
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly tram the original or copy submilted. Thus, some !hesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The qu.11ty of th•• reproduction 1. depe...nt upon the quallty of the

copy submltted. Broken or indistind print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed. a note will indicate the deletion.

Oversize materials (8.g.. maps. drawings, charts) are reproducecl by

sectioning the original. beginning at the upper left-hand corner and continuing

from left to right in equal sections with smalt overlaps.

ProQuest Information and Leaming
300 North Zeeb RoacI, Ann Arbor, MI 48106-1346 USA

800-521-0600

•

•

Jacqueline Beaulac

DepartmeDt of Music
McGill University, Montreal

June 2000

IDtenetive multimedia composition on the World Wide Web:
a solution for musidans usina Java.

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfilment of the requirements of the degree ofMaster's of Ans.

o J. S. Beaulac 1999

1+1 National Ubnuy
ofC8nada

Acquisitions and
Bibliographie S8Nïces
385 WeIingIon snet
Ottawa ON K1A 0N4
c.n.da

BbIioIhèQue nationale
du canada

Acquisitiona et
services bibliographiques

385. rue WeIIingIDn
oe.wa ON K1A 0N4
c.n.dII

The author bas granted a non­
exclusive licence allowing the
National Library ofCanada to
reproduce, 10an, distnbute or sen
copies of this thesis in microfonn,
paper or electronic formats.

The author retains ownership ofthe
copyright in tbis thesis. Neither the
thesis nor substantial extraets nom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distrIbuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction S1U' papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-70580-3

Canadl

•

•

Abslnet

This thesis anempts to gauge the strengths and limitations of the Java

programming language in terms of its use in the production of multimedia

compositions: in particular, the ways in whicb Java suppons the creation of

interactive, non-detenninistic musical works. An original solution to the problem

of multimedia design is presented: a bierarchically defined, basic, yet flexible

scripting language tbat is interpreted using Java. This scripting language allows

the user to incorporate bislher own media into a coherent and interactive form

using a small set of simple keywords and basic operators. Il also allows new

functionality to he added by advanced users with a basic knowledge of Java. By

investigating bow such a scripting language may he implemented, the extent to

whicb Java may he applied towards multimedia applications in general is

revealed.

i

•

•

Précis

Cette thèse met cn évidence les forces et les faiblesses du langage de

programmation Java l propos de son utilité dans la production d'oeuvres

multimedia ayant une composante intéractive ou non-déterministe. Un nouveau

outil créé dans ce but est ainsi présenté: un langage simple mais extensible,

permettant de définir de façon hiérarchique les oeuvres de média mixte. Les

oeuvres ainsi specifiées seront réalisées à partir d'une application Java, et pounont

incorporer divers médias fournis par le compositeur. Les utilisateurs plus avancés

auront aussi la possibilité de construire des extensions de ce, en créant leurs

propres algorithmes en Java. Par le biais d'une telle application, cette thèse

montre un aperçu des possibilités offertes par Java dans ce domaine.

ü

• Table of Contents

Abstraet i

Précis•....•....•... ü

Table of Contents .•.•...ili

Acknowledgements vi

Introduction ..•.... 1

Cbapter 1: Current multimedia formats and tools for the World Wide Web 3

1.1 Static fl1e formats 3

1.2 Interactive file formats and their development environments 4

1.2.1

1.2.2

QuickTime 4

Sbockwave.............•...•... S

1.2.3 Similarities of QuickTime and Sbockwave S

Chapter 2: Salient features of the Java programming language 7

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

•

Object~riented programming 7

High-Ievel structures included in the basic APis 10

Exception bandling .. .•..... Il

Platform-independence•.•................•... 12

Applets ..•.....•...•................•......•.•.....••.........•..•.. 13

Support for images•........•.•...•..•..... 1S

Support for audio ...•. ...•........•.. ..•...........•.. 1S

Multitbreading.. .•....•. ..•.....••.•..•.••..•....• 16

Dynamic loading.•....••.•......•....•.....•...•.•........•.... 18

ili

•

•

2.10 Javadoc...•..• 19

Chapter 3: A new scripting language for interactive multimedia 21

3.1 General design 21

3.2 Syntax 22

Cbapter 4: Implementation of the scriptiDg language in Java 27

4.1 The tbree basic data ty-pes•.•.••.•........•..•.•..•..........................•.•....•..... 27

4.1.1 SequenceObject 27

4.1.2 SequenceDriver•..................•... 27

4.1.3 StopTrigger 28

4.1.3.1 StopEvent and StopListener 29

4.2 Implementation of the tree structure 29

4.2.1 uaf nodes 29

4.2.1.1 BasicSequenc::eObject..•..•....... 29

4.2.1.2 ImageDriver and AudioDriver 30

4.2.2 Branc::h nodes•......•....................•.........................•.......•.......... 30

4.2.2.1 CompositeSequenc::eObject ...•...•......................................•..•.......... 30

4.2.2.2 SetManager ..•.....•.•.....•......•.•.....•..........•... 30

4.3 Enhancements for interactivity 31

4.3.1 CompositeStopTrigger and StopTriggerOp 31

4.3.2 Subc::lasses of StopEvent........•..........•...............................•........•....... 32

4.4 Displaying and storing the objects: SequenceFormat 32

4.4.1 SequenceText•......•..•.....•.......•..............................•......••..•...... 33

4.4.2 SequenceGui 33

iv

•

•

4.5 Playing the sequence: the Runner applet 33

Results 35

Summary and Conclusion 37

Bibliography 39

Appendix A: API guide to the Java implementation 43

v

•

•

Acknowledgements

1should like to acknowledge ail tbose wbo contributed their knowledge, effort,

and lime to tbis work:

Prof. BRIce Pennycook, for providing me with guidance and belping to pusb me

to the completion of my studies;

My employer, Ericsson Communications IDc., for providing me with the

opportunity to lcam the siriUs needed for my researcb, and witb the means to

finance my degree;

AlI the members of my team at Ericsson, for tbeir teebnical assistance, their

indispensable aid in advancing my programming skills, and Most importandy,

their kindness and support through the difficult limes;

Tbanks to Natalie HascH and Katherine Rother, for their constant encouragement;

And aU the tbanks in the world to my husband Gilbert, for bis love and endless

patience.

vi

•

•

IDtrodUCtiOD

In Ibis tecbnological age, the arts are tuming more and more towards

multimedia as a new means of self-expression. The computer bas become by far

the Most popular tool for integrating different types of creative endeavours-sucb

as animations, musical compositions, artwork, and interactive games-into cross­

media creative works. However, almost all of the programming languages used to

define multimedia works are focussed on the same goal: the creation of static,

wbolly pre-defined productions. While some multimedia applications, sucb as

Sbockwave movies, allow a limited amount of user input into the finisbed work,

the initial production of such a work requires a great deal of lime and knowledge.

Yet, for most people, the main rationale for using a computer as a tool in the

creative process centres on its speed and ease of use. Thus, complex multimedia

applications of this tyPe actually end up stitling the same impulse to create which

afforded them their original raison d'être.

Of the various means used to bring cross-media works to their audience,

the World Wide Web is almost certainly the most POpuJar. Despite Ibis, no easy

way to construct interactive or non-deterministic works for the Web bas been

developed yet. Wbile some users have surmounted this obstacle, the majority of

non-programmers have restricted themselves to printed-page-like Web

productions. Even those Web pages tbat combine media often do 50 in a

discoDDected and static manner, employing animations, sounds, and images tbat

are both uncoordinated and unresponsive to the observer. Because of tbis, the

1

•

•

possibilities of this potentially ideal fonun for the development of integrated

media works have been, for the most part, left barely investigated.

The Java programming language is one of the Most promising avenues of

research for interactive multimedia This thesis will attempt to gauge the strengtbs

and limitations ofJava in terms of its applicability to the production of

multimedia compositions. In particular, il will examine the ways in which Java

supports the creation of interactive multimedia worts.

In order to do this, an original solution to the problem of easy-to-leam

multimedia design will be presented: a hierarchicaUy defmed, basic, yet flexible

scripting language tbat is interpreted usÎDg a Java application. This scripting

language allows the user to inc0rPOrate hislher own musical cross-media works

into a coherent and interactive form. It consists of a small set of simple keywords

aod basic operators that fust-lime users cao leam quickly. However, it also

allows new functionality to he added easily by more advanced users witb a basic

knowledge of Java. Rather than using an absolute lime seale, as is common in

most deterministic multimedia languages, scheduling of events is dependent on

user input and on relative timing. This allows users with a musical background to

create works tbat are not bound by the notion of frames, a concept designed for

anjmation but far from ideal for music.

Having detined tbis scripting language, it will he shown tbat il is possible

to implement il in Java. In examining tbis implementation, it will he ascertained

wbether Java is sufficiently powerful and flexible to he used to define the kind of

structures necessary to create serious interactive multimedia works.

2

•

•

Chapter 1: Carrent multimedia formats and lools for the World Wide Web

1.1 Statie me formats

The simplest way of presenting a musical composition on the Web is to

capture an audio recording of the work aod encode it in a format sucb as W AV9

AIFF9 or MP3 1
• Sucb an audio ftIe cao he posted on a Web page for downloading

or9 in the case of streaming audio formats such as RealAudio2
9 can he made

available for immediate listening. Evidently, this technique allows only simple

playbëK:k, since the audio is pre-recorded. Similarly, for cross-media works, the

most basic option available is a video format that allows playback only, sucb as

AVI or MPE03
• In many cases, tbese options are adequate for presenting works

made for a live audience witbout computer mediation9 such as concert recordings,

studio works9 and videotapes of live performances. However, for a composer who

wants to creale works tbat cao be manipulated and changed by a Web audience,

such files are not sufficient. Likewise, such static formats cannat be used to

define aleatoric or algorithmic compositions that May differ from one playback to

thenexL

1 WAV is the slaDdard audio file format for DOSIMiaosoft Windows; likewise, AIFF is the

standard audio file format for the Apple Macintosh OS. MP3 is tbe most popuIar of the audio file

formaIS abat use the MPEG staDdardised compression sc:hcme.

1 RealAudio is a file format developed by Prop:ssive Networks spec:ifically for sueaming audio.

3 AVI is die standard video file format for Microsoft Windows. MPEG is a staadardised file

format for c:ompressed video•

3

•

•

1.2 Interactive rde formats and tbeir development enVÎrOllJIIents

Other multimedia formats bave been created whicb aUow greater

flexibility in the Web environment than a simple recording cao offer. In

particu1ar, QuickTime and Sbockwave both aUow a composer to define cenain

user actions and algoritbmic components, wbicb cao he used to alter the course of

a multimedia composition.

1.2.1 QuickTime4

QuickTime is a übrary of fairly low-Ievel code used to play back media

files in a large number of formats. This code is accessed using an interface for C,

Pascal, or Java. Thus, to use QuickTime direcdy entails quite a bit of

programming. However, many QuickTime development tools are available wbicb

bide the details of the QuickTime code bebind a friendlier interface. QuickTime

movies are simply fdes tbat contain a set of QuickTime commands. As such,

QuickTime movie files MaY contain media data in tbemselves, but may a1so refer

to a number ofotber media files. In tbis case, the movie file becomes a means of

organising and sYDcbronising the data under its control. In fact, QuickTime

movies may be linked, with one masler movie controlling aspects of other movies

in a bierarcbical fasmon. The QuickTime code aIso genera1e5 "eventstl in

respon.se to user inpuL Tbese events CID cause actions to occur witbin the movie:

.. Quick'iunc is die standard video file (ormat (or 1bc Apple Macintosh. Apple bas aIso ported the

QuickT"une API to Microsoft Wmdows and dcvelopcd browser plugins (or Quicklunc.

4

•

•

for example, passing the mouse over a particular area on the screen might cause a

sound to play or a button to cbange colour.

1.2.2 Shockwave

Sbockwave is a Web..based application developed by Macromedia and

used for the playback of flles authored in Maaomedia Director. Tbese flles often

incorporate a variety ofmedi~ usually in a compressed fonnat. The media are

synchronised to each other by means of a score. Sbockwave movies also may

contain scripts written in Lingo, the scripting language used in Director. Lingo is

used not only to control many standard aspects of animation, but also to provide

interac:tivity by modifying aspects of the movie based on user events.

1.2.3 Simi1arities of QuickTime and Shockwave

It is clear that both QuickTime and Sbockwave are oriented towards

animation, not music. For both, tbe structural organisation of the media is in

tenns of frames, wbicb divide the passage of time into unifonn segments. Sucb a

division into completely undiffeœntiated blocks of time is far from conducive to

Most fonns of musical expression. Also, in bath of these multimedia formats,

there is a beavy empbasis on "sprites": visual clcments that contain rules for tbeir

motions on-screen. Audio, wben il is mention~ is viewed mainly in terms of

effects or sounds tbat are "attacbed" to tbese visual elements; it is clearly

subordinate to video and image. Clearly, an alternative is necessary for

s

•

•

composers who would like to write serious musical worles that incorporaœ other

media.

The remaining cbapters address this need. Cbapter 2 explores the salient

features of the Java programming language; Chapter 3 investigates the

cbaracteristics of a new scripting language for interactive multimedia; and rmatly,

Chapter 4 describes the implementation of tbat language in Java.

6

•

•

Cbapter 2: SalieDt reatures of the Jaya programminglanpage

2.1 Object-oriented prop'lllllllling

Object-oricntation is a relatively new concept in prograrnming. In an

object-oricnted language lilœ Java, the pieces of data needed by a program are

grouped into sets called objects, wbich resemble structs in the C prograrnming

language. Each object belongs ta a class that dermes the type of data tbat can he

contained in the object, wim each separate piece of data being stored in a field (a

variable 8SSOCiated with tbat class). The class also dermes the operations (known

as "methodst.) that cao he used to manipuJate that data.

For example, an object helonging ta an "AudioClipt. class might contain the

foUowing fields:

o an array of digital audio data;

o the sampling rate of the audio data;

o an indication of the encoding of the audio data (ex. AIFF, WAV, raw audio

data);

c the duration in milliseconds of the sound;

o the Dame of a file used to retrieve and/or save the audio data.

The same abject might have the foUowing methods:

c play, which causes the audio data to he played to sorne audio device;

c setSamplingRate, which changes the sampling rate to he used in playback;

c setFileName, wbich sets the name of the audio flle to he used;

7

•

•

c loadFlle, wbicb causes the data in the file to he loaded into memory;

c saveFtle, wbicb causes the data in memory to he written ioto the file.

A class usuaUy contains aU the code necessary to perfonn the operations

described by ils methods, but a particular fonn of class, caUed an "interface", does

note An interface is, in a way, a poteDtial class; it states wbat a class sbould he

able to do, without actually being able to do these things. Interfaces are very

useful when defining severa! classes tbat sbare similar cbaracteristics. For

example, aU of the diffeœnt formats of audio fùe cao be played; however, the

details ofhow tbey are to he played MaY differ greatly from one to the next.

Looking back at the above example, ifAudioClip is defmed as an interface.

severa! classes could impiement that interface, one for each audio fonnat desired.

Eacb of these would he played by calling its "play" method; tbis would aUow aU

to he treated in the same manner, œgardless of the details of their audio formats.

Cenain operations that a class of objects May Perform are independent of the

data that may he in any particular instance. For example, a class MaY want to

translate a given string into some other fonn ofdata, and may he able to do that

without consulting its own internai data. To support tbis, classes in Java may

have methods declared "static", wbich are independent of any instance.

There are several advantagcs to the object-oriented approach to programming.

8y storing as much as possible of the program data witbin objects, the program as

a whole becomes more stnlctured. Related data is grouped togetber, and can be

8

•

•

copied and manipulated as one unit. A complex operation tbat involves several

pieces of data no longer needs to involve several different variables and functions

spread throughout the code, as was sometimes the case in earlier prograrnming

languages. Ins~ the operation can he implemented witbin a single method that

belongs to an object that contains aU the data needed. This makes the code for

that operation easier to recognise, because it is al110calised witbin the method.

Often, the code witbin the method cao he considered separately from code outside

ils objecte This is because the method only operates on data witbin its own object

and on data passed explicidy to iL Each object can thus be wrineD, teste«, and

changed independendy of the surrounding code.

Musical structure can he expressed quite easily in tenns ofobjects. At the

lowest level, audio samples, MIDI notes, and notated pitcbes can all be

represented as basic objects. Simple phrases, cbords, and sequences can he

defined as lists of these basic objects. TheD, complex musical structures can be

expressed using severa! of tbese intermediate lists organised in some fasbion.

Also, as noted above, many different formats of sound data can he treated as

equivalent, because tbey can he operated on in the same way: playing the sound,

for example, or changing volume, piteb, or tempo.

9

•

•

U Bigb.level structures induded in the basic APis

The standard Java API (Application Program Interface)s includes a number

of objects that provide bigb-Ievel functionality. The Vector class provides a

replacement for the linked tist; the basbtable is a ready-to-use object; 1/0 streams

are abstracted so that manipulation of the underlying bits is usually not necessary.

This inclusion of bigb-Ievel structures is very different from the approach of more

traditional programming languages sucb as C that concentrate on the direct

manipulation of small chunks of data. Because Java includes such large and

complex objects as part of its standard APL ratber than relying on third-party

libraries, it tends to be casier to leam and more rapidly coded. However, Java

code is also more difficult to optimise, sinœ access to the "bits and bytes" is not

always provided. This could malte it too slow for time-critical uses, sucb as

multi-voice real-lime digital audio synthesis. As weIl, if a particu1ar type of bigh­

level stnlcture is not included, it MaY be very difficult to create. This is the case

witb MIDI data, for example, whicb until recently was impossible to manipulate

in Java, because there was no abstraction for it in the Java APL

S API is the standard cerm for a b1nry of func1ionality in programming. la dûs case. "interface"

does nol refer 10 a particular type ofclass (as defined in 2.1). Instead, il refers lO the abs1racl

concepl ofa class or function Cor wbicb the definition is known ta die programmcrs tbat wiU use il.

but nol nec:essariIy the details of ils internai code. An API in objccl-orÎcnted programming

presents definitioDS for a JI'OUP ofclasses and the functionality abat they provide wbile biding tbeir

exact implementation.

10

•

•

2.3 Exception bandlinl

Java includes its own mecbanisms for error recovery that can eliminate a

great deal of repetitive code. In languages like C, in eacb situation where tbere is

a bigh probability that errors will accor, a separate mecbanism must he built to

dcal witb the errors, such as passing an error code as the rctum value from a

function. In Java, any error can he bandled by tbrowing an instance of the

Exception class. An instance of tbis special class CaB carry information about an

error up from one metbod to the metbod tbat called il. AIl exceptions can he

bandIed in a unifonn manner, regardIess of the reason that they were created; or,

if this is not appropriate, a panicular class ofexceptions can he dea1t with

specifically. For those exceptions tbat are most likely to OCCUI', it is even possible

to declare tbat the inclusion of code for dealing with the exception is mandatory at

any place that the exception might OCCUf.

The exception mecbanism was especially inlercsting to me for !Wo rea5OOS.

FmI, sincc multimedia requires a great deal of general va and file manipulation,

both of which are very enor-prone, the ability to deal wim ail such problems

uniformly is very useful. Second, the data for a cbunk of musical information,

sucb as a phrase expressed in MIDI, can he quite complex, baving many

parameters. Even ifone object is used to encapsulare aU tbis data, cbecking for

consistency or completeness may he quite problematic. The ability to tbrow an

exception op tbrough severallevels of data manipulation in order to signal an

error immediately is one tbat 1used extensively in my implementation of the

scripting language.

Il

•

•

2.4 Platl'orm-iDdependeDce

For a computer to understand the code written by a human programmer,

the text of the code must he parsed, or translated to simple instnlctions that the

computer can execute, and tben saved in a binary format. This process is known

as compilation. In Most of the programming languages in use today, compilation

produces a file that can be executed on its own. No other utility is needed to run

the compiled code. However, the trade--off is tbat the instructions in the binary

file must be specific to a panicular platform: that of the machine on wbich the

program was compiled. This is because the simple instructions used in binary

files are not consistent from one platform to another. As a result, only a machine

of the same kind as the original machine can execute the program. In other

words, the compilation is platfonn-dependent.

In Java, the compilation does not translate the code into instructions that

are specific to the compiling computer. Instead, the instructions (called

"bytecode") belong to a standard set specific to Java. Evcry Java compiler,

regardless of its platfonn, is œquired to kecp to the Java standard. These

instructions are thus platform-indepcndent. Execution of this compiled code

requires a separate tool, called a "Virtual Machine" (VM). The VM reads the

compiled files and inlerprets the bytecode in them. Theo, as the program ruD5,

each instruction is "interpreted", or in other words, translated by the VM ÎDto

machine codes that are understandable to the computer on wbich it is being run.

Tbus, in Java, oo1y the VM is plalform-dependent.

12

•

•

For applications tbat run on the Internet, platform-independence is

essential. Computers of all types are connected to the Internet. A program

intended to run on the Internet, therefore, should run on as many different types of

machines as possible. If, bowever, the compilation of the program is platform­

dependent, severa! versions bave to he provided: one for each type of machine

tbat the programmer wants the program to run on. Java's platform-independent

approacb means that the programmer ooly needs to provide a single version of the

program, since tbat version will run on any Java-.eompliant VM.

The scripting language is intended to provide musicians with another way

to show off their multimedia works over the Internet. This implies tbat it should

allow the widest distribution possible. Because of this, it was imperative to use a

platform-independent solution.

2.5 Applets

Applets are a concept tbat bas no direct analogy in older programming

languages. An applet is a complete Java program, but one tbat can only NB

witbin a Java-compatible HTML browser. Because the applet is an aetual

program, it is possible to do many tbings witbin an applet tbat would Dot he

possible when using a scripting language. Howevcr, applets are Dot easy to

program. The applct must take its browser environmcnt ioto account, particularly

since the browser bas tbe ability to control cenain parts of the applet's own

execution. This makes the design and implcmentation of tbis type of program

very different from tbat of an application. In fact, the actual sequence of

13

•

•

execution of the applet is partially determined by the browser, and not all

browsers will use exacdy the same plan of execution for the same applet.

Because of this, one of the most fundamental parts of designing an applet is

deciding whicb actions sbould he performed in whicb of the standard applet

methods "mit", "start", and "stop". A funher restriction is the expectation that

eacb of these methods sbould retum quicldy, 50 tbat the operation of the browser

is not impaired by the execution of the applet. For this reason, any applet that

performs tasb over a long period of tilDe must do 50 in a separate tbreéKL wbicb

executes in parallel with the browser and independendy of the browser's direct

control (see 2.8 for information on threads).

Because applets run witbin the context of a browser, and are generaUy

considered "UDtnlSted" code wben loaded over the Internet, the passing of

parameters to an applet is different tban for an application. Since there is no

command-line on which to give options, and few environment variables tbat can

be accessed by an applet, parameters are passed in the HTML page that contains

the applet. The syntax for eacb parameter is:

<PARAM NAME=name VALUE=string>

This syntax is fairly cumbersome: for short values, the extra text that must he

typed is long and rePetitive, wbile longer values can become unreadable because

they cannot he split easily. There is no way to structure the parameters except

tbrougb simple text fonnatting, and each parameter must bave a unique name

(array syntax is not supported). Because ofthis, 1decided to limit as mucb as

POSSlDle the amount of information tbat would bave to be passed to the applet via

14

•

•

its HTML page. This led me to derme a scripting language of my own that is

stored in separate text files. instead of simply generating HTML parameter code

tbat could be used directly by the applet.

1.6 Support for images

In the 1.1 version of Java. images cao he displayed easily, but tbey are not

as easlly manipulated. Drawing on-screen is also supported. but at a fairly basic

leveL However, new APis are now available for image manipulation and for

more complex 2D and 3D drawing that extend the functionality of standard Java.

1.7 Support for audio

In the 1.1 version of Java. wbicb is by far the most widespread at the

momen~ support for audio is quite poor. The ooly means to present sound is to

play an audio file encoded in a very SPecifie format (AU, 8-bit, Jl1aw encoded,

sampled at 8kHz). However, the new 1.2 version ofJava supports playback of a

mucb wider range of sound files. As weil, the new Sound API aUows

manipulation of audio data al a fairly low level and provides MIDI VO. In

addition, tbird party APIs emt tbat provide enbancements to the audio support

capabilities ofstandard Java, snch as the QuickTime for Java API and the JMF

implementation for RealSystem 02.

IS

•

•

2.8 MultitbreadiDl

ln many programming languages, events are expected to occur in a

particular order, one after the other. Fonctions are called in a particular sequence,

and eacb must finish i15 work before the next begins. In Java, tbis can he

implemented by declaring a special method in an objecL This metbod, called

t'maintt, cao be executed as a sequential program, and is oCten the startiog point of

a basic Java application.

Then again, tbis does not bave to be the case. Multithreaded programs

aIlow severa! different operations to he performed al essentially the same lime.

For example, while one audio sample is heing played, the next sample to he

played can he loaded ioto memory from a file. Each thread bas its own sequence

of events, and none of i15 events is guaranteed to precede or foUow those of any

other thread that is running at the same time. Tbreads do DOt, bowever, exist

independendy, as each thread uses the objects of the program to which it belongs.

As weU, tbreads cao interac:t with one another.

Java suppons multitbreading, and bas many constlUc15 that are belpful

when programming concurrent behaviour. Fint among these is the Tbread class,

which encapsulates the data and methods needed to define and run a single thread.

Each Tbread class defines a sequence of actions that should he executed- Once a

Tbread object bas been defin~ it cao be started at any point in a program. The

tbread can then he stopped by the thread that executes the main method, or by

anotber thread; il may also simply end when i15 sequence of actions is finished. A

Tbread object can aIso be givm a priority, which œflects how much ofa sbare of

16

•

•

the total proccssing power is allotted to that thread of execution. For the above

example, the thread that plays the audio data sbould bave a greater priority than

the thread loading the Dext clip. This ensures tbat the playback of the audio clip

will not be interrupte~ causing "clicks" in the sound.

Since it is possible for several tbreads to access and cbange the same

objects in a program simultaneously, an additional mecbanism bas been included

in Java: tbread synchronisation. An object tbat is syncbronised bas a "Jock",

wbicb tlags tbat abject as being "in use" wben a tbread caUs one of its methods.

This ensures that only one thread cao change a single object at a time. A second

tbread that would like to use that same abject is forced to wait until the first

finishes its changes and relinquisbes the Jock. Again using the first example, if

one tbread would like ta play an audio sample, but another tbread is loading the

audio data for that sample, the playback tbread would bave to wait untilloading

bad finisbed. Otberwise, without synchronisation. it is very possible tbat the

playback thread migbt read only balf the data, as Dot all the data bad beenl~

or wone, might read "garbage" (uninitiallsed) data with unpredictable results.

With synchronisation, however, a new problem cao occur: thread

deadlock. This can occur if two tbreads each bave a lock on one object, and each

require the lock on the object that the otber is holding. While usually tbis is a rare

occurrence, it becomes more and more likely as more tbreads are used in a

program.

The implementation of the scripting language is very strongly

multithœaded.. In order to reduce the Perccived delay as multimedia data is heing

17

•

•

downloaded over the Inteme~ 1use severa! tbreads to pre-Ioad data SOlDe lime

before il must be played. Multithreading was an absolute necessity as weil in the

simultaneous playback of severa! elements. However, because of the large

number of tbreads in use al any one lime, 1encountered many problems with

tbread deadlock. Fmally, to avoid tbis, llimited my use of synchronisation very

strictly, only including il al the lowest level of loading and presenting the audio

and image data.

2.9 Dynamic Ioadinl

In most prograrnming languages, in order to use a section of code from

someone else, a programmer must know exactly whal tbat section consists of, and

can only integrate il into hislber own code by changing tbat code. In Java,

however, there are mechanisms that cao aIlow a program to Joad classes that were

not DOwn originally, i.e. that were neither pan of the original code, nor integrated

into i~ but were added later 10 the program without cbanging the original code.

This is calIed dynamic loading. For example, a composer mighl create a new Java

class tbat will provide a stream of notes based on an a1gorithmic process and

MIDI inpuL Probably the class would implement a known interface, sucb tbat its

methods are known and standardised. The composer could then specify the name

ofhisIber class to an existing Java application that would he able to provide MIDI

10 the class and 10 process the oUlgoing note stream, basing itselfon the interface

metbods.

18

•

•

Because 1wanted to make my scripting language extremely gencric and

extensible, 1decided to exploit dynamic loading in my implementation of the

scripting language. Three parts of the code in panicular use tbis technique. Fust

are the sound players and image viewers. Viewers for new media formats may he

created and can he added without cbanging the main program. Secon~ tbere are

the algorithms for ordering a set of objects, allowing composers to create tbeir

own classes to bandle timing interactions between different media elements.

Third are the triggers tbat bandle user input, 50 that as composers desire new

means of interactivity, tbcy too can be added automatically.

%.10 layadoc

Javadoc is a documentation tool that is integrated into the Java environment

The documents are generaled using comments written in the Java source code that

are notated using a special syntax. The javadoc utility then reads tbese comments

and produces HTML files tbat contain not only the information in the comments,

but their context as weU. For example, a javadoc comment for a panicular

method would contain the pro8rallUJlCr'S notes, foUowed by the method

declaration as it is coded. The javadoc generaled for a class includes aU its fields

and methods, as weU as an indication of the classes from wbich il ïnherits.

The generation ofjavadoc is very useful for groups of several complex

classes, especially wbere tbere are many interfaces or severallevels of

inberitancc. As weU, javadoc is customarily used for the documentation of alI

hDraries of functionality (APIs) written in Java. Furthermore, as a standardised

19

•

•

tool, the documents it generates are bighly consistent regardless of the

environment or platfonn used to generate them. 1found that using javadoc was

extremely belpful in clarifying my implementation of the scripting language. In

addition, il provided an easy way to produce documentation for my API in a

standard format that sbould aid future programmers who may wisb to build atop

my work.

20

•

•

Cbapter 3: A new scrIptinllan_e for iDtenctive multimedia

3.1 GeDenl design

In the scripting languagc~eacb section in a particular composition is defined

as an objecte Such an object can either contain a single piece of media, such as an

image or audio sample. or it can contain a set of subsectioDS. This allows the

structure of a picce to be defincd in terms of a tree structure. allowing bath linear

and multi·.Jayered hierarchical structures.

Tluee pieces of data can he defined for every section:

e An ID that uniquely defines the section. AlI references to the section use this

name.

e A stop trigger that will be used to determine when the section should end. If

no trigger is defined. tben the section will end when the applet is clo~ or

when a section higber in the tree ends.

e A driver that is resPOnsible for playing the musical and visual events for this

section. If the section contaïns a single piece of media, then the driver plays

the audio and/or shows the visuals. If the section contaïns subsectiODS. then

the driver is resPOnsible for determining the order in which the subsections are

played, and for playing tbem in tbat order.

From tbîs. it cm he seen that sections in my compositional structure are begun

and endcd based on triggers rather tban strict durations. In an interactive

composition. un1ike in a linearly determined musical picce, the duration ofcertain

21

•

•

events may not he fixed If the end of a musical event is triggered by some extra­

musical occurrence, then tbere is no way to determine for bow long tbat event will

continue. Likewise, if an outside force is needed to trigger the beginning of a

musical event, the duration of that event is not defmed until the time of

perfonnance.

Because of this ambiguity, 1decided not to define separately the concept of

duration in my language. Instead. the end of each section of the sequence is

defmed in terms of a stop trigger. This trigger may he associated with a fixed

duration. or it may be set off by sometbing that the user does. In either case,

wben the condition for signalling the end of a musical event is met, a signal is sent

to stop the event and start the next. This mode! can therefore bandle events of

flXed duration. events wbose end is triggered by a user action. and events tbat are

started by a user action.

Stop triggers cao also he associated in pairs using a logical operator. Two

triggers connected with an "and" operator will ooly cause the end of a section

once the end conditions for both triggers have been met. If two triggcrs are

connected with an "or" operator, the section will end wben either end condition

bas been met. A pair of 8SSOCialed triggers cao he trealed like a single triuer in

an association. and 50 triggers cm he nested to any deptb.

3.2 Syntu

In tbis scripting language. an object tbat contains a single media file is

defined using the "basic" keyword. followed by an identifier tbat gives the format

22

•

•

of the media filc, and a unique ID string that can be used laler to refer to tbis

objecte Ifany additional parameters are required to play the media file, tbcse

parameters cm then be specified as a black of name-value pairs. The black of

parameters is ~limited by square brackets. Alter tbïs, a trigger is specified that

defines the conditions onder which playback and/or display of the file sbould he

stopped. A condition for stopping playback could be, for examplc, the passing of

a particular length oftime, or a key pressed by the user. The "stopTrigger"

keyword starts the definition of the trigger, and is foUowed first by an identifier

tbat determines the type of condition, and tben by an obligatory black of

parameters needed to evaluate the condition, delimited by square brackets. (This

block may be empty, but the brackets must be present.) Ifno trigger isreq~

tben the keyword "undefmed" may he used; in this case only, the parameter black

is oot required. FinaUy, a semicolon terminaleS the object definition.

For example, the following script defmes an abject named "pieture1Il that

contains an image file oamed "Owl.gif', alODg with the origin, height, and width

at wbich il sbould he drawn. It also uses a stop bigger to specify tbat tbis image

should he shown for two seconds•

23

• basic jsb.basic~l.Imagepicturel

fileName

originX

originY

width

height

flwl.gif

o
o
200

300

stopTrigger jsb.basicimpl.Milliseconds
[

ms 2000

•

Basic objects can be grouped togetber into sets. Furtbennore, a set can

contain other sets, in a hierarchical or tree-like fashion. The syntax for a set is

very similar to tbat of a basic object.. The "basic" keyword is omitted, 50 the

defmition of a set starts wim its identifier and ID. In this case, rather tban

determining a media format, the identifier specifies the way in whicb the objects

in this set sbould he organised al playback lime. If any parameters are required to

further specify this ordering, tbey are noted next, similar to the basic objecL

Then, a list of the IDs of the objects that belong to tbis set is given, placed witbin

curly brackets. Alter tbat, as with the basic object, a stop trigger is indicated, and

finally a semicolon ends the definition. For example, the foUowing script

specifies a set ofobjects tbat will he presented one after the otber sequentially,

with no stop condition dcfined.

24

•

•

jsb.basic~l.Sequential tmageSequencel

[

1
{

picturel

picture2

picture3
}

stopTrigger undefined

;

One fmal aspect of the scripting language remains: the nesling of stop

triggers. This allows multiple stop conditions to he cbained together. In either a

basic object or a se~ a composite stop trigger may replace the identifier and

parameters foUoWÎDg the "stopTrigger" keyword. A composite stop trigger is

bounded by parentbeses and cODSists of a trigger identifier with its parameters, a

logical operator tbat can be Il&&." or "U", and a second trigger identifier with

parameters. It is also valid to nest a composite stop trigger witbin another,

folloWÏDg the same rules that it must he bounded by parentbeses, and that it

should take the place of a trigger identifier along with its parameters.

For example, this composite stop trigger would have ils stop condition

fulfilled aftcr one second if the user pressed a key witbin that second, or after IWO

seconds otherwise:

2S

• stopTrigger

(jsb.basic~pl.Milliseconds

[

Il

ms 2000

(jsb.basicimpl.Milliseconds

[

]

ms 1000

•

&&

jsb.basicimpl.KeyPress

[

]

26

•

•

Cbapter 4: Implementation of the scriptiDllanguage in Java

4.1 Tbe three basic data types

In order to convert the constructs of my scripting language ioto 1av~ 1had

to define three basic classes. For each object in the script~ instances of these three

classes must be created (with one exception, explained in the StopTrigger class).

4.1.1 SequenceObject

Eacb object in the script is stored in its own SequenceObject. AIl the data

given in the script for an object is either stored within, or linked to, its particular

SequenceObject instance. The ID is stored direcdy in the instance and is used as a

lookup key: a means to flDd particular objects as tbey are needed al playback lime.

References are maintained witbin the SequenceObject to an instance of

SequenccDriver and, in most cases, an instance of StopTrigger.

4.1.2 SequenceDriver

The main class used for playback, bath for basic objects and for object

sets~ must implement the SequenceDriver interface. The name of the particular

class is pven in the script as the main identifier~ preceding the ID. For a basic

object, the SequenceDriver will he an instance of a class that is responsible for

playing the particular format of media tbat the object uses. Often~ tbis is a

wrapper tbat does some tbread bandliDg and data manipulation~ but passes the

main responsibility for playing the media to a standard Java class, such as the

27

•

•

java.applet.AudioClip class for audio fùes. For a set of objects, the

SequenceDriver will he an instance of a class that contains an algorithm for

organising and playing back several objects. For example, a SequenceDriver for a

set might contain an algorithm for placing the objects it contains into a sequential

order based on a set of Markov rules. In either case, the fllSt set of parameters

defined in the script, after the ID, belong to the SequenccDriver and will he used

to determine its exact hehaviour.

4.1.3 StopTriaer

A StopTrigger implements a condition that will he used to signal the end of

playback for some object or set of objects. In the case of an "undefined"

StopTrigger, no instance is created (the reference in the corresponding

SequenceObject is null). This implies that playback may continue indefinitely. In

aU other cases, an instance of a class that implements this interface is required.

&ch StopTrigger implements an algorithm for monitoring a certain condition.

such as a particular keystroke or the passing of a particular length of tÎIDe. The

name of the particu1ar class is detennincd from the identifier that follows the

"stopTrigger" keyword in the script. The parameters that follow are used by the

StopTrigger to refine further the conditions tbat should lead to the stop of

playbact.

28

•

•

4.1.3.1 StopEvent and StopListener

Wben a StopTrigger determincs that its stop condition bas been me~ it

sends out a StopEvent. Only StopListeners can receive a StopEvent; this is wby

SequenceDrivers implement the StopListener interface, since they may bave to

listen for such an event. However, the trigger only dispatehes its event to those

StopListeners tbat bave registered themselves witb the trigger. Thus, usually,

only the SequenceDriver tbat belongs to the same SequenceObject as a panicu1ar

StopTrigger will register itself witb tbat trigger and will be stopped wben the

trigger's stop condition becomes true.

4.2 Implementation of the tree stnaeture

As was noted earlier, the scripting language contains the notion of sets,

wbich may be collections of abjects, of other sets, or bath. This type of structure

is best described in terms of a tree structure, wbere each basic object is a lcaf

node, containing only its own data, and each set is a branch node, witb references

to one or more leaves.

4.2.1 Leal DOdes

4.2.1.1 BasicSequenceObjed

A BasicSequenceObject is simply a SequenceObject tbat uses a driver 10

play back its single piece ofmedia. No extra functionality is bullt into this class,

as none is needed. The BasicSequenceObject is defined as a separate class in

29

•

•

order to ensure tbat instances of this class are treated strictly as leaf nodes, not

simply as general SequenceObjects. Furthermore, it is expected tbat the driver

used by an instance of this class can only be an ImageDriver or an AudioDriver.

4.2.1.2 ImageDriver and AudioDriver

These two abstraet classes bave no functionality built ioto them.

However, a class tbat derives from one or the otber is valid for leaf nodes onlY' as

such a class is assumed to he solely for the playback of a panicular media format.

ImageDriver and AudioDriver are distinct, rather than being merged into a single

class, in order to allow audio and image content to he distinguished.

4.2.2 Branch nodes

4.2.2.1 COlDpositeSequenceObject

A CompositeSequenceObject contains all the fields of the generic

SequenceObject, but witb additional data tbat defines the place of each instance in

the tree structure. This extra information takes the form of a list of the IDs of ail

the children of the instance. Tbese children may he any kind of SequenceObject;

it is assumed tbat ail may he treated in the same manner al playback lime witbout

causing problems. In addition to this child data, it sbould he noted that the driver

for a CompositeSequenccObject must he a SetManager.

30

•

•

Bach class that derives from SetManager encapsulates an algorithm for

detenniniDg and controlling the playback order of a set ofchild objects. The

SetManager class itselfdermes playback in terms of a loop that is repeated until a

stop signal is received. At eacb cycle of the loop, the ordering algorithm is

requested to play the next cbild object in its progression. This may trigger the

playback of one cbild, wbere the child is a leaf node and the algorithm is

sequential in nature, or it may trigger a number of media, wbere the cbild is itself

a set or the algorithm dictates simultaneous playback.

4.3 Enbancements for intenctivlty

4.3.1 CompositeStopTriaer and StopTriaerOp

A CompositeStopTrigger is simply a logical association between two stop

triggers. Bach instance contains references to its two cbild triggers, as weU as a

StopTriggerOp that represents an "OR" or n AND" relationsbip. If the relaûonsbip

is an "OR", then the stop condition for the CompositeStopTrigger is met as saon

as eitber of its cbildren tires a StopEvenL If the CompositeStopTrigger is defined

as an "AND" relationship, both cbildren must have fired StopEvents for the stop

condition of the parent trigger to bc satisfied.

31

•

•

4.3.2 Subcl... 01StopEvent

A generic StopEvent gives no information about the condition that triggered

it. Yet in somc situations, this tyPe of information could he very useful. For

example, ifa StopTrigger is set off wben the user presses a tey, the driver tbat

reœives the StopEvent May want to react differently depending on the exact tey

tbat was pressed. To allow this sort of information to he~ il is possible to

create classes that derive from StopEvent but contaîn some extra information.

Often, the subclass rnay he bound to a panicular type of StopTrigger. For

instance, a StopEvent tbat contains an ASen chameler field is useful to a

StopTrigger tbat reacts to user keystrokes, while another tbat stores C(H)rdinale

information would he appropriate for a StopTrigger that responds to mouse clicks.

4.4 Displaying_d storing the obJects: SequenceFormat

While my initial lava code was only intended to he used to run my scripts, it

became obvious that the data structures of the lava implementation could be far

more powerful and flexible than the scripting language itself. This made me

decidc, in the end, to consider the final text script as a particu1ar representation of

the Java objects, rather than the other way around. The SequenceFormat interface

embodies this change of direction. An instance of a SequenceFormat is

responsible for looking up the data encapsulated in the various SequenceObjects

tbat mate up a composition and presenting that data in a different manner.

32

•

•

4A.l SequenceText

The original parser for the scripting language was the basis for the

SequenceText class. In addition to reading script ftles and storing tbeir data in

SequenceObjects9 this class bas the capability to write scripts based on object

data.

This class could he subclassed or modified to allow the Java code to

support other text-based formats for multimedia presentatioDS, sucb as the SMll..

(Synchronized Multimedia Integration Language) standard (W3C9 1998).

4.4.2 SequenceGui

InitiaUy this GUI class was meant as a troubleshooting tool tbat would allow

me to see the contents of the SequenceObjects and compare them to the scripts

generated from those objects. However, since 1 had heard several tilDes that

musicians do not enjoy typing long scripts, 1decided to develop the SequenceGui

class for use within a script building GUI tbat would alleviate tbis problem. As a

result, this class became a full SequenceFormal, with the ability Dot only to

display but also to store SequenceObject data.

45 Playinl the sequence: the RUlUler .pplet

The applet tbat bandles playbact of SequenceObjects is failly

straigbtforward. Il looks for four parameters in its enclosing HTML file:

33

•

•

CJ FILENAME, the name of the script file;

CJ STARTID, the ID of the SequenceObject that is al the top of the tn:e structure

to he used for playback;

Q BKCOLOR, the background colour of the applet (optional);

CJ FOCOLOR, the foreground colour of the applet (optional).

After this, the Runner applet traverses the tree of SequeDceObjects, starting at

the top Dode giveD by STARTID and linking each brancb Dode to its cbildren.

Once this is done, loading and playback can be initiated on the top node, and both

operations will he propagated tbrougb ail the objects on wbicb tbat node depends.

34

•

•

Results

Alter severa! false starts and much design work. 1was able to implement

the scripting language in Jav~ as described in Cbapter 4. Additionally. in order to

ND scripts. test implementations for several abstraet classes were added as

follows6
:

CJ The Image class is an implementation of ImageDriver tbal serves as a wrapper

for the java.awt.lmage class.

CJ The AudioClip class is an implementation of AudioDriver that serves as a

wrapper for the java.applet.AudioClip class.

CJ Three classes extend the SetManager class: Parallel, Sequential, and Sbuffle.

Parallel plays all its child elements simultaneously, while the Sequential class

plays one after the otber in a predefined order. Shuffle reorders the children

randomly and plays each one by one, œcalculating the order once the whole

set bas been exhausted.

CJ Two pairs of classes are used to implement StopTriggers: KeyPress together

with KeyPrcssedStopEvent are used to detect keystrokes from the user, and

Milliseconds along with TimedStopEvent are used for fixed durations.

Once these classes were added, 1 was able to jodge the viability of the data

structures. First, writing these abstraet classes and adding them to the main

program proved 10 be quite easy. The main problems tbat 1encountered were Dot

6 Tbcse classes wae simple test examples only, lIId are DOt inc:ludcd in the main desi....

35

•

•

related ta the way in wbich the data was organised. but instead stemmed from

problems with thread deadlock in the SequenceDrivers (see discussion in 2.8).

Second, in coding the Runner applet, 1 noted that use of the tree structure made it

much simpler to deal with the various multimedia elements. Sïnce the top

element both controls and depends on the child objects below it, any methods

called on that top clement were propagated properly down the tree without any

difficulty. Finally, very Unie debugging was needed, despite the complexity of

the data structures.

36

•

•

Sommary and Conclusion

The digital age that we live in bas brougbt us many fresb possibilities.

However, these new options are only valuable if tbey serve our own needs.

UnfortuDately, in many cases, tbis fails to be true. The computer bas cbanged aU

of our lives, but has not necessarily allowed us to do our worlc more quickly and

easily. This is especially true in the realm ofcreativity, wbere software tbal

requires a large investmenl in time and knowledge can fNstrate the creative mind~

ralher tban help to liberate il.

Il was the apparent lack of viable software for interactive multimedia

composition tbat led to this investigation9 whicb ventures beyond the most

prevalent options ratber than remaining contenl witb the non-musical paradigms

of multimedia tools sucb as QuickTime and Shockwave. This thesis shows that~

wim knowledge of Java prograrnming and software design skills, it is possible to

create an original prograrn tbat hetter suits the needs of some musicians-in

panicu1ar9 myself. After studying the features tbat Java offe~ it was possible to

detennine whicb of tbem would he the most useful for multimedia composition.

At the same tîme9 1tried to find ways to define the types ofmusical structures tbat

1 wanted to use in my compositions.

Considering the ease witb wbich il was possible to implement complex

musical structures in Java, one must conclude tbat Java is indccd a viable tool for

creating Web-ready, truly interactive compositions tbat combine severa! media.

As for the "solution" presented in tbis thesis, it is far from complete and probably

37

•

•

retlects the limitations of my persona! view of music. Nonetbeless, 1bope that

tbis Java implementation of a scripting language developed for my own

interactive multimedia creations will serve as a starting point for other composers.

38

•

•

BibUography

Apple Computer, Inc. 1999. "Introduction to Wired Movies, Sprites,

and the Sprite Toolbox. Il Online edition.

bg:/Ideveloper.ap,ple.comitechpubsiguicktimelgtdevdocsIREF/retwiredlntro.htm

Apple Computer, Inc. 1999. Il Movie Toolbox Fundamentals." Online edition.

http://developer.aRPle.comitechpubsiguicktimelgtdevdocsIRMI

rmMTFundamentals.htm

Apple Computer, Inc. 1999. "QuickTime Overview." Online edition.

http://developer·Hmle.comltecbpubsiguicktimelgtdevdocsIRMI

rmOIOverview.htm

Campione, M., and WaIratb, K. 1999. The IFC Swing Tutorilll: A Guitk to

Construeting GUIs. Online edition. http://javasun.comidocslbooksitutoriaU

Campione, M., Walratb, K., Huml, A., et al. 1998. The Java™ Tutorial

Continued: The Rest ofthe JDl(Bf. Online edition.

bttp:Jliavasun.comidocslbooksitutoriall

39

•

•

Campione, M., and Walratb, K. 1998. The lava Tutorial Second Edition: Object..

Oriented Programming for the Internet. Online edition.

htgl:/liava.sun.comldocslbooksltutoriall

FISher, S. 1997. Creating Dynamic Web Sites: a Webmaster's Guide to

Interactive Multimedia. Reading, MA: Addison-Wesley Developers Press.

Flanagan, D. 1997. Java in a Nutshell, Second Edition. Sebastopol, CA:

OReilly.

Gordon, R., and Talley, S. 1999. Essenlial JMF: lavant Media Framework.

Upper Saddle River, NJ: Prentice Hall PTR.

Gosling, J., Joy, B., and Steele, G. 1996. The lava Language Specification.

Online edition. hgp:/liava.sun.comldocs/booksljlslbtmlfmdex.html

Pawlan, M.. 1999.. "Javant Programming Language Basics, Part 2." Online

edition. http://developer.java.sun.comideveloper/onlineTraininglProgrammingl

BasicJava21

Pawlan, M. 1999. "JavaTU Programming Language Basics, Part 1." Online

edition. http://developer.java.sun.comldeveloper/onlineTraininglProgrammingl

BasîcJaval/

40

•

•

Rosenweig, G. 1997. The Direclor 6 Book. Research Triangle Park, Ne:

Ventana Communications.

Rowe, R. 1993. Interactive Music Systems. Cambridge, MA: MIT Press.

Sancbez, R. 1999. "Reviews: LiveStage DR 1.0.1 vs. Electrifier Pro 1.0."

MacAddiet 35: 52-53.

Sancbez, R. 1999. "Reviews: Director 7 Shockwave Internet Studio."

MacAddict 33: 44-46.

Simmons, M. 1999. tlHow To: Build Interactive QuickTime Movies."

MacAddiet 34: 72-75.

Sun MicroSysteDlS, Inc. 1999. Java™ Media APIs. OnIine edition.

hnp:/Ijavasun.com/produetsljava-medial

Sun MiCrosysteDlS, Inc. 1999. Swing 1.1.1 API Specification. OnIine edition.

hnp:/Ijavasun.comœroductsljfclswingdoc-api-l.1.1/

Sun MicrosysteDlS, Inc. 1997. Javadoc Home Page. Online edition.

bttp:lljavasun.comlproductsljdkljavadoclindex.html

41

•

•

Thomas, G. 1998. "How To: Build a Shoot-'Em-Up Game in Flash 3."

MacAddict 28: 88-93.

W3C. 1998. "Synchronized Multimedia Integration Language (SMIL) 1.0

Specification." Online edition. http://www.w3.or&fTR!REC-smill

42

•

•

Appendix A: API guide to the Java implementatlon

This section contains the API (Application Program Interface) guide

generated by the Javadoc tool for the 38 classes used in the implementalÎon of the

scripting language. This guide fully documents the prograrnming wode for tbis

tbesis.

By creating the Java implementations for these classes, it was possible to

jodge the viability of both the data structures and the scripting language.

Furthermore, il was tbis concrete prograrnrning work tbat allowed the discovery

of severa! important features of Java, wbicb were subsequendy exploited in the

code. Fmally, by eteating tbese classes and thereby acbieving the goal of

implementing this scripting language in Java, this thesis proves tbat Java is a

viable tool for the creation of interactive multimedia compositions.

43

•

•

package jsb.app
Oassindex

• Builder
• Runner

Exception Index

• FileException

44

•

•

Class jsb.app.Builder
Object

1
+----jsb.app.Builder

public class BuDder
extends Object

The main script-editing application. Its main responsibility is to be a mcdiation
point between the different Sequenc:eFormatS. and to provide any extra
capabilities needed.

In its current version. this class moderates between a Sequenc:eGui and severa!
SequenceTextS, and provides extra flle capabilities to the main DataFrame.

Version:
August 1999

Author:
Jacqueline Beaulac (Faculty of Music. McGill University)

See AIso:
SeguenceFormat, SeguenceGui, SeguenceText, DataFrame

Constructor Index
• jsb.app.Bullde[()

Method Index

• constructMengBg()
Construets and retums a menu bar witb File menu suitable for general file
managemenL

• construetObJeçtMenuQ
Constructs and retums an Objects menu suitable for management of
Sequenc:eobjactS.

• main(String[])
Provides the main execution environment.

• setCurrFD!<Fde)
Sets the current save file alter verifying that the file is writable.

• setSaved(boolean)
Sets the current save stalUS•

45

•

•

Constructors

• BuUder

public Builder()

Methods

• constructMenuBar

javax. swing .JMenuBar constructMenuBar ()

Constructs and retums a menu bar with Flle menu suitable for general file
managemenL

Retums:
a Swing-compatible menu bar to he added to the application window

• constructObjectMeau

javax.swing.JMenu constructObjectMenu()

Constructs and retums an Objects menu suitable for management of
SequenceobjectS.

Retums:
a Swing-compatible Objects menu to be added to the application
window, bath to its menu bar and its data representation.

• main
public static void main(String[J args)

Provides the main execution environment.

Panmeters:
args - the command-Iine arguments to this application (not used)

• setCurrFile

protected void setCurrFileCFile aFile) throws FileException

Sets the current save file after verifying tbat the file is writable.

Panmeters:
aFtle - a file to he used as the current save file

Throws: FlleException
ifaFde is Dot writable

• setSaved

protected void setSavedCboolean aSavedFlag)

Sets the current save status.

Parameters:
aSavedF1ag - true ifal1 data is currendy saved, fa1se otherwise

46

•

•

Class jsb.app.Runner
Object

1
+----Component

1
+----Container

1
+----Panel

1
+----Applet

1
+----jsb.app.Runner

public dass Runner
extends Applet

Constructor Index

• jsb.app.RunnerO

Method Index

• initO
• startO
• stop()

Constructors

• RUIUler

public Runner ()

Methocls

• lait
public void init ()

Overrldes:
init in class Applet

47

•

•

• start

public void start()

Overrides:
start in class Applet

• stop

public void stop()

Overrides:
stop in class Applet

48

•

•

Class jsb.app.FUeException
Object

1
+----Throwable

1
+----Exception

1
+----jsb.app.FileException

public class FUeException
extends Exception

A set of file bandling exceptions, each differentiated by its eaor code.

Venion:
August 1999

Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Variable Index

• NOT FOUNO
Indicates that the file does not exist.

• NOT WRITABLE
Indicates that the file cannot he writteo iota.

• READ ERROR
Indieates tbat an error occured wben reading the file.

• WRITE ERROR
Indicates tbat an CROr occured when writing ioto the file.

Constructor Index
• jsb.app.FlleException(int, String)

CODStruets a file exception with the given error code and message.
• Jsb.app.FlleE!œption(int}

Constructs a file exception with the given error code.

Method Index

• aetEnprC!d!O
Retums the eaor code, wbich cao be used for caor recovery purposes.

49

•

•

Variables

public static final int NOT_FOUND

Indicates that the file does Dot exist.

public static final int NOT_WRITABLE

Indicates tbat the ftle cannot be written ioto.

public static final int REAC_ERROR

Indicates tbat an error occured wben reading the ftle.

public static final int WRITE_ERROR

Indicaœs that an error occured wben writing into the ftle.

Constructors

• FdeException

public FileException(int anErrorCode,
String aHessage)

Constructs a file exception with the given error code and message.

Parameters:
anErrorCode - an int that defines the type of error
&Message - a message tbal can be used to display the error

• FileException

public PileException{int anErrorCode)

Constructs a file exception with the given error code.

Parameters:
anErrorCode - an int that defines the type of error

so

•

•

Methods

• getErrorCode

publie in t getErrorCode ()

Retums the error code, whicb can he used for error recovery purposes.

Retums:
an int that defines the type of error

51

•

•

package jsb.basicimpl
Classlndex

• AudioClip
• Image
• KeyPress
• KeyPressedStopEvent
• Milliseconds
• Parallel
• Seguential
• Shuffle
• TimedStopEvent

52

•

•

Class jsb.basicimpl.AudioCllp
Object

1
+----ParameterizedObject

1
+----SequenceDriver

1
+----AudioDriver

1
+----jsb.basicimpl.AudioClip

public class AudioCUp
extends AudioDriver

A single segment of audio, loaded from a file, that can he played as part of a
sequence. This acts as a wrapper for the java.applet.AudioClip classa

Version:
August 1999

Autbor:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index
• jsb.basicimpl.AudJoCUp()

CODStructs a wrapper for a java.applet .AudioClip.

Method Index

• 1000(Applet)
Loads the audio data nceded to play tbis audio clip.

• I!!!!lQ
Plays this audio clip for its full duration, unless interrupled.

• stoP()
Stops playback of this audio clip.

CoDStructors

• AudJoCUp

public AudioClip ()

Constructs a wrapper for a java.applet .AudioClip.

53

•

•

Methods

• Joad

public synchronized void load(Applet anApplet)
throws UndefinedException

Loads the audio data needed to play this audio clip. This method blocks until
aU data bas been read.

Parameters:
anApplet - the parent applet througb wbich the audio will he played

Overrides:
1000 in class SeguenceDriver

• play

public synchronized void play()

Plays this audio clip for its full duration, unIess interrupted. This method
blocks during playback.

Overrides:
I!!u in class SeguenceDriver

• stop

public synchronized void stop()

Stops playback of tbis audio clip. This method blocks until playback stops.

Overrides:
stop in class SeguenceDriver

54

•

•

Class jsb.basicimpl.Image
Object

1
+----ParameterizedObject

1
+----sequenceDriver

1
+----ImageDriver

1
+----jsb.basicimpl.rmage

public class lnIap
extends lmageDriver

A single image, loaded from a file, that cao be shown as part of a sequence. This
acts as a wrapPer for the java. awt • Image class.

Venion:
August 1999

Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

CODStructor Index

• .Ilb.basldmp.......'!O
Constmcts a wrapper for a java. awt. Image.

Metbod Index
• load(Applct)

Loads the image data needed to show this image.

• mO
Shows tbis image.

• !!!!I!OStops sbowing tbis image.

Construdors

• Image

public Image ()

Constmcts a wrapper for a java.awt . Image.

55

•

•

Methods

• load

public synchronized void load(Applet anApplet)
throws UndefinedException

Loads the image data needed to show tbis image. This metbod blocks until ail
data has been read.

Parameters:
anApplet • the parent applet on which the image will be displayed

Overrides:
load in class SeguenceDriver

• play

public synchronized void play ()

Shows this image. This method blacks during playback.

Overrides:
~ in class SeguenceDriver

• stop

public synchronized void stop()

Stops sbowing tbis image. This method blocks until the image bas been
removed from the applet.

Overrides:
stop in class SeguenœDriver

56

•

•

Class jsb.basicimpl.KeyPress
Object

1
+----ParameterizedObject

1
+----StopTrigger

1
+----jsb.basicimpl.KeyPress

public class KeyPress
extends StopTrigger

A stop bigger that goes off when a key is pressed.

Version:
August 1999

Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index
• lsb.basidmpl.KeyPressO

CODStructs a stop trigger that goes off when a key is pressed.

Method Index

• actival!O
Adds the listener and enables this trigger to throw KeyPressedStopEvents.

Constructors

• KeyPress

public KeyPress{}

Constructs a stop trigger tbat goes off when a key is pressed. The parameters
for this instance are initialized here.

57

•

•

Methods

• activate

public void activate()

Adds the listener and enables this trigger to throw KeyPressedStopEventS.

Overrides:
activate in class StopTrisger

SeeAlso:
KeyPressedStopEvent

58

•

•

Class
jsb.basicimpl.KeyPressedStopEvent
abject

1
+----StopEvent

1
+----jsb.basicimpl.KeyPressedStopEvent

public class KeyPressedStopEvent
extends StopEvent

An event that indicates the end of a section of a sequence after the user pressed a
key.

Version:
August 1999

Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index
• Jsb.baidmpl.KeyPressedStopEvenl(StopTrigger. char)

ConsU'Ucts a stop event that will he used to indicate that a key was pressed by
the user.

Constroctors

• KeyPressedStopEvent

public KeyPressedStopEvent(StopTrigger aSource,
char dey)

Construets a stop event that will he used to indicate that a key was pressed by
the user.

Parameters:
aSource - the stop trigger that will send out this event
aKey - the cbaracter typed by the user

59

•

•

Class jsb.basicimpl.Milliseconds
abject

1
+----ParameterizedObject

1
+----StopTrigger

1
+----jsb.basicimpl.Milliseconds

public class Mllliseconcls
extends StopTrigger

A stop trigger tbat goes off after a specifie amount of tinte.

VenloD:
August 1999

Autbor:
Jacqueline Beaulac (Faculty of Music, McGill University)

Coastructor Index
• Jsb.b8sIdmpLMlllisecondsO

Construets a stop trigger that goes off after a specifie amount of lime.

Method Index

• activa1@()
Starts the timer and enables this trigger to throw TimedStopEvents.

Constructors

• MiIIsecoads
public Hilliseconds()

Construets a stop trigger that goes off after a specifie amount of tîme. The
parameters for tbis instance are initialized bere.

60

•

•

Metbods

• adivate

public void activate()

Starts the limer and cuables tbis trigger to throw TimedStopEventS.

Overrides:
activate in class StopTrigger

SeeAlso:
TimedStopEvent

61

•

•

Class jsb.basicimpl.Parallel
Object

1
+----ParameterizedObject

1
+----SequenceDriver

1
+----SetManager

1
+----isb.basicimpl.Parallel

public class ParaDe'
extends SetManager

A set manager that plays aIl its children back simultaneously.

Version:
August 1999

Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

CODStnJctor Index
• Jsb.b.lclmpl.Parallel()

Method Index
• load(Applet)

Loads aIl the cbild drivers simultaneously.
• plaVOneCydIQ

Plays aIl child drivers simultaneously.

• stopCurrCydeO
Stops the playback of ail children simultancously.

COnstructors

• ParaIIeI
public Parallel()

62

•

•

Methods

• load

public void load(Applet anApplet)

Loads all the child drivers simultaneously. Blacks until all the cbildren bave
been loaded.

Panmeters:
anApplet - the applet on wbicb the cbild drivers depend to load their data

Overrides:
load in class SeguenceDriver

• playOneCyde

protected void playOneCycle()

Plays ail cbild drivers simultaneously. Blacks till the playback of ail childn:n
bas finisbed.

OYerrkles:
playOneCycle in class SetManager

• stopCurrCyde

protected void stopCurrCycle()

Stops the playback of all cbildren simultaneously.

Overrides:
stopCunCycle in class SetManager

63

•

•

Class jsb.basicimpl.Sequentiai
Object

1
+----ParameterizedObject

1
+----SequenceDriver

1
+----SetManager

1
+----jsb.basicimpl.Sequential

public class Sequential
extends SetManager

A set manager that plays its cbiJdren back in an ordered sequence, one al a lime.

Version:
August 1999

Autbor:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index

• Jsb.basidmpl.8equentiaiO

Method Index

• ioad(Applet)
Loads each of the child drivers in the order in wbicb they will he played.

• platOneCym<)
Plays the next child in the sequence.

• stopCurrCydeO
Stops the playback of the current cbild

Constructon

• Sequeatial

public Sequential()

64

•

•

Metbods

• Ioad

public void load(Applet anApplet) throws UndefinedException

Loads each of the child drivers in the order in whicb they will be played.

Panmeters:
anApplet - the applet on whicb the child drivers depend to load their data

Overrides:
load in class SeguenceDriver

• playOneCycle

protected void playOn8Cycle()

Plays the next child in the sequence. Blocks until the playback of the child is
finisbed.

Overrides:
playOneCycle in class SetManager

• stopCurrCycle

protected void stopCurrCycle()

Stops the playback of the cuneot child.

Overricles:
stopCurrCycle in class SetManager

65

•

•

Class jsb.basicimpl.ShufDe
Object

1
+----ParameterizedObject

1
+----SequenceDriver

1
+----SetManager

1
+----jsb.basicimpl.Shuffle

public class Sbuftle
extcnds SetManager

A set manager tbat plays its cbildren back in a shuffled sequence, one at a tilDe.

Version:
August 1999

Autbor:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index
• Jsb.basicimpl.8bum!Q

Metbod Index
• IoacI(Applet)

Determines the shuftled order and loads the child drivers in that order.
• playOneCycl!O

Plays the next cbild in the shuffled sequence.

• stopCurrCydeO
Stops the playback of the cunent cbild.

Constructon

• Sbuflle

public Shuffle{)

66

•

•

Methods

• load

public void load(Applet anApplet) throws UndefinedException

Determines the sbuftled order and loads the child drivers in that order.

Parameters:
anApplet - the applet on which the child drivers depcnd to load tbeir data

Overrides:
load in class SeguenceDriver

• playOneCyde

protected void playanecycle()

Plays the next child in the shuftled sequence. Slocks until the playback of the
child is tinisbed.

Overrides:
playOneCycle in class SetManaler

• stopCurrCycle

protected void stopCurrCycle()

Stops the playback of the current child.

Overrides:
stopCurrCycle in class SetManaler

67

•

•

Class jsb.basicimpl.TimedStopEvent
Object

1
+----StopEvent

1
+----jsb.basicimpl.TimedStopEvent

public class TimedStopEvent
extends StopEvent

An event that indicates the end of a section of a sequence after a specifie length of
lime.

Version:
August 1999

Autbor:
Jacqueline Beaulac (Faculty of Music, McOill University)

CoDStructor Index
• Jsb.baslcimpl.TimedStopEvent(StopTrigger, long)

Constnlcts a stop event tbat will he used to indieate lhat a specifie lenlth of
time bas passed.

Constructors

• TimedStopEvent

public TimedStopEvent(StopTrigger aSource,
long aDuration)

Constnlets a stop event tbat will he used to indicate lhat a specifie lenlth of
lime bas passed.

......ters:
aSource - the stop biger tbat will send out this event
aDoration - the duration in mi1Useconds

68

•

•

package jsb.core
Interface Index

• SeguenceFonnat
• StopListener

ClassIndex

• AudioDriver
• BasicSeguenceObiect
• CompositeSeguenceObject
• ComoositeStopTrigger
• ImageDriver
• ParameterizedObject
• SeguenceDriver
• SeguenceObject
• SetManager
• StopEvent
• StopTrigger
• StopTriggerOp

Exception Index
• C1assLoadFailureException
• UodefmedExcçption

69

•

•

Interface jsb.core.SequenceFormat
public interface SequenceFormat

An object that is responsible for both constructing and parsing a particular
representation of a sequence, ex. text, grapbical.

Venion:
August 1999

Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Method Index
• addElement(SequenceObject)

Adds a section to the sequence.
• eleJDenls()

Retums an enumerated list of ail the sections that can be used for iteration.
• I!tAllElemengO

Retums a table of all the sections, keyed by ID.
• I!tFormattedSegueng()

Retums a representatÎon of the sequence in a unique format.
• removeElement(Object)

Removes a section from the sequence.
• setFormattedSeguen~Object)

Sets the fonnatted object that is to he parsed.

Methods

• addElement

public abstract void addElement(Sequenceobiect aSequenceobject)
throws ClassLoadFailureException

Adds a section to the sequence.

Parameters:
aSequenceObject .. a section to be added to the current sequence

Throws: ClassLoadFailureException
ifa class required by the new section cannot he found

70

•

•

• eiements

public abstract java.uti~.Enumerationelements()

Retums an enumerated list of ail the sections that cao be used for iteration.

Retums:
a list ofall sectiODS

• aetAOElemeDts

public abstract java.util.Hashtab~egetAllElements()

Retums a table of ail the sectiODS, keyed by ID.

Returns:
a table ofail sections

• aetFormatteclSequence

public abstract java.lang.Object getFormattedSequence()

Returns a representation of the sequence in a unique formaL

Retums:
an object tbat contains the data for a full sequence

• removeElement

public abstract jsb.core.SequenceObject removeE~ement(ObjectaKey)

Removes a section from the sequence.

Parameten:
aKey - an ID used to find the SequenceObject to he removed from the
current sequence

• setFormattedSequenœ

pub~ic abstract void setFormattedSequence(Object aSequence)
throws Exception

Sets the formatted abject tbat is to he parsed.

Parameters:
aSequence - a full sequence

Throws: Exception
if a parsing error occurs

71

•

•

Interface jsb.core.StopListener
public interface StopListener

A Iistener that should be notified wben a StopEvent occurs.

Venion:
August 1999

Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

SeeAlso:
StopEvent

Method Index
• stopRequested(StopEvent)

Handles a StopEvent.

Methods

• stopRequested

public abstract void stopRequested(StopEvent aStopEvent)

Handles a StopEvent. This should perform all the actions required wben
playback of a sequence, or of a section of a sequence, should stop.

Paranaeters:
aStopEvent - the event that was dispalched

72

•

•

Class jsb.core.AudioDriver
Object

1
+----ParameterizedObject

1
+----seguenceDriver

1
+----jsb.core.AudioDriver

public abstract class AudioDriver
extends SeguenceDriver

A driver that plays audio content.

Venion:
August 1999

Author:
Jacqueline Beaulac (Faculty of Music, McGilI University)

Constructor Index
• Jsb.core.AudioDrive[{)

Constructors

• AudioDriver

public AuclioDriver ()

73

•

•

Class jsb.core.BasicSequenceObject
abject

1
+----Seguenceobject

1
+----jsb.core.BasicSequenceobject

public class BasicSequenceObject
cxtends SeguenceObject

A section of a sequence that contains a single picce of media.

Venion:
August 1999

Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index
• Jsb.core.BaicSequenceObieçt(String, StopTrigger, SequenceDriver)

Consttuets a sequence object that contains one specific piece of media.

Constructors

• BasicSequeaceObject

public BasicSequenceobject(String anId~

StopTrigger aStopTrigger~

SeguenceDriver aSequenceDriver)
throws UndefinedE:xception

Constructs a sequence object that contains one specific piece of media.

Panmeters:
anId • a unique ID
aStopTrigger· a stop trigger that contraIs the end of playback:
aSequenceDriver - a driver that provides media support

Tbrows: UndefmedExetmtion
ifany one of the parameters is badly defined or is missing

74

•

•

Class
jsb.core.CompositeSequenceObject
Object

1
+----SeguenceObject

1
+----jsb.core.CompositeSequenceobject

public class CompositeSequenceObject
extends SeguenceObject

A section of a sequence that contains a set of subsections.

Venlon:
August 1999

Author:
1acqueline Beaulac (Faculty of Music. McGill University)

CODStrudor Index
• jsb.core.CompositeSeguenceObJ!s!(String, Vector, StopTrigger,

SetManager)
Constructs a sequence object that contains several other sequence objects.

Method Index

• IItCbildLiBO
Retums the IDs of the cbild objects on wbich this object depends.

• I!tSetMan·.rO
Retums the manager that will control the order and timing of the playback of
the cbild objects.

Construetors

• CompositeSequeaceObject

public CompositeSequenceobject(String anId,
Vector aChildList,
StopTrigqer aStopTrigger,
SetManager aSetManager)

throws UndefinedException

75

•

•

Constructs a sequence object that contains severa! other sequence objects.

ParaJneters:
anId - a unique ID
aCbildList - a list of the IDs of the child Sequenc80bjectS
aStopTrigger - a stop trigger that controls end of playback
aSetManager - a manager that controls the ordering and playback of the
cbild objects

Throws: UndefinedException
if any one of the parameters is bad1y defined

Methods

• letCbildList

public java.util.Vector getChildList()

Retums the IDs of the cbild objects on whicb this object depends.

Returns:
a list of cbild IDs

• ptSetMaaager

public jsb.core.SetManager getSetManager()

Retums the manager that will control the order and timing of the playback of
the cbild objects. This is a cODvenience method that casts the driver to a
SetManager.

Returns:
the set manager tbat orders the playback ofcbild objects

76

•

•

Class jsb.core.CompositeStopTrigger
Object

1
+----ParameterizedObject

1
+----StopTriqger

1
+----jsb.core.CompositeStopTrigger

public class CompositeStopTriaer
extends StopTriller
implements StopListener

An association between two StopTriggerS. The connection between the two is
defined by a logical operator ("and" or t'or").

Version:
August 1999

Autbor:
Jacqueline Beaulac (Faculty of Music, McGill University)

CODStructor Index
• jsb.core.CompositeStopTriller(StopTrigger9 StopTriggerOp, StopTrigger)

Construets an association between two stop ttiggers and based on a logical
operator.

Method Index

• acti.atIQ
Enables the trigger ta throw StopEvents.

• cetFlrstStopTri..[{)
Retums the first stop trigger of the association.

• l'tOp{)
Retums the logical operator that defines this association.

• l'tSecondStopTrlm[()
Returns the second stop trigger of the association.

• stopReguested(StopEvent)
Handles a StopEvent.

77

•

•

Construetors

• CompositeStopTriaer

public CompositeStopTrigger(StopTrigger aFirstStopTrigger,
StopTriggerOp anOp,
StopTrigger aSecondStopTrigger)

Constructs an association belWeen two stop triggers and based on a logical
operator.

Parameters:
aFirstStopTrigger ... one of the two stop triggers
anOp .. the logical operator
aSecondStopTrigger .. the other stop trigger

Methods

• aetivate

public void activate()

Enables the bigger to throw StopEventS. This must be called wben the bigger
is supposed to start checking for its stop condition. The trigger is
automatically deactivated once the stop condition is met.

Overrides:
activate in class StopTrilger

• getFirstStopTriaer

public jsb.core.StopTrigger getFirstStopTrigger()

Retums the tirst stop triger of the association.

Retorns:
one of the two stop triggers

• getOp

public jsb.core.StopTriggerOp getOp()

Retums the logical operator that defines tbis association.

ReturDs:
the operalor tbat defines the relationship between the two triggers

• getSecoadStopTriaer

public jsb.core.StopTrigger getSecondStopTrigger()

Retums the second stop trigger of the association.

Returns:
one of the two stop triggers

78

•

•

• stopRequested

public void stopRequested(StopEvent aStopEvent)

HandIes a StopEvent.lfthe operator is an "or", the stop event is always
dispatched to the listeners registered with tbis association. If the operator is an
"and", the stop event is dispatcbed to the listeners only ifbotb child triggers
bave gone off.

Parameten:
aStopEvent - the event tbat was dispatebed

79

•

•

Class jsb.core.ImageDriver
Object

1
+----ParameterizedObject

1
+----sequenceDriver

1
+----jsb.core.ImageDriver

public abstraet class ImageDriver
extends SeguenceDriver

A driver that displays visual content.

Version:
August 1999

Autbor:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index
• Jsb.core.ImageDrive[()

Constructon

• ImageDriver

public ~geDriver()

80

1

•

Class jsb.core.ParameterizedObject
abject

1
+----jsb.core.ParameterizedObject

public abstraet class ParameterizedObject
extcnds Object

A generic abject that contains a set of parameters and tbeir associated values.

Venlon:
August 1999

Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Variable Index

• delaultParams
The table of ail legal parameters and their default values.

• panmValues
The table of ail parameters and their current values.

Constructor Index

• .isb.core.ParameterizedObiedO

Method Index

• letParamValug()
Gets the values of all of the parameters used by tbis class.

• setParamVaIu§(llashtable)
Sets the values of any of the parameters used by this class.

Variables

• defaultPanuDs

public final i ava.utile Hashtable defaul tParams

The table of aIllegal parameters and their default values. This is defined
public: 50 tbat all subclasses may access il.

81

•

•

• paramValues

public final java.util.Hashtable paramValues

The table of ail parameters and their current values. This is dermed public 50
that al1 subclasses may aceess il.

Constructors

• PanmeterizedObject

public ParameterizedObject()

Methods

• getParamValues

public java.util.Hashtable getParamValues()

Gets the values of ail of the parameters used by this elass.

Retums:
a table containing alliegal parameters and their currently associated values

• setParamValues

public void setParamValues(Hashtable aParamTable)
throws ondefinedException

Sets the values of any of the parameters used by this class.

Panmeten:
aParamTable - a table containing some known parameters along with the
values with whieb they sbould he associated

82

•

•

Class jsb.core.SequenceDriver
Object

1
+----ParameterizedObject

1
+----jsb.core.SequenceDriver

public abstraet class SequenceDriver
extends ParameterizedObject
implements StopListener

An object that is responsible for playing a section of a sequence. If the section
contains a single piece of media, tben the driver plays the audio and/or shows the
visuals. If the section contains SUbseCtiODS, tben tbe driver is responsible for
detennining the order in wbich the SUbsectiODS are played, and for playjng them in
tbat order.

Version:
August 1999

Autbor:
Jacqueline Beaulac (Faculty of Music. McGill University)

Variable Index

• theStopTriaer

Coostructor Index
• isb.core.SeguenceDrlve[()

Metbocl Index

• letInstang(String)
Retums an instance of the named driver.

• load(Applet)
Loads all data needed to play the media.

· *0Plays the media for its total duralion.
• setStopTriger(StopTrigger)

Sets the stop mgger which should be activated when playback begins.

• !I!!I!<)
Stops the playback of the media as soon as possible.

83

•

•

• stopReguested(SlopEvent)
Handles a StopEvent.

Variables

• theStopTriaer

protected jsb.core.StopTrigger theStopTrigger

Constructors

• SequenceDriver

public SequenceDriver ()

Methods

• getInstance

public static jsb.core.SequenceDriver getlnstance
(String aClassName)
throws ClassLoadFailureException

Retums an instance of the named driver. This is a cODvenience method wbich
does type checking and translates any exception 10 a
ClassLoadFailureException.

Parameters:
aClassName - the driver to be instantiated

Tbrows: ClassLoadFailureException
ifno instance of the named class cao he constructed, or if the named class
is not a driver

• Ioad
public abstract void load(Applet theApplet)

throws UndefinedException

Loads aU data needed to play the media.

This method should be blocking. Casses that caU tbis method must perfonn
any tbread handling.

Parameters:
theApplet - the applet to he used for playback

84

•

•

• play

public abstract void play()

Plays the media for its total duration. This should also activate the stop trigger,
if there is one.

This method sbould he blocking. Classes tbat caU this metbod must perform
any thread bandling.

• setStopTriaer

public void setStopTrigger(StopTrigger aTrigger)

Sets the stop triuer whicb sbould he activated when playback begins.

Parameters:
aTrigger - the stop trigger associated witb this driver

• stop

public abstract void stop()

Stops the playback of the media as soon as possible.

This method sbould be blocking. Classes that caU this method must perform
any thread bandIing.

• stopRequested

public void stopRequested(StopEvent aStopEvent)

Handles a StopEvent. This shouJd perform aU the actions required wben
playback of a sequence, or of a section ofa sequence, should stop.

Parameters:
aStopEvent - the event tbat was dispatched

8S

•

•

Class jsb.core.SequenceObject
Object

1
+----jsb.core.SequenceObject

public class SequenceObJect
extends Object

A section of a sequence.

Venion:
August 1999

Autbor:
Jacqueline Beaulac (Faculty of Music, McGill University)

CODStructor Index
• Jsb.core.SequenceOblect(String, StopTrigger, SequenceDriver)

Constnlcts a SequenceObject wbicb contains aU the data necessary to he
played as a unique section within a sequence.

Method Index

• leddQ
Retums the ID used to identify this section witbin the sequence.

• aetSequenceDrfverQ
Gets the main driver class tbat is used to play tbis section.

• getStopTrlmrQ
Retums the trigger tbat will cause the playback of this section to stop.

• setStopTrim[(StopTrigger)
Sets the StopTrigger for tbis section.

CODStructors

• SequenceObject

Sequenceobject(String anId,
StopTrigger aStopTrigger,
SequenceDriver anSequenceDriver)

throws UndefinedException

86

•

•

Constructs a SequenceObject which contains all the data nccessary to be
played as a unique section witbin a sequence.

Parameters:
anld - a string tbat uniquely identifies tbis section
aStopTrigger - a trigger tbat controls end of playbac:k
anSequenceDriver - a driver that handles media playback

Throws: UndefinedException
if any one of the parameters is badly defined

Metbods

• gedd

public java.lang.String getld()

Retums the ID used to identify tbis section within the sequence.

Retams:
the unique ID for this section

• letSequeaceDriver

public jsb. c:ore. Sequenc:eDriver getSequenceDriver ()

Gets the main driver class tbat is used to play this section.

Retums:
a driver that handles media playbakc witbin this section

• letStopTriaer

public jsb.c:ore.StopTrigger getStopTrigger()

Retums the trigger that will cause the playback of this section to stop. A
section higber op in the bierarcby may stop playback befote tbis trigger does.

Returas:
the stop trigger

• setStopTriaer

public void setStopTrigger(StopTrigger aStopTrigger)

Sets the StopTrigger for this section.

Parameters:
aStopTrigger - a trigger tbat sbould stop playback of tbis section

87

•

•

Class jsb.core.SetManager
Object

1
+----ParameterizedObject

1
+----SequenceDriver

1
+----jsb.core.Se~ger

public abstraet class SetMana&er
extends SeguenceDriver

A playback manager for a set of child SequenceDriverS.

Version:
August 1999

Autbor:
Jacqueline Beaulac (Faculty of Music, McGill University)

Variable Index

• cbildDriverList
The list ofchild drivers tbat are onder the control of tbis manager.

• currCycleNum
The number of limes tbal a cycle of playback bas occurred.

Constructor Index
• jsb.core.SetManaeerQ

Method Index

• aetCurrCydeNumO
Retums the number of playback cycles that bave occurred.

• IIIIO
Plays the cbild drivers.

• RJayOneCBkQ
Causes a single playback cycle.

• setCbildDrivem{Vector)
Sets the cbild SequenceDriverS tbat are onder the control of this driver.

• âIlOStops the playback of the child drivers.

88

•

•

• stopCurrCycleO
Stops the current playback cycle.

Variables

• dùldDriverList

protected java.util.Vector childDriverList

The list of cbild drivers that are onder the control of tbis manager.

• currCydeNum

protected int currCycleNum

The number of limes that a cycle of playbaclc bas occurred. Eacb
implementation of tbis class is responsible for determining wbat constitutes a
single playbaclc cycle.

Constnlctors

• SetManager

public SetManager()

Metbocls

• getCurrCydeNuna

public int getCurrCycleNum()

Retums the number of playback cycles tbat bave occurred. Each
implementation of tbis class is responsible for determining wbat constitutes a
single playbaclc cycle.

RetarDs:
the current playback cycle count

• play

public final void play ()

Plays the child drivers. This a1so handIes the stop trigger.

This method should he blocking. Classes tbat calI this method must perfonn
any thread bandling.

Overrides:
mu in class SequenceDriver

89

•

•

• playOneCycle

protected abstract void playOneCycle()

Causes a single playback cycle.

This method should he blocking.

• setCbildDriven

public final void setChildDrivers(Vector aChildDriverList)
throws UndefinedException

Sets the child SequenceDriverS that are under the control oftbis driver.

Panmeten:
aCbildDriverList - a list of cbild drivers

Tbrows: UndefmedException
if the list is null

• stop

public final void stop()

Stops the playback of the child drivers.

Overrides:
stop in class SeguenceDriver

• stopCurrCyde

protected abstract void stopCurrCycle()

Stops the cunent playback cycle.

This method should he blocking.

90

•

•

Class jsb.core.StopEvent
Object

1
+----jsb.core.StopEvent

public class StopEveDt
extends Object

An event tbat indieates the end of a section of a sequence.

Venio.:
August 1999

Autbor:
Jacqueline Beaulac: (Faculty of Music. McGill University)

Variable Index

• source
The stop trigger tbat is sending out tbis event.

Constructor Index
• isb.core.StopEvent(StopTrigger)

Constructs a stop event that will he used to indicate tbat the end condition ofa
particular stop trigger became true.

Metbod Index

• letSource()
Retums the stop trigger tbat sent out tbis event wben its end condition be<:amc
bUe.

Variables

• source
protected jsb.core.StopTrigger source

The stop trigger that is sending out this event. This is declared proteeted 50
tbat subclasses of tbis class can access it.

91

•

•

Constructors

• StopEvent

public StopEvent(StopTrigger aSource)

Constructs a stop event that will he used to indicate tbat the end condition of a
panicular stop trigger became true.

Parameten:
aSource - the stop trigger tbat will send out this event

Metbods

• letSource

public jsb.core.StopTrigger getSource()

Retums the stop trigger that sent out this event when its end condition became
true.

ReturDS:
tbe stop trigger tbat sent out tbis event

92

•

•

Class jsb.core.StopTrigger
Object

1
+----ParameterizedObject

1
+----jsb.core.StopTrigger

public abstract class StopTriaer
extends ParameterizedObject

A trigger that will cause a StopEvent to be thrown once certain conditions are
met. This is used to stop the playback of a sequence or a section of a sequence.

Version:
August 1999

Autbor:
Jacqueline Beaulac (Faculty of Music, McGill University)

SeeAlso:
StopEvent

Variable Index

• UstenerList
Rolds a list of references to alllisteners that bave registered themselves with
this objecte

Constnlctor Index
• lsb.core.StopTrige!O

Method Index

• actlval!O
Enables the trigger 10 tbrow StopEventS.

• addStopListeDe[(StopUstener)
Adds a listener tbat sbould be sent any StopEventS.

• dispalcbStopEvenl(StopEvent)
Iterates tbrough the list of listeners and sends an event to eacb onc.

• letlDstllng(String)
Retums an instance of the named trigger.

• removeStopIfistenenStopListener)
Removes a listener 50 tbat StopEventS are no longer sent to iL

93

•

•

Variables

• IistenerList

protected final java.util.Vector listenerList

Rolds a list of references to alllisteners thal have registered themselves with
tbis objccL This is declared protected 50 that subclasses of this class can
access the lisL

Constructors

• StopTriaer

public StopTrigger()

Methods

• adivate

public abstract void activate()

Enables the trigger to throw StopEventS. This must he called when the trigger
is supposed to start checking for ils stop condition. The trigger is
automatically deactivated once the stop condition is met.

• addStopListener

public void addStopListener(StopListener aListener)

Adds a listener that should he sent any StopEvents.

Parameten:
aListener - a StopListener to he l'Ideel to this trigger

• dBpatchStopEvent

protected final void dispatchStopEvent(StopEvent aStopEvent)

llentes tbrougb the list of listeners and sends an event to each one. This is
declared protected 50 that subclasses of this class cao call iL However, it is
also declared final 50 that it cannot he redcfined in a subclass.

Parameten:
aStopEvent - the event to he dispatched 10 alllisteners

94

•

•

• letIDStaDce

public static jsb.core.StopTrigger getlnstance(String aClassName)
tbrows ClassLoadFailureException

Retums an instance of the named trigger. This is a convenience method wbicb
does type checking and translates anyexception to a
ClassLoadFailureException.

Parameters:
aClassName - the trigger to he instantiated

Tbrows: ClassLoadFailureExceptioD
ifno instance of the named class cao be CODStruct~ or if the named class
is not a trigger

• removeStopListener

public void removeStopListener(StopListener aListener)

Removes a listener so that StopEventS are no longer sent to it.

Panmeten:
aListener - a StopListener 10 he removed from this trigger

95

•

•

Class jsb.core.StopTriggerOp
abject

1
+----jsb.core.StopTriggerOp

public class StopTriaerOp
extends Object

A logical operator tbat relates two StopTriggers. This is used wben creating a
Compos i teStopTrigger.

Version:
August 1999

Autbor:
Jacqueline Beaulac (Faculty of Music,. McGill University)

SeeAlso:
StopTri&ger, CompositeStopTriaser

Variable Index

• AND OP
Indicaœs tbat the composite trigger should he set off only when both of its
subtriggers have gone off.

• OR OP
Indicates tbat the composite trigger should he set off when either of its two
subtriggers goes off.

Constructor Index

• jsb.core.StopTriaerOp(String)
Construets a binary operator based on a given tag.

Method Index

• isADdOp()
Retums true if the composite triuer tbat uses this operator sbould be set off
only wben both of its subtriggers bave gone off.

• lsOrOp()
Retums true if the composite triuer tbat uses tbis operator should be set off
when either of its two subtriggers goes off.

• toStriDlO
Retums the string representation of the operator.

96

•

•

Variables

public static final java.lang.String AND_OP

Indicatcs that the composite trigger should he set off only when both of its
subtriggers have gone off.

public static final java.lang.String OR_OP

Indicates that the composite trigger should he set off when either of its IWo
subtriggers goes off.

CoDStructon

• StopTriaerOp

public StopTriggerOp(String aString) throws OndefinedException

Constructs a binary operatorbased on a given tag.lftbe tag equals AND_OP,
the operator is an "andtt operator. If it equals OR_OP, the operator is an "or"
operator.

Panmeters:
aString - the 18g that defines the binary operator

Tbrows: UndefinedExceotion
if the tag is not equal to eitber AND_OP or OILOP

Metbods

• IsAncIOp

public boolean isAndOp ()

Retums true if the composite trigger that uses this operalor should be set off
only wben botb of its subttiggers have gone off. Retums false if this is an
"or" operator.

Retura.:
true ifthis operalor represents a logical "and", false otherwise

97

•

•

• isOrOp

public boolean isOrOp()

Re!nms true if the composite trigger that uses this operator should be set off
when either of its two subtriggers goes off. Retums false if this is an "and"
operator.

Returns:
true ifthis operator represents a logical "or", false otherwisc

• toStrinl

public java.lang.String toString()

Retums the string representation of the operator.

Overrides:
toSttins in class Object

98

•

•

Class
jsb.core.ClassLoadFailureException
abject

1
+----Throwable

1
+----Exception

1
+----jsb.core.ClassLoadFailureException

public dass Cl8ssLoadFailureException
extends Exception

A set of class loading exceptions, eacb differentiated by its error code.

Version:
August 1999

Autbor:
Jacqueline Beaulac (Faculty of Music, McGill University)

Variable Index

• CANNOT INSTANTIATE
Indicates tbat it is not possible to create an instance of the class to be loaded.

• CLASS NOT FOUND
Indicates that no class definition cao be found for the class to he loaded.

• WRONG CLASS TYPE
Indicates tbat the class to be loaded does not derive from a required class, or
does not implement a required interface.

Constructor Index
• jsb.core.ClapLoadFaDureExceptlon(int, String)

Construets a class loading exception witb the given error code and message.
• jsb.core.gesslAPdFallureExceptlon(int)

Construets a class loading exception with the given error code.

Metbod Index

• aetErrorCode()
Retums the error code, whicb cm be used for elIOr recovery purposcs.

99

•

•

Variables

• CANNOT_INSTANTIATE

public static final int CANNOT_INSTAN'l':IATE

Indicates that it is not possible to create an instance of the class to be loaded.
This could occur because of access restrictions, or because the attempt to
create an instance caused an exception.

public static final int CLASS~OT_FOOND

Indicates that no class definition cao be found for the class to be loaded.

public static final int WRONG_CLASS_TYPE

Indicates that the class to be loaded does not derive from a required class, or
does not implement a required interface.

Constructors

• ClassLoadFailureException

public ClassLoadFailureException(int anErrorCode,
String aMessage)

Constructs a class loading exception with the given error code and message.

Panmeten:
anErrorCode - an int tbat defines the type of error
aMessage - a message tbat cao be use<! to display the error

• ClassLoadFailureException

public ClassLoadFailureException(int anErrorCode)

Constructs a class loading exception witb the given error code.

Parameten:
anErrorCode - an int tbat defines the type of error

100

•

•

Methods

• letErrorCode

public int getErrorCode()

Returns the error code9 whicb cao be used for error recovery purposes.

Returas:
an inl that dermes the type oferror

101

•

•

Class jsb.core.UndefinedException
Object

1
+----Throwable

1
+----Exception

1
+----jsb.core.UndefinedException

public class UndeflnedException
extends Exception

A set ofexceptions tbat may he thrown when SequenceobjectS are defined Each
indicates that incomplete or erroneous information was provided. sucb that the
object could not he created. The exceptions are differentiated by error code.

Version:
August 1999

Autbor:
Jacqueline Beaulac (Faculty of Music, McGill University)

SeeAJso:
SeguenceObject

Variable Index

• BAD PARAM
Indicates tbat an unknown parameter was passed to a ParameterizedObject.

• ILLEGAL PARAM VALUE
Indicates tbat an illegal value was passed to a ParameterizedObject.

• NO CHILDREN
Indicates tbat no children were listed wben a CompositeSequenceobject was
defined.

• NO CYcy;§
Indicates tbat the number ofcycles was Dot defined for a
CompositeSequenceobject.

• NO DRIVER
Indicates tbat no instance of the driver class was provided.

• NOm
Indieates tbat the ID tag was missing.

102

•

•

• STOPl1UGGER MISMATCH
Indicates that the StopTrigger specified was inappropriate for the type of
Sequenceobject defined.

• UNKNOWN TRIGGEROP
Indicaœs tbat an unknown StopTriggerOp was used.

Constructor Index
• Jsb.core.UndeftnedException(in~ String)

Constructs an UndefinedException with the given errorcode and message.
• Isb.core.UndeflnedException(int)

Constructs an UndefinedException witb the given error code.

Method Index

• letErrorCodlO
Retums the error code, whicb can be used for error recovery purposes.

Variables

public statie final int BAC_PARAM

Indicates tbat an unknown parameter was passed to a ParameterizedObjeet.

SeeAlso:
ParameterizedObject

• ILLEGAL_PARAM_VALUE

public static final int ILLEGAL_PARJULVALUE

Indicates tbat an illegal value was passed to a ParameterizedObject.

SeeAlso:
ParameterizedObject

• NO_ClllLDREN

public statie final int NO_CHILDREN

Indicates tbat no cbildren were listed when a Compos i teSequenceobject was
defined.

SeeAko:
CompositeSeguenceObject

103

•

•

public static final int NO_CYCLES

Indicates that the number of cycles was not defined for a
CompositeSequenceObject.

SeeAlso:
CompositeSeguenceObject

• NO_DRIVER

public static final int NO_DRIVER

Indicates that no instance of the driver elass was provided.

SeeAlso:
SegueneeDriver

• NO_ID

public static final int NO_ID

Indicates that the ID tag was missing.

public static final int STOPTRIGG~SMATCH

Indicates that the StopTrigger specified was inappropriate for the type of
Sequenceobject defined.

SeeAlso:
StopTriBger, SeguenceObject

• UNKNOWN_TRIGGEROP

public static final int ONKNOWN_TRIGGSROP

Indieates tbat an unknown StopTriggerOp was used.

SeeAlso:
StopTriBgerOp

Constructors

• UDdeftDedExceptiOD

public UndefinedException(~tanErrorCode*
String aKessage)

Construets an OndefinedException with the given errorcode and message.

Pllnuneters:
anErrorCode - an int that defines the type of error
aMessage - a message tbat can he used to display the error

104

•

•

• UndefinedException

public UndefinedException(int anErrorCode)

Constructs an UndefinedException with the given error code.

Panmeters:
anErrorCode - an int that defines the type of error

Methods

• getErrorCocie

public int getErrorCode()

Retums the error code, wbich can he used for errar recovery purposes.

Retums:
an int that dermes the type oferror

lOS

•

•

package jsb.gui

ClassIndex
• BasicObjectGui
• CommitListener
• CompositeObjectGui
• DataFrame
• ParamsTable
• ParamsTableModel
• SeguenceGui
• StopTriggerPanel

106

•

•

Class jsb.gui.BasicObjectGui
Object

1
+----Component

1
+----Container

1
+----JComponent

1
+----JlnternalFrame

1
+----jsb.gui.BasicObjectGui

public class BasicObjectGui
extends JIntemaIFrame

A Swing-compatible frame that cao be used for creating. displaying. and editing a
BasicSequenceObject.

Version:
August 1999

Autbor:
Jacqueline Beaulac (Facu1ty of Music, McGill University)

SeeAlw:
BasicSequenceObject

Variable Index

• drlverComboBox
The field used to display the currendy selected driver.

• idFieId
The field tbat is used to display the ID of the sequence objecL

• okButtoD
The button used to confirm tbat the data is complete and the sequence object
sbould be entered ioto a sequence.

• tbeDriver
The currendy selected driver.

• theParamsTable
The table used to display the parameters of the current driver.

• theStopTrillerPanel
The panel used to display the stop trigger of the sequence objecte

107

•

•

CODStructor Index

• .isb.gLBplcObJeetGuiO
Constructs a GUI tbat can be used for creating a BasicSequenceObject.

• Jsb·IIIi.BaslcObJeetGui(BasicSequenceObject)
Construets a GUI that can be used to display and edit a
BasicSequenceObject.

Method Index
• addCommItListene[(CommitListener)

Adds a listener tbat will he called wben the OK button is pressed.
• getBasicSequenceObJsgO

Retums the object displayed in tbis GUI.

Variables

• driverComboBox

final javax. swing . JComboBox clriverComboBox

The field used to display the currently selected driver.

• IdFleld

final j avax. swing. JTextField idField

The field that is used to display the ID of the sequence objecte

• okButton

final javax. swing .JButton oJeButton

The button used to confirm tbat the data is complete and the sequence object
sbould be entered into a sequence.

• tbeDriver

jsb.core.SequenceDriver theDriver

The currently selected driver.

• tbeParamsTable

final j sb. gui . ParamsTable theParamsTable

The table used to display the parameters of the current driver.

• tbeStopTriaerPaDel

jsb.gui.StopTriggerPanel theStopTriggerPanel

The panel used to display the stop nigger of the sequence objecL

108

•

•

Constructors

• BasicObjectGai

public BasicObjectGui() tbrows ClassLoadFailureException

ConstnJcts a GUI that can he used for creating a BasicSequenceobject.

Throws: ClassLoadFailureException
if a driver cannot he loaded

• BasicObjectGui

public BasicObjectGui(BasicSequenceObject aBasicSequenceObject)
throws ClassLoadFailureException

ConstnJcts a GUI that can he used to display and edit a
BasicSequenceobject.

Parameters:
aBasicSequenceObject - the object to he edited

Throws: ClassLoadFailureException
if a driver cannot he loaded

Methods

• addCommitLlstener

public void addCommitListener(CommitListener aCommitListener)

Adds a listener that will be called when the OK bunoo is pressed. The listener
shouId add the object displayed in this GUI to a sequence.

Parameters:
aCommitListeoer - a listener wbich will respond wheo the data is
confirmed and sbould he retrieved

• getBasieSequenceObject

jsb.core.BasicSequenceobject getBasicSequenceobject{)
throws UndefinedException

Retums the object displayed in this GUI.

Returns:
the object displayed

Tbrows: UndefinedExceJ)tion
if the object is not fully defined or if sorne of the data is invalid

109

•

•

Class jsb.gui.CommitListener
abject

1
+----jsb.gui.CommitListener

public class CommitListener
extends Object
implements ActionListener

A listener tbat will retrieve the data from a temporary edit frame and store that
data in the main OataFrame. It listens for "coDÏtmllt events from the temporary
frame (sucb as pressing an OK bunon)..

Version:
August 1999

Author:
Jacqueline Beaulac (Facu1ty of Music, McGill University)

CODStructor Index
• Jsb.guI.CommitListene[(JIntemalFrame, DataFrame)

Constructs a listener whicb will pull data ftom a temporary edit frame wben
requcsted and store it witbin a master data storage abject.

Method Index

• acdonPerlormed(ActionEvCDt)

Coostructors

• CommitListener

public CommitListenereJInternalFrame anInternalFrame.
OataFrame aMasterFrame)

Constructs a listener whicb will pull data from a temporary edit frame wben
requested and store it witbin a master data storage object.

P8raJDeters:
anIntemalFrame - a temporary edit frame
aMasterFrame - the master application frame

110

•

•

Methods

• actionPerlormed

public void actionPerformed(ActionEvent anEvent)

111

•

•

Class jsb.gui.CompositeObjectGui
Object

1
+----Component

1
+----Container

1
+----JComponent

1
+----JInternalFrame

1
+----jsb.gui.CompositeobjectGui

public class CompositeObjectGui
extends I1ntemalFrame

A Swing-compatible frame that can he used for creating, displaying, and editing a
CompositeSequenceobject.

VerslOD:
August 1999

Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

See AIso:
CompositeSeguenceObject

Variable Index

• c:hBclAdcIButtoD
The button used to enter a new cbild ID.

• chBclList
The list that is used to display the IDs of the cbild abjects.

• cbDdListData
The list ofcbild IDs.

• c:bildNameFIeId
The field used to enter a new cbild ID.

• c:bildRemoveButton
The button used to remove a cbild ID ûom the Iist.

• idField
The field that is used to display the ID of the sequence object.

• man.·rComboBox
The field used to display the currently selected manager.

112

•

•

• okBuUon
The button used to confirm that the data is complete and the sequence object
sbould he entered into a sequence.

• theManager
The currently selected manager.

• tbeParamsTable
The table used to display the parameters of the current manager.

• tbeStopTri.ftrPanel
The panel used to display the stop trigger of the sequence objecL

Constructor Index
• Jsb.gui.CoDlpositeObiectGuiO

Constructs a GUI that cao he used for creating a Composite5equenceobj ect.

• Jsb.gui.CoDlposlteObJeçtGui(CompositeSequenceObject)
Constructs a GUI that cao he used to display and edit a
CompositeSequenceobject.

Method Index
• addColDDÛtListener(CommitListener)

Adds a listener tbat will he called when the OK button is pressed.
• getCompositeSequenceObiectO

Returns the object displayed in tbis GUI.

Variables

• cbDdAddButton

javax.swing.JButton childAddButton

The button used to enter a new child ID.

• cbildList

javax.swing.JList childList

The list that is used to display the IDs of the child objects.

• düldListData
java.util.Vector childListData

The list ofcbild IDs.

final javax.swing .J'rextField childNameField

The field used to enter a new child ID.

113

•

•

• clüIdRemoveBuUOn

javax.swing.JButton childRemoveButton

The button used to remove a child ID from the list.

• idField

javax.swing.JTextField idField

The field that is used to display the ID of the sequence objecte

• managerComboBos

final javax.swing.JComboBox managerComboBox

The field used to display the currently selected manager.

• okButton

javax.swing.JButton okButton

The button used to conÎmn that the data is complete and the sequence object
should he entered into a sequence.

• theManager

jsb.core.SetManager theManager

The currently selected manager.

• theParamsTable

jsb.gui.ParamsTable theParamsTable

The table used to display the parameters of the current manager.

• tbeStopTriaerPllneI

jsb.gui.StopTriggerPanel theStopTriggerPanel

The panel used to display the stop mgger of the sequence objecL

Construdors

• COlDpositeObjectGui

public CompositeobjectGui() throws ClassLoadFailureException

Construets a GUI tbat cm he used for creating a CompositeSequenceobject.

Tbrows: ClassLoadFailureExce,ption
ifa manager cannot he loaded

114

•

•

• CompositeObjedGui

public CompositeObjectGui
(CompositeSequenceobject aCompositeSequenceobject)
throws ClassLoadFailureException

Constructs a GUI tbat can be used to display and edit a
CompositeSequenceobject.

Parameters:
aCompositeSequcnœObjec:t .. the object to be edited

Tbrows: ClassLoadFailureExce,ption
if a manager cannat he loaded

Methods

• addCommitListener

public void addCommitListener(CommitListener aCommitListener)

Adds a Iistener tbat will be called when the OK butlon is pressed. The Iistener
should add the object displayed in this GUI ta a sequence.

Parameten:
aCommitListener .. a listener which will respond when the data is
confmned and sbould he retricved

• getCompositeSequeaceObject

jsb.core.CompositeSequenceobjeet getCompositeSequenceobject()
throws UndefinedException

Retums the object displayed in this GUI.

Retums:
the objec:t displayed

Tbrows: UndefinedException
if the object is Dot fully defined, or ifSODle of the data is invalid

liS

•

•

Class jsb.gui.DataFrame
abject

1
+----Component

1
+----Container

1
+----Window

1
+----Frame

1
+----JFrame

1
+----jsb.gui.DataFrame

public c1ass DataFnme
extends JFrame

Extends JFrame with an object-storing mecbanism. If a menu is provided by an
outside class~ the data that is stored within this class can be manipulated using the
menu.

This class is currently used only for Sequenceobjects and the JlnternalFrameS
associated witb them. However, this could easily be modified to he used as a
general-purpose classa

Version:
August 1999

Autbor:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index

• .Isb.pi.DataFl:IIDlQ
Constructs a window that cm contaïn GUI sub-elements.

Method Index
• e1ementsO

Retums a list ofall of the sequence objects, used for iteratiOD•
• &d(Object)

Retums the sequence abject associated with the given by.
• IStAIIElementsO

Retums the full data table.

116

•

•

• keysO
Retums a list of all of the data keys that may be used for iteration.

• pat(Object, Object, JIntemalFrame)
Stores the given objects, associates tbem with the given key, and œturns the
sequence object pœviously associated with that tey (if any).

• remove(Object)
Removes the objects associated witb the given key, and retums the
Sequenceobject that was associated with the key (if any).

• setObjectMenu{JMenu)
Sets the object menu.

Constructors

• DataFnme

public DataFrame()

Constmcts a window that cao contain GUI sub-elements.

The cunent implementation is based on a JDesktopPane.

Methods

• e1ements

java.util.Enumeration elements()

Retums a list ofall of the sequence objects, used for iteratiOD.

Retums:
an enumerated list of the SequenceobjectS stored

• let
java.lang.Object get(Object &Key)

Returns the sequence object associated with the given key.

Parameters:
aKcy - an ID that identifies a particular object

Retums:
the Sequenceobject associated with the ID

• getAllElemeats

java.util.Bashtable getA11Elements()

Retums the full data table.

Retums:
a table of the SequenceobjectS stored

117

•

•

• keys

java.util.Enumeration keys()

Retums a list of all of the data keys that may be used for iteration.

Retums:
an enumerated list of the keys of the objects stored

• put

java.lang.Object put(Object aKey,
Object aValue,
JlnternalFrame aGui)

Stores the given objects, associates them with the given key, and retums the
sequence object previously associated with that key (if any).

Parameten:
aKey - an ID tbat will he used to identify a particular Sequenceobject
and its GUI representation
aValue - the Sequenceobject associated witb the ID
aGui - the JlnternalFrame associated witb the ID

Returns:
the SequenceObject previously associated with the ID, or null if the ID
was not associated wim any object

• remove

java.lang.Object remove(Object key)

Removes the objects associated with the given key, and retums the
Sequenceobject that was associated with the key (if any).

Parameten:
aKey - an ID that will he identifies a particular Sequenceobject and its
GUI representation

Retums:
the Sequenceobject associated with aKey, or null ifaKey was Dot
associated with any object

• setObjectMeau

public voià setObjec:tHenu(JMenu anObjeceMenu)

Sets the object menu.

Parameten:
anObjectMenu - a Swing--compatible menu that shows the objects
available, provides a way to access them, and may also provide ways to
manipulare tbem

118

•

•

Class jsb.gui.ParamsTable
abject

1
+----Component

1
+----Container

1
+----JComponent

1
+----JTable

1
+----jsb.gui.ParamsTable

class ParamsTable
extends JTable

A panel tbat displays a set of parameters and their values in a tabular format.

Version:
August 1999

Author:
Jacqueline Beaulac <Faculty of Music. McGill University)

Note: This class is 'lot public and therefore cannot he used outside this package.

Constructor Index
• jsb.Illi.ParamsTabl!O

Constructs a table tbat cao be used lo display parameters and their associated
values.

Method Indes
• letValugO

Retums a table tbat contains all the parameters currently displayed and tbeir
associated values.

• setValg§(Hasbtable)
Sets the parameters to be displayed and their values.

119

•

•

Constructors

• ParamsTable

public ParamsTable()

Constructs a table that cao he used to display parameters and their associated
values.

Methods

• getVaiues

public java.util.Hashtable getValues()

Retums a table that contains all the parameters currendy displayed and tbeir
associated values.

Returns:
a table of parameters and their current values

• setVaiues

public void setValues(Hashtable aValueTable)

Sets the parameters to he displayed and their values.

Parameten:
aValueTable - a table that contains the params to he displayed and tbeir
cunent values

120

•

•

Class jsb.gui.ParamsTableModel
abject

1
+----AbstractTableModel

1
+----jsb.gui.ParamsTableModel

class ParamsTableModel
extends AbstraetTableModel _.

Note: This class is not public and therefore cannot he used outside this package.

Constructor Index
• Jsb.gui.ParamsTableModeIO

Method Index
• cetColumnCount()
• letColumnN~int)

• getRowCountO
• letValueAt(inl, int)
• letValu§û

Retums a table that contains all the displayed parameters and their associated
values.

• IsCeUEditabll<inl, inl)
• setValueAl(Objec~ inl, int)
• setValu!!CHashtable)

Initializes the table with a set of parameters and their values.

Constructors

• ParalllsTableModei

ParamsTableHodel ()

121

•

•

Metbods

• ptColumnCount

public int getColumnCount()
Overrides:

getColumnCount in class AbstraetTableModel

• letColumnName

public java.lang.String getColumnName(int column)
Overrides:

getColumnName in class AbstraetTableModel

• letRowCouat

public int getRowCount()
Overrides:

getRowCount in class AbstraetTableModel

• letValueAt

public java.lang.Object getValueAc(int row,
int c:olumn)

Overrides:
getValueAt in class AbstraetTableModel

• letVaiues

public java.util.Hashtable getValues()

Retums a table that contains aU the displayed parameters and their assoc:iated
values.

Retums:
a table of params and tbeir values

• isCeIlEditable

public boolean isCellBditable(int row,
int column)

Overrides:
isCellEditable in class AbstraetTableModel

• setValueAt

public void setValueAt(Object value,
int row,
int c:olumn)

Overrides:
setValueAt in class AbstraetTableModel

122

•

•

• setValues

public void setValues(Hashtable aParamsTable)

Initializes the table with a set of parameters and tbeir values.

Panmeters:
aParamsTable - a table of params and tbeir values

123

•

•

Class jsb.gui.SequenceGui
Object

1
+----jsb.gui.SequenceGui

public class SequenceGui
extends Object
implements SeguenceFormat

A GUI format for representing sequences.

Venion:
August 1999

Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Constructor Index

• Jsb·cui.8equenceGuiO
Constructs a new GUI using a plain vanilla DataFrame.

Methocl Index
• addBasicSequenceObiect(BasicSequenceObject)

Adds a BasieSequenceobjeet to this GUI representation of a sequence.
• addComposlteSequenceObJecl(CompositeSequenceObject)

Adds a CompositeSequenceobjeet to this GUI representation of a sequence.
• addElelllelll(SequenceObject)

Adds a section to tbis GUI representation ofa sequence.

• elemeallO
Retums an enumerated list ofail the sections.

• aetAllElemenllO
Retums a table ofail the sections, keyed by ID.

• .tFonnattedSeguen~
Retums the constructed sequence in GUI format.

• ftmoYeElemenl(Object)
Removes a section ûom this GUI representation of a sequence.

• setFonnattedSequenmObject)
Sets the main GUI window.

124

•

•

CoastructGrs

• SeqaeaceGui

public SequenceGui ()

Constnlcts a new GUI using a plain vanilla DataFrame.

SeeAlso:
DataFrame

Methods

• addBasicSequenceObJect

void addBasicSequenceobject
(BasicSequenceobject aBasicSequenceobject)
throws ClassLoadFailureException

Adds a BasicSequenceobject to this GUI representation of a sequence. This
belper metbod is used by the addElement method.

Parameters:
aBasicSequenceObject - a basic abject to be added to the cunent sequence

SeeAlso:
addElement, BasicObjectGui

• addCompositeSequeaceObject

void addCompositeSequenceobject
(CompositeSequenceobject aCompositeSequenceobject)
throws ClassLoadFailureException

Adds a CompositeSequenceobject to this GUI representation ofa sequence.
This belper mctbod is used by the adc1Element method.

Parameters:
aCompositeSequenceObject - a composite object to he l'Ideel to the
currenl sequence

SeeAlso:
addElemenL CompositeObjectGui

• addEJement

public void addElement (Sequenceobject aSequenceobject)
throws ClassLoadPailureException

Adds a section 10 this GUI representation of a sequence. This method
delegates to helper methods for eacb implemenwion of Sequenceobject
supponed in this format.

125

•

•

If new implementations of Sequenceobject are to be supported by a subclass,
a new helper method can he added for eacb new implementation. This method
can then he overriden to delegate to the new helper methods.

Parameters:
aSequenceObject - a section to he added to the currenl sequence

• e1ements

public java.util.Enumeration elements()

Retums an enumerated list of all the sections.

Retums:
a list of aU sections in the sequence

• letAllElements

public java.util.Hashtable getAllElements()

Retums a table of ail the sections, keyed by ID.

RetorDS:
a table of aU sections

• getFormattedSequence

public java .lang .Object getFormattedSequence ()

Retums the constructed sequence in GUI formal.

Retums:
the GUI representation of this sequence

• removeEiement

public jsb.core.Sequenceobject removeElement(Object &Key)

Removes a section from tbis GUI representatiOD of a sequence.

Parameten:
aKey - a ID to be used to identify the section to be removed from the
cunent sequence

• setFormattedSequence

public void setFormattedSequence(Object aSequence)

Sets the main GUI window.

Parameten:
aSequence - a DataFrame to be used as the main window and data holder
for this sequence

SeeAlso:
DataFrame

126

•

•

Class jsb.gui.StopTriggerPanel
Object

1
+----Component

1
+----Container

1
+----JComponent

1
+----JPanel

1
+----jsb.gui.StopTri9gerPanel

public class StopTriaerPanei
extends JPanel

A Swing-compatible GUI panel that can be used for creating, displaying, and
editing a StopTrigger.

Venioa:
August 1999

Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

SeeAlso:
StopTrigger

Constructor Index
• isb.gui.StopTriuerPanelO

Construets a panel wbicb may be used to create a new StopTrigger.

Methocl Index

• letValueO
Retums the trigger which is heing edited.

• setValul(StopTrigger)
Sets the mgger data which should bc shown and editcd in the panel.

127

•

•

Constnlctors

• StopTriaerPaneI

public StopTriggerPanel() throws ClassLoadFailureException

Constructs a panel which may he used to create a new StopTrigger.

Tbrows: ClassLoadFailureException
if any of the classes in triggerChoiceList cannot be loaded

Metbods

• getVaiue

public jsb.core.StopTrigger getValue() throws UndefinedException

Retums the trigger which is heing edited.

Returns:
the stop trigger currendy shown

• setVaiue

public void setValue(StopTrigger aStopTrigger)

Sets the trigger data which should he shown and edited in the panel.

Parameters:
aStopTrigger - the trigger to he edited

128

•

•

package jsb.text
CIass Index

• SeguenceText

Exception Index
• BadParseException

129

•

•

Class jsb.text.SequenceText
Object

1
+----jsb.text.SequenceText

public class SequenceText
extends Object
implements SeguenceFormat

A text format for representing sequences. If new implementations of
Sequenceobject are provide~ this class cao he extended to support them. (AIl of
the internai methods used in the class are declared protected ratber tban
private in order to alIow easier subclassing.)

Venion:
August 1999

Autbor:
Jacqueline Beaulac (Faculty of Music, McGill University)

SeeAlso:
SeguenceObject

Constructor Index
• .isb.text.SequenceTextQ

Metbod Index
• addBasieSequenceObJ.!d(SttingBuffer. BasicSequenceObject)

Adds a BasicSequenceobject lo this text representatioD of a sequence.
• addCompositeSequenœObJld(StringBuffer. CompositeSequenceObject)

Adds a CompositeSequenceObject to this text representation of an sequence.
• addElemenl(SequenceObject)

Adds a section to tbis text representation of a sequence.
• addParams(StringBuffer. Hashtable)

Adds a set of parameters to tbis text representation of a sequence.
• addStopTrisnr(SttingBuffer. SlopTrigger)

Adds a stop ttigger to tbis text representation of a sequence.

• elemenl!O
Retums an enumeration of ail the sections.

130

•

•

• flrstParse(Object)
Parses the contents of a stream into individual string tokens, removing C-style
comments.

• ntAllElements()
Retums a table of ail the sections, keyed by ID.

• ntFormattedSequenm)
Returns the constructed sequence in text format.

• ntNextToken(Enumeration, ml)
Retums the next token in the given Enumeration, or throws the given
exception.

• nextBasicSeguenc:eObJ!s!(Enumeration)
Parses a BasicSequenceObject out of the text representation.

• nextCompositeSeguenceObJsg(Enumeration, String)
Parses a CompositeSequenceObject out of the texl representation.

• nextParams(Enumeratïon)
Parses a set of parameters out of the text representation.

• nextStopTrlger(Enumeration)
Parses a StopTrigger out of the text representation.

• removeElement(Object)
Removes a section from this text representation of a sequence, based on the
ID of the sectiOD.

• setFonnattedSequenmObject)
Sets the current sequence and parses it from text format.

CoDStructors

• SequenceText

public SequenceText ()

Methocls

• "dBasicSequeaceObject

protected void addBasicSequenceObject
(StringBuffer textRepresentation,
BasicSeguenceObiect aBasicSequenceobject)

Adds a BasicSequenceobject to this text representatioD of a sequence. This
helper method is uscd by getFormattedSequence () •

Parameten:
textRepresentation - the current text holder
aBasicSequenceObjec:t - a basic object to be added to the cunent sequence

SeeAlso:
getFonnattedSeguence

131

•

•

• addCompositeSequenceObject

protected void addCompositeSequenceobject
(StringBuffer textRepresentation,
COmpositeSequenceobject aCompositeSequenceobject)

Adds a Composi teSequenceobject to this text representatioo of an sequence.
This belper method is used by getFormat tedSequence () .

Parameters:
textRepresentation .. the curreot text bolder
aCompositeSequenceObject .. a composite object to be added to the
current sequence

SeeAlso:
getFonnattedSeguence

• addElement

public void addElement(SequenceObject aSequenceObject)

Adds a section to this text representation of a sequence. This metbod detegates
to belper methods for each implementation of SequenceObject supported in
this fonnat.

If new implementations of SequenceObject are to be supported by a subclass,
a new helper method can be added for eacb new implementation. This method
can tben be overriden to delegate to the new belper methods.

Parameters:
aSequenceObject .. an object to be added to the current sequence

• ad~
protected void addParams(StringBuffer textRepresentation,

Hashtable aParamTable)

Adds a set of parameters to this text representation of a sequence.

Parameters:
textRepresentalion .. the current text holder
aParamTable .. a table containing a set of parameters and their values, to
he added to the current sequence

• addStopTriaer

protected void addStopTrigger(StringBuffer textRepresentation,
StopTrigger aStopTrigger)

Adds a stop trigger to tbis text representalioD of a sequence.

Panmeten:
textRepresentation .. the current text holder
aStopTrigger .. a stop trigger to be added to the cunent sequence

132

•

•

• elements

public java.util.Enumeration elements()

Returns an enumeration of ail the sections.

RetarDs:
an enumerated list of aU SequenceObjectS in this sequence

• ftrstParse
protected java.util.Enumeration firstParse(Object aSequence)

throws BaciParseException

Parses the contents of a stream into individual string tokens, removing C-style
comments.

Parameters:
aSequence - a reader from which the text tokens will be read

1lmows:BadP~Exception

ifan 1/0 error occurs while reading the stream

• getAUElements

public java.util.Hashtable getAllElements()

Retums a table of all the sections, keyed by ID.

Retums:
a table of all sections

• getFormattedSequeace

public java.lang.Object getFormattedSequence()

Returns the constmcted sequence in text format. This method delegates to
helper methods for eacb implementation of Sequenceobject supponed in this
format.

Ifnew implementations of Sequenceobject are to be supported by a subclass,
a new helper method cao he added for each new implementation. This method
cao then be overriden to delegate to the new belper methods.

Returns:
a StringBuffer that contains the text representation of this sequence

• getNextToken

protected java.lang.String getNextToken(Enumeration textTokens,
int errorCode)

throws BadParseException

Retums the next tolœn in the given Enumeration. orthrows the given
exception. This is a convenience method, sinc:e tbis operation is made many
limes within the parsing methods.

133

•
•

Parameters:
textTokens - an enumerated list of strings
errorCode - an int that indicates the type of BadParseException to he
tbrown if the end of the list of tokens bas been reached

11uows:BadP~Exception

if no more tokens in the enumeration

nextBasicSequenceObJect

•

protected jsb.core.BasicSequenceObject nextBasicSe~enceobject

(Enumeration textTokens)
~ows BadParseException, undefinedException,

ClassLoadFailureException

Parses a BasicSequenceObject out of the text representation. This belper
metbod is used by setFormattedSequence () .

Returns:
the next basic object defmed in the text

11uows: BadP~Exception
if a parsing error occurs

11uoW5: UndefmedException
if some values are missing

11uows: ClassLoadFailureException
if the driver class is invalid

SeeAlso:
setFonnattedSeguencc9 BasicSeguenceObject

• nextCompositeSequenceObJect

protected jsb.core.CompositeSequenceObject
nextCompositeSequenceobject(Enumeration textTokens,

String currToken)
throws BadParseException, UndefinedException,

ClassLoadFailureException

Parses a CompositeSequenceobject out of the text representation. This
belper metbod is used by setFormattec1Sequence () •

Retums:
the next composite object defined in the text

11uows: BadParseExcegtion
if a parsing error occurs

11uows: UndefinedException
if sorne values are missing

11uows: ClassLoadFailureException
if the driver class is invalid

SeeAlso:
setFonnattedSequencc. CompositeSeguenceObject

134

•

•

• nestI'ar8JmJ

protected java.util.Hashtable nextParams(Enumeration textTokens)
throws BadParseException

Panes a set of parameters out of the text representation.

Returns:
a table of parameters and their associated values

Tbrows: BadParseExceJ!tion
if a parsing error occurs

• nextStopTriaer

protected jsb.core.StopTrigger nextStopTrigger
(Enumeration textTokens)
throws BadParseException, UndefinedException,

ClassLoadFailureException

Parses a StopTrigger out of the text representation.

Retums:
a stop trigger

Tbrows: BadParseException
ifa parsing error occurs

Tbrows: UndefinedException
if sorne values are missing

Tbrows: ClassLoadFailureException
if the driver class is invalid

• reDlOveElement

public jsb.core.Sequenceobject removeElement(Object &Key)

Removes a section from tbis text representation of a sequence, based on the
ID of the section.

Parameten:
aKey - the ID of the Sequenceobject to he removed from the cunent
sequence

Returns:
the Sequenceobject tbat bas just been removed

• setFormauedSequeace

public void setFormattedSequence(Object aSequence)
throws BadParseException, UndefinedException,

ClassLoadPailureException

Sets the cunent sequence and parses il from text format. This mcthod
delegates to helper mcthods for eacb implementatioD of Sequenc:eobject
supported in tbis format.

135

•

•

If new implementatioDS of Sequenceobject are to he supported by a subclass,
a new helper method can he added for each new implementation. This method
can then he overriden to delegate to the new helper methods.

Parameters:
aSequence - an InputStreamReader from which the text script will he read

Tbrows: BadParseException
if a parsing error occurs

Tbrows:UndefinedExœption
if a parsed object is badly defmed

Tbrows: ClassLoadFailureException
if a class used in a parsed object cannot be loaded

136

•

•

Class jsb.text.BadParseException
abject

1
+----Throwable

1
+----Exception

1
+----jsb.text.BadParseException

public class BadParseException
extends Exception

A set of text parsing exceptions, each differentiated by its error code.

Version:
August 1999

Author:
Jacqueline Beaulac (Faculty of Music, McGill University)

Variable Index

• DUPLICATE DEF
Indicates that an element was defined twice in the same block.

• M1SSING DRIVER
Indicates that the name of a driver class was missing.

• MlSSING ID
Indicates that ID information was missing.

• MlSSING STOPfRlGGER
Indicates that a stop trigger was missing.

• MlSSING TRIGGER PARAMS
Indicates that the parameters for a stop trigger were missing.

• STREAM ERROR
Indicates that an error occured when reading a text stream.

• mlCLOSED PARAMS
Indicates that the closing bracket for a set of parameters was missing.

• YNCLOSED SEJ:
Indicates that the closing bracket for a set ofcbild IDs was missing.

• UNCLOSED STOPl1UGGER
Indicates that the closing bracket for a stop trigger was missing.

• UNENDED OB.JEg
Indicates that the closing symbol for an object was missing•

137

•

•

• lINKNOWN TAG
Indicates mat a word that does not correspond to any Imown keyword was
used.

• llNMATCHED PARAM
Indicates that the value of a parameter was missing.

CoDStructor Index
• jsb.text.BaclParseException(in~ String)

Constructs a parsing exception with the given error code and message.
• jsb.text.BadParseException(int)

Constructs a parsing exception with the given error code.

Method Index

• letErrorCod~)
Retums the error code9 whicb can he used for error recovery purposes.

Variables

public static final int DUPLlCATE_DEF

Indicates that an element was defined twice in the same black.

public static final int MISSDNG_DRIVER

Indicates tbat the name of a driver class was missing.

SeeAlso:
SeguenceDriver

• MlSSlNG_1D

public static final int MISSDNG_ro

Indicates tbat ID information was missing.

public static final int HISSING_STOPTRIGGER.

Indicates tbat a stop trigger was missing.

SeeAlso:
StopTrigger

138

•

•

public static final int NISSING_TRIGGER_PARAMS

Indicates that the parameters for a stop trigger were missing.

SeeAlso:
StopTrigger

• STREAM_ERROR

public static final int STREAM_ERROR

Indicates tbat an error occured wben reading a text stream.

public static final int ONCLOSED_PARAMS

Indicates that the closing bracket for a set of parameters was missing.

SeeAlso:
ParameterizedObject

• UNCLOSED_SET

public static final int ONCLOSED_SET

Indicates tbat the closing braclcet for a set of cbild IDs was missing.

SeeAlso:
CompositeSeguenceObject

• UNCLOSED-STOPI'RIGGER

public static final int ONCLOSED_STOPTRIGGER

Indicates that the closing braclcet for a stop trigger was missing.

SeeAlso:
StopTrigger

• UNENDED_OBJECf

public static final. int UNENDED_OBJECT

Indicates tbat the closing symbol for an object was missing.

public static final int ONKNOfriN_TAG

Indicates that a word that does Dot correspond to any known keyword was
used.

139

•

•

public static final int UNMATeHEO_PARAM

Indicates that the value of a parameter was missing.

SeeAlso:
ParameterizedObject

Constructors

• BadParseExcepliOD

public BadParseException(int anErrorCode,
String aMessage)

Construets a parsiDg exception with the given error code and message.

Parameters:
anErrorCode - an int that defines the type of error
aMessage - a message that can he used to display the error

• BadParseExcepdon

public BadParseException(int anErrorCode)

Constructs a parsiDg exception with the given error code.

Parameters:
anErrorCode - an int tbat dermes the type of error

Methods

• getErrorCode

public int getErrorCode()

Retums the error code. which cao he used for error recovery purposes.

Retunls:
an inl that defines the type of error

140

