) (2.B.3)

with the function

Gλ,λ′,λ5,λ6(k,k′,p) = 16wλ5,λ(p,k)w∗λ′,λ6
(−k′,k + k′ + p)

× wλ6,λ(k + k′ + p,−k)w∗λ′,λ5
(k′,p)

(2.B.4)

and the > on the p integral is to remind us that the integral must be performed over the

regions of p-space satisfying both Λ/s ≤ |Ep,λ5| ≤ Λ and Λ/s ≤ Ep+k+k′,λ6 ≤ Λ. We
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have also defined the momentum independent integral P

P (Λ, s) =
∑
λ5,λ6

∫
>

d2p

(2π)2

(
1− nF (Ep,λ5)− nF (Ep,λ6)

Ep,λ5 + Ep,λ6

)
× |wλ5,λ6(−p,p)|2 (2.B.5)

where nF (ε) = 1
1+eβε

is the usual Fermi distribution function.

2.B.2 Two-Loop

We now move on to higher our diagrams of which we keep only diagrams with logarithmic

divergences. The diagrams we sum are essentially the same as the diagrams used in Refs.

[15, 16]] and we do not redraw them here.

As a two-loop contribution to our interaction we obtain

δS two-loop
int =

∫ β

0

dτ
∑

k,k′,λ,λ′

V two-loop
λ,λ′ (k,k′) (2.B.6)

× b∗k,λ,<(τ)b∗−k,λ,<(τ)b−k′,λ′,<(τ)bk′,λ′,<(τ)

where we have defined

V two-loop
λ,λ′ (k,k′) =

U3

4N
λλ′ei(θk′−θk)Fλλ(k,k)Fλ′λ′(k

′,k′)P 2(Λ, s)

− U3

128N
(λ′eiθk′Fλ′λ′(k

′,k′)I2`(k, λ) (2.B.7)

+ λe−iθkFλλ(k,k)(I2`(k′, λ′))∗)
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where we have the integral

I2`(k, λ) =
∑
µ1,µ2

∫
>

d2p

(2π)2

(
1− nf (Ep,µ2)− nf (Ep,µ1)

Ep,µ2 + Ep,µ1

)
(2.B.8)

wµ2,µ1(p,−p)(Π̂λ,µ1,µ2(−k,p)− Π̂λ,µ1,µ2(k,p))

Π̂λ,µ1,µ2(k,p) =
∑
µ3,µ4

∫
>

d2p2

(2π)2

(
nf (Ep2,µ3)− nf (Ep2+p+k,µ4)

Ep2,µ3 − Ep2+p+k,µ4

)
Ĝλ,µ1...µ4(k,p,p2)

Ĝλ,µ1...µ4(k,p,p2) = Gλ,µ1,µ3,µ4(k,p,p2)δµ1,µ2 + G̃λ,µ1,µ3,µ4(k,p,p2)σxµ1,µ2

where Gλ,µ1,µ3,µ4(k,p,p2) is defined above and

G̃λ,λ′,λ5,λ6(k,k′,p) = 16wλ5,λ(p,k) (2.B.9)

× w∗−λ′,λ6
(−k′,k + k′ + p)

× wλ6,λ(k + k′ + p,−k)w∗λ′,λ5
(k′,p)

2.B.3 Three-Loop

We now finally move on to fourth order. Their contribution is as follows

δS three-loop
int =

∫ β

0

dτ
∑

k,k′,λ,λ′

V three-loop
λ,λ′ (k,k′)

× b∗k,λ,<(τ)b∗−k,λ,<(τ)b−k′,λ′,<(τ)bk′,λ′,<(τ) (2.B.10)

where we have defined

V three-loop
λ,λ′ (k,k′) = −U

4λλ′ei(θk′−θk)Fλλ(k,k)Fλ′λ′(k
′,k′)

23N

(
P 3(Λ, s) +

P̂ (Λ, s)

8

)

+
U4P (Λ, s)

28N
(2λ′eiθk′Fλ′λ′(k

′,k′)I2`(k, λ) + 2λe−iθkFλλ(k,k)(I2`(k′, λ′))∗)

+
U4

211N
I3`(k,k′, λ, λ′) (2.B.11)
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where we have the new integrals

I3`(k,k′, λ, λ′) =
∑
µ1,µ2

∫
>

d2p

(2π)2

(
1− nf (Ep,µ2)− nf (Ep,µ1)

Ep,µ2 + Ep,µ1

)
(2.B.12)

× (Π̂λ,µ1,µ2(k,p)− Π̂λ,µ1,µ2(−k,p))(Π̂∗λ′,µ2,µ1
(k′,−p)− Π̂∗λ′,µ2,µ1

(−k′,−p))

P̂ (Λ, S) =
∑
µ1...µ6

∫
>

d2p1

(2π)2

∫
>

d2p2

(2π)2

∫
>

d2p3

(2π)2
wµ2,µ1(p1,−p1)w∗µ5,µ6

(p3,−p3)

×
(

1− nf (Ep1,µ2)− nf (Ep1,µ1)

Ep1,µ2 + Ep1,µ1

)(
1− nf (Ep3,µ6)− nf (Ep3,µ5)

Ep3,µ6 + Ep3,µ5

)
×

(
nf (Ep2,µ3)− nf (Ep2+p1+p3,µ4)

Ep2,µ3 − Ep2+p1+p3,µ4

)
Ĝµ1...µ6(p1,p2,p3)

Ĝµ1...µ6(p1,p2,p3) = δµ5,µ6Ĝµ5,µ1µ2µ3µ4(p3,p1,p2) + δµ1,µ2σ
x
µ5,µ6

G̃∗µ1,µ5,µ3,µ4
(p1,p3,p2)δµ1,µ2

+ σxσ5,σ6
σxµ1,µ2

Ḡµ5µ1,µ3,µ4(p3,p1,p2) (2.B.13)

where

Ḡλ,λ′,λ5,λ6(k,k′,p) = 16wλ5,λ(p,k) (2.B.14)

× w∗−λ′,λ6
(−k′,k + k′ + p)

× wλ6,−λ(k + k′ + p,−k)w∗λ′,λ5
(k′,p)

Using the above expressions for the diagrams up to fourth order in U and logarithmi-

cally enhanced we have the effective BCS channel coupling

V ′λ,λ′(k,k
′,Λ, s) =

U

N
ei(θk′−θk)λλ′Fλ,λ(k,k)Fλ′,λ′(k

′,k′) (2.B.15)

×
(

1− U

2
P (Λ, s) +

U2

4
P 2(Λ, s)− U3

8
P 3(Λ, s)− U3

64
P̂ (Λ, s)

)
+

U2

64N
I1`(k,k′) +

U4

211N
I3`(k,k′, λ, λ′)

− U3

128N

(
λ′eiθk′Fλ′λ′(k

′,k′)I2`(k, λ) + λe−iθkFλλ(k,k)(I2`(k′, λ′))∗
)

(1− UP (Λ, s))
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where I1`(k,k′) = (Π(−k,k′)− Π(k,k′)).

2.C Continuum Limit

2.C.1 Dispersions

The integrals involved in the discussion above are formidable and do not allow any further

analytic progress. To make progress we focus on the continuum limit of the model above

by sending sin ki → ki, cos ki → 1− k2
i /2. This gives the dispersion

Ek,λ = tk2 − µ̃− 4t+ λ
√

(A2 − 2BM)k2 +M2 +B2k4 (2.C.1)

where k =
√
k2
x + k2

y . To make connection with standard conventions we redefine param-

eters as follows and µ = µ̃+ 4t. Then we have

Ek,λ = tk2 − µ+ λ
√

(A2 − 2BM)k2 +M2 +B2k4

= εk,λ − µ = Eλ(k) (2.C.2)

where εk,λ = tk2 + λ
√

(A2 − 2BM)k2 +M2 +B2k4. In this limit we have the new

definitions

eiθk =
kx + iky√
k2
x + k2

y

(2.C.3)

fλ(k) = fλ(k) =

√
d+ λd3

2d

where d =
√

(A2 − 2BM)k2 +M2 +B2k4. At B = 0 this is precisely the band structure

considered in the work by Sau et al.
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2.C.2 Rotational Invariance

As discussed in the main text in the continuum limit we obtain a theory which depends only

on the angle between given wave vectors on the Fermi surface. In developing this result it

is incredibly useful to realize that

I1`
λ,λ′(k,k

′, s) = eiφI1`
λ,λ′(k, k

′, φ, s) (2.C.4)

I2`
λ (k, s) = e−iθkI2`

λ (k, s)

I3`
λ,λ′(k,k

′, s) = −eiφI3`
λ,λ′(k, k

′, φ, s)

where φ = θk − θk′ . The manipulations required to show this is identical to that outlined

in [16]. We will give results here for I1`(k,k′, s) first. We begin by noting the following

result

Πλ,λ′(−k,k′) =
∑
λ5,λ6

∫
>

d2p

(2π)2

(
nF (Eλ5(p))− nF (Eλ6(

√
p2 +Q2 − 2pQ cos (θp − θQ)))

Eλ5(p)− Eλ6(
√
p2 +Q2 − 2pQ cos (θp − θQ))

)
× 16wλ5,λ(p,−k)w∗λ′,λ6

(−k′,p−Q)wλ6,λ(p−Q,k)w∗λ′,λ5
(k′,p) (2.C.5)

where Q = k− k′. By making use of the identity

eiθk1−k2 =
k1e

iθk1 − k2e
iθk2√

k2
1 + k2

2 − 2k1k2 cos(θk1 − θk2)
, (2.C.6)

shifting θp → θp + θQ and then using

eiθQ =

(
keiθk − k′eiθk′

Q

)
(2.C.7)
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one can show using some straightforward but tedious manipulations that if we define

Fµ1...µ6(k, k′,p, φ) =
16

q2

(
µ5e

−iθpgFµ1,µ5(k, p) + µ1e
iφFµ5,µ1(p, k)

)
(2.C.8)

×
(
µ3Fµ5,µ3(p, k′)− µ5e

iθpg∗Fµ3,µ5(k′, p)
)

×
(
−µ4qFµ6,µ4(q, k′) + µ6g

∗QFµ4,µ6(k′, q)− µ6g
∗eiθppFµ4,µ6(k′, q)

)
×

(
µ6e

−iφge−iθppFµ2,µ6(k, q)− µ6e
−iφgQFµ2,µ6(k, q)− µ2qFµ6,µ2(q, k)

)
where q =

√
p2 +Q2 − 2Qp cos(θp), φ = θk′ − θk, Q =

√
k2 + k′2 − 2k′ cos(φ) and

g = keiφ−k′
Q

then it follows that

Πλ,λ′(−k,k′) = eiφ
∑
λ5,λ6

∫
>

d2p

(2π)2

(
nF (Eλ5(p))− nF (Eλ6(q))

Eλ5(p)− Eλ6(q)

)
× Fλ,λ,λ′,λ′,λ5,λ6(k, k′,p, φ) = eiφVλ,λ,λ′,λ′(k, k

′, φ) (2.C.9)

Following the exact same analysis one can show that

Π̂λ,µ1,µ2(−k,k′) = eiφ
∑
λ5,λ6

∫
>

d2p

(2π)2

(
nF (Eλ5(p))− nF (Eλ6(q))

Eλ5(p)− Eλ6(q)

)
(2.C.10)

× Fλ,λ,µ1,µ2,λ5,λ6(k, k′,p, φ) = eiφVλ,λ,µ1,µ2(k, k′, φ)

Π̃µ1,µ2,µ5,µ6(−k,k′) = eiφ
∑
λ5,λ6

∫
>

d2p

(2π)2

(
nF (Eλ5(p))− nF (Eλ6(q))

Eλ5(p)− Eλ6(q)

)
× Fµ5,µ6,µ1,µ2,λ5,λ6(k′, k,p, φ) = eiφVµ5,µ6,µ1,µ2(k′, k, φ)

These three results have immediate implications for the In` terms. First I1`(k,k′, s) =

eiφI1`(k, k′, φ, s) where I1`(k, k′, φ, s) = Vλ,λ′(k, k
′, φ, s)+Vλ,λ′(k, k

′, φ+π, s) and Vλ,λ′(k, k′, φ) =

Vλ,λ,λ′,λ′(k, k
′, φ). Next we have for I2`

I2`(k, λ, s) = e−iθk
∑
µ1,µ2

∫
>

d2p

(2π)2

(
1− nf (Ep,µ2)− nf (Ep,µ1)

Ep,µ2 + Ep,µ1

)
|wµ2,µ1(p,−p)|

× (Vλ,λ,µ1,µ2(k, p, θp − θk) + Vλ,λ,µ1,µ2(k, p, θp − θk + π)) (2.C.11)
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shifting θp → θp + θk above then gives I2`(k, λ, s) = e−iθkI2`
λ (k, s). Finally we have

I3`(k,k′, λ, λ′, s) = −ei(θk′−θk)
∑
µ1,µ2

∫
>

d2p

(2π)2

(
1− nf (Ep,µ2)− nf (Ep,µ1)

Ep,µ2 + Ep,µ1

)
(2.C.12)

× (Vλ,λ,µ1,µ2(k, p, θp − θk) + Vλ,λ,µ1,µ2(k, p, θp − θk + π))

× (Vλ,λ,µ1,µ2(k′, p, θp − θk′) + Vλ,λ,µ1,µ2(k′, p, θp − θk′ + π))∗

Shifting θp → θp+θk′ above then immediately gives I3`(k,k′, λ, λ′, s) = −ei(θk′−θk)I3`
λ,λ′(k, k

′, φ, s).

By using the above results we can obtain a simplified continuum limit version of Eq.

(2.B.15) which is given as follows

V ′λ,λ′(k, k
′, φ,Λ, s) =

U

N
eiφλλ′Fλ,λ(k, k)Fλ′,λ′(k

′, k′) (2.C.13)

×
(

1− U

2
P (Λ, s) +

U2

4
P 2(Λ, s)− U3

8
P 3(Λ, s)− U3

64
P̂ (Λ, s)

)
− U3eiφ

128N

(
λ′Fλ′λ′(k

′, k′)I2`
λ (k) + λFλλ(k, k)(I2`

λ′ (k
′))∗
)

(1− UP (Λ, s))

+
U2

64N
eiφI1`

λ,λ′(k, k
′, φ)− U4

211N
eiφI3`

λ,λ′(k, k
′, φ)

We see that V ′ depends only on the relative angle φ, as is to be expected. We proceed to

write V ′λ,λ′(k, k
′, φ,Λ, s) = eiφU

N
v′λ,λ′(k, k

′, φ,Λ, s).

2.C.3 Evaluation of Integrals

We now work to evaluate, or approximately evaluate, the integrals above. The first integral

we focus on is P (Λ, s). We have

P (Λ, s) =
∑
λ5,λ6

∫
>

d2p

(2π)2

(
1− nF (Ep,λ5)− nF (Ep,λ6)

Ep,λ5 + Ep,λ6

)
× |wλ5,λ6(−p,p)|2 (2.C.14)
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where the ‘>’ means bothEp,λ5 andEp,λ6 must lie in the fast mode range Λ/s < |Eλ(p)| <

Λ. We set λ6 = λ5 in the above for the following reason. The p integral is limited to

values in p-space where both bands lie in the fast mode range. For two different bands, i.e.

λ5 6= λ6 the small window of p values for whichEp,λ5 andEp,λ6 are in the fast range will in

general be different. To simplify our calculation we assume that there is no overlap between

these two regions and thus set λ6 = λ5. The next simplification we make has to do with

what part of the above integral we are interested in. We are interested in terms that diverge

as we send s→∞[26]. The term |wλ5,λ5(−p,p)|2 is regular as p approaches a Fermi wave

vector and so in order to simplify matters we set |wλ5,λ5(−p,p)|2 = |wλ5,λ6(kλ5
f , k

λ5
f )|2 =

(2λ5Fλ5,λ5)2 = F 2
λ5

where we have defined Fλ5 = 2λ5Fλ5,λ5 . This leaves

P (Λ, s) =
∑
λ5

F 2
λ5

∫
>

d2p

(2π)2

(
1− 2nF (Ep,λ5)

2Ep,λ5

)
(2.C.15)

Now using the usual set of approximations for integrals of this type we set
∫
>

d2p
(2π)2

(
1−2nF (Ep,λ5

)

2Ep,λ5

)
=

Nλ5

∫
>
dE
(

1−2nF (E)
2E

)
= Nλ5 ln(s) where Nλ5 is the density of states at the Fermi surface.

Thus

P (Λ, s) =
∑
λ5

F 2
λ5
Nλ5 ln(s) ≡ p ln(s) (2.C.16)

where p =
∑

λ5
F 2
λ5
Nλ5 . Next we work on simplifying I2`(k, λ, s). It is given by

I2`
λ (k, s) =

∑
µ1,µ2

∫
>

d2p

(2π)2

(
1− nf (Ep,µ2)− nf (Ep,µ1)

Ep,µ2 + Ep,µ1

)
|wµ2,µ1(p,−p)|(2.C.17)

× (Vλ,λ,µ1,µ2(k, p, θp, s) + Vλ,λ,µ1,µ2(k, p, θp + π, s))

Again we argue that because of the restriction on the statesEp,µ2 andEp,µ1 to be fast modes

we must set µ1 = µ2. Further, only considering the part of the integral divergent as s→∞
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while setting all other values of p to lie on the Fermi surface gives

I2`
λ (k, s) = ln(s)

∑
µ

FµNµ (2.C.18)

×
∫ 2π

0

dθp
2π

I1`
λ,µ(k, kµf , θp, s)

Taking the same steps with I3`
λ,λ′(k, k

′, φ, s) gives us

I3`
λ,λ′(k, k

′, φ, s) = ln(s)
∑
µ

Nµ

∫ 2π

0

dθp
2π

(2.C.19)

I1`
λ,µ(k, kµf , θp + φ, s)(I1`

λ′,µ(k′, kµf , θp, s))
∗

In order to simplify the above it becomes useful to Fourier transform I1`
λ,µ(k, k′, θ) as fol-

lows

I1`
λ,µ(k, k′, θ, s) =

∑
mz

eimzθvmzλ,µ(k, k′, s) (2.C.20)

Then I2`
λ (k, s) = ln(s)

∑
µ FµNµv

0
λ,µ(k, k′, s) and also

I3`
λ,λ′(k, k

′, φ, s) = ln(s)
∑
µ,mz

eimzφNµv
mz
λ,µ(k, kµf , s)(v

mz
λ′,µ(k′, kµf , s))

∗ (2.C.21)

Finally we work at simplifying P̂ (Λ, s). Making our usual set of simplifying assumptions

we have

P̂ (Λ, s) = −ei(θk′−θk) ln2(s)
∑
µ,ν

NνFνNµFµ

∫ 2π

0

(2.C.22)

dθp1

2π

∫ 2π

0

dθp3

2π
Vµ,ν(k

µ
f , k

ν
f , θp3 − θp1 − π, s)
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If we redefine the angles Θ = (θp1 + θp3)/2 and θ = θp3 − θp1 we immediately obtain

P̂ (Λ, s) = −1

2
ei(θk′−θk) ln2(s) (2.C.23)

×
∑
µ,ν

NνFνNµFµv
0
µ,ν(k

µ
f , k

ν
f , s)

Reflecting on the above we see that all of the integrals of interest in our 3-loop expan-

sion of the effective interaction simplify to terms involving the single integral vmzµ,ν(k, k
′, s).

The expression for this term is as follows

vmzµ,ν(k, k
′, s) =

∑
λ5,λ6

∫ 2π

0

dφ

2π
e−imzφ

∫
>

d2p

(2π)2
(2.C.24)(

nF (Eλ5(p))− nF (Eλ6(q))

Eλ5(p)− Eλ6(q)

)
Fµ,ν,λ5,λ6(k, k′,p, φ)

where Fλ,λ′,λ5,λ6(k, k′,p, φ) = Fλ,λ,λ′,λ′,λ5,λ6(k, k′,p, φ). The above function is normal as

we let s→∞ and so for our purposes it is sufficient to replace it with it’s s→∞ counter-

part[15, 16, 26, 27]. Further as we are only interested in incoming/outgoing momenta on

the Fermi surface(s) we set k and k′ appropriately. Defining vmzµ,ν = vmzµ,ν(k
µ
f , k

ν
f , s→∞)we

have

vmzµ,ν =
∑
λ5,λ6

∫ 2π

0

dφ

2π
e−imzφ

∫
d2p

(2π)2
(2.C.25)(

nF (Eλ5(p))− nF (Eλ6(q))

Eλ5(p)− Eλ6(q)

)
Fµ,ν,λ5,λ6(kµf , k

ν
f ,p, φ)

where the restriction on the integral in V has been dropped because as s→∞ all momenta

satisfy Λ/s < |Eλ5(p)| < Λ.
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2.C.4 Flow Equations

By using the above results we can write the following

v′λ,λ′(s, φ) =
UFλFλ′

4

(
1− Up

2
ln(s) +

U2p2

4
ln2(s)− U3p3

8
ln3(s)

)
+
U4FλFλ′

256

∑
µ,ν

NµFµv
0
µ,νNνFν

− U3

256
ln(s)

(
Fλ
∑
µ

FµNµv
0
µ,λ′ + Fλ′

∑
µ

v0
λ,µFµNµ

)
(2− Up ln(s)) (2.C.26)

+
U2

64

∑
mz

eimzφvmzλ,λ′ − ln(s)
U4

211

∑
µ,mz

eimzφNµv
mz
λ,µv

mz
µ,λ′

where in the above mz denotes an integer value, kλf is the Fermi wave vector magnitude for

the λ band, and we recall that we have defined Fλ = 2λFλ,λ(k
λ
f , k

λ
f ), and p =

∑
µNµF

2
µ .

We first consider the RG flow of the mz 6= 0 channel which is given by

v′λ,λ′(s,mz) =
U2

64
vmzλ,λ′ − ln(s)

U4

211

∑
µ

Nµv
mz
λ,µv

mz
µ,λ′ (2.C.27)

To obtain a beta function from the above expression we follow the method proposed by

Raghu et al[26] and further employed by Vafek and Wang[15, 16]. To this end we define

the g matrix gν,µ(s,mz) = U2

26

√
NνNµvν,µ(s,mz) from which we obtain

g′λ,λ′(s,mz) = gλ,λ′(mz) (2.C.28)

− 2 ln(s)
∑
µ

gλ,µ(mz)gµ,λ′(mz)

We note that the couplings of a certain angular momentum channel is renormalized only

by couplings in the same angular momentum channel. This behaviour is exact within our

treatment of the continuum limit and keeping only the most divergent terms. This is rooted

in the fact that our continuum limit approximation leads to an interaction term which is only
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a function of the angle between the incoming and outgoing momenta (namely φ = θk−θk′).

After summing up diagrams we obtain only terms that are independent of φ, terms that only

depend on one power of a function of φ or a convolution of functions of φ. This leads to a

beta-function whose most divergent terms decouple in this way[15, 25–27].

The matrix vν,µ(s,mz) is Hermitian (as we will show an a later section of this appendix)

and thus so is g. We can then diagonalize g as follows

gν,µ(mz) =
∑
i

λmzi (1)ψ∗i,νψi,µ (2.C.29)

where λi(1) are the eigenvalues of gν,µ(mz) and ψi,µ is a vector whose columns are the

(complete and orthonormal) eigenvectors of g. Using this in the above we then have

g′λ,λ′(s,mz) =
∑
i

ψ∗i,λ
(
λmzi (1)− 2 ln(s)(λmzi (1))2

)
ψi,λ′ (2.C.30)

The above tells that g′λ,λ′(s,mz) is also diagonalized by this transformation and we obtain

the result for the evolution of the eigenvalues of g′λ,λ′(mz) under renormalization

λmzi (s) = λmzi (1)− 2 ln(s)(λmzi (1))2 (2.C.31)

The beta function for λi is now obtained[15, 16, 26] by taking the derivative of the above

with respect to ln(s) which gives

dλmzi (s)

d ln(s)
= −2(λmzi (1))2 = −2(λmzi (s))2 (2.C.32)

where the second equality holds up to O(U4). The solution to the above beta function is

then

λmzi (s) =
λmzi (1)

1 + 2λmzi (1) ln(s)
(2.C.33)
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Next we move on to the flow of the mz = 0 channel. The equation for the renormalized

v′λ,λ′(s,mz = 0) is much more complicated than its mz 6= 0 counterpart. In order to obtain

a flow equation one defines the matrix gλ,λ′(0) =
√
NλNλ′

(
UFλFλ′

4
+ U2

26 vλ,λ′(s, 0)
)

along

with g′λ,λ′(s, 0) =
√
NλNλ′v

′
λ,λ′(s, 0) in order to find the following result which is valid up

to O(U4)

g′λ,λ′(s, 0) = gλ,λ′(0)− 2 ln(s)
∑
µ

gλ,µ(0)gµ,λ′(0) (2.C.34)

+ 4 ln2(s)
∑
µ,ν

gλ,µ(0)gµ,ν(0)gν,λ′(0)

− 8 ln3(s)
∑
µ,ν,ρ

gλ,µ(0)gµ,ν(0)gν,ρ(0)gρ,λ′(0)

We now diagonalize gλ,λ′(0) and find that in the new basis g′λ,λ′(s, 0) is diagonal as well.

This gives the result for the eigenvalues

λ′i(s) = λ0
i (1)

∑
n

(−2 ln(s)(λ0
i (1)))n (2.C.35)

' λi(0)

1 + 2λi(0) ln(s)

Taking the derivative of the above gives the beta function

dλ0
i (s)

d ln(s)
= −2(λ0

i (s))
2 (2.C.36)

the same as that for the mz 6= 0 result but with a different initial condition[15, 16].
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2.C.5 Hermiticity of vν,µ(s,mz)

It is tedious but straightforward to show thatF∗µ,ν,λ5,λ6
(kµf , k

ν
f ,p, φ) = Fν,µ,λ5,λ6(kνf , k

µ
f ,p,−φ).

From this property it follows that

(vmzµ,ν)
∗ =

∑
λ5,λ6

∫ 2π

0

dφ

2π
eimzφ

∫
d2p

(2π)2
(2.C.37)

×
(
nF (Eλ5(p))− nF (Eλ6(q))

Eλ5(p)− Eλ6(q)

)
Fν,µ,λ5,λ6(kνf , k

µ
f ,p,−φ)

We can then send φ → −φ and then, as everything in the integrand depends on φ through

either eiφ or cos(φ) we can shift φ → φ + 2π. From this we immediately obtain (vmzµ,ν)
∗ =

vmzν,µ . This is important because it ensures that vmzν,µ and thus the g′s defined above can be

diagonalized by a unitary transformation.
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Preface to Chapter 3

The previous manuscript concludes our study of driving a topological superconducting

state. It has established that a Zeeman field may be used to create Majorana modes in a

system of interacting, spin-orbit coupled electrons. We now move on to the second system

of interest in this thesis, topological insulators. In particular, we take aim at topological

insulators in the presence of time-periodic perturbations.

The primary motivation for this line of work comes from Lindner et al [1] who estab-

lished that time-periodic perturbations may be used to drive a topological insulating state

in a system where this phase is not occurring in equilibrium. This represents the creation

of a topological state with an external field.

Our work was started by an interest in understanding how the properties of edge-states

created by a time-periodic drive differ from those that occur in an equilibrium system. To

begin this investigation we decided to first determine how time-periodic perturbations can

be used to manipulate the edge-states in an equilibrium topological insulator. This question

is the primary focus of the following manuscript.
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Abstract

Here we provide a picture of transport in quantum well heterostructures with a periodic

driving field in terms of a probabilistic occupation of the topologically protected edge states

in the system. This is done by generalizing methods from the field of photon assisted tun-

neling. We show that the time dependent field dresses the underlying Hamiltonian of the

heterostructure and splits the system into side-bands. Each of these sidebands is occupied

with a certain probability which depends on the drive frequency and strength. This leads to

a reduction in the topological transport signatures of the system because of the probability

to absorb/emit a photon. Therefore when the voltage is tuned to the bulk gap the conduc-

tance is smaller than the expected 2e2/h. We refer to this as photon inhibited topological

transport. Nevertheless, the edge modes reveal their topological origin in the robustness

of the edge conductance to disorder and changes in model parameters. In this work the

analogy with photon assisted tunneling allows us to interpret the calculated conductivity

and explain the sum rule observed by previous authors[2]
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3.1 Introduction

Topological states of matter are currently at the forefront of research in condensed matter

physics. From the quantum hall effect to topological superconductors, these states are of

interest for a variety of reasons. In topological insulators the in-gap edge states are of

primary interest. These states are topologically protected, meaning they are insensitive

to deformations of the Hamiltonian’s parameters that leave the topological gap intact and

the effects of disorder. The existence of such states provides a physical signature of the

topology in the charge and spin conductance.

Recently, there has been a growing amount of attention paid to the generation and/or

manipulation of topological states of matter through the application of a time-periodic per-

turbation[1–20]. Experimental progress in this direction has been made in both photonic

crystals[21] and in a solid-state context in Bi2Se3[22]. In the Letter we study how a time-

periodic perturbation can be used to manipulate the transport properties of a quantum spin

Hall insulator. For example: such a system is expected to have a two terminal conductivity

of 2e2/h in equilibrium. With the application of a time-periodic field, we find that this

value may be reduced significantly. Despite this reduction and a deviation from quantized

units of e2/h, we find that this conductivity is still topological in the sense that it is robust to

disorder, system size changes, and gap-conserving deformations of the Hamiltonian. Fur-

thermore, we describe a method to predict the degree of these deviations quantitatively, and

their dependence on the drive strength and frequency.

To understand how this reduction in the conductivity can be tuned and why it appears to

be topologically robust, we have developed an understanding by generalizing the viewpoint

of photon assisted tunneling[23, 24]. We find that the periodic perturbation has a two-

pronged effect. First, it “dresses” the original static Hamiltonian and second, it causes

the edge conductance channels to only be occupied probabilistically upon the injection of a

lead electron. This is because electrons tunneling into the system can absorb/emit a photon.
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In this sense, the presence of the photons inhibit the topological transport properties of the

system. This description not only accounts for the reduction of the conductivity, but also

explains why its values are topological in nature. This interpretation will be important for

transport experiments in Floquet topological insulators. It provides an explanation of why

the conductivity isn’t quantized as well as shows that the conductivity can potentially be

tuned predictably in the lab.

3.2 Methods

As a model system we take the quantum well heterostructures that play host to the quantum

spin Hall effect. We apply a time dependent field and allow for on-site disorder. Our

Hamiltonian is as follows

HS = HQW +Hdisorder +Hext(t) (3.2.1)

where HQW =
∑

k ψ
†
k

Ĥ(k) 0

0 Ĥ∗(−k)

ψk where ψ†k is a four component creation

operator for electrons at momenta k in state mJ = (1/2, 3/2,−1/2,−3/2) of the clean

heterostructure and Ĥ(k) = εkσ0 +d(k) ·σ, with σ being a vector of Pauli matrices. In the

typical language of these structures[25, 26], we take d(k) = (A sin kx, A sin ky,M−4B+

2B(cos kx + cos ky)) and εk = C − 2D(2− cos kx− cos ky). In order to focus on transport

without additional complications we follow Lindner and coworkers[1] and set C = D = 0,

A = B = 0.2|M |. All energies are in units of M . As we are interested in a “topological”

system we take M = 1 so that sgn(M/B) = 1[1, 25] .

Next, Hext(t) = 2(V · σ) cos Ωt is an electromagnetic field polarized in the direction

V[1, 12, 27, 28]. For concreteness, we will take V = Vextẑ; although this is not necessary

for what follows. In short, the main results of this chapter hold regardless of the direction
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Figure 3.1: The two device geometries considered in this work. Left is a two-terminal device
labeled with leads left (‘L’), and right (‘R’). On the right is a six terminal device labeled with leads
1through 6 . The sites coupled to leads have a solid rectangle around them.

we take for V; it is the effective Hamiltonian that will be modified. Note Hext(t) obeys the

periodic generalization of time-reversal invariance[1] T Hext(t)T −1 = Hext(−t + τ) for

some τ and T is the time-reversal operator. Finally, Hdisorder = −∑i,αwiψ
†
i,αψi,α ( with

ψ†i the Fourier transform of ψ†k). This corresponds to charge impurities (disorder) changing

the chemical potential on each site by wi. We draw the {wi} randomly from an evenly

distributed sample between −W/2 and W/2. We call W the disorder strength.

Our numerical study employs the Floquet-Landauer formalism[2, 7, 29, 30]. Here we

imagine the system attached to a series of leads. The coupling strength of each lead to the

system is characterized by a lead coupling Γλ where λ labels the lead. These couplings

have a two-fold effect: (1) They add an imaginary self-energy iΓ/2 = i
2

∑
λ Γλ to the

system, and (2) the quantitatively determine the tunneling amplitude to/from the respective

leads. Similar to Ref. [7], we consider two different device geometries ( see Fig. 3.1).

First, we consider a two-terminal device with the left and right end of the system attached

to leads whose Fermi level lies at the ”lead energy” E with a slight offset bias between the

two leads [31]. In this set-up the quantity of interest is σ(E), the differential conductivity

given that the chemical potential of the leads is at energy E. For a spin Hall insulator

(e.g. our model above) in equilibrium when the lead energy E in a two-terminal device
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is tuned to lie in the gap (i.e. on the edge states), a value σ(E) = 2e2/h is expected[11,

34]. This is the first signature in which we are interested. For convenience, we define

σTT = σ(V ' 0)h/e2. Secondly, we consider a six-terminal device. This device allows us

to probe whether the current is carried by bulk or edge modes[7, 35, 36]. In equilibrium,

it is found that the only non-zero values of the transmission elements between leads λ and

λ′, Tλ,λ′(ε) (with ε in the gap), come from tunneling between adjacent leads in the device.

Thus Tλ,λ′(εF ) = 0, unless λ = λ′ ± 1 (where 6 + 1 → 1). Moreover, it is argued that

Tλ,λ±1(εF ) = 1 as, because of the helical edge states, a quasiparticle originating at lead

λ must tunnel to one of the neighbouring leads. Later in this Letter we look for similar

properties in the non-equilibrium system.

Before proceeding we comment on recent criticisms of Floquet states in periodically

driven systems[37–40]. Floquet states are often thought of as the steady-states of a time-

periodic system[41]. Refs. [37, 39, 40] argue that the long time evolution of an isolated,

periodically driven system leads to an effectively infinite temperature state for some driving

periods. Our formalism for calculating transport properties attaches leads to the system (i.e.

it is not isolated anymore) and only makes assumptions about the state of the leads in the

distant past, namely that the leads are in thermal equilibrium. No assumptions on the state

of the system[31] in the distant past have been made. This assumption provides the state of

the system at the present time and does not rely on “evolving” any particular Floquet state.

3.3 Transport Results

We begin with a clean system (W = 0) in a two terminal geometry. We fix Ω = 2.3|M |,

and tune Vext. We plot σTT for Vext = 0|M |...|M | in Fig. 3.2. As Vext is increased from

zero, the quantization of σTT is lost. For moderately strong Vext, we see that it reaches

σTT ∼ 1.5. This shows that for a quantum spin Hall insulator, the (bare) conductivity is



71
CHAPTER 3. PHOTON INHIBITED TOPOLOGICAL TRANSPORT IN QUANTUM

WELL HETEROSTRUCTURES

0 0.2 0.4 0.6 0.8
1.4
1.5
1.6
1.7
1.8
1.9

2

2
W=0.2|M|
W=0.35|M|
W=0.5|M|
Clean System

V
ext

�TT

0 0.1 0.2 0.3 0.4 0.5 0.6

1.75
1.8

1.85
1.9

1.95
2

2
Eq. (3.3.2)
L=20, Γ =0.1|M| 
L=30, Γ =0.1|M| 
L=20, Γ =0.5|M| 
L=30, Γ =0.5|M| 

V
ext

Figure 3.2: Plots of the differential two-terminal conductivity as a function of Vext. Left: results
for various disorder strengths, right: various values of the system size (L) and the lead coupling
parameter (Γ).

not, in general, quantized to the traditional equilibrium value under the application of a

periodic perturbation.

Looking again at Fig. 3.2, we see that these values are robust to the strength of the

disorder potential. The deviation from the clean limit is insignificant, even up to disorder

strengths of M/2. Additionally, these values are insensitive to the coupling strength of the

system to the leads[31], Γ, and the system size. We have changed the coupling Γ over a

range of values from Γ ∼ 0.05 to Γ ∼ 1. Breakdown on the lower bound can be attributed

to the inability of electrons to enter the system from the leads, whereas breakdown at the

higher bound adds a large self-energy to the system and causes a broadening of the edge-

states into the bulk.

The robustness described above leaves the impression that despite the deviation of the

conductivity from σTT = 2, the values it takes appear to be topologically protected. Our

six-terminal calculations provide additional evidence of topological, edge conductance.

With the lead energy set in the gap of the system, we find that Tλ,λ′ = 0, except the off-

diagonal elements Tλ,λ+1 and Tλ+1,λ. In contrast to equilibrium, we find that Tλ,λ+1 =

Tλ+1,λ < 1. In spite of this, we observe that the conduction takes place only between
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adjacent leads suggesting that the current is only flowing on the edges.

To explain the above behavior, we borrow insight from the field of photon assisted

tunneling (PAT). PAT, as first proposed by Tien and Gordon[23], was originally used to

describe a superconducting-insulator-superconductor tunnel junction. When a periodic AC

voltage Vac is applied to one of the leads, the energy eigenstates of these leads split into

sidebands at energyE+n~Ω for integer n and driving frequency Ω = 2π/T . The probabil-

ity that each one of these side bands is occupied is given by J2
n(α), where α = eVac/~Ω, and

Jn is the nth Bessel function of the first kind. The consequence of this sideband splitting

is that when a lead energy E, is applied across the tunnel junction, the electrons can tunnel

into the system not just at energy E, but at E + n~Ω with a probability of J2
n(α). One in-

terprets this as the electrons absorbing (n > 0) or emitting (n < 0) |n| photons. As a result

the conductivity in the driven system is given by σPAT (E) =
∑

n J
2
n(α)σ0(E + n~Ω)[23,

24]. Here σ0(E) is the conductivity of the junction in the absence of the AC voltage.

Here we do not have a simple periodic modulation of the sample system, rather the

modulation itself has some internal structure given by V · σ. The result of this is that the

system is not simply split into side-bands. The fact that Hext(t) does not commute with the

static Hamiltonian, leads to interesting effects. In the case of off-resonant light (light where

~Ω does not connect parts of the clean, static spectrum), we can make some simplifying

assumptions to obtain an effective description in line with PAT. We describe this simpler

case here and leave the discussion of on-resonant light, where more care must be taken, for

later[42].

In the field of Floquet topological insulators [2, 13–15, 30] with off-resonant light, it

is known that one can think of the periodic perturbation as“dressing” the static system by

modifying its underlying physical parameters to produce a new, effective static Hamilto-

nian. However, this approach is incomplete from a transport point of view. One must take

into account the splitting of the states of this effective Hamiltonian into side-bands. Thus
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off-resonant light has a two-sided effect: First, it dresses the static Hamiltonian to produce

a new effective static Hamiltonian. Second, the eigenstates of this effective Hamiltonian

are split into side-bands in a process analogous to PAT. This picture is not specific to the

illustrative system we have chosen here, it is more general. It may be used, for example, to

describe transport calculations in analogous systems like illuminated graphene.

To motivate this consider writing |ψ(t)〉 = UV (t)|ψ̂(t)〉where i~ d
dt
UV (t) = Hext(t)UV (t).

This transforms our problem into a new problem with the Hamiltonian Ĥ(t) = U †V (t)HUV (t),

where H is the Hamiltonian in the absence of the time-dependent field. If [Hext(t), H] = 0

then Ĥ(t) = H leading to an analogue of traditional PAT. Here [Hext(t), H] 6= 0 in general

and the transformation UV (t) leads to a new, time-dependent Hamiltonian. However, pro-

vided the mixing between bands is weak (off-resonant), it is possible to approximate Ĥ(t)

by its time-averaged value. In the language of Floquet theory this amounts to the leading

order term[30] in Ĥ(t) of the Floquet Hamiltonian HF = i
T

log
[
T
(
e−i

∫ T
0 dtĤ(t)

)]
, T(·)

denoting time ordering.

One can study the transport properties of this new effective Hamiltonian. This, how-

ever, will miss the unitary transformation that we have performed to get this Hamiltonian.

Accounting for this transformation in a full transport calculation, in the approximation de-

scribed above, we arrive at the following expression for the two-terminal conductivity of

this system[31]

σ(E) =
∑
m

J2
m

(
2Vext
~Ω

)
σF (E +m~Ω) (3.3.1)

where σF (E) is the static differential conductivity of the dressed system described by HF .

For our current model, we have a finite band width and have not taken into account higher

(or lower) energy bands. We assume the bands near the Fermi level are separated in energy

from the other bands by a sufficient amount so that they can be neglected. Experimental

validation of this comes from Ref. [22] where the experimental results can be understood by

using only the bands near the Fermi level. As a result we have σF (E+m~Ω) = σF (V )δm,0
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for E ' 0; no states exist at m~Ω. Therefore, we have

σ(E) = J2
0

(
2Vext
~Ω

)
σF (E) (E ' 0) (3.3.2)

Thus with an off resonant driving frequency, we describe the underlying system with an ef-

fective static Hamiltonian which may give rise to the signature transport properties. In the

present case, we are interested in a Hamiltonian showcasing the quantum spin Hall effect.

This state should have a two-terminal conductance of 2e2/h, and six-terminal transmis-

sion elements as described above. In the presence of a driving field, the in-gap edge states

are only occupied with a certain probability due to the prospect of absorption/emission

of photons. Thus, the transport property we are interested in only shows up with a cer-

tain probability. In the present case we expect σF (V ) = 2e2/h, and so the actual con-

ductivity we measure will be σ(E) = 2e2

h
J2

0

(
2Vext
~Ω

)
. Plotting this against our numerical

data produces excellent agreement (see Fig. 3.2). One may look at this expression as

a correction to the quantized value of 2e2/h. One can show for in-gap energies E that

σ(E) ' 2e2

h

(
1−

(
Vext
~Ω

)2
)

, i.e. this correction is second order in Vext/~Ω.

This explains our observation in the opening of this section. Despite the fact that we

do not obtain the values σ = 2e2/h, or Tλ,λ±1 = 1 , the values that we do see are robust

in the same way as the equilibrium values. The underlying system is topological in nature,

with helical edge states that give rise to 2e2/h conductance and Tλ,λ±1 = 1. However there

is only a certain probability that the electrons tunneling from the leads are at the correct

energy to take advantage of these channels. Thus, the presence of these photons in the

system inhibits the ability of these edge channels to transport charge.

Our discussion so far has not relied on the fact that the original Hamiltonian is topolog-

ical in nature, rather it is enough that the effective Hamiltonian be topological. In other sys-

tems, it is possible to drive topological states in otherwise trivial systems with off-resonant
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light. The most prevalent example of this is graphene, where the light produces an effec-

tive Hamiltonian with a topological mass. Thus the suppression described above may also

apply to these other systems. [3–7, 11, 30]. In the present system of interest the driving

of a trivial equilibrium system (i.e. M = −1 in our current language) can be driven into a

topological phase. This, however, relies on the light being on resonance[1]. A description

of this scenario inline with the discussion above is possible, but subtle and we leave it to a

future communication[42].

3.4 Connection to Floquet Sum Rule

We now connect our work to a sum rule proposed recently by Kundu and Seradjeh in the

context of a system with Floquet Majorana modes[2]. Similar to the current work, these

authors find that in the presence of a periodic perturbation, a system with Majorana modes

will not showcase the expected zero-bias quantized conductance of 2e2/h. Instead, the

quantized conductivity is found in the sum

σ̄(E) =
∑
n

σ(E + n~Ω). (3.4.1)
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Physically, the above corresponds to performing measurements of σ(E) not just at an in

gap energy E, but for lead energies placed any number of ~Ω’s above or below this. The

results of these measurements are than summed up. Let us apply this sum rule to our

system. Using Eq. (3.3.1) we have

σ̄(E) =
∑
n,m

J2
m

(
2Vext
~Ω

)
σF (E + (m+ n)~Ω). (3.4.2)

Shifting n→ n−m, using the off resonance light conductivity ,σF (E+m~Ω) = σF (E)δm,0

and the Bessel functions property
∑

n J
2
n(x) = 1 leads to σ̄(E) = σF (E). Therefore, if

σF (E) is quantized to 2e2/h, then σ̄(E) should be as well.

The above result is intuitive from a PAT point of view. At a two-terminal lead energy

E ' n~Ω the electrons must emit n photons to enter the quantized conductance channel

and thus enter it with probability P−n, the probability to emit n photons. This gives a

conductance of σF (0)P−n. Summing over all the lead energies is then effectively summing

over all of the probabilities as σ̄(0) = σF (0)
∑

n Pn = σF (0), i.e. the sum rule recovers

the underlying conductance.

The above derivation can be generalized to on-resonant driving under certain condi-

tions[42]. In particular, one expects the sum rule to hold when edge states are visible in the

so-called ”quasi-energy” spectrum. Nonetheless, the derivation presented here contains all

of the intuition required to understand the sum rule.

In Fig. 3.3 we show σ̄(E) at E = 0 for various different disorder strengths as well

as σF (E). Firstly, our data for the clean system is in excellent agreement with σF (E).

Secondly, the system shows noticeable deviations from σ̄(E ' 0) = 2e2/h in two regimes

of Vext and occur in both the clean and disordered systems. Here the bulk gap in the

effective Hamiltonian closes, and the topological edge states becoming washed out by bulk

conduction states. This is most obvious when looking at the disorder averaged data where
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the regions with σ̄(E) = 2e2/h are insensitive to disorder, while the peaks are sensitive

to disorder, as bulk conduction states should be. This result is interesting from a PAT

perspective. Not only has the periodic field split the system into side bands, but it has

modified the underlying system in a non-trivial way. In a traditional PAT context only the

sideband splitting would take place.

3.5 Conclusions

We have developed an analogue of PAT to describe the transport signatures of topologically

protected edge states in the quantum well heterostructures. Our picture entails electrons

only accessing the topological edge states of the system probabilistically. The probabil-

ity of the electrons to absorb/emit a photon reduces the traditional values associated with

transport measurements in these systems. These reduced values are, however, still insensi-

tive to disorder and other deformations. We refer to this phenomenon as “photon inhibited

topological transport”.

By using this picture we related our system to a Floquet sum rule proposed before[2].

Our picture of PAT is able to offer a physical description of why one would expect such

a rule to hold. Namely, the sum rule is adding up all of the probabilities of accessing the

edge state which, by itself, should have the traditional transport signatures. This sum then

reveals the underlying transport properties.
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3.A Floquet-Landauer Formula for Transport

We begin by reviewing results for transport in a system with a time-periodic field. We

review the technical aspects of deriving the Floquet-Landauer formula for the current. For

additional details of this calculation we recommend Ref. [29]. We begin with a generic

Hamiltonian which is given by

H = HS(t) +HL +HC (3.A.1)

where

HS(t) = c†HS(t)c (3.A.2)

is the Hamiltonian of the sample where c† = (c†1....c
†
Ns

) is a vector containing creation

operators for each of the Ns degrees of freedom in the sample and HS(t) is a Ns × Ns

matrix coupling these degrees of freedom. This matrix contains both the static properties

of the sample as well as the time dependent effects of the periodic field. Next,

HL =
∑
λ

b†λHL,λbλ (3.A.3)

is the Hamiltonian of all of the leads where b†λ = (b†1,λ....b
†
Nl,λ,λ

) is a vector containing

creation operators for each of the Nl degrees of freedom in the lead λ and Hl,λ is a Nl,λ ×

Nl,λ matrix coupling these degrees of freedom. Finally,

HC =
∑
λ

(
b†λKλc+ h.c.

)
(3.A.4)

is the Hamiltonian coupling the sample to each of the leads. Kλ is the Nl,λ × Ns matrix

that describes these coupling strengths. The above model is completely general and makes

no specification of band structure or dimension of the system.
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The program for the derivation of a formula for the time averaged current, Īλ, proceeds

as follows. One writes the Heisenberg equations of motions for the sample and lead op-

erators. The term HC of course couples these equations. One proceeds by solving the

equations for the lead operators, this can be written in terms of sample operators and the

lead operators bλ(t0) where t0 is some time in the distant past.

This solution for the lead operators is now plugged into the equation for the sample

operators which can, after some work, be written as

(
i~
dĉ(t)

dt
−HS(t)ĉ(t) + i

∫ t

t0

Γ(t− t′)ĉ(t′)dt′
)

= i~ξ(t) (3.A.5)

Where we have defined

ξλ(t) = − i
~
K†L,λgλ,L(t− t0)b̂λ(t0), (3.A.6)

with ξ(t) =
∑

λ ξλ(t) and also and

Γλ(t) =
1

~
K†L,λgλ,L(t)KL,λ (3.A.7)

and Γ(t) =
∑

λ Γλ(t). In the above we have also defined gλ,L(t−t′) = exp
[
− i

~HL,λ(t− t′)
]
,

which is the temporal Green function of the isolated leads. We see that upon integrating

out the leads we generate two contributions to the dynamics of the system. The first comes

from Γ(t) which acts as an imaginary self-energy in the system and will thus introduce

finite lifetimes to our eigenstates. The second is to introduce the operator valued noise

function ξ(t). The statistics of this noise is determined by the state of the leads at a time in

the distant past, t = t0.

The above integro-differential equation is linear in the operators ĉ(t) and so it can be
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solved via a Green function method. If we define the partial transform of this Green func-

tion

G(t, t′) =

∫
dε

2π~
e−iε(t−t

′)/~G(t, ε) (3.A.8)

Also if we define the FT’s

ξ(ε) =

∫
dteiεt/~ξ(t) ξ(t) =

∫
dε

2π~
e−iεt/~ξ(ε) (3.A.9)

then we can write

ĉ(t) =
i

2π

∫
dεe−iεt/~G(t, ε)ξ(ε) (3.A.10)

where G(t, ε) satisfies, upon taking t0 → −∞

(
i~
d

dt
+ ε−HS(t)

)
G(t, ε) (3.A.11)

+i

∫ ∞
0

eiετ/~Γ(τ)G(t− τ, ε)dτ = INs×Ns

where INs×Ns is a unit matrix.

The net charge current flowing across the contact λ into the wire is given by the rate of

change of the number of electrons in this lead, this is Iλ(t) = edNλ
dt

. In other words

Iλ(t) =
ei

~
[HS(t) +HL +HC , Nλ](t) (3.A.12)

Calculation of this commutator and using our Green function solution above shows that the

current can be written entirely in terms of the noise term ξ(ε) which is related to b̂λ′(t0).

We then take the thermal average of Iλ(t) assuming that the leads begin their lives at t0 →

−∞ in thermal equilibrium at some inverse temperature βλ. This gives a general (albeit

complicated) formula for 〈Iλ(t)〉 in terms of the G(t, ε). This formula is exact for any time

dependence.
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At this point we now use the fact that for a time-periodic system G(t, ε) should also be

time periodic. We then define

G(n)(ε) =
1

T

∫ T

0

einΩtG(t, ε)dt (3.A.13)

where Ω = 2π/T . Writing the current formula in terms of this Floquet Green func-

tion shows that the current should also be periodic in T . Defining the average Īλ =

1
T

∫ T
0
dt〈Iλ(t)〉 we then obtain the result

Īλ =
e

h

∑
λ′

∫
dε (Tλ,λ′(ε)fλ′(ε)− Tλ′,λ(ε)fλ(ε)) (3.A.14)

where fλ(ε) = 1
1+exp(βλ(ε−eVλ)

and we have defined the transmission matrices

Tλ,λ′(ε) =
∑
n

Tr
[
Γλ(ε+ ~nΩ)G(n)(ε)Γλ′(ε)(G

(n)(ε))†
]
. (3.A.15)

The above expression has the form of the usual Landauer conductance except that the

current is time averaged and the transmission matrices Tλ,λ′ are defined through the above

summation. Physically, the Greens function G(n)
`,`′(ε) describes the amplitude of an electron

in the sample to propagate from `′ to ` at energy ε while absorbing (n > 0) or emitting

(n < 0) |n| photons. Using Floquet theory[41], this object may be expressed in terms of

Floquet states[30]. Floquet states are the extension of stationary states to time-periodic

systems. In the system we choose it is possible to write G(n)
`,`′(ε) in terms of a matrix

continued fraction expression[30, 32, 33]

In this paper we will work to simplify our discussion by employing the “wide-band”

approximation. In this approximation one assumes that the density of states of the leads

is constant over the energy scales in which we are interested. This amounts to assuming

the lead operators, Γλ(ε), are independent of ε, Γλ(ε) ' Γλ. Moreover, we make the
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assumption of identical leads so that (Γλ)i,j = Γδi,jδi,xλ where xλ are the set of all sample

degrees of freedom connected to lead λ.

We are interested in devices with two different geometries. The first of these is a two-

terminal device; a sample with leads attached to its left and right edges. For this type of

device we label these leads as L for left and R for right. By conservation of current we

must have ĪR = −ĪL, since the current entering the right lead must be equal to the current

leaving the left lead. It is then sufficient to think only of ĪR. We now imagine biasing our

sample so that we have a voltage V on the left lead and a voltage 0 on the right lead. We

then define the (differential) conductance as

σ(V ) =
dĪR
dV

∣∣∣∣
V=V

=
e2

h
TR,L(eV ) (3.A.16)

Thus for this geometry we have the simple result that the conductivity is simply given

by the total transmission coefficient from the left lead to the right lead. For a spin Hall

insulator in equilibrium when the bias voltage V is tuned to lie in the gap (i.e. on the edge

states) the value σ(V ) = 2e2/h is expected[11, 34].

The second type of device we are interested in is a Hall bar. This type of geometry

allows us to probe whether the current is carried by bulk or edge states[7, 35, 36]. In

equilibrium it is found that the only non-zero values of the transmission matrices Tλ,λ′(ε)

(with ε in the gap) come from tunneling between adjacent leads. That is to say Tλ,λ′(εF ) = 0

unless λ = λ′ ± 1 where 6 + 1 is periodically identified to 1. Moreover, it is argued that

Tλ,λ±1(εF ) = 1 as, because of the helical edge states, a quasiparticle originating at lead λ

must tunnel to one of the neighboring leads.
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3.B Effective Hamiltonian

Our discussion above shows that calculating the transmission elements above relies on

knowledge of G(n)(ε). This Green’s function can be found by solving (in the wide-band

approximation) the following equation of motion

(
i~
d

dt
+ ε−HS(t) +

i

2
Γ

)
G(t, ε) = I (3.B.1)

and then calculating

G(n)(ε) =
1

T

∫ T

0

dteinΩtG(t, ε) (3.B.2)

This task is simplified by considering instead the auxiliary equation

(
i~
d

dt
+ ε−HS(t) +

i

2
Γ

)
G(t, t′, ε) = δ(t− t′) (3.B.3)

and then noting that

G(t, ε) =

∫
dt′G(t, t′, ε) (3.B.4)

We will now focus on Eq. (3.B.3). By writingHS(t)− i
2
Γ = ĤS +Hext(t) and introducing

the rotating frame picture

G(t, t′, ε) = UV (t)Ǧ(t, t′, ε)U †V (t′) (3.B.5)

where i~ d
dt
UV (t) = Hext(t)UV (t). Then it follow that Ǧ(t, t′, ε) is a solution to

(
i~
d

dt
+ ε− ĤS(t)

)
Ǧ(t, t′, ε) = δ(t− t′) (3.B.6)

with ĤS(t) = UV (t)†ĤSUV (t) If the external, periodic potential were some potential with

no internal structure coupling the degrees of freedom of the system then we would have
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ĤS(t) = ĤS as Hext(t) would commute with all other terms. This would immediately lead

to a static system and a direct analogue of photon assisted tunneling.

For this particular problem Hext(t) commutes with itself at different times. As a result

UV (t+ T ) = UV (t) and it is useful to define

UV (n) =
1

T

∫ T

0

dteinΩtUV (t) (3.B.7)

ĤS(n) =
1

T

∫ T

0

dteinΩtĤS(t)

Using all of these ingredients we then have

G(n)(ε) =
1

T

∫ T

0

dteinΩt

∫
dt′UV (t)Ǧ(t, t′, ε)U †V (t′) (3.B.8)

Our task becomes to solve Eq. (3.B.6). We do so by defining

Ǧ(t, t′, ε) =
1

T

∑
n,m

e−inΩteimΩt′Ǧn,m(ε) (3.B.9)

which reduces Eq. (3.B.6) to the difference equation

(
`~Ω + ε− ĤS(0)

)
Ǧ`,m(ε)−

∑
n6=`

ĤS(`− n)Ǧn,m(ε) = δ`,m (3.B.10)

All of the Fourier expansions above when used with Eqs. (3.B.2) and (3.B.4) then give

G(n)(ε) =
∑
`,m

UV (n− `)Ǧ`,m(ε)U †V (−m) (3.B.11)

We now make note of a symmetry in the difference equation for Ǧ`,m(ε). Namely we note

that simultaneously shifting ` → ` − k, m → m − k and ε → ε + k~Ω for any integer k

in Eq. (3.B.10) shows that if Ǧ`,m(ε) is a solution than so is Ǧ`−k,m−k(ε + k~Ω), we thus
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identify[32]

Ǧ`,m(ε) = Ǧ`−k,m−k(ε+ k~Ω) (3.B.12)

From the above one can conclude that all of the relevant information is contained in Ǧ`,0(ε) ≡

G
(`)
V (ε). The operator G(`)

V (ε) solves the equation

(
`~Ω + ε− ĤS(0)

)
G

(`)
V (ε)−

∑
n

ĤS(`− n)G
(n)
V (ε) = δ`,0 (3.B.13)

We can then write Ǧ`,m(ε) = G
(`−m)
V (ε+m~Ω). Plugging this in above yields

G(n)(ε) =
∑
`,m

UV (n− `)G(`−m)
V (ε+m~Ω)U †V (−m) (3.B.14)

sending m→ −m and then `→ `−m then gives main result of this discussion

G(n)(ε) =
∑
`,m

UV (n+m− `)G(`)
V (ε−m~Ω)U †V (m) (3.B.15)

We will use the above to find an approximate formula for the conductivity. We will develop

a few other necessary relations

3.B.1 Solution for G(`)
V (ε)

Let us now further develop the difference equation for G(`)
V (ε). To make the notation more

compact let us define H̄` = ĤS(`) for ` 6= 0 and H̄0 = 0. Besides being less cumber-

some, this convention allows us to drop the restrictions on the sums and eventually employ

Einstein summation convention. We note that we may write it as

G
(`)
V (ε) =

(
`~Ω + ε− ĤS(0)

)−1

δ`,0 (3.B.16)

+
∑
n

(
`~Ω + ε− ĤS(0)

)−1

H̄`−nG
(n)
V (ε)
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Let us note that gF (ε) =
(
ε− ĤS(0)

)−1

is the Green’s function of the static system with

Hamiltonian ĤS(0). Therefore

G
(`)
V (ε) = gF (ε)δ`,0 +

∑
j

gF (ε+ `~Ω)H̄`−jG
(j)
V (ε) (3.B.17)

We now iterate this equation. To do this let us introduce some notation to extract the useful

part of the above. First, we use implied summation over repeated indices that are not `.

Second, we define gi = gF (ε+ i~Ω). This gives

G
(`)
V (ε) = g0δ`,0 + g`H̄`g0 + g`H̄`−jgjH̄j−j′G

(j′)
V (ε) (3.B.18)

Repeated iteration of the above difference equation allows us to write

G
(`)
V (ε) = g0δ`,0 (3.B.19)

+ g`(H̄` + H̄`−jgjH̄j + H̄`−jgjH̄j−j′gj′H̄j′

+ H̄`−jgjH̄j−j′gj′H̄j′−αgαH̄α

+ H̄`−jgjH̄j−j′gj′H̄j′−αgαH̄α−βgβH̄β−σgσH̄σ + ...)g0

Or

G
(`)
V (ε) = gF (ε)δ`,0 + gF (ε+ `~Ω)Ď`(ε)gF (ε) (3.B.20)

Where

Ď`(ε) = H̄` + H̄`−jgjH̄j + H̄`−jgjH̄j−j′gj′H̄j′ (3.B.21)

+ H̄`−jgjH̄j−j′gj′H̄j′−αgαH̄α

+ H̄`−jgjH̄j−j′gj′H̄j′−αgαH̄α−βgβH̄β−σgσH̄σ + ...
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The above series can in turn be generated by (restoring the summation symbols)

Ď`(ε) = H̄` +
∑
j

H̄`−jgjH̄j (3.B.22)

+
∑
j,j′

H̄`−jgjH̄j−j′gj′Ďj′(ε)

Let us consider the physical implications of Eq. (3.B.20). The Greens function G(`)
V (ε)

is described by all possible processes starting at energy ε (indicated by amplitude gF (ε))

where the electrons absorb/emit a net number of photons ` (indicated by amplitude Ď`(ε))

and then end up at an energy eigenstate ε + `~Ω (hence gF (ε + `~Ω)). For a driving

frequency Ω such that there are no states in the model system at ε + `~Ω no scattering can

occur and we can make the approximation

G
(`)
V (ε) ' gF (ε)δ`,0 (3.B.23)

This is precisely the case for off-resonant light.

3.B.2 Transmission Matrices

So far our discussion has been general with the only assumption being that [Hext(t), Hext(t
′)] =

0,∀(t, t′) (a more general treatment in the absence of this restriction is currently a work in

progress [42]). At this point we specialize to the quantum well system which has been dis-

cussed in the main text. Out first task is to define the operators UV (m). We are interested in

Hext(t) = 2Vext cos(Ωt) where Vext = Veσz ⊗ IL, IL is the identity operator on the lattice

and σz acts on spin. This operator commutes with itself at different times and is diagonal in

“spin-lattice” space. This allows us to easily define the time evolution operator as follows

UV (t) = e−i
∫ t
0 dt
′Hext(t′) = exp

[
−i2Ve

~Ω
sin(Ωt)σz ⊗ IL

]
(3.B.24)
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note that no time ordering is required in the exponential because [Hext(t), Hext(t
′)] = 0.

Finding the Fourier series of the above periodic function is made possible by the identity

e−ix sin(Ωt) =
∑

m Jm(x)e−iΩmt where Jm(·) is the Bessel function of the first kind of order

m. We thus have

UV (t) =
∑
m

Jm

(
2Ve
~Ω

σz ⊗ IL
)
e−iΩmt (3.B.25)

We can then read off

UV (m) = Jm

(
2Ve
~Ω

σz ⊗ IL
)

= Jm

(
2Ve
~Ω

)
Sm ⊗ IL

= Jm

(
2Vext
~Ω

)
(3.B.26)

where Sm = σ0 if m is even and σz of m is odd. The second relation above comes from

the Bessel function property Jm(−x) = (−1)mJm(x). The third relation, Jm
(

2Vext
~Ω

)
is a

compact form which will be useful in a derivation of the transmission elements.

With an explicit formula of UV (m) in hand we proceed to plug Eq. (3.B.15) for the

Green’s function into the formula for Tλ,λ′(ε) which gives

Tλ,λ′(ε) =
∑
n,`,m

∑
`′,m′

Tr
[
Jn+m′−`′

(
2Vext
~Ω

)
Jn+m−`

(
2Vext
~Ω

)
(3.B.27)

ΓλG
(`)
V (ε−m~Ω)Jm

(
2Vext
~Ω

)
Γλ′Jm′

(
2Vext
~Ω

)
(G

(`′)
V (ε−m′~Ω))†

]

where we have used the fact that the lead self energies commute with Vext (the leads make

no distinction between different spins of particles). The sum over Bessel functions gives a

delta function. After some index relabelling we are left with
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Tλ,λ′(ε) =
∑
`,`′,m

Tr
[
ΓλG

(`)
V (ε− (m+ `)~Ω)Γλ′Jm+`

(
2Vext
~Ω

)
Jm+`′

(
2Vext
~Ω

)
(G

(`′)
V (ε− (m+ `′)~Ω))†

]
(3.B.28)

For the driving frequency we have chosen we are dealing with off-resonant light, thus

to a good approximation we take G(`)
V (ε) = gF (ε)δ`,0. Plugging into the transmission

coefficient gives

Tλ,λ′(ε) =
∑
m

J2
m

(
2Ve
~Ω

)
(3.B.29)

Tr
[
ΓλgF (ε−m~Ω)Γλ′g

†
F (ε−m~Ω)

]

Note the significance of this. The second term (the trace) is the static transmission of a

dressed Hamitonian ĤS(0). The pre-factor describes how this conductivity is distributed

amongst different bias voltages. Thus even for off-resonant light replacement of the system

Hamiltonian with an associated Floquet Hamiltonian is insufficient, one must also include

the Bessel function pre-factor.

If we define

T Fλ,λ′(ε, Ve) = Tr
[
ΓλgF (ε)Γλ′g

†
F (ε)

]
(3.B.30)

which looks like the static transmission matrix of a system described by the static Hamil-

tonian ĤS(0) (which itself depends on Ve) then we can write

Tλ,λ′(ε) =
∑
m

J2
m

(
2Ve
~Ω

)
T Fλ,λ′(ε−m~Ω, Ve) (3.B.31)
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3.B.3 Expression for the Effective Hamiltonian

We close with an expression for a derivation of the effective Hamiltonian. Recall that

ĤS(t) = U †V (t)ĤSUV (t) and that ĤS(n) = 1
T

∫ T
0
einΩtH̄(t), then by using the Fourier

decomposition of UV (t) we can write

ĤS(n) =
∑
m

U †V (m)ĤSUV (m+ n) (3.B.32)

If we now recall the relation for theUV operators derived above, then it immediately follows

that

ĤS(n) =
∑
m

Jm

(
2Ve
~Ω

)
Jm+n

(
2Ve
~Ω

)
(3.B.33)

× Sm ⊗ ILĤSSm+n ⊗ IL

Now let us write

ĤS =
∑
α,β

H̄α,βσα ⊗Rβ (3.B.34)

where Rβ is a complete set of operators in the space of the lattice. Then, defining ζ = 2Ve
~Ω

,

noting that for α = 1 or 2 one can show that SmσαSn+m = (−1)mσαSn whereas for α = 0

or α = 3 they do nothing, and using the Bessel function identities
∑

m [Jm (ζ) Jm+n (ζ)] =

δn,0 and
∑

m [Jm (ζ) (−1)mJm+n (ζ)] =
∑

m [Jm (ζ) J−m+n (ζ)] = Jn (2ζ) we have

ĤS(m) = δn,0
∑

α=0,3,β

H̄α,β(σα)⊗Rβ (3.B.35)

+ Jn (2ζ)
∑

α=1,2,β

H̄α,β(σαSn)⊗Rβ

It is most convenient to write this as

ĤS(m) = δn,0H̄03 + Jn (2ζ) H̄12(n) (3.B.36)
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Thus the field does not touch terms in ĤS proportional to σ0 or σ3 and “dresses” the σ1 and

σ2 terms. Note that had we chosen the polarization Vx 6= 0 or Vy 6= 0 the σ3 component

of the Hamiltonian would have been renormalized as well. For this chapter this is the only

difference choosing a different polarization makes.

The Green’s function gF and the transmission matrix elements T Fλ,λ′ are the result of

calculating the Greens function and the transport properties of a system described by a static

Hamiltonian ĤS(0). Such a Hamiltonian looks similar to our original static Hamiltonian

(before periodic perturbation) but with H̄12 renormalized by the Bessel function J0 (2ζ).
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Preface to Chapter 4

The main conclusion of the previous manuscript is that the edge-states of a topological

insulator are split into side-bands by an applied time-periodic perturbation. The transport

through these states was understood by developing an analogue of photon-assisted tunnel-

ing. This involves envisaging the electrons entering the sample through the leads are only

accessing the topologically protected edge states of the system probabilistically. This be-

haviour thereby reduces the traditional values associated with transport measurement in a

topological insulator.

The previous manuscript has offered a deep understanding of topological edge-states in

the presence of a periodic drive. The present manuscript is now in a position to build on

this understanding in order to treat a system where the edge-states are created by the time-

periodic drive in the first place. This work will show that the intuition and tools developed

in the previous manuscript are directly applicable to the strictly non-equilibrium states of

the so-called Floquet topological insulator.
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Abstract

Floquet topological insulators are systems in which the topology emerges only when a time

periodic perturbation is applied. In these systems one can define quasi-energy states which

replace the equilibrium stationary states. The system exhibits its non-trivial topology by

developing edge localized quasi-energy states which lie in a gap of the quasi energy spec-

trum. These states represent a non-equilibrium analogue of the topologically protected

edge-states in equilibrium topological insulators which exhibit edge conductance of 2e2/h.

Here we explore the transport properties of the edge-states in a Floquet topological insu-

lator. In stark contrast to the equilibrium result, we find that the two terminal conductivity

of these edge states is significantly different from 2e2/h. This fact notwithstanding, we

find that for certain external potential strengths the conductivity is smaller than 2e2/h and

robust to the effects of disorder and smooth changes to the Hamiltonian’s parameters. This

robustness is reminiscent of the robustness found in equilibrium topological insulators. We

provide an intuitive understanding of the reduction of the conductivity in terms of a picture

where electrons in edge states are scattered by photons. We also consider Floquet sum

rule[1] which was proposed in a different context. The summed conductivity recovers the

equilibrium value of 2e2/h whenever edge states are present. We show that this sum rule

holds in our system using both numerical and analytic techniques.
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4.1 Introduction.

Over the past decade topological insulators have become well known for their novel trans-

port properties. The hallmark of these systems is their linearly dispersing, in-gap states.

These states correspond to counter-propagating, helical edge modes. In a two dimensional

geometry these edge modes represent one dimensional channels and lead to specific trans-

port properties.

One example is a two-terminal device, where a source and drain are attached to the left

and right of a sample and a bias voltage is applied across these terminals. The conductivity

when these Fermi energies placed in the gap (where the edge states live) is σ = 2e2/h[2–

4]. In a six-terminal, or Hall-bar, geometry specific values of multi-terminal resistances are

expected[2–4] and these resistances are unique to counter-propagating, helical edge modes.

Although the number of confirmed topological insulators is ever increasing, materials

with the correct physical parameters to support this state of matter are hard to come by. This

has led many authors to consider ways in which to drive a material without any topological

properties into a topological state. When a time-periodic potential is used to accomplish

this task the resulting non-equilibrium topological state is called a Floquet topological in-

sulator.

The field of Floquet topological insulators (and Floquet topological superconductors)

has produced many interesting results of late[1, 5–22]. The introduction of a time-periodic

potential into the system breaks continuous time-translational invariance and so one must

dispense with the notion of an energy spectrum. A time-periodic field does have discrete

time-translational invariance and therefore one has the ability to define an analogous con-

cept called the “quasi-energy” spectrum[23]. In Floquet topological insulators one uses

an externally applied time-periodic field of carefully chosen parameters to drive the sys-

tem into its topological phase. The topology is manifest in in-gap, edge modes which are

created in the quasi-energy spectrum. Such a system then represents a non-equilibrium
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analogue of topological insulators, but with the added flexibility of an external periodic

potential.

In this work we study the transport properties of Floquet edge-states. Our goal is to

test whether transport through the edge modes of a two dimensional Floquet topological

insulator is quantized and robust as in the case of equilibrium topological insulators. We

initially focus on a two-terminal geometry and then move on to consider a six-terminal

set-up. We expect the results and intuition developed here to be readily generalizable to

other geometries. In general we find that the two-terminal conductivity of the Floquet

edge-states is significantly different from the typical equilibrium value of 2e2/h and can

be either larger or smaller than this distinctive value depending on how the strength of the

external field is tuned. The same holds true for the resistance measurements typical of a

topological insulator in a six-terminal set-up.

The main results of this paper may be summarized as follows. The existence of quasi-

energy edge states in the Floquet topological insulator is accompanied by a conductivity

of σ < 2e2/h, when the chemical potential lies in the quasi-energy gap. In addition,

the value of 2e2/h is obtained as a sum rule when the conductivity is summed over all

‘side bands’, i.e, over all energies which differ from a particular energy in the gap by an

integer number of photon energies. Physically, the result σ < 2e2/h for non-equilibrium

edge states corresponds to the presence of photons inhibiting access to the topologically

protected edge states of the system.[24]

Moreover, in regions where the conductivity is smaller than 2e2/h, we find that the cal-

culated values are robust to the effects of disorder, system size and changes to the Hamilto-

nian that maintain the energy gap. Such behavior is reminiscent of topologically protected

edge states in equilibrium topological insulators and we indeed find that for the external

potential strengths where we see this robustness there exist linearly dispersing, in-gap edge

states in the quasi-energy spectrum. In regions where the conductivity is larger than 2e2/h
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no robustness exists and the gap is closed, hence we are probing bulk effects.

The reduction of the topologically protected conductivity away from 2e2/h can be intu-

itively understood by borrowing some machinery from the field of photon assisted tunnel-

ing (PAT)[25]. Namely, an electron that would normally tunnel into the edge-states of the

system has a finite probability of absorbing/emitting a photon and being scattered out of the

edge state. From the viewpoint of quasi-energy states this comes from understanding that

the definite energy states of the leads do not perfectly overlap with the quasi-energy states

of the Floquet topological insulator[15]. The heuristic description in terms of scattering

of electrons by photons can be applied to observe a so-called “Floquet sum rule”[1]. In

short, the sum rule recovers all of the conductivity lost from PAT by summing over lead

energies separated by photon energies ~Ω, Ω being the frequency of the driving field. We

have confirmed this sum rule using both numerics and an approximate analytic approach.

4.2 Model.

Our model Hamiltonian is that of a quantum well heterostructure[2] irradiated by linearly

polarized light and subjected to a disorder potential. It is given as follows

HS =
∑
k

ψ†k

Ĥ(k, t) 0

0 Ĥ∗(−k, t)

ψk −
∑
i,α

wiψ
†
i,αψi,α (4.2.1)

where ψ†k is a four component creation operator for electrons at momenta k in angular

momentum state mJ = (1/2, 3/2,−1/2,−3/2) and ψ†i is its Fourier transform. The first

term above is the Hamiltonian of the clean, irradiated heterostructure and we have used

Ĥ(k) = εkσ0 + d(k) · σ + 2(V · σ) cos Ωt. The second term takes into account disorder.

We have used the standard definitions d(k) = (A sin kx, A sin ky,M − 4B + 2B(cos kx +

cos ky)) and εk = C − 2D(2 − cos kx − cos ky) and draw the disorder parameters, {wi},
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randomly from an evenly distributed sample between −W/2 and W/2.

Following Lindner and coworkers[5], we set C = D = 0, A = B = 0.2|M | and set

|M | = 1 throughout (i.e. all energies are in units of |M |). To simulate a trivial system we

set M = −1 so that sgn(M/B) = −1[2, 5]. We take V = Vextẑ for concreteness. We

note that the Vz component of V is the important component from the point of view of

creating Floquet edge states. It is this component that allows a gap to open and edge-states

to stabilize[5]. The other components of V lead to a renormalization of other components

in the Hamiltonian. For a description of this renormalization see Chapter 3. Note that the

field we consider here, and our subsequent observations in this paper, is assumed to always

be “on”. We consider a field that was turned on in the distant past and is not switched off

throughout the duration of our calculations. Furthermore, from this point forward we fix

~Ω = 2.3|M |.

The goal of this paper will be to understand the transport properties of the non-equilibrium

system described above. In order to accomplish this we must couple the system to leads/electrodes.

We leave the specifics of this process to the appendix of this paper and here only discuss the

matter at a high-level. We model the leads as being static (in time), i.e. the time-dependent

field abruptly turns off at the leads. Ultimately the leads result in the system experienc-

ing a self-energy proportional to Γ(t)/2 =
∑

λ Γλ(t)/2, where Γλ(t) is the contribution

of lead λ. In this paper we will work to simplify our discussion by employing the “wide-

band” approximation. This phenomenological approach assumes that the density of states

of the leads is constant over the energy scales in which we are interested. This amounts

to assuming the Fourier transform of the lead operators, Γλ(ε), are independent of ε, i.e.

Γλ(ε) ' Γλ.

In the work in Ref. [24] we have studied a system with sgn(M/B) > 0. In other

words, the system we were concerned with was a topological insulator, more specifically

a quantum spin-Hall insulator, before any periodic perturbation was applied. Our work
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was interested in observing the behavior of the topological edge-states in this system in the

presence of a time-periodic drive. In contrast, our work here is focused on a system with

trivial topology in equilibrium; there are no edge-states without the time-dependence. The

system is a true Floquet topological insulator in the sense that its edge-states only develop

after a time-periodic perturbation is applied. These edge-states rely crucially on band-

mixing that comes from the periodic perturbation being on-resonance[5], i.e. the quantity

~Ω connects different parts of the band structure. The work in Ref. [24] only considers

off-resonant light, where ~Ω does not join any existing eigenstates. This is in contrast

to other systems, for example graphene[6–10, 26], where the Floquet topological insulator

can be driven using an off-resonant perturbation[26].

Our understanding relies primarily on Floquet states[23]. Floquet states are the ex-

tension of stationary states to time-periodic systems. In a time-periodic system one deals

with (Floquet) states that solve the Schrödinger equation and are characterized by a defi-

nite quasi-energy. These states are traditionally written as |ψη̃(t)〉 = e−iη̃t/~|φη̃(t)〉, which

leads to the eigenvalue equation (H(t)− i~∂t) |φη̃(t)〉 = η̃|φη̃(t)〉 where H(t) is the full

Hamiltonian of the system, η̃ are the quasi-energies and |φη̃(t + T )〉 = |φη̃(t)〉. We note

that if |φη̃(t)〉 is an eigenstate with quasi-energy η̃, then eiΩt|φη̃(t)〉 is also an eigenstate

but with quasi-energy η̃ + ~Ω. Therefore the quasi-energy spectrum is only unique up to

integer multiples of ~Ω. This allows us to define a “Brillouin zone” for the quasi-energies,

we will call this the Floquet zone. For this work we consider 0 ≤ η < ~Ω, we will use the

convention η to denote quasi-energies confined to this zone while η̃ above is unconfined.

This reflects the fact that energy in a time periodic system is only conserved modulo ~Ω;

an electron in a quasi-energy state |φη(t)〉 can always absorb or emit a photon.
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Figure 4.1: Two geometries considered in this work. On the left we have the two-terminal set-up
with a bias voltage V/e offsetting the two Fermi energies εL and εR. On the right we have the six
terminal set-up with a current I being driven between leads 1 and 4

4.3 Two Terminal Conductivity.

Let us begin with our results for the two-terminal conductivity of this system. We calculate

the conductivity numerically using Floquet-Landauer theory[10, 26]. In this two-terminal

setup, shown in Fig. 4.1a, we consider the leads to be kept at a voltage such that the Fermi

level of both leads, which we will refer to as the lead energies, takes a value E. We then

apply a (vanishingly) small bias voltage V/e so that the Fermi energies of the two leads are

εL = E + V and εR = E. We study the differential conductivity at a lead energy of E =

Ω/2 which is where the edge states are expected to be found[5]. Referring to our results

in Fig. 4.2a we see that, with the exception of a small area near Vext = 0.3|M |, the two-

terminal conductivity generally decreases with Vext in the range of parameters considered.

We note that nowhere do we see a saturation to a value of σ = 2e2/h, nor any other

constant value. This fact notwithstanding, our results do have the striking feature that after

a certain value of Vext the conductivity becomes insensitive to the effects of disorder; in that

region all of the curves overlap. In Fig. 4.2b we see that in this same region our results are

insensitive to system length L and to the parameter Γ which describes the strength of the

coupling to the leads. Thus we note our second result, for some values of Vext the calculated
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Figure 4.2: Two terminal conductivity in units of e2/h. The left shows the conductivity atE = Ω/2

in a two terminal set up as a function of external potential strength for various disorder strengths W
and system size L = 20. The right is the conductivity for various values of the system size, L, and
the lead coupling parameter Γ over a region where edge states are present.

conductivity is robust in the same way as for an equilibrium topological insulator.

The robustness in the conductivity coexists with the presence of edge-states in the quasi-

energy spectrum. To show this we consider the system in the absence of leads and in a

semi-infinite cylindrical geometry. By semi-infinite geometry we mean a system with open

boundary conditions in the y direction and periodic boundary conditions in the x direction

The quasi-energy for our model appears in Fig. 4.3 for several values of the external po-

tential strength Vext. For small driving strength the gap remains closed, but as the strength

is increased the gap opens up leaving linearly dispersing states. Further inspection of these

states reveals that they reside on the edge of the system[5]. In general we have found that

when this gap is open and large enough to withstand the effects of disorder or coupling to

the leads, the value calculated for the conductivity is robust in the same sense as edge states

in a topological insulator.
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Figure 4.3: Quasi-energy spectrum of a topologically trivial sample at different driving amplitudes
in a semi-infinite cylindrical geometry. The left plot is for Vext = 0.1|M |, the middle Vext =

0.3|M |, and the right Vext = 0.9|M |.

4.4 Photon Inhibited Transport and Floquet Sum Rule.

Thus far we have shown that when this system plays host to edge states the conductivity

we find appears to be topologically robust. We now address the question of why it does

not have the hallmark value of 2e2/h. For this we further generalize a technique inspired

by photon-assisted tunnelling[25, 27] and used in Ref. [24]. In this work it was shown that

for a topological heterostructure the presence of an external time-periodic field reduces

the conductivity away from 2e2/h. This reduction and other subsequent results can be

accounted for by understanding that the external potential not only “dresses” the quantum

well Hamiltonian, but also splits this dressed system into side-bands[25, 27]. The splitting

means that the edge states of the system are only populated probabilistically, accounting

for the reduction in the standard transport quantities. The specific application of Ref. [24]

relied crucially on the driving potential being off-resonance, i.e. that it did not mix portions

of the equilibrium band structure. The current system requires on-resonance light in order

to drive the system into a topological state. In spite of this, our results are conducive to a

similar interpretation in that we see topologically robust results in Fig. 4.2 that are different

from 2e2/h.

To put this discussion on more general grounds we appeal to Floquet theory. As dis-

cussed previously, in a time-periodic system the states of interest are the steady state so-

lutions |ψη(t)〉 = e−iηt/~|φη(t)〉, where η is the quasi-energy and (H(t)− i~∂t) |φη(t)〉 =
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η|φη(t)〉. For periodic dependence in t we are free to define the following decomposition

|φη(t)〉 =
∑
n

e−inΩt|φn〉 (4.4.1)

In the literature the states |φn〉 are commonly called sideband states[28] and are determined

as solutions to the eigenvalue equation
∑

n H̄n,m|φm〉 = (η + n~Ω)|φn〉 where H̄n,m =

1
T

∫ T
0
dtei(n−m)ΩtH(t).

We now calculate the time-averaged expectation value of the energy in the steady state

|ψη(t)〉 which we define as Ē = 1
T

∫ T
0
dt〈ψη(t)|H(t)|ψη(t)〉. Using the side-band de-

composition in equation (4.4.1) and the fact that |ψη(t)〉 solves the Schrödingier equation

immediately gives

Ē =
∑
n

(η + ~Ωn)〈φn|φn〉 (4.4.2)

Noting that 〈φn|φn〉 ≥ 0 and
∑

n〈φn|φn〉 = 1 (the latter property follows from the normal-

ization of |φη(t)〉) allows us to interpret the above average as follows. In the quantum state

|ψη(t)〉 the energies η + ~Ωn occur with probability 〈φn|φn〉.

We now tie the above statistical interpretation to our observations of the transport in the

Floquet topological insulators. For the system of interest one can calculate the appropriate

quasi-energies 0 ≤ η < ~Ω and their corresponding wave functions |φη(t)〉, these are the

steady states of our sample. Now, when electrons from the lead are injected into the system

at some definite energy E, as opposed to an equilibrium case, only a portion of the sample

state overlaps with the definite energy lead state[15]. Physically, we envision this in terms

of electrons being able to absorb or emit photons once they enter the sample. For lead

electrons at an energy E = η + N~Ω there is only a probability 〈φN |φN〉 that the electron

will absorb/emit enough photons to access the sample state with quasi energy η. This quasi-

energy spectrum may contain topologically protected edge states[12–16]. Now, when we

try to access these states from a charge transport point of view we can only access the
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state at a certain probability, because of the possibility to absorb/emit photons. Therefore

expected signatures of these edge states, e.g. σ = 2e2/h conductance, are probabilistically

suppressed.

Note that this argument does not rely on the periodic perturbation being on or off reso-

nance, it is simply a consequence of the discrete time-translational invariance. Therefore,

when one is dealing with Floquet edge-states it should be kept in mind that the weight of

these edge states is distributed into sidebands as discussed above. Indeed in the current

system one can approximately obtain a description of the conductivity at specific lead en-

ergies E + n~Ω (where the edge-states live). Quoting only the result here (for a detailed

derivation please see the appendix)

σ(E +N~Ω) ' 1

2

(
J2
N

(
2Vext
~Ω

)
+ J2

N+1

(
2Vext
~Ω

))
× σ̃(E, Vext) (4.4.3)

where the relevant energy E is chosen to be in the vicinity of ~Ω/2 where the localized

quasi-energy states appear. σ̃(E, Vext) is a complicated function of the model parameters

and, interestingly, cannot be thought of as the conductivity of some effective static system.

We find numerically that σ̃(E, Vext) ' 2e2/h when edge-states are present in the quasi-

energy spectrum. The important implication of the above formula is that the conductivity

can be thought of as an overall probabilistic factor times a conductivity expression. The

above approximate result compares very well to our numerical calculations. A plot of this

function appears in Fig. 4.2b.

With the intuition for why the conductivity is suppressed in Floquet topological edge-

states, let us move on to present results for how the value of 2e2/h can be recovered. In

short, by setting lead energies at ~Ω/2 + n~Ω and summing over all n we should be able

to recollect the lost statistical weight from the photon scattering. Towards this end we



109
CHAPTER 4. EDGE STATE TRANSPORT IN FLOQUET TOPOLOGICAL

INSULATORS

consider the quantity[1]

σ̄(E, Vext) =
∑
n

σ(E + n~Ω) = σ̃(E, Vext). (4.4.4)

We calculate σ̄(E ' Ω/2) for various different values of Vext and also at different disorder

strengths. Our results are presented in Fig. 4.4. What we see is quite satisfying: for a

window of Vext values we see that σ̄ = 2e2/h. Moreover, this window corresponds to the

same parameter regime where there are in-gap quasi-energy edge states, and insensitivity

of the system to disorder, system size and other parameters in Figs. 4.2, 4.3.

We understand the plot in Fig. 4.4 as follows. For smaller Vext the external field is not

strong enough to open a gap and “expose” the edge states. Therefore the conduction σ is a

result of bulk processes and thus sensitive to disorder strength. As Vext gets large enough

to open a sufficiently stable gap the edge states appear in this gap and are unobscured by

bulk states. Here we see σ̄ = 2e2/h and an insensitivity to disorder strength. Eventually

Vext becomes so strong that the gap closes again and bulk states dominate. In this case

σ̄(~Ω/2) > 2e2/h representing bulk conductivity. When the gap opens again at a larger

external potential we see a reversion back to σ̄ = 2e2/h.

4.5 Hall Bar Geometry and Edge States

Up to now we have presented our findings in a two-terminal device geometry. We now

move on to study a six-terminal device in an effort to further illustrate that the conductivity

discussed above is indeed a result of conduction along the edge of the sample, and not some

coincidental edge effect. Our set-up is motivated by experiments on Hall Bar systems[3,

10, 29]. An illustration of the set-up that we have in mind appears in Fig. 4.1b.

In the absence of a periodic driving potential the six terminal geometry is used as fol-

lows. Assuming all voltages are close to the Fermi level and that all leads are identical so
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Figure 4.4: Results for disorder averaged summed conductivity, i.e. Eq. (4.4.4) in the text, with
M = −1 and E = Ω/2 and in units of e2/h for various disorder strengths W . The inset shows a
zoomed in picture of the first area of conductivity quantization. The disorder plots are constructed
by averaging over 40 randomly drawn collection of disorder potentials while the error bars represent
one standard deviation of this data. Note some error bars in the insets are too small to see. This data
has been obtained from a calculation on a 20× 20 lattice.

we can drop the pumped current[10] one approximates Eq. (4.A.5) as

Īλ = −e
2

h

∑
λ′

(Tλ,λ′(Ef )Vλ′ − Tλ′,λ(Ef )Vλ) (4.5.1)

where λ labels each of the side terminals. For a spin-Hall insulator dissipationless

edge states exist and so one expects Ti,i+1 = Ti+1,i = 1 where we periodically identify

6 + 1 → 1. Now one imagines driving a current I from contact 1 to contact 4. We then

have I = (I, 0, 0,−I, 0, 0)T where we have defined Ii = Īi. Inverting Eq. (4.5.1) one

can find the voltages required to drive such a current. Doing so gives V1 − V4 = 3h
2e2
I and

V2−V3 = h
2e2
I . DefiningRi,j = (Vi−Vj)/I as the resistance between terminals i and j we

findR1,4 = 3
2
h/e2 andR2,3 = 1

2
h/e2. These values are unique to transport from dissipation

less, helical edge states

Here we will discuss a generalization of this concept to the effect which we have dis-
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cussed so far. For our insulator in the topological regime we find that Ti,j = 0 except the

off-diagonal elements Ti,i+1 and Ti+1,i where again we periodically identify 6 + 1 → 1.

In contrast to the equilibrium observation we find that Ti,i+1 = Ti+1,i = T (n) 6= 1 where

T (n) is the tunneling value for the lead Fermi energies near the gap in the nth Floquet zone.

We now again imagine driving a current I from contact 1 to contact 4 with the bias volt-

ages set near the middle of the gap in the nth Floquet zone. Defining R(n)
i,j = (Vi − Vj)/I

as the resistance between terminals i and j in this case we find R
(n)
1,4 = 3

2T (n)h/e
2 and

R
(n)
2,3 = 1

2T (n)h/e
2. Note that the signature results in terms of rational fractions of h/e2 are

lost, they’ve been reduced by a factor of T (n).

Using the above result we can realize two interesting properties of these Floquet de-

vices. The first is the following
R

(n)
1,4

R
(n)
2,3

' 3 ∀n (4.5.2)

That is, taking the ratio of these two resistances gives 3 regardless of which Floquet zone

the Fermi energies are set in. Finally, in analogy with how we can retain the quantized

value of σ in the two-terminal device considered above we can retain the equilibrium result

here as follows

R̄F
1,4 =

(∑
n

1

R
(n)
1,4

)−1

=
3

2
h/e2 (4.5.3)

and

R̄F
2,3 =

(∑
n

1

R
(n)
2,3

)−1

=
1

2
h/e2 (4.5.4)

These results are consistent with the picture developed above of edge-states that are

only occupied in a probabilistic way. The fact that Ti,j 6=i±1 = 0 reflects the edge conduc-

tance. The fact that Ti,i±1 < 1 reflects the fact that in a periodically driven system electrons

entering lead i has a probability to absorb or emit a photon before reaching terminal i± 1.

Thus Ti,j is reduced. By summing over all Floquet zones we again effectively sum over all

of these probabilities and retain the expected equilibrium result.
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As a numerical test of the above we calculate Tij for lead energies (n + 1/2)~Ω for

Vext = 0.675|M |, i.e. where we expect to see in gap edge-states. In our calculation we find

Tij = 0 for i 6= j except when j = i ± 1. We observe that Ti,i±1(n = 0) = Ti,i±1(n =

−1) ' 0.46, Ti,i±1(n = 1) = Ti,i±1(n = −2) ' 0.04 and zero for all other n’s. These

numerical values satisfy
∑

n Ti,i+1(n) = 1 and therefore satisfy the results established in

this section.

4.6 Conclusions.

We have explored the transport properties of Floquet topological edge-states in a quantum

well heterostructure. At first we took a numerical approach which showed that in the pres-

ence of Floquet edge states in the quasi-energy spectrum the two-terminal conductivity is

topologically robust, albeit not quantized to 2e2/h.

To explain the reduction of the two-terminal conductivity compared to the equilibrium

value of 2e2/h we appealed to an intuitive description in terms of electrons being scattered

by photons. This picture consists of viewing the Floquet edge states in the quasi-energy

spectrum as having their weight distributed into side-bands of energies η+n~Ω. The result

of this side-band distribution is that as we attempt to inject an electron from a lead at some

energy E there is a certain probability that it will absorb/emit enough photons to find the

Floquet edge state.

The heuristic picture in terms of scattering by photons motivated us to propose a means

to salvage the equilibrium conductivity of 2e2/h. This can be done using a recently pro-

posed Floquet sum rule[1], which in our formalism has a natural interpretation. In our

picture the topological Floquet states represent a superposition of states in various side

bands. The different coefficients in the superposition 〈φn|φη〉 determine the overlap. Our

Floquet edge states nicely obey this sum rule showing a summed conductivity value of
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σ̄ = 2e2/h is found when the external field is such that edge states in the quasi-energy

spectrum exist. Moreover, the result σ̄ = 2e2/h is robust to disorder even up to very large

disorder strengths.

Finally, we have extended our results to study a six-terminal, or Hall-bar, set-up. Here

the equilibrium signatures of the quantum spin-Hall effect are several characteristic resis-

tance measurements. We have shown that these resistances are increased relative to the

equilibrium case. This fact notwithstanding, following our intuition from the two-terminal

results we have suggested a sum rule for the six-terminal resistance measurements that

recovers the equilibrium result. This sum rule is also intuitively explained in terms of

photon-inhibition of edge-states.
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4.A Floquet-Landauer Formulism for Transport

Here we present only the essential aspects of the Floquet-Landauer formalism. A more de-

tailed description of our specific approach to this problem can be found in the Supplemental

material of [24]. Moreover, an excellent review can be found in Ref. [28].

We begin with a generic Hamiltonian which is given by

H = HS(t) +HL +HC (4.A.1)
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where

HS(t) = c†HS(t)c (4.A.2)

is the Hamiltonian of the sample where c† = (c†1....c
†
Ns

) is a vector containing creation

operators for each of the Ns degrees of freedom in the sample and HS(t) is a Ns × Ns

matrix coupling these degrees of freedom. This matrix contains both the static properties

of the sample as well as the time dependent effects of the periodic field. Next,

HL =
∑
λ

b†λHL,λbλ (4.A.3)

is the Hamiltonian of all of the leads where b†λ = (b†1,λ....b
†
Nl,λ,λ

) is a vector containing

creation operators for each of the Nl degrees of freedom in the lead λ and Hl,λ is a Nl,λ ×

Nl,λ matrix coupling these degrees of freedom. Finally,

HC =
∑
λ

(
b†λKλc+ h.c.

)
(4.A.4)

is the Hamiltonian coupling the sample to each of the leads. Kλ is the Nl,λ × Ns matrix

that describes these coupling strengths. The above model is completely general and makes

no specification of band structure or dimension of the system.

The time-averaged current flowing through the sample out of lead λ can be shown to

read as follows

Īλ =
e

h

∑
λ′

∫
dε (Tλ,λ′(ε)fλ′(ε)− Tλ′,λ(ε)fλ(ε)) (4.A.5)

where fλ(ε) = 1
1+exp(βλ(ε−eVλ)

and we have defined the transmission matrices

Tλ,λ′(ε) =
∑
n

Tr
[
Γλ(ε+ ~nΩ)G(n)(ε)Γλ′(ε)(G

(n)(ε))†
]
. (4.A.6)
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where

G(n)(ε) =
1

T

∫ T

0

einΩtG(t, ε)dt (4.A.7)

and G(t, ε) solves

(
i~
d

dt
+ ε−HS(t)

)
G(t, ε) (4.A.8)

+i

∫ ∞
0

eiετ/~Γ(τ)G(t− τ, ε)dτ = INs×Ns

In the above Γ(t) can be thought of as the self-energy obtained from integrating out the

leads in the system. From our microscopic Hamiltonian above it is given by

Γλ(t) =
1

~
K†L,λgλ,L(t)KL,λ (4.A.9)

and Γ(t) =
∑

λ Γλ(t). In the above we have also defined gλ,L(t−t′) = exp
[
− i

~HL,λ(t− t′)
]
,

which is the temporal Green function of the isolated leads. In this paper we will work to

simplify our discussion by employing the “wide-band” approximation. This phenomeno-

logical approach assumes that the density of states of the leads is constant over the energy

scales in which we are interested. This amounts to assuming the lead operators, Γλ(ε), are

independent of ε, Γλ(ε) ' Γλ. Moreover, we make the assumption of identical leads so

that (Γλ)i,j = Γδi,jδi,xλ where xλ are the set of all sample degrees of freedom connected to

lead λ. We note that as we are dealing with topological transport properties none of these

details should change our results.

In a two-terminal device the sample has leads attached to its left and right edges. For

this type of device we label these leads as L for left and R for right. By conservation of

current we must have ĪR = −ĪL, since the current entering the right lead must be equal to

the current leaving the left lead. It is then sufficient to think only of ĪR. We now imagine

biasing our sample so that we have a voltage E/e + V/e on the left lead and a voltage
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E/e + 0 on the right lead, where E is the Fermi level of both leads. We then define the

(differential) conductance as

σ(E) =
dĪR
dV

∣∣∣∣
V=0

=
e2

h
TR,L(E) (4.A.10)

Thus for this geometry we have the simple result that the conductivity is simply given by

the total transmission coefficient from the left lead to the right lead.

4.B Approximate Result for the Conductivity

Here we detail the steps taken to derive the approximate result for the conductivity pre-

sented in Eq. (4). We begin (in the wide band approximation) with the equation of motion

for G(t, ε)

(
i~
d

dt
+ ε−HS(t) +

i

2
Γ

)
G(t, ε) = I (4.B.1)

We note the fact that G(t, ε) explicitly depends on time. This is in contrast to equilibrium

where G(t, ε) → G(ε) has no time dependence (as HS(t) = HS) and the above simplifies

to
(
ε−HS(t) + i

2
Γ
)
G(ε) = I . The remaining time index can be shown to be periodic in

time[28] and therefore we are free to define.

G(n)(ε) =
1

T

∫ T

0

dteinΩtG(t, ε) (4.B.2)

It is the above object that we ultimately need to find.

This task is simplified by considering instead the auxiliary equation

(
i~
d

dt
+ ε−HS(t) +

i

2
Γ

)
G(t, t′, ε) = δ(t− t′) (4.B.3)
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and then noting that

G(t, ε) =

∫
dt′G(t, t′, ε) (4.B.4)

We will now focus on Eq. (4.B.3). By writingHS(t)− i
2
Γ = ĤS +Hext(t) and introducing

the rotating frame picture

G(t, t′, ε) = UV (t)Ǧ(t, t′, ε)U †V (t′) (4.B.5)

where i~ d
dt
UV (t) = Hext(t)UV (t). Then it follow that Ǧ(t, t′, ε) is a solution to

(
i~
d

dt
+ ε− ĤS(t)

)
Ǧ(t, t′, ε) = δ(t− t′) (4.B.6)

with the “rotating” version of ĤS being ĤS(t) = UV (t)†ĤSUV (t). If the external, periodic

potential were some potential with no internal structure coupling the degrees of freedom

of the system then we would have ĤS(t) = ĤS as Hext(t) would commute with all other

terms. This would immediately lead to a static system and a direct analogue of photon

assisted tunneling.

For this particular problem Hext(t) commutes with itself at different times. As a result

UV (t+ T ) = UV (t) and it is useful to define

UV (n) =
1

T

∫ T

0

dteinΩtUV (t) (4.B.7)

ĤS(n) =
1

T

∫ T

0

dteinΩtĤS(t)

Using all of these ingredients we then have

G(n)(ε) =
1

T

∫ T

0

dteinΩt

∫
dt′UV (t)Ǧ(t, t′, ε)U †V (t′) (4.B.8)
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Our task becomes to solve Eq. (4.B.6). We do so by defining

Ǧ(t, t′, ε) =
1

T

∑
n,m

e−inΩteimΩt′Ǧn,m(ε) (4.B.9)

which reduces Eq. (4.B.6) to the difference equation

(
`~Ω + ε− ĤS(0)

)
Ǧ`,m(ε)−

∑
n6=`

ĤS(`− n)Ǧn,m(ε) = δ`,m (4.B.10)

Where ĤS(`) is defined in equation (4.B.7). All of the Fourier expansions above when

used with Eqs. (4.B.2) and (4.B.4) then give

G(n)(ε) =
∑
`,m

UV (n− `)Ǧ`,m(ε)U †V (−m) (4.B.11)

We now make note of a symmetry in the difference equation for Ǧ`,m(ε). Namely we note

that simultaneously shifting ` → ` − k, m → m − k and ε → ε + k~Ω for any integer k

in Eq. (4.B.10) shows that if Ǧ`,m(ε) is a solution than so is Ǧ`−k,m−k(ε + k~Ω), we thus

identify[30]

Ǧ`,m(ε) = Ǧ`−k,m−k(ε+ k~Ω) (4.B.12)

From the above one can conclude that all of the relevant information is contained in Ǧ`,0(ε) ≡

G
(`)
V (ε). The operator G(`)

V (ε) solves the equation

(
`~Ω + ε− ĤS(0)

)
G

(`)
V (ε)−

∑
n

ĤS(`− n)G
(n)
V (ε) = δ`,0 (4.B.13)

We can then write Ǧ`,m(ε) = G
(`−m)
V (ε+m~Ω). Plugging this in above yields

G(n)(ε) =
∑
`,m

UV (n− `)G(`−m)
V (ε+m~Ω)U †V (−m) (4.B.14)
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sending m→ −m and then `→ `−m then gives main result of this discussion

G(n)(ε) =
∑
`,m

UV (n+m− `)G(`)
V (ε−m~Ω)U †V (m) (4.B.15)

We will use the above to find an approximate formula for the conductivity. We we will

develop a few other necessary relations

So far our discussion has been general with the only assumption being that [Hext(t), Hext(t
′)] =

0,∀(t, t′) (a more general treatment in the absence of this restriction is currently a work in

progress [31]). At this point we specialize to the quantum well system which has been dis-

cussed in the main text. Out first task is to define the operators UV (m). We are interested in

Hext(t) = 2Vext cos(Ωt) where Vext = Veσz ⊗ IL, IL is the identity operator on the lattice

and σz acts on spin. This operator commutes with itself at different times and is diagonal in

“spin-lattice” space. This allows us to easily define the time evolution operator as follows

UV (t) = e−i
∫ t
0 dt
′Hext(t′) = exp

[
−i2Ve

~Ω
sin(Ωt)σz ⊗ IL

]
(4.B.16)

note that no time ordering is required in the exponential because [Hext(t), Hext(t
′)] = 0.

Finding the Fourier series of the above periodic function is made possible by the identity

e−ix sin(Ωt) =
∑

m Jm(x)e−iΩmt where Jm(·) is the Bessel function of the first kind of order

m. We thus have

UV (t) =
∑
m

Jm

(
2Ve
~Ω

σz ⊗ IL
)
e−iΩmt (4.B.17)

We can then read off

UV (m) = Jm

(
2Ve
~Ω

σz ⊗ IL
)

= Jm

(
2Ve
~Ω

)
Sm ⊗ IL

= Jm

(
2Vext
~Ω

)
(4.B.18)
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where Sm = σ0 if m is even and σz if m is odd and the second and third equality can be es-

tablished using a series expansion of the Bessel function. The second relation above comes

from the Bessel function property Jm(−x) = (−1)mJm(x). The third relation, Jm
(

2Vext
~Ω

)
is a compact form which will be useful in a derivation of the transmission elements. With

an explicit formula of UV (m) in hand we proceed to plug Eq. (4.B.15) for the Green’s

function into the formula for Tλ,λ′(ε) which gives

Tλ,λ′(ε) =
∑
n,`,m

∑
`′,m′

Tr
[
Jn+m′−`′

(
2Vext
~Ω

)
Jn+m−`

(
2Vext
~Ω

)
(4.B.19)

ΓλG
(`)
V (ε−m~Ω)Jm

(
2Vext
~Ω

)
Γλ′Jm′

(
2Vext
~Ω

)
(G

(`′)
V (ε−m′~Ω))†

]

where we have used the fact that the lead self energies commute with Vext (the leads

make no distinction between different spins of particles). The sum over Bessel functions

gives a delta function. After some index relabelling we are left with

Tλ,λ′(ε) =
∑
`,`′,m

Tr
[
ΓλG

(`)
V (ε− (m+ `)~Ω)Γλ′Jm+`

(
2Vext
~Ω

)
Jm+`′

(
2Vext
~Ω

)
(G

(`′)
V (ε− (m+ `′)~Ω))†

]
(4.B.20)

We see that knowledge of G(`)
V (ε − (m + `)~Ω) will allow us to find the tunnelling

matrices and hence the two terminal conductivity. Towards this end we now write a formal

solution of the difference equation for G(`)
V (ε).

To make the notation more compact let us define

H̄` =

 ĤS(`) : ` 6= 0

0 : ` = 0
(4.B.21)

Besides being less cumbersome, this convention allows us to drop the restrictions on the
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sums and eventually employ Einstein summation convention. Starting from Eq. (4.B.10)

and acting on both sides with
(
`~Ω + ε− ĤS(0)

)−1

then gives

G
(`)
V (ε) =

(
`~Ω + ε− ĤS(0)

)−1

δ`,0 (4.B.22)

+
∑
n

(
`~Ω + ε− ĤS(0)

)−1

H̄`−nG
(n)
V (ε)

Let us note that gF (ε) =
(
ε− ĤS(0)

)−1

is the Green’s function of the static system with

Hamiltonian ĤS(0). Therefore

G
(`)
V (ε) = gF (ε)δ`,0 +

∑
j

gF (ε+ `~Ω)H̄`−jG
(j)
V (ε) (4.B.23)

We now iterate this equation. To do this let us introduce some notation to extract the useful

part of the above. First, we use implied summation over repeated indices that are not `.

Second, we define gi = gF (ε+ i~Ω). This gives

G
(`)
V (ε) = g0δ`,0 + g`H̄`g0 + g`H̄`−jgjH̄j−j′G

(j′)
V (ε) (4.B.24)

Repeated iteration of the above difference equation allows us to write

G
(`)
V (ε) = g0δ`,0 (4.B.25)

+ g`(H̄` + H̄`−jgjH̄j + H̄`−jgjH̄j−j′gj′H̄j′

+ H̄`−jgjH̄j−j′gj′H̄j′−αgαH̄α

+ H̄`−jgjH̄j−j′gj′H̄j′−αgαH̄α−βgβH̄β−σgσH̄σ + ...)g0

Or

G
(`)
V (ε) = gF (ε)δ`,0 + gF (ε+ `~Ω)Ď`(ε)gF (ε) (4.B.26)



4.B. APPROXIMATE RESULT FOR THE CONDUCTIVITY 122

Where

Ď`(ε) = H̄` + H̄`−jgjH̄j + H̄`−jgjH̄j−j′gj′H̄j′ (4.B.27)

+ H̄`−jgjH̄j−j′gj′H̄j′−αgαH̄α

+ H̄`−jgjH̄j−j′gj′H̄j′−αgαH̄α−βgβH̄β−σgσH̄σ + ...

The above series can in turn be generated by (restoring the summation symbols)

Ď`(ε) = H̄` +
∑
j

H̄`−jgjH̄j (4.B.28)

+
∑
j,j′

H̄`−jgjH̄j−j′gj′Ďj′(ε)

Physically, the Greens function G(`)
V (ε) is described by all possible processes starting at

energy ε (indicated by amplitude gF (ε)) where the electrons absorb/emit a net number of

photons ` (indicated by amplitude Ď`(ε)) and then end up at an energy eigenstate ε + `~Ω

(hence gF (ε+ `~Ω)).

We are interested in energies E + N~Ω where E ' ~Ω/2. Near such energies the

Greens functions we need are then given by

G
(`)
V (E + (N −m− `)~Ω) = gF (E + (N −m)~Ω)δ`,0 (4.B.29)

+gF (E + (N −m)~Ω)Ď`(E + (N −m− `)~Ω)gF (E + (N −m− `)~Ω)

We now assume that for the parameters we are interested in the unit of energy ~Ω connects

two (and not more) points on the spectrum of ĤS(0). Namely an energy −Ω~ can move

us from Ω/2 to −Ω/2. Any other photon processes are not possible though. Plotting the

spectrum of ĤS(0) reveals this to be true for the parameters we have considered in the main

text.
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The above discussion leads us to make the approximation

gF (E +K~Ω) = δK,0gF (E) + δK,−1gF (−E) (4.B.30)

The motivation for the above approximation is as follows. gF (ε) is the Greens function for

the system with Hamiltonian ĤS(0). We are interested in energies ε = E ' ~Ω/2, where

Ω is the driving frequency. Now, owing to the finite bandwidth of the dressed Hamiltonian

ĤS(0), there are no energy eigenstates atE+N~Ω forN > 0. There are states atE−~Ω '

−Ω/2 but none for any ~Ω below this. Thus the above approximation ignores values of K

for which ĤS(0) has no states at E +K~Ω.

Let us now define

g̃F (E) = gF (E) + gF (E)Ď0(E)gF (E) (4.B.31)

and use the fact that E − ~Ω ' −E we immediately find

G
(`)
V (E + (N −m− `)~Ω) (4.B.32)

= δN,m
(
g̃F (E)δ`,0 + gF (E)Ď1(−E)gF (−E)δ`,1

)
+ δN+1,m

(
g̃F (−E)δ`,0 + gF (−E)Ď−1(E)gF (E)δ`,−1

)

Plugging this into the transmission matrix formula gives
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Tλ,λ′(E +N~Ω) = J2
N

(
2Vext
~Ω

)(
Tr
(

Γλg̃F (E)Γλ′ g̃
†
F (E)

)
(4.B.33)

+ Tr
(
ΓλgF (−E)Ď−1(E)gF (E)Γλ′(gF (−E)Ď−1(E)gF (E))†

))
+ J2

N+1

(
2Vext
~Ω

)(
Tr
(

Γλg̃F (−E)Γλ′ g̃
†
F (−E)

)
+ Tr

(
ΓλgF (E)Ď1(−E)gF (−E)Γλ′(gF (E)Ď1(−E)gF (−E))†

))
+ JN+1

(
2Vext
~Ω

)
JN

(
2Vext
~Ω

)(
Tr
(
Γλg̃F (E)Γλ′S1(gF (E)Ď1(−E)gF (−E))†

)
+ Tr

(
ΓλgF (E)Ď1(−E)gF (−E)Γλ′S1g̃

†
F (E)

))
+ JN+1

(
2Vext
~Ω

)
JN

(
2Vext
~Ω

)(
Tr
(
Γλg̃F (−E)Γλ′S1(gF (−E)Ď−1(E)gF (E))†

)
+ Tr

(
ΓλgF (−E)Ď−1(E)gF (E)Γλ′S1g̃

†
F (−E)

))

where S1 = σz ⊗ IL. Let us now consider D−1(E). Using our generating function we

have

Ď`(E) = H̄` + H̄`−jgjH̄j + H̄`−jgjH̄j−j′g
′
jĎj′(E) (4.B.34)

This equation can be solved for both D−1(E) and D1(−E), the results are

D−1(E) = −
(
I + H̄1gF (E)H̄1gF (−E)

)−1
H̄1 (4.B.35)

and

D1(−E) =
(
I + H̄1gF (−E)H̄1gF (E)

)−1
H̄1 (4.B.36)

Further let us note that

D0(E) =
(
I − H̄1gF (−E)H̄−1gF (E)

)−1
H̄1gF (−E)H̄−1 (4.B.37)
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Using this one can show that

g̃F (E) = gF (E) + gF (E)Ď0(E)gF (E) =
1

E − (H̄0 + H̄1gF (−E)H̄−1)
(4.B.38)

So g̃F (E) is the Green’s function of a system with an effective Hamiltonian H̄0+H̄1gF (−E)H̄−1.

Now let us define

Fup(E) = gF (E)Ď1(−E)gF (−E) = gF (E)H1g̃F (−E) (4.B.39)

and

Fdown(E) = gF (−E)Ď−1(E)gF (E) = −Fup(−E) (4.B.40)

Using these definitions the tunnelling elements can be written

Tλ,λ′(E +N~Ω) = J2
N

(
2Vext
~Ω

)(
Tr
(

Γλg̃F (E)Γλ′ g̃
†
F (E)

)
+ Tr

(
ΓλFup(−E)Γλ′F

†
up(−E)

))
+ J2

N+1

(
2Vext
~Ω

)(
Tr
(

Γλg̃F (−E)Γλ′ g̃
†
F (−E)

)
+ Tr

(
ΓλFup(E)Γλ′F

†
up(E)

))
(4.B.41)

+ JN+1

(
2Vext
~Ω

)
JN

(
2Vext
~Ω

)(
Tr
(
Γλg̃F (E)Γλ′S1F

†
up(E)

)
+ Tr

(
ΓλFup(E)Γλ′S1g̃

†
F (E)

))
− JN+1

(
2Vext
~Ω

)
JN

(
2Vext
~Ω

)(
Tr
(
Γλg̃F (−E)Γλ′S1F

†
up(−E)

)
+ Tr

(
ΓλFup(−E)Γλ′S1g̃

†
F (−E)

))

We now note that in our numerical calculations our system has energy eigenstates dis-

tributed symmetrically around E = 0 (as we have taken C = D = 0). In such a system

we must have WHSW
† = −HS where W is some operator. From this it follows that

Wg̃F (−E)W † = −g̃F (E) and also WFup(−E)W † = −Fup(−E). Using the fact that the

leads (and Γλ′S1) also obey this symmetry and inserting the identity in the form W †W = I

in strategic places above leaves
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Tλ,λ′(E +N~Ω) =

(
J2
N

(
2Vext
~Ω

)
+ J2

N+1

(
2Vext
~Ω

))
(4.B.42)

×
(

Tr
(

Γλg̃F (E)Γλ′ g̃
†
F (E)

)
+ Tr

(
ΓλFup(E)Γλ′F

†
up(E)

))

which we write as

Tλ,λ′(E +N~Ω) (4.B.43)

=
1

2

(
J2
N

(
2Vext
~Ω

)
+ J2

N+1

(
2Vext
~Ω

))
T̂λ,λ′(E, Vext)

where

T̂λ,λ′(E, Vext) (4.B.44)

= 2
(

Tr
(

Γλg̃F (E)Γλ′ g̃
†
F (E)

)
+ Tr

(
ΓλFup(E)Γλ′F

†
up(E)

))

We note that in a two-terminal geometry when there are edge-states in the quasi energy

spectrum we find that T̂λ,λ′(E, Vext) = 2. Each of the two terms above looks reminiscent

of a conductivity. The first term looks like a contribution coming from edge-states at an

energy E, while the second term looks like a contribution coming from the edge-states at

−E transitioning to E.

4.B.1 Expression for the Effective Hamiltonian

We close with an expression for a derivation of the effective Hamiltonian. Recall that

ĤS(t) = U †V (t)ĤSUV (t) and that ĤS(n) = 1
T

∫ T
0
einΩtH̄(t), then by using the Fourier
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decomposition of UV (t) we can write

ĤS(n) =
∑
m

U †V (m)ĤSUV (m+ n) (4.B.45)

If we now recall the relation for theUV operators derived above, then it immediately follows

that

ĤS(n) =
∑
m

Jm

(
2Ve
~Ω

)
Jm+n

(
2Ve
~Ω

)
(4.B.46)

× Sm ⊗ ILĤSSm+n ⊗ IL

Now let us write

ĤS =
∑
α,β

H̄α,βσα ⊗Rβ (4.B.47)

where Rβ is a complete set of operators in the space of the lattice. Then, defining ζ = 2Ve
~Ω

,

noting that for α = 1 or 2 one can show that SmσαSn+m = (−1)mσαSn whereas for α = 0

or α = 3 they do nothing, and using the Bessel function identities
∑

m [Jm (ζ) Jm+n (ζ)] =

δn,0 and
∑

m [Jm (ζ) (−1)mJm+n (ζ)] =
∑

m [Jm (ζ) J−m+n (ζ)] = Jn (2ζ) we have

ĤS(m) = δn,0
∑

α=0,3,β

H̄α,β(σα)⊗Rβ (4.B.48)

+ Jn (2ζ)
∑

α=1,2,β

H̄α,β(σαSn)⊗Rβ

It is most convenient to write this as

ĤS(m) = δn,0H̄03 + Jn (2ζ) H̄12(n) (4.B.49)

Thus the field does not touch terms in ĤS proportional to σ0 or σ3 and “dresses” the σ1 and

σ2 terms.
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The Green’s function gF and the transmission matrix elements T Fλ,λ′ are the result of

calculating the Greens function and the transport properties of a system described by a static

Hamiltonian ĤS(0). Such a Hamiltonian looks similar to our original static Hamiltonian

(before periodic perturbation) but with H̄12 renormalized by the Bessel function J0 (2ζ).

Moreover, σ is not simply the static conductivity of H̄03.
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Preface to Chapter 5

The main formalism and interpretation in Chapters 3 and 4 has been built upon an un-

derstanding in terms of the topological edge-states being split into sidebands. A deeper

understanding of these states, as well as connecting them to a different system of interest,

is desirable. In addition to this, there are several experimental hurdles to overcome given

the assumptions of the previous two manuscripts. One of these is understanding the turn-

on of the time periodic field, as the field in these previous works has always assumed to

be on for a long time. Second, these chapters have worked in the large frequency limit.

Most of experimental tools available (e.g. terahertz laser spectroscopy) exist at smaller en-

ergies/frequencies. The purpose of the following manuscript is to address all of the above

issues as well as to connect to recent experimental work by the group of Nu Gedik [1] at

MIT. We develop results for ARPES measurements of a 3D topological insulator in the

presence of terhertz electromagnetic radiation. We do this by allowing for the field to have

a finite width envelope and treating the turn-on explicitly. We also assume the frequency

to be small (terahertz) and build up an understanding of this system using the side-band

language of the previous two chapters, all while connecting our results to experiment.
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Abstract

Pump-probe techniques with high temporal resolution allow one to drive a system of inter-

est out of equilibrium and at the same time, probe its properties. Recent advances in these

techniques open the door to studying new, non-equilibrium phenomena such as Floquet

topological insulators and superconductors. These advances also necessitate the develop-

ment of theoretical tools for understanding the experimental findings and predicting new

ones.

In the present work, we provide a theoretical foundation to understand the non-equilibrium

behaviour of a Dirac system. We present detailed numerical calculations and simple an-

alytic results for the evolution of a Dirac system irradiated by light. These results are

framed intuitively by appealing to the recently revitalized notion of sidebands[2, 3]. We

find that, under the application of circularly polarized light, a Dirac point only ever splits

into two copies of sidebands. Meanwhile, the application of linearly polarized light leaves

the Dirac point intact while producing sidebands. Our immediate interest in this work is

in connection to time and angle resolved photoemission experiments, where we find excel-

lent qualitative agreement between our results and those in the literature[1]. However, our

results are general and may prove useful beyond this particular application and should be

relevant to other pump-probe experiments.
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5.1 Introduction

One of the greatest triumphs in the last decade of condensed matter research has been the

theoretical prediction[4–6] and subsequent experimental realization[7–9] of the topologi-

cal insulator (TI). These materials are insulating in the bulk, while their edge plays host to

topologically protected metallic modes with energies lying in the band gap of bulk states.

The existence of these edge-states makes TIs of great fundamental and practical interest

with applications ranging from quantum computation to spintronics. Moreover, the discov-

ery of topological systems leads to a new classification of possible states of matter.

While many of the topological systems can be understood by non-interacting, clean

systems at equilibrium the study of topological states is not limited to those. The effects

of disorder, for example may drive a system in and out of a topological state.[10, 11] It is

therefore interesting to ask whether there is a knob that can be tuned to alter the topological

properties of a system.

One auspicious route towards the generation of a TI comes from considering time-

periodic perturbations[1–3, 12–31]. In these systems, a time-periodic perturbation, is ap-

plied to a topologically trivial system and drives it into a non-equilibrium topological state.

As continuous time translational invariance is broken, it is no longer appropriate to dis-

cuss energy eigenstates. One must instead talk about their quasi-energy spectrum, which

is the closest analogue to an energy spectrum for a system with discrete time-translational

invariance[32]. The topological state created with an external, time-periodic perturbation

is called a Floquet topological insulator (FTI) and it exhibits edge-states in the gap of its

quasi-energy spectrum[12].

The notion of a FTI has garnered much attention lately, and has enjoyed experimen-

tal validation in the field of photonic crystals, where Floquet states can be simulated in

the laboratory[33]. However, a solid state verification of a Floquet topological state and

several issues regarding feasibility have been raised[34] . The first of these is that most
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available periodic perturbations are not perfectly periodic, but have an envelope function

in addition to the periodic signal. The second, perhaps more pressing, issue has to do with

the experimentally available frequencies. Present discussions in the literature are valid in

the large frequency limit Ω � ΩBW , Ω being the applied frequency and ΩBW being the

frequency of the band-width of the system. However, available technology in terahertz

is sub-bandwidth. This small frequency is believed to be problematic as it will lead to a

complicated quasi-energy structure which may obscure any potential topological effects.

Given the above complications, our goal in the present paper is to understand the be-

haviour of a topological system in the presence of a non-periodic and sub-bandwidth exter-

nal perturbation. We will work with Dirac cone dispersion, typical for a three dimensional

topological insulator surface, in order to develop a fundamental understanding and will not

discuss a Floquet topological insulator at this point. Our work is inspired by measurements

of Wang et al in Ref. [1]. This group used time resolved-angle resolve photoemission spec-

troscopy (TR-ARPES) to view the evolution of surface states of Bi2Se3, a three dimensional

topological insulator. We find excellent qualitative agreement with these results.

We employ the language of sidebands recently used in Refs. [2, 3]. This language

allows us to develop the three main results of this work. The first of these is that even

though applying a sub-bandwidth perturbation to a system may “fold” many states into the

Floquet zone, only a few of these states have any spectral weight and contribute to physical

processes. In the present example, we consider a Dirac cone, which has effectively an

infinite band-width. We find that only states within a couple ~Ω from the Fermi surface

have any statistical weight in our side-band picture. Second, we work in a regime where the

time scale over which the pump pulse envelope is changing is much longer than the period

time of the drive. In this regime we develop simple, analytic expressions. Finally, we show

that the structure of a Dirac cone colludes with circularly polarized light to produce only

two sidebands for momenta near the Dirac point. This is quite remarkable; the spectral
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weight of the equilibrium Dirac point states is entirely shared between two sidebands. It

therefore behaves as two massive Dirac points, with different masses. These two cones

share the spectral weight of the original Dirac cone.

The intuition developed here, as well as the satisfactory results in view of recent experi-

ments[1], will add to a current ongoing discussion in the literature regarding the stability of

Floquet-states[31, 35–38]. Our side-band interpretation in concert with an understanding

of Floquet states and the results of Ref. [Wang] provide an intuitive physical picture. Side-

bands develop over the lifetime of the pump pulse; their eigenstates can be found from the

system’s quasi energy states and their weight in the time-dependent wave function can be

viewed as probabilistic occupation.

The rest of this paper is organized as follows. In the following section we discuss

some fundamentals of the Floquet formalism in order to introduce the side-band intuition

of Refs. [2, 3]. We move on to present our model and methods. In Section 5.3 we present

our results and discussion for two polarizations of light. The appendices detail various

technical aspects of the work.

5.2 Preliminaries

5.2.1 Sidebands

We begin with a brief discussion of Floquet theory as it pertains to the language of side-

bands. Consider the time-dependent Schrödinger equation

i~∂t|ψ(t)〉 = H(t)|ψ(t)〉 (5.2.1)
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where H(t+T ) = H(t) is a Hamiltonian with period T . Defining Ω = 2π/T the principle

result of Floquet theory is that the steady states of the above system can be written as[32]

|ψ(t)〉 = e−iηt/~|φ(t)〉 (5.2.2)

where (H(t) − i~∂t)|φ(t)〉 = η|φ(t)〉 and |φ(t + T )〉 = |φ(t)〉. The eigenvalues η are

typically called the quasi-energies. The quasi-energies are only unique up to integer mul-

tiples of ~Ω, as can be seen by noting that einΩt|φ(t)〉 is an eigenvalue of (H(t) − i~∂t)

with quasi-energy η + n~Ω and also meets the boundary condition |φ(t + T )〉 = |φ(t)〉.

Thus all quasi-energies are defined within a first ”Floquet zone”, an interval of energies of

width ~Ω. The center of this zone is, of course, arbitrary. The quasi-energy spectrum in the

first Floquet zone can be copied at integervals of ~Ω above and below to generate the full

quasi-energy spectrum.

We now introduce the sidebands. Since |φ(t)〉 is periodic, we are free to express it as a

discrete Fourier series |φ(t)〉 =
∑

n e
−inΩt|n〉. The full wave function reads

|ψ(t)〉 =
∑
n

e−i(η+n~Ω)t/~|n〉 (5.2.3)

The states |n〉 are determined by solving the eigenvalue equation
∑

m (Hn−m − n~Ωδn,m) |m〉 =

η|n〉 where Hn =
∫ T

0
dt
T
einΩtH(t).

The intuitive picture we wish to take away from Eq. (5.2.3) is the following. In a time

periodic system the steady states are a linear combination of definite energy states with

energies η + n~Ω and probability 〈n|n〉. This follows from either inspecting Eq. (5.2.3) or

by noting that the average energy over one cycle of the period reads

Ē =

∫ T

0

dt

T
〈ψ(t)|H(t)|ψ(t)〉 =

∑
n

〈n|n〉(η + n~Ω) (5.2.4)
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For pedagogical reasons we now consider the application of the above theory to a time-

independent system. To be more concrete, let’s say we have an applied perturbation with

frequency Ω but a vanishingly small amplitude. In this limitHn = δn,0H and the eigenvalue

equation becomes (H−n~Ω)|n〉 = η|n〉. The solution to this system is |n〉 = δN,n|ζ〉 with

η = E −N~Ω, where H|ζ〉 = E|ζ〉 and N is an integer that takes E and moves it into the

first Floquet zone we have chosen for our problem. Thus when the time periodic fields are

turned off the system is, of course, found in eigenstates of the static Hamiltonian. These

eigenstates can, of course, be defined in a first Floquet zone, but if this first Floquet zone

does not contain E (i.e. if N 6= 0 in the language above) then there exists a quasi-energy

E − N~Ω, but this state has zero probability of being occupied in the first Floquet zone

because 〈n|n〉 = δn,N . One must move to the N th Floquet zone where this state is occupied

with unit probability. The moral of this exercise is the following. When working in the

Floquet zone the quasienergy spectrum might be dense with folded bands. However, the

’occupation’ of a given state (its weight in the time dependent wavefunction) may be zero

in the first Floquet zone, leaving only a few relevant states.

Starting from the above limit, as we turn on the time dependence there are two effects

that take place. First, electrons beginning in the original eigenstates develop some probabil-

ity to absorb or emit photons and thus their unit probability of being found in one Floquet

zone gets smeared into other, adjacent Floquet zones. This creates “copies” of the original

band structure analogous to those proposed by Tien and Gordon several decades ago[39].

Second, unlike the physics of Ref. [39], in our present system these sidebands can also be

modified in a non-trivial way. This occurs when states corresponding to absorbing/emitting

different number of photons hybridize. This can lead to important effects such as gaps in

these sidebands opening.

The above interpretation is important when applying a probe of well defined energy to

a time periodic system. Examples of this situation are the studies in Refs. [2, 3] where
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Figure 5.1: Schematic picture of the main results of this paper. The original Dirac cone is split into
sidebands, with sidebands further away from the original cone receiving less ”weight”. In the figure
this is signified using lighter colours for less probable sidebands. Now, if the operator describing
the time periodic field, V (t), commutes with the original Hamiltonian, Hk(t), then this splitting is
all that happens. If these two operators do not commute sidebands hybridize and the band structure
becomes modified by, e.g., having gaps opened.
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we calculate the transport properties of periodically driven quantum well heterostructures.

Namely, the edge-states in these systems, whether naturally occurring or driven, are split

into sidebands. As a result, certain transport signatures of these edge states, for example

2e2/h conductance, are fragmented. In Refs. [2, 3] we have discussed how a sum rule[24]

can be used to salvage these transport signatures. This sum rule is rooted in the under-

standing that systems in a time-periodic field have their energy bands modified by the time-

periodic perturbation and also that these bands are split into sidebands. Crucially, these

sidebands are only occupied with a certain probability, and, for reasonable field strengths,

this probability decreases with the separation in energy between the original energy eigen-

value and the side-band eigenvalue that we’re interested in. Thus it is usually appropriate

to treat only eigenstates within several multiples of ~Ω from the Fermi level.

The above observations are important to keep in mind when applying Floquet theory

to look at the quasi-energies by themselves. When the energy scale ~Ω is small compared

to the band-width of the equilibrium model, the quasi-energy spectrum becomes very con-

voluted as many eigenstates are “folded” back into the Floquet zone. Making predictions

based on this spectrum alone then becomes an arduous task. The discussion above, and the

results to follow, illustrate that one must keep in mind that even though the quasi-energy

spectrum may become complicated in this limit, only quasi-energies resulting from folding

of energies within a few ~Ω of the Fermi energy contribute significantly to observables.

The information about these probabilities is contained in the often ignored side-band states

|n〉 and their statistical weight.

Our model is a generic Dirac cone and no cut-off is considered, thus our effective band-

width is infinite. We subject this system to terahertz frequency light ~Ω ∼ 30meV. Looking

only at the quasi-energy spectrum of this system the Dirac cone will be folded back into the

Floquet zone infinitely many times and would thus be meaningless. We therefore approach

the system in a slightly different manner, while keeping in mind the side-band language
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Figure 5.2: Comparison of numerical results found by integrating the time dependent Dirac equa-
tion and the analytic approximation in Eq. (5.3.6) for I(kx, 0, ω, tO). The left plots I(0, 0, ω, tO)

for different delay times tO while the right plots I(0.05Å−1, 0, ω, tO) also for different delay times.
In these plots the bottom plot is for tO = −500fs, the middle for tO = −100fs and the top is for
tO = 0fs. In all plots the solid line is the approximation in Eq. (5.3.6) while the circles are numeri-
cal results. There is excellent agreement between the numerics and our approximation for all three
delay times.

discussed above. Provided that the field is turned on slowly compared to the frequency

of the light, the system evolves into a state described by a splitting of its original bands

into sidebands. In cases where the operator describing the external field commutes with

the static Hamiltonian at all times, this side-band splitting is the only effect of the light,

i.e. we see no hybridization and no gap opening. In all other cases there are additional

modifications of the sidebands. In either case, we see that for physical field strengths only

the first couple of sidebands carry any spectral weight in these simulations, in spite of the

fact that the system is subjected to low-frequency light. These central results of our work

are summarized in the schematic in Fig. 5.1. This intuition should be relevant to related

experiments on time-dependent systems and will be crucial in driving a topological state

with externally applied light.
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5.2.2 Model Hamiltonian

We begin with the following Dirac Hamiltonian

hk = ~vF (k× ~σ) · ẑ − µσ0 (5.2.5)

where vF is the Fermi velocity, ~σi = σi is a vector of Pauli matrices and µ the Fermi energy.

The above Hamiltonian is immediately applicable to the surface of a three dimensional

topological insulator (TI) and should also be relevant to graphene in the limit where any

applied field doesn’t induce intervalley scattering.

We now envisage the above system irradiated by an electromagnetic field. To keep our

theoretical model simple we assume this field is spatially constant over the sample size.

This should be approximately true for the terahertz type radiation considered here where

the wavelength of the light should be tens of microns[1]. We model this electromagnetic

field as follows

Epump(t) = E0e
− t2

2T2
pumpEΩ(t) (5.2.6)

where E0 is the amplitude of this pump pulse, Tpump is the width of the pulse and EΩ(t)

is the monochromatic component of the field. In this paper we consider two scenarios: (1)

Linearly polarized light, with EΩ(t) = sin Ωtx̂ and (2) circularly polarized light in which

case EΩ(t) = sin Ωtx̂− cos Ωtŷ.

We introduce the above field via minimal coupling, ignoring the Zeeman effect, as we

expect the dominant contribution to come from the electron’s orbital motion. We choose

a Gauge such that the electric scalar potential Φ = 0 and Epump(t) = −∂tApump(t), see

appendix C for more details. Thus we have Apump(t) = −
∫ t
−∞ dt

′Epump(t
′)) where we

have chosen in initial condition such that Apump(t) → 0 for t → −∞. This choice of

initial condition is, of course, immaterial and represents the gauge freedom of the problem.

We show in the appendix that within the formalism we use in this paper[34, 40, 41] this
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choice of initial condition does not change any of our observations.

Let us define the frequency scale associated with the pump pulse envelope Ωpump =

2π/Tpump. We work in the limit Ωpump � Ω in which case it is appropriate to write (see

Appendix 5.A for more details)

Apump(t) =
E0

Ω
e
− t2

2T2
pump ẼΩ(t) (5.2.7)

where ẼΩ(t) is defined through d
dt
ẼΩ(t) = −ΩEΩ(t). The evolution of our time-dependent

system is now described through a minimal coupling of the above pump field to our Dirac

Hamiltonian via ~k→ ~k− eApump(t). Thus the (time-dependent) Hamiltonian we work

with is as follows

Hk(t) = vF [(~k− eApump(t))× ~σ] · ẑ − µσ0 (5.2.8)

To complete our discussion of the models we must define the probe pulse profile. For

this we take the envelope function s(t, tO) = e
− (t−tO)2

2T2
probe where Tprobe is the width of the

probe, assumed to be much shorter than the width of the pump, Tprobe � Tpump, and tO is

the delay time between the pump and probe peaks. tO is effectively the time at which we

are “viewing” the system. In the above model we have (arbitrarily) assigned t = 0 to be

the time at which the pump pulse is maximal.

In our simulation we take experimentally relevant values for the parameters from Ref. [1].

Namely, we estimate ~vF ' 3.6 eVÅ, µ ' 300meV, ~Ω ' 120meV. For convenience we

define ωF = µ/~. We take a pump-pulse with a full width half-max (FWHM) of 250fs

(Tpump ' 106.16fs) and a probe-pulse with[34] Tprobe = 26fs. Finally, to fully illustrate

the conceptual power of our findings we take E0 ' 7.5 × 10−3 V/Å, slightly exaggerated

from the estimates of Ref. [1].
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5.2.3 Photocurrent

A simplified picture of the technology involved in ARPES is to think of the experimental

set-up as measuring the particle current of electrons ejected from the sample at a wave

vector k, energy ~ω and time tO (relative to the pump maximum time). This measurement

is called the photocurrent, I(kx, ky, ω, tO). Typically this quantity involves complicated

momentum, orbital, and time dependent matrix elements. To develop a solid understanding

for this problem we will work under the assumption that these matrix elements are the

same for all orbitals, momenta and times. Under this approximation the relevant quantity

to calculate is [34, 40, 41]

I(kx, ky, ω, tO) = Im
[∫

dt1

∫
dt2s(t1, tO)s(t2, tO)eiω(t1−t2)Tr (G<

k (t1, t2))

]
(5.2.9)

In the above G<
k (t1, t2) is the 2× 2 lesser Green’s function matrix of the system in spin

space. It is obtained by evolving the equilibrium states of the original Dirac cone from the

distant past to the present. It is defined as follows

G<
kσσ′(t, t

′) ≡ i〈c†kσ(t)ckσ′(t
′)〉 (5.2.10)

where c†kα creates and electron with momenta k and spin α.

Our theory relies on knowing the solutions to the Dirac equation at all times, as these

states can be used to construct the above Green’s function. We therefore define the states

i~∂t|ψk,α(t)〉 = Hk(t)|ψk,α(t)〉 (5.2.11)

subject to the initial condition |ψk,α(t → −∞)〉 = |φk,α〉 where |φk,α〉 are the eigenstates
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of the equilibrium system satisfying hk|φk,α〉 = Ekα|φk,α〉, with Ekα = α~vF |k| − µ with

α = ±1 labeling the chirality of the state.

Once these wave functions are known the lesser Green’s function of the system can be

constructed (see Appendix 5.B)

G<
kσσ′(t, t

′) = i
∑
α

|ψσk,α(t)〉〈ψσ′k,α(t′)|f(Ekα) (5.2.12)

where f(Ekα) is a Fermi function and |ψσk,α(t)〉 is the spin σ component of the state

|ψk,α(t)〉.

The theory described in the rest of this paper involves determining G<
k (t, t′) either an-

alytically or numerically and then making use of Eq. (5.2.9) to estimate the results of a

TR-ARPES experiment.

5.3 Results and Discussion

Using the methodology outlined above, we present our results and interpretation of cal-

culations relevant to TR-ARPES measurements. For the sake of clarity, we divide our

discussion into two categories. First, we consider light polarized along the x direction of

the sample. Next, we allow for circularly polarized light. Certain limits of these two set-ups

can be solved analytically and crucial insight can be gained into the distribution of states in

a non-equilibrium system. We begin with linearly polarized light.

5.3.1 Linearly Polarized Light

We consider an electric field along the x direction only. In this case a closed form solution

to the Dirac equation can be found along the ky = 0 cut of the Brillouin zone:

Hkx,ky=0(t) = vF (~kx − eAx(t))σy − µσ0 (5.3.1)
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Figure 5.3: Plot of the photocurrent I(kx, 0, ω, tO) at various values of the delay time tO for
linearly polarized light. In the distant past we see only the Dirac cone, as the pump field starts to
turn on we see copies of this cone (sidebands) begin to develop. As the field envelope becomes
larger weight of the original Dirac cone is shifted into other sidebands.
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Figure 5.4: Plot of the photocurrent I(0, ky, ω, tO) at various values of the delay time tO for
linearly polarized light. In the distant past we again only see the Dirac cone, as the pump field starts
to turn on we see copies of this cone (sidebands) begin to develop and these copies develop avoided
crossings. As the field becomes fully turned on the weight of the original Dirac cone is shifted into
other sidebands and these gaps become more evident.
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In this case the time dependent field commutes with the Hamiltonian for the chosen mo-

menta and the wave functions can be written as

|ψkx,0,α(t)〉 = e−i(αvF kx−µ/~)(t−tr) (5.3.2)

× eieαvF
∫ t
tr
dt′Ax(t′)/~|φkx,0,α〉

where tr → −∞ is the “turn-on” time for the field. This gives the Green’s function

G<
kx,0′(t, t

′) = i
∑
α

e−i(αvF kx−µ/~)(t−t′) (5.3.3)

× exp

(
i
eαvF
~

∫ t

t′
dt′′Ax(t

′′)

)
f(Ekx,0α)

× |φkx,0,α〉〈φkx,0,α|

note that the above is independent of tr. We eventually need Tr
(
G<
kx,0′

(t, t′)
)
, where the

trace is over spin degrees of freedom. This trace can be performed in any complete basis

and becomes particularly simple when we choose the states |φkx,0,α〉, which leaves

Tr
[
G<
kx,0′(t, t

′)
]

= i
∑
α

e−i(αvF kx−µ/~)(t−t′) (5.3.4)

× exp

(
i
eαvF
~

∫ t

t′
dt′′Ax(t

′′)

)
f(Ekα)

Our discussion has been exact until this point. We would now like to make an approxima-

tion to simplify the above trace. We recall that Ax(t) = E0

Ω
e−t

2/2T 2
pump cos Ωt and expand it

in the limit Tpump � 2π/Ω. Integration by parts may be used to show that to leading order

in 1/TpumpΩ

∫ t

t′
dt′′Ax(t

′′) = (5.3.5)

E0

Ω2

(
e−t

2/2T 2
pump sin Ωt− e−t′2/2T 2

pump sin Ωt′
)
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Using the above, the identity eix sin Ωt =
∑

m Jm(x)eimΩt and assuming the probe pulse

is much shorter than the pump pulse gives the following result for the photocurrent (for

technical details see Appendix 5.D)

I(kx, 0, ω, tO) (5.3.6)

= 2πT 2
probe

∑
α,m

f(Ekx,0,α)J2
m (Aeff (tO)) exp

[
−(ω − αvFkx +

µ

~
−mΩ)2T 2

probe

]

where

Aeff (tO) '
∫
dte
− (t−tO)2

2T2
probe A(t)∫

dte
− (t−tO)2

2T2
probe

(5.3.7)

with A(t) = eE0vF
~Ω2 e−t

2/2T 2
pump . The above formula is our main analytic result for this part

of the paper. It provides a nice picture of the sideband splitting that occurs in the presence

of a periodic field. Owing to the nature of the applied field, which commutes with the

Hamiltonian, none of the original bands are dressed. The exponent describes peaks not just

at energy eigenvalues vF~kx − µ, but also at integer values of ~Ω above and below this

value. This indicates that there are copies of the original band structure at multiples of ~Ω

above and below the original pattern.

The Bessel function pre-factor gives the weights of these sideband peaks. These weights

depend on the probe time due to the time dependence of the driven system. Owing to the

simple structure at ky = 0 there is no interference/avoided crossing of sidebands. Thus in

the limit of a wide pump pulse the system is split into sidebands and the population of these

sidebands is given by the instantaneous weighted average of the pump envelope function.

We now turn to numerics in order to test the validity of our analytic results and to extend

our analysis to finite ky. For this we integrate the Dirac equation numerically. We begin

by fixing ky = 0 and comparing our analytic treatment to exact numerics. Fig. 5.2 shows

I(kx, 0, ω, tO) for kx = 0 and kx = 0.05Å−1 for several values of tO. As can be seen
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in the figure, there is excellent agreement between our approximate formula above and

the numerics. Fig. 5.2 also nicely illustrates the sideband interpretation discussed above.

We see that all of the spectral weight associated with the original peaks in the distant past

(before the pump pulse hits the system) gets redistributed into sidebands separated by ~Ω.

Next we move on to present results going beyond the scope of the analytic results. We

plot I(kx, 0, ω, tO) and I(0, ky, ω, tO) in Figs. 5.3 and 5.4. First, the results for I(kx, 0, ω, tO)

(within the purview of the analytic approach above) nicely confirm the intuition developed

above; we see no renormalization of the energy bands and a simple development of of

sidebands. These sidebands are evident by the copies of the Dirac cone seen in the above

plots. Second, I(0, ky, ω, tO) goes beyond our analytic approach above. We see a twofold

effect as the pump-pulse hits the system. The primary effect is a splitting of the system into

sidebands. The secondary effect is a renormalization of the sideband structure, this opens

gaps at energies where level crossing occurs in equilibrium.

5.3.2 Circularly Polarized Light

We now shift our focus to the more involved problem of circularly polarized light. Circu-

larly polarized light makes even the ky = 0 cut along momentum space intractable analyt-

ically. We can, however, make progress right at the equilibrium Dirac point kx = ky = 0,

the Γ-point. Here we have

HΓ(t) = −~ΩA(t) [cos Ωtσy − sin Ωtσx]− µσ0 (5.3.8)

The above can be written as

HΓ(t) = −~ΩA(t)e−iΩtσz/2σye
iΩtσz/2 − µσ0 (5.3.9)
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Figure 5.5: Comparison of numerical results found by integrating the time dependent Dirac equa-
tion and the analytic approximation in Eq. (5.3.15) for I(0, 0, ω, tO). The left shows I(0, 0, ω, tO)

for different delay times tO while the right shows I(0, 0, ω, tO) also for different delay times but
this time with a pulse FWHM of 500fs instead of 250fs. In these plots the bottom plot is for
tO = −500fs, the middle for tO = −100fs and the top is for tO = 0fs. In all plots the solid
line is the approximation in Eq. (5.3.15) while the circles are numerical results. On the top row
we see reasonable agreement between numerics and our approximation for all three delay times.
When we turn up the pulse width, which effectively makes the ”turn-on” time slower, we see that
the agreement becomes excellent.
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Figure 5.6: Plot of the photocurrent I(kx, 0, ω, tO) at various values of the delay time tO for
circularly polarized light. In the distant past we see only the Dirac cone, as the pump field starts to
turn on we see copies of this cone (sidebands) begin to develop and the Dirac cone becomes gapped
out. At tO = 0 we can plainly see only two sidebands through the cut kx = 0.
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To solve for the evolution under this Hamiltonian we transform to a rotating frame by letting

|ψΓα(t)〉 = eiµ(t−tr)/~eiΩtσz/2|ψ̂Γα(t)〉. Our equation of motion for the wave function then

reads

i~∂t|ψ̂Γα(t)〉 =

(
−~ΩA(t)σy +

~Ω

2
σz

)
|ψ̂Γα(t)〉 (5.3.10)

Our purpose in finding |ψΓα(t)〉 is to build the Green’s function G<
Γ (t, t′) and ultimately

convolve this Green’s function with the probe pulse envelope. Therefore, a good first ap-

proximation would be to find the wave function in the vicinity of tO, the peak time of the

probe-pulse. We therefore make the somewhat crude approximation A(t) → Aeff (tO) in

the above equation of motion, Eq. 5.3.10. This yields an effective (rotating frame) Hamil-

tonian which is time independent. The above equation of motion can be therefore solved

to give:

|ψΓα(t)〉 = eiµ(t−tr)/~eiΩtσz/2 (5.3.11)

× e−iHeff (t−tr)/~|ψ̂Γα(tr)〉

where

Heff = −~ΩAeff (tO)σy +
~Ω

2
σz (5.3.12)

is an effective, time-independent, Hamiltonian in the vicinity of tO. |ψ̂Γα(tr)〉 is the rotating

frame wave function in the distant past. By requiring that the wavefunction |ψΓα(t)〉 at

t→ tr be a simple spinor (whose direction can be arbitrarily chosen due to the degeneracy

at the Dirac point) we find

|ψ̂Γα(tr)〉 = e−iΩtrσz/2|φΓα〉 (5.3.13)
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where {|φΓα〉} are the eigenstates at the Dirac point in the distant past. Using the above,

noting that the eigenvalues of Heff are ±Eeff (tO) = ±
√

(~vFAeff (tO))2 + (~Ω
2

)2, and

performing some additional manipulations which are left for Appendix 5.E we arrive at the

following approximation for the photocurrent

I(0, 0, ω, tO) = 2πT 2
probeIm

[ ∑
αβ,s,s′

f(εΓα)e−i(s−s
′)Eeff (tO)tr/~Asα,β(As

′

α,β)∗ (5.3.14)

× exp
[
−(ω + µ/~− βΩ/2− sEeff (tO)/~)2T 2

probe/2
]

exp
[
−(ω + µ/~− βΩ/2− s′Eeff (tO)/~)2T 2

probe/2
]]

where α, β, s, s′ all run over ±1 and Asα,β = (δα,β − sâ · 〈φβ |~σ|φα〉) /2, |φ+〉 = (1, 0)T ,

|φ−〉 = (0, 1)T and a = aâ = −~ΩAeff (tO)ŷ + ~Ω
2
ẑ. We now note that Eeff (tO) =√

(~vFAeff (tO))2 + (~Ω
2

)2 ≥ ~Ω/2� 1/Tprobe. Thus the distance separating the peaks in

the Guassians above (which is 2Eeff (tO)/~) is much larger than the width of the peaks. We

therefore discard terms where s 6= s′. Further, we note that the eigenvalues in the distant

past εΓα = −µ are independent of α (as we’re at the Dirac point). These two observations

along with some additional straightforward, but tedious, algebra lead to the simplified result

I(0, 0, ω, tO) (5.3.15)

= 2πT 2
probef(−µ)

∑
β,s

(
1− sβâz

2

)
exp

[
−(ω + µ/~− βΩ/2− sEeff (tO)/~)2T 2

probe

]
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Examining the above shows that the ARPES spectrum from the Γ point shows the following

features at energies E (measured from µ) with weights P

E1 = −Eeff (tO) + ~Ω/2 P1 =

(
1 + âz

2

)
(5.3.16)

E2 = Eeff (tO)− ~Ω/2 P2 =

(
1 + âz

2

)
E3 = −Eeff (tO)− ~Ω/2 P3 =

(
1− âz

2

)
E4 = Eeff (tO) + ~Ω/2 P4 =

(
1− âz

2

)

where âz = ~Ω
2Eeff (tO)

. It is obvious from the above that there is no additional spectral

weight in any other energy. When the amplitude A(t) is shut off âz → 1 and we see

E1, E2 → 0 with weights going to unity. At the same time E3, E4 → ±~Ω, albeit with

zero weight.

Our interpretation of the above is as follows. As the pump probe is turned on, the

original two-fold degeneracy at the Dirac point is lifted and a gap is opened up with width

G(tO) =
√

(2~vFAeff (tO))2 + (~Ω)2 − ~Ω (5.3.17)

the weight of these states is
(

1+âz
2

)
which decreases with field strength. The peaks at the

other two energies correspond to single sidebands of the states E1 and E2. Put another

way, E3 = E1 − Ω~ while E4 = E2 + ~Ω. The weights of these sidebands increase with

field strength. Interestingly, unlike our treatment of the linearly polarized light, there is no

statistical weight given to any other sidebands, all of the spectral weight is found within two

sidebands. Note that the same approximations were made in both cases. We would like to

point out that these results should hold when multiple Dirac cones are present in the system.

This effect may however be obscured by the side-bands of higher energy bands. Therefore
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it should be visible provided the driving field is not strong enough for these side-bands to

have a large weight in the vicinity of the Dirac point.

With the above analytic analysis let us move on to numerical methods in an effort to

validate the above description and further explore momenta where an approximate solution

is not tractable. We do this with the side-band language discussed above in mind.

We begin with a simulation at the Gamma point. Fig. 5.5 shows I(0, 0, ω, tO) as a

function of ω for various different values of tO. Both our approximate analytic expression

as well as our numerics are displayed in this plot. We see that the approximation provided

above is in good agreement with the numerics with respect to both the size of the gap and

the position of the sidebands, it also shows that this approximation becomes better when

the width of the pump-pulse gets larger.

Let us now move on to explore a wider range of momentum using our numerical proto-

col. Fig. 5.6 shows the time-evolution of the ARPES spectrum for a cut such that ky = 0.

A cut along kx = 0 looks very similar and such plots would not add to the present discus-

sion. In the figure we see effects common to all results in this work. As the field strength

is turned on the original Dirac cone is copied into sidebands, each of which is populated

only with a certain weight. States in these sidebands then hybridize with each other leading

to gaps. Most notable, our analytic result for the Γ point is verified at the center of the

momentum cut.

5.4 Conclusions

We have provided both simple analytic results and rigorous numerical simulations of TR-

ARPES in a Dirac system. Our results show that the time-evolution of an ARPES spectrum

can be understood using the language of probabilistic occupation of sidebands in a time

periodic system[2, 3]. In this interpretation, the amplitude of the envelope of the externally
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applied field is replaced by a weighted average over the pulse-width of the ARPES probe

waveform. We see the original band structure of the system split into sidebands and these

sidebands are than modified by the presence of the light. Our results are in qualitative

agreement with those of the experimental work in Ref. [1].

Our work also highlights the fact that not all sidebands are equally important. We

showed that despite the repeated folding of the Dirac cone into the Floquet zone only a few

sidebands, which are displaced by a few ~Ωs from the equilibrium energy, contribute to the

time resolved ARPES signal. This point pertains not only to the results of Ref. [1] but also

to other measurements on Floquet topological systems such as transport[2, 3].

Finally, we have explored an interesting interplay between a Dirac point and circularly

polarized light. Our results suggest that under the application of circularly polarized light

the Dirac point is gapped and copied into two side-bands only. This is in contrast to other

systems, and other points in the Brillouin zone, where many sidebands can be seen.
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5.A Integrals Involving the Pump Envelope

As discussed above, we choose to describe this electric field in a gauge where the scalar

potential is zero. Thus we have

Apump(t) = −
∫ t

−∞
dt′Epump(t

′) (5.A.1)

= −E0

∫ t

−∞
dt′e

− t′2

2T2
pumpEΩ(t′)

where we have chosen in initial condition such that Apump(t)→ 0 for t→ −∞.

Let us define the frequency scale associated with the pump pulse Ωpump = 2π/Tpump.

We work in the limit

Ωpump � Ω (5.A.2)

such that there are many oscillations within the pump field envelope. We now define

EΩ(t) = − Ẽ′Ω(t)

Ω
and integrate by parts to obtain

Apump(t) =
E0

Ω
e
− t′2

2T2
pump ẼΩ(t′)

∣∣t
−∞ (5.A.3)

+
E0

ΩT 2
pump

∫ t

−∞
dt′t′e

− t′2

2T2
pump ẼΩ(t′)

=
E0

Ω
e
− t2

2T2
pump ẼΩ(t) +O

(
Ωpump

Ω

)

The above process could in principle be iterated to produce a perturbative expansion in

Ωpump
Ω

, although we stop here for practicality. We could alternatively write Ωpump
Ω

= T
Tpump

,

which tells us this expression is valid in the limit T � Tprobe; i.e. the amplitude changes

on a much longer time scale than the period of oscillation. We neglect all but the leading

order terms. Continuing the procedure above shows that the next to leading order term is
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of order
(

Ωpump
Ω

)2

. Thus we work in a regime where

Apump(t) '
E0

Ω
e
− t2

2T2
pump ẼΩ(t) (5.A.4)

5.B Green’s Function

We now consider the quantity

G<
k,αβ(t, t′) = i〈c†kβ(t′)ckα(t)〉 (5.B.1)

In order to define a useful quantity we consider the equation of motion for the electronic

operators:

ċkα(t) = i[H(t), ckα(t)] (5.B.2)

where the over-dot denotes differentiation with respect to time andH(t) =
∑

k,α,β c
†
kαHk,αβ(t)ckβ .

Using the Hamiltonian defined above and calculating the commutator gives

ċkα(t) = −iHk,αβ(t)ckβ(t) (5.B.3)

where summation over repeated indices is implied. The above equation is linear in elec-

tron operators. We thus try a solution of the form ckα(t) = Ukαα′(t, tr)ckα′(tr) where the

Ukαα′(t, tr) are complex numbers. Plugging this in gives

U̇kαα′(t, tr)ckα′(tr) = −iHk,αβ(t)Ukβα′(t, tr)ckα′(tr) (5.B.4)

Which implies

iU̇kαα′(t, tr) = Hk,αβ(t)Ukβα′(t, tr) (5.B.5)
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promoting U and H to matrices gives

i∂tUk(t, tr) = Hk(t)Uk(t, tr) (5.B.6)

The formal solution to the above equation is

Uk(t, tr) = T
(
e−i

∫ t
tr
dτHk(t)

)
(5.B.7)

and it obeys Uk(t, t′)Uk(t′, tr) = Uk(t, tr) and (Uk(t, tr))
† = Uk(tr, t), where T is the time

ordering operator. Using this solution we can write

G<
k,αβ(t, t′) = iUkαα′(t, tr)U

∗
kββ′(t

′, tr)〈c†kβ′(tr)ckα′(tr)〉

= Ukαα′(t, tr)G
<
k,α′β′(tr, tr)U

∗
kββ′(t

′, tr) (5.B.8)

Writing the above in matrix form gives

G<
k (t, t′) = Uk(t, tr)G

<
k (tr, tr)U

†
k(t′, tr) (5.B.9)

or

G<
k (t, t′) = Uk(t, tr)G

<
k (tr, tr)Uk(tr, t

′) (5.B.10)

Which is conceptually appealing. We begin at t′, propagate back to tr where we know

the Green’s function and then propagate forward to t. We now assume that the system

begins at time tr in equilibrium in a system obeying the unperturbed Hamiltonian. Thus

we write G<
k (tr, tr) = i

∑
α |φkα〉〈φkα|f(Ekα). Noting that |ψkα(t)〉 = Uk(t, tr)|φkα〉

then immediately leads to the expression for the Green’s function used in the main text,

Eq. 5.2.12 .
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5.C Gauge Choice

In considering the effects of electromagnetic fields we must ensure that our theory is gauge

invariant. A general gauge transformation is applied as follows

A(r, t)→ A(r, t) +∇χ(r, t) (5.C.1)

Φ(r, t)→ Φ(r, t)− ∂tχ(r, t)

cjσ → eieχ(rj ,t)/~cjσ

Within the so called “Hamiltonian gauge” used above we take Φ = 0 and E(t) = −∂tA(t).

Therefore, to remain within this choice of Gauge and not change our problem in a non-

trivial way by for example, introducing a spatial dependence, we must be free to introduce

a Gauge change χ = r · f where f is an arbitrary, constant vector. This amounts to the

Gauge change A(t) → A(t) + f , Φ(r, t) → Φ(r, t) and cjσ → eierj ·f/~cjσ. Fourier trans-

forming the electron annihilation operator leads to the result that the Gauge change makes

the modification ckσ → ck−ef ,σ. Note also that Hk(t) → Hk−ef (t) under this transforma-

tion. Thus our time evolution operators change as Uk(t, t′)→ Uk−ef (t, t
′) and therefore all

of the Greens functions defined above transform as Gk(t, t′) → Gk−ef (t, t
′) and are thus

not Gauge invariant.

It is useful to note conceptually where this Gauge freedom comes from. We require

E(t) = −∂tA(t) which in turn gives

A(t) = −
∫ t

O
dt′E(t′) + A(O) (5.C.2)

where the initial condition A(O) is unfixed by the electric field. Thus the freedom we have

lies in our choice of the reference A(O). Recall the turn on procedure we have in mind:

the pump field is off for t < tr and is switched on after-words. Therefore, for this choice
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of set-up it is convenient to express A as follows

A(t) = −Θ(t− t0)

∫ t

tr

dt′E(t′) + A(t0) (5.C.3)

= Aphysical(t) + A(tr)

but A(tr) ≡ A0 is still entirely arbitrary. Thus we would like a theory completely indepen-

dent of A(tr). This is equivalent to the statement above that the Gauge invariant quantities

should be independent of f , as all f constitutes is a shift in the value of A(tr).

We now note that Green’s functions G̃k(t, t′) ≡ Gk+eA0(t, t′) are unchanged by the

Gauge transformation A(t) → A(t) + f as the shift k → k − ef in the Gauge dependent

wave function cancels out the shift A0 → A0 + f . An equivalent finding is that

Uk+eA0(t, tr) = T
(
e−i

∫ t
tr
dτHk+eA0

(t)
)

(5.C.4)

but

Hk+eA0(t) = hk−eA(t)+eA0 (5.C.5)

= hk−eAphysical(t)−eA0+eA0 = hk−eAphysical(t)

where hk is the Dirac Hamiltonian. Therefore Hk+eA0(t) is independent of our arbitrary

choice of A0, meaning that Uk+eA0(t, tr) and thusGk+eA0(t, t′) are gauge invariant as well.

Of course the most natural choice is to set A0 = 0 so that the (equilibrium) Hamiltonian

before the switch on time tr is simply hk, as one would like it to be. For this choice of

initial condition the Gauge invariant Greens function and the traditional Greens function

are identical.
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5.D Linearly Polarized Light

Here we go over the details leading to Eq. (5.3.6) in the main text. Assuming Tpump �

2π/ω, ∫ t

t′
dt′′Ax(t

′′) =
E0

Ω2

(
e−t

2/2T 2
pump sin Ωt− e−t′2/2T 2

pump sin Ωt′
)

and using the identity eix sin Ωt =
∑

m Jm(x)eimΩt in the wave functions for the linearly

polarized light the photocurrent with ky = 0 reads

I(kx, 0, ω, tO) (5.D.1)

=
∑
α

f(εkx,0,α)

∣∣∣∣∣∑
m

∫ ∞
−∞

dt1Jm (αA(t1)) e
− (t1−tO)2

2T2
probe e−i(ω−αvF kx+µ

~−mΩ)t1

∣∣∣∣∣
2

In the above, Jm (αA(t1)) describes a splitting of the eigenstates into sidebands, labeled

by m, where the amplitudes of these sidebands depend on time. Meanwhile s(t1 − t′) =

e
− (t1−tO)2

2T2
probe is the profile of the probe pulse and e−i(ω+αvF kx+µ

~−mΩ)t1 describes having en-

ergies not just at ±vFkx − µ, but also at values m~Ω above and below these values. The

integral above is of course intractable to perform exactly. We can make progress using

a series of appropriate approximations. The first is that the probe pulse is much shorter

than the pump pulse. Therefore A(t) changes very slowly over the duration of e
− (t1−tO)2

2T2
probe .

We can therefore simply replace the Jm (αA(t1)) term with its value at the peak t1 = tO.

However we observe that a better approach is to replace A(t) = eE0vF
~Ω2 e−t

2/2T 2
pump with a

weighted average over the probe pulse. Thus we define

Aeff (tO) =

∫
dte
− (t−tO)2

2T2
probe A(t)∫

dte
− (t−tO)2

2T2
probe

(5.D.2)

Once we have made this replacement the remaining integral can be done analytically and
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gives

I(kx, 0, ω, tO) = 2πT 2
probe

∑
α,m.m′

f(εkx,0,α)Jm (αAeff (tO)) Jm′ (αAeff (tO)) (5.D.3)

× exp
[
−(ω − αvFkx +

µ

~
−mΩ)2T 2

probe/2
]

exp
[
−(ω − αvFkx +

µ

~
−m′Ω)2T 2

probe/2
]

The width of the peaks described by the Gaussians above are set by the frequency scale

1/Tprobe. The two Gaussians describe peaks centred at αvFkx− µ
~ +mΩ and αvFkx− µ

~ +

m′Ω. Thus the separation between the two peaks is (m−m′)Ω. If the decay scale 1/Tprobe

is much smaller than the smallest separation Ω, i.e. 1/Tprobe � Ω then the peaks do not

overlap at the same frequency and so the major contribution to the double sum comes from

the m′ = m terms. Working in this approximation gives

I(kx, 0, ω, tO) = 2πT 2
probe

∑
α,m

f(εkx,0,α)J2
m (Aeff (tO))

× exp
[
−(ω − αvFkx +

µ

~
−mΩ)2T 2

probe

]
(5.D.4)

5.E Circularly Polarized Light

We begin with the approximate wave function found in the main text, reproduced here for

convenience

|ψΓα(t)〉 = eiµ(t−tr)/~eiΩtσz/2 (5.E.1)

× e−iHeff (t−tr)/~e−iΩtrσz/2|φΓα〉

. We note that in order to find the trace of the Green’s function we will require 〈φΓ,β|ψΓα(t)〉

(and its complex conjugate). In the distant past the field is turned off and so the Hamiltonian

is hΓ(t → −∞) = −µσ0. Thus we are free to choose any “initial” set of states, provided
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they are orthonormal. For convenience we choose {|φΓα〉} to be (1, 0)T and (0, 1)T , which

we label |φα〉 with α = ±1. From this point forward we will drop the Γ subscript in the

interest of brevity. This leads to the following

〈φΓ,β|ψΓα(t)〉 = ei(µ+β~Ω/2)t/~e−i(µ+α~Ω/2)tr/~

×
〈
φβ
∣∣e−iHeff (t−tr)/~

∣∣φα〉 (5.E.2)

In order to calculate the matrix elements of e−iHeff (t−tr)/~ we write the argument of the

exponential as follows

(
−~vFAeff (tO)σy +

~Ω

2
σz

)
=
Eeff (tO)

~
â · ~σ (5.E.3)

where â = (−~vFAeff (tO)

Eeff (tO)
ŷ +

~Ω
2

Eeff (tO)
ẑ) is a unit vector and we remind the reader that

Eeff =
√

(~vFAeff (tO))2 + (~Ω/2)2. Making use of the identity e−ixâ·~σ = cos (x)σ0 −

i sin (x) â · ~σ one can show that

〈
φβ
∣∣e−iHeff (t−tr)/~

∣∣φα〉
=

∑
s=±1

ei
sEeff (tO)

~ (t−tr)Asα,β (5.E.4)

where Asα,β = (δα,β − sâ · 〈ψβ |~σ|ψα〉) /2 which leads to

〈φΓ,β|ψΓα(t)〉 = (5.E.5)∑
s=±1

ei(µ+β~Ω/2+sEeff (tO))t/~e−i(µ+α~Ω/2+sEeff (tO))tr/~Asα,β
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Using the above, an equivalent result for 〈ψΓα(t′)|φΓβ〉, and performing the t1 and t2 inte-

grals gives

I(0, 0, ω, tO) = (5.E.6)

2πT 2
probe

∑
αβ,s,s′

f(εΓα)e−i(s−s
′)Eeff (tO)tr/~Asα,β(As

′

α,β)∗

× exp
[
−(ω + µ/~− βΩ/2− sEeff (tO)/~)2T 2

probe/2
]

× exp
[
−(ω − µ/~− βΩ/2− s′Eeff (tO)/~)2T 2

probe/2
]

Recalling that we are working under the assumptionEeff (tO) =
√

(~vFAeff (tO))2 + (~Ω
2

)2 ≥

~Ω/2 � 1/Tprobe, the distance separating the peaks in the Gaussians above (which is

2Eeff (tO)/~) is much large than the width of the peaks. We therefore discard terms where

s 6= s′ which gives us

I(0, 0, ω, tO) = 2πT 2
probe

∑
αβ,s

f(εΓα)|Asα,β|2 (5.E.7)

× exp
[
−(ω + µ/~− βΩ/2− sEeff (tO)/~)2T 2

probe

]
We note that the eigenvalues in the distant past are εΓα = −µ, where are independent of

α (as we’re at the Dirac point). At this point the only α dependence left in the summand

comes from the matrix elements |Asα,β|2. Some algebra shows
∑

α |Asα,β|2 = 1−sβâz
2

leading

to our final result

I(0, 0, ω, tO) = 2πT 2
probef(−µ)

∑
β,s

(
1− sβâz

2

)
(5.E.8)

× exp
[
−(ω + µ/~− βΩ/2− sEeff (tO)/~)2T 2

probe

]
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9A. Roth, C. Brüne, H. Buhmann, L. W. Molenkamp, J. Maciejko, X.-L. Qi, and S.-C.

Zhang, Science 325, 294–297 (2009).

10J. Li, R.-L. Chu, J. K. Jain, and S.-Q. Shen, Phys. Rev. Lett. 102, 136806 (2009).

11J. Borchmann, A. Farrell, and T. Pereg-Barnea, Phys. Rev. B 93, 125133 (2016).

12N. H. Lindner, G. Refael, and V. Galitski, Nat Phys 7, 490 (2011).

13Z. Gu, H. A. Fertig, D. P. Arovas, and A. Auerbach, Phys. Rev. Lett. 107, 216601 (2011).

14T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009).

15G. Usaj, P. M. Perez-Piskunow, L. E. F. Foa Torres, and C. A. Balseiro, Phys. Rev. B 90,

115423 (2014).

16H. L. Calvo, H. M. Pastawski, S. Roche, and L. E. F. F. Torres, Applied Physics Letters

98 (2011).

http://dx.doi.org/10.1126/science.1239834
http://dx.doi.org/10.1103/PhysRevLett.115.106403
http://dx.doi.org/10.1103/PhysRevB.93.125133


167
CHAPTER 5. TIME-DEPENDENT POPULATION OF SIDEBANDS IN A DIRAC

SYSTEM

17L. Foa Torres, P. Perez-Piskunow, C. Balseiro, and G. Usaj, Unpublished, arXiv:1409.2482v1

(2014).
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28P. Delplace, Á. Gómez-León, and G. Platero, Phys. Rev. B 88, 245422 (2013).

29Y. Li, A. Kundu, F. Zhong, and B. Seradjeh, Phys. Rev. B 90, 121401 (2014).

30P. Titum, N. H. Lindner, M. C. Rechtsman, and G. Refael, Phys. Rev. Lett. 114, 056801

(2015).

31K. I. Seetharam, C.-E. Bardyn, N. H. Lindner, M. S. Rudner, and G. Refael, Unpublished,

arXiv:1502.02664 (2015).

32H. Sambe, Phys. Rev. A 7, 2203–2213 (1973).

33M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte,

M. Segev, and A. Szameit, Nature 496, 196–200 (2013).



REFERENCES 168

34M. Sentef, M. Claassen, A. Kemper, B. Moritz, T. Oka, J. Freericks, and T. Devereaux,

Nature communications 6 (2015).

35L. D’Alessio and M. Rigol, Phys. Rev. X 4, 041048 (2014).

36L. D’Alessio and M. Rigol, Unpublished, arXiv:1409.6319 (2014).

37A. Lazarides, A. Das, and R. Moessner, Phys. Rev. E 90, 012110 (2014).
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6

Conclusions

6.1 Summary of this Thesis

The main theme of this thesis has been driving and manipulating topological states of mat-

ter using externally applied perturbations. In particular, it has explored the use of a Zeeman

field for this purpose in a topological superconductor, and the use of time-periodic pertur-

bations for this purpose in topological insulators.

Chapter 2 was interested in interacting, spin-orbit coupled electrons. A renormalization

group method approach showed that for a range of parameters in the original model the

most dominant pairing channel has either p-wave or f -wave symmetry. Such an interaction

will then lead to Cooper pairs with either a p-wave or an f -wave order parameter. This

manuscript went on to show that, for an appropriate parameter set, the superconductivity

developed in this way should be topological in nature and will therefore support Majorana

modes. Thus the main conclusion of this work is that interactions, rather than proxim-

ity effect, and an appropriately applied Zeeman field may be used to drive a topological

superconducting state.

Chapter 3 explored how a time-periodic, external perturbation may be used to manip-

169
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ulate the transport properties of a 2D topological insulator. This was done by developing

an analogue of a photon-assisted tunneling picture, where electrons in the system only ac-

cess the topologically protected edge states probabilistically. This probabilistic viewpoint

thereby reduced the traditional values associated with transport measurement in a topo-

logical insulator. Nonetheless, the transport values obtained are still a result of topology

and will therefore maintain their robustness property. In this way, this work shows that a

time-periodic perturbation may be used to strongly manipulate the topologically protected

transport values of a 2D TI.

Chapter 4 continued along the path laid by the manuscript in Chapter 3, with the im-

portant distinction that this work started by considering a system that is not topological

without the application of a time-periodic field. This work showed that an externally ap-

plied, time-periodic field may be used to create topologically protected edge-states with

very specific transport properties. Similar to the system in Chapter 3, these specific, topo-

logical, transport properties can be manipulated by using the external perturbation. Thus

Chapter 4 studies a system where an externally applied perturbation is used to both create

a topological state, and to manipulate this topological state after it has been created.

Finally, chapter 5 of this work explored the manipulation of the surface Dirac states in

a 3D TI with applied light. This work further supports the theme established in Chapter 3

that these states can be understood in terms of probabilistically occupying side-bands in the

periodic system. It showed that different polarizations of light can be used to affect these

sidebands in unique ways. Linearly polarized light can create a direct splitting of the Dirac

cone into multiple Dirac cones, meanwhile circularly polarized light gaps the Dirac points

and creates only two sidebands. The results in Chapter 5 were also discussed in connection

with recent experimental progress, where good qualitative agreement is found.
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6.2 Future Directions

Before closing this work we will briefly discuss several potential extensions of the work

contained herein. We will begin with the work on topological superconductors and finish

with potential extensions of the non-equilibrium work on topological insulators.

First, the work in Chapter 2 provided a rigorous analysis of interactions in a 2D spin-

orbit coupled electron system. That fact notwithstanding, once the tools of RG analysis

were used to establish the symmetry of the superconducting order parameter, a mean-field

treatment of the topological invariant (assuming this pairing symmetry) had to be utilized.

A useful possible extension would therefore be to incorporate a way to determine the topo-

logical class of the system using the more thorough tools of RG analysis.

Second, an interesting possible extension, and unification, of the work in Chapters 3

through 5 would be a calculation of the AC conductivity in a driven topological insula-

tor. The main conclusion of Chapters 3 and 4 was that to recover the traditional transport

signatures of a 2D TI, one must employ a sum rule of conductivities at energies separated

by the frequency of the driving field. It may be possible to design an AC bias in a way

that the AC conductivity somehow achieves, or partially achieves, this goal. This set-up

would represent a more concise way of making this measurement. Treating this problem

will involve a pump-pulse type methodology and so the formalism of Chapter 5 will be an

excellent starting point.
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