
Design Space Exploration of Graph Neural Networks for Inductive Link Prediction

A Thesis

Presented to

The Division of Computer Science

McGill University

In Partial Fulfillment

of the Requirements for the Degree

Masters of Science

Jacob Danovitch

August 2023

Approved for the Division
(Computer Science)

Reihaneh Rabbany Fernando Diaz

Acknowledgements

Thank you to my supervisors, Professor Reihaneh Rabbany and Professor Fernando
Diaz, for their time and efforts in guiding this work, reviewing this thesis, and support-
ing my research throughout my graduate studies. This research was also supported
by Mila - Quebec AI Institute and the Digital Research Alliance of Canada, each
providing very generous compute resources to conduct the experiments necessary to
complete this thesis.

Table of Contents

Chapter 1: Introduction . 2
1.1 Motivation . 2
1.2 Research Objectives . 4

1.2.1 Population-level Objectives 4
1.2.2 Model-level Objectives . 5

Chapter 2: Background . 8
2.1 Preliminaries . 8
2.2 Applications of Machine Learning on Graphs 11

2.2.1 Node-level Tasks . 12
2.2.2 Set-level Tasks . 12
2.2.3 Graph-level Tasks . 13

2.3 Graph Representation Learning . 14
2.3.1 Random Walk and Factorization-based Methods 14
2.3.2 Graph Neural Networks . 15
2.3.3 Expressiveness of Graph Neural Networks 17
2.3.4 Design Space of Graph Neural Networks 20

2.4 Link Prediction . 22
2.4.1 Learning Representations for Link Prediction 22
2.4.2 Inductive Link Prediction . 23

Chapter 3: Design Space for Inductive Link Prediction 28
3.1 Standardized Architecture . 28
3.2 Proposed Design Space . 31
3.3 Experimental Design . 34

3.3.1 Population-level Experiments 37
3.3.2 Model-level Experiments . 38

Chapter 4: Evaluation . 39
4.1 Methodology . 39
4.2 Population-level Analysis . 41

4.2.1 Aggregate Generalization Ability 41
4.2.2 Out-of-Distribution Analysis 43

4.3 Model-level Analysis . 48
4.3.1 Dimension-level effects . 48
4.3.2 Performance by Design Dimension 50
4.3.3 Reduced Design Space . 57

Conclusion . 60

References . 62

List of Tables

1.1 An overview of the hypotheses explored in this work. 6

2.1 Definitions of key terms. 9

3.1 Proposed design space for inductive link prediction. 32

4.1 Statistics for the graph datasets used in our experiments. The number
of graphs in each dataset is shown in the third column; for PPI and
Twitch, we sample from the total number of graphs in the dataset
which is enclosed in parentheses. 39

4.2 Mean and standard deviation by metric on the source and target
datasets. We find a small but statistically significance decrease in all
AUC, Accuracy, and Precision when applying ILP models to unseen
data. 42

4.3 The percentage change in performance between graphs from same and
different domains, respectively. Though we observe better generaliza-
tion better within-domain than cross-domain for all metrics, we are
unable to reject the null hypothesis. 45

4.4 The statistical significance of the effect of each design dimension on
model generalization across all metrics, which we define as the dif-
ference between a given performance metric on the source and target
graphs. We identify 3 design dimensions with a significant impact on
generalization for at least one metric. 49

4.5 Optimal design choices across all metrics for source and target datasets. 57
4.6 A reduction of our proposed full design space obtained by greedily

selecting the best-performing choices for each dimension. 58
4.7 Performance comparison between models sampled from the full and

reduced design spaces on the target graph. 59

List of Figures

3.1 Overview of proposed architecture for Inductive Link Prediction. . . . 29
3.2 Example of Controlled Random Search. 36

4.1 Distribution of performance metrics on the cross-graph link prediction
task. We see that for all metrics except Recall, distributions skew
slightly higher for the source dataset than the target dataset, indicating
a drop-off in performance. 41

4.2 Within- and cross-domain relationships between performance on the
source and target graphs. 43

4.3 Generalization ability between domains for AUC. 44
4.4 Heatmap of similarity scores between all graphs used in our experiments. 47
4.5 Correlation between graph similarity and model generalization. 48
4.6 Ranking analysis of global encodings across all metrics. 51
4.7 Ranking analysis of local encodings across all metrics. 52
4.8 Ranking analysis of message passing networks across all metrics. . . . 53
4.9 Ranking analysis of message passing layers across all metrics. 54
4.10 Ranking analysis of hidden channels across all metrics. 55
4.11 Ranking analysis of optimizers across all metrics. 56
4.12 Ranking analysis of learning rate across all metrics. 56

Abstract

Link prediction is a task with various important applications, including recommen-
dation systems and data mining. Recent approaches have leveraged powerful Graph
Neural Networks (GNNs) to achieve state-of-the-art performance by optimizing
unique representations for each node in a graph (transductive learning) or refining ex-
isting numeric attributes of each node (inductive learning). While these GNN-based
approaches are undoubtedly effective, their assumptions of the underlying data can
make them difficult to apply in realistic scenarios. In domains where the distribution
of data may shift, such as a social media platform constantly registering new users,
transductive approaches will not have optimized representations for unseen nodes
and will likely struggle. This problem is mitigated by inductive approaches which
utilize and refine existing node attributes; however, many graphs are completely
unattributed, preventing the application of inductive GNNs. An ideal solution for
link prediction in realistic settings would remedy these challenges by automatically
and inductively learning node representations end-to-end using the structure of
the graph, such that the same model maintains effectiveness in the presence of
new nodes, edges, and entirely different graphs, without depending on fixed node
representations or the presence of node attributes. In this thesis, we construct and
comprehensively evaluate a family of GNN-based models for link prediction satisfying
these properties in order to identify the key factors in building efficient, generalizable
link prediction models. We propose a standardized framework consisting of several
“design dimensions” based on state-of-the-art graph representation learning methods,
which we evaluate on the challenging cross-graph inductive link prediction task. We
complete an in-depth investigation of the generalization abilities of models within
our framework, both at the population level as well as broken down by design
dimension, and examine global trends such as the presence of a reduced subspace of
optimal models and the effects of the underlying data on generalization ability. By
providing insight into what factors lead to well-performing and generalizable models,
the results of our studies serve as a starting point to accelerate future work in the
still-young area of inductive link prediction.

Abrégé

La prédiction de liens est une tâche avec diverses applications importantes, notam-
ment les systèmes de recommandation et l’exploration de données. Les approches
récentes ont exploité des puissants réseaux neuronaux graphiques (GNN) pour at-
teindre des performances de pointe en optimisant des représentations uniques pour
chaque nœud d’un graphe (apprentissage transductif) ou en affinant les attributs
numériques existants de chaque nœud (apprentissage inductif). Bien que ces ap-
proches basées sur les GNN soient indéniablement efficaces, leurs hypothèses sur les
données sous-jacentes peuvent les rendre difficiles à appliquer dans des scénarios réal-
istes. Dans les domaines où la distribution des données peut varier, comme une
plateforme de médias sociaux enregistrant constamment de nouveaux utilisateurs, les
approches transductives n’auront pas optimisé les représentations pour les nœuds in-
visibles et auront probablement du mal. Ce problème est atténué par les approches
inductives qui utilisent et affinent les attributs de nœuds existants ; cependant, de
nombreux graphes sont entièrement non attribués, ce qui empêche l’application de
GNN inductifs. Une solution idéale pour la prédiction de liens dans des contextes
réalistes remédierait à ces défis en apprenant automatiquement et inductivement des
représentations de nœuds de bout en bout en utilisant la structure du graphe, de
sorte que le même modèle maintienne son efficacité en présence de nouveaux nœuds,
de nouvelles arêtes et de graphes entièrement différents, sans dépendre de représen-
tations de nœuds fixes ou de la présence d’attributs de nœuds. Dans cette thèse,
nous construisons et évaluons de manière exhaustive une famille de modèles basés sur
les GNN pour la prédiction de liens satisfaisant à ces propriétés afin d’identifier les
facteurs clés dans la construction de modèles de prédiction de liens efficaces et général-
isables. Nous proposons un cadre normalisé composé de plusieurs « dimensions de
conception » basées sur des méthodes d’apprentissage de représentations de graphe
de pointe, que nous évaluons sur la tâche difficile de prédiction de liens inductifs entre
graphes. Nous menons une enquête approfondie sur les capacités de généralisation
des modèles dans notre cadre, à la fois au niveau de la population et en fonction de la
dimension de conception, et examinons les tendances globales telles que la présence

d’un sous-espace réduit de modèles optimaux et les effets des données sous-jacentes
sur la capacité de généralisation. En fournissant des informations sur les facteurs qui
conduisent à des modèles performants et généralisables, les résultats de nos études
servent de point de départ pour accélérer les travaux futurs dans le domaine encore
jeune de la prédiction de liens inductifs.

Dedication

This thesis is dedicated to my parents Andrea and Mark and my grandmother Shiela,
who have always gone above and beyond in supporting me through whatever life has
thrown my way, and to my partner Emma, who is by my side no matter what through
every difficult day and late night. Without you all, this would not have been possible.

1

Chapter 1

Introduction

1.1 Motivation

Complex networks are ubiquitous to daily life. From the technology powering our
everyday communications and interactions to the structures that form our DNA, net-
works are a vital component of our everyday life. Their wide-ranging relevance and
importance has spurred a large body of research focused on understanding their so-
phisticated dynamics. For example, modeling travel patterns as networks can help
forecast traffic levels (Cui, Henrickson, Ke, & Wang, 2018; Jiang & Luo, 2021) to
more accurately estimate arrival times (Derrow-Pinion et al., 2021; Fang et al., 2020;
D. Wang, Zhang, Cao, Li, & Zheng, 2018) and optimize the availability of suitable al-
ternatives (Jiang, 2022; Yao et al., 2018), or even help prevent or mitigate the spread
of infectious diseases in epidemics and pandemics (Colizza, Barrat, Barthelemy, &
Vespignani, 2005; Kamp, Moslonka-Lefebvre, & Alizon, 2013; So, Chu, Tiwari, &
Chan, 2020). Similarly, understanding the interactions occurring in biological struc-
tures can help advance modern medicine by facilitating the discovery of novel drugs
(Abbas et al., 2021; MacLean, 2021). Networks can also be used to represent our
interests and preferences. Many recommendation scenarios can be framed as bipar-
tite graphs between users and an item or product, with network-theoretic algorithms
providing data-driven recommenations to enhance end-user experience by suggesting
new and useful items (Daud, Ab Hamid, Saadoon, Sahran, & Anuar, 2020; Huang,
Li, & Chen, 2005; Talasu, Jonnalagadda, Pillai, & Rahul, 2017).

Many of these applications are founded on the fundamental task of link predic-
tion (Adamic & Adar, 2003; Liben-Nowell & Kleinberg, 2007; Popescul & Ungar,
2003; Taskar, Wong, Abbeel, & Koller, 2003), which concerns the identification of
missing or future edges in complex networks. The importance of link prediction

1.1. Motivation 3

has led to a significant body of research towards developing effective and generally
applicable techniques, from heuristic methods Zhou, Lü, & Zhang (2009) to learning-
based approaches (Backstrom & Leskovec, 2010; Hasan, Chaoji, Salem, & Zaki, 2006;
Leskovec, Huttenlocher, & Kleinberg, 2010), especially those based on deep learning
(Islam, Aridhi, & Smaïl-Tabbone, 2020; Mutlu, Oghaz, Rajabi, & Garibay, 2020).
Deep learning methods for link prediction have shown to be quite powerful, auto-
matically learning representations for nodes, edges, and entire graphs without the
need for complex feature engineering. An important caveat to this approach is that
they are often transductive, meaning that they learn representations specific to each
node in a graph (Grover & Leskovec, 2016; Perozzi, Al-Rfou, & Skiena, 2014; Tang,
Qu, Wang, et al., 2015). This is a powerful approach as it allows the representations
to be optimized end-to-end, but comes with drawbacks that limit their applicabil-
ity in realistic settings where the full scope of the graph may not be visible during
training. This is often the case in domains such as social networks and recommender
systems, in which new users register for a service, or in temporal networks where
new nodes appear over time. In these scenarios, a transductive model will be unable
to generalize to the unseen nodes as their representations were not optimized during
training. While there are solutions (Ma, Guo, Ren, Tang, & Yin, 2020; Perozzi et al.,
2014), they are often complex or computationally infeasible to apply in practice, as
they require additional training before performing inference. In contrast, inductive
approaches (Hamilton, Ying, & Leskovec, 2017; Velickovic et al., 2018) use existing
numeric properties (or attributes) associated with each node instead of associating a
learnable, unique representation; for example, representing a node (an academic pa-
per) in a citation network as a binary vector x ∈ Z|V | where xj equals 1 if the paper
contains the word Vj from vocabulary V , otherwise 0. This approach is much simpler,
but such properties are not always available in practice, limiting their applicability
as well.

An ideal solution for link prediction in realistic settings would remedy these chal-
lenges by automatically and inductively learning node representations end-to-end
using the structure of the graph, such that the same model maintains effective-
ness in the presence of new nodes, edges, and even across entirely different
graphs. This ideal model would open the door to new advancements in many real-
world applications of link prediction by providing a general, flexible approach capable
of handling unseen data without depending on the presence of node attributes. As
such, this thesis will focus on the questions and considerations surrounding the con-
struction of a fully inductive, learning-based approach to link prediction, which we

1.2. Research Objectives 4

detail in the following section.

1.2 Research Objectives

The overarching goal of this thesis is to quantify the ability of inductive link prediction
(ILP) models to generalize to unseen data. The objectives of this work are formalized
below. In particular, we will evaluate the ability of ILP models to generalize to an
entirely new graph, the most challenging inductive learning scenario in which all test-
time data is completely novel. In this section, we lay out our hypotheses concerning
different aspects of the proposed task, as well as the proposed methodology and
measure(s) to sufficiently answer the question.

1.2.1 Population-level Objectives

Our first two objectives examine trends across the full population of ILP models to
establish their ability to generalize to unseen data, and if their ability is better or
worse in different scenarios.

Hypothesis 1.1 (How well do ILP models generalize to unseen data?). The primary
objective of this thesis is to assess the ability of inductive link prediction models to
generalize to unseen data. We will quantify this by computing performance metrics
(such as AUC, accuracy, or F1-score) for a given model on both seen and unseen data,
and measuring the relative generalization ability as shown by a percentage increase or
decrease in performance from seen to unseen data. We will consider these measures
at an aggregate level to determine the overall generalization ability of the model
architectures within our proposed framework. We hypothesize that in the aggregate,
ILP models will exhibit a decrease in performance when applied to unseen
data.

Hypothesis 1.2 (Is it more difficult to generalize across domains?). While our first
objective will indicate whether or not ILP models are able to maintain their per-
formance in the face of unseen data, it is important to understand if this trend is
consistent in different scenarios. In particular, it is important to consider the un-
derlying data when analyzing generalization; it could be the case that some types of
data contain useful characteristics present in many different datasets, making them
ideal for learning from, whereas others may be outliers from which it is difficult to
extrapolate knowledge. We will measure this by evaluating relative generalization

1.2. Research Objectives 5

in two scenarios: intra- and inter-domain transfer. Intra-domain transfer will com-
pare generalization between two different graphs in the same domain (e.g., between
citation networks), while inter-domain transfer will compare generalization between
graphs from different domains (e.g., from a citation network to a social network).
We expect that on average, models will generalize better between two graphs
from the same domain than between two graphs from different domains.

1.2.2 Model-level Objectives

After developing our understanding of how ILP models behave at the population
level, our final two objectives shift focus to their behavior at the model level; namely,
exploring the design of an optimal ILP model which can maintain strong performance
on unseen data.

Hypothesis 1.3 (What components of an ILP model affect its ability to generalize
to unseen data?). We begin by making the assertion that certain components within
our proposed framework will have a significant effect on the ability of a given model
to generalize. This will be measured by evaluating each candidate method for each
component of our proposed framework in terms of their generalization ability. Our
prior belief is that there exists a significant effect on generalization between
different components of our framework. This would indicate that our choice of
method for some model components is more important to performance than others,
which we will further explore by comparing multiple options for each component to
identify a set of optimal selections.

Hypothesis 1.4 (Is there a subspace of ILP model architectures that generalize
better to unseen data?). If a significant effect on performance does exist between
different model components, then optimally selecting these components should elicit
well-performing models. In particular, these selections should yield a reduced subspace
of model architectures within our framework which demonstrate better performance
on average than models sampled from the full set of architectures. Such a space
would be highly useful for future work in the area by providing a compact set of
model architectures significantly smaller than the full set, greatly reducing the time
and resources required to obtain a strong model. We will establish the existence
of this reduced subspace by using the results of RQ3 to obtain a set of optimal
choices for each component of our model, forming a candidate subspace. We will
then sample a number of models from our proposed subspace as well as the full
model space to determine if the performance of models from the proposed subspace

1.2. Research Objectives 6

is superior to those from the full space. Our hypothesis is that our reduced space
of optimal architectures will demonstrate superior generalizability versus
the full space.

Table 1.1: An overview of the hypotheses explored in this work.

Objective Hypothesis Measures

RQ1 ILP models will exhibit a decrease in
performance when applied to unseen

data.

Generalization (∆m); Mean %
change in performance metric m
between source & target graphs

RQ2 ILP models will show better
generalization between graphs from

the same domain than different
domains.

Comparison of ∆m when
source/target graphs are in same or

different domains

RQ3 Certain components of ILP models
will have a significant effect on

model generalization.

Comparison of ∆m by model
component

RQ4 There exists a reduced subspace of
optimal ILP models which are more

generalizable on average.

Comparison of ∆m between models
sampled from reduced and full

spaces

The contents of the thesis will focus on comprehensively answering the above
questions. We will first lay the foundations of our work by defining important concepts
and notations in Section 2.1, followed by a brief background of the applications of
machine learning to graphs in Section 2.2. Sections 2.3 and 2.4 will review the existing
body of work concerning deep learning methods for graph representation learning,
particularly for link prediction. With the groundwork solidified, Section 3 will detail
the experimental methodology used to answer the listed research questions. We begin
by proposing a standardized, modular framework for inductive link prediction based
on modern graph representation learning (GRL) techniques which is both effective and
efficient, detailing its various components and state-of-the-art candidate choices for
each, before describing the cross-graph ILP task which we use to evaluate each model
in the most difficult setting, and outlining the experiments we will conduct to validate
each of our hypotheses. The results of our experiments are discussed in Section 4,
wherein we determine the validity of our hypotheses and discuss their implications.
We first examine the behavior of ILP models within our proposed framework at a

1.2. Research Objectives 7

population level, establishing their generalization ability and considering the effects
of the underlying data, and then utilize the Randomized Controlled Search method
(You, Ying, & Leskovec, 2020) to efficiently analyze the various model instances
within our framework and identify the optimal choices for each design dimension,
before finally examining whether our proposed set of optimal architectures contains a
higher concentration of well-performing, generalizeable models in comparison to the
full “design space” (You et al., 2020) of model architectures. We conclude with a
review of our contributions which can be summarized as follows:

1. We conduct a novel study on the generalization abilities of numerous model ar-
chitectures for the inductive link prediction task. To the best of our knowledge,
no previous work has performed a comprehensive evaluation of ILP models,
particularly in the challenging cross-graph setting.

2. We propose a standardized framework for inductive link prediction based on
positional and structural encodings, message passing networks, and subgraph
pooling. The proposed framework is efficient, effective, and generalizable, mak-
ing it usable for real-world applications. This framework encapsulates the many
model architectures evaluated as part of our study, allowing us to zero-in on
the most important facets of the framework and the best choices to maximize
performance in different scenarios.

3. We examine the population-level behavior of ILP models. We demonstrate the
difficulty of the cross-graph ILP task by establishing a decrease in performance
on unseen data, and then we analyze the effect of the underlying data on gen-
eralization ability to determine if generalizing between graphs from the same
domain is lesser or greater than doing so between graphs of different domains.

4. We examine the model-level behavior of ILP models. Not only do we evaluate
the effectiveness of many architectures, we go further by analyzing specific model
components in order to identify key design choices to construct effective ILP
models. We also facet our analysis by metric, demonstrating how the best
model depends on the task and specific objective at hand. We also explore the
existence of an optimal subspace of model architectures that perform well on
the cross-graph ILP task.

Chapter 2

Background

This section of the thesis will provide a brief overview on graphs and their applications
to machine learning.

2.1 Preliminaries

This section will define several foundational concepts in network science and graph
machine learning. A simple graph G = {V , E} is a data structure which defines the
connections - or edges, (u, v) ∈ E - between a set of nodes V . A graph is often repre-
sented by its adjacency matrix A ∈ Rn×n, where Ai,j is the weight of the connection
between nodes i and j. In weighted graphs, we have Ai,j ∈ R, whereas in unweighted
graphs Ai,j ∈ {0, 1} to indicate the binary presence or absence of a connection. There
are many variations and extensions to the simple graph structure. For instance, a
heterogeneous graph - also frequently referred to as multi-relational or typed - is a
graph where each node and edge can be assigned a particular type label. Closely
related are k-partite networks, which are heterogeneous networks in which nodes of
the same type are never connected, as well as the knowledge graph, wherein labelled
edges are expressed as (head, relation, tail) triples. A more complex graph structure
is the multi-layer network G = {V, {E0, E1, . . . , En}}, in which one set of nodes is con-
nected by multiple independent sets of edges. Heterogeneous and knowledge graphs
can both be expressed as multi-layer networks by storing the edges for each relation
as independent layers. A multi-layer network can be represented by an adjacency ten-
sor A = [A0;A1; . . . ;An] ∈ Rn×n×n. Finally, there are graphs in which an arbitrary
number of nodes can be connected in a given edge. This is known as a hypergraph,
and is said to be k-uniform if all edges have cardinality k. A simple graph is then
equivalent to a 2-uniform hypergraph.

2.1. Preliminaries 9

Table 2.1: Definitions of key terms.

Term Notation Definition Example(s)
Additional
Names

Node v ∈ V A discrete
object or
entity.

Vertex, entity

Edge (u, v) ∈ E A connection
between two
nodes.

Graph G = {V , E} A set or tuple
of nodes and
edges.

Social
network,
academic
citations,
internet
hyperlinks

Network

Multi-layer
Network

G =
{V , {E0, . . . , En}}

A set of n
edge sets
connecting a
node set.

Temporal
networks
(e.g. monthly
snapshots),
protein
interaction
networks

Multiplex
network

Adjacency
Matrix

A ∈ R|V |×|V | A matrix
representation
of a graph,
where Ai,j > 0
if (i, j) ∈ E .

2.1. Preliminaries 10

Term Notation Definition Example(s)
Additional
Names

Adjacency
Tensor

A ∈
R|V |×|V |×|V |

A tensor
representation
of a
multi-layer
network,
where each
axis is the
adjacency
matrix for a
given layer.

Neighbors ui ∈ N (v) All nodes
which are
connected to
node v.

Random Walk [w0, w1, . . . , wℓ] The process of
randomly
sampling
nodes starting
from w0 ∈ V ,
such that
wi ∈ N (wi−1).

Heterogeneous
Graph

Same as
multi-layer
network.

A multi-layer
network where
each layer
represents a
different edge
label. May
optionally
assign each
node a label as
well.

Academic
network

Multi-
relational
network,
labelled graph

2.2. Applications of Machine Learning on Graphs 11

Term Notation Definition Example(s)
Additional
Names

Knowledge
Graph

{(h, r, t)} ∈
(E =
V × R × V)

A
heterogeneous
graph,
generally
having a large
n >> 1000
number of
edge labels.

Wikipedia

2.2 Applications of Machine Learning on Graphs

There are a number of tasks pertaining to graphs which machine learning models
can be applied to. At their cores, each task on a graph G = {V , E} fundamentally
concerns a subset of its nodes - a node set - s = {vi} ∈ Vk. In general, we want to
find a function (i.e., machine learning model) f : Vk → Rd such that ŷi = f(si) is
corresponds to a ground-truth label yi, which is done by minimizing some cost function
L aligned to the goal of the task.

Graph learning tasks are often classification based, with the goal of mapping s
to one of several class labels ci ∈ C. Models are provided binary vectors y ∈ {0, 1}|C|

as labels and produce probability scores ŷ ∈ R|C| as output. The objective of single-
label classification tasks is generally to find a model whose outputs ŷ minimize the
cross entropy cost function L = ∑|C|

i yi log(ŷi), or in the case |C| = 1, the binary cross
entropy:

L = −(y · log(ŷ) + (1 − y) · log(1 − ŷ)) (2.1)

If a node set can have more than one label, known as multilabel classification, the
sum of binary cross entropy losses across all labels can be used. Alternatively, a graph
learning task can be regression based, where we wish to map a node set to a single
scalar value s → R. Mean squared error is commonly used as a cost function for
regression tasks, with L = (y − ŷ)2.

In all tasks, we optimize a machine learning model on a training dataset, and
evaluate its performance on an inference dataset to ensure that the model is capable
of generalizing to unseen data. This necessitates the partitioning of a given graph
dataset into training and inference sets, which requires special consideration for graph

2.2. Applications of Machine Learning on Graphs 12

learning tasks. In the scenario where a node may appear in both the training and in-
ference sets, the task is said to be transductive in nature. In contrast, an inductive
task is one in which the nodes that appear in the training set are disjoint from those
which appear in the inference set. A more extreme inductive scenario could involve
completely separate graphs, where the model is trained on one or more graphs and
then performs inference on fully novel graphs. Broadly speaking, transductive tasks
measure a model’s ability to perform a task across an observed set of nodes, while
inductive tasks measure a model’s ability to perform a task across an unseen set of
nodes.

This section will provide a brief, non-comprehensive overview of several node-
level (k = 1), set-level (1 < k < |V|), and graph-level (k = |V|, i.e. s = V) tasks
alongside their respective categorizations (classification vs. regression, transductive
vs. inductive, etc.) and evaluation metrics.

2.2.1 Node-level Tasks

A node-level task considers a single node in a graph at a time; for example, when we
may wish to categorize a user in a social network, or to estimate the volume of traffic
a web page will receive. The former case refers to node classification, wherein we
try to find a function f : V → C that maps a single given node to one of several class
labels. We measure the quality of f using metrics such as accuracy and F1 score.
The latter task is an example of node regression, where f must map a given node
to a real-valued scalar and is evaluated by mean average error. In both tasks, the
dataset is partitioned node-wise into training and inference nodes Vtrain, Vtest ⊂ V .
In a transductive node-level task, the graph’s full set of edges are available during
both training and inference along with the nodes’ features X ∈ R|V|×D (should they
exist). The only information withheld is the label of each inference node in Vtest. In
the inductive setting, however, these edges and features are also withheld, meaning
that the model will be evaluated on nodes it has never seen before.

2.2.2 Set-level Tasks

Several tasks involve making predictions on sets of nodes with cardinality in [2, |V |−1],
most notably including link prediction. In link prediction, a model must identify
edges that are missing from the graph. In the classical setting, edges consist of
two nodes, and so a model must accept an edge, a set s ∈ V2, and perform binary
classification to determine whether the edge belongs in the graph. Hyperedge link

2.2. Applications of Machine Learning on Graphs 13

prediction generalizes this to higher values of k in hypergraphs. Binary link predic-
tion can be evaluated using any classification-oriented metrics such as accuracy, F1,
precision, and recall. While most frequently treated as a binary classification task,
link prediction can also be a regression task when a graph is weighted. In this case,
a model attempts to map an edge to the correct real-valued weight. Link prediction
can also be trained and evaluated in the ranking setting, where instead of classifying
edges as valid or invalid, models must return a relative ordering over a set of edges
such that the edges which do exist are ranked higher than those which don’t. In
this settings, models are trained with a ranking cost function such as margin loss,
L = max(0,m + ŷ+ − ŷ¬), where ŷ+ is a model’s prediction for a positive (valid)
edge and ŷ¬ is a model’s prediction for a negative (invalid) edge. Intuitively, this
cost function enforces that predictions for positive edges should be higher than for
negative edges. Models trained for ranking-based link predictions can be evaluated
using ranking metrics such as mean reciprocal rank (MRR) and mean average preci-
sion (MAP), and in the case of a weighted graph, graded relevance measures such as
normalized discounted cumulative gain (NDCG).

For transductive link prediction, a random sample of the edges are withheld to
form etest, and the remaining edges as well as any node features are available during
training and inference. The inductive case is similar to node classification in that a
subset of nodes, along with their edges and features, are once again held out during
training. At inference, however, not all of the edges associated with Vtest are made
available as they are during classification; only a subset of these nodes’ edges are
provided, and the task of the model is to use these along with any given node features
to identify the remaining held-out edges.

A closely related task specific to knowledge graphs is question answering, where
a model accepts a query graph Q = {s, Ẽ} : s ∈ Vk, Ẽ ⊂ E representing a logical
question, which is the induced subgraph of G over s. The goal is to find the entity
which satisfies the query graph, and the task can be evaluated using link prediction
metrics. There are additional set-level tasks such as community detection. These
tasks are out of the scope of this thesis, however, and are therefore left for further
reading.

2.2.3 Graph-level Tasks

Finally, a graph-level task introduces the scenario when one instance is constituted
by an entire graph. These tasks are similar to node-level tasks, primarily taking the

2.3. Graph Representation Learning 14

simple form of either classification or regression, with the main difference being that
graph-level tasks are all inherently inductive to some extent, as each instance presents
a novel graph (though nodes can of course appear in multiple graphs). Graph clas-
sification is the task of mapping a graph to a class label G → C, with real-world
applications such as identifying a category for a group of connected documents on
Wikipedia or detecting if a discussion thread on a social media platform contains any
instances of hate speech. It follows that graph regression is the task of mapping a
graph to a real-valued scalar G → R, such as predicting the toxicity level of a chemical
compound.

2.3 Graph Representation Learning

Representation learning (Bengio, Courville, & Vincent, 2013) is the task of computing
d-dimensional real-valued feature vectors (or embeddings) x ∈ Rd for each point in a
given dataset. These feature vectors are then used as inputs to a downstream machine
learning model to solve a classification or regression task, or for visualization and
analysis of a dataset. In the context of graphs, this often means learning feature
vectors for each node. The rise of neural-network based approaches to representation
learning (Krizhevsky, Sutskever, & Hinton, 2012; Mikolov, Chen, Corrado, & Dean,
2013; Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) made it possible to obtain
high-quality feature vectors for large language and image datasets. This section will
discuss how those approaches were extended to learn representations for graph-based
data.

2.3.1 Random Walk and Factorization-based Methods

A common approach to learning word representations is by sampling sentences from
a large corpus and optimizing the representation of each word to be closest to that
of the words it most commonly co-occurs with. Perozzi et al. (2014) connected
this process to performing random walks on graphs, resulting in the DeepWalk node
embedding model. For a graph G = {V , E} DeepWalk learns a node embedding
function Φ : V → Rd by drawing a corpus C = {wi} of random walks, where wi =
[v0, v1, . . . , vn : vi ∈ V]. The parameters of Φ are optimized to maximize the co-
occurrence probability of nodes which appear in close proximity in the same random
walk(s) using the SkimGram method (Mikolov, Chen, et al., 2013). Each walk is split
into 2w + 1-length windows, and we minimize the negative log likelihood of the first

2.3. Graph Representation Learning 15

and last w nodes given the embedding of the middle node:

min
Φ

: − log Pr ({vi−w, . . . , vi−1, vi+1, vi+w}|Φ(vi))

A number of related approaches quickly followed, most notably Node2Vec (Grover
& Leskovec, 2016), which generalized the random walk extraction approach proposed
in DeepWalk to allow configuration of depth versus breadth and restart probability in
each walk. A concurrent line of work examined factorization of the adjacency matrix
and its powers as an avenue to obtain node embeddings. LINE (Tang, Qu, Wang,
et al., 2015) is a highly efficient factorization-based approach which preserves both
first and second-order proximity in its resulting embedding space by decomposing.
This was extended to the heterogeneous setting by PTE (Tang, Qu, & Mei, 2015),
which jointly optimizes the embeddings of word-word, word-document, and word-label
bipartite networks to produce content-aware node embeddings. In fact, factorization-
based approaches are particularly well suited to highly multi-relational networks and
schema-rich knowledge graphs, whose adjacency tensors can be decomposed to obtain
knowledge graph embeddings (KGE) (Balazevic, Allen, & Hospedales, 2019; Bordes,
Usunier, García-Durán, Weston, & Yakhnenko, 2013; Kazemi & Poole, 2018; Nickel,
Tresp, & Kriegel, 2011; Trouillon et al., 2017).

Interestingly, connections have been identified between both lines of work. NetMF
(Qiu et al., 2018; Xie et al., 2021) established equivalencies between DeepWalk, LINE,
PTE, and node2vec under the unified umbrella of matrix factorization. In addi-
tion, the recently proposed ReFactor-GNN (Chen et al., 2022) demonstrated how
factorization-based methods could be recast as message-passing architectures, the
subject of the following section.

2.3.2 Graph Neural Networks

Neural Message Passing

The above random walk and matrix factorization-based approaches integrate multi-
layer neural networks with graph-theoretic objective functions in order to produce
node embeddings. While these methods are able to preserve certain properties of the
underlying graph, they lack the strong inductive bias found in neural network ar-
chitectures specialized for other domains, such as Convolutional Neural Networks for
image processing. In contrast, Graph Neural Networks (GNNs) are generally based on
the message passing framework (Gilmer, Schoenholz, Riley, Vinyals, & Dahl, 2017), in
which nodes’ representations are computed as a function of their neighbors’ represen-

2.3. Graph Representation Learning 16

tations. As explained by (Bronstein, Bruna, Cohen, & Veličković, 2021; Veličković,
2022), for a graph G = {V , E} with node representations X ∈ RV×d, the message
passing procedure in GNNs can be summarized as a sequence of three steps:

• Message: A function ψ : Rd × Rd → Rk which computes a message between
two nodes as a function of their representations;

• Aggregate: A permutation invariant function ⊕ : Rs×k → Rl which aggregates
a set of vector-valued messages;

• Update: A function ϕ : Rk × Rl → Rm which updates a node’s representation
as a function of its current representation and the aggregated messages of its
neighbors.

Several rounds of message passing can be performed consecutively to propagate node
representations across multiple hops, increasing a GNN’s receptive field. In this case,
we compute the embedding hv of a node v at the ith round of message passing as:

h(i)
v = ϕ

h(i−1)
v ,

⊕
u∈N (v)

ψ(h(i−1)
v ,h(i−1)

u)

The resulting node representations are then used to optimize an objective function
for a downstream task as described above. In node classification, for example, a linear
map ρ : Rm → Rc (where c is the number of class labels) is applied to each node’s
embedding hv to predict an output label.

Convolutional architectures

There are a number of instantiations of the message passing framework described
above. An instance of a message passing model is considered convolutional if its
message passing function satisfies:

ψ(hv,hu) = cv,uΨ(hv)

Where cv,u is a fixed constant specific to the edge between nodes v and u (e.g.,
an edge weight). Kipf & Welling (2017) introduced the most notable instance of a
convolutional message passing model, the Graph Convolutional Network (GCN). The
GCN used ψ(hv,hu) = 1

|N (v)hu and ⊕ = Σ; intuitively, this corresponds to taking the
mean of neighboring nodes’ representations. A learnable weight matrix W was used
to parameterize ϕ. This approach showed strong performance on semi-supervised
node classification as well as link prediction (Kipf & Welling, 2016). Subsequent ef-
forts improved the efficiency of the GCN model by simplifying the model architecture

2.3. Graph Representation Learning 17

to consist almost exclusively of message passing, eliminating non-linearities and col-
lapsing model parameters (X. He et al., 2020; Wu et al., 2019). Additional follow-up
work (Schlichtkrull et al., 2018) showed that the message-passing paradigm extends
naturally to the multi-relational setting by applying a GCN to each relation type.
Of course, this becomes quite inefficient with a large number of relations, making it
necessary in most cases to apply basis decomposition in order to effectively share pa-
rameters between different relations. To leverage existing work on knowledge graph
embedding and obtain embeddings for relations in addition to nodes, CompGCN
(Vashishth, Sanyal, Nitin, & Talukdar, 2020) applied KGE scoring functions (Bordes
et al., 2013; Nickel, Rosasco, & Poggio, 2016; B. Yang, Yih, He, Gao, & Deng, 2015)
to improve the quality of the output embeddings. This may, however, be unneces-
sary; Degraeve, Vandewiele, Ongenae, & Hoecke (2022) show that the inductive bias
provided by message passing may be enough on its own, even when using completely
random embeddings and untrained model weights.

Attentional architectures

Another class of message passing models are attentional models, which occur when:

ψ(hv,hu) = α(hv,hu)Ψ(hv)

Where α : Rd × Rd → R is a learnable function which maps a pair of node
representations to a scalar weight, also known as an attention mechanism (Bahdanau,
Cho, & Bengio, 2015; Vaswani et al., 2017). The output of the attention mechanism is
a real-valued scalar signifying the importance of node u to node v, and subsequently
the weight of node u’s representation in computing node v’s representation. When
using the sum operator as the aggregation function, this corresponds to taking a
weighted average over neighboring nodes’ representations. This is the approach taken
by the Graph Attention Network (GAT) (Velickovic et al., 2018), which uses learnable
parameters W ∈ Rk×d, a ∈ R2k to compute importance weights as:

α(hv,hu) = softmax(aT [Whv; Whu])

2.3.3 Expressiveness of Graph Neural Networks

Despite their empirically strong results, message passing architectures are inherently
limited by their connections to the Weisfeiler-Lehman (WL) algorithm (Leman &
Weisfeiler, 1968). The WL algorithm assigns a color to each node in a graph, which

2.3. Graph Representation Learning 18

can be used to test for an isomorphism between two graphs by deriving a mapping
between the nodes in both graphs based on matching colors (known as the WL test).
For a graph G = {V , E}, each node v ∈ V is assigned an initial color c(0)

v ∈ C. This
color is iteratively updated over k steps (or until convergence) as:

c(i)
v = hash

(
(L(i−1)

v , c(i−1)
v)

)
Where L(i−1)

v = {c(i−1)
u : u ∈ N (v)} and hash : Ck × C → Z is an injective hashing

function. Intuitively, a node’s color captures its k-hop neighborhood, and two nodes
with the same k-hop neighborhood structure will receive the same colors. We can test
for isomorphism between two graphs by applying the WL algorithm to each graph
and comparing their color histograms; if they differ (i.e., one graph has a different
number of nodes of a given color than the other), then we can reject the possibility of
an isomorphism. Otherwise, it is possible that the graphs are isomorphic, but cannot
be confirmed as the graphs may only be isomorphic up to k iterations.

Note that the WL algorithm fits our definition of message passing with ϕ = hash,⊕ = multiset (a function which returns its arguments as a multiset), and ψ(hv,hu) =
hu. This indicates that message passing GNNs (MP-GNNs) are only as powerful as
the WL test; that is, if the WL test is unable to distinguish a pair of non-isomorphic
graphs, neither will an MP-GNN. This means that if two non-isomorphic nodes share
similar local k-hop neighborhoods (thus indistinguishable by k iterations of the WL
test), then they will receive identical representations from MP-GNNs, making certain
tasks like node classification impossible when the two nodes belong to different classes.
Unfortunately, the limitations of the WL test are well-documented (Arvind, Köbler,
Rattan, & Verbitsky, 2015; Kiefer, Schweitzer, & Selman, 2015), which has led to
stream of research examining to what extent MP-GNNs share the same limitations
(Feng, Chen, Li, Sarkar, & Zhang, 2022; Morris, Lipman, et al., 2021; Morris, Fey,
& Kriege, 2021; Xu, Hu, Leskovec, & Jegelka, 2019) and ways in which they can
be overcome (Balcilar et al., 2021; Maron, Ben-Hamu, Serviansky, & Lipman, 2019;
L. Zhao, Jin, Akoglu, & Shah, 2022), which can be grouped into several classes of
approaches as follows.

Feature augmentations In general, surpassing the limits of the WL test is done
by augmenting nodes with additional information so as to distinguish their represen-
tations when message passing alone cannot. A simple approach is to append one-hot
encodings of each node’s unique ID to their embeddings, which will guarantee the
distinguishability of all nodes; however, this technique is inherently unable to gener-

2.3. Graph Representation Learning 19

alize to unseen nodes or new graphs with more nodes than seen during training. We
can instead heuristics based on a node’s degree (C. Ying et al., 2021) or PageRank
score (Postavaru et al., 2020) to derive uniquely identifying features for each node.
In fact, even randomly generating additional features for each node has shown to be
a surprisingly effective method for boosting the expressiveness of GNNs (Abboud,
Ceylan, Grohe, & Lukasiewicz, 2020; Degraeve et al., 2022; Egressy & Wattenhofer,
2022; Sato, Yamada, & Kashima, 2020).

Positional encodings Another approach is to imbue each node’s representation
with an indication of its global position within its graph, also known as a positional
encoding (PE) (You, Ying, & Leskovec, 2019). PEs can help differentiate nodes
which share similar local structures while residing in distant locations in a graph,
and conversely, help capture proximities between nearby nodes with differing local
structures. Dwivedi, Luu, Laurent, Bengio, & Bresson (2022) propose two posi-
tional encoding schemes, Random Walk PE (RWPE) and Laplacian PE (LapPE).
For node i, we obtain RWPE(i) = [RWi,i,RW2

i,i, . . . ,RWk
i,i] where RWl = (AD−1)l

is the l-step transition matrix, meaning each dimension RWPE(i)j represents the
probability that node i will end on itself along a j-step random walk. Similarly,
LapPE(i) = [Ui,0,,U2

i,1, . . . ,Uk
i,k] where U ∈ R|V|×k are the k smallest non-trivial

eigenvectors of the graph Laplacian. However, this approach is limited by the sign
ambiguity of eigenvectors which leads to 2k possible signs for k eigenvectors, requir-
ing the signs to be randomly flipped during training (Dwivedi et al., 2020; Kreuzer,
Beaini, Hamilton, Létourneau, & Tossou, 2021). Additionally, many of the random
walk and factorization-based methods discussed in Section 2.3.1 such as DeepWalk
and LINE can be considered positional encodings as they too capture node proximi-
ties. One issue is that the absolute values of these methods may not be stable across
graphs, as an independent model must be fit on each graph. H. Wang, Yin, Zhang,
& Li (2022) propose the Position Equivariant Graph Neural Network (PEG) as a so-
lution; by updating node features and positional encodings separately, they maintain
permutation equivariance and improve the stability of node embeddings.

The vast array of approaches described above were comprehensively evaluated
by Rampášek et al. (2022), who devised a highly general framework - GraphGPS
- for graph learning including positional and structural (discussed in Section 2.4.2)
encodings, message passing layers, and global attention mechanisms. In GraphGPS,
a combination of positional and structural encodings are used to obtain node fea-
tures X and edge features E. Each layer of GraphGPS uses a message passing layer

2.3. Graph Representation Learning 20

XM = ϕ(X,E,A) to propagate the node and edge features within local neighbor-
hoods, a global attention layer XT = α(X) to incorporate information from across
the whole graph, and finally, the local and global embeddings are aggregated by a
multi-layer neural network ψ(XM + XT). This framework is not only provably ex-
pressive and scalable, it is also highly modular, allowing the various components of
the model (such as choice of positional and structural encoding or message passing
layer) to be substituted depending on the needs of the task at hand. The authors
carefully examined each component of their framework, observing that while global
attention can be helpful, the choices of positional and structural encodings and mes-
sage passing layer were far more important to improving model performance. This
work is highly relevant to the present thesis from the perspective of designing and
comprehensively evaluating a population of models within a standardized framework
for graph learning tasks. However, GraphGPS presented a more general framework
aiming for applicability to all graph learning tasks, whereas this work focuses solely
on building generalizable, inductive models for the link prediction task. In the follow-
ing section, we will briefly review other works which examine populations of models,
also known as design spaces.

2.3.4 Design Space of Graph Neural Networks

With such a wide range of methods for learning graph representations, it is important
to evaluate which methods are best suited for various applications. Examining pop-
ulations of models in this way is also known as profiling a design space (Radosavovic,
Johnson, Xie, Lo, & Dollár, 2019). The first large-scale study on design spaces for
Graph Neural Networks was contributed by GraphGym (You et al., 2020), which
proposed a number of fundamental “design dimensions” for GNNs, including:

• Batch normalization
• Dropout
• Non-linear activation
• Agggregation function
• Number of message passing layers
• Layer connectivity
• Pre-processing layers
• Post-processing layers
• Batch size
• Learning rate

2.3. Graph Representation Learning 21

• Optimizer
• Training epochs

With multiple choices for each dimension, there are over 10 million possible model
configurations in this design space, making it unrealistic to evaluate all possible mod-
els. To make this tractable, the authors devised the Controlled Random Search
(CRS) experimental procedure which uses a randomized block design to evaluate
each dimension. For example, consider a study wishing to find the optimal batch size
BatchSize ∈ {32, 64, 128} within the design space {BatchNorm : [True,False],LR :
[0.01, 0.001, 0.0001]}. We would sample |S| configurations from the cartesian product
of the free dimensions S = BatchNorm × LR, and then take the cartesian product
with the fixed dimension S × BatchSize. This greatly reduces the overall quantity of
experiments that must be run to identify the optimal batch size while simultaneously
providing a consistent evaluation across all choices for the dimension of interest. This
led to a number of interesting findings such as batch normalization being more help-
ful than dropout, PReLU being highly effective as a non-linear activation function,
and a batch size of 32 being preferable to either 16 or 64. It also confirmed several
empirically held beliefs, such as sum being the best aggregation function, Adam being
generally superior to SGD, and more training epochs lead to better performance.

The methodology proposed by GraphGym was extended to the dynamic graph
setting by ROLAND (You, Du, & Leskovec, 2022), who used CRS to conclude that
batch normalization, skip-connectivity, and max aggregation were optimal design
choices for their proposed architecture, and to the heterogenous setting by T. Zhao et
al. (2022), who found that their results on batch normalization, number of message
passing layers, optimizer, and training epochs were similar to those of GraphGym.
They also found that heterogenous GNNs had several important differences, such
as Dropout being a prerequisite of good performance, which the authors suggest
is due to over-parameterization created by the node and edge-type specific model
weights. Finally, a particularly relevant study was conducted by Z. Wang, Zhao,
& Shi (2022), who profiled the design space of models for the collaborative filtering
(CF) task. Through their evaluation, the authors identified a “pruned” designed
space which was shown to contain a higher concentration of well-performing models,
an important contribution for both future research and applications as it provides a
significantly improved “starting point” for researchers and practitioners designing CF
models. This work is of great interest to the present thesis as it studies the design
space of collaborative filtering, which can be formulated as a link prediction problem.
However, the study also examines non-GRL models specific to CF whereas we focus

2.4. Link Prediction 22

solely on GRL-based models. Their study also focuses solely on performance in the
transductive setting, as their generalization analysis examines how well their reduced
design space transfers to new datasets, not how actual trained models can be applied
to new datasets. This thesis goes beyond the transductive setting to investigate
the applicability of existing trained models to completely novel datasets, evaluating
their effectiveness in the inductive link prediction task where all nodes are previously
unseen.

2.4 Link Prediction

In this section, we will review the existing body of literature concerning the appli-
cation of deep learning methods to the link prediction task. We will first cover the
earliest deep learning-based approaches to link prediction, which were followed by the
emergence of Graph Neural Networks (GNN). We will then discuss the challenge of
inductive link prediction, including the approaches and datasets contributed to its
line of research.

2.4.1 Learning Representations for Link Prediction

Embedding-based approaches Link prediction is a task particularly well-suited
for supervised learning methods - especially deep learning based-approaches - given
that ground-truth labels can automatically be obtained from any graph by sampling
from the edges. One of the first works to demonstrate this was Node2Vec (Grover &
Leskovec, 2016), which compared established heuristic approaches to deep learning
approaches. Node2Vec, DeepWalk (Perozzi et al., 2014), and LINE (Tang, Qu, Wang,
et al., 2015) were used to learn embeddings f : V → RD for a given graph. Each
link (u, v) ∈ V to be classified was scored as f ◦ g = g(f(u), f(v)), where g was a
binary operator mapping the two embeddings to a fixed-size vector, such as taking the
average of the Hadamard product. In parallel to these works came a number of deep
learning approaches to the task of knowledge graph completion (KGC). Knowledge
graph completion is an instance of link prediction specific to knowledge graphs, where
each edge is a directed triple (h, r, t) consisting of a head node (node), relation (typed
edge), and tail node. Optimizing the embeddings of nodes and relations such that
linked nodes have similar embeddings proved to be a highly effective approach. The
TransE (Bordes et al., 2013) model optimizes embeddings such that h + r ≈ t, while
RotatE (Sun, Deng, Nie, & Tang, 2018) uses the objective h ◦ r ≈ t.

2.4. Link Prediction 23

Message passing approaches The learning-based approaches demonstrated their
efficacy by outperforming the heuristics by sizeable margins, a trend further demon-
strated alongside the development of Message Passing Neural Networks (MPNNs).
The Variational Graph Auto-Encoder (VGAE) (Kipf & Welling, 2016) used a Graph
Convolutional Network (GCN) as the encoder and a dot-product encoder to extend
the Variational Auto-Encoder to the graph domain, resulting in significant perfor-
mance improvements relative to DeepWalk. These approaches were extended to the
knowledge graph completion task as well, with methods such as CompGCN (Vashishth
et al., 2020) combining message passing networks and KGC scoring models. The
strong performance of MPNNs for link prediction has also spurred improvements in
related tasks. For instance, many recommender system problems can be formulated as
link prediction, allowing various MPNNs such as the VGAE (Berg, Kipf, & Welling,
2017), GraphSAGE (R. Ying et al., 2018), and Graph Attention Networks (X. Wang,
He, Cao, Liu, & Chua, 2019) to be applied to tasks such as collaborative filtering.

2.4.2 Inductive Link Prediction

Methods

A common challenge for link prediction methods is the ability to handle unseen data.
Many of the aforementioned methods are transductive, storing a unique set of pa-
rameters for each node. When unseen nodes are present in new data, these methods
will perform poorly as their representations of these unseen nodes have not been opti-
mized. In constrast, some MPNNs are inductive, meaning that they operate directly
upon the attributes of a given node. However, it is not always reasonable to assume
the presence of node attributes in realistic scenarios; for example, nodes in knowledge
graphs rarely have a standardized, reliable set of properties, and user-derived graphs
(such as co-purchase networks, social media networks, and communication networks)
may mask node attributes for privacy protection. This has led to fully inductive link
prediction methods which learn solely from the structure of the graph without de-
pending on the presence of node attributes. There have been a number of approaches
toward handling unseen nodes in link prediction tasks, which broadly fall under two
main categories.

Neighborhood aggregation The first class of approaches assumes that while a
node may be unseen at inference, its neighbors could have been seen during training,
making it possible to exploit Message-Passing Neural Networks to fill in unseen node’

2.4. Link Prediction 24

embeddings. Hamaguchi, Oiwa, Shimbo, & Matsumoto (2017) propose a method for
knowledge graph completion that assigns a unique embedding to each node which is
then updated using message-passing and aggregation. In contrast to previous KGC
methods, this ensures that even when an node is unseen (meaning its initial embed-
ding is unoptimized and effectively random), its final embedding will be supported
by the optimized embeddings of its neighbors. The model is trained end-to-end us-
ing TransE (Bordes et al., 2013) to score triples, demonstrating consistently strong
performance on different partitions of the WordNet knowledge base even when in-
creasing the number of unseen nodes at inference. This idea was extended by the
Logic Attention Network (LAN) (P. Wang, Han, Li, & Pan, 2019), which satisfies
a set of key requirements for the aggregation step, including permutation invari-
ance, redundancy awareness, and relational awareness. LAN applies relation-specific
transformations and adapatively aggregates each node’s neighborhood by utilizing
the attention mechanism (Bahdanau et al., 2015) to weigh to each neighboring node,
and a logic rule mechanism to weigh the importance of the relation between each
node and its neighbors. When compared to the mean-based approach proposed by
Hamaguchi et al. (2017) using the same datasets, LAN showed significantly improved
performance on inductive link prediction. This is similar to the approach taken by the
Virtual Neighbor (VN) Network (Y. He, Wang, Zhang, Tu, & Ren, 2020), which offers
an improvement to the logic rule mechanism by using a knowledge graph rule-mining
tool to assign a soft score to reasoning paths extracted from random walks originating
at each unseen node. After applying a threshold-based filter, the remaining paths are
used to add new “virtual” triples to the knowledge graph between the original unseen
node and the final node along the path. This approach yields superior performance
to the mean-based approach as well as LAN when evaluated on datasets extracted
from Freebase and YAGO.

Structural encodings The second class of methods for inductive link prediction
are known as structural encodings. In contrast to the first approach, SE are built
under the assumption that the inference graph will be novel, meaning that each
method must generalize to completely new - and possibly unattributed - graphs. In
order to do this, a model must be able to learn solely from the structure of the
graph without using any node-specific information. These approaches resemble the
positional encodings discussed in Section 2.3.3, but instead of deriving node-specific
distinguishing features, structural encodings compute edge-specific features, making
them particularly well suited for the link prediction task. The first work to tackle

2.4. Link Prediction 25

this problem using deep learning was the Weisfeiler-Lehman Neural Machine for Link
Prediction (WLNM) (Zhang & Chen, 2017), which proposed a novel approach to link
prediction by extracting subgraphs around each target link. Each node in a subgraph
was assigned a color using a variation of the Weisfeiler-Lehman algorithm (Leman &
Weisfeiler, 1968) that initialized each node’s color as a function of its mean geometric
distance to the target link. These colors were used as a sorting key to impose an order
on the vertices for the construction of an adjacency matrix, which was used as input to
a neural network scoring function that predicted the validity of the target link. This
results in each training (and testing) instance being its own novel graph, allowing the
method to learn solely from the extracted structures and easily generalize to unseen
graphs.

This work was fortified by SEAL (Zhang & Chen, 2018), which uses a Graph
Neural Network in place of a fully-connected Neural Network to best incorporate the
full breadth of information provided by a given graph, including the adjacency struc-
ture and potential (but still optional) node attributes. SEAL simplifies the WLNM’s
labeling procedure by introducing Double-Radius Node Labeling (DRNL), which is-
sues progressively larger labels to nodes more distant from the target link. A node’s
embedding is then computed as the one-hot encoding of its label, which is optionally
concatenated to its attributes if available. The embeddings and structure of each
subgraph is then used as input to a Subgraph Neural Network, which propagates
the embeddings across the subgraph, pools the embeddings into a final fixed-size
subgraph encoding, and classifies the subgraph as positive or negative. SEAL out-
performed a diverse set of methods including heuristics, factorization, and message
passing networks, setting a new state-of-the-art for link prediction. SEAL was quickly
adapted to other domains in which inductive learning is necessary, such as collabora-
tive filtering (Zhang & Chen, 2020) and knowledge graph completion (Teru, Denis, &
Hamilton, 2020). This class of node labeling approaches was examined in-depth by
Zhang, Li, Xia, Wang, & Jin (2020), who coined the term “labeling trick” to describe
these approaches. Their work derives important theoretical results proving that the
labeling trick enables any sufficiently expressive GNN to learn maximally expressive
multi-node representations for set-level tasks such as link prediction. They verify
their results empirically, showing that labeling trick methods outperform heuristics
and graph auto-encoders on a number of benchmark datasets.

2.4. Link Prediction 26

Applications

While the methods described above bear the ability to perform inductive link predic-
tion, little attention has been paid to their application in realistic scenarios. This has
led to several works examining the generalization ability of these inductive models
across unseen nodes, and even unseen graphs. The most prevalent of these works
have focused on knowledge graph completion. For instance, Sadeghi, Malik, Col-
larana, & Lehmann (2021) designed a benchmark of 32 datasets spanning multiple
relational patterns in both transductive and inductive settings. Using the Freebase
and Wordnet knowledge bases, the authors extract triples matching specific relational
patterns such as symmetry (a relation which is valid even when its head and tail are
reversed) and anti-symmetry, inversion (a relation r which can be uniquely mapped
to another relation r′ such that (h, r, t) =⇒ (t, r′, h), such as Parent-Child and
Teacher-Student), composition (a relation which depends on the existence of another
relation, such as how Aunt depends on Sister and Child), and inference (a relation
such which can be mapped to other relations r′

i such that ∀h, t : (h, r, t) =⇒ (h, ri, t).
The authors split the extracted triples into training and inference sets following one
of several partitioning strategies, including fully transductive and inductive parti-
tions, head-tail ratio inductivity (in which either the head or tail of each triple in
the training set is held out of the inference set), and percentage-wise building (in
which half of the inference triples are inductive and half are transductive). Training
a number of well-established knowledge graph completion models on these datasets
revealed clear challenges in the inductive settings, as models tailed for inductive
learning outperformed others by wide margins across all relational patterns. This
dataset-construction strategy was scaled up by Galkin, Berrendorf, & Hoyt (2022),
who shared the largest existing dataset for inductive link prediction by sampling and
inductively partitioning WikiData. By sampling hold-out nodes for the inference
graph, the authors obtain two datasets (ILPC22-Small and ILPC22-Large) with dis-
joint node sets, facilitating the evaluation of models in a setting where completely
unseen nodes are present at inference.

These works demonstrate that certain inductive models can generalize to previ-
ously unseen nodes, but what about entirely new graphs? Zhang & Chen (2020)
showed that Inductive Graph Matrix Completion (IGMC), an extension of SEAL,
could obtain competitive performance on a given user-product graph even when
trained on a different graph from a potentially completely different domain (e.g.,
training on a user-movie graph and transferring to a user-song graph), without any
fine-tuning or transfer learning on the target graph. A similar study was performed

2.4. Link Prediction 27

by H. Wang et al. (2022), which proposed the “domain-shift link prediction” task.
The authors examine the in-domain generalization ability of a number of methods by
training each on one graph and testing it on a related graph (e.g., training and testing
on two different citation networks, such as Cora → CiteSeer (Sen et al., 2008)). They
find that SEAL and PEG, their proposed method discussed in Section 2.3.3, are eas-
ily able to generalize to new graphs. While these studies find that certain methods
are able to generalize to unseen data, little consideration is given to what makes this
possible. In contrast, this thesis provides a comprehensive examination across the
various components of inductive link prediction methods to share insight into what
design decisions facilitate or hamper generalization.

Chapter 3

Design Space for Inductive Link
Prediction

In this section, we will outline our methodology in profiling the design space of models
for Inductive Link Prediction (ILP). We will share our proposed standardized archi-
tecture consisting of several components, covering candidate methods for each before
detailing the experiments necessary to verify our hypotheses.

3.1 Standardized Architecture

To identify an optimal model (or set of models) for inductive link prediction, we
require a standardized, modular architecture which allows us to swap in and out its
various components to study the effects of each design choice. Furthermore, in order
for the insights yielded by our experiments to be usable in real-world scenarios, our
architecture must satisfy several criteria:

1. Efficient. Realistic graph datasets often contains tens or hundreds of millions
of nodes, and hundreds of millions - if not billions - of edges. Existing GNN
architectures which operate on the full adjacency matrix of a graph are simply
unable to scale to this size. As such, our framework must be able to operate on
a reduced subset of a graph’s adjacency matrix if necessary.

2. Effective. Of course, an efficient, poorly performing model is no more useful
than an inefficient, well-performing model. Therefore, our framework must
maintain strong performance even in resource-constrained scenarios.

3. Generalizable. Finally, our framework must be fully inductive, meaning that
it must not depend on (1) the specific identities of nodes in a given graph, or

3.1. Standardized Architecture 29

(2) the presence of pre-existing node or edge attributes for a given graph. The
former criterion is important not only for cross-graph generalization ability, but
also for efficiency as it will allow the model to operate on arbitary subgraphs if
necessary. The latter criterion will increase the applicability of the framework
to more realistic scenarios involving non-attributed graphs (such as many social
networks).

A

B

Global Encoding

Trained on the full
input graph, with test
edges removed.

Ex: Positional
encoding, heuristics
(degree, PageRank)

Subgraph Extraction

Extract an enclosing
subgraph around each
target link.

Ex: SEAL

Local Encoding

Uniquely encode each
node in the subgraph
based on nodes in the
target link.

Ex: DRNL, DE+

Message Passing

1+ MP layers
propagate node
encodings through the
subgraph.

Ex: GCN, GIN, GAT

Subgraph Pooling

The node encodings
are pooled into a
fixed-size vector.

Ex: Sort Pooling

Subgraph
Classification

The embedding is
used to classify the
target link as positive
or negative.

Figure 3.1: Standardized architecture for inductive link prediction
(ILP) models. Given an input graph, a model instance computes global
encodings on the full graph before sampling subgraphs around each tar-
get link. A local encoding is derived for nodes in each subgraph, which
is concatenated with their global encoding to form positionally and
structurally-aware node embeddings. The embeddings are propagated
using message passing layers before being pooled into a subgraph em-
bedding which is used to classify the existence of each target link.

Given the above criteria, we propose a simple, standardized model architecture for
inductive link prediction (ILP) comprised of 6 components, shown in Figure 3.1. The
modularity of our proposed architecture allows us to swap out different choices for
each component to profile the overall design space. It does not depend on the pres-
ence of node or edge attributes but is able to utilize them without any additional

3.1. Standardized Architecture 30

modification (though we choose not to in this work to focus on learning and general-
izing solely from the structure of the graph). Our framework scales to large graphs by
operating on k-hop subgraphs around each target link while (optionally) preserving
global information. Concretely, an instance of our framework contains the following
components:

1. Global encoding (optional). Given an input graph G = {V , E}, a global
encoding module is used to extract global structure-aware node embeddings
Xg ∈ R|V|×m. The importance of this module is to generate representations
that uniquely distinguish the nodes in a given graph to help differentiate nodes
with isomorphic k-hop neighborhoods. This module must be efficient enough to
operate on the full adjacency structure of the graph, and may also be omitted
entirely if a graph’s local neighborhoods are sufficiently distinguishable. Can-
didates for this component include simple, lightweight heuristics such as node
degree, centrality metrics, or even randomly generated features, as well as more
sophisticated options such as positional encodings.

2. Subgraph extraction. Following the SEAL framework (Zhang & Chen, 2018),
for each target link ēi = ((u, v), yi) : u, v ∈ V , ē /∈ E , yi ∈ Y which we wish to
predict, we extract a k-hop subgraph H(k)

u,v = {V ′, E ′} ⊂ G enclosing u and
v. Each node and edge carries their respective attributes, including the global
encoding from step 1 if applicable, into the subgraph H(k)

u,v as Xa ∈ R|V ′|×d and
Xg ∈ R|V ′|×m respectively. This step makes it tractable to operate on large
graphs by limiting the receptive field of the model, while still preserving global
information from step 1 and node/edge attributes if provided (which we ignore
for the purposes of this study).

3. Local encoding (optional). Given an enclosing subgraph H(k)
u,v , the local en-

coding component derives local structure-aware node embeddings Xs ∈ R|V ′|×n.
This component helps distinguish otherwise isomorphic k-hop subgraphs by
computing context-sensitive representations with respect to the nodes u, v in
the target link. These representations can either be real-valued embeddings,
or integer labels ℓ ∈ Zl

+ which are used as inputs to an embedding layer. If
computing integer labels, the labels must generalize between graphs. A sim-
ple example of a generalizable label would be Distance Encoding (Li, Wang,
Wang, & Leskovec, 2020), which returns a label tuple xq = (sspq,u, sspq,v) for all
q ∈ H(k)

u,v , representing the shortest path distance from every node to each node
in the target link. The labels are then embedded and concatenated to form the
local encoding. This step may also be omitted if global information is sufficient

3.2. Proposed Design Space 31

to distinguish nodes in the graph.
4. Message passing (optional). Given an enclosing subgraph H(k)

u,v with node
attributes and global and local encodings Xa ∈ R|V ′|×d,Xg ∈ R|V ′|×m,Xs ∈
R|V ′|×n, d,m, n ≥ 0, this component uses between one or more message passing
layers to propagate node embeddings throughout the local subgraph. Note that
omissions of node attributes and global and local encodings are accomodated
here by allowing d = 0 (no attributes), m = 0 (no global encoding), and n = 0
(no local encoding), though of course we must have at least one of d > 0 ∨m >

0 ∨ n > 0, otherwise we have no features to learn from. Any given message
passing layer can be used here by propagating the concatenated attributes and
encodings [Xa; Xg; Xs] to incorporate information from all available aspects.
Additional flexibility is also provided for specific MPNNs; for example, edge
features can also be passed to the MPNN layer if it supports it, and PEG (H.
Wang et al., 2022) or GraphGPS (Rampášek et al., 2022) can be used as the
message passing layer by using a positional encoding in step 1 and separately
passing [Xa; Xs] as node attributes and Xg as positional encodings.

5. Subgraph pooling. With node embeddings X ∈ R|V ′|×p that capture all as-
pects available in the enclosing subgraph, H(k)

u,v , the subgraph pooling component
maps R|V ′|×p → Rc. The pooling function must be length agnostic and posi-
tion invariant, capable of aggregating the unordered set of node embeddings to
a fixed-size subgraph embedding. The most simple choice would be a simple
arithmetic operation such as summation, while a more sophisticated approach
might use a learnable aggregation function such as the attention mechanism.

6. Subgraph classification. Finally, the fixed-size subgraph embedding is put
through a fully-connected classification layer mapping to an output ŷi ∈ Y ,
where the label space Y is usually binary in 0, 1 but can extend to multi-class
and ordinal spaces as well as a continuous space for regression problems with a
properly-chosen objective function. For this work, we focus on the traditional
task of binary link prediction, and optimize the model end-to-end using the
binary cross-entropy loss.

3.2 Proposed Design Space

3.2. Proposed Design Space 32

Table 3.1: Proposed design space for inductive link prediction.

Design Dimension Choices

Local Encoding None, Degree, RW, RNI, HOPE, RandNE, LE
Global Encoding None, DE, DE+, DRNL

Message Passing Network GCN, GIN, GAT, GraphSAGE, PEG
Message Passing Layers 1,2,3

Hidden Channels 32,64,128
Optimizer Adam, SGD

Learning Rate 0.01, 0.001, 0.0001

With our framework in place, we propose a design space for inductive link pre-
diction shown in Table 3.1. Our design space consists of 7 dimensions, 27 options,
and 7, 560 total unique model architectures. Throughout the course of our exper-
iments, we exclude a portion of these from sampling when certain components are
incompatible with each other; for example, the PEG message passing layer expects
both node attributes and positional encodings, so we exclude all models with None
as the global encoding and PEG as the message passing layer. Similarly, we exclude
all models with None as both the local and global encodings, as no node attributes
would be computed for the downstream message passing layer. Below, we motivate
the selections made for each dimension of our design space.

• Global encodings. We use global encodings to capture features which repre-
sent each node’s position in a given graph, prior to global subgraph extraction.
We consider a number of different global encodings, including: node degrees
(a single scalar representing the combined in-and-out degrees of each node);
Random Node Initialization (RNI) (Abboud et al., 2020), which generates com-
pletely random features for each node and has shown to improve the expressivity
of MPNNs; Random Walk Positional Encoding (RW) and Laplacian Positional
Encoding (LE)(Dwivedi et al., 2022), detailed in Section 2.3.3; and finally High-
order Proximity preserved Embedding (HOPE) (Ou, Cui, Pei, Zhang, & Zhu,
2016), a method which produces embeddings preserving the distance between
two nodes at multiple powers of the adjacency matrix. We also examine per-
formance when omitting a global encoding, signified by None, in which case we
only use local encoding features.

• Local encodings. We use local encodings, also known as labeling tricks, to
inductively extract structural features which generalize across (sub-)graphs. We

3.2. Proposed Design Space 33

consider three local encodings examined by (Zhang et al., 2020), including Dis-
tance Encoding (DE) (Li et al., 2020), Distance Encoding Plus (DE+), and
Double Radius Node Labeling (DRNL) (Zhang & Chen, 2018). Each of these
methods compute the shortest path distance to each of the nodes in the target
link upon which the subgraph is rooted, using this as a provably expressive
set of features to distinguish isomorphic edges which MPNNs would otherwise
be unable to. We also examine performance when omitting a local encoding,
signified by None, in which case we only use global encoding features.

• Message passing networks. We explore several of the most widely used
and state-of-the-art message passing networks, including Graph Convolutional
Networks (GCN) (Kipf & Welling, 2017), GraphSAGE (Hamilton et al., 2017),
and Graph Isomorphism Networks (GIN) (Xu et al., 2019), detailed in Section
2.3.2. In addition, we also consider the Position Equivariant Graph Neural
Network (PEG) (H. Wang et al., 2022) due to its relevance to our task. PEG is
designed to improve the stability of message passing with global encodings. The
authors note that using global encodings as features to an MPNN can lead to
instability between graphs, as even small differences between graphs can lead to
large differences in global encodings and poor transferability as a result. PEG
solves this issue by updating node attributes and global encodings separately,
using the latter as coordinates to compute the distance between two nodes
which is used to modify the edge weights. It demonstrates strong performance
on a number of tasks, including domain-shift link prediction, a similar setting to
ours where models are trained on one graph and applied to another in the same
domain (a subet of the present work, which considers cross-domain applications
as well). However, its efficacy when applied to subgraphs - a more realistic
application facilitating its use on large-scale graphs - has yet to be established,
making it an important inclusion in our design space.

• Message passing layers. We select {1, 2, 3} as the possible numbers of layers
within our message passing networks, choosing these values due to the subgraph
extraction process in our framework. As the MPNNs are applied to k-hop sub-
graphs around the target nodes instead of the full graphs, we tie the number
of message passing layers to the size of the extracted subgraph to avoid over-
smoothing. We examine all values less than 4 due to the neighborhood explo-
sion problem of subgraph sampling as subgraphs grow in size exponentially with
k, decreasing extraction efficiency and increasing GPU memory usage during
training.

3.3. Experimental Design 34

• Hidden channels. We select {32, 64, 128} as our space of hidden channels
within our message passing networks. We selected these options using the fol-
lowing process. In general, dimensions of deep learning models are often chosen
as powers of two. We limit the number of choices to three to help maintain
a reasonable total number of trials required. As such, we identified 27 = 128
to be the largest value minimizing the frequency of out-of-memory errors, and
selected the next two smallest powers of two 26 = 64, 25 = 32.

• Optimizer. Following (You et al., 2020), we select Adam (Kingma & Ba,
2015) and Stochastic Gradient Descent (SGD) as the optimizers within our
design space, as they are the two most widely used optimizers across most deep
learning tasks.

• Learning rate. We select {0.01, 0.001, 0.0001} as our space of learning rates to
provide reasonable values of multiple scales. While exploring a wider range of
learning rates and different sampling strategies would be an interesting direction
for future work, we opt for simplicity as learning rate is not a primary focus of
the current work.

3.3 Experimental Design

The following section will detail the specific experiments we will conduct to ver-
ify the hypotheses detailed in Section 1.2. Each of the experiments we run will
consider the design space D shown in table 3.1 across the task space T shown in
table 4.1. Evaluating the full design and task spaces would require considering∏

d∈D(|d|) · ∑
t∈T (|t|P2) = 7560 · 418 = 3, 160, 080 different trials, with each poten-

tially repeated across multiple random seeds. To mitigate the prohibitive costs of
such a large number of trials, we employ Controlled Random Search (CRS) (You
et al., 2020) as an effective way to reduce the number of necessary trials by sam-
pling. The process is demonstrated visually in Figure 3.2. As a simple example,
suppose we hypothesize that DRNL is a superior local encoding to DE+. This
makes our design dimension of interest d̂ = LE. We first draw |S| configurations
S = [si = { si,d ≈ d : d ∈ D, d ̸= d̂}]; simply put, we randomly sample |S| configu-
rations across all design dimensions (including tasks/datasets) other than the one of
interest. The final set of experiments is obtained by taking the cartesian product

E = S × d̂ = [(i, si, d̂j) : i ∈ [1, |S|], d̂j ∈ d̂]

3.3. Experimental Design 35

Where S is the set of sampled configurations and d̂ is the set of possible values
of our dimension of interest, maintaining a reference i to the ID of the sample con-
figuration (shown as “Group No.” in Figure 3.2). Conducting each experiment yields
a set of performance metrics m, which we compute for each the rankings within the
sample group number i. Intuitively, this represents the performance rank rd̂j ,i of each
value d̂j within a group i where all other parameters are held constant. Finally, for
each d̂j, we take the mean rank:

rd̂j
= 1

|S|

|S|∑
i=1

rd̂j ,i (3.1)

This represents the expected rank for each value of d̂ when all other parameters are
held constant. In this case, with d̂ = dLE = {DRNL,DE+}, we decrease the total
number of required experiments from 1, 580, 040 to just |S| · |d̂| = 2|S|, where |S| is
specified by the user. Taking |S| = 75 for instance, only 150 trials are required to be
executed, a reduction of over 10, 000 times.

3.3. Experimental Design 36

Local

Encoding

Global

Encoding
MPNN …

Layers
Datasets Performance Ranking

1 ? RW GCN … 2 Cora -> Citeseer

2 ? LE PEG … 1 PPI

S ? Degree GAT … 2
Amazon Photos

-> CS

Group No.

Design Space Experimental Results

…

Local

Encoding

Global

Encoding
MPNN …

Layers
Datasets Performance Ranking

DRNL 0.8345 1

DE+ 0.8196 2

DRNL 0.8222 2

DE+ 0.8286 1

DRNL 0.7801 1

DE+ 0.7655 2

Group No.

Design Space Experimental Results

…

1 RW GCN … 2 Cora -> Citeseer

2 LE PEG … 1 PPI

Amazon Photos

-> CS
DegreeS GAT … 2

Figure 3.2: Example of Controlled Random Search to evaluate whether
DRNL or DE+ is a better local encoding. We take the cartesian product
S×d̂ of a set of S random configurations with the possible values for our
dimension of interest d̂ to obtain our experiment set, and compute the
average in-group rank for each value to determine the optimal choice.
Based on the rows visible in the figure, DRNL would have an average
rank of 1.33 versus DE+’s average rank of 1.67, making DRNL the
preferable choice.

For all experiments, we use |S| = 25 for Controlled Random Search (CRS) and
repeat each trial with 3 different random seeds, yielding 75|d̂| trials in total per
experiment. We fix batch size to 64 to ensure each model is allocated an equal
amount of computational resources across trials. As the graphs are also of varying
size, we limit each trial to 2500 training steps. The result of each trial will yield
measurements of M = accuracy, AUC, F1, precision, and recall on the test set of
edges for both the source and target graphs.

3.3. Experimental Design 37

3.3.1 Population-level Experiments

Evaluating Generalization Ability

The first experiment we will conduct serves to evaluate the generalization ability of
ILP models at a population level. We perform Controlled Random Search (CRS)
with |S| = 25 on the target graph, meaning that we jointly and randomly sample
25 model instances and source graphs which we evaluate on each target graph. For
each metric m ∈ M, we measure relative generalization as the mean signed difference
∆m = 1

N

∑N
i=1(mi,s −mi,t) where ∆m ∈ [−1, 1] (as all m ∈ [0, 1]), mi,s is the value of a

given metric on the source graph for trial i, and mi,t is defined similarly for the target
graph. A lower ∆m signifies a smaller decrease in performance, and therefore better
generalization ability. The value of ∆m will determine the validity of Hypothesis 1.1
by measuring the degree to which the performance of an ILP model changes when
applied to unseen data. The null hypothesis H∅ : ∀m : ∆m ≥ 0 asserts that ILP
models will not show a decrease in performance from the source graph to the target
graph on average, while the experimental hypothesis H1 : ∀m : ∆m < 0 asserts the
contrary.

Effects of Domain on Generalization

We extend the results of our first experiment by analyzing relative generalization
through the lens of the underlying data. Each target graph was paired with 25 source
graphs; as a result, some of these source-target pairs will come from the same datasets
(domains) while others will not. We refer to the former scenario as in-domain ILP
(ID-ILP), and the latter out-of-domain ILP (OOD-ILP). This allows us to dive more
deeply into the behavior of ILP models by analyzing the differences exhibited between
these two scenarios; for example, ILP models may successfully generalize to graphs in
the same domain in which they were trained, but they may fail to generalize as well to
out-of-domain graphs, a useful insight for practitioners who wish to apply ILP models
to a new dataset. We measure these effects to validate Hypothesis 1.2 by comparing
the average generalization ability of ILP models when trained in the ID setting versus
OOD. The null hypothesis for this experiment H∅ : ∀m : µ∆m,ID ≥ µ∆m,OOD asserts
that for each m ∈ M, average generalization ability in the ID setting will be equally
or more difficult than the OOD setting, while our experimental hypothesis H1 : ∃m :
µ∆m,ID ≤ µ∆m,OOD expects that there exists some metric for which models trained
in-domain are able to generalize more effectively than those trained out-of-domain,
demonstrating the increased difficulty of the OOD setting.

3.3. Experimental Design 38

3.3.2 Model-level Experiments

Optimal Selections by Design Dimension

Our next experiment will provide the evidence necessary to verify Hypothesis 1.3,
which states that there is a significant difference in generalizability between the design
dimensions of our model. Furthermore, we also wish to identify the best choices for
each design dimension. We perform CRS on each design dimension d ∈ D shown in
Table 3.1, producing results for N = C ·∑d∈D |d| trials in total. We compute the mean
of the ranks for each metric m of each design choice within each experiment group
as shown by Figure 3.2. This will yield a sample mean µd,∆m (calculated similarly
to Section 3.3.1) for each design dimension d and metric m, as well as an average
rank rdi,∆m for each candidate choice di ∈ d, d ∈ D and each metric m. The sample
mean µd,∆m signifies the average transferability across all candidates for a design
dimension d and metric m, holding all other design dimensions constant. We can
verify Hypothesis 1.3 using a one-way ANOVA with Bonferroni correction, where our
null hypothesis H∅ : ∀µd,∆m , µd′,∆m : |µd,∆m −µd′,∆m| = 0 expects no difference among
group means and our alternative hypothesis H1 : ∃µd,∆m , µd′,∆m : |µd,∆m −µd′,∆m | ≠ 0
expects at least one group mean to significantly differ from the overall mean. In
addition, we can use the set of mean ranks rdi,m to rank the performance of each
candidate within a given design dimension, yielding insight into the optimal set of
choices for each component of our framework.

Identification of Condensed Design Space

Based on the results of the above experiment, we will construct a condensed design
subspace D̂ = {d̂i} such that ∀i : d̂i ⊂ di. Such a subspace would be of great
practical utility to both practitioners and researchers interested in the ILP task,
as it would greatly reduce the cardinality of the design space to be explored when
searching for optimal models. For our proposed subspace to be useful, however, we
must verify that it is actually superior to the full design space. As such, we will
apply the same technique from the first experiment described in Section 3.3.1 on
samples of models from both the proposed subspace and full design space to obtain
∆m,D̂ and ∆m,D respectively, denoting the average generalization ability of models
sampled from each respective subspace for a given metric m. For this experiment,
we have the null hypothesis H∅ : ∀m : T∆m,D̂ ≤ ∆m,D, signifying no improvement
in transferability from the proposed subspace upon the full design space, and the
experimental hypothesis H1 : ∃m : ∆m,D̂ ≤ ∆m,D expecting the opposite.

Chapter 4

Evaluation

4.1 Methodology

Table 4.1: Statistics for the graph datasets used in our experiments.
The number of graphs in each dataset is shown in the third column;
for PPI and Twitch, we sample from the total number of graphs in the
dataset which is enclosed in parentheses.

Dataset Domain # Graphs # Nodes # Edges Degree Density

Planetoid Citation 3 8584.00 36102.00 3.71 0.0017
PPI Biological 2 (20) 2495.50 66483.00 24.89 0.0200
Amazon Product 2 10701.00 364942.00 33.44 0.0067
Twitch Social

Network
4 (6) 5059.25 124394.75 26.65 0.1515

Task Definition In this work, we focus on the task of cross-graph inductive link
prediction. While existing work has studied inductive link prediction within one
graph, we focus on a more difficult setting in which the target graph is entirely
novel, forcing models to dynamically adapt to unseen nodes and potentially differing
distributions. Formally, a given link prediction model ϕ following our framework
detailed in Section 3.1 is trained on a source graph Gs. We then compute a set of
performance metrics for the test edges of Gs, and then we repeat the process for an
additional target graph Gt. We then define the model generalization, ∆m, for each
metric m ∈ M as ms − mt where ms and mt are values of the metric on the source
and target graphs respectively for the model ϕ. The lower the value, the less of a

4.1. Methodology 40

decrease is shown in performance when applied to new data. While this task has been
briefly examined (H. Wang et al., 2022), we go further by introducing the in-domain
(ID) and out-of-domain (OOD) cross-graph ILP tasks. Existing work has examined
the former task, where Gs and Gt are graphs from the same domain (such as two
social networks), but we introduce the OOD setting where the two graphs may come
from completely different domains (e.g., a citation network and a prod co-purchase
network).

Datasets Throughout all of our experiments, we consider graphs from four
datasets spanning different domains - Planetoid (paper citations) (Z. Yang, Cohen,
& Salakhudinov, 2016), PPI (protein-protein interaction) (Zitnik & Leskovec, 2017),
Amazon (product co-purchase) (Shchur, Mumme, Bojchevski, & Günnemann, 2018),
and Twitch (social relationships) (Rozemberczki, Allen, & Sarkar, 2021). Using
graphs from multiple domains helps ensure the generalizability of our results between
graphs of different sizes, densities, and interaction dynamics. We provide a brief
overview of the datasets in Table 4.1. The number of graphs in each dataset is shown
in the third column; for PPI and Twitch, we sample from the total number of graphs
in the dataset which is enclosed in parentheses. The following columns show the
average number of nodes, number of edges, degree, and density found in the graphs
used in our experiments for each domain.

Experimental Procedure We prepare the data for each trial by partitioning each
graph’s edges into message passing, training, validation, and testing sets. We reserve
10% of edges for validation and 20% for testing. We compute global encodings using
only the training edges to prevent data leakage. We follow our proposed standardized
model architecture comprised of global and local encodings, message passing layers,
and subgraph pooling as described in Section 3.1. Each model is trained by minimiz-
ing the Binary Cross-Entropy (BCE) loss for a maximum of 2500 steps and evaluated
on the complete set test. Our initial threshold for statistical significance is α = 0.05
for all hypothesis tests.

4.2. Population-level Analysis 41

4.2 Population-level Analysis

4.2.1 Aggregate Generalization Ability

Accuracy AUC F1 Precision Recall
Metric

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Split
Source
Target

Figure 4.1: Distribution of performance metrics on the cross-graph link
prediction task. We see that for all metrics except Recall, distributions
skew slightly higher for the source dataset than the target dataset,
indicating a drop-off in performance.

Our first objective Hypothesis 1.1 asserts that on the aggregate, ILP models will
demonstrate a moderate decrease in performance when applied to new data. This
hypothesis is tested by conducting a large number of trials in which various perfor-
mance measures are obtained on the test edges for both the source and target graphs.
In particular, we Controlled Random Search (CRS) for each of our proposed design
dimensions, and aggregate the results to assess the overall behavior of ILP models.
With |S| = 25 and each trial repeated across 3 different random seeds, we ultimately

4.2. Population-level Analysis 42

conduct 2, 025 trials, obtaining the AUC, Accuracy, F1, Precision, and Recall mea-
sures for the test edges on both the source and target graphs.

Table 4.2: Mean and standard deviation by metric on the source and
target datasets. We find a small but statistically significance decrease in
all AUC, Accuracy, and Precision when applying ILP models to unseen
data.

Metric Source Target Z p

AUC 0.7476 (±0.1469) 0.7321 (±0.1444) 13.5506 2.45E-40
Accuracy 0.6567 (±0.1275) 0.6484 (±0.1182) 9.7255 3.67E-22
F1 0.4973 (±0.3047) 0.4955 (±0.2937) 0.9092 1.82E-01
Precision 0.7385 (±0.2653) 0.7245 (±0.2481) 5.4389 3.02E-08
Recall 0.4678 (±0.3306) 0.476 (±0.3335) -3.3605 1.00E+00

We use a paired-sample one sided t-test with the null hypothesis H∅ : ∀m :
m̄s − m̄t ≤ 0, that the means of the source metrics are equal to or worse than
their respective target metrics. The alternative hypothesis H1 : ∃m : m̄s − m̄t > 0
states that there exists some metric for which performance decreases from the source
graph to the target. Of course, evaluating these hypotheses repeatedly for multiple
metrics increases our chance of Type-I error. We control for this using Bonferroni
correction, which sets our threshold for statistical significance at α = 0.05

5 = 0.01.
Under this regime, we find a statistically significant decrease in AUC, Accu-
racy, and Precision when applying ILP models to the cross-graph link prediction
task. However, we do not find a significant difference in F1 or Recall. In spite
of this, we nonetheless reject the null hypothesis H∅ by showing the existence of a
performance decrease in one or more metrics, with the relevant significance measures
and test statistics shown in Table 4.2.

Figure 4.1 visualizes the distribution of each metric in both the source and target
settings, showing that on average, mass was placed higher for the source metrics than
their corresponding target metrics. This result indicates that practitioners may well
experience difficulties when applying link prediction models to unseen data; however,
it is still possible to achive comparable (albeit slightly diminished) performance. This
result also signifies the need for models which are better able to generalize to unseen
data to mitigate these difficulties. In addition, we can also observe that in both set-
tings, models are able to achieve strong Precision but struggle with Recall, which may
not be suitable for all applications. The existing literature has paid little attention to

4.2. Population-level Analysis 43

recall-oriented measures, which is seemingly reflected in these results and a potential
direction for future work exploring the development of recall-optimized architectures.

4.2.2 Out-of-Distribution Analysis

Cross-Domain Generalization

0.0

0.2

0.4

0.6

0.8

1.0

Ta
rg

et
 P

er
fo

rm
an

ce

Metric = AUC
y = 0.87x + 0.0485
(r = 0.8022, p = 1.49E 45)
y = 0.95x + 0.0202
(r = 0.9609, p = 1.61E 38)

Metric = Accuracy
y = 0.81x + 0.0884
(r = 0.8087, p = 8.10E 47)
y = 0.91x + 0.0407
(r = 0.9567, p = 4.19E 37)

0.0 0.2 0.4 0.6 0.8 1.0
Source Performance

Metric = F1
y = 0.81x + 0.0855
(r = 0.8663, p = 1.06E 60)
y = 1.00x + 0.0125
(r = 0.9780, p = 1.27E 46)

0.0 0.2 0.4 0.6 0.8 1.0
Source Performance

0.0

0.2

0.4

0.6

0.8

1.0

Ta
rg

et
 P

er
fo

rm
an

ce

Metric = Precision
y = 0.77x + 0.1015
(r = 0.8381, p = 3.18E 53)
y = 0.92x + 0.0255
(r = 0.9640, p = 1.09E 39)

0.0 0.2 0.4 0.6 0.8 1.0
Source Performance

Metric = Recall

y = 0.79x + 0.1245
(r = 0.7735, p = 1.73E 40)
y = 0.99x + 0.0132
(r = 0.9572, p = 2.92E 37)

Domain
Different
Same

Figure 4.2: Within- and cross-domain relationships between perfor-
mance on the source and target graphs. Orange points indicate a
trial where the source and target datasets belong to the same domain,
whereas blue points indicate different domains. We see a much stronger
correlation between source and target performance when generalizing
in-domain, demonstrated by the orange lines of best fit, than cross-
domain, indicated by the blue lines of best fit.

Next, we wish to characterize the impact of the underlying data on the ability of a
given model to generalize to unseen data. Our prior belief is that if a model is trained
on and test on graphs from the same domain, the performance degredation will be
smaller than that of a model trained and tested on graphs of different domains. This
belief is founded on the notion that models will learn certain dynamics specific to
particular domains, which may make it harder to generalize. We begin by examining

4.2. Population-level Analysis 44

the correlation between source and target performance for the in- and out-of-domain
settings, shown by Figure 4.2. We observe a much stronger correlation between source
and target performance when the respective graphs are of the same domain, while we
see greater variability in the out-of-domain setting. In particular, we have slope ≤ 1
in almost all cases, signifying that performance is expected to decrease on any new
graph; however, slopes are much greater in-domain, meaning that performance tends
to degrade more out-of-domain.

Chemical Citation Product Social
Target Domain

Ch
em

ica
l

Ci
ta

tio
n

Pr
od

uc
t

So
cia

l
So

ur
ce

 D
om

ai
n

-3.50% -6.82% -21.66% -10.51%

-17.01% -1.52% -18.67% -21.72%

-1.42% -1.76% -5.03% -5.30%

-3.81% -6.89% 0.18% -1.12%

Cross-Domain AUC

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Figure 4.3: Generalization ability between domains for AUC. Each cell
represents the average percentage increase in performance when train-
ing on a graph in the source domain (Y-axis) and testing on a graph in
the target domain (X-axis). Warmer cells signify a greater increase in
AUC (thus, better generalization) from graphs in the source domain to
the target domain, while colder cells demonstrate a decrease in AUC
(worse generalization/performance degradation).

We further explore this behavior by focusing on one particularly widely-used met-
ric, AUC. We compute the percentage change in AUC from the source graph to the

4.2. Population-level Analysis 45

target graph and take the mean grouped by the domains of the respective graphs,
shown by Figure 4.3. A warmer cell signifies a greater performance increase (or
smaller decrease), and in turn, superior generalization between the two domains on
average. We observe the strongest generalization occurs when training on social net-
works and transferring to product co-purchase, which is the only setting in which
an improvement is seen. In contrast, the weakest generalization is from citation to
social networks followed by chemical to product networks, both showing decreases
greater than 21%. Note that these trends are not symmetric. We hypothesize that
this behavior can be explained by certain characteristics of the respective datasets
such as those shown in Table 4.1; for example, the citation networks are less dense
and have significantly smaller average degrees on average than social networks which
will lead to extracted subgraphs with far fewer edges, making it difficult for message
passing layers to adapt to the target graph. In contrast, the product co-purchase net-
works have the highest average degrees and are almost six times as dense as citation
networks (though still much less dense than the social networks), making it easier to
generalize.

Table 4.3: The percentage change in performance between graphs from
same and different domains, respectively. Though we observe better
generalization better within-domain than cross-domain for all metrics,
we are unable to reject the null hypothesis.

Same Different T p

Accuracy -0.0277 (±0.0787) -0.0845 (±0.1772) -2.4813 0.0138
AUC -0.0218 (±0.0809) -0.1009 (±0.2425) -2.5574 0.0111
F1 -0.0905 (±0.432) -0.1585 (±0.9147) -0.5726 0.5675
Precision -0.0366 (±0.1767) -0.1104 (±0.2766) -1.998 0.0468
Recall -0.107 (±0.601) -0.2901 (±1.8979) -0.7579 0.4492

However, we must prove the significance of our observations. Our null hypothesis
H∅ states that performance in the in-domain (ID) setting will equal to or worse
than than out-of-domain (OOD) performance for all metrics, whereas the alternative
hypothesis asserts that there will be one or more metrics for which the ID performance
is better than OOD performance, demonstrating the difficulty of the latter setting.
We use a t-test to estimate the significance of the difference between the group means
for each metric, the results of which are shown in Table 4.3. Interestingly, while we do
show that performance for the in-domain setting is superior to the OOD setting, we

4.2. Population-level Analysis 46

prove unable to reject the null hypothesisH∅. While a seemingly intuitive notion,
we are ultimately unable to conclusively state that any datasets are more or less
difficult to generalize between. This result has potentially interesting implications, as
suggests the possibility that the generalization ability of ILP models may be agnostic
to the underlying data, allowing greater exploration into topics such as pre-training.

Effect of Topological Similarity

While the above heuristic-based approach provides insight into out-of-distribution
generalization at a coarse level by separating graphs into discrete domains, we also
wish to examine generalization ability at a finer granularity. That is, we believe that
a model will perform better on a test graph similar to the graph on which it was
trained. Validating this proposition requires a continuous measure of similarity be-
tween graphs; luckily, this is covered by the well-studied area of graph kernels. A
graph kernel function k : G × G → R computes a real-valued similarity score between
a pair of graphs Gs, Gt ∈ G. There are many graph kernels, each of which pro-
vides a unique perspective on quantifying topological similarity between two graphs,
considering many factors like distributions over node and edge labels, random walk
probabilities, graphlet counts, and so on. For our work, we choose the Pyramid Match
kernel (Nikolentzos, Meladianos, & Vazirgiannis, 2017) as it matches our criteria of
(1) not requiring node or edge labels and (2) operating efficiently enough to scale to
larger graphs with many thousands of nodes.

4.2. Population-level Analysis 47

Co
ra

Ci
te

Se
er

Pu
bM

ed
PP

I (
Tr

ai
n)

PP
I (

Te
st

)
Tw

itc
h

(E
N)

Tw
itc

h
(E

S)
Tw

itc
h

(F
R)

Tw
itc

h
(P

T)
Am

az
on

 (C
om

pu
te

rs
)

Am
az

on
 (P

ho
to

)

Cora
CiteSeer
PubMed

PPI (Train)
PPI (Test)

Twitch (EN)
Twitch (ES)
Twitch (FR)
Twitch (PT)

Amazon (Computers)
Amazon (Photo)

Pyramid-Match Similarity between Source and Target Graphs

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.4: Pyramid Match graph similarity between all graphs used
in our experiments. We observe that graphs from the same dataset are
more similar on average.

We use the Pyramid Match kernel to compute the similarity across all datasets
used in our experiments, shown in Figure 4.4. In general, we see greater similarity
between graphs belonging to the same dataset, e.g. the two Amazon datasets are quite
similar. There are notable exceptions, such as PubMed’s dissimilarity to its fellow
citation networks Cora and CiteSeer. Overall, the scores align well with our domain-
based heuristic. We correlate these similarity scores to the percentage improvement
in AUC scores as described in the previous section. Our null hypothesis H∅ states
that the correlation between the similarity scores and the performance scores will be
less than or equal to 0, while our alternative hypothesis states the contrary. However,
we again prove unable to reject the null hypothesis H∅, observing a very weak
correlation of just -0.06 (p ≤ 0.8623). This result provides further evidence that the
generalization dynamics of ILP models cannot be fully explained by differences in the
underlying data.

4.3. Model-level Analysis 48

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

0.0

0.2

0.4

0.6

0.8

1.0

M
et

ric
 V

al
ue

Metric = Accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

Metric = AUC

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

Metric = F1

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

Metric = Precision

0.0 0.2 0.4 0.6 0.8 1.0
Similarity

Metric = Recall

Figure 4.5: Correlation between graph similarity and model general-
ization. We are unable to reject the null hypothesis (r = −0.06, p ≤
0.8623).

4.3 Model-level Analysis

4.3.1 Dimension-level effects

Having considered behavior at the population level, we now shift focus to behavior
at the model level. For Hypothesis 1.3, we wish to establish if any design dimensions
make a statistically significant impact on generalization ability. Knowledge of such
an effect would inform us that certain dimensions may be more important than others
when identifying well-generalizing models, allowing us to allocate resources (such as
compute, money, or time) more efficiently by focusing less on optimizing dimensions
that do not significantly impact performance. For instance, in a compute-limited
scenario, we may only have the resources to optimize one or two design dimensions,
so the ability to answer a question such as “is optimizing my choice in learning rate
worthwhile given the resources required to do so?” is crucially important, making it
feasible for researchers and practitioners to conduct design space explorations and
find optimal models within the constraints of their resources. Note that this does
not speak to the importance of each individual option within the dimension itself,
but rather the importance of making an optimal selection for a given dimension as a
whole.

4.3. Model-level Analysis 49

Table 4.4: The statistical significance of the effect of each design di-
mension on model generalization across all metrics, which we define
as the difference between a given performance metric on the source
and target graphs. We identify 3 design dimensions with a significant
impact on generalization for at least one metric.

Design
Dimension AUC Accuracy F1 Precision Recall

Global
Encoding

4.70E-06
(F=5.9763)

2.46E-03
(F=3.4352)

1.48E-01
(F=1.5890)

3.36E-02
(F=2.2994)

7.13E-02
(F=1.9490)

Hidden
Channels

8.04E-01
(F=0.2179)

8.15E-01
(F=0.2054)

5.59E-01
(F=0.5833)

1.00E-01
(F=2.3268)

7.51E-01
(F=0.2866)

Learning
Rate

8.21E-02
(F=2.5283)

6.32E-02
(F=2.7953)

5.61E-02
(F=2.9185)

1.67E-01
(F=1.8014)

2.07E-01
(F=1.5849)

Local
Encoding

5.51E-08
(F=12.9745)

1.57E-10
(F=17.5836)

7.55E-07
(F=10.9647)

1.43E-13
(F=23.3058)

2.63E-02
(F=3.1229)

Message
Passing
Layers

3.08E-01
(F=1.1833)

1.46E-01
(F=1.9409)

2.89E-02
(F=3.5995)

3.47E-01
(F=1.0632)

2.04E-02
(F=3.9627)

Message
Passing
Network

1.87E-19
(F=26.6697)

1.80E-09
(F=12.3948)

7.42E-12
(F=15.6697)

1.05E-01
(F=1.9303)

7.19E-06
(F=7.5693)

Optimizer 4.79E-01
(F=0.5031)

7.04E-01
(F=0.1449)

4.16E-01
(F=0.6657)

5.74E-01
(F=0.3180)

5.42E-01
(F=0.3740)

Answering such a question is complex, but we can use Controlled Random Search
(CRS) to effectively design a set of experiments allowing us to do so. For each design
dimension d ∈ D, we use CRS to sample 25 configuration groups and repeat each
across 3 random seeds, giving us 75 · |d| trials for the design dimension d. This gives
us a set of trials ti,j, 1 ≤ j ≤ 75 for each di ∈ d, where we know that the only
difference between trials ti,j and tk,j are the selected values i and j for the design
dimension of interest d. All other parameters - including model architecture, training
hyperparameters, and datasets - are held fixed. For each trial ti,j, we compute the
difference between each metric ∆i,j,m = mi,j,s − mi,j,t as the generalization score(s),
where mi,j,· is the value of a metric m for a given trial ti,j on the source (s) or target (t)
graphs. Taking the mean µi,m = 1

75
∑75

j=1 ∆i,j,m then tells us the mean generalization
ability for a given member of the design dimension i ∈ d and metric m. This allows

4.3. Model-level Analysis 50

us to interpret µi,m − µj,m for some i, j ∈ d as the difference in mean generalization
ability between the two members of the design dimension, holding all other parameters
constant.

To interpret these pairwise differences in group means, we use a one-way ANOVA
with Bonferroni correction (p = 0.05

|D||M| = 0.05
7·5 = 0.05

35). Our null hypothesis for each
design dimension and metric d,m ∈ D × M is that H∅ : ∀i, j ∈ d : µi,m − µj,m = 0,
which assumes that there are no two members of the design dimension with signif-
icantly different generalization abilities. Our alternative hypothesis H1 : ∃i, j ∈ d :
|µi,m −µj,m| > 0 states that there exists at least one pair of choices within the design
dimension with a statistically significant difference in their generalization abilities.
We conduct this analysis across all 7 of our design dimensions, executing 2025 total
trials. The results are presented in Table 4.7, where we observe a statistically sig-
nificant effect on generalization ability from 3 design dimensions - Global Encoding,
Local Encoding, and Message Passing Network - for at least one metric. This re-
sult confirms Hypothesis 1.3, verifying that particular design dimensions have a
statistically significant effect on ILP models’ generalization ability.

4.3.2 Performance by Design Dimension

Having verified the existence of significant effects on generalization between the dif-
ferent design dimensions, we now examine the abilities of all options Within each
design dimension. For each metric m and design dimension d, we compute the mean
rank across all sample configurations as described in Figure 3.2 for both the source
and target graphs. A lower value indicates a better ranking on average for a given
method within a particular design dimension. This section will visualize these rank-
ings across all design dimension and metrics to comprehensively capture the strengths
and weakness of each.

Global encoding Figure 4.6 shows the surprising result that none of the global
encoding methods are as effective in this setting as a simple degree-based encoding.
The degree-based GE outperforms all others in all metrics on both source and target
graphs. Overall, the top three best-performing methods - degree, random node ini-
tialization, and random walk - can also arguably be considered the simplest methods,
suggesting that high-powered positional encoding methods do not demonstrably im-
prove performance relative to more lightweight alternatives, and are sometimes even
worse than not using a global encoding at all.

4.3. Model-level Analysis 51

1
2
3
4
5
6
7

AUROC Accuracy F1 Precision Recall
1
2
3
4
5
6
7

So
ur

ce

Degree
HOPE
LaplacianPE
None
RNI
RWPE
RandNE

1
2
3
4
5
6
7

AUROC Accuracy F1 Precision Recall
1
2
3
4
5
6
7Ta

rg
et

Figure 4.6: Ranking analysis of global encodings across all metrics.
Metrics are along the X axis, and bar colors correspond to choices for
the design dimension. The top row corresponds to performance on the
source graph, while the bottom corresponds to the target graph. The
mean and distribution of rankings are shown in the top and bottom
halves of each row. A lower average rank indicates superior perfor-
mance.

Local encoding Among local encodings, it is clear that Double Radius Node La-
beling (DRNL) and Distance Encoding Plus (DE+) are markedly superior to Distance
Encoding (DE+), as shown by Figure 4.7. Interestingly, there is a pronounced dif-
ference between all three options and None, indicating that using a local encoding is
vital for inductive link prediction.

4.3. Model-level Analysis 52

1
2
3
4

AUROC Accuracy F1 Precision Recall
1
2
3
4

So
ur

ce

DE
DE+
DRNL
None

1
2
3
4

AUROC Accuracy F1 Precision Recall
1
2
3
4Ta

rg
et

Figure 4.7: Ranking analysis of local encodings across all metrics. Met-
rics are along the X axis, and bar colors correspond to choices for the
design dimension. The top row corresponds to performance on the
source graph, while the bottom corresponds to the target graph. The
mean and distribution of rankings are shown in the top and bottom
halves of each row. A lower average rank indicates superior perfor-
mance.

Message passing network It is shown by 4.8 that the Graph Convolutional Net-
work (GCN) consistently outperforms the alternatives in terms of AUC, accuracy, F1,
and recall. However, GraphSAGE produces the highest precision, providing a good
example of the importance of considering performance across multiple metrics. These
findings suggest that most practitioners in general should opt for the GCN, but that
those focused on tasks requiring high precision should actually choose GraphSAGE
instead.

4.3. Model-level Analysis 53

1
2
3
4
5

AUROC Accuracy F1 Precision Recall
1
2
3
4
5

So
ur

ce

GAT
GCN
GIN
GraphSAGE
PEG

1
2
3
4
5

AUROC Accuracy F1 Precision Recall
1
2
3
4
5Ta

rg
et

Figure 4.8: Ranking analysis of message passing networks across all
metrics. Metrics are along the X axis, and bar colors correspond to
choices for the design dimension. The top row corresponds to perfor-
mance on the source graph, while the bottom corresponds to the target
graph. The mean and distribution of rankings are shown in the top
and bottom halves of each row. A lower average rank indicates supe-
rior performance.

Message passing layers When considering the number of message passing layers
used, a less is more effect is found. Figure 4.9 shows that in most cases, it seems
that one message passing layer is sufficient, if not outright superior, and in almost
every case using three message passing layers hampers performance. We believe that
this is likely the effect of the well-studied oversmoothing phenomenon in message
passing networks, in which node embeddings tend to converge to a similar point as
the number of message passing rounds increases, ultimately making it difficult to
distinguish positive and negative subgraphs.

4.3. Model-level Analysis 54

1

2

3

AUROC Accuracy F1 Precision Recall
1

2

3
So

ur
ce

1
2
3

1

2

3

AUROC Accuracy F1 Precision Recall
1

2

3Ta
rg

et

Figure 4.9: Ranking analysis of message passing layers across all met-
rics. Metrics are along the X axis, and bar colors correspond to choices
for the design dimension. The top row corresponds to performance on
the source graph, while the bottom corresponds to the target graph.
The mean and distribution of rankings are shown in the top and bot-
tom halves of each row. A lower average rank indicates superior per-
formance.

Hidden channels Another interesting finding comes in the number of hidden chan-
nels used to embed nodes within the model. Similarly to the number of message pass-
ing layers, Figure 4.10 shows the same less is more effect is present in the number of
hidden channels. In most cases, either 32 or 64 channels is optimal for best perfor-
mance, with 128 channels consistently leading to poor performance. This finding can
help practitioners reduce training time and increase their model efficiency by avoiding
needlessly large models.

4.3. Model-level Analysis 55

1

2

3

AUROC Accuracy F1 Precision Recall
1

2

3
So

ur
ce

32
64
128

1

2

3

AUROC Accuracy F1 Precision Recall
1

2

3Ta
rg

et

Figure 4.10: Ranking analysis of hidden channels across all metrics.
Metrics are along the X axis, and bar colors correspond to choices for
the design dimension. The top row corresponds to performance on the
source graph, while the bottom corresponds to the target graph. The
mean and distribution of rankings are shown in the top and bottom
halves of each row. A lower average rank indicates superior perfor-
mance.

Optimizer Figure 4.11 paints a somewhat unclear picture of which optimizer is best
for the inductive link prediction task. Adam is superior in AUC and precision, while
SGD is stronger in F1 and recall, and both are comparable in terms of accuracy. This
aligns with findings from previous work that Adam is generally comparable or superior
to SGD in a naive setting, though SGD can be better when tuned. Though the
outright best choice is unclear, our findings help guide practitioners by demonstrating
the nuanced differences between the two on a per-metric basis.

4.3. Model-level Analysis 56

1

2

AUROC Accuracy F1 Precision Recall
1

2
So

ur
ce

Adam
SGD

1

2

AUROC Accuracy F1 Precision Recall
1

2Ta
rg

et

Figure 4.11: Ranking analysis of optimizers across all metrics. Metrics
are along the X axis, and bar colors correspond to choices for the design
dimension. The top row corresponds to performance on the source
graph, while the bottom corresponds to the target graph. The mean
and distribution of rankings are shown in the top and bottom halves of
each row. A lower average rank indicates superior performance.

Learning rate Finally, it is seen in Figure 4.12 that a lower learning rate of 0.0001 is
generally better for performance. In addition, we again observe a difference precision,
which is increased with a slightly higher learning rate of 0.001.

1

2

3

AUROC Accuracy F1 Precision Recall
1

2

3

So
ur

ce

0.0001
0.001
0.01

1

2

3

AUROC Accuracy F1 Precision Recall
1

2

3Ta
rg

et

Figure 4.12: Ranking analysis of learning rate across all metrics. Met-
rics are along the X axis, and bar colors correspond to choices for the
design dimension. The top row corresponds to performance on the
source graph, while the bottom corresponds to the target graph. The
mean and distribution of rankings are shown in the top and bottom
halves of each row. A lower average rank indicates superior perfor-
mance.

4.3. Model-level Analysis 57

4.3.3 Reduced Design Space

Table 4.5: Optimal design choices across all metrics for source and
target datasets.

Global
encoding

Local
encoding

Message
passing
network

Message
passing

layers

Hidden
chan-

nels Optimizer
Learning

rate

Source
AUC

Degree DRNL GCN 1 64 Adam 0.0001

Source
Accu-
racy

Degree DRNL GCN 1 64 Adam 0.0001

Source
F1

Degree DRNL GCN 2 64 SGD 0.0001

Source
Preci-
sion

RNI DE GraphSAGE 1 64 Adam 0.001

Source
Recall

Degree DE+ GCN 2 32 SGD 0.0001

Target
AUC

Degree DRNL GCN 1 64 Adam 0.001

Target
Accu-
racy

Degree DRNL GCN 1 64 SGD 0.0001

Target
F1

Degree DRNL GCN 2 64 SGD 0.0001

Target
Preci-
sion

RNI DE GraphSAGE 1 32 Adam 0.001

Target
Recall

Degree DE+ GCN 2 32 SGD 0.0001

A key application of the above results is to reduce the design space. The number
of experiments required to evaluate the full design space is prohibitive (if not effec-
tively intractable with finite resources), but even with Controlled Random Search,
each design dimension must still be evaluated. This can make it quite costly to run

4.3. Model-level Analysis 58

a sufficient number of trials to obtain a strong-performing model, and this cost will
increase combinatorially for future work which may introduce new design dimensions
beyond the scope of the current study. As such, it would be extremely valuable to
eliminate the choices from each dimension which we know to not be worth exploring,
greatly reducing the number of trials required to find well-performing models. Con-
cretely, we seek a subspace D′ ⊂ D such that the average performance of models in
D′ is comparable or superior to those in D. To find such a subspace, we examine
the best-performing choices for each design dimension d ∈ D across all metrics on
both the source and target graphs, shown in Table 4.5. Each row shows the best-
performing choices across all design dimensions for a given metric. We greedily select
the column space of this table as our reduced design space; that is, the set of choices
for each dimension consist of the best-performing choices for each metric.

Table 4.6: A reduction of our proposed full design space obtained by
greedily selecting the best-performing choices for each dimension.

Design Dimension Choices

Positional encoding Degree, RNI
Structural encoding DE, DE+, DRNL
Message passing network GCN, GraphSAGE
Message passing layers 1, 2
Hidden channels 32, 64
Optimizer Adam, SGD
Learning rate 0.0001, 0.001

The resulting design space D′ is shown in Table 4.6. However, for this space to
provide genuine utility as a high-quality starting point which can accelerate future
research, it must be shown to produce comparable or superior performance to the full
space of models. This is the goal of our third research objective, Hypothesis 1.3. Our
null hypothesis H∅ : ∀m : m̄D = m̄D′ states that the mean of each metric will be
identical between the full and pruned design spaces, while our experimental hypothesis
H1 : ∃m : m̄D−m̄D′ > 0 states that there will be one or more metrics whose means are
higher for the reduced space than the full space, indicating the superiority of the full
space. We investigate our hypotheses by using classical random sampling to conduct
100 trials sampled from both the full and reduced spaces, and computing performance
metrics for the target graph. We determine the significance of our results using a one-
way ANOVA with Bonferroni correction. Unfortunately, while we do observe that the

4.3. Model-level Analysis 59

pruned design space outperforms the full space in several metrics, we are unable to
reject the null hypothesis H∅, as the test statistics are insufficient to demonstrate
statistical significance as shown by Table 4.7. We hypothesize that this is a result
of our selection procedure in determining our reduced space, as it may have been
too lenient in the options it preserved; as such, identifying an optimal procedure for
selecting a reduced design space could be a valuable direction for future work.

Table 4.7: Performance comparison between models sampled from the
full and reduced design spaces on the target graph.

Full Reduced F p

Accuracy 0.0325 (±0.0667) 0.0358 (±0.067) 0.1462 0.7026
AUC 0.0504 (±0.0967) 0.0584 (±0.1168) 0.3157 0.5749
F1 0.0246 (±0.1523) 0.0177 (±0.124) 0.1153 0.7345
Precision 0.0375 (±0.1313) 0.0699 (±0.1503) 2.71 0.1013
Recall 0.0233 (±0.226) -0.0189 (±0.1955) 1.9779 0.1612

Conclusion

Summary of Contributions In conclusion, we perform the first (to the best of
our knowledge) exhaustive evaluation of GNN-based methods for inductive link pre-
diction, with a particular focus on generalization ability. We first provided a compre-
hensive overview of existing work on graph representation learning and inductive link
prediction in Section 2. In Section 3 we propose a standardized framework for the
inductive link prediction task, and detailed the experiments necessary to investigate
our hypotheses.

We presented the results of our work in Section 4, beginning by establishing a
statistically significant decrease in performance when applying ILP models to unseen
graphs,demonstrating the difficulty of the cross-graph ILP task and verifying our first
hypothesis. We then analyzed the effects of the underlying data on this performance
decrease, and found the surprising result that shifting domains from the source graph
to the target could not be confirmed as responsible for the crease in performance.
This counterintuitive result has interesting and potentially significant applications,
as it suggests that if the true cause for performance degradation is identified, it may
be possible to transfer ILP models between arbitrary, potentially very different do-
mains of data. Next, we focused on trends in individual components of our model
framework. We demonstrated a statistically significant difference between said com-
ponents, indicating that certain components of ILP models are more important to
generalization than others. We also provided an in-depth ranking analysis of the can-
didate methods for each model component, yielding illuminating insights such as the
importance of local encodings and a less-is-more effect where larger models were not
always necessarily better, making it possible to both improve performance and con-
serve computational resources. Finally, we attempted to demonstrate the existence
of an optimal reduced design space in order to accelerate future work in the area.
However, we were unfortunately unable to do so; we hypothesize this is due to our
simplistic and limited pruning method, which can be improved in future work.

In summary, our work sheds light on multiple important behavioral patterns of

4.3. Model-level Analysis 61

models for inductive link prediction. We establish the difficulty of the task and
identify important considerations for maximizing generalization ability. We hope
that the present work provides a helpful starting point for future work in the area,
and that our framework and insights will help reduce the barrier to entry for those
new to the space.

Future Work We believe that the present work sets the foundation for a multitude
of future research. Firstly, our difficulties in identifying a reduced design space point
to the need for an optimal method in doing so. Our approach was a simple heuristic
that selected all options from all design dimensions which ranked best in at least
one metric. This approach has clear shortcomings, as options which perform very
well in one metric but poorly in others may not be ideal relative to options which
perform moderately well across all metrics. Future work could consider methods
similar to various hyperparameter tuning algorithms for automatically identifying
reduced design spaces to alleviate the need for such simplistic heuristics.

In addition, the task of inductive link prediction is highly relevant and applicable
to many real world scenarios. In particular, recommendation systems could bene-
fit from high-quality inductive methods, as many recommendation tasks are privacy
sensitive. In scenarios where data must be isolated between users, inductive models
could be combined with federated learning approaches to obtain high-performance,
privacy-preserving recommendation models. Even in scenarios where privacy is not
of concern, inductive models still have many benefits. By removing the need to trans-
ductively represent each user and item with their own unique embedding, inductive
models are many orders of magnitude more efficient than their transductive counter-
parts, a vital consideration when operating on millions of users and items. Inductive
models also bear the benefit of naturally generalizing to unseen data, whereas trans-
ductive models need to be retrained frequently to handle new users and items. In all,
understanding the behavior of inductive models for link prediction and identifying
optimal design choices can help improve the viability, performance, and efficiency in
recommendation systems and related tasks.

References

Abbas, K., Abbasi, A., Dong, S., Niu, L., Yu, L., Chen, B., . . . Hasan, Q. (2021).
Application of network link prediction in drug discovery. BMC Bioinformatics,
22.

Abboud, R., Ceylan.Ismail .Ilkan, Grohe, M., & Lukasiewicz, T. (2020). The sur-
prising power of graph neural networks with random node initialization. ArXiv,
abs/2010.01179.

Adamic, L. A., & Adar, E. (2003). Friends and neighbors on the web. Soc. Networks,
25, 211–230.

Arvind, V., Köbler, J., Rattan, G., & Verbitsky, O. (2015). On the power of color
refinement. In International symposium on fundamentals of computation theory.

Backstrom, L., & Leskovec, J. (2010). Supervised random walks: Predicting and
recommending links in social networks. In Web search and data mining.

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly
learning to align and translate. CoRR, abs/1409.0473.

Balazevic, I., Allen, C., & Hospedales, T. M. (2019). TuckER: Tensor factorization
for knowledge graph completion. ArXiv, abs/1901.09590.

Balcilar, M., Héroux, P., Gaüzère, B., Vasseur, P., Adam, S., & Honeine, P. (2021).
Breaking the limits of message passing graph neural networks. In International
conference on machine learning.

Bengio, Y., Courville, A. C., & Vincent, P. (2013). Representation learning: A re-
view and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35, 1798–1828.

Berg, R. van den, Kipf, T. N., & Welling, M. (2017). Graph convolutional matrix
completion. arXiv Preprint arXiv:1706.02263.

Bordes, A., Usunier, N., García-Durán, A., Weston, J., & Yakhnenko, O. (2013).
Translating embeddings for modeling multi-relational data. In NIPS.

Bronstein, M. M., Bruna, J., Cohen, T., & Veličković, P. (2021). Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges. ArXiv, abs/2104.13478.

References 63

Chen, Y., Mishra, P., Franceschi, L., Minervini, P., Stenetorp, P., & Riedel, S. (2022).
ReFactorGNNs: Revisiting factorisation-based models from a message-passing
perspective. ArXiv, abs/2207.09980.

Colizza, V., Barrat, A., Barthelemy, M., & Vespignani, A. (2005). Prediction and
predictability of global epidemics: The role of the airline transportation network.
Bulletin of the American Physical Society, 2015.

Cui, Z., Henrickson, K. C., Ke, R., & Wang, Y. (2018). Traffic graph convolutional
recurrent neural network: A deep learning framework for network-scale traffic
learning and forecasting. IEEE Transactions on Intelligent Transportation Sys-
tems, 21, 4883–4894.

Daud, N. N., Ab Hamid, S. H., Saadoon, M., Sahran, F., & Anuar, N. B. (2020).
Applications of link prediction in social networks: A review. Journal of Network
and Computer Applications, 166, 102716.

Degraeve, V., Vandewiele, G., Ongenae, F., & Hoecke, S. van. (2022). R-GCN: The
r could stand for random. ArXiv, abs/2203.02424.

Derrow-Pinion, A., She, J., Wong, D., Lange, O., Hester, T., Perez, L., . . . Velickovic,
P. (2021). ETA prediction with graph neural networks in google maps. In Proceed-
ings of the 30th ACM international conference on information & knowledge
management (pp. 3767–3776). New York, NY, USA: Association for Computing
Machinery. http://doi.org/10.1145/3459637.3481916

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Bengio, Y., & Bresson, X.
(2020). Benchmarking graph neural networks. arXiv Preprint arXiv:2003.00982.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., & Bresson, X. (2022). Graph
neural networks with learnable structural and positional representations. In In-
ternational conference on learning representations. Retrieved from https://
openreview.net/forum?id=wTTjnvGphYj

Egressy, B., & Wattenhofer, R. (2022). Graph neural networks with precomputed
node features. ArXiv, abs/2206.00637.

Fang, X., Huang, J., Wang, F., Zeng, L., Liang, H., & Wang, H. (2020). ConSTGAT:
Contextual spatial-temporal graph attention network for travel time estimation
at baidu maps. Proceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining.

Feng, J., Chen, Y., Li, F., Sarkar, A., & Zhang, M. (2022). How powerful are k-hop
message passing graph neural networks. In A. H. Oh, A. Agarwal, D. Belgrave,
& K. Cho (Eds.), Advances in neural information processing systems. Retrieved
from https://openreview.net/forum?id=nN3aVRQsxGd

https://doi.org/10.1145/3459637.3481916
https://openreview.net/forum?id=wTTjnvGphYj
https://openreview.net/forum?id=wTTjnvGphYj
https://openreview.net/forum?id=nN3aVRQsxGd

References 64

Galkin, M., Berrendorf, M., & Hoyt, C. T. (2022). An open challenge for inductive
link prediction on knowledge graphs. ArXiv, abs/2203.01520.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural
message passing for quantum chemistry. In Proceedings of the 34th international
conference on machine learning - volume 70 (pp. 1263–1272). Sydney, NSW,
Australia: JMLR.org.

Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks.
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

Hamaguchi, T., Oiwa, H., Shimbo, M., & Matsumoto, Y. (2017). Knowledge transfer
for out-of-knowledge-base entities : A graph neural network approach. ArXiv,
abs/1706.05674.

Hamilton, W. L., Ying, Z., & Leskovec, J. (2017). Inductive representation learning
on large graphs. In NIPS.

Hasan, M. A., Chaoji, V., Salem, S., & Zaki, M. J. (2006). Link prediction using
supervised learning. In.

He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., & Wang, M. (2020). LightGCN:
Simplifying and powering graph convolution network for recommendation. Pro-
ceedings of the 43rd International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval.

He, Y., Wang, Z., Zhang, P., Tu, Z., & Ren, Z. (2020). VN network: Embedding
newly emerging entities with virtual neighbors. Proceedings of the 29th ACM
International Conference on Information & Knowledge Management.

Huang, Z., Li, X., & Chen, H. (2005). Link prediction approach to collaborative
filtering. In Proceedings of the 5th ACM/IEEE-CS joint conference on digital
libraries (pp. 141–142).

Islam, K., Aridhi, S., & Smaïl-Tabbone, M. (2020). A comparative study of similarity-
based and GNN-based link prediction approaches. ArXiv, abs/2008.08879.

Jeh, G., & Widom, J. (2002). SimRank: A measure of structural-context similarity.
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

Jiang, W. (2022). Bike sharing usage prediction with deep learning: A survey. Neural
Computing & Applications, 34, 15369–15385.

Jiang, W., & Luo, J. (2021). Graph neural network for traffic forecasting: A survey.
Expert Syst. Appl., 207, 117921.

References 65

Kamp, C., Moslonka-Lefebvre, M., & Alizon, S. (2013). Epidemic spread on weighted
networks. PLoS Computational Biology, 9.

Kazemi, S. M., & Poole, D. L. (2018). SimplE embedding for link prediction in
knowledge graphs. ArXiv, abs/1802.04868.

Kiefer, S., Schweitzer, P., & Selman, E. (2015). Graphs identified by logics with
counting. In International symposium on mathematical foundations of computer
science.

Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In
Y. Bengio & Y. LeCun (Eds.), 3rd international conference on learning repre-
sentations, ICLR 2015, san diego, CA, USA, may 7-9, 2015, conference track
proceedings. Retrieved from http://arxiv.org/abs/1412.6980

Kipf, T., & Welling, M. (2016). Variational graph auto-encoders. ArXiv,
abs/1611.07308.

Kipf, T., & Welling, M. (2017). Semi-supervised classification with graph convolu-
tional networks. ArXiv, abs/1609.02907.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., & Tossou, P. (2021). Rethink-
ing graph transformers with spectral attention. Advances in Neural Information
Processing Systems, 34, 21618–21629.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with
deep convolutional neural networks. In F. Pereira, C. J. Burges, L. Bottou, & K.
Q. Weinberger (Eds.), Advances in neural information processing systems (Vol.
25). Curran Associates, Inc. Retrieved from https://proceedings.neurips.
cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Leman, A., & Weisfeiler, B. (1968). A reduction of a graph to a canonical form and
an algebra arising during this reduction. Nauchno-Technicheskaya Informatsiya,
2 (9), 12–16.

Leskovec, J., Huttenlocher, D. P., & Kleinberg, J. M. (2010). Predicting positive and
negative links in online social networks. ArXiv, abs/1003.2429.

Li, P., Wang, Y., Wang, H., & Leskovec, J. (2020). Distance encoding: Design prov-
ably more powerful neural networks for graph representation learning. Advances
in Neural Information Processing Systems, 33, 4465–4478.

Liben-Nowell, D., & Kleinberg, J. M. (2007). The link-prediction problem for social
networks. J. Assoc. Inf. Sci. Technol., 58, 1019–1031.

Lu, L., & Zhou, T. (2010). Link prediction in complex networks: A survey. ArXiv,
abs/1010.0725.

http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

References 66

Ma, Y., Guo, Z., Ren, Z., Tang, J., & Yin, D. (2020). Streaming graph
neural networks. In Proceedings of the 43rd international ACM SIGIR
conference on research and development in information retrieval (pp.
719–728). New York, NY, USA: Association for Computing Machinery.
http://doi.org/10.1145/3397271.3401092

MacLean, F. (2021). Knowledge graphs and their applications in drug discovery.
Expert Opinion on Drug Discovery, 16 (9), 1057–1069.

Maron, H., Ben-Hamu, H., Serviansky, H., & Lipman, Y. (2019). Provably
powerful graph networks. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. dAlché-Buc, E. Fox, & R. Garnett (Eds.), Advances in neural infor-
mation processing systems (Vol. 32). Curran Associates, Inc. Retrieved
from https://proceedings.neurips.cc/paper_files/paper/2019/file/
bb04af0f7ecaee4aae62035497da1387-Paper.pdf

Mikolov, T., Chen, K., Corrado, G. S., & Dean, J. (2013). Efficient estimation of
word representations in vector space. In ICLR.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Dis-
tributed representations of words and phrases and their compositionality. ArXiv,
abs/1310.4546.

Morris, C., Fey, M., & Kriege, N. (2021). The power of the weisfeiler-leman algo-
rithm for machine learning with graphs. In Z.-H. Zhou (Ed.), Proceedings of the
thirtieth international joint conference on artificial intelligence, IJCAI-21 (pp.
4543–4550). International Joint Conferences on Artificial Intelligence Organiza-
tion. http://doi.org/10.24963/ijcai.2021/618

Morris, C., Lipman, Y., Maron, H., Rieck, B., Kriege, N. M., Grohe, M., . . . Borg-
wardt, K. (2021). Weisfeiler and leman go machine learning: The story so far.
Retrieved from https://arxiv.org/abs/2112.09992

Mutlu, E. C., Oghaz, T. A., Rajabi, A., & Garibay, I. (2020). Review on learning
and extracting graph features for link prediction. Mach. Learn. Knowl. Extr., 2,
672–704.

Nickel, M., Rosasco, L., & Poggio, T. A. (2016). Holographic embeddings of knowl-
edge graphs. In AAAI.

Nickel, M., Tresp, V., & Kriegel, H.-P. (2011). A three-way model for collective
learning on multi-relational data. In ICML.

Nikolentzos, G., Meladianos, P., & Vazirgiannis, M. (2017). Matching node embed-
dings for graph similarity. In AAAI conference on artificial intelligence. Retrieved
from https://api.semanticscholar.org/CorpusID:3637603

https://doi.org/10.1145/3397271.3401092
https://proceedings.neurips.cc/paper_files/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bb04af0f7ecaee4aae62035497da1387-Paper.pdf
https://doi.org/10.24963/ijcai.2021/618
https://arxiv.org/abs/2112.09992
https://api.semanticscholar.org/CorpusID:3637603

References 67

Ou, M., Cui, P., Pei, J., Zhang, Z., & Zhu, W. (2016). Asymmetric transitivity pre-
serving graph embedding. In Proceedings of the 22nd ACM SIGKDD international
conference on knowledge discovery and data mining (pp. 1105–1114). ACM.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). DeepWalk: Online learning of social
representations. Proceedings of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining.

Popescul, A., & Ungar, L. H. (2003). Statistical relational learning for link prediction.
In IJCAI workshop on learning statistical models from relational data (Vol. 2003).

Postavaru, S., Tsitsulin, A., Almeida, F., Tian, Y., Lattanzi, S., & Perozzi, B. (2020).
InstantEmbedding: Efficient local node representations. ArXiv, abs/2010.06992.

Qiu, J., Dong, Y., Ma, H., Li, J., Wang, K., & Tang, J. (2018). Network embedding as
matrix factorization: Unifying DeepWalk, LINE, PTE, and node2vec. Proceedings
of the Eleventh ACM International Conference on Web Search and Data Mining.

Radosavovic, I., Johnson, J., Xie, S., Lo, W.-Y., & Dollár, P. (2019). On network
design spaces for visual recognition. Retrieved from https://arxiv.org/abs/
1905.13214

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., & Beaini, D. (2022).
Recipe for a General, Powerful, Scalable Graph Transformer. Advances in Neural
Information Processing Systems, 35.

Rozemberczki, B., Allen, C., & Sarkar, R. (2021). Multi-scale attributed node em-
bedding. Journal of Complex Networks, 9 (2), cnab014.

Sadeghi, A., Malik, H. A., Collarana, D., & Lehmann, J. (2021). Relational pattern
benchmarking on the knowledge graph link prediction task. In NeurIPS datasets
and benchmarks.

Sarkar, P., Chakrabarti, D., & Moore, A. W. (2011). Theoretical justification of
popular link prediction heuristics. In International joint conference on artificial
intelligence.

Sato, R., Yamada, M., & Kashima, H. (2020). Random features strengthen graph
neural networks. In SDM.

Schlichtkrull, M., Kipf, T., Bloem, P., Berg, R. van den, Titov, I., & Welling, M.
(2018). Modeling relational data with graph convolutional networks. In ESWC.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T.
(2008). Collective classification in network data. AI Magazine, 29 (3), 93.
http://doi.org/10.1609/aimag.v29i3.2157

Shchur, O., Mumme, M., Bojchevski, A., & Günnemann, S. (2018). Pitfalls of graph
neural network evaluation. arXiv Preprint arXiv:1811.05868.

https://arxiv.org/abs/1905.13214
https://arxiv.org/abs/1905.13214
https://doi.org/10.1609/aimag.v29i3.2157

References 68

So, M. K. P., Chu, A. M. Y., Tiwari, A., & Chan, J. N. L. (2020). On topological
properties of COVID-19: Predicting and controling pandemic risk with network
statistics. medRxiv.

Sun, Z., Deng, Z., Nie, J.-Y., & Tang, J. (2018). RotatE: Knowledge graph embedding
by relational rotation in complex space. ArXiv, abs/1902.10197.

Talasu, N., Jonnalagadda, A., Pillai, S. S. A., & Rahul, J. (2017). A link prediction
based approach for recommendation systems. In 2017 international conference on
advances in computing, communications and informatics (ICACCI) (pp. 2059–
2062). IEEE.

Tang, J., Qu, M., & Mei, Q. (2015). PTE: Predictive text embedding through large-
scale heterogeneous text networks. Proceedings of the 21th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). LINE: Large-scale
information network embedding. Proceedings of the 24th International Conference
on World Wide Web.

Taskar, B., Wong, M. F., Abbeel, P., & Koller, D. (2003). Link prediction in relational
data. In NIPS.

Teru, K. K., Denis, E., & Hamilton, W. L. (2020). Inductive relation prediction by
subgraph reasoning. In ICML.

Trouillon, T., Dance, C. R., Gaussier, Éric, Welbl, J., Riedel, S., & Bouchard, G.
(2017). Knowledge graph completion via complex tensor factorization. J. Mach.
Learn. Res., 18, 130:1–130:38.

Vashishth, S., Sanyal, S., Nitin, V., & Talukdar, P. (2020). Composition-based multi-
relational graph convolutional networks. In International conference on learn-
ing representations. Retrieved from https://openreview.net/forum?id=BylA_
C4tPr

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . .
Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information
Processing Systems, 30.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio’, P., & Bengio, Y. (2018).
Graph attention networks. ArXiv, abs/1710.10903.

Veličković, P. (2022). Message passing all the way up. Retrieved from https://
arxiv.org/abs/2202.11097

Wang, D., Zhang, J., Cao, W., Li, J., & Zheng, Y. (2018). When will you arrive?
Estimating travel time based on deep neural networks. In AAAI conference on
artificial intelligence.

https://openreview.net/forum?id=BylA_C4tPr
https://openreview.net/forum?id=BylA_C4tPr
https://arxiv.org/abs/2202.11097
https://arxiv.org/abs/2202.11097

References 69

Wang, H., Yin, H., Zhang, M., & Li, P. (2022). Equivariant and stable positional
encoding for more powerful graph neural networks. In International conference
on learning representations.

Wang, P., Han, J., Li, C., & Pan, R. (2019). Logic attention based neighborhood
aggregation for inductive knowledge graph embedding. In AAAI.

Wang, X., He, X., Cao, Y., Liu, M., & Chua, T.-S. (2019). KGAT: Knowledge graph
attention network for recommendation. Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining.

Wang, Z., Zhao, H., & Shi, C. (2022). Profiling the design space for graph neural
networks based collaborative filtering. Proceedings of the Fifteenth ACM Interna-
tional Conference on Web Search and Data Mining.

Wu, F., Zhang, T., Souza, A. H. de, Fifty, C., Yu, T., & Weinberger, K. Q. (2019).
Simplifying graph convolutional networks. ArXiv, abs/1902.07153.

Xie, Y., Qiu, J., Yu, W., Feng, X., Chen, Y., & Tang, J. (2021). NetMF+: Network
embedding based on fast and effective single-pass randomized matrix factorization.
ArXiv, abs/2110.12782.

Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2019). How powerful are graph neural
networks? In International conference on learning representations. Retrieved from
https://openreview.net/forum?id=ryGs6iA5Km

Yang, B., Yih, W., He, X., Gao, J., & Deng, L. (2015). Embedding entities and
relations for learning and inference in knowledge bases. CoRR, abs/1412.6575.

Yang, Z., Cohen, W., & Salakhudinov, R. (2016). Revisiting semi-supervised learning
with graph embeddings. In International conference on machine learning (pp. 40–
48). PMLR.

Yao, H., Wu, F., Ke, J., Tang, X., Jia, Y., Lu, S., . . . Li, Z. J. (2018). Deep multi-
view spatial-temporal network for taxi demand prediction. In AAAI conference
on artificial intelligence.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., . . . Liu, T.-Y. (2021). Do
transformers really perform bad for graph representation? In Neural information
processing systems.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J.
(2018). Graph convolutional neural networks for web-scale recommender systems.
Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining.

You, J., Du, T., & Leskovec, J. (2022). ROLAND: Graph learning framework for dy-
namic graphs. In Proceedings of the 28th ACM SIGKDD conference on knowledge

https://openreview.net/forum?id=ryGs6iA5Km

References 70

discovery and data mining (pp. 2358–2366).
You, J., Ying, R., & Leskovec, J. (2019). Position-aware graph neural networks. In

International conference on machine learning (pp. 7134–7143). PMLR.
You, J., Ying, R., & Leskovec, J. (2020). Design space for graph neural networks. In

NeurIPS.
Zhang, M., & Chen, Y. (2017). Weisfeiler-lehman neural machine for link prediction.

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

Zhang, M., & Chen, Y. (2018). Link prediction based on graph neural networks.
ArXiv, abs/1802.09691.

Zhang, M., & Chen, Y. (2020). Inductive matrix completion based on graph neural
networks. In International conference on learning representations. Retrieved from
https://openreview.net/forum?id=ByxxgCEYDS

Zhang, M., Li, P., Xia, Y., Wang, K., & Jin, L. (2020). Labeling trick: A theory
of using graph neural networks for multi-node representation learning. In Neural
information processing systems.

Zhao, L., Jin, W., Akoglu, L., & Shah, N. (2022). From stars to subgraphs: Uplifting
any GNN with local structure awareness. In International conference on learn-
ing representations. Retrieved from https://openreview.net/forum?id=Mspk_
WYKoEH

Zhao, T., Yang, C., Li, Y., Gan, Q., Wang, Z., Liang, F., . . . Shi, C. (2022).
Space4HGNN: A novel, modularized and reproducible platform to evaluate het-
erogeneous graph neural network. Proceedings of the 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval.

Zhou, T., Lü, L., & Zhang, Y.-C. (2009). Predicting missing links via local informa-
tion. The European Physical Journal B, 71, 623–630.

Zitnik, M., & Leskovec, J. (2017). Predicting multicellular function through multi-
layer tissue networks. Bioinformatics, 33 (14), i190–i198.

https://openreview.net/forum?id=ByxxgCEYDS
https://openreview.net/forum?id=Mspk_WYKoEH
https://openreview.net/forum?id=Mspk_WYKoEH

	Chapter 1: Introduction
	Motivation
	Research Objectives
	Population-level Objectives
	Model-level Objectives

	Chapter 2: Background
	Preliminaries
	Applications of Machine Learning on Graphs
	Node-level Tasks
	Set-level Tasks
	Graph-level Tasks

	Graph Representation Learning
	Random Walk and Factorization-based Methods
	Graph Neural Networks
	Expressiveness of Graph Neural Networks
	Design Space of Graph Neural Networks

	Link Prediction
	Learning Representations for Link Prediction
	Inductive Link Prediction

	Chapter 3: Design Space for Inductive Link Prediction
	Standardized Architecture
	Proposed Design Space
	Experimental Design
	Population-level Experiments
	Model-level Experiments

	Chapter 4: Evaluation
	Methodology
	Population-level Analysis
	Aggregate Generalization Ability
	Out-of-Distribution Analysis

	Model-level Analysis
	Dimension-level effects
	Performance by Design Dimension
	Reduced Design Space

	Conclusion
	References

