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Abstract

In condensed matter physics, atomistic first principle calculations are often nec-
essary to achieve a microscopic understanding of the observed experimental
phenomena and to make quantitative predictions of physical properties. In
practice, atomic scale systems have irregularities (e.g. surface roughness) or de-
fects (e.g. substitutional atoms or vacancies) that are too strong to be ignored
or treated as small perturbations.

In this thesis, we report the development of a real space DFT code for study-
ing atomic scale systems from first principles. Our code, named MatRcal, which
stands for “Matlab-based real space calculator”, is developed in the technical
computing language Matlab. The physics is described by density functional
theory [1]. The method itself is based on projecting the Kohn-Sham Hamil-
tonian on a uniform Cartesian grid [2]. High-order finite-differencing is used
to discretize the Laplacian operator [3]. The potential due to the atomic nu-
clei is approximated with ab initio pseudopotentials. The pseudopotentials are
generated following the procedure proposed by Troullier and Martins [4]. We
use the fully separable form introduced by Kleinman and Bylander [5]. We
argue that the method is simpler and yet has many advantages compared with
conventional spectral methods. We provide relevant mathematical techniques

and implementation details. In particular, we present and compare different

vil



Abstract viii

eigensolvers used to diagonalize the Kohn-Sham Hamiltonian. We validate our
software by comparing the HOMO-LUMO gaps of many organic and inorganic
molecules obtained using our method with those obtained with the commercial
code Gaussian. Our results are in excellent agreement. Our method gains in
computational speed and algorithm parallelism, and its power in handling real
space boundary conditions will be a major advantage for future applications in

nanoelectronic device modelling.



Résumé

En physique de la matiere condensée, les calculs numériques sont souvent nécessaires
pour parvenir a comprendre les phénomenes microscopiques observés lors d’expériences
ou a prédire quantitativement des propriétés physiques. En pratique, les systemes
d’échelle atomique sont irréguliers (rugosité de surface) ou comportent des
défauts (atomes de substitution ou lacunes), ce qui induit des effets trop séveres
pour étre ignorés ou traités comme des perturbations.

Dans cette these, nous présentons une méthode qui permet d’étudier des
systemes d’échelle atomique a partir des lois fondamentales de la physique.
Notre logiciel, nommé MatRcal, qui signifie “Matlab-based real space calcu-
lator”, est développé dans le langage Matlab. La physique est décrite par la
théorie de la fonctionnelle de la densité [1]. La méthode projette I'Hamiltonien
de Kohn-Sham sur un maillage Cartésien uniforme [2]. Le calcul des différences
finies est utilisé pour discrétiser 'opérateur Laplacien [3]. Le potentiel di aux
noyaux atomiques est approximé par des pseudopotentiels non-empiriques. Les
pseudopotentiels sont générés en suivant la procédure proposée par Troullier et
Martins [4]. Nous utilisons la forme séparable introduite par Kleinman et By-
lander [5]. Nous soutenons que la méthode est plus simple et pourtant présente
de nombreux avantages par rapport aux conventionnelles méthodes spectrales.

Nous introduisons plusieurs techniques mathématiques pertinentes a notre étude

X



Résumé X

et certains détails d’implémentation. Entre autres, nous présentons et com-
parons plusieurs algorithmes de calcul de vecteurs propres utilisés pour diag-
onaliser I’'Hamiltonien de Kohn-Sham. Nous validons notre méthode en com-
parant la largeur de bande interdite “HOMO-LUMO” de nombreuses molécules
organiques et inorganiques prédite par notre méthode avec celle prédite par le
logiciel commercial Gaussian. Notre méthode permet des gains en rapidité
et en parallélisme, mais la possibilité de traiter des conditions limites non-
périodiques sera le principal atout pour de futures simulations de dispositifs

nanoélectroniques.



Statement of Originality

Real space density functional theory calculators have been abandoned long ago.
Spectral methods have dominated the field of ab initio structure calculations
ever since. As the topic reaches its full maturity, both its strengths and lim-
itations become more and more apparent. In particular, the limiting system
size remains under a thousand atoms. The complexity of the algorithms is such
that the problem cannot be palliate merely by hardware developments. It is
now obvious that algorithms different in nature are needed to apply DFT to
larger systems found in experiments.

Real space techniques have recently regained some popularity. Due to
decades of hardware, software and mathematical developments, many of the
reasons they were not used in the first place have become irrelevant or simply
disappeared. It is now possible to find examples were real space methods already
outperform traditional techniques in the literature [6]. In [7], Chelikowsky et
al. present a method for solving the Kohn-Sham equations in real space using
the calculus of finite differences.

We walked in their steps and can now report the implementation of a real
space DFT solver. In [7], they report the implementation of Chebyshev filtered
subspace iteration (CFSI) as their eigensolver. We implemented and tested
many eigensolvers including CFSI and the more recent locally optimal block pre-
conditioned conjugate gradient algorithm (LOBPCG) [8]. We found LOBPCG
to be generally superior to CFSI. We note that it may be due to the fact that we
simulated systems with a relatively small number of electrons and that for large
systems CFSI may dominate. This is due to the fact that LOBPCG requires
more subspace orthogonalizations than CFSI and its performance depends more
on the efficiency of our orthogonalization algorithm. Our software allows to use
both eigensolvers in a single calculation which is optimal in all cases.
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Introduction

Since the invention of the transistor in 1947, the field of electronics has pro-
gressed considerably, to a point where devices are now ubiquitous. For fifty
years, the performance of electronic devices has been driven by the miniatur-
ization of their basic components. We are currently at the twilight of miniatur-
ization, where the dimensions of electronics devices are slightly bigger than the
atomic scale [9, 10, 11]. At that scale, materials can no longer be thought of as
continuous media. The presence of a single impurity atom can have dramatic
effects [12]. The location of the impurity is important as well. Moreover, sur-
face effects can seldom be ignored as is the case for large chunks of material[13].
The smallness of the atomic scale renders the traditional statistical and ther-
modynamics approximations inapplicable. Furthermore, at that scale, classical
physics principles break down and a new kind of physics prevails. Quantum me-
chanical phenomena are no longer negligible and often dominate. This is clearly
the case in effectively 1-dimensional or 2-dimensional systems which arise when

the small size of a device along one direction freezes a degree of freedom [14, 15].
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To understand the science of nanoelectronic devices, it is critical to use ab initio
theories which can include the quantum effects and incorporate the discreteness
of atomic scale systems. Otherwise, one must rely on empirical laws obtained
by fitting the experimental data, a process which is becoming prohibitively ex-
pensive and unreliable at the nanoscopic scale.

The most powerful method for first principles modelling in material physics
is density functional theory (DFT)[1, 2]. The success of DFT is evidenced by
the 1998 Nobel Prize awarded to its discoverer, Prof. Walter Kohn. In DFT,
the n-body problem of interacting electrons is reduced to a non-linear problem
of non-interacting electrons. The central work is to solve the Kohn-Sham (KS)
equations which is a self-consistent eigenvalue problem. The potential seen by
electrons depends on the eigenstates of the KS Hamiltonian, and hence the
eigenstates and potentials of the KS equations must be solved self-consistently.

Even though electronics are reaching the nanoscale, most devices consists
of too many atoms to be simulated using DFT. It is crucial to bridge the gap
between theory and experiment. A lot of efforts are consecrated to the search
of powerful computational techniques which can analyse real-world applications
with DFT [6, 16, 17, 18, 19, 20, 21, 22]. In a typical DFT method, one expands
the KS Hamiltonian in terms of a basis set such as plane waves [23] or atomic
centered orbitals [24, 25], and the KS equation becomes a matrix equation in
the space spanned by the basis functions. These spectral techniques have been

and still are quite successful, yet the characteristic problem size remains limited
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to a few hundred atoms. In the last decade, methods that can simulate larger
systems using a real space approach have been developed [26, 27, 28, 29, 30, 31].
Evidence of good performance - by Chebyshev filtered subspace iteration (CFSI)
- was reported by Chelikowsky et al in [7]. We found that the performance of
the locally optimal block preconditioned conjugate gradient method (LOGPCG)
introduced by Knyazev [8] generally exceeds that of CFSI for solving the KS
equations. The two algorithms can also be used concurrently, each prevailing
in its own domain. We developed software that can carry DFT calculations in
real space based on their work.

Chapter 2 contains a review of density functional theory. The proofs of the
fundamental theorems of DFT are presented. We introduce the Kohn-Sham
equations. We also discuss the local density approximation of the exchange and
correlation energy.

In chapter 3, we compare real space approaches and spectral methods for
KS-DFT calculations. We formulate the Kohn-Sham eigenvalue problem in real
space. We also introduce the pseudopotential approximation and illustrate the
generation procedure.

In chapter 4, we expose many mathematical techniques and implementa-
tion details necessary to solve the Kohn-Sham equations efficiently. We discuss
the discretization of the Kohn-Sham equations, the resolution of the Poisson
equation and the diagonalization of the Kohn-Sham Hamiltonian. We also cite

many mixing techniques for accelerating the convergence of the self-consistent
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field iterations.
In chapter 5, a few applications are presented. We test our software by com-
paring the predicted HOMO-LUMO gaps against those obtained with Gaussian.

Finally, chapter 6 summarizes the thesis and presents future developments.



Theory

2.1 Density Functional Theory

The quantum many-body problem can be theoretically formulated in terms
of wavefunctions. The information contained in a many-body wavefunction
grows exponentially with the number of particles. This scaling makes the many-
body wavefunction based formalism impractical for numerical simulations of real
material systems because of the prohibitive memory and computation require-
ments. For practical materials physics applications, one is usually interested in
a very limited subset of information contained in the many-body wavefunction,
hence exactly computing the entire many-body wavefunction is rarely necessary.
In density functional theory (DFT), the many-body problem is reformulated in
terms of a much smaller mathematical object: the electronic density. The den-
sity is merely a function of space and hence much less information is needed to
encode it. This is perfect for numerical simulations since the memory require-

ments scale linearly with the number of particles. We will provide two set of
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proofs which are the cornerstones of DFT.
We first introduce the fundamental theorems of DFT that were proven by

Honenberg and Kohn in 1964 [1]. Consider the following Hamiltonian

H=T+V+U (2.1)
T:%/erdJ(r)\z (2.2)
V= / dryp*(r)V (r)y(r) (2.3)
U = [ drny ()0 () e o) (2.4)

where 1 is a field operator, T' is the kinetic energy, V' is some external potential
and U is the coulomb interaction between the electrons. Clearly, the electronic

density p is a functional of the ground-state wavefunction ¥ since it can be

written as p(r) = (W [¢*(r)e(r)| ). But the converse is also true. In order to
prove that, Honenberg and Kohn showed that V' is a functional of p. The proof
is the following. Suppose that there exists a second ground state W' associated

with an external potential V' and that give rise to an electronic density p(r),

then

E=(V|H|V)<(V|H|V)=(V|H-V+V'|T) (2.5)
E<E+(V|V' -V|¥) (2.6)

E' <E+ / drp(r)(V'(r) — V(r)) (2.7)
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By symmetry we have
E<E+ /drp(r)(V(r) —V'(r)) (2.8)
The inequalities 2.7 and 2.8 are summed to provide the following inconsistency
E+FE <FE+FE (2.9)

We conclude that V' is uniquely determined by p and hence that it is a functional
of p. As the kinetic and Coulomb terms are also functionals of the density, the
Hamiltonian is a functional of the density. We conclude that the ground-state
wavefunction can be viewed a functional of the density as it can be computed
from the Hamiltonian. It follows that all the ground-state properties can be
obtained from the density. It is unfortunate that the proof is by contradiction
and does not constitute a tool for practical calculations.

Honenberg and Kohn also demonstrated (again by contradiction) the exis-
tence of a universal energy functional of the density. The total energy functional

can be written as

Elp] = / v (r)p(r) + Fly] (2.10)

The functional F[p] is not dependent on the external potential and it is valid

for any number of particles. Note that no approximation has been made so far
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and that makes DFT an exact theory. It would be a tremendously powerful one
if F[p] were known but it is not the case. Much efforts have been dedicated to
the development of approximate functionals, some of which will be presented
below.

In the last theorem, Honenberg and Kohn assume that the density yields
the correct ground-state among those wavefunctions that are the ground-state of
some external potential V. We call such functions V-representable functions. It
is not known whether a given wavefunction is the ground-state for some external
potential and that is why we present another insightful derivation by Levy [32].

As above, let
H=T+V+U (2.11)

where T is the kinetic energy, V' is some external potential and U is the coulomb

interaction. Define a universal functional of the electronic density as
Flp) =min (( ¥, |T +U| ¥, )) (2.12)

where the minimum is taken over all N-representable wavefunctions ‘ v, > yield-
ing a density p. A N-representable wavefunction is simply an antisymmetric
wavefunction of N particles.

We now show the fundamental theorems of DFT. Let us define | \I/g‘in> as

a wavefunction that satisfies equation 2.12.
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We show that

/drV(r)p(r) + Fp] > Egna

The proof goes as follows

/drV(r)p(r) + F[p]
[ edte) +min (0, 7+ 0],

= / drV (r)p(r) + <\I/§ﬁn

T+ U| v )

~(wpn

T+V+U‘\I]glln>2Egnd

by definition of Eg,4.

We then show that

/drV(r)pgnd(r) + Fpgnd) = Egnd

(2.13)

(2.14)
(2.15)
(2.16)

(2.17)

(2.18)



2: Theory 10

The proof goes as follow

Egna < (W5 [T+ V + Ui ) (2.19)
(Ugna [T+ V + U Wy ) < (UP T +V 4 U WI™ ) (2.20)
(Ugna [T +V + U| Wgna ) < (U3 |T+V 4+ U W) (2.21)

/drV(r)pgnd(r)+<\Ifgnd|T+U\ Ugna ) < /drV( r)pgna(r) + (U0 T+ U| T )

(2.22)
(Vgna |T +U| Wgnq ) < (W [T+ U| Wi ) (2.23)
By the definition of | U7 )
(Vgna |T +U|Wgna) > (Wi [T+ U| Wit ) (2.24)
So
/ ArV (1)pgna(t) + Flpgna] = Egna (2.25)

Note that this proof is not only valid for non-degenerate ground-states, an
assumption that Honenberg and Kohn made in their original article. In practice
one accounts for degeneracies by finding the wavefunctions one at a time, taking
care to impose orthogonality with the previously found wavefunctions. It is
tempting to simply declare the latter proof as superior to the original. In the

present situation, the density p is obviously a good basic variable. It is the
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starting point of the Levy’s proof. For more complicated systems, such as
magnetic systems, it is not so clear what the basic variables are and they must
be determined by a HK type proof before a Levy’s type proof can be undertaken
[33].

2.2 Kohn-Sham Self-Consistent Field Equations

We mentioned that the proofs of the fundamental theorems of DFT are not
constructive and hence they dot not provide a method for solving practical
problems. Kohn and Sham made interesting observations that offer us a way to
use DFT for electronic structure calculations [2].

The energy of a system can be written as

Elpl = [ drVw)p(x) + Flo (2.26)
1 /
- /drV(r)p(r) + Tolp| + §/drdr’% + Eelp) (2.27)
where Ty[p] is the kinetic energy of non-interacting particles and % [ drdr’ %

is the classical Coulomb energy term. The exchange-correlation energy F.,.[p]
accounts for all the quantum many-body effects. Let the ground-state density

be pg, therefore we can write p = py + dp. Let us look at the variation in the
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energy 0 F due to a variation dp.

Elp] - Elpo] = / drV () (p(r) — po(r)) + Tolo] — Tolpo
+% / gy POE) +0p(r)) (po(t) + 0p(x')) — po(r)po(r')

v — |

+ Emc[p] - Exc[pO] (228>

= /drV(r)ép(r) + To[p] — Tolpo)
1 [ )+ 0107

v — |

+ Exc[p] - E:cc[po]

We now divide through by dp

Elp] — Elpo] _ /drV(r) . Ty[p] — To[po] n /drdr’ po(r) | Eiclpl — Exc[po]

op op r — 1| op
(2.29)
E /
0P | p=po 0p v —r'| 0P pmpy

where ty is the kinetic energy per volume and ¢,. is the exchange correlation

energy per volume. If py minimizes the total energy then it must satisfy

F
6—[/)] =0 (2.31)
op p=p0
and hence
0= /dr V(r)+ Stole] + /dr’ po(r)l + O6acl/) (2.32)
dp |r — 1| 0p | pmpy
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Since dp is arbitrary, the integrand must be zero and we get that

dtolp] V@) + /dr’ Po(r)/ I O€ze[p] =0 (2.33)
50 |I‘ - r | 6/0 pP=po
Let
! 6 xc
Vers = / ar o) el ) (2.34)
r —r'| op p=po

then

(%(;)LP] + V(r) + %ff(r) =0 (235)

Equation 2.35 has the same form as the one obtained when applying DFT to a
non-interacting electrons in a potential V' (r) + V.s¢(r). The electronic ground-

state density is obtained by solving the single particle Schrédinger’s equation
Lo
—§V + V(I') + ‘/eff(r) ’l/J,L = lez (236)

self-consistently with

N

plr) = i (X)ei(r) (2.37)

i=1

where NNV is the number of electrons. The Kohn-Sham wavefunctions and energies

should not be thought of as physical quantities in general. The Kohn-Sham
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equations are a mathematical reformulation of the initial problem which is to
find the electronic density and not individual electronic states.

We reiterate the original problem which is to compute the electronic ground-
state of atomic scale systems. Solving the (linear) Schrodinger equation for the
many-body wavefunction is a formidable task. The problem can be reduced to
non-interacting electrons moving in an effective potential using DFT. Such a
simplification is accompanied with the issues associated with non-linear equa-
tions. The unknown universal energy functional of the DFT theorems translates
into an unknown exchange-correlation potential in the Kohn-Sham equations.

We will present a way to approximate €,. (and hence V) below.

2.3 Exchange-Correlation Energy Functionals

The accuracy of the Kohn-Sham method depends greatly on the accuracy of the
exchange-correlation functional. We present the local density approximation
(LDA) which is the simplest and most widely used functional in DFT. The
approximation is the following : the exchange-correlation energy at one point is
approximated by the exchange-correlation energy of a uniform electron gas with
the same density as the density at that point. For clarity, the last statement is
rewritten as equation 2.38 where €,.(p) is the exchange correlation energy per

particle for a uniform electron gas of density p.

Euclp] = / drp(r)ens(p(r)) (2.38)
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In general, the approximation is good for systems that have a slowly varying

density. According to equation 2.34 we have

_ 0p(r)epe(p)
v, = 2eede) (2.39)
= salp) + plr) 2lP) (2.40)

op(r)

The exchange energy of a uniform electron gas is known exactly. We thus split

the known and unknown part of €,.(p) (and V. similarly) as

exe(p) = €(p) + €c(p) (2.41)

The exchange energy of a uniform electron gas is [34]

cl=-1(2) Lt (2.42)

™

which gives an exchange potential

Ve=— (@)é (2.43)

™

No analytical expression for the correlation energy of a uniform electron
gas is available. People have found expressions for the low and high density
asymptotic behaviours [35]. Subsequently, Ceperley and Alder calculated the
correlation energy of a uniform electron gas using stochastic methods [36]. Many

have proposed analytic expressions that give the correct limiting behaviours to
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interpolate the data [37, 38, 39, 40]. These expressions are not really physically
motivated but they grant us convenient forms to work with.

In principle, a universal density functional would use the information of the
whole density function to evaluate the exchange-correlation energy at one point.
At the moment, we have no means of designing such a functional. As previously
pointed out, the exchange-correlation energy can be approximately known using
a single value of the density. In order to go beyond LDA, it is natural to consider
the density in a neighbourhood of the point at which the exchange-correlation
energy is to be evaluated. The density is a multivariate analytic function and
its behaviour in a neighbourhood of some point is determined by its derivatives
at that point consequently. People have designed functionals which evaluate
the exchange-correlation energy using the density, its gradient and higher order
derivatives [41, 42, 43, 44]. Such functionals are said to be derived within the

generalized gradient approximation (GGA).

2.4 Summary

In this section, we presented the DF'T theoretical formalism which is the key to
ab initio atomic scale computations. We reviewed the proofs of Honenberg-Kohn
and Levy of the fundamental theorems of DF'T and mentioned the complemen-
tarity nature of their proofs. We derived the Kohn-Sham equations using the
variational principle. We showed that minimizing that energy with respect to

the electronic density was equivalent to solving a Schrodinger equation where all
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the non classical effects are incorporated in an effective potential which is itself
a functional of the density. This results in a set of equations which are solved
self-consistently. We discussed the local density approximation and mentioned
how to improve on it using the derivatives of the density. We concluded that
the Kohn-Sham equations can be used to solve quantum many-body problems
approximately. The accuracy of the results depends on the exchange-correlation

functional.



3

Real Space Pseudopotential Method

Our principal objective is to compute the electronic ground-state of atomic scale
systems. The problem is solved using the self-consistent field theoretic approach
in the Kohn-Sham formulation introduced above. A number of techniques for
solving the Kohn-Sham equations exist. In the mid 90’s, Chelikowsky et al.
published a series of papers arguing favourably about real space methods [29,
30, 31]. They use high-order finite-differences to discretize the equations. In
the last decade, real space DF'T has become more popular and more involved
techniques such as finite elements have emerged [45, 6]. In this thesis, we will

refer to finite-difference delta function sets as real space bases.

3.1 Real space and conventional methods

In a typical DFT method, one expands the wavefunctions in terms of a basis

set and the KS equation becomes a matrix equation in the space spanned by

18
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the basis functions. Formally, it is written as equation 3.2.

H|U)=E|¥) (3.1)

(S0 testonl) 199 =& (S onssustinl ) 1v) 2

where | ¢a> are planewaves, orthogonalized planewaves, atomic orbitals, gaus-
sians, etc. Each basis set has its own strengths and handicaps. Planewaves form
a complete basis that allows for arbitrary accuracy but a myriad must be used
to describe the oscillatory (sometimes even kinky) behaviour of the wavefunc-
tions near the atomic nuclei. Orthogonalized planewaves were constructed to
deal with this issue at the cost of some complexity and accuracy. The atomic
orbitals provide a way of discretizing the Schrédinger equation in a very dense
form but the accuracy is hardly tunable. Gaussians are convenient to work with
since they are localized both in real space and momentum space but they form
a non-orthonormal basis. These methods have been used successfully to calcu-
late the electronic structure of many condensed matter systems. Nevertheless,
there is a need for techniques that can solve large systems both efficiently and
accurately.

Real space bases have long been ignored because they are among the least
efficient ways of discretizing a Hamiltonian, by which we mean that a huge
number of basis functions are necessary. It is unfortunate as they enjoy many

advantages compared to other representations. The precision can be adjusted
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simply by refining the grid. The exchange-correlation potential is evaluated
in real space so that going back and forth to some other representation is not
required contrary to conventional bases. Evaluating the exchange-correlation
potential is expeditious for planewaves because of the fast Fourier transform
algorithms even though their lack of parallelizability is inconvenient for large
systems. It is more problematic for other bases sets such as atomic orbitals for
which the transforms can become more expensive than solving the Schrodinger
equation. Similarly, the Hartree potential is also frequently computed in real
space leading to the same limitations for conventional bases. It is much sim-
pler to treat non-periodic boundary conditions such as Dirichlet in real space
although periodic boundary conditions are easily handled as well. No artifi-
cial structures such as supercells have to be used in order to treat non-periodic
systems. Real space bases are inherently local and lead to embarrassingly par-
allelizable algorithms which is not a minor advantage for solving large atomic
scale systems. We point out the potential gains accomplished using a real space
basis in solving the Schrodinger equation below.

The most intensive part in electronic structure calculations is usually solv-
ing the Schrodinger equation which is an eigenvalue problem. Contrary to most
basis sets, real space bases are orthonormal so that the generalized eigenvalue
problem is avoided. Numerical eigenvalue problems are solved iteratively. The
most widely used method is the QR-algorithm which is arguably one of the most

important algorithms of the 20" century [46]. The QR-algorithm is tailored to
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find the whole eigenspectrum of an operator. Our problem is one of minimiza-
tion of the energy and hence only the few smallest eigenpairs are needed. There
are diagonalization procedures that can compute the eigenpairs at the lower
end of the spectrum only. The complexity of these algorithms is proportional
to the number of non-zero entries of the Hamiltonian matrix without regard to
its size. A large number of grid points are necessary in order to get a descrip-
tion of an electronic structure problem that is more accurate than, say, linear
combinations of atomic orbitals (LCAQ). In fact, the matrices resulting from a
real space discretization cannot be handled by the QR-algorithm because the
eigenvectors are too numerous. For most systems, real space pseudopotential
methods yield a very sparse Hamiltonian whereas bases such as LCAQO yield a
dense Hamiltonian matrix. As a result, even though the real space representa-
tion of the Hamiltonian is much larger than the LCAO representation, it does
not necessarily contain more non-zeros entries whence the Schrédinger equation
can be solved efficiently.

We do not want to leave the impression that real space methods necessarily
outperform other existing methods. Small basis sets such as LCAO or gaussians
can describe systems remarkably efficiently. They yield small systems of equa-
tions which are relatively easily dealt with. However, they are incomplete bases
and some experience is required in order to reach high accuracy. Planewaves
compete more directly with real space methods as they are a complete basis.

Certain problems, typically relatively small problems with smooth potentials
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and low electronic density, can be solved advantageously by planewaves codes.
However, the highest energy states generally show a very oscillatory behaviour
in order to stay orthogonal to the lowest energy states and then a large number
a planewaves is required. This leads to formidably large eigenvalue problems,
usually smaller but similar in size to the problems arising in real space. Real
space methods on the other hand can handle complicated geometries rather
straightforwardly. More importantly, the asymptotic cost of iterative diagonal-
ization procedures is sometimes smaller in real space, which we shall illustrate
in section 4.1.5. We present a real space approach to the problem via the finite-
difference method below. While this method is much simpler to implement, it
is easily parallelizable, and hence is a good candidate toward modelling large

condensed matter systems.

3.2 Real space pseudopotential formulation of the Kohn-

Sham equations

It is natural to express equations 2.36 and 2.37 in real space since it is often the
way we think of them in the back of our minds. We use the Born-Oppenheimer
approximation which says that the electronic and nuclear degrees of freedom

can be uncoupled.

U = welectronic & wnuclear (33)
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Heuristically, we can consider the nuclei as non-dynamical as they are so much
heavier that the electrons. This way, we can ignore the nuclear degrees of
freedom and hence considerably reduce the problem we try to solve.

The external potential V' (r) is the potential generated by the atoms’ nu-
clei. Each point of a real space grid corresponds to a position vector r so that
there is nothing else to be done than to evaluate V (r) at all those points. We
now consider the effective potential V.¢¢(r). One contribution is the Hartree
potential defined as

Vi(r) = / ' L) (3.4)

v

Notice that ﬁ is in fact the Green function of the three-dimensional Poisson

equation. We use this to express the integral equation 3.4 in differential form

as follows
V2V (r) = —4mp(r) (3.5)

where the 47 appears because we are using natural units. After each update of
the density 2.37, the Hartree potential is updated accordingly using equation
3.5. The remaining contribution to V,;¢(r) is the exchange-correlation potential
Vie(r). As discussed above, V,.(r) is evaluated using some functional of the
density. If we use LDA, V,.(r) = f (p(r)) where f is simply a real function of

one variable. This is done after each update of the density just like the Hartree
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potential.

We summarize the problem as follows [47]:

1. Generate a discrete operator —%V2 for the kinetic energy. Generate an

initial guess of the charge density py and compute

V;fotal [/)0] = ‘/ion + VH [pO] + VXC[/?O] (36)

where Vj,, is the ionic (external) potential, Vi [p| is the Hartree potential

and Vx¢[p] is the exchange-correlation potential.

2. Solve Schrodinger equation
1
{—évz + Wotal(r>:| ‘111(7”) = EZ\I/Z(T> (37)

for W,(r), 1 =1,2,...,s, where s is the number of occupied states.

3. Compute the new charge density

S

paa(r) =Y |Wi(r)? (3.8)

i=1

4. Update the Hartree potential by solving the Poisson equation

V2V (r) = —4mpny(r) (3.9)
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5. Update Vxc and compute

‘Zﬁoml [pn—i-l] - V:ion + VH [pn+1} + VXC[pn—H] (310)

6. If Hmel — Viotar|| < €, where € is some prescribed tolerance, then stop.

Else go to step 2.

Most of the discussion on the procedure we just described will be done in
chapter 4. Before that, we conclude the present chapter by presenting the broad

lines of the real space pseudopotential generation process.

3.3 Generation of the ionic potential

One contribution to the total potential is the ionic potential coming from the
atomic nuclei. It is possible to use the Coulomb potential but this approach is
far less effective than pseudopotential methods. In most cases, the core elec-
trons are so tightly bound to the nucleus of the atoms that they play a negligible
role in chemical and physical phenomena. We can thus consider them as frozen
degrees of freedom (similar to the Born-Oppenheimer approximation) and only
worry about the valence electrons. The core electrons effectively screen the sin-
gular potential due to the nucleus and the valence electrons perceive a smoother
potential as a consequence. Various methods have been developed to generate
these effective (approximate) potentials. We have misleadingly written V;,,(r)

thus far. We should have written Vi, (7, 7") = Vigear () + Vi (7, 7’) instead since
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pseudopotentials are most accurate in non-local form. We generate them fol-
lowing the prescriptions by Troullier-Martins and Kleinman-Bylander [4, 5].
We present the pseudopotential generation procedure in broad strokes. A
system consisting of a single atom and all its electrons is analysed using density
functional theory. It is important to generate the pseudopotentials using the
same exchange-correlation functional V,.[p] that will be used during further
computations. Once the potential (or density) has converged, the Schrédinger
equation is solved one last time in the radial direction to obtain the eigenstates

R;flE(r), where the superscript AE indicates all-electron wavefunction.

1 d? I(1+1
(—Q—rwr + (2r2 ) + Vi(r) + Vu(r) + V;;c(r)) RﬁlE(r) = ean;?lE(r) (3.11)

We then proceed with the generation of the pseudoeigenstates. We im-
pose the following form proposed by Kerker [48] for the pseudowavefunctions of

interest (corresponding to the valence electrons, i.e. those with maximal n)

op RZAE(T) >
R " (r)= (3.12)

rter(r) r<r,.

where the superscript PP indicates pseudopotential wavefunction, R{*F(r) is an
eigenstate with angular momentum [, p(r) is a polynomial and r. is the core

radius (a parameter set by the user). p(r) can be chosen in various ways and
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the form proposed by Troullier and Martins [4]

p(r) = co + cor® + cqr® + 6% + cgr® + c1o7'0 + c1or'? (3.13)

is most popular for DF'T computations.
The Schrodinger equation is then inverted to produce V,**(r) in terms of
RFPP(r) or p(r). The coefficients are determined from the following seven con-

ditions [4]:

1. The charge inside the core (within a radius r.) is equivalent for R}
and R{AE. Pseudopotentials satisfying this condition are said to be norm-

conserving.

2. RPP is C* which yields 5 constraints since it must be continuous and 4

times differentiable at r = r..
3. The curvature of the screened pseudopotential vanishes at the origin.

Next follows the unscreening step which consists of removing the Hartree and

exchange-correlation contributions to the pseudopotentials

Vi(r) =V (r) = Vi (r) = Vae(r) (3.14)

The non-local form of the pseudopotential is then obtained for each angular
component in two steps. First, the local part Vi (r), common to all angular

momenta, is generated. This step is to some extend arbitrary because the
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unaccounted for effects are absorbed in the non-local part. There are however

studies that suggest certain forms may be better than others. Then the non-

local part is generated following Kleinman and Bylander [5]. Let

Then the Kleinman-Bylander projection functions are defined as

Xim (1) = OVi(r) Ry (1) Vi (7)

and the non-local component of the pseudopotentials is defined as

lmaa‘

Vau(r ZZ\X |

=0 m=—1

where

(3.15)

(3.16)

(3.17)

(3.18)

It is preferable not to have to generate these pseudopotentials each time

we start a calculation. The ability of a pseudopotential to be valid in various

environments is called transferability. In principle, it is optimal to design a pseu-

dopotential specific to each problem. But it requires extensive knowledge and

good intuition, or it can be time consuming so that most people use transfer-

able pseudopotentials. Transferability is mostly determined by the core radius
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r. which needs to be large enough. A larger r. also yields a smoother pseudopo-
tential which is to some extent an advantage in real space since a coarser grid
can be used. This competes against the fact that we would like the pseudopo-
tentials to be as short ranged as possible in order to limit our simulation box

size.

3.4 Summary

In this section, we described the class of problems we are mostly interested
in, namely the computation of the electronic ground state of atomic scale sys-
tems. We reviewed the spectral formulation of the Kohn-Sham equations and
pointed out its limitations. Notably, it is a field that has reached maturity
and the typical system size limit remains under a thousand atoms. We com-
pared the advantages and disadvantages of spectral and real space methods.
In real space, the major bottleneck is the computation of the eigenstates of the
Kohn-Sham equations. The large number of basis functions necessitated by real
space methods is alleviated by the sparsity of the Hamiltonian matrix. When
only a subspace of the Hamiltonian needs to be diagonalized, the algorithmic
complexity depends on the sparsity rather than the size. We provided a simple
procedure for solving the Kohn-Sham equations. Finally, we outlined the real

space pseudopotential generation procedure.
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Numerical Methods

4.1 Discretization of the Kohn-Sham equations

In chapter 3 we presented an algorithm for solving the Kohn-Sham equations.
We will discuss numerical and implementation details concerning each step be-
low.

It is important to establish the boundary conditions for the partial dif-
ferential equations. One of the purpose of MatRcal developed in this thesis
is to study is to study crystals in which Bloch’s theorem guarantees that the

eigenstates satisfy the following condition [49]
Y(r) =e TP+ R) (4.1)

where R is a lattice vector. Kohn-Sham equations are thus solved in a single unit
cell with periodic boundary conditions since the wavefunction in one unit cell is
related to the wavefunction in another unit cell by a phase shift. Periodicity also

allows to study non-periodic atomic arrangements such as molecules. In this

30
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case, the atoms are put at the center of a supercell which is large enough that
molecules interact negligibly with their images. Of course, a supercell should
be chosen as small as possible in order to reduce computational cost.

One of the advantages of real space bases is the ability to avoid using su-
percells. A lot of unnecessary grid points have to be introduced indeed. It may
seem contradictory to use pediodic boundary conditions in this case. Since we
are still at a preliminary stage of development, we do not need a maximally
efficient implementation and for our purposes periodic boundary conditions are
appropriate. Furthermore, only minor changes are required in order to imple-

ment non-periodic boundary conditions.

4.1.1 Finite Difference Laplacian

Expressing the kinetic energy term —%V2 is not straightforward. The real space
representation of the Laplacian is not diagonal contrary to planewaves repre-
sentation.

Finite differencing is used to gain information about the derivatives of a
function using only values of the function itself. The idea is to use the Taylor
expansion of u about x; to approximate u at neighbouring points. A weighted

sum of neighbouring terms is then performed so as to yield an expression for

du

52(x;). For example, consider v on a one dimensional grid with a uniform mesh
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of size h. Then

u(zi—1) = u(z;) + %(zz)(:pl_l —x)+ ...

ou 9
w(zi1) = u(x;) — ha—x(xz) + O(h?)

5 (4.2)
(Tiy1) = u(w;) + %(%)(ﬁz—i—l ;) +
i) = () + HES () + O(R)
We observe
u(Tig1) — u($i71> 2 du
Gt (4.9

The vector (—%, 0, 2) which consists of the coefficients in front of the function
evaluations, is called a stencil. Here the second derivatives cancel and we are
left with a term h?2%(z;) to leading order in h. The residual is thus O(h?)
and the stencil is said to be second order. It does not mean that the error is
on the order of h% but that the error scales like h2. It is also possible that the
expression result in a better scaling if g;; (x;) is particularly small for instance.

There is a general procedure to determine stencils for more complex dif-
ferential operators. A stencil is a vector describing the action of a differential

operator on a function at a point as linear combination of the evaluations of the

function at neighbouring points. Based on this, we write

31"‘“ Z a;u(x;) (4.4)
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We Taylor expand u(z) about x; to evaluate u at each points z;.

E ;U :17Z —u:z:j E ozZJruxx] E ozl i—xj

3
Uz (T5) = Zozz x; % U (7 3'2042 i — T+

(4.5)

We then demand the right combination of a;’s to get an expression for a certain

derivative. For example, if we want the k%" derivative, we demand

(4.6)

The «;’s are found solving a Vandermonde system of equations where the right

hand side is a vector of zeros except for the £ entry which is equal to k!. For
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example, we can obtain the 4" order second derivative solving

1 1 1 1 1 Q9 0
(—2h) (=h) 0 h (2h) | | aps 0
(—20)% (=h)> 0 h* (20 || a | =2 (4.7)
(—2n)3 (=h)® 0 h3 (20)3 | | aps 0
(—2n)* (=h)* 0 h* (2h)*) \ agys 0

which yields

1
(%2 M1 Q. Qg ak+2):Th2<—1 16 —30 16 —1> (4.8)

We can thus write the second order derivative at x; as

g () = —u(xi—2) + 16u(z;_1) — 310212(2:102) + 16u(xit1) — u(zis2) + O

(4.9)
Vandermonde matrices rapidly become ill-conditioned as they grow in size. Ac-
tually, their condition number typically grows exponentially with their size. For
example, if a symmetric stencil on a uniform grid is sought, a system which
is at most 17 x 17 (corresponding to an O(h'®) stencil) can be inverted using
double precision arithmetic. It is in fact the best case scenario since forward
stencil and non-uniform grid yield worst-conditioned systems. We usually need
a Laplacian of order O(h'?) and symmetric stencils can be used everywhere with

periodic boundary conditions. We are thus luckily close to the limit. Eventually
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we will need to invert ill-conditioned systems and we shall use algorithms that
have been developed from analytic expressions for the inverse of a Vandermonde
matrix [50, 51].

In general, differentiability is an issue since we assume the existence of a
derivative to solve for it implicitly. If a function is k-differentiable, then finite-
differencing cannot provide information about the k + 1! derivative, nor can
it give information more precise than O(h*) about the lower derivative. We
assume that our potentials are sufficiently well-behaved that we don’t need
to worry about the differentiability of the eigenstates. This is a reasonable
assumption as we are using pseudopotentials.

No assumption was made concerning the uniformity of the grid although
our examples are on uniform grid. In principle, one can use finite differences on
a non-uniform grid. To evaluate a differential operator at a point, the method
necessitate the evaluation of the function along the direction of the derivative.
In principle, the point of evaluation do not need to coincide with the grid, but
it is a complication since one then needs to interpolate between the grid points
where the function is known for each evaluation. It is simpler to set grid points
along the derivatives’ direction. It is a major constraint since it forces the grid
to be orthorhombic. In practice, one has to compute a different stencil for each
point, which may become prohibitive for large systems. We thus use uniform
grids in the present document.

We mention that our demonstration and examples were done in one di-



4: Numerical Methods 36

mension but the technique generalizes easily to multidimensional differential
operators. When computing multidimensional stencils, cross-terms such as
zn:ai(xi — x;)(y; — y;) must be included in the Vandermonde system. Since
i

we are ultimately interested in discretizing a Laplacian which has no mixed

derivatives we don’t need to go through this.

T
Error : order 12.5

Error A
=
T
Il

16
1 I I 1 I I I I
0.1799 0.2799 0.3799 0.4799 05799 0.6799 0.77990.8799 1

Grid resolution h

Figure 4.1: Residual norm A against step size h : the test problem is the evaluation of the
second derivative of e* at x =0

A MATLAB function stencil.m was written. It returns an arbitrary order
stencil of an arbitrary order derivative. The function file is tested by generating a
stencil for a twelfth order second derivative. We test the stencil on the function
e’ at x = 0. A convergence plot is shown in figure 4.1. The slope of the

error A = ef  — 1 against the step size is 12.5, thus confirming the expected
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convergence rate to be order 12.

stencil.m only generates one dimensional stencils but we are interested in a
3-dimensional Laplacian. We use the symmetric nature of the multi-dimensional
Laplacian to obtain it from the 1-dimensional Laplacian using the Kronecker
tensor product recursively. Suppose that V2 is a Laplacian in n dimension, then
the Laplacian in n 4+ 1 dimensions is obtained from V2., = V2 ® I + [ ® V7,

where [ is the identity matrix.

T T T
Error (fourth orcler) : slope =5.1791

Error A

10" 10™ 10" 10" 10™

Grid resolution h

Figure 4.2: Residual norm A against step size h : the test problem is the evaluation of the
Laplacian of f(z,y, z) = sin(z) + sin(2y) + sin(3z) on a Cartesian grid

The Laplacian is tested on a cubic grid 27 x 27 X 27 and the test function is

f(z,y, z) = sin(z) +sin(2y) +sin(3z). A convergence plot is shown in figure 4.2.
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The expected convergence rate is O(h®) whereas the observed convergence rate
is O(h®>1™1). The plot shows that the slope increases as the step size h decreases

indicating that the asymptotic convergence rate might indeed be O(hS).

4.1.2 Discretization of the ionic potential

In the previous chapter, we described the pseudopotential generation procedure.
We now discuss how to project the results on our real space grid.

In our real space basis, Vi, takes the form of a real diagonal matrix.
Viecar 18 isotropic and hence we can write Vipea(r) = Vipeat (1), that is Viyeq only
depends on the magnitude of r. We thus compute the distance r from each grid
point to the center of the atomic nucleus and evaluate Vj,.q(r). We do not know
the function for every r since we generated Vj,.,; on another grid and hence we
need to interpolate the expression we obtained for Vi (r). More than enough
points are available so that any interpolation scheme is sufficiently accurate.
Cubic interpolation, which is very precise in passing, is chosen because it is the
fastest.

Computing l%x Zl: | XE2 Yo ( XisP | (eq. 3.17) is the most time consuming
part in the Harriizlzozz;a_rll generation because of the loops over over the quan-
tum numbers [ and m. A few considerations are required to make this step as
efficient as possible. We know that some atoms do not have valence electrons
with a given angular momentum. In those cases, the above procedure leads

B

to small or vanishing non-local components ‘ YK >vl< KB | We can generally

neglect them and generate the pseudopotentials for a specified set {l{}. Note
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that the radial part of xZ only depends on [ and that one should only inter-
polate RP’F(r) once and not for each m. Furthermore, it is possible to rewrite

S | XEB Yo xEP | in the following way

m=xmg

> D e | =20 (R (| i ) R (O 1) + (e ) T (X 1))

m==£mg

(4.10)

This way, we half the loop over m and reduce the number of spherical harmonics
that have to be generated. Another interesting consequence is that the non-local
part of the pseudopotentials is no longer complex (the imaginary component was
due to the spherical harmonics) which leads to a significant speed up since the

linear algebra subroutines are performed on real numbers.

4.1.3 Generation of the Hartree potential

In section 2.2, we defined the Hartree potential as

Virlp] :/dr’ pr') (4.11)

v — |

Vi can thus be obtained by computing a three-fold integral for each grid point.
Needless to say that it is not the most efficient way to evaluate Vy, especially
when using high-level computer languages such as Matlab. We will show two
efficient methods of computing Vg from the Poisson equation shortly, but we

need to make some comments before.



4: Numerical Methods 40

It was mentioned that Vi (r) is equal to the Coulomb potential beyond
some radius r.. Most pseudopotential generation software, including Nanobase
[52], do not stop there. The local component is screened with the Hartree
potential due to some charge distribution py in such a way that Vi (r) is
strictly zero beyond some radius r.. This has many fortunate implications
including the locality of Vjeq(r) in real space and the fast decay of the Kohn-
Sham eigenstates away from the atoms. In the calculations, py is taken as the
initial guess and we simply update the Hartree potential using ép = p — pg. For
clarity, we write p instead of dp in the present section.

As mentioned above, we can solve the differential equation 3.5 instead of
equation 3.4. There are many ways of solving equation 3.5.

We already discussed the discretization of the operator V2. We shall thus
use it to turn equation 3.5 into a linear matrix equation. The problem takes

the form

Az =1 (4.12)

where z is sought. It can be solved using a number of methods, direct (e.g.
performing an LU decomposition) or iterative (e.g. preconditioned conjugate
gradient). It turns out that this system is not always straightforward to solve
when periodic boundary conditions are imposed because the matrix A becomes
ill-conditioned.

As we are working with periodic boundary conditions, a simpler, accurate
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and expeditious method is to solve equation 3.5 in Fourier space. Equation 3.5

is Fourier transformed to obtain

—k* Vi (k) = —4mp(k) (4.13)

The Laplacian operator is diagonal in Fourier space and hence it is easily in-

verted. We simply compute

(4.14)

The inverse Fourier transform yields the answer Vi (r). Fast Fourier transforms
(FFT) are fast and show excellent scaling in terms of computational complexity,
namely O(nlog(n)) where n is the number of points transformed. Moreover,
convergence is exponential such that a relatively coarse grid usually gives accu-
rate results.

In section 3.1, we mentioned that the lack of parallelizability of FF'T algo-
rithms is one limitation of planewaves codes. In our implementation, the prob-
lem is diminished by taking advantage of the orthogonality of the grid. This
characteristic allows us to Fourier transform quantities and operators along each
dimension separately. For large systems, this is significantly faster than using
3D Fourier transforms and it may be affordable to compute the Hartree potential
separately on each node. Our software also uses Matlab’s biconjugate gradients

stabilized (BICGSTAB) method to solve equation 3.5. We shall implement a
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parallel version of BICGSTAB to handle systems for which the computation of

the Hartree potential in Fourier space becomes computationally expensive.

4.1.4 Generation of the exchange-correlation potential
The non-classical effects are taken into consideration with the local density
approximation (LDA) described above. We rewrite the exchange-correlation

potential as
Voe = Vo + Ve (4.15)

where V, is given by equation 2.43.
Perdew and Wang proposed a simple analytic expression for the correlation

energy from we derive V, [40]

1
1 3
24 (B2 + far, + Bor? + Burt™)

€c=—2A(1+ayrs)log | 1+ (4.16)

where

e — (%) (4.17)
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The correlation potential is found to be

Ve =ecp) + p(r)(;epcéf)) (4.18)
= e.(p) + p(r) &STZS) (?p (4.19)
SRS AT

4.1.5 Hamiltonian Representation

We have shown that the Laplacian can be written as a non-local operator
V2(r,r'). A fraction of the points surrounding a particular point is necessary
to approximate the differential operator, which leads to a sparse matrix repre-
sentation. All potentials, except the non-local part of the ionic potential, are
local and take the form of a diagonal matrix. Those are added to the kinetic
energy without changing the sparsity structure of the Hamiltonian matrix. The
non-local contribution to the pseudopotentials is generally less sparse than the
kinetic energy term. Fortunately, it can be written in real separable form. This
form is not only more accurate, it provides a computationally efficient way of
evaluating this part of the Hamiltonian. The Hamiltonian is thus real, sparse
and symmetric. These are ideal conditions for diagonalization algorithms which

are based on dense vector-sparse matrix multiplication.
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Figure 4.3: Sparsity pattern of the Hamiltonian matrix of the unit cell of a Si(111)-7x7 surface
in real space. The matrix on the left shows the sparsity pattern of a O(h'?)-Laplacian. The
matrix itself represent the sum of the kinetic energy operator and all local potential energy
operators. The matrices on the right represent the non-local pseudopotential energy operator
in separable form (i.e. as a product of two low rank matrices). The number of non-zero
entries of the Laplacian matrix scales linearly with the number of grid points. The number

of non-zero entries in the non-local pseudopotiential matrices is proportional to the number
of atoms.

We now develop on one of the closing remarks of section 3.1. The structure
of the O(h'?)-Laplacian of a Si(111)-7x 7 surface unit cell comprising 694 atoms
is shown in figure 4.3. The matrix on the left represents the sum of the kinetic
energy operator and the local potential energy operators. The matrices on
the right represents the non-local pseudopotential energy operator in separable
form (i.e. as a product of two low rank matrices). The non-local pseudopotential

matrices have been stretched in the width direction because the sparsity pattern

cannot be appreciated otherwise (the length to width ratio normally approaches
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Omo‘

x 107
Figure 4.4: Sparsity pattern of the Hamiltonian matrix of the unit cell of a Si(111)-7x7 surface
in Fourier space. The number of non-zero entries of the Laplacian matrix scales linearly with

the number of grid points. The number of non-zero entries in the non-local pseudopotiential
matrices is proportional to the number of atoms times the number of grid points.

1000:1). The Fourier space representation of the Hamiltonian is shown in figure
4.4. The Laplacian is now diagonal, but the non-local pseudopotentials are no
longer sparse. This reflects the fact that the non-local pseudopotentials are very
localized in real space and hence completely delocalized in Fourier space.

We indicated the scaling of the dimensions of each matrices in figure 4.3.
The dimensions of the Laplacian and the length of the pseudopotential matrices
are equal to the number of grid points. The width of the pseudopotential ma-
trices is proportional to the number of atoms. We now analyze the behaviour of
the sparsity of the Hamiltonian assuming a fixed resolution in both real space
and Fourier space. In real space, the number of non-zero entries in the Lapla-

cian scales linearly with the number of grid points and hence it scales linearly
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with the number of atoms. The number of non-zero entries in the pseudopo-
tiential matrices also scales linearly with the number of atoms since additional
grid points result in an equal number of supplemental zero entries. In Fourier
space, the number of non-zeros entries in the Laplacian scales linearly with the
number of atoms but the number of non-zero entries in the pseudopotential
matrices scales like the number of grid points times the number of atoms. At
a fixed resolution, the number of non-zero entries in the pseudopotential ma-
trices thus scales quadratically in Fourier space. The real space representation
seems quite advantageous for large systems. As an example, for our Si(111)-
7x T surface unit cell, the pseudopotential matrices occupy 25 MB of memory
in real space whereas they occupy 20 GB of memory in Fourier space. As the
system size increases, the numerous matrix-vector multiplications performed by

the diagonalization procedures become considerably less costly in real space.

4.2 FEigensolvers

As previously mentioned, the bottleneck consists of solving the Schrodinger
equation 3.7. We just showed that H takes the form of a real symmetric ma-
trix. From the algorithmic point of view, the fact that H is Hermitian is very
convenient [53].

The Hermitian eigenvalue problem is the simplest because the eigenvalues
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are real. To see this consider a Hermitian matrix A = Af, then

Av == Nv=A (4.21)

A=XNeR (4.22)

where T is used to denote the conjugate transpose of operators (matrices) and
"is used for scalars, vectors and block vectors. Heuristically, the simplification
happens because it is easier to search along a line than to search a whole plane.
Of course, nothing prevents us to go to higher dimensions before coming back
where we know we will find our eigenvalues (i.e. we can still transit through C).
In addition, many algorithms require to find the left and right eigenvectors for
general operators. They are of course the same for Hermitian operators which
simplifies the algorithms and diminishes the computational cost.

The problem of electronic structure calculation is one of minimization of the
energy and we are interested in finding the minimal eigenpairs consequently. In
this section we present two algorithms that perform this task, namely the Chevy-
shev filtered subspace iteration (CFSI) and the locally optimal preconditioned
conjugate gradient (LOBPCGQG) algorithms. A few algorithms necessary to CFSI

will also be presented.

4.2.1 Power Method

We first present the power iteration algorithm. Although useless in practice,

the algorithm illustrates the basic working principle of CFSI.
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The eigenvectors of a Hermitian matrix A form a complete orthonormal

basis
B =A{vy, - ,u,} (4.23)

We can thus write a given vector as

Y= Z a;v; (4.24)

y = Z Mea;v; (4.25)
Y
Y=\ Z <)\—Z) a;v; (4.26)

where \; < ;11 are the eigenvalues. From this expression, it is obvious that
the eigenvector with the largest eigenvalue will eventually dominate and y will

become numerically parallel to v,,. The algorithm works as follows :
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Algorithm 1 Power Method [54]
generate an initial guess for the eigenvector y = yq

for k=1:niter do

)
v = <+
vl

y=Av
0=y
if ||y — Ov|| < € then
break
end if
end for
set A\=0 and x = v

We make some comments on algorithm 1. In exact arithmetic, the algorithm
would not work in the case were y,v,, = 0. We do not worry about this possibility
as no two vectors are perfectly orthogonal in finite precision. However, one
should always use the best estimate at hand as a starting vector.

The rate of convergence is derived from the following observation. The

largest eigenvectors v, eventually wins, but it has to dwarf the second largest

An—l

one v,_1 and hence the convergence rate is =%
n

4.2.2 Inverse Iteration

Any eigenpair can be computed by modifying the eigenspectrum of an operator.
The spectrum must be changed in such a way that the eigenvalue of interest
becomes the largest after transformation. The transform does not have to be
bijective since once we have the eigenvectors we can recover the eigenvalues
easily. This can be done in many ways but a most general technique is the

inverse iteration algorithm which we briefly describe.
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The inverse iteration algorithm is based on two observations. Let Az = \x
then

Az —oclz =Mz —olx
(4.27)

(A—oclz=A\N—-0)x

The eigenvectors are unchanged by a shift of the eigenspectrum as mentioned
above. We can thus perform power iteration on A — ol and subtract o from the
converged eigenvalue to obtain a different eigenpair of A. It is possible to get
both ends of the spectrum by translating by the proper amount but it usually

results in slow convergence rates. The second observation is that

Az = \z
(4.28)

Nloz=A"12
in the case where A is invertible. The eigenvalues of A~! are the inverses of the
eigenvalues of A yet the eigenvectors are the same.
Using these two observations, we apply the power method to the operator
(A—oI)™" in order to obtain the eigenpair that is closest to o. The closer o
is to an actual eigenvalue, the faster the convergence. We provide the following

pseudo-code
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Algorithm 2 Inverse Iteration [54]
generate an initial guess for the eigenvector y = yq

for k=1:niter do

)
v = <+
llll

y=(A—cl) v
0=y
if ||y — Ov|| < € then
break
end if
end for
set/\:cr+%anda::v

We point out that (A — ol )_1 need not be computed explicitly, a system
(A—ol)y = v is solved instead. We suggest to perform a LU decomposition
before entering the for loop from which y is then obtain by forward backward
substitution.

The algorithm will yield the largest eigenvalue of (A — oI)™", that is the

one closest to o. Following the analysis of the power method, the convergence

Ap—0
A—0o

rate is found to be where A, and \; are the closest and second closest
eigenvalues to o respectively. When a good approximation of \; is known, the
eigenpair converges rapidly as the function f(z) = (z — /\k)_1 blows up. In

general, one does not have a reasonable ansatz and hence the convergence can

be quite slow.

4.2.3 Orthogonal Subspace Iteration

Every methods presented above work nicely when we seek a single non-degenerate

eigenpair. Solving the Schrodinger equation requires finding many degenerate
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eigenpairs most of the time. In this section, we present an extension of the
power method called orthogonal subspace iteration. We present a pseudo-code

of the algorithm

Algorithm 3 Orthogonal Iteration [54]
generate an initial guess for the orthonormal block vector V/
for k=1:niter do
Y = AV
0=VY
if ||Y — VOl < e then
break
end if
orthonormalize Y

end for
sect A=Qand X =V

The orthonormality can be maintained using any algorithm. Dividing Y by
the Cholesky factor of Y'Y is generally efficient. The orthogonality constraint
allows us to find many eigenvectors at the same time.

Suppose that we perform the algorithm on a block vector of width m. Be-
cause of the orthogonality constraint, all eigenvectors compare to the largest

eigenvector that is not in the subspace and hence the i eigenpair will converge

At

v It is thus natural to iterate on a subspace dimension larger

at a rate
than the number of sought eigenpairs to accelerate convergence. The optimal
size of the subspace depends on the operator A in question, but 8 or 10 extra
dimensions does it most of the time.

This method is much more efficient than the power method for many rea-

sons. As we just saw, convergence is accelerated by choosing a subspace larger
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than strictly necessary. The extra cost is the orthonormalization of the sub-
space. This is usually not computationally intensive since the dimension of the
subspace is fixed and relatively small. We point out that Y = AV could be
replaced by Y = A*V advantageously as orthonormalization is not required at
each step. But if s is too large the numerical rank of the blockvector Y might
decrease and the algorithm will have to be restarted. Like most block methods

degenerate eigenpairs are handle perfectly by this algorithm.

4.2.4 Chebyshev Filtered Orthogonal Iteration

Naturally, a better technique will combine the spectrum transformation and
orthogonal iteration methods.

We should not loose sight that our ultimate goal is to compute the small-
est eigenpairs of our Hamiltonian. We discuss the characteristics of a good
spectrum transformation compatible with our goal. Simply put, a spectrum
transformation is done by diagonalizing some function of the Hamiltonian. The
function must be constructed from a finite number of multiplications and in-
versions because they are the matrix operations we can perform. Inverting the
spectrum with respect to some value does not yield good results even for small
subspaces because eigenvalues are either too much or not enough suppressed.
We must concentrate on polynomials since any analytic function will have to be
expressed in term of its truncated power series. The transform should suppress
all the eigenvalues but the smallest as much as possible in order to yield the

best convergence rate.
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The last statement is formulated as a mathematical problem to determine
what is the best polynomial one can use. We distinguish between two regions

of a polynomial :

1. the asymptotic region i.e. the region were the leading order term is dom-

inant
2. the transition region i.e. the region between the two asymptotic regions

Suppose that we have estimates for the smallest and largest eigenvalue {5\,1, S\b}
that we don’t want, then we can stretch and translate the polynomial so that
the transition region corresponds to the interval [\, A;]. That leads us to the
following question : What is the monic polynomial (with leading coefficient 1)
that has the smallest infinity norm (achieves the smallest value in magnitude)
on the interval [—1,1]7 Tt is easy to show that Chebyshev polynomials of the
first kind T, () satisfy precisely the last statement. Chebyshev polynomials also
have the convenient property that they can be defined recursively C,.;(x) =
20Cy(x) — Chi(z).

We present the Chebyshev filtered subspace iteration (CFSI) algorithm
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Algorithm 4 Chebyshev Filtered Subspace Iteration
generate an initial guess X
estimate the smallest and largest unwanted eigenvalues {\q, Ay}
for k=1:niter do
apply the Chebyshev spectral transform X=Cfilter(A, X, m, N, S\b)
orthonormalize X
project A in span(X) H = X'AX
diagonalize H = S©.S’
update X = XS
compute the residual block vector R = AX — X©
check convergence
end for

A is obtained by diagonalizing A in the subspace spanned by X. The
Lanczos algorithm is used to find the largest eigenvalue. It will be presented in
the next section.

This is a satisfying improvement compared to the power method algorithm.
It is not the fastest in general, but it is reliable, easy to understand and code.
We point out that Chebyshev-filtered orthogonal iteration has been used con-

clusively for DFT calculations by Zhou et al.[7].

4.2.5 Lanczos Algorithm

The Lanczos algorithm finds the eigenpairs of a Hermitian operator A by diago-
nalizing it in a Krylov subspace K;(A, v) = span{v, Av, A%v, ..., A7"*v}. There
is enough freedom to construct the basis of IC;(A, v) such that the projection of

A is tridiagonal.
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ar B
p1 g
Vj’AV}:Tj: (4.29)
aj-1 B
Bi-1  qj
This is done using the recursion
AV = ViT; + e} (4.30)

with the constraint Vj’ r = 0. We deduce that

rj = Av; — v

" (4.31)

Oéj:U]

B = llrj — vjoy]
As above, we compute T; = SOS" and the approximate eigenvectors in K;(A, v)

are x; = V;S. ;. The eigenpair 0}, z; is called a Ritz eigenpair. In principle, we

will have

ri = Ax; — 26, = AV;S.; = V;S.:0; = (AV; = ViT3)S.: = V. ;118155 (4.32)

3]
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Here i labels the i" eigenpair and j is the dimension of K;(A,v). It follows that

|7il| = B;S; (4.33)

In practice, we cannot always maintain ||V.;|| = 1, and hence we may keep it
when computing the norm of the residual to be safe.

We now present the Lanczos algorithm

Algorithm 5 Lanczos Algorithm
generate an initial guess for smallest eigenvector v = r

set Bo = |||

for k=1:niter do
vj = =
J Bi-1

orthonormalize V'
r=(A—ol) v
r=r-—- Ujflﬁjfl
o = vjr
r=7Tr— UjOéj
Bi = I
diagonalize T'= S©.S’
update V =VS
test convergence
end for
set X =VS

A good discussion of the convergence analysis for the extremal eigenpairs
is found in [55]. It is not necessary to delve too much into the method since we
only use it to compute an upper bound for the eigenvalues of the Hamiltonian.
It takes 8 or 10 steps generally after which the residual is added to provide an

upper bound.
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4.2.6 LOBPCG

The Lanczos algorithm builds a basis for the Krylov subspace in which the
operator A is tridiagonal. There are better subspaces in which A can be di-
agonalized. In particular, we do not worry about the form of the projected
Hamiltonian since it is relatively small. With that in mind, we present the
locally optimal block preconditioned conjugate gradient algorithm (LOBPCG)
8].

The idea is to iterate on a subspace of fixed dimension (contrary to Lanc-
zos algorithm). At each step, the preconditioned residual is computed R =
T(AX; — X;A) where T is some preconditioner. A Rayleigh-Ritz process is then
performed on span{X;, X; 1, R} to obtain X;,;. Some care is needed as X; and
X,;_1 will become “parallel” as i increases. This is where the conjugate direc-
tions P; come into play. They are defined as the directions in span{X;, X; 1}

that are orthogonal to span{X;}. The algorithm goes as follows
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Algorithm 6 LOBPCG Algorithm

generate an initial subspace X!
set conjugate subspace P! = 0
for k=1:niter do
compute residual R¥ = AX* — XFAF
test convergence
preconditioning W* = T RF
make W* 1 X*
orthonormalize W*
orthonormalize P*
Rayleigh-Ritz on Span {X* W* P*}
obtain #%*! = 3" afwk 4 Fxk + 4Fpk corresponding to the eigenvalues of

7 7
interest
k+1 _ k, k k, k
set p; " = > ogwi + 77
3

end for

We believe that this method is the best among those presented so far. Being
a block method, it handles clustered or degenerate eigenpairs very well. It can
take advantage of a good ansatz for eigenvectors. We can also play with the
dimension of the iterative subspace to control convergence as in the orthogonal
iteration although it is less necessary. Finally, even more freedom is provided as
we can use preconditioning to accelerate convergence. Before illustrating this,
we give a brief review of preconditioning.

Differential equations are ubiquitous in most scientific fields. Analytical
solutions are rarely available so that they are solved numerically. In order
to do so, differential equations are discretized and take the form of a linear
system such as Axr = b. In some applications, the matrix A is such that it

cannot be inverted in standard double precision arithmetic and the system is
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said to be ill-conditioned. It is sometimes possible to palliate this by applying a
preconditioner 7" to A. The system then becomes (T'A)z = (T'b) and with a good
enough preconditioner the matrix (7'A) will not be ill-conditioned anymore. A
common choice of preconditioner is to use an approximate inverse of A but it is
often preferable to use one that is more problem-motivated when possible.

We observed that preconditioning the residual is very rewarding. To il-
lustrate that, we solve the Schrodinger equation with a smooth local potential
without preconditioning first and then using an incomplete LU (ILU) precon-
ditioner. The tolerance of the ILU factorization is set to infinity which means
that the sparsity pattern of L 4+ U is the same as that of the original matrix.
The factors obtained are not very accurate but the computational and memory
costs are small. The residual vector norm for the 5 smallest eigenpairs is shown
in figure 4.5. The number of iterations required for convergence is reduced by a
factor of 2.5 or more due to ILU preconditioning. Given the small computational

cost of the ILU preconditioning, the speed up is similar.
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Figure 4.5: Residual vector norm of the 5 lowest KS eigenstates of a molecule against the
number of iterations during LOBPCG. The red curves represent the residual vector norm
when LOBPCG is used without preconditioning. The blue curves represent the residual
vector norm when LOBPCG is used with ILU preconditioning.

When working with a more complex Hamiltonian such as the one shown in
figure 4.3, we have additional choices of preconditioners. We can invert exactly
or approximately some of the terms. In a planewave basis, it is common to
precondition with the inverse of the kinetic energy. The fact that the kinetic
energy accounts for a large part of the energy and that it is diagonal in that
basis motivates this choice. In a real space basis, the cost of inverting the kinetic
energy or the sum of the kinetic energy and the local potentials is similar.

The later option is chosen because it is expected to be more accurate. We
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thus perform a ILU factorization on —%VQ + Viocat(r) + Vu(r) + Vxe(r). Tt is
then possible to include the effects of the non-local pseudopotential using the

binomial inverse theorem [56]:
(A+UBV)'=A'-A'UB(B+BVA'UB) 'BVA™! (434

Nevertheless, we observed that it is often preferable not to include the non-local

pseudopotential in the preconditioner.

4.3 Mixing techniques

The Kohn-Sham equations 2.36 and 2.37 are a nonlinear eigenvalue problem and
hence they must be solved self-consistently. We briefly reiterate the resolution

process. We begin by solving the Schrodinger equation
1
(—§V2 + Viotar (1, 7”)) U(r) = EV(r) (4.35)

We compute the few eigenstates with the lowest energy. Next, the electronic

density is calculated as

plr) = 3 1Wi(r)[* (4.36)

The density allows us to update the Hartree and exchange-correlation potentials
from which we derive a new total potential Vi (r, ") = V}otal(r, r’). This finally
gives us a new Schrodinger equation to diagonalize.

We shall view the sequence of potentials generated by the algorithm merely
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as search directions. Updating the Hamiltonian in the way described above
is likely to be counterproductive. In fact, there is no guarantee that the new
potential will be closer to self-consistency than the last one. We need to reserve
the right to go backward if self-consistency is lost. However, this cannot be
done by computing each residual and keeping the potential that did the best.
If the best were not the new potential, the update would again be one of the
potentials already at our disposition and we would find ourselves stuck in a
loop. A simple way to avoid this situation is to use linear mixing. A new search

direction is computed from the old ones as
Vit =aVy, + (1 —a)Viy (4.37)

where 0 < a < 1. The smaller « is, the more guaranteed but the slower the
convergence is. It is thus tempting to use a large o even though we know it
may not converge at all. A generalization where the last few directions are used

follows naturally
Vit = Vo + D BV (4.38)
i=0

where oo+ ) 5; = 1. There is not much improvement in doing that in general.
=0

It is possible to greatly accelerate convergence by allowing the ;’s to change.

We can use the information contained in the earlier search directions to derive

the optimal search direction. It is necessary to have a term such as oV}, in



4: Numerical Methods 64

order to add new dimensions to the search.

Many procedures to compute the f3;’s exist. Anderson mixing has been used
successfully [57, 6]. The mixing scheme [58] introduced by Pulay, often called
direct inversion in the iterative subspace, is widely used as well [59, 60, 23]. We
chose to use the Broyden mixer described by Srivastava in [61]. More details on

Broyden’s method are available in [62].

4.4  Summary

In this chapter, we introduced the method of finite differences. As presented, the
method applies to non-uniform grids and can be used to generate non-symmetric
stencils. We showed how to use the symmetry of the Laplacian to generate a N-
dimensional Laplacian from a 1-dimensional Laplacian. Convergence tests have
verified that both stencils and Laplacian have the predicted scaling behaviour.
We described how the pseudopotentials are projected on the real space grid. We
mentioned a few implementation details which may accelerate significantly the
generation of the Hamiltonian. We introduced a few techniques for solving the
Poisson equation which is solved to update the Hartree potential. We briefly
introduced the form of Perdew and Wang for the exchange and correlation po-
tential. The Hamiltonian matrix was shown to be real, sparse and symmetric.
Eigensolvers adapted for this particular problem were presented consequently.
A few simple algorithms such as the power method have been introduced to il-

lustrate the basic working principles of CFSI. LOBPCG was also presented. We
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showed the gain realized by using a ILU preconditioner in LOBPCG. Finally, we
mentioned many potential mixing techniques necessary to the fast convergence

of the self-consistent iterations.



5

Applications

5.1 MatRcal Input

In chapter 3 we presented a real space pseudopotential method for Kohn-Sham
density functional theory calculations. In chapter 4 we presented the mathe-
matical tools used to perform the procedure presented in chapter 3 along with
some implementation details. In order to have a global view of the method, it

is instructive to have a look at the input file of an Hy molecule.

matRcal.path ’C:/User/MATLAB/MatRcal/PotentialData/’;

matRcal.xyz = ...

{

'H? 0 0 0.3815 1 [J
'H’ 0 0 -0.3815 1 []
};

matRcal.units.xyz = ’A’;
matRcal.dimension = [20,20,20];
matRcal.units.dimension = ’Bohr’;

matRcal .refinegrid = 1;
matRcal.refinegridpath = ’C:/User/MatRcal/SetupFiles/H2/H2_40.mat’

66
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matRcal.resolution.present [60,60,60];

matRcal.laplacian.accuracy = 12;

matRcal.eigensolver.CFilterDegree = 12;
matRcal.eigensolver.extraEigen = 2;

matRcal.eigensolver.tolerance = [le-4,le-4,1e-6];

matRcal.eigensolver.maxIteration = 30;
matRcal.eigensolver.precond.name = ’ilup’;
matRcal.eigensolver.precond.setup.type = ’nofill’;

matRcal .mixing.type = ’Broyden’;
matRcal .mixing.maxhistory = 30;
matRcal .mixing.beta = 0.8;
matRcal.mixing.tolerance = le-4;

matRcal .maxSCloop = 50;

matRcal = MatRcal (matRcal);

The field path holds the location of the folder containing the pseudopoten-
tials. They are generated and stored before the computation using the procedure
described in section 3.3. The field xyz contains the specie, coordinates, number
of valence electrons and the angular momenta of the Kleinman-Bylander pro-
jectors for each atom. As mentioned in section 4.1.2, depending on the atom
specie and the chemical environment, some contributions to the non-local pseu-
dopotential may be vanishingly small. The zero angular momentum component
is included by default. One can then add [1,2,3] in the last column of xyz
to include the p, d or f contributions to V,;(r,r’). The field units contains

the units in which the atom coordinates are expressed and the units of other
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physical quantities such as the simulation box size. Atomic coordinates are of-
ten given in Angstrom and sometimes in nanometers, and hence they have to
be converted to atomic units since it is simpler to work with. The size of the
simulation box is specified in the field dimension. If vacuum is used to simulate
non-periodic boundary conditions, it is often simpler to use the same units as the
atom coordinates to get a sense of its size. The subfield resolution.present
contains the number of points used along each direction. The total number of
points is the product of the three vector entries. It is possible to use the results
of a previous calculation to begin (or continue) a new one. This is achieved by
setting the field refinegrid equal to 1. The path to the file containing the
results of the previous calculation is set in refinegridpath. As the name of
the field suggests, the results of a calculation performed on a coarse grid can be
used to accelerate a calculation on a refined grid. It is also possible to save a
calculation that has not terminated and continue it later without modifying the
grid size. The field laplacian.accuracy contains the order of the Laplacian.
The Laplacian generating function uses it together with the grid size and res-
olution to generate the Laplacian. This is all done ahead of the self-consistent
loop.

The eigensolver parameters must then be determined. When using CFSI,
the degree of the Chebyshev polynomial is assigned in eigensolver.CFilterDegree.
A typical value lies between 6 and 12. The number of extra subspace dimen-

sions is defined in eigensolver.extraEigen. It is customary to use between 2
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and 10 extra dimensions. LOBPCG requires the user to stipulate the tolerance
(it can be an interval) for the eigensolver in eigensolver.tolerance and the
maximal number of iterations in eigensolver.maxIteration. The residual
norm tolerance is usually taken to be equal or slightly below the target accu-
racy for the effective potential or the electronic density. The maximal number
of iterations is quite variable but normally ranges from 20 to 50. If a pre-
conditioner is used, the link to the preconditioning function is passed through
eigensolver.precond.name. Additional information required by the precon-
ditioner is added to the field eigensolver.precond if necessary. In the case of
an ILU preconditioner, we can specify the tolerance for example.

A few mixing techniques were mentioned in section 4.3. The user can set all
the necessary parameters in the field mixing. The name of the mixing function
is assigned in the subfield mixing.type. In the case of Broyden mixing, we
need to define the number of potentials to be mixed and the proportion of the
new search direction compare with the norm of the potential. The convergence
criterion for the self-consistent loop is set in the field mixing.tolerance.

The program is finally started by inputting the structure matRcal in the

function MatRcal.

5.2 High-order finite-differencing

In section 4.1, we introduced the whole machinery of high-order finite-differencing

and stencil computation. We justify this by looking at the effects of using low-
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order Laplacians in the Kohn-Sham Hamiltonian.
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Figure 5.1: Error on the total KS energy of a Benzene molecule with respect to the number
of iterations for different Laplacians. Laplacian orders range from O(h?) to O(h!S).

We compute the total KS energy of a benzene molecule using O(h?) Lapla-
cians up to O(h'®) Laplacians. The total KS energy is defined as the sum of the
energies of the occupied eigenstates of the KS Hamiltonian. It is not equal to
the total energy of the system. As mentioned in section 2.2, the KS equations
are merely an intermediary step in the search for the electronic ground state
and the KS energies are expected to be non-physical. The error on the total KS
energy against the number of iteration is displayed in figure 5.1. The error is de-

fined as the difference between a given energy and that obtained at the last step
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using the O(h'®) Laplacian. We observe that the error in each computation (but
the O(h'®) computation) has plateaued after roughly 10 steps. This alone does
not tell us much about the importance of using high-order finite-differencing.
We also observe that the asymptotic error is perfectly correlated with the order
of the Laplacians. This, together with the fact that high-order Laplacians are
expected be more accurate, strongly suggests that high-order Laplacians truly
describe the kinetic energy better than low-order Laplacians for a fixed number
of points. When performing a computation with a low-order Laplacian, we may
converge to non-physical solutions even though nearly perfect self-consistency
is achieved. This is because we find the electronic density that minimizes an
energy functional which is not that of the system. There is no rule of thumb to
know whether we have obtained a non-physical solution. In the present case, the
spurious solution is a mathematical artefact due to a too low-order Laplacian.
One way to check whether a solution is correct is thus to increase the order of
the Laplacian before comparing the effective potentials or electronic densities
of the two computations. This is normally not too computationally expensive
since the converged potential and density can be used to begin with.

The order of the Laplacian is not the only important parameter. In order to
obtain physical results, it is also important to have enough vacuum around non-
periodic systems such as molecules. In order to confirm whether the molecules
are sufficiently spaced, the dimensions of the simulation box are changed and the

computation restarted. It is also important to have a sufficiently high grid reso-
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lution to capture all the features of the pseudopotentials and the wavefunctions.
Similarly, the grid resolution is increased until the results remain unchanged fol-
lowing a grid refinement. As mentioned above, one can always use the previous
calculation as a starting point and the convergence is fast given that the solution
was authentic. A concrete example of a non-physical solution will be discuss in

the next section.

5.3 HOMO-LUMO Gaps

In order to validate that our program works correctly, we compute the energy
gap between the highest occupied molecular orbital (HOMO) and the lowest
unoccupied molecular orbital (LUMO) of different molecules. We then com-
pare our results with the Computational Chemistry Comparison and Bench-
mark DataBase (CCCBDB) of the National Institute of Standards and Tech-
nology (NIST). CCCBDB comprises the HOMO-LUMO gap of a large number
of molecules. Most molecules have been studied with many different density
functionals and basis sets. We compare the results of MatRcal with those ob-
tained with Gaussian using the basis sets 6-31G* and 6-31+G**, and a LDA
functional. The program Gaussian can also perform a relaxation of the ionic
structure. The atom coordinates obtained from 6-31G* and 6-314+G** are thus
different in general. The atom coordinates obtained with 6-31G* were used by
our program. The HOMO-LUMO gaps obtained with 6-31+G** are shown to

give an order of magnitude for the discrepancy between different methods.
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HOMO-LUMO Gap (Hartree)
Molecule 6-31G*  6-31+G** MatRcal Time (s)

CO, 0.313 0.310 0.319 85
CH, 0.433 0.354 0.433 18
CyH, 0.218 0.209 0.219 105
C,Hyo 0.333 0.276 0.318 124
CsHg 0.194 0.190 0.194 66
CsHsN 0.148 0.146 0.145 47
CeHsNH, 0.147 0.143 0.142 23
CeHsNO, 0.119 0.118 0.122 97
CH;COOH 0.200 0.198 0.189 178
CH,C(CH;)CH;  0.202 0.193 0.201 282
SiH, 0.334 0.303 0.340 74
HCI 0.267 0.258 0.269 46

Table 5.1: Comparison of “HOMO-LUMO” gaps (Hartree) by LDA using Gaussian (NIST
CCCBDB database) and MatRcal. The rightmost column shows the time it took MatRcal to
reach convergence (i.e. §Verr < 1074V, z¢).

All results are displayed in table 5.1. We use a Laplacian of order 12 and
10 to 14 Bohr of vacuum along each direction. This means that the distance
between the outermost atoms of each molecules is at least 10 to 14 Bohr. We
typically use a 3 points per Bohr resolution along each direction. The results
of 6-31G* and MatRcal generally agree up to a few percents. We think it is
in excellent agreement considering that Gaussian uses (most probably) differ-
ent pseudopotentials, a different expression for the exchange-correlation energy
functional, a different basis set and different techniques throughout the resolu-
tion of the Kohn-Sham equations.

Experimental results for the HOMO-LUMO gaps are not reported as the

Kohn-Sham DFT is notoriously bad at predicting gaps. This is especially true
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when DF'T is carried within the local density approximation which we are using.
In DFT, energy gaps are computed as the energy difference between the lowest
unoccupied KS eigenstate and the highest occupied KS eigenstate plus a contri-
bution originating from the discontinuity of the exchange-correlation potential
at integer particle numbers A,. [63]. In the LDA, the exchange-correlation po-
tential is continuous at integer particle numbers and hence A,. = 0, hence the
gap misestimation.

The last column of table 5.1 shows the time it took for MatRcal to reach
convergence. We cannot report the Gaussian timings as NIST does not provide
them in the CCCBDB (possibly because the software license prevents it). The
effective potential V,;; = Vg +V,+V, is converged to one part in 10~*. This con-
vergence criterion is more than sufficient in order to stabilize the HOMO-LUMO
gaps. The gap (and KS energies) usually converges well before the effective po-
tential does indeed. All computations were done on a ThinkPad W520 equipped
with an Intel i7-2720QM processor. LOBPCG with ILU preconditioning was
used for every molecules. The timings found in the rightmost column of table
5.1 range from 20 seconds to 5 minutes.

From table 5.1, we notice that the timings are poorly correlated with the
number of atoms or electrons. For example, it takes 85 seconds to compute the
electronic structure of a CO5 molecule and only 23 seconds to compute that of
a C¢HsNH, molecule. In our opinion, the most likely explanation is that the

convergence time is greatly dependent on the simulation parameters, among
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which :
1. the simulation box size;
2. the resolution of the grid;
3. the Laplacian accuracy;
4. the number of additional subspace dimensions;
5. the Chebyshev polynomials degree (CFSI);
6. the eigensolver tolerance (LOBPCG);
7. the maximal number of eigensolver iterations (LOBPCG);
8. the preconditioning technique (LOBPCG);
9. the mixing procedure parameters;
10. the convergence criterion.

The parameters listed above are related to the numerical methods used by the
software. Unlike empirical parameters, they do not need to be fined tuned
in order to obtain the correct physical quantities. Instead, they merely have
to lie inside some (possibly unbounded) interval. For instance, the simulation
box must be large enough to simulate a non-periodic arrangement, the grid
resolution must be high enough to properly describe the potentials and the

wavefunctions, the Laplacian order must be high enough to describe the kinetic
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energy operator accurately, etc. Changing one parameter generally changes
completely the convergence path (or the sequence of potentials, see subsection
4.3) and hence the convergence time changes likewise. This is true of iterative
algorithms in general, but this behaviour is exacerbated by the non-linear nature
of the Kohn-Sham equations. It is usually possible to adjust the parameters to
get a faster convergence, but we did not do so for the computations reported in
table 5.1. We do not want to mislead the reader into thinking that MatRcal is
faster than it really is and it allows us to underline the importance of choosing
the parameters carefully. One can get some instinct by practising on small
molecules but in general it is impossible to know the optimal parameters in
advance.

The convergence time also depends a lot on the initial electronic density
ansatz po. MatRcal uses the isolated atoms density by default. A large molecule
whose equilibrium density resemble the isolated atoms density is expected to
converge faster than a small molecule whose equilibrium density is very different
from the isolated atoms density. One could possibly use first order perturbation
theory to obtain a more educated guess for py.

We complete the present section by showing that the convergence path is
sometimes far from regular. As an example, we compute the electronic structure
of a SiH, molecule and plot the fluctuation of the total Kohn-Sham energy as a
function of the number of self-consistent cycles in figure 5.2. For this calculation,

the CFSI algorithm was used instead of LOBPCG. After fifty iterations, the
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Figure 5.2: Error on the total KS energy of a SiH4 molecule with respect to the number of
iterations.

energy (and the effective potential) has stabilized and the energy fluctuations
are smaller or equal to 10~* Hartree giving the impression that convergence is
achieved. The physical quantities obtained from this solution are incorrect. For
instance, the HOMO-LUMO gap is 0.032 Hartree which is off by one order of
magnitude. Taking a few more steps informs us that proper convergence was
not achieve as the energy fluctuations swell to 10~! Hartree. We interpret this
false positive as a local minimum of the total energy functional E[p]. Recall
that only a global minimum can be viewed as a physical solution according
to the theorems of Honenberg and Kohn (see section 2.1). The possibility

that E[p] has local minima is unpleasant since there is no guarantee that a
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minimization scheme will get out of it and pursue a global minimization. In
the present example, we do get out of the local minimum and converge to the
correct solution. We should remark that such a problem never occurred when
using LOBPCG which evidences further that the convergence time is quite

dependent on the parameters or numerical methods.

5.4 Summary

In this chapter, we presented the input file for an Hy molecule. This allowed us
to provide an overview of the method and the relevant parameters. We made
additional comments on practical issues such as the optimal degree of Cheby-
shev polynomial. We used the computation of the density of a benzene molecule
to demonstrate the necessity of high-order finite-differencing. We showed that
our software can predict accurately physical quantities such as HOMO-LUMO
gaps. We emphasized that the non-linearity of the Kohn-Sham equations results
in an unpredictable convergence path. The convergence path is further affected
by the numerics. We displayed the convergence time for many molecules in
table 5.1. The timings presented are, in a sense, upper bounds since no param-
eter optimization was done. For example, the order of the Laplacian and the
resolution may have been higher than necessary and the size of the simulation
box may have been larger than required to reach milliHartree precision. For
such small systems, the convergence time depends principally on the number

of self-consistent steps rather than the system size indeed. This suggests that
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the full potential of the method is yet to be discover, but a parallel implemen-
tation will be required because of the onerous memory requirements due to the
wavefunctions. Incidentally, the parallelism should accelerate the computations
appreciably. For reasons presented above and because the number of molecules
that have been simulated is relatively small, it is venturesome to compare Ma-
tRcal against other codes but we think that its efficiency matches that of LCAO

codes or Gaussian.
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Conclusion

In this thesis, we have introduced a real space method for carrying ab initio
calculations. We reviewed the fundamental results of density functional theory
and the derivation of the Kohn-Sham equations. We then presented the local
density approximation which is used by our software to estimate the exchange
and correlation potentials. Our method is aimed at solving the KS equations
for a given atomic scale system. It is based on high-order finite-differencing.
We demonstrated that it is crucial to use high-order finite-differencing in order
to accurately approximate the kinetic energy term in the KS equations with a
tractable number of points. Pseudopotentials projected on a Cartesian grid are
utilized to accounts for the potential energy due to the atomic nuclei and the
core electrons. The advantages of their use is two-fold. The pseudopotentials
being smoother than the Coulomb potential, a smaller number of point is nec-
essary to discretize accurately the KS Hamiltonian. Moreover, since only the
valence states are sought, the number of required eigenvectors is significantly

reduced. The gain is even more impressive when we consider that the eigenpairs
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at the interior of the spectrum typically converge much slower than extremal
eigenpairs. We presented the CFSI and LOBPCG diagonalization algorithms
in some details. We remark that MatRcal does not have adjustable physical
parameters (at least directly). This was exemplified in an example input file.
We provided examples of physical quantities obtained with our software. The
calculated HOMO-LUMO gaps of many organic and inorganic molecules agree
with those obtained with Gaussian and reported in the CCCBDB. We have thus
created software that confirms the validity of the real space method introduced
above. The software is able to compute the electronic ground state of atomic
scale systems from first principles.

Nevertheless, much improvement remains to be done. A major amelioration
shall be the implementation of a parallel version of our software. We mentioned
that an important advantage of the method is that it is easily parallelizable
yet it is not exploited. Effectively, the matrix-vector multiplications can easily
be distributed among many processors which only need to communicate during
the subspace orthonormalization process. From a DFT standpoint, LDA is the
crudest approximation to the exchange correlation energy. We shall implement
more sophisticated functionals of the density. The first advance should be the
implementation of generalized gradient approximation based functionals. As the
electronic density is readily available in real space, all derivatives of the density
are easily obtained and GGA functionals should be relatively easy to implement.

We will allow for the possibility to use non-periodic boundary conditions in the
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future. A different Poisson solver will then be required. We already verified
that the biconjugate gradient stabilized algorithm is fast and accurate for our
purposes.

Even considering the advancements mentioned above, the bottleneck re-
mains the diagonalization of the KS Hamiltonian. This is partly due to the
large number of points used to represent the Hamiltonian. This number is ar-
tificially swollen by the vacuum set around non-periodic atomic structures. A
way to cope with that would be to use less points in the vacuum regions. Even
without the use of supercells, the number of points is larger than necessary since
the regions with smooth features are described with the same density of points
as the regions with sharp features. In order to decrease the time spent in the
diagonalization process, we must use a non-uniform and non-Cartesian grid. We
think that the method presented above should remain largely unchanged under
such a transformation. The main modification happens in the generation of the
Laplacian which would necessitate a combination of finite-differencing and in-
terpolation schemes. Roughly speaking, the algorithm would have to visit each
grid point and get an approximation for the Laplacian using the coordinates
of the surrounding points. We think that using such a grid will significantly
reduce the cost of solving the KS equations. In summary, the idea is to transfer
a part of the computational cost from the self-consistent field iterations to the

Hamiltonian generation procedure.
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