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We consider the classical appointment scheduling problem that does not have a session length constraint.

The decision is to determine job allowances to minimize total expected weighted costs of waiting times of

jobs and idle times of the service provider. In particular, we study a simple yet effective scheduling policy

– the so-called “constant” policy, which allocates a constant job allowance for each appointment. Prior

studies on appointment scheduling suggest a “dome”-shape structure for the optimal job allowance over the

planning horizon. This implies that job allowance does not vary significantly in the middle of the schedule

sequence, but varies at the beginning as well as the end of the optimal schedule. We show that an even simple

scheduling policy – the constant policy, is asymptotically optimal thus provide theoretical justification for

such a widely used policy. Using a dynamic programming formulation, we express each job’s waiting time as

the maximum of a random walk, which allows us to bound the performance gap between the constant policy

and the optimal schedule based on classical results on D/G/1 queues. We derive an explicit upper bound

for the performance gap when either of the following conditions holds: (1) the server idling cost is relatively

small compared to the job waiting cost; (2) the number of appointments is sufficiently large. We also extend

this result to a more general setting with multiple service types. Numerical experiments show that the

constant policy is near optimal even when the number of appointments is small or when the server idling

cost is moderately large, which complements our theoretical results. Our result provides a justification and

strong support for the constant policy under certain mild conditions. Moreover, with minor modifications,

the constant policy can be adapted to more general scenarios with patient no-shows, or with heterogeneous

appointment types.
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1. Introduction

Appointment scheduling is commonly used in services such as personal consulting, car

repairing, and healthcare (e.g., CT scan, magnetic resonance imaging (MRI) and outpatient

service). As the first step in making appointments, one needs to determine the start time

for each appointment slot, or equivalently the job allowance for each patient or customer.

This problem has been referred to as appointment scheduling in the literature (see, for

example, Denton and Gupta 2003, Hassin and Mendel 2008). The objective is to maximize

the servers’ utilization while minimizing the patients’ wait times, assuming that all the

scheduled patients arrive at the servers punctually. (In this paper, we use the terms patients

and customers interchangeably.) Due to the random service times, sometimes the previous

patient spent less time than the scheduled job allowance, leaving the server idled; at other

times, the previous patient cannot finish on time, resulting in delay (waiting) of the next

appointment. In either case, it results in efficiency loss to the system. In some applications,

the completion time of the last appointment is subject to a “session length” constraint. An

overtime cost would be incurred if the completion time has exceeded the session length.

In our paper, however, we do consider the idling cost and the waiting cost, but not the

overtime cost. The appointment scheduling problem with session length constraint and

overtime cost would require different proof framework which is out of the scope of this

paper.

In general, solving the appointment scheduling problem to optimality is intractable

(Robinson and Chen 2003). Even for a high quality solution with SAA (Sample Average

Approximation), the number of samples is a polynomial in the number of appointments and

the accuracy level (Begen et al. 2012). An alternative approach to this problem is to study

the properties of the optimal schedules and derive insights for practical use. One of the most

important findings from numerical study is that, when the service times are independently

and identically distributed (i.i.d.), the optimal schedule exhibits a “dome” shape (Wang

1993, 1997, Denton and Gupta 2003, Kaandorp and Koole 2007, Hassin and Mendel 2008,

Klassen and Yoogalingam 2009). A “dome” shape means that the job allowance increases

sharply for the first few appointments, then climbs slowly before the peak, decreases slowly

after the peak, and finally, descends quickly for the last few appointments. Figure 1 plots

the optimal schedule that minimizes the sum of idling cost and waiting cost. The height

of the curve corresponds to the job allowance and the curve exhibits a “dome” shape. To
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provide some intuition behind the “dome” shape, the optimal schedule will assign relatively

smaller job allowances to the first few appointments because, at the beginning of the day,

there are no backlogs and the risk of idleness is high. The job allowances then increase

because the risk of idling decreases with the number of cumulative arrivals. During the

middle of the day, the queue dynamics is stationary, and it is reasonable to expect that

the job allowance remains close to a constant. Near the the end of the day, backlogs do

not result in the same level of cascading impact into the future, and consequently, the job

allowances decrease.

Figure 1 Dome Shape of Optimal Schedule (service time follows a normal distribution with mean 20 and variance

16, with unit idle time cost 3 and unit waiting time cost 1)

Knowing that the optimal schedule is “dome”-shaped, however, does not directly lead

to an implementable schedule, because the job allowance for each appointment is still

unknown. However, one may observe that the differences of the job allowances become

smaller in the middle of the scheduling period. In fact, it is reported that the “dome”-

shaped curve may become more flattened in the middle when the number of appointments

increases (Klassen and Yoogalingam 2009), or when the unit waiting cost is relatively larger

compared to the unit idle cost (Hassin and Mendel 2008). Inspired by this observation,

Klassen and Yoogalingam (2009) propose a simple policy, i.e., a “plateau-dome” policy,

where the job allowances in the middle of a day are constrained to all be equal. They show

that the plateau-dome policy performs robustly in various parametric settings.

This motivates us to consider an even simpler policy, i.e., the constant job-allowance

policy, which simply allocates the same job allowance to every appointment. Here, a natural

question may be how well the constant policy performs in comparison to more sophisticated

policies, particularly, to the optimal schedule. This paper answers this question by deriving
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a closed-form upper bound for the optimality gap of the constant policy when either of

the following conditions holds: (1) the server idling cost is relatively small compared to

the job waiting cost; (2) there are sufficiently many appointments to be scheduled in a

continuous session. This upper bound also leads to the asymptotical optimality of the

constant policy under the above conditions. To the best of our knowledge, this is the first

theoretical performance bound derived for this classic problem. In fact, the existing studies

on the properties of the optimal schedule, e.g., the dome-shape characterization, are all

based on numerical analyses.

The constant policy is used widely in practice. For example, it has been used in hospitals

in Ontario which provide 24-hour MRI service to patients who have booked appointments

in advance.1 It has also been used in many outpatient care clinics, such as the British

Columbia Children’s Hospital. The reasons for the constant policy being so commonly

used include that this policy is easy to implement, and is also fair by assigning an equal

service time slot to each patient. Our research work provides both the theoretical analysis

and numerical examination for this important policy. In particular, our theory implies

that the constant policy achieves near optimality either when the patient waiting cost is

relatively higher than the server idling cost, or when a large number (e.g., typically more

than 400) of appointments have been served during a consecutive period without service

interruption. The first condition applies to many service industries which target at high-

valued customers, for example, consulting service for making investments, or exclusive

services for VIP customers. The second condition is suitable in a few practical appointment

systems, such as the aforementioned 24-hour MRI or CT scan. It has been reported that

a few hospitals have done more than 400 MRIs on average in a time window of 7-14 days

until service interruption (e.g., maintenance of the MRI machine), and most of those MIRs

are booked in well advance. Therefore, our analysis provides a theoretical guarantee for the

constant policy when being used in those scenarios. Nevertheless, neither condition holds

in a typical outpatient care setting, suggesting that there could be potential improvement

by considering more sophisticated scheduling policies instead of a constant policy.

Our theoretical framework of analyzing the constant policy can be adapted to variants

of model assumptions. Specifically, the same approach can be used to derive the theoret-

ical bound for the constant policy with i.i.d. patient no-shows, given the sequence of the

1 According to the historical data, except for less than 2% urgent cases, the majority of the patients need to book
their appointments one week before their visit date.
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services. We also extend this framework to the case when the service time distributions

differ in varying time blocks of a day. We propose a piecewise-constant policy in which

patients in the same time block (thus with the same service time distributions) are assigned

with the same job allowance. We derive theoretical upper bounds for the optimality gap

of this piecewise-constant policy and show that asymptotic optimality can be achieved by

a certain constant policy.

Our main contribution is three-fold as follows.

• First, under the assumption of i.i.d. service durations, we provide an explicit upper

bound for the optimality gap of the constant policy under either of the aforementioned

conditions. To the best of our knowledge, this is the first proven result to be within 1 + ε

of the optimal schedule, from theoretical aspect. This upper bound implies asymptotic

optimality of the constant policy, providing a theoretical basis for the implementation of

such a simple policy in practice when either condition holds. Our numerical study also

shows that the constant policy performs well for a small number of appointments (e.g.,

n= 16). Our theoretical and numerical results thus characterize appointment systems in

which a constant policy achieves near optimal performance.

• Second, the theoretical bound we derive in Section 4 for the constant policy validates

several findings regarding the optimal appointment schedule previously reported in the

literature. For example, the upper bound for the optimality gap becomes smaller when

the unit waiting cost is larger compared to the unit idling cost. This is consistent with

the numerical results reported by Hassin and Mendel (2008) that the “dome” tends to

be more like a constant when the ratio between waiting cost and idling cost is larger.

The upper bound is also closer to zero when the number of appointments is larger. This

is consistent with the numerical findings reported by the literature on optimal schedule

patterns (Klassen and Yoogalingam 2009).

• Third, this is the first attempt to adapt the proof framework, which was initially

developed by Goldberg et al. (2016) and Xin and Goldberg (2016) for inventory models,

to the appointment scheduling setting. Such an adaption, as we will point out later in

the technical analysis part, is not trivial. With this connection being made, it opens the

possibility for analyzing more general settings and making more interesting findings. In

fact, we have made two extensions, an appointment system with patient no-shows, or

with heterogeneous service time distributions. This demonstrates the robustness of our



Zhou et al.: Constant Job-Allowance Policies for Appointment Scheduling
6 00(0), pp. 000–000, c© 0000 INFORMS

theoretical characterization of the constant policy. The analysis of the piecewise constant

policy takes the first step in studying the optimal scheduling policy when service time

distributions are not i.i.d.

The remainder of this paper is organized as follows. Section 2 is the literature review.

Section 3 presents the description of the problem and the model setting. Section 4 presents

the main theoretical result – an upper bound for the optimality gap of the constant policy

and its asymptotical optimality, as well as a formal proof for this result. We also extend

the asymptotic optimality result to incorporating patient no-shows in Section 4. Section 5

extends the result for i.i.d. service durations to the case of piecewise i.i.d. service durations,

and show in this case that a piece-wise constant scheduling policy is asymptotically optimal.

Section 6 presents a numerical study, where the optimal policy is approximately computed

using the sample average approximation (SAA) method and compared to the optimal

constant policy. Section 7 concludes the paper and discusses future research.

2. Literature Review

The literature on appointment scheduling has been growing rapidly in recent years, espe-

cially in the healthcare services. Most of the literature models the appointment scheduling

problem by focusing on making two types of decisions: (1) determining the number of

patients scheduled in time blocks, or (2) the start time for each appointment. In the models

for the first type of decision (Kaandorp and Koole 2007, LaGanga and Lawrence 2012), it

is often assumed that a working day is divided into multiple time blocks and each time

block can accommodate multiple appointment slots. The actual consultation time of each

appointment is often assumed to have deterministic length. Some literature (Robinson

and Chen 2010, Zacharias and Pinedo 2014, 2017) also considers patient no-shows in the

models.

In models for the second type of decision, some of the literature considers the sequence

of appointments as well as the job allowance for each appointment as the decisions (Mak

et al. 2014b, Chen and Robinson 2014, Mancilla and Storer 2012). However, most of the

existing research assumes that the sequence of the appointments are given and only the job

allowance for each appointment is to be determined (Kong et al. 2013, Mak et al. 2014a).

These types of models have been studied by a rich set of literature for different service

time distributions, e.g., uniform distribution (Ho and Lau 1992, Denton and Gupta 2003),
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normal distribution (Denton and Gupta 2003), log-normal distribution (Cayirli et al. 2008,

Chen and Robinson 2014), exponential distribution (Ho and Lau 1992, Kaandorp and

Koole 2007, Hassin and Mendel 2008, Zeng et al. 2010), and gamma distribution (Bailey

1952, Soriano 1966, Denton and Gupta 2003). In contrast, our analysis does not impose

any assumption on the service time distribution.

A common optimization objective in the appointment scheduling literature is to minimize

the weighted expected value of the waiting cost and the idling cost, given the corresponding

cost rates (Robinson and Chen 2010, Yang et al. 1998, Weiss 1990, Lau and Lau 2000,

Mak et al. 2014b, Kuiper et al. 2015). Problems with such an objective is referred to as

the WIT (waiting and idle time) model (Klassen and Yoogalingam 2009). Examples that

suit for the WIT model include 24 hour CT scan, 24 hour MRI, or other applications in

which the fixed session length does not impose a hard constraint; see Weiss (1990), Lau

and Lau (2000), Robinson and Chen (2003), Kuiper et al. (2015) for more examples. Some

studies aim to minimize the day (session) end time (i.e., the completion time of the last

appointment) (Klassen and Rohleder 2004, Hassin and Mendel 2008), referred to as the

WITDET (waiting, idle, and day end time) model. Since the expected session end time

is the sum of the expected idling time and expected service time, with the latter being a

constant, minimizing the expected session end time is equivalent to minimizing the total

idling time. Therefore, the WITDET model is equivalent to the WIT model. One will get

a different model called WITOT (waiting, idle, and overtime) by assuming that the session

has a fixed length and including the overtime cost (Denton and Gupta 2003, Kaandorp and

Koole 2007). By including the overtime cost, the WITOT model becomes very different

from the WIT, and our method can no longer apply to. However, the numerical results

show that the constant policy performs near optimally even for the WITOT model; see

Appendix C.2.

When there is uncertainty surrounding the parameters, the appointment scheduling

problem is usually formulated as a stochastic programming problem. However, there are no

efficient methods to solve stochastic programming problems in general. The most popular

method, the sample average approximation (SAA) method (Begen et al. 2012), is com-

putationally expensive and is unable to solve the model to optimality if the problem size

is large. Being aware of the computational challenge in obtaining the optimal schedule,
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researchers turn to simple yet effective scheduling policies. For example, Bailey (1952) pro-

pose to schedule two customers at the beginning of each time block and the third one at the

2/3 mark of the time block. Researchers also investigate other scheduling policies/rules,

e.g., the Yang’s rule (Yang et al. 1998) and multiple block rule (Soriano 1966). For a sum-

mary of the schedule policies, we refer the reader to a survey paper by Cayirli and Veral

(2003). Although these policies perform quite well in numerical experiments, and some of

them also prevail in practice, there is no theoretical analysis, in particular with regards to

the performance bounds for the rules, reported in the literature.

While it is challenging to compute the optimal schedule, it is desirable to identify the

structural properties of the optimal schedule. In the presence of patient no-shows, Robinson

and Chen (2010) prove that the optimal schedule exhibits a “no hole” structure when the

scheduler’s decision is the number of appointments scheduled in each time block. When

the decision variables are the job allowances, Wang (1993) show that that the optimal job

allowance exhibits a “dome”-shape when the service times are exponentially distributed.

In recent decades, this “dome”-shape of the optimal schedule has been illustrated for i.i.d.

service durations in numerical experiments (Denton and Gupta 2003, Kaandorp and Koole

2007, Hassin and Mendel 2008, Klassen and Yoogalingam 2009). However, there is scant

theoretical evidence to support these findings. In this work, the constant schedule policy

with i.i.d. service durations is analyzed and the asymptotic optimality is then proved.

For the “dome”-shape scheduling policy, it is reported that the shape of the “dome” is

more flattened as the ratio of the idle time penalty parameter to the waiting time cost

parameter decreases for the i.i.d. uniform service durations (Denton and Gupta 2003).

This flattening of the “dome”-shape is also illustrated with the i.i.d. exponential service

durations (Hassin and Mendel 2008). The underlying intuition of the impact of the unit idle

time cost parameter is that when this parameter is high, the total cost related to idling is

high, providing an incentive to reduce total idle time by scheduling the first few customers

to arrive very closely or even together. Furthermore, at the end of the planning horizon,

the last few patients are scheduled to arrive closer to each other to avoid the server from

idling because only a few patients arrive. Our theoretical results also explain the impact

of the relative costs associated with server idling and customer waiting.
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The constant job allowance policy has been studied in a few previous works. Jansson

(1966) considers an appointment booking system with constant job allowances and expo-

nentially distributed service durations. He derives the constant job allowance which mini-

mizes the expected total cost in such an appointment booking system (which is essentially

a D/M/1 queue). Mercer (1960) and Sabria and Daganzo (1989) study the steady-state

behavior of an appointment system in the presence of customer unpunctuality. Charnetski

(1984) uses service times of over 2,000 real surgical procedures to evaluate the performance

of a constant job allowance policy in an operating room. Wang (1997) derives the optimal

constant job allowance when the service durations can be approximated by a phase-type

distribution. However, those works have focused either on searching for the optimal job

allowance or analyzing the steady-state queue, while our paper aims to bound the gap

between the optimal constant job-allowance schedule and the optimal schedule. Chen et al.

(2016) study a new appointment system in which customers are given the earliest pos-

sible appointment times under the service level constraints, and derive some asymptotic

properties of this system when the number of arrivals approaches infinity.

The performance of an appointment scheduling policy depends on the probability of

no-shows (Gupta and Denton 2008, Cayirli et al. 2006, 2008). It is reported that the

“dome”-shape is more pronounced as the show-up probability decreases (Kaandorp and

Koole 2007, Hassin and Mendel 2008). This means that high show-up probability may

result in a more flattened optimal scheduling pattern, and our theoretical analysis supports

this claim. During the past decade, patients’ no-shows have been studied extensively in the

literature such as Muthuraman and Lawley (2008), Robinson and Chen (2010), Cayirli et al.

(2012), Luo et al. (2012), Zacharias and Pinedo (2014), Zacharias and Pinedo (2017), and

Kong et al. (2020). A well-known strategy to offset the impact of no-shows is overbooking,

i.e., booking more customers in a certain time slot than the service capacity. For example,

Muthuraman and Lawley (2008) develop a stochastic overbooking policy to compensate

for patients with no-shows in an outpatient clinic. LaGanga and Lawrence (2012) derive

analytical bounds for the optimal number of patients to be scheduled in each time block

with customers’ no-shows. In addition to overbooking, other approaches can be used to

mitigate the detrimental effects of patient no-shows; for example, Cayirli et al. (2012)

propose a universal appointment rule to reduce the disruptive impact of no-shows. However,

the theoretical analysis for appointment scheduling with patient no-shows is not considered

and is usually quite challenging.
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3. Problem Formulation

Consider a generic clinic session with a single doctor and n + 1 appointments to be

scheduled in a finite time horizon (e.g., a day). The service times of those appointments

are independent and identically distributed (i.i.d.) random variables, denoted by A =

(A1,A2, · · · ,An). (Throughout this paper, we distinguish between a random variable and

its realization (or constant) using capital letter and lower case letter, respectively. We use

bold-faced letters to denote vectors.) We use A to denote the random variable having the

same distribution as each At. While the literature has characterized the optimal policies

when the random service duration A follows certain distributions (Kaandorp and Koole

2007, Hassin and Mendel 2008, Zeng et al. 2010), our main results (i.e., upper bounds (13)

and (29)) allow the service times to follow any continuous distribution.

We assume that the n+1 appointments, indexed by t= 1,2, · · · , n+1, have already been

sequenced. The clinic manager, being aware of the fixed sequence as well as the distribution

of the i.i.d. service times, needs to determine the job allowance of each appointment, that

is, the time separation between the start times of two consecutive appointments. We use st

to denote the job allowance scheduled for the tth appointment, and use s = (s1, s2, · · · , sn)

to denote the vector of all job allowances. We do not include the job allowance of the

last job sn+1 as a decision variable because that will not affect the objective value. The

start time of the first appointment is 0, and thus, given s, the appointment start times

are scheduled as {0, s1, s1 +s2, · · · ,
∑n

t=1 st}, which can also be interpreted as the scheduled

arrival times of patients. According to the usual practice, the scheduled arrival times have

to be determined and released to patients before the beginning of the horizon (time 0)

and no further adjustment can be made after the patients have arrived. We assume that

all patients will show up punctually at their scheduled times, but will later relax this

assumption and consider patient no-shows in Section 4.3. Finally, we assume that the job

allowance for each appointment is subject to an upper bound constraint, i.e., there exists

d such that st ≤ d for t= 1, . . . , n.

Due to the uncertainty of the service durations, a doctor may not finish serving each

patient on time. If the doctor finishes serving the (t− 1)th patient prior to the scheduled

start time of the tth appointment,
∑t−1

k=1 sk, then the doctor will stay idle until that time;

otherwise, if the (t−1)th patient has not completed service by the scheduled time
∑t−1

k=1 sk,

then the next patient has to wait until the service completes. For t= 1, . . . , n+ 1, let Wt
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denote the waiting time of tth patient and It denote the doctor’s idle time before seeing

the tth patient. Neither idling nor waiting cost would be incurred after the doctor serves

the last appointment. We assume that the doctor is always available at time 0, so that the

first patient can see the doctor immediately, i.e., W1 = 0. A graphical illustration of the

variables introduced above is provided in Figure 2.

Figure 2 Variables in Our Model

Note that the scheduled start time or the appointment for the tth patient is
∑t−1

k=1 sk,

and the actual start time of this patient is
∑t−1

k=1 sk +Wt, allowing for any possible waiting.

Thus, the ending time for the tth patient is
∑t−1

k=1 sk +Wt +At. Now, since the scheduled

start time for the (t+ 1)th patient is
∑t

k=1 sk, the actual start time of this patient is the

larger of
∑t−1

k=1 sk +Wt +At and
∑t

k=1 sk, and it follows that the waiting times and idle

times for the (t+1)th patient can be recursively expressed as follows: for each t= 1,2, · · · , n,

Wt+1 = [Wt +At− st]+ and (1)

It+1 = [Wt +At− st]− , (2)

where [x]+ max{x,0} and [x]− = max{−x,0} denote the positive and negative part of x,

respectively.

Following the literature (Weiss 1990, Lau and Lau 2000, Mak et al. 2014b, Kuiper et al.

2015), we assume that the scheduler aims at minimizing the expected total cost, which

consists of expected waiting cost and idle cost and has the following expression,

ν(s) = E

[
n∑
t=1

{cW ·Wt+1(s) + cI · It+1(s)}

]
. (3)

The parameters cW and cI in the above equation stand for the unit waiting time cost and

idle time cost, respectively. We use the notations Wt+1(s) and It+1(s) to highlight their

dependence on the job allowance vector s.

It is usually difficult to solve the above problem in large sizes (e.g., n> 50) to optimality

in real time. Heuristic methods have been proposed in the literature to obtain near-optimal
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and easy-to-implement policies. In this paper, we provide a theoretical justification of the

constant policy by proving its asymptotic optimality for the above problem under certain

conditions. We first prove the result for i.i.d. service durations. Later, we prove an analog

of the result when the service durations are allowed to have different distributions for

patients scheduled in different time blocks.

4. The Constant Policy

Throughout this section, we assume that the service durations {At}, t = 1,2, . . . , n, are

i.i.d. with the common probability density function f and cumulative distribution function

F . Let µ and σ represent the mean and standard deviation of At, respectively. In this

section, we show under certain conditions that there exists a constant policy which is

asymptotically optimal when the total number of appointments n grows large.

We first consider the case with n= 1. In this case, there are only two appointments, and

this appointment scheduling problem is equivalent to a Newsvendor problem (Weiss 1990).

The first assignment is at time 0, and the second appointment is at time s1, which is the

only decision variable here. The objective function given in (3) can be written as:

ν(s1) = E [cW ·W2(s1) + cI · I2(s1)] = cW ·E[A1− s1]
+ + cI ·E[A1− s1]

− .

where the last equality holds since (1) and (2) imply W2 = [A1− s1]
+ and I2 = [A1− s1]

−.

It is easy to verify that this function is a Newsvendor cost function, which is convex in s1.

Let s and g denote the minimizer and the minimum value of ν(s1) given above, i.e.,

s = arg min
s∈<+

cW ·E[A− s]+ + cI ·E[A− s]− and (4)

g = min
s∈<+

cW ·E[A− s]+ + cI ·E[A− s]− . (5)

Note that the above minimization problem faces uncertainty arising only from the service

duration A. In the problem with an arbitrary number of appointments, the job allowance

for the tth patient needs to consider not only the service duration At+1 for the next patient

but also possibly delay in starting the service for the tth patient. With this additional

uncertainty, it can be shown that s is a lower bound on the job allowance for the tth patient

under the optimal policy, denoted by s∗t . Similarly, g is a lower bound on the cost associated

with the tth patient given by Ct = cW ·Wt+1 + cI · It+1. Let C∗t denote this cost under the

optimal policy. These findings are summarized in the next lemma. The proof of the lemma

is attached in Appendix A.1.

Lemma 1. For t∈ {1, . . . , n}, s∗t ≥ s and E[C∗t ]≥ g.
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4.1. Statement of Theorem 1 and Discussion

To formally state the main result of this section, Theorem 1, we need to introduce several

notations. Recall that cW and cI are the per-unit cost parameters associated with the

patient’s waiting and the server’s idling. Also, F is the cumulative distribution function of

the service time A. Furthermore, d is an upper bound imposed on the choice of each st,

i.e., st ≤ d for t = 1, . . . , n. Let ζ denote the skewness of the random service time A and

define τ to be a function of ζ and two cost parameters cW and cI :

τ =


8

3ζ +

√
2cI
cW

+

√(
cI

2cW

)3


2 where ζ =
E[|A−µ|3]

σ3
. (6)

From the definition of τ , larger skewness of the service duration distribution or a large

ratio of cI/cW would lead to a large value of τ . For fixed r, we let random variable ηr∞

denote the hitting time of the maximum of a random walk. In the random walk that we

consider, the increment quantity in each epoch i is Ai− r. Define, for each t∈ {0,1,2, . . .},

the following random variable:

ηrt = min

{
j∗ ∈ {0,1, . . . , t}

∣∣ j∗∑
i=1

(Ai− r) = max
j∈{0,1,...,t}

j∑
i=1

(Ai− r)

}
. (7)

Without loss of generality, we define
∑k

i=l ·= 0 for 0≤ k < l in this paper. Since the sum-

mation in the above equation represents a random walk, an explicit, but still complicated,

expression for the probability distribution of ηrt is given in Theorem 1 of Andersen (1955).

Then, for each n≥ 1, define

εn(r) :=
cW rE[(ηrn)2− ηrn]

ng
+

cIσ
2

2ng(r−µ)
. (8)

εn(r) will be used to provide a bound on the performance of the constant policy. In its

expression above, the second term comes from the bound for the expected waiting of a

steady D/G/1 queue. The quantity E[(ηrn)2 − ηrn] in the first term can be numerically

computed and be upper bounded uniformly in n; see the next lemma. Both the numerical

algorithm and the derivation of the upper bound are provided in Appendix A.2.

Lemma 2. When r > µ, E[(ηrn)2− ηrn] has a uniform upper bound

E[(ηrn)2− ηrn]≤ 2ϕ2
r

(1−ϕr)2
, (9)
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where the scalar ϕr is defined as follows,

ϕr = inf
ψ≥0

φr(ψ) and ψr = arg inf
ψ≥0

φr(ψ), where φr(ψ) = E[exp(ψ(A−r))] .

(10)

To elaborate on the upper bound (9), φr(ψ) can be regarded as the moment generating

function of random variable A−r. The function attains its minimal value ϕr when ψ=ψr.

The proof of Lemma 2 is provided in Appendix A.2.

A constant policy r refers to a schedule in which all job allowances are set to a constant

value. We use ν(r) and ν∗ to denote the expected total cost under the constant policy r and

the optimal (possibly non-constant) policy, respectively. Let r∗ denote the job allowance

used by the optimal constant policy, so r∗ = arg min{ν(r)|r ≥ 0}. We use a vector s∗ to

represent the sequence of job allowances under the optimal policy, where s∗t denotes the

job allowance of the tth appointment. We use s∗ to denote the average job allowance under

the optimal policy, that is,

s∗ =
1

n

n∑
t=1

s∗t . (11)

Theorem 1. Suppose at least one of the following conditions hold:

• Condition 1: F (µ)< cW/(cW + cI);

• Condition 2: n≥max{2τ,6τ 3
2σ−1(d− s)}.

Then we have s∗ >µ, and

ν∗ ≤ ν(r∗) ≤ ν(s∗) ≤ (1 + εn(s∗))ν∗ . (12)

Furthermore,

εn(s∗) ≤ 2cWs
∗ϕ2

s∗

ng(1−ϕs∗)2
+

cIσ
2

2ng(s∗−µ)
→ 0 as n→∞. (13)

While the formal proof of this theorem is provided in Section 4.2, we make several

comments regarding the statement of the theorem.

Remark 1. The relationship in (12) can be written as 0 ≤ ν(s∗)/ν∗ − 1 ≤ εn(s∗). We

refer to the ratio ν(s∗)/ν∗−1 as the relative optimality gap for the constant policy r. The-

orem 1 provides two upper bounds for the relative optimality gap: one is the expression

of εn(s∗) on the right-hand-side of (8) and the other in (13). The first upper bound can
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be computed only when At follows a given continuous distributions, for example, a nor-

mal distribution. The second upper bound is weaker than the first one, but it has better

analytic properties, providing qualitative insights. For example, the second upper bound

monotonically decreases with n, suggesting that the constant policy has a better perfor-

mance guarantee when the time horizon is longer. The limiting property in (13) shows that

a simple constant policy s∗ is asymptotically optimal.

Remark 2. For general constant policy r, the optimality gap, which refers to the differ-

ence ν(r)−ν(s∗), cannot be computed explicitly without knowing the optimal schedule s∗.

However, by selecting r= s∗, the relative optimality gap can be bounded by the right-hand-

side of Equation (13), which converges to 0 as n→∞. In fact, since the optimal constant

policy r∗ always outperforms the constant policy r, we expect the gap ν(r∗)− ν(s∗) can

be even smaller. Our numerical experiments in Appendix C.3 show that the values of r∗

and s∗ stay very close, which suggests that we have not relaxed much by analyzing the

constant policy s∗ instead of r∗ in our analysis. For practical applications, however, we

always use r∗ instead of s∗, because r∗ can be efficiently computed by a one-dimensional

search, whereas computation of s∗ requires the knowledge of optimal schedule s∗ and is

much more involved.

We comment on Conditions 1 and 2 used in Theorem 1. Each of them provides a sufficient

condition for the value of s∗ = (s∗1 + · · ·+ s∗n)/n given in (11) to satisfy s∗ >µ. This ensures

that s∗ is sufficiently high so that the random walk used in (14) has a negative drift,

implying that ηr∞ has a finite expectation.

Lemma 3. If at least one of the two conditions in Theorem 1 holds, then s∗ >µ.

While a rigorous proof for the above lemma is provided in Appendix A.3, we provide

below some key ideas in the proof. The main part of Condition 1, F (µ) < cW/(cW +

cI), ensures that µ < s since s defined in (4) is a newsvendor solution satisfying F (s) =

cW/(cW + cI). Since Lemma 1 implies s∗ = (s∗1 + · · ·+ s∗n)/n≥ s, it follows that s∗ >µ. An

implication of Condition 1 is that when the ratio cW/cI is sufficiently large, cW/(cW + cI)

is close to 1, satisfying Condition 1. Then, for any value of n ≥ 1, the bound in (12) is

valid and the asymptotic optimality holds. This is consistent with the numerical studies in

Denton and Gupta (2003) and Hassin and Mendel (2008), which show that the “dome”-

shape becomes more flattened when the ratio cW/cI is larger.
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When Condition 1 fails, the unit waiting cost cW is relatively small compared to the

doctor idling cost parameter cI . In this case, the scheduler would rather keep the patients

waiting than making the doctor idle, and may choose the job allowances to be small.

This reasoning is valid when the total number of appointments, n, is small. However,

when n is large and approaches infinity, the job allowances under the optimal policy s∗ =

(s∗1, s
∗
2, · · · , s∗n) should be large enough so that their average, s∗, should be at least µ;

otherwise, the policy would result in very high waiting time by queuing theory, failing to

be optimal. Condition 2 spells the a sufficient condition on how large n should be.

We now elaborate on ηrt , which is used to calculate εn(r) for any r > µ. We explore its

connection to the waiting time. Let W r
t+1 denote the waiting time of the (t+ 1)th patient

under this constant policy r. Using the Lindley’s recursion and the recursive definition of

Wt given in (1), we have

W r
t+1 = [Wt +At− r]+ = max{0,Wt +At− r}

= max{0,At− r,Wt−1 +At−1− r} = · · · = max
j∈{0,1,...,t}

{
t∑

i=t+1−j

(Ai− r)

}
.

From the i.i.d. assumption of Ai’s, the rightmost expression above has the same distribution

as max
j∈{0,1,...,t}

{∑j
i=1(Ai− r)

}
, which in turn has the same distribution as W r

t+1, i.e.,

W r
t+1

d
= max

j∈{0,1,...,t}

{
j∑
i=1

(Ai− r)

}
. (14)

We have defined ηrt in (7) to be a random variable representing the index corresponding

to the maximum of the random walk used in the right-side of (14), where ties are broken

in favor of the smaller index.

Finally, we elaborate on why our analysis is restricted to constant policies with r > µ.

Note that εn(r) is an upper bound on the relative optimality gap. According to classic

random walk theory (see e.g., Karlin 2014), ηrn, used in the definition of εn(r) given in (8),

has finite first and second moments if and only if r > µ. Thus, E[(ηrn)2−ηrn]<+∞ is finite

if and only if r > µ. Therefore, r > µ is a sufficient and necessary condition for the upper

bound to converge to 0.
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4.2. Proof of Theorem 1

Now we prove Theorem 1. We first derive an alternative expression for ν(r)−ν∗ for general

r > µ, and provide an upper bound for this difference. We then show that this upper bound

has a simpler expression when we choose r= s∗. Finally, by lower bounding ν∗, we derive

an upper bound for the relative optimality gap (ν(s∗)− ν∗)/ν∗.

The following lemma derives an alternative expression for ν(s), originally defined in (3).

A proof for this lemma is in Appendix A.4.

Lemma 4. For any given schedule s,

ν(s) = E

[
n∑
t=1

cWWt+1

]
+ cI

n∑
t=1

st + cIE [Wn+1] − cInµ .

According to Lemma 4, for any constant policy r, we have

ν(r)−ν(s∗) = cW

n∑
t=1

E
[
W r

t+1−W ∗
t+1

]
+ cI

(
nr−

n∑
t=1

s∗t

)
+ cIE

[
W r

n+1−W ∗
n+1

]
, (15)

where W r
t and W ∗

t represent the waiting time under a constant policy r and the optimal

policy, respectively. Next we upper bound each of the three terms on the right side of the

above equation.

To upper bound the first term, consider an alternative expression for E[W r
t+1] using (14),

and the definition of ηrt given in (7):

E
[
W r

t+1

]
= E

[
max

j∈{0,··· ,t}

{
j∑
i=1

(Ai− r)

}]
= E

[(
ηrt∑
i=1

Ai

)
− ηrt r

]
.

Now, we obtain the following lower bound for W ∗
t , we use an argument similar to (14):

E
[
W ∗

t+1

]
= E

[
max

j=0,1,··· ,t

{
t∑

i=t+1−j

(Ai− s∗i )

}]

≥ E

 t∑
i=t+1−ηrt

(Ai− s∗i )

 = E

( ηrt∑
i=1

Ai

)
−

 t∑
i=t+1−ηrt

s∗i

 ,
where the inequality holds since we have used ηrt instead of the true maximizer, and the

second equality holds since Ai’s are i.i.d.. Then,

E
[
W r

t+1−W ∗
t+1

]
≤ E

 t∑
i=t+1−ηrt

s∗i

− rηrt
 . (16)
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Thus, we have

n∑
t=1

E
[
W r

t+1−W ∗
t+1

]
≤

n∑
t=1

E

 t∑
i=t+1−ηrt

s∗i

− rηrt
 ≤ rE[(ηrn)2− ηrn] , (17)

where the second inequality holds provided that the following Lemma 5 holds. The proof

of the lemma below is in Appendix A.5.

Lemma 5.
n∑
t=1

E

 t∑
i=t+1−ηrt

s∗i

− n∑
t=1

rE [ηrt ] ≤ rE[(ηrn)2− ηrn] .

Hence, with (17), the first term in (15) can be bound as follows

cW

n∑
t=1

E
[
W r

t+1−W ∗
t+1

]
≤ cW rE[(ηrn)2− ηrn] . (18)

To upper bound the third term in (15), which is cIE[W r
n+1−W ∗

n+1] when r > µ, it suffices

to upper bound E[W r
n+1]. Note from the recursive definition given in (1) that W r

t can

be regarded as the waiting time of tth customer in a D/G/1 queue with constant inter-

arrival time r and random service time A, with an initial state W r
1 = 0. By the property of

D/G/1 queue, the expected value E[W r
t ] monotonically increases from 0 to E[W r

∞] (see,

for example, Theorem 4 of Kingman (1962)). Thus, we have

E[W r
t ] ≤ E[W r

∞] for all t≥ 1. (19)

We now state a lemma that provides an analytic upper bound for E[W r
∞]. Let ρ = µ/r.

Also, define

Υ1 =
σ2

2r(1− ρ)
and Υ2 =

4

e2(ψr)2
log

1

1−ϕr
+

[
σ2

2r(1− ρ)

]2

. (20)

Lemma 6. Consider a D/G/1 queue with a deterministic inter-arrival time r and ran-

dom service time A, with mean µ and standard deviation σ. If ρ = µ/r < 1, then ψr > 0

holds, and the steady-state waiting distribution W∞ has the following upper bounds on the

first and second moments:

E[W∞] ≤ Υ1 and E[W 2
∞]≤Υ2 .
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The first part of the lemma, ψr > 0, is due to Kingman (1962), and the bound for the

first moment appears in Marshall (1968). The bound for the second moment comes from

Theorem 6 of Kingman (1962).

An implication of the above lemma is an upper bound on the third term in (15). Since

r > µ holds by Lemma 3, we can apply Lemma 6 to obtain

cIE[W r
n+1−W ∗

n+1] ≤ cIE[W r
n+1] ≤ cIΥ1 =

cIσ
2

2r(1− ρ)
. (21)

We have thus derived upper bounds in (18) and (21) for the first and the third terms at

the right-hand-side of (15). Furthermore, the second term at the right-hand-side of (15)

equals to zero when we choose r= s∗. Therefore, we have

ν(s∗)− ν(s∗) ≤ cWs
∗E[(ηs

∗

n )2− ηs∗n ] + 0 +
cIσ

2

2s∗(1− ρ)
.

Since Lemma 1 states E[C∗t ]≥ g for each t, it follows that ν∗ =
∑n

t=1E[C∗t ]≥ ng. Thus,

ν(s∗)− ν∗

ν∗
≤ cWs

∗E[(ηs
∗
n )2− ηs∗n ]

ng
+

1

ng
· cIσ

2

2s∗(1− ρ)
= εn(s∗) ,

where the last equality follows from the definition of εn(·) in (8). This establishes (12), the

first result in the statement of Theorem 1.

Finally, by substituting the upper bound for E[(ηrn)2−ηrn] (i.e., (9)) to the expression of

εn(r) (i.e., (8)), we obtain

εn(r) =
cW rE[(ηrn)2− ηrn]

ng
+

cIσ
2

2ng(r−µ)
≤ 2cW rϕ

2
r

ng(1−ϕr)2
+

cIσ
2

2ng(r−µ)
,

which is the inequality in (13) in the statement of Theorem 1. It is easy to show that

the rightmost expression above converges to 0 as n→∞. This completes the proof of the

theorem.

We make a few comments on the proof of Theorem 1. The structure of our proof fol-

lows the same framework as Goldberg et al. (2016) and Xin and Goldberg (2016). These

two papers have studied a constant order quantity policy for a lost sales inventory con-

trol problem. However, an adaptation of their idea to the appointment scheduling setting

requires additional work for two reasons. First, the recursive formulae of the waiting time

and a corresponding quantity in inventory papers are different: Wt+1 = [Wt + st − At]
+
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in the lost sales model and Wt+1 = [Wt +At− st]+ in the appointment scheduling model.

Despite apparent similarity, the two formulae lead to a different analysis. For example,

Lemma 5 in our proof has used a different method than the counterpart of Theorem 2 in

Goldberg et al. (2016). The random walk used in (7) of our analysis starts with an initially

empty state whereas the random walk used in Goldberg et al. (2016) starts from a steady

state; in analyzing ηrt , we cannot use a key result identified in Lemma 6 of Goldberg et al.

(2016), and have to derive a different relationship (see, for example, ηrt used in (A.16) in the

appendix). Second, the inventory model in the literature and the appointment scheduling

model studied here use different asymptotic regimes to establish asymptotic optimality of

the constant order quantity or job allowance policy. In the inventory models by Goldberg

et al. (2016) and Xin and Goldberg (2016), there are two time durations, the first one

being the fixed lead time L that determines the state of the dynamic programming and

the second one being the rolling horizon T of decision epochs. The asymptotic optimality

in Goldberg et al. (2016) requires that L→∞ and T/L→∞ as the relative performance

gap becomes close to 0. In Xin and Goldberg (2016), they use the asymptotic regime where

T →∞ while L is fixed. Thus, in both of these papers, it is assumed that T/L→∞
holds, implying that the planning horizon contains infinitely many information updates.

In contrast, in our paper, we have no information updates, which is essentially equivalent

to L= T , which is not covered by Goldberg et al. (2016) and Xin and Goldberg (2016).

It would be challenging to further strengthen the upper bound εn(r), as it is difficult to

further tighten the upper bound in Lemma 5.

4.3. When Patients Have No-Shows

An underlying assumption in Theorem 1 is that all the patients would show up. We now

discuss briefly how Theorem 1 can be extended to cover the case with the possibility of

patient no-shows. To model no-shows, we introduce a random binary variable Zt ∈ {0,1}
to indicate whether the tth patient in the sequence shows up for her appointment (Zt = 1)

or not (Zt = 0). We assume Zt’s are i.i.d. and have an average show-up probability p, i.e.,

E[Zt] = p.

The key idea in our approach is that we treat no-show patients as regular patients

who show up, but consider the service times of these patients to be 0. More precisely, let

(Ǎ1, Ǎ2, · · · , Ǎn) denote the service duration vector in the presence of no-shows. Then, for

each t∈ {1,2, · · · , n}, we have Ǎt =ZtAt, where (A1, . . . ,An) is the service duration vector
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without no-shows studied previously. On this basis, the waiting times and idling times

account for no-shows, which we now denote by {W̌t} and {Ǐt}, respectively, can be adapted

from (1) and (2) as follows: for t∈ {1, . . . , n},

W̌t+1 = [W̌t + Ǎt− st]+ and

Ǐt+1 = [W̌t + Ǎt− st]− ,

where W̌1 = 0.

When we count the waiting cost, we only need to count the waiting time of those who

actually show up. Thus, the total cost for a given schedule s can be formulated as, similar

to (3),

ν(s) = E

[
n∑
t=1

{
cW ·Zt+1 · W̌t+1(s) + cI · Ǐt+1(s)

}]
.

Since Zt+1 is independent of (Z1,Z2, · · · ,Zt), it must be independent of Wt+1. Thus,

E[Zt+1W̌t+1] = pE[W̌t+1]. Note that the idle time before the (t+ 1)th appointment, It+1,

does not depend on whether the (t+1)th patient would show up or not. Therefore, omitting

the explicit dependence on s, we have

ν(s) = E

[
n∑
t=1

{
(cWp) · W̌t+1 + cI · Ǐt+1

}]

= E

[
n∑
t=1

{
čW · [W̌t + Ǎt− st]+ + cI · [W̌t + Ǎt− st]−

}]
,

where čW = cWp. Thus, with the modified service durations Ǎt and modified unit waiting

cost čW , we can apply Theorem 1 and derive analogous results.

5. Multiple Types of Appointments: The Piecewise Constant Policy

In this section, we relax the assumption of homogeneous appointments by considering a

scenario where appointments are classified into M ≥ 2 types. The classification can be

based on factors such as a patient’s physiological attributes, time preference (e.g., morning

or afternoon), first visit or revisit, etc. Appointments of the same type follow the identical

service duration distribution, which is known by the scheduler as a priori. We let

nm = qmn

denote the number of appointments of typem, where n denotes the total number of patients

of all types, and qm denotes the proportion of the type-m appointments. Let Fm(·) be the
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cumulative distribution function of the service duration of the type-m appointments, and

we denote its mean and standard deviation by µm, and σm, respectively. Appointments of

the same type have i.i.d. service durations.

We consider a scenario in which appointments in the same day are sequenced in the

following way: type-1 appointments are scheduled to the first n1 slots, say, the first block;

type-2 appointments are scheduled to slots between n1 + 1 till n2, say, the second block,

etc. Such a sequencing strategy is practical because the classification of appointment types

have taken into account a patient’s time preferences. For example, patients who prefer

morning slots can be scheduled in the morning. The scheduler can further classify the

morning slots into multiple types and schedule them into different blocks. Patients usually

have some flexibility with their appointment times, as long as their preference to morning

or afternoon slots has been respected.

The policy that we consider in this section, called the piecewise constant policy, schedules

the same job allowance for all appointments of the same type. We show that, under the

above assumptions, this policy is asymptotically optimal. To facilitate the discussion, we

use the superscript m and subscript t to index the blocks and the position in that block,

respectively; for example, Am
t stands for the random service duration of the tth patient in

the mth block. Let sm∗t denote the optimal job allowance of the tth patient in the mth block

under the optimal schedule. Let

sm∗ =
1

nm

nm∑
t=1

sm∗t (22)

denote the average job allowance of type-m appointments under the optimal schedule. We

consider a piecewise constant policy s∗ = (s1∗, s2∗, · · · , sM∗), where s∗ is bolded to signify

that it is a vector representing a piecewise constant policy. Consistent with the previous

section, we also use ν(s∗) and ν∗ to denote the expected total cost under the piecewise

constant policy s∗ and the optimal schedule, respectively.

5.1. Statement of Theorem 2 and Discussion

We present our result in Theorem 2 below, which provides an approximation ratio for

the piecewise constant policy. Most of the notations used in Theorem 2 follow the same

definition and interpretation that we introduced in Section 4 for Theorem 1, by adapting

to a system which consists of only one type of patients.
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For m∈ {1, . . . ,M}, we define sm and gm in the exact same way as s and g given in (4)

and (5), i.e., the minimizer and minimum value of a Newsvendor function:

sm = arg min
s∈<+

cW ·E[Am− s]+ + cI ·E[Am− s]− and

gm = min
s∈<+

cW ·E[Am− s]+ + cI ·E[Am− s]− . (23)

where Am denotes the i.i.d. service duration for type m. Similar to (6), define τm to be the

skewness of Am and define ζm as a function of τm:

τm =


8

3(ζm) +

√
2cI
cW

+

√(
cI

2cW

)3


2 where ζm =
E[|Am−µm|3]

(σm)3
.

Let ρm = µm/sm∗. Similar to (10), define for sm∗ >µm,

ϕmsm∗ = inf
ψ≥0

φmsm∗(ψ) and ψmsm∗ = arg inf
ψ≥0

φmsm∗(ψ) where φmsm∗(ψ) = E[exp(ψ(Am−sm∗))].

(24)

Similarly, we can define φmr̄m(ψ), ψmr̄m, ϕmr̄m for a different constant policy r̄m, with

r̄m = sm∗− 1

K̄m
, where K̄m =

⌈
2

sm∗−µm

⌉
. (25)

Thus, r̄m >µm.

We also define ηm,s
m∗

t in the same way as ηrt in (7) except that Ai and r are replaced by

Am
i and sm∗i , i.e., ηm,s

m∗

t is the first index when the random walk
∑t

k=1(A
m
k − sm∗) achieves

its maximum value:

ηm,s
m∗

t = min

{
j∗ ∈ {0,1, . . . , t}

∣∣ j∗∑
i=1

(Am
i − sm∗) = max

j∈{0,1,...,t}

j∑
i=1

(Am
i − sm∗)

}
.

Furthermore, let ηm,s
m∗

∞ be the limiting distribution of ηm,s
m∗

t as t→∞. We let, similar to

(20),

Υ
m

1 =
(σm)2

2sm∗(1− ρm)
and Υ

m

2 =
4

e2(ψmsm∗)
2

log
1

1−ϕmsm∗
+

[
(σm)2

2sm∗(1− ρm)

]2

,

and define

Ωm = (m− 1)K̄m

m−1∑
k=1

Υ
k

2 +
ϕ̃

1− ϕ̃

m−1∑
k=1

Υ
k

1 (26)

where

ϕ̃ = max
m∈{1,2,...,M}

ϕmr̄m . (27)
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Finally, similar to the definition of εn(s∗) in (8), we define

εn(s∗) =
cW
∑M

m=1

{
sm∗E

[(
ηm,s

m∗
n

)2− ηm,sm∗n

]
+ Ωm

}
+ cI

∑M
m=1 Υ

m

1∑M
m=1 n

mgm
. (28)

Theorem 2. Suppose at least one of the following conditions hold for each m ∈
{1, . . . ,M}:
• Condition 1′: Fm(µm)< cW/(cW + cI);

• Condition 2′: nm ≥max{2(τm),6(τm)
3
2 (σm)−1(d− sm)}.

Let nm ≥ 1 hold for each m∈ {1, . . . ,M}. Then, we have sm∗ >µm for each m∈ {1, . . . ,M},
and

ν∗ ≤ ν(s∗) ≤ (1 + εn(s∗))ν∗ .

Furthermore,

εn(s∗) ≤
cW
∑M

m=1

{
2sm∗(ϕm

sm∗)
2

(1−ϕm
sm∗ )2

+ Ωm

}
+ cI

∑M
m=1 Υ

m

1∑M
m=1 n

mgm
→ 0 as n→∞. (29)

Similar to Theorem 1, Theorem 2 provides two upper bounds for the relative optimality

gap ν(s∗)/ν∗ − 1. The first upper bound, which is εn(·) itself given in (28), can be com-

puted only when the inter-arrival times {Am
t } follow certain distributions, e.g., a normal

distribution. The second bound, given in (29), is an upper bound on εn(·), and it converges

to zero when n→∞, proving the asymptotic optimality of the piecewise constant policy

s∗.

Condition 1′ and 2′ are simply adapting Condition 1 and 2 to a system with only one

type of appointment. By Lemma 3, Condition 1′ and 2′ provide a sufficient condition for

sm∗ >µm for eachm, which gives a sufficient and necessary condition for the first and second

moment of ηm,s
m∗

∞ to be finite. To achieve this, we consider the waiting-time distributions

{Wm,sm∗

t }, where t= 1,2, . . ., in a D/G/1 queue with the constant inter-arrival time sm∗

and random service times {Am
t }, where the system is initially empty. In our analysis, we

use the following bounds, given in Lemma 6 of Section 4, on the first two moments of the

steady-state waiting-time distribution Wm,sm∗
∞ :

E
[
Wm,sm∗

∞
]
≤ Υ

m

1 and E
[(
Wm,sm∗

∞
)2
]
≤ Υ

m

2 . (30)

Earlier in Section 4, recall from (19) that we used the steady-state distribution to bound

the distribution of waiting time for any t. Such a bound is valid if the system is initially
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empty. Thus, in applying this result to our setting, such a bound is valid for the first block

of patients, i.e., for m= 1. In fact, if there is only one block, i.e., M = 1, then the definition

of εn(·) in (28) is equivalent to the corresponding definition in (8) of Section 4, and the

bound in (29) simplifies to (13).

However, for subsequent blocks (m≥ 2), some patients from the previous subsequence

need to be seen before the patients from this block can be served. In other words, the

waiting time of the first patient in the current subsequence is not necessarily 0. As a result,

we can neither consider the M blocks as M separate systems, nor apply the upper bound

of Theorem 1 to each block. Instead, we need to derive an upper bound for a new system

with nonzero initial stocks which are unfinished appointments from the previous block. A

careful analysis of this treatment is required in the proof that appears in the appendix,

accounting for the extra Ωm term included in the upper bounds in (28) and (29) above.

We now investigate the Ωm expressions to gain insight into how the order of the blocks

affects the overall performance. Recall from the definition of each Ωm in (26) that Ωm

contains
∑m−1

k=1 Υ
k

1 and
∑m−1

k=1 Υ
k

2. The summation
∑M

m=1 Ωm, appearing in (28) and (29),

contains terms involving (M − k)Υ
k

1 and
∑M

m=k+1(m− 1)K̄mΥ
k

2. In other words, a block

scheduled earlier in the schedule has a smaller k and thus a larger weight, (M − k) or∑M
m=k+1(m − 1)K̄m, contributing towards the computation of the upper bounds. From

the property of the random walk used in the definition of Υ
k

1 and Υ
k

2, it can be shown

that these quantities increase with the standard deviation of the service time distribution

Ak. Thus, it follows that the summation
∑M

k=1 Ωk included in the upper bounds can be

made smaller by arranging appointment blocks with lower service time standard deviation

before those with higher service time standard deviation. This observation is consistent

with the computational result of Denton et al. (2007), in which they show that sequencing

appointments in the decreasing order of their variances performs well, better than the other

two heuristic sequencing algorithms studied in their paper.

5.2. Proof of Theorem 2

The proof of Theorem 2 follows the same high-level structure as the proof of Theorem

1 consisting of these three steps: we first derive an alternative expression for ν(s∗)− ν∗,
then find an upper bound for that difference by choosing a particular piecewise constant

policy s∗, and finally derive a lower bound for ν∗, leading to an upper bound for the

relative optimality gap ν(s∗)/ν∗ − 1. However, there is a notable difference between the
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homogeneous service model of Section 4 and the multiple type of appointments considered

in this section – the queue may not be empty at the beginning of each block, except for the

first one. This requires a different approach in finding an upper bound on the difference

ν(s∗)− ν∗.

Throughout the proof, we use s∗ = (sm∗t ) to denote the optimal schedule, where sm∗t

denotes the job allowance for the tth patient in the mth block, and let W
m∗
t represent the

waiting time for the tth patient in the mth block in the optimal schedule. We use W
m

t to

denote the waiting time for the tth patient in the mth block under the piecewise constant

policy s∗ = (s1∗, . . . , sM∗), where each sm∗ is defined according to (22). In comparison, for

fixed m, we use the notation Wm,sm∗

t to denote the waiting time for the tth patient if the

inter-arrival times are deterministically sm∗, and the i.i.d. service times are given by the

random variables (Am
t ), where t= 1,2, . . ., provided that the buffer is empty initially. Thus,

Wm,sm∗

t is exactly the same as W r
t used in Section 4. The only difference between W

m

t and

Wm,sm∗

t is the initial state: the system with W
m

t may have an initial buffer resulting from

the previous block, but the system with Wm,sm∗

t is initially empty.

For the first step of finding an upper bound for ν(s∗) − ν∗, we derive an alternative

expression for this quantity, similar to (15).

Lemma 7.

ν(s∗)− ν(s∗) = cW

M∑
m=1

nm∑
t=1

E
[
W

m

t+1−W
m∗
t+1

]
+ cIE

[
W

M

nM+1−W
∗
nM+1

]
. (31)

A formal proof of Lemma 7 is attached in Appendix B.1. We develop an upper bound

for the right-side of (31). From the choice of sm∗ = (sm∗1 + sm∗2 + · · ·+ sm∗nm)/nm given in

(22), sm∗ corresponds to the average job allowance of type-m appointments in the optimal

schedule. Thus, we find each of the two terms on the right side of (31).

In the proof of Theorem 1, we exploit the property of the D/G/1 queue and derived an

upper bound for the waiting-time difference between the constant policy r and the optimal

policy for a single type of patients, which is given in (16). To bound the first term in

(31), it may be tempting to apply the same method to each block m to obtain an upper

bound for
∑nm

t=1E
[
W

m

t+1−W
m∗
t+1

]
. Unfortunately, this approach does not work out easily

due to a key difference between the models in Section 4 and Section 5 – that in the mth

block, W
m

1 , may not be zero as all the patients from the previous block may not have been
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served by the allocated time. Therefore, it calls for some additional work to upper bound∑nm

t=1E
[
W

m

t+1−W
m∗
t+1

]
when W

m

1 is possibly strictly positive.

To this end, we consider an alternate queuing system. A key idea in this alternate system

is that it is a priority queue where the patients from a later block (i.e., larger m) is given

priority over the patients from an earlier block (i.e., smaller m). Patients within the same

block are served in the order of scheduled arrival times (i.e., smaller t index). Thus, the

first patient in any block is served starting from the appointment time without any waiting

delay. Furthermore, the alternative system allows preemption. Figure 3 illustrates both the

original system (under “System 1”) and the alternative system (under “System 2”).

Figure 3 An Alternative System that Holds the Jobs from the Previous Subsequence tills the Server Is Idle

It is easy to verify that the server is busy in the original system if and only if the server

is busy in the alternative system. Since W
m

1 is the amount of waiting time for the first

patient in block m in the original system, it also corresponds to the amount of time needed

to serve all backlogged patients at the appointment time of the first patient in block m

in either the original system or the alternative system. Recall that the job allowance for

each patient in block m is sm∗ under the piecewise constant policy. If w is the amount of

server time required to clear all backlog present at the first appointment of block m, let

∆m(w) denote the random variable representing that index of the earliest type-m patient

experiencing no waiting if there were infinitely many type-m patients, i.e., ∆m(ω) is the

smallest integer such that w plus the total of t− 1 service durations is at most the total

job allowance of t− 1 patients:

∆m(w) = min
{
t∈ {1, . . .}

∣∣ w+ (Am
1 + · · ·+Am

t−1)≤ (t− 1) · sm∗
}
. (32)

Recall that Wm,sm∗

t is the waiting time of the tth patient in block m if there is no initial

backlog at the beginning of block m. Based on the definition of the ∆m function above, it is
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easy to see that, if t≥∆m(W
m

1 ), the starting time of the service for the tth patient in block

m is the same regardless of whether the initial backlog is empty or it is W
m

1 amount of time;

consequently, the waiting time for this patient is unaffected under these two cases. Thus,

W
m

t =Wm,sm∗

t provided that t≥∆m(W
m

1 ). Otherwise, the waiting time of this customer

under the original system with the initial backlog of W
m

1 may be larger than the waiting

time of this customer had the backlog been empty at the beginning of this block; however, it

can be argued that this difference does not exceed W
m

1 , i.e., Wm,sm∗

t ≤Wm

t ≤W
m,sm∗

t +W
m

1 .

(To see this, note that the original system is busy whenever the system corresponding to

Wm,sm∗

t , i.e., starting with an empty buffer, is busy.) Thus,

W
m

t

 ≤ Wm,sm∗

t +W
m

1 if t <∆m(W
m

1 )

= Wm,sm∗

t if t≥∆m(W
m

1 ).
(33)

To find an upper bound on the first term of (31), the property given in (33) will be used,

along with the following lemma on the expected value of ∆m(w). The parameters K̄m and

ϕ̃ were defined in (25) and (27). The proof of this lemma appears in Appendix B.2.

Lemma 8. For any w> 0,

E[∆m(w)|w] ≤ K̄mw +
ϕ̃

1− ϕ̃
.

From (33),

nm∑
t=1

E
[
W

m

t+1−W
m∗
t+1

]
≤

nm∑
t=1

E
[
Wm,sm∗

t+1 −Wm∗
t+1

]
+ E

[
nm∑
t=1

W
m

1 ·1[t <∆m(W
m

1 )]

]
(34)

Since W
m∗
t+1 denoting the waiting time under the optimal policy would have been the same

or smaller if the initial buffer was empty, we can use the results from Section 4 to bound

the first term on the right side above using (17):

nm∑
t=1

E
[
Wm,sm∗

t+1 −Wm∗
t+1

]
≤ sm∗E

[
(ηm,s

m∗

n )2− ηm,sm∗n

]
. (35)

To bound the second term on the right side of (34), we use Lemma 8 to obtain

E

[
nm∑
t=1

W
m

1 ·1[t <∆m(W
m

1 )]

]
≤ E

[
∆m(W

m

1 )W
m

1

]
≤ K̄mE

[(
W

m

1

)2
]

+
ϕ̃

1− ϕ̃
E
[
W

m

1

]
.(36)
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We proceed to find upper bounds for E[(W
m

1 )2] and E[W
m

1 ]. From (33),

W
m

1 = W
m−1

nm−1+1 ≤ Wm−1,sm−1,∗

nm−1+1 +W
m−1

1 .

By repeatedly applying the above inequality, we obtain

W
m

1 ≤ Wm−1,sm−1,∗

nm−1+1 +W
m−1

1 ≤ · · · ≤
m−1∑
k=1

W k,sk∗

nk+1
(37)

As we argued in the proof of Theorem 1, E[W k,sk∗

t ] monotonically increases from zero to

E[W k,sk∗
∞ ] as t→∞. Furthermore, we have E[W k,sk∗

∞ ]≤Υ
k

1 by (30). Thus, we have a bound

for E
[
W

m

1

]
:

E
[
W

m

1

]
≤

m−1∑
k=1

E
[
W k,sk∗

nk+1

]
≤

m−1∑
k=1

Υ
k

1 . (38)

Also using (37) and a similar argument, we can obtain a bound for E[(W
m

1 )2]:

E
[(
W

m

1

)2
]
≤ E

(m−1∑
k=1

W k,sk∗

∞

)2
 ≤ (m− 1)

m−1∑
k=1

E

[(
W k,sk∗

∞

)2
]
≤ (m− 1)

m−1∑
k=1

Υ
k

2 ,

(39)

where the second inequality follows from Cauchy’s inequality, i.e., (a1b1 + · · ·+ am′bm′)
2 ≤

(a2
1 + · · ·+ a2

m′)(b
2
1 + · · ·+ b2

m′), and the last inequality follows from (30).

Putting together, we have

nm∑
t=1

E
[
W

m

t+1−W
m∗
t+1

]
≤

nm∑
t=1

E
[
Wm,sm∗

t+1 −Wm∗
t+1

]
+E

[
nm∑
t=1

W
m

1 ·1[t <∆m(W
m

1 )]

]
≤ sm∗E

[
(ηm,s

m∗

n )2− ηm,sm∗n

]
+ K̄mE

[(
W

m

1

)2
]

+
ϕ̃

1− ϕ̃
E
[
W

m

1

]
≤ sm∗E

[
(ηm,s

m∗

n )2− ηm,sm∗n

]
+ (m− 1)K̄m

m−1∑
k=1

Υ
k

2 +
ϕ̃

1− ϕ̃

m−1∑
k=1

Υ
k

1

= sm∗E
[
(ηm,s

m∗

n )2− ηm,sm∗n

]
+ Ωm .

Above, the first inequality follows from (34), the second inequality follows from (35) and

(36), the third inequality follows from (38) and(39), and the final equality follows from the

definition of Ωm in (26). Thus, the first term in (31) is bounded above as follows:

cW

M∑
m=1

nm∑
t=1

E
[
W

m

t+1−W
m∗
t+1

]
≤ cW

M∑
m=1

{
sm∗E

[
(ηm,s

m∗

n )2− ηm,sm∗n

]
+ Ωm

}
.
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Finally, the second term in (31) satisfies

cIE
[
W

M

nM+1−W
∗
nM+1

]
≤ cIE

[
W

M

nM+1

]
= cIE

[
W

M+1

1

]
≤ cI

M∑
m=1

Υ
m

1 ,

where the last inequality follows from (38). Therefore, from Lemma 7, we conclude

ν(s∗)− ν∗ = ν(s∗)− ν(s∗) ≤ cW

M∑
m=1

{
sm∗E

[
(ηm,s

m∗

n )2− ηm,sm∗n

]
+ Ωm

}
+ cI

M∑
m=1

Υ
m

1 .

This establishes an upper bound for ν(s∗)− ν∗.

Now, since the expected total cost associated with each appointment in each block m is

bounded below by gm defined in (23) from Lemma 1, it follows

ν∗ ≥
m∑
i=1

nmgm .

Therefore,

ν(s∗)− ν∗

ν∗
≤

cW
∑M

m=1

{
sm∗E

[(
ηm,s

m∗
n

)2− ηm,sm∗n

]
+ Ωm

}
+ cI

∑M
m=1 Υ

m

1∑M
m=1 n

mgm
= εn(s∗) ,

(40)

where the equality follows from the definition of εn(·) in (28). Furthermore, since (A.6)

implies

sm∗E
[
(ηm,s

m∗

n )2− ηm,sm∗n

]
≤ 2 · sm∗ · (ϕmsm∗)2

(1−ϕmsm∗)2
,

we obtain the inequality in (29). The convergence result in (29) holds since the numerator

in the bound is independent of n and the denominator increases to become arbitrarily large

as n→∞. This completes the proof of Theorem 2.

6. Computational Results: Performance of the Constant and
Piecewise Constant Policies

In this section, we report on our computational investigation of the performance of the

constant policy and the piecewise constant policy. We study how much the restriction

imposed by these simple policies increases the overall cost compared to a more general

policy.

We use the sample average approximation approach (Kleywegt et al. 2002) in our com-

putation. Specifically, we randomly generate K i.i.d. scenarios with a given distribution
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of service time and then solve the resulting linear program that optimizes the schedule

for these sample service times. If the job allowance is allowed to be different for each job,

the resulting solution, denoted by sSAA, is a proxy for the optimal schedule. If the linear

program constrains the job allowance to be the same, the resulting solution, denoted by

rSAA, is the best constant policy for the generated sample service times. Note that the

theoretical results in Sections 4 and 5 have used a specific constant policy, namely one with

the average job allowance under the optimal policy, which requires knowing the optimal

schedule. Instead, by using a linear program, we search for the best constant job allowance

among all constant policies.

We let ν(sSAA) and ν(rSAA) denote the expected cost associated with the “optimal’

policy and the best constant policy, respectively, using sample average approximation. The

ratio (ν(rSAA)− ν(sSAA))/ν(sSAA) gives the relative gap between the optimal constant

policy and the optimal policy solved using the SAA method. Since the SAA method usually

solves the problem to optimality when the problem scale is not too large, this ratio provides

an estimation of the relative optimality gap for the optimal constant policy. We normalize

the waiting time cost parameter to be 1, i.e, cW = 1, and vary the unit idling time cost

parameter cI , which then corresponds to the ratio cI/cW . We consider the case with i.i.d.

service durations in Section 6.1, and discuss the case with piecewise i.i.d. service durations

in Section 6.2. In Appendix C, we also compare the constant policy and the optimal policy

under several extensions of the model, e.g., when the objective includes an overtime cost,

when patients have no-show or arrival unpunctuality.

6.1. Homogeneous Customers: I.I.D. Service Durations

The numerical study aims to complement the theoretical results in two aspects. First, our

theoretical bound in Theorem 1 shows that the constant policy is near optimal either if

cI/cW is sufficiently small (Condition 1), or if the number of appointments, n, is sufficiently

large (Condition 2). Our computation focuses on the cases not covered by the theorem,

namely when n is small and cI/cW is large. Second, while the theoretical convergence rate

identified in Theorem 1 is O(1/n), we learn the actual convergence rate computationally.

To test the performance of the constant policy for small n, we fix n= 16, and choose var-

ious ratios of cI/cW . Since appointment scheduling covers a wide range of applications, all

the tested parameters can find examples in real life. We let d= 5µ, but the results will keep
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the same when d takes even larger values. In each scenario, we test four service duration dis-

tributions: exponential distribution with mean 20, lognormal distribution with mean 20 and

standard deviation 4, and two normal distributions with mean 20 and standard deviation 4

and 8. (In the case of normal distributions, we truncate them at 0, ensuring nonnegativity.)

In each test, we randomly generate K = 2000 scenarios, solve the sample average approxi-

mation linear program to determine the corresponding optimal schedule and best constant

policy. Then, we generate another K ′ = 2000 scenarios to calculate ν(sSAA) and ν(rSAA)

to approximate the relative optimality gap, (ν(rSAA)− ν(sSAA))/ν(sSAA). The ratios are

summarized in Table 1.

Table 1 Relative optimality gaps (in %) for different service time distributions and ratios of cI/cW : i.i.d. service

durations

Distribution µ σ
cI/cW

0.2 0.4 0.6 0.8 1 1.5 2 2.5 3 10 100

Normal
20 4 0.15 0.25 0.43 0.56 0.68 1.03 1.14 1.77 1.89 4.48 25.15

20 8 0.18 0.33 0.59 0.67 0.79 1.51 1.87 1.98 2.16 5.06 25.45

Exponential 20 20 0.43 0.83 1.00 1.27 1.45 2.18 2.63 2.78 3.12 6.48 25.63

Lognormal 20 4 0.09 0.38 0.42 0.54 0.86 1.23 1.54 1.9 2.09 4.87 25.21

Table 1 provides several insights. First, the constant policy performs well in general under

various combinations of cI/cW and service duration distributions. The relative optimality

gap under the worst combination is less than 4% when cI/cW ≤ 3. Hence, even for small-

size problems (n= 16), the constant policy is able to achieve near-optimal performance as

long as the idling cost is not too large compared to the waiting cost. However, if the idling

cost is too large, then the constant policy can lose substantially to the optimal schedule.

The theoretical upper bound εn(s∗) we derived in Theorem 1 can be much larger than the

actual optimality gap for small n. Further strengthening the theoretical bound, however,

presents a challenge.

Second, the constant policy achieves the best performance when the service duration has

a normal distribution with small standard deviation and has the worst performance for

exponential distribution. It appears that the constant policy works well when the service

duration has a small coefficient of variation, σ/µ. This is not surprising since the constant

job allowance is optimal if all service times are deterministic. Third, for each type of

service duration distribution, the relative optimality gap exhibits a clear decreasing trend
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approaching 0 as cI/cW becomes smaller. This observation is consistent with what has been

reported in Denton and Gupta (2003), Hassin and Mendel (2008) – the curve of the job

allowance under the optimal schedule, despite still having a dome shape, is more flattened

when the unit idling cost is relatively small.

In order to compare optimal constant policy (OC) with optimal schedule (OPT) more

vividly, for each combination of service time distribution and ratio of cI/cW , we compare

the performance indicators (i.e., total waiting times (WTime) and total idle times(ITime))

and corresponding total idle costs (ICost) for two policies (Note that we set cW=1, the

waiting time equals to waiting cost). The results are summarized in Table 2.

From Table 2, we can observe that all elements, including total waiting times, total

idle times and total idle cost exhibit a small difference between two policies except when

the ratio cI/cW is large. More interestingly, both total waiting times and total idle costs

witness an increasing trend as the ratio cI/cW increases, while the total idle cost exhibit

an opposite trend.

We next consider the relative optimality gap as we vary the number of total appointments

(i.e., problem sizes), n, to understand how the relative optimality gap converges. Since

the technical difficulty with a large n is that it is very slow to solve the sample average

approximation linear program to obtain sSAA, we use a smaller K = 400 for problems when

n ≥ 100. We fix cI = 3, and calculate the relative optimality gap for n = 25,50,100,200,

respectively. The results are summarized in Table 3. It shows that the relative optimality

gap decreases as n increases, as expected. The speed that the gap converges to zero actually

depends on the type of service duration distribution. While the actual convergence rates

are difficult to estimate with limited n values, it appears that the convergence rate is faster

than O(1/n) in all four types of service distributions when n≥ 50.

6.2. Multiple Customers Types: Piecewise I.I.D. Service Durations

We next study the performance of the piecewise constant policy when the service durations

are piecewise i.i.d. We consider a system with M = 2 types of patients, with an equal

proportion, i.e., q1 = q2 = 0.5. For each type patients, we assume its service duration can

take one of the five service duration distributions. The first four distributions are the

same as those used previously in Section 6.1, and the fifth distribution that we added is

an exponential distribution with mean 4. Eight combinations of these distributions were

tested. Similar to the setting used in Table 1, we use a small problem size with n = 16,
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Table 2 Performance indicators comparison (in %) for different service time distributions and ratios of cI/cW :

i.i.d. service durations

Distribution µ σ Policies
cI/cW

0.2 0.4 0.6 0.8 1 1.5 2 2.5 3 10 100

Normal

20 4

WTime
OPT 5 10.1 14.5 18.7 22.8 31.5 40 46.8 54.8 122.1 311.4
OC 5 10.1 14.4 18.5 22.5 31.1 39.6 46.6 54.2 120.5 336.1

ITime
OPT 74.2 58.4 48.1 43.7 38.3 31.7 26.5 23.9 20.5 8.1 0.7
OC 74.5 58.6 48.5 44.4 39.1 32.5 27.4 24.8 21.5 9.3 1.5

ICost
OPT 14.8 23.4 28.8 35 38.3 47.5 53 59.7 61.4 81.4 70.2
OC 14.9 23.4 29.1 35.5 39.1 48.8 54.7 62 64.5 93 149.4

20 8

WTime
OPT 10.2 20.1 28.8 36.9 44.5 64.2 79.2 95.3 109.1 243.9 654.9
OC 10.3 19.7 28.4 36.5 43.5 63.3 78.5 93.9 106.9 240.5 674.3

ITime
OPT 151.2 117.6 98.7 86.6 77.3 62.4 54.7 46.1 40.3 16.3 1.5
OC 151.2 119 100.1 87.8 79.2 64.2 56.3 48.1 42.7 18.7 3.3

ICost
OPT 30.2 47 59.2 69.2 77.3 93.7 109.5 115.2 120.9 163.1 152.7
OC 30.2 47.6 60 70.2 79.2 96.3 112.6 120.3 128.1 187.4 327

Exponential 20 20

WTime
OPT 45.7 79.8 109.2 131.9 156.4 206.3 255.9 284.3 332.3 648.7 1362
OC 45.8 79.2 107.5 130.8 153.4 205.1 254.4 283.9 333.2 650.6 1535

ITime
OPT 428.9 313.7 255.6 214.6 192 141 122.1 101.8 91.8 30.2 2
OC 430.2 319.3 261.8 219.4 198.8 147.8 128.8 108.5 98.1 35.9 4

ICost
OPT 85.8 125.5 153.3 171.6 192 211.5 244.2 254.6 275.3 302.2 201.1
OC 86 127.7 157.1 175.5 198.8 221.6 257.7 271.2 294.2 359.2 403.3

Lognormal 20 4

WTime
OPT 6.6 11.8 17.3 21.3 26.2 35.7 43.3 50.7 58.9 125.5 310.4
OC 6.5 11.7 17.1 21.1 25.5 35.2 42.4 50.3 58.9 124.3 339.1

ITime
OPT 79.1 59.2 50.5 43.5 38.4 31.4 26.1 22.8 20 7.5 0.7
OC 79.4 59.6 51.1 44.3 39.5 32.3 27.4 23.7 21.1 8.7 1.3

ICost
OPT 15.8 23.7 30.3 34.8 38.4 47.1 52.3 56.9 60.1 75.3 66.2
OC 15.9 23.9 30.7 35.5 39.5 48.5 54.8 59.3 63.2 86.8 133.5

Table 3 Relative optimality gaps (in %) for different problem sizes: i.i.d. service durations

Distribution σ µ

n

25 50 100 200

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

Normal
20 4 1.60 [1.29,1.91] 1.06 [0.88,1.23] 0.29 [0.11,0.46] 0.00 [0,0.04]

20 8 1.60 [1.26,1.93] 1.06 [0.85,1.27] 0.30 [0.14,0.45] 0.00 [0,0.04]

Exponential 20 20 2.65 [2.22,3.07] 1.78 [1.50,2.07] 0.63 [0.39,0.88] 0.10 [0,0.25]

Lognormal 20 4 1.90 [1.56,2.23] 1.25 [1.01,1.49] 0.35 [0.12,0.58] 0.00 [0,09]

with 8 patients for each type, and set K =K ′ = 2000. The results are summarized in Table

4.

From Table 4, we observe that the relative optimality gap of the piecewise constant

policy is less than 9% for all combinations. We also observe that the piecewise constant
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Table 4 Relative optimality gaps (in %) for different service time distributions and ratios of cI/cW : piecewise

i.i.d. service durations

Type 1 Type 2 cI/cW

Distribution µ σ Distribution µ σ 0.2 0.4 0.6 0.8 1 1.5 2 2.5 3

Normal 20 4 Normal 20 8 0.2 0.23 0.26 0.41 0.59 0.86 0.93 0.99 1.06
Normal 20 8 Normal 20 4 0.34 0.67 0.9 1.37 1.86 2.25 2.72 2.88 3.01
Exponential 4 4 Exponential 20 20 0.4 0.49 0.83 0.94 1.09 1.29 1.79 1.9 1.93
Exponential 20 20 Exponential 4 4 3.41 3.67 3.9 4.45 5.57 6.02 7.09 7.92 8.65
Normal 20 4 Exponential 20 20 0.37 0.53 0.88 1.01 1.22 1.5 1.56 1.63 1.71
Exponential 20 20 Normal 20 4 4.08 4.65 4.89 5.05 5.25 5.55 6.91 7.12 7.5
Lognormal 20 4 Exponential 20 20 0.23 0.72 0.92 0.94 1.28 1.32 1.39 1.65 1.87
Exponential 20 20 Lognormal 20 4 2.42 3.53 4.72 5.07 6.05 6.21 6.47 7.12 8.68

policy performs better when the ratio cI/cW is smaller, similar to the i.i.d. service duration

case.

More interestingly, when we compare the last two rows of the table, both using the

same set of service distributions, it turns out that the performance gap is smaller when

the lognormal distribution with standard deviation 4 is used for the first block of patients

and the exponential distribution with standard deviation 20 is used for the second block of

patients. It suggests that it is better to schedule the patient block with a smaller standard

deviation first. A similar observation can be made from the third row to the sixth row

of the table (the pair with two exponential distributions, one with standard deviation 4

and another with standard deviation 20; and the pair with one normal distribution and

other one with exponential distribution). This is consistent with what we have inferred

from the analytical upper bounds – that the performance gap is more sensitive with service

distributions in earlier blocks; see Section 5.1.

Finally, we compare the performances of the constant policy and the piecewise constant

policy in a simple setting with M = 2 appointment types. We consider scenarios that are

described in the last two rows of Table 4. That is, type-1 appointments have a lognormal

distribution and type-2 appointments have an exponential distribution. The job allowance

of the optimal constant policy rSAA and that of the optimal piecewise constant policy

rMSAA are computed with the SAA method under different values of cI/cW . Let ν(rSAA) and

ν(rMSAA) denote the total cost achieved by the constant policy and the piecewise constant

policy, respectively. So the ratio (ν(rSAA)− ν(rMSAA))/ν(rSAA) represents the percent-wise

reduction in the total cost by the piecewise constant policy compared to the constant policy.

Table 5 summarizes the values of (ν(rSAA) − ν(rMSAA))/ν(rSAA) in different parametric
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settings. We observe all values to be positive, suggesting that the piecewise constant policy

outperforms the constant policy in all scenarios. The improvement is more significant when

cI/cW is small, because according to Theorem 2, the piecewise constant policy has very

small cost when cI/cW is small.

Table 5 (ν(rSAA)− ν(rMSAA))/ν(rSAA) (in %) under different service time distributions and ratios of cI/cW :

piecewise i.i.d. service durations

Type 1 Type 2 cI/cW

Distribution µ σ Distribution mu sigma 0.2 0.4 0.6 0.8 1 1.5 2 2.5 3

Lognormal 20 4 Exponential 20 20 22.98 18 13.95 10.84 8.54 3.56 1.78 0.59 0.14
Exponential 20 20 Lognormal 20 4 18.1 14.53 11.62 8.51 7.88 4.87 3.77 2.3 1

7. Conclusion and Future Work

Prior studies on appointment scheduling report that the optimal schedule has a “dome”

pattern for the i.i.d. service durations, in which the service allowances for patients exhibit

little variation in the middle of the planning horizon. Inspired by this, we analyze a simple

but effective constant scheduling policy for the traditional appointment scheduling prob-

lem. The numerical experiments show that the constant policy performs well in various

parameters and distributions combinations. Most importantly, we prove that the constant

policy is asymptotically optimal for homogeneous patients, and we extend the asymptotic

optimality result to heterogeneous patient types.

We make a novel analysis of the easy-to-implement policy for the traditional appoint-

ment scheduling problem, which is robust over a range of settings such as i.i.d. service

duration distributions and the possibility of no-shows. We establish the explicit relative

optimality gap bounds between the constant policy or its extension and the optimal sched-

ule. This bound also leads to asymptotic optimality of the constant and piecewise constant

policies, once again advocating for their use in practice. Furthermore, we have identified

several managerial insights – some of which are new and affirm observations made in the

literature. Our approach of attaining asymptotic optimality results can be extended to

other optimization problems that makes a tradeoff between two types of costs. For exam-

ple, in a slot queue staffing assignment problem, the number of servers scheduled in a slot

directly impacts the staffing cost and customer goodwill with respect to waiting.
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However, for a more general type of service duration distributions beyond the piecewise

i.i.d. service duration structure, the optimality structure is still unknown and remains

open. Walk-ins may disrupt the appointment system thus deserve for more attention when

making a schedule. In addition, patients’ behaviors, including non-punctuality and time

window preferences, would also affect the performance of appointment system. The case

when patients may arrive later than their scheduled times is a possibility for future research.

Even though some policies have been shown to be numerically effective in the literature,

no theoretical performance bounds have yet been derived for such patient behavior under

consideration, as well as in cases with session length constraint and overtime cost. These

considerations are beyond the scope of this paper and potential for future research.
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A. Proofs for Section 4

A.1. Proof of Lemma 1

From the definition given in (3),

ν(s) =
n∑
t=1

{cW ·E [Wt+1] + cI ·E [It+1]} =
n∑
t=1

{
cW ·E [Wt +At− st]+ + cI ·E [Wt +At− st]−

}
(A.1)

where the second equality follows from (1) and (2). Recall that each Wt is nonnegative and it is

independent of At.

For fixed t ∈ {1, . . . , n}, we consider the impact of st, on the above objective function. The job

allowance for the tth patient does not impact the cost for patients in {1,2, . . . , t− 1}. For patients

in {t+ 1, . . . , n}, the choice of st has an impact on the cost through waiting time distributions

{Wt+1, . . . ,Wn}; more specifically, the summation of costs from t+ 1 to n decreases in st. This

implies that the optimal value of st should be bounded below by the optimizer of the myopic cost

(cost in period t) given by

Ct = cW ·E [Wt +At− st]+ + cI ·E [Wt +At− st]− . (A.2)

Note that this is a well-known Newsvendor function, which is a convex function of st, and the

derivative of Ct with respect to st is given by

−cW ·P [Wt +At > st] + cI ·E [Wt +At ≤ st] .

This derivative depends on the distribution of Wt and can be made the smallest when Wt = 0, i.e.,

the above expression is bounded below by −cW ·P [At > st] + cI ·E [At ≤ st], which turns out to be

the function inside the minimization operator in (4) used for the definition of s. Thus, we conclude

that s is a lower bound for the optimizer of (A.2), which in turn is a lower bound for the optimal

value of st, denoted by s∗t . This proves s∗t ≥ s.
Now, since s≥ 0, it follows from the definition of g in (5),

g = min
s∈<+

cW ·E [At− s]+ + cI ·E [At− s]−

≤ min
s∈[−E[Wt],d−E[Wt]]

cW ·E [At− s]+ + cI ·E [At− s]−

≤ min
s∈[−E[Wt],d−E[Wt]]

cW ·E [Wt−E[Wt] +At− s]+ + cI ·E [Wt−E[Wt] +At− s]−

= min
s∈[0,d]

cW ·E [Wt +At− s]+ + cI ·E [Wt +At− s]−

≤ cW ·E [Wt +At− st]+ + cI ·E [Wt +At− st]− = Ct ,

where the second inequality follows since cWE [At− s]+ + cIE [At− s]− is a convex function of s

and Wt−E[Wt] +At is a mean-preserving spread of At (Landsberger and Meilijson 1993). Since it

is shown that g is a lower bound for any Ct, it follows that g≤C∗t also holds.
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A.2. Proof of Lemma 2

We first provide an algorithm to numerically compute E[(ηrn)2− ηrn], which allows us to compute

εn(r). Consider the discrete-time random walk defined by
∑t

i=1(Ai− r) in t ∈ {0,1, . . . , t}, and let

Nt denote the number of times when this random walk takes a positive value. By Andersen (1955)

and Bingham (2001), the index ηrt defined in (7) has the same distribution as the random number

Nn for each n= 0,1, . . . ,+∞. By invoking Theorem 1 of Andersen (1955), we have

P(Nn = j) = pjqn−j (A.3)

and

P (α ·β)Q(β) =
∞∑
i=0

i∑
j=0

pjqi−jα
jβi

where P (α · β) = exp
(∫ α·β

0

B(x)

x
dx
)

, Q(β) = (1 − β)−1exp
(∫ β

0

B(x)

x
dx
)

, B(x) =
∑∞

k=1 bkx
k, bk =

P
[∑k

i=1(Ai− r)> 0
]
, pj = P(Nj = j), qj = P(Nj = 0), and p0 = q0 = 1. Let Mi(α) =

∑i

j=0 pjqi−jα
j

denote the coefficient of βi. Then, we have

P (α ·β)Q(β)−
n−1∑
i=0

Mi(α)βi =
n∑
j=0

pjqn−jα
jβn + o(βn) =Mn(α)βn + o(βn)

which indicates

Mn(α) = lim
β→0

P (α ·β)Q(β)−
∑n−1

i=0 Mi(α)βi

βn

Note that from the definition of Mn(α) and (A.3), we have

lim
α→1

∂2

∂α2
Mn(α) =

n∑
j=0

j(j− 1)pjqn−j =
n∑
j=0

j(j− 1)P(Nn = j) =E[N 2
n −Nn] =E[(ηrn)2− ηrn], (A.4)

where the last equality follows from that Nn and ηrn have the same distribution. Through L ’Hospitol

law, equation (A.4) implies that we can obtain the value of E[(ηrn)2− ηrn] through:

E[(ηrn)2− ηrn] = lim
α→1

∂2

∂α2
Mn(α)

= lim
α→1

∂2

∂α2

(
lim
β→0

P (α ·β)Q(β)−
∑n−1

i=0 Mi(α)βi

βn

)

= lim
α→1

∂2

∂α2

 lim
β→0

∂n

∂βn
P (α ·β)Q(β)

n!


(A.5)

We next derive a uniform upper bound for E[(ηrn)2−ηrn]. To proceed, by substituting n= +∞, we

let ηr∞ follow the limiting distribution of ηrn as n→∞. This distribution is well defined provided r >

µ (Spitzer 1956). Recall that Nt denotes the number of times when this random walk
∑t

i=1(Ai−r)

takes a positive value. Let N∞ denote the limiting random variable for Nt as t→∞, which is
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well-defined (Spitzer 1956) since µ = E[Ai] < r. By invoking Theorem 5.2 of Spitzer (1956), we

derive the following alternative expression for E[(ηr∞)2− ηr∞]:

E[(ηr∞)2− ηr∞] = E[(N∞)2−N∞] = E[N∞(N∞− 1)] =

(
∞∑
k=1

bk

)2

+
∞∑
k=2

(k− 1)bk,

where bk = P
[∑k

i=1(Ai− r)> 0
]
. By the Chernoff’s inequality, for any ψ > 0, we have

bk = P

[
k∑
i=1

(Ai− r)> 0

]
≤ (E[exp(ψ(A− r))])k = (φr(ψ))k ,

where the last equality follows from the definition of φr(ψ) =E[exp(ψ(A− r))] in (10). Since the

above inequality holds for any ψ > 0, it follows from (10) that we have bk ≤ (ϕr)
k. Note that

ϕr ∈ [0,1) holds (Kingman 1962). (To see this, note that φr(ψ) is a continuous function of ψ on

(0,∞) from the definition of φr(ψ) in (10). Also, φr(ψ) is right differentiable at 0 in which the

derivative equals to E[A]−r= µ−r < 0. Since φ′′r (ψ)< 0 for all ψ > 0, φr(ψ) has to keep decreasing

since 0. Therefore, φr(ψ)<φr(0) = 1 for all ψ > 0.) Therefore,

E[(ηr∞)2− ηr∞] =

(
∞∑
k=1

bk

)2

+
∞∑
k=2

(k− 1)bk

≤

(
∞∑
k=1

(ϕr)
k

)2

+
∞∑
k=2

(k− 1)(ϕr)
k ≤ 2 · (ϕr)2

(1−ϕr)2
, (A.6)

where the last inequality directly follows from the basic manipulation of the geometric series (ϕr)
k.

We have thus proved a uniform upper bound for E[(ηr∞)2−ηr∞]. This uniform upper bound also

applies to E[(ηr∞)2− ηr∞] because of the next proposition.

Proposition 1. If r > µ, then ηr∞ <∞, and

E[(ηrn)2− ηrn]≤E[(ηr∞)2− ηr∞]

Proof of Proposition 1 By applying claim (A.16), for equation (A.17), we have

r
n∑
j=1

n∑
t=1

P(ηrn ≥ t) ≤ r
n∑
j=1

∞∑
t=1

P(ηr∞ ≥ t), (A.7)

and for equation (A.18), we have

r
n∑
j=1

j∑
t=1

tP(ηrn = t) ≥ r
n∑
j=1

j∑
t=1

tP(ηr∞ = t) . (A.8)
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Thus, for equation (A.19), we have

n∑
t=1

E

 t∑
i=t+1−ηrt

s∗i

− n∑
t=1

rE [ηrt ] ≤ r
n∑
j=1

n∑
t=1

P(ηrn ≥ t)− r
n∑
j=1

j∑
t=1

tP(ηrn = t) (A.9)

≤ r
n∑
j=1

∞∑
t=1

P(ηr∞ ≥ t)− r
n∑
j=1

j∑
t=1

tP(ηr∞ = t) . (A.10)

As for (A.10), for fixed j, we have

∞∑
t=1

P(ηr∞ ≥ t)−
j∑
t=1

tP(ηr∞ = t)

=
∞∑

t=j+1

P(ηr∞ ≥ t) +

j∑
t=1

P(ηr∞ ≥ t)−
j∑
t=1

tP(ηr∞ = t)

=
∞∑

t=j+1

P(ηr∞ ≥ t) +E[min(ηr∞, j)]−E[ηr∞I(ηr∞ ≤ j)]

=
∞∑

t=j+1

P(ηr∞ ≥ t) +E[ηr∞I(ηr∞ ≤ j)] +E[jI(ηr∞ ≥ j+ 1)]−E[ηr∞I(ηr∞ ≤ j)]

=
∞∑

t=j+1

P(ηr∞ ≥ t) +E[jI(ηr∞ ≥ j+ 1)] =
∞∑

t=j+1

P(ηr∞ ≥ t) +

j∑
t=1

P(ηr∞ ≥ j+ 1) .

Hence, summing over j, it follows

n∑
j=1

∞∑
t=1

P(ηr∞ ≥ t)−
n∑
j=1

j∑
t=1

tP(ηr∞ = t)

=
n∑
j=1

∞∑
t=j+1

P(ηr∞ ≥ t) +
n∑
j=1

j∑
t=1

P(ηr∞ ≥ j+ 1)

≤
∞∑
j=1

∞∑
t=j+1

P(ηr∞ ≥ t) +
∞∑
j=1

j∑
t=1

P(ηr∞ ≥ j+ 1)

=
∞∑
j=1

∞∑
t=j+1

∞∑
`=t

P(ηr∞ = `) +
∞∑
j=1

j∑
t=1

∞∑
`=j+1

P(ηr∞ = `)

=
∞∑
`=2

∑̀
t=2

t−1∑
j=1

P(ηr∞ = `) +
∞∑
`=2

`−1∑
j=1

j∑
t=1

P(ηr∞ = `)

=
∞∑
`=2

(1 + 2 + · · · (`− 1))P(ηr∞ = `) +
∞∑
`=2

(1 + 2 + · · · (`− 1))P(ηr∞ = `)

=
∞∑
`=1

`(`− 1)P(ηr∞ = `)

=E
[
(ηr∞)2− ηr∞

]
.

(A.11)
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Thus, combine (A.20) and (A.11), we conclude

n∑
t=1

E

 t∑
i=t+1−ηrt

s∗i

− n∑
t=1

rE [ηrt ]≤ rE[(ηrn)2− ηrn]≤ rE[(ηr∞)2− ηr∞] ,

completing the proof of Lemma 2.

A.3. Proof of Lemma 3

Suppose Condition 1 holds, i.e., F (µ)< cW/(cW + cI). Recalling the definition of s in (4), it follows

from the property of the Newsvendor problem that we have F (s) = cW/(cW + cI). Thus, from

Lemma 1, we conclude r= (s∗1 + · · ·+ s∗n)/n≥ s > µ, as required.

Now, consider Condition 2. This condition is stated in terms of the standard deviation of the

service time, σ, and the upper bound d imposed on the choice of each time allowance, as well as

τ , defined in (6): τ = d{8(3ζ +
√

2cI
cW

+
√

( cI
2cW

)3)}2e where ζ =E[|A−µ|3]/σ3. Suppose Condition

2 holds, i.e., n ≥ max{2τ,6τ 3
2σ−1(d− s)}. While this condition was inspired by Goldberg et al.

(2016), it requires a modified analysis because of the way the recursive equation Wt is defined,

as discussed in the end of Section 4.2. Recall, from definition, τ = d{8(3ζ +
√

2cI
cW

+
√

( cI
2cW

)3)}2e.

Suppose h satisfies 1≤ h≤ n.

For t satisfying 1≤ h≤ t≤ n, define

γt =
t∑

k=t+1−h

s∗k . (A.12)

For the waiting time of (t+ 1)th patient under the optimal schedule, we have

E[W ∗
t+1] = E

[
max

j=0,1,··· ,t

{
t∑

i=t+1−j

(Ai− s∗i )

}]

≥ E

[
max

{
0,

t∑
i=t+1−h

(Ai− s∗i )

}]

= σh
1
2E

[
max

{
0,

∑t

i=t+1−h (Ai−µ)

σh
1
2

+
hµ−

∑t

i=t+1−h s
∗
i

σh
1
2

}]

= σh
1
2E

[
max

{
0,

∑t

i=t+1−h (Ai−µ)

σh
1
2

+
hµ− γt
σh

1
2

}]
,

where the last two equalities follow from algebraic manipulation. Then, we can find the lower bound

for the rightmost expression using Theorem 3 of Goldberg et al. (2016) and Chen and Shao (2005),

and we have

E[W ∗
t+1] ≥ σh

1
2E

[
max

{
0,N +

hµ− γt
σh

1
2

}]
− 3σζ , (A.13)
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where N denotes a standard normal random variable.

Now, we can bound the cost of the optimal schedule using a feasible schedule given by st = r̃ for

each t∈ {1, . . . , n}, where r̃= µ+
√
cW/(2cI)σ. Since we have

ν(s∗) = E

[
n∑
t=1

(
cW · [W ∗

t +At− s∗t ]+ + cI · [W ∗
t +At− s∗t ]−

)]

= E

[
n∑
t=1

(
cW · [W ∗

t +At− s∗t ]+ + cI · s∗t
)]

+ cI · [W ∗
n +An− s∗n]+− cInµ ,

where the last equality follows from Lemma 4, and a similar equation holds for the feasible policy

given by st = r̃ for each t, it follows

ν(s∗) ≤ E

[
n∑
t=1

(
cW · [W ∗

t +At− r̃]+ + cI · r̃
)]

+ cI · [W ∗
n +An− r̃]+− cInµ

≤ n

(
cW

σ2

2(r̃−µ)
+ cI r̃

)
+ cI

σ2

2(r̃−µ)
− cInµ

= n

(
cW

σ2

2(r̃−µ)
+ cI(r̃−µ) +

cI
n
· σ2

2(r̃−µ)

)
.

Above, the second inequality follows from (19) and Lemma 6. Therefore, since ν(s∗) is at least

cW
∑n

t=1E[W ∗
t+1], which in turn can be bounded below using (A.13), we have

cWσh
1
2

n∑
t=h

E

[
max{0,N +

hµ− γt
σh

1
2

}
]
−3cWσζn ≤ ν(s∗) ≤ n

(
cW

σ2

2(r̃−µ)
+ cI(r̃−µ) +

cI
n
· σ2

2(r̃−µ)

)
,

which implies

n∑
t=h

E

[
max{0,N +

hµ− γt
σh

1
2

}
]
≤ n

(
3σζ +

σ2

2(r̃−µ)
+
cI
cW

(r̃−µ) +
cI
ncW

· σ2

2(r̃−µ)

)
σ−1h−

1
2

= n

(
3σζ +

√
2cI
cW

σ+
cIσ

2ncW
·
√

2cI
cW

)
σ−1h−

1
2

= n

(
3ζ +

√
2cI
cW

+
1

n
· 1
√

2 · ( cI
cW

)
3
2

)
h−

1
2 ,

where the first equality follows from r̃ = µ +
√
cW/(2cI)σ. Since E[max{0,N + y}] is a convex

function of y, we have, by Jensen’s inequality,

E

[
max

{
0, (n+ 1−h)N +

n∑
t=h

hµ− γt
σh

1
2

}]
≤

n∑
t=h

E

[
max{0,N +

hµ− γt
σh

1
2

}
]
.

Therefore,

E

[
max

{
0, (n+ 1−h)N +

n∑
t=h

hµ− γt
σh

1
2

}]
≤ n

(
3ζ +

√
2cI
cW

+
1

n
· 1√

2
· ( cI
cW

)
3
2

)
h−

1
2 (A.14)
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Now, we find a lower bound for the left-side expression above using an expression involving r.

Since we have defined γt =
∑t

k=t+1−h s
∗
k in (A.12), which is a sum of h distinct s∗k values,

∑n

t=h γt

is the sum of (n−h+ 1) ·h number of s∗k values, and for fixed k, s∗k appears at most h times in the

sum. Thus, we must have

n∑
t=h

γt =
n∑
t=h

t∑
k=t+1−h

s∗k

= (s∗1 + s∗2 + · · ·+ s∗h) +
(
s∗2 + s∗3 + · · ·+ s∗h+1

)
+ · · ·+

(
s∗n+1−h + s∗n+2−h + · · ·+ s∗n

)
≤ h

n∑
t=1

s∗t −h(h− 1)s ,

since s is a lower bound for each s∗. Thus,

n∑
t=h

γt ≤ hnr−h(h− 1)s = h(n+ 1−h)r+h(h− 1)(r− s) ≤ h(n+ 1−h)r+h(h− 1)(d− s) , (A.15)

where the last inequality follows from r≤ d.

Then,

E

[
max

{
0,N +

h
1
2

σ

(
µ− r− (h− 1)(d− s)

n+ 1−h

)}]
≤ n

n+ 1−h

(
3ζ +

√
2cI
cW

+
1

n
· 1√

2
· ( cI
cW

)
3
2

)
h−

1
2 ,

where the inequality follows by substituting the upper bound of
∑n

t=h γt given in (A.15) to (A.14),

and then both dividing by n+ 1−h. Recall that Condition 2 is n≥max{2h,6h 3
2σ−1(d− s)}. Note

that n≥ 2h implies n
n+1−h ≤ 2, and n≥ 6h

3
2σ−1(d− s) implies (h−1)(d−s)

n+1−h < h(d−s)
n+1−h ≤

1
3
σh−

1
2 . Hence,

E

[
max

{
0,N +

h
1
2

σ
(µ− r− 1

3
σh−

1
2 )

}]
≤ 2

(
3ζ +

√
2cI
cW

+
1

n
· 1√

2
· ( cI
cW

)
3
2

)
h−

1
2 .

The condition n≥ 2h implies n≥ 2, hence we have

E

[
max

{
0,N +

h
1
2

σ
(µ− r− 1

3
σh−

1
2 )

}]
≤ 2

(
3ζ +

√
2cI
cW

+
1

n
· 1√

2
· ( cI
cW

)
3
2

)
h−

1
2

≤ 2

(
3ζ +

√
2cI
cW

+
1

2
· 1√

2
· ( cI
cW

)
3
2

)
h−

1
2 .

It can be verified that E[max{0,N−0.34}]≥ 1
4
. Let h= τ = d{8(3ζ+

√
2cI
cW

+
√

( cI
2cW

)3)}2e. Then,

we have

E

[
max

{
0,N +

τ
1
2

σ
(µ− r− 1

3
στ−

1
2 )

}]
≤ 2

(
3ζ +

√
2cI
cW

+
1

2
· 1√

2
· ( cI
cW

)
3
2

)
τ−

1
2

≤ 1

4
≤ E[max{0,N − 0.34}] .

Therefore, it follows τ
1
2

σ
(µ − r − 1

3
στ−

1
2 ) ≤ −0.34, which implies r − µ ≥ 0.006στ−

1
2 . Thus, we

complete the proof of r > µ.
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A.4. Proof of Lemma 4

From the definition of [·]+ and [·]−, as well as the recursive definitions (1) and (2),

Wt−1 +At−1− st−1 = [Wt−1 +At−1− st−1]+− [Wt−1 +At−1− st−1]− = Wt− It ,

which implies
∑n+1

t=2 It =Wn+1−
∑n+1

t=2 At−1 +
∑n+1

t=2 st−1. Then, from the definition given in (3), the

objective function satisfies

ν(s) = E

[
n+1∑
t=2

{cW ·Wt + cI · It}

]
= E

[
n+1∑
t=2

cWWt

]
+E [cIWn+1]−E

[
cI

n+1∑
t=2

At−1

]
+ cI

n+1∑
t=2

st−1

= E

[
n∑
t=1

cWWt+1

]
+ cI

n∑
t=1

st + cIE [Wn+1]− cInµ .

This completes the proof.

A.5. Proof of Lemma 5

Recall from (7) that ηrt corresponds to the index k in which the random walk
∑k

i=1(Ai− r) attains

its maximum, where ties are broken in favor of the smaller index, and ηr∞ is the limiting distribution

of ηrt as t→∞. To establish the inequality in the statement of Lemma 5, we find an upper bound

for
∑n

t=1E[
∑t

i=t+1−ηrt
s∗i ], and then a lower bound for

∑n

t=1 rE[ηrt ]. Before finding these bounds,

we state and prove the following claim:

P(ηrt = k) ≥ P(ηrn = k) ≥ P(ηr∞ = k) for any k ∈ {0,1, . . . , t} and t < n. (A.16)

Intuitively, since ηrt represents the index of the random walk that achieves its maximum, the

probability that the random walk attains its maximum with index k is lower with a larger value

of t since it would increase the set from which the maximum operator is applied. More formally,

to prove (A.16), fix k and t such that 1≤ k≤ t, and define

z1 =

{
k∑
i=1

(Ai− r)>
j∑
i=1

(Ai− r) for each j∈ {0,1, . . . , k− 1}

}

z2 =

{
k∑
i=1

(Ai− r)≥
j∑
i=1

(Ai− r) for each j∈ {k+ 1, . . . , t}

}

z3 =

{
k∑
i=1

(Ai− r)≥
j∑
i=1

(Ai− r) for each j∈ {t+ 1, . . . , n}

}
.

Then, the event [ηrt = k] is in the intersection of z1 and z2 whereas the event [ηrn = k] is in the

intersection of z1, z2 and z3. This completes the proof of claim (A.16).

We now provide an upper bound for
∑n

t=1E[
∑t

i=t+1−ηrt
s∗i ]. To do so, for any t∈ {1, . . . , n},

E

 t∑
i=t+1−ηrt

s∗i

 =
t∑

k=1

P(ηrt+i−1 = k) ·

{
t∑

i=t+1−k

s∗i

}
=

t∑
i=1

s∗iP(ηrt ≥ t+ 1− i) .
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Summing over all t∈ {1, . . . , n},

n∑
t=1

E

 t∑
i=t+1−ηrt

s∗i

 =
n∑
t=1

t∑
i=1

s∗iP(ηrt ≥ t+ 1− i) =
n∑
i=1

n∑
t=i

s∗iP(ηrt ≥ t+ 1− i)

=
n∑
i=1

n+1−i∑
t=1

s∗iP(ηrt+i−1 ≥ t) =
n∑
i=1

n+1−i∑
t=1

s∗i

{
1−

t−1∑
k=0

P(ηrt+i−1 = k)

}
.

By applying claim (A.16), we obtain

n∑
t=1

E

 t∑
i=t+1−ηrt

s∗i

 ≤ n∑
i=1

n+1−i∑
t=1

s∗i

{
1−

t−1∑
k=0

P(ηrn = k)

}
=

n∑
i=1

n+1−i∑
t=1

s∗iP(ηrn ≥ t) ≤
n∑
i=1

n∑
t=1

s∗iP(ηrn ≥ t)

=
1

n

n∑
i=1

s∗i

n∑
j=1

n∑
t=1

P(ηrn ≥ t) = r
n∑
j=1

n∑
t=1

P(ηrn ≥ t), (A.17)

where the last equality follows from the choice of r =
∑n

i=1 s
∗
i /n given in (11) and the last

inequality follows from claim (A.16).

Next we find a lower bound for
∑n

t=1 rE[ηrt ]. Applying claim (A.16), we have

n∑
t=1

E[ηrt ] =
n∑
t=1

t∑
j=1

P(ηrt = j)j =
n∑
j=1

j∑
t=1

tP(ηrj = t) ≥
n∑
j=1

j∑
t=1

tP(ηrn = t) .

which implies
n∑
t=1

rE[ηrt ] ≥ r
n∑
j=1

j∑
t=1

tP(ηrn = t) . (A.18)

With relations in (A.17) and (A.18), we can conclude

n∑
t=1

E

 t∑
i=t+1−ηrt

s∗i

− n∑
t=1

rE [ηrt ] ≤ r
n∑
j=1

n∑
t=1

P(ηrn ≥ t)− r
n∑
j=1

j∑
t=1

tP(ηrn = t) (A.19)

As for (A.19), for fix j, we have

n∑
t=1

P(ηrn ≥ t)−
j∑
t=1

tP(ηrn = t)

=
n∑

t=j+1

P(ηrn ≥ t) +

j∑
t=1

P(ηrn ≥ t)−
j∑
t=1

tP(ηrn = t)

=
n∑

t=j+1

P(ηrn ≥ t) +E[min(ηrn, j)]−E[ηrnI(ηrn ≤ j)]

=
n∑

t=j+1

P(ηrn ≥ t) +E[ηrnI(ηrn ≤ j)] +E[jI(ηrn ≥ j+ 1)]−E[ηrnI(ηrn ≤ j)]

=
n∑

t=j+1

P(ηrn ≥ t) +E[jI(ηrn ≥ j+ 1)] =
n∑

t=j+1

P(ηrn ≥ t) +

j∑
t=1

P(ηrn ≥ j+ 1) .
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Hence, summing over j, it follows

n∑
j=1

n∑
t=1

P(ηrn ≥ t)−
n∑
j=1

j∑
t=1

tP(ηrn = t)

=
n∑
j=1

n∑
t=j+1

P(ηrn ≥ t) +
n∑
j=1

j∑
t=1

P(ηrn ≥ j+ 1)

=
n∑
j=1

n∑
t=j+1

n∑
`=t

P(ηrn = `) +
n∑
j=1

j∑
t=1

n∑
`=j+1

P(ηrn = `)

=
n∑
`=2

∑̀
t=2

t−1∑
j=1

P(ηrn = `) +
n∑
`=2

`−1∑
j=1

j∑
t=1

P(ηrn = `)

=
n∑
`=2

(1 + 2 + · · · (`− 1))P(ηrn = `) +
n∑
`=2

(1 + 2 + · · · (`− 1))P(ηrn = `)

=
n∑
`=1

`(`− 1)P(ηrn = `)

=E
[
(ηrn)2− ηrn

]
.

(A.20)

completing the proof of Lemma 5.

B. Proofs for Section 5

B.1. Proof of Lemma 7

It follows from the proof of Lemma 4 that, for optimal schedule s∗, we have

ν(s∗) = E

[
n+1∑
t=2

cWW
∗
t

]
+E

[
cIW

∗
n+1

]
−E

[
cI

n+1∑
t=2

At−1

]
+ cI

n+1∑
t=2

s∗t−1

=
M∑
m=1

nm∑
t=1

cWE
[
W

m∗
t+1

]
+ cIE

[
W ∗
n+1

]
− cI

n∑
t=1

E [At] + cI

M∑
m=1

nm∑
t=1

sm∗t

=
M∑
m=1

nm∑
t=1

cWE
[
W

m∗
t+1

]
+ cIE

[
W ∗
n+1

]
− cI

M∑
m=1

nmµm + cI

M∑
m=1

nm∑
t=1

sm∗t .

Similarly, we can also derive an alternative expression for ν(s∗). Since the piecewise constant

policy s∗ = (s1∗, . . . , sM∗) satisfies sm∗ =
∑nm

t=1 s
m∗
t /nm by (22), it follows that

ν(s∗)− ν(s∗) = cW

M∑
m=1

nm∑
t=1

E
[
W

m

t+1−W
m∗
t+1

]
+ cIE

[
W

m

nm+1−W ∗
nm+1

]
+ cI

M∑
m=1

{
nmsm∗−

nm∑
t=1

sm∗t

}

= cW

M∑
m=1

nm∑
t=1

E
[
W

m

t+1−W
m∗
t+1

]
+ cIE

[
W

m

nm+1−W ∗
nm+1

]
+ 0.

This is the required result.
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B.2. Proof of Lemma 8

Recall from the definition of ∆m(w) given in (32):

∆m(w) = min
{
t∈ {1,2, . . .}

∣∣ w+ (Am1 − sm∗) + · · ·+ (Amt−1− sm∗)≤ 0
}
. (B.1)

Then, since the event ∆m(w)≥ k implies that w+(Am1 −sm∗)+ · · ·+(Amk−2−sm∗) should be strictly

positive, we obtain

E
[
∆m(w)

∣∣w] =
∞∑
k=1

P (∆m(w)≥ k)

≤
∞∑
k=1

P

(
w+

k−2∑
t=1

(Amt − sm∗)> 0

)

=
∞∑
k=1

P

(
k−2∑
t=1

(
sm∗− w

k− 2
−Amt

)
< 0

)

=
∞∑
k=1

P

(
k∑
t=1

(
sm∗− w

k
−Amt

)
< 0

)
.

Now, we break the summation in the rightmost expression above into two parts based on whether

k is at most K̄mw or not. Suppose we have k > K̄mw, in which case, we have w/k < 1/K̄m. Hence,

P

(
k∑
t=1

(
sm∗− w

k
−Amt

)
< 0

)
≤ P

(
k∑
t=1

(
sm∗− 1

K̄m
−Amt

)
< 0

)
= P

(
k∑
t=1

(r̄m−Amt )< 0

)
.

where the last equality follows from the definition of r̄m = sm∗− 1/K̄m given in (25). By applying

the Chernoff bound, we obtain that the rightmost expression above is bounded above by{
inf
ψ>0

E [exp (−ψ · (r̄m−Am))]

}k
which is {ϕmr̄m}

k
since we have ϕmr̄m = inf

ψ≥0
φmr̄m(ψ) where φmr̄m(ψ) = E[exp(ψ(Am− r̄m))]. Also, since

we have defined ϕ̃= maxi∈{1,2,...,M}ϕ
m
r̄m in (27), we have ϕmr̄m ≤ ϕ̃. In summary, if k > K̄mw, then

P

(
k∑
t=1

(
sm∗− w

k
−Amt

)
< 0

)
≤ {ϕ̃}k . (B.2)

Then, we have

E
[
∆m(w)

∣∣w]
≤
bK̄mwc∑
k=1

P

(
k∑
t=1

(
sm∗− w

k+ 2
−Amt

)
< 0

)
+

∞∑
k=dK̄mwe

P

(
k∑
t=1

(
sm∗− w

k+ 2
−Amt

)
< 0

)

≤ bK̄mwc +
∞∑

k=dK̄mwe

{ϕ̃}k ≤ bK̄mwc+
{ϕ̃}dK̄

mwe

1− ϕ̃
≤ K̄mw+

ϕ̃

1− ϕ̃
,

where the second inequality follows from P
(∑k

t=1

(
sm∗− w

k
−Amt

)
< 0
)
≤ 1 and the inequality given

in (B.2). This completes the proof.
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C. Supplementary Numerical Analysis

In this appendix, we conduct additional supplementary numerical experiments to illustrate the

robustness of constant scheduling under various settings. Our purpose is to test the relative opti-

mality gaps under different cI/cW values and other parameters, and see under which conditions

the constant policy performs well. We fix the service durations distribution as an i.i.d. exponen-

tial distribution with mean 20, and set the number of appointments at n= 16 except for the last

experiment.

C.1. Patient No-Show and Unpunctuality

Since the case of unpunctual arrivals has been studied in the literature (Samorani and Ganguly

2016, Han et al. 2018). We also examine the performance of the constant policy in the presence

of patient unpunctuality or no-shows. The numerical results are shown in Table 6. We start with

the patients’ unpunctual arrival. Specifically, we suppose that each customer arrives late by L time

units, where L follows one of the two exponential distributions with mean 4 and 10, which we

denote L ∼ EXP (4) and L ∼ EXP (10). We report the relative optimality gap in Table 6. It is

easy to see that the constant policy performs well when cI/cW is small, and the relative optimality

gap exhibits an increasing trend as cI/cW increases. The changing trend is similar to Table 1. In

addition, we particularly note that the relative performance of the constant policy is better with

EXP (10) than with EXP (4). As patient arrivals are more variable, it is more difficult for the

optimal policy to anticipate when exactly patients arrive, and the simplicity of the constant policy

helps it to perform better. This observation is consistent with another observation that when we

compare the first two lines of Table 6 to Table 1, we see that the relative optimality gap of the

patient unpunctual case in Table 6 is smaller than the corresponding quantity in Table 1. This

means that the relative performance of the constant policy is better when patients have a later

arrival pattern. It seems that the later arrival behavior would enlarge the job allowances for jobs

at the beginning and ending of the planning horizon, which makes the optimal schedule “flatter”

than those in the case without later arrival behavior. As a result, the constant policy is a better

approximation of the optimal policy when customers may not be punctual.

Next, we examine the impact of the no-show probability on the relative optimality gap. To do

this, we test different cI/cW for both i.i.d. and non-i.i.d no-show cases. For the i.i.d. no-show case,

we test four different show-up probabilities: p= 0.6,0.7,0.8,0.9. For the non-i.i.d. no-show case, we

also test two different sets of show-up probabilities: p1 which alternatives between 0.8 and 0.7, and

p2 alternating between 0.9 and 0.6. From Table 6, we can find that both i.i.d. and non-i.i.d no-show

cases exhibit a clear increasing trend as cI/cW increases, similar to the patient unpunctuality case

discussed above. In addition, the relative optimality gap exhibits a clear increasing trend as the
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Table 6 Relative optimality gaps (in %) in presence of patient unpunctuality or no-show; n= 16

Scenarios
cI/cW

0.2 0.4 0.6 0.8 1 1.5 2 2.5 3

Not punctual
L∼EXP (10) 0.17 0.32 0.33 0.44 0.56 0.93 1.08 1.22 1.49

L∼EXP (4) 0.27 0.45 0.61 0.89 1.19 1.46 1.52 1.81 2.09

I.I.D. No-shows

p= 0.9 0.48 0.84 1.24 1.28 1.83 2.32 2.71 3.09 3.38

p= 0.8 0.5 0.93 1.31 1.43 1.85 2.33 3.01 3.35 3.87

p= 0.7 0.56 1.06 1.52 1.72 2.06 2.75 3.17 3.72 4.09

p= 0.6 0.59 1.18 1.69 2.21 2.43 3.1 3.59 4.63 5.06

Non-I.I.D. No-shows
p1 0.93 1.2 1.57 2.12 2.33 2.8 3.2 3.51 3.72

p2 2.32 2.73 3.07 3.27 3.31 3.89 4.15 4.44 4.94

show-up probability decreases for the i.i.d. no-show case. This result is reasonable. As derived in

the section 4.3, a higher show-up probability p results in a higher čW (i.e., the virtual unit waiting

time cost in the presence of no-show), thus leading to a lower optimality gap. For the non-i.i.d.

no-show case, the results are similar. We particularly note that the constant policy performs better

when the fluctuation of show-up probabilities is smaller. This makes sense since the constant policy

ignores this fluctuation, and it does not adapt to the changing environment. In summary, even

though our theoretical results can not cover some cases, the constant scheduling policy still achieves

near optimal performance in the presence of patient unpunctuality or no-show.

C.2. The Case with Overtime Cost

Next, we test the performance of the constant policy when we consider the overtime cost. We set the

session length T at three different level, i.e., T = nµ, T = 1.5nµ and T = 2nµ, where n is the number

of appointments and µ is the mean of service duration (µ= 20). We test different combinations of

cI/cW and unit overtime cost, which we denote by co. Following Zacharias and Pinedo (2017), we

set the unit overtime cost at 1.5 and 3 times of unit idling cost. We made the following observations

from Table 7. First, for small co, the relative optimality gap exhibits an increasing trend as cI/cw

increases, which is consistent with what we observed from the no-overtime-cost case. Second, the

optimality gap is generally smaller when the session time limit is larger or when the unit overtime

cost is smaller, which brings the overtime cost problem closer to the original problem.

C.3. Job Allowance Comparison

Using the SAA method, we calculate the job allowance under the optimal constant policy, rSAA,

and the average job allowance under the optimal (non-constant) schedule sSAA :=
∑n

t=1 sSAA,t. We

compare these values under different parameters, cI/cW and n. The results are summarized in Table
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Table 7 Relative optimality gap (in %) for different session lengths T , ratios of cI/cW and co; n= 16

co T
cI/cW

0.2 0.4 0.6 0.8 1 1.5 2 2.5 3

1

nµ 1.83 2.29 2.16 2.17 2.43 3.22 3.33 3.35 3.49

1.5nµ 2.19 2.19 1.97 1.82 2 2.42 2.92 3.07 3.02

2nµ 0.55 0.76 0.97 1.21 1.3 2.04 2.56 2.75 3.06

3

nµ 3 3.27 3.28 3.37 3.49 4.01 3.85 4.33 4.21

1.5nµ 2.24 2.37 2.16 2.24 2.52 2.88 3.13 3 3.41

2nµ 0.6 0.83 1.35 1.45 1.47 1.8 2.42 2.78 2.98

5

nµ 4.17 3.87 3.58 4.35 4.41 4.44 4.76 4.56 4.91

1.5nµ 2.53 2.66 3.02 3.08 2.88 2.97 3.18 3.51 3.72

2nµ 0.78 0.75 0.99 1.19 1.72 1.98 2.58 2.73 3

8, from which we observe the follows. First, in all parametric settings, rSAA is slightly larger than

sSAA. This is because a constant policy has less flexibility and therefore calls for extra allowance

to mitigate the impact of randomness. Second, the differences between rSAA and sSAA are small,

suggesting that the average job allowance in the optimal policy provides a close approximation to

the job allowance that is used by the constant policy. This also implies that we did not relax too

much in deriving the performance bounds in Theorem 1. Recall that a key step our analysis is to

compare the optimal policy to a constant policy with job allowance s∗ (See Equation (11)). Finally,

the gap between rSAA and sSAA is smaller for larger values of n. Intuitively, the optimal policy

takes a “plateau-dome” shape (Klassen and Yoogalingam 2009), and the “plateau” part dominates

when n is large.

Table 8 Job allowance comparison: Optimal constant policy and the average in the optimal schedule

n
cI/cW

0.2 0.4 0.6 0.8 1 1.5 2 2.5 3

16
Constant 46.93 39.49 35.58 33.29 31.27 28.51 26.95 25.28 24.01

Optimal (average) 46.69 39.01 34.93 32.68 30.52 27.79 26.22 24.59 23.34

50
Constant 46.94 40.09 37.08 34.70 33.04 30.65 29.07 27.8 27.11

Optimal (average) 46.88 39.81 36.81 34.33 32.55 30.14 28.55 27.27 26.53

200
Constant 47.78 40.50 37.37 34.72 33.44 31.06 29.67 28.74 27.95

Optimal (average) 47.65 40.37 37.1 34.55 33.28 30.95 29.44 28.51 27.71
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