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Abstract

We present schemes for stabilizing entangled states between bosonic cavity modes. We

consider a pair of cavities connected with a nonreciprocal waveguide, realizing a cascaded

quantum system. The second cavity is tuned to perfectly absorb all output of the first.

Both cavities are subject to resonant two-photon parametric drives, and are equipped with

optional local self-Kerr nonlinear interactions. The system is driven into a pure, unique

entangled steady-state. In the case of just having parametric drives, the resulting state

exhibits two-mode squeezing that can be made arbitrarily large. With Kerr nonlinearities

present, we instead stabilize an entangled two-mode cat state. We show that unwanted

losses in the system do not prevent us from maintaining high fidelity of F > 0.9 within

realistic experimental parameters. We discuss the rates and time scales needed for the

transient dynamics to reach this desired steady-state, and propose methods of expediting

the stabilization using adiabatic ramps of the drives. Finally, we investigate the underlying

theory of the perfect absorber recipe used, demonstrating the reduced role of nonreciprocity

in contrast to conventional literature on the subject.
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Résumé

Nous présentons des schémas pour stabiliser les états enchevêtrés entre les modes de cavité

bosonique. Nous considérons une paire de cavités liées à un guide d’ondes non réciproque,

réalisant un système quantique en cascade. La deuxième cavité est réglée pour absorber

parfaitement tout ce qui sort de la première. Les deux cavités sont soumises à un processus

paramétriques à deux photons résonnants et sont équipées d’interactions non linéaires auto-

Kerr locales optionnelles. Le système mené à un état enchevêtré stable et unique. Dans le cas

d’avoir simplement des processus paramétriques, l’état résultant présente une compression à

deux modes qui peut être arbitrairement grande. Avec les non-linéarités de Kerr présentes,

nous stabilisons plutôt un état cat à deux modes enchevêtré. Nous montrons que les pertes

indésirables dans le système ne nous empêchent pas de maintenir une fidélité élevée de

F > 0, 9 avec des paramètres expérimentaux réalistes. Nous discutons des taux et échelles de

temps nécessaires à la dynamique transitoire pour atteindre cet état d’équilibre souhaité, et

proposons des méthodes d’accélération de la stabilisation à l’aide de rampes adiabatiques des

forces paramétriques. Enfin, nous étudions la théorie sous-jacente de la recette absorbante

parfaite utilisée, démontrant le rôle réduit de non réciprocité contrairement à la littérature

conventionnelle sur le sujet.
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Chapter 1

Introduction

Can something be improved by having things taken out of it? Even in the normal world,

the answer is yes. We need only look at the examples of a hole being dug in the ground, or

an overly long master’s thesis. But in the mysterious world of quantum mechanics, we can

find answers to this question that are far more interesting.

The subject of this thesis is the generation of entangled states between cavity modes

in quantum optics. There has been enormous growth in this field towards the applications

of quantum information [1], quantum communications [2] and photonic networks [3]. Such

states can be made more robust to imperfections and noise, because they involve the overall

dynamics of an infinite-dimensional Hilbert space rather than individual degrees of freedom.

The primary experimental platform that we consider is circuit quantum electrodynam-

ics (cQED) [4]. In contrast to more conventional cavity quantum electrodynamics, cQED

replaces real interacting atoms with artificial ones. This platform has gained recent pop-

ularity for providing simple and compact ways of realizing strong coupling between circuit

elements [5, 6]. It can be used to implement squeezing interactions [7, 8] and strong nonlin-

earities [9, 10, 11], which we will use to generate entangled states.

Entanglement is a crucial resource for any implementation of quantum computation [12],

but there are still several obstacles to its generation. Any realistic quantum computer or

network in quantum optics needs to have many cavities. Being able to entangle any two of

1
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them requires some nontrivial, nonlocal interaction between each pair. This quickly grows

intractable if we want to entangle cavities fast enough to do something useful with them,

leading to scaling and resource issues. There has been work in the literature on creating

nonlocal cavity entanglement [13, 14, 15], but the challenge of scaling has not yet been

resolved.

One promising avenue for entanglement generation is the use of engineered dissipative

reservoirs [16]. These allow the system to reach a steady-state exhibiting entanglement or

other nonclassical properties by selectively cooling the normal modes of the system [17, 18, 19,

20, 21]. The resulting state remains stable, and can be transported for use in another part of a

quantum computer when needed. However, such setups still remain resource-intensive. Even

for a quadratic system with no true nonlinearities, two engineered reservoirs are needed to

cool the system’s normal modes, which poses a challenge for scalable experimental setups [20,

19, 21].

In this thesis, we propose two simple, low-resource systems that can create pure entan-

gled bosonic cavity states. We only employ local interactions, avoiding the issue of scaling.

Furthermore, we make use of just a single engineered dissipative reservoir, realized in the

context of cascaded systems. We directionally decouple one of our cavities from the other,

creating a nonreciprocal setup that maximizes the possible entanglement between the two.

The first system will generate two-mode squeezed states using only quadratic, local para-

metric drives. The second system will extend the recipe of the first to include local Kerr

nonlinearities, allowing for non-Gaussian entangled cat states to be generated. The latter

has seen much recent development, as cat states provide a robust platform for universal

quantum computation [22, 23, 24, 25, 26, 27, 28].

In chapter 2, we will give a short overview of the relevant background information. Chap-

ter 3 will discuss the system that generates two-mode squeezed states. Chapter 4 will go over

the entangled cat-generating system. Chapter 5 will discuss ways of expediting our system’s

state generation using adiabatic drive ramps.
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Chapter 2

Relevant background from quantum optics

2.1 Commonly-used states

Before diving into the systems that we have designed, we give a short review of relevant

material. We will first talk about the kinds of states that our cavities can be populated by.

We then discuss the Lindblad master equation used to describe dissipation in the cavities.

Lastly, we go over the special case of cascaded quantum systems, and show the perfect

absorber recipe that can be applied to them to generate pure entangled steady-states.

2.1.1 Coherent states

The cavity in question is a resonant electromagnetic mode of an LC circuit. It is characterized

by annihilation and creation operators â, â†, which act on the Fock-state basis |n〉, and obey

the standard commutation relations of [â, â†] = 1.

The base ingredient to any more complicated state in quantum optics is the coherent

state. It is defined by,

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 , (2.1)

where α is the coherent amplitude. This state is an eigenvector of the annihilation operator,

â |α〉 = α |α〉. The coherent state is the closest analogue to a classical state. A driven

quantum harmonic oscillator with coherent eigenstates has the equations of motion for its

3
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expectation values mimic those of a classical harmonic oscillator.

2.1.2 Squeezed-states

A coherent state’s quadratures have a fixed level of uncertainty in phase space. This un-

certainty is equal for both quadratures, and satisfies the minimum amount required by the

Heisenberg uncertainty principle.

However, the Heisenberg uncertainty principle is only an inequality that constrains the

product of the uncertainties, not their individual values. We can thus envision a state that

has less than the minimum uncertainty for one of the quadratures, at the price of having it

higher than the minimum in the other quadrature [1, 29]. Such a state may be generated

with the squeezing operator,

Ŝ(ζ) = e
1
2

(ζââ−h.c.),

ζ = reiθ.

(2.2)

If we act with Ŝ(ζ) on a vacuum-state |0〉, we will get a squeezed-state. The parameter

ζ controls the amplitude and phase-space axis of squeezing. In particular, for a squeezed

vacuum state Ŝ(ζ) |0〉, we have,

〈(∆ŷ1)2〉 =
1

2
e−2r

〈(∆ŷ2)2〉 =
1

2
e2r,

(2.3)

where ŷ1, ŷ2 depend on the rotation angle θ,

ŷ1 = − cos

(
θ

2

)
x̂− sin

(
θ

2

)
p̂,

ŷ2 = sin

(
θ

2

)
x̂− cos

(
θ

2

)
p̂,

(2.4)

as well as the base quadratures of the system,

x̂ =
1√
2

(
â+ â†

)
, p̂ =

−i√
2

(
â− â†

)
. (2.5)
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One way to generate a squeezed state is to use a parametric drive, implemented with a

degenerate parametric down-converter [30, 31]. After all relevant approximations, the drive

Hamiltonian will take the form of,

Ĥsqz = ωcâ
†â+ λ

[
e2iωdtââ+ h.c.

]
, (2.6)

Here, ωc is the base cavity frequency and λ is the amplitude of the parametric drive. Since

this Hamiltonian is still time-dependent, we make a rotating-frame transformation,

Ĥrsqz = Û †ĤsqzÛ − iÛ †
d

dt
Û ,

Û = e−iωdâ
†ât.

(2.7)

The result is,

Ĥrsqz = (ωc − ωd)â†â+ λ(ââ+ h.c.). (2.8)

If we now drive on-resonance at ωc = ωd, we can write the time-evolution operator for the

system’s wavefunction,

|ψ(t)〉 = e−iĤrsqzt |ψ(0)〉

= e
1
2

(−2iλââ−h.c.) |ψ(0)〉

= Ŝ(−2iλt) |ψ(0)〉 .

(2.9)

The system’s initial state becomes squeezed as a function of time.

Squeezed-states are nonclassical states of light. A single-mode squeezed state is useful

for measurement protocols. If we can couple some quantity of interest to the quadrature

that gets squeezed, the noise in its resulting measurement will be reduced.

Another key advantage is their ability to generate entanglement. If we have two cavities

(annihilation operators â, b̂), and instead squeeze two of the four combined quadratures of

the system, the resulting two-mode state will become entangled. Doing so with a direct
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Hamiltonian interaction requires a nonlocal drive of the form,

Ĥtms = λ(âb̂+ h.c.) (2.10)

The system we will describe in the next chapter will circumvent this requirement with dis-

sipation.

Before we move on, we need to mention the issue of parametric instability. Assuming

that the initial state for the above calculation was |ψ(0)〉 = |0〉, the resulting state can be

written in the Fock basis as [30],

Ŝ(ζ) |0〉 = N
∞∑
n=0

[
−e−iθ tanh(r)

]n√(2n− 1)!!

(2n)!!
|2n〉 , (2.11)

where N is a normalization constant. For Ĥrsqz we would have θ = 0, but we write the

general form to make use of later.

Since the squeezing parameter of Ĥrsqz is linearly dependent on time, then for t → ∞

the coefficients of the higher Fock states will diverge. The driven system is parametrically

unstable. In an experiment, this means that whatever pump or source drives the system will

flood it with photons, causing the populations in the cavities to diverge. This will in turn

lead to the Hamiltonian of the system breaking down, because higher-order nonlinearities

will become relevant to the dynamics. This concern is exclusive to bosonic systems which

have no limit to the population that each state can hold.

We can circumvent parametric instability by driving off-resonance, adding other terms

to impose energy cost for excitations, or including dissipation.

2.1.3 Cat states

While the squeezed state does not have a straightforward analogue in classical mechanics,

it still has a positive Wigner function. Squeezed states are Gaussian, and can be generated
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with a quadratic system. We now consider a more interesting, non-Gaussian set of states.

The states we will look at are the cat states, defined by,

|C±(α)〉 =
1√

2(1± e−2|α|2)
(|α〉 ± |−α〉) . (2.12)

The summed state |C+(α)〉 is known as an even cat, whereas |C−(α)〉 is an odd cat. The

even cat has an overall even parity, only having nonzero amplitude on the Fock states |0〉,

|2〉, etc. Likewise, the odd cat only inhabits |1〉, |3〉, etc.

Cat states form a superposition of two coherent states. The original Schrodinger’s cat

was a satirical thought experiment involving a superposition of two macroscopic states - the

living and dead cat. A cat state is a more realistic implementation of this idea. Of course,

instead of cat well-being, we use coherent states. Since coherent states can be related back

to something classical, the cat states allow us to come closer to the idea of a macroscopic

quantum superposition.

Aside from being an example of quantum phenomena in action, the cat states have seen

recent uses in quantum information [22, 25]. Their superposition structure and orthogonality

allows them to be used for qubits, representing a logical zero state with the even cat and a

logical one with the odd cat (or vice-versa).

Cat states are harder to generate than squeezed or coherent states. Since they are non-

Gaussian, they require true nonlinear interactions. Implementations exist using homodyne

detection on number states [32], laser pulse down-conversion [33], quantum nondemolition

measurements [34] and others discussed in Ref. [30].

Older work has made use of Kerr nonlinear interactions to make cats at specific time

snapshots during transient evolution [35]. This thesis will use Kerr nonlinearities to stabilize

entangled cat states in the steady-state, which will be discussed in Chapter 4.

7
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2.1.4 Wigner function

All the cavity states described in the previous sections have an inherent uncertainty in their

quadratures due to the Heisenberg uncertainty principle. We can quantify this uncertainty

with the Wigner function [36], which is a quasiprobability distribution describing a state in

its two-dimensional phase space.

The two components of the phase space are the quadrature eigenvalues x, p for the

continuous-variable operators x̂ = (â + â†)/
√

2, p̂ = −i(â − â†)/
√

2. For a density ma-

trix ρ in the Fock basis, the Wigner function of α = x+ ip is defined by,

W (α) = 2tr
[
ρD(α)eiπâ

†âD†(α)
]
,

D(α) = eαâ
†−α∗â

(2.13)

Here, D(α) is the displacement operator. For a classical harmonic oscillator, the displacement

operator simply takes the system from the origin to the point α. In the quantum case, we

will instead generate a coherent state of amplitude α.

The reason that we refer to the Wigner function as a quasiprobability distribution is

because certain states can cause it to take on negative values. Having a negative Wigner

function indicates that the state exhibits strongly non-classical properties such as superposi-

tion, and is an indicator of non-Gaussian states. The negativity of the Wigner function can

be used as a metric of how ‘quantum’ a particular state is.

Fig. 2.1 shows sample Wigner function plots for the three types of states discussed in this

subsection. Note that the cat state has interference fringes resulting from the superposition

structure.

We also note that there are other quasiprobability distributions used to describe cavity

mode states, such as the P-representation [36] or the Q-function [37].

8
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Figure 2.1: (a) Wigner function of a coherent state |α〉 with α = 2. (b) Wigner function of a squeezed
vacuum state S(ζ) |0〉, with squeeze parameter ζ = 0.8eiπ/2. (c) Wigner function of an even cat state |C+(α)〉
with amplitude α = 2.

2.2 Lindblad master equation

2.2.1 Equation form

In any realistic experiment, there will be external noise and dissipation. We can minimize

these through the use of vacuum chambers or very low temperatures, but it is not possible

to completely isolate the fragile quantum degrees of freedom. Any cQED setup will have

some leakage rate due to imperfect isolation of the circuit elements. Including nontrivial

Hamiltonian terms provides additional complexity to the system, which brings more potential

sources of dissipation. Above all, photons need to be able to leave the system if we want to

measure it.

Unwanted dissipation involves the coupling of our cavity to a thermal bath or reservoir.

This reservoir typically involves an enormous number of excitations and degrees of freedom.

Solving for analytic dynamics with its full Hilbert space becomes intractable.

What we do instead is describe the system’s evolution without fully understanding what

happens to the bath. We trace out the bath degrees of freedom, leaving just a modified equa-

tion for the density matrix that incorporates the effect of the bath into the dynamics. Since

we do not keep in the information about the bath itself, its action on the system becomes

stochastic in nature. Instead of deterministic coherent evolution, our system will undergo a

9
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probabilistic one, described by a master equation. Under a series of approximations, which

will be discussed in the next subsection, we can simplify the result down into a well-known

form known as the Lindblad master equation [38].

Note that this thesis will not go into the full mathematical details. A quantum jump-

based derivation is given in Ref. [39], while microscopic derivations are discussed in Refs. [40,

41, 42].

The Lindblad master equation for a quantum system with Hamiltonian Ĥ takes the form

of,
d

dt
ρ = −i[Ĥ, ρ] +

∑
k

γkL[ẑk]ρ,

L[ẑ]ρ = ẑρẑ† − 1

2
ẑ†ẑρ− 1

2
ρẑ†ẑ.

(2.14)

The first term is just the ordinary, coherent evolution due to the system Hamiltonian. The

second terms represent different dissipative processes, which can also be called ‘decay chan-

nels’. The coefficients γk tell us the rate at which each decay process occurs. The operators

ẑk are called jump operators. Their original role was to describe how the system couples to

the environment. They now represent the way that the reservoir acts on the system to induce

dissipation. The simplest example of a jump operator is just a cavity annihilation operator,

ẑ = â. Such a decay channel would involve photons hopping from the cavity into the modes

of the reservoir, one at a time. More complicated examples can involve subtracting more

than one photon at a time, or having correlated dissipation involving more than one cavity.

The Lindblad superoperator L[ẑ] acts on the density matrix. Its first term represents the

action of the bath on the system. The second two terms in the Lindblad superoperator can be

thought of as measurements. When the bath acts with its jump operator, it simultaneously

makes a measurement of the system state.

The Lindblad equation is the only form of a master equation that is guaranteed to be

completely positive and trace preserving at all times, for any initial conditions. This key

property allows the system density matrix to remain a density matrix regardless of the initial

condition.

10
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One more thing to note is that we will often be interested in the steady-state solution,

which is the density matrix that satisfies:

d

dt
ρst = 0. (2.15)

The bath will tend to push or relax the system into a state where any driving or coherent

terms in the Hamiltonian are perfectly balanced against the dissipation. The steady-state

represents what the system will look like in the infinite-time limit. This is useful information,

because a steady state is far easier to understand and measure than a transient one. Instead

of having to predict the evolution and measure it at just the right time, all we have to do to

reach the steady-state is set the system up and wait.

Bear in mind that steady-states are not always unique. If there is some symmetry in the

system, such as parity symmetry, different initial conditions for the evolution will lead to

different final results. These symmetries can be mapped back to conserved quantities in the

system. See Ref. [43] for details.

We also note that steady-states are not guaranteed to exist. As a rule of thumb, if there

are coherent oscillations in the system due to its internal Hamiltonian ĤS, all the oscillating

degrees of freedom must have some way of connecting back to the dissipation to be relaxed

into a steady-state. This connection can be a direct jump operator that couples to a bath, or

indirect, such as a coherent coupling to another degree of freedom that is damped. There can

be more esoteric systems that have no steady-state despite satisfying the above requirements.

For the cavity systems we will be considering, the rule of thumb is good enough.

2.2.2 Superoperator formalism

The general master equation in Eq. (2.14) tends to be very difficult to solve. The superoper-

ator acts on the density matrix in a nontrivial way. To make things a little more transparent,

it is helpful to collect both the coherent Hamiltonian terms and dissipators into a single large

11
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superoperator,

d

dt
ρ = Lρ, (2.16)

where Lρ equals the right hand side of equation (2.14). L is called the Liouvillian super-

operator. As suggested by the above equation, the master equation is really just a simple

first-order linear system, albeit of a larger size than the density matrix itself. We can see

this by re-writing the density matrix as a vector,

ρ =

(
c1 . . . cN

)
,

ρv =


c1

...

cN

 ,

(2.17)

where cj are the N × 1 columns of ρ, assuming it is of dimension N . The subscript v will

be used from this point onwards to indicate this column-stacking operation. In this context,

the master equation can be rewritten as,

d

dt
ρv = Lρv, (2.18)

where the Liouvillian superoperator becomes,

L = −i(1N ⊗ Ĥ − Ĥ∗ ⊗ 1N) +
∑
k

γk

(
ẑ∗ ⊗ ẑ − 1

2
1N ⊗ ẑ†ẑ −

1

2
(ẑ†ẑ)∗ ⊗ 1N

)
. (2.19)

From this structure it is evident that our column-stacking has allowed us to decompose the

actions of the Liouvillian on the left and right portions of the density matrix outer product.

The purpose of this transformation is to make the master equation easier to solve. While

the size of the involved matrices is now N2 rather than N , it is a simple linear algebra

problem. Finding the steady-state(s) corresponds to finding the null space of L. Information

about the transient dynamics can be obtained from the nonzero eigenvalues of L. Despite
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the large dimension of the matrix, it is very sparse due to the tensor product structure. This

allows for the usage of powerful numeric techniques such as Arnoldi iteration [44] which have

been developed over the years for linear systems.

2.3 Cascaded systems

2.3.1 Overview

Classical circuits contain elements such as circulators and isolators, which feature nonrecip-

rocal dynamics. They cause some part of the system to act upon another part, without

being responded to in kind. We want to replicate these nonreciprocal dynamics in cQED

because they can be used for entanglement generation [45, 46, 47], as well as a wide berth

of other applications [48, 49, 50, 51, 52, 53, 54]

To have nonreciprocal physics in a quantum system, we require dissipation. Hamiltonian

dynamics are insufficient, because any coherent coupling or tunneling term must have a

Hermitian conjugate counterpart allowing the opposite process. There are cases where non-

Hermitian Hamiltonians can be considered [55], but these can often be mapped back to

a dissipative process. For example, the photon number-measuring part of the Lindblad

superoperator [the last two terms on the right hand side of Eq. (2.14)] can be thought of as

a non-Hermitian Hamiltonian −iẑ†ẑ/2.

In this section we will describe cascaded quantum systems [56, 57], which are an example

of maximal nonreciprocity. Fig. 2.2(a) shows a qualitative depiction of how a cascaded system

can look. There are two subsystems, labelled A and B. Information and/or excitations can

leak out of one part into the other, but not vice versa. It can be thought of as a one-way

mirror, where system B can see A and be influenced by its state. System A, on the other

hand, sees only itself and obeys equations of motion that do not involve B in any way.

Cascaded quantum systems are not constrained to two parts, and one can envisage an entire

chain of them, with information cascading down the line in one direction.
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A B 

Γ Γ 

A B 

G G 

γ 

C 

J 

(a) (b) 

Figure 2.2: (a) Schematic diagram of a nonreciprocal system implemented with a circulator. Two parts,
labelled A and B, are connected with a chiral waveguide. Signals can only propagate down the waveguide in
one direction. Both parts couple to the waveguide with some equal rate Γ, and corresponding jump operator
ẑA (ẑB) for system A (B). (b) Schematic of a synthetic nonreciprocal system. There is a direct coherent
coupling with strength J between the main cavities. An auxiliary cavity C acts as an effective nonlocal
reservoir. The auxiliary cavity is heavily damped with some rate γ, and tunnel-coupled to the cavities A,
B with rate G. The couplings to C are pump-mediated to allow a relative phase of π/2 between the two
coherent terms. This system corresponds to (a) in the limit of G/J 	 1 and γ/J 	 1 in such a way that
J = Γ = 4G2/γ [58].

2.3.2 Master equation

A two-part cascaded system can be described by a simple Lindblad master equation. We

assume that there are two cavities (annihilation operators â, b̂) connected by a chiral waveg-

uide. This waveguide acts as a reservoir with some correlation between its actions on the

cavities, resulting in the cancelling out of all signals from A to B. While there is no truly chi-

ral waveguide in quantum optics, we can obtain an effective one through the use of circulators

that remove any back-scattering processes. See Refs. [59, 60] for sample implementations of

a circulator, and Refs. [61, 62] for theoretical discussions.

As in the previous sections, we will omit detailed derivations. The relevant equations

of motion can be obtained using the SLH formalism (not an acronym) [61] or input-output

theory [63]. After tracing out the waveguide, we are left with an effective master equation
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of the form,

Ĥnr = ĤA + ĤB + J(ẑ†AẑB + h.c.),

d

dt
ρ = −i[Ĥnr, ρ] + 2JL[ẑA ± iẑB]ρ.

(2.20)

The two Hamiltonians ĤA, ĤB contain the internal dynamics of cavity A and B respectively.

The jump operators ẑA, ẑB describe the coupling of the waveguide to the cavity with ampli-

tude J . The simplest case, as seen before, is just single-photon tunneling ẑA = â. The sign

of the phase inside the dissipator tells us which way the directionality goes. A minus sign is

left to right, and plus is right to left.

We see that mandating the waveguide to be chiral induces both a coherent Hamiltonian

coupling, and a nonlocal dissipator. The coherent coupling is a virtual waveguide-mediated

term that describes photons leaking from A into B through the waveguide. Normally, the

reverse process would also be possible. However, the nonlocal dissipator can be expanded out

to contain correlation terms which exactly cancel out the B to A tunneling terms. This is the

reason for them both having the same prefactor J - they come from the same waveguide. Note

that the factor of two for the dissipator comes from the 1/2 in the Lindblad superoperator’s

definition.

The nonreciprocity leads to a directional decoupling of cavity A. It can be described by

a reduced master equation involving only itself,

d

dt
ρA = −i[ĤA, ρA] + JL[ẑA]ρA, (2.21)

where ρA is the reduced density matrix for cavity A. Cavity A thus knows nothing about B,

and cannot be affected by its state. We can obtain analytic information about the system

more easily, because we only have one cavity to worry about. However, the key thing to

note is that we can still have entanglement between the two cavities despite this directional

decoupling. We will take advantage of this property in the next chapter, when we define our

system of interest.
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A qualitative demonstration of this directional decoupling is given in Fig. 2.3. The time

evolution of the Wigner function is plotted for cavities coupled to a waveguide with single-

photon tunneling. The first cavity along the waveguide is subject to parametric driving ĤA ∼

(ââ + h.c.), while the second cavity has a more complex nonlinear self-Kerr interaction [64]

of the form ĤB ∼ b̂†b̂†b̂b̂. We see that regardless of the initial conditions for B, cavity A

obeys simple dynamics that drive it towards a squeezed state (as we would expect from

Subsec. 2.1.2). Cavity B displays more complex nonlinear dynamics that do not affect cavity

A despite a coherent coupling between the two systems, due to the nonreciprocity.

|ψ0〉 = |α〉 ⊗ |α〉

|ψ0〉 = |α〉 ⊗ |3〉

Figure 2.3: Wigner function evolution for a directionally decoupled system for different initial conditions.
The system obeys the master equation in Eq. (2.20), with ĤA = 0.4(ââ+ h.c.) and ĤB = b̂†b̂†b̂b̂ (in units of

J = 1). The waveguide couples to the cavities with single-photon tunneling, ẑA = â, ẑB = b̂. The left panels
depict the Wigner function of the cavity A density matrix ρA = trBρ, while the right panels show ρB = trAρ.
The top set of panels corresponds to an initial condition |ψ0〉 of both cavities starting in coherent states |α〉
with amplitude α = 2. The bottom panels start with cavity A in the same coherent state |α〉, while cavity
B is initialized in a Fock state |3〉 instead.

2.3.3 Synthetic implementations

One last thing to point out is that cascaded systems do not need a true chiral waveguide. The

nonreciprocity requires a coherent coupling and nonlocal dissipator, matching their prefactor

coefficients to obtain the necessary cancellation. If we do have a chiral waveguide, it will

‘provide’ both terms simultaneously. However, more recent work on non-reciprocal systems

has observed that these two pieces can be attached separately to achieve the same effect [58].
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We consider a coherent coupling between our two cavities,

ĤJ = J(ẑ†AẑB + h.c.), (2.22)

as well as a dissipation term,

LΓ = 2ΓL[ẑA ± iẑB]. (2.23)

If we then tune these two independent terms to match,

Γ = J, (2.24)

we will get a nonreciprocal system. Note that we have included the factor of two in the

dissipator definition, so that the coherent coupling and dissipation can be compared directly.

The coherent coupling is no longer a virtual waveguide-mediated term, but now a real

Hamiltonian term. The advantage of this method is that we have more control over experi-

mental implementation. Making a chiral waveguide is difficult because it requires circulators,

which are bulky and prone to high levels of loss. On the other hand, coupling two cavities

can be done in a variety of ways without significant levels of imperfection. Creating the non-

local dissipator is also straightforward. Several implementations are discussed in Ref. [58].

As seen in Fig. 2.2(b), the dissipator can be as simple as a damped auxiliary third cavity

coupled to the other two [58, 65]. We have to pump-mediate the couplings to the other

cavities to get the relative phase of ±π/2. Such an implementation would not be subject to

circulator transmission losses, suffering only from leakage from the cavities instead (which is

orders-of-magnitude smaller). We will see this implementation explicitly in Sec. 3.3.

2.4 Perfect absorber recipe

Cascaded quantum systems can be used to generate entanglement. Excitations in subsystem

A can be correlated to one another. When these leak down the waveguide and enter B, the
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correlations persist. Nonreciprocity assures that the reverse process is impossible. However,

excitations can leak further down the waveguide into the environement, destroying the cavity-

cavity entanglement. We want everything emitted by A to be caught by B, and for nothing

to leak out of B.

The way to do so is a recent technique for cascaded systems known as the perfect-absorber

recipe [66]. The idea behind it is to tune the Hamiltonian of cavity B so that it absorbs all

of the signals emitted by A in the steady-state. As a result, nothing escapes further into the

waveguide, and the only entanglement can between the two cavities.

Moreover, the resulting steady-state will become pure, because the environment effec-

tively plays no role in the infinite-time limit. This makes it both easier to deal with mathe-

matically, and more desirable, because we want to generate pure entangled states for quantum

computing.

The steady-state for such a setup is a dark-state of the dissipator, as defined by,

(ẑA − iẑB) |ψ〉 = 0. (2.25)

Note that we assumed a left-to-right chirality, and will continue to do so unless otherwise

stated. If we want this to be the steady-state for our system, we also need it to be an

eigenstate of the overall Hamiltonian,

Ĥnr |ψ〉 = E |ψ〉 , (2.26)

where E is some constant eigenvalue.

The explicit perfect absorber recipe for solving system A’s isolated master equation then

proceeds as follows:

1. We start with a known Hamiltonian ĤA, coupled to a chiral waveguide with a jump

operator ẑA.
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2. We connect another system further along the waveguide with jump operator ẑB (as-

suming nothing about its Hamiltonian for the time being).

3. We find an ansatz for a pure state |ψ〉 that satisfies Eq. (2.25).

4. We find a Hamiltonian ĤB such that the state |ψ〉 satisfies Eq. (2.26).

The end result will be a system that must necessarily be driven into the pure steady-state

|ψ〉. As we will see in the following chapters, this state can be made entangled.

The last step in the above recipe may sound daunting at first. There is a general approach

decsribed in Ref. [66]. However, as described in the same reference, an easier way is to

assume a system-B Hamiltonian that mirrors system-A, up to a change in term amplitudes.

For instance, if system A had a Hamiltonian term of ĤA ' λA(ââ+ h.c.), we would assume

that system B obeys the same form, ĤB ' λB(b̂b̂ + h.c.). An explicit example of how this

works will be shown in the following subsection. What we then do is act on our dark-state

ansatz |ψ〉 with our assumed Hamiltonian. If we are able to find coefficients for the ansatz

and Hamiltonian parameters that make the result an eigenstate, then the problem is solved.

Note that in principle, we do not care about the energy of the overall resulting eigenstate.

In practice, the easiest state to search for is a zero-energy eigenstate, E = 0.

As an additional note, the perfect absorber recipe is also an easy way of solving for the

steady-state of a Lindblad master equation. Recall that the directional decoupling means

that cavity A obeys its own reduced equation of motion [c.f. Eq. (2.21)]. If we wanted to

know just the solution to that master equation alone, we could apply the perfect absorber

recipe to find the pure steady-state of the two-cavity system. The impure steady-state for

just A can then be obtained by tracing over B.
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Chapter 3

Two-mode squeezing via broken time-reversal

symmetry

Now that the stage is set, we move on to describing our first entanglement-generating system

of interest. We are going to apply the perfect absorber recipe to cavities with parametric

driving. The goal is to make a Gaussian pure entangled state. While this requires two

reservoirs in conventional literature [20, 19, 21], we will only use one.

We assume that our cavities couple to a chiral waveguide with simple single-photon

tunneling, resulting in a Hamiltonian and master equation of,

ĤPD = ĤA + ĤB + J(â†b̂+ h.c.),

d

dt
ρ = −i[ĤPD, ρ] + 2JL[â− ib̂]ρ.

(3.1)

Both cavities are parametrically driven on-resonance, resulting in rotating-frame Hamil-

tonians given by,

ĤA = λA(ââ+ h.c),

ĤB = λB(eiφb̂b̂+ h.c.).

(3.2)

Here, λA and λB are the parametric drive amplitues. Fig. 3.1 gives a qualitative depiction

of the setup. The reason that we drive both cavities is because the perfect absorber recipe

requires a degree of symmetry between the two systems [66]. The terms present on cavity A
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must be mirrored by cavity B, up to choices of coefficients.

A B 

J J 

  

Figure 3.1: Parametrically driven two-cavity setup from Eq. (3.1), assuming an explicit chiral waveguide
implementation. Both drives add photons in pairs. The waveguide only allows information to propagate in
one direction, creating both a dissipator and waveguide-mediated coherent coupling.

Note that we have also assumed an arbitrary phase φ in the second cavity Hamiltonian,

because the amplitude of the parametric drive can be complex in general. We cannot choose

a gauge where both drives are always guaranteed to be real, because a gauge transformation

b̂ → e−iφ/2b̂ could change the coherent coupling term and dissipator phase of Eq. (3.1),

breaking the nonreciprocity. See Appendix B for details on the gauge-invariant phases in

the system.

Based on our prior intuition, it is already easy to see why this system can exhibit entan-

glement. The parametric drive adds photons to cavity A in pairs. If one of the two tunnels

over to cavity B through the waveguide, phase information will be retained between them

because they were added by the same interaction. Due to the nonreciprocity, this mandates

that the two photons now become entangled. The harder we drive, the more of these pairs

will be added to the system.

The resulting states will have entanglement in the form of two-mode squeezing. Photons

are added to A in pairs and one of the two can tunnel to B, realizing an effective nonlocal

parametric Since we are considering a quadratic system with only squeezing terms, there is
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not much else that could be generated, aside from coherent displacements or phase-space

rotations. Two-mode squeezed states are useful for applications in quantum teleportation [67,

68, 69], dense coding [70] and phase measurements [71]. The entanglement that they exhibit

is also a general resource with wide applications to other quantum systems.

We mentioned earlier that a two-mode squeezed state would need a nonlocal drive of the

form in Eq. (2.10) [72]. A cascaded system in conjunction with the perfect-absorber recipe

will allow us to circumvent this requirement.

3.1 Perfect absorber recipe

We will now work out the perfect-absorber recipe of Sec. 2.4 explicitly. We look for an ansatz

of a two-mode state that is a dark state of the (â − ib̂) dissipator jump operator. This is a

lot easier if we make a basis change to normal modes,

ĉ± =
1√
2

(â∓ ib̂). (3.3)

A dark-state of our dissipator will just be any vacuum state of the ĉ+ mode, with any

arbitrary state in the ĉ− mode. The ansatz we use is then,

|ψ〉 = |0〉+ ⊗
∞∑
n=0

αn |n〉− , (3.4)

where |n〉± are the Fock states for the ĉ± mode, and αn are arbitrary normalized state

coefficients.

We can also write our Hamiltonian in this new basis,

ĤPD = −iJ(ĉ†+ĉ−−h.c.)+
1

2

[
(λA − eiφλB)(ĉ+ĉ+ + ĉ−ĉ−) + h.c.

]
+
[
(λA + eiφλB)ĉ+ĉ− + h.c.

]
.

(3.5)

In this basis, our Hamiltonian has both single-mode and two-mode squeezing terms. All that
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remains now is step 4, to find coefficients that make |ψ〉 an eigenstate of ĤPD. We act with

ĤPD onto |ψ〉 to find:

ĤPD |ψ〉 = |0〉+ ⊗
∞∑
n=0

αn
2

[(
λA − eiφλB

)√
n(n− 1) |n− 2〉− + (λA − e−iφλB)

√
(n+ 1)(n+ 2) |n+ 2〉−

]
+ |1〉+ ⊗

∞∑
n=0

αn

[
−iJ
√
n |n− 1〉− + (λA + e−iφλB)

√
n+ 1 |n+ 1〉−

]
+ |2〉+ ⊗

∞∑
n=0

√
2αn

(
λA − e−iφλB

)
|n〉− .

(3.6)

The goal is to turn the right hand side of the above equation into a scalar multiple of |ψ〉.

Instead of diving into explicit math, we can figure out the answer just by inspection. The

result has been suggestively split into three pieces, corresponding to the different Fock states

of c+. The |0〉+-proportional states come from the effective local parametric driving on the

ĉ+ mode, whereas the |2〉+ terms are the ĉ− drive. The |1〉+ terms are all the nonlocal

processes in the ĉ± basis.

Since |ψ〉 is only proportional to |0〉+, then the |1〉+ and |2〉+ terms must vanish to have

an eigenstate.

The |2〉+ term can only vanish if its constant prefactor vanishes. We cannot say that

αn = 0, because we are looking for non-trivial eigenstates. This immediately imposes a

condition on our system parameters,

λA − e−iφλB = 0. (3.7)

Since the coefficients λA and λB were defined to be real, the only possible choice is a phase

of φ = 0 and drive strengths that are equal in magnitude,

φ = 0,

λA = λB = λ.

(3.8)
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Note that choosing φ = π instead would also work, but it would just mean that λA = −λB

and yield exactly the same Hamiltonian.

Upon making this variable restriction, the |0〉+ term also vanishes. This comes from

the fact that the effective local parametric driving terms we get have the same amplitude.

Furthermore, since the |2〉+ term only had one component, there was no other way to get

rid of it. Thus the solution we pursue is unique, and can only correspond to a zero-energy

eigenstate.

All we are left with is the |1〉+-proportional term,

ĤPD |ψ〉 = |1〉+ ⊗
∞∑
n=0

αn

(
−iJ
√
n |n− 1〉− + 2λ

√
n+ 1 |n+ 1〉−

)
= |1〉+ ⊗

∞∑
n=0

(
−iJ
√
n+ 1αn+1 + 2λ

√
nαn−1

)
|n〉− ,

(3.9)

which must vanish. This can be solved by choosing the right nontrivial coefficients αn, which

must satisfy a recursion relation,

αn+1 =
−2iλ

J

√
n

n+ 1
αn−1. (3.10)

Note that this is a second-order recursion relation, which means that there are two possible

solutions. The even-numbered coefficient solution is given by,

α2n =

(
−2iλ

J

)n√
(2n− 1)!!

(2n)!!
α0. (3.11)

At first, we can go through and find the solution to the odd-numbered coefficients as well.

However, it pays to be very careful here. Consider the n = 1 term for the sum in Eq. (3.9),

which contains −iJ |0〉−. This term cannot be cancelled out, because the term that would

normally be responsible for doing so corresponds to n = −1, and our sum starts from zero.

The even-numbered coefficients do not run into this problem, but the odd ones do. There is
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thus only one unique solution to the recursion relation.

As an aside, we note that the simultaneous cancellation of the |0〉+ and |2〉+ terms is only

possible because both of our cavities are coupled to the waveguide with the same amplitude

J . If this were not the case, we would not be able to find any perfect absorber dark-state

solution.

At this point, we have found a unique state that is both a dark-state of the dissipator

and a zero-energy eigenstate of the Hamiltonian, meaning that it is the steady-state of the

system. Absorbing the coefficient α0 into a normalization constant, we can then write the

state,

|ψPD〉 = N |0〉+ ⊗
∞∑
n=0

(
−2iλ

J

)n√
(2n− 1)!!

(2n)!!
|2n〉− ,

N =

(
1− 4λ2

J2

) 1
4

.

(3.12)

The constant N normalizes the state.

While this state may not look very intuitive at first, we can re-express it in a much more

familiar form using Eq. (2.11),

|ψPD〉 = |0〉+ ⊗ e
1
2

(ζĉ−ĉ−−h.c.) |0〉− = |0〉+ ⊗ Ŝ(ζ) |0〉− ,

ζ = −iarctanh

(
2λ

J

)
.

(3.13)

The steady-state is simply a squeezed vacuum state of the c− mode, with c+ remaining

in vacuum. While this looks like a single-mode squeezed state, recall that we are working

in a nonlocal basis. When we convert back to the cavity A, B basis in the next section, we

will see two-mode squeezing correlations. This is analogous to a beam-splitter operation:

Squeezed light sent into one arm of a beam-splitter will come out with entangled two-mode

squeezing.

Something far more surprising is that looking back at the Hamiltonian in Eq. (3.5), we see

that our choice of parameters ends up cancelling out the single-mode ĉ− parametric driving
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terms. Yet in the steady-state, we get a single-mode squeezed state of the c− mode. This is

a result of the interplay between the driving and dissipation. We have a nonlocal parametric

drive that adds excitations to both modes simultaneously, but the dissipation takes away

the ones in the c+ mode, keeping it in the vacuum as the system equilibrates.

Before we move on to characterize the state, we will write out the full system with all

the parameter restrictions,

ĤPD = λ(ââ+ b̂b̂+ h.c.) + J(â†b̂+ h.c.),

d

dt
ρ = −i[ĤPD, ρ] + 2ΓL[â− ib̂]ρ.

(3.14)

This is the system whose steady-state we will characterize in the next section.

3.2 Squeezed-state properties

3.2.1 Cavity mode basis and two-mode squeezing

Now that we have the unique, exact steady-state for the parametrically driven system, we

can start to examine its properties. We first rewrite it in the cavity mode basis to find,

|ψPD〉 = e
1
2

(ζââ−h.c.)e
1
2

(−ζb̂b̂−h.c.)e(iζâb̂−h.c.) |0〉A ⊗ |0〉B

= ŜA(ζ)ŜB(−ζ)Ŝab(iζ) |0〉A ⊗ |0〉B .
(3.15)

Here ŜA and ŜB are single-mode squeezing operators for cavity modes â, b̂ respectively [c.f.

Eq. (2.2)]. The operator Ŝab is the two-mode squeezing operator, defined by [1],

Ŝab(ζ) = eζâb̂−h.c.. (3.16)

We will quantify the entanglement of this state in Subsec. 3.2.4, but qualitatively, the state

gets more entangled as |ζ| increases.

26



Entangled Cavity State Generation through Engineered Dissipation Mikhail Mamaev

We see that both single-mode and two-mode squeezing correlations are generated. What

makes this result useful is that the two-mode squeezing was made by only applying local

drives. This avoids the difficulty of creating a two-mode squeezing Hamiltonian between two

cavities that could be physically separated by significant distance in an experiment.

In what follows, we will derive further analytic results about the state |ψPD〉.

3.2.2 Covariance matrix

The properties of state in Eq. (3.15) can be obtained from the system’s steady-state covari-

ance matrix. Since the system was described by a quadratic master equation, the state |ψ〉

is Gaussian. This means that it is completely characterized by all of its one and two-point

correlators. For two modes, these quantities can be described with a single 4× 4 matrix,

Cjk = 〈ψPD| ĉj ĉk |ψPD〉 ,

ĉk = {x̂A, p̂A, x̂B, p̂B}.
(3.17)

The operators x̂K , p̂K are the quadratures of the individual cavity modes,

x̂K =
1√
2

(
K̂ + K̂†

)
,

p̂K =
−i√

2

(
K̂ − K̂†

)
.

(3.18)

For quadratic systems, the covariance matrix can be found without having to solve the

master equation (c.f. Appendix A). For our setup, we find,

C =
1

2(J2 − 4λ2)



J2 −2Jλ −2Jλ −4λ2

−2Jλ J2 4λ2 2Jλ

−2Jλ 4λ2 J2 2Jλ

−4λ2 2Jλ 2Jλ J2


. (3.19)

We will use this matrix to characterize the two-mode squeezed state. All relevant two-
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point correlators can be extracted from it. We find the average cavity photon numbers,

〈â†â〉 = 〈b̂†b̂〉 =
2λ2

J2 − 4λ2
, (3.20)

the anomalous single-mode correlators,

〈ââ〉 = −〈b̂b̂〉 =
iJλ

J2 − 4λ2
, (3.21)

and the two-mode correlations,

〈âb̂〉 =
−Jλ

J2 − 4λ2
, 〈â†b̂〉 =

2iλ2

J2 − 4λ2
. (3.22)

The state exhibits single and two-mode squeezing correlations, as well as beam splitter

correlations, as expected from Eq. (3.15). Note that despite the nonreciprocity, the state is

symmetric between the two modes (up to an overall sign).

3.2.3 Parametric instability

As we saw in Subsec. 2.1.2, the parametric drives can render the system unstable. For our

state, this threshold is obtained by looking at the denominator of the covariance matrix

prefactor. Since the system will diverge if this denominator reaches zero, the threshold is

given by,

|λ| ≤ J

2
. (3.23)

Violation of this condition also corresponds to our linear system’s dynamical matrix Q̂ having

eigenvalues with nonzero real part (c.f. Appendix A), which leads to exponentially growing

modes. The maximum permitted drive strength is half of the coherent tunneling magnitude.
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3.2.4 Logarithmic negativity

We will now determine how useful our pure steady-state is by measuring its entanglement.

The entanglement is quantified with the logarithmic negativity EN [73]. For a system with

two tensored Hilbert space components A, B, we define,

EN = log2

(
||ρ(A)||1

)
, (3.24)

where ρ(A) indicates the partial transpose of the density matrix with subsystem A transposed,

and ||.||1 is the trace norm. The logarithmic negativity is an easy-to-compute, monotone

measure of entanglement for any bipartite quantum state. It can be expressed in terms of

the covariance matrix via,

EN = − log2

[√
2∆− 2

√
∆2 − 4det(C)

]
,

∆ = det(αc) + det(βc)− 2det(γc),

(3.25)

where det(.) is the determinant and the 2× 2 matrices αc, βc and γc are the components of

the covariance matrix,

C =

 αc γc

γ∗c βc

 . (3.26)

The matrix γc encapsulates the cross-correlations between A and B. If they grow large enough

in comparison to the self-correlations, then the state becomes entangled. The logarithmic

negativity is an extension of the Peres-Holodecki criterion for entanglement [74]. As an easy

example, the logarithmic negativity for a pure two-mode squeezed vacuum state Ŝab(ζ) |0〉A⊗

|0〉B from Eq. (3.16) is given by 2|ζ|/ln(2).

For our system, we find the entanglement measure to be,

EN =
1

ln(4)
ln

(
J + 2λ

J − 2λ

)
. (3.27)
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The logarithmic negativity diverges, allowing us to make it arbitrarily high by driving close

to instability. The state becomes more and more squeezed.

The logarithmic negativity for such a two-cavity cascaded system was shown by Koga &

Yamamoto in an alternate context [75]. However, the approach we take here can lead us to

improvements on the base setup. In the rest of this chapter, we will discuss the role that

nonreciprocity actually plays in this state’s generation, and show that there are cases where

we can do better by deviating away from it.

3.3 Adiabatic continuity

The setup in Eq. (3.1) is a cascaded system. We either have a chiral waveguide imple-

mented with circulators [Fig. 2.2(a)] or a synthetic reservoir with a damped auxiliary cavity

[Fig. 2.2(b)]. In both of these cases, to have chirality we must match the coherent coupling

and the nonlocal dissipator strength.

However, as we have seen in Subsec. 2.3.2, the synthetic implementation allows us to have

J 6= Γ [c.f. Eqs. (2.22), (2.23)]. The key point to realize is that if we do not match these

two coefficients, thus breaking nonreciprocity, the perfect absorber recipe will still work.

The only role that the dissipator plays in the recipe is providing the dark-state condition

in Eq. (2.25). But this condition only depends on the dissipator’s jump operator, and says

nothing about the prefactor. In principle, any dissipator strength should result in the same

steady-state. The dissipator’s only role is to selectively remove the unwanted excitations

during the transient dynamics. Once the steady state reached, it plays no role. The J

parameter in the steady state is exclusively set by the coherent coupling.

This freedom of parameter choice is a welcome relaxation of the conditions needed to

make the perfect absorber recipe work. Moreover, it allows us to avoid the usage of a lossy

circulator. The unwanted sources of loss in the problem would now be direct leakage from

the cavities, which can be made far more robust.
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However, the invariance of the steady state under changes in Γ is a manifestation of an

overall property for this class of systems. Recall that for any Hamiltonian, if we vary some

parameter adiabatically, the system will remain in a single eigenstate provided that this

eigenstate has an energy gap to all the others. In our setup, we can consider an equivalent

notion of a dissipative gap [43, 76]. As long as we vary our system parameters without closing

this effective gap, we will remain in a unique steady-state exhibiting the same qualitative

properties (such as entanglement).

To be more concrete, recall that the Lindblad master equation can be vectorized into

a simple linear algebra problem (c.f. Subsec. 2.2.2). The Liouvillian acts as an effective

non-Hermitian Hamiltonian. If we have a unique steady-state, it will have a single zero

eigenvalue. The second-lowest magnitude eigenvalue will then act as our dissipative gap [43,

76]. Changing the prefactor Γ of the dissipator does not close this gap, and so we still have

a steady-state with two-mode squeezing. Since the form of the steady-state does not contain

Γ explicitly, then by analytic continuation, it remains exactly the same.

Note that since our Hamiltonian and dissipator are both quadratic, the nonvanishing

nature of the dissipative gap can be confirmed just by looking at the eigenvalues of the 4× 4

dynamical matrix Q̂ for the system (c.f. Appendix A). These are given by,

ν = −Γ±
√

Γ2 − (J2 − 4λ2), (3.28)

each twofold degenerate. We see that as long as the system obeys the stability condition

from Eq. (3.23), the eigenvalues will always stay below zero, regardless of the choice of Γ.

All modes will remain damped, and the Gaussian steady-state will remain unique.

We will now show another example of this ‘dissipative’ continuity. As seen in Fig. 2.2(b),

our nonlocal correlated dissipator can be made with a synthetic setup using a damped

auxiliary third cavity. We define this cavity to have an annihilation operator ĉ, and couple
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it to the other two [58, 65]. Such a system would be described by,

Ĥ = ĤA + ĤB + J(â†b̂+ h.c.) +G[ĉ†(â− ib̂) + h.c.],

d

dt
ρ = −i[Ĥ, ρ] + γL[ĉ]ρ,

(3.29)

where G is some coupling strength, and γ is the damping on the auxiliary cavity (assuming

the left-to-right chirality). The Hamiltonians ĤA, ĤB are the same parametric drives as in

Eq. (3.2), with equal amplitude λA = λB = λ.

If we wanted to have a chiral system, we would need to be careful about how we couple

our third cavity to the first two. The system would also need to be damped hard enough to

be in the Markovian limit needed for the Lindblad formulation. The equivalent dissipation

strength, after tracing out cavity C, would scale as Γ = 4G2/γ [58].

However, since we do not care about what equivalent Γ we get, the couplings G can be

left arbitrary. More interestingly, the damping rate γ can also be arbitrary. In fact, for any

G, γ, we will have the same steady-state |ψPD〉.

The overall result is rather disturbing. We can get our steady-state just by attaching

any cavity to our first two, as long as we damp it at least a little, and get that relative

phase ±eiπ/2 between them to break time-reversal symmetry. This re-delegation of the

nonreciprocal dynamics to a third cavity does not close the dissipative gap for the A, B

subsystem, and so our state remains the same.

Of course, a real experiment would still need to be careful about choosing these parame-

ters. They will control the speed at which the steady-state is reached, and their amplitudes

will determine how vulnerable the setup is to imperfections. In the following section, we will

see how our squeezed-state generation is affected by unwanted losses.

32



Entangled Cavity State Generation through Engineered Dissipation Mikhail Mamaev

3.4 Intrinisic loss

A realistic cavity in cQED will have some intrinsic decay rate of excitations. This leakage

is unavoidable, and must be accounted for in any realistic experiment. We can model this

leakage with additional terms in the master equation,

d

dt
ρ = −i[ĤPD, ρ] + 2ΓL[â− ib̂] + κL[â]ρ+ κL[b̂]ρ. (3.30)

Here, κ is the decay rate out of the cavities, assumed to be equal. For κ > 0, the perfect

absorber recipe is no longer fulfilled, and the state will attain some impurity. The maximum

entanglement is likewise no longer infinite. Fig. 3.2(a) plots the logarithmic negativity in

terms of the drive strength. It now attains a maximum value for some intermediate drive

strength before hitting instability, and then crashes back down.

κ/J = 0

κ/J = 0.01

κ/J = 0.1

0.1 0.2 0.3 0.4 0.5
λ/J

0.5

1.

1.5

2.

2.5

EN

(a)

κ/J = 0.01

κ/J = 0.1

0.01 0.1 1 10
Γ/J

0.5

1

1.5

2

2.5
(EN )max

(b)

Chiral

Figure 3.2: (a) Logarithmic negativity EN of the steady-state for the parametrically-driven lossy system
described in Eq. (3.30). We fix J = 1 and plot in terms of drive strength λ/J , up to the instability
threshold. The perfect κ/J curve diverges as instability is approached. Note that the instability threshold
changes slightly for κ/J 6= 0, instead becoming λ <

√
J2 + 2Γκ+ κ2/2. (b) Maximum logarithmic negativity

(EN )max, optimized over all possible stable drives λ/J , in terms of the nonchirality ratio Γ/J . The chiral
limit is marked with a dashed line.

This behaviour occurs because when we get very close to instability, the diverging photon

populations will amplify the effect of the intrinsic damping terms. The engineered dissipator

does not share this property because it has no effect on the ideal steady-state regardless of
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population. Thus for very strong drives, unwanted loss will dominate and remove all the

entanglement correlations.

This leads to a natural extension for the model. We know that having J 6= Γ will not

change the steady-state for an ideal system. However, when loss is present, this is no longer

the case. As it turns out, we can have higher entanglement if we purposefully mismatch the

two, thereby deviating from a cascaded system.

Fig. 3.2(b) plots the maximum logarithmic negativity in terms of Γ/J . We choose the

best possible value of λ/J without going unstable. For losses on the order of κ/J = 0.01,

we see close to a factor-of-two improvement by deviating away from the chiral limit. The

reasoning for this is the same as mentioned before - it is the point where an optimum is

found between the two entangling processes.

We have omitted the explicit forms of EN for simplicity, as the expressions grow far more

involved than the ideal case. However, for a fixed choice of drive strength the optimum

choice of Γ can be approximated by,

Γopt =
√
λ(J − 2λ) +O

(
κ

J − 2λ

)
. (3.31)

Even to zeroth order in the perturbing terms, the optimum value of Γ is much smaller than

the chiral limit if the drive is close to instability.

3.5 Conclusion

We have given a simple scheme for generating states with two-mode squeezing, as described

by Eq. (3.14). To get higher amounts of squeezing, we drive close to the instability threshold,

and tune Γ to satisfy Eq. (3.31). The resulting pure steady-state will be |ψPD〉 from Eq. (3.12).

This scheme only uses local interactions and quadratic Hamiltonian elements, making it

straightforward to realize both in cQED and other experimental platforms. It also gener-

ates two-mode squeezing with the use of just a single dissipative reservoir, in contrast to
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conventional schemes that need two.
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Chapter 4

Entangled cat state stabilization

The previous chapter gave an explicit system that generates entangled two-mode squeezed

states. We will now extend this result to instead generate non-Gaussian entangled cat states.

As discussed in Subsec. 2.1.3, cat states have seen significant recent interest in quan-

tum information theory [22, 23, 24, 25, 26, 27, 28]. Cat states are more robust to loss

than conventional qubits, because they encode their information in an infinite-dimensional

Hilbert space for which small perturbations are less damaging. Aside from qubits, entangled

cat states (or equivalently entangled coherent states) have seen uses in quantum telepor-

tation [77, 78, 79, 80], quantum repeaters [81], metrology [27, 82] and other applications

detailed in Ref. [83].

Cat states are more attractive than squeezed-states for implementing qubits. Their parity

provides a natural two-part structure (the even and odd cat), while still being encoded in

an infinite-dimensional Hilbert space. Two-mode squeezed states do not share this property.

Moreover, high entanglement in a two-mode squeezed state requires us to drive very close to

instability, which greatly weakens the state’s purity in the presence of loss.

To use cat states as qubits, we must be able to implement logic gates on them, which

entail entangling operations between two quits. We must thus be able to generate entangled

cat-states. Few schemes exist for this purpose, both experimentally and theoretically. A

recent experiment by the Yale group was able to produce entangled cats with 3D cavities
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connected to a transmon and subject to pulse sequences [23]. Older theoretical proposals

exist using laser pulses on finite-qubit arrays [84], trapped ions [85] or transient times in

Kerr-nonlinear cavities [35]. There was a proposal using reservoir engineering via interaction

with atom beams [86], but it reported difficulty due to cavity loss. In general, these proposals

require significant resources, which poses a scaling challenge for quantum computers.

In this chapter, we will modify our two-cavity cascaded system by adding local self-Kerr

nonlinearities to the cavities. These are fourth-order terms of the form â†â†ââ, which can

be thought of as a cavity frequency that depends on the photon number [64, 87, 9]. For a

cQED implementation, a self-Kerr effect arises from including a Josephson junction in the

circuit.

The resulting system will no longer be quadratic, and as such, will contain the necessary

ingredients for making entangled cat states without any complicated nonlocal interactions.

A B 

  

  

  

J 

Figure 4.1: Two Kerr parametric oscillator setup from Eqs. (4.16), (4.17), assuming a synthetic waveguide
implementation with an auxiliary cavity for clarity. We do not mandate the chiral limit, allowing the
dissipator strength Γ and coherent coupling J to be distinct.
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4.1 Single Kerr parametric oscillator

Before trying to add nonlinear interactions to a two-cavity problem, we first look to see

what happens in a single-cavity parametrically driven system when a self-Kerr is present.

The eventual goal is to have two, but recall that if we make things nonreciprocal, cavity A

will obey an effective single-cavity master equation [c.f. Eq. (2.21)]. It will have parametric

driving, self-Kerr nonlinearity, and single-photon loss,

ĤKPO = λ(ââ+ h.c.)− Uâ†â†ââ,

d

dt
ρ = −i[ĤKPO, ρ] + κL[â]ρ.

(4.1)

Here U is the strength of the nonlinearity, and κ the intrinsic loss rate. Fig. 4.2 plots a

schematic. We assume that the system is driven on-resonance for now. The subscript ‘KPO’

stands for Kerr Parametric Oscillator. This system has seen much recent interest in cQED

for its application to cat codes [88, 24]. For a chiral setup, it will map back to the engineered

dissipator via κ = 2Γ.

 

 

Figure 4.2: Single Kerr parametric oscillator setup from Eq. (4.1). This maps back to the reduced equations
of motion for cavity A in a two-oscillator chiral setup.

A good grasp on what happens to cavity A will help with understanding the subsequent

results for the more complicated two-part system.
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4.1.1 Hamiltonian and eigenstates

Before considering the effects of dissipation, we note that ĤKPO has two degenerate eigen-

states. This can be seen by rearranging the terms and acting with them on a coherent

state,

ĤKPO |α〉 = λα2 |α〉+ (λ− Uα2)â†â† |α〉 . (4.2)

The prefactor of the second term can be cancelled by choosing α2 = λ/U . We thus find two

degenerate coherent eigenstates, with equal magnitude and opposite phase,

ĤKPO |±α〉 =
λ2

U
|±α〉 ,

α =

√
λ

U
.

(4.3)

This degeneracy is only made possible by the fact that our Hamiltonian has parity symmetry.

Both the drive and the Kerr nonlinearity do not mix the even and odd-parity subspaces.

Note that the two eigenstates are not completely orthogonal. Their overlap is exponen-

tially vanishing, 〈+α| − α〉 ∼ e−2|α|2 , but is nonzero. We instead consider an equivalent

orthogonal basis of cat states, as defined in Eq. (2.12),

ĤKPO |C±(α)〉 =
λ2

U
|C±(α)〉 . (4.4)

The presence of the nonlinearity keeps the system from going parametrically unstable,

no matter how big the drive gets. The parity conservation allows the system to oscillate

between a wide variety of non-Gaussian states that depend on the initial condition for the

evolution. However, with no dissipation present, the system can never reach a steady-state,

and will undergo coherent evolution indefinitely.

In the following subsection, we will add in a dissipative term to break the parity symmetry.
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4.1.2 Damping and degenerate perturbation theory

We will now consider the effects of the intrinsic loss κL[â]. Having any nonzero value of κ

breaks the parity symmetry, because it enables jumps from the even-parity subspace to the

odd one and vice-versa.

With the symmetry broken, our Hamiltonian’s degeneracy is also broken. There should

now be one unique steady-state of the system. We can still use the perfect-absorber recipe

and trace out the second cavity, as in the previous section. Indeed, we will be doing this

shortly. But before we do, it is useful to at least get an approximate understanding of what to

expect. Since there were two degenerate eigenstates before, we should expect the dissipation

to cause them to mix.

Since we have two degenerate eigenstates and a perturbation, we will use degenerate

perturbation theory. We can certainly consider the limit of very weak dissipation where

κ � 1. However, applying perturbation theory in this case is more involved, because our

perturbation is not part of the Hamiltonian. In what follows, we will outline a superoperator

equivalent of degenerate perturbation theory, and apply it to this system. There are existing

results for dissipative quantum system perturbation theory [89, 90], but we will find that the

simple version shown here is sufficient for our purposes.

Referring back to Subsec. 2.2.2, we re-express our master equation in terms of Liouvillian

superoperators,
d

dt
ρv = L0ρv + L1ρv,

L0 = −i(1⊗ ĤKPO − ĤT
KPO ⊗ 1),

L1 = κ

(
â⊗ â− 1

2
1⊗ â†â− 1

2
â†â⊗ 1

)
.

(4.5)

Recall that ρv is just the density matrix for the system with its columns stacked to form a

supervector. This form of the master equation is almost equivalent to a Hamiltonian with a

perturbation term. The supervector ρv plays the role of the wavefunction. The Liouvillian

superoperators L0, L1 act as the degenerate Hamiltonian and perturbation respectively. The
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key difference is that the Lj are not Hermitian.

The Liouvillian L0 has degenerate eigenvectors that we already know, because it just

corresponds to ĤKPO. However, since our eigenvectors now map to density matrices, we

must consider all possible outer products of the Hamiltonian eigenstates in our basis. Using

the two cat states in Eq. (4.4), we define,

|φ1〉〉 = (|C+(α)〉 〈C+(α)|)v ,

|φ2〉〉 = (|C−(α)〉 〈C−(α)|)v ,

|φ3〉〉 = (|C+(α)〉 〈C−(α)|)v ,

|φ4〉〉 = (|C−(α)〉 〈C+(α)|)v .

(4.6)

To be clear, the double-angle bracket notation means that these are vectorized outer prod-

ucts, rather than wavefunctions. The first two supervectors |φ1〉〉 and |φ2〉〉 correspond to

the populations of the first and second degenerate eigenstates respectively. The other two

are the coherences between these two states. These states are orthonormal as required:

〈〈φi|φj〉〉 = δij. (4.7)

All four of these are also degenerate right eigenvectors of L0:

L0 |φi〉〉 = 0. (4.8)

Note that while they were not zero-energy eigenstates of the Hamiltonian, they do become

zero-eigenvalue eigenstates of the Liouvillian, because of the subtraction in the Liouvillian’s

definition.

Normally, having non-Hermitian operators wiould mean that we have to distinguish be-

tween left and right eigenvectors. However, since our eigenbasis consists of degenerate outer

products of Hamiltonian eigenstates and the Liouvillian L0 only corresponds to coherent
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Hamiltonian terms, the left and right eigenvectors coincide.

What we do now is the standard degenerate perturbation-theory approach of diagonal-

izing L1 in our degenerate eigenbasis. We project it onto the four supervectors of interest1,

yielding,

〈〈φi|L1 |φj〉〉 = κα2



− tanh (α2) coth (α2) 0 0

tanh (α2) − coth (α2) 0 0

0 0 − coth (2α2) 1

0 0 1 − coth (2α2)


. (4.9)

Keep in mind that α =
√
λ/U can be thought of as the drive strength, in units of the Kerr

nonlinearity. Here, the upper 2× 2 block corresponds to transitions between the system

eigenstates. The lower 2× 2 block corresponds to decay and coupling of system coherences

to one another.

The next step is to diagonalize the matrix. We find four eigenvectors |ψj〉〉 and four

eigenvalues Ej, given by,

E1 = 0, |ψ1〉〉 =

(
coth2(α2) 1 0 0

)
,

E2 = −2κα2 coth(2α2), |ψ2〉〉 =

(
1 −1 0 0

)
,

E3 = −κα
2

2
tanh(α2)

[
coth(α2)− 1

]2
, |ψ3〉〉 =

(
0 0 1 1

)
,

E4 = −κα
2

2
tanh(α2)

[
coth(α2) + 1

]2
, |ψ4〉〉 =

(
0 0 −1 1

)
.

(4.10)

Immediately, the steady-state of the system can be identified. It corresponds to the zero-

eigenvalue, E1 = 0. All the other eigenstates have eigenvalues with negative real part,

meaning that they represent various decay rates in the system. The form of the steady-state

density matrix can be determined from |ψ1〉〉. Looking back to our basis in Eq. (4.6), we can

1While these results may be proven rigorously, it can be easier to just compute the projections for small
finite Hilbert space sizes N , interpolate the N →∞ limit and verify it with numerics.
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un-vectorize it to recover,

ρst = N
[
coth2(α2) |C+(α)〉 〈C+(α)|+ |C−(α)〉 〈C−(α)|

]
, (4.11)

where N is a normalization constant. Our steady-state is an incoherent mixture of even

and odd cat states, with some bias towards the even cat that grows weaker as the drive

strength increases. This bias can be explained by the fact that for low drive strengths, the

steady-state is the vacuum, which has even parity. If we instead assume that the drive is

very strong, i.e. α� 1, we have coth(α2) ≈ 1 and the steady-state can be rewritten back in

terms of coherent states:

ρst = N (|α〉 〈α|+ |−α〉 〈−α|) +O(e−2α2

). (4.12)

Thus our steady state is just an equal mixture of the |±α〉 coherent eigenstates from our

original Hamiltonian. The effect of the dissipation to zeroth order is to induce jumps between

them, which will stabilize in the long-time limit until both states have the same population.

This steady-state for a Kerr parametric oscillator is in line with recent results from Refs. [88,

24].

While all these calculations have assumed a negative Kerr nonlinearity, having a positive

one yields almost the same result. The only thing that changes is the phase of the coherent

eigenstates, which would become |±iα〉 instead. Their corresponding Hamiltonian eigenval-

ues would change accordingly to ĤKPO |±iα〉 = −λ2/U |±iα〉. All of the rates in Eq. (4.10)

would otherwise remain the same.

4.1.3 Slow rates

The degenerate perturbation theory in the previous subsection gave us the approximate form

of the Kerr parametric oscillator’s steady-state. However, it can also tell us something about

the transient rates in the system. After all, the projected matrix L1 has four eigenvalues,
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each of them describing a certain kind of decay that the dissipation induces.

Eigenvalue E3 is of particular interest. If we are assuming a strong drive α � 1, then

the magnitude of the eigenvalue gets very small because of the [coth(α2)− 1]2 term:

E3 = 2κα2e−4α2

+O
(
e−6α2

)
. (4.13)

This eigenvalue is the approximate dissipative gap for the system.

The eigenvector corresponding to E3 may be rewritten in terms of the original coherent

eigenstates of the Hamiltonian,

|φ3〉〉 = (|α〉 〈α| − |−α〉 〈−α|)v . (4.14)

Note that this eigenvector does not have to correspond to a valid density matrix, because it

describes a rate and not a steady-state. The eigenvector describes the transfer of population

from |α〉 to |−α〉, and vice-versa. Any system with an initial state biased towards one of the

two coherent eigenstates will have to be equalized by this slow rate.

Fig. 4.3 plots a numerically-computed dissipative gap Eslow in terms of the drive strength,

comparing it to our theoretical prediction of E3. The numerics are worked out by finding

the smallest-magnitude nonzero eigenvalue of the full Liouvillian in the Fock basis. Our

approximation for the slow rate magnitude holds until the drive strength gets too large.

This is to be expected, as our perturbation is proportional to κα2. If α gets large enough,

i.e. κα2 ≥ U , higher-order processes will kick in and first-order degenerate perturbation

theory will no longer be sufficient.

The inset of Fig. 4.3 plots the fidelity of the numerically-obtained slow rate eigenvector

with our exact prediction of |φ3〉〉. The fidelity is defined by,

F =

∣∣∣∣tr(√√ρ1ρ2
√
ρ1

)∣∣∣∣2 , (4.15)
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where ρ1 and ρ2 are the un-stacked supervectors2. We see that F > 0.999 for all sampled

points. Unlike the eigenvalue comparisons, the fidelity increases with the drive monotonically.

This means that while our approximations for the slow rate itself will cease to hold for

κα2 � 1, the process that the slow rate describes will always be the simple population decay

in Eq. (4.14).

1 2 3 4 5 6
λ/U

0.9992

0.9994

0.9996

0.9998

1

F

● κ/U = 0.1
● κ/U = 0.01

1 2 3 4 5 6
λ/U

10-1

10-3

10-5

10-7

10-9

10-11

Eslow

Figure 4.3: Slowest decay rate of the damped single Kerr parametric oscillator system, in terms of the drive
strength λ/U . The points are obtained by numerically finding the smallest-magnitude nonzero eigenvalue
of the full Liouvillian, using a truncated Hilbert space size of N=50 Fock states. The solid lines are the
theoretical predictions from degenerate perturbation theory, given by E3 in Eq. (4.10). The inset computes
the fidelity between the numerically obtained eigenvector and the predicted population decay |φ3〉〉 from
Eq. (4.14).

We can explicitly see the effect of the slow rate in Fig. 4.4, which plots the fidelity of the

numerically-obtained density matrix with the steady-state form in Eq. (4.12). Starting from

a vacuum state, which has equal overlap with both coherent eigenstates, allows one to reach

the steady-state quickly. On the other hand, beginning entirely in one of the two eigenstates

causes significant metastability, as observed in Refs. [88, 24]. The system has to move half

of its population from one coherent eigenstate to the other, which is constrained by the slow

2For a supervector of the Liouvillian with nonzero eigenvalue, we can also get away with taking a simple
inner product instead. However, if the supervector corresponds to a density matrix, this is not permitted
because the normalizations are not equivalent. If ρ is a density matrix corresponding to an impure state,
then ||ρ||1 6= ||ρv||.
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rate E3 and takes a long time.
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0.5
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Figure 4.4: Time evolution of the single Kerr parametric oscillator state fidelity with our theoretical
prediction in Eq. (4.12). We choose parameters of λ/U = 2 and κ/U = 0.1. The blue dots correspond to
evolution from a vacuum state initial condition, |ψ0〉 = |0〉. The orange dots have the system initialized
in one of the two coherent eigenstates, |ψ0〉 = |α〉 with α =

√
λ/U . The inset plots the fidelity of just

the second initial condition, showing the slow near-linear growth. Applying linear regression to the second
half of the points in the inset yields an approximate linear slope of Eslow ≈ 1.38 × 10−4 (accounting for a
factor of two coming from the exponent in the definition of F ). The predicted value to compare against is
E3/2 = 1.34× 10−4. The Hilbert space for these simulations is constrained to N = 25 Fock states.

The overall conclusions to make about the single KPO are twofold. We see that it has

a degenerate subspace of cat eigenstates, which naturally implies that having two KPOs

will allow us to entangle the cats. This will be shown in the next section. However, we

must also be very careful with our initial conditions and parametric regimes. If we want to

reach the steady-state of the system quickly, we must avoid a starting point that is biased

towards one of the two degenerate eigenstates. Furthermore, if there are additional sources

of error or imperfections in the model with magnitude exceeding the dissipative gap, they

can overpower the fragile population decay and change the steady-state.
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4.2 Two-cavity Kerr perfect absorber

Now that the dynamics for a single KPO have been worked out, we return to our original

goal of a two-cavity system. We add a second KPO, and couple it to the first with simple

single-photon tunneling and engineered dissipation.

The system that we are looking at is analogous to the non-Kerr system in Sec. 3.1, with

the only difference being the addition of self-Kerr nonlinearities to both cavities. Putting a

Kerr nonlinearity on cavity B is also motivated by the perfect absorber recipe, which works

by mimicking the terms in first cavity.

Following the perfect absorber recipe, we write a general form for the Hamiltonian,

ĤEC = ĤA + ĤB + J(â†b̂+ h.c.),

ĤA = λA(ââ+ h.c.) + UAâ
†â†ââ,

ĤB = λB(eiφb̂b̂+ h.c.) + UBb̂
†b̂†b̂b̂.

(4.16)

The master equation obeyed by the system is given by,

d

dt
ρ = −i[ĤEC, ρ] + 2ΓL[â− ib̂]ρ. (4.17)

Fig. 4.1 shows a schematic of the system. Note that we have not assumed that the system is

connected by a true chiral waveguide, which would correspond to J = Γ, instead considering

a synthetic implementation. The amplitudes of the drives, the Kerr nonlinearities, and the

phase φ are all parameters that we are free to tune.

We again transform to the ĉ± basis from Eq. (3.3). The resulting Hamiltonian is,

ĤEC = −iJ(ĉ†+ĉ− − h.c.) +
1

2

[
(λA − eiφλB)(ĉ+ĉ+ + ĉ−ĉ−) + h.c.

]
+
[
(λA + eiφλB)ĉ+ĉ− + h.c.

]
+

1

4
(UA + UB)

[
ĉ†+ĉ

†
+(ĉ+ĉ+ + ĉ−ĉ−) + h.c.

]
+

1

2
(UA − UB)

[
ĉ†+ĉ

†
−(ĉ+ĉ+ + ĉ−ĉ−) + h.c.

]
+ (UA + UB)ĉ†+ĉ

†
−ĉ+ĉ−.

(4.18)
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The first line is the same as what we saw in Eq. (3.6). The second and third lines come

from throwing the Kerr nonlinearities into the mix. Their effect is to add additional effective

parametric driving and cavity frequency terms, modulated by the populations of the cavities.

Recall also that in this basis, the jump operator is just ΓL[ĉ+].

The next step is to act with this Hamiltonian on a dark-state ansatz. Since we have the

same kind of dissipator, we can still use the ansatz in Eq. (3.4). The result is,

ĤEC |ψ〉 = |0〉+ ⊗
∞∑
n=0

αn
2

[
(λA − eiφλB)

√
n(n− 1) |n− 2〉− + (λA − e−iφλB)

√
(n+ 1)(n+ 2) |n+ 2〉−

]
+ |1〉+ ⊗

∞∑
n=0

αn

[
−iJ
√
n |n− 1〉− + (λA + e−iφλB)

√
n+ 1 |n+ 1〉− +

1

2
(UA − UB)

√
n(n− 1) |n− 1〉−

]

+ |2〉+ ⊗
∞∑
n=0

αn√
2

[
(λA − eiφλB) |n〉− +

1

2
(UA + UB)

√
n(n− 1) |n− 2〉−

]
.

(4.19)

What we have to do is find parameters that make this resulting state an eigenstate. For

the non-Kerr system, we cancelled out everything except the |1〉+ proportional term with

parameter choices, and then found coefficients αn which yielded a zero-energy eigenstate.

After some careful observation, we note that we must take the same analytical approach

here.

The |1〉+ term cannot be cancelled parametrically, because of the J-proportional term

(the only other term with the same ĉ− Fock state is proportional to n, and thus cannot

cancel a constant). This means that we must again cancel it with a recursion relation that

restricts the αn. On the other hand, the |0〉+ and |2〉+ may be removed with a parameter

choice of,

φ = 0, λA = λB = λ, UA = −UB = U. (4.20)

This is the same as in Eq. (3.8), but with the additional restriction of tuning the Kerr

nonlinearities to be equal and opposite in magnitude. Having a self-Kerr interaction with a

positive amplitude can still be implemented with a Josephson junction if we reverse the bias.
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The resulting action of the Hamiltonian on the ansatz then simplifies down to,

ĤEC |ψ〉 = |1〉+ ⊗
∞∑
n=0

αn[−iJ
√
n |n− 1〉− + 2λ

√
n+ 1 |n+ 1〉− + U

√
n(n− 1) |n− 1〉−] = 0.

(4.21)

The coefficients for a zero-energy eigenstate may be found by solving the recursion relation,

αn+1 =
2λ

iJ − Un

√
n

n+ 1
αn−1. (4.22)

The even coefficients have an exact solution given by,

α2n =

(
−λ
U

)n√
(2n− 1)!!

(2n)!!

Γg
(

1
2
− iJ

2U

)
Γg
(
n+ 1

2
− iJ

2U

)α0, (4.23)

where Ne is a normalization constant, and Γg(.) is the Gamma function.

As we saw before, the odd coefficients do not have an analogous exact solution because

the |0〉− term cannot be cancelled. Thus the unique steady-state for the system with our

chosen parameters is given by,

|ψe〉 = Ne |0〉+ ⊗
∞∑
n=0

(
−λ
U

)n√
(2n− 1)!!

(2n)!!

Γg
(

1
2
− iJ

2U

)
Γg
(
n+ 1

2
− iJ

2U

) |2n〉− , (4.24)

We can take the limit of U → 0 to recover the result from Eq. (3.12).

Ignoring the trailing orphaned term, the odd-parity solution can also be written,

|ψo〉 = No |0〉+ ⊗
∞∑
n=0

(
−λ
U

)n√
(2n)!!

(2n+ 1)!!

Γg
(
1− iJ

2U

)
Γg
(
n+ 1− iJ

2U

) |2n+ 1〉− . (4.25)

While this is a dark-state of the dissipator, it is not a perfect eigenstate of the Hamiltonian.

Acting on it with Ĥ gives,

Ĥ |ψo〉 = −iJNo |1〉+ ⊗ |0〉− . (4.26)

This trailing term would normally prevent |ψo〉 from being a steady-state of the system.
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However, we note that if the drive amplitude becomes very strong compared to the other

scales in the system, the system normalization constant will grow very small, No � 1. This

means that while the odd-parity solution is never going to be an exact zero-energy eigenstate,

it can get close to being one. This second state remains relevant to the dynamics, and plays

a key role in the slow decay rates of the system.

4.3 Cat state properties

Now that we have the exact form of the system steady-state, we can figure out what it

actually represents. The quotient of Gamma functions means that it is no longer a simple

squeezed state. The non-Kerr model only had one dimensionless parameter quantifying the

steady-state, which was the drive strength λ/J . In contrast, the Kerr system is characterized

by two dimensionless parameters - the drive strength λ/U and the coherent coupling J/U .

We choose to work in units of the Kerr nonlinearity, because the other parameters already

appear this way in the steady-state coefficients.

To get a qualitative understanding of what our two dimensionless parameters do, we can

look at the state Wigner function. Fig. 4.5 shows the Wigner function of the ĉ− component

in terms of J/U , for a fixed value of λ/U . We see that for λ/J � 1, the system is well-

described by a squeezed state. If λ/J � 1, then ĉ− is in a cat state instead. A smooth

crossover occurs between the two regimes.

Figure 4.5: Wigner function of the ĉ− steady-state |ψe〉 in Eq. (4.24). The drive strength is fixed at
λ/U = 4. Five different values of the coherent coupling J/U are chosen, ranging from much smaller to much
larger than λ/U .
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The emergence of a squeezed state in the λ/J � 1 limit should not be surprising. If we

look back at the form of the recursion relation in Eq. (4.22), the role of U is to modulate

the coupling strength J by adding a photon number-dependent imaginary part to it. In a

sense, the Kerr nonlinearities help keep the system stable. If J is much stronger than λ,

then it alone can keep the system stable without the help of the nonlinearity. In that limit,

the Kerr essentially contributes nothing to the system, and we get a state very similar to

what is described by Eq. (3.12).

For λ/J � 1, the system can no longer be described by squeezed states because it would

be unstable without the Kerr (recall that the instability threshold in the non-Kerr system

is λ < J/2). The Kerr nonlinearity now plays a big role in keeping the system stable. Since

it has an inherent parity symmetry, the resulting system states will also inherit these parity

properties. As a result, we get the expected non-Gaussian cat state instead.

In the limit of strong drive λ/J � 1, the steady-state |ψe〉 is an even cat state in the ĉ−

mode. Based on our observations from the single Kerr parametric oscillator, we can expect

its amplitude to scale with
√
λ/U . For practical considerations, we will also be assuming

that λ/U � 1, so that the cat has distinguishable interference fringes in its quasiprobability

distribution. It is also evident that the near-steady state |ψo〉 will map to an odd cat instead.

All of the observations thus far have been qualitative. To make things more concrete, we

compute the fidelity of the exact Fock-basis state with a cat and squeezed state. Based on

numerics, we find that the actual cat state to compare against is |C+(i
√

2λ/U)〉. The factor

of two arises from the fact that the c− mode is enclosing the nontrivial dynamics of two Kerr

parametric oscillators rather than just one. The squeezed state to compare against is the

non-Kerr result from Eq. (3.12).

Fig. 4.6 plots the fidelity with these two guesses in terms of the coherent coupling strength.

Note that for the cat, instead of assuming an overall phase eiπ/2 for the cat amplitude α, we

optimize over all possible phases. This is because the cat will rotate in phase-space as J/U

increases, destroying the apparent fidelity without diminishing its non-Gaussian properties.
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We find the two expected regimes, going from a cat state for low coupling to a squeezed

state for high coupling. The crossover occurs around λ/J ≈ 1/2. We can still make J on the

same order as λ, as long as the latter is bigger, and have a cat state with high fidelity. This

will be useful once we begin to consider imperfections in the system, as having a higher J

will help with resilience.

Cat, λ/U = 2

Squeezed, λ/U = 2

Cat, λ/U = 4

Squeezed, λ/U = 4

5. 10. 15. 20.
J/U

0.2

0.4

0.6

0.8
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F

Figure 4.6: Fidelity comparison of the ĉ− mode exact steady-state |ψe〉. The dashed lines compare with a
squeezed state in Eq. (3.12). The solid lines compare to a cat state given by |C+(eiφ

√
2λ/U)〉, optimizing

over all possible angles φ.

4.4 Steady-state in cavity mode basis

Returning to the original cavity mode basis â, b̂ is equivalent to a beam-splitter operation.

The single-mode cat state of ĉ− will be converted into an entangled cat state [91].

To make this explicit, we first rewrite the exact states in Eqs. (4.24),(4.25) in the â, b̂
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basis,

|ψe〉 = Ne
∞∑

n,m=0
(n+m)%2=0

(
−λ
2U

)(n+m)/2

(−i)m
√

(n+m− 1)!!

(n+m)!!

(n+m)!

n!m!

Γ
(

1
2
− iJ

2U

)
Γ
(
n+m

2
+ 1

2
− iJ

2U

) |n,m〉 ,
|ψo〉 = No

∞∑
n,m=0

(n+m)%2=1

(
−λ
2U

)(n+m)/2

(−i)m
√

(n+m− 1)!!

(n+m)!!

(n+m)!

n!m!

Γ
(
1− iJ

2U

)
Γ
(
n+m

2
+ 1

2
− iJ

2U

) |n,m〉 .
(4.27)

Note the constraint on the double sum, which preserves the overall parity of the states. The

notation z % 2 means z modulo 2.

Surprisingly, one can analytically solve for the steady state of the dissipative single-cavity

Kerr parametric oscillator using a technique where you use the positive P-function to convert

the master equation into something that looks like a classical Fokker-Plank equation (with

twice the number of degrees of freedom) [24]. After a tedious set of integrations, one can

obtain the steady-state density matrix in the Fock basis. Eq. (4.27) gives a much simpler

way of obtaining this solution: one just traces out cavity B to get the steady state of A.

We have explicitly confirmed that this reproduces the answer obtained from (the much more

complicated) positive P function approach.

Going back to the two-cavity dynamics, in the strong-driving limit, the exact states |ψe〉,

|ψo〉 are approximated by entangled cats, as evidenced by rewriting the single ĉ− mode cat

|C+(i
√

2α)〉 in the â, b̂ basis. They take the form of,

|ψe〉 ≈
1√
2

(|C+(iα)〉 ⊗ |C+(α)〉+ |C−(iα)〉 ⊗ |C−(α)〉)

|ψo〉 ≈
1√
2

(|C+(iα)〉 ⊗ |C−(α)〉+ |C−(iα)〉 ⊗ |C+(α)〉) .
(4.28)

Recall that the cat states are defined in Eq. (2.12). Equivalently, these can be approximated
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by entangled coherent states [83],

|ψe〉 ≈
1√
2

(|iα〉 ⊗ |α〉+ |−iα〉 ⊗ |−α〉)

|ψo〉 ≈
1√
2

(|iα〉 ⊗ |α〉 − |−iα〉 ⊗ |−α〉) .
(4.29)

As usual, α =
√
λ/U . Note that the phase factor in the cavity A cats comes from it having

a positive Kerr amplitude, as discussed at the end of Subsec. 4.1.2. These approximations

hold for λ/J � 1.

If our system is allowed to evolve to its steady-state assuming the above approximations,

we will reach a unique and pure entangled cat state. Being able to generate such a state

is already a powerful result in its own right. What makes this approach far more useful,

however, is that it only requires local drives and nonlinearities to accomplish. We only use

one linear engineered dissipator. In contrast, recent experiments connect the cavities to a

shared nonlinear transmon qubit, and have to include nonlinear two-photon dissipation [23].

Before we go on, the cat amplitude α merits some discussion. Recall that we need

α =
√
λ/U ≥ 1 to distinguish a cat from a Gaussian vacuum or squeezed state. A cat

with vanishingly small amplitude still maintains its parity structure, but most of the state

population will just sit in the vacuum |0〉 and render parity discussions irrelevant. There

is no firm metric for how non-Gaussian a state can be. One could deem a cat to be wide

enough if there are visible interference fringes with negative values in the Wigner function

for the state (we could either consider the ĉ− mode, or look at the two-mode Wigner func-

tion [23]). However, these negative values can persist for small amplitudes α ≈ 1 for which

the characteristic lobe structure is no longer present. The experimental results in Ref. [23]

considered cats with amplitude α ≈ 1.92. If all we want is a lobe structure with visible

interference fringes, however, we can go even lower to α ≈ 1.5 (i.e. λ/U ≈ 2).

The reason that we want α to not be too large is the slow rates in the system. We saw

in the one cavity case that the system exhibits metastability, and the decay rate out of this
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metastability is exponential in α (meaning that the decay time is superexponential). Thus

if α is too large, we will be unable to reach the steady-state we want in a reasonable time

frame. In Sec. 4.6, we will get an analytic handle on how the slow rates in this two-cavity

system affect the dynamics.

4.5 Alternate detuning implementation

Before we move on to more details of the cat-generating system, we will again bring up

the adiabatic continuity from Sec. 3.3. The main argument was that our steady-state will

qualitatively remain the same up to analytic continuation of any varied parameters, as long

as the dissipative gap does not close.

We can see this phenomenon in action for the Kerr system’s exact solution. At any point

in the derivation, we can take U → 0 and recover the squeezed-state generating system. The

only time that this fails is if our other parameters λ, J would fall in the unstable regime

for the quadratic model. This can be summarized in Fig. 4.7(a). The line with U = 0 and

unstable λ ≥ J/2 is highlighted in red. An analytic continuation from a cat state with U 6= 0

to a squeezed-state is shown with a blue curve. Having red means that either the gap opens

to permit multiple steady-states, or the steady-state becomes parametrically unstable.

This analytic continuity is important because it can be used to include additional quadratic

terms in our Hamiltonian without significant change in the steady-state. More specifically,

we can include local terms that will replace the coherent tunnel coupling between the cavities.

Recall that our KPOs are driven on-resonance, with no effective cavity frequency terms.

If we assume that this is no longer the case, then we will have detunings of the form,

Ĥδ = δAâ
†â+ δBb̂

†b̂. (4.30)
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Figure 4.7: (a) Schematic diagram of the parameter space for the Kerr cat-generating model. The line with
no dissipative gap, indicating instability or multiple steady-states, is highlighted in red. Gapped parameter
choices are in blue. The curved line shows an analytic continuation from a squeezed cat state (U, J �= 0)
to a squeezed state (U = 0). (b) Schematic diagram between coherent coupling J and detuning δ terms,
functioning as the same parameter up to a phase of e−iπ/2. The blue line shows an analytic continuation
from a system with no broken time-reversal symmetry, to one with maximal broken time-reversal symmetry.
Note that this diagram assumes U �= 0 , as otherwise there would be a circle of radius 2λ centered at the
origin for which the system would be unstable.

In the ĉ± basis, these take the form of,

Ĥδ =
1

2
(δA + δB) (ĉ

†
+ĉ+ + ĉ†−ĉ−) +

1

2
(δA − δB) (ĉ

†
+ĉ− + h.c.). (4.31)

The key thing to notice is that the second term looks exactly like the J-proportional one in

Eq. (4.18). If we now choose,

δA = −δB = δ, (4.32)

then the effective onsite detunings vanish and we recover the exact same Hamiltonian term as

the coherent coupling. The parameter J is replaced by iδ. By the same analytic continuation

argument, since the gap does not vanish, the steady-state will still be |ψe〉 from Eq. (4.24).

Fig. 4.7 showcases this transition. Assuming U �= 0, the system will remain gapped and

stable as long as we have either δ or J nonzero (or a combination of the two).

It is worth noting just how bizarre this outcome is. We have replaced a nonlocal term
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coupling the two cavities with local detunings. The only resulting difference was that the

effective coupling strength became imaginary. Generating detunings with equal-and-opposite

magnitude is easier to accomplish experimentally, because we just have to drive one of the

cavities at a higher pump frequency.

More importantly, this alternate detuning-based approach no longer needs to break time-

reversal symmetry. Our master equation still needs a dissipator of L[â−ib̂]. However, we can

now gauge away that phase by taking b̂→ ib̂. Since there is no longer a coherent coupling,

it will not ‘pick up’ this extra phase. The cavity detuning and Kerr nonlinearity are also

phase-invariant. The sign of the parametric drive will change, but it will remain real-valued.

Our system will now look like,

ĤECD = Ĥ1 − Ĥ2,

Ĥj = δâ†j âj + λ(âj âj + h.c.) + Uâ†j â
†
j âj âj,

d

dt
ρ = −i[ĤECD, ρ] + 2ΓL[â+ b̂]ρ,

(4.33)

with â1 = â, â2 = ib̂.

This offers several insights into the perfect-absorber recipe. Thanks to these adiabatic

continuity arguments, we have shown that you can not only deviate from chirality, but you

can also maintain time-reversal symmetry.

In what follows, we will continue using the coherent tunnel coupling between the cavities

to remain in line with the literature. The detuning-based setup remains a more simple and

straightforward way of implementing the design in practice. In the limit of δ/U � 1 it

qualitatively yields almost the same state, with the main difference being that δ pushes us

from the cat to the squeezed state roughly twice as fast (i.e. we get the same fidelity with

a cat for J ≈ 2δ). There is also no unwanted phase rotation, because the corresponding

squeezed state has its squeezed quadrature aligned with the direction of the cat.
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4.6 System imperfections

4.6.1 Slow rates

We will now characterize the effect of unwanted losses on our system. In general, the worst-

case tolerance of our system to loss is set by the dissipative gap. A small gap corresponds to

a slow rate, which leads to long stabilization time for the steady-state. This gives unwanted

losses more time to corrupt the evolution. In the single KPO case, there was one slow

rate of the Liouvillian that acted as the dissipative gap. Since our setup can map to a

cascaded system under a certain choice of parameters, for which cavity A exhibits the same

reduced dynamics, we expect the same rate here. However, repeating the same degenerate

perturbation theory argument shows that there are now several other slow rates in the

problem.

The explicit derivation can be found in Appendix C, which we omit here for brevity. Es-

sentially, the single KPO used a basis of two cat states |C±(α)〉, corresponding to four possible

outer products. It then took the intrinsic dissipation L[â] as the perturbing Liouvillian.

What we will do for two cavities is take all possible tensor products of these cat states

for both cavities. This results in four states, and thus sixteen outer products to use in the

perturbation theory. The unperturbed part will be the two Hamiltonians ĤA + ĤB. The

perturbation will be the coherent coupling J(â†b̂+h.c.) and engineered dissipator 2JL[â−ib̂]

(assuming the chiral limit for simplicity).

The result we find is that there are five slow rates. These mix the various populations

and coherences of the cat state tensor products. The approximate scaling of all these rates

with the drive strength goes as,

Eslow ∼
Jλ

U
e−

4λ
U +O

(
e−

5λ
U

)
. (4.34)

Note that we omit prefactors of order one. This result is in line with the single KPO from
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Eq. (4.13), where that rate maps to one of the five here. The actual values and corresponding

eigenvectors are detailed in Appendix C. The reason for the strong exponential scaling is the

vanishing overlap between coherent states, 〈+α| − α〉 = e−2|α|2 .

The conclusion to take away from this is that unlike the single KPO, we cannot choose a

clever initial condition that will bypass the slow rates. Back then, the only slow rate was a

population transfer between the two coherent eigenstates. We were able to choose a vacuum

initial state that had equal overlap with both |α〉 and |−α〉, which allowed half the population

to go to each one. In the two-cavity problem, the multiple rates mix up all populations and

coherences of all four cat combinations in nontrivial ways. While cavity A will still obey

the same master equation in the chiral limit, the necessary cavity-cavity correlations for the

entangled cat will take a long time to reach, even if starting from vacuum.

In the following sections, we will evaluate the effects of unwanted losses for realistic

experimental parameters. As it turns out, we can still get good fidelities with our desired

entangled cats.

4.6.2 Intrinsic loss

Assuming a synthetic reservoir implementation in cQED, we take our cavities to have a

leakage rate κ,

d

dt
ρ = −i[ĤEC, ρ] + 2ΓL[â− ib̂] + κL[â]ρ+ κL[b̂]ρ. (4.35)

Kerr nonlinearities in cQED cavities can be made on the order of 100 KHz to 1 MHz [9].

State-of-the art 3D microwave cavities have leakage rates on the order of 100 Hz [92, 93].

This means that κ/U = 10−3 to 10−4 are reasonable values to consider. We will use a

conservative choice of κ/U = 10−3 in the following simulations.

In Figure 4.8(a) we plot the numerically-computed fidelity of the system steady-state in

terms of loss rate κ/U with the exact steady-state |ψe〉. The plot also shows fidelities with

the ideal entangled cat from the the first line of Eq. (4.28), although we will focus on the
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exact solution fidelity in this section.

We find that for our experimentally-viable limit of κ/U = 10−3, we can still get good

fidelities upwards of F > 0.85 with a value of J/U = 1, λ/U = 2. As suggested by our earlier

discussion on the role of J , this choice of parameters still yields a good cat state. Taking

higher J/U will cause the state to no longer be cat-like, even if it has high loss tolerance.

This result can be further improved by deviating away from nonreciprocity. Recall that

we are free to tune the dissipator and coherent coupling separately. Fig. 4.8(b) plots the

fidelity for J/U = 1, λ/U = 2 and κ/U = 10−3 in terms of the nonchirality ratio Γ/J . We

find that the fidelity with the exact state can be further improved to F > 0.9, corresponding

to a cat fidelity of F > 0.86.

While these improvements are marginal, they also act as a good demonstration that we

do not benefit from deviating too far from the chiral limit. We can do a little better, and

have some wiggle room in the parameters, as long as we stay close.
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Figure 4.8: (a) Fidelity of the numerically computed steady-state for the two-cavity system, compared
to the expected exact result |ψe〉 〈ψe| (solid lines), and the ideal entangled cat state from the first line of
Eq. (4.28) (dashed lines, accounting for an overall phase rotation). We plot in terms of decay rate κ/U .
The drive strength is fixed at λ/U = 2. The dissipator strength is Γ/U = 2, which is the chiral limit (for
simplicity). The black dashed line represents κ/U = 10−3, which we claim to be the (conservatively-chosen)
limit for experimental viability. (b) Fidelity in terms of nonchirality Γ/J , for J/U = 1, λ/U = 2 and loss
κ/U = 10−3.
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4.6.3 Parameter mismatch

Aside from intrinsic loss, another concern is the mismatch of parameters. The perfect ab-

sorber recipe requires symmetric drive strengths and Kerr nonlinearities between the two

cavities. To model such imperfections, we consider the following modified Hamiltonian,

ĤPM = λ(ââ+h.c.)+λ(1+δλ)(b̂b̂+h.c.)+Uâ†â†ââ−U(1+δU)b̂†b̂†b̂b̂+J(â†b̂+h.c.). (4.36)

The dimensionless parameters δλ and δU quantify how badly cavity B is mismatched to

cavity A. We recover the perfect absorber for δλ = δU = 0.

In Fig. 4.9, we plot the fidelity of the setup in terms of δλ and δU . The slow rates do

not limit the system in this case, as we can attain fidelities above F = 0.9 even when the

mismatch parameters greatly exceed Eslow. Since the mismatch does not damage the parity

of the system, it is nowhere near as dangerous as transmission loss.
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Figure 4.9: Fidelity of the numerically computed steady-state with |ψe〉 in terms of drive mismatch δλ
(left) and Kerr nonlinearity mismatch δU (right). The drive strength is fixed at λ/U = 2. The Hilbert space
is truncated at N = 12 Fock states for each cavity.
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4.7 Conclusion

This chapter gave a simple, explicit recipe for making entangled cat states. The exact setup

with the necessary parameter restrictions is,

ĤEC = λ(ââ+ b̂b̂+ h.c.) + U(â†â†ââ− b̂†b̂†b̂b̂) + J(â†b̂+ h.c.),

d

dt
ρ = −i[ĤEC, ρ] + 2ΓL[â− ib̂]ρ.

(4.37)

The J-proportional term may also be replaced by a cavity detuning term δ(â†â− b̂†b̂). The

resulting pure steady-state will be |ψe〉 from Eq. (4.24).

Table 4.1: Experimentally-realistic values for the system parameters of the cat-generating scheme.

Parameter Description Regime
κ/U Intrinsic loss rate. Experimentally realistic values

are κ/U ∼ 10−4 − 10−3.
λ/U Parametric drive strength. Increas-

ing it yields a more catlike state with
higher α, but makes the system’s loss
tolerance and equilibration time longer.

For our chosen loss rates, the best
drive strength to use is λ/U ≈ 2−
2.5 .

J/U Coherent coupling strength. Increasing
it yields higher loss tolerance, but less
catlike behaviour.

For our chosen drive strengths,
the best value to use is J/U ≈ 1.

Γ/U Engineered dissipation strength. Devi-
ating too far from the coherent coupling
will weaken the loss tolerance.

For best loss tolerance, Γ/U ≈
J/U .

Table 4.1 summarizes the relevant parameters of the system, and gives explicit prescrip-

tions for realistic values that these parameters should take in an experiment.

This scheme only uses local interactions and nonlinearities, requiring no time-dependent

elements. It is straightforward to realize, and has acceptable tolerance to experimentally-

realistic losses.
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Chapter 5

Adiabatic ramping

Throughout this thesis, we have mostly been concerned with the steady-state. The transient

dynamics are more difficult to measure, and not as relevant to our stabilization schemes.

Indeed, one of the biggest advantages of our system is that it creates steady entanglement.

However, the slow relaxation rates cause the system to take an extremely long time to

reach the steady-state, compared to the natural scales in the problem. We already saw this

in Fig. 4.4. For the Kerr setup, the problem is just as prominent because the slow rates scale

in the same way.

To expedite the process of reaching the steady-state, we will add a slow time-dependence

to our parametric drives. While the Kerr nonlinearities are not easy to modify mid-evolution,

an experimental setup will have good control over the parametric drive strength. Recall from

Eq. (4.34) that the slow rates also scale with the drive strength. For a small drive, the rates

will only be proportional to the engineered dissipator strength Γ. For larger drives, they

are exponentially suppressed by e−4λ/U . Thus when λ/U � 1 the system will quickly equi-

librate to the desired steady-state. We can remain in this desired steady-state by smoothly

increasing the drive strength in an adiabatic ramp [94]. In effect, we ‘drag’ our system to

the desired high-drive state in an adiabatic evolution.

The slope of this ramp must be larger than the slow rates, to prevent them from mixing

the state, and smaller than the gap to the fast rates so that we do not access other eigenstates
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of the Hamiltonian.

Note that this chapter will contain representative proof-of-concept results rather than

optimized ramp shapes. The study of adiabatic ramping goes beyond the scope of this

thesis. We seek only to show the benefit of introducing slow time dependence to our drives.

As we will find in the last section of this short chapter, an adiabatic ramp will not only speed

up the stabilization, but also allow us to reach better fidelities than the steady-state in the

presence of loss.

5.1 Stabilization speedup

We will subject our drives to a simple ramp of the form,

λ(t) =
λ

1 + e−k(t−tmid)
, (5.1)

for a ramp time from t = 0 to t = 2tmid. The slope of the ramp is set by k, with higher values

corresponding to steeper (faster) ramps. The midpoint of the ramp tmid is chosen such that

λ(t) ≥ 0.99λ by the end of the ramp. We thus evolve from λ(0) = 0.01λ to λ(2tmid) = 0.99λ.

Since the rates of the system are so fast for small drives, it is not a problem that we do not

start exactly from zero drive amplitude.

In Fig. 5.1, we compare the fidelity of the system with the exact steady-state |ψe〉 and

its undesired odd counterpart |ψo〉, for non-ramped and ramped dynamics. The unramped

drives have λ(t) = λΘ(t), with step function Θ(t) turning the drive on to maximum at the

start of the evolution. The ramped drives obey Eq. (5.1). Since we do not consider loss, both

the ramped and non-ramped systems will eventually reach F = 1. However, the unramped

system takes an exponentially longer time in doing so. For parameters of λ/U = 3, J/U = 1,

the ramped system reaches a fidelity of F > 0.95 in tU ∼ 10. Note that we chose a higher

drive strength that the previous chapter to emphasize the advantage that the ramp brings.

In comparison, the non-ramped system will require tU ∼ 500 to reach the same fidelity. We
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see a significant speedup for the ramped case.
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Figure 5.1: Fidelity of the time-dependent two-cavity system state with |ψe〉 and |ψo〉. We fix J/U = 1,
measuring time t in units of U = 1. The system is initialized in the vacuum state. In panel (a), we initialize
the drives at their maximum value of λ/U = 3, while in panel (b) we ramp them to this maximum value
using the formula in Eq. (5.1) for k/U = 0.2, tmid = 23. The ramp shape is plotted in the inset. The
dissipator strength is set to Γ/U = 0.5, half the chiral limit, which we found to be the approximate best
choice via numerics.

5.2 Metastable entangled-cat generation

If there is intrinsic loss in the system, the steady-state will no longer have 100% fidelity

with the desired result |ψe〉. We have shown in the previous chapter that we still get good

fidelities of F > 0.9 for reasonable experimental parameters and cat sizes. However, the

adiabatic ramp can let us do better than the steady-state.

The ramp drags the system towards a desired state, bypassing the slow rates. While the

fidelity will eventually decay back down to the steady-state result, we can still make use of

the cat before this happens. The metastability provides a sufficient time window for the

state to be transported away for use in another part of the system.

This concept is summarized in Fig. 5.2, which plots the time-dependent fidelity for a

lossy system described by Eq. (4.35), with and without the time-dependent ramp of the

drives. We choose parameters for which the steady-state has poor fidelity F ≈ 0.6. If there
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is no ramp, then the system takes a long time to reach the steady-state, but remains useless

throughout the evolution.

On the other hand, if we have a ramp, then it lets the system quickly approach a high-

fidelity state above the steady value. It then remains there for a long period of time, set by

the intrinsic loss rate κ/U .

Unramped

Ramped
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1.
F

κ/U = 10-3

Figure 5.2: Fidelity of the time-dependent two-cavity system state with |ψe〉. We measure time t in units
of U = 1. The system is initialized in the vacuum state. The ramp parameter is k/U = 0.2, corresponding to
a ramp length of 2tmid = 46. The coherent coupling is J/U = 1 and the engineered dissipation is Γ/U = 0.5
(found to be the approximately optimal value for this set of parameters). The drive strength is set to
λ/U = 3, and the decay rate at κ/U = 10−3, for which the steady-state fidelity is F ≈ 0.6 (indicated by the
dashed line).

The choice of ramp parameter k plays an important role in just how high-fidelity we

can get. Fig. 5.3 plots the peak fidelity that our ramped system will reach before it starts

decaying back down. In the limit of k/U � 1, the ramp is identical to a quench where

we initialize the drives at their maximum values, for which the slow rates inhibit us via

metastability. For k/U � 1, the ramp takes so long that the slow rates ‘undo’ any adiabatic

dynamics it creates on the go.

We see that for all drive strengths, assuming a coupling of J/U = 1, the optimal value is

k/U ≈ 0.1−0.2. The reason that this does not get scaled down by the exponentially-smaller
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slow rates is because the ramp needs to be as steep as possible, without hitting the fast rates

of the system. Since these fast rates do not exhibit the same exponential scaling in λ/U , we

can go to higher drives and still get good metastable fidelities despite the steady-state being

very bad.
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Figure 5.3: Peak fidelity of the ramped time-dependent two-cavity system state with |ψe〉 in terms of ramp
parameter k/U . The system is initialized in the vacuum state. The coherent coupling is J/U = 1 and the
engineered dissipation is Γ/U = 0.5. The decay rate is κ/U = 10−3. For the λ/U line, the steady-state
fidelity is shown with the dashed line. For very steep ramps indistinguishable from unramped systems, the
system simply reaches the steady-state without going over.

Note that the choice of the nonchirality parameter Γ/J can also affect these results. Our

empirical numeric observations have suggested Γ/J ≈ 0.5 as the optimal value, which we have

used in Fig. 5.3. It is challenging to produce analytic results in this regard, because we are

now looking at transient dynamics for a time-dependent Hamiltonian with both dissipation

and multiple slow rates.

The pursuits of finding more optimal ramps and getting a better analytical handle on the

nonchirality ratio remain future goals for this work. Nonetheless, we have shown that with a

simple, smooth adiabatic time-dependence for our system drives, we can generate entangled

cats faster and with higher fidelity.
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Chapter 6

Conclusion and outlook

The original goal of this thesis was to generate entangled states between bosonic cavities. We

have given an explicit recipe for making two-mode squeezed states in Sec. 3.1, and entangled

cat states in Sec. 4.2. What makes our setup stand out is the simplicity of the ingredients

involved. The only nonlinearity we need is a self-Kerr interaction, which is well-known and

easy to implement. All parametric drives in our system are local, which means that this

two-cavity setup can easily be extended to an entire network. Moreover, we have shown that

the system does not even need to have a coherent coupling between the cavities, instead

replaced by cavity detunings. These advantages are crucial with the prospect of quantum

computation and scaling in mind.

There are many extensions to pursue for this research in the future. The first and foremost

is the prospect of tuning the cat-generating system to make it more resistant to loss. If true

chiral waveguides using circulator-based implementations can have their loss rates improved

by at least an order of magnitude, our scheme provides a way of easy remote entanglement

for distant cavities. There are also ways of improving resilience through continuous parity

measurements [22]. Since unwanted single-photon loss takes us from |ψe〉 to |ψo〉, flipping

the parity, a circuit element that makes odd-parity states disfavoured will encourage the

stabilization of just |ψe〉.

One can also consider far more sophisticated adiabatic ramps. Aside from driving the
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system into the steady-state faster, ramps can bring us into a metastable state close to

the unique one that we were after, allowing the system to remain stuck in it due to the

slow rates. The ramp shape we provided is sufficient to show that good fidelities and short

preparation times can be attained. Both these properties can be made higher through a

rigorous mathematical choice of optimized ramp function.

Aside from easier ways to generate the state, there are also questions about what kind

of state is actually needed for continuous-variable quantum computation. Our setup can

generate cats with α ≥ 1, which are suitable according to the literature. However, our

setup can also generate states that are very different from regular cats, but maintain high

entanglement and strong nonlinearity (as evidenced by negative Wigner functions). If both

the drive and coherent coupling greatly exceed the Kerr nonlinearity, we instead end up

with a squeezed entangled cat. There is no inherent reason for why regular cats are the only

viable state. The utility of such alternate states is also worth exploring further.

Lastly, the work in this thesis has helped shed more light on the perfect absorber recipe.

This is a powerful tool for generating pure entangled states, but the requirements for it to

work remain mysterious in present literature. We have given intuition in Appendix B on

how the two gauge-invariant phases in the system act as effective magnetic fluxes in two

rings, with one of them requiring maximally broken time-reversal symmetry. We have also

shown that the recipe can work in the absence of broken time-reversal symmetry, despite

being initially concieved as part of a cascaded quantum system. This gives fresh insight into

the pursuit of entangled states for continuous-variable systems in the future.
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Appendix A

Covariance matrix evolution

In this appendix, we will show how to find the covariance matrix for a quadratic two-mode

system, following Appendix B in Ref. [95]. Assume that the system’s equations of motion

can be written as,

Ĥ = ĉT ĥĉ,

d

dt
ρ = −i[Ĥ, ρ] +

∑
k

γkL[RT
k ĉ]ρ.

(A.1)

Here, ĉ = {x̂A, p̂A, x̂B, , p̂B} are the quadratures of the two cavity modes [(c.f. Eq. (3.18)].

The 4 × 4 matrix ĥ describes the Hamiltonian dynamics. The Rk are four-element vectors

mapping to the jump operator for each decay channel, while the γk are the corresponding

decay rates. They can be collected into an overall matrix that describes the dissipation’s

contribution,

Ẑ =
∑
k

γkR
∗
kR

T
k . (A.2)

We now define two further matrices,

Q̂ = 2σ̂
[
ĥ+ Im(Ẑ)

]
,

N̂ = 2σ̂
[
Re(Ẑ)

]
σ̂T ,

(A.3)
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where σ̂ contains the commutation relations of the quadratures,

σ̂ =



0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0


. (A.4)

With these, we write down the equations of motion for the covariance matrix,

d

dt
C = Q̂C + CQ̂T + N̂ . (A.5)

This is a simple linear system of equations that may be solved for both transient dynamics

and the steady-state limit. For transient dynamics starting at t = 0 with initial condition

C(0) = C0, the solution is given by,

C(t) = eQ̂tC0e
Q̂T t +

∫ t

0

dτeQ̂(t−τ)N̂eQ̂
T (t−τ). (A.6)

The steady-state covariance matrix C(∞) can be found by either taking t → ∞ in the

transient solution above, or more easily, just setting the left hand side of Eq. (A.5) to zero

and solving for the coefficients of C.

The dynamical matrix Q̂ describes the coherent evolution due to the Hamiltonian and

measurements by the reservoirs. The steady-state solution will be unique, provided that the

system is stable. Stability can be determined from looking at the eigenvalues of Q̂: they

must all have negative real part. Moreover, with a stable system the steady-state will be

unique, as any information about the initial condition will be exponentially suppressed in

time. We can also obtain information about the time it takes to reach the steady state, by

considering the magnitudes of the smallest (i.e. slowest) eigenvalues of Q̂.
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Appendix B

Gauge-invariant phases

The perfect absorber system we consider has two gauge-invariant phases. This is not imme-

diately obvious, as there are four independent terms in the Lindblad master equation. This

appendix will demonstrate how two of the four can be gauged away, and explain what the

remaining two represent in physical terms.

In general, the Hamiltonian and master equation can be written as,

ĤNP = J(eiφJ â†b̂+ h.c.) + λA(eiφA ââ+ h.c.) + λB(eiφB b̂b̂+ h.c.),

d

dt
ρ = −i[ĤNP, ρ] + 2ΓL[â+ eiφΓ b̂]ρ,

(B.1)

where φJ , φA, φB and φΓ are arbitrary constant phases for the time being. We first make

the substitution,

â = eiφJ â′, (B.2)

which results in:

ĤNP = J(â′†â+ h.c.) + λA(ei(φA+2φJ )â′â′ + h.c.) + λB(eiφB b̂b̂+ h.c.),

d

dt
ρ = −i[ĤNP, ρ] + 2ΓL[â′ + ei(φΓ−φJ )b̂]ρ.

(B.3)
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Then, the phase on the cavity A drive can be removed with a second substitution,

â′ = e−i(φA+2φJ )/2â′′, b̂ = e−i(φA+2φJ )/2b̂′, (B.4)

which gives,

ĤNP = J(â′′†b̂′ + h.c.) + λA(â′′â′′ + h.c.) + λB(ei(φB−φA−2φJ )b̂′b̂′ + h.c.),

d

dt
ρ = −i[ĤNP, ρ] + 2ΓL[â′′ + ei(φΓ−φJ )b̂′]ρ.

(B.5)

At this point, we are down to just two phases. These can no longer be removed with simple

gauge transformations. We define them by,

φ = φB − φA − 2φJ ,

θ = φΓ − φJ .
(B.6)

Relabelling â′′ → â and b̂′ → b̂ for simplicity, the equations of motion now become

ĤNP = J(â†b̂+ h.c.) + λA(ââ+ h.c.) + λB(eiφb̂b̂+ h.c.),

d

dt
ρ = −i[HNP, ρ] + ΓL[â+ eiθb̂]ρ.

(B.7)

Fig. B.1 shows a schematic diagram of what these two gauge-invariant phases represent.

The dissipation acts as a non-reciprocal hopping from both cavities to the reservoir. If we

consider the synthetic implementation discussed in Subsec. 3.3, the system would have three

hopping terms. Normally, we would then have two relative phases between these hopping

terms alone. However, since we operate in the Markovian limit where the resevoir can be

modelled with the Lindblad form, it is invariant under an overall phase (L[eiθẑ] = L[ẑ]).

Thus θ encapsulates an effective magnetic flux piercing the coupling triangle between the

two cavities and the dissipator.

On the other hand, the second phase φ corresponds to the drives. Bosonic parametric
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Figure B.1: Gauge-invariant phases of the two-cavity parametrically driven system from Eq. (B.7). The
solid black lines are J-proportional coherent coupling terms. The λA, λB-proportional parametric drives are
in red, corresponding to effective tunneling between particle and hole modes. The dotted black lines are
Γ-proportional dissipative couplings to an auxiliary cavity acting as a reservoir. The two phases are encircled
by two coupling loops, with θ corresponding to the dissipative couplings, and φ the particle-hole parametric
drive couplings.

driving Hamiltonians have an inherent particle-hole symmetry [1], meaning that we can treat

â† as an annihilation operator for a new mode populated by holes rather than particles. A

drive term of the form (ââ+h.c.) can then be thought of as hopping between this hole mode

and the corresponding particle mode (c.f. Fig. B.1). Since the tunneling term (â†b̂ + h.c.)

cannot distinguish between particles and holes, the hole modes are also coupled by it. All in

all, the parametric drives enable a second effective magnetic flux piercing the cavity modes

and their hole counterparts.

It is these two gauge-invariant phases that are used in the perfect absorber recipe. The

lower one θ must be fixed at θ = ±π/2 to maximally break time-reversal symmetry and

enable non-reciprocity. On the other hand, the upper one φ must be zero, since any other

value would create a sort of reverse process, helping to re-establish the symmetry we wanted

to break. Note that self-Kerr nonlinearities do not break any of these arguments, because

they are invariant under the gauge transformations we make.

If we instead consider the detuning-based implementation from Sec. 4.5, the central J-
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dependent couplings are absent. There are thus no central fluxes enclosed in any loops,

and thus no time-reversal symmetry breaking. We can choose a gauge where all the system

coefficients are real.
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Appendix C

Two-cavity superoperator perturbation

theory

This appendix will now repeat our superoperator-based degenerate perturbation theory for

the two-cavity system. There are four relevant cat state tensor products,

|φ1〉 = |C+(iα)〉 ⊗ |C+(α)〉 ,

|φ2〉 = |C+(iα)〉 ⊗ |C−(α)〉 ,

|φ3〉 = |C−(iα)〉 ⊗ |C+(α)〉 ,

|φ4〉 = |C−(iα)〉 ⊗ |C−(α)〉 .

(C.1)

The amplitude α =
√
λ/U is the same as in the single-oscillator case. These states are

orthonormal degenerate eigenstates of the two onsite Hamiltonians in combination:

(ĤA + ĤB) |φi〉 = 0. (C.2)
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The problem can now be cast as,

d

dt
ρ = L0ρ+ L1ρ,

L0ρ = −i[ĤA + ĤB, ρ],

L1ρ = −iJ [â†b̂+ h.c., ρ] + 2JL[â− ib̂]ρ.

(C.3)

The unperturbed part L0 is two independent Kerr parametric oscillator systems, for which

|φj〉 are zero-energy eigenstates. Meanwhile, L1 connects them with a J-proportional non-

reciprocal tunneling interaction. The superoperators can be rewritten as matrices via,

L0 = −i
[
1⊗ (ĤA + ĤB)− (ĤA + ĤB)∗ ⊗ 1

]
,

L1 = −i
(
1⊗ ĤJ − Ĥ∗J ⊗ 1

)
+ 2J

[
(â+ ib̂)⊗ (â− ib̂)− 1

2
1⊗ (â† + ib̂†)(â− ib̂)

− 1

2
(â† − ib̂†)(â+ ib̂)⊗ 1

]
.

(C.4)

There are sixteen basis states for the superoperators to act on, consisting of all possible

outer products |φi〉 〈φj|. Following the degenerate perturbation theory calculation, we ex-

press L1 in this basis and diagonalize it. For the sanity of the reader, we will omit the explicit

16× 16 resulting matrix here, noting only that it is proportional to Jα2 and non-Hermitian

as expected.

Before going to the results, we are also going to make another basis change to help our

intuitive understanding. We define the following four states,

|ψ1〉 =
1√
2

(|φ1〉+ |φ4〉) ,

|ψ2〉 =
1√
2

(|φ2〉+ |φ3〉) ,

|ψ3〉 =
1√
2

(|φ1〉 − |φ4〉) ,

|ψ4〉 =
1√
2

(|φ2〉 − |φ3〉) .

(C.5)

The first two states map back to the even and odd-parity solutions to the Kerr system’s
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recursion relations, i.e. |ψ1〉 = |ψe〉 + O(e−2α2
), and |ψ2〉 = |ψo〉 + O(e−2α2

). These are the

exact and approximate steady-states we expect in the model. The other two states |ψ3〉,

|ψ4〉 are an analogous pair for the system with opposite chirality, L[â+ ib̂]. We keep all four

states in the calculation because they act as four effective Bell states for a qubit, and span

the subspace of interest.

Going back to the perturbation theory, we find sixteen eigenvalues and eigenvectors. Only

six of these have an eigenvalue that becomes small in the limit of strong driving. In what

follows, we will write the eigenvalue Ei to lowest nonzero order in e−α
2
, and the eigenvector

|Ei〉〉 to zeroth order in the same quantity, just to keep things simple.

The first slow eigenvector is the unique steady-state:

E1 = 0,

|E1〉〉 ≈ (|ψ1〉 〈ψ1|)v.
(C.6)

The next two degenerate eigenvectors represent decay in the coherences between |ψ1〉 and

|ψ2〉:

E2 = E3 ≈ −4Jα2e−4α2

,

|E2〉〉 ≈ (|ψ1〉 〈ψ2|)v,

|E3〉〉 ≈ (|ψ2〉 〈ψ1|)v,

(C.7)

The next two eigenvectors represent combined decay in the state populations:

E4 ≈ −2Jα2(7 +
√

17)e−4α2

,

|E4〉〉 ≈
[
(9 +

√
17) |ψ1〉 〈ψ1|+ (1 +

√
17) |ψ2〉 〈ψ2| − (5 +

√
17)(|ψ3〉 〈ψ3|+ |ψ4〉 〈ψ4|)

]
v
,

E5 ≈ −2Jα2(7−
√

17)e−4α2

,

|E5〉〉 ≈
[
(9−

√
17) |ψ1〉 〈ψ1|+ (1−

√
17) |ψ2〉 〈ψ2| − (5−

√
17)(|ψ3〉 〈ψ3|+ |ψ4〉 〈ψ4|)

]
v
.

(C.8)
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Finally, there is an eigenvector corresponding to combined decay in the state coherences:

E6 ≈ −20Jα2e−4α2

,

|E6〉〉 ≈ (|ψ1〉 〈ψ2|+ |ψ2〉 〈ψ1|+ |ψ3〉 〈ψ4|+ |ψ4〉 〈ψ3|)v .
(C.9)

All of these eigenvalues scale with α in the same way. This scaling is the same as in the

one cavity problem [c.f. Eq. (4.13)], up to prefactors of order one. We can thus expect that

in the regime where our perturbation theory is valid, all of these processes will be active for

roughly the same time scale (up to one order of magnitude).

Fig. C.1 plots the effective spectrum of the full Liouvillian for the two cavity system. We

obtain the five smallest-real part nonzero eigenvalues of L0 + L1, and plot them in terms of

the drive strength. The expected scaling holds as long as we have α2 = λ/U ≥ 1. Note that

the plot will experience deviations as we continue increasing the drive strength, similar to

what we saw in Fig. 4.3. Accounting for those will require higher-order perturbation theory.

However, since these deviations will cause us to underestimate the slow rate, we can still use

the analytic scaling as a worst-case scenario.

λ/U ⅇ-4λ/U

0.5 1 1.5 2
λ/U

10-1

10-2

10-3

Ei

Figure C.1: Slow rates of the two-cavity system in Eq. (C.3), obtained from the five smallest-real part
nonzero eigenvalues of L0 + L1. We plot in terms of the drive strength λ/U = α2, and fix J/U = 0.1. We

assume the chiral limit J = Γ. The solid red line is the expected scaling with the drive strength, α2e−4α
2

,
with no prefactors. The Hilbert space is truncated to N = 12 Fock states per cavity.

The conclusion is that the process of reaching the steady-state will be inhibited by a rate
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on the order of α2e−4α2
. There are several different processes that will shuffle populations

and coherences back and forth between the four relevant states |ψi〉, eventually stabilizing

the unique steady-state |ψ1〉.
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