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Abstract

We use the theory of Culler-Shalen seminorms to investigate the SL,(C)-character
variety X (K) and PSL,(C)-character variety X (K) of a Montesinos knot K. When K
has three tangles, 8/, B2/, 83/c3, the PSLy(C)-character variety of the triangle
group A(ay, as, as) includes into X(K). We apply this observation to make several
deductions about (p, q,r) pretzel knots.

For hyperbolic (-2, 3, n) pretzel knots, we calculate the Culler-Shalen seminorms
explicitly and deduce that X (K') consists of exactly two (respectively three) algebraic
curves when 3 { n (respectively 3 | n). This leads to a classification of the finite and
cyclic surgeries of these knots. We obtain similar results for some (-3, 3, n) pretzel
knots.

We classify cyclic surgeries on (-2, p, q) pretzel knots (p, ¢ odd and positive). The
(—2,3,7) is the only non-torus knot in this family admitting non-trivial cyclic surg-
eries. We show that a (p, ¢,2m) pretzel knot admits at most one non-trivial finite
surgery so long as !_zl’T + ﬁ + FIIT < 1. Moreover, for m < —1, these knots have no
non-trivial finite surgeries.

Combining these results with work of Delman we classify cyclic surgeries on Mon-
tesinos knots. If a non-torus Montesinos knot K admits a non-trivial cyclic surgery,
then it is the (—2,3,7) pretzel knot and the surgery is 18 or 19. Further, if K has
a non-trivial finite surgery, then it is either a (—2, p, q) pretzel knot with 3 < p < ¢

odd, or else it is a (—2. 3, q) pretzel knot with ¢ = 7 or 9.



Résumé

On utilise la théorie des seminormes de Culler-Shalen pour examiner X(K) (la
SL,(C)-variété de caractéres) et X (K) (la PSL,(C)-variété de caractéres) d'un noeud
de Montesinos K. Lorsque K a trois tangles 3,/a,, 82/ a2, 83/ a3, alors la PSL,(C)-
variété de caractéres du groupe de triangle A(qy, as,a3) est incluse dans X(K).
Cette observation permet de tirer plusieurs déductions concernant les (p, g, 7) noeuds
bretzel .

On calcule explicitement les seminormes de Culler-Shalen pour les (-2, 3, n) noeuds
bretzel hyperboliques. On déduit que X (K) est constitué de deux courbes algébriques
quand 3 { n et de trois courbes algébriques quand 3 | n. Ceci donne la classification
des chirurgies cycliques et finies de ce type de noeuds. Des résultats similaires sont
obtenus pour certains (—3, 3, ) noeuds bretzel.

On classifie les chirurgies cycliques pour les (—2,p, ¢) noeuds bretzel (p,q étant
impairs et positifs). On prouve que le (—2,3,.7) noeud bretzel est le seul noeud
non-torique dans cette famille admettant des chirurgies cvcliques non-triviales. On
démontre aussi que le (p, ¢, 2m) noeud bretzel avec o + o + e < 1. admet au plus
une chirurgie finie non-triviale. Si de plus, m < —1, alors ce noeud n'admet aucune
chirurgie finie non-triviale.

En combinant ces résultats avec le travail de Delman, on classifie les chirurgies
cycliques des noeuds de Montesinos. Si un noeud non-torique de Montesinos K
admet une chirurgie cyclique non-triviale, alors il est le (—2,3,7) noeud bretzel et la
chirurgie est 18 ou 19. De plus, si K admet une chirurgie finie non-triviale, soit il est
un (-2, p, q) noeud bretzel avec 5 < p < ¢, soit il est un (-2, 3. ¢) noeud bretzel avec

q=7o0ul.
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1. INTRODUCTION

1.1. Conjectures of Poincaré and Thurston. The Poincaré Conjecture states
that any closed, simply-connected 3-manifold is homeomorphic to S*. That this
conjecture has remained open for close to a century points to the subtlety of 3-
dimensional topology. Although S3 can be regarded as the simplest of 3-manifolds,
we still do not know that there are no clever imitations or “fake” S*’s out there which
share most of its important properties.

The work of Lickorish and Wallace suggests one approach to this conundrum. They
showed, independently, that any 3-manifold can be constructed through Dehn surgery
on a knot or link in S3. In particular any fake S® counterexample to Poincaré’s
conjecture could be so constructed. Of course, starting with such a knot or link, one
can always recover S® through “trivial” surgery. We say that a knot has property P
(for “Poincaré”) if this is the only Dehn surgery which results in a simply-connected
manifold. The property P conjecture states that every non-trivial knot in S* has
property P. Although property P is known to hold for large classes of knots, this
conjecture also remains open.

The work of Culler and Shalen [CS1, CS2, CGLS}, and Boyer and Zhang [BZ1, BZ2,
BZ4] shows the feasibility of taking a slightly larger perspective. Rather than surgeries
leading to a simply-connected manifold they investigate those resulting in a manifold
with cyclic or finite fundamental group. Essentially, they show that surgerv on a

hyperbolic knot in S3 can produce at most three manifolds with cyclic fundamental

precise statements). For example, since trivial surgery produces S°, and as simply-
connected manifolds have cyclic fundamental group, a given hyperbolic knot could
have at most two surgeries which violate the Poincaré Conjecture. Thus one could
imagine a program to prove the Poincaré Conjecture by systematically going through
all the hyperbolic knots in S*, finding the cyclic or finite surgeries (of which there
are at most five for a given knot), and checking if any of them is a counterexample
to the conjecture. Of course, one would still be left to examine non-hyperbolic knots,

not to mention links.
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A more realistic appraisal comes in the context of another of the great open prob-
lems of 3-dimensional topology, Thurston’s hyperbolization conjecture. Roughly
speaking, this conjecture contends that “most 3-manifolds are hyperbolic.” For ex-
ample, Thurston has proved that all but a finite number of Dehn surgeries on a
hyperbolic knot result in manifolds which are again hyperbolic. Moreover, the con-
jecture implies that the non-hyperbolic ones either contain an incompressible sphere
or torus, have cyclic or finite fundamental group, or else are Seifert fibred manifolds
(these outcomes are not disjoint). Along with Gordon and Luecke’s studies of incom-
pressible surfaces, the investigation of cyclic and finite surgeries by Culler, Shalen,
Boyver, and Zhang forms half of a two-pronged attack on Thurston’s conjecture.

Culler-Shalen seminorms have played a central role in these investigations. They
were first introduced by Culler and Shalen [CGLS] as part of the proof of the Cyclic
Surgery Theorem. Later, Boyer and Zhang [BZ1] extended the idea to the study of

finite surgeries eventually leading to a proof of the Finite Filling Conjecture [BZ4].

1.2. Contributions of this thesis. By focusing on a specific class of knots, the
pretzel knots, we can use the methods of Culler, Shalen, Boyer, and Zhang to obtain
stronger results. Rather than just showing that there are very few cyclic or finite
surgeries, we can show that in many cases there are none (aside from the trivial
surgery) and give a listing of the knots which admit interesting fillings. By further
restricting to the (—2, 3, n) pretzel knots, we can explicitly calculate the Culler-Shalen
seminorms and use that information to give a complete description of the character
variety of these knots. Therefore this thesis rmakes contributions to the understand-
ing of finite and cyclic surgeries of pretzel knots and illustrates how Culler-Shalen
seminorms can be used to describe the character variety of a knot.

Delman [Del] showed that if a hyperbolic Montesinos knot admits a finite surgery;,
then it is a pretzel knot of the form (2k + 1,2l + 1,—-2m), k.l.m being positive
integers. Our contribution is a thorough understanding of cyclic and finite surgeries
on these pretzel knots.

In particular, we prove that there are no non-trivial cyclic or finite surgeries on a

(—2,3,n) pretzel knot K unless one of the following holds.

e K is torus, in which case n =1, 3, or 5.
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e n = 7, in which case 18 and 19 are cyclic fillings while 17 is a finite, non-cyclic
filling.

e n =9, in which case 22 and 23 are finite, non-cyclic fillings.

A consequence is that the (—2.3.7) is the only non-torus (—2,p.q) pretzel knot
(p. q odd, positive integers) which admits a non-trivial cyclic surgery. We show that
a (p,q,2m) pretzel knot admits at most one non-trivial finite surgery so long as
[—1;[ + ﬁ + l«lz_l < 1. For m < —1, we show further that (p,q, 2m) pretzels admit no
non-trivial finite surgeries.

This can be combined with the work of Delman to deduce:

Theorem 4.5.1. The only non-torus Montesinos knot which edmits a non-trivial
cyclic surgery is the (—2,3,7) pretzel knot. The non-trivial cyclic surgeries on this

knot are of slope 18 and 19.

Theorem 4.5.2. If a non-torus Montesinos knot K admits a non-trivial finite surgery,

then one of the following holds.

e K is a (—2,p,q) pretzel knot with 3 < p < q odd and the filling is not cyclic.
o K is the (—2,3,7) pretzel knot and the filling is along slope 17,18, or 19.
o K is the (—2,3,9) pretzel knot and the filling is along slope 22 or 23.

For certain pretzel knots we are able, not only to classify finite and cvclic surgeries.
but also to determine the structure of the character variety. We begin by demon-
strating the inclusion of PSL,(C)-character varieties X (A(a;. a2, a3)) C X(K) when
K = K(3i/a\, B2/as, B3/a3) is a three-tangle Montesinos knot and A(a, a2, a3) the
associated triangle group. The (p, q, r) pretzel knots, for which K = K(1/p,1/q.1/7),
are important examples. These knots are small, so the SL,(C)-character variety X (K)
will consist of algebraic curves. Generally, if K also admits a Seifert surgery, we can
proceed to calculate the Culler-Shalen seminorms explicitly and thereby enumerate
the curves in X (K). For hyperbolic (—2,3,n) pretzel knots (n an odd integer), we
deduce that X (K) consists of exactly two (respectively three) curves when 3t n (re-
spectively 3 | n). We obtain similar results for some (-3, 3, n) pretzel knots. (This

is an expanded form of the papers [BMZ, Matl, Mat2].)
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It should be emphasized that such a detailed description of the character variety of
a knot is rare. It is true that the character varieties of torus knots are well understood
and Burde [Bu] has shown that X (K) consists of exactly two curves for certain 2-
bridge knots. However, our description of the character varieties and Culler-Shalen
seminorms of a family of pretzel knots marks substantial progress in this area.

These seminorm calculations also provide a link with the A-polynomial invariant
of [CCGLS]. For example, we determine the Newton polygon for the A-polynomial
of the (—2, 3, n) pretzel knots. This is significant, as it remains difficult to compute
the A-polynomial. For example, the (—2,3,7) is the only one of these knots whose
polynomial is included in the table of [CCGLS].

In addition to such concrete contributions, we would like to think of this thesis
as a handbook of computational techniques for use in the understanding of Culler-
Shalen seminorms. For example, we illustrate how Ohtsuki’s [Oht] work on ideal
points can be used to deduce the Culler-Shalen seminorms of the twist knots. (This
again leads to information about cyclic and finite surgeries and the'Newton polygon
for the A-polynomial of these knots.) We explain how to show Z.(f,) = 1 when
z is the character of a p-representation. We discuss in some detail Hatcher and
Oertel’s algorithm for calculating the boundary slopes of Montesinos knots using
pretzel knots as examples. Finally, in the Appendix, we present calculations of the

zeroes of Alexander polvnomials for certain pretzel knots.

1.3. Outline. Following the introductory first chapter, the second chapter presents
a brief overview of the theory of character varieties of knots and the Culler-Shalen
seminorm. To illustrate the power of this theory, we explicitly calculate the Culler-
Shalen seminorms of the twist knots and show how such a calculation can be used
to make deductions about finite surgeries on those knots. We also construct the
Newton polygon for the A-polynomial of the twist knots. We next state some prelim-
inary lemmas about commutativity of representations and representations of triangle
groups. We complete the second chapter with an argument that Z,;(f,) = 1 when z
is the character of a p-representation of a twist knot or a (—2, 3, n) pretzel knot.
The third chapter introduces Montesinos knots. After outlining the theory of

Seifert fibred spaces, we prove a theorem of Montesinos which illustrates the close
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connection between Seifert spaces and Montesinos knots. This chapter closes with
a proposition showing that representations of the double cover of a knot group can
often be extended to the whole knot group. It follows that the character variety of
a triangle group includes into the character variety of the corresponding three-tangle
Montesinos knot.

This is exploited in the last two chapters where we investigate a specific kind of
three-tangle Montesinos knot, the (p, g, r) pretzel knot. In Clapter 4 we losk at cyclic
and finite surgeries of such knots. We first show that if a (p, ¢, 2m) pretzel knot admits
a finite surgery, that surgery is odd integral and near a non-integral boundary slope.
We then present Hatcher and Oertel’s algorithm for calculating boundary slopes in
order to refine our results. We next classify cyclic surgeries on (—2, p, q) pretzel knots
and finite surgeries on (p, ¢, —2m) pretzel knots (m > 1). Combined with Delman’s
work, this gives a complete classification of cyclic surgeries on Montesinos knots (there
are only two non-trivial cyclic surgeries amongst the non-torus Montesinos knots) and
a near complete analysis of finite surgeries.

In Chapter 5, we make explicit calculations of the Culler-Shalen seminorms of
several knots. We first determine the minimum of the total seminorm for (2. p, q)
pretzel knots. We then calculate the Culler-Shalen seminorms of (—2,3.n) pretzel
knots and thereby deduce the structure of the SL,(C)-character variety of those
knots. We also investigate to what extent we can make analogous computations for
the (—3,3,n) pretzel knots.

Finally, in Chapter 6 we suggest some ways in which this work could be extended
and discuss questions arising from our research. The thesis concludes with an Ap-

pendix concerning zeroes of the Alexander polynomials of (—2, 3, n) pretzel knots.



2. CHARACTER VARIETIES AND THE CULLER-SHALEN SEMINORM

2.1. Character varieties. Character varieties will play a fundamental role in what
follows. We give here a brief outline of the important facts for our purposes. The
standard references for SLo(C)-character varieties are the two articles of Culler and
Shalen [CS1, CS2] as well as their part (Chapter 1) of [CGLS|. Boyer and Zhang’s
[BZ1, Section 2] is also a good reference and [BZ2] develops the theory of PSL,(C)-
character varieties. For a more leisurely introduction, we recommend Tanguay’s
thesis [Ta].

For a finitely generated group 7. let R = Hom(w, SL,(C)) denote the set of SL,(C)-
representations. Then R is an affine algebraic set referred to as the representation
vartety. In particular, if 7 is generated by gy, ga, - - . g,. then the entries of the matrices
p(g:) € SLy(C) can be taken as coordinates. The algebraic set R is then determined
by the equations det{p(g;)) = 1 along with those arising from any relations amongst
the g; in m. Thus R ¢ C'. A different choice of generators will result in a set R’
isomorphic to R.

The character variety X is the set of characters of representations in R. [t is also

algebraic and generated by

{Xp(g)|g € G} where G = {gi}lgign u {gigj}15i<j§n U {gigjgk}1$i<j<k5n

(see [GM, Corollary 4.12] and [V]). If we let t : R — C!°! denote the function which
takes p to (x,(9))gec, then the image t(R) is isomorphic to .X. Note that |G|, the
cardinality of G, is n(n? + 3)/6.

The focus of this thesis is the case where 7 = 7,(M) is the fundamental group of
the complement M of a knot K in S3. That is, K is the image of a smooth embedding
of S'in S? and M = 83\ N(K), N(K) being an open tubular neighbourhood of the
knot. We will be especially interested in the case where K is hyperbolic. This means
A?[ , the interior of A/, admits a hyperbolic metric. In other words, _,{,’[ = H? /T where
H? is hyperbolic 3-space and ' C PSLy(C) = Isom (H?), the group of orientation

preserving isometries of H?.
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In this context, [ = 7 so that I’ provides a natural PSL,(C)-representation, the
holonomy representation, gy : @ — PSL,(C). Thurston has shown (see [CS1, Proposi-
tion 3.1.1] for a proof) that pg lifts to an irreducible SL,(C)-representation py. More-
over, the irreducible component Xy C X containing x,, is a curve, i.e.. dim¢(Xy) =1
[CGLS, Proposition 1.1.1]. We refer to Xy as the canonical curve.

The set of characters of reducible representations also forms a curve which is iso-
morphic to C. (See for example [Ta, Proposition 2.5.5]. This is true whenever M
is the complement of a knot in S3, hyperbolic or not.) Moreover, when the knot is
small, any irreducible component of .X containing the character of an irreducible rep-
resentation is again a curve. (A knot is small provided there are no closed essential
surfaces in M. A surface is essential if it is incompressible, orientable, and properly
embedded in M such that no component is parallel into M and no S? component
bounds a ball.)

For such a curve X; C X, let X; denote the smooth projective variety birationally
equivalent to X';. The birational equivalence is regular at all but a finite number of
points of X’,- called ideal points. As in [CGLS, Section 1.5}, the complement of the
ideal points in X; may be identified with X where v : X? — X is normalization [Shf,
Chapter II §5].

We will have occasion to use PSL,(C)-character varieties, particularly when we
investigate r-curves (see Section 2.2.3). We will generally use a bar to denote PSL,(C)
versions of familiar objects. Thus R is a PSL,(C)-representation variety and X a
PSL,(C)-character variety. The theory of these objects is similar to the SL,(C)
theory and we refer the reader to [BZ2, Sections 3 and 4] for details.

Each ideal point of X; can be used to construct a simplicial tree on which 7 acts
non-trivially (see {CGLS, Section 1.2]). This gives a splitting of the group 7 as the
fundamental group of a graph of groups. This in turn yields an incompressible surface
in the knot exterior M. In this way ideal points are associated with incompressible

surfaces in M and vice versa.

2.2. Culler-Shalen seminorms. Culler-Shalen seminorms were introduced in the
first chapter of [CGLS]. The authors show that the canonical curve Xy C X (sce

Section 2.1) can be used to construct a norm on surgery space V" = H(9M:;R) and
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this norm plays a central role in their proof of the Cyclic Surgery Theorem. Bover
and Zhang [BZ1, BZ2] recognized that this construction can be extended to any curve
in X containing the character of an irreducible representation. However, in general
the result is not a norm, but rather a seminorm. These seminorms, which we will
call Culler-Shalen seminorms, again figure prominently in Bover and Zhang’s proof
of the Finite Filling Conjecture [BZ4]. Moreover, one of the themes of this thesis is

that these seminorms are also of great use in understanding Seifert surgeries.

2.2.1. Dehn Surgery. Before coming to the seminorm construction, we briefly intro-
duce Dehn surgery. The classical reference here is Rolfsen’s book [Rol]. We also
recommend Boyer’s survey [B2].

Let M = S%®\ N(K) where N(K) is an open tubular neighbourhood of a knot
K in $3. A Dehn surgery on K (or a Dehn filling of M) is the closed manifold
M(a) = M U, S' x D? obtained by attaching a solid torus, S! x D?, and M along
their boundary tori, T72. This glueing is determined by the image o € M of a
meridional disc {pt} x dD2.

To be precise, the surgery is determined by the isotopy class of o in M. There
is a standard choice of basis {u, A} of H,(OM;Z) where p is the class of a meridian
of the knot (the boundary of a disc transverse to the knot) and A is the class of a
preferred longitude (a simple closed curve in M which intersects a meridian once
transversally, and whose class in homology H,(M) is zero) [Rol, Section 2.E]. With
respect to this basis, « represents the classes +(ayu + bA) (depending on orientation).
We will sometimes (by abuse of notation) write & = (a,b). The ambiguity in sign
can be removed by taking the ratio 7. Indeed, since the isotopy class of o can be
identified (canonically, see [B2, Proposition 2.4]) with § € QU{}}, we will frequently
confuse a with its isotopy class and ¢. Using the basis {1, A}, lines of slope £ in
the universal cover, R x R of M = T? = S!' x S!, project onto curves of class
« in M. For this reason, we will often refer to a (and other primitive classes in
H,(OM;Z)) as a “slope.” Finally, taking advantage of the Hurewicz isomorphism,
H,(OM;Z) = 7| (M) = ZPZ, we will have occasion to think of a or ¢ as a homotopy

b
class although this identification is only valid up to conjugation.
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If 7)(M(a)) is cyclic, we will say a is a cyclic surgery. The simplest example is
trivial surgery: M(g) = M(u) = S®. On the other hand, the only way to obtain
m(M(a)) = Z is through surgery on a trivial knot, i.e., the standard, unknotted,
embedding of S! in S? [Gal]. So cyclic surgeries will generally be examples of finite
surgeries, i.e., surgeries for which (M («)) is finite. A third important category,
from our point of view, is the case where M (a) is a Seifert fibred space. (We will

discuss this case in more detail in Section 2.2.4 below.)

2.2.2. Construction of Culler-Shalen seminorms. Let us now describe the construc-
tion of a Culler-Shalen seminorm given a curve X; C X. For v € ©# = @ (M), define
the regular function I, : X — C by I,(x,) = Xx,(7) = trace(p(v)). By the Hurewicz
isomorphism, a class v € L = H,(0M;Z) determines an element of 7 (M), and
therefore an element of m, well-defined up to conjugacy. The function f, = I? — 4
is again regular and so can be pulled back to X, the smooth projective variety bi-
rationally equivalent to X;. For v € L, ||v||: is the degree of f, : X; = CP'. The
seminorm is extended to V' = H,(OM;R) by linearity.

The power of Culler-Shalen seminorms is perhaps best illustrated by the fol-
lowing two theorems which relate them to cyclic and finite surgeries. Here s; =
min{||v||;; v € L. ||7¥|l: > 0} denotes the minimal norm and a boundary slope 8 €
H,(OM:Z) is the class of the boundary of an essential surface properly embedded in
M.

Theorem 2.2.1 (Corollary 1.1.4 [CGLS]). Ifa is not a boundary slope and w (M («))

is cyclic, then ||c|; = s:.

Theorem 2.2.2 (Theorem 2.3 [BZ1]). If & is not a boundary slope and 7 (M (a)) is

finite, then ||c||; < maz(2s;,s; + 8).

Indeed, boundary slopes play a fundamental role in the theory of Culler-Shalen
seminorms. Let A(7, 3) denote the minimal geometric intersection number of curves
representing the classes v and 3 so that A(%, §) = |ed —bc|. In the context of a knot
in S? for which z is not a boundary slope, Lemma 6.2 of [BZ1] can be rearranged to

say:
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Lemma 2.2.3 (Lemma 6.2 [BZ1}).

vl = 203 0547, 8)]

where the a; are non-negative integers and the sum is over the set of boundary slopes

8.

Roughly speaking the a} count ideal points of X associated to B; (see Section 2.1).

In particular, if there are no such, then a} = 0.

2.2.3. Norm curves and r-curves. Lemma 2.2.3, provides a practical way to describe
the difference between norm curves and r-curves. A norm curve X; is one on which
no f, is constant, (1 # v € m(9M)). In this case || - ||; is a norm (rather than just a
seminorm). In terms of Lemma 2.2.3, this means at least two of the a; are non-zero.
An important example of a norm curve is the canonical curve, Xy, in the case of a
hyperbolic knot.

If X; C X is not a norm curve (and X is the character variety of the complement
of a small knot in S* [BZ2, Section 5]), then there is a boundary slope r such that f.
is constant on .X; and we will refer to .\; as an r-curve. In terms of Lemma 2.2.3, this
means that a} = 0 if 8; # r and ||7||; = 5:A(7,7). In particular, since M(5) = S°, we
have ||%||, = s; (Theorem 2.2.1. Note that % is not a boundary slope by Lemma 2.3.1.)
This means r is distance 1 from % and is therefore an integer. If K is small, then any
r-curve X; includes into the PSLy(C)-character variety X (M (r)) (see [BZ2, Example
5.10]).

As we mentioned in Section 2.1, K small also implies each component .\; of X is a
curve. Therefore each component leads to a Culler-Shalen seminorm. In this context,
we will often want to look at the total norm || - || = >, || - ||: and its corresponding
minimal value S = ). s;, the sums being taken over the components .X; containing
irreducible characters. If M is hyperbolic, this total norm is a norm (and not just a
seminorm) since one of the components is the canonical curve Xy (for which || - ||o is

a norm).

2.2.4. Seifert surgery. If M(«a) is a Seifert fibred space, we will say that « is a Seifert

surgery slope. Seifert fibred spaces will be described in more detail in Section 3.1.1.
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Briefly, when the base orbifold is S?, such a space is a surgery on S? x S! which
involves the removal of n solid tori T; which are then reattached using a homeomor-
phism of @7;. Just as in the case of Dehn surgery, we can describe the attaching
homeomorphisms by fractions 3 € QU {{}- In case n < 3, we will say that the
resulting manifold is a small Seifert space.

According to Thurston’s hyperbolization conjecture, Dehn surgery on a hyperbolic
knot in S3 will result in a manifold which is either hyperbolic, has finite or cyclic
fundamental group, contains an essential torus or sphere, or is small Seifert (these
outcomes are not disjoint). Moreover, there are only a finite number of surgeries
in QU {{} which can result in a non-hyperbolic manifold [Thu]. These are called
ezceptional surgeries.

There are two important approaches to the study of exceptional surgeries. Surg-
eries producing essential surfaces are amenable to investigation via the theory of
intersection graphs developed by Gordon and Luecke (see [Gol] for a survey). On
the other hand, our discussion of Culler-Shalen seminorms showed how the techniques
of Culler. Shalen, Boyer, and Zhang allow us to understand cyclic and finite surgeries.

An important theme of this thesis is that Seifert surgeries can also be studied using
Culler-Shalen seminorms. In particular, when M(a) is a small Seifert surgery we can
often show ||a|l; < s; + C where C is a constant depending only on the surgery
coefficients b;, bs, b3 (compare Theorems 2.2.1 and 2.2.2). This idea will be developed
more explicitly in Section 5.2 (see also [BB]) where we calculate the Culler-Shalen

seminorms of small Seifert fillings of the (—2,3,n) pretzel knot.

2.2.5. Fundamental and Newton polygons. Given a Culler-Shalen seminorm || - || aris-
ing from a curve in the character variety of a knot K, we call B, the norm-disc of
radius s in V = H(OM;R), a fundamental polygon for K. When || - || is a norm
(rather than just a seminorm), the polygon B is compact, convex, and finite-sided
with vertices which are rational multiples of boundary slopes in L = H,(OM;Z). It
is symmetric (—B = B) and centred at (0, 0). It also provides a nice way to visualize
finite and cyclic surgeries. Any cyclic surgeries will lie on B while finite surgeries
must lie within 2B (assuming s > 8 and neglecting cyclic or finite surgeries along

boundary slopes, see Theorems 2.2.1 and 2.2.2). Recall that the only Z surgery of a
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knot in S is on the trivial knot ([Gal]), so the cyclic surgeries on @B will generally
be examples of finite surgeries.

The fundamental polygon also provides a direct connection with the A-polynomial
invariant of [CCGLS]. This is a polynomial in Z[l,m}: 4 = 37, . b;;Fm/. The
Newton polygon of such a polynomial in two variables is the convex hull in R? of
{(2. 5)b:; # O}

Let NV denote the Newton polyvgon of the A-polynomial for a hyperbolic knot
K. Let By be the fundamental polygon of the Culler-Shalen seminorm associated
to the canonical curve X; C X (i.e. X, contains the character of the holonomy
representation). Boyer and Zhang have shown that these polygons are dual in the

following sense.

Theorem 2.2.4 (Theorem 1.4 of [BZ4]). The line through any pair of antipodal ver-
tices of By is parallel to a side of N. Conversely, the line through any pair of antipodal

vertices of N is parallel to a side of By.

Thus given the fundamental polvgon By, one can deduce NV, at least up to scaling
and translation. As it remains difficult to calculate the A-polynomial, this is worth-
while and we include diagrams of several Newton polygons in this thesis (Figures 4,
5, 26, 27 and 30). The conventions we use are that N meets the [ and m axes but

lies in the first quadrant. The scale is provided by Shanahan’s width function:

Definition 2.2.5 (Definition 1.2 of [Shn]). The p/q width w(p/q) of N is one less
than the number of lines of slope p/q which intersect N and contain a point of the

integer lattice.

We require that Shanahan’s width correspond to the canonical Culler-Shalen semi-
norm: w(p/q) = ||¢/pllo- Given an expression for || - [|o as in Lemma 2.2.3, we can

quickly find NV as is illustrated by the example of the twist knots which follows.

2.3. Polygons of the twist knots. In Chapter 5 we will make a rather detailed
calculation of the Culler-Shalen seminorms of some pretzel knots. As a prelude, and to
illustrate the power of the seminorm approach, we investigate twist knots. Although
these can be treated in much the same fashion as the pretzel knots (see {BMZ]), they

have some special features which allow a more direct approach, which we adopt here.
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-

2n crossings

FIGURE 1. The twist knot K.

Figure 1 shows the twist knot K" = K. Since the trivial knot Ky and the trefoil
K, are not hyperbolic, we will assume n # 0, 1. Burde [Bu, Section 3] has shown that
within the character variety X of a twist knot there is a unique curve X containing
irreducible characters (which is therefore the canonical curve).

This allows us to determine s directly for this curve as it is simply related to the
number of dihedral representations. One can show (see [Ta, Section 5.3]) that the
class (2,0) € H,(OM;Z) has norm s+ 2d where d is the number of dihedral characters
of 7. Hence s = [|(1,0)]| = 3/|(2,0)|| = 1s + d and thus s = 2d.

The number d is equal to (H — 1)/2 (see for example [Kl, Theorem 10]) where
H = card(H,(X;)), > being the second branched cyclic cover of the knot ([Rol,
Section 10.C]). Since card(H,(Z;)) = |[A(—1)| ([Rol, Corollary 8.D.3]), we see that s
may be derived from the Alexander polynomial, which is A(t) = nt? + (1 — 2n)t+n

in the case of the twist knot K, ([Rol, Exercise 7.B.7]):

s = 2d
= [H\(Z2)| -1
= [A(-1)] -1

4n|, ifn< -1
an -2, ifn>2

(2.1) =

Twist knots are examples of 2-bridge knots. These knots are sometimes called

rational knots as each has an associated rational number. For K, the associated

number is 2<. Hatcher and Thurston [HT| have shown that the incompressible

surfaces of such a knot are given by continued fraction expansions of the associated
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rational number,

1
‘p‘ =r -+ b 1 -
q 1+ bg+...+b—‘;
We require |b;| > 2 and denote such a continued fraction by [b,,b.. ... . by] or simply

[6;]-
There are three expansions of 4—n'=’_—l The first two we can write immediately:

2 1 9 N
ol T e g o em

= — !  _pr-17
2n—1+%

The third depends on the sign of n. If n is positive we have

[

2,2,-2,2,...,-2,2, 3]

n—1 pairs

[—-—

with n — 1 pairs —2. 2, while for n negative,

[2,-2,2,-2,2,...,2,-2,2,-3]

.~
N —

o

[n{—1 pairs
with |n| — 1 pairs 2, —2. For each continued fraction, let b+ = card({(—1)?*'6; > 0})
and b~ = card({(—1)7*!b; < 0}).

There is a unique continued fraction whose entries b; are all even. It corresponds
to the longitude of the knot. Let by and b; be the b*, b~ of this surface. For the
twist knot, it is the first continued fraction [2n, —2] which has all entries even, so
b =2,b; =0 whenn>0and bf =1 =055 whenn <0.

The boundary slope for the surface associated to [b;] can now be found through

comparison with the longitude. It’s given as
N,y = 2[(b" — 67) = (b5 — bg)]-

Thus, when n > 0, the second continued fraction has b =1 = b~ and the boundary
slope is 2[(1 — 1) — (2 — 0)] = —4. The third boundary slope is 2[(0 — (2n — 1)) —2] =
—(4n + 2). When n < 0, we have the boundary slopes —4 and —4n.

Ohtsuki [Oht] shows how to determine the Culler-Shalen seminorm given these
continued fraction expansions. His strategy is to determine explicitly the number of

ideal points for each incompressible surface. He shows that there are 3 [,(|6;] — 1)
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such unless all the n; are even in which case there are § [],(|b;] — 1) — 5. This means
that, up to a constant k, the Culler-Shalen seminorm is given by

Ip/all = k3" p — Neallz T1051 - 01 - 51,

(651 J
the sum being taken over the possible continued fraction expansions of the rational
number associated to the knot. (This is almost the formula of [Oht. Proposition 5.2].
Unfortunately, after correctly calculating the number of ideal points on the previous

page, Ohtsuki has neglected to subtract %]p[ in stating the Proposition.)

Remark: Note that there is no ideal point associated to a surface whose contin-
ued fraction has all |b;| = 2. These are precisely the surfaces which are the fibres
of a fibration of the knot over S' (see the remark following the Corollary to [HT,
Proposition 1]). In other words, for a fibred 2-bridge knot, there are no ideal points
associated to a surface which is a leaf in the fibration. This is true more generally
(see for example [CL]). However, such a boundary slope may be represented by other
surfaces which are not leaves in a fibration. An example of this is the (—2,3,-3)
pretzel knot, 859, which admits a fibration with a Seifert surface leaf. In spite of
this, as we shall see in Section 5.2, there are ideal points associated to the longitude
because there are other surfaces which are not leaves of a fibration. but nonetheless

have the longitude as boundary slope.

Using Ohtsuki’s formula when n > 0, we have

/gl = k[(n—1)lpl+ (n —1)|p — 4q] + |p — (4n + 2)q|]

k[(n — 1)A(p/q,0) + (n — 1)A(p/q, —4) + A(p/q. —(4n + 2)}],

while for n < 0,

ip/all = K{(In] - 1)|p| — nlp — 4q| + [p — 4nql]
= k[(In| - 1)A(p/q.0) — nA(p/q, —4) + A(p/q. —4n)].
Given that ||1/0| = s (since M(1/0) = S* has cyclic fundamental group and 1/0 is

not a boundary slope) we can use the calculation of s above (Equation 2.1) to see

that £ = 2.



(-2,1) (-1,1) 1) (1,1)
f\
(~1,0) (1,0)

a= -2(2’—"13_—2)'(—(411 + 2), 1)

c= ﬁ(—:}, 1) €= 4—.:_}:5(_1’ 1)

d=1(-2,1) f =0, 1z55)

FIGURE 2. Fundamental polygon of the twist knot K, (n > 1).

(-1,1) (0.1) (1.1)
to
(_'41 ) ¢
St (4l 1)
(=10 B 1,0
a=(-13) c=1(-2,1) e=(1,-2)
b=3(-3,1) d=i(-1,1)

FIGURE 3. Fundamental polygon of tbe twist knot K, (n < 0).

The fundamental polvgon B of the twist knot K, is illustrated in Figures 2 (n > 1)
and 3 (n < 0). In particular, note that the fundamental polygon lies below the line

y = 1/2. This shows that these knots admit no non-trivial cyclic or finite surgeries

19
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as such surgeries would either lie within 2B (assuming n # 2 so that s > 8, [BZ1,
Theorem 2.3]) or else occur at a boundary slope. Since 2B includes no integer lattice
points (besides (a,0), —2 < a < 2), the first possibility does not arise. On the other

hand, since twist knots are small, the boundary slopes are also not cyclic or finite:

Lemma 2.3.1. If M is small and « s a boundary slope, then M («) is not cyclic or

finite.

Proof: By [CGLS, Theorem 2.0.3], M(c) is not finite, and it is cyclic only if M(a) =
S!' x S2. However, Gabai [Gal] has shown that, amongst knots in S>, only slope 0
surgery on the trivial knot can produce S! x 52, O

For K3, s = 6 so that max(2s,s + 8) = s + 8 = 14 (see Theorem 2.2.2). Here, the
highest point of B has y = s/4(s — 1) = 7/26. So, in this case as well. ZB includes no
integer lattice points other than (a.0), and therefore K, also admits no non-trivial
finite surgeries.

Given the Culler-Shalen seminorm calculations, as above, we can also immediately
deduce the Newton polygon. For example, for n > 0, we see that the edges of slope
5 and Z; must have “length” n — 1. while the edge of slope —7—5 has only length
one. In other words, the vertical segments corresponding to the boundary slope 0
have length n — 1 while a segment of slope —1/4, like that from (0.n) to (4(n —1),1)

is (n — 1) times the vector (4, —1):
(0.n)+(n—-1)d,-1) =(0.n) + (4(n - 1),1 —n) = (4(n — 1), 1).
Figures 4 (n > 1) and 5 (n < 0) illustrate the Newton polvgons for these knots.

2.4. Preliminary lemmas. Our goal is to develop the theory of SL,(C)-character
varieties of Montesinos knots, particularly (p, q,7) pretzel knots. In this section we
present several useful lemmas about the structure of SL,(C)- and PSL,(C)-character

varieties.

2.4.1. Commutativity of representations. The first set of lemmas relate to commuta-
tivity. Recall that 4 € SL,(C) is parabolic if it is conjugate to a matrix of the form
+1
0 +1

with a # 0.
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(4n + 2,2(n — 2))

(4(n —1),1)

FIGURE 4. Newton polygon of the twist knot K,, (n > 1).

(0,2[n| — 1)

(0, n[)
(8inl, n|)

(8ln|, 1)

FIGURE 5. Newton polygon of the twist knot K, (n < 0).

Lemma 2.4.1. 4, B € SL,(C) \ {£I} commute iff they are both diagonal or both

parabolic (after an appropriate conjugation).

a f a b
Proof: Conjugate so that 4 = . Let B = . Then
0 1l/a c d

AB = aa +c¢B ba+dp . and BA= aa afB +b/a '
¢/ d/a ca c3+dfa

Suppose A is diagonal. Then 8 = 0 and, since A # +I. a® # 1. The lower left
entries of AB and BA imply ¢ = 0. Similarly, since 3 = 0, the upper right entries of
AB and BA imply b = 0 and so B is diagonal.
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Suppose that 4 is parabolic, i.e., « = £1 and B # 0. The lower right entry of AB
and BA then implies ¢ = 0 while the upper right entry obliges a = d. It follows that

B is also parabolic. O

Remark: An irreducible SL,(C)-representation is not abelian. However, a reducible
- SLo(C)-representation could be non-abelian. For example p : Z/3 « Z/3 — SL,(C)

0 1
defined by taking the generators to ¢ . and ( ¢ , where ¢ is a prim-
0 ¢ 0 ¢

itive third root of unity. On the other hand, the character x,. of a reducible SL,(C)-
representation p is always the character x,, of a diagonal (hence abelian) character

a b a 0
po- Simply replace each matrix p(g) = by po(g) = and
0 1/a 0 1/a

notice that any relations which the p(g) satisfy will also hold for py(g).

a
Definition 2.4.2. We will say of @ matricr A = + (
c

b
) € PSLy(C) that it

b
€ SL,(CT) is
d

s diagonal (or parabolic, etc.) if the corresponding matriz (
c

0 -—a

diagonal (parabolic etc.). If A € PSL,(C) is of the form + , , we will
a” 0

say that 4 is antidiagonal. We denote by N the set of diagonal and antidiagonal

matrices in PSL,(C):

N:{i(“ : ),aec}u{i( : —b)lbe(:}.
0 a! b=' 0

. 0
E will denote the matriz £ ( ' ) € PSL,(C).
0 —1

Lemma 2.4.3. Suppose A, B € PSL,(C)\ {£I} commute. Then, after an appropri-
ate conjugation, one of the following will obtain.

1. 4 and B are both diagonal.

N

. 4 and B are both parabolic.
3. A€ N and B = E (or vice versa).

Proof: Similar to proof of Lemma 2.4.1. ]
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Definition 2.4.4 ([BZ2]). A representation p: G — PSL,(C) is called irreducible if

it is not conjugate to a representation whose image lies in

{i—(“ ° )|a,b€C,a¢0}.
0 1/a

Otherwise it is called reducible.

Lemma 2.4.5. Let p : G — PSLy(C) be an irreducible representation. If p(G) is
abelian, then p(G) X Z/2& Z /2.

Proof: Since p is irreducible, 3g € G 3 p(g) # £I. Conjugate so that p(g) =
a 3

A== ' . If a = £1 and 8 # 0, the only matrices which commute with
0 1/«

A are other parabolics and p is reducible. If @ # *1, we can conjugate so that

p(g) is diagonal. So without loss of generality, we can assume 8 = 0. If a # =i,
the only matrices which commute with .4 are again diagonal and g(G) is reducible.
Therefore o« = +i and A = E. By the previous lemma. the remaining elements of
A(G) are in N. Since g is irreducible, there is at least one antidiagonal element:

0 -b 0o -
dB = % € p(G). Suppose also that C = + y € p(G).
1/6 0 1/c 0O

( b/c O ) ( c/b 0O )
BC =+ and CB=4%+ .
0 c/b 0 b/c

So. if B and C commute, then b* = +c>. Thus, either B = C, orelse C = B4 = BE,

Then,

and these are the only antidiagonal elements of g(G). Since £/ and E are the only
diagonal elements which commute with B, we see that p(G) = {£/.E,B.,BE} =
Z/2Z/[2. O

Lemma 2.4.6. Letp: G — PSLy(C) be an irreducible or non-abelian representation.
Suppose A is in the center Zpgr. ) (P(G)) = {B € PSL,(C)|BC =CBVYC € p(G)}.
Then, either

1. A=%1, or

2. A is conjugate to E. Moreover. if A= D"'ED, then D~'3(G)D C N.

Proof: Apply Lemma 2.4.3. a
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Lemma 2.4.7. Letp: G — PSL,(C) be an irreducible or non-abelian representation.
Let A € sl,(C) and suppose A = Adp(g) - A = p(g)~'Ap(g) for each g € G. Then
A=0.

Proof: As g is irreducible or non-abelian, we can find elements g,.g9> € G so that,

after a conjugation, p(g,) # =+ is upper triangular while g(g>) has non-zero lower

a b

left entry. As A = commutes with p(g;), we see that ¢ = 0. But, then,
c —a

in order for 4 to commute with 5(g.) as well, a and b must also be zero. O

2.4.2. The triangle group. The triangle groups A(p. ¢. r) are intimately related to the

(p, q,7) pretzel knots which are the main focus of Chapters 4 and 5.
Definition 2.4.8. The triangle group A(p,q,r) has presentation
Ap,q,7) = (z,y,z|z", ¥ 2" zyz)
= (z,yl7", 7. (zy)").

In particular, we will need to count the characters of A(p, g, r) on several occasions.

By [BB, Proposition D], the number of PSL2(C)-characters of A(p.q,7) is

(2:2) -1 -D@- 1E1-ve- 15 -0+ 121E115)

+ Lgcdgp,tn |+ Lgcdf)p, r) | + Lgcdgq, )

J+1

where |z| denotes the largest integer less than or equal to z. This count includes
characters of reducible representations. The character of a reducible representation
is also the character of a diagonal (hence abelian) representation (see the Remark of
Section 2.4.1). So, to count the characters of reducible representations we can look
at representations of H,(A(p,q,r)). Let a = ged(p.q,7), b = ged(pg. pr.qr). Then
H,(A(p,q,7)) =Z/a® Z/(b/a) while |H\(A(p, q.7))| = b. Consequently, the number
of characters of H,(A(p,q.7)) is

2] +1, ifa=1 (mod 2),

(2.3) b .
5] +2, ife=0 (mod 2).

Lemma 2.4.9. Let G = A(p,q,r) with p and q odd. If p is an irreducible PSL,(C)-
representation of G and A € ZPSL;(C) (p(G)), then A = 1.
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Proof: Suppose instead that A4 is conjugate to E (see Lemma 2.4.6). Conjugate
so that p(G) C N. Since the set of diagonal matrices is closed under multiplication
and p is irreducible, at least one of the generators is taken to an antidiagonal matrix.
However, antidiagonal matrices are of order 2 in PSL,(C). so we have a contradiction
if 7 is odd. If r is even, the corresponding generator is mapped to an antidiagonal
matrix while the other two generators are mapped to diagonal matrices. This is a

contradiction since the product of the three generators is the identity. d.

Lemma 2.4.10. If p and q are odd, then no irreducible PSL>(C)-representation of
A(p.q,r) has finite dihedral image.

Proof: Suppose instead that 5 : A(p,q.r) - PSL,(C) has dihedral image D. If D =
Z/[2®Z/2, then p(z?) = £I and p(y?) = +/, z and y being the generators of A(p, ¢, )
(Definition 2.4.8). Since these also have odd order p and ¢ respectively. it follows that
p(z) = £ and p(y) = =1 and the representations is trivial, a contradiction.

Thus, we can assume the index two cyclic subgroup C of D has order at least 3. It
follows that, after an appropriate conjugation, C consists of diagonal matrices (use
Lemma 2.4.3 and the infinite order of non-identity parabolics). As g is irreducible,
p(x), say, is not diagonal. Then g(z) € D\ C has order two. As above, this implies

p(z) = £I, a contradiction. O

2.5. Riley’s p-representations. As we shall see, an effective way of calculating the
Culler-Shalen seminorm of a slope « is through comparison with the meridian x and

we will encounter equations of the form

lall = s+ Y _(Z:(fa) = Zo(fu))

where Z.( f,) denotes the zero of f, at a point z in the character variety (for example,
see Equation 5.12). Boyer and Ben Abdelghani [BB, Theorem A| have recently shown
that, subject to some mild conditions, the “jump” Z,(fa) — Z:(f,.) is 2.

Prior to this work, jump calculations broke down into two cases. Let p: (M) —
SL,(C) be a representation with character z. If p(7(@M)) is not parabolic, argu-
ments like those in [BZ1, Section 4] can often be applied to show Z,(f,) = 0 and

Z.(fo) = 2 resulting in a jump of two. If p(w,(0M)) is parabolic (see Section 2.4.1
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for a definition), then following Riley [Ri], we say that p is a p-representation. We
were able to show Z(f,) = 1 for the character of a p-representation in two rather dis-
parate situations: the twist knots and the (—2, 3, ») pretzel knots. Given Z.(f,) =1
one can again apply the techniques of [BZ1, Section 4] to see that Z.(f,) = 3 and
the jump is two.

It may well be that Z.(f,) is always one at the character r of a p-representation,
as we know of no evidence to the contrarv. We will therefore include our calculations

for these two families of knots as evidence supporting this conjecture.

2.5.1. The twist knots. We introduced the twist knots K, in Section 2.3. Again,
we assume n # 0,1 so that K, is hyperbolic. Let M = S*\ N(K,) denote the
complement of such a knot. Burde [Bu, Section 3] has shown that within the SL,(C)-
character variety of a twist knot there is a unique curve Xy containing the characters

of irreducible representations.

Proposition 2.5.1. The characters of the irreducible p-representations of a hyper-
bolic twist knot K,, are smooth points of Xo. Furthermore Z.(f,) =1 at the character

z of any such representation.

Proof: The minimal norm s on .\ is twice the number of dihedral characters d
(Equation 2.1). On the other hand, Riley [Ri] shows that irreducible parabolic char-
acters r with z(u) = 2 correspond to the roots of a polynomial of degree d. Moreover,
he argues ([Ri, Theorem 3]) that the polynomial has no repeated roots. i.e., there are
d such points in Xj. Similarly there are d points with z(u) = —2 and s in all. Let us
label them z|,... .z, and let v~ (z;) = {yi1,-.- , Yy} 2 =1...5. wherev : X§ = X,
is normalization [Shf, Chapter II §5]. Then ||u|| is equal to the sum of degrees at

these points:
s ke
s=ull =) 2, (f.)-
i=l j=1
Since Z,, (f,) > 1, we must have k; = 1, ({ = 1...5) and, setting y; = yu,
Zy,(fu) = 1. If z; were singular, then Z, (f,) > 2 ([Ta, Lemme 5.4.2]). We conclude

therefore that each z; is a smooth point of Xy and Z,-1(;,)(fs) = 1. O
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FIGURE 6. The (—2,3,n) pretzel knot.
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2.5.2. (-2,3,n) pretzel knots. Figure 6 shows the (—2, 3, n) pretzel knot K,. We will
look at this knot in detail in Section 5.2. If n is even, K, is a link. Also. K, K3,
and Kj are torus knots and therefore not hyperbolic. So, we will assume that n is
an odd integer, n # 1,3,5. Let M = S3\ N(K,) denote the knot exterior and X its

SL,(C)-character variety.

Proposition 2.5.2. The characters of the irreducible p-representations of the com-
plement M of a hyperbolic (-2, 3,n) pretzel knot are simple points of X. Furthermore

Z:(fu) =1 at the character = of any such representation.

Proof: Starting from the Wirtinger presentation [Rol, Section 3.D], we can show
™ = m(Ka) = (f.g.h | hfhg = fhgf.gf(hg)*~V/* = f(hg)"~"/?h) where the
generators f, g and h are as indicated in Figure 6 (compare [Tr]). Let z = x, be the
character of an irreducible p-representation with z(z) = 2. Following Riley, we can

assume

1 — uv —v? 1 0 1 -1
p(f) = . . pg) = - and p(h) =
u* 1+ uv w 1 0 1

Then the relation Afhg = fhgf implies u — v = £1. Moreover a representation
with 4 — v = —1 can be replaced by one with u — v = 1 simply by changing the
signs of both u and v. As these two representations will have the same character.
we can assume u — v = 1. After the substitution u = v + 1, the upper left entry of
p(hfhg)—p(fhgf) becomes v?(vw —(v+1)(v+2)). Sov =0o0rw = (v+1)(v+2)/v.

If v = 0, the second relation of m implies that the characters of p-representations
correspond to the distinct roots of a polynomial of degree (|n] — 1)/2 (compare [Ri.

Theorem 3]).
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If v # 0 the same relation implies that v is the root of a polynomial p,(v) of degree
|n — 3| — 1. These are the polynomials described in Lemmas 2.5.3 and 2.5.4 below
where it is shown that each p, has distinct roots. Thus, there are |n — 3] — 1 distinct
characters with v # 0.

Moreover, the characters with v = 0 differ from those with v # 0 as may be seen
by examining trace(p(fg)) = 2 — (v + 1)2. If v = 0, the trace is 1. To have the
same trace with v # 0, we must choose v = —2. This implies w = 0 and p(g) and
p(h) commute. The second relation of 7;(K;) then simplifies to gf = fh and it is
easy to verify that the choice v = -2, w = 0 and © = v + 1 = —1 is not consistent
with p(gf) = p(fh). Thus there is no character with v # 0 equal to a character with
v = 0.

So, in all there are 3(|n—2{—1)/2 irreducible parabolic characters x with z(u) = 2.
Similarly there are 3(|n — 2| — 1)/2 points with z(g¢) = —2 and S in all. (We will
see in Section 5.2 that S = 3(|n — 2| — 1), where S is the total minimal norm.) Let
us label the points z,.... ,zs and let U{j;xie,\'j} uj"l(ri) ={yit,--- Vit },2=1...5,
where v; : X¥ — X is normalization. Then ||u{|r is equal to the sum of degrees at
these points:

S ki
S = llullr = z Z Zy,j (fu)-

=1 j=1

Since Z,, (f,) > 1, we must have £; = 1, (¢ = 1...5) and, setting y; = w1,

Zy,(fu) = 1. If z; were singular, then Z, (f,) > 2 [Ta. Lemme 5.4.2]. We conclude

therefore that each z; is a simple point of X and Z,-1(;)(f,) = 1. O

Lemma 2.5.3. Let p, be the polynomials of degree 2 — n defined recursively by the

equations
po(v) = v+ 20 + v+ 1, p_3(v) = —(v% + 3v* + 403 + 50 + dv + 2),
and pn-2(v) = —((v® + v + 2)pp(v) + v?pria(v))

where n < —1 is odd. Then p, has distinct roots.

Proof: (I am indebted to Richard Stong [St] for this argument.) First note that p,
has leading term (—1)("*+1/232=" and constant term p,(0) = (—2)~»*+1)/2_ Therefore

the roots of p, are all algebraic integers and v = 0 is never a root. Since v = 0
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' is not a root, the roots of p, are the same as the roots of the Laurent polynomial
. L(l—n)/2 = v("_l)ﬂpn.
Notice that for n > 0,

Lo(v) = —v—-1+1/v.
Li(v) = v*+2u+1+1/v, and
0 = Lo+(w+1+2/v)L_ 1+ Lpos-
Letting y = —(v + 1 + 2/v)/2 we see that L, satisfies the Tchebyshev recursion:

Ln - 2yLn—l + Ln—Z = 0.
The standard solutions to this recursion are the Tchebyshev polynomials T,,(y) =
cos(nt) and P,(y) = 5’% where cost = y. It is well-known that T;,(y) and P,(y)

are polynomials in y, To(y) = 1, T1(y) = y. Po(y) = 0, P (y) = 1, and both satisfy

the same recursion as L. Therefore,

La(v) = Lo(v)Ta(y) + (Li(v) — yLo(v))Puly)
. sin(nt)
sint

= Lo(v) cos(nt) + (Li(v) — yLo(v))

= A(v)cos(nt(v) + B(v)),
where cost =y = —(v + 1 + 2/v)/2,
Aw) = (Lo(v)*+ (Li(v) — yLo(v))?/ sin® t)'/?

_ —4
- v(v? —v+2)

and B(v) is given by the formulas

cos B(v) = Lg(v)/A(v)
sin B(v) = —(Li(v)— yLo{v))/(A(v)sint).
Note that this formula requires special interpretation if y = 1 or —1. In this

. case sint = 0 and P, requires a limit to define. However, in our case, ¥y = 1 means

v?+3v+2=0sov =—lor —2,and y = —1 means v> —v+2 = 0so v = (1 +iV7)/2.
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One easily checks that:
L.(-1) = -1,

L.(-2) = 1/2, and

L.((1 £iV7)/2) (-1)*(2n — 5 F (3 + 2n)iVT)/4.

Thus none of these four values of v is ever a root of any of the p,, or L, and we need
not worry about this special case.

Returning to the discussion above, for all other v we have L,(v) = A(v) cos(nt(v)+
B(v)) and A(v) is nonzero. Therefore roots of L,, occur exactly for zeroes of the cosine.

Now we look for a double root. We have
L (v) = A'(v)cos(nt(v) + B(v)) + A(v)(nt'(v) + B'(v)) sin(nt(v) + B(v))
= (A'/A)L,(v) + A(v)(nt' (v) + B'(v)) sin(nt(v) + B(v)).
Since at any root of L, we have sin(nt(v) + B(v)) = %1, a double root can only
occur if we simultaneously have a root of nt'(v) + B'(v) = 0.

Since cost =y,

t'(v) = —y'/sint = (v? — 2)/(2v?sint),
and since cos B = Lo/ A,
B'(v) = (LoA’ — LyA)/(A*sin B).

Now as Asin B = (yLo — L)/ sint we find

502 + 4v + 2
2w+ 1) (v +2)(v2 — v +2)

B'(v) = —siny

The only zeroes of t'(v) occur at v = ++v/2 at which point B’(v) # 0. Thus the
only possible double root left to consider is when

— ! ' — Sv' +4v +2
n=-BW/tW) = -—m—

This is equivalent to

(2n +5)v? +4v + (2 — 4n) = 0,

or

—24++8n2+16n—6
2n+5 )
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If this v were a root of L,, then it would be a double root and these are the only
values of v with this property. However the p, (and therefore the L,) have roots
which are algebraic integers. The quantity whose square root we take in the formula
for v is congruent to 2 (mod 4) and hence is not a square. Therefore v is not an
algebraic integer unless 2n + 5 divides 4 (see, for example, Corollary 2 in Chapter 2
of [Mrc]). This only occurs for n = —2 or —3. Thus these two bad values of v are
never roots of L, for n > 0 (and therefore not roots of the corresponding p,). Thus

Pn has no double root. O

Lemma 2.5.4. Let p, be the polynomials of degree n — 4 defined recursively by the

equations
pr(v) = —(v3 + 2v% + 8v + 8), po(v) = v® + 4v* + 10v° + 160? + 24v + 16,
and pn—2(v) = ~((v> + v + 2)pa(v) + V*Pas2(v))

where n > 7 is odd. Then p, has distinct roots.

Proof: Similar to that of the previous lemma d
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3. MONTESINOS KNOTS

3.1. Seifert spaces and Montesinos knots. Montesinos knots are knots whose
2-fold branched cyclic cover X, is a Seifert fibred space having as base orbifold S
with a certain number of cone points. Since 7;(X3) = 7/(1*). we can think of ¥, as
a kind of Seifert surgery of the knot, and we will take advantage of this similarity.
To better understand these knots, we begin with a brief introduction to the theory

of Seifert spaces.

3.1.1. Seifert fibred spaces. This presentation of Seifert spaces is taken from Chapter

4 of Hatcher’s [Ha] notes (see also [Sco, Section 3]).

Definition 3.1.1. A model Seifert fibring of S' x D? is a foliation of S x D? by
circles, called fibres constructed as follows. Starting with [0.1] x D? foliated by the
segments [0, 1] x {pt}, identify the disks {0} x D? and {1} x D? by a 273/ rotation,
for B/a € Q.

Definition 3.1.2. A Seifert fibred space is a three-manifold with a foliation by cir-
cles such that each fibre has a neighbourhood diffeomorphic. preserving fibres, to a

neighbourhood of a fibre in some model Seifert fibring of S' x D>.

Definition 3.1.3. The multiplicity of a fibre circle C in a Seifert fibred space is the
number of times a small disk transverse to C meets each nearby fibre. The fibres of

multiplicity 1 are regular fibres and the other fibres are singular.

Definition 3.1.4. The base orbifold of a Seifert fibred space is the two dimensional
orbifold obtained by identifying each fibre to a point. The images of the singular fibres

are called cone points, the order of a cone point being the multiplicity of its singular

fibre.

We will be most interested in the case where the base orbifold is S? along with
some cone points. (For an introduction to the theory of orbifolds, see [Sco, Sec-
tion 2].) Such a Seifert fibred space is completely determined by a listing of the
model fibrings of neighbourhoods of the singular fibres and we will denote it as
V(B /an. B2/, ... . Br/a,). In this case, the «; are the cone point indices for the

base orbifold which we will denote by S?*(a,, as, ..., a;).
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FiGURE 7. The Montesinos link m(e; 8, /). B2/, ... . 3. /a;).

3.1.2. Montesinos knots. A link as illustrated in Figure 7 is called a Montesinos link
and will be denoted by m(e; 8i/a,, 82/, - .. ,B-/a;). Here 8/a describes a rational
tangle and we assume that « and 3 are relatively prime integers and a > 1. The a;

give a continued fraction expansion of 3/a,

1
G =
8/ p— -

—a2+
u3+--'+;|:an

Generally, we can arrange e = 0 by combining those twists with one of the tangles
B3i/c;. In this case, we will write simply m(8,/a;, 32/, ..., 8. /a;).

As the rest of the thesis will be concerned exclusively with Montesinos knots, we
here introduce some notation for this situation. Let A/ = S*\ N(m) denote the knot
complement, M the 2-fold cyclic cover of M, and ¥, the 2-fold branched cyclic cover
(see [Rol, Chapter 6] and [Rol, Section 10.C]). Theorem 3.2.1, which we prove in the
next section, shows that ¥, = V(8y/ag, 81 /a1, B2/s, ... 8k/ax) with By/ag = —e.
Much of what follows depends on the relationships amongst the fundamental groups
of these manifolds.

First, 7 = ,—.1(1'\7) is an index two subgroup of @ = 7;(M). The group of £, can be
understood in two ways. On the one hand, 7(X,) = #/{(u?) = #/(jz) where p € &
is the class of a meridian of m and g € 7 the class of the loop in M which (doubte)

covers that meridian. On the other hand, due to the Seifert structure, we have the



exact sequence (for example, see [Sco, Section 3])
(3.4) 0o F o m(Ss) = 7°™(B) - 1

where F' =2 Z is the center of m(%,), generated by the class h of a regular fibre,
and ﬁ?rb(B) is the fundamental group of the base orbifold B = S%(a,,...qa,). In

particular, we have the presentations ([Sco, Section 2])
’/T?rb(B) ={z1. T2y ...,z | T, 252, ... .2, T T .. Ty ),
and ([BuZ, Equation 12.31])
(3.3) i (E2) = {z1,Z2,-.- . Zr, h | :c?‘hﬂ', [zi.h](1 <i<71),21Z9...2,h7%).

Note that when r = 3, we recover the triangle group (Section 2.4.2), rr?rb(B) =

A(ay, ag, az). We conclude this section with a lemma pertinent to this case.

Lemma 3.1.5. Suppose M is Seifert fibred over S*(p,q,r) with p,q.,7 > 2 and that
p (M) — PSLy(C) is an irreducible or non-abelian representation. Then p factors

through A(p,q, 7).
Proof: As above, we have the exact sequence
0> F —>m(M) - Alp,q,7) > 1

where F = (h) = Z. We need to argue that g(h) = 1.

Lemma 2.4.6 says that if p(h) # =/, then we can conjugate so that g(h) = E and
p(m(M)) € N. If p,q,r are all odd, we can argue as in the proof of Lemma 2.4.9.
So we can assume p is even and that p(z) is antidiagonal where z is the generator
of m (M) satisfying 2P = h® (see Equation 3.5). As the antidiagonal elements have
order two, p(z?) = £I. Using the relation 7 = h® we see that p(h) has order dividing
a where (a, p) = 1. However, p(h) = E has order two. This contradiction shows that

p(h) = £I in the case of even p as well. O

3.2. Montesinos’ theorem. In this section we present Théoreme 1 of Montesinos’
Orsay notes and its proof closely following those notes to which we refer the reader

for more details (see also [BuZ, Section 12.D]).



FiGURE 8. An annulus preserved by 7.

Theorem 3.2.1 (Théoréme 1 of [Mo]). Let V = V(By/cg, Bi /1. B2/, ... .53 /a;)
be a Seifert fibred space with (ag, Bo) = (1, —€), «;, 5; relatively prime, and «; > 1
(1 <¢<r). There is an involution T of V' such that the quotient V'/7T is homeomor-
phic to S3 with the Montesinos link m = m(e; 5, /ay, B2/, ... 3c/ar) as branching
set, i.e. m is the image of the fired points under the quotient map V" — V'/7. More-
over, T is fibre and orientation preserving and acts on the base orbifold S? as a

reflection in a circle passing through the cone points.
Remark: It follows that V' is ¥,, the two-fold branched cyclic cover of m.
The proof requires the following elementary lemma which we state without proof.

Lemma 3.2.2. Let X be a manifold containing a 3-ball B® and let f be an auto-
morphism of S? = OB3. Suppose F is an extension of f to an automorphism of
B3, the cone of S* (for ezample, F = cone(f)). Then there is a homeomorphism

G:(X\B)u;B? =5 X given by

Gl

o d .
N\ B3 X\B3

G|33 —_ F.

Proof: (of Montesinos’ Théoréme 1) We will define the involution 7 in several steps.
Consider the solid torus T = B? x S! equipped with an angle 7 rotation 7 :
(21, 22) = (21, 22). In Figure 8 we’ve shaded an annulus {z, € R} preserved by 7.
The quotient T/7 of T by this rotation is a ball B3 and the image of the fixed
points consists of two unlinked arcs. To the left of Figure 9 we see two choices of
fundamental domain of 7 with the induced identifications. On the right, we see an
equatorial disc of the quotient B3. The lightly shaded band at right represents the

quotient by 7 of the annulus of Figure 8.
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" Fixed points

FIGURE 10. The double of the quotient of T.

The rotation 7 of T defines an involution 7 on the double torus D(T) = S? x S!.
The double of the quotient is then D(B?*) = S* and the image of the fixed points is
two disjoint, unknotted circles (Figure 10). On the base S = D{B?) of the trivial
fibration S? x S! = D(T), 7 acts as reflection in the circle D(B!).

Now, the Seifert space V' = V(8o /cx0, B1, 1, - - - , Br/ ) can be constructed starting
with S? x S' by removing the interiors of r + 1 disjoint solid tori T; = D; x S!
(z = 0,...,7) and then replacing them using an oriented automorphism ¢; of 9T;
which takes the meridian m; to the curve a;m; + 8il;, [; being the longitude.

We can assume that the disks D; used in constructing V" are centered on B!(C

B? C D(B?)) as in Figure 11. So we can choose the automorphism ¢; of 9T; so that



B? B? x St

FiGURE 11. Illustration of the disks D; used to construct V.

FIGURE 12. Illustration of the balls B; in S3.

it commutes with 7|sr,. Thus we can construct an involution on V" which we will
again call 7.

The quotients T; /7 are 3-balls B;. We obtain V/7 by removing the interiors of the
r +1 balls from (S? x S')/7 = $3 and replacing them using the automorphism ¢; of
9B; = 9(T;/7) induced by ¢;. In Figure 12, the balls B; = (D; x S')/7 are lined up
along the band (B! x S')/7 just as the D; were lined up along B! in Figure 11.

Applying Lemma 3.2.2 with X = 53 shows that V/7 remains an S3. Moreover, the
lemma shows that the image of the fixed points under the quotient map V" — V//7,
is obtained from the trivial link (of S? x S!, see Figure 10) by replacing the image of

this trivial link in each B; with its image under an extension F; of ¢; to B;.
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Bo e
B, 11:812; - - -
—
B, Qr1, Qr2, - - -
Case where V = §2 x S! General case

FIGURE 13. The trivial link transforms to the Montesinos link.

Claim 3.2.3. There is an oriented automorphism ¢; of 3T; which sends m; to a,m; +
BiMi, commutes with T|gr, and induces on OB; an automorphism @; which ertends to
an automorphism F; of B; such that the image under F; of the trivial tangle in B? is

the rational tangle Bi/a;.

We refer the reader to [Mo] for a proof of this claim.
The claim completes the proof since it shows that the extensions F; transform the

trivial link to the Montesinos link m(e; 8, /., B2/, . .. By /a,) (see Figure 13). O

3.3. Extending representations. When a Montesinos knot m has r = 3 tan-
gles, the group of the base orbifold ﬁ?rb(B) is a triangle group, A(p.¢.r) (see Sec-
tion 2.4.2). We can assume that p, q, r are positive and since m is a knot, p and q are
odd. We show that PSL,(C)-representations of this triangle group extend to become

representations of the knot group © = m;(S%\ N(m)).

Proposition 3.3.1. Let gy be an irreducible PSLy(C)-representation of @ which fac-
tors through A(p,q,7). Then gy has a unique eztension to «.

Proof: Suppose 5 and p’ were two extensions. Let a € 7\ #. For any 3 € &,
P (@)p(B)p(a)™ = plaBa™)
= plaBa™")

= pla)po(B)p(a)™
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So A = p(a)"!'p'(a) commutes with §o(3) and consequently with each element of
Po(7). By Lemma 2.4.9, A = £/, as j is irreducible. Thus g and 7 agree on «, hence

on m and there is at most one extension of gg.

Claim 3.3.2. There will be an eztension p if and only if there is a matric A €
PSLy(C) such that

1. A2 = +7 and;
2. Apo(B)A" = po(uBu™") for all 8 € 7.

Proof: (of claim) Suppose 5 is an extension and let 4 = p(u). We know that py
factors through A(p,q.7) C ™ (E2) = #/{u?) = 7/{@), so A% = po(p?) = +I. Clearly
Apo(B)A™Y = po(Bu™") as well.

Conversely, suppose we have such an A. Note that # = ¥ U u#. Define p by

_ Po(c) faew
pla) = , )
Apo(p~la) ifaepr

Let o € 7. By hypothesis,

Po(pap™") = Apg(a)A™

Then,
Po(a) = po(p(p™ ap)p™") = Apo(p ™ ap)A™!
whence,
po(ptap) = A7 po(@) A.
So, Va, 8 € 7,
plad) = po(aB) = po(a)po(8) = pla)p(B);
plapB) = p(p(p'ap)B) = Apo(p™ ap)po(8) = A(A™'po(c)4)Fo(8)
= po(a)(Apo(B)) = pla)p(pB);
p(napB) = Apo(a)po(8) = p(pc)p(B);
and

A(pa)(uB)) = p(u*(p ™' ap)8) = po(1®)(A™" Fol) A)po(B) = (A" Po(a)A)o(3)

= (Apo())(A70(8)) (since A% = £1') = p(ua)3(1B).



40

T(£)

Gl

FI1GUuRrE 14. A lift of the meridian g.

Thus 5 is a homomorphism which extends gp. O(claim)

To see that gy extends, we must demonstrate the existence of such an A corre-
sponding to conjugation by p. Let 7 (Theorem 3.2.1) be the involution of the 2-fold
branched cyclic cover ¥, and choose base points T € OM and i, € Fix(7) C .

Then conjugation by u corresponds to

m(M,5) = (M, )
[@] = [o]* = [uz - () - (pz) 7Y

where pu: is the lift of x beginning at Z (see Figure 14).
So we have the following commutative diagram

m(M,F) —— 7 (2, &) —— m1(S2, Fo)

|t-ta «| -
T (M.2) —— m1(52.2) —— m(Ta. Zo)
From Theorem 3.2.1, we have the diagram

T
3o —_ A

l

$*(p.g,r) —— S*(p.q.7)
where 7 corresponds to reflection in the equator of S? (see Figure 15). If we choose
paths as illustrated, then 7 has the effect of taking the generators of A(p.q,r) =
{a,b | a?, b, (ab)") to their inverses. Combining these ideas with the representation

¢o of A(p, q,r) induced by gy, we have the diagram:
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FIGURE 15. The reflection of S? induced by 7.

& —— m(S2) — A(p.q.7) —=~ PSL.(C)

|ltar = g

7 — 1 (Z) — A(p.q.r) —=— PSL,(C)
Since 7, takes a and b of A(p,q.r) to their inverses, and ab to a~'b~! which is

conjugate to (ab)~!, we see that tr(¢p o 74) = tr(¢g). On the other hand, since pj is
irreducible, ¢¢ is as well and we deduce (see [CS1, Proposition 1.5.2]) that there is
an A € PSL,(C) with ¢go7T, = A@oA~". In other words, we have found an A such
that 450(8)A~! = po(uBpu~!) for all 3 € =.

According to the claim. we can complete the proof by showing that A% = £/. Since
T is an involution, 7 = 1 and 4% commutes with every element of the irreducible

representation @o(A(p,q,7)). By Lemma 2.4.9, A% = +]. O

Scholium 3.3.3. Any representation p which extends py is such that p(p) has order

two.

We have been assuming that m = m(3,/a, 82/as. 83/ca3) is a knot with three
tangles. Then ¥, is Seifert fibred over S? with cone points p = |a,|, ¢ = || and
r = |az|. This means 7¢"%(S?(p,q,r)) = A(p,q.7). In other words, when there are
three tangles, we can use the proposition to see that the PSL,(C)-character variety
of A(p, ¢, ) includes into that of m: X(A(p,q.7)) C X{m).

This suggests that for other Montesinos knots as well, X’(ﬁ?rb(B)) C X (m) where
B is the base orbifold of ¥,, the two-fold branched cyclic cover of m. Indeed. it

is difficult at first glance to see how the proof depends on m having three tangles.
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Essentially the argument breaks down when 79 b(l‘)’) has more generators because,
although 7; will still take generators to their inverses, it will no longer do so for all
products of generators. So there is no guarantee that 7, will preserve characters.
This means we cannot use [CS1, Proposition 1.5.2] to show the existence of A.

On the other hand, it may well be that 7, preserves the characters of many of
the ﬁ?rb(B) representations. For example when r = 4, w?rb(B) has three generators
a.b,c so that characters are determined by their value on the words a, b, ¢, ab. ac,
bc and abc (see Section 2.1). Of these, all but one, ac, is taken by 7. to a word
having the same trace. Since the SLo(R)-character variety of ﬁ?rb(B) has (real)
dimension two, we know that there are an infinite number of characters. [t seems
plausible that some of these may in fact be preserved by 7.. It would certainly be
interesting to investigate this further. However. in this thesis. we will instead apply
the observation X(A(p,q,7)) € X(m) to deduce some consequences for pretzel knots.

This is the subject of the next two chapters.
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4. CycLric AND FINITE SURGERIES ON MONTESINOS KNOTS

As we have seen, three-tangle Montesinos knots are closely related to the triangle
groups. In this and the following chapter, we exploit this connection in a study of the
(p. q.7) pretzel knots. These form an important subset of the three-tangle Montesinos
knots. The (—2, 3, n) pretzel knots of Section 2.5.2 are examples.

Pretzel knots with cyclic permutations of the indices p. g, r are obviously isotopic
and will be considered equivalent. On the other hand, there is also an evident isotopy
between the (p, q,7) and the (r, q, p) pretzel knot. (For example, given a diagram of
the knot such as that of Figure 6, rotate by 180° about a vertical line to the right
of the diagram.) This means that any permutation of the indices p.gq.r will result
in an isotopic (hence equivalent) knot. Moreover, taking the mirror reflection of a
pretzel knot corresponds to changing the signs of all the indices. As this reduces to
an isomorphism of the fundamental group 7, we will ordinarily consider the knots
(p.q.r) and (—p, —q, —r) equivalent. Note however that such a mirror reflection will
change the signs of boundary and surgery slopes. For example, it will result in a
reflection of the fundamental and Newton polvgons in a vertical line.

In this chapter we use the methods of Culler, Shalen, Bover, and Zhang to come
to a thorough understanding of cvclic and finite surgeries on pretzel knots. This
complements the work of Delman [Del| who provided a classification of cyclic and

finite surgeries on all other Montesinos knots.

4.1. Infinite fillings of (p, ¢, 2m) pretzel knots. Let K = K, ,, be a pretzel knot
where p =2k + 1, ¢ = 2/ + 1 and r = 2m. We will be assuming that 1/|p| + 1/|q| +
1/|m| < 1, and, by [Kaw, Theorem III|, this ensures that K is hyperbolic.

Lemma 4.1.1. If 1/|p| + 1/lq| + 1/|m| < 1 then every filling M(2a/b) of the knot

complement M 1is infinite.

Proof: To simplify the notation, we will assume p,q,r > 0. For the general case,
one need only take absolute values.
As A(p,q,m) is infinite, our strategy is to construct a representation of M (2a/b)

with image A(p, ¢, m).
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Let gg be a faithful, non-abelian PSL,(C)-representation of A(p, g, m). Using the
obvious homomorphism, gy is also a representation of A(p,q.r). the group of the
base orbifold of the twofold branched cyclic cover of the knot. Then, as in Propo-
sition 3.3.1, gy “extends” to a PSL,(C)-representation p of the knot group = which
in turn lifts to an SLy(C)-representation p. (The obstruction to such a lift is in
H?*(w:Z/2) [BZ2, Section 3|. For a knot in S*, the second cohomology is trivial
and there is no obstruction.) Moreover, Scholium 3.3.3 shows Z.(f,2) > Z,(f,) for
T = x,. It follows that g(u?) = +I.

On the other hand, we can determine the image of A in A(p,q.r) = (f,g.h |
f. g7, R, fgh) to be XA = g*fmgk*t Al fmhi+l (This derivation is explained in more
detail in Lemma 5.1.2.) Now, as gy is a representation of A(p, g, m), we have go(f™) =
+1 and consequently po(A) = =1. Then p(A\) = +1 as well.

So, for any filling of the from a = 2a/b, we have pg(a) = +I whence p factors
through = (M(a)). Since po(A(p, g, m)) is infinite, we see that 7 (M (a)) must also
be infinite.

[t remains to construct such a representation pg. Note that as - + 1 + 1 < 1,
A(p,q,m) is infinite. Moreover, either {p,q,m} = {3, 3,3}, and A(p, q,m) is a set of
isometries of the Euclidean plane E?, or else z—t + é + L <1 and A(p, ¢, m) represents
isometries of H?. Since both E? and H® imbed isometrically into H®, in either case,
A(p.q, m) is contained in PSL,(C), the set of orientation preserving isometries of HP.
This provides the required faithful, non-abelian representation. O

So under the hypothesis of the lemma, every 2a/b filling of K is infinite. This
means that any finite surgeries would have to be of the form (2a + 1)/b and therefore
would have norm |{(2a +1)/b|lT < S + 8 [BZ1, Theorem 2.3]. On the other hand, the
2a/b fillings will have norm superior to S + 8. (See Section 2.2.3 for the definition of

S and || - ||, the total norm.)
Lemma 4.1.2. If1/[p| + 1/|g| + 1/|m| < 1 then ||2a/bllr > S + 12.

Proof: Again, we assume p,q, 7 > 0.
We first observe that there are at least 3 irreducible PSL,(C) characters of A(p, g. m)
using Equations 2.2 and 2.3. This can be verified directly if max (p,¢,m) < 11. Let

us assume then that max (p, ¢, m) > 11.
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As p and q are both odd. we can simplify the two equations somewhat to see that

the number of irreducible characters of A(p.q, m) is
(p—1)(g—1)(m —1)/4 + [ged(p, q¢) + ged(p, m) + ged(g,m) — 1]/2 ~ (b+1)/2

where b = ged(pgq, pm, qm).
Without loss of generality, p < g, and there are two cases: m = max (p, g, m), and
q = max (p,q,m). If m = max (p, g, m), then b < pg and the number of irreducible

characters is at least

(P—1Ng—1)(m—1)/4+1—(pg+1)/2
= (p~1Ng-)(m-1)/d+1—-(p—-1)(g—-1)/2-(p+q)/2
= (p—1)(g—1)(m-3)/4+1—(p+4q)/2

If p or g is greater than 3, thisisat least 2(m —3)+1—-m=m -5 [fp=¢q = 3,
we again have the bound m —3 41— 3 = m — 5. So either way there will be at least
7 irreducible characters since we’re assuming m = max (p, ¢, m) > 11.

Suppose next that ¢ = max(p,q,m). As above we see that there are at least
(p—1)(m—-1)(qg—3)/4+1— (p+ m)/2 irreducible characters of A(p,q,m). If p > 5
or m > 3 there are at least 3(¢ —3)/2+1—q = (¢ — 7)/2 > 2 characters. On the
other hand, the remaining possibilities (p = 3 or 5 and m = 2 or 3) also yield at least
3 irreducible characters.

Therefore, there are at least 3 irreducible PSL,(C)-characters of A(p,q, m). As we
saw in the previous lemma, these all factor through to become characters of M(a)
when « is of the from 2a/b. None of these characters are dihedral (Lemma 2.4.10),
so each is covered twice in SLo(C). As they are the characters of irreducible repre-
sentations of a triangle group, they are smooth points of .X (M) (see Lemma 5.1.3).
Moreover, they are zeroes of f, which are not zeroes of f,. (As in the previous lemma,
these are characters of representations which take yx to an element of order two.) It
follows from [BB, Theorem A] that Z,(f,) = Z.(f,) + 2, and since we have six such
x, we see that ||2¢/b||lr = ||al|T = |lu]| + 12=S + 12. O

Theorem 4.1.3. If K = K,,, is a pretzel knot with p.q odd, v even and 1/|p| +
1/|g| + 2/|r| < 1, then K admits at most one non-trivial finite surgery. Moreover
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such a surgery slope u is odd integral and there is a non-integral boundary slope in

{(u—1.u+1).

Proof: The conditions on p, q, r ensure that K is hyperbolic [Kaw, Theorem III] (see
also Lemma 5.2.1).

Let a be a finite surgery of such a knot. We have already observed (Lemma 4.1.1)
that & = (2a + 1)/b. Since meridional surgery is cyclic, we can apply [BZ1. Theorem
1.1] to see that b < 2.

If &« = (2a + 1)/2 were a finite filling, then, by [BZ1, Theorem 2.3|, ||a|lr < S + 8.
At the same time, ||ullr = || — gllr = S. The line joining « = (2a + 1,2) and
p = (1,0) in surgery space V" = H,(M;R) = R? passes through (a + 1,1) while the
line through o and —pu passes through (a,1). It follows that |la + 1||r and [|al]|; are
both less than S + 4. Since one of them is even, this contradicts Lemma 4.1.2.

So any non-trivial finite fillings must be odd integral. Suppose there were two such.
Each would have norm at most S + 8. The line joining them would necessarily pass
through some even integral surgeries which would therefore also have norm at most
S + 8. This again contradicts Lemma 4.1.2.

Now suppose that 2a + 1 is a non-trivial finite filling. Then [[2a + 1. 1||r < S+ 8
while ||2a,1||7 > S + 12 by Lemma 4.1.2. Let P C V" denote the norm-ball of
radius S + 8. By [CGLS, Proposition 1.1.2], P is a finite-sided convex polygon whose
vertices are multiples of boundary slopes. In particular, (2a + 1, 1) is not a vertex of
P (Lemma 2.3.1).

Since (2a + 1,1) is inside P and (2a.1) is not. there is a segment of P which
intersects the line y = 1 between them. Let k(c.d) be the vertex of this segment
which lies on or above y = 1, i.e., & € Q and ¢/d is a boundary slope. Consider
the segment from the origin to k(c,d). As both endpoints are in P, this segment is
also. It crosses y = 1 at (¢/d,1) which must lie between (2a,1) and (2(a + 1), 1).
(Otherwise, the segment joining (2a + 1,1) and (¢/d, 1) passes through (2a, 1), say.
Since both endpoints are in P, this segment is in P and in particular (2a,1) is in P,
a contradiction.)

Thus |2a + 1 — ¢/d| < 1, as required. O
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Corollary 4.1.4. If a knot satisfies the conditions of the theorem and has no non-

integral boundary slopes, then it admits no non-trivial finite surgeries.

Corollary 4.1.5. Alternating knots which satisfy the conditions of the theorem admit

no non-trivial finite surgeries.

Proof: This follows since alternating Montesinos knots have no non-integral bound-

ary slopes (see {HO, p.462]). O

Remark: A (p.q.r) pretzel knot is alternating iff p, ¢, 7 are all of the same sign.

More generally, an alternating Montesinos knot m can be written in the form
m(e: 81/, 32/, ... , Br/a,) with —e and all 3;/a; having the same sign. Indeed. it
is clear that such a knot is alternating. On the other hand, a reduced diagram of an
alternating knot will realize the knot’s crossing number iff the diagram is alternating
(see [Kau, Mu, Thi]). By [LT, Theorem 10}, the crossing number of m is realized by a
diagram like Figure 7. If m is alternating, this diagram will therefore be alternating
whence —e and all the §;/c; will have the same sign.

Note that the second Corollary also follows from Delman and Robert’s [DR] proof

that alternating knots satisfy strong property P.

4.2. Non-integral boundary slopes of pretzel knots. As we have seen (Theo-
rem 4.1.3), finite surgeries on (p, ¢.2m) pretzel knots are intimately related to non-
integral boundary slopes. In this section we will use the methods of Hatcher and
Oertel [HO] to calculate these slopes. We first illustrate the method using the exam-
ple of the (—2,3,7) pretzel knot. We will assume familiarity with the notation and
conventions of [HO].

Boundary slopes are found using “edgepaths” in the Diagram D (Figure 16). Points
of D are labeled by triples (a, b, ¢) and have vertical coordinate “slope” ¢/(a + b) and
horizontal coordinate b/(a + b). Thus horizontal lines in D represent points which all
have the same slope. Let (p/q) denote the vertex (1,¢ — 1,p) and {p/q,r/s) the edge
joining (p/q) and (r/s). Such an edge exists only if the slopes are of distance one:
A(p/q.r/s) = |ps — rq| = 1. The diagram also includes horizontal segments from

{p/q) to (0.q,p) on the right-hand edge. We will denote such horizontal segments by
{p/a.p/9)-
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2/1 1/1

1/1

0/1

-1/1 o)1

FIGURE 16. The diagram D.

An edgepath of D is a piecewise linear path in the 1-skeleton of D. Boundary
slopes of a Montesinos knot m(p;/q1.p2/qs; - - -pn/qn) are determined by a sequence

of edgepaths v; (z = 1...n) satisfving the following conditions:

E1: The starting point of +; lies on the edge (p;/q;, p:/q:)- If the starting point is
not (p;/q:), then the edgepath +; is constant, i.e., it never leaves {p;/q;, p:/q:)-
E2: ~; is minimal, i.e., it never stops and retraces itself, nor does it ever go along
two sides of the same triangle of D in succession.

E3: The ending points of the v;’s are rational points of D which all lie on one
vertical line and whose vertical coordinates add up to zero.

E4: ~; proceeds monotonically from right to left, “monotonically” in the weak

sense that motion along vertical edges is permitted.

Thus each tangle p;/q; gives rise to a tree in D corresponding to potential edge
paths «;. For example, the tree for 1/7 is illustrated in Figure 17.

Non-integral boundary slopes will be given only by edgepaths which have no vertical
edges and end at a vertical line ©u = ug € QQ before reaching the left edge of D (the
“Type I” edgepaths of [HO]). That is, the v end at (ug,vi) = (b/(a + b).c:;/(a + b))
with Y- v; = 0.

As we have seen (Figure 17), the trees are quite simple in the case of the tangles
1/p; of a pretzel knot. This means finding points where > _ v; = 0 is not so difficult.

For example, let’s look at the (—2,3,7) pretzel knot. The trees corresponding to
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FIGURE 17. The tree of a 1/7 tangle.

the tangles —1/2, 1/3, and 1/7 are aligned above one another in Figure 18. Let
vr = >_v;. As y; is a linear function of u between vertices, it will be helpful to
calculate the value of v; at each u which is a vertex on one of the trees. We have
included this data in Figure 18.

Since each tree has two branches, there are at most eight different edgepaths for a
given value of u. For example when u = 0, the possible values of vt are 2 (+ + +),
l1(++—-.+—-+,or—++),0(+—-——, —+—, — —+), and -1 (- — —), where
+ + —, for example. is meant to indicate that we've chosen the upper branch of the
—1/2 tree, the upper branch of the 1/3 tree and the lower branch of the 1/7 tree.

When u = 1/2, the possible values of vy are 1/2 (+ + + or — + +), 1/4 (+ — +
or — —+), 1/12 (+ + — or — + =), and —1/6 (+ — — or — — —). Since the value of
vr varies linearly between vertices, we see that it can have no zero for 0 < u < 1/2.
For example, for the + + + edgepaths, vy =2 at u = 0 and vy = 1/2 at u = 1/2.
Therefore it is positive throughout the interval 0 < u < 1/2.

When u = 2/3, there are only two possible values of vr, namely 1/6 (x * +) and
—1/18 (* * —), where we've used * to mean “+ or —,” i.e.. the two choices lead to
the same result here. This shows that vt has a zero on the * 4+ — paths as v = 1/16
when © =1/2 and vr = —1/18 when u = 2/3.

Finally, when u = 6/7, there is only one choice for vr, namely vr = -1/2 +1/3 +
1/7 = —1/42. So there is an additional zero of vr on the * * + edgepaths. Indeed,

when u = 5/6, we have vy = —1/2+1/3+1/6 =0 on ** +. Thus there are exactly



50

0/1

-1/1

1/1

0/1
1/1

0/ 1@

(0.0)

FIGURE 18. The trees for the (—2, 3. 7) pretzel knot.

two Type [ edgepaths for the (-2, 3,7) pretzel knot: * + — with 1/2 < uy < 2/3 and
* x + with ug = 5/6. These are the only candidates which could yield a non-integral

boundary slope.
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As explained in [HOJ an edgepath is a way of describing a surface S in the knot
complement. The twist associated to this surface is 7(S) = 2(e_ —e,) where e, (e_)
is the number of edges in the edge paths which increase (decrease) slope.

For example the twist of the edgepath system which terminates at ug = 5/6 is ~2
since the —1/2 and 1/3 edgepaths are constant and the 1/7 edgepath increases on
one edge from 1/7 to 1/6.

The * + — system ending with uq between 1/2 and 2/3 is more subtle as it involves

fractions of edges. The value of vy for u in this interval is

1 u— % 1 u—1%
LT—E(l_ﬁ)_E(§ ;)_1/2“9”/6

So v = 0 when u = uy = 3/5. This is half way along (1/2,1/3) in the 1/3 tangle
and 3/4 of the way along (0/1.1/7) in the 1/7 tangle. Thus the —1/2 tangle has no
increasing or decreasing edges, the 1/3 tangle contributes 1/2 to e, and the 1/7 tangle
contributes 3/4 to e_. The twist of this surface is then 7(S) = 2(e_ —e;) =1/2.

Finally, the boundary slope of a surface is given by 7(S) — 7(Sp) where Sp is a
Seifert surface for the knot. For a (p,q,r) pretzel knot, a Seifert surface can be
found by taking the + + + system of edgepaths and extending to oc at the left of
D. For the (—2.3,7) pretzel knot, the three tangles contribute 1.2, and 6 upward
edges respectively so that 7(sg) = —18. The two surfaces constructed above therefore
have boundary slope 16 and 18 1/2. In particular, this includes the one non-integral
boundary slope of this knot: 18 1/2.

We now prove several lemmas about non-integral boundary slopes on pretzel knots

which will prove useful in the following sections.

Lemma 4.2.1. Let K be a (—2,p,q) pretzel knot with p,q odd and 3 < p < ¢q. If
p > 7 (respectively ¢ > 7) then

p’—p-35 (resp. T -9
2 S

is a non-integral boundary slope of K. Moreover, these are the only non-integral

boundary slopes of K.

Proof: Let us assume p > 5. The case p = 3 is analogous, but involves small

deviations from the general case.
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We follow the procedure outlined above and look for Type I edgepaths. As before,
at u =0, vris2,1,0, or —1. At u = %, there are four values for vr: 1 (* ++), TpllT)
(* —+), ﬁ (*+—), and (— + ;= — 1) (* — —) and so there are no edgepath
systems terminating at up € (0, 1).

At u = %‘, there are only two values of vy depending on whether we take the
upper or lower branch in the 1/q tangle. For * * 4+, we have vr = — —+- + —,‘;,B.
Since p > 3, this is negative and there will be zeroes of v+ on both the * — + and
* + + edgepaths. At % — vpr = —i +5 L4 ;&—[) As 5 < p < g, this is again negative
and vr has an additional zero in the * + — system of edgepaths.

Now, vr = —1 :+ 5 -{— <0atu= 9— and there are no further zeroes of vy for
u > ’%.

Thus there are three candidates surfaces with edgepath systems terminating at
ug € (3, 3;—1). Note that, as each of these systems is constant in the —1/2 tangle,
these will all be incompressible surfaces (see [HO, Proposition 2.1]).

However, the * + + system will not contribute a non-integral boundary slope since
it in fact terminates at ug = 7 where vy = —1 + + —, and therefore involves no

fractional edges.

For the * — + svstem

vr = - - 5o20) + o)
-1 T E-D T e
_ 2-—p2u+p-—-1
2(p—1)
which is zero when v = ug = 5(;%12).

In the 1/p tangle, uy corresponds to a point on the edge (0/1,1/p):

a(0/1)+ (1 —a){l/p) = «(1,0,0)+ (1 —a)(l,p—1,1)

= (L,(1-a)(p—1).1 - )
( l-a)p—-1) (1-a)
1+(il—-a)p-1)'"1+(1—-0a)(p—-1)

)-

Taking the u coordinate from the last iine, we have

p=1 _ __(-ap-1)
20-2) ° 1+(1-ea)(p-1)
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which implies a = %:—‘3';. The 1/p tangle therefore contributes g%; to the total of e_.

Since p > 5,
1 p—1 2
—_— < Uy = —— < =
2 ST 23
and the 1/q tangle has ¢ — 3 increasing edges, plus a certain fraction of the (1/2,1/3)
edge:
= (1,2-3,1)
= 225 _1 ) in (u,v) coordinat
= 3=3373 n (u,v) coordinates.
That is.
p—-1 _ 2-p

2p-2) T 3-8
whence 3 = E— and the 1/q tangle contributes ¢ — 3 + to €.
Finally, since the edgepath in the —1/2 tangle is constant, we find that the twist

corresponding to the * — 4+ system is

"(S) =2e- —er) =255~ (1 -3+ 223)) =260+ ==

On the other hand, the twist of a Seifert surface (+ + + extended to o0) is 7(Sp) =
2(0 - (L +p—1+4+¢—1)). Putting it all together, the boundary slope of the surface

S given by the * — + system is

1
7(S) —7(So) = '2(3—(l+z';:f3)—2(0—(1+l’—1+q—1))
= 22 —
22+p+-—3)
pP—p=5
- p=3
2

Analogous arguments show that the % + — surface has boundary slope £=%4=2. O

We turn now to the case of a (p, g, —r) pretzel knot K with 4 < r =2m, eoven and
p =2k —+1 and g = 2]+ 1 both odd. Further, we assume 3 < p < g. We will give two
lemmas describing the non-integral boundary slopes of K depending on the relative
values of p and r.

In each case we will list fractions which are candidates for the non-integral bound-

arv slopes of K with the understanding that for certain choices of p, ¢, and r, these
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fractions will turn out to be integers. Moreover, we will only verify that these can-
didates are truly boundary slopes when we can easily use [HO, Proposition 2.1] to
do so, that is, when one of the edgepaths is constant. In general, the fractions are
the boundary slope of some surface in A/, but when we cannot apply Proposition
2.1, it is tedious to verify whether or not that surface is essential. (Also. there is a
small error in [HO] when they discuss testing whether or not candidate surfaces are
essential. See [Du2].) Since a list of candidates will be adequate for us, we will not
endeavour to investigate further.

In short, if K admits a non-integral boundary slope, then that slope will appear in

the list of slopes in the appropriate lemma (depending on the values of p and r).

Lemma 4.2.2. Ifp > 2r + 1, then

pp—1)+1-3r glg—1)+1-3r
and

p—L—r g—1l—r
2 2

(4.6)

are the non-integral boundary slopes of K.

Remark: Substituting r = 2, we see that Lemma 4.2.2 generalizes Lemma 4.2.1.

Proof: As in Lemma 4.2.1, we need to look at edgepath systems ¢ la Hatcher and
Oertel [HO].

When u =0, vris 2,1,0, or —1. At u = ==L, there are four values for vr: % (=++),

r(p_” (* — +), r(q_l) (* +—), and 1("" "—‘i — 1) (* — —). As the first three values

are positive and the last is negative, there are no edgepath systems terminating at

Ug € ( l
When u = %1-, the two values of vr are —} +2 = 222 (xx +) and —% + 1 + 2=

(* * —), so the * — +, * + + and * + — edgepaths are all Type [ each termmatmg at
awug € (=, %’). As these edgepaths are constant in the —1/r tangle, each results
in an incompressible surface [HO, Proposition 2.1]. Since —% + :—, + 5 < 0, there are
no other Type I systems for this knot.

Now, the * + + edgepath will terminate at ug = 2’2—:' where vy = —} + er + _71; = 0.
This system will not lead to a non-integral boundary slope as it involves no fractional

edges.
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As in Lemma 4.2.1, the * — + and * + — edgepaths will give surfaces having

boundary slope

pp—1)+1—-3r qglg—1)+1-3r
_-;—r and z_é_,.

respectively. |

Lemma 4.2.3. If p < r, the only potential non-integral boundary slope of K 1is

(p—l)(q—l))
p—1l+qg—-1"

(4.7) 2(p+g+r—1-—

Proof: As usual, at u = 0, the values of vy are 2,1.0, and —1. When u = E—, we

v . 2 p—1 . 2r—p-—1 _ 1 7 -1
have vy = 2 — Jf=y = SEER (4 +). vr = 5 (- xH).vr = — g+ + iy
(+*-), and vr = p(q_ll) (— * —). Now, these are all positive and, when u = gq_.’

ur = >+ — 1 is positive as well. So the only Type I system is in the — — — edgepath
and it terminates at a ug € (0, Ll). The associated boundary slope is as given in
Equation 4.7. Note that we cannot use [HO, Proposition 2.1] so it may be that the
fraction of Equation 4.7 is not a boundary slope. In that case, K would have no

non-integral boundary slopes. O

4.3. Cyclic surgeries of (—2,p,q) pretzel knots. In this section. let K be a
(=2, p, q) pretzel knot (p, ¢ odd and positive) and M = S3\ N(K).

Lemma 4.3.1. M (2(p + q)) contains an mcompressible torus.

Proof: The obvious (see Figure 20) spanning surface of such a knot is a once-
punctured Klein bottle and it’s double cover, T, is a twice-punctured torus which
meets M in two parallel curves of slope 2(p+¢). We can use the methods of Hatcher
and Oertel [HO| to see that 2(p +¢) is in fact a boundary slope of K. Following the
proof of [CGLS, Theorem 2.0.3] we see that 7 is a minimal surface realizing this
boundary slope. (Since 2(p + ¢) is not the longitude slope, such a minimal surface
is connected, separating and has at least two boundary components.) As 7 is non-
planar, we apply [CGLS, Proposition 2.2.1} (along with the fact that K is a small knot
[Oe, Corollary 4]) to see that the filled torus T is incompressible in M (2(p +¢)). O

Proposition 4.3.2. Suppose K, a (—2,p,q) pretzel knot (p < q odd and positive),

admits a non-trivial cyclic surgery. Then one of the following holds.
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1. K is torus and therefore admits an infinite number of cyclic surgeries. In this
case either p =1, q = 1, or else {p,q} = {3,3} or {3.5}.
2. K 1is the (—2,3,7) pretzel knot and the surgery is 18 or 19.

Proof: Theorem III of [Kaw] shows that K is torus iff it is as characterized in 1 (see
also Lemma 5.2.1).

Since K is small ([Oe, Corollary 4]}, we can assume that K is hyperbolic. The cyclic
surgeries 18 and 19 of the (—2, 3, 7) pretzel knot were first observed by Fintushel and
Stern (see [FS. Section 4]). Our task is to show that there is no other choice for p
and ¢ leading to a cyclic surgery.

The case p = 3 is the subject of Section 5.2 where we will see that there are no
non-trivial cyclic surgeries when ¢ > 9 and that the cyclic surgeries of the (—2,3.7)
pretzel knot are as stated.

If p = 5, the boundary slopes [HOJ are 0, 14, 15, 92—,__:"__3_—5,2q + 10, and 2¢ + 12. By
[Dul, Theorem 4.1}, a non-trivial cyclic surgery could occur only at 2g + 4 or 2g + 5.
However, as we explain below, a cyclic surgery would have to be within distance 5
of the toroidal surgery 2¢g + 10 (see Lemma 4.3.1). So the only candidate is 2q + 5.
Now the (—2,5,5) pretzel has no non-integral boundary slopes so ([Dul, Theorem
4.1]) it has no non-trivial cyclic surgeries. As for (—2,5,7), SnapPca [Wee| shows
that 2¢ + 5 = 19 surgery on this knot is hyperbolic. So we can assume g > 9.

Suppose (for a contradiction) that 2q + 5 is indeed a cyclic surgery. By [BZ1,

Lemma 6.2}, the (total) norm can be written

vl = 2[aiA(v,0) + axA(v, 14) + azA(7. 15)
¢ —q—5
+ a‘lA(’Yr q—3 ) + (l;',A("/, 2q + IO) + G‘SA("/: 2(] + 12)}
2

If 2g + 5 is cyclic it has minimal norm s, as does the meridian surgery u ([CGLS.
Corollary 1.1.4] and Lemma 2.3.1). The norm of 2¢g + 4 will also be of interest, and

it will be bounded by the minimal norm s.

2

s = |[lull =2[a1 +a2 +a3 + 1 a4 + as + ag)

q-—93
2

s = ||2q + 3| = 2[(2¢ + 3)a, + (2q — 9)a, + (29 — 10)a; + a, + das + Tag)

s < |I2g + 4l = 2[2¢9 + 4a; + (2¢ — 10)as + (2¢ — 11)az + a4 + +6as + Sag)



o
=~

Subtracting the first two equations, we have
(4.8) a; = (2g + 4)a; + (2g — 10)az + (2 — 11)a; + 4as + 6as,

while subtracting the second from the third leaves

q—T7
9

as +ag > a; +az +az +

as,

= n(as +as —a; — a2 — az) > ay,

Combining this with Equation 4.8, we have
0>(29+4+n)a + (29 — 10+ n)as + (29 — 11 + n)az + (4 — n)as + (6 — n)as.

Since a; > 0, this shows a, = a3 = a3 = a5 = ag = 0. On the other hand. for a norm,
at least two of the a; must be non-zero. This contradiction show that there can be
no non-trivial cyclic surgery when p = 5. |

So let us assume 7 < p < ¢. Dunfield[Dul, Theorem 4.1] has shown that any
non-trivial cyclic surgery on a knot such as K must lie near a non-integral surgery.
Combining this with Lemma 4.2.1, the only candidates for a non-trivial cyclic surgery
are 2p+4, 2p+5, 2g+4, and 2¢+ 5. Suppose that u is one of these candidates slopes
and M (u) is a cyclic filling. Since K is strongly invertible, the Orbifold Theorem
implies that M (u) admits a geometric decomposition (see [CHK, Corollary 1.7]).
Now, as A(u,2(p + q)) > 3, M(u) is irreducible [Oh, Wu] and atoroidal [Go2] and
therefore has a geometric structure.

Note that 7 (M (u)) 2 Z ([Gal]), so (M (u)) is finite. The geometry is therefore
S3, and as 7 (M (u)) is finite cyclic, we deduce that M (u) is a lens space. However.
this contradicts [Go3, Theorem 1.1] which states that the distance between a lens
space surgery such as u and a toroidal surgery such as 2(p + ¢q) is at most 5. We

conclude that there are also no non-trivial cyclic surgeries in this case. d

4.4. Finite surgeries on pretzel knots. We turn now to the case of a (p,q, —r)
pretzel knot K where 4 < r = 2m is even and p = 2k + 1 and ¢ = 2{ + 1 are both

odd. We will assume 3 <p <gq.

Lemma 4.4.1. M (2(p + q)) contains an incompressible torus.



Proof: Identical to that of Lemma 4.3.1. a
Proposition 4.4.2. If p > 2r + 1, then K admits no non-trivial finite surgeries.

Proof: By Theorem 4.1.3, a non-trivial finite surgery would be close to one of the

pip—1)+1-3r . ) r—1)2
2p+q) - ZEZDELZI g —2pn - 520
) 2
(r—1)2
> dr4+6—2r— T
5‘*‘1
_ (r-f-a_ll
T+ 1

and similarly for the other slope of Lemma 4.2.2. Therefore, any non-trivial finite
surgery would be of distance (in the sense of minimal geometric intersection) greater
than 10 from the toroidal surgery 2(p+¢q). However this contradicts work of Agol [Ag]

and Lackenby [L] showing that the distance between exceptional surgeries is < 10. O
Proposition 4.4.3. Ifp < r — 5, then K admits no non-trivial finite surgeries.

Proof: As in the previous proposition, we observe that

_(p—-1)(qg—-1)
p—1+4qg—1

2p+q+r—1 ) —2(p +q)| > 10.

Thus the lone non-integral boundary slope of Lemma 4.2.3 is too far from the toroidal
boundary slope 2(p+ q) (by Theorem 4.1.3 a finite filling could only occur at an odd-
integral slope, which would therefore have to be within distance 9 of the even number
2(p +q))- O

Combining the results of the last few sections, we see that we now have a fairly
precise description of what a finite filling s on a (p, ¢, —r) pretzel knot would look like.
By Theorem 4.1.3, s would have to be odd-integral and near a non-integral boundary
slope and by Propositions 4.4.2 and 4.4.3 we would have to have p+3 > r > (p—1)/2.
We now propose to explicitly calculate the fundamental group of such a filling. We

will then project onto a smaller group G and observe that G is generically infinite.
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The Wirtinger presentation [Rol, Section 3.D] of a (p, g, —r) pretzel knot is (com-
pare [Tr. Equation 1}):

T (M) = (x,y, =z | (zx)(”")/'zz(z:z:)(l""/"’ — (ya;)'(""'”/zy(y:t:)""*'”/g,
(yz7")"Py(yz"")"? = (y2)' 2o (yz) e/,
(yz"") " 2(y=")" T2 = (2) P () "),
The longitude being
[ = $—2(p+q)(yz)(q—l)ﬂ(yz—l)—r/Z(yl.)(Q+!)/2(zx)(p—l)/2 (yz—l)r/’-’(zx)(z’ﬂ)/?’
filling along an odd integral slope s results in
m(M(s) = (29,5 | (22)V22(30) P2 = (ya) "Iy () (o OF2,
(y="")"Py(yz"")" = (y2) P r(yz) eV,
(yz—-l}—r/‘.’.z(yz—l)r/2 — (ZI)(p+l)/2I(Z.’L')_(p+[)’/2,:L'Sl).
We can obtain a more manageable factor group G by adding the relators (yz~!)"/2,
yz~!, and (2z)?:
G = (y, 2| (yz")"2 (2y), z = (2y) P+ 2y () "PH1/2 y7%)
= (w,y | (Pw?)? wP. (wy)? y* =),
where w = (zy)®~Y/2. This is an example of a group which Coxeter [C] has called
(2,a,b;c) = (R,S | R*, S° (RS)?, (R2S?)°).
Thus G = (2,p.|s — 2p|;r/2). Moreover, m(M(s)) will be infinite whenever G is.
And indeed, these groups are usually infinite as Edjvet has shown:
Theorem 4.4.4 (Main Theorem of [E]). If 2 < a < b, 2 < ¢ and (2.a,b;¢) #
(2,3,13;4), then the group (2, a, b;c) is finite if and only if it is one of the following:
(i) (2,2,b;¢c) (2<b,2<¢);
(i) (2.3,b;¢) (3<b<6,4<¢);
(¢ii) (2,3.7ic) (4 < c<8);
(iv) (2.3,b;c) (8 <b<9,4<c<3);
)

(v) (2.3,b;4) (10 < b < 11);
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(vi) (2,4,b;2) (4 <b);
(vii) (2,4,4:¢) (3 <c¢);
(viiz) (2,4,5;¢) (3 < c < 4);
(iz) (2,4,7;3);

(z) (2,5,0:2) (5<b<9);
(zi) (2,6.7;2).

Since p is odd, if p < |s — 2p|, then G is infinite unless p = 3 or 5.

Similarly, if |s — 2p| < p, we see that G is infinite unless [s — 2p| = 3 or 5 (|s — 2p|
is also odd) whence s < 2p + 5. On the other hand, by [Ag, L], the finite filling s
and the toroidal filling 2(p + q) (Lemma 4.4.1) are separated by at most 10. Since s
is odd and 2(p + q) is even, they in fact differ by at most 9. Thus. 9 > 2(p+¢q) —s >
2(p+q) — (2p + 3) = 2q — 5. It follows that 2¢ < 14, whence 3<p< ¢ < 7.

So we can assume that 3 < p < 7. That is, if p > 9, the knot admits no non-trivial
finite surgeries.

Now, earlier work shows that there are no non-trivial surgeries unless %‘ <r<
P+ 3. So, given r > 4, and assuming 3 < p < 7, we see that we are left to consider
4 < r £ 10. (Since Theorem 4.1.3 does not apply to the knots (—4, 3, 3), (—4.3,3)
and (-6, 3, 3} we will consider those separately below.)

er =4

— p=3. When q = 7, there are no non-integral boundary slopes and therefore
no non-trivial finite surgeries (Theorem 4.1.3). For ¢ > 9, the boundary
slope of Lemma 4.23is 2g + 12 — 4(q — 1)/(¢ + 2) € (2q + 8.2q + 9) so
that the only candidate for a finite filling is s = 2¢g + 9. But then s — 2p =
9+2(g—p) > 21 and G is again infinite (Theorem 4.4.4). Therefore (—4, 3, ¢}
pretzel knots admit no finite surgeries (g > 7).

— p = 5. Suppose |s—2p| < 3. Then s < 2p+3 and since a finite filling must be
within distance 10 of the toroidal slope 2(p + ¢) ([Ag, L] and Lemma 4.4.1),
10 > 2(p+q)—(2p+3) > 2g—3 = q < 5 (g being odd). Since the (-4, 5, 5)
pretzel knot admits no non-integral boundary slopes, we cannot have a non-
trivial finite surgery in this case. Therefore we can assume 5 < |s — 2p|. In

order for G to be finite, we must have |s — 2p| < 9 (Theorem 4.4.4). Since s
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would also have to be within distance 10 of 2(p + ¢q) we deduce ¢ < 9. The
(—4,5.7) pretzel knot has 126/5 as its only non-integral boundary slope
and therefore s = 25 is the only candidate for a finite filling. But then
s — 2p = 15 contradicting an earlier assumption. Similarly, by examining
the non-integral boundary slopes, we find that the only candidate for a finite
filling on (—4,5,9) is s = 29 with s — 2p =19 > 9. So the (—4, 3, q) pretzel
knots admit no finite surgeries.

—p = 7. Suppose |s —2p| < 3. Then ¢ < 7. However, since the (—4,7,7)
admits no non-integral boundary slopes, it cannot lead to a non-trivial finite
surgery. So we can assume |s — 2p| > 7. Since G is then infinite. we see that
(—4.7,q) pretzel knots admit no non-trivial finite surgeries.

Except for possibly (—4, 3, 3) and (—4, 3, 5), which will be considered separately
below, (—4, p, q) pretzel knots admit no non-trivial finite surgeries.
e r=6

— p = 3. When ¢ > 9, the non-integral boundary slope of Lemma 4.2.3 is in
(2q¢ + 12,2q + 13) and the only candidate for a finite filling is s = 2¢ + 13.
Then s — 2p = 13 + 2(q — p) > 25 and G is infinite (Theorem 4.4.4). When
q = 3, using non-integral boundary slopes, we find that the only candidate
for a non-integral boundary slope is s = 23, whence s — 2p = 17 and G
is infinite. When ¢ = 7, there are no non-integral boundary slopes. So
(—6, 3, q) pretzel knots admit no non-trivial finite surgeries (g > 3).

— p = 3. When ¢ > 15, the only non-integral boundary slope is in the interval
(2g + 12,2q + 14) (Lemma 4.2.3) and the only candidate for a finite filling
is s =2q+13. Then s — 2p = 13 + 2(¢g — p) > 33 and G is infinite. When
¢ = 5 or 13, there is no non-integral boundary slope. For 7 < g < 11, by
non-integral surgeries, the only candidate for finite filling is s = 2¢ + 15 =
s—2p =154+ 2(q — p) > 19 and G is infinite. So (-6, 3, q) pretzel knots
admit no non-trivial finite surgeries.

— p = 7. We can assume |s — 2p| < 7 as otherwise G is infinite. Then ¢ < 7.
Since the (—6,7,7) pretzel knot admits no non-integral boundary slopes, we

conclude that (—6, 7, ¢) pretzel knots have no non-integral finite surgeries.



62

Thus, aside from possibly (—6. 3. 3), the (-6, p, q) pretzel knots admit no non-
trivial finite surgeries.
o r=8

— p = 3. By Proposition 4.4.3 (—8,3,q) pretzel knots admit no non-trivial
finite surgeries.

— p=5. When ¢ > 15, by Theorem 4.1.3 and Lemma 4.2.3. the only candidate
for a finite fillingis s =2g+ 17. Then s—2p=17+2(q—p) >37and G is
infinite. When ¢ = 3, or 13, there are no non-integral boundary slopes and
for 7 < g < 11, the only candidate is s = 2¢ + 19 which would again lead to
G infinite.

— p = 7. We can assume |s — 2p| < 7 whence ¢ < 7. Since (—8,7,.7) has no
non-integral boundary slopes, we are done in this case as well.

Therefore (—8, p, q) pretzel knots admit no non-trivial finite surgeries.
e r=10

—p=7. Again |s — 2p| < 7 = q < 7. Since (—10.7,7) has no non-integral

boundary slopes, we're done.

The (—10, p, g) pretzel knots also have no non-trivial finite surgeries.

It remains to examine the knots (—4, 3,3), (—4,3,5) and (-6, 3,3) which are not
covered by Theorem 4.1.3. We can follow the procedure outlined above to see that
the group = (M (s/t)) of a s/t filling on a (3, q, —r) pretzel knot projects onto G =
(2,3,|s—2pt|;7/2). Since r/2 is 2 or 3, this will be an infinite filling unless |s —2tp| =
|s — 6t] < 6 and |s — 6t| # 2 (Theorem 4.4.4). By [BZ1, Corollary 1.3], a finite
filling s/t has denominator 1 or 2. On the other hand, by the work of Agol [Ag]
and Lackenby [L], such a filling must also be close to the toroidal filling 2(p + q)
(Lemma 4.4.1): 10 > A(s/t,2(p+q)) = |s — 2t(p+ q)] = |s — 2t(3 + q)|. These

considerations leave only a few candidates for finite surgery.

e (-4,3,3) Since 6 > |s—6t|, [s—6t] # 2,10 > |s—2t(3+¢q)| =|s—12t|,and t = 1
or 2. the only candidates for a finite surgery on this knot are integral surgeries
2,3,5,6,7,9,10,11,12 and half-integral surgeries s/2 with s odd, 15 < s < 17.

Moreover, Lemma 2.3.1 allows us to eliminate the boundary slope s = 12. One
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can verify directly, using SnapPea [Wee|, that none of the remaining candidates
are finite surgeries.

e (-4,3,5) Here. 6 > |s — 6t|, |s — 6t] # 2, and 10 > |s — 2¢(3 + ¢)| imply
s =6,7,9,11.12. We can also eliminate the boundary slope s = 12 and again
verify directly that these fillings do not yield manifolds with finite fundamental
group.

e (-6,3,3) Since ¢ =3 and s = 12 is again a boundary slope, we are left with the
same candidates for a finite filling as we had in the case of the (—4, 3, 3) pretzel

knot. We can verify directly that none of these are finite fillings.

In summary then, Theorems 4.1.3 and Theorem 4.4.4 combine to show that a
(p. g, —r) admits no non-trivial finite surgery unless 4 < r < 10 and 3 < p < 7. We
then investigated those cases directly to observe that they also admit no non-trivial

finite surgeries. We have therefore proved the following.

Theorem 4.4.5. A (p,q, —r) pretzel knot, with 4 < r even and 3 < p < q odd admits

no non-trivial finite surgeries.

4.5. Surgeries on Montesinos knots. We can combine the results of the last two

sections with the work of Delman to classify cyclic surgeries on Montesinos knots.

Theorem 4.5.1. The only non-torus Montesinos knot which admits a non-trivial
cyclic surgery ts the (—2,3.7) pretzel knot. The non-trivial cyclic surgeries on this

knot are of slope 18 and 19.
Remark: A torus knot admits an infinite number of cyclic fillings.

Proof: Delman [Del] has shown that if such a knot admits a cyclic filling, then it is
a pretzel knot of the form (p,q, —r), with 2 < 7 even and 3 < p < q odd. As only
the trivial knot admits a Z filling ([Gal]) Theorem 4.4.5 implies further that r must
be 2. Proposition 4.3.2 completes the proof. O

For finite surgeries, we have:

Theorem 4.5.2. If a non-torus Montesinos knot K admits a non-trivial finite surgery,

then one of the following holds.



e K is a (—2,p,q) pretzel knot with 5 < p < q odd and the filling is not cyclic.
e K is the (—2.3.7) pretzel knot and the filling ts along slope 17,18, or 19.
e K is the (—2,3,9) pretzel knot and the filling is along slope 22 or 23.

Proof: Again, Delman [Del] allows us to reduce to the case of a (p.g.—r) pretzel
knot and Theorem 4.4.5 further shows that r = 2. The finite surgeries on (—2, 3, n)
pretzel knots are classified in Section 5.2. That a non-trivial finite filling of (-2, p. q)
with p > 5 is not cyclic follows from the previous theorem. O
Remark: Although the surgeries listed for the (—2,3,7) and (—2.3,9) knots are
finite surgeries, we know of no instances of a finite surgery on a knot (-2, p, ¢) with

5 < p < q. Indeed, we expect that there are none.



5. CHARACTER VARIETIES OF PRETZEL KNOTS

We continue our investigation of pretzel knots this time restricting to knots of the
form (—2,3,n) and (-3, 3,n). The Seifert fillings of these knots allow us to make an
explicit calculation of their Culler-Shalen seminorms. This in turn leads to a precise
description of their SL,(C)-character varieties. Moreover, it allows us to construct the
Newton polygon for the A-polynomial of these knots (much as we did for the twist
knots in Section 2.3). The study of Seifert fillings of these knots gives a concrete
demonstration of the power of Culler-Shalen seminorms, not only in the study of
cyclic and finite surgeries, as we saw in the previous chapter, but also in the study of
Seifert fillings.

This chapter, which is largely an expanded form of the papers [BMZ, Matl, Mat?2],

begins with a calculation of the total minimal seminorm of the (2, p. ¢) pretzel knots.

5.1. The total norm of (2,p,q) pretzel knots. Let K = K (2,p,q) be a pretzel
knot as illustrated in Figure 19. Since K is a knot, p =2k + 1 and ¢ = 2/ + 1 are

— = -
f o\ 1
T ¥
) : P : q crossings
\ ° °

N—F

FIGURE 19. The (2, p, q) pretzel knot.

odd. Let M = §*\ N(K), # = m(M). The two-fold branched cyclic cover &, is a
Seifert manifold with base B = S2(2, |p|, Iq|) and #°TP(B) = A(2, p|. |q])-

For each irreducible component R; of the representation variety R = R(M) which
contains an irreducible character, let X; = t(R;). By [CS1, Proposition 1.4.4], Xj is
an affine variety and a closed sub-variety of the character varietv X\ = X(M). We
will denote the smooth projective completion of X; by X,. Since K is small ([Oe.
Corollary 4]), the X; are curves ([CCGLS, Proposition 2.4]).

Let ¢ € X’i with Z.(f,.2) > Z:(f.). We can find S, the sum of the minima of

the Culler-Shalen seminorms over the components X; of X, by enumerating such
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“jumping points” and then showing that each contributes two to S. Thus S will
simply be twice the number of jumping points.
As a first step, we show that z is not an ideal point using a modification of the

argument of [CGLS, Proposition 1.6.1].

Lemma 5.1.1. For each o € H{(OM;Z), fa2 = (fa)? + 4fa-

Proof: Let x, be a point of X. Let p(a) = . Z € SLy(C). Then
c
falxo)(falxo) +4) = [(trace(p(a)))® — 4][trace(p(a))]”

= (a+d) —4(a+d)?
(a® + d® + 2bc)? — 4 (since ad —bc =1),

= fa2 (X.o)

a
Let = be an ideal point with Z.(f,2) > Z.(f.). Then f,2(z) = 0 so that z is not a
pole of f,.. By Lemma 5.1.1, z is also not a pole of f, and therefore [,(x) # oo as
well. It follows that either M admits a closed essential surface, or else i is a boundary
slope (see [CGLS, Proposition 1.3.9]). However, since K is a Montesinos knot with
less than four tangles, neither is true (see [Oe. Section 1 and Corollary 4]).
Thus we can assume z € X} and write v(z) = x, with p € R;. (v: XV — X is
normalization. See Section 2.1 or [Shf, Chapter II, §5].) We will argue that z is the
character of an irreducible representation. Suppose instead that p were reducible.

Then, by conjugating, we can take p to be a representation into the upper triangular

a b a 0
matrices. Now replace each matrix p(g) = by po(g) = to
0 a! 0 a!
obtain a diagonal representation py with the same character v(z).
Since i
1/n O a b 1/n 0 a b/n?
0 n 0 a! 0 n 0 a!

and R; is closed under conjugation [CS1, Proposition 1.1.1], we can find representa-
tions on R; arbitrarily close to pp. But, as R; is closed, py € R;. So without loss of

generality, we can assume p is diagonal.
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The Zariski tangent space at p may be identified with a subspace of the space
of 1-cocycles Z'(m; 5l3(C).aa,) (see [Gl, Section 1.2] or [Wei, Section 3]). We can
see that R; is four dimensional since, as we have mentioned, .X; is one dimensional
(the knot being small) and by [CS1, Corollary 1.5.3], dim R; = dim X; + 3. Thus,
dim (Z1(m: 505(C) 4gp)) > 4.

Now. by Lemma 5.1.1, zeroes of f, are also zeroes of f,» and moreover, the order
of zero agrees at such points. So Z;(f,2) > Zz(f,) implies Z;(f.) = 0 and therefore
trace(p(ye)) # £2. On the other hand, trace(p(u?)) is £2, so p(u?) = +£I (we're
assuming that p is a diagonal representation). It follows that p(u) = + 0.

0
Since 7 is normally generated by p, p(w) = Z/4 is cyclic. T

Given this, we can calculate dim (Z'(7; s{2(C) a4p)) directly. Using [BN, Theorem
1.1(i)], dim (H'(x; 5l2(C) agp)) = b1(7; 512(C) 4¢p) = 1. (This argument is explained in
more detail and in a more general context in Section 5.2.1.) We can also determine

dim B'(w; sl5(C) 4ap) as we have the surjection

Slg (C) S B[ (T(‘; 5[2((:) Adp)
A4 9 (uarye A= Adp(v)(4)).

+i 0
Since p(u) = ( : ) . the kernel is the one-dimensional set {4 € s5/,(C) | A =
Fi

0 —a
and

0
( ¢ ) } while sl>(C) has dimension 3. Therefore. dim (B! (7; sl2(C) 14p)) = 2

dim (Z'(m; 5la(C)agp)) = dim (H'(7; sL2(C) aap)) + dim (B'(7; 502(C) 4ap))

= 1+2=3.

This contradiction with our earlier estimate of the dimension of the cocycles shows
that there can be no jump at the character of a reducible representation.

Thus we can assume that p is irreducible. Then, by [CGLS, Proposition 1.5.2],
p(p?) = +I and p, the induced PSL,(C)-representation of #, will factor through
m1(2,). If p is non-abelian, Lemma 3.1.5 shows that p factors through to give an

irreducible representation of A(2,|p|,|g|)- On the other hand, if p is abelian, it
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factors through the finite group H,(X,). In this case p(7) is cyclic and extending to
7 and lifting we see that p has binary dihedral image in SL,(C).

Furthermore, any such dihedral representation will result in a jumping point. For
let v(x) = x, be the character of the binary dihedral SL,(C)-representation p. The
corresponding PSL,(C) representation g has as image a dihedral group normally
generated by 4(ux). Therefore p(u) is of order two and consequently p(u) # £ while
p(u?®) = +£I. This implies trace(p(n)) = 0 so that Z.(f,2) > Z.(f.)-

The number of such dihedral characters d can be related to the Alexander poly-
nomial Ag(t). Indeed, d is equal to (card(H,(¥2)) — 1)/2 ([Kl. Theorem 10]) while
card(H, (Z;)) = |Ax(—1)| ([Rol, Corollary 8.D.3]). So d = (|Ax(-1)] — 1)/2.

By Equations 2.2 and 2.3, there are I_'—;’—lj ['i,;lj irreducible PSL,(C)-characters of
A(2,]p|; lq])- The corresponding representations each extend to an irreducible repre-
sentation gy of 7. These in turn can be extended to 7« (Proposition 3.3.1). Moreover,
(Scholium 3.3.3) any representation p which extends gg is such that g(u) has order
two. Thus, as was the case for the dihedral representations, the irreducible represen-
tations of A(2, |p|, [g]) all lead to jumping points where Z.(f.2) > Z.(f,)-

There are I_L‘;—'J ['g—'] irreducible PSL,(C)-characters of 7 which factor through the
triangle group A(2, |pl, lq]) and (Ax(-1)|—1)/2 = (|pg +2(p+q)| — 1)/2 irreducible
dihedral characters. (Note that by [Mru, Proposition 14] or [Hi, Theorem 1.2],

Ag() = (- 1P — )/t + 1) +t(t P+ 1)+ 1)/t + 1)%)

By Lemma 2.4.10, none of the dihedral characters go through A(2,|p|,|gq|). Since
PSL,(C)-dihedral characters are covered once in SL,(C) and other characters are
covered twice ([BZ1, Lemma 5.5]), we see that there are (|pg| — (|p| + Iq|) + |pg +
2(p + ¢)})/2 jumping points where Z,(f,2) > Z:(f.). This allows us to calculate S
once we have shown that Z,(f,2) — Z.(f.) = 2 at each of these points.

The idea is to follow the argument of [BZ1, Section 4] (see also [BB, Theorem
A]). The essential requirements are that p(w (OM)) ¢ {*I} and that v(z) is a
smooth point of X;. Suppose first that p is a representation which factors through
A(2.]pl, lql). We proceed by showing that the corresponding point y = x,, in Y, the

character variety of 7. also satisfies these requirements.
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Lemma 5.1.2. Let pg be the PSL,(C) representation induced by py. If po() (6:‘7)) C

{£1} then p is an octahedral representation.

Proof: Actually we will argue that if the preferred longitude A has trivial image in
A(2,|pl,|ql]). then p is octahedral.

Let A € # denote the class of a lift of a representative of A. Trotter [Tr] has
explained how to find the image of A in A(p, ¢.7) in the case of a (p, ¢. r) pretzel knot
with p, g, r all odd. We will follow the same procedure for the (2. p, q) pretzel.

Starting with the Wirtinger presentation [Rol, Section 3.D] for = with generators
f. g and h as indicated in Figure 19, we look at the index two subgroup consisting
of words of even length and quotient out by the relations f2 = g> = h> = 1. The
resulting group is 7 (X2) = 7/{u?). Quotienting again by the center, brings us to
A2, |pl, lq]) = (a,b,c | a®,blP!, 9l abc) where a = gf, b = fh and ¢ = hg. Beginning
with the arc labeled A~ and tracing out the knot, we find the longitude \ € =

A= (fR)*(gf)(fh)**! (hg)'(9f)(hg)"*!

projects to A € A(2, |pl. lql):
:\ — bkabk+lclacl+l

We can take

_ 0
po(a) =A== )
—1
Suppose that go(A) = +/. Then P~!AP = +4 where P = po(bF*t'c!*!). It follows
that P is of the form

Let pp(b) = B. Note that B* is not diagonal. If it were, then B = B2 would
be as well and would therefore commute with A. In this case, gy would be reducible
which is a contradiction. Therefore, after conjugating by diagonal matrices, we can

write B* in one of the following two ways:

u 1 u u(t—u)-1
+ or =
u(r—u)—1 7—-u 1 T—u



where £ is the trace of B* and u € C (compare [BZ2, Example 3.2]).
Taking C = py(c), we see that C~! = B¥P. So the relator abc implies

+I = ABC
_ ‘43—21:0—2[

In other words, B¥A = PB*P. If

then no matter which of the two forms we choose for B¥, the equation B¥4 = PB*P

will not be satisfied. Therefore

For the time being, we will assume

Bf =+
u(ftr—u)—1 7—u

and return to the other case later.
Equating B¥A and PB*P (in PSL,(C)) gives rise to the equations
a™? = Fi(u(t —u)-1)
T = u(l Fi).
Using these, we may simplify
trace(C~!)2 = trace(B*P)?
= (£(a™' = (u(r - u) — 1)a))®

= Fi(u(r —u) — 1) £ 2u% + 2 + Fi(u(r — u) — 1)

= 24 2u%.
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On the other hand,

(trace(B~*))2 = (+7)?

Therefore (trace(C~!))? + (trace(B~*))> = 2. Since C and B are of finite order,
trace(C™!) = £(€ + £€7') and trace(B~*) = (¢ + (') where £ and ¢ are roots of

unity and we have

0 = &E+&2+C+(¢2%+2

(59) = a1£2 -+ 026_2 -+ a3C2 + a4C_2 + as

wherea; =1 (i =1...4) and a5 = 2.
Following Mann [Man, Definition 2], an equation of this form is called irreducible,

provided there is no equation of the form
(5.10) b1£2 + b‘zf—.z + bgcz + b4<_2 +b;=0

where b; = a; or ; = 0 with at least one but not all the b; zero. It’s clear that at least
two of the b; would have to be zero in Equation 5.10. (Otherwise the complimentary
equation would have only one term.) So there are basically two possibilities.

If Equation 5.10 is of the form £2+ (% +2 = 0, then we see that £2 = (> = —1. But
then £72 = (=2 = —1 as well in contradiction to Equation 5.9. The other possibility
for Equation 5.10 is of the form £ + £72 +2 = 0. Again this implies £> = £72 = —1.
Now, since trace(C~') = £(£ + £€~!). we can diagonalize C~* to put it in the form

0
+ ¢ . Then C = C~% diagonalizes to 1. In other words C is the identity.

0 &t
This contradicts irreducibility of gg.

We conclude that Equation 5.9 is irreducible. By Mann’s Theorem {Man, Theorem
1], the solutions to the equation are 30th roots of unity. Checking amongst the 30th
roots of unity, we see that the only solution is £2+£72 = (?4+ (2 = —1 so that £2 and

¢? are both third roots of unity. As, before we can argue that B and C diagonalize to



2 0 2
+ ¢ and + ¢ respectively. We conclude that B and C both
0 (2 0 £

have order 3.

If we take

Bt — 1 u u{(t—u)—1
1 T—u

then again we find that B and C have order 3.

We began with the assumption that 5o()A) = £/ and deduced that B and C are of
order 3. Thus go(7) = A(2,3,3) with generators 4, B and C. In other words go(7)
is Ay, the tetrahedral group. As [7 : #] = 2, the lift to 5(7) is either A or S;. Now,
p(u) has order two and normally generates g(w). Since A; has no such order two
generator, we conclude that g(7) = S;, the octahedral group. Thus p(7) is a (binary)
octahedral representation into SL,(C).

This completes the proof of the claim. O

So, as long as p is not octahedral, po(m; (9M)) # {+I}. Then, py(m (IM)) ¢ {£I}
and p(m,(OM)) ¢ {£I} as well.

We now turn to the smoothness of v(z). Again we will first show ¥ is smooth. As
the Zariski tangent space at pog can be identified with a subspace of the cocycles. we
proceed by investigating the group cohomology.

Asa first step, we observe that Z' (7 (Z2); 512(C) 4q5,) = Z(A (2. |pl. la]): 512(C) 4a5,)-

Indeed, the Seifert structure of £, gives the exact sequence (Equation 3.4)

where F' = (h) = Z is the group of a regular fibre. The projection ¢ induces a
homomorphism & : Z'(A(2, |p|, lal); 562(C) 4u5,) — ZY (71 (E2); sl2(C) Addo)-

To construct the inverse, we show that u(h) = 0 for each u € Z'(7,(Z2); 52(C) 445,)-
Indeed, for all g € m(X2). u{hg) = u(gh). On the other hand, go(h) commutes with
Po(A(2, |pl, |¢l)). Since pg is irreducible, this implies go(h) = =/ by Lemma 2.4.9.



Putting it together,

u(h) +ulg) = u(h)+ Adpo(h) - u(g)
= u(hg)
= u(gh)
= u(g) + Adpo(g) - u(h)

= u(g) + po(g)u(h)po(g)~".

Thus u(h) € slo(C) commutes with go(m(X2)). By Lemma 2.4.7, u(h) = 0. Now
define W : Z'(my(T2); s2(C) 1) = ZHA(, [Pl al): 562(C) ) by T(u)(B(g)) =
u(g). Since u(h) = 0, ¥ is well defined. Moreover, it’s an inverse of ¢ and we have the
required isomorphism. This isomorphism also descends to the level of cohomology:
H‘(m(Zg);slg(C)Mﬁo) =~ HY A2, |pl, lq]); slo(C) Ads,)- On the other hand, we can

argue that the cohomology of the triangle group is trivial directly.

Lemma 5.1.3. If p : A(p,q.7) — PSL,(C) is an irreducible or non-abelian repre-
sentation, then dimc(H'(A(p, q.1); 5l2(C) 445)) = 0.

Proof: We begin with B!(A(p, ¢, f');.S‘lg(C)Adﬁ). Recall the surjection

slh(C) — Bl(’—\(P, q,T); Slz(C).-up)
A — (uq:v— A— Adp(v)(A).

By Lemma 2.4.7, the kernel is empty and
dimc(B'(A(p. ¢, r); 512(C)) ud5)) = dimc(sl2(C)) = 3.
Thus it suffices to argue that dime(Z'(A(p, ¢, 7); 512(C) 44;5)) = 3 and, as the cobound-

aries are contained in the cocycles, it will in fact be enough to argue that the dimen-

sion is at most 3.



Let A(p,q.7) = (a,b| a®? = b7 = (ab)"). We can assume

pla) = :l:(g Ol) where 7 # 1,7 =1,
0~
§

0
pb) = *A A7 £#£ +1.87=1, and
0 &t
c 0
plab) = =B B! o#+l,0"=1.
0 ot

a a
IfA =+ ( b ) then either a;a» # 0 or aza; # 0 (otherwise p(a) and p(b)
a

3 Qa4

b
vz ) either bybs # 0 or byby # O.

commute) and similarly, for B = +
by by

Recall that
Z'(A(p. ¢ )3 812(C) 445) = {u: A(p,¢.7) = sL2(C) | u(gg’) = u(g) + g - u(g’)}

where ¢ - u(g’) denotes the adjoint action of 5(g) on u(g’). Then a cocycle u €

Z'(A(p.q,7); 5l2(C) 4y;) is determined by its value at a and b:

w(a) = ry I ’ u(b) = Y Y2 .
r3 —I, Y3 —Uh

So Z'(A(p. q.T); 5l2(C) 445) C 5l2(C) & sl (C) = C5. We can therefore establish the
inequality dime(Z! (A(p, . 7); sl (C) 4dp)) < 3 by finding three independent equations
relating the z; and y;.
Now,
0 = wu(l)

= u(aP)

= u(a)+a-u(a®")

= wu(a)+a-u(a)+a®-ula)+...+a” " ula)

= (l+a+...+a”!) - u(a),



=~}

n

so, using

o - u(a) = n" 0 I I " 0y T NIy
n—" T3 —Iy o 7 ntry; -z
we have
0 Ty 1+ +...+n*P~)g,
(L+n2+ ... +7n72=D)g, —pz,
_ pT) ll__,;'.sz‘.l
= N
—p—2 X3 —PT1
pr1 0
0 -—px;

whence z, = 0. This is our first equation.

wy  wy
Similarly, if we let = A~ tu(b)A, then
w3 —w
@ 0 = u)
= u(b?)

q—1
= 2 p(b)u(®)p(6™)

t=0

q-1 ags W .
= ) (Ap(B)A') T (dpp) Ay

i=0 w3 —w,

qu, 0

t

0 —quw

so that w, = 0 as well.
Since w; = (ay1a4 + aoa3)y) + azaqys — aya2y3 and either aja, # 0 or aza, # 0, this
is a second, independent equation in the ;. y; coordinates.

Finally, the relation (ab)” =1 allows us to deduce a third equation
b3bay — bibazs + (b1by + babs)yy + b3ban’ys — byban 2y = 0

which is again non-trivial since either b, b, or bsb, is non-zero.
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Thus Z'(A(p, q,7); 5l2(C) 44;) is an algebraic set in C° cut out by at least three
independent linear equations and so of dimension at most three. a
Now, using the remarks which precede the lemma, and the observation that the
PSL,(C) representation gy and the SL,(C) representation gy result in exactly the
same adjoint action on s/,(C), we see that dimc(H'(7(Z,): sl2(C) Adpg)) = 0. So we
can proceed as in [BZ1. Section 4] to show that dimcH' (7 5l2(C) 414,,) = 1 and y
is simple in Y. (Note that we will make the distinction between smooth and simple
points of a character variety. A simple point is a smooth point which lies on a unique

irreducible component of the variety. See [Shf, Chapter 2 §2].)

Proposition 5.1.4. Let p be an SL,(C)-representation of a finitely generated group

m and py the restriction to e normal subgroup of finite index @. Then
dimcH' (7; sly(C) adp) < dimc H'(7; sl,(C) Adgo)-

Proof: The Lyndon - Hochschild - Serre spectral sequence gives us the exact sequence

(see [Rot, Theorem 11.5|)
0 —» H'(n/7; (s12(C) 1)) —> H (73 82(C)tp) —> H' (73 512(C) i) /%

where 4% = {a € A | g-a = g,Yg € G} denotes the set of fixed points of the module
A under the group action G. Now, H'(w/7; (sl2(C) .4p)") = O since 7 /7 is finite and

(5{2(C) 14,)™ is a complex vector space. So we have
H' (73 8l2(C) aap) = H' (71 512(C) adpo )™ — H' (71 51>(C) 1dpo )-

O
In our case, the proposition shows that dimcH'(7; 5l2(C).14,) < 1 whence v(z) is

a smooth point of X; (and in fact a simple point of .X).

Remark: We have been using the ideas of [BZ1, Section 4] whereby, under appro-
priate conditions, z = X, is smooth in X (7) exactly when dimc H'(x; 5l2(C) aap) = 1.
Interpreted in this context, the proposition says “simple points of X (7) lift to simple

points of X (7).”
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Thus if p factors through A(2, |p|, |¢]) and is not octahedral. then v(z) is a smooth
point of X; and p(m(0M)) ¢ {£I}. Following the reasoning of [BZ1, Section 4|, we
conclude that Z;(f,2) — Z.(f,) = 2.

We can see that the jump at a dihedral character is also two by adapting Tan-
guay’s [Ta, Propostion 5.3.3] arguments for dihedral characters of two-bridge knots to
the present situation. Again, the argument comes down to showing H'(; sl2(C).14p)
has dimension 1 when p is a dihedral representation. Let p(7) = D,,,. the binary
dihedral group of order 4m. Then Adp(w) C Aut(SL2(C)) is isomorphic to Da,,, the
dihedral group of order 2m.

Tanguay shows that the Betti number b;(7; s{(C) 44,) can be related to the Betti
numbers of several covers of M:

by (: 512(C) agp) = by (7 C) — by (m:C) + ﬁ % w2 (7 ©),

where the w; are the kernels of the maps

Ad,
T ——p) Doy — ng,

and ¢ and p are the Euler and Mébius Functions respectively. Now, b;(7; C) = 1 [Rol,
Exercise 2.E.6] and b, (7; C) = 1 [Rol, Section 8.D]. So showing that &, (7; sl2(C) 14p) =
1 and dihedral characters are smooth reduces to arguing that b, (74; C) = d.

Let "\7,, be the covering of M corresponding to 4. Then ﬁd also covers M and
this covering may be extended to an orbifold covering £; — £,. We will argue that
b1 (X4) = 0. Then, since ¥, is obtained from ﬂd by filling along d tori, 0 = b;(X4) >
bl(ﬁd) — d whence bl(ﬁfd) < d. On the other hand, since 4174 has d toral boundary
components, Lefschetz duality allows us to argue that b;(7y) = dim H I(Hd; C) >d.
Therefore b, (74) = d, as required.

It remains to show that ,(X4) = 0, and this is where we must introduce some new

ideas bevond those used by Tanguay. We have the diagram

0 > E y T (Sq) —— 79TD(B) —— 1

N

0 y F > TTI(ZQ) EE— A(2~|p|7|(1|) — 1
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where the horizontal rows are the exact sequences arising from the Seifert structure
of £y and Xy, E = F = Z represent regular fibres, and By is the base orbifold of
¥4. Now, Im(P) is normal since P is a regular cover. This implies Im(P") is normal.
Since F and F are abelian, Im(P’) is aiso normal. Thus, the cokernels will be groups

and we can use the Snake Lemma to obtain the exact sequence
ker(P") -3 coker(P’) -2 coker(P) -2 coker(P") —> 1.

Now, ker(P") = 0 since By — A(2,|p|. |g|) is an orbifold covering space. Thus « is
injective. Since P comes from the dihedral covering Efd - M > M . we see that
coker(P) = Z/d. By the injectivity of a, coker(P’) = Z/a where a | d. On the other
hand. as the degree d of the Seifert cover £; — ¥, is the product of the degree a in the
fibres and the degree of the orbifold cover ¢, we see that card(coker(P")) = ¢ = d/a.

However, since Im(a) = ker(3), Im(8) also has cardinality c:
coker(P") = Im(B) = coker(P)/ker(3) = (Z/d)/(Z/a) = Z/c.

The projection A(2,]p|, |q]) — coker(P”) = Z/c is an abelian representation, and
as such factors through H,(A(2, |pl, |q])) = Z/b. where b = gcd(pq, 2p, 2q) = ged(p, q).
So the covering By — S(2,|p|, |q|) is either trivial, or else of degree ¢ > 1 dividing b.
In particular, c is odd. So, By is either S2(2, |pl, |q]) or else S?(2,2. ..., 2, |p|/c, |ql/c),
i.e., ¢ cone-points of order 2. Given By, we have an explicit formula (Equation 3.35)
for 7 (£4) involving the orders of the cone points. We can then show that H{(¥,) is
torsion by examining its order ideal (see [Rol. Section 8.B]). Therefore b,(£y;) =0 as
required.

Octahedral representations can be treated in a similar fashion. In this case,
by (7; sl2(C) agp) = bi(7;C) — by (m; C)

where # = p~!(Ds) with Ds a dihedral subgroup of index four in the octahedral group
Sy. Of course b, (7; C) =1 as before, so we will want to argue that b,(7; C) = 2.

Let M be the covering of M corresponding to Dg. Then M is an irregular covering
of degree 4 which also covers M. As before, we extend the covering [ — M to

a degree two map between Seifert spaces: £ — ¥,. This leads to a diagram quite



similar to that for the dihedral representation:

0 sy E y m(5) — #9P(B) —— 1
N
0 » F > 7'1'1.(22) I A(2~ Ip|~|(Il) — 1

In this case, B, the base orbifold of £, is either a 1—1 or a 2—1 cover of $%(2.|p|, |¢|)-
In particular it is a regular cover and coker(P”) is either trivial or cyclic of order
2. Since coker(P") is abelian, it is again a factor of H\(A(2,|p|.|gq])) = Z/b where
b = ged(p. q) is an odd number. Thus B = 52(2, |p, |q|) as well and, as in the dihedral
case, we find b,(X) = 0. Since M has two boundary components, we may now argue
that b, (7#; C) = 2. Thus b,(7: sl5(C)4p) = 1 and v(z) is again a smooth point of X
vielding a jump of two.

So each of the jumping points v(z) € X; is a simple point of X (in particular,
v~Yv(z)) = ) and results in a jump of two: Z;(f,2) — Z:(f.) = 2. This allows us
to calculate S once we have observed that 2s; = 2||u||; = ||¢?||; and that Z.(f,2) >
Z.(f.). Yz € X ([CGLS, Proposition 1.1.3]).

S = ZS,‘
= D1l = lledls
= > > Ze(fi2) = Z=(fa)

U Ze(f,2)>Z2(fu)w(T)EX

= > Zz(fu2) = Zz(f)

Ze(f,2)> Ze( fu ) w(T)EN

= 2(|pg| = (Ip| + lgl} + |pg + 2(p + ¢)1)/2
(5.11) = |pgl = (Ipl + lql) + |pg + 2(p + g)|-
5.2. (-2,3,n) pretzel knots. Let K, denote the (—2.3,n) pretzel knot which we
introduced in Section 2.5. If n is even, K, is a link, so we will take n odd. Since K, is

a Montesinos knot with three tangles. it is small [Oe, Corollary 4] and consequently

not a satellite knot. Therefore K, is either a torus knot or hyperbolic.

Lemma 5.2.1. K, ts a torus knot iff n = 1,3,5.
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Proof: Kawauchi [Kaw, Theorem III] shows more generally that a (p,q.r) pretzel
knot with |p|,|ql,{r| > 1 is torus only if {p.q,7} = {—2,3.3} or {—2,3,5}. We
present here a direct argument specific to the (—2,3,n) pretzel knots.

We will show that if n # 1,3,5, then the Alexander polynomial Ag _(t) is not
the Alexander polynomial of a torus knot. Recall ([Mru. Proposition 14| or [Hi,

Theorem1.2]) that
A () = (¢ —=1)(t G 1) /(t+ 1)+t 3+ 1)t + 1)/t +1)%,

while the polynomial for the p, g torus knot is [Rol, Section 7.D.8|

(I —¢t)(1 —1tr9)
(T—)(1—29)

In the discussion that follows, we will use representatives for these polynomials which

Ax,,(t) =

have a positive constant term and no negative powers of ¢.

Suppose first that n > 7. Then Ak, (t) terminates with the three terms 3 — ¢ + 1
while Ag, () terminates with ¢t —t + 1 (we will assume 0 < p < q). Thus, if K, is a
p, q torus knot, then p = 3. Since deg Ak, (t) = n+3 and deg Ak, (t) = pg+1—p—q,
we see that ¢ = (n +3)/2 > 6. Actually ¢ > 7 since it’s also relatively prime to 3.
However, although Ak, (£) includes the term #° (when n > 7), Ag, (£) has no t* term

(when p = 3 and ¢ > 7.) This contradiction shows that K, is not a torus knot when

n>T.
If n < 0, Ag,(t) includes the term —2¢ (or —3t when n = —1) while Ag, (£)
always has t coefficient —1. Therefore K, (n < 0) is not a torus knot either. O

Since we are interested in hyperbolic knots, we will assume that n is an odd integer,
n # 1,3,5. In addition, we will generally assume n # —1 as that case corresponds to
the twist knot K> treated in Section 2.3. However, we will verify that our conclusions
also hold true for this knot.
As in Equation 5.11, (p= -3, ¢ = —n.)
S = Ipg| - (Ipl + lgl) + lpg + 2(p + )i
= 3ln| - (|n| +3) + [3n — 2(n + 3)|
= 2ln|+|n—6]-3

= 3(ln—2| —1) (sincen ¢ [0,6] ).
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5.2.1. Bounding the Seifert slopes. Bleiler and Hodgson [BH, Propositions 16 & 17]
have shown that 2n + 4 (respectively 2n + 3) surgery on K, results in a manifold
which is Seifert fibred over S2(2,4,|n — 6|) (respectively S%(3,5,|n — 35|/2)). (Note
that there is a small error in [BH, Proposition 17] which refers to “4n + 14 surgery on
the (—2,3,2n+7) pretzel knot.” It should read “4n+ 18 surgery on the (—2,3,2n+7)
pretzel knot.”)

We can bound the Culler-Shalen seminorms of these slopes in much the same way
we calculated S above. We will count the irreducible characters of the surgered
manifold and then show that each such character contributes 2 to the seminorms of
the corresponding slope.
2n + 4 By Equations 2.2 and 2.3, there are |n — 6| — 1 irreducible PSL,(C)-characters
of A(2,4,|n — 6]). Since d = (|Ag(—1)] — 1)/2 = (|n — 6| — 1)}/2, half of them are
dihedral. This gives 3(jn — 6| — 1) irreducible SL(C)-characters.

Recall that

“272 + 4”1 = Z Z:r(f2n.+-!)
J:G,‘T.’,—
where Z,.(f) denotes the order of zero of f at =. Since the meridian u of K, is

not a boundary slope, Z.(f.) < Z:(fan+1) for each z (JCGLS, Proposition 1.1.3}).
This suggests that we approach the calculation of the total norm (see Section 2.2.3)
||2n + 4||r by comparison with |ju|lr =5 :
(5.12) 127 +4llz =S+ D (Ze(fomsa) = Za(fu))-

torelX;

Since M is small and 2n + 4 is not a strict boundary class, we may apply [CGLS,
Proposition 1.6.1] to see that Z:(fan+a) = Z(f.) at ideal points. Thus the sum of
Equation 5.12 may be restricted to z € X7.

Reducible characters do not contribute to the sum of Equation 5.12 either. For
suppose v(t) = X, were the character of a reducible representation p € R; with
Z:(fonta) > Z:(f.). Since R; is closed and invariant under conjugation, we can
assume that p is diagonal. Then, as in Section 5.1, we can argue that the dimension
of Z'(m; sly(C) a4p) is at least 4.

On the other hand, Z,(fan+4) > Zz(f,.) implies p(2n+4) = =1 ({CGLS, Proposition
1.5.4]). So, if we take 5 as the PSL,(C) representation corresponding to p, then g
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factors through H;(M(2n + 4)) = Z/(2n + 4). Since p(7) is normally generated by

0
p(1) and p is diagonal, we see that p(u) = " with n%@r+) = 1,

0 n!
We can use [BN, Theorem 1.1(i)] to find b, (7; s{>(C) 14, )- Indeed,

b1 (7; sl2(C) adp) = by(m; C) + 2b(7; Cs)

where 8 = n? is a (2n+4)th root of unity. Of course [Rol, Exercise 2.E.6], b,(7; C) = 1.
Now Cjz is C with the Z-action induced by ¢t - ¢ = ¢ where t is a generator of Z.
Since 7 surjects onto H\ (M) = Z, this gives a w-action on C.

We can also think of H,(M) as acting on M, the infinite cyclic cover of M. and de-
fine a C[¢, t~']-module structure on H,(M;C) (see [Rol, Section 7.A]). In this context
H(m:Cg) = coker(H'(M;C) L H'(M;C)) where t — 3 represents multiplication
by ¢t — 3. Since the Alexander polynomial Ay, (t) is the generator of H (M C) as a
C[t, t']-module, we can argue that coker(t — 3) = 0 if Ag, (8) # 0.

In Appendix A we show that Ag, (¢) admits no roots which are 2n + 4th roots
of unity. Thus H'(w;Cg) = 0 and b,(7;5l5(C)agp) = 1. We can then argue as
in Section 5.1 that dim B'(7; sl2(C).a4p) = 2 and dim Z'(7; s{23(C) 44,) = 3. This
contradicts our earlier estimate for the dimension of the cocycles and we conclude
that there can be no jump at the character of a reducible representation p.

[t remains to examine the r € X/ satisfving Z,(fin+4) > Z:(f.) and such that
v(z) = x, is the character of an irreducible representation p. As mentioned above,
Z:(fon+a) > Z:(f.) implies the corresponding PSL,(C) representation p factors
through =, (M (2n + 4)).

As M (2n+4) is Seifert fibred over S%(2, 4, |n —6]), p factors through an irreducible
representation g’ : A(2,4,|n — 6|) = PSL,(C) (see Lemma 3.1.5.) Now, as in Sec-
tion 5.1, HY (m (M (2n + 4)); slo(C)aap) = H'Y(A(2,4,|n — 6}); sl2(C) 4qz ) is trivial.
Thus, arguing as in [BZ1, Section 4], we can deduce that v(z) is a smooth point of
X; (and in fact a simple point of X) so that v~ '(v(z)) = z.

Therefore the jumping points v(z) where Z,( fon+4) > Zz(f.) are simple points of .X
and correspond to irreducible PSL,(C) characters g which factor through A(2, 4, |n —
6]). Conversely, any such representation induces a jumping point. This is immediate

if the representation is diagonalizable on 7 (9M) since then p(u) is of finite order,
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but not £/. On the other hand, p(2n + 4) = £I. Thus Z:(fon+s) > 0 = Z(f,). If
p(m (@M)) is parabolic, we can appeal to [BB, Theorem A]. In any case, as the jump
Z(fanss) — Z:(f,) will be two (see [BB, Theorem A]) at each of the 3(|n — 6] — 1)
SL,(C) characters, we can evaluate the sum of Equation 5.12 to find that [|2n+4||r =

S +3(ln — 6] — 1).

2n + 5 Since M (2n + 5) has odd order first homology, 7; (M (2n + 3)) has no dihedral
characters and its irreducible characters correspond to those of A(3.5. [n — 3|/2).

When n # 5 (mod 30), the Alexander polynomial Ak, (¢) admits no zeroes which
are 2n + 5th roots of unity (Lemma A.1.1). So, as with 2n + 4, there is no jump at
the character of a reducible representation. Equations 2.2 and 2.3 show that there
are |[n — 4] — 1 irreducible PSL,(C)-characters of A(3.5.|n — 5|/2) each of which
is double covered in SLo(C). Thus m(M(2n + 5)) has 2(jn — 4| — 1) irreducible
SL,(C)-characters. As was the case for 2n + 4, each of these contribute two to the
Culler-Shalen seminorms of 2n + 5 so that |[2n + 5|7 = S + 4(|n — 4] — 1).

This equation also holds for n =5 (mod 30) although by a different argument. In
this case, there are |n — 4| — 5 irreducible PSL,(C)-characters of A(3.3, |n—5|/2) and
consequently 2(jn—4|—>5) irreducible SL,(C)-characters of m, (M (2n+5)). Four of the
reducible characters of A(3, 5, [n—5|/2) correspond to reducible representations which
project onto Z/15. As shown in Appendix A, the Alexander polynomial admits 15th
roots of unity among its zeroes when 15 | (n —3), so we cannot neglect these reducible
characters. Indeed, as we will now show, each one will be covered twice in SL,(C) by
characters contributing two so that we again have ||2n + 3|jr =S + 4(|n — 4| — 1).

Ifn=5 mod 30, then |n — 5|/2 = 15k and H,(A(2.3,|n])) = Z/15. On the other
hand, by Lemma A.1.2, Ak, (t) admits primitive 15th roots of unity and they are
simple zeroes of Ag, (t).

Let £ = 2™7/13 be a primitive 15th root of unity and let p be the reducible SL,(C)

representation of = induced by

en’jl/lS 0

p(p) = J—
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Then p(u)'® = £1 and p is a cover of one of the reducible PSL,(C) representations of
A(2,3, |n|) projecting onto Z/15. In other words, we can think of p as a representation
of @ which factors through M(2n + 5). Corresponding to the eight primitive 15th
roots of unity, we have eight SL,(C) characters. We will show that the jump at each
of these characters is 2.

Frohman and Klassen [FK, Theorem 1.1] show that such a representation p is the
endpoint of an arc of irreducible representations. So p € R;, a component of the
SL,(C)-representation variety containing an irreducible representation. The corre-
sponding character z = X, lies on the curve X; = ¢t(R;).

Since £ = €?>77/!5 is a primitive 15th root of unity, x,(u) = 2cos(7j/15) # +2.
So Z.(fx) = 0. z is a non-trivial character, and, moreover, (7, (OM)) # {£2}. (A
character is trivial if x(m) C {£2}. See [P, Section 3.2].) On the other hand. since p
factors through M (2n +3), p(2n +5) = I and Z;(fants) > 0. So Z:(fonts) > Zz(f,)
and there is a jump at .

Now Proposition 1.5.2 of [CGLS]| shows that there is a non-abelian representation
p' € R; with character = and p'(2n+5) = +/I. Since z(m(OM)) # {£2}, we see that
p'(w(OM)) ¢ {£I}. Finally, as in Section 5.1. we can argue that H'(m (M (2n +
5)); sl2(C) 44,) = 0. This allows us to apply [BB. Theorem A] and conclude that the
JUmp, Zy(fanss) = Ze(f). is 2.

5.2.2. An application of Lemma 6.2. Lemma 6.2 of [BZ1] relates the Culler-Shalen
norm on a norm curve to the boundary slopes. In the case of a knot. such as K, for

which u is not a boundary slope we can write

(5.13) il = 2[aiA(Y. B1) + a2A (7. 82) + . .. + amA(7. Bl

where the a; are non-negative integers and the 3; are boundary slopes.
The boundary slopes of K, can be found using the methods of [HOj (see also
Section 4.2). We have 3; =0, 8> = 2n+6, 33 = 16 (respectively 10) and 8, = L;%"’

(respectively 2(n + 1)2/n) when n > 7 (respectively n < —1).
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The calculations of the last two sections imply the following inequalities for any

Culler-Shalen seminorm:

(5.14) lell = s<3(n—2|-1):
(5.15) s<|2n+4|| £ s+3(n—6]-1) and
(5.16) s<|I2n+5} < s+4(n-35-2).

These strongly restrict the possible values of the coefficients a;.

For example, suppose n > 7. Then the equations above become

(5.17) 2[a; + a2 + a3 + e ; 30..,] = s<3(n-3);
(5.18) s<2[2n+4)a; +2a+ (2n—12)az +a;] < s+3(n—7) and
n—>5

(5.19) s <2[(2n+3)a; + a2 + (2n — 11)az +

Cl4] < s+ 4(". - 7).

2

It will be useful to subtract s from each of the last two equations:

(520) 0< (2n+3)a +az+ (2n — 13)az ~ 2>

(

IA

3(n—7)/2,

ay

1) 0<(2n+3)a;+(2n—12)az —ay < 2(n-17)

ol
N

Since a; > 0, Equation 5.17 implies a; < 3. In fact, in order to have a norm
(rather than a seminorm), we would need at least two of the a; > 0. This condition
further restricts a; < 2. (Seminorms which are not norms will be discussed further
in Section 5.2.4.)

Given a; < 2, Equation 5.21 implies (2n + 3)a, < 2(n — 6) so that a; = 0. Then,
the same equation implies a3 < 1. We will argue that, in fact, ay = 2 and a3 = 1.

Suppose instead that ay < 1. Since a; = 0, Equation 5.21 becomes (2n — 12)az <
2n — 13 so that a3 = 0. This ts a contradiction since if a, and a3 are both zero. then
Equation 5.21 in fact says a4 = 0 as well, and only a, is non-zero. This would mean
that || - || is not a norm.

Therefore a4 = 2. Since a; = 0, Equation 5.21 implies that a3 > 0. Thus a3 = 1.
Finally, given these values, Equation 5.20 can be rearranged to see that 0 < a» <
(n — 5)/2. This implies s = 2n — 4 + 2a,, ||2n + 4]] = s + 2(n — 8) + 2a, and
|2n + 5] = s + 4(n — 7).

For n < —3 there are four possible solutions.
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l.ay=0,a3=a;4=1and 0 < a; < (1 —n)/2. Then
s=2(1—-n)+2ay ||2n + 4| =44 —n) + 4as = s+ 2(7 — n) + 2a,

and [|2n + 5| =2(7 - 3n) + 2a; = s + 4(3 — n).

[\)

a,=a;=1,a3 =0and 0 < a; < (1 —n)/2. Then
s=2(1—-n)+2a, |[|2n+4|| = -4(n+ 1) + 4das = s — 2(n + 3) + 2a»

and [|2n + 5[ = —6(n + 1) + 2a; = s — 4(n + 2).

3.Ifn>-23,a, =1,a3 =a; =0and 0 < ay; < (n+ 25)/2. Then

s =24 2ay, ||2n + 4|l = —2(2n + 4) + das = s — 2(2n + 5) + 2a-

and ||2n + 3|| = —2(2n + 5) + 2a>, = s — 2(2n + 6).

4. If n=-3,a; =ay =0and a; =a; = 1. Then
s =4, |[2n + 4|| = 28 and ||2n + 5] = 24.

5.2.3. Norm Curves. For n > 7, we see immediately that there is at most one norm
curve in the character variety. Indeed. if there were two, each would have s > 2n — 4
which would force S > 3(|n — 2| — 1) = 3(n — 3). Similarly, for negative n, we see
that there can be at most one norm curve of type 1 or 2. In order to see how the
type 3 solution interacts with the other two, we use the Seifert slopes.

For a type 1 norm curve, we have |[2n + 5|| = s + 4(3 — n) which implies all the
jumping points for 2n + 5 surgery lie on that curve. We’ve shown that the jumping
points are simple, so they cannot lie on any other curve. Thus any other norm curve
would have ||2n+5]|| = s. However, examining the other solutions we see that ||2n+3]|
is greater than s (unless n = —3). So for n < -5, if there is a curve corresponding to
a solution of type 1, then there are no other norm curves. Using similar arguments,
we can show that for n < —11, there is at most one norm curve. For n == —9, there
are either two norm curves each corresponding to a type 3 solution or else there is
only one norm curve.

In the following, we will assume that there is only one norm curve Xy and we will
denote its Culler-Shalen norm by || - ||op. The cases —9 < n < —1 will be treated

separately later.



FIGURE 21. The handlebody H.

5.2.4. r-Curves. We will argue that K,, admits an r-curve only if r = 2n+6. For this.
we’ll use the graph manifold structure of M (2n+6): M (2n+6) = M;UM,, is the union
of two Seifert fibred manifolds My and M, along a torus. We can construct M; by
thickening the spanning surface of Figure 20. The surface is a punctured Klein bottle
so M, is a twisted [-bundle over the Klein bottle. We denote the complementary
manifold S3\ N(M;) by AM,. We can get a better handle on the Seifert structure of
the M; (: = 1, 2) using the ideas of Dean [Dea].

A key observation {Dea, Lemma 2.2.1] is that an irreducible Haken manifold, like
M;, with fundamental group G,,, = (z,y | z™y") is Seifert fibred, the base orbifold
being a disc with cone points of order m and n. Since M, is obtained from the
obvious genus 2 handlebody H in Figure 21 by adding a 2-handle along the knot,
we can compute it’'s fundamental group. Indeed, with respect to the generators
a, b of m;(H), the knot represents the relator b='ab~'a~!. Making the change of

basis, b-'a — ¢, a — d~!, the relator becomes c?d?>. Thus M, is Seifert fibred
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over D?(2,2) with (b~'a)? or a? representing a regular fibre and fundamental group
m (M) = {c,d | Ad?).

A similar argument allows us to identify M> using the generators = and y of the
complementary handlebody H' (see Figure 21). In this context. the knot represents
1

the word yry™—1/2zy(™=1/2  After the change of basis y™*~V/2%zx — w, y~

z, the word becomes z("=3/2y3  Thus M, is Seifert fibred over D?*(3,|n — 3|/2)

—

and has fundamental group m; (M) = (w.z | z'*~3/24%). Moreover, a regular fibre
corresponds to (ry(®~1/2)3,

We can now argue that the fibres intersect once on the common boundary of M,
and M,. Indeed, Figure 22 shows how a fibre of M, representing a® and a fibre of M,
representing (zy("~Y/2)3 have intersection number one. Note also that the A, fibre
a® becomes y 2zt = y(*=3/2(gyn—~1/2)=1 = F(5=m)/2y;=1 jp 7, (M,) whereas the A,

fibre (zy(™~1/2)3 goes to b~'ab'ab~'a = (b~'a)3a~" = ’d.

Proposition 5.2.2. The PSL,(C)-character variety X(M(2n + 6)) contains ezactly
one curve when 3 | n. Otherwise dim X (M(2n + 6)) = 0.

Proof: We will argue that irreducible PSL,(C)-characters of M (2n + 6) are either
isolated or else factor through Z/2%Z /3. The result then follows from [BZ2. Example
3.2].

An irreducible representation g : M(2n + 6) — PSL,(C) will be non-abelian or
else have image Z/2 & Z/2 (Lemma 2.4.5). On the other hand, if it’s abelian, it
also factors through H,(M(2n + 6)) = Z/(2n + 6) and there is no cyclic group
which contains Z/2 @ Z/2. Therefore if g is irreducible, it’s also non-abelian. Let
pi : m(M;) — PSL,(C) (¢ = 1,2) be the induced representations. If one of these is
non-abelian, we can show that it kills the corresponding fibre. Let h; € m;(Al;) be

the class of a regular fibre.
Claim 5.2.3. If p; is non-abelian, then p;(h;) = £1.

Proof: (of Claim) Suppose g, is non-abelian.
Since h, generates the center of w(M,), by Lemma 2.4.3, if g,(h,) # [ then
we can conjugate so that g,(h,) = E and p, (7 (M,;)) C N (see Definition 2.4.2 for

notation).
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inside the circle.

Since 5, is non-abelian, at least one of the generators, say ¢, of 7, (M) = {c,d | 2d?)
is sent to an antidiagonal element and is therefore of order two. But since ¢ generates
the center of m;(M)), this means that the image of the center is trivial, and, in
particular, g,(h;) = =/, a contradiction.

Similarly, if g is non-abelian, then we can assume (for a contradiction) that

Im(p2) € N and pa(ha) = E. As before, one of the generators of 7 (M,) = (w, z |
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w3z{("=3)/2) must be antidiagonal. If p;(w) is antidiagonal, then j,(w?) is as well.
This is a contradiction since both w? and h, generate the center Z(w,(M,)) = Z and
we started out by assuming go(ha) = E. This argument also shows that go(z) cannot
be antidiagonal in case (n — 3)/2 is odd. If (n — 3)/2 is even, we can repeat the
argument we used for p;. So we also get a contradiction in this case. O(Claim)

Let us assume p(m(T)) ¢ {£f}. We wish to show that x, is then isolated
in X(M(2n + 6)). Since regular fibres intersect once on T, their images generate
p(m(T)). The Claim therefore shows that in order to satisfy 5(m(T)) ¢ {£[}. at
least one j; is abelian with g;(h;) # £1.

So. suppose p- is abelian and g, is not. As above, 5;(h,) = +I. Since the glueing
torus T contains regular fibres, we can assume h; € 7{(T). As the p;’s agree on the
intersection m(T"), p2(h;) = £I as well. However, we’ve seen earlier that a regular
fibre h, represents the word z(®~"/2y~! in 7, (AM,). Since this word is killed, 5, factors

through
T (Ma)/(h) = (w, 2 | wz("732 2B 2=y = (2| 2°77)

which is cyclic of order |n — 6.

This means that g.(hs) is of finite odd order (remember that n is odd, so that
n
0 1/n
since py(h,) = £I, p, factors through the orbifold group ‘/T?rb(Bl) = {c,d | &2,d>)

n—06 # 0). We can conjugate so that g»(hs) = £ with n # £1, +i. Now,

where B, is the base orbifold of M. Again, p(ha) = G2(hs) is of finite order dividing
In — 6] and represents the word c3d. Thus p, factors through (c.d | ¢, d?, (cd)™~®)
n

0
which is dihedral of order 2{n — 6|. Also, g;(h2) = p2(h2) = £ ) is in the
0 1/n

image of the cyclic subgroup which is therefore diagonal (Lemma 2.4.3).

We have now given a rather specific description of g. Restricted to m(M>)., it is
cyclic of order dividing |{n — 6| and diagonal. Restricted to (M) it factors through
Do), -6 with the cyclic subgroup having image in the diagonal matrices. Moreover,

7

0
+ / with 7 # #£1,+7 is common to the images of 7 (M) and 7 (M3).
0 1/n
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There are only a finite number of characters consistent with such a representation.
Thus characters of this form are isolated in the sense that they cannot form a curve.
Next, assume g, is abelian and g, is not. Again py(hy) = +I which implies g,
goes through m; (M,)/{h2) = (c,d | Ad?,cd) = Z/4. Then p(h,) is of order dividing
4 and since it is non-trivial, it has order 2 or 4. On the other hand, as the fibre hs
is killed, p> goes through the orbifold group Z/3 = Z/(|n — 3|/2). Moreover, since
p1(hy) = pa(h2) has order 2 or 4 we deduce that p» factors through A(3, |n — 3|/2,2
or A(3,|n — 3|/2,4). So we are again in a rather restrictive situation. The number
of characters of such a triangle group is finite (see Equation 2.2) and, since the third
generator of the triangle group is of order 2 or 4 and generates ,(M;), there are also
only a finite number of characters for such a representation 5. So they are isolated.

Finally we turn to the case were both 5, and p, are abelian. This means that
A(71(T)) must commute with everything in the image of the non-abelian represen-
tation p. We are assuming p(7(T)) # {x[}, so, by Lemma 2.4.3 and after an
appropriate conjugation, p(m,(T)) = {£[, E} and p(7 (M (2n +6))) C N.

Now, as p; and p, are abelian, they will factor through Z&Z/2 and Z&®Z/g, (where
g = ged(3,|n — 3|/2)) respectively. Since p is non-abelian, there is an antidiagonal
matrix in its image. On the other hand, since E € p(w(T)), at least one of the
pi’s has image including both diagonal and antidiagonal elements. The only way this
could happen, while the g; in question remains abelian would be for it to have image
Z[2®Z/2 (see Lemma 2.4.5). We see that this is feasible only on the M, side and
conclude that g (m (M) = Z/2 Z/2.

In particular, p;(h,) has order one or two. Se g2(m(M>)) either factors through
Z/|n — 6| (as above) or else through (w,z | w3z("=3)/2 (z5-1/2p=1)2 [y, 2]} which
is cyclic of order 2{n — 6{. Moreover, we can assume that Im(p,) consists only of
diagonal matrices. Again there are only a finite number of characters corresponding

to representations of this form so they are isolated.
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In summary then, the only way to construct a curve in X (M (2n+6)) is by making

use of representations p which kill the glueing torus 7" and therefore factor through

7&'1(1‘/[(271- <+ 6))/771 (T) (71'[(:"[1) *5(T) 7!'[(.’\-{3))/7!’[ (T)

= ’il'l(l‘r'[[)/ﬂ'[(T) * 7‘—1(-'1’[2)/“73(1')
= Z/2xZ/[g.

where g = gcd(3., |n — 3[/2). If ¢ = 1, this is an abelian representation, contradicting
an earlier assumption, and there is no curve in X (M(2n +6). If g = 3, (i.e. if 3| n),
we see that we are looking at representations of Z/2 x Z/3. Since X(Z/2 * Z/3)
contains exactly one curve (see [BZ2, Example 3.2]), we conclude that this is also the
case for X(M(2n +6)). O

Thus if 3 | n, there is a unique curve in X(M(2n + 6)). Moreover, since the
representation p/; (see [BZ1, Example 3.2] or Equation 5.22 below) is dihedral, this
curve contains the character of a dihedral representation. It follows that the curve is
covered by a unique curve in the SL,(C)-character variety X (M (2n + 6)) (see [BZ1,
Lemma 5.5]). Thus there is exactly one r-curve, call it X, with r = 2n + 6 in this
case.

Moreover, we can show s; = 2 for this curve. Recall that s, = |Ju|], is the degree of
fu- So we need to understand the image of p under the composition 7 — 7 (M (2n +
6)) = Z/2xZ/3 = {c,d} 2, d®). We can construct g in terms of a curve ~ in the
genus two surface which connects points on opposite sides of the knot: see Figure 23.
The idea is that we can break up the meridian as the sum of a loop in M, and a
loop in M5. We will then show that those project to ¢ and d respectively. The first
loop is v plus a small arc joining the two endpoints of v in the interior of H, the
obvious genus two handlebody. The second loop is v plus a small arc joining the two
endpoints of v and passing through the complementary genus two handlebody H'.

In m;(M)), v represents ab~! which is conjugate to b='a and therefore projects
onto the generator of Z/2 = 7 (M,)/m(T). In m (M), v represents zy"~Y/2 which
projects to the generator of Z/3. Thus u is mapped to c¢d in Z/2 x Z /3.
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= (-2, 3,n) pretzel knot

— — —— =’y

Ficure 23. The meridian u represented by a curve ~.

Let X, be the unique curve in X(Z/2 * Z/3). In [BZ2, Example 3.2], the authors
construct a double covering C — X given by mapping z € C to the character of p.:
G20 a@=x|" ° ). a@=x : :

0 —z z(1—z)—1 1-=z
Since trace(g:(cd)) = ¢(2z — 1), we see that fou(x;.) = —(2z2—1)?—4 has degree 2. As
this is a double covering of X, by C, the corresponding character on X, has degree 1.
Finally, lifting to the curve X; in X (M) which double covers X|, € X(M(2n +6)) C
X (M), we deduce s, = deg f, = 2.

For n > 7, the integral boundary slopes are 0, 16 and 2n + 6. We will show
that 0 and 16 do not admit r-curves. Recall that {|2n + 3|l¢ = so + 4([n — 4| — 1).
i.e. all the jumping points for the 2n + 5 surgeryv are on the norm curve. So we
would have ||2n + 5||; = s, on any r-curve X;. However, if r = 0 for example,
12n + 5||; = 5:A(2n + 5,0) = (2n + 5)s;. So there can be no r-curve for r = 0.
Similarly, there can be no r = 16 curve. Analogous arguments show that there is no
r curve with 7 = 0 or 10 when n < —11 so that r = 2n + 6 is the only candidate in
this case as well.

Thus when n > 7 or n < —11, there is exactly one norm curve. There will
be one r-curve when 3 | n and otherwise there are no additional curves containing
irreducible characters. Since the set of reducible characters forms a complex line ([Ta,

Proposition 2.5.5]), we see that X (K,), the character variety of the knot K. consists
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of two (three) curves when 3 {7 (3| n) and n > 7 or n < —11. This observation also

holds true for —9 < n < —1 as we will now verify.

n = —9 Here 3 | n, so there is an r-curve X| with r = 2n+6 = —12 and s; = 2.
We can show that there is no r-curve with r = 0 or 10 as we did before and we’ve
already mentioned that if there were two norm curves, thev would both correspond
to a tvpe 3 solution. Let us verify that this cannot happen. Suppose then that there

were two norm curves Xy and X,. Since S = 30 and s; = 2, we see that
28 = 5o+ 5o =4+2(Gg +ag):

where we have given the a»’s (see Equation 5.13) superscripts showing which curve

they come from. This implies a3 + a3 = 12. But then
12n + 4llo + |27 + 4|2 = 50 + 82 + —4(2n + 5) + 2(ad + a3) = s + 52 + 52 + 24

which contradicts. the equation ||2n +4|j7 = S+ 3(jn — 6| — 1) = S + 42. Thus we

see that there is exactly one norm curve and one r-curve when n = —9.
n = —7 In this case there is no r-curve for r = 2n + 6 = —8. By examining the
norm of the 2n + 5 = —9 slope, we see that if there is a norm curve of type 1. it is

the only curve in X (X_;) containing an irreducible character. Similarly, if there is
a norm curve of type 2, then there is no r-curve with r = 10. However, we cannot
immediately eliminate the possibility of an r-curve for r = 0.

Indeed, we know that for the type 2 norm curve Xj

So = 2(l—n)+2ag = 16'{"2(1.2, ”2?’1'{-4”0 = ”—10”0 = -5'0—2(Tl+3)+2(1.-_)_ = 30+8+2(12
and [|2n + 3lo = || — 9jo = so — 4(n +2) = 5o + 20.

On the other hand, if there were an r-curve X; with r = 0, then ||2n+4||; = ||-10]|; <

st +3(53 —n) — 8 = 5, + 28 and also |[2n + 4|, = || — 10]|; = s;A(-10,0) = 10s,.

This implies

1031 S s + 28
=9s, < 28
=5 < 28/9



95

Since s, is an even integer, we see that s, = 2. Similarly, an examination of the
—9 slope also leads us to the conclusion that s; = 2. So we cannot eliminate the
possibility of an r-curve with r = 0 directly as we did earlier. We need to examine
possible combinations of curves.

For example, suppose X (K_7), had a type 2 norm curve X, and one r-curve X

for 7 = 0 and no other norm or r-curves. Then || — 9|l = so + 20 and

=9 = s12A(-9,0)
= 96‘1
= s+ 8s;

= 51+ 16.
So

It =9llr = [l —9llo+1l—9lh

= Sg+ s+ 36

= S+ 36

< S+40

= S+4(n—4| - 1).

Thus, if we assume that these are the only two curves, we see that we cannot

account for all the jumping points associated with the —9 slope. Therefore this is
not a possible configuration for X(K_;7). By analyzing the possible combinations of

norm curves and r-curves in this way, we see that the only possibility is that there is

exactly one norm curve of type 1 and no r-curves.

n = —5 A similar analysis shows that X (K _5) contains exactly one norm curve and

it’s of type 1.

n = —3 Since 3 | n, we know that there is an r-curve X, forr =2n +6 = 0:

s; = 2, II2TI+4“1 = ” - 2”[ =5 + 2 and |I2n+5”[ = ” - 1”[ = 9.
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If we follow the same strategy as in the previous cases we find that there are two

possible configurations:

I. In addition to the r-curve there is one type 1 norm curve Xy with
so =10, || — 2|lo = so + 22 and || — 1[0 = s0 + 24.
II. Here there is a type 2 norm curve Xj:
50 =8, || —2|lo =50 and || — 1]lo = s¢ + 4
as well as an additional r-curve .X; with r = 10:

Sp =2, ” —‘2“2 = S + 22 and ” — 1”2 = s + 20.

Both configurations are consistent with S = 3(|n — 2| - 1) = 12, || — 2||r =
S+3(n—-6l—-1)=S+24and |- lilr=S+4(ln—4|—-1) =S + 24.

In order to show that the second configuration does not arise, recall that X, the
PSL,(C) analogue of X5, would include into X (A/(10)) (see Section 2.2.3 or [BZ2,
Example 5.10]). Now, M (—1) is Seifert fibred over S?(3. 4, 5) and the jumping points
for || — 1|| come from the six irreducible PSL,(C)-characters of A(3,4,3). If the
second configuration is valid, five of these characters are on X5 and therefore come
from representations lying in R(M(10)). We will argue that at least two of them do
not.

Indeed two of the characters correspond to representations which factor through
A(2,3,5) which has order 60. On the other hand, if such a representation g is also
in R(M(10)), then it annihilates both the 10 and the —1 slopes. In other words,
the kernel of g contains an index eleven subgroup of m,(9Af). Therefore g(m (OM))
is either Z/11 or else trivial. On the other hand, p(x,(9@M)) also factors through
A(2,3,5). Thus p(m (OM)) is trivial and since 7, (M) is normally generated by the
peripheral group, p(m(M)) = {£I} as well. This contradicts the fact that 5 is an
irreducible representation. Therefore, the irreducible representations which factor
through A(2,3,5) are not in R(M(10)). This shows that the second configuration is

not possible.



97
n = —1 This knot was treated using different methods in Section 2.3 (where it is
identified as the twist knot K,). We saw that there is one norm curve of type 1 in

the character variety.

Thus for any hyperbolic pretzel knot K. the character variety contains one norm
curve Xy and one curve of reducible characters. If 3 | n there is an additional r-curve
X, for the slope r = 2n + 6 with s, = 2.

If 3fn, then s = 3(Jn — 2| — 1) and the Culler-Shalen norm is given by

> - -

n-—mn-—o n—9
)+ 25

I7llo = 2[A(7. 16) + 2A(~, A(7, 2n + 6)]

n—-3
2

when n > 7 and

1—n

“7”0 = Q[A(’)’, ].0) + A("Y’ o2n + 6) + A(ﬂ/’ 2(77. + I)Q/n)]

when n < —1.

If 3 | n, then so = 3|n — 2| — 5 and the Culler-Shalen norm is

2 = 4

“A(7,2n + 6)]

71l = 2(A(~, 16) + 2A(, =

n—3 9

when n > 7 and

n+
2

1 2
7]l = 2[A(7, 10) — A(v.2n+ 6) + A(7,2(n + 1)°/n)]

when n < —1.

Note that the longitude has an associated ideal point only whenn = —1 orn = —-3.
That is, for the boundary slope 3; = 0, the associated a; is zero unless n = —1 or
n = —3. As we mentioned in the Remark of Section 2.3, this corresponds to the
fact that these knots fibre over S! with a Seifert surface as fibre unless n = -1

(see [Ga2, Section 6]). Although R _; admits such a fibration there is nonetheless
at least one ideal point associated to the longitude. This is because there are other
essential surfaces which realize the longitude as a boundary slope but are not fibres
in a fibration of the knot. Essentially, when n = —3, the boundary slope 2n + 6 turns
out to be zero, and corresponding to the surfaces which realizes 2+ 6 in all the other
knots, there is a surface realizing the longitude slope of 0 for this knot. However, this
surface is not the leaf of a fibration of K_3, just as the corresponding 2n + 6 surfaces

do not play that role for any other K.
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» 1167,3f] =48

21,11 =32  gli22,! | =20 oll23. 1]l = 24\ _ oll24,1j| =36

v

Il - 1,0) =16

FIGURE 24. The fundamental polygon of K.

Fundamental Polygon and Newton Polygon. Figure 24 shows the fundamental poly-
gon of Ky associated to the norm curve Xj,. For Ky, max(2se.so + 8) = 2s¢ so
any finite surgery slopes must lie in 2B (see Section 2.2.5). However, as we see in
Figure 24, the only slopes inside 2B are 21, 22, 23 and i = 1/0. According to Snap-
Pea [Wee], M(21) is hyperbolic and so (—2, 3. 9) admits exactly two non-trivial finite
surgeries: 22 and 23.

As n increases, the fundamental polygon for the norm curve maintains the same
aspect but becomes smaller. For 11 < n < 19. the only slopes inside 2B are 2n + 4.
2n+5 and p and once n > 21, only 2n+4 and g remain. Now A (2n+4) and M (2n+3)
are Seifert fibred over A(2,4,|n — 6]) and A(3,3, [n — 3|/2) [BH, Propositions 16 &
17]. Since, forn > 11, 1/2+1/4+1/(jln—6}) < land 1/3+1/5+2/(|n — 3]) < 1,
these are hyperbolic orbifolds and consequently Af(2n + 4) and M(2n + 3) are not
finite surgeries. Thus the (=2, 3,n) pretzel knots admit no non-trivial finite surgeries
when n > 11.

Figure 25 gives the fundamental polygon of the (—2, 3, —7) pretzel knot and illus-
trates the situation for n < —1. When n < 1, 3¢9 < 8. Since 2B lies below the line

y = 1 there are no non-trivial finite surgeries here. When n = —1, we have a twist
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®|-9,1]|=64 @] -8,1]|=68 ®|]-7,1||=88

to (10,1)
-~y

|- 1,0] =24 11,01l = 24 >

FIGURE 25. The fundamental polygon of K_-.

knot, and we have already observed that thev have no non-trivial finite surgeries
(Section 2.3).

Thus there are exactly five non-trivial finite surgeries on the (—2,3,n) pretzel
knots. As we have mentioned, Ky admits two. We can use the same methods to see
that K7 has three (see [BMZ, BZ1]), two cyclic fillings 18 and 19 and one non-cyclic
finite filling of slope 17. These fillings were already known ([FS, Section 4] and [BH,
Propositions 16 and 17}). The content here is that these are the only examples of non-
trivial finite surgeries. As none of these fillings are simply connected this constitutes
a proof of Property P for these knots. However, Property P was already known as
these knots are strongly invertible [BS].

We are also in a position to determine the Newton Polygons for these knots (see
Section 2.2.3).

The vertices of the Newton polvgon are
(0,0), (16,1), (n* — 2n — 15, (n — 5)/2), 2(n®* = n +3),n — 2),
(3n% — 4n — 25, (3n — 11)/2), (3n® — 4n — 9,3(n — 3)/2)
when n > 7 and 3 { n (see Figure 26 which may be compared with [Shn, Figure 5]);

(0,0), (16, 1), (12(n = 7), (n — 7)/2), (3(n* — 6n + 23),n — 2),
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c=(2(n?2—n+3),n—2) d=(3n%2-4n-9,3(n-3)/2)
c

b=(16,1)

e = (3n2-4n—25, (3n—11)/2)

a= (0,00 f=(Mn%-2n-15,(n—5)/2)

FIGURE 26. The Newton polygon of K, (n > 7 and 3 { n).

b

b=(10,3(1—n)/2) c=(2(n®+2n+86),(3—n)/2)

d=(3(n*+2n+3),1)

a=(0,(1-3n)/2)

f=Mn%+2n-3,-n) e=(3n?2+6n—1,0)

FIGURE 27. The Newton polygon of K, (n < —5 and 3 { n).

(3n% — 6n — 31, (3n - 13)/2), (3(n* — 2n — 5).(3n — 11)/2)

when n =3k, k& > 3;
(0, (1 — 3n)/2),(10,3(1 — n)/2), (n* + 2n — 3, —n),

(2(r® + 2n + 6), (3 —n)/2), (3n%? + 6n — 1,0), (3(n> +2n + 3). 1)

when n < -5 and 3 { n (see Figure 27);
(0, —(3n + 1)/2), (10, (1 —- 3n)/2), (n® + 4n + 3, —n),

(2(n? + 2n + 6), (1 — n)/2), (3n* + 8n + 5,0), (3n> + 8n + 15, 1)
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FIGURE 28. The (-3, 3, 4) pretzel knot.

when n = 3k, £ < —1; and
(0,0),(0,1),(4,2),(10,1),(14, 2), (14, 3)
when n = —1.

5.3. (-3, 3,n) pretzel knots. We now turn to the (—3, 3. n) pretzel knots. We begin
by examining the (—3, 3, 4) pretzel knot K as illustrated in Figure 28. First note that
K is hyperbolic. Since it’s small [Oe, Corollary 4], it’s not a satellite knot. The only
other possibility is that it is a torus knot. However, as it has Alexander polynomial
([Mru, Proposition 14] or [Hi, Theorem 1.2]) Ag(t) = (¢* —t+1)? this is not possible
(see the argument of Lemma 5.2.1 or [Kaw, Theorem III}).

Note that |Ag(—1)| = 9 so that there are 4 dihedral characters contributing to
S. On the other hand, Equations 2.2 and 2.3 show that there are three irreducible
PSL,(C) characters of A(3,3,4). Using the methods of Section 5.1 we see that there
are 10 ( = 44+2(3)) jumping points in the SL,(C)-character variety, each contributing
a jump of 2. Thus S = 20.

Using the Montesinos trick (for example, see [BH]), we can see that M/ (1) is Seifert
fibred over S%(2,5,7). By Equations 2.2 and 2.3, there are 6 irreducible PSL,(C)-
representations of A(2,5,7) and none of these are dihedral representations since we
are looking at a surgery r = 1 with odd numerator. So each of these is covered by two
SLy(C)-characters each of which in turn contributes two to the seminorms of r = 1
surgery. That is, [[1[jr = S + 24 (see Section 5.2.1.)

By [HO]. the boundary slopes of K are —14, 0 and 8/5 so that [BZ1, Lemma 6.2]
gives us

I7Il = 2[@ai A(7, —14) + a2A(7,0) + azA(7,8/5)].
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In particular,

(5.23) el = 2(e; + a2 + 5a3) = s <20; and

(5.24) s < |I1|} = 2(15a; + a2 + 3a3) < s+ 24.
Subtracting, we find
(5.25) 0 S Tal — Qa3 S 6.

Now Equation 5.23 shows that a3 < 1 on a norm curve. On the other hand, from
Equation 5.25 we see that a3 = 0 implies a; = 0 which is not possible for a norm
curve. (Recall that for a norm curve at least two of the a;’s are non-zero.) Therefore
az; = 1. Then Equation 5.25 implies a; = 1. Finally, Equation 5.23 allows us to
bound a»: 0 < a> < 4. In particular, on a norm curve, we have |[1|| = s+ 24. All the
jumping points for 7 = 1 surgery lie on the norm curve. As they are simple points,
this shows that there is at most one norm curve. Call it Xj.

Since an r curve, X, would again have none of the r = 1 surgery jumping points,
we see that ||1]|;, = s,. But, as the norm is given by |[|y||; = s1A(7, 7). the only
candidate for r among the boundary slopes is 7 = 0. Moreover, as was the case for
2n + 6 surgery on the (—2, 3, n) pretzel knot, M (0) = M, U M, with M, Seifert fibred
over D?(2,2) and M, Seifert over D?*(3,3). So as in the previous section, there is a
unique r-curve for r = 0 and s; = 2.

In summary then, there is one norm curve, one r-curve with r = 0 and one curve of
reducible characters in the character variety of A'. The minimal norm on the r-curve

is s; = 2. As for the norm curve, sy = 18 and the norm is given by
7llo = 2[A(7y. —14) + 3A(7. 0) + A(7, 8/5)].

Figures 29 and 30 show the fundamental and Newton polygons of this knot. Note
that as the fundamental polygon lies below the line y = 1/2 (and 2sq > so + 8),
K admits no non-trivial cyclic or finite surgeries. (Delman [Del] has already shown
that this knot admits a persistent lamination and therefore has no non-trivial finite

or cyclic surgeries.)
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° L) ? . to (8,5 M
I-21=72  f§-L1l=55  foll=44 (rLuy=42 G j21=40
/

I—1,0] =18 1,00 =18

FIGURE 29. The fundamental polygon of the (-3, 3, 4) pretzel knot.

(8,9)

(0,4)
(0,1)

FIGURE 30. The Newton polygon of the (-3, 3. 4) pretzel knot.

5.3.1.  Other n. We now generalize to the (—3,3,n) pretzel knot which we will
denote by K,. Note that K_, is the mirror reflection of K,, so we will assume
n > 0. This family includes some knots we have already looked at: K is a twist
knot and K, is the reflection of the (—2, 3, —3) pretzel knot. Since K} is not prime,
it’s not hyperbolic and therefore not amenable to the techniques we developed in the
last two sections. On the other hand, when 3 < n < 6, K, is small, hyperbolic, and
moreover admits a Seifert surgery at slope r = 1. (We have verified this forn = 3, 1.6
using the Montesinos trick. For n = 5 we have only the evidence of SnapPea [Wee].)
This means we can again apply the machinery of the last section to work out the

Culler-Shalen seminorms of the knot.
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But what of n > 7?2 Why stop at n = 67 We are obliged to stop since we have
no evidence of K, admitting a Seifert filling for n > 7. Indeed, the Seifert surgeries
occur according to a nice pattern. By [HO], the boundary slopes of K, are —(2n+6),
0 and 8/(n+1). For 1 < n < 6, the Seifert surgeries lie between the boundary slopes

0 and 8/(n + 1) as the following table illustrates.

n 2 |13 4 2 6 > 7

8/(n+1)| 4 |[8/3]2]|8/5|4/3|8/7| <1
Seifert

Surgeries | 1,2,3 (1,21 1 1 1 | none

As the boundary slope 8/(n + 1) moves across the integers toward 0, those integers
cease to be available for Seifert surgeries. For example, when n > 7, the boundary
slope is < 1 and there are no more Seifert surgeries. I should emphasize that this
is based on experimental evidence. These knots may admit other Seifert surgeries
beyond those I've listed in the table. In addition, although I (or others) have shown
that all the other surgeries in the table are Seifert, the only evidence I have in the
n = 5 case comes from SnapPea [Wee]. Nonetheless, it is a curious pattern and it
would be nice to understand this phenomenon.

Thus we can only hope to apply our machinery to K, when 1 < n < 6. The first
two cases are treated elsewhere and n = 4 was discussed in detail above. For R}
our method breaks down as the equations corresponding to Equations 5.23, 5.24 and
5.25 above don’t result in a unique solution for the @;’s. Since Aj is not strongly
invertible, we cannot use the Montesinos trick to work out the indices for the Seifert
surgery of slope 1. Without that information, we cannot complete the analysis of
that knot.

However, K is tractable. Using the filling M (1), which is Seifert over $2(2,3,13),

we arrive at the same conclusions as for K;: there’s one norm curve with so = 22 and

I7llo = 2[A (v, —18) + 3A(v,0) + A(v,8/7)],
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2. This means that Kj also admits no non-

trivial cyclic or finite surgeries. (Again, Delman [Del] had shown this previously using
different methods.)

I and one r-curve with r = 0 and s, = 2
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6. CONCLUSIONS AND QUESTIONS

In this thesis we have shown how the techniques developed by Culler, Shalen,
Boyer, and Zhang can be fruitfully applied to the study of Montesinos knots and in
particular pretzel knots. These techniques allow for a classification of cyclic surgeries
as well as a good understanding of the finite surgeries. By taking advantage of the
Seifert fillings of the (—2, 3. n) and (—3. 3, n) pretzel knots, we were able to explicitly
calculate the Culler-Shalen seminorms for those knots and parlay that information
into a precise description of the character varieties. These knots therefore serve as a
concrete example of the usefulness of the Culler-Shalen seminorms not only for the
study of cyclic and finite surgeries, but also for the study of Seifert fillings.

Along with some progress in understanding pretzel knots, our research raises many
questions. We list some of these questions and suggest ways in which our work could

be extended.

e In Section 2.3 we used Ohtsuki’s [Oht] work to directly compute the Culler-
Shalen seminorms of the twist knots. Ohtsuki shows how to explicitly construct
the trees associated with ideal points of the character variety of a 2-bridge
knot. He can then count these ideal points by enumerating the associated trees.
This is a beautiful construction and it is evidently of great use as it allows
rapid calculation of the Culler-Shalen seminorms. It would be advantageous to
extend his ideas to other classes of knots. Given the good understanding of
the Culler-Shalen seminorms of (p, q,r) pretzel knots presented in this thesis it
seems natural to experiment with extending Ohtsuki’s ideas to pretzel knots as
a first step towards eventually looking at larger classes of knots.

e We have presented calculations showing that Z(f,) = 1 at the character = of a
p-representation of a twist knot or (—2,3,n) knot. These calculations could be
extended to other knots. This would be interesting as there is still little known
about the zeroes of the f, functions. For example it may well be that Z,(f,) =1
at the character of a p-representation on any knot as we know of no evidence to
the contrary. Calculations for other knots might be used to support or disprove

this conjecture.
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e In Section 3.3 we observed that, when m = m(8,/a;, 32/a2, 33/c3) is a three-

tangle Montesinos knot, there is an inclusion of the PSL,{C)-character varieties:
X(A(a1,a2,a3)) € X(m). We then went on to use this observation to make
many deductions about the pretzel knots m(1/p, 1/q.1/r). An obvious question
is, to what extent do our results extend to other three-tangle Montesinos knots?

On the other hand, as we mentioned in Section 3.3. it seems plausible that
there is also an overlap of character varieties when the Montesinos knot has
more than three tangles. To see how this might work in a more general context,
recall (Section 3.1.2) that ¥,, the two-fold branched cyclic cover of a Montesinos
knot, is a Seifert fibred space with base orbifold B. In the case of a three-tangle
Montesinos knot, the triangle group is w?rb(B)_

Now, the SL,(R)-character variety of W?rb(B) includes the Teichmiiller space
of B which is homeomorphic to R*"=3) r being the number of tangles of the
Montesinos knot. It follows that the PSL,(C)-character variety .‘E'(Tr?rb(B)) also
has dimension at least 2(r — 3). It seems too much to hope that X’(ﬂ'?rb(B)) -
X (m) when there are more than r = 3 tangles. Nonetheless, given the large
dimension of X (7TP(B)) it seems likely that there is at least some overlap of
these character varieties. Moreover, seeing how the dimension of X {(zx0TP(B))
grows linearly with the number of tangles r, perhaps this is also true of the
X (m) character varieties. In other words, Montesinos knots are likely examples
of knots having character varieties of arbitrarily large dimension. The solid
understanding of three-tangle knots presented in this thesis would be an excellent
platform from which to launch an exploration of the rich structure such higher
dimensional character varieties likely present.

The conclusion of the proof of Theorem 4.4.5 relies on Theorem 4.4.4 (the main
theorem of [E]), a rather powerful result in group theory. It is clear that this
group theoretic result could be of great use in understanding infinite fillings of
many other Montesinos knots since fillings of these knots will often admit factors
of the type (2, a,b; ¢) described in Theorem 4.4.4. Indeed, the original theorem

of Edjvet’s [E] paper actually refers to a more general type of group (d, a, b; c).
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On the other hand, it might also be possible to go the other way. Perhaps
conclusions about finite fillings derived from Culler-Shalen theory or other topo-
logical arguments could be used to make some deductions in group theory. For
example, the finiteness of (2, 3,13;4) remains an open question. If this group
could be recognized as a factor of a finite filling of some knot that -vould prove
the group finite.

Clearly it would be nice to complete the analysis of finite surgeries on Montesinos
knots (Theorem 4.5.2) by understanding finite surgeries on (—2.p,q) pretzel
knots with 5 < p < ¢. For example, [Dul, Theorem 4.1] shows that cyclic
surgeries are near non-integral boundary slopes while Theorem 4.1.3 shows that
the same is true of finite surgeries, at least on (p,q, —r) pretzel knots with
r > 4. It seems plausible that the same is true for (—2, p. ¢) pretzels and likely
for other knots as well. Proving this would be a powerful first step in completing
the classification of finite surgeries on Montesinos knots.

The detailed calculations of Culler-Shalen seminorms in Chapter 5 depend largely
on the existence of Seifert fillings of the (—2, 3, n) and (-3, 3, n) pretzel knots.
Such calculations could likely be carried out for other Montesinos knots admit-
ting such Seifert fillings. Therefore, one way to extend this research is to use it
as motivation for a more thorough investigation of Seifert surgery on Montesinos
knots. A particularly provocative point in this regard is the pattern of Seifert
surgeries of (—3, 3, n) pretzel knots illustrated by the table in Section 5.3.1.
Aside from providing information about finite and cyclic surgeries, detailed cal-
culations of the Culler-Shalen seminorm provide a lot of information about the
A-polynomial invariant of a knot. Conversely, the .d-polynomial can be used
to construct Culler-Shalen seminorms. Recently, David Boyd has proposed
techniques for efficient calculation of A-polynomials. This is an exciting de-
velopment since, as difficult as the determination of the A-polynomial is, it is
nonetheless even more difficult to get at the Culler-Shalen seminorm. particu-
larly if one wants to consider knots other than the 2-bridge knots (for which
Ohtsuki’s methods can be employed) or knots admitting Seifert fillings. For

example, given 4-polynomials for the (-2, p, q) pretzel knots (5 < p < ¢) one
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could complete the classification of finite surgeries on Montesinos knots begun

in Theorem 4.5.2.
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APPENDIX A. ZEROES OF ALEXANDER POLYNOMIALS

Lemma A.1.1. Let A(t) be the Alezander polynomial of the (—2.3,n) pretzel knot
K. (In particular, n is odd.) Suppose A(C) = 0 where ( is a primitive mth root of

unity. Then one of the following is true.

e 3|n and m = 6.

e 10{(n — 1) and m = 10.
e 12{(n — 3) and m = 12.
e 15|(n — 5) and m = 15.

Proof: The Alexander polynomial never admits zeroes which are prime powers of
unity. Indeed, by [BuZ, Theorem 8.21], H,(X,,) is finite iff no root of the Alexander
polynomial is an mth root of unity. Here ¥,, denotes the m-fold branched cyclic
cover of the knot (see [Rol, Section 10.C]). Using the Milnor [Mi] sequence we can
show that 6,(X,,) = 0 whenever m is a prime power of unity.

We next show that ¢ = e***/™ is not a root when m > 18 by looking at a few cases.

By [Mru, Proposition 14] or [Hi, Theorem 1.2],

Alt) = =2t +2+t"2@ -1+ ("' - 1)/(t+1)

1
T ot+ 1D+(t)
tn-i-l
g t+1(t2—n_tl-n+t—n—l+t3_t+1)
tn—f—l

t+1D‘(t)'

Suppose first that m > 2(2 — n) > 0. Then,

Re(D_(() = cos(\2T2T) _coq( (LT, g =2 T 12T,
+ cos(2T) — cos(2T) + 1
— 2cos( ; 227 ) cos( ;:l)%) - 2605((—2—;:1ﬂ) COS(‘Tij)
+ 2008(9—5—773&)005(—%)'
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So, Re(D_(¢) = 2cos((2—'r:E)[cos((2'T"”') — cos(—2%) + cos('("T“)")]. Since m >
2(2 — n), this is positive as long as n < —4. In fact, D_(() is also positive when
n = —1, —3, so we see that { is not a root of the Alexander polynomial when n < 0
and 2(2 — n) < m.

Next suppose m > 2(n + 4) and n > 0. Then,

(n -

m

(n+4)m
m

Re(D.(¢)) = 2 cos( )[cos(

) — cos(r:ni) + cos(

and ¢ is not a root of the Alexander polynomial.

Since n = n’ mod m implies (* = (™', we can assume —m/2 < n —2 < m/2. We
have already looked at the case m > 2(2 — n) & —m/2 < n — 2, as well as the
case m > 2(n +4) & m/2 > n+ 4. So it remains to investigate n — 2 < m/2 and
m/2 <n+4,ie,2n—4 <m < 2n+ 8. Let us now assume that m > 18. Since
m < 2n + 8, this implies n > 5.

If m = 2n + 8, then in fact ReA(¢) = 0, so we work instead with the imaginary

part:
D, (Q) = 2sin( LD cos(ET) — cos(2) + cos( 220
= 2(1)[0 - cos(%) + cos( (n :n?)ﬂ')]

Thus ¢ is a root of the Alexander polynomial only if cos(2F) = cos(%). But since

(n—-2)w < T (n+4)7
m m m

0<

=m/2

these two values of cosine are distinct, ImD_({) # 0, and ¢ is not a root of the
Alexander polynomial in this case either.

If m=2n+j, with —4 < 7 <7, we can use the real value:

ReD.(C) = 2C°S((_ni)7r)fcos(—(n ATy _ cos(%) +cos(222T))
P 25 2
= 2cos(PEITy _in(BIT) _gin(IT) 1 sin( 22Ty,
= 2eos( BT 5 0s(LE2T) cog( Ty —sin( BT,
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Since the term in square brackets is never zero (given m > 18), we see that ¢ is not
a root of the Alexander polynomial when m > 18.

Next, let’s look at the case where m = 14. Again,
(n+4)m

(n+4)w (n —2)w

(A.26) ReD,(¢) = 2cos( )[ cos(

) — cos(%) + cos(

and as we've mentioned this value depends only on n mod m. By running through
the odd integers 1, 3,5, ... .13 with m = 14 in Equation A.26 we see that the value is
never zero. It follows that the Alexander polynomial can never have a root ¢ which
is a fourteenth root of unity.

Thus far, we have shown that the Alexander polynomial has no zeroes which are
mth roots of unity with m a prime power, nor with m > 18, nor with m = 14. The
only remaining candidates are m = 6.10,12, and 15. To find out which values of
n vield a root, we again use Equation A.26 and substitute the odd integers mod m
to see which gives zero. It turns out that n = 3 (mod 6), n = 1 (mod 10), n = 3
(mod 12), and n = 5 (mod 15) respectively are the only candidates. Verifving that
these values also yield zero for ImD, ({) completes the proof. O

Kurt Foster [F] has proposed a slightly different proof of this lemma. Here is a
sketch of his argument.

Proof: (of Lemma A.1.1) Multiplying A(¢) by ¢ + 1 gives the equation
(A.27) gt 2 gt L3 2 11 =0,

Plugging in t = e>*¥/™, and doing a bit of algebra yields

(A.28) cos((n + 4} /m) — cos(nmw/m) + cos((n — 2)7/m) = 0.
This may be recast (assuming (n + 1)/m isn’t a half-integer) as

(A.29) 2 cos(3m/m) = cos(nw/m)/cos((n + 1)w/m).

Direct verification rules out m = 3,4, and 5 as possibilities, and turns up the
solution m = 6 when n = 3 (mod 6). The left side of Equation A.29 is positive for
m > 6, and is > 1 for m > 9. Inspection rules out any solutions in the case m = 9.

We assume henceforth that m > 6. We clearly may restrict 7 to 0 < n < m.
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Taking logs (assuming m isn’t 9) and applying the Mean Value Theorem tells us
that
w/mtan(z) = In(2 cos(3w/m)). nr/m<z<(n+l)x/m.
If m is sufficiently large, we may then write

(A.30) n <m/2 — (m/r)arctan(w/mIn(2cos(37/m))) < n + 1.

which will, for each m, force the value of n. The limiting value of the expression
being subtracted from m/2 is 1/In(2) as m increases without bound, so it will be
between 1 and 1.5 for sufficiently large m. It follows that, if m is large enough, the
integrality of m forces n =m/2 -2 if m is even, and n = (m —1)/2 — 1 if m is odd.
Direct substitution of these values then shows the relation of Equation A.29 fails.
All that remains is to mop things up for small values of m. A simple computer rou-
tine checked the values of m = 7 to 40 (except m = 9), to see whether Equation A.29

held to within 273%. The program flagged the pairs

m=8n=6m=10,n=1m=12,n=3; and m = 15.n = 5.

The first value of n is even, so doesn’t fit the original problem - Equation A.27
isn’t divisible by (¢ + 1) if n is even - but it does give a solution of Equation A.29,
and yields the primitive 8th roots of unity as solutions to Equation A.27 when n =6
(mod 8). The other pairs do give solutions (direct verification).

The program also indicates that m > 40 is “sufficiently large” for the “large n”

argument to apply. O

Remark: As a consequence of Lemma A.1.1, A(t) has no zero which is a (2n + 4)th
root of unity. For, suppose ( were such a zero. Then ¢ would also be a 6th, 10th,
12th or 15th root of unity. However, if it were a 6th root, then 6 | 2n + 4 which
precludes 3 | n. Similar arguments apply for 10th, 12th, and 15th roots. Analogous

reasoning shows that A(t) admits a 2n + 5th root of unity zero iff n = 5 mod 30.

Lemma A.1.2. Let A,(t) be the Alezander polynomial of the (—2,3,n) pretzel knot
K When n = 5 mod 30, A,(t) admits primitive 15th roots of unity as zeroes and

moreover, they are simple zeroes of A,,.
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Proof: A, (t) = (¢"+* — "2+ 47+ 4 43 — 2 + 1) /(¢ +1). Let ¢15(t) =3 — 7 + 15 —
t'+t3—t+1 be the polynomial whose roots are the primitive 15th roots of unity. We
will show that ¢,5(t) is a factor of A\, (¢) by induction. We illustrate the induction
for n > 0. The argument for n < 0 is similar. When n = 35, ¢;5 is indeed a factor of
Apn(2).

Suppose ¢;5 is a factor for some n with n = 5 mod 30.
Appao(t) = (@ =32 43 L3 2 4 1)/(t+ 1)
= (M bt 32 gne2  gn3l gl J(g 4 1) 4 AL(8)
= (0 -1 — "2 LT+ 1) 4+ An(2)

Since ¢,5 is a factor of both #3° — 1 and A,(#). we see that it’s a factor of A, 30(¢)
as well.

To see that these are simple roots, it suffices to show that they are not also roots
of the derivative A/ (). Again, we will assume that n > 0. The case where n < 0 is
analogous.

AL) =
(n+3)t" " + (n+ )" — (n+ Dt"*2 — 2" + (n+ 1)t" + 283 + 282 — 2t — 1

(t+ 1)2
Suppose £ is a common root of ¢5 and AJ,. Since £ is a 15th root of unity and

n =5 mod 30. we have

R+3)E 4+ R+ -~ (n+ 1) 25+ (n+ 1) +26* +26> —26 -1 =0.
Thus € is a root of

=+ +n+)B—(n+ Dt =265+ (n+1)5 + 283 +2¢% — 2t — 1.

This implies that the irreducible polynomial ¢.5 divides f(¢). However, it’s easy to

verify that ¢,5 does not in fact divide f(¢). a
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