INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bieedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.9., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comner and continuing
from left to right in equal sections with smalil overiaps.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Jacqueline Beaulac

Department of Music
McGill University, Montreal

June 2000

Interactive multimedia compesition on the World Wide Web:
a solution for musicians using Java.

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfilment of the requirements of the degree of Master’s of Arts.

© J. S. Beaulac 1999

i+l

zlfauonal Library Bbiothéque na
Qﬁmnﬁwm m‘:ces bubli%‘graphiques
Ottawa ON KIA NG Otaa ON K1 oA
Canada Canada
Your Sig Votre rédvence
Our fle Notre réiérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant 2 la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre impriinés
ou autrement reproduits sans son
autorisation.

0-612-70580-3

Canada

Abstract

This thesis attempts to gauge the strengths and limitations of the Java
programming language in terms of its use in the production of multimedia
compositions: in particular, the ways in which Java supports the creation of
interactive, non-deterministic musical works. An original solution to the problem
of multimedia design is presented: a hierarchically defined, basic, yet flexible
scripting language that is interpreted using Java. This scripting language allows
the user to incorporate his/her own media into a coherent and interactive form
using a small set of simple keywords and basic operators. It also allows new
functionality to be added by advanced users with a basic knowledge of Java. By
investigating how such a scripting language may be implemented, the extent to
which Java may be applied towards multimedia applications in general is
revealed.

Cette thése met en évidence les forces et les faiblesses du langage de
programmation Java a propos de son utilité dans la production d'oeuvres
multimedia ayant une composante intéractive ou non-déterministe. Un nouveaun
outil créé dans ce but est ainsi présenté: un langage simple mais extensible,
permettant de définir de fagon hiérarchique les oeuvres de média mixte. Les
oeuvres ainsi specifiées seront réalisées a partir d'une application Java, et pourront
incorporer divers médias fournis par le compositeur. Les utilisateurs plus avancés
auront aussi la possibilité de construire des extensions de ce, en créant leurs
propres algorithmes en Java. Par le biais d'une telle application, cette thése

montre un apergu des possibilités offertes par Java dans ce domaine.

Table of Contents

ADSLTACEoeeeeeecererernescencensnenenecesesnassessesasssosssesntsssestsssssossssanasamesmesmesersnssnessernesses i
PIECIS ..ccoceneriicinnicsrntsncessessessesscsesssossneorosssssessosessssmssssssnssnssassssssssssnsesssssnssssrnsnssssons ii
Table Of COMUENLScoovemineeiiiiniinsenincsstcsarssenssenessessssiossessessasssossessssenssssssannes iii
ACKNOWIEABEMENLScoreeirreneeicnirnrinenesersrenesrenesnenerirssiesnsssressesssesssssssnssssanes vi
INTOQUCHONooerreeceinccreecennence i reeesesansncsssseasssasssssarenses 1
Chapter 1: Current multimedia formats and tools for the World Wide Web.......... 3
1.1 Static file fOrmatsccoervuirrcerireeneireenteereercntce e anees 3
1.2 Interactive file formats and their development environments 4
1.2.1 QuickTime......coercevreirecrernrrecssesinsssesseranes 4
1.2.2 ShOCKWAVE.........cocveeereeeneeeerreceennseeerescnsrsmsescassns 5
1.2.3 Similarities of QuickTime and Shockwave...........ccccorvverrvcrerncns. S
Chapter 2: Salient features of the Java programming language 7
2.1 Object-oriented programming 7
2.2 High-level structures included in the basic APIs..... 10
2.3 Exception handling .11
2.4 Platform-independence 12
2.5 Applets 13
2.6 Support for images 15
2.7 Support for audio 15
2.8 Multithreading..... 16
29 Dynamic loading 18

2,10 JAVAAOC .ueieiieeeeieeeeeissessessesesssessssesscessessssasessesersssssrsssessessrsssressessrasansrsnsane 19

Chapter 3: A new scripting language for interactive multimedia 21
3.1 General design.........c..cocceniiuneiesscsrerirnecsnrenienenne - 21
3.2 SYDLAX ..eceeeeiicnncnreeeaoreernasenssssnsssscsensssosassesmssi i me e snesasarsesesanenasseses 22

Chapter 4: Implementation of the scripting language in Java............................... 27
4.1 The three basic data types.........cocceeeerircrsressnsenserreneemseesieensssessessesisees 27

4.1.1 SequenceObJECE..........cuumrevrreirrenrucsreserrrermernernnentetensessesessessessenenns 27
4.1.2 SeqUENCEDTIVELc.ccovrnvrirircsiessscsseississsensnnssnssrsseeesssmsassasssnssnsesson 27
4.1.3 SUOPTIIZEI....c.nceeeeenercereenereereesiesessessernenenneseneseresssssnsenernssssnessaees 28
4.1.3.1 StopEvent and StopListener............ocoeiiereeriiereecnecscnsessnnsneens 29

4.2 Impiementation of the tree structure..............ccceuveveeerenens 29
4.2.1 Leaf NOESoouoerecriciinernirnceessscsnensscesiesnensesssesssreassnssssssessasens 29
4.2.1.1 BasicSequenceObject...... .29
4.2.1.2 ImageDriver and AudioDriver........................ 30
422 Branchnodes...... 30
4.2.2.1 CompositeSequenceObject..... ...30
4.2.2.2 SetManager ...30

4.3 Enhancements for interactivity .31
4.3.1 CompositeStopTrigger and StopTriggerOp 31
4.3.2 Subclasses of StopEvent 32
4.4 Displaying and storing the objects: SequenceFormat 32
44.1 SequenceText 33
442 SequenceGui 33

iv

4.5 Playing the sequence: the Runner applet

...

Summary and Conclusion

...................................

Bibliography

Appendix A: API guide to the Java implementation

...

33

35

37

39

Acknowledgements

I should like to acknowledge all those who contributed their knowledge, effort,

and time to this work:

Prof. Bruce Pennycook, for providing me with guidance and helping to push me

to the completion of my studies;

My employer, Ericsson Communications Inc., for providing me with the
opportunity to learn the skills needed for my research, and with the means to

finance my degree;

All the members of my team at Ericsson, for their technical assistance, their

indispensable aid in advancing my programming skills, and most importantly,

their kindness and support through the difficult times;

Thanks to Natalie Hasell and Katherine Rother, for their constant encouragement;

And all the thanks in the world to my husband Gilbert, for his love and endless

patience.

Introduction

In this technological age, the arts are turning more and more towards
multimedia as a new means of self-expression. The computer has become by far
the most popular tool for integrating different types of creative endeavours—such
as animations, musical compositions, artwork, and interactive games—into cross-
media creative works. However, almost all of the programming languages used to
define multimedia works are focussed on the same goal: the creation of static,
wholly pre-defined productions. While some multimedia applications, such as
Shockwave movies, allow a limited amount of user input into the finished work,
the initial production of such a work requires a great deal of time and knowledge.
Yet, for most people, the main rationale for using a computer as a tool in the
creative process centres on its speed and ease of use. Thus, complex multimedia
applications of this type actually end up stifling the same impulse to create which
afforded them their original raison d'étre.

Of the various means used to bring cross-media works to their audience,
the World Wide Web is almost certainly the most popular. Despite this, no easy
way to construct interactive or non-deterministic works for the Web has been
developed yet. While some users have surmounted this obstacle, the majority of
non-programmers have restricted themselves to printed-page-like Web
productions. Even those Web pages that combine media often do so in a
disconnected and static manner, employing animations, sounds, and images that

are both uncoordinated and unresponsive to the observer. Because of this, the

possibilities of this potentially ideal forum for the development of integrated
media works have been, for the most part, left barely investigated.

The Java programming language is one of the most promising avenues of
research for interactive multimedia. This thesis will attempt to gauge the strengths
and limitations of Java in terms of its applicability to the production of
muitimedia compositions. In particular, it will examine the ways in which Java
supports the creation of interactive multimedia works.

In order to do this, an original solution to the problem of easy-to-learn
multimedia design will be presented: a hierarchically defined, basic, yet flexible
scripting language that is interpreted using a Java application. This scripting
language allows the user to incorporate his/her own musical cross-media works
into a coherent and interactive form. It consists of a small set of simple keywords
and basic operators that first-time users can learn quickly. However, it also
allows new functionality to be added easily by more advanced users with a basic
knowledge of Java. Rather than using an absolute time scale, as is common in
most deterministic multimedia languages, scheduling of events is dependent on
user input and on relative timing. This allows users with a musical background to
create works that are not bound by the notion of frames, a concept designed for
animation but far from ideal for music.

Having defined this scripting language, it will be shown that it is possible
to implement it in Java. In examining this implementation, it will be ascertained
whether Java is sufficiently powerful and flexible to be used to define the kind of

structures necessary to create serious interactive multimedia works.

Chapter 1: Current multimedia formats and tools for the World Wide Web

1.1 Static file formats

The simplest way of presenting a musical composition on the Web is to
capture an audio recording of the work and encode it in a format such as WAV,
AIFF, or MP3'. Such an audio file can be posted on a Web page for downloading
or, in the case of streaming audio formats such as RealAudio?, can be made
available for immediate listening. Evidently, this technique allows only simple
playback, since the audio is pre-recorded. Similarly, for cross-media works, the
most basic option available is a video format that allows playback only, such as
AVI or MPEG®. In many cases, these options are adequate for presenting works
made for a live audience without computer mediation, such as concert recordings,
studio works, and videotapes of live performances. However, for a composer who
wants to create works that can be manipulated and changed by a Web audience,
such files are not sufficient. Likewise, such static formats cannot be used to
define aleatoric or algorithmic compositions that may differ from one playback to

the next.

! WAV is the standard audio file format for DOS/Microsoft Windows; likewise, AIFF is the
standard audio file format for the Apple Macintosh OS. MP3 is the most popular of the audio file
formats that use the MPEG standardised compression scheme.

? RealAudio is a file format developed by Progressive Networks specifically for streaming audio.
? AVl s the standard video file format for Microsoft Windows. MPEG is a standardised file

format for compressed video.

1.2 Interactive file formats and their development environments

Other multimedia formats have been created which allow greater
flexibility in the Web environment than a simple recording can offer. In
particular, QuickTime and Shockwave both allow a composer to define certain
user actions and algorithmic components, which can be used to alter the course of

a multimedia composition.

12.1 QuickTime*

QuickTime is a library of fairly low-level code used to play back media
files in a large number of formats. This code is accessed using an interface for C,
Pascal, or Java. Thus, to use QuickTime directly entails quite a bit of
programming. However, many QuickTime development tools are available which
hide the details of the QuickTime code behind a friendlier interface. QuickTime
movies are simply files that contain a set of QuickTime commands. As such,
QuickTime movie files may contain media data in themselves, but may also refer
to a number of other media files. In this case, the movie file becomes a means of
organising and synchronising the data under its control. In fact, QuickTime
movies may be linked, with one master movie controlling aspects of other movies
in a hierarchical fashion. The QuickTime code also generates "events” in

response to user input. These events can cause actions to occur within the movie:

* QuickTime is the standard video file format for the Apple Macintosh. Apple has also ported the

QuickTime API to Microsoft Windows and developed browser plugins for QuickTime.

4

for example, passing the mouse over a particular area on the screen might cause a

sound to play or a button to change colour.

1.2.2 Shockwave

Shockwave is a Web-based application developed by Macromedia and
used for the playback of files authored in Macromedia Director. These files often
incorporate a variety of media, usually in a compressed format. The media are
synchronised to each other by means of a score. Shockwave movies also may
contain scripts written in Lingo, the scripting language used in Director. Lingo is
used not only to control many standard aspects of animation, but also to provide

interactivity by modifying aspects of the movie based on user events.

1.2.3 Similarities of QuickTime and Shockwave

It is clear that both QuickTime and Shockwave are oriented towards
animation, not music. For both, the structural organisation of the media is in
terms of frames, which divide the passage of time into uniform segments. Such a
division into completely undifferentiated blocks of time is far from conducive to
most forms of musical expression. Also, in both of these multimedia formats,
there is a heavy emphasis on "sprites”: visual elements that contain rules for their
motions on-screen. Audio, when it is mentioned, is viewed mainly in terms of
effects or sounds that are "attached” to these visual elements; it is clearly

subordinate to video and image. Clearly, an alternative is necessary for

composers who would like to write serious musical works that incorporate other
media.

The remaining chapters address this need. Chapter 2 explores the salient
features of the Java programming language; Chapter 3 investigates the
characteristics of a new scripting language for interactive multimedia; and finally,

Chapter 4 describes the implementation of that language in Java.

Chapter 2: Salient features of the Java programming language

2.1 Object-oriented programming
Object-orientation is a relatively new concept in programming. In an

object-oriented language like Java, the pieces of data needed by a program are
grouped into sets called objects, which resemble structs in the C programming
language. Each object belongs to a class that defines the type of data that can be
contained in the object, with each separate piece of data being stored in a field (a
variable associated with that class). The class also defines the operations (known
as "methods") that can be used to manipulate that data.

For example, an object belonging to an "AudioClip" class might contain the
following fields:
O an array of digital audio data;
QO the sampling rate of the audio data;
@ an indication of the encoding of the audio data (ex. AIFF, WAV, raw audio

data);
Q@ the duration in milliseconds of the sound;

Q the name of a file used to retrieve and/or save the audio data.

The same object might have the following methods:
Q@ play, which causes the audio data to be played to some audio device;
a setSamplingRate, which changes the sampling rate to be used in playback;

a setFileName, which sets the name of the audio file to be used;

Q loadFile, which causes the data in the file to be loaded into memory;

@ saveFile, which causes the data in memory to be written into the file.

A class usually contains all the code necessary to perform the operations
described by its methods, but a particular form of class, called an "interface”, does
not. An interface is, in a way, a potential class; it states what a class should be
able to do, without actually being able to do these things. Interfaces are very
useful when defining several classes that share similar characteristics. For
example, all of the different formats of audio file can be played; however, the
details of how they are to be played may differ greatly from one to the next.
Looking back at the above example, if AudioClip is defined as an interface,
several classes could implement that interface, one for each audio format desired.
Each of these would be played by calling its "play” method; this would allow all
to be treated in the same manner, regardless of the details of their audio formats.

Certain operations that a class of objects may perform are independent of the
data that may be in any particular instance. For example, a class may want to
translate a given string into some other form of data, and may be able to do that
without consulting its own internal data. To support this, classes in Java may

have methods declared "static”, which are independent of any instance.

There are several advantages to the object-oriented approach to programming.
By storing as much as possible of the program data within objects, the program as

a whole becomes more structured. Related data is grouped together, and can be

copied and manipulated as one unit. A complex operation that involves several
pieces of data no longer needs to involve several different variables and functions
spread throughout the code, as was sometimes the case in earlier programming
languages. Instead, the operation can be implemented within a single method that
belongs to an object that contains all the data needed. This makes the code for
that operation easier to recognise, because it is all localised within the method.
Often, the code within the method can be considered separately from code outside
its object. This is because the method only operates on data within its own object
and on data passed explicitly to it. Each object can thus be written, tested, and
changed independently of the surrounding code.

Musical structure can be expressed quite easily in terms of objects. At the
lowest level, audio samples, MIDI notes, and notated pitches can all be
represented as basic objects. Simple phrases, chords, and sequences can be
defined as lists of these basic objects. Then, complex musical structures can be
expressed using several of these intermediate lists organised in some fashion.
Also, as noted above, many different formats of sound data can be treated as
equivalent, because they can be operated on in the same way: playing the sound,

for example, or changing volume, pitch, or tempo.

2.2 High-level structures included in the basic APIs

The standard Java API (Application Program Interface)® includes a number
of objects that provide high-level functionality. The Vector class provides a
replacement for the linked list; the hashtable is a ready-to-use object; I/O streams
are abstracted so that manipulation of the underlying bits is usually not necessary.
This inclusion of high-level structures is very different from the approach of more
traditional programming languages such as C that concentrate on the direct
manipulation of small chunks of data. Because Java includes such large and
complex objects as part of its standard API, rather than relying on third-party
libraries, it tends to be easier to leam and more rapidly coded. However, Java
code is also more difficult to optimise, since access to the "bits and bytes" is not
always provided. This could make it too slow for time-critical uses, such as
multi-voice real-time digital audio synthesis. As well, if a particular type of high-
level structure is not included, it may be very difficult to create. This is the case
with MIDI data, for example, which until recently was impossible to manipulate

in Java, because there was no abstraction for it in the Java APL

5 API is the standard term for a library of functionality in programming. In this case, "interface”
does not refer to a particular type of class (as defined in 2.1). Instead, it refers to the abstract
concept of a class or function for which the definition is known to the programmers that will use it,
but not necessarily the details of its internal code. An API in object-oriented programming
presents definitions for a group of classes and the functionality that they provide while hiding their

exact implementation.

10

2.3 Exception handling

Java includes its own mechanisms for error recovery that can eliminate a
great deal of repetitive code. In languages like C, in each situation where there is
a high probability that errors will occur, a separate mechanism must be built to
deal with the errors, such as passing an error code as the return value from a
function. In Java, any error can be handled by throwing an instance of the
Exception class. An instance of this special class can carry information about an
error up from one method to the method that called it. All exceptions can be
handled in a uniform manner, regardless of the reason that they were created; or,
if this is not appropriate, a particular class of exceptions can be dealt with
specifically. For those exceptions that are most likely to occur, it is even possible
to declare that the inclusion of code for dealing with the exception is mandatory at
any place that the exception might occur.

The exception mechanism was especially interesting to me for two reasons.
First, since multimedia requires a great deal of general I/O and file manipulation,
both of which are very error-prone, the ability to deal with all such problems
uniformly is very useful. Second, the data for a chunk of musical information,
such as a phrase expressed in MIDI, can be quite complex, having many
parameters. Even if one object is used to encapsulate all this data, checking for
consistency or completeness may be quite problematic. The ability to throw an
exception up through several levels of data manipulation in order to signal an
error immediately is one that I used extensively in my implementation of the

scripting language.

Il

24 Platform-independence

For a computer to understand the code written by 2 human programmer,
the text of the code must be parsed, or translated to simple instructions that the
computer can execute, and then saved in a binary format. This process is known
as compilation. In most of the programming languages in use today, compilation
produces a file that can be executed on its own. No other utility is needed to run
the compiled code. However, the trade-off is that the instructions in the binary
file must be specific to a particular platform: that of the machine on which the
program was compiled. This is because the simple instructions used in binary
files are not consistent from one platform to another. As a result, only a machine
of the same kind as the original machine can execute the program. In other
words, the compilation is platform-dependent.

In Java, the compilation does not translate the code into instructions that
are specific to the compiling computer. Instead, the instructions (called
"bytecode”) belong to a standard set specific to Java. Every Java compiler,
regardless of its platform, is required to keep to the Java standard. These
instructions are thus platform-independent. Execution of this compiled code
requires a separate tool, called a "Virtual Machine” (VM). The VM reads the
compiled files and interprets the bytecode in them. Then, as the program runs,
each instruction is "interpreted”, or in other words, translated by the VM into
machine codes that are understandable to the computer on which it is being run.

Thus, in Java, only the VM is platform-dependent.

12

For applications that run on the Internet, platform-independence is
essential. Computers of all types are connected to the Internet. A program
intended to run on the Internet, therefore, should run on as many different types of
machines as possible. If, however, the compilation of the program is platform-
dependent, several versions have to be provided: one for each type of machine
that the programmer wants the program to run on. Java’s platform-independent
approach means that the programmer only needs to provide a single version of the
program, since that version will run on any Java-compliant VM.

The scripting language is intended to provide musicians with another way
to show off their multimedia works over the Internet. This implies that it should
allow the widest distribution possible. Because of this, it was imperative to use a

platform-independent solution.

2.5 Applets

Applets are a concept that has no direct analogy in older programming
languages. An applet is a complete Java program, but one that can only run
within a Java-compatible HTML browser. Because the applet is an actual
program, it is possible to do many things within an applet that would not be
possible when using a scripting language. However, applets are not easy to
program. The applet must take its browser environment into account, particularly
since the browser has the ability to control certain parts of the applet’s own
execution. This makes the design and implementation of this type of program

very different from that of an application. In fact, the actual sequence of

13

execution of the applet is partially determined by the browser, and not all
browsers will use exactly the same plan of execution for the same applet.
Because of this, one of the most fundamental parts of designing an applet is
deciding which actions should be performed in which of the standard applet
methods "init”, "start”, and "stop". A further restriction is the expectation that
each of these methods should return quickly, so that the operation of the browser
is not impaired by the execution of the applet. For this reason, any applet that
performs tasks over a long period of time must do so in a separate thread, which
executes in parallel with the browser and independently of the browser’s direct
control (see 2.8 for information on threads).

Because applets run within the context of a browser, and are generally
considered "untrusted” code when loaded over the Internet, the passing of
parameters to an applet is different than for an application. Since there is no
command-line on which to give options, and few environment variables that can
be accessed by an applet, parameters are passed in the HTML page that contains
the applet. The syntax for each parameter is:

<PARAM NAME=name VALUE=string>
This syntax is fairly cumbersome: for short values, the extra text that must be
typed is long and repetitive, while longer values can become unreadable because
they cannot be split easily. There is no way to structure the parameters except
through simple text formatting, and each parameter must have a unique name
(array syntax is not supported). Because of this, I decided to limit as much as

possible the amount of information that would have to be passed to the applet via

14

its HTML page. This led me to define a scripting language of my own that is
stored in separate text files, instead of simply generating HTML parameter code

that could be used directly by the applet.

2.6 Support for images

In the 1.1 version of Java, images can be displayed easily, but they are not
as easily manipulated. Drawing on-screen is also supported, but at a fairly basic
level. However, new APIs are now available for image manipulation and for

more complex 2D and 3D drawing that extend the functionality of standard Java.

2.7 Support for audio

In the 1.1 version of Java, which is by far the most widespread at the
moment, support for audio is quite poor. The only means to present sound is to
play an audio file encoded in a very specific format (AU, 8-bit, ulaw encoded,
sampled at 8kHz). However, the new 1.2 version of Java supports playback of a
much wider range of sound files. As well, the new Sound API allows
manipulation of audio data at a fairly low level and provides MIDI I/O. In
addition, third party APIs exist that provide enhancements to the audio support
capabilities of standard Java, such as the QuickTime for Java API and the JMF

implementation for RealSystem G2.

15

2.8 Multithreading

In many programming languages, events are expected to occur in a
particular order, one after the other. Functions are called in a particular sequence,
and each must finish its work before the next begins. In Java, this can be
implemented by declaring a special method in an object. This method, called
"main”, can be executed as a sequential program, and is often the starting point of
a basic Java application.

Then again, this does not have to be the case. Multithreaded programs
allow several different operations to be performed at essentially the same time.
For example, while one audio sample is being played, the next sample to be
played can be loaded into memory from a file. Each thread has its own sequence
of events, and none of its events is guaranteed to precede or follow those of any
other thread that is running at the same time. Threads do not, however, exist
independently, as each thread uses the objects of the program to which it belongs.
As well, threads can interact with one another.

Java supports multithreading, and has many constructs that are helpful
when programming concurrent behaviour. First among these is the Thread class,
which encapsulates the data and methods needed to define and run a single thread.
Each Thread class defines a sequence of actions that should be executed. Once a
Thread object has been defined, it can be started at any point in a program. The
thread can then be stopped by the thread that executes the main method, or by
another thread; it may also simply end when its sequence of actions is finished. A

Thread object can also be given a priority, which reflects how much of a share of

16

the total processing power is allotted to that thread of execution. For the above
example, the thread that plays the audio data should have a greater priority than
the thread loading the next clip. This ensures that the playback of the audio clip
will not be interrupted, causing “clicks" in the sound.

Since it is possible for several threads to access and change the same
objects in a program simultaneously, an additional mechanism has been included
in Java: thread synchronisation. An object that is synchronised has a "lock”,
which flags that object as being "in use” when a thread calls one of its methods.
This ensures that only one thread can change a single object at a time. A second
thread that would like to use that same object is forced to wait until the first
finishes its changes and relinquishes the lock. Again using the first example, if
one thread would like to play an audio sample, but another thread is loading the
audio data for that sample, the playback thread would have to wait until loading
had finished. Otherwise, without synchronisation, it is very possible that the
playback thread might read only half the data, as not all the data had been loaded,
or worse, might read "garbage” (uninitialised) data with unpredictable results.

With synchronisation, however, a new problem can occur: thread
deadlock. This can occur if two threads each have a lock on one object, and each
require the lock on the object that the other is holding. While usually this is a rare
occurrence, it becomes more and more likely as more threads are used in a
program.

The implementation of the scripting language is very strongly

multithreaded. In order to reduce the perceived delay as multimedia data is being

17

downloaded over the Internet, I use several threads to pre-load data some time
before it must be played. Multithreading was an absolute necessity as well in the
simultaneous playback of several elements. However, because of the large
number of threads in use at any one time, I encountered many problems with
thread deadlock. Finally, to avoid this, I limited my use of synchronisation very
strictly, only including it at the lowest level of loading and presenting the audio

and image data.

2.9 Dynamic loading

In most programming languages, in order to use a section of code from
someone else, a programmer must know exactly what that section consists of, and
can only integrate it into his/her own code by changing that code. In Java,
however, there are mechanisms that can allow a program to load classes that were
not known originally, i.e. that were neither part of the original code, nor integrated
into it, but were added later to the program without changing the original code.
This is called dynamic loading. For example, a composer might create a new Java
class that will provide a stream of notes based on an algorithmic process and
MIDI input. Probably the class would implement a known interface, such that its
methods are known and standardised. The composer could then specify the name
of his/her class to an existing Java application that would be able to provide MIDI

to the class and to process the outgoing note stream, basing itself on the interface
methods.

I8

Because I wanted to make my scripting language extremely generic and
extensible, I decided to exploit dynamic loading in my implementation of the
scripting language. Three parts of the code in particular use this technique. First
are the sound players and image viewers. Viewers for new media formats may be
created and can be added without changing the main program. Second, there are
the algorithms for ordering a set of objects, allowing composers to create their
own classes to handle timing interactions between different media elements.
Third are the triggers that handle user input, so that as composers desire new

means of interactivity, they too can be added automatically.

2.10 Javadoc
Javadoc is a documentation tool that is integrated into the Java environment.

The documents are generated using comments written in the Java source code that
are notated using a special syntax. The javadoc utility then reads these comments
and produces HTML files that contain not only the information in the comments,
but their context as well. For example, a javadoc comment for a particular
method would contain the programmer’s notes, followed by the method
declaration as it is coded. The javadoc generated for a class includes all its fields
and methods, as well as an indication of the classes from which it inherits.

The generation of javadoc is very useful for groups of several complex
classes, especially where there are many interfaces or several levels of
inheritance. As well, javadoc is customarily used for the documentation of all

libraries of functionality (APIs) written in Java. Furthermore, as a standardised

19

tool, the documents it generates are highly consistent regardless of the
environment or platform used to generate them. I found that using javadoc was
extremely helpful in clarifying my implementation of the scripting language. In
addition, it provided an easy way to produce documentation for my API in a
standard format that should aid future programmers who may wish to build atop

my work.

20

Chapter 3: A new scripting language for interactive multimedia

3.1 General design
In the scripting language, each section in a particular composition is defined
as an object. Such an object can either contain a single piece of media, such as an
image or audio sample, or it can contain a set of subsections. This allows the
structure of a piece to be defined in terms of a tree structure, allowing both linear
and muiti-layered hierarchical structures.
Three pieces of data can be defined for every section:

@ An ID that uniquely defines the section. All references to the section use this
name.

O A stop trigger that will be used to determine when the section should end. If
no trigger is defined, then the section will end when the applet is closed, or
when a section higher in the tree ends.

O A driver that is responsible for playing the musical and visual events for this
section. If the section contains a single piece of media, then the driver plays
the audio and/or shows the visuals. If the section contains subsections, then
the driver is responsible for determining the order in which the subsections are

played, and for playing them in that order.

From this, it can be seen that sections in my compositional structure are begun
and ended based on triggers rather than strict durations. In an interactive

composition, unlike in a linearly determined musical piece, the duration of certain

21

events may not be fixed. If the end of a musical event is triggered by some extra-
musical occurrence, then there is no way to determine for how long that event will
continue. Likewise, if an outside force is needed to trigger the beginning of a
musical event, the duration of that event is not defined until the time of
performance.

Because of this ambiguity, I decided not to define separately the concept of
duration in my language. Instead, the end of each section of the sequence is
defined in terms of a stop trigger. This trigger may be associated with a fixed
duration, or it may be set off by something that the user does. In either case,
when the condition for signalling the end of a musical event is met, a signal is sent
to stop the event and start the next. This model can therefore handle events of
fixed duration, events whose end is triggered by a user action, and events that are
started by a user action.

Stop triggers can also be associated in pairs using a logical operator. Two
triggers connected with an "and" operator will only cause the end of a section
once the end conditions for both triggers have been met. If two triggers are
connected with an "or" operator, the section will end when either end condition
has been met. A pair of associated triggers can be treated like a single trigger in

an association, and so triggers can be nested to any depth.

3.2 Syntax
In this scripting language, an object that contains a single media file is

defined using the "basic” keyword, followed by an identifier that gives the format

22

of the media file, and a unique ID string that can be used later to refer to this
object. If any additional parameters are required to play the media file, these
parameters can then be specified as a block of name-value pairs. The block of
parameters is delimited by square brackets. After this, a trigger is specified that
defines the conditions under which playback and/or display of the file should be
stopped. A condition for stopping playback could be, for example, the passing of
a particular length of time, or a key pressed by the user. The “stopTrigger”
keyword starts the definition of the trigger, and is followed first by an identifier
that determines the type of condition, and then by an obligatory block of
parameters needed to evaluate the condition, delimited by square brackets. (This
block may be empty, but the brackets must be present.) If no trigger is required,
then the keyword "undefined" may be used; in this case only, the parameter block
is not required. Finally, a semicolon terminates the object definition.

For example, the following script defines an object named "picturel” that
contains an image file named "flw1.gif", along with the origin, height, and width
at which it should be drawn. It also uses a stop trigger to specify that this image

should be shown for two seconds.

basic jsb.basicimpl.Image picturel
{

fileName flwl.gif

originX 0

originY 0

width 200

height 300

]
stopTrigger jsb.basicimpl.Milliseconds

(
ms 2000

Basic objects can be grouped together into sets. Furthermore, a set can
contain other sets, in a hierarchical or tree-like fashion. The syntax for a set is
very similar to that of a basic object. The "basic” keyword is omitted, so the
definition of a set starts with its identifier and ID. In this case, rather than
determining a media format, the identifier specifies the way in which the objects
in this set should be organised at playback time. If any parameters are required to
further specify this ordering, they are noted next, similar to the basic object.
Then, a list of the IDs of the objects that belong to this set is given, placed within
curly brackets. After that, as with the basic object, a stop trigger is indicated, and
finally a semicolon ends the definition. For example, the following script
specifies a set of objects that will be presented one after the other sequentially,

with no stop condition defined.

24

jsb.basicimpl.Sequential imageSequencel
{
]

{
picturel
picture2
picture3l
}

stopTrigger undefined

-
’

One final aspect of the scripting language remains: the nesting of stop
triggers. This allows multiple stop conditions to be chained together. In either a
basic object or a set, a composite stop trigger may replace the identifier and
parameters following the "stopTrigger" keyword. A composite stop trigger is
bounded by parentheses and consists of a trigger identifier with its parameters, a
logical operator that can be "&&" or "II", and a second trigger identifier with
parameters. It is also valid to nest a composite stop trigger within another,
following the same rules that it must be bounded by parentheses, and that it
should take the place of a trigger identifier along with its parameters.

For example, this composite stop trigger would have its stop condition
fulfilled after one second if the user pressed a key within that second, or after two

seconds otherwise:

stopTrigger

(jsb.basicimpl.Milliseconds

ms 2000

(jsb.basicimpl.Milliseconds

(
ms 1000

&&

jsb.basicimpl .KeyPress
(
}

26

Chapter 4: Implementation of the scripting language in Java

4.1 The three basic data types
In order to convert the constructs of my scripting language into Java, I had
to define three basic classes. For each object in the script, instances of these three

classes must be created (with one exception, explained in the StopTrigger class).

4.1.1 SequenceObject

Each object in the script is stored in its own SequenceObject. All the data
given in the script for an object is either stored within, or linked to, its particular
SequenceObject instance. The ID is stored directly in the instance and is used as a
lookup key: a means to find particular objects as they are needed at playback time.
References are maintained within the SequenceObject to an instance of

SequenceDriver and, in most cases, an instance of StopTrigger.

4.1.2 SequenceDriver

The main class used for playback, both for basic objects and for object
sets, must implement the SequenceDriver interface. The name of the particular
class is given in the script as the main identifier, preceding the ID. For a basic
object, the SequenceDriver will be an instance of a class that is responsible for
playing the particular format of media that the object uses. Often, this is a
wrapper that does some thread handling and data manipulation, but passes the

main responsibility for playing the media to a standard Java class, such as the

27

java.applet.AudioClip class for audio files. For a set of objects, the
SequenceDriver will be an instance of a class that contains an algorithm for
organising and playing back several objects. For example, a SequenceDriver for a
set might contain an algorithm for placing the objects it contains into a sequential
order based on a set of Markov rules. In either case, the first set of parameters
defined in the script, after the ID, belong to the SequenceDriver and will be used

to determine its exact behaviour.

4.13 StopTrigger

A StopTrigger implements a condition that will be used to signal the end of
playback for some object or set of objects. In the case of an "undefined”
StopTrigger, no instance is created (the reference in the corresponding
SequenceObject is null). This implies that playback may continue indefinitely. In
all other cases, an instance of a class that implements this interface is required.
Each StopTrigger implements an algorithm for monitoring a certain condition,
such as a particular keystroke or the passing of a particular length of time. The
name of the particular class is determined from the identifier that follows the
"stopTrigger” keyword in the script. The parameters that follow are used by the
StopTrigger to refine further the conditions that should lead to the stop of
playback.

28

4.1.3.1 StopEvent and StopListener

When a StopTrigger determines that its stop condition has been met, it
sends out a StopEvent. Only StopListeners can receive a StopEvent; this is why
SequenceDrivers implement the StopListener interface, since they may have to
listen for such an event. However, the trigger only dispatches its event to those
StopListeners that have registered themselves with the trigger. Thus, usually,
only the SequenceDriver that belongs to the same SequenceObject as a particular
StopTrigger will register itself with that trigger and will be stopped when the

trigger’s stop condition becomes true.

4.2 Implementation of the tree structure

As was noted earlier, the scripting language contains the notion of sets,
which may be collections of objects, of other sets, or both. This type of structure
is best described in terms of a tree structure, where each basic object is a leaf
node, containing only its own data, and each set is a branch node, with references

to one or more leaves.

4.2.1 Leaf nodes

4.2.1.1 BasicSequenceObject
A BasicSequenceObject is simply a SequenceObject that uses a driver to
play back its single piece of media. No extra functionality is built into this class,

as none is needed. The BasicSequenceObiject is defined as a separate class in

29

order to ensure that instances of this class are treated strictly as leaf nodes, not
simply as general SequenceObjects. Furthermore, it is expected that the driver

used by an instance of this class can only be an ImageDriver or an AudioDriver.

4.2.1.2 ImageDriver and AudioDriver

These two abstract classes have no functionality built into them.
However, a class that derives from one or the other is valid for leaf nodes only, as
such a class is assumed to be solely for the playback of a particular media format.
ImageDriver and AudioDriver are distinct, rather than being merged into a single

class, in order to allow audio and image content to be distinguished.

4.2.2 Branch nodes

42.2.1 CompositeSequenceObject

A CompositeSequenceObiject contains all the fields of the generic
SequenceObject, but with additional data that defines the place of each instance in
the tree structure. This extra information takes the form of a list of the IDs of all
the children of the instance. These children may be any kind of SequenceObject;
it is assumed that all may be treated in the same manner at playback time without
causing problems. In addition to this child data, it should be noted that the driver

for a CompositeSequenceObject must be a SetManager.

4.2.2.2 SetManager

30

Each class that derives from SetManager encapsulates an algorithm for
determining and controlling the playback order of a set of child objects. The
SetManager class itself defines playback in terms of a loop that is repeated until a
stop signal is received. At each cycle of the loop, the ordering algorithm is
requested to play the next child object in its progression. This may trigger the
playback of one child, where the child is a leaf node and the algorithm is
sequential in nature, or it may trigger a number of media, where the child is itself

a set or the algorithm dictates simultaneous playback.

4.3 Enhancements for interactivity

4.3.1 CompositeStopTrigger and StopTriggerOp

A CompositeStopTrigger is simply a logical association between two stop
triggers. Each instance contains references to its two child triggers, as well as a
StopTriggerOp that represents an "OR" or "AND" relationship. If the relationship
is an "OR”", then the stop condition for the CompositeStopTrigger is met as soon
as either of its children fires a StopEvent. If the CompositeStopTrigger is defined
as an "AND" relationship, both children must have fired StopEvents for the stop

condition of the parent trigger to be satisfied.

31

4.3.2 Subclasses of StopEvent

A generic StopEvent gives no information about the condition that triggered
it. Yet in some situations, this type of information could be very useful. For
example, if a StopTrigger is set off when the user presses a key, the driver that
receives the StopEvent may want to react differently depending on the exact key
that was pressed. To allow this sort of information to be passed, it is possible to
create classes that derive from StopEvent but contain some extra information.
Often, the subclass may be bound to a particular type of StopTrigger. For
instance, a StopEvent that contains an ASCH character field is useful to a
StopTrigger that reacts to user keystrokes, while another that stores co-ordinate

information would be appropriate for a StopTrigger that responds to mouse clicks.

44 Displaying and storing the objects: SequenceFormat

While my initial Java code was only intended to be used to run my scripts, it
became obvious that the data structures of the Java implementation could be far
more powerful and flexible than the scripting language itself. This made me
decide, in the end, to consider the final text script as a particular representation of
the Java objects, rather than the other way around. The SequenceFormat interface
embodies this change of direction. An instance of a SequenceFormat is
responsible for looking up the data encapsulated in the various SequenceObjects

that make up a composition and presenting that data in a different manner.

32

44.1 SequenceText

The original parser for the scripting language was the basis for the
SequenceText class. In addition to reading script files and storing their data in
SequenceObjects, this class has the capability to write scripts based on object
data.

This class could be subclassed or modified to allow the Java code to
support other text-based formats for multimedia presentations, such as the SMIL

(Synchronized Multimedia Integration Language) standard (W3C, 1998).

4.4.2 SequenceGui

Initially this GUI class was meant as a troubleshooting tool that would allow
me to see the contents of the SequenceObjects and compare them to the scripts
generated from those objects. However, since I had heard several times that
musicians do not enjoy typing long scripts, I decided to develop the SequenceGui
class for use within a script building GUI that would alleviate this problem. As a
result, this class became a full SequenceFormat, with the ability not only to

display but also to store SequenceObject data.

45 Playing the sequence: the Runner applet

The applet that handles playback of SequenceObjects is fairly

straightforward. It looks for four parameters in its enclosing HTML file:

33

0 FILENAME, the name of the script file;

Q@ STARTID, the ID of the SequenceObject that is at the top of the tree structure
to be used for playback;

@ BKCOLOR, the background colour of the applet (optional);

@ FGCOLOR, the foreground colour of the applet (optional).

After this, the Runner applet traverses the tree of SequenceObjects, starting at
the top node given by STARTID and linking each branch node to its children.
Once this is done, loading and playback can be initiated on the top node, and both

operations will be propagated through all the objects on which that node depends.

Results

After several false starts and much design work, I was able to implement

the scripting language in Java, as described in Chapter 4. Additionally, in order to

run scripts, test implementations for several abstract classes were added as

follows®:

Q

The Image class is an implementation of ImageDriver that serves as a wrapper
for the java.awt.Image class.

The AudioClip class is an implementation of AudioDriver that serves as a
wrapper for the java.applet. AudioClip class.

Three classes extend the SetManager class: Parallel, Sequential, and Shuffle.
Parallel plays all its child elements simultaneously, while the Sequential class
plays one after the other in a predefined order. Shuffle reorders the children
randomly and plays each one by one, recalculating the order once the whole
set has been exhausted.

Two pairs of classes are used to implement StopTriggers: KeyPress together
with KeyPressedStopEvent are used to detect keystrokes from the user, and

Milliseconds along with TimedStopEvent are used for fixed durations.

Once these classes were added, [was able to judge the viability of the data

structures. First, writing these abstract classes and adding them to the main

program proved to be quite easy. The main problems that I encountered were not

¢ These classes were simple test examples only, and are not included in the main design.

35

related to the way in which the data was organised, but instead stemmed from
problems with thread deadlock in the SequenceDrivers (see discussion in 2.8).
Second, in coding the Runner applet, I noted that use of the tree structure made it
much simpler to deal with the various multimedia elements. Since the top
element both controls and depends on the child objects below it, any methods
called on that top element were propagated properly down the tree without any
difficulty. Finally, very little debugging was needed, despite the complexity of

the data structures.

36

Summary and Conclusion

The digital age that we live in has brought us many fresh possibilities.
However, these new options are only valuable if they serve our own needs.
Unfortunately, in many cases, this fails to be true. The computer has changed all
of our lives, but has not necessarily allowed us to do our work more quickly and
easily. This is especially true in the realm of creativity, where software that
requires a large investment in time and knowledge can frustrate the creative mind,
rather than help to liberate it.

It was the apparent lack of viable software for interactive multimedia
composition that led to this investigation, which ventures beyond the most
prevalent options rather than remaining content with the non-musical paradigms
of multimedia tools such as QuickTime and Shockwave. This thesis shows that,
with knowledge of Java programming and software design skills, it is possible to
create an original program that better suits the needs of some musicians—in
particular, myself. After studying the features that Java offered, it was possible to
determine which of them would be the most useful for multimedia composition.
At the same time, I tried to find ways to define the types of musical structures that
I wanted to use in my compositions.

Considering the ease with which it was possible to implement complex
musical structures in Java, one must conclude that Java is indeed a viable tool for
creating Web-ready, truly interactive compositions that combine several media.

As for the "solution” presented in this thesis, it is far from complete and probably

37

reflects the limitations of my personal view of music. Nonetheless, I hope that
this Java implementation of a scripting language developed for my own

interactive multimedia creations will serve as a starting point for other composers.

38

Bibliography

Apple Computer, Inc. 1999. "Introduction to Wired Movies, Sprites,
and the Sprite Toolbox.” Online edition.

http://developer.apple.com/techpubs/quicktime/qtdevdocs/REF/refWiredIntro.htm

Apple Computer, Inc. 1999. " Movie Toolbox Fundamentals." Online edition.

http://developer.apple.com/techpubs/quicktime/qtdevdocs/RM/

rmMTFundamentals.htm

Apple Computer, Inc. 1999. "QuickTime Overview." Online edition.

http://developer.apple.com/techpubs/quicktime/qtdevdocs/RM/
rmQTOverview.htm

Campione, M., and Walrath, K. 1999. The JFC Swing Tutorial: A Guide to

Constructing GUIs. Online edition. http://java.sun.com/docs/books/tutorial/

Campione, M., Walrath, K., Huml, A., et al. 1998. The Java™ Tutorial

Continued: The Rest of the JDK™. Online edition.

http://java.sun.com/docs/books/tutorial/

39

Campione, M., and Walrath, K. 1998. The Java Tutorial Second Edition: Object-

Oriented Programming for the Internet. Online edition.

http://java.sun.com/docs/books/tutorial/

Fisher, S. 1997. Creating Dynamic Web Sites: a Webmaster’s Guide to

Interactive Multimedia. Reading, MA: Addison-Wesley Developers Press.

Flanagan, D. 1997. Java in a Nutshell, Second Edition. Sebastopol, CA:
OXRReilly.

Gordon, R, and Talley, S. 1999. Essential JMF: Java™ Media Framework.

Upper Saddle River, NJ: Prentice Hall PTR.

Gosling, J., Joy, B., and Steele, G. 1996. The Java Language Specification.

Online edition. http://java.sun.com/docs/books/jls/htmi/index.html

Pawlan, M. 1999. "Java™ Programming Language Basics, Part 2.” Online

edition. http://developer.java.sun.com/developer/onlineTraining/Programming/
BasicJava2/

Pawlan, M. 1999. "Java™ Programming Language Basics, Part 1.” Online

edition. http://developer.java.sun.com/developer/onlineTraining/Programming/
BasicJaval/

Rosenweig, G. 1997. The Director 6 Book. Research Triangle Park, NC:

Ventana Communications.

Rowe, R. 1993. Interactive Music Systems. Cambridge, MA: MIT Press.

Sanchez, R. 1999. "Reviews: LiveStage DR 1.0.1 vs. Electrifier Pro 1.0."
MacAddict 35: 52-53.

Sanchez, R. 1999. "Reviews: Director 7 Shockwave Internet Studio.”

MacAddict 33: 44-46.

Simmons, M. 1999. "How To: Build Interactive QuickTime Movies."

MacAddict 34: 72-75.

Sun Microsystems, Inc. 1999. Java™ Media APIs. Online edition.

http://java.sun.com/products/java-media/

Sun Microsystems, Inc. 1999. Swing 1.1.1 API Specification. Online edition.

hetp://java.sun.com/products/jfc/swingdoc-api-1.1.1/

Sun Microsystems, Inc. 1997. Javadoc Home Page. Online edition.

http://java.sun.com/products/jdk/javadoc/index.htmi

41

Thomas, G. 1998. "How To: Build a Shoot-Em-Up Game in Flash 3."

MacAddict 28: 88-93.

W3C. 1998. "Synchronized Multimedia Integration Language (SMIL) 1.0

Specification.” Online edition. http://www.w3.org/TR/REC-smil/

42

Appendix A: API guide to the Java implementation

This section contains the API (Application Program Interface) guide
generated by the Javadoc tool for the 38 classes used in the implementation of the
scripting language. This guide fully documents the programming work for this
thesis.

By creating the Java implementations for these classes, it was possible to
judge the viability of both the data structures and the scripting language.
Furthermore, it was this concrete programming work that allowed the discovery
of several important features of Java, which were subsequently exploited in the
code. Finally, by creating these classes and thereby achieving the goal of
implementing this scripting language in Java, this thesis proves that Java is a

viable tool for the creation of interactive multimedia compositions.

43

package jsb.app

Class Index

e Builder
e Runner

Exception Index
e FileException

Class jsb.app.Buﬂdér

Object

+----jsb.app.Builder

public class Builder
extends Object

The main script-editing application. Its main responsibility is to be a mediation
point between the different sequenceFormats, and to provide any extra
capabilities needed.

In its current version, this class moderates between a sequenceGui and several
SequenceTexts, and provides extra file capabilities to the main DataFrame.

Version:

August 1999
Author:

Jacqueline Beaulac (Faculty of Music, McGill University)
See Also:

SequenceFormat, SequenceGui, SequenceText, DataFrame

i

Constructor Index
e jsb.app.Builder()

Method Index

e constructMenuBar()
Constructs and returns a menu bar with File menu suitable for general file
management.
e constructObjectMenu()
Constructs and retumns an Objects menu suitable for management of
SequenceObjects.
e main(String(])
Provides the main execution environment.
o setCurrFile(File)
Sets the current save file after verifying that the file is writable.
e setSaved(boolean)
Sets the current save status.

45

Constructors
o Builder

public Builder()

Methods
¢ constructMenuBar

javax.swing.JMenuBar constructMenuBar ()

Constructs and returns a menu bar with File menu suitable for general file
management.

Returns:
a Swing-compatible menu bar to be added to the application window

e constructObjectMenu

javax.swing.JMenu constructObjectMenu()

Constructs and returns an Objects menu suitable for management of
SequenceObjects.

Returns:

a Swing-compatible Objects menu to be added to the application
window, both to its menu bar and its data representation.

public static void main(String[] args)
Provides the main execution environment.
Parameters:
args - the command-line arguments to this application (not used)
e setCurrFile

protected void setCurrFile(File aFile) throws FileException
Sets the current save file after verifying that the file is writable.

Parameters:
aFile - a file to be used as the current save file
Throws: FileException

if aFile is not writable
e setSaved
protected void setSaved(boolean aSavedFlag)
Sets the current save status.
Parameters:

aSavedFlag - true if all data is currently saved, false otherwise
46

Class jsb.app.Runner

Object

+---=-Component

+----Container

+----Panel

+----Applet

+-=---jsb.app.Runner

N

public class Runner
extends Applet

Constructor Index

e jsb.app.Runner()

Method Index

* initQ
o start()
e stop()

Constructors

¢ Runner

public Runner()

Methods
e jnit

public void init()

Overrides:
init in class Applet

47

e start

public void start()

Overrides:
start in class Applet

[:nop

public void stop()

Overrides:
stop in class Applet

48

Class jsb.app.FileException

Object

I
+----Throwable

+----Exception

+----jsb.app.FileException

public class FileException
extends Exception

A set of file handling exceptions, each differentiated by its error code.

Version:

August 1999

Author:

Jacqueline Beaulac (Faculty of Music, McGill University)

Variable Index

NOT_FOUND
Indicates that the file does not exist.

NOT _WRITABLE

Indicates that the file cannot be written into.

READ ERROR

Indicates that an error occured when reading the file.
WRITE ERROR

Indicates that an error occured when writing into the file.

Constructor Index
o jsb.app.FileException(int, String)

Constructs a file exception with the given error code and message.

e jsb.app.FileException(int)

Constructs a file exception with the given error code.

Method Index

getErrorCode()
Returns the error code, which can be used for error recovery purposes.

49

Variables
e NOT_FOUND
public static final int NOT_FOUND

Indicates that the file does not exist.

e NOT_WRITABLE

public static final int NOT_WRITABLE
Indicates that the file cannot be written into.

e READ_ERROR

public static final int READ_ERROR
Indicates that an error occured when reading the file.

e WRITE_ERROR

public static final int WRITE_ERROR
Indicates that an error occured when writing into the file.

Constructors

e FileException
public FileException(int anErrorCode,
String aMessage)
Constructs a file exception with the given error code and message.

Parameters:
anErrorCode - an int that defines the type of error
aMessage - a message that can be used to display the error

e FileException

public FileException(int anErrorCode)
Constructs a file exception with the given error code.

Parameters:
anErrorCode - an int that defines the type of error

Methods
o getErrorCode

public int getErrorCode()
Returns the error code, which can be used for error recovery purposes.

Returns:
an int that defines the type of error

51

package jsb.basicimpl
Class Index

AudioClip

Image

KeyPress
KeyPressedStopEvent
Milliseconds

Parallel

Sequential
Shuffle

TimedStopEvent

52

Class jsb.basicimpl.AudioClip

Object
I
+----ParameterizedObject
|
+----SequenceDriver
|
+----AudioDriver
+----jsb.basicimpl.AudioClip
L
public class AudioClip
extends AudioDriver

A single segment of audio, loaded from a file, that can be played as part of a
sequence. This acts as a wrapper for the java.applet.AudioClip class.

Version:

August 1999
Author:

Jacqueline Beaulac (Faculty of Music, McGill University)
Constructor Index

e jsb.basicimpl.AudieClip()

Constructs a wrapper for a java.applet.AudioClip.

Method Index

o load(Applet)
Loads the audio data needed to play this audio clip.

o play(
Plays this audio clip for its full duration, unless interrupted.

* stop0

Stops playback of this audio clip.
Constructors
e AudioClip

public AudioClip()
Constructs a wrapper for a java.applet.AudioClip.

53

Methods
¢ Jload

public synchronized void load(Applet anApplet)
throws UndefinedException

Loads the audio data needed to play this audio clip. This method blocks until
all data has been read.

Parameters:

anApplet - the parent applet through which the audio will be played
Overrides:

load in class SequenceDriver

e play
public synchronized void play/()

Plays this audio clip for its full duration, unless interrupted. This method
blocks during playback.

Overrides:
play in class SequenceDriver
[su“)

public synchronized void stop()
Stops playback of this audio clip. This method blocks until playback stops.

Overrides:
stop in class SequenceDriver

Class jsb.basicimpl.Image

Object

+~----ParameterizedObject

I

+----SequenceDriver

I
+----ImageDriver
I

+----jsb.basicimpl.Image

public class Image
extends ImageDriver

A single image, loaded from a file, that can be shown as part of a sequence. This
acts as a wrapper for the java.awt . Image class.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index
e jsb.basicimpl.Image()

Constructs a wrapper for a java.awt. Image.
Method Index

o load(Applet)
Loads the image data needed to show this image.

e play(
Shows this image.

e stop()
Stops showing this image.

Constructors
e Image
public Image()
Constructs a wrapper for a java.awt . Image.

55

Methods

e load
public synchronized void load(Applet anApplet)

throws UndefinedException

Loads the image data needed to show this image. This method blocks until all
data has been read.

Parameters:

anApplet - the parent applet on which the image will be displayed
Overrides:

load in class SequenceDriver

e play

public synchronized void play/()
Shows this image. This method blocks during playback.

Overrides:
play in class SequenceDriver
) stop

public synchronized void stop()

Stops showing this image. This method blocks until the image has been
removed from the applet.
Overrides:

stop in class SequenceDriver

56

Class jsb.basicimpl.KeyPress

Object

+----ParameterizedObject

l
+----StopTrigger
[

+----jsb.basicimpl.KeyPress

public class KeyPress
extends StopTrigger

A stop trigger that goes off when a key is pressed.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index
o jsb.basicimpl.KeyPress()

Constructs a stop trigger that goes off when a key is pressed.

Method Index

e activate()

Adds the listener and enables this trigger to throw KeyPressedstopEvents.
Constructors
o KeyPress

public KeyPress ()

Constructs a stop trigger that goes off when a key is pressed. The parameters
for this instance are initialized here.

57

Methods
e activate

public void activate()
Adds the listener and enables this trigger to throw KeyPressedstopEvents.

Overrides:
activate in class StopTrigger
See Also:
KeyPressedStopEvent

A

58

Class
jsb.basicimpl.KeyPressedStopEvent

Object
I
+----StopEvent
I

+----jsb.basicimpl.KeyPressedStopEvent

public class KeyPressedStopEvent
extends StopEvent

An event that indicates the end of a section of a sequence after the user pressed a
key.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

A

Constructor Index

o jsb.basicimpl.KeyPressedStopEvent(StopTrigger, char)
Constructs a stop event that will be used to indicate that a key was pressed by
the user.

Constructors
e KeyPressedStopEvent

public KeyPressedStopEvent (StopTrigger aSource,
char aKey)

Constructs a stop event that will be used to indicate that a key was pressed by
the user.
Parameters:

aSource - the stop trigger that will send out this event

aKey - the character typed by the user

59

Class jsb.basicimpl.Milliseconds

Object

I

+----ParameterizedObject

I
+----StopTrigger
|

+----jsb.basicimpl.Milliseconds

public class Milliseconds
extends StopTrigger

A stop trigger that goes off after a specific amount of time.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

-

Constructor Index

o jsh.basicimpl.Milliseconds()
Constructs a stop trigger that goes off after a specific amount of time.

Method Index

e activate()
Starts the timer and enables this trigger to throw TimedstopEvents.

Constructors
e Milliseconds

public Milliseconds()

Constructs a stop trigger that goes off after a specific amount of time. The
parameters for this instance are initialized here.

Methods
e activate

public void activate()
Starts the timer and enables this trigger to throw TimedstopEvents.

Overrides:

activate in class StopTrigger
See Also:

TimedStopEvent

61

Class jsb.basicimpl.Parallel

Object

+----ParameterizedObject

l

+----SequenceDriver

l
+----SetManager
l

+----jsb.basicimpl.Parallel

public class Parallel
extends SetManager

A set manager that plays all its children back simultaneously.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index
e jsb.basicimpl.Parallel()

Method Index

e load(Applet)
Loads all the child drivers simultaneously.

s playOneCycle()
Plays all child drivers simultaneously.

* stopCurrCycle()
Stops the playback of all children simultaneously.

Constructors
e Parallel

public Parallel()

62

Methods

load

public void load(Applet anApplet)

Loads all the child drivers simultaneously. Blocks until all the children have
been loaded.
Parameters:

anApplet - the applet on which the child drivers depend to load their data
Overrides:

load in class SequenceDriver

playOneCycle

protected void playOneCycle()

Plays all child drivers simultaneously. Blocks till the playback of all children
has finished.

Overrides:
playOneCycle in class SetManager
stopCurrCycle

protected void stopCurrCycle()

Stops the playback of all children simultaneously.

Overrides:
stopCurrCycle in class SetManager

63

Class jsb.basicimpl.Sequential

Object

+----ParameterizedObject

+----SequenceDriver

I
+----SetManager
|

+----jsb.basicimpl.Sequential

public class Sequential
extends SetManager

A set manager that plays its children back in an ordered sequence, one at a time.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index

e jsb.basicimpl.Sequential()
Method Index

o load(Applet)

Loads each of the child drivers in the order in which they will be played.
* playOneCycle(

Plays the next child in the sequence.
e stopCurrCvcle(

Stops the playback of the current child.

Constructors
e Sequential

public Sequential ()

Methods
o load

public void load(Applet anApplet) throws UndefinedException
Loads each of the child drivers in the order in which they will be played.
Parameters:

anApplet - the applet on which the child drivers depend to load their data
Overrides:

load in class SeguenceDriver
e playOneCycle
protected void playOneCycle()

Plays the next child in the sequence. Blocks until the playback of the child is
finished.

Overrides:
playOneCycie in class SetManager
o stopCurrCycle

protected void stopCurrCycle()
Stops the playback of the current child.

Overrides:
stopCurrCycle in class SetManager

65

Class jsb.basicimpl.Shilfﬂe

Object

+~----ParameterizedObject

+----SequenceDriver

|
+----Secl4a11ager

I
+----jsb.basicimpl.Shuffle

public class Shuffle
extends SetManager

A set manager that plays its children back in a shuffled sequence, one at a time.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index
¢ jsb.basicimpl.Shuffle()

Method Index

¢ load(Applet)

Determines the shuffled order and loads the child drivers in that order.
o playOneCycle()

Plays the next child in the shuffled sequence.
o stopCurrCycle()

Stops the playback of the current child.
Constructors
o Shuffle

public Shuffle()

Methods
o load

public void load(Applet anApplet) throws UndefinedException
Determines the shuffled order and loads the child drivers in that order.
Parameters:
anApplet - the applet on which the child drivers depend to load their data
Overrides:

load in class SequenceDriver
o playOneCycle
protected void playOneCycle()
Plays the next child in the shuffled sequence. Blocks until the playback of the
child is finished.
Overrides:
playOneCycle in class SetManager
¢ stopCurrCycle

protected void stopCurrCycle()
Stops the playback of the current child.

Overrides:
stopCurrCycle in class SetManager

- I

67

Class jsb.basicimpl.TimedStopEvent

Object

I
+----StopEvent
I

+~---jsb.basicimpl.TimedStopEvent

public class TimedStopEvent
extends StopEvent

An event that indicates the end of a section of a sequence after a specific length of
time.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index

e jsb.basicimpl.TimedStopEvent(StopTrigger, long)
Constructs a stop event that will be used to indicate that a specific length of
time has passed.

Constructors
e TimedStopEvent

public TimedStopEvent (StopTrigger aSource,
long aDuration)

Constructs a stop event that will be used to indicate that a specific length of
time has passed.
Parameters:

aSource - the stop trigger that will send out this event

aDuration - the duration in milliseconds

68

package jsb.core
Interface Index

SequenceFormat
StopListener

Class Index

AudioDriver
BasicSequenceObiject
CompositeSequenceObject
CompositeStopTrigger
ImageDriver
ParameterizedObject
SequenceDriver
SequenceObject
SetManager

StopEvent

StopTrigger
StopTriggerOp

Exception Index

Classl oadFailureException
UndefinedException

69

Interface jsb.core.SequenceFormat

public interface SequenceFormat

An object that is responsible for both constructing and parsing a particular
representation of a sequence, ex. text, graphical.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Method Index

o addElement(SequenceObiject)
Adds a section to the sequence.
o elements()
Returns an enumerated list of all the sections that can be used for iteration.

e getAllElements()
Returns a table of all the sections, keyed by ID.

. ormal uence()

Returns a representation of the sequence in a unique format.
o removeElement(Object)

Removes a section from the sequence.

o setFormattedSequence(Object)
Sets the formatted object that is to be parsed.

Methods
o addElement

public abstract void addElement (SequenceObject aSequenceObject)
throws ClassloadFailureException

Adds a section to the sequence.

Parameters:

aSequenceObject - a section to be added to the current sequence
Throws: ClassLoadFailureException

if a class required by the new section cannot be found

70

e elements

public abstract java.util.Enumeration elements()
Returns an enumerated list of all the sections that can be used for iteration.
Returns:
a list of all sections
o getAllElements

public abstract java.util.Hashtable getAllElements ()
Returns a table of all the sections, keyed by ID.
Returns:
a table of all sections
o getFormattedSequence

public abstract java.lang.Object getFormattedSequence()
Returns a representation of the sequence in a unique format.
Returns:
an object that contains the data for a full sequence

¢ removeElement

public abstract jsb.core.SequenceObject removeElement (Object aKey)
Removes a section from the sequence.
Parameters:

aKey - an ID used to find the SequenceObject to be removed from the
current sequence

e setFormattedSequence

public abstract void setFormattedSequence(Object aSequence)
throws Exception

Sets the formatted object that is to be parsed.
Parameters:

aSequence - a full sequence
Throws: Exception
if a parsing error occurs

71

Interface jsb.core.StopListener

public interface StopListener

A listener that should be notified when a stopEvent occurs.

Version:

August 1999
Author:

Jacqueline Beaulac (Faculty of Music, McGill University)
See Also:

StopEvent

Method Index
o stopReguested(StopEvent)

Handles a stopEvent.

Methods
o stopRequested

public abstract void stopRequested(StopEvent aStopEvent)

Handles a stopEvent. This should perform all the actions required when
playback of a sequence, or of a section of a sequence, should stop.

Parameters:
aStopEvent - the event that was dispatched

72

Class jsb.core.AudioDriver

Object
|
+---~-ParameterizedObject
|
+----SequenceDriver
I
+~--~-jsb.core.AudioDriver
public abstract class AudioDriver

extends SequenceDriver
A driver that plays audio content.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index
o jsb.core.AudioDriver()

Constructors
¢ AudioDriver

public AudioDriver ()

73

Class jsb.core.BasicSequenceObject

Object

+----SequenceQbiject

+----jsb.core.BasicSequenceObject

public class BasicSequenceObject
extends SequenceObject

A section of a sequence that contains a single piece of media.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index

e jsb.core.BasicSeguenceObject(String, StopTrigger, SequenceDriver)
Constructs a sequence object that contains one specific piece of media.

Constructors
e BasicSequenceObject

public BasicSequenceObject (String anld,

StopTrigger asStopTrigger,
SequenceDriver aSequenceDriver)
throws UndefinedException

Constructs a sequence object that contains one specific piece of media.
Parameters:
anld - a unique ID
aStopTrigger - a stop trigger that controls the end of playback
aSequenceDriver - a driver that provides media support

Throws: UndefinedException
if any one of the parameters is badly defined or is missing

74

Class
Jsb.core.CompositeSequenceObject

Object

l

+----SequenceQbject

+----jsb.core.CompositeSequenceObject

public class CompeositeSequenceObject
extends SequenceObject

A section of a sequence that contains a set of subsections.

Version:
August 1999
Author:

Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index

e jsh.core.CompositeSequenceObject(String, Vector, StopTrigger,
SetManager)

Constructs a sequence object that contains several other sequence objects.

Method Index
o getChildList0

Retumns the IDs of the child objects on which this object depends.
o getSetManager(

Retums the manager that will control the order and timing of the playback of
the child objects.

Constructors
e CompositeSequenceObject

public CompositeSequenceObject(String anId,
Vector aChildList,
StopTrigger aStopTrigger,
SetManager aSetManager)
throws UndefinedException

75

Constructs a sequence object that contains several other sequence objects.
Parameters:
anld - a unique ID
aChildList - a list of the IDs of the child sequenceobjects
aStopTrigger - a stop trigger that controls end of playback
aSetManager - a manager that controls the ordering and playback of the
child objects

Throws: UndefinedException
if any one of the parameters is badly defined

Methods
o getChildList

public java.util.Vector getChildList ()
Returns the [Ds of the child objects on which this object depends.
Returns:
a list of child IDs
o getSetManager
public jsb.core.SetManager getSetManager ()

Returns the manager that will control the order and timing of the playback of
the child objects. This is a convenience method that casts the driverto a
SetManager.

Returns:
the set manager that orders the playback of child objects

RO

76

Class jsb.core.CompositeStopTrigger

Object
l- ---ParameterizedObject
l-—--StogTrigger
1---- jsb.core.CompositeStopTrigger
——
public class CompositeStopTrigger

extends StopTrigger
implements StopL.istener

An association between two stopTriggers. The connection between the two is
defined by a logical operator ("and"” or "or").

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)
Constructor Index
o jsb.core.CompositeStopTrigger(StopTrigger, StopTriggerOp, StopTrigger)

Constructs an association between two stop triggers and based on a logical
operator.

Method Index

o activate()
Enables the trigger to throw stopEvents.
o getFirstStopTrigger()
Returns the first stop trigger of the association.
o getOp()
Returns the logical operator that defines this association.
o getSecondStopTrigger(
Returns the second stop trigger of the association.
* stopReguested(StopEvent)

Handles a stopEvent.

Constructors

o CompositeStopTrigger

public CompositeStopTrigger (StopTrigger aFirstStopTrigger,
StopTriggerOp anOp,
StopTrigger aSecondStopTrigger)
Constructs an association between two stop triggers and based on a logical
operator.

Parameters:
aFirstStopTrigger - one of the two stop triggers
anOp - the logical operator
aSecondStopTrigger - the other stop trigger

Methods

e activate

public void activate()

Enables the trigger to throw stopEvents. This must be called when the trigger
is supposed to start checking for its stop condition. The trigger is
automatically deactivated once the stop condition is met.

Overrides:
activate in class StopTrigger
e getFirstStopTrigger
public jsb.core.StopTrigger getFirstStopTrigger()
Returns the first stop trigger of the association.
Returns:
one of the two stop triggers
e getOp
public jsb.core.StopTriggerOp getOp()
Retumns the logical operator that defines this association.
Returns:
the operator that defines the relationship between the two triggers
o getSecondStopTrigger
public jsb.core.StopTrigger getSecondStopTrigger ()
Returns the second stop trigger of the association.

Returns:
one of the two stop triggers

78

o stopRequested
public void stopRequested(StopEvent aStopEvent)

Handles a stopEvent. If the operator is an "or", the stop event is always
dispatched to the listeners registered with this association. If the operator is an
"and", the stop event is dispatched to the listeners only if both child triggers
have gone off.

Parameters:
aStopEvent - the event that was dispatched

79

Class jsb.core.ImageDriver

Object

+-—--ParameterizedObject

+----SequenceDriver

+----jsb.core.ImageDriver

public abstract class ImageDriver
extends SequenceDriver

A driver that displays visual content.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index
e jsb.core.ImageDriver()

Constructors
e ImageDriver

public ImageDriver ()

80

Class jsb.core.ParameterizedObject

Object

+----jsb.core.ParameterizedObject

public abstract class ParameterizedObject
extends Object

A generic object that contains a set of parameters and their associated values.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Variable Index

e defaultParams
The table of all legal parameters and their default values.

e paramValues
The table of all parameters and their current values.

Constructor Index
e jsb.core.ParameterizedObject()
Method Index

. tParamValues()

Gets the values of all of the parameters used by this class.
o setParamValues(Hashtable)

Sets the values of any of the parameters used by this class.

Variables

o defaultParams

public final java.util.Hashtable defaultParams

The table of all legal parameters and their default values. This is defined
public so that all subclasses may access it.

81

o paramValues
public final java.util.Hashtable paramValues

The table of all parameters and their current values. This is defined public so
that all subclasses may access it.

Constructors
o ParameterizedObject

public ParameterizedObject ()

Methods
e getParamValues

public java.util.Hashtable getParamValues/()
Gets the values of all of the parameters used by this class.
Returns:
a table containing all legal parameters and their currently associated values
e setParamValues

public void setParamValues (Hashtable aParamTable)
throws UndefinedException

Sets the values of any of the parameters used by this class.

Parameters:
aParamTable - a table containing some known parameters along with the
values with which they should be associated

82

Class jsb.core.SequenceDriver

Object

+--~--ParameterizedObject

+----jsb.core.SequenceDriver

RS MR

public abstract class SequenceDriver
extends ParameterizedObject
implements StopListener

An object that is responsible for playing a section of a sequence. If the section
contains a single piece of media, then the driver plays the audio and/or shows the
visuals. If the section contains subsections, then the driver is responsible for

determining the order in which the subsections are played, and for playing them in
that order.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

—

Variable Index
o theStopTrigger

Constructor Index
e jsh.co ceDriver()

Method Index

e getinstance(String)
Returns an instance of the named driver.
o load(Applet)
Loads all data needed to play the media.
e playQ
Plays the media for its total duration.
o setStopTrigger(StopTrigger)
Sets the stop trigger which should be activated when playback begins.
e stop()
Stops the playback of the media as soon as possible.

83

e stopRequested(StopEvent)
Handles a stopEvent.

Variables

o theStopTrigger

protected jsb.core.StopTrigger theStopTrigger

Constructors
e SequenceDriver

public SequenceDriver()

Methods
o getinstance

public static jsb.core.SequenceDriver getInstance
(String aClassName)
throws ClasslLoadFailureException
Returns an instance of the named driver. This is a convenience method which
does type checking and translates any exception to a
ClassloadFailureException.

Parameters:
aClassName - the driver to be instantiated

Throws: Classl oadFailureException
if no instance of the named class can be constructed, or if the named class
is not a driver

o load

public abstract void load(Applet theApplet)
throws UndefinedException

Loads all data needed to play the media.

This method should be blocking. Classes that call this method must perform
any thread handling.

Parameters:
theApplet - the applet to be used for playback

e play

public abstract void play()
Plays the media for its total duration. This should also activate the stop trigger,
if there is one.

This method should be blocking. Classes that call this method must perform
any thread handling.

o setStopTrigger
public void setStopTrigger (StopTrigger aTrigger)
Sets the stop trigger which should be activated when playback begins.
Parameters:
aTrigger - the stop trigger associated with this driver
e stop
public abstract void stop()
Stops the playback of the media as soon as possible.

This method should be blocking. Classes that call this method must perform
any thread handling.

e stopRequested
public void stopRequested(StopEvent aStopEvent)

Handles a stopEvent. This should perform all the actions required when
playback of a sequence, or of a section of a sequence, should stop.
Parameters:

aStopEvent - the event that was dispatched

85

Class jsb.core.SequenceObject

Object
|

+----jsb.core.SequenceObject

public class SequenceObject
extends Object

A section of a sequence.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index

e jsb.core.SequenceQObject(String, StopTrigger, SequenceDriver)
Constructs a SequenceObject which contains all the data necessary to be
played as a unique section within a sequence.

Method Index

o getld()
Returns the ID used to identify this section within the sequence.
o getSequenceDriver()
Gets the main driver class that is used to play this section.
o getStopTrigger(
Returns the trigger that will cause the playback of this section to stop.
¢ setStopTrigger(StopTrigger)
Sets the StopTrigger for this section.

Constructors
¢ SequenceObject

SequenceObject (String anld,

StopTrigger aStopTrigger,
SequenceDriver anSequenceDriver)
throws UndefinedException

Constructs a SequenceObject which contains all the data necessary to be
played as a unique section within a sequence.

Parameters:
anld - a string that uniquely identifies this section
aStopTrigger - a trigger that controls end of playback
anSequenceDriver - a driver that handles media playback
Throws: UndefinedException
if any one of the parameters is badly defined

Methods
o getld

public java.lang.String getId()
Returns the ID used to identify this section within the sequence.

Returns:
the unique ID for this section

o getSequenceDriver

public jsb.core.SequenceDriver getSequenceDriver ()
Gets the main driver class that is used to play this section.
Returns:
a driver that handles media playbakc within this section
o getStopTrigger
public jsb.core.StopTrigger getStopTrigger ()

Returns the trigger that will cause the playback of this section to stop. A
section higher up in the hierarchy may stop playback before this trigger does.

Returns:
the stop trigger
o setStopTrigger

public void setStopTrigger (StopTrigger aStopTrigger)
Sets the StopTrigger for this section.
Parameters:
aStopTrigger - a trigger that should stop playback of this section

87

Class jsb.core.SetManager

Object

+----ParameterizedObject

+----SequenceDriver

+----jsb.core.SetManager

public abstract class SetManager
extends SequenceDriver

A playback manager for a set of child sequenceDrivers.

Version:

August 1999
Author:

Jacqueline Beaulac (Faculty of Music, McGill University)
Variable Index

o childDriverList
The list of child drivers that are under the control of this manager.

o currCycleNum
The number of times that a cycle of playback has occurred.

Constructor Index
o jsb.core.SetManager()
Method Index
o getCurrCycleNum()
Returns the number of playback cycles that have occurred.
e play0
Plays the child drivers.
o playOneCycle()
Causes a single playback cycle.
o setChildDrivers(Vector)
Sets the child sequenceDrivers that are under the control of this driver.
e stop()
Stops the playback of the child drivers.

88

e stopCurrCyvcle()
Stops the current playback cycle.

Variables

e childDriverList

protected java.util.Vector childDriverlList

The list of child drivers that are under the control of this manager.

e currCycleNum

protected int currCycleNum

The number of times that a cycle of playback has occurred. Each
implementation of this class is responsible for determining what constitutes a
single playback cycle.

Constructors
e SetManager

public SetManager ()

Methods
o getCurrCycleNum

public int getCurrCycleNum()

Returns the number of playback cycles that have occurred. Each
implementation of this class is responsible for determining what constitutes a
single playback cycle.

Returns:
the current playback cycle count

o play
public final void play()
Plays the child drivers. This also handles the stop trigger.

This method should be blocking. Classes that call this method must perform
any thread handling.

Overrides:
play in class nceDriver

89

o playOneCycle

protected abstract void playOneCycle()
Causes a single playback cycle.

This method should be blocking.
e setChildDrivers

public final void setChildDrivers(Vector aChildDriverList)
throws UndefinedException

Sets the child sequencebDrivers that are under the control of this driver.
Parameters:
aChildDriverList - a list of child drivers
Throws: UndefinedException
if the list is null
e stop
public final void stop()
Stops the playback of the child drivers.

Overrides:
stop in class SequenceDriver

e stopCurrCycle

protected abstract void stopCurrCycle()
Stops the current playback cycle.

This method should be blocking.

Class jsb.core.StopEvent

Object

+-~--jsb.core.StopEvent

public class StopEvent
extends Object

An event that indicates the end of a section of a sequence.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Variable Index

* source
The stop trigger that is sending out this event.

Constructor Index

o jsb.core.StopEvent(StopTrigger)
Constructs a stop event that will be used to indicate that the end condition of a
particular stop trigger became true.

Method Index

o getSource()
Returns the stop trigger that sent out this event when its end condition became
true.

Variables

protected jsb.core.StopTrigger source

The stop trigger that is sending out this event. This is declared protected so
that subclasses of this class can access it.

91

Constructors

o StopEvent

public StopEvent (StopTrigger aSource)

Constructs a stop event that will be used to indicate that the end condition of a
particular stop trigger became true.

Parameters:
aSource - the stop trigger that will send out this event

Methods

o getSource

public jsb.core.StopTrigger getSource()

Returns the stop trigger that sent out this event when its end condition became
true.

Returns:
the stop trigger that sent out this event

Class jsb.core.StopTrigger

Object

+--~--ParameterizedObject

+-~-~--jsb.core.StopTrigger

public abstract class StopTrigger
extends ParameterizedObject

A trigger that will cause a stopEvent to be thrown once certain conditions are
met. This is used to stop the playback of a sequence or a section of a sequence.

Version:

August 1999
Author:

Jacqueline Beaulac (Faculty of Music, McGill University)
See Also:

StopEvent

Variable Index

o listenerList
Holds a list of references to all listeners that have registered themselves with
this object.

Constructor Index
o jsh.core.StopTrigger()

Method Index
* activate()
Enables the trigger to throw StopEvents.
o addStopListener(StopListener)
Adds a listener that should be sent any stopEvents.

o dispatchStopEvent(StopEvent)
Iterates through the list of listeners and sends an event to each one.

e getinstance(String)
Returns an instance of the named trigger.

e removeStopListener(StopListener)
Removes a listener so that stopEvents are no longer sent to it.

93

Variables

e listenerList

protected final java.util.Vector listenerlist

Holds a list of references to all listeners that have registered themselves with
this object. This is declared protected so that subclasses of this class can
access the list.

Constructors

e StopTrigger

public StopTrigger()

Methods

e activate

public abstract void activate()

Enables the trigger to throw stopEvents. This must be called when the trigger
is supposed to start checking for its stop condition. The trigger is
automatically deactivated once the stop condition is met.

o addStopListener

public void addStoplListener (StoplListener aListener)
Adds a listener that should be sent any stopEvents.

Parameters:
aListener - a StopListener to be added to this trigger

o dispatchStopEvent

protected final void dispatchStopEvent (StopEvent aStopEvent)

Iterates through the list of listeners and sends an event to each one. This is
declared protected so that subclasses of this class can call it. However, it is
also declared £inal so that it cannot be redefined in a subclass.
Parameters:

aStopEvent - the event to be dispatched to all listeners

e getInstance

public static jsb.core.StopTrigger getInstance(String aClassName)
throws ClassLoadFailureException

Returns an instance of the named trigger. This is a convenience method which
does type checking and translates any exception to a
ClassLoadFailureException.

Parameters:
aClassName - the trigger to be instantiated

Throws: Classl oadFailureException
if no instance of the named class can be constructed, or if the named class
is not a trigger

¢ removeStopListener

public void removeStopListener (Stoplistener alListener)

Removes a listener so that stopEvents are no longer sent to it.

Parameters:
aListener - a StopL.istener to be removed from this trigger

R

95

Class jsb.core.StopTriggerOp

Object

l

+----jsb.core.StopTriggerOp

public class StopTriggerOp
extends Object

A logical operator that relates two stopTriggers. This is used when creating a
CompositeStopTrigger.

Version:

August 1999
Author:

Jacqueline Beaulac (Faculty of Music, McGill University)
See Also:

StopTrigger, CompositeStopTrigger

Variable Index

e AND OP
Indicates that the composite trigger should be set off only when both of its
subtriggers have gone off.

e« OR OP

Indicates that the composite trigger should be set off when either of its two
subtriggers goes off.

Constructor Index

o jsb.core.StopTriggerOp(String)
Constructs a binary operator based on a given tag.

Method Index

e isAndOp(
Returns true if the composite trigger that uses this operator should be set off
only when both of its subtriggers have gone off.

¢ isOrOpQ
Returns crue if the composite trigger that uses this operator should be set off
when either of its two subtriggers goes off.

* toString(
Returns the string representation of the operator.

96

Variables

e AND_OP

public static final java.lang.String AND_OP

Indicates that the composite trigger should be set off only when both of its
subtriggers have gone off.

e OR_OP

public static final java.lang.String OR_OP

Indicates that the composite trigger should be set off when either of its two
subtriggers goes off.

Constructors

o StopTriggerOp
public StopTriggerOp(String aString) throws UndefinedException

Constructs a binary operator based on a given tag. If the tag equals anp_op,
the operator is an "and" operator. If it equals or_op, the operator is an "or"
operator.
Parameters:

aString - the tag that defines the binary operator
Throws: UndefinedException

if the tag is not equal to either AND_oP or OR_OP

Methods
e isAndOp

public boolean isAndOp()

Returns true if the composite trigger that uses this operator should be set off
only when both of its subtriggers have gone off. Retumns false if this is an
"or" operator.

Returns:
true if this operator represents a logical "and", false otherwise

o isOrOp
public boolean isOrOp()

Remrns true if the composite trigger that uses this operator should be set off
when either of its two subtriggers goes off. Returns false if this is an "and"
operator.

Returns:
true if this operator represents a logical “or", false otherwise
e toString

public java.lang.String toString()
Returns the string representation of the operator.

Overrides:
toString in class Object

Class
jsb.core.ClassLoadFailureException

Object

I
+----Throwable

+----Exception
|
+----jsb.core.ClassLoadFailureException
_ N
public class ClassLoadFailureException
extends Exception

A set of class loading exceptions, each differentiated by its error code.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Variable Index

e CANNOT_INSTANTIATE
Indicates that it is not possible to create an instance of the class to be loaded.

o CLASS NOT _FOUND
Indicates that no class definition can be found for the class to be loaded.

o WRONG _CLASS TYPE
Indicates that the class to be loaded does not derive from a required class, or

does not implement a required interface.

Constructor Index

e jsh.core.Classl oadFailureException(int, String)
Constructs a class loading exception with the given error code and message.

o jsb.core.Classl.oadFailureException(int)

Constructs a class loading exception with the given error code.

Method Index

getErrorCode()
Returns the error code, which can be used for error recovery purposes.

99

Variables

e CANNOT_INSTANTIATE

public static final int CANNOT_INSTANTIATE

Indicates that it is not possible to create an instance of the class to be loaded.
This could occur because of access restrictions, or because the attempt to
create an instance caused an exception.

e CLASS_NOT_FOUND

public static final int CLASS_NOT_FOUND
Indicates that no class definition can be found for the class to be loaded.

e WRONG_CLASS_TYPE

public static final int WRONG_CLASS_TYPE

Indicates that the class to be loaded does not derive from a required class, or
does not implement a required interface.

Constructors
e ClassLoadFailureException

public ClassLoadFailureException(int anErrorCode,
String aMessage)
Constructs a class loading exception with the given error code and message.

Parameters:
anErrorCode - an int that defines the type of error
aMessage - a message that can be used to display the error

e ClassLoadFailureException
public ClassLoadFailureException(int anBrrorCode)

Constructs a class loading exception with the given error code.

Parameters:
anErrorCode - an int that defines the type of error

100

Methods
e getErrorCode

public int getErrorCode()
Returns the error code, which can be used for error recovery purposes.

Returns:
an int that defines the type of error

101

Class jsb.core.UndefinedException

Object

+----Throwable

+----Exception

+----jsb.core.UndefinedException

. R "

public class UndefinedException
extends Exception

A set of exceptions that may be thrown when Sequenceobjects are defined. Each
indicates that incomplete or erroneous information was provided, such that the
object could not be created. The exceptions are differentiated by error code.

Version:

August 1999
Author:

Jacqueline Beaulac (Faculty of Music, McGill University)
See Also:

SequenceObject

Variable Index

e BAD PARAM

Indicates that an unknown parameter was passed to a ParameterizedObject.
e JILLEGAL PARAM VALUE

Indicates that an illegal value was passed to a ParameterizedObject.

e NO_CHILDREN

Indicates that no children were listed when a CompositeSequenceObject was
defined.

e NO _CYCLES
Indicates that the number of cycles was not defined for a
CompositeSequenceObject.

e NO DRIVER
Indicates that no instance of the driver class was provided.

e NOID
Indicates that the ID tag was missing.

102

e STOPTRIGGER MISMATCH
Indicates that the stopTrigger specified was inappropriate for the type of
SequenceObject defined.

e UNKNOWN TRIGGEROP
Indicates that an unknown stopTriggerOp was used.

Constructor Index
e jsb.core.UndefinedException(int, String)

Constructs an Undef inedException With the given error code and message.
o jsb.core.UndefinedException(int)

Constructs an UndefinedException with the given error code.

Method Index

e getErrorCode()
Retumns the error code, which can be used for error recovery purposes.

Variables

e BAD_PARAM

public static final int BAD_PARAM
Indicates that an unknown parameter was passed to a ParameterizedObject.
See Also:
ParameterizedObject
e ILLEGAL_PARAM_VALUE

public static final int ILLEGAL_PARAM_VALUE
Indicates that an illegal value was passed to a2 Parameterizedobject.

See Also:
ParameterizedObject

e NO_CHILDREN

public static final int NO_CHILDREN

Indicates that no children were listed when a CompositeSequenceObject was
defined.

See Also:
CompositeSequenceObject

103

e NO_CYCLES

public static final int NO_CYCLES

Indicates that the number of cycles was not defined for a
CompositeSequenceObject.

See Also:
CompositeSequenceObiject

e NO_DRIVER

public static final int NO_DRIVER
Indicates that no instance of the driver class was provided.

See Also:
SequenceDriver

e NOID

public static final int NO_ID
Indicates that the ID tag was missing.

e STOPTRIGGER_MISMATCH

public static final int STOPTRIGGER_MISMATCH

Indicates that the stopTrigger specified was inappropriate for the type of
SequenceObject defined.

See Also:
StopTrigger, SequenceObiject

e UNKNOWN_TRIGGEROP

public static final int UNKNOWN_TRIGGEROP
Indicates that an unknown stopTriggerop was used.

See Also:
StopTriggerOp

Constructors

e UndefinedException
public UndefinedException(int anErrorCode.
String aMessage)
Constructs an UndefinedException with the given error code and message.

Parameters:
anErrorCode - an int that defines the type of error
aMessage - a message that can be used to display the error

104

o UndefinedException

public UndefinedException(int anErrorCode)
Constructs an undefinedException with the given error code.

Parameters:
anErrorCode - an int that defines the type of error

Methods
o getErrorCode

public int getErrorCode()
Returns the error code, which can be used for error recovery purposes.

Returns:
an int that defines the type of error

105

package jsb.gui

Class Index

BasicObjectGui
CommitListener
CompositeObjectGui
DataFrame
ParamsTable
ParamsTableModel

SequenceGui
StopTriggerPanel

106

Class jsb.gui.BasicObjectGui

Object
l----Component
i----Concainer
l~---JComponent
l----JInternalFrame
l----jsb.gui.BasicObjectGui
——
public class BasicObjectGui
extends JInternalFrame

A Swing-compatible frame that can be used for creating, displaying, and editing a
BasicSequenceObject.

Version:

August 1999
Author:

Jacqueline Beaulac (Faculty of Music, McGill University)
See Also:

BasicSequenceObject

Variable Index

e driverCombeBox
The field used to display the currently selected driver.
o idField
The field that is used to display the ID of the sequence object.
o okButton
The button used to confirm that the data is complete and the sequence object
should be entered into a sequence.
e theDriver
The currently selected driver.

o theParamsTable
The table used to display the parameters of the current driver.

o theStopTriggerPanel
The panel used to display the stop trigger of the sequence object.

107

Constructor Index
o jsb.gui.BasicObjectGui()

Constructs a GUI that can be used for creating a BasicSequenceobject.

o jsb.gui.BasicObjectGui(BasicSequenceObject)
Constructs a GUI that can be used to display and edit a

BasicSequenceObject.

Method Index

¢ addCommitListener(CommitListener)
Adds a listener that will be called when the OK button is pressed.

o getBasicSequenceObject()
Returns the object displayed in this GUL

Variables

e driverComboBox

final javax.swing.JComboBox driverComboBox
The field used to display the currently selected driver.

o idField

final javax.swing.JTextField idField

The field that is used to display the ID of the sequence object.

¢ okButton

final javax.swing.JButton okButton

The button used to confirm that the data is complete and the sequence object
should be entered into a sequence.

o theDriver

isb.core.SequenceDriver theDriver

The currently selected driver.
o theParamsTable

final jsb.gui.ParamsTable theParamsTable
The table used to display the parameters of the current driver.

o theStopTriggerPanel

jsb.gui.StopTriggerPanel theStopTriggerPanel
The panel used to display the stop trigger of the sequence object.

108

Constructors
e BasicObjectGui

public BasicObjectGui() throws ClassLoadFailureException

Constructs 2 GUI that can be used for creating a BasicSequenceObject.

Throws: ClassLoadFailureException
if a driver cannot be loaded

e BasicObjectGui

public BasicObjectGui (BasicSequenceObject aBasicSequenceObject)
throws ClassloadFailureException
Constructs a GUI that can be used to display and edit a
BasicSequenceObject.

Parameters:

aBasicSequenceObiject - the object to be edited
Throws: Classl oadFailureException

if a driver cannot be loaded

Methods

¢ addCommitListener

public void addCommitListener (CommitListener aCommitListener)

Adds a listener that will be called when the OK button is pressed. The listener

should add the object displayed in this GUI to a sequence.

Parameters:
aCommitListener - a listener which will respond when the data is
confirmed and should be retrieved

o getBasicSequenceObject

jsb.core.BasicSequenceObject getBasicSequenceObject ()
throws UndefinedException

Returns the object displayed in this GUL
Returns:
the object displayed
Throws: UndefinedException
if the object is not fully defined, or if some of the data is invalid

109

Class jsb.gui.CommitListener

Object

+----jsb.gui.CommitListener

public class CommitListener
extends Object
implements ActionListener

A listener that will retrieve the data from a temporary edit frame and store that
data in the main bataPrame. It listens for "confirm" events from the temporary
frame (such as pressing an OK button).

Version:
August 1999
Aauthor:
Jacqueline Beaulac (Faculty of Music, McGill University)

.

Constructor Index

e jsb.gui.CommitListener(JInternalFrame, DataFrame)
Constructs a listener which will pull data from a temporary edit frame when
requested and store it within a master data storage object.

Method Index
e actionPerformed(ActionEvent)

. Constructors
e CommitListener

public CommitListener (JInternalFrame aninternalFrame,
DataFrame aMasterFrame)

Constructs a listener which will pull data from a temporary edit frame when
requested and store it within a master data storage object.
Parameters:

anInternalFrame - a temporary edit frame

aMasterFrame - the master application frame

110

Methods
e actionPerformed

public void actionPerformed(ActionEvent anEvent)

111

Class jsb.gui.CompositeObjectGui

Object
l--——COmponenc
l----Container
l----JComponent
l----JInternalFrame
l----jsb.gui.cOmpositeobjectGui
———

public class CompositeObjectGui
extends JInternalFrame

A Swing-compatible frame that can be used for creating, displaying, and editing a
CompositeSequenceObject.

Version:

August 1999
Author:

Jacqueline Beaulac (Faculty of Music, McGill University)
See Also:

CompositeSequenceObiject

Variable Index

e childAddButton
The button used to enter a new child ID.

The list that is used to display the IDs of the child objects.
o childListData

The list of child IDs.
o childNameField

The field used to enter a new child ID.
e childRemoveButton

The button used to remove a child ID from the list.
o jidField

The field that is used to display the ID of the sequence object.
e managerComboBox

The field used to display the currently selected manager.

112

¢ okButton
The button used to confirm that the data is complete and the sequence object
should be entered into a sequence.
o theManager
The currently selected manager.
o theParamsTable
The table used to display the parameters of the current manager.

e theStopTriggerPanel
The panel used to display the stop trigger of the sequence object.

Constructor Index
e jsb.gui.CompositeObjectGui()

Constructs a GUI that can be used for creating a CompositeSequenceObject.

o jsb.gui.CompositeObjectGui(CompositeSequenceObject)
Constructs a GUI that can be used to display and edit a

CompositeSequenceObject.

Method Index

o addCommitListener(CommitListener)
Adds a listener that will be called when the OK button is pressed.

o pgetCompositeSequenceObject()
Returns the object displayed in this GUL

Variables

¢ childAddButton

javax.swing.JButton childAddButton
The button used to enter a new child ID.

e childList

javax.swing.JList childList
The list that is used to display the IDs of the child objects.

¢ childListData

java.util.Vector childListData
The list of child IDs.

o childNameField

final javax.swing.JTextField childNameField
The field used to enter a new child ID.

113

¢ childRemoveButton

javax.swing.JButton childRemoveButton
The button used to remove a child ID from the list.

e jidField

javax.swing.JTextField idField
The field that is used to display the ID of the sequence object.

e managerComboBox

final javax.swing.JComboBox managerComboBox
The field used to display the currently selected manager.

e okButton

javax.swing.JButton okButton

The button used to confirm that the data is complete and the sequence object
should be entered into a sequence.

o theManager
jsb.core.SetManager theManager
The currently selected manager.

¢ theParamsTable

jsb.gqui.ParamsTable theParamsTable
The table used to display the parameters of the current manager.

e theStopTriggerPanel

jsb.gui.StopTriggerPanel theStopTriggerPanel
The panel used to display the stop trigger of the sequence object.

Constructors
o CompositeObjectGui

public CompositeObjectGui() throws ClassloadFailureException

Constructs a GUI that can be used for creating a CompositeSequenceObject.

Throws: ClassLoadFailureException
if a manager cannot be loaded

114

e CompeositeObjectGui

public CompositeObjectGui
{CompositeSequenceObject aCompositeSequenceObject)
throws ClassloadFailureException
Constructs a GUI that can be used to display and edit a
CompositeSequenceObject.

Parameters:

aCompositeSequenceObject - the object to be edited
Throws: ClassLoadFailureException

if a manager cannot be loaded

Methods

¢ addCommitListener

public void addCommitListener (CommitListener aCommitlListener)

Adds a listener that will be called when the OK button is pressed. The listener
should add the object displayed in this GUI to a sequence.
Parameters:

aCommitListener - a listener which will respond when the data is
confirmed and should be retrieved

o getCompositeSequenceObject
jsb.core.CompositeSequenceObject getCompositeSequenceObject()
throws UndefinedException
Retumns the object displayed in this GUL.
Returns:
the object displayed
Throws: UndefinedException
if the object is not fully defined, or if some of the data is invalid

115

Class jsb.gui.DataFrame

Object
4|»----Component
L ---Container
l—---window
-!»--- ~Frame
—
L---j sb.gui.DataFrame
nem————
public class DataFrame
extends JFrame

Extends grrame with an object-storing mechanism. If a menu is provided by an
outside class, the data that is stored within this class can be manipulated using the
menu.

This class is currently used only for SsequenceObjects and the JInternalFrames
associated with them. However, this could easily be modified to be used as a
general-purpose class.

Version:

August 1999
Author:

Jacqueline Beaulac (Faculty of Music, McGill University)
Constructor Index

o jsb.gui.DataFrame()

Constructs a window that can contain GUI sub-elements.

Method Index

o elements()

Returns a list of all of the sequence objects, used for iteration.
o get(Object)

Returns the sequence object associated with the given key.
o getAliElements()

Retumns the full data table.

116

e keys)
Returns a list of all of the data keys that may be used for iteration.

o put(Object, Object, JInternalFrame)
Stores the given objects, associates them with the given key, and returns the
sequence object previously associated with that key (if any).

e remove(Object)
Removes the objects associated with the given key, and returns the
SequenceObject that was associated with the key (if any).

o setObjectMenu(JMenu)
Sets the object menu.

Constructors
e DataFrame

public DataFrame()
Constructs a window that can contain GUI sub-elements.

The current implementation is based on a JDesktopPane.

Methods

e e¢lements

java.util.Enumeration elements()
Retums a list of all of the sequence objects, used for iteration.
Returns:
an enumerated list of the Sequenceobjects stored
o get

java.lang.Object get (Object aKey)
Returns the sequence object associated with the given key.
Parameters:
aKey - an ID that identifies a particular object
Returns:
the sequenceoObject associated with the ID

o getAllElements
java.util .Hashtable getAllElements()
Retumns the full data table.

Returns:
a table of the sequenceobjects stored

117

e keys

java.util.Enumeration keys()

Retumns a list of all of the data keys that may be used for iteration.

Returns:
an enumerated list of the keys of the objects stored

e put

java.lang.Object put(Object aKey,
Object avValue,
JInternalFrame aGui)

Stores the given objects, associates them with the given key, and returns the
sequence object previously associated with that key (if any).
Parameters:

aKey - an ID that will be used to identify a particular SequenceObject
and its GUI representation

aValue - the sequenceObject associated with the ID
aGui - the JInternalFrame associated with the ID
Returns:
the Ssequenceobject previously associated with the ID, or null if the ID
was not associated with any object

¢ remove

java.lang.Object remove (Object key)
Removes the objects associated with the given key, and returns the
SequenceCbject that was associated with the key (if any).
Parameters:
aKey - an ID that will be identifies a particular sequenceobject and its
GUI representation
Returns:
the sequenceoObject associated with aKey, or null if aKey was not
associated with any object
o setObjectMenu

public void setObjectMenu(JMenu anObjectMenu)
Sets the object menu.
Parameters:
anObjectMenu - a Swing-compatible menu that shows the objects

available, provides a way to access them, and may also provide ways to
manipulate them

118

Class jsb.gui.ParamsTable

Object
L ---Component
4|»- ---Container
4|-----JComponent
l----JTable
.!-----j sb.gui.ParamsTable
- ————————

class ParamsTable

extends JTable

A panel that displays a set of parameters and their values in a tabular format.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Note: This class is not public and therefore cannot be used outside this package.

Constructor Index

e jsb. Table()
Constructs a table that can be used to display parameters and their associated
values.

Method Index

o getValues()
Returns a table that contains all the parameters currently displayed and their
associated values.

o setValues(Hashtable)
Sets the parameters to be displayed and their values.

119

Constructors
e ParamsTable

public ParamsTable()

Constructs a table that can be used to display parameters and their associated
values.

Methods

e getValues

public java.util.Hashtable getValues()

Returns a table that contains all the parameters currently displayed and their
associated values.

Returns:
a table of parameters and their current values
e setValues

public void setValues(Hashtable aValueTable)
Sets the parameters to be displayed and their values.

Parameters:
aValueTable - a table that contains the params to be displayed and their
current values

120

Class jsb.gui.ParamsTableModel

Object

+----AbstractTableModel

I
+----jsb.gui.ParamsTableModel

class ParamsTableModel
extends AbstractTableModel

Note: This class is not public and therefore cannot be used outside this package.

Constructor Index
e jsb.gui.ParamsTableModel()

Method Index

getColumnCount()
getColumnName(int)
getRowCount()
getValueAt(int, int)
getValues()

Returns a table that contains all the displayed parameters and their associated
values.

isCellEditable(int, int)

setValueAt(Object, int, int)

setValues(Hashtable)

Initializes the table with a set of parameters and their values.

Constructors
¢ ParamsTableModel

ParamsTableModel ()

121

Methods

¢ getColumnCount

public int getColumnCount ()
Overrides:
getColumnCount in class AbstractTableModel

o getColumnName

public java.lang.String getColumnName(int column)
Overrides:

getColumnName in class AbstractTableModel
o getRowCount

public int getRowCount ()
Overrides:
getRowCount in class AbstractTableModel

o getValueAt
public java.lang.Object getValueAt (int row,

int column)
Overrides:
getValueAt in class AbstractTableModel

e getValues

public java.util.Hashtable getValues()

Returns a table that contains all the displayed parameters and their associated
values.

Returns:
a table of params and their values
o isCellEditable
public boolean isCellEditable(int row,
int column)
Overrides:
isCellEditable in class AbstractTableModel
e setValueAt

public void setValueAt (Object value,
int row,
int column)

Overrides:
setValueAt in class AbstractTableModel

122

o setValues

public void setValues (Hashtable aParamsTable)
Initializes the table with a set of parameters and their values.

Parameters:
aParamsTable - a table of params and their values

AR

123

Class jsb.gui.SequenceGui

Object

+-~---jsb.gui.SequenceGui

public class SequenceGui
extends Object

implements SequenceFormat

A GUI format for representing sequences.

Version:

August 1999

Author:

Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index

jsb.gui.SequenceGui()

Constructs a new GUI using a plain vanilla DataFrame.

Method Index

addBasicSequenceQObject(BasicSequenceObject)

Adds a BasicSequenceobject to this GUI representation of a sequence.
addCompesiteSequenceObject(CompositeSequenceObject)

Adds a compositesequenceobject to this GUI representation of a sequence.
addElement(SequenceObject)

Adds a section to this GUI representation of a sequence.

elements()

Returns an enumerated list of all the sections.

getAllFlements()

Returns a table of all the sections, keyed by ID.
getFormattedSequence()

Retumns the constructed sequence in GUI format.
removeElement(Object)

Removes a section from this GUI representation of a sequence.

setFormattedSequence(Object)
Sets the main GUI window.

124

Constructors
o SequenceGui

public SequenceGui ()
Constructs a new GUI using a plain vanilla pataFrame.

See Also:
DataFrame

Methods
o addBasicSequenceObject

void addBasicSequenceObject
{BasicSequenceObject aBasicSequenceObject)
throws ClassLoadFailureException

Adds a BasicSequenceObject to this GUI representation of a sequence. This
helper method is used by the addElement method.

Parameters:

aBasicSequenceObject - a basic object to be added to the current sequence
See Also:

addElement, BasicObjectGui

e addCompositeSequenceObject

void addCompositeSequenceObject
(CompositeSequenceObject aCompositeSequenceObject)
throws ClassloadFailureException

Adds a compositeSequenceobject to this GUI representation of a sequence.
This helper method is used by the addElement method.

Parameters:
aCompositeSequenceObject - a composite object to be added to the
current sequence
See Also:
addElement, CompositeObjectGui
e addElement

public void addElement (SequenceObject aSequenceObject)
throws ClassLoadFailureException
Adds a section to this GUI representation of a sequence. This method

delegates to helper methods for each implementation of Sequenceobject
supported in this format.

125

If new implementations of sequenceObject are to be supported by a subclass,
a new helper method can be added for each new implementation. This method
can then be overriden to delegate to the new helper methods.

Parameters:
aSequenceObject - a section to be added to the current sequence

o elements

public java.util.Enumeration elements()
Returns an enumerated list of all the sections.
Returns:
a list of all sections in the sequence

o getAllElements

public java.util.Hashtable getAllElements()
Returns a table of all the sections, keyed by ID.
Returns:
a table of all sections
o getFormattedSequence

public java.lang.Object getFormattedSequence()
Returns the constructed sequence in GUI format.
Returns:
the GUI representation of this sequence

e removeElement

public jsb.core.SequenceObject removeElement (Object aKey)
Removes a section from this GUI representation of a sequence.

Parameters:
aKey - a ID to be used to identify the section to be removed from the
current sequence

o setFormattedSequence

public void setFormattedSequence(Object aSequence)
Sets the main GUI window.

Parameters:
aSequence - a DataFrame to be used as the main window and data holder
for this sequence

See Also:
DataFrame

126

Class jsb.gui.StopTriggerPanel

Object
l-- --Component
l- ---Container
4'. ----JComponent
l- ---JPanel
E»- ---jsb.gui.StopTriggerPanel
S ——

public class StopTriggerPanel
extends JPanel

A Swing-compatible GUI panel that can be used for creating, displaying, and
cditing a StopTrigger.

Version:

August 1999
Author:

Jacqueline Beaulac (Faculty of Music, McGill University)
See Also:

StopTrigger

Constructor Index
e jsh.gui.StopTriggerPanel()

Constructs a panel which may be used to create a new stopTrigger.

Method Index

o getValue()
Retums the trigger which is being edited.

e setValue(StopTrigger)
Sets the trigger data which should be shown and edited in the panel.

127

Constructors
o StopTriggerPanel

public StopTriggerPanel() throws ClassLoadFailureException
Constructs a panel which may be used to create a new stopTrigger.

Throws: ClassLoadFailureException
if any of the classes in triggerChoiceList cannot be loaded

Methods
e getValue

public jsb.core.StopTrigger getValue() throws UndefinedException
Returns the trigger which is being edited.

Returns:
the stop trigger currently shown

e setValue

public void setValue(StopTrigger astopTrigger)
Sets the trigger data which should be shown and edited in the panel.

Parameters:
aStopTrigger - the trigger to be edited

128

package jsb.text

Class Index

o SequenceText
Exception Index

e BadParseException

129

Class jsb.text.SequenceText

Object

+----jsb.text.SequenceText

public class SequenceText
extends Object
implements SequenceFormat

A text format for representing sequences. If new implementations of
SequenceObject are provided, this class can be extended to support them. (All of
the internal methods used in the class are declared protected rather than
private in order to allow easier subclassing.)

Version:

August 1999
Author:

Jacqueline Beaulac (Faculty of Music, McGill University)
See Also:

SequenceObiject

Constructor Index
o jsb.text.SequenceText()

Method Index
e addBasicSequenceObject(StringBuffer, BasicSequenceObiject)

Adds a BasicSequenceobject to this text representation of a sequence.
¢ addCompositeSequenceObject(StringBuffer, CompositeSequenceObject)
Adds a compositesSequenceObject to this text representation of an sequence.
e addElement(SequenceObject)
Adds a section to this text representation of a sequence.
o addParams(StringBuffer, Hashtable)
Adds a set of parameters to this text representation of a sequence.
o addStopTrigger(StringBuffer, StopTrigger)
Adds a stop trigger to this text representation of a sequence.
e elements()
Returns an enumeration of all the sections.

130

o firstParse(Object)
Parses the contents of a stream into individual string tokens, removing C-style
comments.

o getAllElements()
Returns a table of all the sections, keyed by ID.

e getFormattedSequence()

Returns the constructed sequence in text format.

o getNextToken(Enumeration, int)
Returns the next token in the given Enumeration, or throws the given
exception.

o nextBasicSequenceObject(Enumeration)

Parses a BasicSequenceObject out of the text representation.

e nextCompositeSequenceObject(Enumeration, String)

Parses a CompositeSequenceObject out of the text representation.
o nextParams(Enumeration)

Parses a set of parameters out of the text representation.

e nextStopTrigger(Enumeration)
Parses a stopTrigger out of the text representation.

e removeElement(Object)
Removes a section from this text representation of a sequence, based on the
ID of the section.

o setFormattedSequence(Object)
Sets the current sequence and parses it from text format.
Constructors

e SequenceText

public SequenceText ()

Methods
o addBasicSequenceObject

protected void addBasicSequenceObject
(StringBuffer textRepresentation,
BasicSequenceObject aBasicSequenceObject)

Adds a BasicSequenceobject to this text representation of a sequence. This
helper method is used by getFormattedsequence().
Parameters:

textRepresentation - the current text holder

aBasicSequenceQObject - a basic object to be added to the current sequence
See Also:

getFormattedSequence

131

¢ addCompesiteSequenceObject

protected void addCompositeSequenceObject
(StringBuffer textRepresentation,
CompositeSequenceObject aCompositeSequenceObject)

Adds a compositeSequenceObject to this text representation of an sequence.
This helper method is used by getFormattedSequence().

Parameters:
textRepresentation - the current text holder
aCompositeSequenceObject - a composite object to be added to the
current sequence

See Also:

getFormattedSequence
¢ addElement

public void addElement (SequenceObject aSequenceObject)

Adds a section to this text representation of a sequence. This method delegates

to helper methods for each implementation of sequenceobject supported in
this format.

If new implementations of sequenceobject are to be supported by a subclass,
a new helper method can be added for each new implementation. This method
can then be overriden to delegate to the new helper methods.

Parameters:
aSequenceObject - an object to be added to the current sequence

e addParams

protected void addParams(StringBuffer textRepresentation,
Hashtable aParamTable)

Adds a set of parameters to this text representation of a sequence.

Parameters:
textRepresentation - the current text holder
aParamTable - a table containing a set of parameters and their values, to
be added to the current sequence

¢ addStopTrigger
protected void addStopTrigger(StringBuffer textRepresentation,
StopTrigger aStopTrigger)
Adds a stop trigger to this text representation of a sequence.
Parameters:
textRepresentation - the current text holder
aStopTrigger - a stop trigger to be added to the current sequence

132

e elements

public java.util.Enumeration elements()
Returns an enumeration of all the sections.

Returns:
an enumerated list of all sequenceobjects in this sequence

o firstParse

protected java.util.Enumeration firstParse(Object aSequence)
throws BadParseException

Parses the contents of a stream into individual string tokens, removing C-style
comments.

Parameters:

aSequence - a reader from which the text tokens will be read
Throws: BadParseException

if an I/O error occurs while reading the stream

o getAllElements
public java.util.Hashtable getAllElements()
Returns a table of all the sections, keyed by ID.
Returns:
a table of all sections
o getFormattedSequence
public java.lang.Object getFormattedSequence()

Returns the constructed sequence in text format. This method delegates to

helper methods for each implementation of sequenceobject supported in this
format.

If new implementations of SequenceObject are to be supported by a subclass,
a new helper method can be added for each new implementation. This method
can then be overriden to delegate to the new helper methods.

Returns:
a stringBuffer that contains the text representation of this sequence

o getNextToken

protected java.lang.String getNextToken(Enumeration textTokens,
int errorCode)
throws BadParseException

Returns the next token in the given Enumeration, or throws the given
exception. This is a convenience method, since this operation is made many
times within the parsing methods.

133

Parameters:
textTokens - an enumerated list of strings
errorCode - an int that indicates the type of BadParseException to be
thrown if the end of the list of tokens has been reached

Throws: BadParseException

if no more tokens in the enumeration
o nextBasicSequenceObject

protected jsb.core.BasicSequenceObject nextBasicSequenceObject
(Enumeration textTokens)
throws BadParseException, UndefinedException,
ClasslLoadFPailureException

Parses a BasicSequenceObject out of the text representation. This helper
method is used by setFormattedsequence().

Returns:
the next basic object defined in the text
Throws: BadParseException
if a parsing error occurs
Throws: UndefinedException
if some values are missing
Throws: ClassLoadFailureException
if the driver class is invalid
See Also:
setFormattedSequence, BasicSequenceQObject

o nextCompositeSequenceObject

protected jsb.core.CompositeSequenceObject
nextCompositeSequenceObject (Enumeration textTokens,
String currToken)
throws BadParseException, UndefinedBxception,
ClasslLoadFailureException

Parses a compositeSequenceObject out of the text representation. This
helper method is used by setFormattedSequence().

Returns:
the next composite object defined in the text
Throws: BadParseException
if a parsing error occurs
Throws: UndefinedException
if some values are missing
Throws: ClassLoadFailureException
if the driver class is invalid
See Also:
setFormattedSequence, CompositeSequenceObject

134

nextParams

protected java.util.Hashtable nextParams (Enumeration textTokens)

throws BadParseException

Parses a set of parameters out of the text representation.

Returns:

a table of parameters and their associated values
Throws: BadParseException

if a parsing error occurs

nextStopTrigger

protected jsb.core.StopTrigger nextStopTrigger

{Enumeration textTokens)
throws BadParseException, UndefinedException,
ClasslLoadFailureException

Parses a stopTrigger out of the text representation.

Returns:

a stop trigger
Throws: BadParseException

if a parsing error occurs
Throws: UndefinedException

if some values are missing
Throws: ClasslLoadFailureException

if the driver class is invalid
removeElement

public jsb.core.SequenceObject removeElement (Object aKey)

Removes a section from this text representation of a sequence, based on the
ID of the section.

Parameters:
aKey - the ID of the sequenceObject to be removed from the current

sequence
Returns:

the sequenceObject that has just been removed
setFormattedSequence

public void setFormattedSequence (Object aSequence)

throws BadParseException, UndefinedException,
ClassLoadPFailureException
Sets the current sequence and parses it from text format. This method
delegates to helper methods for each implementation of sequenceobject

supported in this format.

135

If new implementations of sequenceObject are to be supported by a subclass,
a new helper method can be added for each new implementation. This method
can then be overriden to delegate to the new helper methods.

Parameters:
aSequence - an InputStreamReader from which the text script will be read
Throws: BadParseException
if a parsing error occurs
Throws: UndefinedException
if a parsed object is badly defined
Throws: ClassLoadFailureException
if a class used in a parsed object cannot be loaded

136

Class jsb.text.BadParseException

Object

|
+----Throwable

+----Exception

+----jsb.text.BadParseException

public class BadParseException
extends Exception

A set of text parsing exceptions, each differentiated by its error code.

Version:
August 1999
Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Variable Index

e DUPLICATE DEF

Indicates that an element was defined twice in the same block.
e MISSING DRIVER

Indicates that the name of a driver class was missing.
e MISSING ID

Indicates that ID information was missing.

¢ MISSING STOPTRIGGER
Indicates that a stop trigger was missing.

e MISSING TRIGGER PARAMS

Indicates that the parameters for a stop trigger were missing.
e STREAM ERROR

Indicates that an error occured when reading a text stream.
e UNCLOSED PARAMS

Indicates that the closing bracket for a set of parameters was missing.
e UNCLOSED SET

Indicates that the closing bracket for a set of child IDs was missing.
e UNCLOSED STOPTRIGGER

Indicates that the closing bracket for a stop trigger was missing.
° ED O

Indicates that the closing symbol for an object was missing.

137

OWN TAG

Indicates that a word that does not correspond to any known keyword was
used.

UNMATCHED PARAM

Indicates that the value of a parameter was missing.

Constructor Index
o jsb.text. BadParseException(int, String)

Constructs a parsing exception with the given error code and message.

e jsb.text. BadParseException(int)

Constructs a parsing exception with the given error code.

Method Index

getErrorCode()
Returns the error code, which can be used for error recovery purposes.

Variables

DUPLICATE_DEF

public static final int DUPLICATE_DEF

Indicates that an element was defined twice in the same block.

MISSING_DRIVER

public static final int MISSING_DRIVER

Indicates that the name of a driver class was missing.

See Also:
SequenceDriver

e MISSING_ID

public static final int MISSING_ID

Indicates that ID information was missing.

MISSING_STOPTRIGGER

public static final int MISSING_STOPTRIGGER

Indicates that a stop trigger was missing.
See Also:
StopTrigger

138

e MISSING_TRIGGER_PARAMS

public static final int MISSING_TRIGGER_PARAMS
Indicates that the parameters for a stop trigger were missing.

See Also:
StopTrigger

e STREAM_ERROR

public static final int STREAM_ERROR
Indicates that an error occured when reading a text stream.

¢ UNCLOSED_PARAMS

public static final int UNCLOSED_PARAMS
Indicates that the closing bracket for a set of parameters was missing.

See Also:
ParameterizedObject

e UNCLOSED_SET

public static final int UNCLOSED_SET
Indicates that the closing bracket for a set of child IDs was missing.

See Also:
CompositeSequenceObject

e UNCLOSED_STOPTRIGGER

public static final int UNCLOSED_STOPTRIGGER
Indicates that the closing bracket for a stop trigger was missing.
See Also:
StopTrigger
e UNENDED_OBJECT

public static final int UNENDED_OBJECT
Indicates that the closing symbol for an object was missing.

e UNKNOWN_TAG

public static final int UNKNOWN_TAG

Indicates that a word that does not correspond to any known keyword was
used.

139

e UNMATCHED_PARAM

public static final int UNMATCHED_PARAM
Indicates that the value of a parameter was missing.

See Also:
ParameterizedObject

Constructors
o BadParseException

public BadParseException(int anErrorCode,
String aMessage)

Constructs a parsing exception with the given error code and message.

Parameters:
anErrorCode - an int that defines the type of error
aMessage - a message that can be used to display the error

o BadParseException

public BadParseException(int anErrorCode)
Constructs a parsing exception with the given error code.

Parameters:
anErrorCode - an int that defines the type of error

Methods
o getErrorCode

public int getErrorCode()
Returns the error code, which can be used for error recovery purposes.

Returns:
an int that defines the type of error

140

