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Abstract

In condensed matter physics, atomistic first principle calculations are often nec-

essary to achieve a microscopic understanding of the observed experimental

phenomena and to make quantitative predictions of physical properties. In

practice, atomic scale systems have irregularities (e.g. surface roughness) or de-

fects (e.g. substitutional atoms or vacancies) that are too strong to be ignored

or treated as small perturbations.

In this thesis, we report the development of a real space DFT code for study-

ing atomic scale systems from first principles. Our code, named MatRcal, which

stands for “Matlab-based real space calculator”, is developed in the technical

computing language Matlab. The physics is described by density functional

theory [1]. The method itself is based on projecting the Kohn-Sham Hamil-

tonian on a uniform Cartesian grid [2]. High-order finite-differencing is used

to discretize the Laplacian operator [3]. The potential due to the atomic nu-

clei is approximated with ab initio pseudopotentials. The pseudopotentials are

generated following the procedure proposed by Troullier and Martins [4]. We

use the fully separable form introduced by Kleinman and Bylander [5]. We

argue that the method is simpler and yet has many advantages compared with

conventional spectral methods. We provide relevant mathematical techniques

and implementation details. In particular, we present and compare different

vii



Abstract viii

eigensolvers used to diagonalize the Kohn-Sham Hamiltonian. We validate our

software by comparing the HOMO-LUMO gaps of many organic and inorganic

molecules obtained using our method with those obtained with the commercial

code Gaussian. Our results are in excellent agreement. Our method gains in

computational speed and algorithm parallelism, and its power in handling real

space boundary conditions will be a major advantage for future applications in

nanoelectronic device modelling.



Résumé

En physique de la matière condensée, les calculs numériques sont souvent nécessaires

pour parvenir à comprendre les phénomènes microscopiques observés lors d’expériences

ou à prédire quantitativement des propriétés physiques. En pratique, les systèmes

d’échelle atomique sont irréguliers (rugosité de surface) ou comportent des

défauts (atomes de substitution ou lacunes), ce qui induit des effets trop sévères

pour être ignorés ou traités comme des perturbations.

Dans cette thèse, nous présentons une méthode qui permet d’étudier des

systèmes d’échelle atomique à partir des lois fondamentales de la physique.

Notre logiciel, nommé MatRcal, qui signifie “Matlab-based real space calcu-

lator”, est développé dans le langage Matlab. La physique est décrite par la

théorie de la fonctionnelle de la densité [1]. La méthode projette l’Hamiltonien

de Kohn-Sham sur un maillage Cartésien uniforme [2]. Le calcul des différences

finies est utilisé pour discrétiser l’opérateur Laplacien [3]. Le potentiel dû aux

noyaux atomiques est approximé par des pseudopotentiels non-empiriques. Les

pseudopotentiels sont générés en suivant la procédure proposée par Troullier et

Martins [4]. Nous utilisons la forme séparable introduite par Kleinman et By-

lander [5]. Nous soutenons que la méthode est plus simple et pourtant présente

de nombreux avantages par rapport aux conventionnelles méthodes spectrales.

Nous introduisons plusieurs techniques mathématiques pertinentes à notre étude

ix



Résumé x

et certains détails d’implémentation. Entre autres, nous présentons et com-

parons plusieurs algorithmes de calcul de vecteurs propres utilisés pour diag-

onaliser l’Hamiltonien de Kohn-Sham. Nous validons notre méthode en com-

parant la largeur de bande interdite “HOMO-LUMO” de nombreuses molécules

organiques et inorganiques prédite par notre méthode avec celle prédite par le

logiciel commercial Gaussian. Notre méthode permet des gains en rapidité

et en parallélisme, mais la possibilité de traiter des conditions limites non-

périodiques sera le principal atout pour de futures simulations de dispositifs

nanoélectroniques.



Statement of Originality

Real space density functional theory calculators have been abandoned long ago.

Spectral methods have dominated the field of ab initio structure calculations

ever since. As the topic reaches its full maturity, both its strengths and lim-

itations become more and more apparent. In particular, the limiting system

size remains under a thousand atoms. The complexity of the algorithms is such

that the problem cannot be palliate merely by hardware developments. It is

now obvious that algorithms different in nature are needed to apply DFT to

larger systems found in experiments.

Real space techniques have recently regained some popularity. Due to

decades of hardware, software and mathematical developments, many of the

reasons they were not used in the first place have become irrelevant or simply

disappeared. It is now possible to find examples were real space methods already

outperform traditional techniques in the literature [6]. In [7], Chelikowsky et

al. present a method for solving the Kohn-Sham equations in real space using

the calculus of finite differences.

We walked in their steps and can now report the implementation of a real

space DFT solver. In [7], they report the implementation of Chebyshev filtered

subspace iteration (CFSI) as their eigensolver. We implemented and tested

many eigensolvers including CFSI and the more recent locally optimal block pre-

conditioned conjugate gradient algorithm (LOBPCG) [8]. We found LOBPCG

to be generally superior to CFSI. We note that it may be due to the fact that we

simulated systems with a relatively small number of electrons and that for large

systems CFSI may dominate. This is due to the fact that LOBPCG requires

more subspace orthogonalizations than CFSI and its performance depends more

on the efficiency of our orthogonalization algorithm. Our software allows to use

both eigensolvers in a single calculation which is optimal in all cases.
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Introduction

Since the invention of the transistor in 1947, the field of electronics has pro-

gressed considerably, to a point where devices are now ubiquitous. For fifty

years, the performance of electronic devices has been driven by the miniatur-

ization of their basic components. We are currently at the twilight of miniatur-

ization, where the dimensions of electronics devices are slightly bigger than the

atomic scale [9, 10, 11]. At that scale, materials can no longer be thought of as

continuous media. The presence of a single impurity atom can have dramatic

effects [12]. The location of the impurity is important as well. Moreover, sur-

face effects can seldom be ignored as is the case for large chunks of material[13].

The smallness of the atomic scale renders the traditional statistical and ther-

modynamics approximations inapplicable. Furthermore, at that scale, classical

physics principles break down and a new kind of physics prevails. Quantum me-

chanical phenomena are no longer negligible and often dominate. This is clearly

the case in effectively 1-dimensional or 2-dimensional systems which arise when

the small size of a device along one direction freezes a degree of freedom [14, 15].

1



1: Introduction 2

To understand the science of nanoelectronic devices, it is critical to use ab initio

theories which can include the quantum effects and incorporate the discreteness

of atomic scale systems. Otherwise, one must rely on empirical laws obtained

by fitting the experimental data, a process which is becoming prohibitively ex-

pensive and unreliable at the nanoscopic scale.

The most powerful method for first principles modelling in material physics

is density functional theory (DFT)[1, 2]. The success of DFT is evidenced by

the 1998 Nobel Prize awarded to its discoverer, Prof. Walter Kohn. In DFT,

the n-body problem of interacting electrons is reduced to a non-linear problem

of non-interacting electrons. The central work is to solve the Kohn-Sham (KS)

equations which is a self-consistent eigenvalue problem. The potential seen by

electrons depends on the eigenstates of the KS Hamiltonian, and hence the

eigenstates and potentials of the KS equations must be solved self-consistently.

Even though electronics are reaching the nanoscale, most devices consists

of too many atoms to be simulated using DFT. It is crucial to bridge the gap

between theory and experiment. A lot of efforts are consecrated to the search

of powerful computational techniques which can analyse real-world applications

with DFT [6, 16, 17, 18, 19, 20, 21, 22]. In a typical DFT method, one expands

the KS Hamiltonian in terms of a basis set such as plane waves [23] or atomic

centered orbitals [24, 25], and the KS equation becomes a matrix equation in

the space spanned by the basis functions. These spectral techniques have been

and still are quite successful, yet the characteristic problem size remains limited
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to a few hundred atoms. In the last decade, methods that can simulate larger

systems using a real space approach have been developed [26, 27, 28, 29, 30, 31].

Evidence of good performance - by Chebyshev filtered subspace iteration (CFSI)

- was reported by Chelikowsky et al in [7]. We found that the performance of

the locally optimal block preconditioned conjugate gradient method (LOGPCG)

introduced by Knyazev [8] generally exceeds that of CFSI for solving the KS

equations. The two algorithms can also be used concurrently, each prevailing

in its own domain. We developed software that can carry DFT calculations in

real space based on their work.

Chapter 2 contains a review of density functional theory. The proofs of the

fundamental theorems of DFT are presented. We introduce the Kohn-Sham

equations. We also discuss the local density approximation of the exchange and

correlation energy.

In chapter 3, we compare real space approaches and spectral methods for

KS-DFT calculations. We formulate the Kohn-Sham eigenvalue problem in real

space. We also introduce the pseudopotential approximation and illustrate the

generation procedure.

In chapter 4, we expose many mathematical techniques and implementa-

tion details necessary to solve the Kohn-Sham equations efficiently. We discuss

the discretization of the Kohn-Sham equations, the resolution of the Poisson

equation and the diagonalization of the Kohn-Sham Hamiltonian. We also cite

many mixing techniques for accelerating the convergence of the self-consistent
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field iterations.

In chapter 5, a few applications are presented. We test our software by com-

paring the predicted HOMO-LUMO gaps against those obtained with Gaussian.

Finally, chapter 6 summarizes the thesis and presents future developments.



2

Theory

2.1 Density Functional Theory

The quantum many-body problem can be theoretically formulated in terms

of wavefunctions. The information contained in a many-body wavefunction

grows exponentially with the number of particles. This scaling makes the many-

body wavefunction based formalism impractical for numerical simulations of real

material systems because of the prohibitive memory and computation require-

ments. For practical materials physics applications, one is usually interested in

a very limited subset of information contained in the many-body wavefunction,

hence exactly computing the entire many-body wavefunction is rarely necessary.

In density functional theory (DFT), the many-body problem is reformulated in

terms of a much smaller mathematical object: the electronic density. The den-

sity is merely a function of space and hence much less information is needed to

encode it. This is perfect for numerical simulations since the memory require-

ments scale linearly with the number of particles. We will provide two set of

5



2: Theory 6

proofs which are the cornerstones of DFT.

We first introduce the fundamental theorems of DFT that were proven by

Honenberg and Kohn in 1964 [1]. Consider the following Hamiltonian

H =T + V + U (2.1)

T =
1

2

∫
dr|∇ψ(r)|2 (2.2)

V =

∫
drψ∗(r)V (r)ψ(r) (2.3)

U =

∫
drdr′ψ∗(r)ψ∗(r′)

1

|r− r′|
ψ(r)ψ(r′) (2.4)

where ψ is a field operator, T is the kinetic energy, V is some external potential

and U is the coulomb interaction between the electrons. Clearly, the electronic

density ρ is a functional of the ground-state wavefunction Ψ since it can be

written as ρ(r) =
〈

Ψ
∣∣ψ∗(r)ψ(r)

∣∣Ψ 〉. But the converse is also true. In order to

prove that, Honenberg and Kohn showed that V is a functional of ρ. The proof

is the following. Suppose that there exists a second ground state Ψ′ associated

with an external potential V ′ and that give rise to an electronic density ρ(r),

then

E ′ =
〈

Ψ′
∣∣H ′∣∣Ψ′ 〉 < 〈Ψ

∣∣H ′∣∣Ψ 〉 =
〈

Ψ
∣∣H − V + V ′

∣∣Ψ 〉 (2.5)

E ′ < E +
〈

Ψ
∣∣V ′ − V ∣∣Ψ 〉 (2.6)

E ′ < E +

∫
drρ(r)(V ′(r)− V (r)) (2.7)
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By symmetry we have

E < E ′ +

∫
drρ(r)(V (r)− V ′(r)) (2.8)

The inequalities 2.7 and 2.8 are summed to provide the following inconsistency

E + E ′ < E ′ + E (2.9)

We conclude that V is uniquely determined by ρ and hence that it is a functional

of ρ. As the kinetic and Coulomb terms are also functionals of the density, the

Hamiltonian is a functional of the density. We conclude that the ground-state

wavefunction can be viewed a functional of the density as it can be computed

from the Hamiltonian. It follows that all the ground-state properties can be

obtained from the density. It is unfortunate that the proof is by contradiction

and does not constitute a tool for practical calculations.

Honenberg and Kohn also demonstrated (again by contradiction) the exis-

tence of a universal energy functional of the density. The total energy functional

can be written as

E[ρ] =

∫
drV (r)ρ(r) + F [ρ] (2.10)

The functional F [ρ] is not dependent on the external potential and it is valid

for any number of particles. Note that no approximation has been made so far
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and that makes DFT an exact theory. It would be a tremendously powerful one

if F [ρ] were known but it is not the case. Much efforts have been dedicated to

the development of approximate functionals, some of which will be presented

below.

In the last theorem, Honenberg and Kohn assume that the density yields

the correct ground-state among those wavefunctions that are the ground-state of

some external potential V . We call such functions V-representable functions. It

is not known whether a given wavefunction is the ground-state for some external

potential and that is why we present another insightful derivation by Levy [32].

As above, let

H =T + V + U (2.11)

where T is the kinetic energy, V is some external potential and U is the coulomb

interaction. Define a universal functional of the electronic density as

F [ρ] = min
(〈

Ψρ

∣∣T + U
∣∣Ψρ

〉)
(2.12)

where the minimum is taken over all N-representable wavefunctions
∣∣Ψρ

〉
yield-

ing a density ρ. A N-representable wavefunction is simply an antisymmetric

wavefunction of N particles.

We now show the fundamental theorems of DFT. Let us define
∣∣Ψmin

ρ

〉
as

a wavefunction that satisfies equation 2.12.
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We show that

∫
drV (r)ρ(r) + F [ρ] ≥ Egnd (2.13)

The proof goes as follows

∫
drV (r)ρ(r) + F [ρ] (2.14)

=

∫
drV (r)ρ(r) + min

(〈
Ψρ

∣∣T + U
∣∣Ψρ

〉)
(2.15)

=

∫
drV (r)ρ(r) +

〈
Ψmin
ρ

∣∣T + U
∣∣Ψmin

ρ

〉
(2.16)

=
〈

Ψmin
ρ

∣∣T + V + U
∣∣Ψmin

ρ

〉
≥ Egnd (2.17)

by definition of Egnd.

We then show that

∫
drV (r)ρgnd(r) + F [ρgnd] = Egnd (2.18)
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The proof goes as follow

Egnd ≤
〈

Ψmin
ρgnd

∣∣T + V + U
∣∣Ψmin

ρgnd

〉
(2.19)〈

Ψgnd

∣∣T + V + U
∣∣Ψgnd

〉
≤
〈

Ψmin
ρgnd

∣∣T + V + U
∣∣Ψmin

ρgnd

〉
(2.20)〈

Ψgnd

∣∣T + V + U
∣∣Ψgnd

〉
≤
〈

Ψmin
ρgnd

∣∣T + V + U
∣∣Ψmin

ρgnd

〉
(2.21)∫

drV (r)ρgnd(r) +
〈

Ψgnd

∣∣T + U
∣∣Ψgnd

〉
≤
∫
drV (r)ρgnd(r) +

〈
Ψmin
ρgnd

∣∣T + U
∣∣Ψmin

ρgnd

〉
(2.22)〈

Ψgnd

∣∣T + U
∣∣Ψgnd

〉
≤
〈

Ψmin
ρgnd

∣∣T + U
∣∣Ψmin

ρgnd

〉
(2.23)

By the definition of
∣∣Ψmin

ρgnd

〉
〈

Ψgnd

∣∣T + U
∣∣Ψgnd

〉
≥
〈

Ψmin
ρgnd

∣∣T + U
∣∣Ψmin

ρgnd

〉
(2.24)

So

∫
drV (r)ρgnd(r) + F [ρgnd] = Egnd (2.25)

Note that this proof is not only valid for non-degenerate ground-states, an

assumption that Honenberg and Kohn made in their original article. In practice

one accounts for degeneracies by finding the wavefunctions one at a time, taking

care to impose orthogonality with the previously found wavefunctions. It is

tempting to simply declare the latter proof as superior to the original. In the

present situation, the density ρ is obviously a good basic variable. It is the
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starting point of the Levy’s proof. For more complicated systems, such as

magnetic systems, it is not so clear what the basic variables are and they must

be determined by a HK type proof before a Levy’s type proof can be undertaken

[33].

2.2 Kohn-Sham Self-Consistent Field Equations

We mentioned that the proofs of the fundamental theorems of DFT are not

constructive and hence they dot not provide a method for solving practical

problems. Kohn and Sham made interesting observations that offer us a way to

use DFT for electronic structure calculations [2].

The energy of a system can be written as

E[ρ] =

∫
drV (r)ρ(r) + F [ρ] (2.26)

=

∫
drV (r)ρ(r) + T0[ρ] +

1

2

∫
drdr′

ρ(r)ρ(r′)

|r− r′|
+ Exc[ρ] (2.27)

where T0[ρ] is the kinetic energy of non-interacting particles and 1
2

∫
drdr′ ρ(r)ρ(r

′)
|r−r′|

is the classical Coulomb energy term. The exchange-correlation energy Exc[ρ]

accounts for all the quantum many-body effects. Let the ground-state density

be ρ0, therefore we can write ρ = ρ0 + δρ. Let us look at the variation in the
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energy δE due to a variation δρ.

E[ρ]− E[ρ0] =

∫
drV (r) (ρ(r)− ρ0(r)) + T0[ρ]− T0[ρ0]

+
1

2

∫
drdr′

(ρ0(r) + δρ(r)) (ρ0(r
′) + δρ(r′))− ρ0(r)ρ0(r′)
|r− r′|

+ Exc[ρ]− Exc[ρ0]

=

∫
drV (r)δρ(r) + T0[ρ]− T0[ρ0]

+

∫
drdr′

ρ0(r
′)δρ(r) +O(δρ2))

|r− r′|
+ Exc[ρ]− Exc[ρ0]

(2.28)

We now divide through by δρ

E[ρ]− E[ρ0]

δρ
=

∫
drV (r) +

T0[ρ]− T0[ρ0]
δρ

+

∫
drdr′

ρ0(r
′)

|r− r′|
+
Exc[ρ]− Exc[ρ0]

δρ

(2.29)

δE[ρ]

δρ

∣∣∣∣
ρ=ρ0

=

∫
dr

(
V (r) +

δt0[ρ]

δρ
+

∫
dr′

ρ0(r
′)

|r− r′|
+
δεxc[ρ]

δρ

∣∣∣∣
ρ=ρ0

)
(2.30)

where t0 is the kinetic energy per volume and εxc is the exchange correlation

energy per volume. If ρ0 minimizes the total energy then it must satisfy

δE[ρ]

δρ

∣∣∣∣
ρ=ρ0

= 0 (2.31)

and hence

0 =

∫
dr

(
V (r) +

δt0[ρ]

δρ
+

∫
dr′

ρ0(r
′)

|r− r′|
+
δεxc[ρ]

δρ

∣∣∣∣
ρ=ρ0

)
(2.32)
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Since δρ is arbitrary, the integrand must be zero and we get that

δt0[ρ]

δρ
+ V (r) +

∫
dr′

ρ0(r
′)

|r− r′|
+
δεxc[ρ]

δρ

∣∣∣∣
ρ=ρ0

= 0 (2.33)

Let

Veff =

∫
dr′

ρ0(r
′)

|r− r′|
+
δεxc[ρ]

δρ

∣∣∣∣
ρ=ρ0

= VH [ρ] + Vxc[ρ] (2.34)

then

δt0[ρ]

δρ
+ V (r) + Veff (r) = 0 (2.35)

Equation 2.35 has the same form as the one obtained when applying DFT to a

non-interacting electrons in a potential V (r) + Veff (r). The electronic ground-

state density is obtained by solving the single particle Schrödinger’s equation

(
−1

2
∇2 + V (r) + Veff (r)

)
ψi = εiψi (2.36)

self-consistently with

ρ(r) =
N∑
i=1

ψ∗i (r)ψi(r) (2.37)

whereN is the number of electrons. The Kohn-Sham wavefunctions and energies

should not be thought of as physical quantities in general. The Kohn-Sham
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equations are a mathematical reformulation of the initial problem which is to

find the electronic density and not individual electronic states.

We reiterate the original problem which is to compute the electronic ground-

state of atomic scale systems. Solving the (linear) Schrödinger equation for the

many-body wavefunction is a formidable task. The problem can be reduced to

non-interacting electrons moving in an effective potential using DFT. Such a

simplification is accompanied with the issues associated with non-linear equa-

tions. The unknown universal energy functional of the DFT theorems translates

into an unknown exchange-correlation potential in the Kohn-Sham equations.

We will present a way to approximate εxc (and hence Vxc) below.

2.3 Exchange-Correlation Energy Functionals

The accuracy of the Kohn-Sham method depends greatly on the accuracy of the

exchange-correlation functional. We present the local density approximation

(LDA) which is the simplest and most widely used functional in DFT. The

approximation is the following : the exchange-correlation energy at one point is

approximated by the exchange-correlation energy of a uniform electron gas with

the same density as the density at that point. For clarity, the last statement is

rewritten as equation 2.38 where εxc(ρ) is the exchange correlation energy per

particle for a uniform electron gas of density ρ.

Exc[ρ] =

∫
drρ(r)εxc(ρ(r)) (2.38)



2: Theory 15

In general, the approximation is good for systems that have a slowly varying

density. According to equation 2.34 we have

Vxc =
δρ(r)εxc(ρ)

δρ(r)
(2.39)

= εxc(ρ) + ρ(r)
δεxc(ρ)

δρ(r)
(2.40)

The exchange energy of a uniform electron gas is known exactly. We thus split

the known and unknown part of εxc(ρ) (and Vxc similarly) as

εxc(ρ) = εx(ρ) + εc(ρ) (2.41)

The exchange energy of a uniform electron gas is [34]

εx[ρ] = −3

4

(
3

π

) 1
3

ρ
4
3 (2.42)

which gives an exchange potential

Vx = −
(

3ρ

π

) 1
3

(2.43)

No analytical expression for the correlation energy of a uniform electron

gas is available. People have found expressions for the low and high density

asymptotic behaviours [35]. Subsequently, Ceperley and Alder calculated the

correlation energy of a uniform electron gas using stochastic methods [36]. Many

have proposed analytic expressions that give the correct limiting behaviours to
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interpolate the data [37, 38, 39, 40]. These expressions are not really physically

motivated but they grant us convenient forms to work with.

In principle, a universal density functional would use the information of the

whole density function to evaluate the exchange-correlation energy at one point.

At the moment, we have no means of designing such a functional. As previously

pointed out, the exchange-correlation energy can be approximately known using

a single value of the density. In order to go beyond LDA, it is natural to consider

the density in a neighbourhood of the point at which the exchange-correlation

energy is to be evaluated. The density is a multivariate analytic function and

its behaviour in a neighbourhood of some point is determined by its derivatives

at that point consequently. People have designed functionals which evaluate

the exchange-correlation energy using the density, its gradient and higher order

derivatives [41, 42, 43, 44]. Such functionals are said to be derived within the

generalized gradient approximation (GGA).

2.4 Summary

In this section, we presented the DFT theoretical formalism which is the key to

ab initio atomic scale computations. We reviewed the proofs of Honenberg-Kohn

and Levy of the fundamental theorems of DFT and mentioned the complemen-

tarity nature of their proofs. We derived the Kohn-Sham equations using the

variational principle. We showed that minimizing that energy with respect to

the electronic density was equivalent to solving a Schrödinger equation where all
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the non classical effects are incorporated in an effective potential which is itself

a functional of the density. This results in a set of equations which are solved

self-consistently. We discussed the local density approximation and mentioned

how to improve on it using the derivatives of the density. We concluded that

the Kohn-Sham equations can be used to solve quantum many-body problems

approximately. The accuracy of the results depends on the exchange-correlation

functional.



3

Real Space Pseudopotential Method

Our principal objective is to compute the electronic ground-state of atomic scale

systems. The problem is solved using the self-consistent field theoretic approach

in the Kohn-Sham formulation introduced above. A number of techniques for

solving the Kohn-Sham equations exist. In the mid 90’s, Chelikowsky et al.

published a series of papers arguing favourably about real space methods [29,

30, 31]. They use high-order finite-differences to discretize the equations. In

the last decade, real space DFT has become more popular and more involved

techniques such as finite elements have emerged [45, 6]. In this thesis, we will

refer to finite-difference delta function sets as real space bases.

3.1 Real space and conventional methods

In a typical DFT method, one expands the wavefunctions in terms of a basis

set and the KS equation becomes a matrix equation in the space spanned by

18
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the basis functions. Formally, it is written as equation 3.2.

H
∣∣Ψ 〉 =E

∣∣Ψ 〉 (3.1)(∑
α,β

∣∣φα 〉Hα,β

〈
φβ
∣∣) ∣∣Ψ 〉 =E

(∑
α,β

∣∣φα 〉Sα,β〈φβ ∣∣) ∣∣Ψ 〉 (3.2)

where
∣∣φα 〉 are planewaves, orthogonalized planewaves, atomic orbitals, gaus-

sians, etc. Each basis set has its own strengths and handicaps. Planewaves form

a complete basis that allows for arbitrary accuracy but a myriad must be used

to describe the oscillatory (sometimes even kinky) behaviour of the wavefunc-

tions near the atomic nuclei. Orthogonalized planewaves were constructed to

deal with this issue at the cost of some complexity and accuracy. The atomic

orbitals provide a way of discretizing the Schrödinger equation in a very dense

form but the accuracy is hardly tunable. Gaussians are convenient to work with

since they are localized both in real space and momentum space but they form

a non-orthonormal basis. These methods have been used successfully to calcu-

late the electronic structure of many condensed matter systems. Nevertheless,

there is a need for techniques that can solve large systems both efficiently and

accurately.

Real space bases have long been ignored because they are among the least

efficient ways of discretizing a Hamiltonian, by which we mean that a huge

number of basis functions are necessary. It is unfortunate as they enjoy many

advantages compared to other representations. The precision can be adjusted
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simply by refining the grid. The exchange-correlation potential is evaluated

in real space so that going back and forth to some other representation is not

required contrary to conventional bases. Evaluating the exchange-correlation

potential is expeditious for planewaves because of the fast Fourier transform

algorithms even though their lack of parallelizability is inconvenient for large

systems. It is more problematic for other bases sets such as atomic orbitals for

which the transforms can become more expensive than solving the Schrödinger

equation. Similarly, the Hartree potential is also frequently computed in real

space leading to the same limitations for conventional bases. It is much sim-

pler to treat non-periodic boundary conditions such as Dirichlet in real space

although periodic boundary conditions are easily handled as well. No artifi-

cial structures such as supercells have to be used in order to treat non-periodic

systems. Real space bases are inherently local and lead to embarrassingly par-

allelizable algorithms which is not a minor advantage for solving large atomic

scale systems. We point out the potential gains accomplished using a real space

basis in solving the Schrödinger equation below.

The most intensive part in electronic structure calculations is usually solv-

ing the Schrödinger equation which is an eigenvalue problem. Contrary to most

basis sets, real space bases are orthonormal so that the generalized eigenvalue

problem is avoided. Numerical eigenvalue problems are solved iteratively. The

most widely used method is the QR-algorithm which is arguably one of the most

important algorithms of the 20th century [46]. The QR-algorithm is tailored to
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find the whole eigenspectrum of an operator. Our problem is one of minimiza-

tion of the energy and hence only the few smallest eigenpairs are needed. There

are diagonalization procedures that can compute the eigenpairs at the lower

end of the spectrum only. The complexity of these algorithms is proportional

to the number of non-zero entries of the Hamiltonian matrix without regard to

its size. A large number of grid points are necessary in order to get a descrip-

tion of an electronic structure problem that is more accurate than, say, linear

combinations of atomic orbitals (LCAO). In fact, the matrices resulting from a

real space discretization cannot be handled by the QR-algorithm because the

eigenvectors are too numerous. For most systems, real space pseudopotential

methods yield a very sparse Hamiltonian whereas bases such as LCAO yield a

dense Hamiltonian matrix. As a result, even though the real space representa-

tion of the Hamiltonian is much larger than the LCAO representation, it does

not necessarily contain more non-zeros entries whence the Schrödinger equation

can be solved efficiently.

We do not want to leave the impression that real space methods necessarily

outperform other existing methods. Small basis sets such as LCAO or gaussians

can describe systems remarkably efficiently. They yield small systems of equa-

tions which are relatively easily dealt with. However, they are incomplete bases

and some experience is required in order to reach high accuracy. Planewaves

compete more directly with real space methods as they are a complete basis.

Certain problems, typically relatively small problems with smooth potentials
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and low electronic density, can be solved advantageously by planewaves codes.

However, the highest energy states generally show a very oscillatory behaviour

in order to stay orthogonal to the lowest energy states and then a large number

a planewaves is required. This leads to formidably large eigenvalue problems,

usually smaller but similar in size to the problems arising in real space. Real

space methods on the other hand can handle complicated geometries rather

straightforwardly. More importantly, the asymptotic cost of iterative diagonal-

ization procedures is sometimes smaller in real space, which we shall illustrate

in section 4.1.5. We present a real space approach to the problem via the finite-

difference method below. While this method is much simpler to implement, it

is easily parallelizable, and hence is a good candidate toward modelling large

condensed matter systems.

3.2 Real space pseudopotential formulation of the Kohn-

Sham equations

It is natural to express equations 2.36 and 2.37 in real space since it is often the

way we think of them in the back of our minds. We use the Born-Oppenheimer

approximation which says that the electronic and nuclear degrees of freedom

can be uncoupled.

Ψ = ψelectronic ⊗ ψnuclear (3.3)
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Heuristically, we can consider the nuclei as non-dynamical as they are so much

heavier that the electrons. This way, we can ignore the nuclear degrees of

freedom and hence considerably reduce the problem we try to solve.

The external potential V (r) is the potential generated by the atoms’ nu-

clei. Each point of a real space grid corresponds to a position vector r so that

there is nothing else to be done than to evaluate V (r) at all those points. We

now consider the effective potential Veff (r). One contribution is the Hartree

potential defined as

VH(r) =

∫
dr′

ρ0(r
′)

|r− r′|
(3.4)

Notice that 1
|r−r′| is in fact the Green function of the three-dimensional Poisson

equation. We use this to express the integral equation 3.4 in differential form

as follows

∇2VH(r) = −4πρ(r) (3.5)

where the 4π appears because we are using natural units. After each update of

the density 2.37, the Hartree potential is updated accordingly using equation

3.5. The remaining contribution to Veff (r) is the exchange-correlation potential

Vxc(r). As discussed above, Vxc(r) is evaluated using some functional of the

density. If we use LDA, Vxc(r) = f (ρ(r)) where f is simply a real function of

one variable. This is done after each update of the density just like the Hartree
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potential.

We summarize the problem as follows [47]:

1. Generate a discrete operator −1
2
∇2 for the kinetic energy. Generate an

initial guess of the charge density ρ0 and compute

Vtotal[ρ0] = Vion + VH [ρ0] + VXC [ρ0] (3.6)

where Vion is the ionic (external) potential, VH [ρ] is the Hartree potential

and VXC [ρ] is the exchange-correlation potential.

2. Solve Schrödinger equation

[
−1

2
∇2 + Vtotal(r)

]
Ψi(r) = EiΨi(r) (3.7)

for Ψi(r), i = 1, 2, ..., s, where s is the number of occupied states.

3. Compute the new charge density

ρn+1(r) =
s∑
i=1

|Ψi(r)|2 (3.8)

4. Update the Hartree potential by solving the Poisson equation

∇2VH(r) = −4πρn+1(r) (3.9)
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5. Update VXC and compute

Ṽtotal[ρn+1] = Vion + VH [ρn+1] + VXC [ρn+1] (3.10)

6. If ‖Ṽtotal − Vtotal‖ < ε, where ε is some prescribed tolerance, then stop.

Else go to step 2.

Most of the discussion on the procedure we just described will be done in

chapter 4. Before that, we conclude the present chapter by presenting the broad

lines of the real space pseudopotential generation process.

3.3 Generation of the ionic potential

One contribution to the total potential is the ionic potential coming from the

atomic nuclei. It is possible to use the Coulomb potential but this approach is

far less effective than pseudopotential methods. In most cases, the core elec-

trons are so tightly bound to the nucleus of the atoms that they play a negligible

role in chemical and physical phenomena. We can thus consider them as frozen

degrees of freedom (similar to the Born-Oppenheimer approximation) and only

worry about the valence electrons. The core electrons effectively screen the sin-

gular potential due to the nucleus and the valence electrons perceive a smoother

potential as a consequence. Various methods have been developed to generate

these effective (approximate) potentials. We have misleadingly written Vion(r)

thus far. We should have written Vion(r, r′) = Vlocal(r) + Vnl(r, r
′) instead since
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pseudopotentials are most accurate in non-local form. We generate them fol-

lowing the prescriptions by Troullier-Martins and Kleinman-Bylander [4, 5].

We present the pseudopotential generation procedure in broad strokes. A

system consisting of a single atom and all its electrons is analysed using density

functional theory. It is important to generate the pseudopotentials using the

same exchange-correlation functional Vxc[ρ] that will be used during further

computations. Once the potential (or density) has converged, the Schrödinger

equation is solved one last time in the radial direction to obtain the eigenstates

RAE
nl (r), where the superscript AE indicates all-electron wavefunction.

(
− 1

2r

d2

dr2
r +

l(l + 1)

2r2
+ Vl(r) + VH(r) + Vxc(r)

)
RAE
nl (r) = εnlR

AE
nl (r) (3.11)

We then proceed with the generation of the pseudoeigenstates. We im-

pose the following form proposed by Kerker [48] for the pseudowavefunctions of

interest (corresponding to the valence electrons, i.e. those with maximal n)

RPP
l (r) =


RAE
l (r) r ≥ rc;

rlep(r) r ≤ rc

(3.12)

where the superscript PP indicates pseudopotential wavefunction, RAE
l (r) is an

eigenstate with angular momentum l, p(r) is a polynomial and rc is the core

radius (a parameter set by the user). p(r) can be chosen in various ways and
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the form proposed by Troullier and Martins [4]

p(r) = c0 + c2r
2 + c4r

4 + c6r
6 + c8r

8 + c10r
10 + c12r

12 (3.13)

is most popular for DFT computations.

The Schrödinger equation is then inverted to produce V scr
l (r) in terms of

RPP
l (r) or p(r). The coefficients are determined from the following seven con-

ditions [4]:

1. The charge inside the core (within a radius rc) is equivalent for RPP
l

and RAE
l . Pseudopotentials satisfying this condition are said to be norm-

conserving.

2. RPP
l is C4 which yields 5 constraints since it must be continuous and 4

times differentiable at r = rc.

3. The curvature of the screened pseudopotential vanishes at the origin.

Next follows the unscreening step which consists of removing the Hartree and

exchange-correlation contributions to the pseudopotentials

Vl(r) = V scr
l (r)− VH(r)− Vxc(r) (3.14)

The non-local form of the pseudopotential is then obtained for each angular

component in two steps. First, the local part Vlocal(r), common to all angular

momenta, is generated. This step is to some extend arbitrary because the
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unaccounted for effects are absorbed in the non-local part. There are however

studies that suggest certain forms may be better than others. Then the non-

local part is generated following Kleinman and Bylander [5]. Let

δVl(r) = Vl(r)− Vlocal(r) (3.15)

Then the Kleinman-Bylander projection functions are defined as

χKBlm (r) = δVl(r)R
PP
l (r)Ylm(r̂) (3.16)

and the non-local component of the pseudopotentials is defined as

Vnl(r, r
′) =

lmax∑
l=0

l∑
m=−l

∣∣χKBlm 〉
vl
〈
χKBlm

∣∣ (3.17)

where

vl =
〈
χKBlm

∣∣δVl∣∣χKBlm 〉
(3.18)

It is preferable not to have to generate these pseudopotentials each time

we start a calculation. The ability of a pseudopotential to be valid in various

environments is called transferability. In principle, it is optimal to design a pseu-

dopotential specific to each problem. But it requires extensive knowledge and

good intuition, or it can be time consuming so that most people use transfer-

able pseudopotentials. Transferability is mostly determined by the core radius
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rc which needs to be large enough. A larger rc also yields a smoother pseudopo-

tential which is to some extent an advantage in real space since a coarser grid

can be used. This competes against the fact that we would like the pseudopo-

tentials to be as short ranged as possible in order to limit our simulation box

size.

3.4 Summary

In this section, we described the class of problems we are mostly interested

in, namely the computation of the electronic ground state of atomic scale sys-

tems. We reviewed the spectral formulation of the Kohn-Sham equations and

pointed out its limitations. Notably, it is a field that has reached maturity

and the typical system size limit remains under a thousand atoms. We com-

pared the advantages and disadvantages of spectral and real space methods.

In real space, the major bottleneck is the computation of the eigenstates of the

Kohn-Sham equations. The large number of basis functions necessitated by real

space methods is alleviated by the sparsity of the Hamiltonian matrix. When

only a subspace of the Hamiltonian needs to be diagonalized, the algorithmic

complexity depends on the sparsity rather than the size. We provided a simple

procedure for solving the Kohn-Sham equations. Finally, we outlined the real

space pseudopotential generation procedure.
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Numerical Methods

4.1 Discretization of the Kohn-Sham equations

In chapter 3 we presented an algorithm for solving the Kohn-Sham equations.

We will discuss numerical and implementation details concerning each step be-

low.

It is important to establish the boundary conditions for the partial dif-

ferential equations. One of the purpose of MatRcal developed in this thesis

is to study is to study crystals in which Bloch’s theorem guarantees that the

eigenstates satisfy the following condition [49]

ψ(r) = e−ik·Rψ(r + R) (4.1)

where R is a lattice vector. Kohn-Sham equations are thus solved in a single unit

cell with periodic boundary conditions since the wavefunction in one unit cell is

related to the wavefunction in another unit cell by a phase shift. Periodicity also

allows to study non-periodic atomic arrangements such as molecules. In this

30
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case, the atoms are put at the center of a supercell which is large enough that

molecules interact negligibly with their images. Of course, a supercell should

be chosen as small as possible in order to reduce computational cost.

One of the advantages of real space bases is the ability to avoid using su-

percells. A lot of unnecessary grid points have to be introduced indeed. It may

seem contradictory to use pediodic boundary conditions in this case. Since we

are still at a preliminary stage of development, we do not need a maximally

efficient implementation and for our purposes periodic boundary conditions are

appropriate. Furthermore, only minor changes are required in order to imple-

ment non-periodic boundary conditions.

4.1.1 Finite Difference Laplacian

Expressing the kinetic energy term −1
2
∇2 is not straightforward. The real space

representation of the Laplacian is not diagonal contrary to planewaves repre-

sentation.

Finite differencing is used to gain information about the derivatives of a

function using only values of the function itself. The idea is to use the Taylor

expansion of u about xi to approximate u at neighbouring points. A weighted

sum of neighbouring terms is then performed so as to yield an expression for

∂u
∂x

(xi). For example, consider u on a one dimensional grid with a uniform mesh
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of size h. Then

u(xi−1) = u(xi) +
∂u

∂x
(xi)(xi−1 − xi) + . . .

u(xi−1) = u(xi)− h
∂u

∂x
(xi) +O(h2)

u(xi+1) = u(xi) +
∂u

∂x
(xi)(xi+1 − xi) + . . .

u(xi+1) = u(xi) + h
∂u

∂x
(xi) +O(h2)

(4.2)

We observe

u(xi+1)− u(xi−1)

2h
+O(h2) =

∂u

∂x
(xi) (4.3)

The vector (−1
2
, 0, 1

2
), which consists of the coefficients in front of the function

evaluations, is called a stencil. Here the second derivatives cancel and we are

left with a term h2 ∂
3u
∂x3

(xi) to leading order in h. The residual is thus O(h2)

and the stencil is said to be second order. It does not mean that the error is

on the order of h2 but that the error scales like h2. It is also possible that the

expression result in a better scaling if ∂3u
∂x3

(xi) is particularly small for instance.

There is a general procedure to determine stencils for more complex dif-

ferential operators. A stencil is a vector describing the action of a differential

operator on a function at a point as linear combination of the evaluations of the

function at neighbouring points. Based on this, we write

∂ku

∂xk
(xj) =

∑
i

αiu(xi) (4.4)
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We Taylor expand u(x) about xj to evaluate u at each points xi.

n∑
i

αiu(xi) = u(xj)
n∑
i

αi + ux(xj)
n∑
i

αi(xi − xj)+

uxx(xj)
1

2

n∑
i

αi(xi − xj)2 + uxxx(xj)
1

3!

n∑
i

αi(xi − xj)3 + . . .

(4.5)

We then demand the right combination of αi’s to get an expression for a certain

derivative. For example, if we want the kth derivative, we demand

n∑
i

αi = 0

n∑
i

αi(xi − xj) = 0

1

2

n∑
i

αi(xi − xj)2 = 0

...

1

k!

n∑
i

αi(xi − xj)k = 1

...

(4.6)

The αi’s are found solving a Vandermonde system of equations where the right

hand side is a vector of zeros except for the kth entry which is equal to k!. For
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example, we can obtain the 4th order second derivative solving



1 1 1 1 1

(−2h) (−h) 0 h (2h)

(−2h)2 (−h)2 0 h2 (2h)2

(−2h)3 (−h)3 0 h3 (2h)3

(−2h)4 (−h)4 0 h4 (2h)4





αk−2

αk−1

αk

αk+1

αk+2


=



0

0

2

0

0


(4.7)

which yields

(
αk−2 αk−1 αk αk+1 αk+2

)
=

1

12h2

(
−1 16 −30 16 −1

)
(4.8)

We can thus write the second order derivative at xi as

uxx(xi) =
−u(xi−2) + 16u(xi−1)− 30u(xi) + 16u(xi+1)− u(xi+2)

12h2
+O(h4)

(4.9)

Vandermonde matrices rapidly become ill-conditioned as they grow in size. Ac-

tually, their condition number typically grows exponentially with their size. For

example, if a symmetric stencil on a uniform grid is sought, a system which

is at most 17 × 17 (corresponding to an O(h16) stencil) can be inverted using

double precision arithmetic. It is in fact the best case scenario since forward

stencil and non-uniform grid yield worst-conditioned systems. We usually need

a Laplacian of order O(h12) and symmetric stencils can be used everywhere with

periodic boundary conditions. We are thus luckily close to the limit. Eventually
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we will need to invert ill-conditioned systems and we shall use algorithms that

have been developed from analytic expressions for the inverse of a Vandermonde

matrix [50, 51].

In general, differentiability is an issue since we assume the existence of a

derivative to solve for it implicitly. If a function is k-differentiable, then finite-

differencing cannot provide information about the k + 1th derivative, nor can

it give information more precise than O(hk) about the lower derivative. We

assume that our potentials are sufficiently well-behaved that we don’t need

to worry about the differentiability of the eigenstates. This is a reasonable

assumption as we are using pseudopotentials.

No assumption was made concerning the uniformity of the grid although

our examples are on uniform grid. In principle, one can use finite differences on

a non-uniform grid. To evaluate a differential operator at a point, the method

necessitate the evaluation of the function along the direction of the derivative.

In principle, the point of evaluation do not need to coincide with the grid, but

it is a complication since one then needs to interpolate between the grid points

where the function is known for each evaluation. It is simpler to set grid points

along the derivatives’ direction. It is a major constraint since it forces the grid

to be orthorhombic. In practice, one has to compute a different stencil for each

point, which may become prohibitive for large systems. We thus use uniform

grids in the present document.

We mention that our demonstration and examples were done in one di-
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mension but the technique generalizes easily to multidimensional differential

operators. When computing multidimensional stencils, cross-terms such as
n∑
i

αi(xi − xj)(yi − yj) must be included in the Vandermonde system. Since

we are ultimately interested in discretizing a Laplacian which has no mixed

derivatives we don’t need to go through this.

Figure 4.1: Residual norm ∆ against step size h : the test problem is the evaluation of the

second derivative of ex at x = 0

A MATLAB function stencil.m was written. It returns an arbitrary order

stencil of an arbitrary order derivative. The function file is tested by generating a

stencil for a twelfth order second derivative. We test the stencil on the function

ex at x = 0. A convergence plot is shown in figure 4.1. The slope of the

error ∆ = exnum − 1 against the step size is 12.5, thus confirming the expected
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convergence rate to be order 12.

stencil.m only generates one dimensional stencils but we are interested in a

3-dimensional Laplacian. We use the symmetric nature of the multi-dimensional

Laplacian to obtain it from the 1-dimensional Laplacian using the Kronecker

tensor product recursively. Suppose that ∇2
n is a Laplacian in n dimension, then

the Laplacian in n + 1 dimensions is obtained from ∇2
n+1 = ∇2

n ⊗ I + I ⊗∇2
1,

where I is the identity matrix.

Figure 4.2: Residual norm ∆ against step size h : the test problem is the evaluation of the

Laplacian of f(x, y, z) = sin(x) + sin(2y) + sin(3z) on a Cartesian grid

The Laplacian is tested on a cubic grid 2π×2π×2π and the test function is

f(x, y, z) = sin(x)+sin(2y)+sin(3z). A convergence plot is shown in figure 4.2.
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The expected convergence rate is O(h6) whereas the observed convergence rate

is O(h5.1791). The plot shows that the slope increases as the step size h decreases

indicating that the asymptotic convergence rate might indeed be O(h6).

4.1.2 Discretization of the ionic potential

In the previous chapter, we described the pseudopotential generation procedure.

We now discuss how to project the results on our real space grid.

In our real space basis, Vlocal takes the form of a real diagonal matrix.

Vlocal is isotropic and hence we can write Vlocal(r) = Vlocal(r), that is Vlocal only

depends on the magnitude of r. We thus compute the distance r from each grid

point to the center of the atomic nucleus and evaluate Vlocal(r). We do not know

the function for every r since we generated Vlocal on another grid and hence we

need to interpolate the expression we obtained for Vlocal(r). More than enough

points are available so that any interpolation scheme is sufficiently accurate.

Cubic interpolation, which is very precise in passing, is chosen because it is the

fastest.

Computing
lmax∑
l=0

l∑
m=−l

∣∣χKBlm 〉
vl
〈
χKBlm

∣∣ (eq. 3.17) is the most time consuming

part in the Hamiltonian generation because of the loops over over the quan-

tum numbers l and m. A few considerations are required to make this step as

efficient as possible. We know that some atoms do not have valence electrons

with a given angular momentum. In those cases, the above procedure leads

to small or vanishing non-local components
∣∣χKBlm 〉

vl
〈
χKBlm

∣∣. We can generally

neglect them and generate the pseudopotentials for a specified set {l}. Note
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that the radial part of χKBlm only depends on l and that one should only inter-

polate RPP
l (r) once and not for each m. Furthermore, it is possible to rewrite∑

m=±m0

∣∣χKBlm 〉
vl
〈
χKBlm

∣∣ in the following way

∑
m=±m0

∣∣χKBlm 〉
vl
〈
χKBlm

∣∣ = 2vl
(
R
(∣∣χKBlm0

〉)
R
(〈
χKBlm0

∣∣)+ I
(∣∣χKBlm0

〉)
I
(〈
χKBlm0

∣∣))
(4.10)

This way, we half the loop over m and reduce the number of spherical harmonics

that have to be generated. Another interesting consequence is that the non-local

part of the pseudopotentials is no longer complex (the imaginary component was

due to the spherical harmonics) which leads to a significant speed up since the

linear algebra subroutines are performed on real numbers.

4.1.3 Generation of the Hartree potential

In section 2.2, we defined the Hartree potential as

VH [ρ] =

∫
dr′

ρ(r′)

|r− r′|
(4.11)

VH can thus be obtained by computing a three-fold integral for each grid point.

Needless to say that it is not the most efficient way to evaluate VH , especially

when using high-level computer languages such as Matlab. We will show two

efficient methods of computing VH from the Poisson equation shortly, but we

need to make some comments before.
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It was mentioned that Vlocal(r) is equal to the Coulomb potential beyond

some radius rc. Most pseudopotential generation software, including Nanobase

[52], do not stop there. The local component is screened with the Hartree

potential due to some charge distribution ρ0 in such a way that Vlocal(r) is

strictly zero beyond some radius rc. This has many fortunate implications

including the locality of Vlocal(r) in real space and the fast decay of the Kohn-

Sham eigenstates away from the atoms. In the calculations, ρ0 is taken as the

initial guess and we simply update the Hartree potential using δρ = ρ− ρ0. For

clarity, we write ρ instead of δρ in the present section.

As mentioned above, we can solve the differential equation 3.5 instead of

equation 3.4. There are many ways of solving equation 3.5.

We already discussed the discretization of the operator ∇2. We shall thus

use it to turn equation 3.5 into a linear matrix equation. The problem takes

the form

Ax = b (4.12)

where x is sought. It can be solved using a number of methods, direct (e.g.

performing an LU decomposition) or iterative (e.g. preconditioned conjugate

gradient). It turns out that this system is not always straightforward to solve

when periodic boundary conditions are imposed because the matrix A becomes

ill-conditioned.

As we are working with periodic boundary conditions, a simpler, accurate
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and expeditious method is to solve equation 3.5 in Fourier space. Equation 3.5

is Fourier transformed to obtain

−k2V̂H(k) = −4πρ̂(k) (4.13)

The Laplacian operator is diagonal in Fourier space and hence it is easily in-

verted. We simply compute

V̂H(k) = 4π
ρ̂(k)

k2
(4.14)

The inverse Fourier transform yields the answer VH(r). Fast Fourier transforms

(FFT) are fast and show excellent scaling in terms of computational complexity,

namely O(n log(n)) where n is the number of points transformed. Moreover,

convergence is exponential such that a relatively coarse grid usually gives accu-

rate results.

In section 3.1, we mentioned that the lack of parallelizability of FFT algo-

rithms is one limitation of planewaves codes. In our implementation, the prob-

lem is diminished by taking advantage of the orthogonality of the grid. This

characteristic allows us to Fourier transform quantities and operators along each

dimension separately. For large systems, this is significantly faster than using

3D Fourier transforms and it may be affordable to compute the Hartree potential

separately on each node. Our software also uses Matlab’s biconjugate gradients

stabilized (BICGSTAB) method to solve equation 3.5. We shall implement a
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parallel version of BICGSTAB to handle systems for which the computation of

the Hartree potential in Fourier space becomes computationally expensive.

4.1.4 Generation of the exchange-correlation potential

The non-classical effects are taken into consideration with the local density

approximation (LDA) described above. We rewrite the exchange-correlation

potential as

Vxc = Vx + Vc (4.15)

where Vx is given by equation 2.43.

Perdew and Wang proposed a simple analytic expression for the correlation

energy from we derive Vc [40]

εc = −2A (1 + α1rs) log

1 +
1

2A
(
β1r

1
2
s + β2rs + β3r

3
2
s + β4r

p+1
s

)
 (4.16)

where

rs =

(
3

4πρ

) 1
3

(4.17)
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The correlation potential is found to be

Vc = εc(ρ) + ρ(r)
δεc(ρ)

δρ(r)
(4.18)

= εc(ρ) + ρ(r)
δεc(rs)

δrs

δrs
δρ

(4.19)

= εc(ρ)− 1

3

(
3

4πρ

) 1
3 δεc(rs)

δrs

δrs
δρ

(4.20)

4.1.5 Hamiltonian Representation

We have shown that the Laplacian can be written as a non-local operator

∇2(r, r′). A fraction of the points surrounding a particular point is necessary

to approximate the differential operator, which leads to a sparse matrix repre-

sentation. All potentials, except the non-local part of the ionic potential, are

local and take the form of a diagonal matrix. Those are added to the kinetic

energy without changing the sparsity structure of the Hamiltonian matrix. The

non-local contribution to the pseudopotentials is generally less sparse than the

kinetic energy term. Fortunately, it can be written in real separable form. This

form is not only more accurate, it provides a computationally efficient way of

evaluating this part of the Hamiltonian. The Hamiltonian is thus real, sparse

and symmetric. These are ideal conditions for diagonalization algorithms which

are based on dense vector-sparse matrix multiplication.
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Figure 4.3: Sparsity pattern of the Hamiltonian matrix of the unit cell of a Si(111)-7×7 surface

in real space. The matrix on the left shows the sparsity pattern of a O(h12)-Laplacian. The

matrix itself represent the sum of the kinetic energy operator and all local potential energy

operators. The matrices on the right represent the non-local pseudopotential energy operator

in separable form (i.e. as a product of two low rank matrices). The number of non-zero

entries of the Laplacian matrix scales linearly with the number of grid points. The number

of non-zero entries in the non-local pseudopotiential matrices is proportional to the number

of atoms.

We now develop on one of the closing remarks of section 3.1. The structure

of the O(h12)-Laplacian of a Si(111)-7×7 surface unit cell comprising 694 atoms

is shown in figure 4.3. The matrix on the left represents the sum of the kinetic

energy operator and the local potential energy operators. The matrices on

the right represents the non-local pseudopotential energy operator in separable

form (i.e. as a product of two low rank matrices). The non-local pseudopotential

matrices have been stretched in the width direction because the sparsity pattern

cannot be appreciated otherwise (the length to width ratio normally approaches
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Figure 4.4: Sparsity pattern of the Hamiltonian matrix of the unit cell of a Si(111)-7×7 surface

in Fourier space. The number of non-zero entries of the Laplacian matrix scales linearly with

the number of grid points. The number of non-zero entries in the non-local pseudopotiential

matrices is proportional to the number of atoms times the number of grid points.

1000:1). The Fourier space representation of the Hamiltonian is shown in figure

4.4. The Laplacian is now diagonal, but the non-local pseudopotentials are no

longer sparse. This reflects the fact that the non-local pseudopotentials are very

localized in real space and hence completely delocalized in Fourier space.

We indicated the scaling of the dimensions of each matrices in figure 4.3.

The dimensions of the Laplacian and the length of the pseudopotential matrices

are equal to the number of grid points. The width of the pseudopotential ma-

trices is proportional to the number of atoms. We now analyze the behaviour of

the sparsity of the Hamiltonian assuming a fixed resolution in both real space

and Fourier space. In real space, the number of non-zero entries in the Lapla-

cian scales linearly with the number of grid points and hence it scales linearly
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with the number of atoms. The number of non-zero entries in the pseudopo-

tiential matrices also scales linearly with the number of atoms since additional

grid points result in an equal number of supplemental zero entries. In Fourier

space, the number of non-zeros entries in the Laplacian scales linearly with the

number of atoms but the number of non-zero entries in the pseudopotential

matrices scales like the number of grid points times the number of atoms. At

a fixed resolution, the number of non-zero entries in the pseudopotential ma-

trices thus scales quadratically in Fourier space. The real space representation

seems quite advantageous for large systems. As an example, for our Si(111)-

7×7 surface unit cell, the pseudopotential matrices occupy 25 MB of memory

in real space whereas they occupy 20 GB of memory in Fourier space. As the

system size increases, the numerous matrix-vector multiplications performed by

the diagonalization procedures become considerably less costly in real space.

4.2 Eigensolvers

As previously mentioned, the bottleneck consists of solving the Schrödinger

equation 3.7. We just showed that H takes the form of a real symmetric ma-

trix. From the algorithmic point of view, the fact that H is Hermitian is very

convenient [53].

The Hermitian eigenvalue problem is the simplest because the eigenvalues
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are real. To see this consider a Hermitian matrix A = A†, then

Av = λv = λ′v = A†v (4.21)

λ = λ′ ∈ R (4.22)

where † is used to denote the conjugate transpose of operators (matrices) and

′ is used for scalars, vectors and block vectors. Heuristically, the simplification

happens because it is easier to search along a line than to search a whole plane.

Of course, nothing prevents us to go to higher dimensions before coming back

where we know we will find our eigenvalues (i.e. we can still transit through C).

In addition, many algorithms require to find the left and right eigenvectors for

general operators. They are of course the same for Hermitian operators which

simplifies the algorithms and diminishes the computational cost.

The problem of electronic structure calculation is one of minimization of the

energy and we are interested in finding the minimal eigenpairs consequently. In

this section we present two algorithms that perform this task, namely the Chevy-

shev filtered subspace iteration (CFSI) and the locally optimal preconditioned

conjugate gradient (LOBPCG) algorithms. A few algorithms necessary to CFSI

will also be presented.

4.2.1 Power Method

We first present the power iteration algorithm. Although useless in practice,

the algorithm illustrates the basic working principle of CFSI.
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The eigenvectors of a Hermitian matrix A form a complete orthonormal

basis

B = {v1, · · · , vn} (4.23)

We can thus write a given vector as

y =
∑
i

aivi (4.24)

If we apply the operator Ak to y we obtain

y =
∑
i

λki aivi (4.25)

y = λkn
∑
i

(
λi
λn

)k
aivi (4.26)

where λi < λi+1 are the eigenvalues. From this expression, it is obvious that

the eigenvector with the largest eigenvalue will eventually dominate and y will

become numerically parallel to vn. The algorithm works as follows :
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Algorithm 1 Power Method [54]

generate an initial guess for the eigenvector y = y0
for k=1:niter do
v = y

‖y‖
y = Av
θ = v′y
if ‖y − θv‖ ≤ ε then
break

end if
end for
set λ = θ and x = v

We make some comments on algorithm 1. In exact arithmetic, the algorithm

would not work in the case were y′0vn = 0. We do not worry about this possibility

as no two vectors are perfectly orthogonal in finite precision. However, one

should always use the best estimate at hand as a starting vector.

The rate of convergence is derived from the following observation. The

largest eigenvectors vn eventually wins, but it has to dwarf the second largest

one vn−1 and hence the convergence rate is λn−1

λn
.

4.2.2 Inverse Iteration

Any eigenpair can be computed by modifying the eigenspectrum of an operator.

The spectrum must be changed in such a way that the eigenvalue of interest

becomes the largest after transformation. The transform does not have to be

bijective since once we have the eigenvectors we can recover the eigenvalues

easily. This can be done in many ways but a most general technique is the

inverse iteration algorithm which we briefly describe.
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The inverse iteration algorithm is based on two observations. Let Ax = λx

then

Ax− σIx = λx− σIx

(A− σI)x = (λ− σ)x

(4.27)

The eigenvectors are unchanged by a shift of the eigenspectrum as mentioned

above. We can thus perform power iteration on A−σI and subtract σ from the

converged eigenvalue to obtain a different eigenpair of A. It is possible to get

both ends of the spectrum by translating by the proper amount but it usually

results in slow convergence rates. The second observation is that

Ax = λx

λ−1x = A−1x

(4.28)

in the case where A is invertible. The eigenvalues of A−1 are the inverses of the

eigenvalues of A yet the eigenvectors are the same.

Using these two observations, we apply the power method to the operator

(A− σI)−1 in order to obtain the eigenpair that is closest to σ. The closer σ

is to an actual eigenvalue, the faster the convergence. We provide the following

pseudo-code
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Algorithm 2 Inverse Iteration [54]

generate an initial guess for the eigenvector y = y0
for k=1:niter do
v = y

‖y‖

y = (A− σI)−1 v
θ = v′y
if ‖y − θv‖ ≤ ε then
break

end if
end for
set λ = σ + 1

θ
and x = v

We point out that (A− σI)−1 need not be computed explicitly, a system

(A− σI) y = v is solved instead. We suggest to perform a LU decomposition

before entering the for loop from which y is then obtain by forward backward

substitution.

The algorithm will yield the largest eigenvalue of (A− σI)−1, that is the

one closest to σ. Following the analysis of the power method, the convergence

rate is found to be λk−σ
λl−σ

where λk and λl are the closest and second closest

eigenvalues to σ respectively. When a good approximation of λk is known, the

eigenpair converges rapidly as the function f(x) = (x− λk)−1 blows up. In

general, one does not have a reasonable ansatz and hence the convergence can

be quite slow.

4.2.3 Orthogonal Subspace Iteration

Every methods presented above work nicely when we seek a single non-degenerate

eigenpair. Solving the Schrödinger equation requires finding many degenerate
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eigenpairs most of the time. In this section, we present an extension of the

power method called orthogonal subspace iteration. We present a pseudo-code

of the algorithm

Algorithm 3 Orthogonal Iteration [54]

generate an initial guess for the orthonormal block vector V
for k=1:niter do
Y = AV
Θ = V ′Y
if ‖Y − VΘ‖ ≤ ε then
break

end if
orthonormalize Y

end for
set Λ = Θ and X = V

The orthonormality can be maintained using any algorithm. Dividing Y by

the Cholesky factor of Y ′Y is generally efficient. The orthogonality constraint

allows us to find many eigenvectors at the same time.

Suppose that we perform the algorithm on a block vector of width m. Be-

cause of the orthogonality constraint, all eigenvectors compare to the largest

eigenvector that is not in the subspace and hence the ith eigenpair will converge

at a rate λm+1

λi
. It is thus natural to iterate on a subspace dimension larger

than the number of sought eigenpairs to accelerate convergence. The optimal

size of the subspace depends on the operator A in question, but 8 or 10 extra

dimensions does it most of the time.

This method is much more efficient than the power method for many rea-

sons. As we just saw, convergence is accelerated by choosing a subspace larger
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than strictly necessary. The extra cost is the orthonormalization of the sub-

space. This is usually not computationally intensive since the dimension of the

subspace is fixed and relatively small. We point out that Y = AV could be

replaced by Y = AsV advantageously as orthonormalization is not required at

each step. But if s is too large the numerical rank of the blockvector Y might

decrease and the algorithm will have to be restarted. Like most block methods

degenerate eigenpairs are handle perfectly by this algorithm.

4.2.4 Chebyshev Filtered Orthogonal Iteration

Naturally, a better technique will combine the spectrum transformation and

orthogonal iteration methods.

We should not loose sight that our ultimate goal is to compute the small-

est eigenpairs of our Hamiltonian. We discuss the characteristics of a good

spectrum transformation compatible with our goal. Simply put, a spectrum

transformation is done by diagonalizing some function of the Hamiltonian. The

function must be constructed from a finite number of multiplications and in-

versions because they are the matrix operations we can perform. Inverting the

spectrum with respect to some value does not yield good results even for small

subspaces because eigenvalues are either too much or not enough suppressed.

We must concentrate on polynomials since any analytic function will have to be

expressed in term of its truncated power series. The transform should suppress

all the eigenvalues but the smallest as much as possible in order to yield the

best convergence rate.
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The last statement is formulated as a mathematical problem to determine

what is the best polynomial one can use. We distinguish between two regions

of a polynomial :

1. the asymptotic region i.e. the region were the leading order term is dom-

inant

2. the transition region i.e. the region between the two asymptotic regions

Suppose that we have estimates for the smallest and largest eigenvalue {λ̃a, λ̃b}

that we don’t want, then we can stretch and translate the polynomial so that

the transition region corresponds to the interval [λ̃a, λ̃b]. That leads us to the

following question : What is the monic polynomial (with leading coefficient 1)

that has the smallest infinity norm (achieves the smallest value in magnitude)

on the interval [−1, 1]? It is easy to show that Chebyshev polynomials of the

first kind Tn(x) satisfy precisely the last statement. Chebyshev polynomials also

have the convenient property that they can be defined recursively Cn+1(x) =

2xCn(x)− Cn−1(x).

We present the Chebyshev filtered subspace iteration (CFSI) algorithm
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Algorithm 4 Chebyshev Filtered Subspace Iteration

generate an initial guess X
estimate the smallest and largest unwanted eigenvalues {λ̃a, λ̃b}
for k=1:niter do

apply the Chebyshev spectral transform X=Cfilter(A,X,m, λ̃a, λ̃b)
orthonormalize X
project A in span(X) H = X ′AX
diagonalize H = SΘS ′

update X = XS
compute the residual block vector R = AX −XΘ
check convergence

end for

λ̃a is obtained by diagonalizing A in the subspace spanned by X. The

Lanczos algorithm is used to find the largest eigenvalue. It will be presented in

the next section.

This is a satisfying improvement compared to the power method algorithm.

It is not the fastest in general, but it is reliable, easy to understand and code.

We point out that Chebyshev-filtered orthogonal iteration has been used con-

clusively for DFT calculations by Zhou et al.[7].

4.2.5 Lanczos Algorithm

The Lanczos algorithm finds the eigenpairs of a Hermitian operator A by diago-

nalizing it in a Krylov subspace Kj(A, v) = span{v,Av,A2v, . . . , Aj−1v}. There

is enough freedom to construct the basis of Kj(A, v) such that the projection of

A is tridiagonal.
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V ′jAVj = Tj =



α1 β1

β1 α2

. . . . . .

. . . αj−1 βj−1

βj−1 αj


(4.29)

This is done using the recursion

AVj = VjTj + re′j (4.30)

with the constraint V ′j r = 0. We deduce that

rj = Avj − vj−1βj−1

αj = v′jrj

βj = ‖rj − vjαj‖

(4.31)

As above, we compute Tj = SΘS ′ and the approximate eigenvectors in Kj(A, v)

are xj = VjS:,j. The eigenpair θj, xj is called a Ritz eigenpair. In principle, we

will have

ri = Axi − xiθi = AVjS:,i − VjS:,iθi = (AVj − VjTj)S:,i = V:,j+1βjSj,i (4.32)
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Here i labels the ith eigenpair and j is the dimension of Kj(A, v). It follows that

‖ri‖ = βjSj,i (4.33)

In practice, we cannot always maintain ‖V:,i‖ = 1, and hence we may keep it

when computing the norm of the residual to be safe.

We now present the Lanczos algorithm

Algorithm 5 Lanczos Algorithm

generate an initial guess for smallest eigenvector v = r
set β0 = ‖r‖
for k=1:niter do
vj = r

βj−1

orthonormalize V
r = (A− σI)−1 vj
r = r − vj−1βj−1
αj = v′jr
r = r − vjαj
βj = ‖r‖
diagonalize T = SΘS ′

update V = V S
test convergence

end for
set X = V S

A good discussion of the convergence analysis for the extremal eigenpairs

is found in [55]. It is not necessary to delve too much into the method since we

only use it to compute an upper bound for the eigenvalues of the Hamiltonian.

It takes 8 or 10 steps generally after which the residual is added to provide an

upper bound.



4: Numerical Methods 58

4.2.6 LOBPCG

The Lanczos algorithm builds a basis for the Krylov subspace in which the

operator A is tridiagonal. There are better subspaces in which A can be di-

agonalized. In particular, we do not worry about the form of the projected

Hamiltonian since it is relatively small. With that in mind, we present the

locally optimal block preconditioned conjugate gradient algorithm (LOBPCG)

[8].

The idea is to iterate on a subspace of fixed dimension (contrary to Lanc-

zos algorithm). At each step, the preconditioned residual is computed R =

T (AXi−XiΛ) where T is some preconditioner. A Rayleigh-Ritz process is then

performed on span{Xi, Xi−1, R} to obtain Xi+1. Some care is needed as Xi and

Xi−1 will become “parallel” as i increases. This is where the conjugate direc-

tions Pi come into play. They are defined as the directions in span{Xi, Xi−1}

that are orthogonal to span{Xi}. The algorithm goes as follows
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Algorithm 6 LOBPCG Algorithm

generate an initial subspace X1

set conjugate subspace P 1 = 0
for k=1:niter do

compute residual Rk = AXk −XkΛk

test convergence
preconditioning W k = TRk

make W k ⊥ Xk

orthonormalize W k

orthonormalize P k

Rayleigh-Ritz on Span {Xk,W k, P k}
obtain xk+1

j =
∑
i

αkiw
k
i + τ ki x

k
i + γki p

k
i corresponding to the eigenvalues of

interest
set pk+1

j =
∑
i

αkiw
k
i + γki p

k
i

end for

We believe that this method is the best among those presented so far. Being

a block method, it handles clustered or degenerate eigenpairs very well. It can

take advantage of a good ansatz for eigenvectors. We can also play with the

dimension of the iterative subspace to control convergence as in the orthogonal

iteration although it is less necessary. Finally, even more freedom is provided as

we can use preconditioning to accelerate convergence. Before illustrating this,

we give a brief review of preconditioning.

Differential equations are ubiquitous in most scientific fields. Analytical

solutions are rarely available so that they are solved numerically. In order

to do so, differential equations are discretized and take the form of a linear

system such as Ax = b. In some applications, the matrix A is such that it

cannot be inverted in standard double precision arithmetic and the system is
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said to be ill-conditioned. It is sometimes possible to palliate this by applying a

preconditioner T to A. The system then becomes (TA)x = (Tb) and with a good

enough preconditioner the matrix (TA) will not be ill-conditioned anymore. A

common choice of preconditioner is to use an approximate inverse of A but it is

often preferable to use one that is more problem-motivated when possible.

We observed that preconditioning the residual is very rewarding. To il-

lustrate that, we solve the Schrödinger equation with a smooth local potential

without preconditioning first and then using an incomplete LU (ILU) precon-

ditioner. The tolerance of the ILU factorization is set to infinity which means

that the sparsity pattern of L + U is the same as that of the original matrix.

The factors obtained are not very accurate but the computational and memory

costs are small. The residual vector norm for the 5 smallest eigenpairs is shown

in figure 4.5. The number of iterations required for convergence is reduced by a

factor of 2.5 or more due to ILU preconditioning. Given the small computational

cost of the ILU preconditioning, the speed up is similar.



4: Numerical Methods 61

Figure 4.5: Residual vector norm of the 5 lowest KS eigenstates of a molecule against the

number of iterations during LOBPCG. The red curves represent the residual vector norm

when LOBPCG is used without preconditioning. The blue curves represent the residual

vector norm when LOBPCG is used with ILU preconditioning.

When working with a more complex Hamiltonian such as the one shown in

figure 4.3, we have additional choices of preconditioners. We can invert exactly

or approximately some of the terms. In a planewave basis, it is common to

precondition with the inverse of the kinetic energy. The fact that the kinetic

energy accounts for a large part of the energy and that it is diagonal in that

basis motivates this choice. In a real space basis, the cost of inverting the kinetic

energy or the sum of the kinetic energy and the local potentials is similar.

The later option is chosen because it is expected to be more accurate. We
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thus perform a ILU factorization on −1
2
∇2 + Vlocal(r) + VH(r) + VXC(r). It is

then possible to include the effects of the non-local pseudopotential using the

binomial inverse theorem [56]:

(A + UBV)−1 = A−1 −A−1UB
(
B + BVA−1UB

)−1
BVA−1 (4.34)

Nevertheless, we observed that it is often preferable not to include the non-local

pseudopotential in the preconditioner.

4.3 Mixing techniques

The Kohn-Sham equations 2.36 and 2.37 are a nonlinear eigenvalue problem and

hence they must be solved self-consistently. We briefly reiterate the resolution

process. We begin by solving the Schrödinger equation

(
−1

2
∇2 + Vtotal(r, r

′)

)
Ψ(r) = EΨ(r) (4.35)

We compute the few eigenstates with the lowest energy. Next, the electronic

density is calculated as

ρ(r) =
s∑
i=1

|Ψi(r)|2 (4.36)

The density allows us to update the Hartree and exchange-correlation potentials

from which we derive a new total potential Vtotal(r, r
′) = Ṽtotal(r, r

′). This finally

gives us a new Schrödinger equation to diagonalize.

We shall view the sequence of potentials generated by the algorithm merely
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as search directions. Updating the Hamiltonian in the way described above

is likely to be counterproductive. In fact, there is no guarantee that the new

potential will be closer to self-consistency than the last one. We need to reserve

the right to go backward if self-consistency is lost. However, this cannot be

done by computing each residual and keeping the potential that did the best.

If the best were not the new potential, the update would again be one of the

potentials already at our disposition and we would find ourselves stuck in a

loop. A simple way to avoid this situation is to use linear mixing. A new search

direction is computed from the old ones as

V n+1
in = αV n

out + (1− α)V n
in (4.37)

where 0 ≤ α ≤ 1. The smaller α is, the more guaranteed but the slower the

convergence is. It is thus tempting to use a large α even though we know it

may not converge at all. A generalization where the last few directions are used

follows naturally

V n+1
in = αV n

out +
∑
i=0

βiV
n−i
in (4.38)

where α+
∑
i=0

βi = 1. There is not much improvement in doing that in general.

It is possible to greatly accelerate convergence by allowing the βi’s to change.

We can use the information contained in the earlier search directions to derive

the optimal search direction. It is necessary to have a term such as αV n
out in
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order to add new dimensions to the search.

Many procedures to compute the βi’s exist. Anderson mixing has been used

successfully [57, 6]. The mixing scheme [58] introduced by Pulay, often called

direct inversion in the iterative subspace, is widely used as well [59, 60, 23]. We

chose to use the Broyden mixer described by Srivastava in [61]. More details on

Broyden’s method are available in [62].

4.4 Summary

In this chapter, we introduced the method of finite differences. As presented, the

method applies to non-uniform grids and can be used to generate non-symmetric

stencils. We showed how to use the symmetry of the Laplacian to generate a N-

dimensional Laplacian from a 1-dimensional Laplacian. Convergence tests have

verified that both stencils and Laplacian have the predicted scaling behaviour.

We described how the pseudopotentials are projected on the real space grid. We

mentioned a few implementation details which may accelerate significantly the

generation of the Hamiltonian. We introduced a few techniques for solving the

Poisson equation which is solved to update the Hartree potential. We briefly

introduced the form of Perdew and Wang for the exchange and correlation po-

tential. The Hamiltonian matrix was shown to be real, sparse and symmetric.

Eigensolvers adapted for this particular problem were presented consequently.

A few simple algorithms such as the power method have been introduced to il-

lustrate the basic working principles of CFSI. LOBPCG was also presented. We
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showed the gain realized by using a ILU preconditioner in LOBPCG. Finally, we

mentioned many potential mixing techniques necessary to the fast convergence

of the self-consistent iterations.



5

Applications

5.1 MatRcal Input

In chapter 3 we presented a real space pseudopotential method for Kohn-Sham

density functional theory calculations. In chapter 4 we presented the mathe-

matical tools used to perform the procedure presented in chapter 3 along with

some implementation details. In order to have a global view of the method, it

is instructive to have a look at the input file of an H2 molecule.

matRcal.path = ’C:/User/MATLAB/MatRcal/PotentialData/’;

matRcal.xyz = ...

{

’H’ 0 0 0.3815 1 []

’H’ 0 0 -0.3815 1 []

};

matRcal.units.xyz = ’A’;

matRcal.dimension = [20,20,20];

matRcal.units.dimension = ’Bohr’;

matRcal.refinegrid = 1;

matRcal.refinegridpath = ’C:/User/MatRcal/SetupFiles/H2/H2_40.mat’

66
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matRcal.resolution.present = [60,60,60];

matRcal.laplacian.accuracy = 12;

matRcal.eigensolver.CFilterDegree = 12;

matRcal.eigensolver.extraEigen = 2;

matRcal.eigensolver.tolerance = [1e-4,1e-4,1e-6];

matRcal.eigensolver.maxIteration = 30;

matRcal.eigensolver.precond.name = ’ilup’;

matRcal.eigensolver.precond.setup.type = ’nofill’;

matRcal.mixing.type = ’Broyden’;

matRcal.mixing.maxhistory = 30;

matRcal.mixing.beta = 0.8;

matRcal.mixing.tolerance = 1e-4;

matRcal.maxSCloop = 50;

matRcal = MatRcal(matRcal);

The field path holds the location of the folder containing the pseudopoten-

tials. They are generated and stored before the computation using the procedure

described in section 3.3. The field xyz contains the specie, coordinates, number

of valence electrons and the angular momenta of the Kleinman-Bylander pro-

jectors for each atom. As mentioned in section 4.1.2, depending on the atom

specie and the chemical environment, some contributions to the non-local pseu-

dopotential may be vanishingly small. The zero angular momentum component

is included by default. One can then add [1,2,3] in the last column of xyz

to include the p, d or f contributions to Vnl(r, r
′). The field units contains

the units in which the atom coordinates are expressed and the units of other
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physical quantities such as the simulation box size. Atomic coordinates are of-

ten given in Angström and sometimes in nanometers, and hence they have to

be converted to atomic units since it is simpler to work with. The size of the

simulation box is specified in the field dimension. If vacuum is used to simulate

non-periodic boundary conditions, it is often simpler to use the same units as the

atom coordinates to get a sense of its size. The subfield resolution.present

contains the number of points used along each direction. The total number of

points is the product of the three vector entries. It is possible to use the results

of a previous calculation to begin (or continue) a new one. This is achieved by

setting the field refinegrid equal to 1. The path to the file containing the

results of the previous calculation is set in refinegridpath. As the name of

the field suggests, the results of a calculation performed on a coarse grid can be

used to accelerate a calculation on a refined grid. It is also possible to save a

calculation that has not terminated and continue it later without modifying the

grid size. The field laplacian.accuracy contains the order of the Laplacian.

The Laplacian generating function uses it together with the grid size and res-

olution to generate the Laplacian. This is all done ahead of the self-consistent

loop.

The eigensolver parameters must then be determined. When using CFSI,

the degree of the Chebyshev polynomial is assigned in eigensolver.CFilterDegree.

A typical value lies between 6 and 12. The number of extra subspace dimen-

sions is defined in eigensolver.extraEigen. It is customary to use between 2
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and 10 extra dimensions. LOBPCG requires the user to stipulate the tolerance

(it can be an interval) for the eigensolver in eigensolver.tolerance and the

maximal number of iterations in eigensolver.maxIteration. The residual

norm tolerance is usually taken to be equal or slightly below the target accu-

racy for the effective potential or the electronic density. The maximal number

of iterations is quite variable but normally ranges from 20 to 50. If a pre-

conditioner is used, the link to the preconditioning function is passed through

eigensolver.precond.name. Additional information required by the precon-

ditioner is added to the field eigensolver.precond if necessary. In the case of

an ILU preconditioner, we can specify the tolerance for example.

A few mixing techniques were mentioned in section 4.3. The user can set all

the necessary parameters in the field mixing. The name of the mixing function

is assigned in the subfield mixing.type. In the case of Broyden mixing, we

need to define the number of potentials to be mixed and the proportion of the

new search direction compare with the norm of the potential. The convergence

criterion for the self-consistent loop is set in the field mixing.tolerance.

The program is finally started by inputting the structure matRcal in the

function MatRcal.

5.2 High-order finite-differencing

In section 4.1, we introduced the whole machinery of high-order finite-differencing

and stencil computation. We justify this by looking at the effects of using low-
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order Laplacians in the Kohn-Sham Hamiltonian.

Figure 5.1: Error on the total KS energy of a Benzene molecule with respect to the number

of iterations for different Laplacians. Laplacian orders range from O(h2) to O(h16).

We compute the total KS energy of a benzene molecule using O(h2) Lapla-

cians up to O(h16) Laplacians. The total KS energy is defined as the sum of the

energies of the occupied eigenstates of the KS Hamiltonian. It is not equal to

the total energy of the system. As mentioned in section 2.2, the KS equations

are merely an intermediary step in the search for the electronic ground state

and the KS energies are expected to be non-physical. The error on the total KS

energy against the number of iteration is displayed in figure 5.1. The error is de-

fined as the difference between a given energy and that obtained at the last step
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using the O(h16) Laplacian. We observe that the error in each computation (but

the O(h16) computation) has plateaued after roughly 10 steps. This alone does

not tell us much about the importance of using high-order finite-differencing.

We also observe that the asymptotic error is perfectly correlated with the order

of the Laplacians. This, together with the fact that high-order Laplacians are

expected be more accurate, strongly suggests that high-order Laplacians truly

describe the kinetic energy better than low-order Laplacians for a fixed number

of points. When performing a computation with a low-order Laplacian, we may

converge to non-physical solutions even though nearly perfect self-consistency

is achieved. This is because we find the electronic density that minimizes an

energy functional which is not that of the system. There is no rule of thumb to

know whether we have obtained a non-physical solution. In the present case, the

spurious solution is a mathematical artefact due to a too low-order Laplacian.

One way to check whether a solution is correct is thus to increase the order of

the Laplacian before comparing the effective potentials or electronic densities

of the two computations. This is normally not too computationally expensive

since the converged potential and density can be used to begin with.

The order of the Laplacian is not the only important parameter. In order to

obtain physical results, it is also important to have enough vacuum around non-

periodic systems such as molecules. In order to confirm whether the molecules

are sufficiently spaced, the dimensions of the simulation box are changed and the

computation restarted. It is also important to have a sufficiently high grid reso-
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lution to capture all the features of the pseudopotentials and the wavefunctions.

Similarly, the grid resolution is increased until the results remain unchanged fol-

lowing a grid refinement. As mentioned above, one can always use the previous

calculation as a starting point and the convergence is fast given that the solution

was authentic. A concrete example of a non-physical solution will be discuss in

the next section.

5.3 HOMO-LUMO Gaps

In order to validate that our program works correctly, we compute the energy

gap between the highest occupied molecular orbital (HOMO) and the lowest

unoccupied molecular orbital (LUMO) of different molecules. We then com-

pare our results with the Computational Chemistry Comparison and Bench-

mark DataBase (CCCBDB) of the National Institute of Standards and Tech-

nology (NIST). CCCBDB comprises the HOMO-LUMO gap of a large number

of molecules. Most molecules have been studied with many different density

functionals and basis sets. We compare the results of MatRcal with those ob-

tained with Gaussian using the basis sets 6-31G* and 6-31+G**, and a LDA

functional. The program Gaussian can also perform a relaxation of the ionic

structure. The atom coordinates obtained from 6-31G* and 6-31+G** are thus

different in general. The atom coordinates obtained with 6-31G* were used by

our program. The HOMO-LUMO gaps obtained with 6-31+G** are shown to

give an order of magnitude for the discrepancy between different methods.
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HOMO-LUMO Gap (Hartree)
Molecule 6-31G* 6-31+G** MatRcal Time (s)

CO2 0.313 0.310 0.319 85
CH4 0.433 0.354 0.433 18
C2H4 0.218 0.209 0.219 105
C4H10 0.333 0.276 0.318 124
C6H6 0.194 0.190 0.194 66

C5H5N 0.148 0.146 0.145 47
C6H5NH2 0.147 0.143 0.142 23
C6H5NO2 0.119 0.118 0.122 97

CH3COOH 0.200 0.198 0.189 178
CH2C(CH3)CH3 0.202 0.193 0.201 282

SiH4 0.334 0.303 0.340 74
HCl 0.267 0.258 0.269 46

Table 5.1: Comparison of “HOMO-LUMO” gaps (Hartree) by LDA using Gaussian (NIST

CCCBDB database) and MatRcal. The rightmost column shows the time it took MatRcal to

reach convergence (i.e. δVeff < 10−4Veff ).

All results are displayed in table 5.1. We use a Laplacian of order 12 and

10 to 14 Bohr of vacuum along each direction. This means that the distance

between the outermost atoms of each molecules is at least 10 to 14 Bohr. We

typically use a 3 points per Bohr resolution along each direction. The results

of 6-31G* and MatRcal generally agree up to a few percents. We think it is

in excellent agreement considering that Gaussian uses (most probably) differ-

ent pseudopotentials, a different expression for the exchange-correlation energy

functional, a different basis set and different techniques throughout the resolu-

tion of the Kohn-Sham equations.

Experimental results for the HOMO-LUMO gaps are not reported as the

Kohn-Sham DFT is notoriously bad at predicting gaps. This is especially true
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when DFT is carried within the local density approximation which we are using.

In DFT, energy gaps are computed as the energy difference between the lowest

unoccupied KS eigenstate and the highest occupied KS eigenstate plus a contri-

bution originating from the discontinuity of the exchange-correlation potential

at integer particle numbers ∆xc [63]. In the LDA, the exchange-correlation po-

tential is continuous at integer particle numbers and hence ∆xc = 0, hence the

gap misestimation.

The last column of table 5.1 shows the time it took for MatRcal to reach

convergence. We cannot report the Gaussian timings as NIST does not provide

them in the CCCBDB (possibly because the software license prevents it). The

effective potential Veff = VH+Vx+Vc is converged to one part in 10−4. This con-

vergence criterion is more than sufficient in order to stabilize the HOMO-LUMO

gaps. The gap (and KS energies) usually converges well before the effective po-

tential does indeed. All computations were done on a ThinkPad W520 equipped

with an Intel i7-2720QM processor. LOBPCG with ILU preconditioning was

used for every molecules. The timings found in the rightmost column of table

5.1 range from 20 seconds to 5 minutes.

From table 5.1, we notice that the timings are poorly correlated with the

number of atoms or electrons. For example, it takes 85 seconds to compute the

electronic structure of a CO2 molecule and only 23 seconds to compute that of

a C6H5NH2 molecule. In our opinion, the most likely explanation is that the

convergence time is greatly dependent on the simulation parameters, among
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which :

1. the simulation box size;

2. the resolution of the grid;

3. the Laplacian accuracy;

4. the number of additional subspace dimensions;

5. the Chebyshev polynomials degree (CFSI);

6. the eigensolver tolerance (LOBPCG);

7. the maximal number of eigensolver iterations (LOBPCG);

8. the preconditioning technique (LOBPCG);

9. the mixing procedure parameters;

10. the convergence criterion.

The parameters listed above are related to the numerical methods used by the

software. Unlike empirical parameters, they do not need to be fined tuned

in order to obtain the correct physical quantities. Instead, they merely have

to lie inside some (possibly unbounded) interval. For instance, the simulation

box must be large enough to simulate a non-periodic arrangement, the grid

resolution must be high enough to properly describe the potentials and the

wavefunctions, the Laplacian order must be high enough to describe the kinetic
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energy operator accurately, etc. Changing one parameter generally changes

completely the convergence path (or the sequence of potentials, see subsection

4.3) and hence the convergence time changes likewise. This is true of iterative

algorithms in general, but this behaviour is exacerbated by the non-linear nature

of the Kohn-Sham equations. It is usually possible to adjust the parameters to

get a faster convergence, but we did not do so for the computations reported in

table 5.1. We do not want to mislead the reader into thinking that MatRcal is

faster than it really is and it allows us to underline the importance of choosing

the parameters carefully. One can get some instinct by practising on small

molecules but in general it is impossible to know the optimal parameters in

advance.

The convergence time also depends a lot on the initial electronic density

ansatz ρ0. MatRcal uses the isolated atoms density by default. A large molecule

whose equilibrium density resemble the isolated atoms density is expected to

converge faster than a small molecule whose equilibrium density is very different

from the isolated atoms density. One could possibly use first order perturbation

theory to obtain a more educated guess for ρ0.

We complete the present section by showing that the convergence path is

sometimes far from regular. As an example, we compute the electronic structure

of a SiH4 molecule and plot the fluctuation of the total Kohn-Sham energy as a

function of the number of self-consistent cycles in figure 5.2. For this calculation,

the CFSI algorithm was used instead of LOBPCG. After fifty iterations, the
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Figure 5.2: Error on the total KS energy of a SiH4 molecule with respect to the number of

iterations.

energy (and the effective potential) has stabilized and the energy fluctuations

are smaller or equal to 10−4 Hartree giving the impression that convergence is

achieved. The physical quantities obtained from this solution are incorrect. For

instance, the HOMO-LUMO gap is 0.032 Hartree which is off by one order of

magnitude. Taking a few more steps informs us that proper convergence was

not achieve as the energy fluctuations swell to 10−1 Hartree. We interpret this

false positive as a local minimum of the total energy functional E[ρ]. Recall

that only a global minimum can be viewed as a physical solution according

to the theorems of Honenberg and Kohn (see section 2.1). The possibility

that E[ρ] has local minima is unpleasant since there is no guarantee that a
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minimization scheme will get out of it and pursue a global minimization. In

the present example, we do get out of the local minimum and converge to the

correct solution. We should remark that such a problem never occurred when

using LOBPCG which evidences further that the convergence time is quite

dependent on the parameters or numerical methods.

5.4 Summary

In this chapter, we presented the input file for an H2 molecule. This allowed us

to provide an overview of the method and the relevant parameters. We made

additional comments on practical issues such as the optimal degree of Cheby-

shev polynomial. We used the computation of the density of a benzene molecule

to demonstrate the necessity of high-order finite-differencing. We showed that

our software can predict accurately physical quantities such as HOMO-LUMO

gaps. We emphasized that the non-linearity of the Kohn-Sham equations results

in an unpredictable convergence path. The convergence path is further affected

by the numerics. We displayed the convergence time for many molecules in

table 5.1. The timings presented are, in a sense, upper bounds since no param-

eter optimization was done. For example, the order of the Laplacian and the

resolution may have been higher than necessary and the size of the simulation

box may have been larger than required to reach milliHartree precision. For

such small systems, the convergence time depends principally on the number

of self-consistent steps rather than the system size indeed. This suggests that
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the full potential of the method is yet to be discover, but a parallel implemen-

tation will be required because of the onerous memory requirements due to the

wavefunctions. Incidentally, the parallelism should accelerate the computations

appreciably. For reasons presented above and because the number of molecules

that have been simulated is relatively small, it is venturesome to compare Ma-

tRcal against other codes but we think that its efficiency matches that of LCAO

codes or Gaussian.
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Conclusion

In this thesis, we have introduced a real space method for carrying ab initio

calculations. We reviewed the fundamental results of density functional theory

and the derivation of the Kohn-Sham equations. We then presented the local

density approximation which is used by our software to estimate the exchange

and correlation potentials. Our method is aimed at solving the KS equations

for a given atomic scale system. It is based on high-order finite-differencing.

We demonstrated that it is crucial to use high-order finite-differencing in order

to accurately approximate the kinetic energy term in the KS equations with a

tractable number of points. Pseudopotentials projected on a Cartesian grid are

utilized to accounts for the potential energy due to the atomic nuclei and the

core electrons. The advantages of their use is two-fold. The pseudopotentials

being smoother than the Coulomb potential, a smaller number of point is nec-

essary to discretize accurately the KS Hamiltonian. Moreover, since only the

valence states are sought, the number of required eigenvectors is significantly

reduced. The gain is even more impressive when we consider that the eigenpairs

80
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at the interior of the spectrum typically converge much slower than extremal

eigenpairs. We presented the CFSI and LOBPCG diagonalization algorithms

in some details. We remark that MatRcal does not have adjustable physical

parameters (at least directly). This was exemplified in an example input file.

We provided examples of physical quantities obtained with our software. The

calculated HOMO-LUMO gaps of many organic and inorganic molecules agree

with those obtained with Gaussian and reported in the CCCBDB. We have thus

created software that confirms the validity of the real space method introduced

above. The software is able to compute the electronic ground state of atomic

scale systems from first principles.

Nevertheless, much improvement remains to be done. A major amelioration

shall be the implementation of a parallel version of our software. We mentioned

that an important advantage of the method is that it is easily parallelizable

yet it is not exploited. Effectively, the matrix-vector multiplications can easily

be distributed among many processors which only need to communicate during

the subspace orthonormalization process. From a DFT standpoint, LDA is the

crudest approximation to the exchange correlation energy. We shall implement

more sophisticated functionals of the density. The first advance should be the

implementation of generalized gradient approximation based functionals. As the

electronic density is readily available in real space, all derivatives of the density

are easily obtained and GGA functionals should be relatively easy to implement.

We will allow for the possibility to use non-periodic boundary conditions in the
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future. A different Poisson solver will then be required. We already verified

that the biconjugate gradient stabilized algorithm is fast and accurate for our

purposes.

Even considering the advancements mentioned above, the bottleneck re-

mains the diagonalization of the KS Hamiltonian. This is partly due to the

large number of points used to represent the Hamiltonian. This number is ar-

tificially swollen by the vacuum set around non-periodic atomic structures. A

way to cope with that would be to use less points in the vacuum regions. Even

without the use of supercells, the number of points is larger than necessary since

the regions with smooth features are described with the same density of points

as the regions with sharp features. In order to decrease the time spent in the

diagonalization process, we must use a non-uniform and non-Cartesian grid. We

think that the method presented above should remain largely unchanged under

such a transformation. The main modification happens in the generation of the

Laplacian which would necessitate a combination of finite-differencing and in-

terpolation schemes. Roughly speaking, the algorithm would have to visit each

grid point and get an approximation for the Laplacian using the coordinates

of the surrounding points. We think that using such a grid will significantly

reduce the cost of solving the KS equations. In summary, the idea is to transfer

a part of the computational cost from the self-consistent field iterations to the

Hamiltonian generation procedure.
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