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Preface

This manuscript-based thesis contains six chapters: an introduction, an original literature

review, three chapters that correspond to three di�erent stand-alone manuscripts, and a

conclusion. A complete bibliography is presented after the appendices, at the end of this

thesis. Chapters 3, 4 and 5 are linked by the main research topic of this thesis, and each

adds novel methodological developments and new insights to the current statistical literature

in the area of causal inference with observational data. Each of these three chapters begins

with a short preamble that introduces the topic of the chapter and that brie�y describes the

gap in literature that I seek to �ll with the proposed methodology. The methodologies are

all illustrated using real-life data analyses.

The introduction and the literature review (Chapters 1 and 2) of this thesis were conceived

and written by Janie Coulombe (JC) following enriching discussions with Erica E. M. Moodie

(EEMM), and both Chapters 1 and 2 were further edited by EEMM and Robert W. Platt

(RWP). The work in Chapter 3 was conceptualized in a series of discussions between JC and

EEMM. JC conducted the methodological derivations, designed and conducted the simula-

tion study, performed the data analysis and wrote the manuscript draft. EEMM provided

substantial help and guidance with the methodological derivations and troubleshooting with

the simulation studies and data analysis. RWP advised and commented the work. EEMM

and RWP corrected and edited the chapter. The methodological work in Chapter 4 was

conceptualized by JC and EEMM, and the data application to CPRD was conceptualized

in a series of discussions between JC, Christel Renoux (CR), and EEMM. JC conducted

the methodological derivations, designed and conducted the simulation study, conducted the

data management and analysis, and wrote the manuscript draft. The work was advised

and edited by EEMM, RWP, and CR. Ideas in Chapter 5 were conceptualized by JC and

EEMM. JC conducted the methodological derivations, designed and conducted the simula-
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tion studies, performed the data analyses and wrote the manuscript draft. EEMM and RWP

advised the work and edited the chapter. The conclusion was conceived and written by JC

and edited by EEMM and RWP.
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Abstract

Causal inference focuses on the estimation of e�ects due to speci�c, well-de�ned causes (such

as exposures on which we can intervene). With the advent of powerful computers and smart

electronic devices, data are now collected more rapidly than ever. That abundance of data

provides a rich landscape for research on causal inference. However, the collection of these

data does not always rely on a study design made expressly for answering the question of

interest. For instance, contrary to some randomized controlled studies where exposure is

randomized and observation times are set in advance, longitudinal observational data from

medical health records are �lled with biasing associations that, should they not be taken

into account, could adversely a�ect the inference. In my doctoral thesis, I focus on two such

challenges, the confounding bias, and the bias due to covariate-driven monitoring times, in

the inference on the causal marginal e�ect of an exposure on a longitudinal outcome. While

there is a vast statistical literature on how to model covariate-driven monitoring times, it has

not been studied in a causal framework, nor considered simultaneously with confounding.

This thesis proposes ways to consistently estimate the marginal e�ect of exposure in settings

subject to those biases.

In a �rst manuscript, I propose two novel estimators for the marginal e�ect of a binary

exposure on a continuous, longitudinal outcome. These estimators allow for the outcome to

be observed irregularly across individuals. They consider confounding factors and covariate-

driven monitoring times that may a�ect inference via a monitoring and an exposure models,

and the corresponding inverse weights. In extensive simulation studies, they are compared

along with other common estimators. The asymptotic properties of the best estimator are

developed.

The second manuscript is motivated by the estimation of the marginal e�ects of two an-

tidepressants, citalopram and �uoxetine, on body mass index, in data from the Clinical

Practice Research Datalink (CPRD) in the United Kingdom. It is assumed that the longi-
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tudinal characteristics of the patients change with physician visits, and therefore, interact

with the monitoring process. Di�erent causal diagrams are used to describe how bias due

to covariate-driven monitoring times can arise in di�erent situations, including the complex

setting where the endogenous covariate process can be modi�ed by the monitoring process.

A new stabilized and cumulated inverse weight is proposed for the latter setting. The weight

serves to break the association between the full history of covariates and the monitoring

process.

In the third manuscript, I aim to evaluate the marginal (causal) e�ect of the time spent on

video games weekly, on suicide attempts. To investigate that e�ect, I use longitudinal data

from the Add Health Study, in the United States; these data are subject to confounding and

monitoring times that may be associated with patients' characteristics. I �rst extend one

of the estimators proposed in the �rst manuscript of this thesis to allow consideration of a

continuous exposure via a generalized inverse probability of treatment weight, along with a

categorical ordinal outcome via a proportional odds model. Simulation studies are used to

demonstrate the consistency of the approach, which is further used to estimate the marginal

odds ratio for a 2-fold or an 8-fold increases in the time spent playing video games on the

number of suicide attempts (categorized as 0, 1, or 2 or more).

Using causal diagrams, I provided in this thesis a thorough demonstration of the bias due to

covariate-driven monitoring times. I proposed a sound methodology for evaluating causal ef-

fects in observational studies subject to confounding and covariate-driven monitoring times.

The proposed methods were further used to answer mental health-related research ques-

tions.
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Abrégé

L'inférence causale est axée sur l'estimation d'e�ets dûs à des causes spéci�ques et bien

dé�nies (par exemple, une exposition sur laquelle il est possible d'intervenir). Avec l'avènement

des ordinateurs super puissants et outils électroniques intelligents, les données sont collec-

tées plus rapidement que jamais auparavant. Cette abondance de données représente une

grande opportunité pour la recherche en inférence causale. Cependant, la collecte de ces

données ne dépend que très rarement d'un plan d'étude pensé expressément pour répondre à

une question causale d'intérêt. Par exemple, contrairement aux essais cliniques randomisés

où l'exposition est randomisée et où les temps de visite sont plani�és d'avance, les données

longitudinales provenant des dossiers médicaux électroniques contiennent des associations

trompeuses qui peuvent in�uencer l'inférence si elles ne sont pas considérées. Dans ma thèse

de doctorat, je me concentre sur deux dé�s reliés à ces associations, soient le biais de confu-

sion et le biais dû aux temps de visite qui dépendent des variables, lors de l'inférence causale

sur l'e�et marginal d'une exposition sur une issue longitudinale. Alors que la littérature

statistique sur la modélisation des temps de visite dépendants est riche, cela n'a pas été

étudié précisément dans un contexte d'inférence causale, et n'a pas été considéré simultané-

ment avec la confusion. Cette thèse propose des méthodes pour estimer de façon consistente

l'e�et marginal d'une exposition dans des contextes enclins à ces types de biais.

Dans un premier manuscrit, je propose deux nouveaux estimateurs pour l'e�et marginal d'une

exposition dichotomique sur une issue longitudinale continue. Ces estimateurs permettent

à l'issue longitudinale d'être observée à des temps irréguliers qui varient entre les individus.

Ils considèrent les facteurs de confusion et les temps de visite dépendant des covariables qui

peuvent a�ecter l'inférence, grâce à des modèles pour les visites et pour l'exposition et des

poids inverses correspondants. Dans des études de simulation exhaustives, ils sont comparés

avec des estimateurs plus communs. Les propriétés asymptotiques du meilleur estimateur

sont dérivées.
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Le deuxième manuscrit est motivé par l'estimation des e�ets marginaux de deux antidé-

presseurs, le citalopram et la �uoxétine, sur l'indice de masse corporelle, dans les données de

la Clinical Practice Research Datalink (CPRD) au Royaume-Uni. On assume que les carac-

téristiques longitudinales des patients peuvent changer avec leurs visites chez le médecin, et

ainsi, qu'elles interagissent avec le processus de visite. Des diagrammes causaux sont util-

isés a�n de décrire comment le biais dû aux temps de visite dépendants peut survenir dans

di�érentes situations, incluant le cas complexe où le processus de variable endogène peut

être modi�é par le processus de visite. Pour ce cas complexe, je propose un nouveau poids

stabilisé et cumulé. Ce poids est utilisé pour briser tout lien de dépendance entre l'histoire

complète des variables et le processus de visite.

Dans un troisième manuscrit, je souhaite évaluer l'e�et marginal causal du temps hebdo-

madaire passé à jouer aux jeux vidéos sur les tentatives de suicide. Pour évaluer cet e�et,

j'utilise les données longitudinales de l'étude Add Health aux États-Unis. Ces données sont

sujettes à une exposition et des temps de visite qui dépendent des caractéristiques des indi-

vidus dans l'étude. Je propose d'abord une extension de l'un des deux estimateurs proposés

dans le premier manuscrit de cette thèse, a�n de permettre la considération d'une exposition

continue via un poids inverse à la probabilité de traitement généralisé, ainsi que d'une issue

ordinale grâce à un modèle de cotes proportionnelles. Je démontre la consistence de cette

approche à partir d'études de simulation, et l'approche est ensuite utilisée a�n d'estimer le

rapport de cotes marginal pour une augmentation de 2 fois, ou de 8 fois le temps passé à

jouer aux jeux vidéos, sur le nombre de tentatives de suicide (catégorisé en 0, 1, ou 2 ou

plus).

Dans cette thèse, j'ai o�ert une démonstration exhaustive du biais dû aux temps de visite

dépendant des variables, à partir de diagrammes causaux. J'ai proposé une méthodologie

rigoureuse pour évaluer les e�ets causaux dans les études observationnelles sujettes à la

confusion et aux temps de visite qui dépendent de variables. Les méthodes proposées ont
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permis de répondre à des questions de recherche en santé mentale.
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Chapter 1

Introduction

This thesis is concerned with the estimation of the causal marginal e�ect of an exposure

on a longitudinal outcome, in studies using observational data such as those from electronic

health records (EHR). I focus on two important challenges in those data, which are the bias

due to confounding of the relationship between the exposure and the outcome, and that due

to the covariate-driven follow-up times.

The causal marginal e�ect of a binary exposure on an outcome is often referred to as the

average treatment e�ect (ATE) in the literature. For a treatment with levels 0 and 1, it is

conceptualized as the average di�erence in the outcome, had we intervened on everyone to

give them treatment 0, as opposed to having given everyone treatment 1. The term causal

refers to the fact that, in such situation, the e�ect observed is truly due to the exposure, not

to a (spurious) association between the exposure and the outcome. Correct estimation of

the ATE, or of other causal estimands related to other exposure e�ects, is highly important.

Ultimately, these quantities provide valuable insights into whether a treatment should be

enforced at the population level or not. Therefore, they can help health authorities to take

sound decisions regarding global health policies.

Observational data such as those from EHR are not meant for research purposes. When
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interest lies in the estimation of the causal e�ect of an exposure using those data � for

instance, that of a treatment prescribed to patients � then that exposure was not randomized

to patients. No study design was used in order to collect data, to gain the best insights on

the marginal e�ect of the exposure. In particular, nothing ensures that there is no biasing

di�erence between the di�erent exposure groups. Furthermore, in observational studies (and

in some experimental, randomized studies as well), investigators may have no control over

the irregularity of the follow-up times, which I also refer to as visit or monitoring times.

In this thesis, I assume that the patients' outcomes are assessed (i.e., observed) at those

times. These can occur irregularly across individuals and may depend on the patients'

characteristics. As a consequence, associations between a patient's covariate, monitoring,

and outcome processes are likely to exist in observational data. These (potentially biasing)

associations should be considered, as they can a�ect the causal inference on the marginal

e�ect of an exposure on a longitudinal outcome.

In the statistical literature, several methods have been proposed for making statistical infer-

ence on marginal e�ects while accounting for irregular or covariate-driven monitoring times

(see e.g., Lin and Ying [2001], Lipsitz et al. [2002], Lin et al. [2004], Liang et al. [2009],

B·ºková and Lumley [2009]). In the causal inference literature, confounding has also been

discussed extensively, and methods such as those based on the propensity score (Rosenbaum

and Rubin [1983]) or on g-computation (Robins [1986]) have been proposed to remove the

association that is due to confounding between an exposure and an outcome, when estimat-

ing the marginal e�ect of the exposure (the ATE). Nevertheless, covariate-driven monitoring

times were rarely considered simultaneously with confounding, nor within a causal frame-

work. The causal inference framework often implies that we make several assumptions on

the relations between a set of variables, including the monitoring indicators, the exposure

and the outcome. Understanding these relations, and how imbalances due to confounding

and covariate-driven monitoring times can a�ect estimators for the ATE, are paramount to

its estimation. The causal literature o�ers tools (such as the directed acyclic graphs) that
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can help with describing and understanding these imbalances better.

In this thesis, I therefore build on the previous statistical literature on irregular follow-up

times and on causal inference to propose and demonstrate a methodology for the estimation

of the causal marginal e�ect of exposure (or treatment), for observational studies subject

to confounding and covariate-driven monitoring times. In Chapter 2, I provide a review

of the most important components to consider in the development of that methodology.

In particular, I discuss the special features of observational data, causal inference, and the

di�erent estimation tools that can be used to estimate marginal e�ects such as the ATE.

In Chapter 3, two novel estimators for the causal marginal e�ect of a binary exposure on a

longitudinal, continuous outcome are proposed and demonstrated. These estimators extend

previous estimators that did not account simultaneously for confounding and covariate-driven

monitoring times. The asymptoptic properties of the estimator that performed the best

(between the two) are developed. The estimators are demonstrated in extensive simulation

studies and they are further used to assess the marginal e�ect of a depressive mood on

weight, in an analysis of data from the Add Health study in the United States (US).

In Chapter 4, endogeneity of the covariate process driving monitoring times is considered.

Endogeneity can create long-term depencencies between the monitoring and the outcome

processes. Causal diagrams are used to describe how long-term dependencies can arise, and

a new methodology is proposed that acccounts for endogeneity, and that is used to compare

the marginal e�ects of two commonly used antidepressant drugs on body mass index (BMI)

in data from the Clinical Practice Research Datalink (CPRD) in the United Kingdom (UK).

In that chapter, the previous literature is also extended to allow for the covariates a�ecting

the visits to be only monitored at times when the outcome is monitored. This relaxes the

assumptions commonly postulated by previous authors.

In Chapter 5, one of the estimators proposed in Chapter 3 is extended to study the causal

e�ect of a continuous exposure on a categorical, ordinal longitudinal outcome. Some chal-
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lenges encountered in that novel setting are addressed. Finally, the proposed methodology

is used to assess the e�ect of the number of hours spent playing video games on a catego-

rized number of suicide attempts outcome, in individuals from the Add Health study in the

US.

Chapters 3 to 5 were written as stand-alone manuscripts. Chapter 3 is published in Biomet-

rics. Chapters 4 is currently under review in a statistical journal. Chapter 5 has recently

been accepted for publication in Statistics in Medicine. An e�ort has been made to keep

the notation consistent across all chapters of this thesis, and any important di�erence in

the notation is mentioned in the preamble before a given chapter. This thesis ends with a

conclusion in which I review the contributions of this thesis, discuss notable limitations of

this work, and mention some ideas for future work.
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Chapter 2

Literature review

This chapter reviews the theory that we extended in all three manuscripts that make up

this thesis. First, I discuss the challenges associated with the analysis of data that were

not collected for research purposes and how their features can a�ect our causal inference.

Then, I overview some concepts commonly used in the causal inference literature, such

as the potential outcome framework, the identi�ability assumptions that are necessary for

inference, and the use of causal diagrams as a complement to causal inference. In a third

section, I review di�erent modelling approaches for the e�ect of interest, including the use of

estimating equations. In a fourth section, I discuss the history of the proposed methods for

covariate-driven monitoring times. Finally, in a last section, inverse weighting is discussed

in the context of sample selection, causal inference, and more speci�cally, covariate-driven

monitoring times.

In this chapter, vectors and matrices are denoted in bold. I use Yi(t) to denote the longitudi-

nal outcome process of individual i, i = 1, ..., n, at time t, and Ii(t) to denote the exposure of

individual i at time t; the terms treatment and exposure will be used interchangeably. The

outcome process is assumed to be observed at some times Ti1, ..., TiVi
for individual i. Obser-

vation times are not necessarily common across individuals. I assume that individuals are all
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part of a common study cohort, with a maximum follow-up time of τ across the cohort, such

that any time t considered is contained in [0, τ ]. In some instances, I use the notation Xi(t)

to refer to a vector of predictors for individual i, which may contain the exposure Ii(t). To

estimate the marginal e�ect of exposure, semiparametric models are used. The parameters

β are those corresponding to the columns of X(t), when the outcome mean is modelled as

a function of X(t)′β. The coe�cient βI ⊂ β corresponds to the associational parameter

between the exposure vector I(t) and the outcome vector Y(t) in those models.

2.1 Data not collected for research purposes

This thesis focuses on causal inference methods for data that were not collected for research

purposes. These data or studies which use them are often called observational (in contrast

to experimental), for we observe and infer from them (often, restrospectively) rather than

conducting a designed experiment aimed speci�cally at answering a causal research question.

For that reason, some of the resulting data features cannot be controlled for by using a

well-thought design. In some instances, the use of special methods for causal inference in

observational data may enable causal inferences to be drawn. In other instances, it may be

impossible to answer a causal study question, as the nature of the data, the availability of

covariates, or an ill-de�ned exposure preclude identifying the causal e�ect.

Examples of data that were not collected for research purposes include those from EHR.

EHR data consist of the computerized notes of general practitioners (GP) or other clinicians,

taken during appointments with patients. Characteristics of the patients, such as symptoms,

anthropometric measurements (e.g. weight), chronic diseases, previous or current condition,

and so on, are noted in a patient's medical �le. These notes may be entered directly in

an electronic �le or be processed with the help of specialized software, and they are made

available in a common format (at least within a given healthcare setting; di�erent systems

or hospitals may not conform to the same format in general). In most EHR, the drugs
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prescribed by the GP are also entered in the computer system automatically, which provides

linked information about medication use. Sometimes, data from EHR can be linked with

hospital data and mortality databases to supplement information on hospital stay diagnoses

and the causes and date of death, or with other specialized databases such as cancer registries.

As an example of EHR data, the second project of this thesis uses data from the CPRD in the

UK. The CPRD contains EHR data from more than 11 million patients in the UK (Herrett

et al. [2015]), including information on the drugs prescribed, weight, height, comorbidities,

demographics, and diagnostic codes. Of course, these measurements are not necessarily

available for every patient and at every time, and missing data is a common problem in

analyses using similar data.

Observational data represent a rich source of information for learning about causal exposure

e�ects. However, they also present some common pitfalls that can a�ect the causal inference.

These pitfalls include the risk of confounding (e.g., by indication), selection bias or covariate-

driven monitoring times, measurement error, missing data (e.g., on the covariates), to name

only a few. Some of these risks are now brie�y discussed in contexts relevant to the work

that follows in this thesis.

2.1.1 Confounding bias

Confounding bias is a distortion of the exposure e�ect of interest, due to a common cause

of the exposure and the study outcome (Greenland and Morgenstern [2001]). It is one of

the most common sources of bias discussed in epidemiological studies. It can a�ect the

inference on the e�ect considerably, and can explain large di�erences between e�ects due to

associations, and e�ects that are causal.

Suppose that you wish to estimate the causal, marginal e�ect of an intervention or exposure

I (which takes values in {0,1}) on a continuous outcome Y , where age strongly a�ects both

the exposure indication (such that older patients receive treatment I = 1 much more often
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than their younger counterparts) as well as the outcome (such that older patients tend to

have worse outcomes). When investigating the data, you may �nd that most patients with

treatment I = 1 have poorer outcome values. However, these patients are also older, on

average. Their outcome is also a�ected by their age, which tends to worsen the outcome. It

is hard to assess whether the exposure really worsens the outcome on its own (causal e�ect),

or whether the observed reduction is due to age, a common cause of exposure indication and

outcome. In that example, age is a confounder for the relationship between treatment I and

the outcome Y . When confounders are not accounted for, merely evaluating the association

between the exposure and the outcome will lead to a measure of association, not a causal

e�ect of the exposure.

Confounding bias is not an issue in well-conducted randomized controlled studies, except

under very speci�c circumstances. Randomization ensures balance in patients' characteristics

across the treatment groups or levels (Greenland [1990]). That is, no patient's characteristic

predicts whether that patient will, or will not receive treatment I = 1, and therefore, there

is no common cause of the exposure and the outcome that confounds the exposure e�ect.

In data that were not collected for research purposes, however, confounding bias is likely to

occur. For instance, a treatment is prescribed mostly according to patients' characteristics,

based on their history, medical condition, own preferences, and on the physician's preferences.

Often, these same characteristics also a�ect the study outcome. For an exposure that is not a

therapeutic treatment (like, e.g., exposure to pollution), an individual's characteristics may

also predict the exposure level, and can a�ect the outcome too. In this thesis, confounder

variables are denoted by the set Ki(t) at time t if they are time-varying, or else by Ki, in

individual i. If they do not vary in time, then we assume that they are de�ned using only

pre-treatment or pre-exposure information.
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2.1.2 Selection bias and irregular monitoring times

Selection bias has received less attention than confounding in observational studies. In

contrast to confounding bias, which is due to an ancestor common cause of the exposure and

the outcome (creating a backdoor path from the exposure to the outcome), selection bias

generally arises due to common e�ects of the exposure and the outcome. Often, issues that

arise with selection are related to a phenomenon called collider strati�cation bias (Greenland

[2003]). A collider is a common e�ect that blocks a path, for instance, from the exposure

to the study outcome (Greenland et al. [1999]). Figure 2.1 shows a causal diagram with a

collider S on the path from I to Y . Causal diagrams are reviewed in Section 2.2.3.

I S Y

Figure 2.1: S is a collider on the path from I to Y

Hernán et al. [2004] have provided a structural approach to selection bias (focused predomi-

nantly on the cross-sectional setting) and used causal diagrams to explain how selection bias

can arise in di�erent situations. According to these authors, the term selection bias is used

in epidemiology to refer to many types of biases, including informative dropout, volunteer

bias, or incorrect selection of controls in case-control studies.

In the cross-sectional case, the most basic example of selection bias is that where both the

exposure and the outcome a�ect the probability of being selected into the study. In such

case, the indicator for being in the study acts as a collider on a path from the exposure

to the outcome (Figure 2.2); conditioning on the collider opens a biasing path between the

exposure and the outcome (Figure 2.3).
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I

Y

S

Figure 2.2: I is the exposure, Y the outcome, and S an
indicator of being selected in the study. S is a collider
on the path I − S − Y .

I

Y

S

Figure 2.3: A square around S means that we con-
dition upon that variable (for instance, by restricting
the analysis to one stratum of S: e.g., those patients
selected). This can lead to bias, as it opens a biasing
path from I to Y that is not due to the actual causal
e�ect of I.

When data are longitudinal, on the other hand, selection due to informative dropout or

to informative monitoring times can occur throughout follow-up time, and the whole visit

mechanism may have to be modelled in time. Since selection bias and related biases (such

as informative dropout) may have di�erent consequences depending on the target causal

estimand, drawing a causal diagram may help greatly in understanding where the monitoring

or the selection processes can lead to biases.

In EHR, GP notes are transformed into computerized health data. However, only the patients

who visit their physician have their data recorded. Selection bias is therefore likely to

occur, as patients' covariates (including the treatment received) are likely to be associated

with both their monitoring process and their outcome process, leading to imbalances in

the characteristics of the patients visiting and therefore, being represented in the study. In

particular, sicker patients, or those with speci�c chronic diseases, are expected to visit their

physician more often than others.

2.1.3 Missing data

In longitudinal studies, covariates are rarely updated at all times, but rather at discrete points

in time. When there is no physician visit or hospital stay between two time points, covariates

could be extrapolated using the last observation and carrying it forward. Yet, covariates may
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have changed in between visits. If these covariates are part of the confounders set or they

a�ect selection bias, not having them measured (or not having their most up-to-date value)

may lead to a poor adjustment of the exposure, the monitoring, or the outcome models.

In this thesis, the outcome is assumed to be observed only sporadically and at irregular

times across patients, which is why we aim to account for the potential for selection bias

(discussed in the previous section). A monitoring model is used to account for the outcome

monitoring process, and missing data in the outcome are considered via inverse intensity of

visit weights (discussed more in detail in Sections 2.4 and 2.5.2). For the monitoring model,

one must make assumptions about whether the outcome is observed (or missing) completely

at random, missing at random, or missing not at random; this is discussed further in Section

2.4. Other missing data, such as missing values in the covariates from the exposure and the

monitoring models, may have to be considered. Multiple imputation (MI) (Rubin [1976]) is a

common approach to addressing missing data, if it may be assumed that they are missing at

random. That is, MI does not provide a solution for data which are missing not at random,

a type of missingness which implies that covariates other than those available to us predict

the missingness mechanism.

MI replaces the missing values by a �sensible� prediction, allowing standard, complete-case

analyses to be performed. The strength of this approach is that it accounts properly for

the variance due to imputation. To impute the dataset, sampling from di�erent predictive

distributions (one for each covariate to impute) is performed several times (e.g., 5 or 10

times). As an example, the Normal distribution can be used as the predictive distribution

for a continuous variable, and missing values can be replaced by a random draw from the

Normal distribution, where the Normal mean is a function (e.g., a linear combination) of

other covariates associated with the variable which must be predicted. After imputation,

the parameter of interest is computed on each (completed) replicate dataset. Estimates

are combined across all replicates using what is known as Rubin's rule (Rubin [2004]) -
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essentially a simple average for point estimates, and a weighted average for standard errors.

In particular, the variance (or standard error) of the �nal estimator accounts both for the

between variance (across all replicate datasets) and the average within variance (the variance

in one dataset). This variance is referred to as the pooled variance. Alternatively, a non-

parametric bootstrap can be used to obtain an estimate of the pooled variance by resampling

individuals or observations and by reproducing the complete multiple imputation procedure

within each bootstrap-resampled dataset.

2.2 Causal inference

2.2.1 Potential outcome framework and average treatment e�ect

The (utopic) gold standard for inferring on a causal marginal e�ect is an experiment where

one has access to the outcomes of all individuals from the population, under all possible

levels of a treatment. For such an experiment, inferring whether a treatment causes an

outcome would be as easy as contrasting the outcome across the di�erent treatment levels.

The fact that this experiment is impossible to conduct relates to what Holland calls the

fundamental problem of causal inference (Holland [1986]): we cannot observe the outcomes

of an individual under many di�erent levels of a treatment, but only one of them, at a given

time. For that reason, causal inference can be seen as a missing data problem where we aim

to infer the values of these other, counterfactual outcomes that are never observed, i.e. the

outcomes corresponding to levels of treatment other than the one actually received, for each

individual under study.

The idea of potential outcomes goes back at least as far as 1923. Neyman [1923] used the

term unknown potential yields in an agricultural science study in which he compared yields

of di�erent crop varieties. That study was experimental; the �rst to propose a similar idea

in an observational setting was Rubin [1974]. In his seminar paper, Rubin de�ned a causal

e�ect as the di�erence between two outcomes: one, had the patient received treatment
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E (experiment), and one, had the patient received the treatment C (control). Following

Neyman and Rubin, the ideas of potential, or counterfactual outcomes (a term primarily

used in philosophy; see e.g. Lewis [1973]) became increasingly used by others (see e.g. Rubin

[2005] for an interesting discussion on the use of those terms). It became the most popular

framework, or way of reasoning about causal e�ects in statistics. E�ectively, it provided a

way to de�ne causal estimands and to translate those estimands to the statistical framework,

where models can be used for estimation.

We now give a brief example of the notation used in the potential outcomes framework for

the case where the exposure is binary and where the outcome is continuous and longitudinal.

Denote by Yi1(t) the potential outcome of individual i at time t, was individual i exposed

to treatment 1, and denote by Yi0(t) the potential outcome of individual i at time t, if they

were exposed to treatment 0. As mentioned earlier, individual i can only be exposed to one

of the two treatment options (0 or 1) at time t, so only one of these potential outcomes will

actually be observed. The quantity E [Yi0(t)− Yi1(t)] (or, in the cross-sectional study case,

E [Yi0 − Yi1]) corresponds to the ATE or the causal marginal e�ect of treatment. It is the

average di�erence in outcomes, had everyone in the population been treated with treatment

I = 1, against everyone been treated with treatment I = 0 (at time t). The ATE is a

common causal estimand, as it can provide guidance on how to improve public health at

a global level since this estimand targets policy-type questions (applying to a population

rather than an individual or sub-population).

The ATE literature has largely focused on a continuous outcome setting, however marginal

causal estimands can be de�ned for other outcome types as well. For example, in studies

with binary outcomes, E [Yi0(t)] is the probability of Yi0(t) taking the value 1. The marginal

risk di�erence, de�ned as E [Yi1(t)]−E [Yi0(t)], or other causal contrasts, such as the marginal
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odds ratio (MOR):

MOR =

{︃
E [Yi1(t)]

1− E [Yi1(t)]

}︃/︃{︃
E [Yi0(t)]

1− E [Yi0(t)]

}︃
,

are contrasts of interest. The MOR is also a common causal contrast of interest in studies

where the outcome is categorical.

The potential outcome framework allows causal contrast of interest to be de�ned clearly at

a conceptual level, however such contrasts cannot be estimated without some identi�ability

assumptions that link together the causal and the statistical frameworks and, importantly,

the potential and actually observed outcomes.

2.2.2 Identi�ability assumptions

Some common identi�ability assumptions are needed in order for the causal estimand to

identi�ed or estimated via statistical models (Hernán and Robins [2016], Chapter 3). These

assumptions are:

1. (A1) The Stable Unit Treatment Value Assumption (SUTVA) generally encompasses

two assumptions, the no interference assumption, and the consistency assumption. No

interference means that the exposure of an individual does not a�ect the outcome of

another individual in the study. Under that assumption, we do not have to consider

other individuals' exposures in the estimation of the exposure e�ect for one individual

and, importantly, the potential outcome for an individual depends only on their ex-

posure and not that of others. The consistency assumption, or the consistency of the

potential outcome, states that the outcome we observe in an individual who received

treatment/exposure 1 is equal to their potential outcome under exposure 1, and recip-

rocally for I = 0. That is, the exposure or intervention is well-de�ned (there are not

several versions of the exposure encompassed in a single level and, therefore, there are

not several versions of the outcome under that exposure), and the outcome we observe
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is indeed equal to the potential outcome. The assumption thus states that Yi1 = Yi if

Ii = 1, and Yi0 = Yi if Ii = 0.

2. (A2) The assumption of conditional exchangeability (of exposure groups). Conditioning

on a set of covariates (e.g., a set of potential confoundersK, generally the pre-treatment

variables), we assume that the exposure assigned does not actually a�ect the potential

outcomes. That assumption is expressed by

Yi0, Yi1 ⊥ Ii|Ki.

That is, each individual �possesses� two potential outcomes (for an exposure that is

binary), and the fact they will be assigned exposure 1 or 0 will not a�ect the ��xed�

values (deterministic, although this is controversial: see e.g. Hernán and Robins [2016],

technical point 1.2) of their potential outcomes, conditional on the set of covariates K.

Alternatively, this may be interpreted as the assignment of treatment is not done with

knowledge of how the individual would respond to the two (or multiple) treatment

alternatives. That is, within levels or strata de�ned by the confounders, those indi-

viduals who would respond best to one treatment option do not preferentially receive

it. Exchangeability, in general, means that the potential outcome averages would be

the same in two di�erent treatment groups randomly selected from the population of

interest, no matter which treatment they are assigned. It relies on the assumption that

the groups are equivalent in their characteristics to random samples from the popula-

tion of interest, and therefore, it does not matter to which group we assign exposure 1

or 0; both can be used to estimate the e�ect of all exposure levels. That assumption

also relates to the confounding factors we discussed earlier. The set K must contain

all potential confounders (discussed in Section 2.1.1) such that conditioning on these

covariates will adjust for any backdoor path between the exposure and outcome (these

paths are not due to the actual causal e�ect of exposure but that creates an association
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between the exposure and the outcome which precludes exchangeability of the groups

unless accounting for them covariates).

3. (A3) Positivity of the exposure (conditional on the set of variables that led to con-

ditional exchangeability, e.g. K) requires 0 < P (Ii = 0|Ki), P (Ii = 1|Ki) < 1. If

patients have no chance of receiving the intervention conditional on their characteris-

tics, or if they have no chance of not receiving the intervention conditional on their

characteristics, then estimating the exposure e�ect in the corresponding regions of the

covariates space relies on an extrapolation (which is possible via a parametric, un-

saturated model, but could provide an unreliable estimate for the ATE). Empirical

positivity is sometimes necessary to compute an estimate of the ATE, such as when

using inverse probability of treatment weights. In that case, if positivity is not met,

the estimator is unde�ned.

Suppose now that we aim to estimate the causal ATE in a setting where the exposure is

binary (0 or 1), the outcome process is longitudinal and measured repeatedly, and where the

set of potential cofounders is denoted by K(t) such that we have Yi0(t), Yi1(t) ⊥ Ii(t)|Ki(t).

Then, when putting (A1), (A2) and (A3) together, we obtain:

(no interference)

E[Yi1(t)− Yi0(t)] =E[Yi1(t)]− E[Yi0(t)] by the linearity of the expectation

=EK [E[Yi1(t)|Ki(t)]]− EK [E[Yi0(t)|Ki(t)]] by the iterated expectation

=EK [E[Yi1(t)|Ii(t) = 1,Ki(t)]]− EK [E[Yi0(t)|Ii(t) = 0,Ki(t)]] by

conditional exchangeability and positivity

=EK [E[Yi(t)|Ii(t) = 1,Ki(t)]]− EK [E[Yi(t)|Ii(t) = 0,Ki(t)]] by consistency.

That is, we can estimate the causal contrast of interest by using the last row above, using for

instance a parametric model for the expectation of Yi(t) given the exposure and covariates
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Ki(t) and averaging across the Ks. That last row is sometimes referred to as the g-formula

(Robins [1986]), a generalization of the more common standardization method. Another

decomposition of the last row above will prove useful in Section 2.5.1 of this chapter, when

we discuss inverse probability of treatment weights.

In practice, there exist methods to assess the di�erent identi�ability assumptions discussed

in this section. For instance, the component of the SUTVA assumption corresponding to

the �well-de�ned intervention� is typically subjective, but methods are currently developed

to assess the hypothesis of no interference across individuals, or to explicitly model the

spillover when it exists (see e.g., Hudgens and Halloran [2008], Aronow [2012], Saveski et al.

[2017], Arpino and Mattei [2016], Forastiere et al. [forthcoming]). To assess the positivity

assumption, one may model the probability of exposure conditional on covariates, and can

compare the overlap of that probability in the treated and the untreated (Crump et al. [2009],

Garrido et al. [2014]). Di�erent sensitivity analyses have been developed, too, to assess the

e�ect of unmeasured confounders (intimately related to the exchangeability condition), see

e.g., Robins et al. [2000b], McCandless et al. [2007], Groenwold et al. [2016].

The use of causal diagrams is often suggested in the literature to complement the potential

outcome framework and the related causal estimation and inference. In particular, causal di-

agrams can be used to assess the assumption of conditional exchangeability (given, of course,

the additional assumptions on data structure that are made and encoded in the diagram). I

now formally introduce directed acyclic graphs, a type of causal diagram commonly used in

the causal inference literature.

2.2.3 Directed acyclic graphs

Directed acyclic graphs (DAGs) are a nonparametric tool based on structural equation mod-

els (Pearl [1998]) which are used to depict the assumed causal links between a network of

covariates (examples were presented in Figures 2.1, 2.2 and 2.3). DAGS are made up of
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nodes (vertices) that represent each variable, and edges (the arrows), which link the vertices

together. The word directed refers to the edges between variables, which are supplemented

with an arrowhead on one side, while the term acyclic means that, starting from a given node

(e.g. node A), one cannot return to A from a causal path (i.e., one with all arrows pointing

in the same direction). In a setting where DAGs are used to assess the causal e�ect of an

exposure on an outcome, both the exposure and outcome should be included, as well as any

variable that is a common parent to any pair of variables in the DAG (Pearl [1995]).

DAGs can be used to assess which set of covariates must be conditioned upon to reach

conditional eachangeability. E�ectively, they can be used to complement inference under the

potential outcome framework, as they help in understanding whether an association between

two covariates in the DAG is truly causal, or if (part of) it is not. The backdoor criteria (Pearl

[1995]) is easily veri�ed by using a causal diagram. That criteria ensures that no backdoor

path exists, from the exposure to the outcome, that is unblocked and that is not due to

the actual causal e�ect of the exposure on the outcome (see, for instance, Shrier and Platt

[2008] for a six-step approach to ensuring no biasing backdoor path after adjusting for a set

of covariates). Once these paths are blocked by a set of covariates, then we have conditional

exchangeability (as discussed in Section 2.2.2) conditional upon that set. Potential bias

due to selection on colliders can also be veri�ed by depicting relations in a causal diagram.

The DAG should contain any covariate for which there is a selection, such that we can

determine whether there is potential for collider strati�cation bias. As noted above, the

DAG itself represents an encoding of assumptions about the causal dependencies between

variables and so any conclusions on, for example, the variables that must be accounted for

to break or block backdoor paths implicitly rely on the DAG correctly representing true

variables dependencies.
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2.3 Outcome modelling and estimation

The estimators we propose in all three manuscripts of this thesis rely on estimating equations

(also called M-estimators). Generalized estimating equations, or M-estimators, which are

slightly di�erent from the former, are an e�ective way of modelling the marginal e�ect of

an exposure, as they were proposed to model population average quantities without explicit

concern for the correlation structure between measurements. Furthermore, these equations

can easily incorporate weights. In the problem that interests us, confounding and covariate-

driven monitoring times can be accounted for by using �double� weights. The choice of

using estimating equations is therefore natural, and existing theory on two-step estimators

(discussed further in this section) allows for the consideration of variance components due

to both the parameters in the weight models and the parameter(s) of interest.

2.3.1 Generalized estimating equations

The study of correlated data can be divided in two main categories, where one either wishes

to study the trend of correlated measurements over time (in which case the correlation is

paramount), or to study the e�ect of covariates on e.g. the mean outcome (in which case

the parameters of interest are the covariates' e�ects, and the correlation in measurements

are nuisance parameters). Generalized estimating equations (GEEs) were proposed by Liang

and Zeger [1986] as a way to solve the latter issue. The authors discussed their methodology

in a series of papers, including two seminal papers; see Zeger and Liang [1986] and Liang

and Zeger [1986].

GEEs are extensions of generalized linear models for correlated data, and utilize and extend

the quasi-likelihood theory (Wedderburn [1974], McCullagh [1983]) to the multivariate case.

Assuming that the variance is a function of the mean of the measurements (further referred

to as outcomes), they rely on a correct speci�cation of the mean outcome and variance to

provide unbiased estimates for covariates' e�ects on a function of the mean outcome (thus,
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they work under less parametric assumptions for the measurements than usual likelihood-

based method, and only weak assumptions on the correlation across outcomes of the same

individual are required). In particular, a misspeci�cation of the correlation matrix in the

GEE yet leads to consistent estimators, while correctly specifying the correlation matrix

generally improves the e�ciency of the estimation. In cases where covariates vary in time,

however, as discussed in the cautionary note from Sullivan Pepe and Anderson [1994], either

an independence working covariance matrix should be used, or a speci�c assumption on the

dependence of the outcome marginal mean on the time-varying covariates should be veri�ed

to ensure consistency of GEEs.

Denote by µi = h(Xiβ) the mean of the outcome vector Yi (for simplicity, assume in

this section that the outcomes are observed at some pre-speci�ed times, common across

individuals, such that Yi(Ti1), ..., Yi(TiVi
) can be denoted by a vector of same length for

each individual, Yi). Let νi = g(µi)/ϕ be the outcome variance, with ϕ a scale parameter.

Under correct speci�cations of the mean and variance, a standard score equation can be used

to estimate the parameters β in settings with i.i.d. outcomes. That equation is provided

by

Sk(β) =
n∑︂

i=1

Diν
−1
i (Yi − µi) = 0 (2.1)

for an outcome distribution in the exponential family (note, Di = ∂µi/∂βk is the matrix of

partial derivatives). Liang and Zeger [1986] innovated by incorporating information from a

working correlation matrix in those equations, which allowed for several measurements from

the same individual (and thus naturally dependent) to be considered. They demonstrated

that e�ciency can be gained when the working correlation matrix is correctly speci�ed.

For Ri the correlation matrix between measurements of the same individual (the authors

actually used a parametric working matrix), and for Ai a diagonal matrix with the variance

elements g(µij) = νij × ϕ on its diagonal, they de�ned a new covariance matrix Vi =
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A
1/2
i R(α)A

1/2
i ϕ and plugged it in the equation, to obtain

S ′
k(β) =

n∑︂
i=1

DiVi
−1(Yi − µi) = 0. (2.2)

The authors showed that estimators based on these GEEs are consistent and asymptotically

normal (under some additional assumptions), with a consistent variance estimator provided

by the so called sandwich estimator.

To solve GEEs, iterative methods (that �uctuate between the regression coe�cients and the

scale and correlation parameters to provide the best �t) were proposed, in which nuisance

parameters are estimated using the method of moments (or alternatively, another set of

estimating equations), and the parameters of interest, β, using a modi�ed Fisher scoring

algorithm. These approaches are implemented in standard statistical software; see e.g. the

R packages gee and geepack (ported to R: Carey [2019], Halekoh et al. [2006]).

2.3.2 M-estimators and estimating equations

M-estimators, equivalent to the Generalized Method of Moments in econometrics (Huber

[1964], Huber [1967], Chamberlain [1987], Newey [1988], Newey and McFadden [1994]), were

�rediscovered� in the GEE seminal papers of Liang and Zeger in the eighties. They, too,

are based on the work of Huber. A great discussion on the generality of the M-estimation

approach and a review can be found in Stefanski and Boos [2002].

A large variety of asymptotically normal estimators can be thought of as M-estimators.

Assuming that a solution exists, an M-estimator ˆ︁βM solves the following vector equation for

β:

Sn(β) =
n∑︂

i=1

ψ(Yi,β) = 0. (2.3)

That is, if one can transform an existing estimator into the solution for the equation in (2.3),
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then the respective estimator is also an M-estimator. The maximum likelihood estimator

(MLE), under regularity conditions, is an example of an M-estimator, as the derivative

of the log-likelihood is zero at the value of the MLE. When an estimator does not clearly

correspond to an M-estimator, it could still be part of a multidimensional system of equations

leading to (2.3), such that the estimator may be called a partial M-estimator (see e.g. the

example in Stefanski and Boos [2002], for the average absolute mean di�erence). In the

statistical literature, M-estimators were developed using semiparametric theory of in�uence

functions.

2.3.3 Asymptotic properties of M-estimators

The general proof of asymptotic normality of M-estimators calls upon the weak law of large

numbers, the central limit theorem (CLT) and Slutsky's theorem. Let
l−→ refer to convergence

in law, and
p−→ refer to convergence in probability. Consider the de�nition of an M-estimator

given in (2.3). If the function ψ(·) is smooth, and if there is a unique solution β0 to (2.3),

there exists a sequence of M-estimators that converges in probability to the true parameter

(Huber [1967]). The function Sn in (2.3) can be decomposed into a Taylor series expansion

around the true value, as follows:

Sn(ˆ︁βM) = Sn(β0) +
∂Sn(β)

∂β

⃓⃓⃓⃓
β=β0

(ˆ︁βM − β0) +O(n), (2.4)

for O(n) a remainder term of order n.

Assuming that the matrix ∂Sn(β)
∂β

⃓⃓⃓⃓
β=β0

is non singular and, as such, that we can multiply by

the inverse of that matrix on each side, and further rearranging the terms and multiplying

by the square root of n, we obtain

√
n(ˆ︁βM − β0) =

[︄
∂Sn(β)

∂β

⃓⃓⃓⃓
β=β0

]︄−1
√
nSn(β0) +

√
nO∗(n) (2.5)
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for O∗(n) a new remainder term of order n. We then call upon all three theorems mentioned

earlier; we have

−∂Sn(β)

∂β

⃓⃓⃓⃓
β=β0

p−→ E

[︄
−∂ψ(Y1,β)

∂β

⃓⃓⃓⃓
β=β0

]︄
by the weak law of large numbers, and (2.6)

√
nSn(β0)

l−→MVN(0,E[ψ(Y1,β0)ψ(Y1,β0)
T]) by the central limit theorem, (2.7)

assuming that E

[︄
−∂ψ(Y1,β)

∂β

⃓⃓⃓⃓
β=β0

]︄
and E[ψ(Y1,β0)ψ(Y1,β0)

T] exist and are �nite.

Under further regularity conditions detailed in Huber [1967], and provided that (2.3), (2.6)

and (2.7) hold, using Slutsky's theorem, we obtain that

ˆ︁βM
l−→MVN

(︃
β0,

V(β0)

n

)︃
as n→ ∞, (2.8)

whereV(β0) = E

[︄
−∂ψ(Y1,β)

∂β

⃓⃓⃓⃓
β=β0

]︄−1

E[ψ(Y1,β0)ψ(Y1,β0)
T]

⎛⎝E

[︄
−∂ψ(Y1,β)

∂β

⃓⃓⃓⃓
β=β0

]︄−1
⎞⎠T

.

2.3.4 Extension to two-step estimators

The estimators developed in this thesis belong to the class of two-step estimators, a class

of M-estimators that rely upon a �rst step (the estimation of nuisance parameters) and a

second step (the estimation of the parameter of interest, relying on substitution or plug-in

values of the nuisance parameters). In our case of interest, nuisance parameters are those

from the exposure and the monitoring models and the marginal e�ect of exposure is the

parameter of interest. Newey and McFadden [1994] have shown how to develop the variance

of these estimators. Their approach provides a consistent estimator for the variance that

accounts for the variability due to both steps in the two-step procedure described above.

Two-step estimators are discussed more in depth in the supplementary material of the �rst

manuscript of this thesis.
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2.4 Methods for covariate-driven monitoring times

Several methods have been proposed to account for covariate-driven monitoring times in

contexts where the aim is to estimate marginal or conditional e�ects, with most methods

being extensions of GEEs. In this thesis, I assume throughout that the monitoring times

coincide perfectly with the observation of the outcome process, and that a (su�cient) set of

covariates that predicts the monitoring times is available for analysis, thereby the assumption

of covariate-driven monitoring times is equivalent to that of the outcome being missing at

random (as opposed to completely at random, or not at random).

Robins et al. [1995] proposed the �rst extension of GEEs which allowed for the longitudi-

nal outcome, the vector Yi, to contain missing values. The authors primarily considered

the monotone missingness patterns for Yi (which gave the name to their method: inverse

probability of censoring weights). Individuals were allowed to have repeated outcome mea-

surements in time, but these had to correspond to a set of common observation times across

patients. The missingness was modelled as a function of patients' characteristics, typically

by using a logistic regression and including information on previous outcomes or covariate

history in the set of predictors; the resulting �tted probabilities were used to construct in-

verse weights. However, the method does not apply to observational studies with highly

irregular visit patterns across the patients.

Lin and Ying [2001] proposed a new methodology, based on a slightly di�erent set of esti-

mating equations than the previous authors. These authors also focussed on the estimation

of marginal e�ects of covariates, but they aimed to avoid estimating the intercept function

α0(t) in the mean outcome model given by E[Yi(t)|Xi(t)] = α0(t) + β
′
0Xi(t), all while al-

lowing irregular observation times. For that, they re-centered the more common GEEs by

a mean function of the design matrix that considered the monitoring process, avoiding the

estimation of the intercept function and therefore providing a less parametric estimator for

β0. For the monitoring model, they innovated on Robins et al. [1995] by using a propor-
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tional rate model, following previous work of Lawless and Nadeau [1995], Lin et al. [2000],

and Pepe and Cai [1993]. This model considered observation times that occurred at any

(continuously measured) time, and varied across patients. The proportional rate model as-

sumed that E[dNi(t)|Zi(t)] = exp(γ ′Zi(t))d∆0(t) for dNi(t) an indicator of visit/observation

for individual i at time t, Ni(t) a counting process for observation times in individual i that

counts the number of previous observation times by time t, and ∆0(t) any non-decreasing

function in time. Due to the structure of their set of estimating equations, the method of

Lin and Ying yet only allowed for covariates Z(t) ⊂ X(t) (included in the design matrix) to

a�ect the monitoring rate.

Several extensions of the Lin and Ying equations followed. Sun et al. [2005] included an

additional term in the outcome mean model considered by Lin and Ying which depended

directly on the monitoring process Ni(t). Thus, they considered conditional e�ects of co-

variates X(t), rather than marginal e�ects. The authors argued that this type of model is

more useful for situations in which prediction is more of interest than inference, or where

independence tests for the outcome and monitoring processes would be necessary. As the Lin

and Ying equations, Sun et al.'s method requires for the outcome to be missing at random.

In cases where the outcome is missing not a random, however, the covariates available in

the analysis alone cannot be used to break the dependence between the monitoring and the

outcome processes. To solve this issue, several authors proposed di�erent extensions of the

Lin and Ying equations in which random e�ects are incorporated to consider dependencies

due to unmeasured (latent) variables (see e.g. Sun et al. [2007], Liang et al. [2009], Sun

et al. [2011]). Among them, Sun et al. [2011] proposed to jointly model the monitoring, the

outcome, and the censoring processes all together via a latent e�ect.

The Lin and Ying equations considered the monitoring process directly within their estimat-

ing equations. A similar model for the monitoring as considered in Lin and Ying was also

used by Lin et al. [2004], in the form of inverse intensity of visit (IIV) weighting. That method
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is discussed more in depth in Section 2.5.2 where I discuss inverse probability weights. The

term proportional rate model (as used by Lin and Ying [2001]) is used in settings where the

monitoring indicator is modelled marginally, as a function of current covariates, while the

term proportional intensity model (as used by Lin et al. [2004]) corresponds to cases where

the monitoring indicator at time t is modelled as a function of the past, including previous

covariates, outcomes or monitoring times (something that has been noted in Lindsey [2004]

and others, although there seems to be confusion about the distinctions between the rate and

the intensity models in the literature; I come back to this distinction in Section 2.5.2). An

innovation of Lin et al. [2004] over the Lin and Ying equations is that the inverse intensity

of visit weight can account for more covariates in the monitoring model, since these weights

can incorporate any covariate, even those not contained in the design matrix X(t).

Combinations of the previous methods followed. First, note that the methodology proposed

by Lin and Ying [2001] is especially useful when one prefers to avoid estimating the mean

baseline function, a function of time, in the outcome model. However, the weights proposed in

Lin et al. [2004] allow the Lin and Ying equations some more �exibility to account for other

covariates (such as mediators of the design matrix covariates) to a�ect monitoring times.

B·ºková and Lumley [2009] proposed an extension where they combined both methods to

estimate marginal e�ects of time-dependent covariates (as opposed to the marginal e�ects

of time-�xed covariates considered in Lin et al. [2004]); this extension is discussed more

in depth in Chapter 3 of this thesis. Similarly, Tan et al. [2014] proposed a few possible

extensions or combinations of the previous methods based on the Lin and Ying equations; in

particular, they considered time-dependent covariates in the method of Liang et al. [2009],

and added �exibility to that method as well as that of Sun et al. [2007] by incorporating IIV

weights.

In parallel to methods based on estimating equations, some authors proposed fully parametric

methods. Assuming that the outcome measurements are multivariate normally distributed,
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Lipsitz et al. [2002] computed the full likelihood for the outcome and decomposed it in a

monitoring and an outcome components. Under certain assumptions about ignorability of

the monitoring process, this resulted in the possibility of ignoring completely the monitoring

process to make inference on the marginal e�ects via the conditional outcome process like-

lihood only. However, that method relied on the strong assumption of outcome normality.

Another fully parametric method was proposed by Ryu et al. [2007], who extended the work

of Lipsitz et al. They �rst extended the monitoring process using a nonhomogeneous mixed

Poisson process for the intensity (for that, they incorporated a random e�ect multiplier to

the monitoring intensity function). These authors, unlike Lipsitz et al., also worked under

the Bayesian paradigm to estimate the regression coe�cients in the outcome model, which

allowed them to �t di�erent correlation matrices for the measurements of each individual in

time.

A doubly robust approach was proposed by Pullenayegum and Feldman [2013] � one of the

only methods proposed for covariate-driven monitoring times that relies on a strategy where

only one of either the outcome or the monitoring process needs to be correctly speci�ed to

yield a consistent estimator. For the outcome model, the authors used a model for the time-

dependent increment in the outcome as a function of covariates and a martingale residual,

such that the distribution of residuals could be left unspeci�ed. Doubly robust equations

were then built by adding a new term in the standard IIV-weighted GEEs. That additional

term is a product of residuals from the outcome increment model and the monitoring model,

such that a zero-mean estimating equation would ensure orthogonality between the outcome

and monitoring processes simultaneously with the double robustness property.

A thorough summary of methods for covariate-driven monitoring times was put forward

by Pullenayegum and Lim [2016], who discussed the di�erent assumptions of several of

those methods mentioned above. Other methods for tackling covariate-driven monitoring

times followed; see e.g. McCulloch et al. [2016], Dai and Pan [2018], Shahn et al. [2019]
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for similar methods or extensions of those discussed above, which do not apply directly in

our setting of interest (either because they use random e�ects and hence are not marginal,

they focus only on survival types of outcomes, or they do not allow for the same extent in

visit irregularity as we wish to tackle). See Lokku et al. [2020] and Pullenayegum [2020]

for guidance on visit irregularity (e.g., for suggestions on observational study designs or on

how to summarize the irregularity). Further, see Pullenayegum [2016] for an extension of a

strategy called outputation to irregular visits. That methodology thins the visit process to

discard observations in such a way as to induce independence between the covariates and

the monitoring process in the data remaining. Outputation leads to results that are similar

to those found using inverse intensity of visit weights, and can prove useful in settings where

inverse weights cannot be implemented (e.g., in joint models).

In the causal inference framework, few authors have tackled the issue of covariate imbal-

ances related to the monitoring times. For instance, Zhu et al. [2017] proposed weighted

estimating equations for the parameters in a parametric survivor function S(·), for settings

with covariate-driven monitoring times (accounted for via weights). They considered a func-

tion S(·) of time-�xed covariates, in which case the model parameters could correspond to

marginal e�ects. In the case where an exposure was incorporated in the design matrix, they

proposed to use inverse probability of treatment weights to adjust for potential confounding.

Their method applies to survival-type of outcomes, and for time-�xed variables (e.g., expo-

sure) in the design matrix. Shahn et al. [2019] introduced a method set within the causal

inference framework. They proposed to use g-computation (Robins [1986]) rather than in-

verse probability of treatment weighting, to account for confounding bias in the estimation

of the e�ect of a sequence of treatments. They de�ned the causal contrast of interest as a

function of a longitudinal potential outcome, and estimated it by using g-computation and

conditioning on a �xed visit scheme in the outcome model used for prediction of the counter-

factual outcomes. Although the approach considered sequences of treatments as measured

at di�erent monitoring times, only slight deviations from a common visit scheme across
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individuals can be accommodated.

In this thesis, I focus on approaches similar to that of Zhu et al. [2017] but for other types

of outcomes, and extensions of the method of B·ºková and Lumley [2009] so as to address

confounding. I assume that, due to the visit process, the outcome is missing at random (but

not completely at random) and treat the parameters in the exposure and the monitoring

models as nuisance parameters. I further assume that we can create a DAG faithful to the

generating mechanisms in nature. I aim to provide a methodology for situations where the

aim is to estimate a population average (marginal) quantity, and thus focus on estimating

equation approaches rather than random e�ect models.

2.5 Inverse probability weighting

Inverse probability weights have been used in many di�erent settings, but one of their �rst

uses can be traced back to Horvitz and Thompson [1952] who aimed to estimate a sum-

mary measure from a population, using a sample where units were sampled with unequal

probabilities. In their problem, the probability of selection of a unit ui (associated with

measurement Yi) was unequal across individuals as it depended on the order of selection into

the sample. Using the sample, the authors wished to estimate the sum of an outcome Y in

the population. The authors focused on estimators of the form

T̂ =
n∑︂

i=1

ΩiYi,
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for Ωi, i = 1, ..., n a term that would be used as a weight when unit ui is selected into the

sample. To obtain E[T̂ ] = T , which corresponds to

E

[︄
n∑︂

i=1

ΩiYi

]︄
=

n∑︂
i=1

p(ui)ΩiYi

=
n∑︂

i=1

Yi,

they showed that the weights Ωi should be equal to the quantity 1/p(ui), which corresponds

to the inverse probability of selection into the sample for each unit.

2.5.1 Weighting in causal inference

In the causal inference literature, inverse probability weights are frequently used to create

balance across exposure groups, in settings where a comparison of their outcome is of inter-

est. These inverse probability weights, called the inverse probability of treatment weights

(IPTW), are a function of the propensity score (Rosenbaum and Rubin [1983]), which is the

coarsest possible balancing score, i.e. a function of the covariates K that, when conditioned

upon, makes the covariates and treatment assignment I independent. In particular, the

propensity score can be used in place of the confounding variables K to perform adjustment

(e.g. weighting, strati�cation or matching) when it is di�cult to stratify or match on a large

set of covariates.

Rosenbaum and Rubin [1983] proved in their seminal paper that the propensity score (PS),

de�ned as the conditional probability of being exposed, given pretreatment variables (typi-

cally, the confounders), was the coarsest balancing score. Denoting the propensity score by

e(K), balance means that

I ⊥ K|e(K),

such that e(K) represents a summary of covariates K that can be used alone to break

the dependence between the exposure and covariates K, rather than the full set of K. In
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particular, if we have that {Y(1),Y(0)} ⊥ I|K, then we also have that {Y(1),Y(0)} ⊥

I|e(K) where e(K) is the true propensity score (associated with the true exposure generating

mechanism).

Adjustment via the propensity score can be convenient in studies where there are imbalances

across treatment groups, particularly when it is easier to correctly specify the treatment

allocation than the outcome process. IPTW, as opposed to a direct adjustment for the

covariates or some function of them such as the PS in the outcome model, separates the

study design from the analysis, and it has been shown to provide good performance in terms

of bias reduction (Austin [2011]). Thus, to make our methodology generalizable, we focus

on the IPTW as the key method of adjusting for confounding. The IPTW are de�ned as

the inverse of I(Ii = 1)P (Ii = 1|Ki) + I(Ii = 0)P (Ii = 0|Ki) for person i; they create a

pseudo-population in which exposure is not associated with the potential confounders.

In Section 2.2.2, we presented the g-formula. To explain why inverse probability of treat-

ment weighting is an e�ective approach to adjusting for confounding, I now continue the

development from that section:

EK [E [Yi(t)|Ii(t) = 1,Ki(t)]]

=
∑︂
K

E[Yi(t)|Ii(t) = 1,Ki(t)]P (K = Ki(t))

=
∑︂
K

P (Ii(t) = 1|Ki(t))

P (Ii(t) = 1|Ki(t))
E[Yi(t)|Ii(t) = 1,Ki(t)]P (K = Ki(t))

=
∑︂
K

1

P (Ii(t) = 1|Ki(t))
E[Yi(t)|Ii(t) = 1,Ki(t)]P (Ii(t) = 1|Ki(t))P (K = Ki(t))

= E
[︃

I(Ii(t) = 1)Yi(t)

P (Ii(t) = 1|Ki(t))

]︃
.

Similarly, it can be shown that EK [E [Yi(t)|Ii(t) = 0,Ki(t)]] = E
[︂

I(Ii(t)=0)Yi(t)
1−P (Ii(t)=1|Ki(t))

]︂
. That

is, IPTW can be used to obtain an estimator of the causal contrast of interest, provided

conditioning in the PS is on the set of confounders necessary to eliminate all backdoor paths
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between exposure and outcome.

The seminal paper of Rosenbaum [1987] is one of the �rsts to discuss such a weighting

(without relating it to what are now referred to as g-methods, simply calling the IPTW

method a model-based direct adjustment). He compared the inverse probability of treatment

weighting adjustment to direct adjustment for the PS in the regression model, and presented

arguments in favour of inverse probability of treatment weighting, including the fact that

this approach does not require a correct speci�cation of the outcome model and a somewhat

weaker assumption on positivity.

2.5.2 Inverse intensity of visit and recurrent events models

As mentioned in Section 2.4, inverse probability weights were used by Robins et al. [1995]

to account for missingness in a longitudinal outcome. However, Lin et al. were the �rst

to propose a more �exible type of weight that applied in settings where monitoring times

for the outcome can occur at any time (i.e., in continuous time). Their weights are called

the inverse intensity of visit (IIV) weights (Lin et al. [2004]) and can be used to create a

pseudo-population (Hernán and Robins [2006]) in which monitoring times are independent

of a given set of covariates, that we denote by Z. In particular, we could have that Z =

X where X is the design matrix in the outcome mean model considered, but covariates

Z could also include other covariates (such as those on the causal paths from covariates

X to the outcome). The authors incorporated their IIV weights in GEE-type estimating

equations, and showed the unbiasedness of their equations for the marginal e�ects of (time-

�xed) covariates X using iterated expectation. They derived the asymptotic properties of

the proposed estimators; e�ectively, their estimator corresponds to an M-estimator, such

that the corresponding in�uence function can be used to derive asymptotic variance and to

prove asymptotic normality. The estimating equation they used to intoduce the IIV weights
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is given by

∑︂
i=1n

∫︂ τ

0

{Yi(t)− µ(t,Xi;β0)} c(t,Xi;β0)

ˆ︁λ0(t) exp[γ̂T0H
{︁
t,Fobs

i (t−)
}︁
]

= 0, (2.9)

where µ(t,Xi;β0) is a marginal mean model for the outcome speci�ed as a function of

covariates X and the parameters of interest, and where the estimated monitoring intensity

is found in the denominator. The function c(·) can be used to improve e�ciency of the

resulting estimator. The authors used a proportional intensity model where they estimate the

instantaneous probability of visit at time t as ˆ︁λ0(t) exp[γ̂T0H
{︁
t,Fobs

i (t−)
}︁
], with a function

H at time t of previous covariates Fobs
i (t−). This function could be multidimensional,

with γ̂0 = γ̂0 a vector. Methods from recurrent events modelling can be used to model

that intensity function. The Andersen and Gill (AG) model (Andersen and Gill [1982]),

an extension of the Cox proportional hazards model (Cox [1972]) to recurrent events has

been used to estimate the parameters γ0 (see e.g. Lin et al. [2004], B·ºková and Lumley

[2009]).

Recurrent events modelling

Monitoring times are recurrent events for a given individual, and they can be represented

by a corresponding counting process Ni(t) =
∑︁t

j=1 dNi(j) for individual i. The modelling of

covariates' e�ects on those recurrent events can be accomplished using standard modelling

tools for recurrent events. Some reviews of methods for recurrent events in biostatistics can

be found in Amorim and Cai [2015] and Ozga et al. [2018]. A wide-ranging reference book

on recurrent events is that of Cook and Lawless [2007]. The di�erent models proposed in the

literature e�ectively di�er by the assumptions that must be met to obtain valid inference.

The most popular methods include the AG model; the Prentice, Williams and Peterson

(PWP) models (we discuss two of them); and the Wei-Lin-Weissfeld model. Some other

approaches, such as the marginal mean or rate modelling, the frailty models, or the multi-
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state models, are also brie�y considered in this section.

The AG model (Andersen and Gill [1982]) is a straightforward extension of the Cox propor-

tional hazards model (Cox [1972]) to recurrent events. It uses the same partial likelihood

theory to �t the main e�ects in the instantaneous probability function (called the intensity

rather than the hazard, which emphasizes that it is not conditional on having survived up

to a given time point), but it di�ers from the Cox proportional hazards model by the risk-

sets being considered. With the AG model, patients with a previous event remain in the

study until they are censored or until end of study, such that other future events are still

considered. Lin et al. [2000] discussed the di�erences between the AG model and the more

marginal models for the visit rate, such as the marginal rate or the marginal mean mod-

els (discussed further below); the latter of these models require weaker assumptions on the

structure of dependence across the recurrent events of an individual. In contrast, the Ander-

sen and Gill model relies on the assumption that the correlation between measurements of

the same individual in time can be explained by the (time-varying) covariates in the model,

such that conditioning on these variables leads to conditional independence. The AG model,

as opposed to the other models discussed in the next paragraph, does not allow for the main

e�ects of covariates in the intensity function to vary after a new event occurs (but functions

of the previous events can be added as covariates in the intensity model).

The next two methods rely on strati�ed versions of the same intensity function considered

by Andersen and Gill. Either the �rst event is treated di�erently, or the intensity is allowed

to vary for each new event stratum. PWP proposed two useful models for the intensity

(Prentice et al. [1981]). The �rst, also an extension of the Cox proportional hazards model,

assumes a di�erent baseline intensity function, and di�erent covariate e�ects for each recur-

rent event:

λij(t) = λ0j(t) exp(γ
′
jZj)

for j the order of the event for an individual (where covariates Zj can be re-assessed, for
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instance, after each new event). The second model they proposed allows for the baseline

function to depend on the time between events (i.e. the gap time) rather than the time since

cohort entry:

λij(t) = λ0j(t− tj−1) exp(γ
′
jZj).

The Wei-Lin-Weissfeld model (Wei et al. [1989]) is similar to those proposed by PWP, except

that individuals are considered at risk for an higher-order event (e.g., a fourth one) even if

they have not experienced the previous events yet (and similarly, for other orders). That is,

individuals are considered to be at risk of a jth event at all times.

Other methods can be used to add �exibility into the modelling of recurrent events. For

instance, frailty models can be used to account for missing outcomes that are missing not at

random, in which case covariates alone cannot necessarily break the dependence between the

recurrent events and the covariates (in the case of covariate-driven monitoring times, this has

been discussed in Section 2.4). Marginal models for the events rates or means can also be

used (Lin et al. [2000]). These models are generally similar to the AG model, and consider

the entirety of the recurrent events process as a counting process. However, the marginal

models make weaker assumptions on the dependence between the recurrent events of the

same individual by removing the assumption of the AG model that the in�uence of previous

events on a recurrent event at time t must be mediated via the time-varying covariates in

the model (e.g., Z(t)). For marginal models, the structure of dependence across the events

of an individual is allowed to be quite complex, and could go beyond the dependence due to

the covariates Z(t).

Note that the AG model can be used to estimate the main e�ects both in the proportional

intensity and in marginal rate models (under their respective assumptions, and under the

AG assumption that subsequent events from an individual are independent conditional on

the time-varying covariate process) (Lin et al. [2000]). In that thesis, I therefore �t inten-

sity models rather than more marginal models, even in settings where assumptions on the
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dependence across recurrent monitoring times are weak, because intensity models provide

consistent estimates for covariates main e�ects (on the rate or visit intensity) for all the

situations I consider, and because they are easier to implement. A Cox proportional hazards

model is �tted using the coxph function in R (Therneau [2020]), where the data must �rst

be transformed into a counting process format (e.g., one day per data row), and this method

provides the estimates from the AG model. Finally, multi-state models can be used for

estimating the transition intensities in settings with several (possibly, competing) recurrent

events. These models and the corresponding theory can be used to compute other quantities

such as the stage occupancy probability, which is the probability to be in one of the possible

states (i.e. visit or not) at a given time. See Cook and Lawless [2018] for more details on

multi-state models.

2.6 Summary

In this literature review, I discussed some of the key components for developing a methodol-

ogy for estimation of the causal ATE using observational data that are subject to confound-

ing, missing data, and covariate-driven monitoring times. These included a discussion on

the challenges associated with the analysis of observational data, an introduction to some

important statistical concepts in causal inference, a review of previously proposed methods

that tackle some of the special features of observational data, and an introduction to the

di�erent modelling tools that are used in this thesis to estimate the ATE on a longitudinal

outcome, along with the rationale for using them.
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Chapter 3

Weighted regression analysis to correct

for informative monitoring times and

confounders in longitudinal studies

Preamble to Manuscript 1.

The authors Lin and Ying [2001] and B·ºková and Lumley [2009] have proposed semi-

parametric estimators for the marginal e�ects of covariates on a longitudinal outcome, for

settings with covariate-driven monitoring times, with their theory being mostly discussed

outside of the causal framework. That, and other previous work on covariate-driven mon-

itoring times, did not focus on exposure e�ects nor considered confounding simultaneously

with the covariate-driven monitoring times. This gap motivated the proposal and the eval-

uation of di�erent methodologies for tackling these features simultaneously.

In this manuscript, the methods of Lin and Ying [2001] and B·ºková and Lumley [2009]

are extended, and two novel estimators are proposed and compared, with both accounting

for covariate-driven follow-up times and confounding. The two estimators also account for

mediators on the causal path from the exposure to the outcome that may a�ect monitoring
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times. The two estimators are based on di�erent sets of estimating equations and present

with di�erent theoretic properties. The �rst proposed estimator does not require the estima-

tion of a time-varying intercept function in the outcome mean model. The second estimator

incorporates splines to make the modelling of the intercept function more �exible, and its

variance can easily be derived using semiparametric theory for two-step estimators.

The original contributions of this chapter are i) proposing the �rst consistent estimators

for the ATE in settings with covariate-driven monitoring times and confounders, when the

exposure is binary and the outcome is continuous, ii) proposing the �rst thorough design for

simulation studies with confounding and covariate-driven monitoring times in the speci�c

context where the exposure is binary and the outcome is continuous, and iii) deriving the

asymptotic properties of the estimator that performed the best between the two proposed

estimators.

The corresponding manuscript was published in Biometrics (Coulombe et al. [2021a]).
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Abstract

We address estimation of the marginal e�ect of a time-varying binary treatment on a con-

tinuous longitudinal outcome in the context of observational studies using electronic health

records, when the relationship of interest is confounded, mediated and further distorted by

an informative visit process. We allow the longitudinal outcome to be recorded only spo-

radically and assume that its monitoring timing is informed by patients' characteristics. We

propose two novel estimators based on linear models for the mean outcome that incorporate

an adjustment for confounding and informative monitoring process through generalized in-

verse probability of treatment weights and a proportional intensity model respectively. We

allow for a �exible modelling of the intercept function as a function of time. Our estimators

have closed-form solutions, and their asymptotic distributions can be derived. Extensive

simulation studies show that both estimators outperform standard methods such as the or-

dinary least squares estimator or estimators that only account for informative monitoring or

confounders. We illustrate our methods using data from the Add Health study, assessing the

e�ect of depressive mood on weight in adolescents.
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3.1 Introduction

Consider a setting where we are interested in understanding the cross-sectional impact of

an exposure on an outcome, for example a physician is interested in the impact of a current

clinical measurement on the current presence of an illness, and their patients are repeatedly

assessed over time. To learn about such an association, we may turn to electronic health

records (EHRs). Longitudinal outcomes, particularly those drawn from EHR data, may

be measured irregularly across patients. The time points at which they are recorded may

depend on patients' health condition, which may on its turn be linked with the value of the

outcome measured at those visit times, leading to imbalances in the data similar to those

observed in selection bias. Moreover, confounders and mediating variables (Greenland and

Robins [1986]) occur simultaneously with informative monitoring times in most observational

studies, and thus must also be accounted for.

In this work, we focus on making inference on the marginal e�ect of a binary, time-varying

treatment on a continuous outcome, measured repeatedly over time. To model longitudinal

outcomes in contexts where monitoring times are irregular or informative, several methods

have been proposed, but none of them simultaneously considered confounding in a setting

with continuous outcomes. When monitoring times are informative, Robins et al. [1995]

proposed a weighted extension of the generalized estimating equations of Zeger and Liang

[1986] to estimate the marginal e�ect of intervention on a longitudinal outcome. In their

method, inverse probability of response weights were incorporated into estimating equations

to adjust for nonrandom missingness, which addressed the problem of informative monitoring

times but was restricted to the case where there is a common set of monitoring times for

all individuals, which is often not the case in observational studies. Lin and Ying [2001]

developed a class of closed-form estimators for the marginal e�ect of variables on the mean

outcome that accounted for informative monitoring times and allowed for those times to

vary across individuals. Several innovations followed, which we detail further in the following
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section, many of which are covered in the review of Pullenayegum and Lim [2016].

We extend the existing literature further and propose two new and �exible estimators for the

marginal e�ect of a (potentially time-varying) binary treatment on a longitudinal continuous

outcome for settings in which the exposure is not randomized. In our methods, we allow the

mediators, the exposure and other covariates to a�ect the timing of the outcome monitoring,

and both the confounders and the mediators to vary in time. The �rst estimator is a

semiparametric extension that builds on the work of B·ºková and Lumley [2009]. The second

estimator is a weighted least squares type estimator that incorporates two time-varying

weights. This latter �exible estimator provides a simpler and more intuitive alternative to the

�rst, with comparable performance. Its asymptotic variance is derived. In simulation studies,

we compare both estimators and more standard ones in di�erent contexts of dependency

between covariates and monitoring times.

The remainder of this article is organized as follows: Section 3.2 introduces the notation,

assumptions and inference procedure. Section 3.3 presents the details of the simulation

studies and the results. Section 3.4 applies the methodology to the analysis of the data

from the Add Health study (Harris [2009]). Finally, we provide some concluding remarks in

Section 3.5.

3.2 Methods

3.2.1 Background

Lin and Ying [2001] considered the following marginal model:

E [Yi(t)|Xi(t)] = α(t) + β′Xi(t), (3.1)

with α(t) an arbitrary function of time t, X(t) a design matrix and Yi(t) a continuous

longitudinal outcome. They assumed a proportional intensity model for the monitoring
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times of the outcome, which monitoring times were only allowed to depend on covariates in

the outcome model, X(t). They proposed a semiparametric estimator for β in (3.1), which

does not require estimation of the intercept α(t). In 2009, B·ºková and Lumley proposed to

incorporate a weight in Lin and Ying's estimator that accounts for the dependency between

monitoring times and any covariates that are not in the design matrix X(t). In particular,

their approach allows for any mediators of the treatment-outcome relationship to a�ect

monitoring times.

Tan et al. [2014] presented a summary of some of the extensions of Lin and Ying's estimator

and proposed a few developments of existing methods. Other authors have proposed fully

parametric methods to jointly model the visit and outcome processes (Lipsitz et al. [2002];

Ryu et al. [2007]), or introduced shared latent e�ects to link the outcome and the visit

processes (e.g., Sun et al. [2012]; Cai et al. [2012]). Most recently, Zhu et al. [2017] proposed

an estimator for interval-censored outcomes when confounding and irregular visit times may

be present. They were among the �rst to consider these two features, however the method

is focused on a very particular outcome type.

The problem of accounting for mediators and confounding variables in observational studies

has been addressed via several methods. It is now well-known that mediating variables should

not be included in the design matrix of the outcome model if the estimand is the total e�ect

of exposure on the outcome (Rosenbaum [1984]). Propensity score methods such as inverse

probability of treatment (IPT) weights are commonly used to adjust for imbalances across

treatment groups due to confounders (Rosenbaum and Rubin [1983]; Robins et al. [2000a]).

The standard IPT weight for a binary and time-�xed treatment Ii, baseline confounders Ki

and parameters ω is given by

ei(ω) =
1

I(Ii=1)P (Ii = 1|Ki;ω) + I(Ii=0)(1− P (Ii = 1|Ki;ω))
, (3.2)

where I(Ii=1) is an indicator function for treatment Ii = 1. We typically estimate the pa-
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rameters ω by �tting a logistic regression model with dependent variable Ii and predictors

Ki.

3.2.2 Assumptions

Suppose that we have a random sample of n individuals, indexed by i = 1, ..., n. We are

interested in the marginal e�ect of a binary intervention Ii(t) on the longitudinal, continuous

outcome Yi(t), where t represents the time. We use the Neyman-Rubin potential outcome

framework (Neyman [1923]; Rubin [1974]) to express the estimand of interest, which is

the causal contrast E [Yi1(t)− Yi0(t)] where Yi1(t) corresponds to the outcome that would

have been observed at time t, had individual i been treated by Ii(t) = 1, and Yi0(t), had the

individual been treated by Ii(t) = 0. More speci�cally, we focus on a time-invariant marginal

e�ect of the exposure on the outcome recorded at the same monitoring time.

The terms treatment, intervention and exposure are used interchangeably to refer to Ii(t),

and monitoring times and visit times refer to the times when the outcome Yi(t) is observed.

We use bold notation to refer to vectors and matrices. We now detail the assumptions

required about the outcome model (O1-O2), the visit process (V1-V2), the treatment model

(P1-P3), and the total follow-up time (C1); these assumptions are required for consistency

of our proposed estimators.

To estimate E [Yi1(t)− Yi0(t)], one can also estimate the contrast E [Yi(t)|Ii(t) = 1]−

E [Yi(t)|Ii(t) = 0] in a pseudo-population where there is no imbalance in covariates between

treatment groups due to confounding and the monitoring process. In a setting with no such

imbalance, we assume that treatment groups are similar in their characteristics and that

patient groups are interchangeable prior to exposure. The following marginal linear model

for the mean can be used for estimation:

E[Yi(t)|Ii(t)] = α(t) + βIi(t). (O1)
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The parameter β in (O1) is exactly equal to E [Yi(t)|Ii(t) = 1]−E [Yi(t)|Ii(t) = 0] so it might

represent a valid estimate for the causal contrast of interest. However, we are aware in our

setting of an underlying confounding process, and the following conditional model for the

mean is a sensible model to use to estimate the conditional e�ect of treatment βI :

E[Yi(t)|Ii(t),Ki(t)] = α(t) + βIIi(t) + β
′
KKi(t) (O2)

for Ki(t) the confounders of the relationship (Ii(t), Yi(t)). Depending on the distribution of

confounders Ki(t) in the sample under study, an estimator of β in the marginal model in

(O1) might be biased for E [Yi1(t)− Yi0(t)], due to imbalances in the confounders between

treatment groups. Moreover, the model in (O2) is marginalized over other covariates not

included in Ii(t) or Ki(t) that may a�ect both the outcome and the monitoring times. For

now, we do not consider explicit modeling of the covariates a�ecting monitoring times which

could bias an estimate for βI in (O2), and focus on the conditional model (O2). We see later

how we can obtain an estimate for the average treatment e�ect in a pseudo-population where

there are no imbalances between treatment groups with respect to Ki(t), and no imbalances

in observed/unobserved outcomes due to an informative monitoring process.

Let the intercept α(t) remain unspeci�ed in (O2). In addition to confounding, assume that

the relationship between Ii(t) and Yi(t) may be mediated by a vector of (potentially time-

varying) covariates Zi(t) which are in the causal path from the exposure Ii(t) to the outcome

Yi(t); see B·ºková and Lumley [2005] for an asthma-related example.

Assume that the longitudinal outcome Yi(t) is only observed at times Ti1, ..., TiKi
, with

Ni(t) =
∑︁Ki

k=1 I(Tik ≤ t). Note that other patient features might be recorded and available

in between times when the outcome is recorded. Ni(t) is used to denote the number of

monitoring times by time t, for individual i. The quantity dNi(t) is equal to 1 if Yi(t) is

measured at time t and 0 otherwise, and τ represents the maximum follow-up time in the

cohort under study.
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We suppose that the relationship between Ii(t) and Yi(t) may be distorted by an informative

monitoring process, and that monitoring at time t depends on the set of covariates Vi(t) =

{Zi(t), Ii(t)} through a proportional intensity model for the monitoring times:

E[dNi(t)|Vi(t)] = ξi(t) exp (γ
′
VVi(t)) dΛ0(t), (V1)

where the function Λ0(·) is arbitrary and nondecreasing, and ξi(t) is the indicator of individ-

ual i still being in the study at time t. We assume that for each time 0 < t < Ci, for a certain

time granularity (e.g. daily), and for each individual i, we have 0 < P [dNi(t)|Vi(t)] < 1.

We restrict the assumption to a particular granularity, as positivity is unlikely to hold when

time is continuous.

Suppose that Vi(t) contains all common predictors of the monitoring times and the out-

come,

Ni(t) ⊥ Yi(t)|Vi(t). (V2)

In fact, note that Z(t) ⊂ V(t) may contain any mediator of the relationship between Ii(t)

and Yi(t), but also any other variable that is not the intervention but that a�ects monitoring

times.

Note that the modelling of monitoring times through equation (V1) requires all covariates

a�ecting monitoring times to be available at any time t, 0 ≤ t < Ci, ∀i during follow-

up (again, under a particular time granularity, e.g. daily). We note that administrative

databases or EHRs often contain the information on drugs prescribed or previous diagnostics

at any time (even in between times when the outcome is recorded) and these values can be

carried forward in between monitoring times so as to use as much information as possible.

In clinical practice, in the absence of new measurements, this information may be relied on

to make decisions (Cao et al. [2016]).
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For the exposure, we assume conditional exchangeability, stable-unit treatment value and

positivity of treatment, which respectively correspond to:

Ii(t) ⊥ {Yi0(t), Yi1(t)} |Ki(t) (P1)

{Yi0(t), Yi1(t)} |Ii(t) = {Yi0(t), Yi1(t)} |I ′i(t) if Ii(t) = I ′i(t) (P2)

0 < P (Ii(t) = 1|Ki(t)), P (Ii(t) = 0|Ki(t)) < 1. (P3)

These conditions are necessary to use propensity score methods to adjust for confounding,

along with correct model speci�cations.

While the maximum follow-up time is τ , it may be that some individuals are not followed

after a certain point. Let Ci denote the end of follow-up (�censoring� time, though we are not

working in a time-to-event context) for individual i ; we consider that the end of follow-up is

administrative and non-informative, that is

E [Yi(t)|Ii(t),Ki(t), Ci ≥ t] = E [Yi(t)|Ii(t),Ki(t)] . (C1)

We note that this assumption could be circumvented by using inverse probability of censoring

weights to adjust for informative dropout. See, for instance, Robins et al. [2000a].

The causal diagram in Figure 3.1, panel A depicts the structure of the data generating

mechanism at time t. Panel B shows the presumed underlying data mechanism for our

analysis of the Add Health study, presented in Section 3.4. Note in Figure 3.1 that we

assume that the confounders and the mediators vary in time, which is allowed but is not

necessary. Even when these variables vary in time, their e�ects on the monitoring times

are assumed constant over time (i.e. we estimate γV rather than γV (t)). Finally, we note

that knowledge about the problem under study should inform the best choice for the set

Ki(t), which may incorporate covariates measured at time t, as well as at previous time

s, for s < t. Settings with time-dependent confounding are allowed, as long as the set of
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confounders include all potential confounders of the marginal relationship under study at a

given time and that mediators are not conditioned upon in the outcome model.

Dotted arrows in Figure 3.1 refer to potential relationships we may want to consider.

3.2.3 Existing methods

Lin and Ying [2001] proposed a semiparametric estimator for β in the marginal model (O1)

without reference to a particular covariate or intervention of interest. Their method did

not account for the variables that a�ected the monitoring times whenever those variables

were not contained in the design matrix for the outcome model. B·ºková and Lumley [2009]

extended their work to account for those other variables. They built an estimator for the

marginal e�ect of treatment based on the stochastic process Mi(t; β,γV ,A ) which, in our

case, is de�ned by

Mi(t; β,γV ,A ) =

∫︂ t

0

(Yi(s)− βIi(s)) dNi(s)− ξi(s) exp (γ
′
VVi(s)) dA (s), (3.3)

where A (t) =
∫︁ t

0
α(s)dΛ(s). They de�ned a weighted version Gi(t; β,γ,A ) of that process,

with

Gi(t; β,γ,A ) =

∫︂ t

0

1

ρi(s;γ)
dMi(s; β,γV ,A ) (3.4)

with the stabilized rate ratio weight ρi(s;γ), given in our setting by

ρi(s;γ) =
exp (γ ′

1Zi(s) + γ2Ii(s))

exp (γIIi(s))
. (3.5)

Note that γ′1Zi(s) + γ2Ii(s) = γ
′
VVi(s). The weight (3.5) allows their estimator to consider

the dependency between Z(t) and the monitoring times while not adding Z(t) directly into

the design matrix. It also accounts for the dependency between the covariates in the design

matrix of the outcome model (here, Ii(t)) and the monitoring times. The parameters γ1 and
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Figure 3.1: Structure of the data generating and monitoring process for (a) a general setting
and (b) the analysis of Add Health data
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γ2 in (3.5) can be estimated by �tting a proportional intensity model for monitoring times

with Z(t) and I(t) as covariates, while γI is estimated using the same type of model with

only I(t) as a covariate.

B·ºková and Lumley [2009] show that E [dGi(t; β,γ,A )|Ii(t)] = 0 under assumptions (O1),

(C1), (V1) and (V2). They further build estimating equations for β in (O1). In our setting

where the design matrix is I(t), their procedure yields the following estimator:

ˆ︁βBL =

[︄
n∑︂

i=1

∫︂ τ

0

W (t)

ρi(t;γ)

(︁
Ii(t)− I(t; γI)

)︁2
dNi(t)

]︄−1

×
n∑︂

i=1

∫︂ τ

0

W (t)

ρi(t;γ)

(︁
Ii(t)− I(t; γI)

)︁ (︂
Yi(t)− Y

∗
(t; γI)

)︂
dNi(t), (3.6)

which is a least squares type estimator where the design matrix is the vector
(︁
I(t)− I(t; γI)

)︁
,

the outcome vector is given by
(︂
Y(t)−Y

∗
(t; γI)

)︂
, W (t) is an arbitrary time-dependent

weight that may be used to reduce the variance, and Y
∗
(t; γI) a weighted average of the

nearest-neighbor approximation to Y at time t (which is also used to reduce the variance of

the estimator). The re-centering of Ii(t) by its adjusted mean in (3.6) eliminates from the

estimation the intercept α(t) in (O1) and avoids having to model the relationship between

the mean outcome and time t, hence the semiparametric and more �exible nature of the

estimator. The estimating equations that B·ºková and Lumley [2009] used are sums of

independent zero-mean random vectors, and the variance of their estimator can be derived

using standard asymptotic theory along with Taylor expansions. In what follows, we use

W (t) = 1 ∀t.

In order to estimate the adjusted means, the proportional intensity model (V1) is �tted with

only the predictor Ii(t). The coe�cient ˆ︁γI for Ii(t) is used to compute the weighted means.

For any vector R(t) in general, we have:

R(t; ˆ︁γI) = n∑︂
i=1

Ri(t)
ξi(t) exp (ˆ︁γIIi(t))∑︁n
j=1 ξj(t) exp (ˆ︁γIIj(t)) . (3.7)
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The estimator ˆ︁βBL is, however, biased for the marginal e�ect of the intervention Ii(t) in

our setting of interest, because it is limited to randomized controlled settings and does not

consider imbalances between treatment groups which are due to confounders Ki(t). With a

conditional expectation such as in (O2), the process used to build the estimator (which was

based on assumption (O1)) is no longer zero-mean and the estimator may thus not converge

to the true parameter.

3.2.4 The Inverse Probability of Centered Treatment and Monitor-

ing Estimator ˆ︁βIPCTM

Under similar assumptions to B·ºková and Lumley [2009], but now further including covari-

ates as in (O2), we �rst develop an estimator for the conditional e�ect of Ii(t) on Yi(t), as

in the setting depicted in Figure 3.1(A). Note that this estimator is marginalized over the

predictors V(t) of the monitoring times and, as in B·ºková and Lumley, we use a monitor-

ing weight to account for any imbalance in those predictors that could bias the e�ect of I(t)

conditional on K(t). We de�ne a new process Pi(t) = Pi(t;β,γ,A ) as

Pi(t) =

∫︂ t

0

1

ρi(s;γ)
[(Yi(s)− βIIi(s)− β′

KKi(s)) dNi(s)− ξi(s) exp (γ
′
VVi(s)) dA (s)] ,

with A (t) =
∫︁ t

0
α(s)dΛ(s). In Appendix A.1, we show that E [dPi(t)|Ii(t),Ki(t)] = 0, and

the derivation of the estimating equations and estimators for the conditional e�ects. We
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obtain the following estimators for the conditional e�ects of

[︃
Ii(t) Ki(t)

]︃′
in (O2):

[ˆ︁βI ˆ︁βk]′ =
⎡⎢⎣ n∑︂

i=1

∫︂ τ

0

W (t)

ρi(t; ˆ︁γ)
⎛⎜⎝ Ii(t)− I(t; ˆ︁γI)
Ki(t)−K(t; ˆ︁γI)

⎞⎟⎠
⊗2

dNi(t)

⎤⎥⎦
−1

×
n∑︂

i=1

∫︂ τ

0

W (t)

ρi(t; ˆ︁γ)
⎛⎜⎝ Ii(t)− I(t; ˆ︁γI)
Ki(t)−K(t; ˆ︁γI)

⎞⎟⎠
′ (︂
Yi(t)− Y

∗
(t; ˆ︁γI))︂ dNi(t).

(3.8)

Using the estimating equation for conditional e�ects to estimate the parameters βI and βK in

(O2) corresponds to using a weighted least squares regression with predictors (Ii(t)−I(t; ˆ︁γI))
and (Ki(t)−K(t; ˆ︁γI)), a dependent variable (Yi(t) − Y

∗
(t; ˆ︁γI)) and weights W (t)/ρi(t; ˆ︁γ).

To rather estimate the marginal e�ect of Ii(t) on the mean outcome, we propose to use

weights to create a pseudo-population in which there is no imbalance due to confounders,

and so we change focus to the corresponding estimating equation for the marginal model

(O1), and its corresponding estimator given in (3.6), when there is no imbalance due to

confounders.

The re-weighting procedure we use is reminiscent of standard inverse probability of treat-

ment weighting. Our goal is to break any dependency between the columns of the de-

sign matrix in (3.8), given by Ii(t) − I(t; ˆ︁γI) and Ki(t)−K(t; ˆ︁γI). Note that the quantity(︁
Ii(t)− I(t; ˆ︁γI))︁ is typically not binary so we cannot use a logistic regression to model

E
[︁
Ii(t)− I(t; ˆ︁γI)|Ki(t)−K(t; ˆ︁γI)]︁. We model the conditional mean using a linear model.

Suppose

E
[︁
Ii(t)− I(t; ˆ︁γI)|Ki(t)−K(t; ˆ︁γI)]︁ = ψ0 +ψ

′
1(Ki(t)−K(t; ˆ︁γI)). (3.9)

Estimates for E
[︁
Ii(t)− I(t; ˆ︁γI)|Ki(t)−K(t; ˆ︁γI)]︁ are obtained via the predictions from the
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linear regression model (3.9) with estimated coe�cients. To transform these values into

pseudo probabilities that lie between 0 and 1 so as to further re-weight the marginal es-

timating equation corresponding to the estimator in (3.6), we use an approach suggested

by Robins et al. [2000a]. We then stabilize these pseudo probabilities, using a marginal

model for the mean of Ii(t)− I(t; ˆ︁γI) that is equal to ψm so as to compute a �nal stabilized

generalized weight given by

sgwi(t; ˆ︁ψ) = sgwi(t; ˆ︁ψ0, ˆ︁ψ1, ˆ︁ψm) =
g−1

(︂ˆ︁ψ0 + ˆ︁ψ′
1(Ki(t)−K(t; ˆ︁γI)))︂
g−1

(︂ˆ︁ψm

)︂ (3.10)

for g−1(ˆ︁ai(t)) = 1/
√︁
2πˆ︁σ2

a exp (−ˆ︁ϵa,i(t)2/(2ˆ︁σ2
a)) the Normal density function evaluated at the

linear regression residuals ˆ︁ϵa,i(t) = (︁
Ii(t)− I(t; ˆ︁γI)− ˆ︁ai(t))︁, with ˆ︁σ2

a the empirical variance

of ˆ︁ϵa,i(t). Another way of modelling the variable Ii(t) − I(t; ˆ︁γI) would be to categorize it

into quantiles (Naimi et al. [2014]). That procedure could work particularly well if the

distribution of Ii(t)− I(t; ˆ︁γI) is not unimodal and is asymmetric. This latter approach was

evaluated in sensitivity analyses.

The weight (3.10) is incorporated into the estimating equations corresponding to the esti-

mator of B·ºková and Lumley in (3.6), and we obtain the new estimating equation

Umar(β, α, ˆ︁γ, ˆ︁ψ) = n∑︂
i=1

∫︂ τ

0

W (t)

ρi(t; ˆ︁γ) 1

sgwi(t; ˆ︁ψ)
(︁
Ii(t)− I(t; ˆ︁γI))︁

×
[︂
Yi(t)− Y

∗
(t; ˆ︁γI)− β

(︁
Ii(t)− I(t; ˆ︁γI))︁]︂ dNi(t). (E2)

Solving equation (E2) for Umar(β, α, ˆ︁γ, ˆ︁ψ) = 0 leads to the closed-form solution of our

proposed Inverse Probability of Centered Treatment and Monitoring (IPCTM) estimator,
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that is given by:

ˆ︁βIPCTM =

[︄
n∑︂

i=1

∫︂ τ

0

W (t)

ρi(t; ˆ︁γ)
(︁
Ii(t)− I(t; ˆ︁γI))︁
sgwi(t; ˆ︁ψ)

2

dNi(t)

]︄−1

×
n∑︂

i=1

∫︂ τ

0

W (t)

ρi(t; ˆ︁γ)
(︁
Ii(t)− I(t; ˆ︁γI))︁
sgwi(t; ˆ︁ψ)

(︂
Yi(t)− Y

∗
(t; ˆ︁γI))︂ dNi(t) (3.11)

for the estimand of interest, the marginal e�ect of Ii(t) on Yi(t).

Note that the intercept function α(t) is left unspeci�ed in (O1) so that one need not assume

any particular form for the dependence of the outcome Y (t) on time t. More details on the

unbiasedness of the IPCTM estimator are presented in Appendix A.2. Similarly to B·ºková

and Lumley [2009], the asymptotic variance of the IPCTM estimator can be developed using

standard asymptotic theory. It is also possible to directly account for the components of

variance due to the weights using theory on two-step estimators (Newey and McFadden

[1994]) along with the variance formula provided by B·ºková and Lumley [2009].

3.2.5 The Flexible Inverse Probability of Treatment and Monitor-

ing Estimator ˆ︁βFIPTM

A second estimator, which is also a weighted least squares type estimator, is proposed to

estimate the marginal e�ect of treatment on a longitudinal and continuous outcome. It

requires slightly stronger parametric speci�cations for the intercept α(t) in (O1), which is

modelled through cubic splines. However, it is easier to implement in practice, and as we will

demonstrate in Section 3.2, it often provides equivalent performance as the IPCTM estimator

in simulation studies. Given its more parametric nature, we also expect it to exhibit smaller

variance than the IPCTM estimator.

Let us assume again the conditional mean model (O2) along with assumptions (P1), (P2)

and (P3) and that monitoring times can be modelled through a proportional intensity model

as in (V1). We use a weighted least squares method, and aim to create a pseudo-population
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in which imbalances due to confounders and covariate-dependent monitoring times are elim-

inated through re-weighting. We �rst readjust the observations for the monitoring process

using an inverse probability of monitoring weight de�ned by the inverse of φi(t;γV ), with

φi(t;γV ) = exp (γ′
1Zi(t)+ γ2Ii(t)) . (3.12)

Again, assuming a proportional intensity model for the monitoring times, one does not

need to estimate the function Λ0(t) in (V1) since this term at time t will cancel out across

individuals. The parameters γ1 and γ2 can be estimated by �tting a proportional intensity

model.

We use a standard approach to adjust for imbalances due to confounders, and add an inverse

probability of treatment weight into the weighted least squares regression. That weight is

given by:

ei(t;ω) =
1

I(Ii(t)=1)P (Ii(t) = 1|Ki(t);ω) + I(Ii(t)=0)(1− P (Ii(t) = 1|Ki(t);ω))
. (3.13)

The quantities P (Ii(t) = 1|Ki(t);ω) and P (Ii(t) = 0|Ki(t);ω) in (3.13) can be estimated via

logistic regression with Ki(t) as covariates and Ii(t) as the dependent variable. Once again,

knowledge about the problem under study should inform selection of Ki(t) for inclusion in

the treatment model used to estimate the IPT weights in (3.13).

The intercept α(t) in (O2) is modelled using cubic splines along with a constant intercept.

We use splines with two knots and choose the tertiles of the distribution of t for the knots.

The �nal estimator has a closed-form solution given by

ˆ︁βFIPTM =

[︄
n∑︂

i=1

∫︂ τ

0

ei(t;ω)
φi(t; ˆ︁γV )Si(t)

⊗2dNi(t)

]︄−1 n∑︂
i=1

∫︂ τ

0

ei(t;ω)
φi(t; ˆ︁γV )Si(t)

′Yi(t)dNi(t) (3.14)
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with S(t) a matrix with s + 2 columns, for s the number of columns in the basis of the

cubic spline. The leading column of S(t) is a vector of 1 for the constant intercept, and the

last column corresponds to the intervention I(t). We are interested in the last coe�cient ofˆ︁βFIPTM , which corresponds to the estimator for the marginal e�ect of treatment, that we

further refer to as ˆ︁βFIPTM .

The asymptotic variance of ˆ︁βFIPTM is computed using standard theory on weighted least

squares estimator, with the components of variance due to the weights incorporated into the

sandwich estimator using theory on two-step estimators (Newey and McFadden [1994]). For

derivations, see Appendix A.3. A comparison of the empirical, the bootstrapped and the

asymptotic variances in simulation studies is presented in Table A.3 of Appendix A.4, along

with the coverage of the FIPTM estimator.

3.3 Simulation study

Simulation studies were conducted to assess the performance of both estimators ˆ︁βIPCTM andˆ︁βFIPTM for the marginal e�ect of Ii(t) on the mean of Yi(t), for di�erent levels of dependency

(γV ) between covariates and monitoring times and for di�erent forms of intercept α(t). The

data generating mechanism was similar to the one presented in Figure 3.1(A) and inspired

by B·ºková and Lumley [2009], but incorporates (possibly time-varying) confounders. In a

�rst study described below, the intervention and the confounders were kept time �xed. In a

second study, they could vary in time (details are presented in Appendix A.5).

Simulation study 1: Time-�xed confounders and treatment

For all patients i, three baseline confounders {K1i, K2i, K3i} were generated with K1i ∼

N(1, 1), K2i ∼ Bernoulli(0.55), and K3i ∼ N(0, 1). The intervention Ii(t) was binary and

time-�xed, and was simulated as Ii ∼ Bernoulli(pIi) with pIi = expit (0.5 + 0.8K1i + 0.05K2i − 1K3i).

One time-varying mediator Zi(t) was generated, conditional on Ii, as Zi(t)|Ii = 1 ∼ N(2, 1)
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and Zi(t)|Ii = 0 ∼ N(4, 4). The outcome Yi(t) was simulated as Yi(t) = α(t) + 1Ii +

3 [Zi(t)− E [Zi(t)|Ii]] + 0.4K1i + 0.05K2i − 0.6K3i + ϵi(t) with ϵi(t) ∼ N(ϕi, 0.01) and

ϕi ∼ N(0, 0.04).

The quantities above were �rst simulated in continuous time, with time discretized over a grid

of 0.01 units, from 0 to τ . Then, monitoring times (i.e. when the outcome was observed) were

simulated according to a nonhomogeneous Poisson process, with intensity at time t equal to

λi(t|Ii, Zi(t)) = ηi exp (γ1Ii + γ2Zi(t)), with ηi a gamma distributed random variable with

mean 1 and variance 0.01. Bernoulli draws with probabilities proportional to these intensities

could be used at each time point to assign monitoring times. Monitoring times could be

drawn up until the maximum follow-up time τ ; we �xed τ = 2 and obtained di�erent mean

numbers of visits which depended on parameters (γ1, γ2). We tested three combinations:

(γ1, γ2) = (0, 0), which corresponded to no dependency on covariates; (γ1, γ2) = (−0.3, 0.2);

and (γ1, γ2) = (0.6, 0.3). The follow-up time was further censored at time Ci for each

individual, with Ci ∼ Uniform(τ/2, τ). For α(t), �ve di�erent functions of time were tested:

α(t) = 3; α(t) = 2.5t; α(t) = sin(t); α(t) = exp(t); and α(t) = exp(2| sin(3t)|). Two sample

sizes, respectively n = 250 and n = 500, were tested. We used a total of 1000 simulations in

each study.

The proposed estimators were compared to more standard ones, i.e. an OLS estimator,

a visit-weighted estimator and an IPT-weighted estimator. The OLS estimator ˆ︁βOLS was

obtained by �tting a linear regression model with outcome Yi(t), a constant intercept and

the independent variable Ii. The estimator ˆ︁βVW was a weighted least squares estimator in

which a time-dependent monitoring weight was incorporated. The monitoring time model

was correctly speci�ed and included Ii and Zi(t) as explanatory variables. The IPT-weighted

estimator was a weighted linear regression estimator in which an inverse probability of treat-

ment weight was incorporated. For the estimators ˆ︁βIPCTM and ˆ︁βFIPTM , the treatment and

the monitoring models were correctly speci�ed.
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In Appendix A.4, we present the results for 9 additional simulation scenarios in which treat-

ment and confounding variables were also time �xed. Scenarios i) and ii) respectively cor-

respond to the cases where confounder variables {K1i, K2i, K3i} were correlated, or where

confounder variables {K1i, K2i, K3i} a�ected the monitoring intensity. Scenarios iii) and iv)

correspond to the cases where generalized IPT weights in the IPCTM estimator were com-

puted from a cumulative logistic regression, with the variable Ii(t) − I(t; ˆ︁γI) binned into

10 quantiles, or with 20 quantiles, respectively. Sensitivity analyses v), vi), vii) and viii)

aim to assess sensitivity to model misspeci�cation via studies where we: v) changed the

error distribution for a Log-Normal distribution centered in 0, in the mean outcome model,

rather than the Normal errors we previously simulated; vi) incorporated non-linear functions

of the confounder covariates in the generative outcome model; vii) incorporated non-linear

terms of the covariates in the generative proportional intensity model for the visits; and viii)

drew, for each individual, a di�erent intercept function d∆0(t) from 3 possible functions:

d∆0(t) ∈ {1; 1.5t; sin(t)}, with respective probability 1/2, 1/4, 1/4. Finally, the simulation

scenario ix) explored the e�ect of conditioning on confounders in the outcome mean model,

for all the estimators that were being compared.

Results

Summary statistics (including empirical bias) for each estimator are found in Appendix A.4.

Figure 3.2 shows absolute biases and empirical mean squared errors (MSEs) for each of the

�ve estimators we compared; each boxplot summarizes the distribution of bias or MSE, over

all 15 scenarios of dependency and intercept functions that we considered. We also present

results for one of the scenarios where α0(t) = 3, in Table 3.1 in this manuscript. The results

in Table 3.1 were based on a simulation study where exposure and confounders were kept as

time-�xed.
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Table 3.1: Simulation study with confounding and covariate-dependent monitoring times
(τ = 2, n = 250, α(t) = 3, time-�xed exposure and confounders)

(γ1,γ2) Median no. Absolute bias (Empirical variance)
visits (IQR) β̂OLS

† β̂VW
‡ β̂IPT

⋆ β̂FIPTM β̂IPCTM

(0, 0) 1 (1-2) 0.72 (0.41) 0.71 (0.30) 0.06 (1.06) 0.09 (0.77) 0.08 (0.99)
(−0.3, 0.2) 2 (1-3) 1.05 (0.19) 0.72 (0.18) 1.77 (0.40) 0.04 (0.39) 0.01 (0.44)
(0.6, 0.3) 5 (4-7) 1.98 (0.12) 0.76 (0.19) 2.65 (0.30) 0.00 (0.38) 0.02 (0.47)
† Ordinary least squares regression with outcome Yi(t) and exposure Ii(t) with a constant intercept
‡ Weighted least squares regression with outcome Yi(t) and exposure Ii(t) with a constant intercept and an inverse
probability of monitoring weight computed from a proportional intensity model with Ii(t) and Zi(t) as predictors
⋆ Weighted least squares regression with outcome Yi(t) and exposure Ii(t) with a constant intercept and one an inverse
probability of treatment weight computed from a logistic regression model with Ki(t) as predictors

As we notice in Figure 3.2, the OLS estimator, which we can see is biased, generally provides

variable MSEs due to the di�erent sets of γV parameters. When adjusting for the monitoring

process only, we observe that ˆ︁βVW varies much less. However, it remains biased due to

confounding. The IPT estimator, on the other hand, is only unbiased when there is no

informative visit process. Most importantly, ˆ︁βIPCTM and ˆ︁βFIPTM exhibit almost zero bias

and a quite narrow distribution for their absolute bias. As expected, di�erent parameters

(γ1, γ2) lead to di�erent mean numbers of visits. Typically, the greater the mean number of

visits, the smaller the bias for the two latter estimators (see Tables A.1 and A.2 in Appendix

A.4). In Table 3.1 of this manuscript, we �nd simular results which are representative of

the results from across scenarios. In particular, we �nd that the absolute bias of the two

proposed estimators ˆ︁βIPCTM and ˆ︁βFIPTM is near 0, but that their variance tends to be

greater than that of their comparators, as the γV coe�cients increase. The two proposed

estimators dramatically outperform their comparators in terms of bias as those coe�cients

increase.

In Figure 3.2, we also observe that the IPCTM estimator exhibits a greater MSE than the

�exible estimator (ˆ︁βFIPTM ) in studies with time-�xed treatment and confounder variables,

while it exhibits a smaller mean squared error than the FIPTM estimator in studies with

time-varying treatment and confounder variables. As expected, the range of MSE narrows

as the sample size increases. Given that both ˆ︁βIPCTM and ˆ︁βFIPTM exhibit a bias that tends
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Figure 3.2: Boxplots of the distribution of absolute bias (top panel) and of MSE (bottom
panel) from all 15 simulation scenarios, for the �ve estimators: Ordinary least squares, visit
weighted only, inverse probability of treatment weighted estimator, FIPTM and IPCTM
estimator, for time-�xed (left) or time-varying variables (right) and di�erent sample sizes
(τ = 2, 1000 simulations).

towards 0, and that ˆ︁βFIPTM is easier to implement in practice, we contend that it should

be preferred. We present in Table A.3 of Appendix A.4 a comparison of its bootstrapped,

empirical and asymptotic variances, which were generally very similar. In studies with time-

varying treatment and confounding variables, the IPCTM estimator may be more e�cient.

Further investigation of whether the centered estimator may be more competitive in a wider

range of scenarios will be an important avenue of future work.

Sensitivity analyses for the �rst simulation study with time-�xed treatment and confounders

The results (distributions of biases and MSEs) for all 9 sensitivity analyses can be found

60



in Tables A.4 (i), A.5 (ii), A.6 (iii and iv), A.7 (v, vi, vii, viii), and A.8 (ix) in Appendix

A.4. A brief summary of these results can also be found in Appendix A.6. Overall, our

proposed methods were not too sensitive to misspeci�cation of the di�erent models, except

for the sensitivity analysis where we incorporated non-linear functions of the covariates in the

proportional intensity model for monitoring times. In that latter case, the FIPTM estimator

has shown great bias, while the IPCTM estimator was not as a�ected by the misspeci�cation

of the monitoring model.

3.4 Application to the Add Health Study

The proposed estimators were applied to data from the National Longitudinal Study of

Adolescents to Adult Health (Add Health) (Harris [2009]) to assess the marginal e�ect of

depressive mood on weight in pounds, in adolescents. Our estimators were also compared

to more standard estimators that do not account for informative monitoring process and/or

confounding.

Add Health is a four-wave longitudinal study on adolescents who, over the course of the

study, age to become young adults. A pool of participants who were well representative

of adolescents in United States were enrolled during the years 1994-5 while they were in

grades 7 to 12, and followed until 2008 (Wave IV). For each of the four waves, an in-home

questionnaire was completed by the participants. A parent questionnaire was completed

by one of the participants' parents at baseline only (Wave I). Data collected from in-home

interviews are publicly available online for all four waves (Harris [2013]). For the purpose

of this analysis, we assumed that longitudinal data are made up of a maximum of four

time points where the outcome is potentially recorded. Hence, time = 1, 2, 3, 4 respectively

correspond to all four waves. For simplicity, none of our analyses considered the sampling

weights used in Add Health study.

We �rst de�ned the time-varying exposure that consisted of a binary depression score, using
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a question from the in-home interview that was related to the current depressive mood of the

participant. For the question How often was the following true during the past week? You

felt depressed., a participant's score was set to 0 if they answered Never/rarely or Sometimes

and to 1 if their answer was contained in A lot of the time or Most/All of the time. The

longitudinal outcome consisted in the weight in pounds, which was recorded at every in-

home interview. We assumed that the relationship between depression status and weight

was mediated by smoking, since depressive mood exacerbates smoking (e.g., Stepankova

et al. [2017]), which in turn a�ects weight (e.g., Grunberg [1985]). We used as a proxy for

smoking the number of cigarettes smoked during the past 30 days, also recorded at each of

the four in-home interviews. A participant who had smoked at least one cigarette in the

previous 30 days was considered to be a smoker. For confounders of the relationship between

depression and weight, we included age, sex and socioeconomic status (SES). SES was de�ned

using the two following in-home questions asked to one of the participants' parents: About

how much total income, before taxes did your family receive in 1994? and How far did you

go in school?. The answers were transformed into quintiles and summed up to give a total

score contained between 0 and 10, with 10 corresponding to the highest SES.

A total of 6504 participants were enrolled at Wave I. Data presented missing values due to

patients' dropout or their refusal to answer questions during the course of the study. We

assumed that monitoring times (i.e. times when weight was recorded) depended on the de-

pression status, the smoking status, age, sex and SES, which variables were included in a

proportional intensity model for the monitoring times. In the exposure model, we adjusted

for the potential confounders age, sex and SES. If patients had a value at their �rst inter-

view, this value was used to impute values at other waves (it remained �xed in time). Recall

that variables predicting the visit process are required to be available at all time. Thus,

we employed multiple imputation with M=5 imputations, using predictive mean matching

to impute any remaining missing values in age, sex and SES, as well as for missing values

in exposure and mediator. Following imputation and analysis, the coe�cient for exposure
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of interest was combined across the imputations (Rubin [1976]). One thousand strati�ed

bootstrap samples were drawn, with strata taken to be the individual, and they were used

to assess the variance of each of the 5 estimates we compared. Table 3.2 presents a summary

of the characteristics of the cohort at baseline, strati�ed by their depressive mood. Table

3.3 presents the average rate ratios for the 5 variables that were incorporated into the pro-

portional intensity model for the visit times, along with con�dence intervals computed using

Rubin's rule for multiply imputed datasets (Rubin [2004]). Table 3.4 shows all estimated

e�ects of depressive mood on weight with corresponding 95% Wald-type con�dence intervals

(CIs) using bootstrap standard errors.

Table 3.2: Characteristics at baseline of children enrolled in the Add Health study, strati�ed
by depressive mood

Depressive mood
Variable No Yes
Smoking (N, %) 1367 (23.3) 280 (44.0)
Age (median, IQR) 15 (14-16) 16 (14-17)
Sex=female (N, %) 2914 (49.8) 433 (68.0)
SES (median, IQR) 6 (4-8) 5 (4-7)

The two exposure groups (depressed/not depressed) presented di�erences at baseline, with

more smokers, older participants, more females and lower SES on average in the participants

with depressive mood than in those without. Smoking and sex (female) were associated with

a higher probability of the outcome being reported, and age with a lower probability (Table

3.3).

Table 3.3: Average rate ratios and 95% con�dence intervals for variables in the proportional
intensity model for monitoring times

Variable Rate ratio 95 % CI
Depressive mood 0.93 0.84; 1.02
Smoking 1.08 1.03; 1.13
Age 0.94 0.93; 0.94
Sex=female 1.04 1.01; 1.07
SES 1.00 0.99; 1.01
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Table 3.4: Comparison of the estimates of the marginal e�ect of depression status on average
weight in pounds

Estimate 95% CIˆ︁βOLS -3.83 -5.55; -2.11ˆ︁βVW -3.69 -5.44; -1.94ˆ︁βIPT -1.56 -3.45; 0.33ˆ︁βFIPTM 1.43 -0.35; 3.21ˆ︁βIPCTM 1.12 -0.59; 2.83

An important di�erence was found between the estimates for the marginal e�ect of depressive

mood computed using ˆ︁βOLS, ˆ︁βVW , or ˆ︁βIPT , and those obtained with our proposed estimators.

The change in estimate seemed to be due to both confounding and informative monitoring

times, with an important di�erence between ˆ︁βOLS and ˆ︁βIPT , and an important remaining

di�erence between ˆ︁βIPT and ˆ︁βFIPTM or ˆ︁βIPCTM . The methods that did not account for con-

founding and informative monitoring times suggest that depressive mood leads to decreases

in weight of nearly four pounds.

After adjusting for confounding and informative monitoring times, the estimates were consis-

tent with those found in the literature. We found a small increase in weight due to depressive

mood, with the lower limit of the con�dence interval that corresponded to a weight loss of

about half a pound, and an upper limit that consisted of a weight gain of just over three

pounds. Wurtman [1993] explained the complex relationships leading to weight increase in

patients with depression and the link with smoking. Studies such as van Strien et al. [2016]

found no signi�cant direct e�ect of depression on weight gain but only a positive e�ect

through emotional eating as a mediator.

The di�erences observed and the sign reversal of the estimates after accounting for impor-

tant features that may bias the estimates echo the results of Hernán et al. [2000]. The

fact that we observed a reversal between the IPT-weighted estimator and the FIPTM and

IPCTM estimators supports the message that informative visit process-induced bias should

be accounted for.
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3.5 Discussion

Electronic health records are increasingly available and a common source of data to study

the e�ect of treatments on longitudinal outcomes in pharmacoepidemiological studies (Hen-

nessy [2006]). Given their real-world nature, monitoring times in EHRs are often covariate-

dependent and the outcome recorded may be associated with the same covariates, which

introduces selection bias in the analysis. Most often, that feature is ignored. However, when

it is considered, confounding bias is rarely accounted for, as � until now � no simple method

has been described to account for the two sources of bias simultaneously. In this article,

we proposed two novel estimators for the marginal e�ect of a treatment on a longitudinal

outcome which account for imbalances due to covariate-dependent monitoring times, con-

founding and mediation. Neither estimator requires the longitudinal outcome to be measured

at all times in continuous but rather only sporadically. The asymptotic properties of both

estimators can be derived. These estimators are relevant to EHRs and to studies where

irregular monitoring times were planned.

The proposed estimators were compared to more standard ones in simulation studies and

both outperformed the OLS estimator, the weighted least squares estimator with an inverse

monitoring weight and the inverse probability of treatment weighted estimator. Their em-

pirical absolute bias tended towards 0, and the FIPTM estimator has shown good coverage.

Moreover, we provided a practical framework for analysts, with both estimators being �ex-

ible with regards to the modelling of the intercept function. We recommend the use of the

FIPTM estimator, which is easy to implement in practice and for which we have derived the

asymptotic variance. For situations where the intercept function α(t) is expected to vary

extensively in time, or for time-dependent treatment and confounders settings, the IPCTM

estimator could be preferred and has shown to be well-behaved.

The estimators we propose rely on important assumptions. One challenge related to this

work is the need for the treatment model to be correctly speci�ed, and the risk for un-
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measured confounding. Unmeasured confounding has been widely discussed, and sensitivity

analyses are available to evaluate the degree at which it could impact the estimate of in-

terest (Robins et al. [2000b]; Lash and Fink [2003]; Schneeweiss [2006]). In the situation

where the treatment model is misspeci�ed, the IPT weights may not provide adequate ad-

justment for confounding. Knowledge about the research problem should inform the set of

potential confounders to incorporate into the treatment model. The use of directed acyclic

graphs may help in determining which predictors should be included in the treatment model

(Pearl [1995]; Greenland et al. [1999]), however these encode the analyst's beliefs and may

themselves overlook important variables.

Another challenge is the need for the predictors of the monitoring process to be recorded

at all times. In administrative databases and EHRs, information on drugs prescribed or

dispensed, diagnostics and interventions are often recorded even in between physician visits

when the outcome is monitored. For instance, in a study where the question is whether a

particular drug impacts the outcome of blood pressure, blood pressure might be measured

only when a patient's physician suspects changes in blood pressure and yet the patient

potentially visited the physician at several other points, with data such as the exposure and

comorbidities being recorded. In some observational studies, however, it will not be possible

to assess covariate values in between the times when the outcome is measured. In that case,

our methods could be extended to incorporate only the covariates measured at monitoring

times, and to use them to predict the future monitoring times.
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Chapter 4

Estimation of the Marginal E�ect of

Antidepressants on Body Mass Index

under Confounding and Endogenous

Covariate-Driven Monitoring Times

Preamble to Manuscript 2. The endogeneity of a covariate process can be de�ned as the

process interacting and possibly being modi�ed by another process of interest (for instance,

the monitoring process). Motivation for this chapter comes from the realization that the

endogeneity of the covariates a�ecting the monitoring process may, in certain instances,

a�ect the causal inference on the ATE. For instance, in the analysis of the CPRD data

which motivates this work, where we aim to compare the causal marginal e�ects of two

antidepressants on BMI, patients' characteristics a�ect visit timing, and their characteristics

can be modi�ed following physicians' visits. Yet, this idea of endogeneity has not been

tackled in any previous work related to covariate-driven monitoring times. Some authors

explicitly mentioned that their proposed method applies to situations where the covariate
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process is exogenous (see e.g., Pullenayegum and Feldman [2013]), however most did not

mention that explicitly. It would thus be useful to understand how the bias due to covariate-

driven visits arises, the link between that bias and the endogeneity of the covariate process,

and to study the consequences of endogeneity in a setting similar to that of Chapter 3.

This manuscript provides a thorough description of the bias due to covariate-dependent

monitoring times, via the use of heuristic demonstrations with causal diagrams. A new

weight is proposed to tackle endogeneity when that endogeneity may lead to long-term

biasing dependencies between the monitoring and the outcome processes. Simulation studies

are used to demonstrate that endogeneity in the covariate process may have to be considered.

The proposed method is used to answer the research question, in an analysis of the CPRD

data.

The methodological contributions of this manuscript are i) to provide the �rst thorough

description of the bias due to covariate-driven monitoring times in longitudinal settings (i.e.,

longitudinal collider strati�cation bias) via causal diagrams, ii) to propose and demonstrate

the �rst cumulated and stabilized weight for endogenous covariate-driven monitoring times

(and to propose the �rst stabilizer for that type of weight), and iiii) relaxing the assumption

on the availability of the covariate process a�ecting the monitoring process, whereby the

method proposed in this manuscript only requires the covariate process to be observed at

the same times as the outcome is observed. The substantive contribution of this work is iv)

providing the �rst estimate for the marginal e�ect of citalopram and �uoxetine on body mass

index when accounting for an extensive list of potential confounders and the covariate-driven

monitoring times which may depend on an endogenous covariate process.

That manuscript is currently under review in Annals of Applied Statistics.
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Abstract

In studying the marginal e�ect of antidepressants on body mass index using electronic health

records data, we face several challenges. Patients' characteristics can a�ect the exposure

(confounding) as well as the timing of routine visits (measurement process), and those char-

acteristics may be altered following a visit which can create dependencies between the mon-

itoring and body mass index when viewed as a stochastic or random processes in time. This

may result in a form of selection bias that distorts the estimation of the marginal e�ect of

the antidepressant. Inverse intensity of visit weights have been proposed to adjust for these

imbalances, however no approaches have addressed complex settings where the covariate and

the monitoring processes a�ect each other in time so as to induce endogeneity, a situation

likely to occur in electronic health records. We review how selection bias due to outcome-

dependent follow-up times may arise and propose a new cumulated weight that models a

complete monitoring path so as to address the above-mentioned challenges and produce a re-

liable estimate of the impact of antidepressants on body mass index. More speci�cally, we do

so using data from the Clinical Practice Research Datalink in the United Kingdom, compar-

ing the marginal e�ect of two commonly used antidepressants, citalopram and �uoxetine, on

body mass index. The results are compared to those obtained with simpler methods that do

not account for the extent of the dependence due to an endogenous covariate process.
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4.1 Introduction

Citalopram and �uoxetine are two selective serotonin reuptake inhibitor (SSRI) commonly

prescribed as a �rst-line treatment in patients with depression. Weight gain is a side e�ect

associated with the use of antidepressants (including SSRIs) which may lead to treatment

discontinuation or non-adherence (see e.g. De las Cuevas et al. [2014]). Literature is unde-

cided on whether there is a di�erential e�ect of these two drugs on weight (Sussman and

Ginsberg [1998]; Serretti and Mandelli [2010]). No previous studies using electronic health

records (EHR) data have compared their e�ect on weight or body mass index (BMI) after

adjusting for potential confounders and selection bias due to outcome-dependent follow-up

time. However, EHR and administrative databases do not collect data for research purposes,

and patient BMI is not recorded at every follow-up visit. Its recording may be associated

with patient characteristics.

When making inference on the causal e�ect of an exposure on a longitudinal outcome that

is measured repeatedly over time using observational data, the analyst only observes data

according to a measurement frequency that is driven by the characteristics of the individuals

under observation. For instance, the smoking status of a patient, their comorbidities and

general health state, their prescription drugs, or other characteristics can a�ect the frequency

with which they visit their physician, and these same characteristics can change following a

routine visit, as the physician may recommend lifestyle changes or the mere fact of having a

visit may increase a patient's awareness of their habits. The imbalances related to the visit

process can lead to biased estimates of the exposure e�ect in situations where the monitoring

indicator is a collider and that conditioning on it opens a path from the exposure to the

longitudinal outcome. This phenomenon is sometimes referred to as outcome-dependent

follow-up times (Lipsitz et al. [2002]).

Several methods have been proposed to handle imbalances due to outcome-dependent follow-

up, with most discussed outside of a causal framework. Some authors proposed joint mod-
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elling of the monitoring and the outcomes processes via random e�ects or shared parameters

(see e.g. Liang et al. [2009]). Pullenayegum [2016] discussed outputation, an approach that

thins the visit process by repeatedly discarding selected observations, to make the moni-

toring process independent of covariates. Pullenayegum and Lim [2016] also presented an

insightful review on methods for irregular visits, including inverse intensity of visit weights

(IIVW). The proposed IIVW of Lin et al. [2004] apply to settings in which the monitoring

rate is modelled as a function of exogenous covariates. It is particularly convenient to use

inverse weighting in the context of causal inference on the marginal e�ect of exposure, as

the weights can easily be incorporated into estimating equations to obtain an estimate of

treatment e�ect, and they can be function of mediators of the exposure-outcome e�ect that

a�ect monitoring.

Monitoring times and the outcome process are both stochastic processes which occur in con-

tinuous time. In the estimation of the marginal e�ect of antidepressants on BMI, a common

set of characteristics a�ects the monitoring times and the BMI values, and the dependence

between the monitoring and the BMI processes may be complex. Yet, to date, no weight-

ing strategy has been proposed to address the di�cult problem of an endogenous covariate

process interacting with the monitoring process and the outcome process in continuous time

in a setting where monitoring times are informative (note, a covariate process is said to be

endogenous if the covariate is a�ected by the fact of there being a visit, which can create

long-term dependencies between the monitoring and the outcome processes). Beyond the

research question that motivates this work, several other examples of such processes exist, in-

cluding the setting in which monitoring times allow a physician to take a treatment decision

and prescribe a new treatment which may a�ect a patient's future outcome and monitoring

time, or that where the advice of the physician may a�ect a patient's future habits (such

as smoking). In all each of these examples, the gap time between visits may also act as an

endogenous process that is modi�ed by a new visit (and returns to zero when there is such

visit). If the gap time is a�ected by variables that make the monitoring and the outcome
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processes dependent in time, this too may induce biasing dependencies.

In this work, we focus on the estimation of the (causal) marginal e�ect of two antidepressants,

citalopram and �uoxetine, on BMI which is measured repeatedly over time. We wish to

address the possibility that the relationship of interest is distorted by imbalances due to the

monitoring process and its relation with the BMI process, as well as confounding, which two

features were never considered simultaneously in the assessment of the marginal e�ect of

antidepressants on weight or BMI. Our methodology generalizes easily to the estimation of

the causal marginal e�ect of a binary intervention, on a longitudinal continuous outcome,

in observational studies. We provide a thorough description of the bias due to covariate-

driven monitoring times in longitudinal settings, with a demonstration that relies on causal

diagrams. In addition, we propose the �rst weighting method for addressing situations

with longitudinal collider strati�cation bias (Greenland [2003]) that is due to an endogenous

covariate process a�ecting the monitoring times. Another key contribution of our method,

as opposed to those previously proposed, is that it loosens the restrictions on when the

covariate process (a�ecting and being a�ected by monitoring process) has to be observed;

standard inverse intensity of visit weights rely on the assumption that the monitoring model's

covariates are assessed in continuous time while our methodology uses modelling of the

gap times as functions of the last covariates observed, throughout patients' follow-up. This

represents an important relaxation of the assumptions needed for consistent estimation.

This paper is structured as follows: in Section 4.2, we present the notation and assumptions,

some background and the proposed extension. In Section 4.3, we present details on the

simulation studies that were conducted to assess the performance of the proposed methods

along with their results. In Section 4.4, we present the analysis of the data from the Clinical

Practice Research Datalink (CPRD) (Herrett et al. [2015]), where we compare di�erent

estimators for the marginal e�ects of citalopram and �uoxetine on BMI using the novel

weighting method. A discussion follows in Section 4.5.
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4.2 Methods

4.2.1 Notation and Causal Assumptions

Let i denote the index of an individual, i = 1, ..., n, and t denote the time, which is con-

tinuous, with t ∈ [0, τ ] and τ the maximum follow-up time in the cohort under study. We

are interested in estimating the causal marginal e�ect of a binary point intervention Ii(0)

(i.e., a choice between two antidepressants) on the continuous, longitudinal outcome Yi(t)

(BMI). Our interest is in a time-�xed (�point�) intervention for two antidepressant drugs,

however extensions to the weighting approach for the time-varying intervention case are

straightforward. Bold is used to refer to vectors and matrices.

We use the Neyman-Rubin potential outcome framework (Neyman [1923]; Rubin [1974]) to

express the estimand of interest, which is the causal contrast E [Yi1(t)− Yi0(t)] where Yi1(t)

corresponds to the outcome that would have been observed at time t, had individual i received

intervention Ii(0) = 1, and Yi0(t), had the individual received intervention Ii(0) = 0. In the

analysis of the CPRD data, this contrast corresponds to the average di�erence in BMI had

everyone been treated with citalopram, versus had everyone been treated with �uoxetine.

Our interest is in the time-invariant e�ect of citalopram vs �uoxetine (i.e. we assume that

the impact is not modi�ed by time: E [Yi1(t)− Yi0(t)] = θ).

We are interested in addressing two important sources of bias that may distort estimators of

our parameter of interest. First, we consider confounding bias, where confounders, denoted

by K(t) = K(0), are covariates that a�ect both the intervention and the outcome Yi(t)

under study. As the intervention is time-�xed, confounders are measured at baseline, prior

to receiving the intervention. Second, we consider selection bias caused by covariate-informed

monitoring times (also referred to as visit times throughout). In this work, individuals are

allowed to have completely di�erent sets of monitoring times (and thus, a unique pattern of

visits). In practice, we choose a certain coarsening of time (e.g., daily) over which we observe
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monitoring times. To distinguish these two characterizations of time, we will assume, when

needed, that the coarsening is daily and will denote discrete times by t = 0 (baseline),

1, 2, 3, ..., τ . For continuous time (t ∈ [0, τ ]), we will use the notation t− to refer to the

moment immediately before time t.

We suppose that monitoring times coincide with the observation of the longitudinal continu-

ous outcome Yi(t). This means that we consider a monitoring time to be any time, and only

those times, when BMI is assessed. We denote by Ni(t) a counting process for monitoring

times in individual i, which counts the number of previous visits they had by time t. A

monitoring indicator at time t is denoted by dNi(t) in individual i. We also introduce the

notation li(t) = t − Bi(t), with li(t) the previous (most recent) visit time of individual i

at time t, where Bi(t) is a time-dependent gap time which gives, at time t, the delay since

the last visit in individual i. For each individual, let Ci denote the censoring time, that

is, the time until which we can potentially observe an individual, their covariate and their

outcome processes. Let ξi(t) = I(Ci ≥ t) be the indicator of individual i still being in the

study at time t. We assume throughout that censoring is uninformative except through the

monitoring process. That is, we assume that we capture in modelling the monitoring process

any (possibly biasing) imbalances in censoring times across the treatment groups. Denote by

Ho
i (t−) the observed history of covariates (personal characteristics, monitoring indicators,

outcome values; these will be discussed in depth in Section 4.4, for the analysis of CPRD

data) by time t− in individual i. Since the intervention is given at baseline, Ho
i (t−) may

contain mediators of the relationship between the intervention and the longitudinal outcome

Yi(t). We acknowledge that monitoring indicators dNi(t), t ∈ [0, τ ] can be colliders and

block the path between the intervention and the outcome of interest throughout follow-up

time. Conditioning on these colliders by using only the observed data can unblock the path

between intervention and outcome and risks biasing the estimator of the marginal e�ect of

intervention of interest.
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We assume:

Ii(0) ⊥ {Yi0(t), Yi1(t)} |Ki(0) (I1)

Ii(0) ̸⊥ {Yi0(t), Yi1(t)} |dNi(t),Ki(0) (I2)

Ii(0) ⊥ {Yi0(t), Yi1(t)} |Ho
i (t−), dNi(t),Ki(0) (I3)

0 < P (dNi(t) = 1|Ki(0),Ho
i (t−)), P (dNi(t) = 0|Ki(0),Ho

i (t−)) < 1 (P1)

0 < P (Ii(0) = 1|Ki(0)),P (Ii(0) = 0|Ki(0)) < 1, (P2)

such thatHo
i (t−) andKi(0) are su�cient sets to break the dependency between the potential

outcome and the intervention, even when conditioning on the potential collider dNi(t). We

further assume that we have positivity for intervention and monitoring (assumptions P1

and P2), where positivity for monitoring essentially means that there is at least a non-

zero probability for any patient to have a visit on any given day (or week, depending on

time granularity) while there is no day when it is 100% certain that a visit will occur.

We also assume the stable unit treatment value assumption (SUTVA), a condition that

encompasses a well-de�ned exposure or intervention, as well as no interference between

individuals' e�ects.

Suppose that both the mean outcome process and the monitoring process at time t may

depend on the confounders K(0), the intervention I(0), as well as a longitudinal, possibly

vector-valued covariate process Zi(li(t)) ⊂ Ho
i (t−) that may be a�ected by monitoring times

in the past. Like the outcome, we assume that this additional covariate process may only be

assessed at monitoring times (such that Zi(t) = Zi(li(t)) ∀t), a not unrealistic scenario. We

further assume the following conditional outcome mean model

E [Yi(t)|Ki(0),Zi(li(t)), Ii(0)] = α0(t) + βKKi(0) + βZZi(li(t)) + βIIi(0), (CO)

with α0(t) a �exible intercept function. The variables Z(li(t)) may include mediators of
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the relationship between Ii(0) and Yi(t) (in the context of our analysis, for example, a

variable like having a diagnosis of diabetes is a�ected by antidepressant drugs and may itself

a�ect individuals' weight). We aim to estimate the total e�ect of the intervention, without

distortion by confounding or blocking paths which act through mediators. We henceforth use

weights to create a pseudo-population in which there is no imbalance between confounder

variables across intervention groups, and in which the monitoring and the outcome processes

are independent. Using data from that pseudo-population, one can further use the marginal

outcome mean model that follows

E [Yi(t)|Ii(0)] = α(t) + βIi(0); (MO)

β in (MO) represents the average intervention e�ect of I(0) for which we seek an estimate.

Denote by α(t) the intercept in the model, which may vary with time. We will also consider

scenarios in which the intercept varies by individual (αi(t)).

In settings with outcome-dependent follow-up, Lin et al. (2004) have proposed the following

continuous-time estimating equation to estimate the e�ect β0 of some time-�xed covariates

X on an outcome Y(t) (which is not necessarily continuous):

E
[︃∫︂ τ

0

{Y(t)− µ(t,X;β0)}
c(t,X;β0)

λ(t|Ho(t−))
dN(t)

]︃
= 0,

in which c(t,X;β0) is an arbitrary weight, µ(t,X;β0) a mean function, and λ(t|Ho(t−)),

an IIVW which is a function of the history of observed variables.

Similarly, Coulombe et al. [2021a] proposed two �exible estimators for the marginal e�ect of

the intervention; these accounted for confounding along with informative monitoring times

and were tested in settings where the intervention can vary in time. In the context that

interests us, where we aim to estimate β in the marginal outcome mean model (MO), the

corresponding design matrix (X(t)) is composed of the intervention I(0) and may also con-
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tain functions of time such as a cubic spline basis to model the intercept function α(t).

However, the authors did not consider individualized intercepts that can vary in time, a

setting which raises additional challenges, and no previous author has considered endogene-

ity of the covariate process, which can create long-term dependence in the monitoring path

that goes beyond the current covariates. Further, in both B·ºková and Lumley [2009] and

Coulombe et al. [2021a], it is assumed that variables that a�ect monitoring time are observed

at all times, a frequently unrealistic assumption. In the estimation of the marginal e�ect of

antidepressants on BMI, in particular, considering these features will allow more �exibility.

It will further allow us to postulate weaker assumptions on the monitoring process. In the

CPRD data, patients' characteristics that lead them to visiting (or not) their physician are

unlikely to be updated in continuous time; rather, their measurement mostly coincides with

that of the outcome, BMI.

For the inverse weight (and intensity function) λ(t|Ho(t−)), di�erent modelling strategies

have been considered by previous authors, such as di�erent time scales or conditioning on

di�erent sets of covariates (B·ºková and Lumley [2009]; Zhu et al. [2017]; Coulombe et al.

[2021a]). The intensity for a counting process is de�ned by the instantaneous rate, which is

given by λi(t|Ho
i (t−)) = limdt→0 P (Ni(t+ dt)−Ni(t) = 1|Ho

i (t−))/dt. The rate is preferred

to a discrete probability model, as the monitoring �events� can occur at any time on a

continuous time scale. In practice, and assuming that as dt gets closer to 0, the time units

are so small that only one jump can occur per time unit dt, one can view this as a Bernoulli

experiment over each small time unit dt with a certain probability of visit.

By de�nition, a conditional intensity model uniquely de�nes the counting process and its

dependency on the past (Lindsey [2004]; Cook and Lawless [2007]), including previous mon-

itoring times. The model may be a�ected by whether or not the covariates a�ecting the

intensity function are endogenous. If they are exogenous, and if monitoring at time t does

not depend on previous monitoring times, a marginal approach where the marginal e�ect of
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covariates is estimated will su�ce (e.g., as proposed in Lin et al. [2000]). If the covariate

process is endogenous and if visit at time t depends on both the covariate process interact-

ing with it and previous monitoring times, the conditional intensity function may have to

account for complex functions of the past. In particular, links between the covariate, the

monitoring and the outcome processes can exist due to the endogeneity.

4.2.2 Visit Process Scenarios and their Data Generating Mecha-

nisms

We now propose di�erent general scenarios for the monitoring times process, and describe

the associated data generating mechanisms (DGMs). The �rst two DGMs refer to scenarios

often encountered (and postulated) in the literature. The third and fourth DGMs correspond

to situations where monitoring times a�ect the endogenous covariate process, such as we

postulate in our analysis of the CPRD data. They are used to demonstrate the potential

selection bias and the proposed methodology.

For each DGM, we review how the selection bias due outcome-dependent follow-up times

arises, and which IIVW can be incorporated in the estimating equations for the marginal

e�ect of intervention to make correct inferences. In each diagram, we depict all time points

over which a visit can occur. We also assume that bias due to confounder variables is

appropriately accounted for via classic adjustment methods such as the inverse probability

of treatment (intervention) weight (Rosenbaum and Rubin [1983]).

The �rst DGM we consider is depicted in Figure 4.1 and is reminiscent of the causal diagram

considered in Coulombe et al. [2021a] in which the marginal intensity of a visit at time t

can be modelled using exogenous covariates measured at time t. Suppose that we aim to

estimate the causal e�ect of the baseline intervention I(0) on the longitudinal outcome Y (t).

In that DGM, at each time t, Z(t) acts as a mediator of the relationship of interest. The

selection bias due to outcome-dependent follow-up times comes from those mediators, as
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conditioning on dN(t), t ≥ 0 unblocks the path going through colliders at each node dN(t)

(t ∈ 0, 1), which opens the path I(0)− dN(t)− Z(t) → Y (t) ∀t.

In that setting, to address the selection bias due to conditioning on the observed data, one

can �t a proportional rate model for the rate of visit while conditioning on both I(0) and

Z(t) at each time t as we have that dN(t) ⊥ Y (t)|I(0), Z(t),K(0). Further, there is no

dependency structure across monitoring times that must be considered. We assume

E [dNi(t)|Ii(0), Zi(t)] = ξi(t) exp (γIIi(0) + γZZ(t))λ0(t)dt, (4.1)

a proportional rate model where the e�ect of covariates is captured via the γ = {γI , γZ}

parameters, and the e�ect of time via λ0(t). For the estimation of the γ parameters, one can

use the Andersen and Gill model (Andersen and Gill [1982]), an extension of the Cox pro-

portional hazards model for recurrent events. The baseline rate λ0(t) need not be estimated

if the time scale is time since cohort entry, as the term will cancel out across individuals

(B·ºková and Lumley [2009]). If the time scale is otherwise (e.g., if it is the gap time, Bi(t)),

then the weight should incorporate a baseline function of that alternate time scale (Zhu et al.

[2017]); Breslow-type estimators can be used to estimate the baseline rate (Cox [1972]). For

�tting the model in (4.1), covariates {Ii(0), Zi(t)} must be measured (recorded) at all times

during each patient's follow-up, which is not necessarily straightforward in observational

longitudinal studies.

The second DGM we consider is presented in Figure 4.2 and is similar to the DGM considered

in Zhu et al. [2017]. As compared to the causal diagram in Figures 4.1, covariates measured

before time t are now assumed to a�ect both the monitoring and the outcome at time t,

and to mediate the e�ect of interest. In this second DGM scenario, conditioning on colliders

dN(·) by analyzing available data unblocks a path from the intervention and the outcome,

via e.g. I(0) − dN(1) − Z(0) → Y (1), or, similarly, via I(0) − dN(1) − Z(0) → Y (2). A

proportional rate model can be used for blocking these biasing paths from the intervention
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to the outcome. We must now condition on covariates measured or updated in the past to

adjust for selection bias, and must assume that no covariate measured after that point in

the past a�ects both the next outcome and monitoring indicator. Suppose that we denote

by Z(t−) the last covariate value of Z(·) that a�ects, at time t, the monitoring indicator

and the outcome; then the following model for monitoring will appropriately address the

covariate-dependent monitoring times:

E [dNi(t)|Ii(0), Zi(t−)] =ξi(t) exp (γIIi(0) + γZZi(t−))λ0(t)dt. (4.2)

K(0)

I(0)

Y (0) Y (1)

Z(0) Z(1)

dN(0)

dN(1)

Figure 4.1: Causal diagram for the �rst DGM (patient
index i removed) I(0) is an intervention of interest
whose marginal e�ect on a longitudinal outcome, Y (t)
� assumed to be time-invariant � is of interest. K(0)
represent confounding variables, Z(t) are mediators,
and dN(t) indicates the monitoring process through
which the outcome is observed.

I(0)

Y (1) Y (2) Y (3)

K(0)

Z(0)

Z(2)

dN(1)
dN(2) dN(3)

Figure 4.2: Causal diagram for the second DGM (pa-
tient index i removed) I(0) is an intervention of inter-
est whose marginal e�ect on a longitudinal outcome,
Y (t) � assumed to be time-invariant � is of interest.
K(0) represent confounding variables, Z(t) are me-
diators, and dN(t) indicates the monitoring process
through which the outcome is observed. Covariates
Z(t) are only �updated� at times 0 and 2 and a�ect
next outcomes and monitoring indicators.

In the DGM in Figures 4.1 and 4.2, the visit rate depends on the covariate process but the

fact of being monitored has no impact on the outcome or covariate processes. However,

we postulate that our analysis of the marginal e�ect of antidepressants on BMI is such

that previous monitoring a�ect the future monitoring path. For instance, the gap time

(i.e. the time since a last visit) is an endogenous covariate process which is modi�ed by

each subsequent monitoring indicator. The smoking status of each patient, or other health
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indicators, as well as drug prescriptions, could also be modi�ed by a visit having taken place.

When it is realistic to assume such an endogenous covariate process, and thus a �joint� process

for the covariate, the monitoring and the outcome, dependencies between these processes

may arise throughout the follow-up of a patient. This may mean that conditional on only

the covariates measured most recently, the monitoring and the outcome processes are not

independent. In particular, this may include situations where the monitoring path depends

not only on the current covariates, but where it is also modi�ed by what happened in the

past (e.g., having had a physician visit yesterday makes my probability of visit today much

lower). E�ectively, previous monitoring indicators have interacted with covariates, such as

the gap time, and the probability of visit on a given day may depend on the whole path

the monitoring process went on (and all previous transitions). It may then be necessary to

look at the monitoring path as a whole, and in particular to weight for the entire monitoring

process � and not simply the most recent monitoring event � to ensure no unblocked paths

between the intervention and outcome.

As an example of a scenario where these long-term dependencies may arise, we present a

third DGM where the covariates are a�ected by the monitoring indicator through follow-up;

practically, we implement this by including an interaction between the covariate and the

visit indicator (Figure 4.3). In Figures 4.3 and 4.4, we use a notation as in Moodie and

Stephens [2020] and use the symbol ∗ to refer to an interaction between the covariates whose

arrows point into the ∗. The interaction terms are necessarily deterministic, as an interaction

term is solely determined by the respective variables that interact together. However, the

monitoring indicators themselves are random, and an individual can transition to a visit or

not on any given day.
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I(0)

Y (1) Y (2)

K(0)

Z(0) Z(1)
Z(2)

dN(1) dN(2)

∗1 ∗2

Figure 4.3: Causal diagram for the third
DGM (patient index i removed) I(0) is an in-
tervention of interest whose marginal e�ect
on a longitudinal outcome, Y (t) � assumed to
be time-invariant � is of interest. K(0) rep-
resent confounding variables, Z(t) are media-
tors, and dN(t) indicates the monitoring pro-
cess through which the outcome is observed.
Asterisks represent interactions between the
covariates whose arrows point into it.

I(0)

Y (1) Y (2)

K(0)

Z(0) Z(1)
Z(2)

dN(1) dN(2)

∗1 ∗2

Figure 4.4: Causal diagram for the fourth DGM
(patient index i removed) I(0) is an intervention
of interest whose marginal e�ect on a longitudi-
nal outcome, Y (t) � assumed to be time-invariant
� is of interest. K(0) represent confounding vari-
ables, Z(t) are mediators, and dN(t) indicates
the monitoring process through which the out-
come is observed. Asterisks represent interac-
tions between the covariates whose arrows point
into it. Dashed lines represent the new links
added from the causal diagram presented in Fig-
ure 4.3.

In Figure 4.3, the covariate Z(0) mediates the e�ect of I(0) on Y (1). The covariate pro-

cess Z(·) interacts with monitoring and whenever there is a new monitoring time s (where

dN(s) = 1 for some s > 0), the covariate process Z(·) is updated while still depending

on the intervention at baseline. In that case, the selection bias due to outcome-dependent

follow-up times cannot be adjusted for by using only the standard IIVW put forward by

previous authors, as presented in equations (4.1) or (4.2) because a biasing path remains via

the interactions between covariates Z(·) and the monitoring indicators dN(·). Using only

the observed data and therefore conditioning on dN(·) opens colliders at the dN(t), ∀t > 0.

After conditioning, one example biasing path from the intervention to the outcome is given

by I(0) → Z(0) → ∗1 − dN(2) − ∗2 → Y (2). This path remains open even if we adjust

for the last covariates observed Zi(li(t)) and for the intervention. Further, adjusting for the

previous interaction term (between the last monitoring indicator and the most recent co-
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variates observed) will not su�ce, as this last interaction depends on the whole monitoring

path (for instance, the interaction term for the previous monitoring indicator will be 0 if

there was no visit yesterday, providing no adjustment for the previous non-null interaction

term that occurred before yesterday). We graphically demonstrate some examples of biasing

paths that arise after conditioning on the collider dN(t) in the causal diagrams shown in

Figures 4.1 to 4.4 along with a heuristic demonstration of why simpler weights do not always

account properly for outcome-dependent monitoring times in Appendix B.1.

In Figure 4.4, the outcome process Y (·) also a�ects the monitoring rate for any given time

in between the current monitoring time and the next monitoring time, as well as a�ecting

the next outcome value. One consequence of this is that conditioning on dN(2) opens a

path between the intervention and the outcome through e.g. the path I(0) → Z(0) →

∗1 − dN(2) − Y (1). Other biasing paths due to colliders dN(t), t > 0, similar to those

discussed for the third DGM, can also be found.

In the following section, we present our proposed inverse weighting method that can � unlike

previous approaches � appropriately account for endogenous covariate-dependent monitoring

processes as in the third and fourth described DGM above.

4.2.3 A new weighting approach: Extension using the joint moni-

toring path

To ensure that we break the dependence between the outcome and the monitoring processes

in our estimation of the marginal e�ect of antidepressants on weight (or, similarly, in settings

such as in the third and fourth DGMs depicted in Figures 4.3 and 4.4), we propose an

approach inspired by transition intensities and occupation probabilities used in the multistate

models literature (Cook and Lawless [2018]). In this approach, we e�ectively account for the

full (observed) covariates history and the joint monitoring process.

The �rst step in our proposed approach is to model what we term a partial conditional visit
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intensity at each point in time, which will represent the �transition intensity� to the state of

being monitored (or a visit). In this context, partial refers to the fact that we only condition

on a subgroup of covariates measured in the past, and thus only require for these covariates

to make subsequent monitoring indicators independent. We make the following assumption

on monitoring indicators:

dNi(t) ⊥ Yi(t)|Ho
i (t−) (I4)

and further assume that only the subset {Zi(li(t)), Ii(0), Bi(t−)} ofHo
i (t−) a�ecting the par-

tial intensity at time t are su�cient to break the dependence between subsequent monitoring

indicators at each time t:

dNi(t) ⊥ dNi(t−)|Zi(li(t)), Ii(0), Bi(t−), (I5)

where dNi(t−) is the last visit indicator observed prior to time t, and Bi(t−), the last gap

time. (In discrete time these would correspond to e.g. dNi(t − 1) and Bi(t − 1); note that

these do not encompass the history of gap times and visits, only the values attached to

the previous time unit.) Assumption (I5) implies that given the previous gap time and the

covariates observed at the previous visit time, the two subsequent monitoring indicators are

independent of one another. This is a conditional Markov assumption for the monitoring

process that allows us to decompose the process into a series of monitoring indicators. Note

that Zi(li(t)) could contain many di�erent kinds of predictors of the visit intensity, including

mediators of the relationship between Ii(0) and Yi(t) and functions of gap times or of time

since cohort entry.

We quote Theorem 1 in Pearl [2009] (pp. 110), which we rely on to compute the joint

intensity of a given monitoring path:

Theorem 1 (The Causal Markov Condition). Any distribution generated by a Markovian
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model M can be factorized as:

P (v1, v2, ..., vn) =
∏︂
i

P (vi|pai)

where V1, V2, ...Vn are the endogenous variables in M, and pai are (values of) the endogenous

�parents� of Vi in the causal diagram associated with M.

To model the partial conditional (visit transition) intensity at time t, based on assumption

(I5), we propose:

λi(t|Zi(l(ti)), Ii(0), Bi(t−)) =λ0(Bi(t)) exp(γIIi(0) + γZZi(li(t))), (4.3)

where Bi(t) is a function of Bi(t−) (which justi�es the condition on that covariate in

I5).

To model a personalized baseline intensity λ0(Bi(t)), inspired by Zhu et al. [2017], we propose

a Breslow-type estimator (Cox [1972]), modi�ed to be a function of the gap time since a last

visit. For a gap time B(t), it is given by

λ̂0,1(B(t)) =

∑︁n
i=1

∫︁ τ

s=0
I(dNi(s) = 1 ∩ Bi(s) = B(t))∑︁n

i=1

∫︁ τ

s=0
exp (γ̂IIi(0) + γ̂ZZi(li(s))) I(dNi(s) = 1 ∩ Bi(s) = B(t))

, (S1)

for I(·) an indicator function. The logical statement dNi(s) = 1 ∩ Bi(s) = B(t) means that

patient i both has a visit at time s and that their gap time is Bi(s) = B(t).

The intensities in (4.3) are �tted using the Andersen and Gill model's main e�ects. As time is

continuous, we compute the product integral of the transition intensities in (4.3) to compute

the probability of having a given monitoring path up to time t. The product integral consists

in the extension of the sum integral to the product (Gill and Johansen [1990]). A well-known

estimator utilizing the product integral is the Kaplan-Meier estimator (Kaplan and Meier

[1958]). Here, transitions refer to those from the non-visit to the visit state, and vice-versa.
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For each time t, we assume the following simpli�ed transition matrix for individual i:

⎡⎢⎣1− ξi(t) exp (γIIi(0) + γZZi(li(t)))λ0(Bi(t))dt ξi(t) exp (γIIi(0) + γZZi(li(t)))λ0(Bi(t))dt

1− ξi(t) exp (γIIi(0) + γZZi(li(t)))λ0(Bi(t))dt ξi(t) exp (γIIi(0) + γZZi(li(t)))λ0(Bi(t))dt

⎤⎥⎦ ,
and, depending on which state was occupied at the very previous time unit, only some

of these transitions will be non-null for each individual, at each time (this is why we call

it simpli�ed ; in reality, each element from the matrix above should be augmented with

an indicator for the previous monitoring indicator, I(dNi(t−)), and the gap time and the

covariates {Ii(0),Zi(li(t))} will potentially be di�erent on each row of the matrix, depending

on whether or not there was a visit at time t−). We rely on assumptions (I4), (I5), and

Theorem 1, and take the product integral of the intensities for a given patient i; this leads to

the probability of a given monitoring path conditional on the observed history of covariates,

which is shown in (4.4). The product symbol in (4.4) refers to the product integral (as

opposed to the standard product term).

uswi(t|Ho
i (t−)) =

t

T
s=0

{ξi(s) exp (γIIi(0) + γZZi(li(s)))λ0(Bi(s))ds}I(dNi(s)=1)×

{1− ξi(s) exp (γIIi(0) + γZZi(li(s)))λ0(Bi(s))ds}I(dNi(s)=0). (4.4)

The weight in (4.4) risks being highly variable. Furthermore, the inverse weight risks leading

to extreme values, so that any estimator relying on it would consequently also have high

variability. To address this, we propose two alternative stabilizers to incorporate in (4.4)

and to be cumulated over each dt time units. The �rst stabilizer is given by λ̂0,1(B(t)) as

shown in equation (S1), such that the baseline rate over each dt time unit in (4.4) cancels

out. We compare this to a second proposed stabilizer (S2) that conserves the true e�ect of

gap time from the �tted baseline rate. The second stabilizer uses a di�erent estimator for
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the baseline rate that only depends on baseline covariates (I(0)) and is given by

λ̂0,2(B(t)) =

∑︁n
i=1

∫︁ τ

s=0
I(dNi(s) = 1 ∩ Bi(s) = B(t))∑︁n

i=1

∫︁ τ

s=0
exp

(︂
δ̂IIi(0)

)︂
I(dNi(s) = 1 ∩ Bi(s) = B(t))

, (S2)

for δ the parameter in a proportional intensity model for monitoring times with the covariate

I(0) as the only predictor. The second stabilizer (S2) does not depend on the endogenous

covariate process Zi(li(·)), but rather depends only on covariates measured at cohort entry.

Unlike the stabilizer (S1) which results in a weight that does not adjust for the impact of

the gap time on monitoring, the stabilizer (S2) may more completely account for structures

where gap time itself a�ects the monitoring process.

Including the stabilizers λ0,1(B(t)) or λ0,2(B(t)) in the denominator in equation (4.4) leads

to the second proposed weight (j ∈ 1, 2):

swi,j(t|Ho(t−)) =

t

T
s=0

(︃
ξi(s) exp (γIIi(0) + γZZi(li(s)))λ0(Bi(s))ds

λ0,j(Bi(s))ds

)︃I(dNi(s)=1)

×

(︃
1− ξi(s) exp (γIIi(0) + γZZi(li(s)))λ0(Bi(s))ds

1− λ0,j(Bi(s))ds

)︃I(dNi(s)=0)

.

(4.5)

By cumulating the intensity through time and by using its product as an inverse weight,

we control (under stated assumptions) for the entire monitoring process conditional on the

covariates' history. This weighting results in independence between the covariates and the

monitoring process, so that their e�ect on the longitudinal outcome process can be estimated

without bias.

Once the weights are de�ned, similarly to Coulombe et al. [2021a], we use the following
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estimating equation for the marginal e�ect of intervention

E
(︃∫︂ τ

0

Y(t)− [β′
sS(t)]

w(t|K(0))swj(t|Ho(t−))
dN(t)

)︃
= 0, (4.6)

where S(t) is a matrix containing a column of ones and a cubic spline basis to �exibly model

time t (together representing α(t)), and the intervention variable I(0), and where β ⊂ βs is

the parameter of interest. That estimating equation is unbiased for the parameter of interest

(proof given in Appendix B.2). The weight swj(t|Ho(t−)) in (5.8) can be replaced by another

with equivalent properties (balancing properties, positivity) such as usw(t|Ho(t−)), without

modifying the rest of the estimating equation. The function wi(t|K(0)) can be estimated

by using a correctly speci�ed function of the covariates K(0) that breaks the dependence

between the intervention and the confounders K(0). For instance, if the intervention and the

confounders are time-�xed and assessed at time 0, an inverse probability of treatment weight

can be used, and de�ned as the inverse of w(t|Ki(0);ω) = P (Ii(0) = 1|Ki(0);ω)I(Ii(0) =

1)+ (1−P (Ii(0) = 1|Ki(0);ω))I(Ii(0) = 0). That weight will account for imbalances due to

confounders under the assumptions (I1) and (P2) if there is no conditioning on monitoring

indicators, or under assumptions (I3) and (P2) if there is, and that the monitoring intensity is

also taken into account. If the intervention is not time-�xed and if time-varying confounding

exists that simultaneously acts as intermediate variables, methods such as presented in the

seminal paper by Robins et al. [2000a] can be used to recover balance.

For details on asymptoptic properties and how to compute a conservative asymptotic variance

of the estimator for the marginal e�ect of intervention resulting from equation (5.8), we refer

the reader to Appendix B.3. In simulation studies, we use a nonparametric bootstrap to

estimate the variance, re-sampling individuals rather than observations to ensure within-

person correlation of measures is preserved.
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4.3 Simulation studies

We performed several simulation studies to assess the performance of the proposed weights

to adjust for imbalances due to the informative monitoring process in settings similar to

that of our research question which we answer using data from the CPRD. Our aim was to

estimate the marginal e�ect of a binary (point) intervention on a continuous longitudinal

outcome in contexts with confounding and informative monitoring times, where monitoring

times were simulated in a sequential manner, dependent on previous information.

In the main study, we simulated for each patient i three baseline confounders as K1i ∼

N(1, 1), K2i ∼ Bernoulli(0.55), and K3i ∼ N(0, 1). The intervention Ii(t) was binary and

time-�xed: Ii ∼ Bernoulli(pIi) with pIi = expit (0.5 + 0.8K1i + 0.05K2i − 1K3i). One time-

varying mediator Zi(·) was generated, conditional on Ii. It was only updated whenever there

was a new visit (dNi(·) = 1), and was simulated as Zi(t)|Ii = 1 ∼ N(2, 1) and Zi(t)|Ii =

0 ∼ N(4, 22) on those visit days. On other (non-visit) days, we denote the process by

Zi(li(t)), simply carrying forward the last observed value. Time was discretized over a grid

of 0.01 units, from 0 to τ . The intensity of monitoring at each time point over that grid was

simulated as λi(t|Ii, Zi(li(t))) = 0.02Bi(t) exp (γ1Ii + γ2Zi(li(t))). The outcome Yi(t) was

generated according to Yi(t) = 0.2Bi(t) + 1Ii − 0.8 (Zi(li(t))− E [Zi(li(t))|Ii]) + 0.4K1i +

0.05K2i − 0.6K3i + ϵi(t) with ϵi(t) ∼ N(0, 0.52). Monitoring times were drawn up until the

maximum follow-up time τ , which we �xed to τ = 5. Data were simulated to correspond to a

study cohort of 500 patients. For each patient, the follow-up time was �censored" (stopped)

at time Ci, with Ci ∼ Uniform(τ/2, τ); the censoring was non-informative. A total of 1000

replicate datasets were simulated for each simulation study scenario. More details on the

simulation study can be found in Appendix B.4.

We compared a naive ordinary least squares estimator that did not account for the con-

founding or the informative monitoring process (β̂LS) and an inverse probability of treat-

ment weighted least squares estimator in which the treatment model was correctly speci�ed
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but that did not account for the monitoring process (β̂IPT ) with four �doubly weighted� ap-

proaches that incorporated a correctly speci�ed IPT weight and alternate versions of IIVW

to account for the monitoring process. Speci�cally, these four estimators relied on intensity

of visit weights that:

� did not account for the full history of covariates but only for the last covariates ob-

served, Ii(0) and Zi(li(t)) and for the correct baseline intensity through the following

inverse weight λ̂0(Bi(t)) exp (γ1̂Ii + γ2̂Zi(li(t))) (namely β̂IH),

� used the novel inverse cumulated unstabilized weight (β̂USW ),

� used the cumulated stabilized weights SW1 (β̂SW1), or

� used the cumulated stabilized weights SW2 (β̂SW2)

where the latter two fully account for the full covariate process and its interaction with visit

times but used di�erent stabilizing strategies.

The cumulated weights were censored at the respective 2.5 and 97.5th percentiles of their

distribution for all three corresponding estimators.

In four sensitivity analyses, we 1) �tted a constant intercept in the outcome model rather

than a cubic spline basis for the e�ect of time; 2) varied the maximum follow-up time

(τ = 10 rather than τ = 5); 3) changed the intercept function in the outcome from 0.2Bi(t)

to simply 0.02; and 4) varied the endogenous process Z(·) such that its mean depended on

the cumulative number of previous visits, as: Zi(t)|Ii = 1 ∼ N(2 + 0.2
∫︁ t−
0
dNi(s), 1) and

Zi(t)|Ii = 0 ∼ N(4+0.2
∫︁ t−
0
dNi(s), 2

2) updated on visit days, with the rest unchanged. The

results for the sensitivity analyses are presented in Appendix B.6.

Table 4.1 shows the results of the main simulation study in terms of empirical absolute

bias and bootstrap variance. The Andersen and Gill model consistently provided unbiased

estimates of the parameters γ in the monitoring model in all these scenarios, and average

numbers of visits varied between 1.9 and 7.1 (Appendix B.5). The Breslow-type estimator
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used to estimate λ0(Bi(t)) provided consistent estimates (results not shown).

In the main analysis, the least squares estimator was biased (bias ranging between 0.35-0.73).

Accounting for the confounding improved the performance of the estimator, as seen with the

absolute bias of β̂IPT (range between 0.01 and 0.37). However, both the IPW estimator and

the doubly weighted estimator β̂IH remained biased, with the range of bias depending on

the strength of the e�ect of covariates in the visit process (as controlled by the γs). This

supports our claim that existing approaches do not fully adjust for a visit process in settings

with endogeneity and long-term dependencies.

With respect to the cumulated weights, only β̂SW2 consistently provided unbiased estimates.

Its variance was also relatively small, compared with the other simpler estimators. The unsta-

bilized weighted estimator β̂USW was highly variable, and censoring its cumulated intensity

weights at the 2.5th and 97.5 percentiles did not reduce its variance to a satisfactory degree

(Table 4.1). This could be due to the sample size, or the number of simulations conducted.

We present the absolute bias; the empirical bias varied between negative and positive, so the

direction of the bias was not systematic. For the �rst of the stabilized weighted estimators,

β̂SW1, we hypothesize that the weights might not adequately account for the e�ect of time

since the baseline rate canceled out after stabilization. In fact, we observed that the estima-

tor β̂SW1 performed slightly better than β̂IH in general. This may be due to its adjustment

for part of the endogeneity/dependence due to covariates since the data were generated such

that Z(·) was simulated according to a random Normal variable with a mean that did not

vary across follow-up. Although on average, the process remained centered around the same

value, adjusting for the process Z(·) in β̂SW1 nonetheless accounted for the variation of Z(·)

around its mean.

In sensitivity analyses (Appendix B.6), we found very similar results, with β̂SW2 performing

better across the board. All results remained similar when using a constant intercept as

compared to a more �exible intercept with a cubic spline basis, as well as when increasing
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the maximum follow-up time, τ , to 10. When changing the endogenous covariate distribution

that a�ected the monitoring and the outcome processes to make it dependent on the cumu-

lative number of previous visit times, bias was not, in general, much greater. In the fourth

sensitivity analysis where we changed the intercept function to a constant in the de�nition

of the outcome, similar results were observed.

Table 4.1: Main analysis: Mean absolute bias and bootstrap variance for the estimators
compared (1000 simulations, n = 500 patients).

γ Mean absolute bias of the estimator Bootstrap variance of the estimator
β̂LS β̂IPT β̂IH β̂USW β̂SW1 β̂SW2 β̂LS β̂IPT β̂IH β̂USW β̂SW1 β̂SW2

-0.3; 0.1 0.35 0.37 0.12 0.04 0.14 0.03 0.03 0.07 0.16 1.56 0.13 0.08
-0.2; 0.2 0.49 0.24 0.11 0.00 0.09 0.01 0.03 0.06 0.11 1.23 0.08 0.06
-0.1; 0.2 0.64 0.08 0.09 0.14 0.00 0.02 0.02 0.05 0.09 1.11 0.06 0.05
-0.1; -0.3 0.69 0.01 0.11 0.07 0.01 0.03 0.02 0.05 0.08 0.59 0.06 0.05

0; 0 0.73 0.01 0.03 0.16 0.01 0.01 0.02 0.05 0.09 0.56 0.05 0.05
0.1; -0.3 0.69 0.03 0.11 0.19 0.04 0.02 0.02 0.04 0.06 0.40 0.05 0.05
0.2; -0.2 0.64 0.12 0.26 0.18 0.19 0.02 0.02 0.03 0.06 0.36 0.05 0.05
0.3; 0.2 0.67 0.08 0.34 0.24 0.30 0.05 0.02 0.03 0.06 0.26 0.07 0.05

The results for the variance were as expected: the use of unstabilized cumulated weight in

β̂USW led to a large variance, while the variance of other estimators remained low. Stabilizing

the cumulated weights in β̂SW1 and β̂SW2 led to smaller variance, in general, than the more

classical (and, in these settings, biased) estimator that accounted for the visit process, β̂IH .

A comparison of the empirical and the bootstrap variances of all estimators compared in

the main analysis can be found in Appendix B.7; the bootstrap variance was slightly greater

than the empirical variance, in general.

4.4 Comparison of the e�ect of citalopram and �uoxetine

on BMI using the CPRD data

We use the proposed methodology to estimate the marginal e�ect of citalopram and �uoxetine

on BMI, relying on data from the Clinical Practice Research Datalink in the United Kingdom
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(UK). The CPRD is one of the largest primary care databases of de-identi�ed data. It

contains data from more than 13 million patients treated in general practices from across the

UK, including demographics, anthropometric measurements such as BMI, lifestyle factors,

all prescriptions issued by general practitioners (recorded according to the British National

Formulary), and medical diagnoses (coded using the Read Classi�cation System). The CPRD

data were linked with the Hospital Episode Statistics (HES) repository and the O�ce for

National Statistics (United Kingdom) (ONS) mortality database. These provided access to

further patients information on related diagnoses for each hospital stay (coded using the

International Classi�cation of Diseases version 10), and dates of death.

Our study protocol was approved by the Independent Scienti�c Advisory Committee of the

UK Clinical Practice Research Datalink (protocol number 19_017R) and the Research Ethics

Committee of the Jewish General Hospital (Montreal, Quebec, Canada).

We de�ned a cohort of adult new users of citalopram or �uoxetine who had a con�rmed

diagnosis of depression in the year prior to initiation. To be included, patients had to initiate

their treatment for one of the two study drugs between April 1st, 1998, and December 31st,

2017. The �nal cohort comprised 246,503 patients (56% citalopram new users); see Coulombe

et al. [2021b] for details of the cohort construction. Patients were followed until a �rst code

for pregnancy, treatment discontinuation for citalopram or �uoxetine, switch to any other

antidepressant drug, end of CPRD coverage, administrative end of study (December 31st,

2017), death, or when reaching a maximum follow-up time set to 18 months, whichever

happened �rst. Patients were considered continuously exposed if a subsequent prescription

for the initiating drug was issued less than 30 days after the end of the duration of the last

prescription for the corresponding drug.

Over the follow-up period, we collected any data on BMI and considered as a monitoring

time any day when BMI was recorded by the general practitioner. Other days when either 1)

no physician or hospital visit occurred; or 2) such visit occurred but no BMI was measured
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and recorded, were considered to be the same (i.e. no monitoring); we did not model them

any di�erently.

The intervention (citalopram or �uoxetine), age, sex, and Index of Multiple Deprivation

(IMD) were de�ned at baseline and were included as predictors in the BMI monitoring

model. The IMD is a measure of relative deprivation for small areas in England (Deas

et al. [2003]); it was used as a proxy for socioeconomic status. We assumed that certain

time-varying covariates were potentially modi�ed by a visit and could a�ect the next BMI

outcome and the timing of the next visit. These covariates were de�ned for each day during

follow-up, and included the smoking status, diabetes or antidiabetic drug use, alcohol abuse,

a diagnosis for anxiety or generalized anxiety disorder (GAD), other psychiatric diseases

(including autism spectrum disorder, obsessive compulsive disorder, and schizophrenia), the

number of hospitalisations in the previous month, and benzodiazepine drug, lipid lowering

drug, or antipsychotic drug use (all three considered separately). We �tted a proportional

intensity model as a function of all covariates mentioned above for the visit model. The visit

intensity was modelled as a function of the gap time Bi(t), accounted for via the baseline

intensity λ0(Bi(t)), and all predictors in the model. It was used to compute the di�erent

weights and corresponding estimators described in Section 4.2 and compared in Section 4.3.

For every time unit (one day), we obtained an estimate of the visit intensity.

We assumed that the relationship between the intervention (citalopram or �uoxetine) and

BMI was potentially confounded by a set of covariates measured at baseline. These included

age, sex, the IMD, smoking status, diabetes, alcohol abuse, anxiety or GAD, other psychiatric

diseases, the number of previous hospitalisations, as well as the use of lipid lowering therapy,

benzodiazepine drugs, or antipsychotic drugs. We �tted a logistic regression model to predict

the intervention at baseline (citalopram or �uoxetine) and included the confounder variables

mentioned above as predictors in the model. The �t led to a propensity score that was used

in an inverse probability of treatment weight, to address confounding.
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For the monitoring and the exposure models mentioned above, covariates de�ned once at

baseline were de�ned in the same way as in Coulombe et al. [2021b] (any medication use was

measured in the year prior to cohort entry, and comorbidities using any data recorded prior

to cohort entry). For time-varying covariates, we used di�erent de�nitions; we considered

a patient exposed to a given medication for the duration of a prescription and unexposed

otherwise. After any �rst diagnosis for a chronic disease during follow-up (diabetes, alcohol

abuse, anxiety or GAD and other psychiatric diseases), a patient was considered as having

the disease for the remainder of the follow-up. At any given time during follow-up, the time-

varying smoking status was de�ned using the very last code recorded for smoking. Contrary

to the simulation studies, visits to general practices could occur even in between times when

BMI was monitored, such that patients' characteristics other than BMI were being updated

in between BMI monitoring times, regardless of whether BMI was monitored or not on those

days.

The (di�erent versions of the) inverse weight for the monitoring, along with the inverse prob-

ability of treatment weight were used to perform a weighted regression for the outcome, which

included a cubic spline basis to model the e�ect of time since a last visit (�gap time�) on the

mean outcome, and the intervention of interest. For the proposed estimators (β̂USW , β̂SW1,

and β̂SW2), the cumulated weights were truncated using the 2.5th and 97.5th percentiles as in

simulation studies. There were a few di�erences across the two treatment groups at baseline

(Appendix B.8). The most important di�erence was in the prevalence of anxiety or GAD

(30.5% in citalopram users vs 22.1%). The average BMI at cohort entry was 26.8 in both

treatment groups. During follow-up, the average BMI in citalopram users shifted to 28.3

(median 27.2), as compared to 28.9 (median 27.6) in �uoxetine users (results not shown),

indicating a slightly di�erent shift between the two groups as compared to baseline.

In the citalopram group, we found an average of 0.28 visit per patient over the entire follow-

up, with an average follow-up time of 0.45 years, yielding a crude visit (or BMI monitoring)
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rate of 0.62 visit per year. In the �uoxetine users, the average number of visits per year was

0.25, with an average follow-up time of 0.40 years, yielding the same crude monitoring rate

of 0.62 visit/year.

Table 4.2: Rate ratios from the visit intensity model, Clinical Practice Research Datalink,
UK, 1998-2017

Variable Rate Ratio 95% CI
Citalopram (Ref.: Fluoxetine) 0.95 0.93, 0.96*
Age at baseline 1.00 0.99, 1.00*
Sex (Ref.: Female) 0.77 0.76, 0.78*
IMD at baseline 1.06 1.05, 1.06*
Smoking (Ref.: Never)

Ever 0.92 0.91, 0.94*
Missing 0.23 0.23, 0.23*

Diabetes 2.07 2.02, 2.12*
Alcohol abuse 1.14 1.07, 1.22*
Anxiety or GAD 1.00 0.98, 1.03*
Psychiatric diagnosis 1.03 0.93, 1.13*
Number of hospitalisations in prior month 0.98 0.96, 1.01*
Antipsychotic drugs 1.12 1.07, 1.18*
Benzodiazepine drugs 1.20 1.16, 1.23*
Lipid lowering drugs 1.21 1.18, 1.25*

Abbreviations: IMD, Index of multiple deprivation; GAD, Generalized anxiety disorder.
* Con�dence interval does not contain 1.

Table 4.2 shows the adjusted rate ratios for monitoring estimated from the Andersen and

Gill model, for all covariates in the multivariate monitoring intensity model, along with

corresponding 95% con�dence intervals (CIs) obtained from the model.

We found that males, citalopram users (as opposed to �uoxetine), and those with a previous

record of smoking or no smoking information at all (as opposed to non-smokers) were less

likely to have their weight recorded. A greater IMD, alcohol abuse, diabetes as well as

the use of antipsychotic, benzodiazepine, or lipid lowering drugs were all associated with

an increase in the rate of BMI monitoring. It is unclear whether these time-dependent

covariates could lead to long-term biasing dependencies between the monitoring and the

BMI processes, as both of these processes vary in time as a function of these covariates.
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Estimating the marginal e�ect of antidepressants on BMI after re-weighting only for a point

inverse intensity of visit weight, as opposed to a cumulated weight, could provide di�erent

estimates if the cumulated weight indeed provides further adjustment (e.g., if the probability

of visit at time t in individual i is only proportional to that of another individual j on their

set of covariates, when accounting for the full history of intensities).

When we incorporated the same set of covariates in an outcome model for the continuous

outcome BMI, we found that being older, male, using citalopram (as opposed to �uoxetine),

alcohol abuse, smoking, a greater number of hospitalisations in the previous month, and

the use of benzodiazepine drugs were statistically signi�cantly associated with a lower BMI

(Appendix B.9). On the other hand, a greater IMD, diabetes, and the use of lipid lowering

therapy were signi�cantly associated with a greater BMI. Of note, several covariates were

associated with both monitoring and BMI value (Tables 4.2 and Appendix B.9). These

covariates may have induced selection bias due to outcome-dependent monitoring times. In

particular, diabetes was strongly associated with both the monitoring rate, and the outcome

value. Previous literature suggested that diabetes is a mediator of antidepressant drugs'

e�ect on weight, as antidepressant therapy is associated with poor glycemic control (see e.g.

Gagnon et al. [2018]).

In Table 4.3 we present the estimates for the marginal e�ect of citalopram (as compared to

�uoxetine) on BMI, for each of the six estimators we compare, along with the 95% robust

CIs. Using the two cumulated weights and accounting for the possibility for long-term

dependencies brought the estimates further away from the null (coe�cients around -0.61 to

-0.73) as compared to the more standard inverse intensity of visit weighted estimator (β̂IH ,

coe�cient -0.40, 95% CI: -0.58, -0.22).
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Table 4.3: Comparison of six estimators for the marginal e�ect of citalopram (as opposed to
�uoxetine) on BMI, Clinical Practice Research Datalink, UK, 1998-2017

Estimator Estimate (Robust 95% CI)
β̂LS -0.58 (-0.70, -0.46)
β̂IPT -0.65 (-0.78, -0.53)
β̂IH -0.40 (-0.58, -0.22)
β̂USW -0.73 (-1.03, -0.44)
β̂SW1 -0.62 (-0.78, -0.46)
β̂SW2 -0.61 (-0.76, -0.46)

Using our proposed cumulated intensity weight (β̂SW2), as opposed to a simpler weight

(β̂IH), resulted in a change of approximately 50% in the point estimate of the marginal

e�ect of citalopram, in this study. The di�erence could indicate that long-term dependencies

between the covariate, the monitoring and the outcome processes indeed exist. However, all

estimators and the associated CIs suggest the same conclusion: that citalopram leads to

less weight gain than �uoxetine. The e�ect of the two study drugs on BMI, as well as the

di�erence in e�ects, remains modest, although we remind the reader that the follow-up time

was relatively short.

4.5 Discussion

In studies using electronic health records or administrative data, when patients' information

is recorded often depends on patients' characteristics. The informative nature of monitor-

ing times may be associated with biasing paths between the intervention and the outcome

under study, as monitoring can be a source of selection bias. In our analysis of the CPRD

data, several patient characteristics were associated both with the monitoring rate and the

BMI values, potentially inducing selection bias in the estimation. No previous studies have

estimated the marginal e�ect of citalopram and �uoxetine on BMI while accounting for this

type of bias (along with confounding).

It can be unclear whether the dependence between the monitoring process and the BMI
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process extends beyond the last covariates observed. This work proposes some �rst insights

into this. We proposed and demonstrated a new methodology to address that dependence by

accounting for the potential for longitudinal collider-strati�cation bias due to an endogenous

covariate process. In the CPRD data, we estimated the marginal e�ect of prescribing citalo-

pram versus �uoxetine on BMI. The proposed weights did provide di�erent estimates for that

e�ect, as compared to the more standard IIVW that does not fully account for the covariate-

dependent monitoring path. However, the di�erences were clinically modest. In general, a

comparison of our proposed estimators and other simpler estimators that are not cumulated

over time could provide indications of whether long-term dependencies are present if esti-

mates di�er substantially across approaches. In simulation studies, the proposed stabilized

cumulated weighted estimator (β̂SW2) was the only estimator to be consistently unbiased for

the marginal e�ect of intervention across all scenarios with endogeneity. The stabilization

yielded more e�cient estimation.

The proposed weights that account for the covariate-driven monitoring times are similar to

that used in marginal structural models to address confounding in longitudinal treatment

sequences (Robins et al. [2000a]) and to the calculation of stage occupation probability

in the multistate models literature for settings with continuous time (Cook and Lawless

[2018]) but they tackle imbalances due to the monitoring process rather than that due to

confounding factors. We combined them with inverse probability of treatment weights to

account simultaneously for confounding. Together, these weights create a pseudo-population

in which the monitoring and the BMI processes are independent, and in which the two

antidepressant groups are exchangeable, so as to permit inference about the marginal e�ect

of both antidepressants on BMI. This study is the �rst to assess the marginal e�ect of

citalopram and �uoxetine on BMI while considering that monitoring times are driven by an

endogenous covariate process, and the �rst to propose a methodology for it. Another key

strength of this work is our simplifying assumption on the covariate process; it allows for the

covariates to be assessed occasionally (at monitoring times) for the proposed weights to break
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the dependence between the monitoring and BMI processes. Further, our weights allow for

the analyst to account for the e�ect of mediators of the antidepressant-BMI relationship that

a�ect monitoring times without blocking the total e�ect of interest.

The proposed estimators rely on important assumptions. In particular, the model for the visit

intensity function must be correctly speci�ed. If covariates �occurring� or being updated in

between monitoring times induce dependency between the monitoring and the BMI processes,

and that they are not accounted for in the intensity model, then the proposed estimator could

be biased. We also made the strong assumption of positivity of the monitoring process. When

it is unrealistic, this assumption could be circumvented by smoothing the intensity function,

e.g. by coarsening the monitoring indicators. Moreover, the proposed estimators rely on the

standard identi�ability assumptions in causal inference. For instance, the presupposition

of conditional exchangeability assumes that we measured all potential confounders for the

relationship between the antidepressants and BMI, an assumption that cannot be veri�ed

in practice. Sensitivity analyses were proposed to assess the extent to which unmeasured

confounding can a�ect the estimator for the marginal e�ect of exposure (see e.g. Streeter

et al. [2017] for a review of methods, for longitudinal settings). The assumption about

the positivity of treatment, on the other hand, could be implausible in other settings, but

in this work, it is unlikely to be violated as citalopram and �uoxetine are often prescribed

interchangeably in patients with depression. In other situations where this assumption is not

plausible, patients who have no chance of receiving some treatment options could be removed

(or part of their person-time in the study) at the cost of reduced generalizability.

Although citalopram and �uoxetine are front-line treatments for depression and hence very

commonly prescribed, side e�ects remain a signi�cant challenge for users. In particular,

weight gain may be substantial and so it is of considerable interest to use data from a

general population to determine the impact of these drugs and to see whether one might

lead to a lower burden of this particular side e�ect. In the �rst analysis of electronic health
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records data from a large, population-based sample, we have found that citalopram leads

to (modestly) less weight gain than �uoxetine, after adjusting for biases due to confounding

and the covariate-induced visit process. These �ndings must be interpreted with caution as,

of course, clinical decisions must balance a number of additional factors. Nevertheless, this

analysis serves as an important model for considerations that are required when working

with EHR data.

Appendices

The following material is available in Appendix B:

B.1 Causal diagrams and biasing paths due to the monitoring process

B.2 Estimating equation for the marginal e�ect of treatment on a continuous longitudinal

outcome

B.3: Asymptotic properties of the proposed estimator

B.4: Details of the simulation studies

B.5: Results of the main simulation study, including the average number of visits and esti-

mated parameters in the visit model

B.6: Results of all sensitivity analyses

B.7: Comparison of the bootstrap and the empirical variance of the estimators

B.8: Table of baseline characteristics strati�ed by intervention group in the CPRD

B.9: Multivariate outcome model in the analysis of the CPRD
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Chapter 5

Estimating the Marginal E�ect of a

Continuous Exposure on an Ordinal

Outcome using Data Subject to

Covariate-Driven Treatment and Visit

Processes

Preamble to Manuscript 3. In the previous two chapters, a general framework was pro-

posed for causal inference on the average treatment e�ect in settings with covariate-driven

monitoring times and confounding. The methodology was extended to settings where there

is endogeneity, meaning that the covariate, the monitoring and the outcome processes are

allowed to interact together in time.

The motivation for Chapter 5 comes from the desire to generalize the previously proposed

methodology for cases with a continuous exposure and an ordinal outcome. This new

methodology is to be used to estimate the marginal e�ect of the number of hours spent
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playing video games weekly on a categorized outcome related to the number of suicide at-

tempts in the Add Health study.

In this chapter, the exposure is denoted by Di(t) rather than the previous notation Ii(t),

to emphasize that the exposure is continuous (i.e. a dose, and to avoid confusion with the

individual index i when the notation and assumptions are discussed).

The original contributions of this work are i) to propose the �rst complete methodology for

assessing the marginal e�ect of a continuous exposure on an ordinal outcome when data are

subject to confounding and covariate-driven monitoring times, and ii) to discuss and assess

di�erent weighting strategies previously proposed in the literature in a real-life application,

to ultimately estimate the marginal impact of the time spent playing video games on suicide

attempts in young adults.

This manuscript has been accepted for publication in Statistics in Medicine and is currently

in press.
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Abstract

In the statistical literature, a number of methods have been proposed to ensure valid infer-

ence about marginal e�ects of variables on a longitudinal outcome in settings with irregular

monitoring times. However, the potential biases due to covariate-driven monitoring times

and confounding have rarely been considered simultaneously, and never in a setting with

an ordinal outcome and a continuous exposure. In this work, we propose and demonstrate

a methodology for causal inference in such a setting, relying on a proportional odds model

to study the e�ect of the exposure on the outcome. Irregular observation times are consid-

ered via a proportional rate model, and a generalization of inverse probability of treatment

weights is used to account for the continuous exposure. We motivate our methodology by

the estimation of the marginal (causal) e�ect of the time spent on video or computer games

on suicide attempts in the Add Health study, a longitudinal study in the United States. Al-

though in the Add Health data, observation times are pre-speci�ed, our proposed approach is

applicable even in more general settings such as when analyzing data from electronic health

records where observations are highly irregular. In simulation studies, we let observation

times vary across individuals and demonstrate that not accounting for biasing imbalances

due to the monitoring and the exposure schemes can bias the estimate for the marginal odds

ratio of exposure.
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5.1 Introduction

Suppose a setting where longitudinal data are assessed irregularly across patients. In partic-

ular, we focus on non-experimental settings where, contrary to randomized studies, the mere

fact of being exposed to a certain level of an exposure can be related to individuals' charac-

teristics. Our interest lies in the estimation of the causal e�ect of a continuous exposure on

a longitudinal, ordinal (categorical) outcome which is measured irregularly. Assuming that

the observation of the outcome process coincides with monitoring times, which depend on

patients' characteristics, we can then think of the outcome process as being missing at ran-

dom over the course of follow-up time. In observational data, imbalances such as those due

to covariate-driven monitoring times or confounding can bias the estimators for the marginal

e�ect of variables (e.g. that of an exposure). The bias due to covariate-driven monitoring

times relates to selection bias, often due to a phenomenon called collider-strati�cation bias

(Greenland [2003]) where restricting a study cohort on a covariate, or conditioning on a

selection indicator (which both could be colliders on the path from the exposure to the out-

come) may induce dependence between the exposure and outcome. For instance, consider

the causal diagram in the right panel of Figure 5.1. Under that data generating mecha-

nism, the monitoring indicator acts as a collider on one of the paths from Video games

to Depressive mood. Conditioning on that indicator (i.e., keeping only in an analysis the

observations such that the outcome, Suicide attempts, is monitored) can induce spurious

association between the variables Video games and Suicide attempts. Other examples of

collider-strati�cation bias have been reported in studies on birthweight (Whitcomb et al.

[2009]) and obesity (Banack and Kaufman [2015]), among others. Collider-strati�cation bias

was also demonstrated in simulation studies, in settings with covariate-driven monitoring

times (B·ºková and Lumley [2009], Coulombe et al. [2021a]). In such longitudinal settings,

the imbalances related to selection are repeated all throughout follow-up time. For causal

inference on an exposure e�ect, monitoring times may have to be modelled continuously

in time if they are related to covariates that are simultaneously associated with the study
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outcome and the study exposure.

Di(t) ⊂ Zi(t)

Mi(t) ⊂ Zi(t)

Yi(t)

dNi(t)

Ki(t)

Video Games

Depressive mood

Suicide attempts

Monitoring indicator

Confounders a

aSee Section 5.4 for the list of confounders.

Figure 5.1: The assumed causal diagram in the simulation studies (left panel) and the
corresponding causal diagram for the application on the e�ect of video games on suicide
attempts (right panel).

Covariate-driven monitoring times can arise both in a study with presspeci�ed observation

times or when using data from electronic health records. We propose and demonstrate a

methodology for the estimation of the causal e�ect of a continuous exposure on a categorical

outcome that applies in both settings where observation times are pre-speci�ed (such as the

Add Health study) or are irregular across individuals (such as when using data from electronic

health records). The methodology allows for observation times to depend on individuals'

characteristics, and also accounts for potential confounders of the relationship under study.

We model the monitoring indicators (which indicate whether there is a visit, or not, during

which the outcome is assessed) using a proportional intensity model and the exposure model

using a generalized propensity score which is then used to adjust for confounding via inverse

probability of treatment weights. The outcome is modelled as a function of the exposure,

using a proportional odds model.

Our aim, to estimate the marginal e�ect of the time spent on video games (weekly) on

suicide attempts, motivates the methodological developments. We conduct our analysis
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using longitudinal data from the �rst four waves of the Add Health study (Harris [2009]) in

the United States. In that study, individuals were followed from their adolescence and until

adulthood, and were assessed at di�erent points in time. Individuals' personal data were

collected via several questionnaires, and the collected information included demographics,

social, biological and behavioral factors as well as parental factors.

This manuscript is divided as follows: in Section 5.2, we discuss the background, our assump-

tions and notation, as well as the proposed methodology for estimating the causal e�ect of a

continuous exposure on a categorical, ordinal outcome. In Section 5.3, we present the details

of the simulation studies that were conducted and corresponding results. The application of

the proposed methodology to data from the Add Health study to estimate the e�ect of the

number of hours spent on video games on suicide attempts is presented in Section 5.4. A

discussion follows in Section 5.5.

5.2 Methods

5.2.1 Background

This work extends previous research (Coulombe et al. [2021a]) in which two estimators were

proposed for the marginal e�ect of a binary (time-varying) exposure I(t) on a longitudinal

continuous outcome Y(t). These estimators were also proposed for settings where data are

subject to being recorded (or monitored) at covariate-dependent visit times, allowed to be

irregular across patients, and where there is potential confounding. Inverse weights were

used to adjust both for confounding and bias due to covariate-driven monitoring times. In

addition, the monitoring weights were allowed to be functions of mediators of the relationship

of interest.

In that previous work, two estimators were proposed and compared, namely:

� a �rst estimator which extended the estimating equations proposed by Lin and Ying
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[2001] to account for confounding via a generalized inverse probability of treatment

weight, and incorporated the stabilized weight proposed by B·ºková and Lumley [2009]

for the visit intensity (denoted by β̂IPCTM where IPCTM denotes the inverse proba-

bility of centered treatment and monitoring estimator); and

� a second estimator which used the standard weighted least squares estimating equa-

tions, weighted with both an inverse probability of treatment weight and an inverse

intensity of visit weight (Lin et al. [2004]). That estimator also included a cubic spline

basis as a function of time since cohort entry to allow for more �exibility in mod-

elling the e�ect of time since study baseline on the mean outcome. It was denoted

by β̂FIPTM , where FIPTM refers to the �exible inverse probability of treatment and

monitoring estimator (Coulombe et al. [2021a]).

Both estimators were demonstrated via theoretical derivations to be unbiased for large sam-

ples, and extensive simulation studies showed that both were unbiased in �nite samples and

their variances were quite comparable. However, β̂FIPTM was easier to implement. To an-

swer the current research question, we aim to extend this estimator to the setting where

exposure is continuous, and where the outcome is categorical and ordinal. For that, we use

the proportional odds model.

Proportional Odds Model

Let i be a patient index, and t denote time. Suppose that one is interested in the association

between a vector of covariates Xi(t) (of size 1 × p) and the categorical outcome Yi(t). For

instance, the vector Xi(t) may contain a continuous exposure of interest, which we denote by

Di(t) for individual i at time t. The proportional odds model (POM) proposed by McCullagh

[1980] models the outcome cumulative probabilities as

P (Yi(t) ≤ j|Xi(t)) = expit(αj − β′Xi(t)) (5.1)
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∀j = 1, ..., J , where the expit function is the inverse logit function and the coe�cients α are

category-speci�c intercepts. The e�ects of covariates X(t) are assumed to be constant for

all j (that is, βj = β). E�ectively, the POM is an extension of the logistic regression model

to the multinomial case where, rather than merely comparing the probability of an event

occurring (as compared to no event), the outcome domain is strati�ed at each possible �split

value� between two subsequent ordered categories j and j + 1 in {1, ..., J}. The probability

that is modelled is thus that for the outcome to be smaller or equal to some value in the

outcome domain, as opposed to larger.

When studying the marginal e�ect of a variable, for instance the exposure Di(t) ⊂ Xi(t),

on the ordinal outcome Yi(t), di�erent quantites may be of interest. If the outcome is made

of only two categories, the POM is equivalent to the logistic regression model, and the odds

ratio (OR) or the relative risk of exposure can be of interest. In the current work, we focus

on ordinal outcomes that are made of more than two categories, and use the marginal OR

(or log-OR) as our population-average quantity of interest. We next review the notation and

statistical methodology that we will employ for a general setting.

5.2.2 Assumptions and notation

Vectors and matrices are denoted in bold. Let Yi(t) be a longitudinal outcome (that is either

observed or not) at time t, in individual i (i = 1, ..., n), and assume it is categorical and

it takes values in {1, 2, ..., J}. Let the exposure be denoted by Di(t) at time t, which is

continuous and takes values in IR (or, possibly, in IR+). We are interested in the estimation

of the marginal e�ect of an increment in exposure Di(t) on the outcome Yi(t). We suppose

that the outcome is ordinal � that is, it can be ordered such that categories 1 and J respec-

tively represent the lowest, and the highest levels of that variable. Further, the subsequent

categories of the outcome are not considered to be equidistant, and going from e.g. category

j to j+1 may imply a more important change than going from category j−1 to j, etc.
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Further suppose that the outcome Yi(·) of individual i is only observed sporadically, at times

denoted by Ti1, ..., TiQi
(called monitoring or visit times). The quantity Qi denotes the

number of observation times of individual i in the time lapse [0, τ ], with τ the maximum

follow-up time in the whole study. As the indices indicate, the monitoring times and number

of visits are allowed to vary across individuals. The monitoring indicator dNi(t) indicates

whether there is (dNi(t) = 1) or is not (dNi(t) = 0) a visit of individual i at time t. That

indicator is expected to depend on certain patients' characteristics that we denote by the

set Zi(t). The set may contain the exposure of interest, Di(t), as well as mediators of

the relationship of interest between Di(t) and Yi(t) or confounding factors. We denote the

mediators of the relationship between Di(t) and Yi(t) by Mi(t); they are on the causal path

from Di(t) do Yi(t). Confounders are denoted by Ki(t) and are assumed to a�ect both the

outcome Yi(t) and the exposure Di(t) at time t such that merely assessing the e�ect of the

exposure on the outcome will lead to a distorted estimate.

Figure 5.1 (left panel) shows the causal diagram that we assume for the data generating

mechanism discussed here, at each time t. E�ectively, that diagram represents one slice or

snapshot in time, but the relations depicted in that Figure are assumed to be true for each

point in time as well as for each individual. This means that some covariates (Zi(t) here)

a�ect the monitoring propensity at each point in time, such that a prediction for dNi(t)

would require the information on covariates Zi(t) even on times t ⊂ [0, τ ] when dNi(t) = 0

and there is no visit. In that same causal diagram, the set Zi(t) contains all covariates

associated with Di(t) which themselves a�ect dNi(t); these are all the covariates a�ecting

monitoring. In the right panel of Figure 5.1, we show the causal diagram that is posited to

describe the data collected in the Add Health study. We recall that, in the application, we

are interested in the total causal e�ect of video games on the categorical suicide attempt

outcome. This e�ect comprises the direct e�ect of exposure, but also that mediated through

depressive mood.
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Our aim is to build a pseudopopulation (Robins et al. [2000a]) in which patients under

di�erent exposures are comparable with respect to confounding factors, and in which we

adjust for any biasing path between the exposure Di(t) and the outcome Yi(t) that would be

caused by conditioning on observed data (�visits�). To connect the causal and the statistical

frameworks, we �rst need to reformulate the problem as a causal inference problem by using

standard identi�ability assumptions. To express the causal contrast of interest, we use the

Neyman-Rubin potential outcome framework (Neyman [1923], Rubin [1974]) and denote by

Yid(t) the potential outcome of individual i, at time t, and under exposure d. Necessarily,

individual i will only receive one level of the continuous exposure D at time t, and therefore,

only one of an in�nite quantity of possible outcomes will be observed. The estimand we seek

is the causal marginal OR for 1-unit increase in the continuous exposure Di(t). It is given

by

OR =

(︃
P [Yid(t) ≤ j]

1− P [Yid(t) ≤ j]

)︃/︃(︄
P
[︁
Yi(d+1)(t) ≤ j

]︁
1− P

[︁
Yi(d+1)(t) ≤ j

]︁)︄ (5.2)

and is constant across j. Note that the numerator in (5.2) shows the potential outcome under

exposure d, and the denominator, under exposure d+1, as we are presenting in (5.2) the OR

as a function of the probability for the outcome to be smaller or equal to a certain category

j, rather than larger. Depending on the parameterization of the POM model, the estimand

could vary. Furthermore, the estimator of the OR for a 1-unit increment in the exposure

given in equation (5.2) can be modi�ed to account for any incremental value (e.g., 2, 3, or

10-unit increments) of the exposure, as, under the POM assumptions, we have that

ORw =

(︃
P [Yid(t) ≤ j]

1− P [Yid(t) ≤ j]

)︃/︃(︄
P
[︁
Yi(d+w)(t) ≤ j

]︁
1− P

[︁
Yi(d+w)(t) ≤ j

]︁)︄ = exp (log(OR)× w) ,

where OR is given in equation (5.2) and ORw is the odds ratio for a w-unit increment in the

exposure.
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The estimation of the OR in (5.2) requires assumptions regarding the data generating mech-

anism and its associated causal diagram. The causal diagram that we assume (presented in

the left panel of Figure 5.1) is subject to both biasing paths due to backdoor paths (con-

founders), and to selection due to conditioning on monitoring indicators. These two biases

are due to the lack of exchangeability of the individuals across all exposure levels (Hernán

and Robins [2016], Chapters 7-8). For identi�ability of the causal exposure e�ect, we must

assume conditional exchangeability, consistency, as well as positivity of the exposure and the

monitoring indicators, which are denoted by:

Di(t) ⊥ Yid(t)|dNi(t),Ki(t),Zi(t) ∀d ∈ R+ (P1)

If Di(t) = d then Yid(t) = Yi(t) (P2)

0 < P (Di(t) = d|Ki(t)) < 1 ∀d ∈ R+ (P3)

0 < P (dNi(t) = 1|Zi(t)) < 1 ∀t ∈ [0, τ ]. (M1)

The assumption (P1) means that the two sets (confounders Ki(t), and those a�ecting the

monitoring times Zi(t)) are su�cient to block any biasing path from the exposure to the

outcome of interest even after conditioning on monitoring indicator dNi(t). E�ectively, what

we mean by this assumption is that even when using only the observed outcomes, adjusting

for the set Ki(t) is su�cient to block the biasing paths due to potential confounders, and

the set Zi(t) contains the common predictors of the monitoring and the outcome processes

that can create other biasing paths from the exposure to the outcome after conditioning on

dNi(t). (Note, the common predictors in Zi(t) will typically be related to the exposure in

some way, such that conditioning on dNi(t) opens a path from the exposure to the outcome

that is due to one of the covariates in Zi(t). Otherwise, there may be no need to adjust

for these covariates.). Positivity for monitoring means that there is no time point (or time

period, if time is considered to be continuous) when the probability that a visit will occur is

null, or when it is 1 such that the visit is sure to occur. If such time point existed, this could
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lead to computational issues with the inverse weighting methodology that will follow, as well

as concerns regarding the interpretation of �ndings. In addition to the assumptions above,

we assume that censoring times (or the individual times when patients' follow-up stops)

are uninformative, in the sense that we capture through assumption P1 the only possible

di�erences in follow-up that could ultimately bias our estimator for the e�ect of exposure on

the outcome.

5.2.3 Methodology

Following the assumptions we made in Section 5.2.2, we can estimate the causal marginal

OR using the POM. We now explain how we model the monitoring rate, the exposure, and

how these models are combined to estimate the estimand.

For the monitoring model, we use an inverse intensity of visit (IIV) weight (Lin et al. [2004])

and model the intensity by using a proportional intensity model as a function of the covariates

Zi(t), which covariates (if considered together with the confounders) are assumed to create

conditional exchangeability of the potential outcomes. The model is as follows:

E [dNi(t)|Zi(t)] = ξi(t) exp(γ
′Zi(t))λ0(t)dt, (5.3)

where ξi(t) is an indicator for still being at risk, for individual i at time t, and λ0(t)dt =

d∆0(t) with ∆0(t) any non-decreasing function (Lawless and Nadeau [1995]). We use the

Andersen and Gill model (Andersen and Gill [1982]), an extension of the Cox proportional

hazards model (Cox [1972]) to recurrent events, to estimate the parameters γ in (5.3). In

this case, the �recurrent events� consist of the monitoring times. The baseline rate λ0(t) need

not be estimated if it does not vary across individuals and if it is a function of the time since

cohort entry (or time into study), rather than e.g. time since the last visit. That is, because

any function of time since cohort entry would be the same at time t into the study across

individuals, the function cancels out across individuals (B·ºková and Lumley [2009]).
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After adjusting for the monitoring intensity, under the mentioned assumptions, we can attain

conditional exchangeability by �tting a correctly speci�ed exposure model that is a function

of covariates Ki(t), that will be used to break the links between the exposure and those co-

variates. However, we are interested in the case where exposure is continuous such that the

standard inverse probability of treatment (IPT) weight cannot be implemented. To account

for confounding under a continuous exposure, methods such as parametric g-computation

were proposed (see eg. Ahern et al. [2009]), however that method requires a correctly spec-

i�ed parametric outcome model, and it combines less naturally with our IIV weight. If the

exposure distribution is (approximately) normally distributed, we propose to use a general-

ization of the standard IPT weight that uses the conditional normal density, rather than the

more common propensity score for a binary exposure. This strategy has been discussed by

Robins et al. [2000a] and Imai and Van Dyk [2004] and requires �tting two linear models:

one where potential confounders are included as predictors (which will lead to a conditional

normal density), and another stabilizing model which only includes a constant intercept, as

follows:

E[Di(t)|Ki(t)] =ψ0 +ψ
′
1Ki(t) (L1)

E[Di(t)] =ψm. (L2)

Once the parameters of these models are estimated from the data, we obtain estimates for

the parameters
{︂
ψ̂0, ψ̂1, ψ̂m

}︂
and may compute the residuals from both models. The con-

tinuous exposure is assumed to follow a normal distribution that is fully de�ned by its mean

and standard deviation, which can be estimated from the residuals from the �tted model

corresponding to (L1).The generalized IPT weight, to be added to our weighted estimating

equations, is then computed as

ei(t;ψ) =
h−1(ψ̂0 + ψ̂

′
1Ki(t))

h−1(ψ̂m)
(5.4)
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for h−1( ˆ︁Dl,i(t)) = 1/
√︁

2πˆ︁σ2
l exp (−ˆ︁ϵl,i(t)2/(2ˆ︁σ2

l )) the Normal density function evaluated at

the corresponding linear regression residuals ˆ︁ϵl,i(t) = (︂Di(t)− ˆ︁Dl,i(t)
)︂
, with ˆ︁σ2

l the empir-

ical variance of ˆ︁ϵl,i(t), ˆ︁Dl,i(t) the model predictions, and l = 1, 2 the index corresponding

to models (L1) and (L2) respectively (Robins et al. [2000a]). Importantly, a misspeci�ed

conditional distribution for the exposure may lead to biased estimators, as the generalized

IPT weight in (5.4) may then not be proportional to the actual density of the exposure

conditional on the confounders. If the exposure is not approximately normally distributed

(e.g., if its distribution is highly skewed), a log transformation of the exposure may lead to

a more normally distributed (transformed) exposure. Other alternatives to the generalized

IPT weight above include that where the exposure is binned in quantiles (e.g., deciles) and

where a categorical model is �tted to estimate the probability for the exposure to belong to

a respective category (as a function of covariates). Naimi et al. [2014] compared that option

to the other weight mentioned above and they have found that the quantile binning ap-

proach performs better when the exposure is not normally distributed. Schulz and Moodie

[2021] also discussed inverse weights in the context of a continuous dose for an exposure,

when developing optimal adaptive dosing strategies. They considered binning the exposure

in quantiles to compute the IPT weight, while leaving the exposure in its continuous form

in the outcome model. They also used a similar quantiles approach as in Naimi et al. [2014]

where they estimated the probability for the exposure to belong to a respective category

using the POM model (rather than a conditional logistic regression model as used in Naimi

et al. [2014]). They found that the binning approach can reduce the volatility in the weights.

In simulation studies below, we demonstrate the proposed methodology with the generalized

inverse weight in (5.4) and in the case where the exposure is normally distributed. In the

application to the Add Health study, we assess the marginal e�ect of a 1-unit increase in

the exposure (the number of hours spent playing video games) in its current form, and after

it was log transformed. We assess the sensitivity of the results after using di�erent inverse

weighting strategies.
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In this work, we focus on the estimation of the marginal OR for a 1-unit increase in the

exposure Di(t) (or the log transformed exposure, in the application), with the odds being

those of the outcome Yi(t). The OR was presented in equation (5.2). Recall that if desired,

the OR derived from our methodology could also be used to compute the marginal OR for

an arbitrary w-unit increase in the exposure Di(t), as mentioned in Section 5.2.2. Under the

identi�ability assumptions in Section 5.2.2, we use a parametric POM model which models

the mean outcome as follows:

P (Yi(t) ≤ j|Di(t)) = expit(αj − βDDi(t)) (5.5)

∀j = 1, ..., J. Trivial algebra leads to the marginal OR:

(︂
P[Yi(t)≤j|Di(t)+1]

1−P[Yi(t)≤j|Di(t)+1]

)︂
(︂

P[Yi(t)≤j|Di(t)]
1−P[Yi(t)≤j|Di(t)]

)︂ =

exp(αj−βD(Di(t)+1))

1+exp(αj−βD(Di(t)+1)

1
1+exp(αj−βD(Di(t)+1)

×
1

1+exp(αj−βDDi(t))

exp(αj−βDDi(t))

1+exp(αj−βDDi(t))

=
exp(αj − βD(Di(t) + 1))

exp(αj − βDDi(t))

= exp(−βD). (5.6)

Therefore, for making our causal inference, we are left with the estimation of the parameter

βD in (5.6). Using our models for exposure and monitoring, and re-weighting estimating

equations by the IPT and the IIV weights, we create a pseudopopulation in which we have

conditional exchangeability, so that the parameter βD can be estimated using directly the

POM on the re-weighted data. That is, we extend the Flexible Inverse Probability of Treat-

ment and Monitoring weighted estimator (β̂FIPTM ) (Coulombe et al. [2021a]) to the case

where the exposure is continuous, and where the outcome mean is not assumed to be a linear

function of covariates. The new, proposed, doubly-weighted estimator is further referred to

as β̂IPTMP for the Inverse Probability of Treatment and Monitoring POM model.

Denote by ζi,j(t) = P (Yi(t) ≤ j|Di(t)) and by Fi,j(t) = I(Yi(t) ≤ j) with I(·) the indicator
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function, which also correspond to the vectors

ζi(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P (Yi(t) ≤ 1|Di(t))

P (Yi(t) ≤ 2|Di(t))

...

P (Yi(t) ≤ J |Di(t))

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, and Fi(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

I(Yi(t) ≤ 1)

I(Yi(t) ≤ 2)

...

I(Yi(t) ≤ J)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (5.7)

where Fi(t) is our modi�ed outcome which accounts for the fact that the study outcome Yi(t)

is made of several categories. Then, e�ectively, our methodology is equivalent to using the

following estimating equation (an exension of Lin et al. [2004] and Coulombe et al. [2021a])

to estimate the marginal e�ect of exposure via the log-OR for 1-unit increase in exposure,

denoted by βD:

E
[︃∫︂ τ

0

e(t;ψ) (F(t)− ζ(t))
φ(t;γ)

dN(t)

]︃
= 0, (5.8)

where e(t;ψ) is our generalized IPT weight for a continuous exposure, φ(t;γ) an IIV weight

for the monitoring, and where the parameterization of ζ(t) is

ζi,j(t) =expit(αj − βDDi(t)). (5.9)

For the inverse intensity of visit function, we simply plug in our estimated model from (5.3);

that is

φi(t; ˆ︁γ) = exp (ˆ︁γ ′Zi(t)) ,

where the parameters γ can be estimated using the coxph function in R, from the survival

package (Therneau [2020]). The baseline rate in (5.3) need not to be estimated, as underlined
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earlier. For the IPT weight, we use an estimate of (5.4) that is computed by �tting both

linear models and computing the respective residuals as discussed earlier (and assess a few

other weighting options in the application to the Add Health study). The weighted POM can

be �tted using, for instance, the polr function from the MASS package in R (Venables and

Ripley [2002]). Diagnostic checks, such as the surrogate residuals (Greenwell et al. [2018])

implemented in the Sure package (Greenwell et al. [2017]) can be used to assess the POM

�t. To derive the asymptotic variance of the estimator for the coe�cient (or OR) of interest,

one can use the theory of two-step estimators (Newey and McFadden [1994]) and compute a

sandwich estimator that accounts for the variance components due to the parameter of in-

terest as well as those from both nuisance models. The derivation of the asymptotic variance

for the case where the outcome is continuous and the exposure is binary has been derived

previously, and shown to be well-approximated via a non-parametric bootstrap approach

(Coulombe et al. [2021a]). In current work, we used nonparametric bootstrap to compute an

estimate of the variance of the OR in the application to the Add Health study, which method

has shown to perform well in previous, similar work (Coulombe et al. [2021a]).

5.3 Simulation study

We conducted several simulation studies to assess the proposed methodology in a setting

where, in contrast to the Add Health study, monitoring times can occur at any time during

follow-up, for every individual. Our aim was to estimate the causal marginal OR for a 1-unit

increase in the exposure Di(t) on a categorical and ordinal outcome Yi(t). The outcome

was categorical, taking one of three levels (J = 3): 1, 2, and 3. In simulation studies, we

compared four estimators:

� The estimated log-OR for exposure obtained directly from the POM model, with no

adjustment (β̂POM);

� The estimated log-OR for exposure from a weighted POM with an IPT weight, where
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the propensity score is a correctly speci�ed function of the confounders (β̂IPTP );

� The estimated log-OR for exposure from a weighted POM with an IIV weight, where

the intensity is a correctly speci�ed function of the covariates a�ecting visit times

(β̂IIV P ); and

� The estimated log-OR for exposure from a doubly-weighted POM with both the IPT

and the IIV weights, with both functions (corresponding to the exposure and visit

models) correctly speci�ed (β̂IPTMP ).

We used 1000 simulations per study and tested settings with either 250 or 1000 patients

per simulated dataset. We assessed the case with, or without confounding. Confounders

were de�ned (simulated) at time 0 (�cohort entry�) for each individual, while the continuous

exposure and a mediator of the relationship between the exposure and the outcome were

simulated as time-varying. Visit times could vary across individuals and were driven by

covariates. In the main analysis, only the exposure and the mediator a�ected the propensity

of being monitored. In two sensitivity analyses, we also 1) assessed the performance of the

four estimators when the exposure, the mediator, and confounders all a�ect the monitoring

intensity (with the monitoring intensity model being correctly speci�ed); and 2) changed the

mean outcome model and tested di�erent parameters in the monitoring intensity model so

as to increase the bias due to covariate-driven monitoring times. In all analyses, the ordinal,

categorical outcome was simulated as a function of the exposure, the mediator, and the

confounders. The true marginal log-OR in the main analysis as well as that in the second

sensitivity analysis (which di�ered, as the mean outcome models varied) were derived using

Monte Carlo simulations. A detailed description of the simulation studies is presented in

Appendix C.1.
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5.3.1 Results

Figure 5.2 shows the results of the main simulation study for two settings (250 patients in

the left panel, and 1000 patients in the right panel), and for the case where there is no

confounding (top panel) and where there is confounding (bottom panel). As expected, the

proposed doubly-weighted estimator β̂IPTMP was the least biased across all four estimators.

In the case with no confounding, its performance was equivalent to that of β̂IIV P , which

also accounted for covariate-driven monitoring times. In the case with confounding, the

data presented with biasing imbalances related to both the confounders and the covariate-

driven monitoring times, and β̂IPTMP was the least biased across the board (it was the

only estimator to account for both of these features). When increasing the sample size, our

proposed estimator converged to the true value (horizontal dark line in Figure 5.2) while all

other estimators remained biased.

Table 5.1: Comparison of four estimators for the marginal log-OR for 1-unit increase in Di(t)
in the POM, for a sample size of n = 250 patients and 1000 simulations per study. Study
without confounding (Conf.=N) and with confounding (Conf.=Y).

Conf. γ Mean no. Absolute empirical bias Empirical variance
(Y/N) visits IPTMP IIVP IPTP POM IPTMP IIVP IPTP POM

(min-max)
N (-0.3, 0.1) 3 (0-14) 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02

(-0.1, 0.3) 3 (0-15) 0.01 0.01 0.09 0.09 0.03 0.03 0.03 0.03
(0, 0) 2 (0-13) 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.03

(0.1, 0.2) 3 (0-14) 0.00 0.00 0.07 0.07 0.03 0.03 0.03 0.03
(0.1, 0.5) 3 (0-15) 0.01 0.01 0.17 0.17 0.03 0.03 0.03 0.03
(0.2, 1) 5 (0-19) 0.00 0.00 0.32 0.32 0.02 0.02 0.02 0.02
(0.8, 0.4) 2 (0-12) 0.00 0.00 0.17 0.17 0.05 0.05 0.03 0.03

Y (-0.3, 0.1) 2 (0-13) 0.09 0.28 0.11 0.27 0.24 0.02 0.24 0.02
(-0.1, 0.3) 3 (0-16) 0.08 0.28 0.12 0.30 0.19 0.01 0.19 0.01
(0, 0) 2 (0-13) 0.09 0.28 0.09 0.28 0.23 0.02 0.23 0.02

(0.1, 0.2) 3 (0-16) 0.09 0.28 0.12 0.30 0.21 0.01 0.20 0.01
(0.1, 0.5) 3 (0-15) 0.08 0.28 0.17 0.32 0.17 0.01 0.17 0.01
(0.2, 1) 5 (0-21) 0.06 0.29 0.27 0.36 0.16 0.01 0.14 0.01
(0.8, 0.4) 5 (0-46) 0.07 0.28 0.18 0.29 0.16 0.02 0.14 0.01
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250 patients 1000 patients

Figure 5.2: A) Simulation study with no confounding. B) Simulation study with confounding.
Study with 250 patients (left panel) or 1000 patients (right panel). Distribution of the
estimated marginal log-OR for a 1-unit increase in the continuous exposure Di(t) (1000
simulations per study) across di�erent scenarios for the monitoring process (γ parameters
at the top of each subgraph) and for the 4 estimators compared. The horizontal dark line
represents the true value of the e�ect. The left panel values correspond to those reported in
Table C.2.

We show a comparison of the empirical variance of all four estimators in Table C.2. There, we

�nd that the proposed estimator β̂IPTMP is approximately as variable as the IPT-weighted

estimator, with both being more variable than other estimators compared. However, given
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that the proposed estimator β̂IPTMP is unbiased, the empirical mean squared error (MSE)

for that estimator was smaller across the board, in settings with no confounding (results not

shown). In settings with confounding, even if less biased, the MSE for β̂IPTMP was typically

greater than that of β̂IIV P , indicating that the variance due to the generalized IPT weight

was quite important. As expected, the gap between the empirical MSE of β̂IPTMP and β̂IIV P

in the confounded setting tended to decrease as the sample size grew (the MSE of β̂IPTMP

was 112% larger on average, in the case with n = 250, and 45% larger when n = 1000).

In settings with more confounding, or if we increased the sample size in our studies, we

therefore would expect smaller MSEs across the board with the proposed β̂IPTMP , while

other estimators would remain biased.

We observed simular results in both sensitivity analyses (Appendix C.2), but the second

sensitivity analysis also led to a greater bias due to covariate-driven monitoring times in the

estimators that did not account for this type of imbalance, as expected.

5.4 Application to the Add Health study

The proposed methodology was applied to the Add Health study, a longitudinal study made

of several waves, in which individuals were followed from their adolescence to their adulthood

(Harris [2009]). Individuals' personal data were collected via several questionnaires. They

included demographics, social and biological determinants, behavioral determinants, and

others. For the purpose of this analysis, we used public-use data sets from the �rst four

waves, which are free and available online (Harris and Udry [2018]). These data respectively

correspond to years 1994-1995, 1996, 2001-2002, and 2008. We solely focused on the data

obtained from the in-home questionnaires, which were available at all four waves but that

did not contain all the same questions, as well as the parent questionnaire (available for the

�rst wave only). The sample population contained 6504 individuals.

Our aim was to assess the (causal) marginal e�ect of the number of hours spent gaming with
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video and/or computer games (further referred to as video games) per week, on the number

of suicide attempts. In all four in-home questionnaires (corresponding to the four waves),

the question During the past 12 months, how many times did you actually attempt suicide?

was asked, and responses were categorized di�erently across waves (Waves 1-2: 0 time, 1

time, 2-3 times, 4-5 times, 6 or more times; Waves 3-4: 0 time, 1 time, 2 times, 3-4 times, 5

or more). To have a consistent outcome de�nition across all waves, the study outcome was

further categorized as 0 attempts, 1 attempt, or 2 or more attempts at suicide. In all four

in-home questionnaires, individuals were also asked How many hours a week do you play

video or computer games?. This variable was used to de�ne the exposure. Given that the

variable distribution was highly skewed, in the main analysis, we log (base 2) transformed

the exposure (after adding one unit), yielding a more symmetric and approximately normally

distributed exposure. The log base 2 would also provide a straightforward interpretation for

a 1-unit increase in the transformed variable, which then corresponded to a 2-fold increase in

the former skewed variable, the number of hours spent playing video games. Four individuals

who respectively answered that they played video games 120, 140, 168 and 168 hours per

week at one of the four waves had that number truncated to 112 hours per week before

conducting the log transformation, a maximum that corresponded to an average of 16 hours

of gaming per day. We postulated that the e�ect of video games on suicide attempts is

mediated by the depressive mood (see Figure 5.1, right panel). Information on individuals'

mood was available via the question How often was the following true during the past week?

You felt depressed. Possible answers to that question were consistent across all waves, and

consisted in an ordinal scale from 0 to 3, with 0 being never or rarely, and 3 being most of

the time or all the time.

For the causal question of interest, we assume that exposure to video games (possibly on a

transformed scale) a�ects the marginal odds of suicide attempt both directly, and indirectly

via the depressive mood (see e.g. Gold�eld et al. [2016], Maras et al. [2015], and Johnson

et al. [2013]). Depressive mood therefore lies on the causal path from the exposure to video
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games, to the outcome. Other mediators, which are a�ected by exposure to video games

and could a�ect suicide, such as the quality of being fearless about death or having ele-

vated physical pain tolerance (Houtsma [2017]), were not available in this particular study.

Further, we postulate that being depressed and/or spending time on video games, as well

as other characteristics in the confounder set, may make a participant less willing to com-

plete a questionnaire (therefore in�uencing their chances of being �monitored� according to

our de�nition). These assumptions are depicted in the causal diagram in Figure 5.1, right

panel.

The set of potential confounders included age, sex, socioeconomic status (SES) (de�ned using

two questions asked to one of the participant's parent: About how much total income, before

taxes did your family receive in 1994? and How far did you go in school? ; the answers were

transformed into quintiles and summed to give a score betwen 0 and 10, with 10 the highest

SES), ethnicity, the frequency of having trouble relaxing (FHTR), the level of grooming of

the respondent (LGR), seeing that the respondent seemed bored or impatient (RSBI), their

most recent grades in mathematics (MATH), English or language arts (ENG), History or

Social Sciences (HSS) and in Science (GS), the frequency with which they hang out with

friends (HOF), their feeling that friends cared about them (FCA) and the number of days

when they smoked cigarettes over the past month. The waves when these covariates were

measured, and therefore could potentially be updated, are described in Table 5.2 under the

Exposure model column.

In the study, visits (or monitoring times) consisted of the times or waves when the outcome

related to suicide attempts were available. We chose a set of predictors for the monitoring

times which re�ected our beliefs about which individuals' characteristics can in�uence both

their response availability and the number of suicide attempts. Our choice was also in�uenced

by the work of Kalsbeek et al. [2020] on determinants of nonresponse in the Add Health study.

For the monitoring model, we therefore selected age, sex, SES, ethnicity, the variables FHTR,
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LGR, RSBI, MATH, ENG, HSS, GS, HOF, FCA, cigarette consumption in the past month,

as well as the weekly number of hours spent playing video games, and, as de�ned earlier,

the frequency of feeling depressed, which is a potential mediator of the e�ect under study.

The waves when these covariates were measured are also described in Table 5.2, under the

Monitoring model column.

Since the predictors of monitoring must be measured both when there is (dNi(t) = 1) and

there is no visit (dNi(t) = 0) to properly model the monitoring indicators, and that con-

founders should also be available at all times to adequately adjust for confounding, multiple

imputation with 5 replicated datasets (Rubin [1976]) was used to impute missing covariates

on times when there was no visit, as well as on times when the outcome was not missing

but that these variables were simply not recorded or assessed. We therefore assumed that

covariates in the exposure and in the monitoring models were missing at random. Before

conducting the imputation, some variables were merely replaced by sensible summary val-

ues: the grades (MATH, ENG, HSS, GS), which were only measured in the �rst two waves,

were averaged over those two waves and used to replace missing values at any of the four

waves. The sex, SES, and ethnicity, were de�ned only once at baseline and duplicated at all

other waves. If they were missing in Wave 1, they were imputed separately at all four waves

based on other characteristics. Age at all four waves could be inferred by using the years

corresponding to each wave, and the year of birth for each individual. It was only missing

if no information on date of birth or age was ever available. After imputation, all covariates

(including the exposure and the mediator of interest) were completely �lled, except for the

outcome that was left as is. More details on the procedure we used for imputation, the rates

of missing values in each covariates, and the performance of the imputation can be found in

Appendix C.3.
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Table 5.2: Variable de�nition for the analysis of the Add Health study, United States, 1994-
2008, n = 6504 individuals. Waves 1, 2, 3 and 4 are respectively represented by acronyms
W1, W2, W3, and W4. A column presents the times (waves) when these questions were
asked to participants or their parents.

Variable Times of Exposure Monitoring
(question) measurement model model
Age W1, W2, W3, W4 X X
Sex W1† X X
Socioeconomic status (SES)‡ W1† X X
Ethnicity W1† X X
Frequency of having trouble relaxing (FHTR)ζ W1, W2 X X
Level of grooming of the respondent (LGR)ν W1, W2, W3, W4 X X
Respondent seemed bored or impatient (RSBI)ν W1, W2, W3, W4 X X
Most recent grade in Mathematics (MATH) W1, W2 X X
Most recent grade in English/language arts (ENG) W1, W2 X X
Most recent grade in History/Social sciences (HSS) W1, W2 X X
Most recent grade in Science (GS) W1, W2 X X
Frequency of hanging out with friends (HOF)ι W1, W2, W3 X X
Feeling that friends care about you (FCA) W1, W2 X X
How many days of smoking cigarettes over past month W1, W2, W3, W4 X X
Number of hours spent on video or computer games W1, W2, W3, W4 X
Frequency of feeling depressed W1, W2, W3, W4 X
† Considered as remaining �xed throughout the study; ‡ De�ned as the decile of a combination between patients' salary and

patients' education; ν Question answered by the researcher questioning the participant, rather than directly by the
respondent; ι In the past week

Separate proportional intensity models for monitoring, and separate linear regression models

for the exposure (one as a function of the confounders, and another for stabilization), were

�tted on each imputed dataset. In those models, we used the covariates mentioned above and

presented in Table 5.2. Time since cohort entry (thus, since Wave 1) was the time axis we

considered in the Andersen and Gill model for the monitoring rates, and therefore the baseline

monitoring rate λ0(t) canceled across individuals at each wave, such that it did not require

estimation. We present in Appendix C.4 a comparison of the standardized mean di�erences

(SMDs) for the covariates in the proportional intensity model, across observations that were

monitored (outcome has been assessed), versus not monitored (outcome not assessed), and

before or after reweighting the observations by the inverse intensity of visit weight. Those

results are shown for only one imputed dataset. Checking that balance may help in assessing
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the performance of the inverse intensity of visit weight. In this case, the weight clearly

reduced the imbalances due to the monitoring process; none of the SMDs were greater than

0.10 after re-weighting, and all were reduced except for those corresponding to the variables

FHTR and FCA which already were smaller or equal to 0.02 in the unweighted sample (Table

C.3).

Table 5.3: Estimated rate ratios (95% CI) for the monitoring model, Add Health study,
United States, 1994-2008, n = 6504 individuals.

Variable Rate ratio (Bootstrap 95% CI)
Number of hours spent on video or computer games 1.00 (1.00, 1.00)
Frequency of feeling depressed (Ref.= Never or rarely)

Sometimes 1.00 (0.97, 1.02)
A lof of the time 0.99 (0.94, 1.03)
Most of the time or all the time 1.01 (0.94, 1.08)

Age 0.93 (0.93, 0.94)
Sex (Female) 1.11 (1.09, 1.13)
SES 1.01 (1.01, 1.02)
Race (Ref.= White)

Black/African American 0.93 (0.91, 0.95)
American Indian/Alaskan Native 0.96 (0.87, 1.04)
Asian/Paci�c Islander 0.92 (0.88, 0.97)
Other 0.90 (0.86, 0.94)

FHTR 1.00 (0.99, 1.02)
LGR 0.99 (0.98, 1.00)
RSBI 0.98 (0.95, 1.02)
MATH 1.00 (0.99, 1.01)
ENG 1.00 (0.99, 1.01)
HSS 1.00 (0.99, 1.01)
GS 0.99 (0.98, 0.99)
HOF 1.00 (0.99, 1.02)
FCA 1.00 (0.98, 1.01)
How many days of smoking cigarettes over past month 1.00 (1.00, 1.00)

Average rate ratios and estimates for the marginal log-OR of exposure (the log base 2 trans-

formed number of hours spent playing video games) were computed using Rubin's rule for

multiply imputed datasets (Rubin [2004]). For computing 95% con�dence intervals (CI),

we used a nonparametric bootstrap. Data were sampled with replacement within each par-

ticipant cluster, so that each individual had the same number of monitored outcomes in
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each sample as in the original dataset and within-person correlation was maintained across

bootstrap resamples.

We conducted three additional analyses to assess the sensitivity of the results to non-

normality of the exposure distribution. First, in analysis S1, we assessed the original method-

ology with the generalized IPT weight presented in equation (5.4) to estimate the log-OR

for a 1-unit or a 10-hour increases in the number of hours spent playing video games weekly

(not transformed). Second (S2), the same exposure variable as in analysis S1 was used, but

the IPT weight was computed by categorizing the exposure in �ve bins and using a POM

model to �t the estimated probability of belonging to a respective category as a function of

potential confounders. That probability was then used in an inverse weight in the weighted

estimating equations. The �ve categories for the exposure were: 0 hours, 1 hour, and three

other ranges based on the tertiles of the rest of the exposure distribution (the number of

hours spent playing video games). Those categories were chosen for the high frequencies of

0 and 1 in the number of hours spent gaming in the dataset. Third (S3), the same analysis

as in S2 was reproduced, but the exposure in the outcome model was the log base 2 trans-

formed number of hours spent playing video games, rather than the number of hours itself.

The categorical IPT weight was used in S3, with each observation being assigned the same

category as in S2 (given there is a one-to-one mapping between the continuous and the log

base 2 transformed variables). For S3, contrary to S1 and S2, we looked at the marginal

e�ect of a 1-unit increase or 3-unit increase in the log base 2 number of hours, which respec-

tively correspond to a 2-fold or 8-fold increases in the number of hours spent playing video

games.

The estimated rate ratios for monitoring are shown in Table 5.3, along with bootstrap 95%

CI. We found that characteristics such as being older, being male, lower SES, being Black-

/African American, Asian/Paci�c Islander, or from another race than those listed, as well

as having a greater grade in science, were statistically signi�cantly associated with a lower

132



chance of having replied to the question on suicide attempts. Recall that the group that did

not respond to the question was a mix of patients who did not respond to any questionnaire

at a given wave (who were completely absent from the study), and those who simply did not

respond to the question on suicide attempts in particular.

In the main analysis, the four estimators we compared for the marginal OR for a 1-unit

increase or 3-unit increase in the log base 2 number of hours spent on video games are

presented in Table 5.4, with their respective bootstrap CI. A 1-unit or a 3-unit increases in

the log base 2 number of hours respectively correspond to a 2-fold or a 8-fold increases in

the number of hours spent playing video games. We �nd in Table 5.4 that most estimators

show a decrease in the number of suicide attempts for a greater number of hours spent on

video games (2-fold OR: 0.91 (β̂POM), 0.95 (β̂IIV P )) while our doubly-weighted estimator

β̂IPTMP provides an estimate for a 2-fold increase in the number of hours of gaming that

corresponds to a multiplicative e�ect of 1.05 (95% CI 0.92, 1.15) on the odds of passing to

the next category of the categorical suicide attempts variable (i.e., going from 0 to 1 suicide

attempt or from 1 to 2 or more attempts).

Table 5.4: Comparison of four estimators for the marginal OR for a two-fold or 8-fold
increases in the time spent on video games per week, on the odds of suicide attempts (number
of attempts categorized in 0, 1, or more), Add Health study, United States, 1994-2008,
n = 6504 individuals. Con�dence intervals computed via bootstrap resampling.

Estimator 2-fold increase OR (95% CI) 8-fold increase OR (95% CI)
β̂POM 0.91 (0.83, 0.98) 0.76 (0.57, 0.96)
β̂IPTP 0.99 (0.89, 1.08) 0.98 (0.69, 1.28)
β̂IIV P 0.95 (0.85, 1.03) 0.86 (0.61, 1.09)
β̂IPTMP 1.05 (0.92, 1.15) 1.15 (0.78, 1.53)

The coe�cients (log-OR) were not statistically signi�cantly di�erent from 0 for the e�ect

of video games. Our proposed doubly-weighted estimator β̂IPTMP was the only estimator

showing a (non-signi�cant) increase in the probability of more suicide attempts when playing

more video games. The three sensitivity analyses led to similar results (Appendix C.5, Tables
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C.4 to C.6). Using the coe�cients for the marginal OR of exposure and the outcome category-

speci�c intercepts estimated with all four estimators, we can estimate the probability of 1 or

more suicide attempt(s) for any value of the log base 2 transformed number of hours spent

playing video games, or for the corresponding number of hours spent playing video games.

For instance, in the main analysis, we estimated this probability for 5, 10, 30, 70, or 100

hours spent playing video games, and respectively obtained probabilities of (2.3, 2.1, 1.9,

1.7, 1.6) with the POM estimator, (2.0, 1.9, 1.8, 1.7, 1.6) with the IIVP estimator, (2.6, 2.6,

2.6, 2.6, 2.5) for the IPTP estimator, and (2.3, 2.4, 2.6, 2.7, 2.8) with the IPTMP estimator.

In Figure 5.3, we plot and compare the estimated marginal probability of 1 or more suicide

attempt given the time spent on video games, as well as the marginal probability of 2 or

more attempts. The Figure also includes a rug plot on the X-axis, that shows the values

that the exposure (the number of hours spent on video games) takes in the dataset, up

to 110 hours per week. Four observations with respectively 120, 140, 168 and 168 hours

of gaming per week are not included in that rug plot. In Appendix C.6, we present these

estimated probabilities along with the corresponding 95% CI computed from the percentiles

of the bootstrap distribution (Figure C.1). The bootstrap sampling procedure accounted for

the variance of all respective �tted coe�cients used to compute the probabilities. We also

present the same plots that correspond to each of the three sensitivity analyses, either with

or without the corresponding 95% CI � which tend to crowd the graphs � (Figures C.2 to

C.7). We observed similar trends as in the main analysis in all these plots.

While it has been shown that the exposure to active or to serious video games could be

bene�cial to teenagers (see e.g. Zayeni et al. [forthcoming], Zurita-Ortega et al. [2018]),

most studies on that topic were cross-sectional studies that used only one time point per

individual to assess the e�ect of video games. Further, it is yet not clear that non-active

video games are not detrimental to individuals' health and wellbeing (see e.g. Teismann

et al. [2014], Messias et al. [2011], and Anderson and Ford [1986]). We hereby have found

a non-signi�cant detrimental e�ect of increasing the amount of time spent on video games
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each week when accounting for bias due to confounding and selection to report. That e�ect

is estimated marginally but there could be di�erential e�ects across sex (as suggested in

Anderson and Ford [1986]) or by the type of video games. That latter feature, in addition

to some other social behavior determinants or parental determinants, were not available to

us, and therefore the marginal e�ect observed is one that may combine the e�ects in several

di�erent subgroups of video games users (active, non-active, addicted, etc.) which di�er on

characteristics. Finally, we could not �nd similar studies that were experimental and in which

exposure to video games was randomized. More research is needed, with larger datasets, to

understand whether there can be a signi�cant detrimental e�ect of a large amount of time

spent on video games weekly, on suicide attempts.
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Figure 5.3: Probability of 1 or more suicide attempts (top panel) or of 2 or more suicide
attempts (bottom) according to the number of hours spent on video games per week. Com-
parison of four estimators for the marginal log-OR in the main analysis. The rug plot on
the X-axis shows the di�erent values of the number of hours spent playing video games in
the study cohort, up to 110 hours per week.
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5.5 Discussion

In this work, we proposed a methodology for causal inference on the marginal e�ect of a

continuous exposure on a categorical, ordinal outcome. Our methodology utilizes the theory

of estimating equations to derive an estimator for the marginal OR of an exposure. The

methodology applies to settings in which monitoring times are not �xed across individuals

(i.e., can occur at anytime, for anyone) and in which confounding and selection due to

covariate-driven monitoring times can a�ect the estimator for the exposure e�ect. Our

approach requires relatively weak assumptions on the monitoring model to allow inference

in settings with both �xed observation times such as in our motivating example as well as

irregular observation times, such as would be present in electronic health records data. We

illustrated our methodology via an analysis that aimed to evaluate the causal e�ect of the

time spent on video games, on the number of suicide attempts, in a cohort of individuals

followed from adolescence to adulthood. We found a (non-signi�cant) detrimental e�ect of a

larger time spent on video games on the odds of suicide attempts in the study population. We

used nonparametric bootstrap to compute variance estimates in the application. Although

not included, semiparametric theory and in�uence function-based inference could be used to

derive a variance estimator for the marginal OR, or to derive its asymptotic properties more

generally, as has been done in the continuous outcome setting (Coulombe et al. [2021a]).

The methodology we proposed relies on important assumptions about the exposure and the

monitoring model. First, although this was not discussed in depth, our estimator relies

on the assumption of temporality, where the exposure, to cause the outcome, must have

occurred before. In the longitudinal survey, the exposure related to the previous week, and

the outcome, to the previous year. Some extrapolation is necessary to assume that the

current weekly exposure to video games was relatively similar to that one year ago (for a

given individual), and that the e�ect of interest is well-de�ned. Secondly, for translating

our parametric inference to the causal framework, we made the assumption of conditional
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exchangeability for the potential outcome across the di�erent exposure levels, conditional on

a certain set of confounders. As in all observational studies, it is possible that unmeasured

confounders could not be captured. For instance, other social determinants than those we

chose in our models could a�ect the exposure to video games and the suicide attempts.

As discussed in Houtsma [2017], features such as previous aggressions, exposure to media

violence, fearlessness to pain or about death are risk factors for suicide. These factors

could possibly relate to the exposure to video games, either by confounding the e�ect or

by being along the causal path from the exposure to the suicide outcome. Other behavioral

characteristics, such as those in�uenced by the parents during adolescence, were not measured

either and could in�uence both the exposure to gaming and the mood of the individuals.

Furthermore, the proposed methodology relies on the normality assumption for the exposure

distribution, and therefore, the generalized IPT weight could not adjust fully for confounding

if the distribution is far from being normally distributed (even in the cases where we captured

all potential confounders). If the distribution is very skewed or multimodals, then other

generalized IPT weights such as those assessed or proposed in Naimi et al. [2014], and

Schulz and Moodie [2021] should perform better. However, we are con�dent that our results

were not unduly in�uenced by our assumptions regarding the distribution of the exposure as

our sensitivity analyses all came to the same conclusions. Furthermore, correct speci�cations

of the outcome model (the POM) as a function of the exposure, the monitoring model, and

the exposure model can be assessed via standard diagnostic checks, such as residuals check,

and by looking at the balance in covariates across di�erent exposure levels (Austin [2019])

and across the observations corresponding to monitored and unmonitored outcomes (as we

presented in Appendix C.4). Further work will focus on assessing the performance of such

balance checks for the monitoring model, and developing new criteria for the monitoring

model �t. We also assumed positivity of the exposure, hypothesizing that all individuals

could be exposed to any level of time spent on video games after conditioning on their

characteristics. It is unlikely that everyone had the chance of being exposed to more than
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e.g. 30 to 40 hours of video game per week; this could possibly depend on unmeasured

characteristics such as the parents' house rules or other personal individuals' characteristics

(for instance, having a day job). Some methods have been proposed for causal inference on a

continuous exposure that relax the strong assumptions on the exposure positivity (Haneuse

and Rotnitzky [2013], Muñoz and van der Laan [2012]). Some authors also proposed to

target the e�ect of a shift in the propensity of being treated rather than the e�ect of setting

treatment to a �xed value, an approach that does not require positivity (Kim et al. [2019]).

The study context is also one in which interference may be possible, while we assumed that

it was not present. For instance, the exposure of an individual to video games can certainly

a�ect their friend's exposure and, possibly, their friend's outcomes. This remains to study.

However, given the sample size relative to the United States population, it is quite unlikely

that the participants in the Add Health study knew or in�uenced one another.

This work is the �rst to propose a methodology for causal inference data subject to covariate-

driven monitoring times and confounding when the exposure is continuous, and the outcome,

ordinal. Several study outcomes are ordinal, such that our proposed methodology can be

useful in several settings. Our study is also the �rst substantive study to look at the e�ect

of the time spent weekly on video games on the suicide attempts, that accounts both for

confounding and covariate-driven monitoring times. While other studies have considered

potential confounders (without accounting for monitoring times), most presented only a

modest adjustment for confounders (see e.g. Messias et al. [2011]). In studies of video game

exposure, having covariate-driven monitoring times is plausible (see e.g. Khazaal et al. [2014]

who discuss self-selection for online surveys on video games); furthermore, it is very likely

that patients with more suicidal ideation may present with di�erent monitoring patterns than

others (Tylee [1999]). Thus, it is critical to think about those possible biases in observational

studies, when looking at similar causes and their e�ect on suicide attempts.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, I have proposed a general framework for causal inference regarding the marginal

e�ect of an exposure on a longitudinal outcome, when data are subject to confounding and

covariate-driven monitoring times that are associated with the outcome.

In a �rst manuscript, in Chapter 3, two novel consistent estimators were derived and imple-

mented. One of them, the IPCTM weighted estimator, incorporated a generalized inverse

probability of treatment weight that accounted for the re-centered version of the design

matrix in the estimating equations, and it did not require the speci�cation of an intercept

function in the outcome mean model. The simulation studies have shown that this extended

estimator performs well both in settings with time-�xed or time-varying exposure and con-

founders, and that it was slightly less variable than the second estimator, the FIPTM, in

studies with time-varying exposure. However, the FIPTM was found to be easier to im-

plement in practice. In �nite samples, both estimators presented with similar (small) bias,

and both outperformed other estimators that did not account for confounding and covariate-

driven monitoring times simultaneously.
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The second manuscript, presented in Chapter 4 of this thesis, was motivated by an applica-

tion to data from the CPRD in the UK, and the aim to compare the marginal e�ects of two

antidepressant drugs, citalopram and �uoxetine, on BMI. In that manuscript, a thorough

description of the bias due to covariate-driven monitoring times was provided. Strati�cation

collider bias in a longitudinal monitoring context was depicted and its e�ect on the inference

about the ATE was discussed. To answer the substantive research question, a novel cumu-

lated and stabilized weight was proposed, that breaks the links between the monitoring and

the covariate processes all throughout follow-up time, assuming that the monitoring and the

outcome processes are independent conditional on that covariate process. This weight is the

�rst to be proposed for the context where covariates interact with the monitoring process,

inducing long-term dependencies. In simulation studies, the performance of that weight was

demonstrated when using di�erent stabilizers for the visit intensity function. One of the

stabilizers outperformed others. The doubly-weighted estimator using that stabilizer was

consistenly unbiased. The work presented in Chapter 4 also relaxed the assumption about

the availability of the covariate process a�ecting the visit times. Sequential ignorability for

subsequent monitoring indicators was assumed, conditional on the covariate process being

assessed only at times when the outcome was observed. This provides more �exibility in the

analysis of longitudinal data subject to covariate-driven monitoring times.

In Chapter 5, in a third manuscript, the methodology from Chapter 3 was extended to sce-

narios where the exposure of interest is continuous, and where the outcome is categorical

and ordinal. A generalized IPT weight was used to break the links between the pretreat-

ment covariates and the continuous exposure. Alternative weighting strategies were assessed

for settings where the exposure distribution is not normally distributed (e.g., when it is

skewed or multimodal). A few di�erent inverse probability of treatment weighting methods

were compared in the application to the Add Health study, and more insights were gained

into the marginal e�ect of the time spent playing video games, on the number of suicide

attempts.
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6.2 Limitations and avenues for future work

Limitations of the work in this thesis relate mostly to the assumptions made about the ex-

posure and the monitoring models, and to the availability of the data.

The proposed methodologies all rely on a set of assumptions that are necessary for the cor-

responding estimators to be consistent. The potential confounders and the predictors of the

monitoring indicators must be identi�ed correctly, and their form (e.g. linear, logged) in

the models should be speci�ed correctly. Further, for the exposure models, the usual causal

inference assumptions of temporality, positivity, consistency of the potential outcome, a well-

de�ned exposure and conditional exchangeability (on a set of potential confounders) must

be met. Similar conditions must be met for the monitoring model. The IIVW only properly

adjust for informative monitoring times if positivity and conditional exchangeability (on a

set of predictors) are met. While some of these assumptions are empirically veri�able, the

exchangeability conditions are hard to check in practice. That is especially true for the

monitoring model, where, to my knowledge, no sensitivity analysis has been developed to

assess conditional exchangeability speci�cally. However, as suggested by the authors Sun

et al. [2005], their joint modeling method could potentially be used to assess independence

between the monitoring and the outcome processes. This thesis also relied throughout on

the assumption that the monitoring times coincide with the times when the outcome process

is observed, and for Chapters 3 and 5, it relied on the covariate process which a�ects moni-

toring to be continuously measured. However, in most observational studies like those using

EHR data, it is likely that covariates will be updated at irregular times during follow-up,

and that a mix of observed and unobserved covariates will be available at each point in time.

A very thorough analysis could potentially account for the monitoring probability of each

single covariate, having for instance a monitoring model for the outcome, the exposure, and

for each covariate that a�ects the outcome or the outcome monitoring.

When used in practice, the work presented in this thesis relies heavily on a correct speci�-

cation of the data generating mechanism and corresponding causal diagram. In particular,
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if a variable acts as a mediator but it is treated as a confounder, then including it in the

set of potential confounders can bias the proposed estimators. This suggests that substan-

tive knowledge about the research question is highly important. In the �rst and the third

manuscripts of this thesis, the substantive research questions were used mostly as illustra-

tions for the respective methods, and co-authors had modest knowledge about the more

substantive theory (e.g., on biological mechanisms). For correct causal inferences, it would

be important to include in the research team experts in the respective substantive �elds, and

to include in the corresponding work exhaustive literature reviews on the matter.

For future work, the proposed methods could be compared to imputation-type methods

where missing values in the outcome are replaced, rather than being treated using IIV

weights. It would be interesting to compare the variances of the di�erent methods. Further-

more, the methods extended in this thesis were also extended outside of the causal framework

to account for random e�ects (e.g., for contexts where the outcome is missing not at ran-

dom). It would be interesting to describe the advantages of using random e�ects, and assess

their use in the monitoring or in the exposure models, in a causal inference context.

6.3 Concluding remarks

In this thesis, I proposed novel methods that can be used in longitudinal observational

studies to assess the causal marginal e�ect of an exposure, on a continuous or an ordinal

longitudinal outcome. This thesis advances the statistical literature on causal inference

through the development of the asymptotic theory of some of the proposed estimators, and

through their demonstration via extensive simulation studies. In addition, I provided a

comprehensive description of the bias due to covariate-driven monitoring times, via the use

of causal diagrams. I applied the proposed methods to di�erent types of datasets, and

to answer varied substantive research questions concerning mental health in adolescents and

adults. This provided step-by-step illustrations for other researchers who would like to apply
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the proposed methods in other contexts.
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APPENDIX A

Appendix to Manuscript 1

A.1 Theoretical proofs and development of an estimator

for the conditional e�ect of treatment

1) First, we show that

E[dPi(t)|Ii(t),Ki(t)] = 0

where Pi(t) =
∫︁ t

0
1

ρi(s;γ)
{(Yi(s)− βIIi(s)− β′

KKi(s)) dNi(s)− ξi(s) exp (γ
′
V Vi(s)) dA (s)},

with

A (t) =

∫︂ t

0

α(s)dΛ(s). (A0)

Assumptions:

E[Yi(t)|Ii(t),Ki(t)] = α(t) + βIIi(t) + β
′
KKi(t) (A1)

E[dNi(t)|Vi(t)] = ξi(t) exp (γ
′
VVi(t)) dΛ(t) (A2)

Ni(t) ⊥ Yi(t)|Vi(t) (A3)

147



We have that

E[dPi(t)|Ii(t),Ki(t)] = E

[︃
exp γIIi(t)

exp (γ′
1Zi(t)+ γ2Ii(t))

(Yi(t)− βIIi(t)− β′
KKi(t)) dNi(t)

⃓⃓
Ii(t),Ki(t)

]︃
−E

[︃
exp γIIi(t)

exp (γ′
1Zi(t)+ γ2Ii(t))

ξi(t) exp (γ
′
1Zi(t)+ γ2Ii(t)) dA (t)

⃓⃓
Ii(t),Ki(t)

]︃
=

exp (γIIi(t))

exp(γ2Ii(t))
E

[︃
1

expγ′
1Zi(t)

(Yi(t)− βIIi(t)− β′
KKi(t)) dNi(t)

⃓⃓
Ii(t),Ki(t)

]︃
−exp (γIIi(t))

exp(γ2Ii(t))
E

[︃
1

exp (γ′
1Zi(t))

ξi(t) exp (γ
′
1Zi(t)+ γ2Ii(t)) dA (t)

⃓⃓
Ii(t),Ki(t)

]︃
=

exp (γIIi(t))

exp(γ2Ii(t))
α(t)E

[︃
1

expγ′
1Zi(t)

dNi(t)
⃓⃓
Ii(t),Ki(t)

]︃
−exp (γIIi(t))

exp(γ2Ii(t))
α(t)E

[︃
1

exp (γ′
1Zi(t))

ξi(t) exp (γ
′
1Zi(t)+ γ2Ii(t)) dΛ(t)

⃓⃓
Ii(t),Ki(t)

]︃
,

where the �rst term in the �nal equality follows from (A1) and (A3), and the second term

follows from (A0). Using the iterated expectation for

E [dNi(t)|Ii(t),Ki(t)] = E [E [dNi(t)|Ii(t),Ki(t),Zi(t)]] ,

it follows that

E[dPi(t)|Ii(t),Ki(t)]

=
exp (γIIi(t))

exp(γ2Ii(t))
α(t)E

[︃
E

[︃
1

expγ′
1Zi(t)

dNi(t)
⃓⃓
Ii(t),Ki(t),Zi(t)

]︃]︃
− exp (γIIi(t))

exp(γ2Ii(t))
α(t)E

[︃
E

[︃
1

exp (γ′
1Zi(t))

ξi(t) exp (γ
′
1Zi(t)+ γ2Ii(t)) dΛ(t)

⃓⃓
Ii(t),Ki(t),Zi(t)

]︃]︃
=

exp (γIIi(t))

exp(γ2Ii(t))
α(t)E

[︃
1

expγ′
1Zi(t)

ξi(t) exp (γ
′
1Zi(t)+ γ2Ii(t)) dΛ(t)

]︃
− exp (γIIi(t))

exp(γ2Ii(t))
α(t)E

[︃
1

exp (γ′
1Zi(t))

ξi(t) exp (γ
′
1Zi(t)+ γ2Ii(t)) dΛ(t)

]︃
from (A2)

= 0.

2) Second, we derive the estimators for the conditional e�ects. The estimators are based on
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the set of estimating equations:

n∑︂
i=1

Pi(t;β, γ̂,A ) = 0 ∀t ∈ [0, τ ] (A4)

n∑︂
i=1

∫︂ τ

0

W (t)

⎛⎜⎝ Ii(t)

Ki(t)

⎞⎟⎠ dPi(t;β, γ̂, Â ) = 0. (A5)

In equation (A4), we have that:

n∑︂
i=1

Pi(t) =
n∑︂

i=1

∫︂ t

0

1

ρi(s;γ)
{(Yi(s)− βIIi(s)− β′

KKi(s)) dNi(s)− ξi(s) exp (γ
′
VVi(s)) dA (s)} = 0

with one set of solutions being

1

ρi(s;γ)
{(Yi(s)− βIIi(s)− β′

KKi(s)) dNi(s)} =
1

ρi(s;γ)
{ξi(s) exp (γ ′

VVi(s)) dA (s)}

∀ 0 < s < t, i = 1, ..., n,

which implies
n∑︂

i=1

1

ρi(s;γ)
{(Yi(s)− βIIi(s)− β′

KKi(s)) dNi(s)} = dA (s)
n∑︂

i=1

1

ρi(s;γ)
{ξi(s) exp (γ ′

VVi(s))}

∀ 0 < s < t,

leading to the estimator

A (t)ˆ =
n∑︂

i=1

∫︂ t

0

1
ρi(s;γ)

(Yi(s)− βIIi(s)− β′
KKi(s))dNi(s))∑︁n

j=1
1

ρj(s;γ)
ξj(s) exp (γ ′

VVj(s))
. (A6)
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Now, substituting the equation from (A6) into equation (A5), we have

n∑︂
i=1

∫︂ τ

0

W (t)

⎛⎜⎝ Ii(t)

Ki(t)

⎞⎟⎠ dPi(t; β, γ̂, Â )

=
n∑︂

i=1

∫︂ τ

0

W (t)

⎛⎜⎝ Ii(t)

Ki(t)

⎞⎟⎠[︃ 1

ρi(t;γ)
[(Yi(t)− βIIi(t)− βK

′Ki(t))dNi(t)]

]︃

−
n∑︂

i=1

∫︂ τ

0

W (t)

⎛⎜⎝ Ii(t)

Ki(t)

⎞⎟⎠[︄ 1

ρi(t;γ)

[︄
ξi(t) exp

γ′
V Vi(t)

{︄∑︁n
d=1

1
ρd(t;γ)

(Yd(t)− βIId(t)− βK
′Kd(t))dNd(t)∑︁n

j=1
1

ρj(t;γ)
ξj(t) expγ

′
V Vj(t)

}︄]︄]︄

=
n∑︂

i=1

∫︂ τ

0

W (t)
1

ρi(t;γ)
[(Yi(t)− βIIi(t)− β′

KKi(t))dNi(t)]

×

⎡⎢⎣
⎛⎜⎝ Ii(t)

Ki(t)

⎞⎟⎠−

⎛⎜⎝ Ii(t)

Ki(t)

⎞⎟⎠ ξi(t) exp
γ′
V Vi(t)

[︄
1

ρi(t;γ)∑︁n
j=1

1
ρj(t;γ)

ξj(t) expγ ′
VVj(t)

]︄⎤⎥⎦
=

n∑︂
i=1

∫︂ τ

0

W (t)
1

ρi(t;γ)
[(Yi(t)− βIIi(t)− βK

′Ki(t))dNi(t)]

×

⎡⎢⎣
⎛⎜⎝ Ii(t)

Ki(t)

⎞⎟⎠−

⎛⎜⎝ Ii(t)

Ki(t)

⎞⎟⎠ ξi(t)
expγ

′
V Vi(t)

ρi(t;γ)

1∑︁n
j=1

expγ′
V Vj(t)

ρj(t;γ)
ξj(t)

⎤⎥⎦ =
n∑︂

i=1

∫︂ τ

0

W (t)
1

ρi(t;γ)
[(Yi(t)− βIIi(t)− β′

KKi(t))dNi(t)]

⎡⎢⎣
⎛⎜⎝ Ii(t)

Ki(t)

⎞⎟⎠−

⎛⎜⎝ Ii(t)

Ki(t)

⎞⎟⎠ ξi(t) exp (γIIi(t))∑︁n
j=1 ξj(t) exp

(γIIj(t))

⎤⎥⎦
=

n∑︂
i=1

∫︂ τ

0

W (t)

ρi(t;γ)

⎡⎢⎣(Yi(t)− βIIi(t)− β′
KKi(t))

⎛⎜⎝ Ii(t)− Ī(t; γ̂I)

Ki(t)− K̄(t; γ̂I)

⎞⎟⎠ dNi(t)

⎤⎥⎦
and the estimation equation is provided by the very last row above. Just as in B·ºková and

Lumley [2009], and Lin and Ying [2001], we re-centered the outcome by Ȳ ∗
(t; γ̂I) to reduce
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the variance of the estimators, leading to the �nal estimating equations

U(β, α, γ̂) =
n∑︂

i=1

∫︂ τ

0

W (t)

ρi(t; γ̂)

⎛⎜⎝ Ii(t)− Ī(t; γ̂I)

Ki(t)− K̄(t; γ̂I)

⎞⎟⎠
′

×

⎡⎢⎣Yi(t)− Ȳ
∗
(t; γ̂I)− [βI βK ]′

⎛⎜⎝ Ii(t)− Ī(t; γ̂I)

Ki(t)− K̄(t; γ̂I)

⎞⎟⎠
⎤⎥⎦ dNi(t).

(A7)

Using these estimating equations, we �nd the following estimators for the conditional e�ect

of

[︃
Ii(t) Ki(t)

]︃′
in (O2):

[β̂I β̂k]
′ =

⎡⎢⎣ n∑︂
i=1

∫︂ τ

0

W (t)

ρi(t; γ̂)

⎛⎜⎝ Ii(t)− Ī(t; γ̂I)

Ki(t)− K̄(t; γ̂I)

⎞⎟⎠
⊗2

dNi(t)

⎤⎥⎦
−1

×
n∑︂

i=1

∫︂ τ

0

W (t)

ρi(t; γ̂)

⎛⎜⎝ Ii(t)− Ī(t; γ̂I)

Ki(t)− K̄(t; γ̂I)

⎞⎟⎠
′ (︁
Yi(t)− Ȳ

∗
(t; γ̂I)

)︁
dNi(t).

(A8)

A.2 Unbiasedness of the IPCTM estimator

The unbiasedness of the IPCTM estimator can be shown using arguments similar to those

used for standard IPT weighting in a linear regression model (see Rosenbaum and Rubin

[1983]; Horvitz and Thompson [1952]; Robins [1986]). The estimating equation

U cond(β, α, γ̂) =
n∑︂

i=1

∫︂ τ

0

W (t)

ρi(t; γ̂)

⎛⎜⎝ Ii(t)− Ī(t; γ̂I)

Ki(t)− K̄(t; γ̂I)

⎞⎟⎠
×

⎡⎢⎣Yi(t)− Ȳ
∗
(t; γ̂I)− [βI βK ]′

⎛⎜⎝ Ii(t)− Ī(t; γ̂I)

Ki(t)− K̄(t; γ̂I)

⎞⎟⎠
⎤⎥⎦ dNi(t)
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corresponds to the equation for the estimation of the conditional e�ect of intervention Ii(t)

in a model such as (O2) when the other assumptions mentioned in section 3.2 hold. The

proof is presented in Appendix A.1. However, we can also see this as the estimating equation

for a linear model,

E
[︁
Yi(t)− Ȳ

∗
(t; γ̂I)|Ii(t)− Ī(t; γ̂I),Ki(t)− K̄(t; γ̂I)

]︁
= β∗

I (Ii(t)−Ī(t; γ̂I))+β∗
K(Ki(t)− K̄(t; γ̂I)),

with weights W (t)/ρi(t; γ̂). Re-weighting the observations by W (t)/ρi(t; γ̂) removes the

arrow from (Ii(t)− Ī(t; γ̂I)) and Zi(t) to dNi(t), while further re-weighting the observations

at time t, for individual i by the weight

sgwi(t; ψ̂0, ψ̂1, ψ̂m) =
g−1

(︂
ψ̂0 + ψ̂

′
1(Ki(t)− K̄(t; γ̂I))

)︂
g−1

(︂
ψ̂m

)︂
removes the arrow from (Ki(t)− K̄(t; γ̂I)) to (Ii(t) − Ī(t; γ̂I)) in the �nal DAG for the

weighted pseudo-population, as shown below,

Ii(t)− Ī(t; γ̂I)

Zi(t)

Yi(t)− Ȳ
∗
(t; γ̂I)

dNi(t)

Ki(t)− K̄(t; γ̂I)

After re-weighting, one can estimate the marginal e�ect of (Ii(t) − Ī(t; γ̂I)) on (Yi(t) −

Ȳ
∗
(t; γ̂I)) in the model

E
[︁
Yi(t)− Ȳ

∗
(t; γ̂I)|Ii(t)− Ī(t; γ̂I)

]︁
= β(Ii(t)− Ī(t; γ̂I))
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using the marginal estimating equation

Umar(β, α, γ̂, ψ̂) =
n∑︂

i=1

∫︂ τ

0

W (t)

ρi(t; γ̂)

1

sgwi(t; ψ̂)

(︁
Ii(t)− Ī(t; γ̂I)

)︁
×
[︁
Yi(t)− Ȳ

∗
(t; γ̂I)− β

(︁
Ii(t)− Ī(t; γ̂I)

)︁]︁
dNi(t). (E3)

Here, β is the same parameter as in

E [Yi(t)|Ii(t)] = α(t) + βIi(t).

A.3 Asymptotic variance for the �exible inverse proba-

bility of treatment and monitoring estimator

Important notes:

� Here we show the variance for the case where the inverse probability of treatment

weight ei(t; ω̂) varies in time. When it does not vary and is adjusted for confounders

at baseline only, the formula has to be adjusted to take into account the fact that the

logistic regression model incorporates only one data row per individual rather than one

data row per (discretized) time unit for all individuals.

� In the calculation below, we consider that the confounders K do not a�ect the moni-

toring process. If they do, the calculation below should be updated by incorporating

them into the matrix Z(t).

Under assumptions (O2), (V1), (V2), (P1), (P2), (P3) and (C1), β̂FIPTM is a two-step

m-estimator. Two-step estimators are de�ned by Newey and McFadden [1994] as estimators

that are based on some preliminary, �rst-step estimator of a parameter vector. Often, a

�rst-step estimator is used to estimate the nuisance parameters (e.g., parameters used in a

weight, which will further be incorporated into the two-step estimator). M-estimators, on
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the other hand, are obtained by solving a sample average equation and often consist of the

zero roots of an estimating equation.

For β̂TSE a two-step semiparametric estimator and β0 the vector of true parameters, Newey

and McFadden [1994] show that
√
n(β̂TSE − β0) → N(0,Σ), with

Σ = G−1
β E

[︂{︁
g(o; β0, ϕ0)−GϕM

−1m(o;ϕ0)
}︁⊗2
]︂
G−1

β (A.1)

where

Gβ = E(▽βg(o; β0, ϕ0))

Gϕ = E(▽ϕg(o; β0, ϕ0))

M = E(▽ϕm(o;ϕ0))

for o the data, and m(o;ϕ0) and g(o; β0, ϕ0) the estimating equations for the nuisance

parameters ϕ and the parameters of interest β, respectively.

Recall

β̂FIPTM =

[︄
n∑︂

i=1

∫︂ τ

0

ei(t;ω)
φi(t; γ̂)

Si(t)
⊗2dNi(t)

]︄−1 n∑︂
i=1

∫︂ τ

0

ei(t;ω)
φi(t; γ̂)

Si(t)
′Yi(t)dNi(t),
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where the weights and the outcome models are based on the following estimating equa-

tions:

mi(o(t); ϕ̂) = mi(o(t); ω̂, γ̂aug) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(︂
Ii(t)−

exp(ω̂′K†
i (t))

1+exp(ω̂′K†
i (t))

)︂
K†

i1(t)(︂
Ii(t)−

exp(ω̂′K†
i (t))

1+exp(ω̂′K†
i (t))

)︂
K†

i2(t)(︂
Ii(t)−

exp(ω̂′K†
i (t))

1+exp(ω̂′K†
i (t))

)︂
K†

i3(t)(︂
Ii(t)−

exp(ω̂′K†
i (t))

1+exp(ω̂′K†
i (t))

)︂
K†

i4(t)(︂
dNi(t)−

exp(γ̂′
augV

‡
i (t))

1+exp(γ̂′
augV

‡
i (t))

)︂
V ‡
i1(t)(︂

dNi(t)−
exp(γ̂′

augV
‡
i (t))

1+exp(γ̂′
augV

‡
i (t))

)︂
V ‡
i2(t)(︂

dNi(t)−
exp(γ̂′

augV
‡
i (t))

1+exp(γ̂′
augV

‡
i (t))

)︂
V ‡
i3(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

gi(o(t); β̂, ϕ̂) = gi(o(t); β̂, ω̂, γ̂) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ei(t;ω̂)
φi(t;γ̂)

(︂
Yi(t)− β̂

′
Si(t)

)︂
Si1(t)

ei(t;ω̂)
φi(t;γ̂)

(︂
Yi(t)− β̂

′
Si(t)

)︂
Si2(t)

ei(t;ω̂)
φi(t;γ̂)

(︂
Yi(t)− β̂

′
Si(t)

)︂
Si3(t)

ei(t;ω̂)
φi(t;γ̂)

(︂
Yi(t)− β̂

′
Si(t)

)︂
Si4(t)

ei(t;ω̂)
φi(t;γ̂)

(︂
Yi(t)− β̂

′
Si(t)

)︂
Si5(t)

ei(t;ω̂)
φi(t;γ̂)

(︂
Yi(t)− β̂

′
Si(t)

)︂
Si6(t)

ei(t;ω̂)
φi(t;γ̂)

(︂
Yi(t)− β̂

′
Si(t)

)︂
Si7(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for Ki(t)

† and Vi(t)
‡ respectively the confounders and the monitoring predictors matrices

augmented with a leading column of 1. The parameters γaug correspond to parameters γ

augmented with a leading value that is the intercept of the monitoring model with design

matrix Vi(t)
‡. Note that these parameters can be estimated using the glm function in R.

More generally, we denote by Pil(t) the value at time t and for individual i that is in the lth

column of the matrix P.
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For the estimation of Gβ = E(▽βg(o; β0, ϕ0)), we obtain

Ĝβ,n =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
nv

∑︁n
i=1

∫︁ τ

0
ei(t;ω̂)
φi(t;γ̂)

Si(t)
′Si1(t)dNi(t)

− 1
nv

∑︁n
i=1

∫︁ τ

0
ei(t;ω̂)
φi(t;γ̂)

Si(t)
′Si2(t)dNi(t)

− 1
nv

∑︁n
i=1

∫︁ τ

0
ei(t;ω̂)
φi(t;γ̂)

Si(t)
′Si3(t)dNi(t)

− 1
nv

∑︁n
i=1

∫︁ τ

0
ei(t;ω̂)
φi(t;γ̂)

Si(t)
′Si4(t)dNi(t)

− 1
nv

∑︁n
i=1

∫︁ τ

0
ei(t;ω̂)
φi(t;γ̂)

Si(t)
′Si5(t)dNi(t)

− 1
nv

∑︁n
i=1

∫︁ τ

0
ei(t;ω̂)
φi(t;γ̂)

Si(t)
′Si6(t)dNi(t)

− 1
nv

∑︁n
i=1

∫︁ τ

0
ei(t;ω̂)
φi(t;γ̂)

Si(t)
′Si7(t)dNi(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for nv the number of rows in the dataset restricted to dNi(t) = 1. Note that, for example,

Ĝβ,n is a 7 × 7 matrix in the case where we include two knots for the basis of the cubic

splines, an intercept, and the intervention in S(t).

The matrix Gϕ = E(▽ϕg(o; β0, ϕ0)) is estimated by

Ĝϕ,n =

[︃
A B

]︃

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
nr

∑︁n
i=1

∫︁ τ

0
1

φi(t;γ̂)

(︂
Yi(t)− β̂′Si(t)

)︂
Si1(t)

{︂
IIi(t)=0 exp(ω̂

′Ki(t)
†) + IIi(t)=1

−1
exp(ω̂′Ki(t)†)

}︂
Ki(t)

†′

1
nr

∑︁n
i=1

∫︁ τ

0
1

φi(t;γ̂)

(︂
Yi(t)− β̂′Si(t)

)︂
Si2(t)

{︂
IIi(t)=0 exp(ω̂

′Ki(t)
†) + IIi(t)=1

−1
exp(ω̂′Ki(t)†)

}︂
Ki(t)

†′

1
nr

∑︁n
i=1

∫︁ τ

0
1

φi(t;γ̂)

(︂
Yi(t)− β̂′Si(t)

)︂
Si3(t)

{︂
IIi(t)=0 exp(ω̂

′Ki(t)
†) + IIi(t)=1

−1
exp(ω̂′Ki(t)†)

}︂
Ki(t)

†′

1
nr

∑︁n
i=1

∫︁ τ

0
1

φi(t;γ̂)

(︂
Yi(t)− β̂′Si(t)

)︂
Si4(t)

{︂
IIi(t)=0 exp(ω̂

′Ki(t)
†) + IIi(t)=1

−1
exp(ω̂′Ki(t)†)

}︂
Ki(t)

†′

1
nr

∑︁n
i=1

∫︁ τ

0
1

φi(t;γ̂)

(︂
Yi(t)− β̂′Si(t)

)︂
Si5(t)

{︂
IIi(t)=0 exp(ω̂

′Ki(t)
†) + IIi(t)=1

−1
exp(ω̂′Ki(t)†)

}︂
Ki(t)

†′

1
nr

∑︁n
i=1

∫︁ τ

0
1

φi(t;γ̂)

(︂
Yi(t)− β̂′Si(t)

)︂
Si6(t)

{︂
IIi(t)=0 exp(ω̂

′Ki(t)
†) + IIi(t)=1

−1
exp(ω̂′Ki(t)†)

}︂
Ki(t)

†′

1
nr

∑︁n
i=1

∫︁ τ

0
1

φi(t;γ̂)

(︂
Yi(t)− β̂′Si(t)

)︂
Si7(t)

{︂
IIi(t)=0 exp(ω̂

′Ki(t)
†) + IIi(t)=1

−1
exp(ω̂′Ki(t)†)

}︂
Ki(t)

†′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
nr

∑︁n
i=1

∫︁ τ

0
ei(t;ω̂)
φi(t;γ̂)

(︂
Yi(t)− β̂′Si(t)

)︂
Si1(t)Vi(t)

‡′

− 1
nr

∑︁n
i=1

∫︁ τ

0
ei(t;ω̂)
φi(t;γ̂)

(︂
Yi(t)− β̂′Si(t)

)︂
Si2(t)Vi(t)

‡′

− 1
nr

∑︁n
i=1

∫︁ τ

0
ei(t;ω̂)
φi(t;γ̂)

(︂
Yi(t)− β̂′Si(t)

)︂
Si3(t)Vi(t)

‡′

− 1
nr

∑︁n
i=1

∫︁ τ

0
ei(t;ω̂)
φi(t;γ̂)

(︂
Yi(t)− β̂′Si(t)

)︂
Si4(t)Vi(t)

‡′

− 1
nr

∑︁n
i=1

∫︁ τ

0
ei(t;ω̂)
φi(t;γ̂)

(︂
Yi(t)− β̂′Si(t)

)︂
Si5(t)Vi(t)

‡′

− 1
nr

∑︁n
i=1

∫︁ τ

0
ei(t;ω̂)
φi(t;γ̂)

(︂
Yi(t)− β̂′Si(t)

)︂
Si6(t)Vi(t)

‡′

− 1
nr

∑︁n
i=1

∫︁ τ

0
ei(t;ω̂)
φi(t;γ̂)

(︂
Yi(t)− β̂′Si(t)

)︂
Si7(t)Vi(t)

‡′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

for nr the number of rows in the full dataset (counting all individuals and all times when

covariates are recorded, even when the outcome is not). The matrix Ĝϕ,n has a dimension

7× 7 when the matrix S(t) contains the basis of cubic splines with two knots and when ϕ is

made of 7 parameters. In this situation, the matrixA above is 7×4 and the matrix B is 7×3.

Finally, estimate M = E(▽ϕm(o;ϕ0)) using the blocks

M̂n =

⎡⎢⎣C 0

0 D

⎤⎥⎦
where

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
nr

∑︁n
i=1

∫︁ τ

0
− exp(ω̂′Ki(t)

†)
(1+exp(ω̂′Ki(t)†))2

Ki1(t)Ki(t)
†′

1
nr

∑︁n
i=1

∫︁ τ

0
− exp(ω̂′Ki(t)

†)
(1+exp(ω̂′Ki(t)†))2

Ki2(t)Ki(t)
†′

1
nr

∑︁n
i=1

∫︁ τ

0
− exp(ω̂′Ki(t)

†)
(1+exp(ω̂′Ki(t)†))2

Ki3(t)Ki(t)
†′

1
nr

∑︁n
i=1

∫︁ τ

0
− exp(ω̂′Ki(t)

†)
(1+exp(ω̂′Ki(t)†))2

Ki4(t)Ki(t)
†′

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,
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and

D =

⎡⎢⎢⎢⎢⎣
1
nr

∑︁n
i=1

∫︁ τ

0

− exp(γ̂′
augVi(t)

‡)

(1+exp(γ̂′
augVi(t)‡))2

Vi1(t)
‡Vi(t)

‡′

1
nr

∑︁n
i=1

∫︁ τ

0

− exp(γ̂′
augVi(t)

‡)

(1+exp(γ̂′
augVi(t)‡))2

Vi2(t)
‡Vi(t)

‡′

1
nr

∑︁n
i=1

∫︁ τ

0

− exp(γ̂′
augVi(t)

‡)

(1+exp(γ̂′
augVi(t)‡))2

Vi3(t)
‡Vi(t)

‡′

⎤⎥⎥⎥⎥⎦ .
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A.4 Summary statistics for the simulation studies

Table A.1: Study with confounding and covariate-dependent monitoring times (τ = 2, n =
250)

Treatment Median Absolute
& α(t) (γ1,γ2) no. visits bias

confounders (IQR) β̂OLS
† β̂VW

‡ β̂IPT
⋆ β̂FIPTM β̂IPCTM

Time- 3 (0, 0) 1 (1-2) 0.72 0.71 0.06 0.09 0.08
�xed (−0.3, 0.2) 2 (1-3) 1.05 0.72 1.77 0.04 0.01

(0.6, 0.3) 5 (4-7) 1.98 0.76 2.65 0.00 0.02
2.5t (0, 0) 1 (1-2) 0.73 0.74 0.07 0.08 0.10

(−0.3, 0.2) 2 (1-3) 1.07 0.75 1.77 0.03 0.01
(0.6, 0.3) 5 (4-7) 1.97 0.76 2.64 0.04 0.03

sin(t) (0, 0) 1 (1-2) 0.74 0.74 0.02 0.07 0.06
(−0.3, 0.2) 2 (1-3) 1.08 0.71 1.75 0.04 0.04
(0.6, 0.3) 5 (4-7) 1.98 0.77 2.53 0.01 0.00√

t (0, 0) 1 (1-2) 0.72 0.73 0.03 0.09 0.07
(−0.3, 0.2) 2 (1-3) 1.06 0.74 1.71 0.01 0.02
(0.6, 0.3) 5 (4-7) 1.96 0.78 2.62 0.01 0.01

exp(2| sin(3t)|) (0, 0) 1 (1-2) 0.72 0.73 0.01 0.09 0.11
(−0.3, 0.2) 2 (1-3) 1.06 0.74 1.75 0.01 0.01
(0.6, 0.3) 5 (4-7) 1.96 0.78 2.68 0.01 0.01

Time- 3 (0, 0) 1 (1-2) 0.54 0.52 0.04 0.06 0.02
varying (−0.3, 0.2) 2 (1-3) 2.91 0.49 1.77 0.03 0.02

(0.6, 0.3) 5 (4-7) 4.10 0.42 2.66 0.03 0.08
2.5t (0, 0) 1 (1-2) 0.49 0.48 0.09 0.01 0.07

(−0.3, 0.2) 2 (1-3) 2.88 0.46 1.75 0.01 0.06
(0.6, 0.3) 5 (4-7) 4.10 0.45 2.65 0.00 0.09

sin(t) (0, 0) 1 (1-2) 0.52 0.51 0.00 0.05 0.11
(−0.3, 0.2) 2 (1-3) 2.90 0.50 1.77 0.05 0.06
(0.6, 0.3) 5 (4-7) 4.08 0.43 2.64 0.05 0.07√

t (0, 0) 1 (1-2) 0.52 0.51 0.04 0.06 0.10
(−0.3, 0.2) 2 (1-3) 2.90 0.47 1.73 0.02 0.05
(0.6, 0.3) 5 (4-7) 4.01 0.43 2.65 0.01 0.04

exp(2| sin(3t)|) (0, 0) 1 (1-2) 0.55 0.51 0.06 0.04 0.05
(−0.3, 0.2) 2 (1-3) 2.91 0.48 1.77 0.03 0.04
(0.6, 0.3) 5 (4-7) 4.11 0.43 2.65 0.03 0.06

† Ordinary least squares regression with outcome Yi(t) and exposure Ii(t) with a constant intercept
‡ Weighted least squares regression with outcome Yi(t) and exposure Ii(t) with a constant intercept and an inverse probability
of monitoring weight computed from a proportional intensity model with Ii(t) and Zi(t) as predictors
⋆ Weighted least squares regression with outcome Yi(t) and exposure Ii(t) with a constant intercept and one an inverse
probability of treatment weight computed from a logistic regression model with Ki(t) as predictors
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Table A.2: Study with confounding and covariate-dependent monitoring times (τ = 2, n =
500)

Treatment Median Absolute
& α(t) (γ1,γ2) no. visits bias

confounders (IQR) β̂OLS
† β̂VW

‡ β̂IPT
⋆ β̂FIPTM β̂IPCTM

Time-�xed 3 (0, 0) 1 (1-2) 0.74 0.73 0.01 0.05 0.11
(−0.3, 0.2) 2 (1-3) 1.08 0.74 1.78 0.02 0.03
(0.6, 0.3) 5 (4-7) 1.97 0.78 2.66 0.04 0.05

2.5t (0, 0) 1 (1-2) 0.69 0.69 0.04 0.05 0.06
(−0.3, 0.2) 2 (1-3) 1.06 0.75 1.78 0.01 0.02
(0.6, 0.3) 5 (4-7) 1.96 0.79 2.67 0.05 0.02

sin(t) (0, 0) 1 (1-2) 0.72 0.72 0.00 0.05 0.06
(−0.3, 0.2) 2 (1-3) 1.07 0.73 1.78 0.01 0.02
(0.6, 0.3) 5 (4-7) 1.96 0.79 2.66 0.06 0.02√

t (0, 0) 1 (1-2) 0.73 0.72 0.01 0.04 0.07
(−0.3, 0.2) 2 (1-3) 1.07 0.74 1.73 0.00 0.01
(0.6, 0.3) 5 (4-7) 1.96 0.80 2.67 0.05 0.03

exp(2| sin(3t)|) (0, 0) 1 (1-2) 0.71 0.71 0.02 0.03 0.11
(−0.3, 0.2) 2 (1-3) 1.05 0.75 1.78 0.00 0.00
(0.6, 0.3) 5 (4-7) 1.95 0.80 2.67 0.07 0.03

Time-varying 3 (0, 0) 1 (1-2) 0.49 0.48 0.03 0.03 0.07
(−0.3, 0.2) 2 (1-3) 2.90 0.48 1.76 0.03 0.00
(0.6, 0.3) 5 (4-7) 4.10 0.41 2.67 0.06 0.05

2.5t (0, 0) 1 (1-2) 0.49 0.49 0.06 0.03 0.12
(−0.3, 0.2) 2 (1-3) 2.89 0.47 1.73 0.01 0.04
(0.6, 0.3) 5 (4-7) 4.08 0.42 2.63 0.04 0.06

sin(t) (0, 0) 1 (1-2) 0.49 0.50 0.00 0.01 0.06
(−0.3, 0.2) 2 (1-3) 2.88 0.47 1.79 0.00 0.01
(0.6, 0.3) 5 (4-7) 4.09 0.40 2.69 0.05 0.04√

t (0, 0) 1 (1-2) 0.47 0.49 0.06 0.03 0.05
(−0.3, 0.2) 2 (1-3) 2.89 0.46 1.75 0.01 0.02
(0.6, 0.3) 5 (4-7) 4.12 0.44 2.68 0.03 0.05

exp(2| sin(3t)|) (0, 0) 1 (1-2) 0.49 0.49 0.05 0.03 0.09
(−0.3, 0.2) 2 (1-3) 2.92 0.49 1.74 0.03 0.03
(0.6, 0.3) 5 (4-7) 4.10 0.41 2.66 0.06 0.04

† Ordinary least squares regression with outcome Yi(t) and exposure Ii(t) with a constant intercept
‡ Weighted least squares regression with outcome Yi(t) and exposure Ii(t) with a constant intercept and an inverse probability
of monitoring weight computed from a proportional intensity model with Ii(t) and Zi(t) as predictors
⋆ Weighted least squares regression with outcome Yi(t) and exposure Ii(t) with a constant intercept and one an inverse
probability of treatment weight computed from a logistic regression model with Ki(t) as predictors
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A.5 Details of the second simulation study with time-

varying confounders and treatment

In a second simulation study, Ii(t) and the confounders {K1i(t),K2i(t),K3i(t)} could vary in time. All

confounders and the intervention at baseline (t = 0) were simulated as follows:

K1i(0) ∼N(3, 1),

K2i(0) ∼Bernoulli(0.55),

K3i(0) ∼N(−1.2, 1),

Ii(0) ∼Bernoulli(pIi(0)),

with pIi(0) = expit (0.5 + 0.1K1i(0) + 0.05K2i(0)− 1K3i(0)). The mediator at baseline was simulated as

Zi(0)|Ii(0) = 1 ∼ N(2, 1), Zi(0)|Ii(0) = 0 ∼ N(4, 4). Then, the same variables were simulated at time t for

0 < t < τ , with

K1i(t) =K1i(t− 1) + 0.01,

K2i(t) =K2i(t− 1),

K3i(t) ∼N(K3i(t− 1), 0.05),

Ii(t) ∼Bernoulli(pIi(t)),

with pIi(t) = expit (0.5 + 0.1K1i(t) + 0.05K2i(t)− 1K3i(t)− 1.5Ii(t− 1)). For the mediator, we used Zi(t)|Ii(t) =

1 ∼ N(2, 1) and Zi(t)|Ii(t) = 0 ∼ N(4, 4). For all time t > 0, the outcome was simulated such that

Yi(t) = µi + α(t) + 2Ii(t) − 4 [Zi(t)− E [Zi(t)|Ii(t)]] + 0.4K1i(t) + 0.05K2i(t) − 0.6K3i(t) + ϵi(t) with

µi ∼ N(0, 1.8), ϵi(t) ∼ N(ϕi, 0.01) and ϕi ∼ N(0, 0.04).

In this second simulation study, the outcomes of the same individual i were correlated over time. Assignment

to exposure was also dependent in time. However, no previous exposure predicted current confounders. The

quantities above were once again simulated in continuous time, and then discretized over a grid of 0.01 units.

Monitoring times were simulated according to a nonhomogeneous Poisson process, as in simulation study 1,

with the same parameters in the intensity model but now accounting for the fact that Ii(t) varies in time.

Again, τ was set to 2, and the censoring time was simulated in the same way as in the time-�xed treatment

study. We also tested the same combinations of (γ1, γ2) parameters and the same �ve functions for α(t) as in

the time-�xed treatment study, with two di�erent sample sizes of n = 250 and n = 500, and a total of 1000
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simulations. Once again, our estimators were compared with the estimators ˆ︁βOLS , a weighted least squares

estimator in which a correctly-speci�ed time-dependent monitoring weight was incorporated (ˆ︁βVW ), and

a weighted least squares estimator that incorporated a correctly speci�ed inverse probability of treatment

weight (ˆ︁βIPT ). For the estimators ˆ︁βIPCTM and ˆ︁βFIPTM , the model for the treatment and the model for

the monitoring weight were both correctly speci�ed.

A.6 Brief summary of the results for the sensitivity anal-

yses

The results (distributions of biases and MSEs) for all 9 sensitivity analyses can be found in Tables A.4 (i),

A.5 (ii), A.6 (iii and iv), A.7 (v, vi, vii, viii), and A.8 (ix) in Appendix A.4. In the �rst two scenarios,

we observed similar results, with absolute biases that tended towards 0 for both proposed estimators. The

empirical mean squared errors are typically smaller for the FIPTM estimator as compared to all four other

estimators. In scenarios iii) and iv), we observe that using a di�erent generalized IPT weight (computed

from a cumulative logistic regression) in the IPCTM estimator sometimes provides better results, however

this is not consistent across scenarios. Indeed, there is a bias-variance trade-o� that occurs when using

linear regression versus categorical regression for quantile-binned treatment models used to compute the

(generalized) IPT weight. Indeed, the bias of the IPCTM estimator using linear regression for the treatment

model was typically smaller than the one of the quantile-binned approaches, except when the number of visits

per patient increased, in which case the bias was similar for all three modelling approaches (see Table A.6). In

terms of mean squared error, on the other hand, the quantile-binning approach provided smaller values than

the IPCTM estimator using linear regression for the treatment model, and even out-performed the FIPTM

estimator. For the four sensitivity analyses (v, vi, vii, viii) where we assessed the behavior of our estimators

in settings where di�erent models are misspeci�ed, we �rst note in Table A.5 that our methods were not

too sensitive to misspeci�cation of the outcome model. In particular, simulating log-Normal errors in the

outcome model or generating an outcome that depended on non-linear functions of the confounder variables

had little impact on the performance our two proposed estimators. On the other hand, we found important

bias in our proposed estimators, especially the FIPTM, when generating data such that the visit process

depended on non-linear functions of the covariates. In that seventh analysis, the proportional intensity model

for the visits depended on Z2(t) rather than Z(t), hence the coe�cient for Z(t) was greatly in�ated and the

inverse probability of visit weight used in the FIPTM estimator exploded in such setting, which strongly

biased the FIPTM estimator. The IPCTM estimator was less a�ected by the non-linear form of Z(t) in the
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visit model, which could be due to the way the inverse probability of visit weight is used in that estimator.

Instead of directly re-weighting the weighted least squares formula with that weight, the IPCTM uses this

weight for re-centering the variables, which could make it less sensitive to misspeci�cation of the function of

each term in the weight model. Moreover, our proposed estimators were not much a�ected by variation of

the baseline intensity function d∆0(t) across individuals in the sensitivity analysis (viii) that we performed.

Finally, the last sensitivity analysis has shown that in the current context where the mean outcome model is

linear in the covariates, and that there is no interaction in that model, the estimates for the marginal e�ect

and the conditional e�ect (with respect to confounders K(t)) are very similar when adjusting for the same

confounders via the IPT weight (marginal e�ect) or the conditional e�ect (conditioning on the variables)

(Table A.8).
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APPENDIX B

Appendix to Manuscript 2

B.1 Causal diagrams and biasing paths due to the mon-

itoring process

Causal diagrams and biasing paths due to the monitoring process

In this section, we review the causal diagrams from the main manuscript, draw the biasing paths due to

conditioning on the visit process, and show how models for the visit can be used to break the dependence

between the monitoring and the outcome processes.

We �rst review the causal diagram that corresponds to Figure 4.1 in the corresponding manuscript. We

depict that diagram in Figure B.1, before intervening on it in any way. In Figure B.2, for the same causal

diagram, we depict the biasing paths (in bold) due to the conditioning on the visit indicator, dN(t) for

t ∈ {0, 1, 2}, which acts as a collider.
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K(0)

I(0)

Y (0) Y (1) Y (2)

Z(0) Z(1) Z(2)

dN(0) dN(1)
dN(2)

Figure B.1: Causal diagram for the �rst data generating mechanism (DGM) (patient index
i removed)

K(0)

I(0)

Y (0) Y (1) Y (2)

Z(0) Z(1) Z(2)

dN(0) dN(1)
dN(2)

Figure B.2: Causal diagram for the �rst DGM (patient index i removed), biaising paths in
bold

Finally, we depict in Figure B.3 what remains from the biasing paths (in bold) after adjusting for the

monitoring rate via an inverse monitoring rate conditional on covariates Z and I. We �nd that there is

no more unblocked path from the exposure to the outcome due to the monitoring process, that is not due

to the marginal e�ect of treatment. A proper adjustment for confounding factors K(0) must also be done

to obtain unbiased estimates of the marginal e�ect of treatment (e.g. via inverse probability of treatment

weights).
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K(0)

I(0)

Y (0) Y (1) Y (2)

Z(0) Z(1) Z(2)

dN(0) dN(1)
dN(2)

Figure B.3: Causal diagram for the �rst DGM (patient index i removed) after adjusting for
the visit process

We now review the causal diagram that corresponds to Figure 4.2 in the main manuscript. That diagram

is depicted in Figure B.4, before intervening on it in any way. In Figure B.5, for the same causal diagram,

we depict the biasing paths (in bold) due to the conditioning on the visit indicator, dN(t) for t ∈ {1, 2, 3},

which acts as a collider.

I(0)

Y (1) Y (2) Y (3)

K(0)

Z(0)

Z(2)

dN(1)
dN(2)

dN(3)

Figure B.4: Causal diagram for the second DGM (patient index i removed)

We depict in Figure B.6 what remains from the biasing paths (in bold) after adjusting for the monitoring rate

via an inverse monitoring rate conditional on covariates Z (for the last values of them, which we assume a�ect
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the monitoring indicator and the outcome) and I. We �nd that there is no more unblocked path from the

exposure to the outcome due to the monitoring process, that is not due to the marginal e�ect of treatment. In

that case too, a proper adjustment for confounding factors K(0) must be done to obtain unbiased estimates

of the marginal e�ect of treatment (e.g. via inverse probability of treatment weights).

I(0)

Y (1) Y (2) Y (3)

K(0)

Z(0)

Z(2)

dN(1)
dN(2)

dN(3)

Figure B.5: Causal diagram for the second DGM (patient index i removed), biaising paths
in bold

I(0)

Y (1) Y (2) Y (3)

K(0)

Z(0)

Z(2)

dN(1)
dN(2)

dN(3)

Figure B.6: Causal diagram for the second DGM (patient index i removed), remainings of
the biaising paths in bold

Now, we review the causal diagram that corresponds to Figure 4.3 in the main manuscript. That diagram
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is depicted in Figure B.7, where we show the diagram before intervening on it. In Figure B.8, we depict

for the same diagram the biasing paths (in bold) due to the conditioning on the visit indicator, dN(t) for

t ∈ {1, 2}, which acts as a collider (Note: in this document, dashed edges are used to make it clearer which

distinct paths can bias the estimate of the marginal e�ect of treatment, but they do not bear any special or

di�erent meaning as compared to other paths or causal arrows).

I(0)

Y (1) Y (2)

K(0)

Z(0) Z(1)
Z(2)

dN(1) dN(2)

∗1 ∗2

Figure B.7: Causal diagram for the third DGM (patient index i removed)

I(0)

Y (1) Y (2)

K(0)

Z(0) Z(1)
Z(2)

dN(1) dN(2)

∗1 ∗2

Figure B.8: Causal diagram for the third DGM (patient index i removed), biaising paths in
bold. Dashed edges are used to make it clearer which distinct paths can bias the estimate
of the marginal e�ect of treatment
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We now make a dinstinction between two scenarios for the visit pattern, again assuming that we are in the

setting depicted in Figure B.8: (a) There is a visit at time 1 and dN(1) = 1, and (b) there is no visit at

time 1 and dN(1) = 0. In the former case (a), suppose we only adjust for an inverse intensity weight as a

function of the last covariates observed. In Figure B.9, we depict what remains from the biasing paths after

adjusting for the monitoring rate via an inverse monitoring rate conditional on the last covariates Z and I

observed (in bold). We �nd that there is yet at least one unblocked path from the exposure to the outcome

Y (2) that is not due to the marginal e�ect of treatment and that is due to conditioning on collider dN(2)

(the path is given by I(0) → Z(0) → ∗1 − dN(2)− ∗2 → Y (2)).

I(0)

Y (1) Y (2)

K(0)

Z(0) Z(1)
Z(2)

dN(1) dN(2)

∗1 ∗2

Figure B.9: Causal diagram for the third DGM (patient index i removed), remainings of the
biaising paths in bold in scenario (a) when adjusting for the visit process using an inverse
intensity weight as a function of the last covariates observed

In scenario (b), where there is no visit at time 1, suppose we only adjust for an inverse intensity weight

as a function of the last covariates observed. What remains from the biasing paths after adjusting for the

monitoring rate via an inverse monitoring rate conditional on the last covariates Z and I observed is depicted

in Figure B.10. Here again, there is yet an unblocked path from the exposure to the outcome Y (2) that is

not due to the marginal e�ect of treatment (given by I(0) → Z(1) → ∗2 − dN(2)− ∗1 → Y (2)).

Now, suppose that we use a cumulated weight that accounts for the full history of covariates and their

interaction with the monitoring process (such as the weight swi,j(·) proposed in the manuscript). Figure

B.11 depicts, for scenario (a), the remaining parts of the biasing paths in bold in such case; the adjustment for

the whole monitoring process e�ectively blocks the unblocked path between subsequent monitoring indicators,
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which paths were �due� to the interaction terms. We depicted this by removing the bold from the arrows

leaving interaction terms ∗1 and ∗2, and entering the node dN(2) but this could probably be depicted

di�erently too (e.g. by removing the whole path between dN(1) and dN(2)). The former unblocked path is

now blocked by e.g. the interaction term ∗1 which is a collider.

I(0)

Y (1) Y (2)

K(0)

Z(0) Z(1)
Z(2)

dN(1) dN(2)

∗1 ∗2

Figure B.10: Causal diagram for the third DGM (patient index i removed), remainings of
the biaising path in bold in scenario (b) when adjusting for the visit process using an inverse
intensity weight as a function of the last covariates observed

For scenario (b), Figure B.12 depicts the remaining biasing paths after using the proposed cumulated weight.

There again, we depicted the impact of adjusting for the whole monitoring process by removing the bold

from the arrows leaving interaction terms ∗1 and ∗2, and entering the node dN(2); the formerly unblocked

biasing path is now blocked by e.g. the collider ∗2. In the two �gures (Figures B.11 and B.12), there is no

more biasing path from the exposure to the outcome that would be due to colliders dN(·) after using the

proposed cumulated weight.
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I(0)

Y (1) Y (2)

K(0)

Z(0) Z(1)
Z(2)

dN(1) dN(2)

∗1 ∗2

Figure B.11: Causal diagram for the third DGM (patient index i removed), remainings of
the biaising paths in bold in scenario (a) when using the proposed cumulated weight

I(0)

Y (1) Y (2)

K(0)

Z(0) Z(1)
Z(2)

dN(1) dN(2)

∗1 ∗2

Figure B.12: Causal diagram for the third DGM (patient index i removed), remainings of
the biaising paths in bold in scenario (b) when using the proposed cumulated weight

Finally, we present the last scenario, corresponding to Figure 4.4 in the main manuscript, which is similar to

that depicted in Figure B.8, but where a previous outcome a�ects the next outcome and monitoring time. In

Figure B.13, we show the causal diagram corresponding to that scenario, before intervening on it. In Figure

B.14, we depict the (potential) biasing paths (in bold) due to the conditioning on colliders dN(t), t ⊂ 1, 2.

That setting (Figures B.13 and B.14) is similar to that from Figure B.7, except for the collider dN(2) that

opens another path between I(0) and Y (1). By including the outcome as a predictor in the intensity model,
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a similar adjustment using the proposed cumulated weight with the intensity modelled conditionnally on I,

Z and Y will adjust properly for the visit process (not shown).

I(0)

Y (1) Y (2)

K(0)

Z(0) Z(1)
Z(2)

dN(1) dN(2)

∗1 ∗2

Figure B.13: Causal diagram for the fourth DGM (patient index i removed)

I(0)

Y (1) Y (2)

K(0)

Z(0) Z(1)
Z(2)

dN(1) dN(2)

∗1 ∗2

Figure B.14: Causal diagram for the fourth DGM (patient index i removed), biaising paths
in bold
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B.2 Estimating equation for the marginal e�ect of treat-

ment on a continuous longitudinal outcome

In the main manuscript we assumed

Ii(0) ⊥ {Yi0(t), Yi1(t)} |Ho
i (t−), dNi(t),Ki(0), (I3)

dNi(t) ⊥ Yi(t)|Ho
i (t−), and (I4)

dNi(t) ⊥ dNi(t−)|Zi(li(t)), Ii(0), Bi(t−), (I5)

and proposed to use the following partial model for the monitoring intensity:

λi(t|Zi(l(ti)), Ii(0), Bi(t−)) =λ0(Bi(t)) exp(γIIi(0) + γZZi(li(t))). (5)

We also cited Theorem 1 of Pearl (2009), which we recall:

Theorem 1 (The Causal Markov Condition). Any distribution generated by a Markovian model M can be

factorized as:

P (v1, v2, ..., vn) =
∏︂
i

P (vi|pai)

where V1, V2, ...Vn are the endogenous variables in M, and pai are (values of) the endogenous �parents� of

Vi in the causal diagram associated with M.

We assume that continuous time can be discretized in units of length 1 (e.g. days) over which a visit can

or cannot occur, so t ∈ 1, 2, 3, ..., ⌊τ⌋. We denote by P (t) the history from time 0 to time t of the covariate

process P , and by P (t) \ J(t) the process P (t) minus the J(t) process. Using the assumptions above, we

179



have:

E [dNi(t)|Ho
i (t−)] =P(dNi(t)|Ho

i (t−))

=P(dNi(t)|Ho
i (t−) \ dNi(t−), dNi(t−))

=
P(dNi(t), dNi(t−)|Ho

i (t−) \ dNi(t−))P (Ho
i (t−) \ dNi(t−))

P (Ho
i (t−))

∝P(dNi(t)|Ho
i (t−) \ dNi(t−))

=P(dNi(t)|Zi(li(t)), Ii(0), Bi(t− 1))

× P(dNi(t− 1)|Zi(li(t− 1)), Ii(0), Bi(t− 2))

× ...

× P(dNi(2)|Zi((li(1)), Ii(0), Bi(1))

× P(dNi(1)|Zi(0), Ii(0)) using assumption (I5) and Theorem 1

=

t

T
s=0

{ξi(s) exp (γIIi(0) + γZZi(li(s)))λ0(Bi(s))ds}I(dNi(s)=1)

× {1− ξi(s) exp (γIIi(0) + γZZi(li(s)))λ0(Bi(s))ds}I(dNi(s)=0)
, (B.1)

with the last term equal to the weight uswi(t|Ho
i (t−)), and using assumption (5) for the visit model. As in

the main manuscript, we use a product integral to emphasize that the product must be taken over continuous

time. We use the following estimating equation for the coe�cients βS , with the marginal e�ect of treatment

consisting in e.g. the last coe�cient of βS :

E
(︃∫︂ τ

0

Y(t)− [β′
sS(t)]

w(t|K(t))usw(t|Ho(t−))
dN(t)

)︃
= 0.

The matrix S(t) may, for instance, incorporate a column of 1 for estimating a constant intercept, or several

columns as the basis of a cubic spline for accounting for the e�ect of time.

Using iterated expectation (similarly to Lin et al. [2004]), we have that
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E
(︃∫︂ τ

0

Y(t)− [β′
sS(t)]

w(t|K(t))usw(t|Ho(t−))
dN(t)

)︃
= E

[︃
E
(︃∫︂ τ

0

Y(t)− [β′
sS(t)]

w(t|K(t))usw(t|Ho(t−))
dN(t)

)︃
| Ho(t−)

]︃
= E

(︃∫︂ τ

0

Y(t)− [β′
sS(t)]

w(t|K(t))usw(t|Ho(t−))
E [dN(t)|Ho(t−)]

)︃
using assumption (I4)

∝ E
(︃∫︂ τ

0

Y(t)− [β′
sS(t)]

w(t|K(t))usw(t|Ho(t−))
usw(t|Ho(t−))dt

)︃
= E

(︃∫︂ τ

0

Y(t)− [β′
sS(t)]

w(t|K(t))
dt

)︃
.

Under assumption (I3) and correct model speci�cations, we have that the last expression in the �nal line is

equal to 0, that is,

E
(︃∫︂ τ

0

Y(t)− [β′
sS(t)]

w(t|K(t))
dt

)︃
= 0

and the estimating equation for the marginal e�ect of treatment is unbiased.

B.3 Asymptotic properties of the proposed estimator

Under the assumptions on the exposure and the monitoring models that follow:

Ii(t) ⊥ {Yi0(t), Yi1(t)} |Ho
i (t−), dNi(t),Ki(t) (I3)

dNi(t) ⊥ Yi(t)|Ho
i (t−) (I4)

dNi(t) ⊥ dNi(t−)|Zi(li(t)), Ii(0), Bi(t−), dNi(t−) (I5)

0 < P (dNi(t) = 1|Ki(t),Ho
i (t−)), P (dNi(t) = 0|Ki(t),Ho

i (t−)) < 1 (P1)

0 < P (Ii(t) = 1|Ki(t),Ho
i (t−), dNi(t)), P (Ii(t) = 0|Ki(t),Ho

i (t−), dNi(t)) < 1, (P2)

as well as no interference, and correct model speci�cations for the exposure, the outcome and the visit

models, the proposed estimator resulting from the following estimating equation

E
(︃∫︂ τ

0

Y(t)− [β′
sS(t)]

w(t|K(t))swj(t|Ho(t−))
dN(t)

)︃
= 0 (B.2)

is a two-step m-estimator. Two-step estimators often rely on substituting an estimate of a nuisance parameter

in the estimating function for the parameter of interest (Newey and McFadden [1994]). One can use a �rst-

step estimator for the nuisance parameters (e.g., here, the parameters from the IPT weights and from the
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monitoring weights). M-estimators of the parameters of interest are obtained by solving a sample average

equation and often consist of the zero roots of an estimating equation.

For β̂TSE a two-step semiparametric estimator and β0 the vector of true parameters, Newey and McFadden

[1994] show that
√
n(β̂TSE − β0) → N(0,Σ), with

Σ = G−1
β E

[︂{︁
g(o;β0, ϕ0)−GϕM

−1m(o;ϕ0)
}︁⊗2

]︂
G−1

β (B.3)

where

Gβ = E(▽βg(o;β0, ϕ0))

Gϕ = E(▽ϕg(o;β0, ϕ0))

M = E(▽ϕm(o;ϕ0))

for o the data, and m(o;ϕ0) and g(o;β0, ϕ0) the estimating equations for the nuisance parameters ϕ and

the parameters of interest β, respectively.

In the case of interest, the nuisance parameters consist in the parameters from the intervention model and

those from the intensity model. The estimating equations for the former are those corresponding to a logistic

regression model for the exposure, and those for the latter correspond to equations from the Cox model for

the visit intensity.

We do not show how to compute the variance component due to the inverse monitoring weight but one

could potentially develop that component of variance by using extensions of the Greenwood formula for the

survivor function (Greenwood [1926]). In particular, the product integral used in our cumulated weight can

be approximated by an exponential function since that we take the product of small quantities, in continuous.

The delta method could be used in the development of the variance. However in practice, a nonparametric

bootstrap (resampling on individuals) will provide a good estimate of the estimator variance. Alternatively,

a �robust� variance may serve as a conservative estimate of the variance, similar to the case in marginal

structural models (Robins et al. [2000a]).

B.4 Details of the simulation studies

In the main study, we �rst simulated for each patient i three baseline confounders {K1i,K2i,K3i} with

K1i ∼ N(1, 1),K2i ∼ Bernoulli(0.55), and K3i ∼ N(0, 1). The intervention Ii(t) was binary and time-
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�xed: Ii ∼ Bernoulli(pIi) with pIi = expit (0.5 + 0.8K1i + 0.05K2i − 1K3i). One time-varying mediator

Zi(·) was generated, conditional on Ii. It was only updated whenever there was a new visit (dNi(·) = 1),

and was simulated as Zi(t)|Ii = 1 ∼ N(2, 1) and Zi(t)|Ii = 0 ∼ N(4, 22) on those visit days. On other

(non-visit) days, we denote the process by Zi(li(t)), simply carrying forward the last observed value. Time

was discretized over a grid of 0.01 units, from 0 to τ . The intensity of monitoring at each time point over

that grid was simulated as λi(t|Ii, Zi(li(t))) = 0.02Bi(t) exp (γ1Ii + γ2Zi(li(t))). We used Bernoulli draws

with probabilities proportional to these intensities to assign monitoring times (one draw per time point, for

each time point over the grid). Whenever a new monitoring time occurred, the endogenous covariate process

Z(l(t)) was updated according to the simulation scheme given above (i.e. depending on the value of the

baseline intervention Ii), the outcome was simulated dependent on the gap time as detailed below, and then

the gap time Bi(t) was reset to 0. On each subsequent day when there was no visit, the gap time cumulated

a value of 0.01 according to our discrete time grid.

We considered several di�erent combinations of the parameters (γ1, γ2) (see Table 1), so as to vary the

strength of the selection bias due to the visit process. The outcome Yi(t) was generated according to Yi(t) =

0.2Bi(t) + 1 Ii − 0.8 (Zi(li(t))− E [Zi(li(t))|Ii]) + 0.4K1i + 0.05K2i − 0.6K3i + ϵi(t) with ϵi(t) ∼ N(0, 0.52).

The re-centering of Zi(li(t)) in the outcome model ensures that we estimate the target marginal intervention

e�ect. Monitoring times were drawn up until the maximum follow-up time τ , which we �xed to τ = 5. Data

were simulated to correspond to a study cohort of 500 patients. For each patient, the follow-up time was

�censored" (stopped) at time Ci, with Ci ∼ Uniform(τ/2, τ); the censoring was non-informative. A total of

1000 replicate datasets were simulated for each simulation study scenario.
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B.5 Results of the main simulation study, including the

average number of visits and estimated parameters

in the visit model

Table B.1: Main analysis: Estimated parameters, average number of visits and mean absolute
bias for the estimators compared for 1000 simulations with τ = 5, n = 500.

γ γ̂ N(τ) Mean absolute bias of the estimator
I = 0, 1 β̂LS β̂IPT β̂IH β̂USW β̂SW1 β̂SW2

-0.3; 0.1 -0.3; 0.1 1.9, 2.9 0.35 0.37 0.12 0.04 0.14 0.03
-0.2; 0.2 -0.2; 0.2 2.5, 3.5 0.49 0.24 0.11 0.00 0.09 0.01
-0.1; 0.2 -0.1; 0.2 3.0, 3.9 0.64 0.08 0.09 0.14 0.00 0.02
-0.1; -0.3 -0.1; -0.3 3.1, 2.9 0.69 0.01 0.11 0.07 0.01 0.03

0; 0 0; 0 3.9, 3.9 0.73 0.01 0.03 0.16 0.01 0.01
0.1; -0.3 0.1; -0.3 4.8, 3.7 0.69 0.03 0.11 0.19 0.04 0.02
0.2; -0.2 0.2; -0.2 6.0, 4.3 0.64 0.12 0.26 0.18 0.19 0.02
0.3; 0.2 0.3; 0.2 7.1, 5.9 0.67 0.08 0.34 0.24 0.30 0.05

B.6 Results of all sensitivity analyses

Table B.2: Simulation study results for sensitivity analysis 1 with τ = 5, n = 500 patients,
1000 simulations, αi(t) = 0.2Bi(t). A constant intercept was �tted in the outcome model,
rather than a cubic spline as a function of gap time

γ† N(τ) Mean absolute bias β̂ Empirical variance β̂
I = 0, 1 β̂LS β̂IPT β̂IH β̂USW β̂SW1 β̂SW2 β̂LS β̂IPT β̂IH β̂USW β̂SW1 β̂SW2

a 1.9, 2.9 0.45 0.25 0.18 0.08 0.16 0.04 0.03 0.08 0.17 1.56 0.13 0.09
b 3.0, 3.9 0.65 0.05 0.11 0.09 0.01 0.01 0.02 0.05 0.10 1.16 0.06 0.05
c 3.9, 3.9 0.72 0.03 0.04 0.14 0.03 0.03 0.02 0.06 0.10 0.59 0.06 0.06
d 4.8, 3.7 0.79 0.08 0.06 0.17 0.02 0.02 0.02 0.04 0.07 0.42 0.05 0.05
e 7.1, 5.9 0.79 0.08 0.31 0.25 0.25 0.05 0.02 0.03 0.06 0.29 0.08 0.06

†: a. (-0.3, 0.1); b. (-0.1, 0.2); c. (0, 0); d. (0.1, -0.3); e. (0.3, 0.2).
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Table B.3: Simulation study results for sensitivity analysis 2 with τ = 10, n = 500 patients,
1000 simulations, αi(t) = 0.2Bi(t)

γ† N(τ) Mean absolute bias β̂ Empirical variance β̂
I = 0, 1 β̂LS β̂IPT β̂IH β̂USW β̂SW1 β̂SW2 β̂LS β̂IPT β̂IH β̂USW β̂SW1 β̂SW2

a 4.2, 6.2 0.39 0.35 0.14 0.02 0.15 0.02 0.01 0.03 0.06 1.40 0.08 0.03
b 6.6, 8.1 0.65 0.07 0.10 0.15 0.01 0.01 0.01 0.02 0.04 0.67 0.03 0.02
c 8.1, 8.1 0.72 0.02 0.02 0.13 0.02 0.02 0.01 0.02 0.03 0.25 0.02 0.02
d 10.0, 7.7 0.68 0.05 0.12 0.12 0.04 0.02 0.01 0.02 0.03 0.17 0.02 0.02
e 13.5, 11.2 0.64 0.11 0.38 0.06 0.30 0.05 0.01 0.02 0.03 0.15 0.04 0.04

†: a. (-0.3, 0.1); b. (-0.1, 0.2); c. (0, 0); d. (0.1, -0.3); e. (0.3, 0.2).

Table B.4: Simulation study results for sensitivity analysis 3 with τ = 5, n = 500 patients,
1000 simulations, αi(t) = 0.2Bi(t), and with the process Z(·) depending on the cumulative
number of previous visits

γ† N(τ) Mean absolute bias β̂ Empirical variance β̂
I = 0, 1 β̂LS β̂IPT β̂IH β̂USW β̂SW1 β̂SW2 β̂LS β̂IPT β̂IH β̂USW β̂SW1 β̂SW2

a 1.9, 2.8 0.35 0.38 0.12 0.05 0.16 0.04 0.02 0.05 0.10 1.18 0.09 0.05
b 3.1, 3.8 0.63 0.09 0.09 0.09 0.02 0.00 0.01 0.04 0.06 0.74 0.04 0.04
c 3.9, 3.9 0.72 0.02 0.04 0.13 0.02 0.02 0.01 0.02 0.05 0.33 0.02 0.02
d 4.9, 3.7 0.69 0.04 0.11 0.19 0.05 0.01 0.01 0.02 0.04 0.24 0.02 0.03
e 8.1, 6.6 0.65 0.10 0.36 0.18 0.32 0.05 0.01 0.02 0.04 0.19 0.04 0.04

†: a. (-0.3, 0.1); b. (-0.1, 0.2); c. (0, 0); d. (0.1, -0.3); e. (0.3, 0.2).

Table B.5: Simulation study results for sensitivity analysis 4 with τ = 5, n = 500 patients,
1000 simulations, α(t) = α = 0.02.

γ† N(τ) Mean absolute bias β̂ Empirical variance β̂
I = 0, 1 β̂LS β̂IPT β̂IH β̂USW β̂SW1 β̂SW2 β̂LS β̂IPT β̂IH β̂USW β̂SW1 β̂SW2

a 1.9, 2.9 0.36 0.34 0.17 0.02 0.10 0.00 0.02 0.04 0.07 1.35 0.06 0.04
b 3.1, 3.9 0.63 0.09 0.09 0.10 0.01 0.01 0.01 0.04 0.07 0.77 0.04 0.04
c 3.9, 3.9 0.73 0.02 0.03 0.13 0.02 0.02 0.01 0.03 0.04 0.36 0.03 0.03
d 4.8, 3.7 0.70 0.03 0.11 0.18 0.04 0.01 0.01 0.03 0.04 0.26 0.03 0.03
e 7.1, 5.9 0.66 0.09 0.34 0.22 0.30 0.06 0.01 0.02 0.04 0.20 0.04 0.04

†: a. (-0.3, 0.1); b. (-0.1, 0.2); c. (0, 0); d. (0.1, -0.3); e. (0.3, 0.2).
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B.7 Comparison of the bootstrap and the empirical vari-

ance of the estimators

Table B.6: Comparison of bootstrap and empirical variance for all simulation studies in the
main analysis (studies with τ = 5, n = 500, 1000 simulations)

Intercept γ Empirical variance of β̂ Bootstrap variance β̂
�tted no.† β̂LS β̂IPT β̂IH β̂USW β̂SW1 β̂SW2 β̂LS β̂IPT β̂IH β̂USW β̂SW1 β̂SW2

Constant 1 0.01 0.04 0.09 1.25 0.07 0.05 0.03 0.08 0.17 1.56 0.13 0.09
2 0.01 0.04 0.08 0.98 0.06 0.05 0.03 0.06 0.11 1.19 0.09 0.07
3 0.01 0.03 0.06 0.81 0.03 0.03 0.02 0.05 0.10 1.16 0.06 0.05
4 0.01 0.03 0.06 0.43 0.04 0.03 0.02 0.06 0.10 0.63 0.07 0.06
5 0.01 0.03 0.05 0.38 0.03 0.03 0.02 0.06 0.10 0.59 0.06 0.06
6 0.01 0.02 0.05 0.25 0.03 0.03 0.02 0.04 0.07 0.42 0.05 0.05
7 0.01 0.02 0.05 0.23 0.04 0.03 0.02 0.03 0.07 0.38 0.06 0.05
8 0.01 0.02 0.05 0.20 0.05 0.04 0.02 0.03 0.06 0.29 0.08 0.06

Cubic 1 0.02 0.04 0.10 1.21 0.07 0.04 0.03 0.07 0.16 1.56 0.13 0.08
spline 2 0.01 0.04 0.08 1.02 0.05 0.04 0.03 0.06 0.11 1.23 0.08 0.06

3 0.01 0.03 0.06 0.72 0.03 0.03 0.02 0.05 0.09 1.11 0.06 0.05
4 0.01 0.03 0.06 0.39 0.04 0.03 0.02 0.05 0.08 0.59 0.06 0.05
5 0.01 0.03 0.06 0.35 0.03 0.03 0.02 0.05 0.09 0.56 0.05 0.05
6 0.01 0.03 0.04 0.24 0.03 0.03 0.02 0.04 0.06 0.40 0.05 0.05
7 0.01 0.03 0.05 0.24 0.03 0.04 0.02 0.03 0.06 0.36 0.05 0.05
8 0.01 0.02 0.04 0.18 0.05 0.04 0.02 0.03 0.06 0.26 0.07 0.05

†. 1. (-0.3, 0.1); 2. (-0.2, 0.2); 3. (-0.1, 0.2); 4. (-0.1, -0.3); 5. (0, 0); 6. (0.1, -0.3); 7. (0.2, -0.2); 8. (0.3, 0.2).
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B.8 Table of baseline characteristics strati�ed by inter-

vention group, in the analysis of CPRD data

Table B.7: Baseline characteristics of the study cohort strati�ed by treatment at cohort
entry (n=246,503), Clinical Practice Research Datalink, United Kingdom, 1998-2017

Treatment
Variable1 Citalopram Fluoxetine
BMI, mean 26.8 26.8
Age, mean 43.4 40.7
Female sex 63.6 66.1
IMD quintile2, mean 3.01 3.08
Smoking status

Ever 50.8 48.7
Never 34.0 31.3
Unknown 15.2 20.1

Diabetes 5.3 4.3
Alcohol abuse 8.0 6.6
Anxiety or GAD 30.5 22.1
Other psychiatric diseases

Schizophrenia 1.4 1.1
Bipolar disorder 0.8 0.7
Autism spectrum disorder 0.2 0.1
Obsessive compulsive disorder 0.5 0.6

Antipsychotic drugs 11.7 10.6
Benzodiazepine drugs 19.7 17.1
Lipid lowering drugs 7.6 5.0

Abbreviations: BMI, Body mass index; IMD, Index of multiple deprivation; GAD, Generalized anxiety disorder.
1. In % unless otherwise stated.

2. The IMD was available in the format of quintiles, with the greater quintile being the most deprived

B.9 Multivariate outcome model in the analysis of the

CPRD data

We present below the coe�cients for each covariate in a linear multivariate outcome model for the outcome

BMI (no inverse weight is incorporated in this model).
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Table B.8: Coe�cients for each covariate included in the conditional outcome mean model
(except the intercept and spline on time), Clinical Practice Research Datalink, United King-
dom, 1998-2017

Variable Coe�cient Robust 95% CI
Citalopram (Ref.: Fluoxetine) -0.55 -0.67, -0.43*
Age at baseline -0.02 -0.03, -0.02*
Sex (Ref.: Female) -0.58 -0.70, -0.46*
IMD at baseline 0.40 0.35, 0.44*
Smoking (Ref.: Never)

Ever -0.53 -0.68, -0.38*
Missing 0.03 -0.12, 0.18

Diabetes 4.21 4.03, 4.39*
Alcohol abuse -0.66 -1.13, -0.20*
Anxiety or GAD -0.22 -0.43, -0.01*
Psychiatric diagnosis 0.24 -0.49, 0.96
Number of hospitalisations in prior month -0.69 -0.86, -0.52*
Antipsychotic drugs -0.05 -0.43, 0.33
Benzodiazepine drugs -1.55 -1.77, -1.33*
Lipid lowering drugs 1.66 1.48, 1.85*

Abbreviations: IMD, Index of Multiple Deprivation; GAD, Generalized Anxiety Disorder.
* Con�dence interval does not contain 0.
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APPENDIX C

Appendix to Manuscript 3

C.1 Details of the simulation studies

We conducted several simulation studies to assess the proposed methodology in a setting where, in contrast

to the Add Health study, monitoring times can occur at any time during follow-up, for every individual. Our

aim was to estimate the causal marginal OR for a 1-unit increase in the exposure Di(t) on a categorical and

ordinal outcome Yi(t). The outcome was categorical, taking one of three levels (J = 3): 1, 2, and 3. In

simulation studies, we compared four estimators:

� The estimated log-OR for exposure obtained directly from the POM model, with no adjustment

(β̂POM );

� The estimated log-OR for exposure from a weighted POM with an IPT weight, where the propensity

score is a correctly speci�ed function of the confounders (β̂IPTP );

� The estimated log-OR for exposure from a weighted POM with an IIV weight, where the intensity is

a correctly speci�ed function of the covariates a�ecting visit times (β̂IIV P ); and

� The estimated log-OR for exposure from a doubly-weighted POM with both the IPT and the IIV

weights, with both functions (corresponding to the exposure and visit models) correctly speci�ed

(β̂IPTMP ).

In the following description of the data generating mechanism that we used, the individual index is omitted

for ease of exposition. We used 1000 simulations per study and tested settings with either 250 or 1000
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patients per simulated dataset. First, three confounders were simulated at time 0 (�cohort entry�) and for

each individual, as K1 ∼ N(1, 1), K2 ∼ Bernoulli(0.55), and K3 ∼ N(0, 1). The time-varying, continuous

exposure D(t) was simulated at each time t from a Normal distribution with a mean that depended on

the confounders, as D(t) ∼ N(−0.5 + 0.5K1 + 1K2 − 0.05K3; 0.5
2) in the study with confounding, and

D(t) ∼ N(−0.5; 0.52) in the simulation study with no confounding. The mediator of the relationship between

D(t) and Y (t) was binary and time-varying, and simulated as Z(t) ∼ Bernoulli(pD(t)) with pD(t) = 0.3 if

D(t) > 0.5 and pD(t) = 0.8 otherwise.

In the study, time was continuous, and discretized over a grid of 0.01. Visit times could vary across indi-

viduals, and could occur at anytime during follow-up. Monitoring times were simulated according to the

monitoring intensity, as a function of D(t) and Z(t) and with an individual random e�ect η, such that

λ(t|D(t), Z(t)) = 0.01η exp (γDD(t) + γZZ(t)). We varied the parameters γ to obtain di�erent strengths for

the dependence between the covariates and the monitoring times. The random e�ect was simulated as a

random Gamma variable with mean 1 and variance 0.01. Monitoring indicators at each time were simulated

according to a random Bernoulli draw, with a probability proportional to the intensity above.

The categorical outcome Y (t) was simulated as a function of the exposure D(t), the mediator Z(t), and the

confounders K(t). To simulate the outcome, we followed a methodology similar to Thomas (2014). We �rst

simulated the linear mean function as µ(t|D(t), Z(t),K(t)) = −2D(t)+5Z(t)+0.4K1+0.05K2−0.6K3. Then,

a random draw from the logistic distribution was performed, according to the mean µ(t|D(t), Z(t),K(t)) for

the distribution. If that drawn value was smaller or equal to 5, the categorical outcome was set to 1. If the

value was greater than 5 and smaller or equal to 8, it was set to 2. It was set to 3, otherwise. That choice

of thresholds led to a good distribution across all three levels.

Given that we used the POM to estimate the marginal e�ect of exposure (which assumes that the relation

between the linear predictors and the outcome, the link function, is the expit function), and given that some

mediators make up part of the total e�ect of exposure on the outcome, the true marginal log-OR cannot

be analytically derived solely by knowing the simulation parameter for the exposure in the outcome model.

To know the true value (or target for an estimator) we conducted a Monte Carlo simulation in which we

simulated the data of 10,000 patients a total of 1000 times where all parameters in the outcome model were

kept as above, but there was no covariate-driven treatment or visit process such that there was no selection

or confounding bias. We then computed the log-OR of exposure each time. In that very large study, no

imbalances due to confounding or due to covariate-driven monitoring times were present. For that, we merely

set all the parameters corresponding to the predictors in the exposure and in the monitoring models to zero.

We obtained the target marginal log-OR by averaging the 1000 log-OR for exposure across those simulations,
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which equalled to -1.061.

In a �rst sensitivity analysis (results presented in Appendix C.2), the confounders K1 and K2 along with

the exposure and the mediator predicted the monitoring intensity. The monitoring intensity was simulated

as λ(t|D(t), Z(t),K1,K2) = 0.01η exp (γDD(t) + γZZ(t) + 0.05K1 − 0.1K2) with di�erent sets of (γD, γZ)

parameters, as tested in the main simulation study, and with all other parameters remaining the same.

In a second sensitivity analysis (results presented in Appendix C.2), we modi�ed the mean outcome model to

strenghten the bias due to covariate-driven monitoring times, using the linear mean function µ(t|D(t), Z(t),K(t)) =

−2D(t)−6Z(t)+0.4K1+0.05K2−0.6K3 instead of µ(t|D(t), Z(t),K(t)) = −2D(t)+5Z(t)+0.4K1+0.05K2−

0.6K3 (note the di�erence in coe�cients for the mediator Z(t)). We also strenghtened the dependence of

the monitoring intensity on the covariates by increasing the absolute values of the γ parameters. The target

marginal log-OR was once again obtained via Monte Carlo simulations and equalled -1.394.

References

Thomas, A M. (2014). �The proportional odds model: Simulations studies and predictive accuracy,� Research

project, School of Statistics, University of Minnesota.

C.2 Results of the simulation study sensitivity analy-

ses

Results of the simulation study sensitivity analysis 1 in which the confounders, the exposure

and the mediator all a�ect the monitoring intensity

191



Table C.1: Comparison of four estimators for the marginal log-OR for 1-unit increase in
Di(t) in the POM, for a sample size of n = 250 patients and 1000 simulations per study.
Sensitivity analysis with confounding (Conf.=Y) in which the confounders also a�ect visit
intensity.

Conf. γ Mean no. Absolute empirical bias Empirical variance
(Y/N) visits IPTMP IIVP IPTP POM IPTMP IIVP IPTP POM

(min-max)
Y (-0.3, 0.1) 2 (0-14) 0.08 0.28 0.08 0.28 0.27 0.02 0.27 0.02

(-0.1, 0.3) 3 (0-13) 0.10 0.29 0.15 0.30 0.20 0.01 0.21 0.01
(0, 0) 2 (0-13) 0.10 0.29 0.10 0.29 0.21 0.02 0.21 0.02

(0.1, 0.2) 3 (0-14) 0.10 0.29 0.13 0.30 0.20 0.01 0.20 0.01
(0.1, 0.5) 3 (0-16) 0.10 0.29 0.19 0.32 0.18 0.01 0.17 0.01
(0.2, 1) 5 (0-22) 0.05 0.28 0.29 0.35 0.17 0.01 0.14 0.01
(0.8, 0.4) 5 (0-49) 0.05 0.28 0.17 0.29 0.18 0.02 0.17 0.01

Results of the simulation study sensitivity analysis 2 in which we changed the mean outcome

model and tested another set of parameters in the monitoring intensity model so as to increase

the bias due to covariate-driven monitoring times

Table C.2: Comparison of four estimators for the marginal log-OR for 1-unit increase in
Di(t) in the POM, for a sample size of n = 250 patients and 1000 simulations per study.
Sensitivity analysis with confounding (Conf.=Y) in which we changed the mean outcome
model.

Conf. γ Mean no. Absolute empirical bias Empirical variance
(Y/N) visits IPTMP IIVP IPTP POM IPTMP IIVP IPTP POM

(min-max)
Y (-1,2) 10 (0-142) 0.04 0.41 0.64 0.77 0.47 0.10 0.38 0.05

(1, -1) 4 (0-58) 0.10 0.47 0.29 0.06 0.73 0.16 0.38 0.06
(1, -2) 4 (0-58) 0.02 0.36 0.40 0.10 0.80 0.28 0.43 0.06
(0, 0) 2 (0-13) 0.10 0.47 0.10 0.47 0.45 0.07 0.45 0.07

(-1.5, -0.5) 2 (0-63) 0.02 0.41 0.33 0.63 0.64 0.16 0.79 0.05
(0.5, 0.5) 4 (0-24) 0.16 0.50 0.08 0.48 0.64 0.07 0.46 0.05
(-2, 2) 15 (0-247) 0.17 0.22 0.39 0.27 0.65 0.26 0.79 0.05

C.3 Imputation models for missing covariates

In the application to the Add Health study, covariates were imputed using multivariate imputations by

chained equations (MICE), using fully conditional speci�cation, and starting with the covariates with the
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least missing values, to the most missing values in the condition in the imputation models. The rates of

missing values, calculated as the number of missing values in the vector, divided by the length of each

covariate vector (for all 4 waves stacked together) are: Sex: 0.0%; Age: 0.1%; Race: 0.3%; ENG: 1.6%;

MATH: 3.6%; HSS: 5.4%; GS: 6.2%; LGR: 18.1%; RSBI: 18.1% Feeling depressed: 18.1%; Video games:

18.9%; SES: 24.6%; Smoking: 43.2%; HOF: 56.4%; FHTR: 56.5 %; FCA 56.7%. To assess the validity of

the imputation and model �ts, we used strip plots and density plots. The imputation models provided a

good �t, with similar distributions between the observed covariates and the �tted covariates distributions.

The strip plots and density plots looked very similar between the observed and �tted distributions for all

covariates (except for the variable sex, which �tted distribution was based on only 4 missing values, and for

the variable age which presented with slight deviations between the observed and �tted distributions).

C.4 Balance in covariates across monitored and unmon-

itored observations, before and after IIV-weighting

(one imputed dataset used)

In Table C.3 we present the mean (SD) or the proportions for each covariate, strati�ed by the outcome being

monitored (dN = 1) or not being monitored (dN = 0). The standardized means di�erences (SMD) are

shown. The results are shown before and after weighting the observations with the �tted inverse intensity of

visit weight. Observations corresponding to the outcome not being monitored have been reweighted by the

inverse of the intensity of not being monitored, and the observations corresponding to the outcome being

monitored have been reweighted by the inverse of the intensity of being monitored.
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Table C.3: Comparison of covariates after imputation, strati�ed by monitored and unmoni-
tored observations, before and after inverse intensity of visit weighting. Continuous variables
(or numerical categorical variables with several categories) are described using the mean (SD)
and other variables are described with proportions. Standardized mean di�erences (SMD)
are shown.

Variable No IIV-weighting After IIV-weighting
dN = 0 dN = 1 SMD dN = 0 dN = 1 SMD

Number of hours spent on 3.9 (8.5) 3.2 (7.4) 0.08 3.8 (8.4) 3.5 (8.1) 0.04
video or computer games
Frequency of feeling depressed 0.06 0.02

Never or rarely 69.1 66.8 68.7 68.5
Sometimes 23.9 25.3 24.1 24.3
A lof of the time 5.2 5.4 5.2 5.0
Most of the time or all the time 1.9 2.5 1.9 2.2

Age 22.8 (4.8) 20.3 (5.8) 0.46 22.4 (4.8) 22.9 (6.1) 0.10
Sex (Female) 0.50 0.50 0.15 0.50 0.50 0.08
SES 6.4 (2.1) 6.6 (2.1) 0.10 6.5 (2.1) 6.6 (2.1) 0.05
Race 0.12 0.07

White 61.9 67.3 62.4 65.5
Black/African American 26.3 23.0 26.0 24.1
American Indian/Alaskan Native 1.2 1.2 1.2 1.2
Asian/Paci�c Islander 3.8 3.2 3.7 3.3
Other 6.8 5.3 6.7 5.9

FHTR 0.89 0.91 0.01 0.90 0.91 0.04
LGR 0.76 0.77 0.01 0.76 0.77 0.00
RSBI 0.30 0.30 0.01 0.30 0.30 0.01
MATH 0.92 0.96 0.03 0.92 0.93 0.02
ENG 0.84 0.87 0.05 0.84 0.84 0.03
HSS 0.92 0.94 0.04 0.93 0.91 0.02
GS 0.93 0.94 0.07 0.93 0.92 0.04
HOF 3.0 (1.0) 3.0 (1.0) 0.02 3.0 (1.0) 3.0 (1.0) 0.01
FCA 0.88 0.87 0.02 0.88 0.90 0.03
Days smoking cigarettes 8.0 (10.4) 8.2 (10.8) 0.02 8.1 (10.4) 8.1 (10.9) 0.00
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C.5 Results from the sensitivity analyses: Comparison of

the marginal e�ect of the time spent playing video

games on the number of suicide attempts

Table C.4: Analysis S1. Comparison of four estimators for the marginal OR for 1-hour or
10-hour increases in the time spent playing video games per week, on the odds of suicide
attempts (number of attempts categorized in 0, 1, or more), Add Health study, United States,
1994-2008, n = 6504.

Estimator 1-hour increase OR (Bootstrap 95% CI) 10-hour increase OR (Bootstrap 95% CI)
β̂POM 0.99 (0.97, 1.01) 0.93 (0.70, 1.06)
β̂IPTP 1.00 (0.97, 1.01) 1.01 (0.77, 1.15)
β̂IIV P 1.00 (0.97, 1.01) 0.97 (0.75, 1.09)
β̂IPTMP 1.01 (0.99, 1.02) 1.11 (0.88, 1.26)

Table C.5: Analysis S2. Comparison of four estimators for the marginal OR for 1-hour or
10-hour increases in the time spent playing video games per week, on the odds of suicide
attempts (number of attempts categorized in 0, 1, or more), Add Health study, United States,
1994-2008, n = 6504.

Estimator 1-hour increase OR (Bootstrap 95% CI) 10-hour increase OR (Bootstrap 95% CI)
β̂POM 0.99 (0.97, 1.01) 0.93 (0.70, 1.07)
β̂IPTP 1.01 (0.98, 1.02) 1.07 (0.84, 1.20)
β̂IIV P 1.00 (0.97, 1.01) 0.97 (0.76, 1.09)
β̂IPTMP 1.01 (0.99, 1.02) 1.08 (0.87, 1.20)

Table C.6: Analysis S3. Comparison of four estimators for the marginal OR for a two-fold
or 8-fold increases in the time spent playing video games per week, on the odds of suicide
attempts (number of attempts categorized in 0, 1, or more), Add Health study, United States,
1994-2008, n = 6504.

Estimator 2-fold OR (Bootstrap 95% CI) 8-fold OR (Bootstrap 95% CI)
β̂POM 0.91 (0.82, 0.99) 0.76 (0.55, 0.98)
β̂IPTP 1.00 (0.88, 1.09) 0.99 (0.69, 1.30)
β̂IIV P 0.95 (0.85, 1.04) 0.86 (0.61, 1.11)
β̂IPTMP 1.03 (0.91, 1.13) 1.09 (0.74, 1.44)
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C.6 Results from the main analysis and the sensitivity

analyses: Graphs of the estimated probability of 1 or

more, or of 2 or more suicide attempts, by the num-

ber of hours spent playing video games weekly

Main analysis with the log-OR estimated for a 1-unit increase in log2 (number of hours spent

playing video games+1) and the use of a generalized inverse probability of treatment weight

for modelling log2 (number of hours spent playing video games+1) as a continuous variable,

along with the 95% con�dence interval bands added
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Figure C.1: Main analysis. Probability of 1 or more suicide attempts (top panel) or of 2
or more suicide attempts (bottom) according to the number of hours spent playing video
games per week. Comparison of four estimators for the marginal log-OR. The bands around
the point estimates correspond to 95% CIs computed using the bootstrap percentiles. The
rug plot on the X-axis shows the di�erent values of the number of hours spent playing video
games in the study cohort, up to 110 hours per week.
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Sensitivity analysis 1 (S1): The number of hours spent playing video games as a continuous

exposure incorporated in the outcome model, and the use of a generalized inverse probability

of treatment weight for the continuous exposure (under the normality assumption for the

number of hours spent playing video games weekly)

Figure C.2: Analysis S1. Probability of 1 or more suicide attempts (top panel) or of 2 or
more suicide attempts (bottom) according to the number of hours spent playing video games
per week. Comparison of four estimators for the marginal log-OR. The rug plot on the X-axis
shows the di�erent values of the number of hours spent playing video games in the study
cohort, up to 110 hours per week.
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Figure C.3: Analysis S1. Probability of 1 or more suicide attempts (top panel) or of 2 or
more suicide attempts (bottom) according to the number of hours spent playing video games
per week. Comparison of four estimators for the marginal log-OR. The bands around the
point estimates correspond to 95% CIs computed using the bootstrap percentiles. The rug
plot on the X-axis shows the di�erent values of the number of hours spent playing video
games in the study cohort, up to 110 hours per week.
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Sensitivity analysis 2 (S2): The number of hours spent playing video games as a continuous

exposure incorporated in the outcome model, and the use of a generalized inverse probability

of treatment weight for the categorical exposure (�ve categories)

Figure C.4: Analysis S2. Probability of 1 or more suicide attempts (top panel) or of 2 or
more suicide attempts (bottom) according to the number of hours spent playing video games
per week. Comparison of four estimators for the marginal log-OR. The rug plot on the X-axis
shows the di�erent values of the number of hours spent playing video games in the study
cohort, up to 110 hours per week.
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Figure C.5: Analysis S2. Probability of 1 or more suicide attempts (top panel) or of 2 or
more suicide attempts (bottom) according to the number of hours spent playing video games
per week. Comparison of four estimators for the marginal log-OR. The bands around the
point estimates correspond to 95% CIs computed using the bootstrap percentiles. The rug
plot on the X-axis shows the di�erent values of the number of hours spent playing video
games in the study cohort, up to 110 hours per week.
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Sensitivity analysis 3 (S3): The log2(number of hours spent playing video games+1) as a

continuous exposure incorporated in the outcome model, and the use of a generalized inverse

probability of treatment weight for the categorical exposure (�ve categories)

Figure C.6: Analysis S3. Probability of 1 or more suicide attempts (top panel) or of 2 or
more suicide attempts (bottom) according to the number of hours spent playing video games
per week. Comparison of four estimators for the marginal log-OR. The rug plot on the X-axis
shows the di�erent values of the number of hours spent playing video games in the study
cohort, up to 110 hours per week.
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Figure C.7: Analysis S3. Probability of 1 or more suicide attempts (top panel) or of 2 or
more suicide attempts (bottom) according to the number of hours spent playing video games
per week. Comparison of four estimators for the marginal log-OR. The bands around the
point estimates correspond to 95% CIs computed using the bootstrap percentiles. The rug
plot on the X-axis shows the di�erent values of the number of hours spent playing video
games in the study cohort, up to 110 hours per week.
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