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Abstract
vVe use the theory of Culler-Shalen seminorms to investigate the SL2 (C)-character

variety ..Y(K) and PSL2 (C)-character variety 4t(I<) of a Nlontesinos knot 1(. \Vhen [(

has three tangles, /31/ab /32/0.2, /3~/Ct3, the PSL2 (C)-character variety of the triangle

group ~(Ct1, Ct.2, Ct.3) includes into -,t(l(). We apply this observation to make several

deductions about Cp, q, r) pretzel knots.

For hyperbolic (-2,3, n) pretzel knots, we calculate the Culler-Shalen serninorms

explicitly and deduce that ...Y(K) consists of exactly two (respectively three) algebraic

curves when 3 f n (respectively 3 1 n). This leads to a classification of the finite and

cyclic surgeries of these knots. vVe obtain similar results for sorne (-3, 3, n) pretzel

knots.

vVe classify cyclic surgeries on (-2,p, q) pretzel knots (p, q odd and positive). The

(-2,3, i) is the only non-torus knot in this family admitting non-trivial cyclic surg

eries. vVe show that a (p, q, 2m) pretzel knot admits at most one non-trivial finite

surgery sa long as I~I + I~I + I~I < 1. Nloreover~ for m < -l, these knots have no

non-trivial finite surgeries.

Combining these results with work of Delrnan we classify cyclic surgeries on ~Ion

tesinos knots. If a non-torus J\Iontesinos knot [( adrnits a non-trivial cyclic surgery,

then it is the (-2,3, 7) pretzel knot and the surgery is 18 or 19. Further, if K has

a non-trivial finite surgery, then it is either a (-2, p, q) pretzel knot \vith 5 < p < q

odd, or else it is a (-2,3, q) pretzel knot with q = i or 9.



•

•

•

Résumé
On utilise la théorie des seminormes de Culler-Shalen pour examiner .~(K) (la

SL2 (C)-variété de caractères) ,et .:t([() (la PSL2 (C)-variété de caractères) d'un noeud

de Nlontesinos K. Lorsque K a trois tangles f3l/0L, ,82 /0.2, f33/03' alors la PSL2 (C)

variété de caractères du groupe de triangle ~(Ob 02, Q3) est incluse dans .Y([().

Cette observation permet de tirer plusieurs déductions concernant les (p, q, T) noeuds

bretzel.

On calcule explicitement les seminormes de Culler-Shalen pour les (-2,3, n) noeuds

bretzel hyperboliques. On déduit que )«(K) est constitué de deux courbes algébriques

quand 3 f n et de trois courbes algébriques quand 3 1 n. Ceci donne la classification

des chirurgies cycliques et finies de ce type de noeuds. Des résultats similaires sont

obtenus pour certains (-3,3, n) noeuds bretzel.

On classifie les chirurgies cycliques pour les (-2, p, q) noeuds bretzel (p, q étant

impairs et positifs). On prouve que le (-2,3, 7) noeud bretzel est le seul noeud

non-torique dans cette famille admettant des chirurgies cycliques non-triviales. On

démontre aussi que le (p, q, 2m) noeud bretzel avec I~I + I~I + I~I < L admet au plus

une chirurgie finie non-triviale. Si de plus, m < -1, alors ce noeud n:admet aucune

chirurgie finie non-triviale.

En combinant ces résultats avec le travail de Delman, on classifie les chirurgies

cycliques des noeuds de l\tlontesinos. Si un noeud non-torique de j\Iontesinos [(

admet une chirurgie cyclique non-triviale, alors il est le (-2,3, 7) noeud bretzel et la

chirurgie est 18 ou 19. De plus, si [( admet une chirurgie finie non-triviale, soit il est

un (-2, p, q) noeud bretzel avec 5 < p ~ q, soit il est un (-2,3. q) noeud bretzel avec

q = 7 ou 9.
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1. INTRODUCTION

1.1. Conjectures of Poincaré and Thurston. The Poincaré Conjecture states

that any closed, simply-connected 3-manifold is homeomorphic to S3. That this

conjecture has remained open for close to a century points to the subtlety of 3

dimensional topology. Although 53 can be regarded as the simplest of 3-manifolds~

we still do not kno\v that there are no clever imitations or ';fake" 5 3 's out there which

share most of its important properties.

The work of Lickorish and vVallace suggests one approach to this conundrum. They

showed, independently, that any 3-manifold can be constructed through Dehn surgery

on a knot or link in S3. In particular any fake S3 counterexample to Poincaré~s

conjecture could be so constructed. Of course, starting with such a knot or link, one

can always recover 53 through "triviaP' surgery. vVe say that a knot has property P

(for ';Poincaré") if this is the only Dehn surgery which results in a simply-connected

manifold. The property P conjecture states that every non-trivial knot in S3 has

property P. Although property P is known to hold for large classes of knots, this

conjecture also remains open.

The work ofCuller and Shalen [CS1, CS2, CGLS], and Boyer and Zhang [8Z1, 8Z2,

B24] shows the feasibility of taking a slightly larger perspective. Rather than surgeries

leading to a simply-connected manifold they investigate those resulting in a rnanifold

\Vith cyclic or finite fundamental group. Essentially, they show that surgery on a

hyperbolic knot in 53 cao produce at most three manifolds with cyclic fundamental

group and at most five with finite group (see Theorems 2.2.1 and 2.2.2 for more

precise statements). For example, since trivial surgery produces S3, and as simply

connected manifolds have cyclic fundanlental group, a given hyperbolic knot could

have at most two surgeries which violate the Poincaré Conjecture. Thus one could

imagine a program to prove the Poincaré Conjecture by systematically going through

aIl the hyperbolic knots in 53, finding the cyclic or finite surgeries (of which there

are at most five for a given knotL and checking if any of them is a counterexample

to the conjecture. Of course, one would still be left to examine non-hyperbolic knots,

not to mention links.
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A more realistic appraisal cornes in the context of another of the great open proh

lems of 3-dimensional topology, Thurston's hyperbolization conjecture. Roughly

speaking, this conjecture contends that ~~most 3-manifolds are hyperbolic." For ex

ample~ Thurston has proved that aH but a finite number of Dehn surgeries on a

hyperbolic knot result in manifolds which are again hyperbolic. Nloreover, the con

jecture implies that the non-hyperbolic ones either contain an incompressible sphere

or torus~ have eyclic or finite fundamental group, or else are Seifert fibred manifolds

(these outeomes are not disjoint). Along with Gordon and Luecke's studies of incom

pressible surfaces, the investigation of cyclic and finite surgeries by Culler, Shalen,

Boyer, and Zhang forms half of a two-pronged attack on Thurston's conjecture.

Culler-Shalen seminorms have played a central role in these investigations. They

were first introduced by Culler and Shalen [CGLS] as part of the proof of the Cyclic

Surgery Theorem. Later, Boyer and Zhang [BZ!] extended the idea to the study of

finite surgeries eventuaHy leading to a proof of the Finite Filling Conjecture [BZ4].

1.2. Contributions of this thesis. By focusing on a specifie class of knots, the

pretzel knots, we can use the methods of CulIer, Shalen, Boyer, and Zhang to obtain

stronger results. Rather than just showing that there are very few cyclic or finite

surgeries, we can show that in many cases there are none (aside from the trivial

surgery) and give a listing of the knots which admit interesting fillings. By further

restricting to the (-2,3, n) pretzel knots, we can explicitly caleulate the Culler-Shalen

seminorms and use that information to give a complete description of the character

variety of these knots. Therefore this thesis T:lakes contributions to the understand

ing of finite and cyclic surgeries of pretzel knots and il1ustrates how Cllller-Shaien

seminorms ean be used to describe the charaeter variety of a knot.

Delman [Del] showed that if a hyperbolie lvlontesinos knot adroits a finite surgery,

then it is a pretzel knot of the form (2k + 1,2l + 1, -2m), k, i, rn being positive

integers. Our contribution is a thorough understanding of cyclic and finite surgeries

on these pretzel knots.

In particular, we prove that there are no non-trivial cydic or finite surgeries on a

(-2,3, n) pretzel knot 1< unless one of the following holds.

• 1< is torus, in which case n = 1,3, or 5.
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• n = 7~ in which case 18 and 19 are cyclic fillings while 17 is a finite~ non-cyclic

filling.

• n- = 9, in which case 22 and 23 are fini te, non-cyclic fillings.

A consequence is that the (-2~ 3~ 7) is the only non-torus (-2, p~ q) pretzel knot

(p~ q odd, positive integers) which admits a non-trivial cyclic surgery. vVe show that

a (p, q, 2m) pretzel knot admits at most one non-trivial finite sllrgery so long as

I~I + I~I + I~I < 1. For m < -l, we show further that (p, q ~ 2m) pretzels admit no

non-trivial finite surgeries.

This can be combined with the work of Delman to deduce:

Theorem 4.5.1. The only non-torus Nlontesinos knot which admit.'; a non-trivial

cyclic surgery is the (-2, 3, 7) pretzel /mot. The non-trivial cyclic surgeries on this

A:not are of slope 18 and 19.

Theorem 4.5.2. If a non-torus Montesinos /mot 1< admits a non-trivialfinite surgery~

then one of the following holds.

• K is a (-2, p, q) pretzel knot with 5 :s; p :s; q odd and the filling is not cyclic.

• l{ is the (-2,3, 7) pretzel/mot and the filling is along slope 17, 18 1 or 19.

• [( is the (-2, 3~ 9) pretzel /mot and the filling is along .c;lope 22 or 23.

For certain pretzel knots we are able~ not only to classify fini te and cyclic surgeries,

but also to determine the structure of the character variety. \Ve begin by demon

strating the inclusion of PSL2 (C)-character varieties _Y(~(Qt,Œ2: Œ3)) C .Y([() when

1< = I(PI/o.t: /32/0.2, (33/o.3) is a three-tangle lv[ontesinos knot and n(oh 0.2, 0.3) the

associated triangle group. The (p, q, r) pretzel knots, for which I( = I(l/p, l/q, l/r},

are important examples. These knots are small, so the SL2 (C)-character variety ...Y(I()

will consist of algebraic curves. Generally, if K also admits a Seifert surgery, we can

proceed to calculate the Culler-Shalen senlÎnorms explicitly and thereby enunlerate

the curves in ..X(/(). For hyperbolic (-2,3, n) pretzel knots (n an odd integer), we

deduce that .Y(/() consists of exactly two (respectively three) curves \Vhen 3 f n (re

spectively 3 1 n). vVe obtain similar resllits for sorne (-3~ 3~ n) pretzel knots. (This

is an expanded form of the papers [Bl\[Z~ j\Ia.tl~ ~Iat2].)
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It should be emphasized that such a detailed description of the character variety of

a knot is rare. It is true that the character varieties of torus knots are well understood

and Burde [Bu] has shown that }«K) consists of exactly two curves for certain 2

bridge knots. However, our description of the character varieties and Culler-Shalen

seminorms of a family of pretzel knots marks substantial progress in this area.

These seminorm calculations also provide a link \Vith the A-polynomial invariant

of [CCGLS]. For example, we determine the Newton polygon for the A-polynomial

of the (-2,3, n) pretzel knots. This is significant, as it remains difficult to compute

the A-polynomial. For example, the (-2,3, ï) is the only one of these knots whose

polynomial is included in the table of [CCGLS].

In addition to such concrete contributions, we would like to think of this thesis

as a handhook of computational techniques for use in the understanding of Culler

Shalen seminorms. For example, we illustrate how Ohtsuki's [Oht] work on ideal

points can be used to deduce the Culler-Shalen seminorms of the twist knots. (This

again leads to information about cyclic and finite surgeries and the' Newton polygon

for the A-polynomial of these knots.) vVe explain how to show Zx(f/-l) = 1 when

x is the character of a p-representation. vVe discuss in sorne detail Hatcher and

Gerters algorithm for calculating the boundary slopes of ;\;Iontesinos knots using

pretzel knots as examples. Finally, in the Appendix, we present calculations of the

zeroes of A.le~:ander polynomials for certain pretzel knots.

1.3. Outline. Following the introductory first chapter, the second chapter presents

a brief overview of the theory of character varieties of knots and the Culler-Shalen

seminorm. To illustrate the power of this theory, wc explicitly calculate the Culler

Shalen seminorrns of the twist knots and show how such a calculation can be used

to make deductions about finite surgeries on those knots. \Ve also construct the

Newton polygon for the A-polynomial of the twist knots. vVe next state sorne prelim

inary lemrnas about commutativity of representations and representations of triangle

groups. \Ve complete the second chapter with an argument that Zx(ff.l) = 1 when x

is the character of a p-representation of a twist knot or a (-2,3, n) pretzel knot.

The third chapter introduces ivlontesinos knots. After outlining the theory of

Seifert fibred spaces, we prove a theorenl of ~Iontesinos which illustrates the close
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connection between Seifert spaces and ~Iontesinos knots. This chapter closes \Vith

a proposition showing that representations of the double cover of a knot group can

often he extended to the whole knot group. It follows that the character variety of

a triangle group includes into the character varlety of the corresponding three-tangle

j\Iontesinos knot.

This is exploited in the last two chapters where we investigate a specifie kind of

three-tangle ~Iontesinosknot~ the (p, q, r) pretzel knot. In Ct.:apter 4 we look at cyclic

and finite surgeries of snch knots. vVe first show that if a (p, q~ 2m) pretzel knot admits

a finite surgery, that surgery is odd integral and near a non-integral boundary slope.

vVe then present Hatcher and Oertel's algorithm for calculating boundary slopes in

order to refine our results. vVe next classify cyclic surgeries on (-2, p~ q) pretzel knots

and finite surgeries on (p, q~ -2m) pretzel knots (m > 1). Combined with Delman~s

\vork, this gives a complete classification ofcyclic surgeries on Nlontesinos knots (there

are only two non-trivial cyclic surgeries amongst the non-torus NIontesinos knots) and

a near complete analysis of finite surgeries.

In Chapter 5, we make explicit calculations of the Culler-Shalen seminorms of

several knots. vVe first determine the minimum of the total seminorm for (2, p~ q)

pretzel knots. vVe then calculate the Culler-Shalen seminorms of (-2, 3~ n) pretzel

knots and thereby deduce the structure of the SL2 (C)-character variety of those

knots. vVe also investigate to what extent we can make analogous computations for

the (-3,3, n) pretzel knots.

Finally, in Chapter 6 we suggest sorne ways in which this work could he extended

and discuss questions arising from our research. The thesis concludes with an Ap

pendix concerning zeroes of the Alexander polynomials of (-2,3, n) pretzel knots.
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2. CHARACTER VARlETIES AND THE CULLER-SHALEN SEMINORM

2.1. Character varieties. Character varieties will play a fundamental role in what

follows. \Ve give here a brier outline of the important facts for our purposes. The

standard references for SL2 (C)-character varieties are the two articles of Culier and

Shalen [CSl, CS2] as weIl as their part (Chapter 1) of [CGLS]. Boyer and Zhang's

[BZ1, Section 2] is also a good reference and [BZ2] develops the theory of PSL2 (C)

character varieties. For a more leisurely introduction, we recommend Tanguay's

thesis [Ta].

For a finitely generated group 1r, let R = Hom(tr, SL2 (C» denote the set of SL2 (C)

representations. Then R is an affine algebraic set referred to as the representation

variety. In particular, if 7f is generated by 9h 92, ... gn, then the entries of the matrices

P(9i) E SL2 (C) cao be taken as coordinates. The algebraic set R is then determined

by the equatioos det(p(gi» = 1 along with those arising from any relations amongst

the Yi in rr. Thus R C etn
• A different choice of generators will result in a set R'

isomorphic to R.

The character variety ..Y" is the set of characters of representations in R. l t is also

algebraic and generated by

(see (G~t Corollary 4.12] and (V]). If we let t : R ~ CIGI clenote the function which

takes p to (XP(Y))9EC' then the image teR) is isomorphic to 4Y. Note that ICI, the

carclinality of C, is n(n2 + 5)/6.

The focus of this thesis is the case where 1r = 7ft (.IV/) is the fundanlental group of

the complement i\l of a /mot K in 53. That is, I( is the image of a smooth errlbedding

of SI in S3 and lV/ = S3 \ iV(I<), _N(I<) being an open tubular neighbourhood of the

knot. vVe will be especially interested in the case where /( is hyperbolic. This means
o 0

1v/, the interior of j\I, admits a hyperbolic metric. In other words, A/= I8f3 /f where

JH[3 is hyperbolic 3-space and r C PSL2 (C) = Isom+ (lHf3), the group of orientation

preserving isometries of IHfJ .
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In this context, r ~ 1r so that r provides a natural PSL2(C)-representation~the

holonomy representation, Po : 1r --+ PSL2(C). Thurston has shown (see [CSl, Proposi

tion 3.1.1] for a proof) that Po lifts to an irreducible SL2(C)-representation Po. l'vlore

over, the irreducible component .0'\""0 C ..'\. containing Xpo is a C1J.rve~ i.e., dirnc(.Yo) = 1

[CGLS, Proposition 1.1.1]. vVe refer to .\0 as the canonical curve.

The set of characters of reducible representations also forms a curve which is iso

morphic to C. (See for example [Ta, Proposition 2.5.5]. This is true whene\J~er Al

is the complement of a knot in 53, hyperbolic or not.) wloreover, when the knot is

small, any irreducible component of ..\"" containing the character of an irreducible rep

resentation is again a curve. (A knot is smalt provided there are no closed essential

surfaces in Al. A surface is essential if it is incompressible, orientable, and properly

embedded in AI such that no component is parallel into 8AI and no S2 component

bounds a bail.)

For such a curve .Yi C .0'\, let .o'\""i denote the smooth projective variety birationally

equivalent to .X:i . The birational equivalence is regular at aIl but a finite number of

points of "'Yi called ideal points. As in [CGLS, Section 1.5], the complernent of the

ideal points in -'Yi may be identified with ..Yi where v : ..\""i --+ "Yi is normalization [8hf,

Chapter II §5].

vVe will have occasion to use PSL2 (C)-character varieties, particularly when we

investigate T-cun·es (see Section 2.2.3). vVe will generally use a bar to denote PSL2 (C)

versions of familiar objects. Thus R is a PSL2 (C)-representation variety and .Y a

PSL2 (C)-character variety. The theory of these objects is similar to the SL2 (C)

theory and we refer the reader to (BZ2~ Sections 3 and 4] for details.

Each ideal point of ..Yi can be used to construct a simplicial tree on which 'iT acts

non-trivially (see (CGLS, Section 1.2]). This gives a splitting of the group 'iT as the

fundamental group of a graph of groups. This in turn yields an incompressible surface

in the knot exterior Al. In this way ideal points are associated with incompressible

surfaces in Al and vice versa.

2.2. Culler-Shalen seminorms. Culler-Shalen seminornls \Vere introduced in the

first chapter of (CGLS]. The authors show that the canonical curve .\0 C _\ (s~e

Section 2.1) can be used to construct a nornl on surgery space 1/ = Hl (ail!; IR) and
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this nOml plays a central role in their proof of the Cyclic Surgery Theorem. Boyer

and Zhang [BZl, 8Z2] recognized that this construction can be extended to any curve

in )( eontaining the character of an irreducible representation. However, in general

the result is not a nOrIn, but rather a seminorm. These seminornls, which we will

calI Culler-Shalen seminorms, again figure prominently in Boyer and Zhang's proof

of the Finite Filling Conjecture [BZ4]. ~iloreover, one of the themes of this thesis is

that these seminorms are also of great use in understanding Seifert surgeries.

2.2.1. Dehn Surgery. Before coming to the seminorm construction, we briefly intro

duce Dehn surgery. The classical referenee here is Rolfsen's book [RoI]. \Ve also

recommend 8oyer's survey [82].

Let AI' = S3 \ lV(K) where lV(I() is an open tubular neighbourhood of a knot

K in 53. A Dehn surgery on [( (or a Dehn filling of AI) is the closed manifold

.Ai/(a) = Al Ua S1 X D 2 obtained by attaching a soHd torus, SI x D2, and 1.\I along

their houndary tori, T 2 • This glueing is determined by the image a C 8AI of a

meridional disc {pt} x 8 D2
.

Ta he precise, the surgery is determined by the isotopy class of a in 8A/. There

is a standard choice of basis {Il, A} of Hl (81\1; Il) where Il is the class of a meridian

of the knot (the boundary of a dise transverse to the knot) and A is the class of a

preferred longitude (a simple closed curve in 8AI which intersects a meridian once

transversally, and whose class in homology HI (AI) is zero) [Roi, Section 2.E]. "Vith

respect to this basis, a represents the classes ±(ap.+ bA) (depending on orientation).

\-Ve will sometimes (by abuse of notation) write Q = (a, b). The ambiguity in sign

can he removed by taking the ratio i. Indeed, since the isotopy class of a can be

identified (canonically, see [B2, Proposition 2.4]) \Vith ~ E QU {~ }, we will frequently

confuse a with its isotopy class and ~. Using the basis {Il,"'\}, Hnes of slope ~ in

the universal cover, R x IR of 8Al = T 2 = SI X SI, project onto curves of class

o in 81.\;/. For this reason, we will often refer to 0 (and other primitive classes in

Hl (alvl; Il)) as a "slope." Finally, taking advantage of the Hurewicz isomorphism,

Hl (al\/; Il) rv 7fl (81VI) ~ ZEBZ, we will have occasion to think of Ct or ~ as a homotopy

class although this identification is only valid up to conjugation.
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If 7rl(lV/(a)) is cyc1ic, we will say a is a cyclic surgery. The simplest example is

trivial surgery: J\l (~) = AI (J.L) = S3. On the other hand, the only way to obtain

1fl (.Lv/(a)) ~ Z is through surgery on a trivial /mot, Le., the standard, unknotted,

embedding of SI in 53 [Gal]. So cyclic surgeries will generally be examples of finite

surgeries, Le., surgeries for which 1fl (A'/(a)) is fini te. A third important category,

from our point of view, is the case where AI(a) is a Seifert fibred space. (\\Te will

discuss this case in more detail in Section 2.2.4 below.)

2.2.2. Construction of Culler-Shalen seminorms. Let us now describe the construc

tion of a Culler-Shalen seminorm given a curve "Yi C ..'\. For',/ E 7r = 7[1 (AI), define

the regular function 1.., : ..\ ~ C by 1..,(Xp) = }(P(/) = trace(p(/». By the Hurewicz

isomorphism, a class 'Y E L = Hl (8Al; Z) determines an element of 1ï l (ô AIL and

therefore an element of 1f, well-defined up to conjugacy. The function J.., = l~ - 4

is again regular and so can be pulled back to .Xi , the smooth projective variety bi

rationally equivalent to ..'Yi • For, E L, II/l1i is the degree of J.., : "Yi -7 CIP I
. The

seminorm is extended to V = Hl (ôAI; il) by linearity.

The power of CuUer-Shalen seminorms is perhaps best illustrated by the fol

lowing two theorems which relate them to cyclic and finite surgeries. Here Si =

min{lI"rlli; '"'r E L. 11711i > O} denotes the minimal norm and a boundary slope ,8 E

Hl (81VI; Z) is the class of the boundary of an essential surface properly embedded in

1vl.

Theorem 2.2.1 (CoroUary LIA [CGLS]). Ifa is not a bounda;y slope andirl(AI(a))

is cyclic, then Ilaili = Si.

Theorem 2.2.2 (Theorem 2.3 [BZI]). If a is not a boundary slope and 7[1 (AI(a)) is

finite, then lIalli < max(2si, Si + 8).

Indeed, boundary sIopes play a fundamental role in the theory of Culler-Shalen

seminorms. Let ~("r,;3) denote the minimal geometric intersection number of curves

representing the classes 'Y and ,8 so that ~ ( ~, ~) = 1ad - bel. In the context of a knot

in S3 for which J.L is not a boundary slope, Lemma 6.2 of [BZl] can be rearranged to

say:
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Lemma 2.2.3 (Lemma 6.2 [BZ1]) .

II/Iii = 2[La;~(/,.Bj)]
j

where the a~ are non-negative integers and the sum is over the set of boundary slopes

/3j.

Roughly speaking the a) count ideal points of "Yi associated to /3j (see Section 2.1).

In particular, if there are no such, then a) = o.

2.2.3. Norm curues and r-curues. Lemma 2.2.3, provides a practical way to describe

the difference between norm curves and r-curves. A norm curve ..Yi is one on which

no f î is constant, (1 f; / E ÎTl(8Af)). In this case Il . IIi is a norm (rather than just a

seminorm). In terms of Lemma 2.2.3, this means at least two of the a; are non-zero.

An important example of a norm curve is the canonical curve, "'\""0, in the case of a

hyperbolic knot.

If ,Xi C ..Y is not a norm curve (and ...Y is the character variety of the complement

of a small knot in 53 [BZ2, Section 5]), then there is a boundary slope r such that fr

is constant on "'Yi and we will refer to "Yi as an r-curve. In terms of Lemma 2.2.3, this

means that aj = 0 if /3j f; rand !l''''t1li = Si~(··'f,r). In particular, since AI(k) = 53, we

have IIklli = Si (Theorem 2.2.1. Note that ~ is not a boundary slope by Lemma 2.3.1.)

This means r is distance 1 from kand is therefore an integer. If K is small, then any

T-curve .X'"i includes into the PSL2 (C)-character variety ..t(AI(r)) (see [BZ2, Example

5.10]).

As we mentioned in Section 2.1, 1< small also implies each component ~\i of .\ is a

curve. Therefore each component leads to a Culler-Shalen seminorm. In this context,

we will often want to look at the total norm Il . Ilr = Li Il . !Ii and its corresponding

minimal value 5 = Li Sil the SUffiS being taken over the components .Xi containing

irreducible characters. If 1\;[ is hyperbolic, this total norm is a norm (and not just a

seminorm) since one of the components is the canonical curve ",\""o (for which Il ·110 is

a norm) .

2.2.4. Seifert surgery. If Al(a) is a Seifert fibred space, we will say that Ct is a Seifert

surgery slope. Seifert fibred spaces will he described in more detail in Section 3.1.1.
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Briefly, when the base orbifold is 8 2 , such a space is a surgery on S2 x 51 which

involves the removal of n saHd tori Ti which are then reattached using a homeomor

phisrn of â'Ii. Just as in the case of Dehn surgery, we can describe the attaching

homeomorphisms by fractions ~ E Q U {k}. In case n < 3, we will say that the

resulting manifold is a smalt Seifert space.

According to Thurston's hyperbolization conjecture, Dehn surgery on a hyperbolic

knot in 53 will result in a manifold which is either hyperbolic, has finite or cyclic

fundamental group~ contains an essential toms or sphere, or is smaIl Seifert (these

outcomes are not disjoint). Nloreover, there are only a finite number of surgeries

in Q U {k} which can result in a non-hyperbolic manifold [Thu]. These are called

exceptional surgeries.

There are two important approaches to the study of exceptional surgeries. Surg

eries producing essential surfaces are amenable to investigation via the theory of

intersection graphs developed by Gordon and Luecke (see [Go1] for a survey). On

the other hand, our discussion of Culler-Shalen seminorms showed how the techniques

of Culler. Shalen, Boyer, and Zhang aIlo\v us to understand cyclic and finite surgeries.

An important theme of this thesis is that Seifert surgeries can also be studied using

Culler-Shalen seminorms. In particular, \vhen 1.VI(a) is a small Seifert surgery we can

often show lIodli < Si + C where C is a constant depending only on the surgery

coefficients bh b21 b3 (compare ThE.orems 2.2.1 and 2.2.2). This idea will be developed

more explicitly in Section 5.2 (see also [BB]) where we calculate the Culler-Shalen

seminorms of small Seifert fillings of the (-2,3, n) pretzel knot.

2.2.5. Fundamental and Newton polygons. Given a Culler-Shalen seminorm 11·11 aris

ing from a curve in the character variety of a knot [(, we call B, the norm-disc of

radius s in F = III (a .~.,f ; IR.), a fundamental polygon for [<. \Vhen Il . Il is a norm

(rather than just a seminormL the polygon B is compact, convex, and finite-sided

with vertices which are rational multiples of boundary slopes in L = H1(âAI;Z). It

is symmetric (-B = B) and centred at (O~ 0). It also provides a nice \Vay to visualize

finite and cyclic surgeries. Any cyclic surgeries will lie on âB while finite surgeries

must lie within 2B (assuming s > 8 and neglecting cyclic or finite surgeries along

boundary slopes, see Theorems 2.2.1 and 2.2.2). Recall that the only Il surgery of a



•

•

•

15

knot in 8 3 is on the trivial knot ([Gal]). so the cyclic surgeries on aB \vill generally

be examples of finite surgeries.

The fundamental polygon also provides a direct connection \Vith the .4-polynomial

invariant of [CCGLS). This is a polynomial in Z[[, ml: .4 = L{i,j) bi.j[im j
. The

Newton polygon of such a polynomial in two variables is ~he convex hull in lR.2 of

{(i, j) Ibi,j =1= O}.

Let J.V denote the Newton polygon of the A-polynomial for a hyperbolic knot

K. Let Bo he the fundamental polygon of the Culler-Shalen serninorrn associated

to the canonical curve ""Yo C J'y (Le....X"o contains the character of the holonomy

representation). Boyer and Zhang have shawn that these polygons are dual in the

following sense.

Theorem 2.2.4 (Theorem 1.4 of [BZ4J). The line through any pair of antipodal ver

tices of B o is parallel to a side of J.V. Conversely, the line through any pair of antipodal

vertices of lV is paraUel to a side of Bo.

Thus given the fundamental polygon B o, one can deduce J.V, at least up ta scaling

and translation. As it remains difficult ta calculate the A-polynomial, this is worth

while and we include diagrams of several Ne\vton polygons in this thesis (Figures 4,

5, 26, 27 and 30). The conventions we use are that lV meets the [ and m a.xes but

lies in the first quadrant. The scale is provided by Shanahan's width function:

Definition 2.2.5 (Definition 1.2 of [Shn]). The pjq width w(p/q) of J.V is one les.';

than the number of lines of slope pjq whieh intersect J.V and contain a point of the

integer lattiee.

\Ve require that Shanahan's width correspond to the canonical Culler-Shalen semi

norm: w(pjq) = IIqjpllo. Given an expression for Il . 110 as in Lernma 2.2.3. we can

quickly find J.V as is illustrated by the example of the twist knots which follows.

2.3. Polygons of the twist knots. In Chapter 5 we will nlake a rather detailed

calculation of the Culler-Shalen serninorms of sorne pretzel knots. As a prelude, and to

illustrate the power of the seminorm approach, we investigate twist knots. Although

these can be treated in much the sarne fashion as the pretzel knots (see [B~IZ)L they

ha.ve sorne special features which allawa more direct approach, which we adopt here.
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2n crossings

FIGURE 1. The twist knot [<n'

Figure 1 shows the twist knot K = K n . Since the trivial knot Ka and the trefoil

[(1 are not hyperbolic~we will assume n -# O~ 1. Burde [Bu~ Section 3] has shown that

within the character variety X· of a twist knot there is a unique curve ~Xo containing

irreducible characters (which is therefore the canonical curve).

This allows us to determine s directly for this curve as it is simply related to the

number of dihedral representations. One can show (see [Ta, Section 5.3]) that the

class (2, 0) E Hl (81.\;/; Z) has norm s+2d where d is the number of dihedral characters

of 1f. Hence s = Il (1,0) Il = 411 (2, 0) Il = ts + d and thus s = 2d.

The number d is equal to (H - 1)/2 (see for example [KI, Theorem 10]) where

H = card(H1(E2 »), L2 being the second branched cyclic cover of the knot ([Rol~

Section 10.Cl). Since card(H1(L2» = I~( -1)1 ([RoI, Corollary 8.D.3])~ we see that s

may be derived from the Alexander polynomial, which is ~(t) = nt2 + (1 - 2n)t + n

in the case of the twist knot [(n ([Rol~ Exercise 7.B.7]):

s - 2d

IH1(L2)1 - 1

- I~( -1)1 - 1

(2.1) { 41nl, if n < -1
-

4n - 2, ifn > 2

Twist knots are examples of 2-bridge knots. These knots are sometimes calIed

rational knots as each has an associated rational number. For [<n, the associated

number is 4n~ l' Hatcher and Thurston [HT] have shown that the incompressible

surfaces of such a knot are given by continued fraction expansions of the associated
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rational number~
p 1
-=r+ 1

q bl + b->+.••+ t!-
- .'1

\Ve require lbjl > 2 and denote such a continued fraction hy [b h ~~ •.. ~ bN ] or simply

[bj ] •

4n -1

There are three expansions of 4n~1. The first two we can write imnlediately:

2 1
---1 = [2n, -2]
2n + -2

1
----1 = [2n - 1,2].
2n - 1 + 2:

The third depends on the sign of n. If n is positive we have

[-2~ 2, -2,2, ... ~ -2~ 2~ -3]
, .... ri

•
n-1 pairs

\Vith n - 1 pairs -2, 2~ while for n negative,

[2, -2, 2, -2~ 2~ ... ,2, -2,2, -3], ,...
Inl-l pairs

\Vith Inl- 1 pairs 2, -2. For each continued fraction, let b+ = card( {( -1)i+ 1bj > O})

and b- = card({(-1)i+1bj < O}).

There is a unique continued fraction \vhose entries bj are aU even. It corresponds

to the longitude of the knot. Let bt and bD he the b+, b- of this surface. For the

twist knot, it is the first continued fraction [2n, -2] which has aH entries even, so

bt = 2, bo= 0 when n > 0 and bt = 1 = bD when n < o.
The boundary slope for the surface associated to [bj ] cao now be found through

comparison \Vith the longitude. It's given as

•

Thus, when n > 0, the second continued fraction has b+ = 1 = b- and the boundary

slope is 2[(1 - 1) - (2 - 0)] = -4. The third boundary slope is 2[(0 - (2n - 1)) - 2] =

-(4n + 2). \Vhen n < 0, we have the boundary slopes -4 and -4n.

Ohtsuki [üht] shows how to determine the Culler-Shalen seminorm given these

continued fraction expansions. His strategy is to determine explicitly the number of

ideal points for each incompressible surface. He shows that there are ~ nj(lbj ! - 1)
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such unless ail the nj are even in which case there are ~ llj(lbjl- 1) - ~. This means

that~ up to a constant k ~ the Culler-Shalen seminorm is given by

1 1
IIp/qll = k L Ip - lV[bJ ]QI[:) II(Ibjl - 1)] - :J1pl,

[bjJ - j -

the SUffi being taken over the possible continued fraction expansions of the rational

number associated to the knot. (This is almost the formula of [Oht~ Proposition 5.2J.

Unfortunately~ after correctly calculating the number of ideal points on the previous

page~ Ohtsuki has neglected to subtract ~ jpl in stating the Proposition.)

Remark: Note that there is no ideal point associated to a surface whose contin

ued fraction has aH Ibi 1 = 2. These are preciseiy the surfaces which are the fibres

of a fibration of the knot over st (see the remark following the Corollary to [HT~

Proposition 1]). In other words, for a fibred 2-bridge knot, there are no ideal points

associated to a surface which is a leaf in the fibration. This is true more generaHy

(see for example [CL]). However~ such a boundary slope may be represented by other

surfaces which are not leaves in a fibration. An example of this is the (-2~ 3, -3)

pretzel knot, 820' which admits a fibration with a Seifert surface leaf. In spite of

this, as we shaH see in Section 5.2, there are ideal points associated to the longitude

because there are other surfaces which are not leaves of a fibration. but nonetheless

have the longitude as boundary slope.

Using Ohtsuki~s formula when n > 0, \ve have

IIp/qll - k[(n - l)1pl + (n - l)lp - 4ql + Ip - (4n + 2)qlJ

- k[(n - l).:l(p/q, 0) + (n - l)~(p/q, -4) + ~(p/q~ -(4n + 2»]~

while for n < 0,

IIp/qll - k[(lnl - l)lpl - nlp - 4ql + Ip - 4nqll

- k[(lnl - l)~(p/q, 0) - n~(p/q, -4) + ~(p/q, -4n»).

Given that 111/011 = s (since Al(1/0) = 53 has cyclic fundamental group and 1/0 is

not a boundary slope) we can use the calculation of s above (Equation 2.1) to see

that k = 2.
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FIGURE 2. Fundamental polygon of the twist knot !(n (n > 1).

•

a = 2(2..n~..-2) (-(4n + 2), 1)

b = 4(.s~1) (-4,1)

.
(-1,1)

c = 4.s~2 (-3! 1)

d = t(-2,l)

(0,1)

e = 4.s~2( -1,1)

f = (0, 4(s~1»

(1,1)

to
(-4,1)
~ _a b-

(-1,0)

c d (0, i) to
(4In/,1)

~_~e -+

(1,0)

a=(-l,!)

b = tC-3,1)
c = iC-2, 1)

d = tC-I,l)
e = (l, - 4~)

•
FIGURE 3. Fundamental polygon of the twist knot !(n (n < 0).

The fundamental polygon B of the twist knot K n is illustrated in Figures 2 (n > 1)

and 3 (n < 0). In particular: note that the fundamental polygon lies below the line

y = 1/2. This shows that these knots admit no non-trivial cydic or finite surgeries
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as such surgeries would either lie \vithin 2B (assuming n =1= 2 sa that s > 8, [BZl,

Theorem 2.3]) or else occur at a boundary slope. Since 2B includes no integer lattice

points (besicles (a,O), -2 < a < 2), the first possibility does not arise. On the other

hand, since twist knots are small, the boundary slopes are also not cyclic or fini te:

Lemma 2.3.1. If J.V! is smalt and a is a boundary slope~ then A/(a) is not cyclic or

finite.

Proof: By [CGLS, Theorem 2.0.3], .:vl(o) is not finite, and it is cyclic only if AI(a) ,.....

Si x S2. However, Gabai [Gal] has shawn that, amongst knots in S3, only slope 0

surgery on the trivial knot cao produce Si x 52. 0

For K 2 , s = 6 sa that max(2s,.ri + 8) = s + 8 = 14 (see Theorem 2.2.2). Here, the

highest point of B has y = .ri / 4(s - 1) = 7/26. So, in this case as weIl, kB includes no

integer lattice points other than (a, 0), and therefore /(2 also admits no non-trivial

finite surgeries.

Given the Culler-Shalen seminorm calculations, as above, we can also immediately

deduce the Newton polygon. For example, for n > 0, we see that the edges of slope

kand ~-l must have ;'length" n - 1. while the edge of slope -(.J~+2) has only length

one. In other words, the vertical segments corresponding ta the boundary slope 0

have length n - 1 while a segment of slope -1/4, like that from (O. n) to (4(n - 1), 1)

is (n - 1) times the vector (4, -1):

(O. n) + (n - 1)(4, -1) = (0, n) + (4(n - 1), 1 - n) = (4:(n - 1), 1).

Figures 4: (n > 1) and 5 (n < 0) illustrate the Newton polygons for these knots.

2.4. Preliminary lemmas. Our goal is ta develop the theory of SL2 (C)-character

varieties of ~/Iontesinos knots, particularly (p, q, r) pretzel knots. In this section we

present several useful lemmas about the structure of SL2 (C)- and PSL2 (C)-character

varieties.

2.4.1. Commutativity of representations. The first set of lemmas relate to commuta

is parabolic if it is conjugate to a matrix of the rorm
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FIGURE 4. Newton polygon of the twist knot [(n (n > 1).

•
(O,lnl)

(Slnl,lnl)

FIGURE 5. Newton polygon of the twist knot [(n (n < 0).

Lemma 2.4.1. A~ B E 5L2 (C) \ {±I} commute iff they are bath diagonal or both

parabolic (afte1' an appropriate conjugation).

Proof: Conjugate sa that .4 = (: l~a)' Let B= (: :). Then

Suppose A is diagonal. Then j3 = 0 and, since .4 f. ±I, a 2 f. 1. The lower left

entries of AB and BA imply c = O. Similarly, since f3 = 0, the upper right entries of

AB and BA imply b = 0 and so B is diagonal.•
(

aa + c{3 bo + dfJ )
AB = ,

cla dIa
and ( ua a8+blo)

BA = co c,~ + dlQ .
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Suppose that .4 is parabolic, Le., ct = ±1 and (3 #= o. The lower right entry of AB

and B.4 then implies c = 0 while the upper right entry obliges a = d. ft follows that

B is also parabolic. 0

Remark: An irreducible SL2 (C)-representation is not abelian. However~ a reducible

. SL2 (C)-representation could be non-abelian. For example p : Z/3 * Z/3 -t SL2 (C)

defined by taking the generators to (( 0 ) and (( 1 ) where ( is a prim-
O (-l 0 (-1

itive third root of unity. On the other hand, the character Xp, of a reducible SL2 (C)-

representation p is always the character Xpo of a diagonal (hence abelian) chara.cter

Po. Simply replace each matri.x p(g) = (a b) by Po(g) = (a 0 ) and
o lia 0 lia

notice that any relations which the p(g) satisfy will also hold for Po(g).

Definition 2.4.2. We will say of a matrix .4 = ± (: :) E PSL2 (C) that it

is diagonal (or parabolic, etc.) if the corresponding matrix (: :) E SL2 (C) is

diagonal (parabolic etc.). If.4 E PSL2 (C) is of the form ± (0 -a): we will
a- 1 0

say that A is antidiagonal. We denote by lV the set of diagonal and antidiagonal

matrices in PSL2 (C):

N= {± (~ a~l ) 1 a E C} U {± (b~l ~b) 1 bEC}.

(
i 0)E will denote the rrtatrix ± . E PSL2 (C).
o -z

Lemma 2.4.3. Suppose A, B E PSL2 (C) \ {±/} cornmute. Then, after an appropri

ate conjugation, one of the following will obtain.

•
1. A and B are both diagonal.

2. A and B are bath parabolic.

3. A E lV and B = E (o'r vice versa).

Proof: Similar to proof of Lemma 2.4.1. o
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Definition 2.4.4 (fBZ2J). A representation p : G -+ PS~(C) is called irreducible if

it is not conjugate to a representation whose image lies in

{± (~ 1;a ) 1 a, bEC, a # O}.

Otherwise it is called reducible.

Lemma 2.4.5. Let 15 : G -+ PS~(C) be an irreducible repreBentation. If pCC) is

abelian, then pcC) :: Z/2 EB Z/2.

Proof: Since p is irreducible, 3g E C 3 p(g) "# ±I. Conjugate 50 that p(g) =

A = ± (a ,8 ). If 0: = ±1 and f3 "# O! the only matrices which commute with
o 1/0:

A are other parabolics and p is reducible. If Q "# ±1, we can conjugate 50 that

p(g) is diagonal. So without l05S of generality, we can assume ,8 = O. If 0:: =1= ±i,

the only matrices which commute with A are again diagonal and p(C) is reducible.

Therefore 0: = ±i and .4 = E. By the previous lemma, the remaining elements of

pCC) are in lV. Since p is irreducible, there is at least one antidiagonal element:

3B = ± (1~b ~b)
Then,

BC = ± (b/e 0) and CB = ± (e/b 0).
o e/b 0 b/e

50, if Band C commute, then b2 = ±c? Thus, either B = C, or else C = BA. = BE,

and these are the only antidiagonal elements of p(C). Since ±I and E are the only

diagonal elements which commute with B, we see that pCC) {±I,E, B, BE} "-J

Z/2œ Z/2. 0

Lemma 2.4.6. Let 15 : G --+ PS~(C) be an irreducible or non-abelian representation.

Suppose A is in the center Z PSL
2
(C) (p(G» = {B E PS~ (C) 1BC = C B V C E p(C)}.

Then, either

•
1. .4 = ±I, or

2..4 is conjugate to E. Nloreover~ if A = D-lED, then D-1p(C)D C lV.

Proof: Apply Lemma 2.4.3. o
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Lemma 2.4.7. Let p : G ~ PS~(C) be an iTTeducible or non-abelian representation.

Let il E Sl2(C) and suppose A = Adp(g) . il = p(g)-1 Ap(g) for each g E G. Then

.4 = O.

Proof: As p is irreducible or non-abelian~ we can find elements gl ~ g2 E G so that r

after a conjugation~ p(gd i= ±I is upper triangular while P(g2) has non-zero lower

left entry. As .4 = (a b ) commutes with jj(gdr we see that c = O. But, then r
c -a

in order for A to commute with P(92) as weIl, a and b must also be zero. 0

2.4.2. The triangle group. The triangle groups !lep, q~ r) are intirnately related to the

(p, q, T) pretzel knots which are the main focus of Chapters 4 and 5.

Definition 2.4.8. The triangle group Ll(p, q~ r) has presentation

In particular~we will need to couot the characters of ~(p, qr r) on several occasions.

By [BB, Proposition D], the number of P5L2 (C)-characters of ~(p, qr r) is

p q r p q r
(p - L2J - 1)(q - L2J - 1)(r - L2J - 1) + l2JL2JL2J

L
gcd(P,q)J Lgcd(p,r)J Lgcd(q,r)J 1

+ 2 + 2 + 2 +

where LxJ denotes the largest integer less than or equal to x. This COllnt includes

characters of reducible representations. The character of a reducible representation

is also the character of a diagonal (hence abelian) representation (see the Remark of

Section 2.4.1). So, to count the characters of reducible representations we can look

at representations of H1(Ll(p,q,r». Let a = gcd(p,q,r), b = gcd(pq,pr,qr). Then

H1(Ll(p,q,r» =Z/aœZ/(b/a) while IH1(Ll(p,q,r»[ = b. Consequently, the number

of characters of Hl (Ll(p, q, r» is

Lemma 2.4.9. Let G = Ll(Pr q, r) with p and q odd. If p is an irreducible PSL2 (C)

representation of G and.il E Z PSL-;z(G (ii(G)L then .4. = ±I.•
(2.3)

L~J + 1, if a - 1

L~J + 2, if a =0

(mod 2),

(nlod 2).
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Proof: Suppose instead that A is conjugate to E (see Lemma 2.4.6). Conjugate

so that pCC) C lV. Since the set of diagonal matrices is closed under multiplication

and p is irreducible, at least one of the generators is taken to an antidiagonal matrix.

However, antidiagonal matrices are of order 2 in PSL2 (C), 50 we have a contradiction

if r is odd. If r is even, the corresponding generator is mapped to an antidiagonal

matrix while the other two generators are mapped to diagonal matrices. This is a

contradiction since the product of the three generators is the identity. O.

Lemllla 2.4.10. If p and q are odd, then no irreducible PSL2 (C)-representation of

~(p, q, r) has finite dihedral image.

Proof: Suppose instead that p : ~(p, q, r) ---+ PSL2 (C) has dihedral image D. If D l'"V

Z/2œZ/2, then p(x2) = ±I and p(y2) = ±I, x and y being the generators of ~(p, Cf, r)

(Definition 2.4.8). Since these also have odd order p and q respectively, it follows that

p(x) = ±I and p(y) = ±I and the representations is trivial, a contradiction.

Thus, we can assume the index two cyclic subgroup C of D has order at least 3. It

follows that, after an appropriate conjugation, C consists of diagonal matrices (use

Lemma 2.4.3 and the infinite order of non-identity parabolics). As p is irreducible,

p(x), say, is not diagonal. Then p(X) E D \ Chas order two. As above, this implies

p(x) = ±I, a contradiction. 0

2.5. Riley's p-representations. As we shall see, an effective way of calculating the

Culler-Shalen seminorm of a slope Q' is through comparison with the meridian j.L and

\\'e will encounter equations of the form

where Zx(f..,) denotes the zero of f.., at a point x in the character variety (for example,

see Equation 5.12). Boyer and Ben Abdelghani [BB, Theorem A] have recently shown

that, subject to sorne mild conditions, the "jump" Zx(!o) - ZX(!Jl) is 2.

Prior to this work, jump ca1culations broke clown into two cases. Let p : 7fL (JI) ---+

SL2 (C) be a representation with character x. If P(1iL (8il!») is not parabolic, argu

ments like those in [BZ1, Section 4] can often be applied to show ZX(!lt) = 0 and

Zx(fa) = 2 resulting in a jump of two. If P(1rL (BAI» is parabolic (see Section 2.4.1
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for a definition), then following Riley [Ri], we say that p is a p-representation. \-\Te

were able to show Zx(fJl ) = 1 for the character of a p-representation in two rather dis

parate situations: the t\vist knots and the (-2,3, n) pretzeI knots. Given Zx(fJl ) = 1

one can again apply the techniques of [BZ1, Section 4] to see that Zx(fa) = 3 and

the jump is two.

It may weIl be that Zx(fJl ) is always one at the character x of a p-representation,

as we know of no evidence to the contrary. vVe will therefore include our calclliations

for these two families of knots as evidence supporting this conjecture.

2.5.1. The twist /mots. \Ve introdllced the twist knots I<n in Section 2.3. Again,

we assume n =1= 0, 1 so that K n is hyperbolic. Let 1.\;[ = 53 \ J.V(I\n) denote the

complement of such a knot. Burde [Bu, Section 3] has shown that within the SL2 (C)

character variety of a tlvist knot there is a unique curve ..:\""o containing the characters

of irreducible representations.

Proposition 2.5.1. The characters of the irreducible p-repre.5entations of a hyper

bolic twist /mot !(n are smooth points of .Yo. Furlhermore Zx(fJl ) = 1 at the character

x of any such representation.

Proof: The minimal narm s on _Yo is twice the number of dihedral characters d

(Equation 2.1). On the other hand, Riley [Ri] shows that irreducible parabolic char

acters x with x(J-l) = 2 correspond to the roots of a polynomial of degree d. ~vloreover:

he argues ([Ri, Theorem 3]) that the polynomial has no repeated roots. i.e., there are

d such points in -\'"0. Sirnilarly there are d points with x(p) = -2 and s in aIl. Let us

label them Xl, ... ,Xs and let y-l (xd = {Yil," . ,Yik.J, i = 1 ... s, where y : -'Co -7.\""o

is normalization [Shf, Chapter II §5]. Then IIpll is equal to the sum of degrees at

these points:

5 k,

S = IIJ.LII = L L ZYtj (fJl)'
i=l j=l

Since ZYij (fJl) ~ l, we must haye k i = 1, (i = 1 ... s) and, setting Yi = Yil:

ZYi Cf,J = 1. If Xi were singular, then Zy. (fJl) ~ 2 ([Ta~ Lemme 5.4.2]). vVe conclude

therefore that each Xi is a smooth point of .\""0 and Zv-'(xd(f#1) = 1. 0
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FIGURE 6. The (-2, 3~ n) pretzel knot.

2.5.2. (-2~ 3~ n) pretzel knots. Figure 6 shows the (-2~ 3~ n) pretzel knot [<n. \Ve will

look at this knot in detail in Section 5.2. If n is even~ K n is a link. .-\lso. [(l~ [\3,

and K s are torus knots and therefore not hyperbolic. So, we will assume that n is

an odd integer, n =/= 1,3,5. Let AI = 53 \ lV([(n) denote the knot exterior and ..Y its

SL2 (C)-character variety.

Proposition 2.5.2. The characters of the irreducible p-represenlations of the com

plement Jl! of a hyperbolic (-2,3, n) pretzel !mot a're simple point.., of ...\"". Fu,thermore

Zx(fJl ) = 1 at the character x of any such representation.

Proof: Starting from the \Virtinger presentation [RoI, Section 3.0), we can show

1f = 7i"l([(n) = <f,g,h 1 hfhg = fhgf~gf(hg)(n-l}/2 = f(hg)(n-l)/2h) where the

generators f, !j and h are as indicatecl in Figure 6 (compare [Tr]). Let x = Xp he the

character of an irreducihle p-representation \Vith x(f-l) = 2. Following Riley, we can

assume

(

1 -?uv _V2)
p(f) = , p(g) =

'Zr 1 + uv ( 10), and p(h) =
IV 1 (~ ~l )

\.

•

Then the relation hfhg = fhgf implies u - v = ±1. l\Ioreover a representation

\Vith u - v = -1 cao he replaced by one with u - v = 1 simply by changing the

signs of both 'U and v. As these two representations will have the same character,

we can assume u - v = 1. After the substitution u = v + 1, the upper left entry of

p(hfhg) - p(fhgf) becomes v2(VIV - (v + 1)('0 +2». 50 v = 0 or w = (1.'+ 1)(v+2)/v.

If v = 0, the second relation of 7r implies that the characters of p-representations

correspond to the distinct roots of a polynomial of degree (Inl - 1)/2 (compare [Ri,

Theorem 3]).
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If'U =F 0 the same relation implies that v is the root of a polynomial Pn (v) of degree

ln - 31 - 1. These are the polynomials described in Lemmas 2.5.3 and 2.5.4 below

where it is shown that each Pn has distinct roots. Thus~ there are ln - 31 - 1 distinct

characters with v =1= o.
1\10 reover, the characters with v = 0 differ from those with u i= 0 as may be seen

by examining trace(p(fg)) = 2 - (v + 1)2. If v = o~ the trace is 1. To have the

same trace with v =F 0, we must choose v = -2. This implies w = 0 and pey) and

p(h) commute. The second relation of 1rdI(n) then simplifies to yf = fh and it is

easy to verify that the choice v = -2, w = 0 and 'U = V + 1 = -1 is not consistent

with p(gf) = p(fh). Thus there is no character \Vith v =F 0 equal to a character \Vith

v = o.
50, in aIl there are 3(ln-21-1)/2 irreducible parabolic characters x with x(J.l) = 2.

Similarly there are 3([n - 21 - 1)/2 points with x(J.t) = -2 and 5 in aIl. (vVe will

see in Section 5.2 that S = 3(ln - 21- 1), where S is the total minimal norm.) Let

us label the points Xl, ... ~ Xs and let UU;XiEX
j

} vjl (xd = {Yih ... ~ YikJ, i = 1 ... 5,

where Vj : )('f 4- "'{j is normalization. Then IIJ.LIIT is equal to the sum of degrees at

these points:
5 ki

S = IIttiiT = L L ZYt) (fJl).
i=l j=l

Since ZYij (fJl) 2:: 1, we must have ki = 1, Ci = 1 ... 5) and, setting Yi = Yih

ZYi (fJl) = 1. If Xi were singular, then ZYi (fJl) 2:: 2 [Ta, Lemme 5.4.2]. vVe conclude

therefore that each Xi is a simple point of 4'{ and Zv-1(x;)(fJl) = 1. 0

Lemma 2.5.3. Let Pn be the polyno·mial.s of degree 2 - n defined recu1·sively by the

equations

where n < -1 is odd. Then Pn kas distinct roots.

Proof: (1 am indebted to Richard Stong [St] for this arguInent.) First note that Pn

has leading term (_1)Cn+l}/2v 2-n and constant term Pn(O) = (_2)-Cn+I)/2. Therefore

the roots of Pn are aH algebraic integers and v = 0 is never a root. Since v = 0
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is not a root ~ the roots of Pn are the same as the roots of the Laurent polynomial

L - (n-l)/2
(l-n)/2 - v Pn·

Notice that for n > 0,

-v - 1 + Ijv.

V2 + 2v + 1 + 1/v, and

•

•

o - Ln + (v + 1 + 2/v)Ln- 1 + L n - 2 •

Letting y == -(v + 1 + 2/v)/2 we see that Ln satisfies the Tchebyshev recursion:

Ln - 2yLn - 1 + Ln - 2 = o.
The standard solutions to this recursion are the Tchebyshev polynomials Tn (y) ==

cos(nt) and Pn(Y) == si~~ntt), where cos t == y. It is well-known that Tn(y) and Pn(Y)

are polynomials in y, To(Y) = l, Tl(y) == y, poey) = 0, Pley) == 1, and both satisfy

the same recursion as L. Therefore,

Ln(v) - Lo(v)Tn(y) + (Ll(v) - yLo(v))Pn(y)

sinent)
- Lo(v) cos(nt) + (Ll(v) - yLo(v))-.;"'---";'"

SIn t

- A(v) cos(nt(v) + B(v)),

where cos t == Y = -(v + 1 + 2/v)/2,

:lev) - (LO(V)2 + (Ll(v) - yLO(V))2j sin:! t)1/2

- Ju(u2 ~~ + 2)'

and B(v) is given by the formulas

COS B(v) - L o(v)/.4(v)

sin B(v) - -(LI (v) - yLo(v) )j(A(v) sin t).

Note that this formula requires special interpretation if y = 1 or -1. In this

case sin t == 0 and Pn requires a limit to define. However, in our case, y == 1 means

V2 +3v+2 == 0 so v == -1 or -2, and y == -1 means V2 -v+2 = 0 so v == (1 ±iV7)j2.
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One easily checks that:

L n ( -1) - -1,

L n ( -2) 1/2, and

Ln«l ± i.Jf)/2) - (-I)n(2n - 5 =1= (3 + 2n)i.Jf)/4.

Thus none of these four values of 'U is ever a root of any of the Pn or Ln and we need

not worry about this special case.

Returning to the discussion above, for ail other v we have Ln (v) = A(v) cos(nt(v) +
B(v» and A(v) is nonzero. Therefore roots of Ln occur exactly for zeroes of the cosine.

Now we look for a double root. \IVe have

L~(v) A'(v) cos(nt(v) + B(v» + A(v)(nt'(u) + BI(v» sin(nt(v) + B(v»

(A' IA.)Ln(v) + A(v)(nt'(v) + B'(v» sin(nt(v) + B(v».

Since at any root of Ln we have sin(nt(v) + B(v» = ±l, a double root can only

occur if we simultaneously have a root of nt'(v) + B'(v) = o.
Since cos t = y,

t'Cv) = -y'1sint = ('02
- 2)/(2v2 sin t),

and since cos B = Lo/ ,,4,

B'(v) = (LoA' - L~.4)/(.42 sin B).

Nowas .4 sin B = (yLo - Ldl sin t we find

, . 5v2 + 4v + 2
B (v) = - S1n y .

2(v + 1)('0 + 2)(v2 - '0+2)

The only zeroes of t'Cv) occur at v = ±v12 at which point B'(v) =f; o. ThllS the

only possible double root left to consider is when

,.. 2 4 ?
= -B'( )/'( ) = _ av + 1 v + -n v t v .(?).2 v- - 2

This is equivalent to

(2n + 5 )V2 + 4v + (2 - 4n) = 0,

or
-2 ± VSn2 + 16n - 6

'0=--------
2n+5
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If this v were a root of Ln, then it would he a double root and these are the only

values of v \Vith this property. However the Pn (and therefore the Ln) have roots

which are algebraic integers. The quantity whose square root we take in the formula

for v is congruent to 2 (mod 4) and henee is not a square. Therefore v is Dot an

algebraic integer unless 2n + 5 clivides 4 (see, for example~ Corollary 2 in Chapter 2

of [i\lrc]). This only oecurs for n = -2 or -3. Thus these two had values of v are

never roots of Ln for n > 0 (and therefore not roots of the corresponding Pn). Thus

Pn has no double root. D

Lemma 2.5.4. Let Pn be the polynomials of degree n - 4 defined recursively by the

equations

( 2 (2andpn-2 v) = -«v +v+2)Pn v) +v Pn+2(V))

•

•

where n ~ ï is odd. Then Pn has d'istinct roots.

Proof: Similar to that of the previous lemma D
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3. MONTESINOS KNOTS

3. L Seifert spaces and Montesinos knots. lVlontesinos knots are knots whose

2-fold branched cyclic cover L2 is a Seifert fibred space having as base orbifold 52

with a certain number of cone points. Since 1r"1(L2) = iï/<J.L2)~ we can think of L2 as

a kind of Seifert surgery of the knot, and we ,vill take advantage of this similarity.

To better understand these knots~ we begin with a brief introduction ta the theory

of Seifert spaces.

3. L 1. Seifert fibred spaces. This presentation of Seifert spaces is taken from Chapter

4 of Hatcher~s [Ha} notes (see aIso [Sco~ Section 3]).

Definition 3.1.1. A model Seifert fibring of SI X D 2 is a foliation of 51 x D2 by

cirdesy called fibres constructed as follows. Starting with [a~ 1] x D 2 foliated by the

segments [O~ 1] x {pt}, identify the disks {a} x D 2 and {I} x D2 by a 2'ff(3/o: rotation,

for fi/o E Q.

Definition 3.1.2. A Seifert fibred space is a three-manifold with a foliation by cir

des such lhat each fibre has a neighbourhood diffeomorphic~ preseruing fibres, to a

neighbourhood of a fibre in some model Seifert fibring of 51 X D2"

Definition 3.1.3. The multiplicity of a fibre circle C in a Seifert fibred space is the

number of limes a small disk transverse to C meets each nearby fibr"e. The fib'res of

multiplicity 1 are regular fibres and the other fibres are singular"

Definition 3.1.4. The base orbifold of a Seifert fibred space is the two dimensional

orbifold obtained by identifying each fibre to a point. The images of the singular fibres

are called cane points, the arder of a cone point being the rrmltiplicity of its singular

fibre.

\Ve will be most interested in the case where the base orbifold is 52 along \Vith

sorne cone points. (For an introduction to the theory of orbifolds, see [Sco~ Sec

tion 2J.) Such a Seifert fibred space is completely cleterrnined by a listing of the

model fibrings of neighbourhoods of the singular fibres and we will denote it as

V(,Bl/Ol~,B2/Ct21'.' ~ f3r/o.r). In this case, the Oi are the cane point indices for the

base orbifold which we will denote by 52 (Ct h Ct2, . . . ,Or).
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la"aK.<In 1= a,
en = 6)

3.1.2. Montesinos knots. A link as illustrated in Figure 7 is calleel a Nlontesinos link

and will be denoted by m(e; 131/o.bf32/0.2"" ,Pr/o.r). Here 13/0. describes a rational

tangle and we assume that Q and /3 are relatively prime integers and Q > 1. The ai

give a continued fraction expansion of f3 /0.,

Generally, we can arrange e = 0 by combining those twists with one of the tangles

,Bi/o.i . In this case, we will write simply meal/ah ,82/0.2" .. "Br/nr ).

As the rest of the thesis will be concerned exclusively \Vith :\:Iontesinos knots, we

here introduce sorne notation for this situation. Let AI = 53 \ lV(m) denote the knot

complement, AI the 2-fold cyclic caver of .AI, and I:2 the 2-fold branched cydic cover

(see [Roi, Chapter 6] and [RoI, Section lü.Cl). Theorem 3.2.1, which we prove in the

next section, shows that I:2 = \-;({30/o.o, ,81/0.1, ,82 /0.2,'" 3k /o.k ) \vith ,Bo/ao = -e.

Nluch of what follows depends on the relationships amongst the funclamental groups

of these manifolds.

First, if = ÎÏl (AI) is an index two subgroup of 7r = 111 (AI). The group of I:;l can be

understood in two ways. On the one hand, nI (I:2 ) = if/ (J.l2) = fi/ (ii.) where IL E Tl"

is the class of a meridian of m and Ji E if the class of the loop in AI which (double)

covers that meridian. On the other hand, due to the Seifert structure, we have the
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exact sequence (for example, see [Seo, Section 3])

(3.4)

where F "'-J Z is the center of 7f1 (L2), generated by the class h of a regular fibre,

and ïr?rb(B) is the fundamental group of the base orbifold 8 = S2(ah'" or)' In

particular, we have the presentations ([Seo, Section 2])

and ([BuZ, Equation 12.31])

Note that when r = 3, \ve recover the triangle group (Section 2.4.2), rrrrb(B) 

~(Ol, Q:2l 03)' vVe conclude this section with a lemma pertinent to this case.

Lemma 3.1.5. Suppose Al is Seifert fibred over S2(p, q, r) with p, q, r > 2 and that

P : ïrl (Al) -+ PSL2 (CC) is an irreducible or non-abelian representation. Then p factors

through !l(p, q, r) .

Proof: As above, we have the exact sequence

o -+ F -+ 1Il (A'I) -+ ~(p, q, r) -+ 1

where F = (h) l'"V Z. vVe need to argue that p(h) = ±I.

Lemma 2.4.6 says that if p(h) =1 ±I, then we can conjugate so that p(h) = E and

P(7i1 (A!) C lV. If p, q, r are aU odd, we can argue as in the proof of Lemma 2.4.9.

So we can assume p is even and that p(x) is antidiagonal where x is the generator

of 7il (l\I) satisfying x P = ha (see Equation 3.5). As the antidiagonal elements have

order two, p(x2 ) = ±I. Using the relation x P = ha we see that p(h) has order dividing

a where (a, p) = 1. However, p(h) = E has order two. This contradiction shows that

p(h) = ±I in the case of even p as weIl. 0

3.2. lVlontesinos' theorern. In this section we present Théorème 1 of Nlontesinos'

Orsay notes and its proof closely following those notes to which we refer the reader

for more dctails (see also [BuZ, Section 12.D]).
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e-
T: 1800

FIGURE 8. An annulus preserved by T.

Theorem 3.2.1 (Théorème l of [NIo)). Lel V = V(.BoICto~ PL/al' 132/02, ... ~ Brlar)

be a Seifert fibred space with (0.0,110) = (l~ -eL Qil ,Bi relatively prime, and Qi > l

(1 ~ i < r J. There is an involution T of V such that the quotient F/T is homeomor

phic to S3 with the iVfontesinos link m = m(e; /3I/CtL~ /32/a2~ .. ' .Bk/ak) as branching

set, i. e. m is the image of the fixed points under the quotient map F --+ FIT. Nfore

over, T is fibre and orientation preseruing and acts on the base orbifold 52 as a

refiection in a circle passing through the cone points.

Remark: It follows that V is E 21 the two-fold branched cyclic cover of m.

The proof requires the following eLementary lemma which we state without proof.

Lemma 3.2.2. Let ....\'" be a manifold containing a 3-ball B 3 and let f be an auto

morphism of S2 = 8B3. Suppose F is an extension of f to an automorphism of

B 3
, the cone of S2 (for exa.'nple, F = cone(f)). Then there is a homeom01phism

o ~

G : (X\ B3) U f B3 ---=-+ ..\'" given by

CI 0 - idl 0

X\B3 X\B3

GIB3 - F.

Proof: (of lVlontesinos~ Théorème 1) \Ve will define the involution T in severaL steps.

Consider the soHel torus T = B 2 X SL equipped with an angle if rotation T

(Z., Z2) --+ (Zh Z2). In Figure 8 we 1ve shaded an annulus {ZL E IR} preserved by T.

The quotient TIT of T by this rotation is a baIl B 3 and the image of the fixed

points consists of two unlinked arcs. To the Left of Figure 9 we see two choices of

fundanlental domain of T wit~ the induced identifications. On the right, we see an

equatoriaL dise of the quotient B3. The lightLy shaded band at right represents the

quotient by T of the annuLus of Figure 8.
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FIGURE 9. The quotient of T by T.

Fixed points

FIGURE 10. The double of the quotient of T.

B~

•

The rotation T of T defines an involution T on the double torus D(T) = 52 x SI.

The double of the quotient is then D(B3
) = S3 and the image of the fixed points is

t\\"o disjoint, unknotted circles (Figure 10). On the base 52 = D(B2
) of the trivial

fibration S2 x SI = D(T), Tacts as reftection in the circle D(B I ).

Now, the Seifert space V = V(/3%0' 131, ah··. , 13r/Or) can be constructecl starting

with S2 x SI by removing the interiors of r + 1 disjoint soHd tori 7i = Di X SI

(i = 0, ... ,r) and then replacing them using an oriented automorphism <Pi of â'Ii

which takes the rnericlianmi to the curve Climi + 13ili, li being the longitude.

\Ve can assume that the disks Di used in constructing V are centered on BI (c

B2 C D(B2»as in Figure Il. So we can choose the autonlorphisnl lPi of 0Ii 50 that
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FIGURE Il. Illustration of the disks Di used to construct "'- .

FIGURE 12. Illustration of the balls Bi in 53.

it commutes with Tluri. Thus we can construct an involution on \/- \vhich we will

again call T.

The quotients ~/T are 3-balls Bi. vVe obtain FIT by removing the interiors of the

r + 1 balls from (S2 x 51 )IT = 53 and replacing them llsing the automorphism ;Pi of

aBi = 8(Ti.IT) induced by rPi. In Figure 12, the halls Bi = (Di X SI )/T are lined up

along the band (B l X S l ) 1T j ust as the Di were lined up along BI in Figure Il.

Applying Lemma 3.2.2 with ..\ = S3 shows that VIT remains an 53. Nloreover~ the

lemma shows that the image of the fixed points under the quotient map F ~ FIT,

is obtained from the triviallink (of S2 x SI, see Figure 10) by replacing the image of

this trivial link in each Bi with its image under an extension Fi of (fJt to Bi.
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Case where V = 8 2 X 51 General case

•

FIGURE 13. The trivial link transforms to the !\;Iontesinos link.

Claim 3.2.3. There is an oriented automorphism <Pi of87'i which sends mi to aimi+

/3i/\, commutes with rléJ7i and induces on aRi an automorphism;Pi which extends to

an automorphism Fi of Bi such that the image under Fi. of the trivial tangle in B 3 is

the rational tangle f3i/Qi·

'rVe refer the reader to [NIo] for a proof of this daim.

The daim completes the proof since it shows that the extensions Fi transform the

triviallink to the Niontesinos link m(e; f31/ Q b f32/a2' ... !3r/Ctr) (see Figure 13). 0

3.3. Extending representations. 'rVhen a Nlontesinos knot m has r = 3 tan

gles, the group of the base orbifold 1rprb(B) is a triangle group, ~(p, q, r) (see Sec

tion 2.4.2). vVe can assume that p, q, r are positive and since m is a knot, p and q are

odd. vVe show that PSL2 (C)-representations of this triangle group extend to become

representations of the knot group 1f = 1f1(S3 \ lV(m)).

Proposition 3.3.1. Let Po be an irreducible PSL2 (C)-representation of if which fac

tors through !lep, q, r). Then Po ha$ a unique extension to iL

Proof: Suppose p and p' were two extensions. Let Q E 1r \ 1r. For any ,B E if,

•
p'(a)po (j3)jj' (a)-l -/( (3 -1)- P n a

_ jj(af3n- l )

- jj(O:)Po(f3)p(O)-l
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So A = p(0) -1 p'(0) commutes \Vith Po «(3) and consequently \Vith each element of

Po{7r). By Lemma 2.4.9, A. = ±I, as fi is irreducible_ Thus p and p' agree on 0, hence

on 1r and there is at most one extension of Po-

Claim 3.3.2. There will be an extension p if and only if there is a matrix A E

PS~(C) such that

1. .42 = ±I and;

2. Apo«(3)A.- 1 = PO(J.lj3J.l-1) f01" ail (3 E ir.

Proof: (of daim) Suppose p is an extension and let A. = p(J-L). \Ve know that Po

factors through ~(p,q,r) C 1r1(E2) = ir/(p,2) = ir/Oi.) , 50042 = PO(J.l2) = ±I. Clearly

APoCB)A-1 = Po(J-L,8p-l) as well.

Conversely, suppose we have such an A. Note that 'li = ir U pir. Define P by

if 0 E n
if 0 E pir

Let ° E ir. By hypothesis,

Then,

whence,

So, \fo, ,B E if,

p(o:;3) = po(o{3) = Po(o)Po(.B) = p(o)p({3);

p(OJ.L(3) = p(p(tl-10J-L)f3) = .4iio(J.l- 1op)po(B) = o4(A- 1po(o)A)PoCB)

= Po(o)(Apo«(3» = p(o)p(ttp);

p(pCtf3) = Apo(O:)PoC.B) = p(J.Lo)jj(f3);

and

p( (J.lo)(J.l,B» = p(tL2(J.L-IQtl),B) = Po (J.l2)(A -1 Po (o)A)Po(;3) = ±I(A-1 Po(o)A)jjo(8)

= (Apo(o»(Apo(.B» (since A2 = ±!) = p(J.lo:)p(Jl,8).
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FIGURE 14. A lift of the meridian IL.

Thus P is a homomorphism which extends Po. D(daim)

To see that Po extendst we must demonstrate the existence of such an A corre

sponding to conjugation by f-L. Let T (Theorem 3.2.1) be the involution of the 2-fold

branched cyclic cover E 2 and choose base points x E 8Al and Xo E Fix(T) C E2 •

Then conjugation by J.l corresponds to• 7r l (i\:! , x)

[a]

:..
--=-+ 7il(AI,x)

t---7 [a]1-' = [J.lx . T(a) . (ILx)-l]

where f-Lx is the lift of J.l beginning at x (see Figure 14).

50 we have the following commutative diagram

i11(AI,i·)~ 7il(E2,x) ~ 7il(L2,XO)

1[QI>-t[QI~ ~1 T:1
iTl (.11, x) ---4- 7il(L2,X) ---4- iTl(E2,xo)

From Theorem 3.2.1, we have the diagram

T

1 1

•
where T corresponds to reflection in the equator of 52 (sec Figure 15). If wc choose

paths as illustrated, then T has the effect of taking the generators of ~(p, Cf, r) =
(a, b 1 aP : bq , (ab y> ta their inverses. Combining these ideas with the representation

<Po of Ll(p, q, r) incluced by Po, we have the diagram:



~(p~q~r) ~ PSL2 (C)

T= l
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Xo = base point

FIGURE 15. The reflection of 52 induced by J.

l[aI~[QI~ ~1
ir 1r1(~2) ) Ll(p~ q, r)~ PSL2(C)

Since r~ takes a and b of Ll(p,q, r) to their inverses, and ab to a-Lb- L which is

conjugate to (ab)-L, we see that tr(4)o 0 r~) = tr(~o). On the other hand, since Po is

irreducible~ 4>0 is as well and we deduce (see [CSl, Proposition 1.5.2]) that there is

an A E PSL2 (C) with l/Jo 0 r~ = A~oA-1. In other words, we have found an A such

that ~4po(8)A-1 = Po (J.L13J.L- 1) for aIl /3 E ire

According to the daim. we can conlplete the proof by showing that .-12 = ±I. Since

T is an involution. r; = 1 and .42 commutes with evenr element of the irreducible. .. ..,

representation 4>o(~(p,q, r». By Lemma 2.4.9, .-\.2 = ±I. o

•

Scholium 3.3.3. Any rep1'esentation fi which extends Po ois such that p(p.) has arder

twa.

vVe have been assuming that m = m(PL/OL, ,82 /02' ,8:J/(3 ) is a knot with three

tangles. Then r:2 is Seifert fibred over 8 2 with cone points p = loti, Cl = 1Q:~1 and

r = 1031. This means 7rfb(S2(p, q, r» = Ll(p, q~ r). In other words, when there are

three tangles, we can use the proposition to see that the PSL2 (C)-character variety

of Ll(p, ([, r) inclucles into that of m: ..Y(~(p, q, r» C ..Y(m).

This suggests that for other lVlontesinos knots as weIl, ~Y (ïfprb (B» c ..Y(m) where

B is the base orbifold of L2' the two-folcl branched cyclic cover of m. Indeecl. it

is difficult at first glance to see ho\\' the proof depencls on m having three tangles.
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Essentially the argument breaks clown when 1rprb(B) has more generators because~

although T~ will still take generators ta their inverses, it will no longer do so for aIl

products of generators. So there is no guarantee that T~ will preserve characters.

This means we cannat use [CSl~ Proposition 1.5.2] to show the existence of .-l.

On the other hand, it may well be that T~ preserves the characters of many of

the ïïprb(B) representations. For example when r = 4, 1rprb(B) has three generators

a, b, c so that characters are determined by their value on the words a~ b, c, ab, ac,

bc and abc (see Section 2.1). Of these, an but one~ ac, is taken by T~ ta a ward

having the same trace. Since the SL2 (IR)-character variety of 1ïprb(B) has (real)

dimension two, we know that there are an infinite number of characters. It seems

plausible that sorne of these may in fact be preserved by T:. It would certainly be

interesting to investigate this further. However, in this thesis, we will instead apply

the observation ...Y(~(p, q, r) C ...Y(m) ta deduce sorne consequences for pretzel knots.

This is the subject of the next two chapters.
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4. CYCLIC AND FINITE SURGERIES ON MONTESINOS KNOTS

As we have seeo, three-tangle r.tlontesioos knots are closely related to the triangle

groups. In this and the following chapter~ we exploit this connection in a study of the

(p~ q~ r) pretzel knots. These form an important subset of the three-tangle ~[ontesinos

knots. The (-2~ 3, n) pretzel knots of Section 2.5.2 are examples.

Pretzel knots with cyclic permutations of the indices p, q, rare obviously isotopie

and will be considered equivalent. On the other hand~ there is also an evident isotopy

between the (p~ q, r) and the (r~ q, p) pretzel knot. (For exanlple, given a diagrarn of

the knot such as that of Figure 6, rotate by 1800 about a vertical line to the right

of the diagram.) This rneans that any permutation of the indices p, q, r will result

in an isotopie (hence equivalent) knot. wloreover, taking the mirror reflection of a

pretzel knot corresponds to changÏng the signs of aIl the indices. As this reduees ta

an isomorphism of the fundamental group 'iT, we will ordinarily consider the knots

(p, q, r) and (-p, -q, -r) equivalent. Note howe\'er that such a mirror reflection will

change the signs of boundary and surgery slopes. For example, it will result in a

reflection of the fundamental and Newton polygons in a vertical line.

In this chapter we use the methods of CulleL Shalen, Boyer, and Zhang to come

ta a thorough understanding of cyclic and finite surgeries on pretzel knots. This

complements the work of Delman [Del] who provided a classification of cyclic and

finite surgeries on aIl other ~dontesinos knots.

4.1. Infinite fillings of (p~ q, 2m) pretzel knots. Let [< = !<p,q,r he a pretzel knot

where p = 2k + 1, q = 2l + 1 and r = 2m. \-Ve will he assurning that 1/lpl + l/lql +
l/Irnl :::; 1, and. by [Kaw, Theorem III]~ this ensures that I( is hyperbolic.

Lemma 4.1.1. If l/Ipl + l/lql + 1/lmj < 1 then every filling AI(2a/b) of the knot

complement Al is infinite.

Proof: Ta simplify the notation, we will assume p, q, r > O. For the general case,

one need only take absolu te values.

As !lep, q, m) is infini te, our strategy is to construct a representation of AI(2a/b)

with image ~(p~ q,m).
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Let Po be a faithful, non-abelian PSL2 (C)-representation of Ll(p, q, m). Using the

obvious hornomorphism, Po is also a representation of Ll(p, q, rL the group of the

base orbifold of the twofold branched cyclic cover of the knot. Then, as in Propo

sition 3.3.1, Po "extends" to a PSL2 (C)-representation ,0 of the knot group 7r which

in turn lifts to an SL2 (C)-representation p. (The obstruction to snch a lift is in

H 2 (1ï; Zj2) [BZ2, Section 3]. For a knot in S:\ the second cohomology is trivial

and there is no obstruction.) lVloreover, Scholium 3.3.3 shows Zx(fJL2) > Zx(fJL ) for

x = Xp. It follows that p(J.L2) = ±I.

On the other hand, we can determine the image of À in Ll(p, q, r) = (f, g, h 1

fT, gP, h q , f gh) to be ;\ = gk fTng k+ 1hl fm h l +1• (This derivation is explained in more

detail in Lemma 5.1.2.) Now, as Po is a representation of ~(p, q, mL we have Po(fTTl) =

±I and consequently ,00(;\) = ±I. Then ,o(À) = ±I as weIl.

So, for any filling of the from a = 2a/b, we have p(Ct) = ±I whence ,a factors

through 1ï1(.L\1(a)). Since ,oo(~(p,q, m)) is infinite, we see that 7I1(1\I(Q)) must also

be infinite.

l t remains to construct such a representation Po. Note that as ~ + ~ + ~ :::; l,

Ll(p,q,m) is infinite. Nloreover, either {p,q,m} = {3,3,3}, and Ll(p,q,m) is a set of

isometries of the Euclidean plane El, or else *+ ~ + ~ < 1 and ~(p, q, m) represents

isometries of JE[.2. Since both 1E2 and IHr2 imbed isometrically into IHf3 ~ in either case,

Ll(p, q, m) is contained in PSL2 (C), the set of orientation preserving isometries of IHr.

This provides the required faithful, non-abelian representation. 0

50 under the hypothesis of the lemma, every 2ajb filling of [( is infinite. This

means that any finite surgeries would have to be of the form (2a + l)/b and therefore

would have norm 11(2a + l)jbllr < S + 8 [BZl, Theorem 2.3]. On the other hand, the

2ajb fillings will have norm superior to S + 8. (See Section 2.2.3 for the definition of

S and Il . liT, the total norm.)

Lemma 4.1.2. If l/Ipl + l/lql + 1jlml < 1 then 112a/b11T ~ S + 12.

Proof: Again, we assume p, q, T > O.

vVe first observe that there are at least 3 irreducible PSL2 (C) characters of !l(p, q~ m)

using Equations 2.2 and 2.3. This cao be verified directly if Ula.X (p, q, 'm) :::; Il. Let

us assume then that ma.x (p, q, Tn) > Il.
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As p and q are both odd~ we can simplify the two equations somewhat to see that

the number of irreducible characters of ~(p~ q~ m) is

(p - l)(q - l)(m - 1)/4 + [gcd(p, q) + gcd(p, m) + gcd(q, m) - 1]/2 - (b + 1)/2

where b = gcd(pq, pm, qm).

\tVithout loss of generality~ p < q, and there are two cases: m = ma.\: (P: q, ml, and

q = ma'\: (p~ q, ml. If m = ma..'\: (p, q, m), then b ~ pq and the number of irreducible

characters is at least

(p - l)(q - l)(m - 1)/4 + 1 - (pq + 1)/2

(p - l)(q - l)(m - 1)/4 + 1 - (p - l)(q - 1)/2 - (p + q)/2

(p - l)(q - l)(m - 3)/4 + 1 - (p + q)/2

If p or q is greater than 3, this is at least 2(m - 3) + 1 - m = m - 5. If p = q = 3,

we again have the bound m - 3 + 1 - 3 = m - 5. So either way there will be at least

7 irreducible characters since we're assuming m = max (p, q, m) > 11.

Suppose next that q = ma..'\: (p, q, ml. As above we see that there are at least

(p - l)(m. - l)(q - 3)/4 + 1 - (p + m)/2 irreducible characters of ~(p,q,m). If p > 5

or m > 3 there are at least 3(q - 3)/2 + 1 - q = (q - 7)/2 > 2 characters. On the

other hand, the remaining possibilities (p = 3 or 5 and m = 2 or 3) also yield at least

3 irreducible characters.

Therefore, there are at least 3 irreducible PSL2 (C)-characters of ~(P: q: rn). As we

saw in the previous lemma, these all factor through to become characters of 1.\1(a)

when fi is of the from 2a/b. None of these characters are dihedral (Lemma 2.4.10),

so each is covered twice in SL2 (C). As they are the characters of irreducible repre

sentations of a triangle group, they are smooth points of ..Y(AI) (see Lemma 5.1.3).

l\iloreover, they are zeroes of fo. which are not zeroes of fp. (As in the previous lemma,

these are characters of representations which take J.L ta an element of order two.) It

fo11ows from [BB, Theorem Al that Zx(fo.) = Zx(f,J + 2, and since we have six such

x, we see that 112a/b1lT =ÎlallT > IlJlIl + 12 = S + 12. 0

Theorem 4.1.3. If I{ = I<p,q,r is a pretzel knot with p, q odd, r even and 1/lpl +

l/Iql + 2/lri < l, then K admits at rnost one non-trivial finite suryery. iVloreover
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such a surgery slope 'U is odd integral and there is a non-integral boundary slope in

(u-1~u+1).

Proof: The conditions on p~ q~ r ensure that [( is hyperbolic [Kaw~ Theorem III] (see

also Lemma 5.2.1).

Let Cl! be a finite surgery of snch a knot. \-Ve have already observed (Lemma 4.1.1)

that Cl! = (2a + 1)/b. Since meridional surgery is cyc1ic, we can apply [BZL Theorem

1.1] to see that b ::; 2.

If a = (2a + 1)/2 \Vere a fini te filling, then~ by [BZl, Theorem 2.3], lIa!lT ::; s + 8.

At the same time, IIJ.LIIT = Il - /LIIT = S. The Hne joining a = (2a + 1,2) and

J.L = (1,0) in surgery space F ~ HdéhvI; IR) ro..J 1R2 passes through (a + 1, 1) \vhile the

Hne through Cl! and -j.L passes through (a, 1). It follows that lia + lllT and lIallT are

both less than S + 4. Since one of them is even, this contradicts Lemma 4.L2.

So any non-trivial finite fillings must be odd integral. Suppose there were two such.

Each would have norm at most S + 8. The line joining them would necessarily pass

through sorne even integral surgeries which would therefore also have norm at most

S + 8. This again contradicts Lemma 4.1.2.

Now suppose that 2a + 1 is a non-trivial finite filling. Then 1[2a + l, 111T ::; S + 8

while 112a,111T > S + 12 by Lemma 4.1.2. Let P C F clenote the norm-ball of

radius S + 8. By [CGLS, Proposition 1.1.2J, P is a finite-sicIed convex polY50n whose

vertices are multiples of boundary slopes. In particular, (2a + 1,1) is not a vertex of

P (Lemma 2.3.1).

Since (2a + 1, 1) is inside P and (2a, 1) is nota there is a segment of 8P which

intersects the Hne y = 1 between them. Let k(c, cl) be the vertex of this segrnent

which lies on or above y = l, Le., k E Q and cid is a boundary slope. Consider

the segment from the origin to k(c, cl). As both endpoints are in P~ this segment is

also. It crosses y = 1 at (c/d, l) which must lie between (2a, 1) and (2(a + 1), 1).

(Otherwise, the segment joining (2a + l, 1) and (c/d, 1) passes through (2a, 1), say.

Since both endpoints are in P, this segment is in P and in particular (2a, 1) is in P,

a contradiction.)

Thus 12a + 1 - cldl < 1, as required. D
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Corollary 4.1.4. If a /mot satisfies the conditions of the theorem and has no non

integral boundary slopesy then it admits no non-trivial finite surgeries.

Corollary 4.1.5. Alternating /mots which satisfy the conditions of the theorem admit

no non-trivial finite surgeries.

Praof: This follows since alternating lVlontesinos knots have no non-integral bound

ary slopes (see [HO, p.462J). 0

Remark: A (p~ q ~ r) pretzel knot is alternating iff p~ q, rare all of the same sign.

wIore generally, an alternating lVlontesinos knot m can he written in the form

m(e: ,Br/al, ,82 /0:2, .•. ,(3r/O:r) \vith -e and aIl ,8i /ai having the same sign. Indeed~ it

is clear that such a knot is alternating. On the other hand, a reduced diagram of an

alternating knot will realize the knot 's crossing number iff the diagram is alternating

(see [Kau, NIu, ThiJ). By [LT, Theorem 10], the crossing number of m is realized by a

diagram like Figure 7. If m is altemating, this diagram will therefore be alternating

whence -e and aIl the f3dai \vill have the same sign.

Note that the second Corollary also follows from Delman and Robert's [DR] proof

that alternating knots satisfy strong property P.

4.2. Non-integral boundary slopes of pretzel knats. As we have seen (Theo..

rem 4.1.3), finite surgeries on (p~ q, 2m) pretzel knots are intimately related to non

integral boundary slopes. In this section we will use the methods of Hatcher and

Oertel [HO] to calculate these slopes. \Ve first illustrate the method using the exam

pIe of the (-2,3, 7) pretzel knot. \Ve will assume familiarity \Vith the notation and

conventions of [HO].

Boundary slopes are found using ;;edgepaths~' in the Diagranl V (Figure 16). Points

of V are labeled by triples (a~ b, c) and have vertical coordinate ·;slope~' c/(a + b) and

horizontal coordinate b/ (a + b). Thus horizontal Hnes in V represent points which aIl

have the same slope. Let (p / q) denote the vertex (l, q - 1 ~ p) and (p/ q, r / s) the edge

joining (P/q) and (r/s). Such an edge exists only if the slopes are of distance one:

~(p/q, ris) = Ips - rql = 1. The diagranl also includes horizontal segments from

(P/q) to (O~ q, p) on the right-hand edge. \Ve will denote such horizontal segments by

(P/q,p/q).
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oo~---~-----311

.,...--~-1/1

FIGURE 16. The diagram V.

An edgepath of V is a piecewise linear path in the l-skeleton of 'D. Boundary

slopes of a wlontesinos knot m(Pl/qr,P2/q2~... Pn/qn) are determined by a sequence

of edgepaths "'fi (i = 1 ... n) satisfying the following conditions:

El: The starting point of 'Yi lies on the edge (Pi/qi, Pifqi). If the starting point is

not (Pi/qi), then the edgepath "'fi is constant, Le.~ it never leaves (pdqùpdqi).

E2: "'Ii is minimal, Le., it never stops and retraces itself: nor does it ever go along

two sides of the same triangle of V in succession.

E3: The ending points of the '"'Ii 's are rational points of V which aIl lie on one

vertical Hne and whose vertical coordinates add up to zero.

E4: li proceeds monotonically from right to left~ ·~monotonically~' in the weak

sense that motion along vertical edges is permitted.

Thus each tangle Pifqi gives rise to a tree in V corresponding to potential edge

paths li. For example, the tree for 1/7 is illustrated in Figure 17.

Non-integral boundary slopes will be given only by edgepaths which have no vertical

edges and end at a vertical Hne u = ua E Q before reaching the left edge of V (the

"Type 1" edgepaths of [HO]). That is, the "'fi end at CUo, Vi) = (b/(a + b)~ Ci/Ca + b))

with LVi = O.

As we have seen (Figure 17), the trees are quite simple in the case of the tangles

l/Pi of a pretzel knot. This means finding points where LVi = 0 is not so difficult.

For example~ let's look at the (-2~ 3, 7) pretzel knot. The trees corresponding to
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1/1

'_~:~3/7
----3/8

- -~ 1/3

:::c-~~~cc-::::--~~:~~-c~L:~: ;;;
-- -- --

0/1- -- ._---- -------~------ 0/1

FIGURE 17. The tree of a 1/7 tangle.

the tangles -1/2, 1/3~ and 1/7 are aligned above one another in Figure 18. Let

'UT = L Vi· As Vi is a linear function of 'lL between vertices, it will be helpful ta

calculate the value of Vi at each u which is a vertex on one of the trees. vVe have

included this data in Figure 18.

Since each tree has two branches, there are at most eight different edgepaths for a

given value of u. For example when u = 0, the possible values of UT are 2 (+ + +),

1 (+ + - ~ + - +, or - + +), 0 (+ - -, - + -, - - +), and -1 (- - -), where

+ + -, for example~ is meant to indicate that \Ve've chosen the upper branch of the

-1/2 tree~ the upper brandI of the 1/3 tree and the lower branch of the 1/7 tree.

\Vhen u = 1/2, the possible values of VT are 1/2 (+ + + or - + + L 1/4 (+ - +

or - - +L 1/12 (+ + - or - + -l, and -1/6 (+ - - or - - -). Since the value of

'UT varies linearly between vertices, we see that it can have no zero for 0 < 'U ::; 1/2.

For example, for the + + + edgepaths, VT = 2 at u = 0 and 1JT = 1/2 at u = 1/2.

Therefore it is positive throughout the interval 0 ~ u < 1/2.

\Vhen u = 2/3, there are only two possible values of 'UT, namely 1/6 (* * +) and

-1/18 (* * - L where we've used * ta mean ~~+ or -/' Le., the two choices lead ta

the same result here. This shows that 'UT has a zero on the * + - paths as 'UT = 1/16

when u = 1/2 and 'UT = -1/18 when u = 2/3.

Finally, when u = 6/7, there is only one choice for Vrr, nanlely 'UT = -1/2 + 1/3 +
1/7 = -1/42. Sa there is an additional zero of VT on the * * + edgepaths. Indeed,

when u = 5/6, we have VT = -1/2 + 1/3 + 1/6 = 0 on * * +. Thus there are exactly
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FIGURE 18. The trees for the (-2~ 3~ 7) pretzel knot.

two Type l edgepaths for the (-2! 3! 7) pretzel knot: * + - with 1/2 < Uo < 2/3 and

* * + with Uo = 5/6. These ar~ the only candidates which could yield a non-integral

boundary slope.
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As explained in [HO] an edgepath is a way of describing a surface S in the knot

complement. The twist associated to this surface is T(S) = 2(e_ - e+) where e+ (e_)

is the number of edges in the edge paths which increase (decrease) slope.

For example the twist of the edgepath system which terminates at LlO = 5/6 is - 2

since the -1/2 and 1/3 edgepaths are constant and the 1/7 edgepath increases on

Olle edge from l/ï to 1/6.

The *+ - system ending with 11.0 between 1/2 and 2/3 is more subtle as it involves

fractions of edges. The value of Vr for 11. in this interval is

1 u-! 1u-!
Vr = -. (1 - ~) - -( 2 î) = 1/2 - 5u/6.

12 3 - 2" 18 3 - 2"

So 'Ur = 0 \Vhen u = Uo = 3/5. This is half \Vay along (1/2, 1/3) in the 1/3 tangle

and 3/4 of the way along (O/l! 1/7) in the 1/7 tangle. Thus the -1/2 tangle has no

increasing or decreasing edges~ the 1/3 tangle contributes 1/2 to e+ and the 1/7 tangle

contributes 3/4 to e_. The twist of this surface is then T(S) = 2(e_ - e+) = 1/2.

Finally, the bOllndary slope of a surface is given by T(S) - T(So) where So is a

Seifert surface for the knot. For a (p, q, r) pretzel knot~ a Seifert surface can be

found by taking the + + + system of edgepaths and extending to oc at the left of

V. For the (-2,3,7) pretzel knot, the three tangles contribute L 2, and 6 upward

edges respectively so that T(SO) = -18. The two surfaces constructed above therefore

have boundary slope 16 and 18 1/2. In particular~ this includes the one non-integral

boundary slope of this knot: 18 1/2.

vVe now prove several lemmas about non-integral boundary slopes on pretzel knots

which will proye useful in the following sections.

Lemma 4.2.1. Let [{ be a (-2~ p, q) pretzel knot with p, q odd and 3 ~ p ~ q. If

p > 7 (respectively q 2:: 7) then

2 -p -p-a
p-3

2 2

zs a non-integral boundary slope of [(. Moreover~ these ar"e the only non-integral

boundanJ slopes of [( .

Proof: Let LIS assume p > 5. The case p - 3 is analogous, but involves small

deviations from the general case.
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\Ve follow the procedure outlined above and look for Type 1 edgepaths. As before~

at u = O~ VT is 2, l~O, or -1. At u = ~, there are four values for VT: ~ (* + +L 2(P~1)

(* - +L 2(q~1) (* + -), and ~(P~l + q~l -1) (* - -) and so there are no edgepath

systems terminating at Uo E (O~ ~).

A.t u = P; l, there are only two values of VT depending on whether we take the

upper or lower branch in the l/q tangle. For * * +, we have VT = _~ + *+ *= ol;;,P.
Since p 2: 5, this is negative and there will be zeroes of VT on both the * - + and

* + + edgepaths. At * * -, VT = -~ + ~ + prq~\). As 5 < p < q, this is again negative

and VT has an additional zero in the * + - system of edgepaths.

NOW, 'UT = - ~ + ~ + ~ < 0 at u = q; 1 and there are no further zeroes of 'UT for

U > l!=.!.
- p

Thus there are three candidates surfaces with edgepath systems terminating at

Uo E (~, P;l). Note that, as each of these systems is constant in the -1/2 tangle,

these will aIl be incompressible surfaces (see [HO, Proposition 2.1]).

However, the *+ + system will not contribute a non-integral boundary slope since

it in fact terminates at Ua = 1where VT = -t + t + t, and therefore involves no

fractional edges.

For the * - + system

1 1 1
lL-"2 4-p U- 2

UT - ? ( _ 1) (1 - P.=.!. _ !) + -?-(p=.! _ 1)
- p 2 -p .)p p -

(2 - p)2u + p - 1
2(p - 1)

which is zero when U = 'Ua = 2tP~~).

ln the l/p tangle, 'Uo corresponds to a point on the edge (0/1, l/p):

n(O/l} + (1 - n)(l/p) - n(l, 0, 0) + (1 - a)(1, p - 1,1)

(l, (1 - a) (p - 1), 1 - 0:)

_ ( (1 - a) (p - 1) (1 - a) )
1 + (1 - a)(p - 1) , 1 + (1 - Cl!)(p - 1) .

Taking the 'U coordinate from the last Hne, we have

p - 1 (1 - a)(p - 1)
= Ua = -------:----

2 (p - 2) 1 + (1 - a)(p - 1)
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which implies a = :=~. The l/p tangle therefore contributes :=~ to the total of e_ .

Since p ~ 5,
1 p - l 2
2" < 'Ua = 2(p - 2) < 3'

and the l/q tangle has q - 3 increasing edges, plus a certain fraction of the (1/2, 1/3)

edge:

{3(1/2) + (1 - /3)(1/3) - ,B(l, 1, 1) + (1 - ,8)(1,2, 1)

- (1,2-/3,1)

( 2 - ,8 1 ). ( ) d.
3 - ,8' 2 _ {3 ln U, v coor mates.

That is,
p-l 2-{3

2(p - 2) = Ua = 3 - {3'

whence ,8 = :=; and the l/q tangle contributes q - 3 + :=~ to e+.

Finally, since the edgepath in the -1/2 tangle is constant, we find that the t\vist

corresponding to the * - + system is

T(S) = 2(e_ - e+) = 2(P - 4
3
' - (q - 3 + p - 3

5
» = 2(3 - q + ~3) .

p- p- p-

an the other hand, the twist of a Seifert surface (+ + + extended to 00) is T(50) =

2(0 - (1 + P - 1 + q - 1». Putting it aU together, the boundary slope of the surface

5 given by the * - + system is

l
T(S) - T(SO) = 2(3 - q+ --3) - 2(0 - (1 +p -1 +q -1»

p-.

1
- 2(2+p+--3)

p-

p2 - P _ 5
p-3

2

Analogous arguments show that the * + - surface has boundary slope q2~-5. 0

"Ve turn now ta the case of a (p, q, -r) pretzel knot [( with 4 < r = 2m, even and

p = 2k + 1 and q = 21 + 1 both odd. Further, we assume 3 ~ p ~ q. \Ve will give two

lemmas describing the non-integral boundary slopes of [( depending on the relative

values of p and r .

In each case we wiU list fractions which are candidates for the non-integral bound

ary slopes of 1< \Vith the understanding that for certain choices of p, Cf, and r, these
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fractions will turn out to he integers. J\iI0reover, we will only verify that these can

didates are truly boundary slopes when we can easily use [HO~ Proposition 2.1] to

do so, that is, when one of the edgepaths is constant. In general, the fractions are

the boundary slope of sorne surface in Al, but when we cannot apply Proposition

2.1, it is tedious to verify whether or not that surface is essential. (Also, there is a

small error in [HO] when they discuss testing whether or not candidate surfaces are

essential. See [Du2).) Since a list of candidates will he adequate for us~ we will not

endeavour to investigate further.

In short, if 1< admits a non-integral boundary slope~ then that slope will appear in

the list of slopes in the appropriate lemma (depending on the values of p and r).

Lemma 4.2.2. If p > 2r + 1, then

Remark: Substituting r = 2, we see that Lemma 4.2.2 generalizes Lemma 4.2.1.

are the non-integral boundary slope.s of K .

•
(4.6)

pep - 1) + 1 - 3r
p-l-r

2

and
q(q - 1) + 1 - 3r

q-l-r
2

•

Proof: As in Lemma 4.2.1~ we need to look at edgepath systems à la Hatcher and

Oertel [HO).

\Vhen U = 0, VT is 2, l, O~ or -1. At u = r~ l ~ there are four values for VT: ~ (* + +),

r(p--\} (* - +), r(~\} (* + -), and ~(;=~ + ;=~ - 1) (* - -). As the first three values

are positive and the last is negative, there are no edgepath systems terminating at

Uo E (0, r~l).

\Vhen u = e::J., the two values of VT are _1 + ~ = 2r-p (* * +) and _1 + 1 + (P-1l)
p r p rp r p p q-

(* * -), so the * - +~ * + + and * + - edgepaths are aIl Type 1 each terminating at

a Uo E (r~l ~ P;I). As these edgepaths are constant in the -l/r tangle~ each results

in an incompressible surface [HO, Proposition 2.1J. Since -~ + ~ + ~ < 0, there are

no other Type 1 systems for this knot.

Now, the * + + edgepath will terminate at Ua = 2~-1 where UT = _!. + 21 + oJI = O.
~r r T _T

This system will not lead to a non-integral boundary slope as it involves no fractional

edges.
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As in Lemma 4.2.1, the * - + and * + - edgepaths will give surfaces having

boundary siope

respectiveIy.

pep - 1) + 1 - 3r
p-l-r

2

and
q(q - 1) + 1 - 3r

q-l-r
2

o

(4.7)

Proof: As usuaI, at u = O! the values of VT are 2,1,0, and -1. \Vhen u = P;l, we

h.. . - 2 ...E=..!...... - 2r-p-l (+ +) _ l ( +). _ -.1!..=L l +~
cl.ve 'VT - li - p{r-l) - p(r-l) * ,VT - li - * ,'VT - - p(r-l) + li p(q-l)

(+ * -l, and VT = p(q__\) (- * -). Now, these are aIl positive and! when u = q;l!

UT = *+ ~ -: is positive as weIl. 50 the only Type 1 system is in the - - - edgepath

and it terminates at a 'Uo E (0, p=!). The associated boundary slope is as given in
p

Equation 4.7. Note that we cannot use [HO, Proposition 2.1] so it may be that the

fraction of Equation 4.7 is not a boundary slope. In that case, 1< wOllld have no

•

Lemma 4.2.3. If p < r t the only potential non-integral boundary slope of 1< is

2(p + q + r _ 1 _ CP - 1)(q - 1) ).
p-l+q-l

non-integrai boundary slopes. o

•

4.3. Cyclic surgeries of (-2!p, q) pretzel knots. In this section! let I( be a

(-2,p,q) pretzel knot (p,q odd and positive) and 1\4 = S3 \ 1V(I().

Lemma 4.3.1 . .LvI(2(p + q» contains an 1,ncompressible tom.5.

Proof: The obvious (see Figure 20) spanning surface of such a knot is a once

punctured Klein bottle and it!s double co\·er! T, is a twice-punctured torus which

meets 8AI in two parallel curves ofslope 2(p+q). vVe can use the methods of Hatcher

and Oertel [HO] to see that 2(p + q) is in fact a boundary slope of [(. Following the

proof of [CGLS, Theorem 2.0.3] we see that T is a n1Ïnimal surface realizing this

boundary siope. (Since 2(p + q) is not the longitude slope! such a minimal surface

is connected, separating and has at least two boundary components.) As T is non

planar, we apply [CGLS, Proposition 2.2.1] (aiong with the fact that [( is a small knot

[Oe, Corollary 4]) to see that the filled toms t is incompressible in 1\;I(2(p + q». 0

Proposition 4.3.2. Suppose K, a (-2~ p, q) pretzel knot (p ::; q odd and positiver

admits a non-trivial cyclic surgery. Then one of the following holds.
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1. K is tOTUS and therefore admits an infinite number of cyclic .5urgeries. In this

case either p = 11 q = 11 or else {p, q} = {3,3} or {3,5}.

2. K is the (-2~ 3, 7) pretzel knot and the surgery is 18 or 19.

Proof: Theorem III of [KawJ shows that K is toros iff it is as characterized in 1 (see

also Lemma 5.2.1).

Since 1< is small ([Oe, Corollary 4J), we can assume that 1< is hyperbolic. The cyclic

surgeries 18 and 19 of the (-2, 3~ ï) pretzel knot were first observed by Fintushel and

Stern (see [FS. Section 4J). Our task is to show that there is no other choice for p

and q leading to a cyclic surgery.

The case p = 3 is the subject of Section 5.2 where we will see that there are no

non-trh;al cyclic surgeries when q ~ 9 and that the cyclic surgeries of the (-2,3, 7)

pretzel knot are as stated.

If p = 5, the boundary slopes [HOJ are 0, 14, 15, q2;b-.5 , 2q + 10, and 2q + 12. Br
2

[OuI, Theorem 4.1J, a nOIl-trivial cyclic surgery could occur only at 2q + 4 or 2q + 5.

However~ as we explain below, a cyclic surgery would have to be within distance 5

of the toroidal surgery 2q + 10 (see Lemma 4.3.1). 50 the only candidate is 2q + 5.

Now the (-2,5,5) pretzel has no non-integral boundary slopes 50 ([OuI, Theorem

4.1]) it has no non-trivial cyclic surgeries. As for (-2,5, ï), SnapPea ["Veel shows

that 2q + 5 = 19 surgery on this knot is hyperbolic. 50 we can assunle q > 9.

Suppose (for a contradiction) that 2q + 5 is ind~ed a cyclic surgery. By [BZL

Lemma 6.2J, the (total) norm can he written

\[711 = 2[al~("'f, 0) + a2~(7~ 14) + a3~("'/: 15)
2 -

+ a4Ll(7~ q -~ - 0) + asLl('",!, 2q + 10) + a6~("'(~ 2q + 12)J.
2

If 2q + 5 is cyclic it has minimal norm s, as does the meridian surgery J.L ([CGLS.

Corollary 1.1.4J and Lemma 2.3.1). The norm of 2q + 4 will also be of interest, and

it will be bounded hy the minimal norm s.

q-3
.5 - IIlll! = 2[al + a2 + a3 + ~a4 + as + a6J

s - 112q + 511 = 2[(2q + 5)al + (2q - 9)a2 + (2q - 10)a3 + Cl ; 5 ao[ + Sas + ïU6J

.5 < 112q + 411 = 2[2q + 4Ul + (2q - 10)u2 + (2q - Il)u3 + u.. + +6us + 8U6J
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Subtracting the first two equations, we have

(4.8) a.. = (2q + 4)al + (2q - 10)a2 + (2q - Il)aJ + 4a5 + 6U6,

while suhtracting the second from the third leaves

q-7
U5 + a6 > al + U2 + a3 +~a.. ,

~ ry(a5 + a6 - al - a2 - a3) > a4,

where 'T) =~ < 1.'1 q_l-

Combining this with Equation 4.8, we have

o~ (2q + 4 + ry)al + (2q - 10 + T/)a2 + (2q - Il + TJ)a3 + (4 - T/)a5 + (6 -'l)a6.

Since ai ~ o~ this shows al = a2 = a3 = a5 = a6 = o. On the other hand~ for a norm~

at least two of the ai must he non-zero. This contradiction show that there can be

no non-trivial cyclic surgery when p = 5.

Sa let us assume 7 < p < q. Dunfield[Dul, Theorem 4.1] has sho\vn that any

non-trivial cyclic surgery on a knot such as I( must lie near a non-integral surgery.

Comhining this with Lemma 4.2.1, the only candidates for a non-trivial cyclic surgery

are 2p+4, 2p+5, 2q+4, and 2q+5. Suppose that u is one ofthese candidates slopes

and Al(u) is a cyclic filling. Since I( is strongly invertible, the Orbifold Theorem

implies that AI(u) admits a geometric decomposition (see [CHK~ Corollary 1.7]).

Now, as ~(u, 2(p + q» > 5, AI(u) is irredllcible [Oh~ \Vu] and atoroidal [Go2] and

therefore has a geometric structure.

Note that 7r1(Al(u» ~ Z ([Gal])~ 50 7r1(Al(u» is fini te. The geometry is therefore

S\ and as 7r1(AI(u» is finite cyclic, we deduce that AICu) is a lens space. Howe\"er.

this contradicts [Go3, Theorem 1.1] which states that the distance between a lens

space surgery such as u and a toroidal surgery such as 2(p + q) is at most 5. \Ve

conclude that there are also no non-trivial cyclic surgeries in this case. 0

4.4. Finite surgeries on pretzel knots. vVe turn now to the case of a (p, q, -r)

pretzel knot I( where 4 < r = 2m is even and p = 2k + 1 and q = 2l + 1 are both

odd. vVe will assume 3 < p < q.

Lemma 4.4.1. J\J(2(p + q» contains an incompressible toïUS.
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Proposition 4.4.2. If p > 2r + 1, then [( admits no non-trivial finite surgeries.
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D

Proof: By Theorem 4.1.3 1 a non-trivial finite surgery would be close to one of the

non-integral boundary slopes of Lemma 4.2.2. However1

?( ) pep - 1) + 1 - 3r
- p + q - p-l-r

2

(r 1)2
- 2(p + q) - 2(p + r) - e=.!=!:

2

(r - 1)2
- 2q-2r- ~

2

(r - 1)2
> 4r + 6 - 2r - -r--

2+ 1

•

7r+5--- > Il
~+1

and sirnilarly for the other slope of Lemma 4.2.2. Therefore, any non-trivial fini te

surgery would be of distance (in the sense of minimal geometric intersection) greater

than 10 from the toroidal surgery 2(p+q). However this contradicts work of Agoi [Ag]

and Lackenby (L] showing that the distance between exceptional surgeries is < 10. D

Proposition 4.4.3. If p :::; r - 5, then K admits no non-trivial finite surgeries.

Proof: As in the previous proposition, we observe that

12(p + q + r - 1 - CP - l)(q - 1)) - 2(p + q)1 > 10.
p-1+q-1

Thus the lone non-integral boundary slope of Lemma 4.2.3 is too far from the toroidal

bounclary slope 2(p + q) (by Theorem 4.1.3 a finite filling could only occur at an odcl

integral slope, which would therefore have to be within distance 9 of the even number

2(p + q)). D

•

Combining the results of the last few sections1 we see that we now have a fairly

precise description ofwhat a finite filling s on a (p, q, -r) pretzel knot would look like.

By Theorem 4.1.3 1 s would have to be odd-integral and near a non-integral bounclary

slope and by Propositions 4.4.2 and 4.4.3 we would have to have p+3 ~ r > (p-1)f2 .

vVe now propose to explicitly calculate the fundamental group of such a filling. \Ye

will then project onto a smaller group G and observe that G is generically infinite.
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The \Virtinger presentation [Rol1 Section 3.0] of a (p, q, -r) pretzel knot is (com

pare [Tr. Equation 1]):

(ZX)(P-I)/2 z( ZX ) (l-pJ!2 = (yx) -(q+l)/2Y(YX)(q+ 1)/2 ~

(yz-l) -r/2y (yz-1 y/2 = (yx )(I-q)/2x (yx )(q-I)/2 1

(yz-l) -r/2 z (yz-1 y/2 = (ZX)(P+I)/2 X ( zx) -(p+l)/2).

The longitude being

l = x-2(p+q) (yx )(q-I)/2 (yz-l )-r/2(yx) (q+I)/2( ZX)(p- 1}/2 (yz- 1)r/2 (ZX)(P+l)/2,

filling along an odd integral slope s results in

7rL(l~I(s)) = (x
1
y,z 1 (ZX)(P-L)/2 Z (zx)(1-p)/2 = (YX)-(q+L)/2Y(YX)(q+I}/2

1

(yz-I)-r/2 y (yz-IY/2 = (yx)(l-q)/2X(yx)(q-I)/2~

(yz- L) -r/2z(yz-l y/2 = (ZX)(P+L)/2 X ( zx) -(p+ 1)/2
1
XS l).

\Ve can obtain a more manageable factor group G by adding the relators (yz-l )r/2 1

yx- 1, and (zx)P:

where w = (zy)(P-I)/2. This is an example of a group which Coxeter [Cl has called

Thus G = (2~p~ Is - 2pl;r/2). ~IoreoveL 7rL(AI(s)) will be infinite whenever Gis.

And indeed1 these groups are usually infinite as Edjvet has shawn:

Theorem 4.4.4 (l'vrain Theorern of [ED. If 2 < a ~ b, 2 ~ c and (2~ a, b; c) i=
(2, 3~ 13; 4) 1 then the group (2, a, b; c) is finite if and only if it is one of the following:

(i) (2, 2,b;c) (2 < b,2 < cl;

(i'i) (2,3,b;c) (3 < b < 6,4 < cl;

(iii) (2,3, ï;c) (4 ~ c ~ 8);

(iv) (2~3,b;c) (8 < b ~ 9,4 < c ~ 5);

(v) (2,3~b;4) (10 ~ b ~ Il);
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(vi) (2,4, b; 2) (4 < b);

(vii) (2,4,4; c) (3 < c);

(viii) (2,4,5; c) (3 < c < 4);

(ix) (2,4, 7; 3);

(x) (2,5, b; 2) (5 ::; b < 9);

(xi) (2,6,7; 2).

Since p is odd, if p ::; 18 - 2pl, then G is infinite unless P = 3 or 5.

Similarly, if Is - 2pl ::; p, we see that G is infinite unless 18 - 2pl = 3 or 5 (105 - 2pl

is also odd) whence 8 < 2p + 5. On the other hand, by [Ag, LL the finite filling 05

and the toroidal filling 2(p + q) (Lemma 4.4.1) are separated by at most 10. Since 8

is odd and 2(p + q) is even, they in fact differ by at most 9. Thus, 9 > 2(p + q) - 8 ~

2(p + q) - (2p + 5) = 2q - 5. It follows that 2q < 14, whence 3 ::; p < q < 7.

50 we can assume that 3 < p ::; 7. That is, if p > 9, the knot admits no non-trivial

finite surgeries.

Now, earlier work shows that there are no non-trivial surgeries unless p;l ::; T ::;

P + 3. 50, given T > 4, and assuming 3 < p < 7, we see that we are left ta consider

4 ::; T ::; 10. (Since Theorem 4.1.3 does not apply to the knots (-4,3, 3L (-4,3,5)

and (-6,3,3) we will consider those separately below.)

• r = 4

- p = 3. \Vhen q = 7, there are no non-integral boundary slopes and therefore

no non-trivial finite surgeries (Theorem 4.1.3). For q ~ 9, the boundary

slope of Lemma 4.2.3 is 2q + 12 - 4(q - l)/(q + 2) E (2q + 8, 2q + 9) so

that the only candidate for a finite filling is 8 = 2q + 9. But then 8 - 2p =
9+2(q-p) ~ 21 and G is again infinite (Theorem 4.4.4). Therefore (-4,3, q)

pretzel knots admit no finite surgeries (q > 7).

- p = 5. Suppose 18-2PI ::; 3. Then 8 < 2p+3 and since a finite filling must be

within distance 10 of the toroidal slope 2(p + q) ([Ag, L] and Lemma 4.4.1),

10 ~ 2(p +q) - (2p+3) ~ 2q - 3 => q < 5 (q being odd). Since the (-4,5,5)

pretzel knot admits no non..integral boundary slopes, wc cannot have a oon

trivial finite surgery in this case. Therefore we can assume 5 < 105 - 2pl. In

order for G to be finite, we must have 18 - 2pl < 9 (Theorem 4.4.4). Since 05
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would also have to be within distance 10 of 2(p + q) we deduce q < 9. The

(-4, 5~ 7) pretzel knot has 126/5 as its only non-integral boundary slope

and therefore s = 25 is the only candidate for a finite filling. But then

s - 2p = 15 contradicting an earlier assuIIlption. Similarly~ by examining

the non-integral boundary slopes~ we find that the only candidate for a finite

filling on (-4, 5~ 9) is s = 29 with s - 2p = 19 > 9. So the (-4~ 5~ q) pretzel

knots admit no finite surgeries.

- p = 7. Suppose Is - 2pl < 5. Then q < ï. However, since the (-4~ ï~ 7)

admits no non-integral boundary slopes~ it cannot lead ta a non-trivial finite

surgery. So we can assume Is - 2p[ ~ 7. Since G is then infinite~ we see that

(-4~ 7, q) pretzel knots admit no non-trivial finite surgeries.

Except for possibly (-4,3,3) and (-4, 3, 5)~ which will be considered separately

below~ (-4, p, q) pretzel knots admit no non-trivial finite surgeries.

• r=6

- p = 3. \JVhen q 2: 9, the non-integral boundary slope of Lemma 4.2.3 is in

(2q + 12, 2q + 13) and the only candidate for a finite filling is s = 2q + 13.

Then s - 2p = 13 + 2(q - p) > 25 and G is infinite (Theorem 4.4.4). \Vhen

q = 5, using non-integral boundary slopes, we find that the only candidate

for a non-integral boundary slope is s = 23~ whence oS - 2p = 17 and G

is infinite. \Vhen q = 7~ there are no non-integral boundary slopes. Sa

(-6,3~q) pretzel knots admit no non-trivial finite surgeries (q ~ 5).

- p = 5. \JVhen q ~ 15, the only non-integral boundary slope is in the interval

(2q + 12~ 2q + 14) (Lemma 4.2.3) and the only candidate for a finite filling

is s = 2q + 13. Then fi - 2p = 13 + 2(q - p) ~ 33 and G is infinite. \Vhen

q = 5 or 13, there is no non-integral boundary slope. For 7 ~ q ~ Il ~ by

non-integral surgeries~ the only candidate for finite filling is oS = 2q + 15 =>

s - 2p = 15 + 2(q - p) 2: 19 and G is infinite. Sa (-6~ 5, q) pretzel knots

admit no non-trivial finite surgeries.

- p = 7. \Ve can assume Is - 2pl ~ 7 as otherwise G is infinite. Then q ~ 7.

Since the (-6~ 7, 7) pretzel knot admits no non-integral boundary slopes! we

conclude that (-6,7, q) pretzel knots have no non-integral firrite surgeries.
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Thus, aside from possibly (-6,3, 3L the (-6, p, q) pretzel knots admit no non

trivial finite surgeries.

• r=8
- p = 3. By Proposition 4.4.3 (-8,3, q) pretzel knots admit no non-trivial

finite surgeries.

- p = 5. \'Vhen q ~ 15, by Theorem 4.1.3 and Lemma 4.2.3, the only candidate

for a finite fillingis s = 2q+ 17. Then s-2p = l7+2(q-p) > 37 and G is

infinite. \Vhen q = 5, or 13, there are no non-integral boundary slopes and

for 1 < q < Il, the only candidate is s = 2q + 19 which would again lead to

G infinite.

- p = ï. \Ve can assume Is - 2pl :::; ï whence q < 7. Since (-8, 7, 7) has no

non-integral boundary slopes, we are done in this case as weIl.

Therefore (-8, p, q) pretzel knots admit no non-trivial fini te surgeries.

• r=10

- p = 1. :\.gain 18 - 2pj < 7 => q < 7. Since (-10, l, ï) has no non-integral

boundary slopes, we're done.

The (-10, p, q) pretzel knots also have no non-trivial finite surgeries.

It remains ta examine the knots (-4,3,3), (-4,3,5) and (-6: 3, 3) which are not

covered by Theorem 4.1.3. \Ve cao follow the procedure outlined above to see that

the group 1ïl(AJ(s/t» ofa slt filling on a (:3,q,-r) pretzel knot projects onto G =

(2,3,ls-2ptl; r/2). Since r/2 is 2 or 3, this will be an infinite filling unless Is-2tpl =
Is - 6tl :::; 6 and Is - 6tl =1= 2 (Theorem 4.4.4). By [8Z1, Corollary 1.3), a finite

filling slt has denominator 1 or 2. On the other hand, by the work of Agoi [Ag]

and Lackenby [L), such a filling must also be close to the toroidal filling 2(p + q)

(Lemma 4.4.1): 10 > ~(slt, 2(p + q)) = Is - 2t(p + q)l. = 18 - 2t(3 + q)l· These

considerations leave only a few candidates for finite surgery.

• (-4,3,3) Since 6 > Is-6tl, Is-6tl =1= 2,10 > Is-2t(3+q)1 = Is-12tl, and t = 1

or 2: the only candidates for a finite surgery on this knot are integral surgeries

2,3,5,6, 7,9, 10, Il, 12 and half-integral surgeries s/2 with S odd, 15 :::; oS ~ 17.

N!oreover, Lemma 2.3.1 allows us to climinate the boundary slope s = 12. One
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can verify directlYr using SnapPea [Wee]r that none of the remaining candidates

are finite surgeries.

• (-4,3,5) Here1 6 > 18 - 6tl, Is - 6tl :/= 21 and 10 > 18 - 2t(3 + q)1 inlply

8 = 6 1 7 1 9, 111 12. vVe cao also eliminate the boundary slope s = 12 and again

verify directly that these fillings do not yield manifolds with finite fllndamental

group.

• (-6,3,3) Since q = 3 and s = 12 is again a bOllndary slope 1 we are left \Vith the

same candidates for a finite filling as we had in the case of the (-4 1 3: 3) pretzel

knot. vVe can verify directly that none of these are finite fillings.

In summary then 1 Theorems 4.1.3 and Theorem 4.4.4 combine to sho\,' that a

(P1 q~ -r) admits no non-trivial finite surgery unless 4 ::; r ::; 10 and 3 ::; p ::; ï. \Ve

then investigated those cases directly ta observe that they also admit no non-trÏ\rial

finite surgeries. We have therefore proved the following.

Theorem 4.4.5. A (p, q, -r) pretzel knot r with 4 ::; r even and 3 < P ::; q olid alimits

no non-trivial finite surgeries.

4.5. Surgeries on Montesinos knots. \iVe can combine the results of the last t\VO

sections \Vith the work of Delman to classify cyclic surgeries on Nlontesinos knots.

Theorem 4.5.1. The only non-taros At/ontesinos knot which admit,'; a non-trivial

cyclic surgeryj is the (-2: 3 1 7) pretzel knot. The non-trivial cyclic surgeries on this

!.:not are of slope 18 and 19.

Remark: A torus knot admits an infinite number of cyclic fillings.

Proof: Delman [Del] has shawn that if such a knot admits a cyclic filling: then it is

a pretzel knot of the form (p, q, -r), \Vith 2 ::; r even and 3 < P ::; q odd. As only

the trivial knot admits a Z filling ([Gal]) Theorem 4.4.5 implies further that r must

be 2. Proposition 4.3.2 completes the proof. 0

For finite surgeries1 we have:

Theorem 4.5.2. If a non-taros l\llontesino.c; !.;not K admits a non-trivial fin'ite surgenJ,

then one of the following holds.
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• K is a (-2,p, q) pretzel /mot with 5 < p ~ q odd and the fiLling is not cyclic.

• [< is the (-2,3, 7) pretzel knot and the filling is along slope 17, 18, or 19.

• [< is the (-2,3,9) pretzel knot and the filling is along slope 22 or 23.

Proof: Again, Delman [Del] allows us to reduce to the case of a (p~ q ~ - r) pretzel

knot and Theorem 4.4.5 further shows that r = 2. The finite surgeries on (-2,3, n)

pretzel knots are dassified in Section 5.2. That a non-trivial finite filling of (-2, p, q)

with p > 5 is not cyclic follows from the previous theorem. D

Remark: Although the surgeries listed for the (-2,3, 7) and (-2,3,9) knots are

finite surgeries, we know of no instances of a finite surgery on a knot (-2, p, q) with

5 < p ~ q. Indeed, we expect that there are none.
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5. CHARACTER VARIETIES OF PRETZEL KNOTS

vVe continue our investigation of pretzel knots this time restricting to knots of the

fonn (-2~ 3~ n) and (-3,3, n). The Seifert fillings of these knots allow us to make an

explicit calculation of their Culler-Shalen seminorms. This in turn leads to a precise

description of their SL2 (C)-character varieties. Nloreover, it allows us to construct the

Newton polygon for the A-polynomial of these knots (much as we did for the twist

knots in Section 2.3). The study of Seifert fillings of these knots gives a concrete

demonstration of the power of Culler-Shalen seminorrns~ not only in the study of

cyclic and finite surgeries, as we saw in the previous chapter~ but also in the study of

Seifert fillings.

This chapter~ which is largely an expanded form of the papers [B~vIZ~ ;Mat1, l\Iat2},

begins with a calculation of the total minimal seminorm of the (2~ p, q) pretzel knots.

5.1. The total norm of (2,p,q) pretzel knots. Let [< = K(2,p~q) be a pretzel

knot as illustrated in Figure 19. Since 1< is a knot, p = 2k + land q = 2l + lare

Q
~) .() P.. q crossmgs" :~ r\__i)

FIGURE 19. The (2, p, q) pretzel knot.

odel. Let 1\/ = 8 3 \ JV([{), 1ï = 1ïl (.Af). The two-foid branched cyclic cover ~2 is a

Seifert manifold \Vith base B = S2(2~ Ipl, Iql) and 1ïr
rb (B) = ~(2, Ipl~ Iql)·

For each irreducible component R;, of the representation variety R = R(Al) which

contains an irreducible character, let "Yi = t(Hï). By [CSl, Proposition 1.4.41: -Yi is

an affine variety and a closed sub-variety of the character variety .Y == ..Y(l\/). \-Ve

will denote the smooth projective completion of "\i by ..Yi. Since [( is small ([Oe~

Corollary 4]L the "\i are curves ([CCGLS, Proposition 2.4]).

Let x E "Yi \Vith Zx(f#L2) > ZX(f/L). vVe can find 5, the sunl of the nlinima of

the Culler-Shalen seminorms over the components -'li of ..\', by enumerating such
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"jumping points" and then sho\ving that each contributes two to S. Thus S will

simply be twice the number of jumping points_

As a first step, we show that x is not an ideal point using a modific2.tion of the

argument of [CGLS, Proposition 1.6.1].

Lemma 5.1.1. For each a E Hl (BAI; Z), f 0 2 = (lof + 4fo-

ProoC: Let XP be a point of X. Let pen) = (: :) E SL2 (C). Then

fo(xp)(fo(Xp) + 4) - [(trace(p(a»f - 4][trace(p(a)f

- (a + d)" - 4(a + d) 2

_ (a2 + d2 + 2be) 2
- 4 (since ad - be = 1 ):

o
Let x be an ideal point \Vith Zx(f/l2) > Zx(f/l)- Then ff.l.2(X) = a 50 that x is not a

pole of f/l2. By Lemma 5.1.1, x is also not a pole of fil and therefore l/l(x) #- 00 as

weIl. It fo11oW5 that either Al admits a closed essential surface: or else J.l is a boundary

slope (see [CGLS, Proposition 1.3.9J). However, since l{ is a Nlontesinos knot with

less than four tangles: neither is true (see [Oe: Section 1 and Corollary 4]).

Thus we can assume x E ..Yi and write v(x) = Xp with pERi. (v: -yr -7 -Yi is

normalization. See Section 2.1 or [Shf: Chapter II: §5].) \-'le will argue that x is the

character of an irreducible representation. Suppose instead that p \Vere reducible.

Then: by conjugating: we can take p to be a (re:oresebnta)tion inta the uP(P:o,r tr~ang)Ular

matrices. Now replace each matrix p(g) = by poey) = to
a- l a- L

obtain a diagonal representation Po with the same character v(x).

Since

and R;. is closed under conjugation [CS1, Proposition 1.1.1], ''Ire can find representa

tions on H.ï arbitrarily close to Po. But: as Ri is closed, Po E Rt. So without loss of

generality, we can assume p is diagonal.
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The Zariski tangent space at P may be identified with a subspace of the space

of l-cocycles ZI(7r; Sl2(C).-\dp) (see [GI, Section 1.2] or ["Vei, Section 3]). "Ve can

see that ~ is four dimensional since, as we have mentioned, "Yi is one dimensional

(the knot being small) and by [CSl, Corollary 1.5.3), dim~ = dim -Yi + 3. Thus,

dÏIn (Zl(7r; Sl2(C)Adp» > 4.

Now, by Lemma 5.1.1, zeroes of f~ are also zeroes of f~2 and moreover, the order

of zero agrees at such points. So Zr(fp.2 ) > Zx(f~) implies Zx(f~) = 0 and therefore

trace(p(IL) # ±2. On the other hand, trace(p(tt2 » is ±2, SO p(tt2
) = ±I (we're

(
±i 0)assuming that p is a diagonal representation). It follows that p(f.l) = .'
o =Fz

Since 7ï is normally generated by IL, p(7r) = Z/4 is cyclic.

Given this, we can calculate dim (Zl(7r; Sl2(C)..ldp») directly. Using [SN, Theorem

1.1(i)], dim (H 1 (7r; Sl2(C)Adp») = bl (7ï; Sl2(C).-ldp) = 1. (This argument is explained in

more detail and in a more general context in Section 5.2.1.) vVe can also determine

dimB 1(7i;sl2(C).4dp) as we have the surjection

~ BI (7r; Sl2(CLldp)

H (UA: [1--7 A - Adp(,)(A».

(
±i 0)Since P(ll) = .' the kernel is the one-dimensional set {A E Sl2(C) 1 A =
o =Fz

(
a 0 )} while 8L2 (C) has dimension 3. Therefore, dim (B1(ïï; Sl2(C)"ldp» = 2
o -a

and

- 1 + 2 = 3.

This contradiction with our earlier estimate of the dimension of the cocycles shows

that there can be no jump at the character of a reducible representation.

Thus we can assume that P is irreducible. Then, by [CGLS, Proposition 1.5.2),

p(tt2
) = ±I and p, the inducecl PSL2 (C)-representation of if, will factor through

7rl (E2 ). If fi is non-abelian, Lemma 3.1.5 shows that fi factors through to give an

irreclucible representation of ~(2, Ipl, Iql). On the other hand, if fi is ahelian, it
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factors through the finite group H 1(L2). In this case p(ir) is cyclic and extending to

7r and lifting we see that p has binary dihedral image in SL2 (C).

Furthermore, any such dihedral representation will result in a jumping point. For

let v(x) = Xp be the character of the binary dihedral SL2 (C)-representation p. The

corresponding PSL2 (C) representation p has as image a dihedral group normally

generated by p(/-L). Therefore p(/-L) is of arder two and consequently p(/-L) =1= ±I while

p(/-L2) = ±I. This implies trace(p(IL)) = 0 so that Zx(ftJ.2) > ZAfll ).

The number of such dihedral characters d can be related ta the Alexander poly

nomial ~K(t). Indeed, d is equal to (card(H1(E2 )) - 1)/2 ([Kl, Theorem 10]) while

card(H1(E2 )) = I~K( -1)1 ([Roi, Corollary 8.D.3]). So d = (I~K( -1)1 - 1)/2.

By Equations 2.2 and 2.3, there are LI~I JLI~I J irreducible P5L2 (C)-characters of

~(2, Ipl, Iql). The corresponding representations each extend to an irreducible repre

sentation Po of ir. These in turn can he extended ta 7ï (Proposition 3.3.1). lVloreover,

(Scholium 3.3.3) any representation p which extends Po is such that P(I!) has order

two. Thus, as was the case for the dihedral represelltations, the irreducible represen

tations of ~(2, Ipl, [ql) ail lead to jumping points where Zx(Jp.2) > Zx(fp.).

There are L~JLI~' J irreducible P5L2 (C)-characters of 1ï which factor through the

triangle group ~(2, Ipl, Iql) and (I~K(-1)1-1)/2= (lpq+2(p+q)I-1)/2 irreducible

dihedral characters. (Note that by [~Iru, Proposition 14] or [Hi, Theorem 1.2),

~K(t) ...:... (t - l)(t-(P+Q) - l)/(t + 1) + t(t-P+ l)(t- q + l)/(t + If.)

By Lemma 2.4.10, none of the dihedral characters go through ~(2, Ipl, Iql). Since

PSL2 (C)-dihedral characters are co\~ered once in SL2 (C) and other characters are

covered twice ([BZ1, Lemma 5.5]), we see that there are Clpql - (lpl + Iql) + Ipq +
2(p + q)I)/2 jumping points where ZxCf1l2) > ZxCftJ.). This allows us ta calculate S

once we have shawn that ZxCf1l2) - Zx(fll ) = 2 at cach of these points.

The idea is ta follow the argument of [8Z1, Section 4] (see also [B8, Theorem

Al). The essential requirements are that p(7ïl(al~I)) <t {±I} and that v(x) is a

smooth point of .Yi • Suppose first that p is a representation which factors through

~(2, Ipl, Jql). vVe proceed by showing that the corresponding point y = Xpo in Y, the

character variety of if ~ also satisfies these rcquirements.
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LeInIDa 5.1.2. Let Po be the PSL2 (C) representation induced by Po. If ,oO(ÎÏL (8A/» C

{±I} then p is an octahedral repre.sentation.

Proof: Actually we will argue that if the preferred longitude ,,\ has trivial image in

~(2, Ipl, Iql), then p is octahedral.

Let .À E if denote the class of a lift of a representative of...\. Trotter [Tr] has

explained how to find the image of .À in ~(p~ q~ r) in the case of a (p, q, r) pretzel knot

with p, q, r aIl odd. vVe will follow the same procedure for the (2, p, q) pretzel.

Starting with the vVirtinger presentation [RoI, Section 3.0] for 1ï \Vith generators

j, 9 and h as indicated in Figure 19, we look at the index two subgroup consisting

of words of even length and quotient out by the relations /2 = g2 = h2 = 1. The

resulting group is ÎÏi (L2) "V if/ (/12). Quotienting again by the center, brings us to

~(2, Ipl, Iql) = (a,b,c 1a2,blpl,clql,abc) where a = gf, b = fh and c = hg. Beginning

\Vith the arc labeled h and tracing out the knot, we find the longitude ...\ E ÎÏ:

projects to .À E ~(2, Ipl, Iql):

vVe can take

(
i 0)po(a) = A = ± .'o -1,

Suppose that Po(X) = ±I. Then p-l.4P = ±A where P = Po(bk+Lcl+L). It follows

that P is of the form

or ± (0 -0:).
O:'-L 0

•

Let Po(b) = B. Note that Bk is not diagonal. If it were, then B = B-2k would

be as weIl and would therefore comnlute with A. In this case, Po would be reducible

which is a contradiction. Therefore, arter conjugating by diagonal matrices, we can

write Bk in one of the following two ways:

(

U 1) (u u(T - u) -1)± or ± .
u(r - u) - 1 T - U 1 T - U



•

•

iD

where ±r is the trace of Bk and'U E C (compare [BZ2~ Example 3.2J) .

Taking C = poCe), we see that C- l = BkP. Sa the relator abc implies

±I - A.BC

In other words, BkA. = P BkP. If

then no matter which of the two forms we choose for Bk, the equation Bk A. = P BkP

will not be satisfied. Therefore

(
0 -a)P=± .

a- L 0

For the time being, we will assume

(

u
B k =±

u(r-u)-1

and return ta the other case later.

Equating BkA and P BkP (in PSL2 (C)) gives rise to the equations

0:-
2 - ±i(u(r-u)-I)

r - u(1 += il.

Using these, we may simplify

•
trace(C-l)2

_ (±(a- 1 - (u(r - 'U) - l)a))2

- ±i(u(r - u) - 1) ± 2u2i + 2 + +=i(u(r - u) - 1)
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On the other hand,

Therefore (trace(C-C»2 + (trace(B-k»2 = 2. Since C and B are of finite order,

trace(C-1) = ±(ç + ç-1) and trace(B- k ) = ±« + (-1) where ç and ( are roots of

unity and we have

(5.9)

o _ ç2 + ç-2 + (2 + (-2 + 2

a1ç2 + a2ç-2 + a3(2 + a4(-2 + as

•
where ai = 1 (i = 1 ... 4) and a5 = 2.

Following Nlann [NIan, Definition 2), an equation of this form is called irredllcible,

provided there is no equation of the form

(5.10)

•

where bi = ai or bi = 0 with at least one but not all the bi zero. It 's clear that at least

two of the bi would have to be zero in Equation 5.10. (Otherwise the complimentary

equation would have only one term.) So there are basically two possibilities.

If Equation 5.10 is of the form ç2 + (2 + 2 = 0, then we see that ç2 = (2 = -1. But

then ~-2 = (-2 = -1 as well in contradiction to Equation 5.9. The other possibility

for Equation .5.10 is of the form ~2 + ç-2 + 2 = O. Again this inlplies ç2 = ç-2 = -1.

Now, since trace(C-1) = ±(ç + ç-lL we can diagonalize C-1 to put it in the form

± (~ 0 ). Then C = C-21 diagonalizes ta ±/. In other words C is the identity.o ç-1

This contradicts irreducibility of Po-

vVe conclude that Equation 5.9 is irreducible. By Nlann 's Thcorem [~Ian, Theorem

Il, the solutions ta the equation are 30th roots of unity. Checking amongst the 30th

roots of unity, we see that the only solution is ç2 +ç-2 = (2 + (-2 = -1 so that ç2 and

(2 are both third roots of unity. As, before we can argue that Band C diagonalize ta
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(
(2 0) (Ç2 0)± and ± respectively. \IVe conc1ude that Band C both
o (-2 0 ç-2

have order 3.

If we take

k (u 'uer - il) - 1 )
B = ± ~

1 T - U

then again we find that Band C have order 3.

"Te began \Vith the assumption that Po(..~) = ±I and deduced that Band C are of

order 3. Thus PoCiï) = ~(2~ 3~ 3) with generators A~ Band C. In other words Po(iï)

is A.t, the tetrahedral group. As [1i : 7ï-] = 2~ the lift to pen) is either ..4.4 or 54' Now~

p(f-L) has order two and normally generates p(1i). 5ince.44 has no such order two

generator~ we conclude that p(1i) = S4~ the octahedral group. Thus p(7r) is a (binary)

octahedral representation into SL2 (C).

This completes the proof of the daim. 0

501 as long as p is not octahedral~PO(iTd8AI)) =1= {±I}. Then1 PO(7rl(8AI)) rt {±I}

and p(7iL(â.Al)) <t {±I} as weIl.

\-Ve now turn to the smoothness of v(x). Again we will first show y is smooth. :-\.S

the Zariski tangent space at Po can be identified with a subspace of the cocycles~ we

proceed by investigating the group cohomology.

:-\.s a first step, we observe that ZI(Ii"L(l:2); Sl2(C) Adpo) rv ZI(6(2~ Ipl~ Iql): Sl2(CC) ..\dpo).

Indeed~ the Seifert structure of L2 gives the exact sequence (Equation 3.4)

where F = (h) ~ Z is the group of a regular fibre. The projection 1> induces a

homomorphism <I> : Zl(.::~(2, IpL lql); Sl2(C) Adpo) -7 Zl(ïil (L2); Sl2(C) .-\dpo)·

To construct the inverse, we show that u(h) = 0 for each u E Zl (ïil (:~=2); .Sl2(C).-tdpo)'

Indeed~ for aH 9 E /Tl (E2 L u(hg) = u(gh). On the other hand 1 Po(h) conHnutes \Vith

POC~(21 Ipl, Iql»)· Since Po is irreducible~ this implies Po(h) = ±I by Lcmlna 2.4.9.
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Putting it together~

u(h) + u(g) - u(h) + Adpo(h) . u(g)

- u(hg)

- u(gh)

u(g) + Adpo(g) . u(h)

- u(g) + Po(g)u(h)pO(g)-l.

Thus u(h) E Sl2(C) commutes with PO(1rL (E2 )). By Lemma 2.4.7~ u(h) = o. Now

define \{1: Zl(1rL(L2);sl2(C).-tdPO) ~ ZL(~(2~lpl,lql);sl2(C).-ldpo) by w(u)(t/J(g)) =

u(g). Since u(h) = O~ wis well defined. J\I[oreover~ it's an inverse of <I> and we have the

required isomorphisme This isomorphism also descends to the level of cohomology:

H L(1ïL(E2); Sl2(C) Adpo) rv HL(~(2, Ipl, Iql); Sl2(C) .4dpo). On the other hand, we can

argue that the cohomology of the triangle group is trivial directly.

Lemma 5.1.3. If P : ~(p, q, r) ~ PSL2 (C) is an irreducible or non-abelian repre

sentation~ then dimc(Hl(~(p,q, r); Sl2(C) ..\dp)) = o.

Proof: \IVe begin with Bl(~(p,Cf, r); Sl2(C) Adp). Recall the surjection

--t Bl(~(p,q, 'r); Sl2(C).-ldp)

..-.+ (u._\: ", .-+ A - Adp(,)(A).

•

By Lemma 2.4.ï, the kernel is empty and

Thus it sufficcs to argue that dirnc(Zl(~(p~q, r); Sl2(C) ..ldp)) =.3 and, as the cobollnd

aries are contained in the cocycles, it will in fact be enough to argue that the dimen

sion is at nl0st 3.
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peu) = ± (17 0 ) \vhere 1/ =1 ±1, Tf = 1,
o 17- 1

p(b) - ±A (E. 0 ) A -1 E. =1= ±1, E.q = 1, and
a ç-l

p(ab) = ±B (a 0 ) B- l a=1= ±1,ar = l.
a a- l

If A = ± (al a
2

) then either UIUZ =1= 0 or U3U4 =1= 0 (otherwise peu) and p(b)
U3 a4

commute) and similarly, for B = ± ( b
l

b3

Recall that

where 9 ·u(g') denotes the adjoint action of p(g) on u(g'). Then a cocycleu E

Zl(.~(Plq, r); Sl2(C) .-ldp) is determined by its value at a and b:

(

Xl X? )u(a) = -,
X3 -Xl (

YI Y.2)u(b) = .
Y3 -YI

•

Sa Zl (~(p, q, r); Sl2(C) Adp) C Sl2(C) œSl2 (C) t"'.J et>. \Ve can therefore establish the

inequality dirnc(Zl (~(p, q, r); Sl2(C) Adp» < 3 by finding three independent equations

relating the Xi and Yi.

Now,

o - u(1)

- u(aP)

- u(a) + U • u(aP -
1

)

- u(a) + a . u(a) + a2
• u(a) + ... + up

- 1 • u(u)

(1 + a + ... + aP-
l

) • u (a),



•
ï5

so, using

we have

o - ( PXl

(1 + TJ-2 + ... + "l-2(p-l»)X3

( PXl
l-1j2p )l ") x?-1j- -

l-rz-2p

-PXll-'1 2 X3

( P~I 0 ),
-PXl

(1 + rp + ... + T/2(p-l»)X2 )

-PXl

•
whence Xl = o. This is our first equation.

Similarly, if we let (Wl W2) = ~4-lu(b)A, then
W3 - lV l

q-l

- L p(bi)u(b)p(b- i
)

i=O

•

so that W l = 0 as weIl.

Since Wl = (UIU4 + a2a 3)Yl + a3a4Y2 - alU2Y3 and either ala2 =1 0 or a3a ., =1 0, this

is a second, independent equation in the Xi, Yi coordinates.

Finally, the relation (abY = 1 allows us ta deduce a third equation

which is again non-trivial since either bl b2 or b3 b4 is non-zero.
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Thus Zl (~(P1 q, r); S[2(C) Ad;;) is an algebraic set in (,'6 cut out by at least three

independent linear equations and so of dimension at most three. 0

Now, using the rernarks which precede the lemma, and the observation that the

PSL2 (C) representation Po and the SL2 (C) representation Po result in exactly the

sarne adjoint action on o5[2(C), we see that dirn.c(HL (1ïl P:::2): Sl2(C) .4dpo» = O. So we

can proceed as in [HZl, Section 4] to show that dimcHL (rr; 8l2(C) ..tdpo) = 1 and y

is simple in Y. (Note that we will make the distinction between smooth and simple

points of a character variety. A simple point is a smooth point which lies on a unique

irreducible component of the variety. See [Shf, Chapter 2 §2].)

Proposition 5.1.4. Let p be an SL2 (C)-representation of a finitely generated group

7r and Po the restriction to a normal subgroup of finite index if. Then

dimcH 1(1ï; Sl2 (C) Adp) ::; dirn.c.H 1(rr; Sl2 (C) Adpo) .

Proof: The Lyndon - Hochschild - Serre spectral sequence gives us the exact sequence

(see [Rot, Theorem 11.5])

where AG = {a E A 1 9 . a = g, \;/g E G} denotes the set of fixed points of the module

.4 under the group action G. Now, H l (1ï/ir; (Sl2(C)..tdp):r) = 0 since 1ï/rr is finite and

(S[2(C) ..ldp)7Ï" is a complex vector space. 50 we ha\re

o
In our case, the proposition shows that dimcH l (7r; Sl2(C).-ldp) ::; 1 whence v(x) is

a smooth point of ..Yi (and in fact a simple point of ..Y).

Remark: vVe have been using the ideas of [BZ!, Section 4] whereby, under appro

priate conditions, x = Xp is smooth in ...Y(7r) exactly when dirncHl(1ï; Sl2(C)Adp) = 1.

Interpreted in this context, the proposition says "simple points of ..Y" (ir) lift to simple

points of ..Y(7r)."
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Thus if p factors through ~(2T IplT Iql) and is not octahedraL then v(x) is a smooth

point of "'\i and p(7rI(ôNI» rt. {±I}. Following the reasoning of [BZl t Section 4L we

conclude that ZxCf1l2 ) - Z:z.(!Il) = 2.

\Ve can see that the jump at a dihedral character is also two by adapting Tan

guayrs [Tat Propostion 5.3.3] arguments for dihedral characters of two-bridge knots to

the present situation. Again, the argument cornes down to showing HI(n; Sl2(C) ..\dp)

has dimension 1 when p is a dihedral representation. Let p(1r) = D4m , the binary

dihedral group of order 4m. Then Adp(7r) C Aut(SL2 (C» is isomorphic to D 2mT the

dihedral group of order 2m.

Tanguay shows that the Betti number b l (n; Sl2(C)Adp) can be related to the Betti

numbers of several covers of l~f:

where the 7rd are the kemeIs of the maps

.-\d/? D D
7f~ 2m ~ 2d,

and (j) and J.L are the Euler and J\;Iobius Functions respectively. Now: bl (il; C) = 1 [RoI,

Exercise 2.E.6] and bl (-rr; C) = 1 [RoI, Section S.D]. 50 showing that hl (1r; Sl2 (C) .-\dp) =

1 and diheclraI characters are smooth reduces to arguing that bl (1rd; C) = d.

Let Afd be the covering of 1.\! corresponding to 7fd. Then Jld also covers Al and

this covering may be extended to an orbifold covering Ld --+ ~2. "'le will argue that

bl (Lrd = o. Thenr since Ld is obtained from Ald by filling along d torir 0 = bl (Ld) ?:
- -- -bl (Ald ) - d whence bl (Ald ) ~ d. On the other hand, since Ald has d torai boundary

cornponents: Lefschetz duality allows us to argue that bl(7ïd) = dirn HL (J.l1d; C) ?: d.

Therefore bl(7fd) = d, as required.

It remains to show that bl (E d ) = Or and this is where we must introduce sorne new

ideas beyond those used by Tanguay. "'le have the diagram

•
o

l
-~) E ----7 7f1 (Ld)

Ip1 l P

7fprb(Bd ) --7 1

Ip"
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where the horizontal rows are the exact sequences arising from the Seifert stnlcture

of Ld and E2~ E ~ F '"V Z represent regular fibres~ and Bd is the base orbifold of

E d • Now~ Im(P) is normal since P is a regular cover. This implies Im(P") is normal.

Since E and F are abelian~ Im(P') is aIso normal. Thus~ the cokerneis will be groups

and we can use the Snake Lemma to obtain the exact sequence

ker(P") ~ coker(P') ~ coker(P) ~ coker(P")~ 1.

Now~ ker(P") = 0 since Bd -+ Ll(2~ Ipl~ Iql) is an orbifold covering space. Thus Q: is

injective. Since P cornes from the diheclral covering l\ld -+ AI -+ jvI ~ we see that

coker(P) f"V 'Lld. By the injectivity of a~ coker(P') f"V Zia where a 1 d. On the other

hand. as the degree d of the Seifert cover Ld -+ L2 is the product of the degree a in the

fibres and the degree of the orbifold cover c~ we see that card(coker(P"» = c = dia.

However, since Im(a) = ker(~), Im(.B) also has cardinality c:

coker(P") = Im(,B) '"'-J coker(P)/ker(,B) ~ (Z/d)/(Zla) ::::: Z/c.

The projection ~(2, Ipl, Iql) -+ coker(P") '"'-J Z/c is an abelian representation~and

as such factors through Hl (.!1(2~ Ipl, Iql) = Zlb~ where b = gcd(pq, 2p~ 2q) = gcd(p, q).

So the covering Bd -+ S2(2, Ipl ~ Iq[) is either triviaI~ or eise of degree c > 1 dividing b.

In particular~ c is odd. So~ Bd is either S2(2, [pl, Iql) or eise S2(2~ 2~ ... ~ 2~ Ipl/c, Ie/I/c)'

i.e., c cane-points of order 2. Given Bd, we have an explicit formula (Equation 3.5)

for /Tl (Ed ) invoiving the orders of the cone points. \Ve can then show that Hl (Ecd is

torsion by examining its arder ideai (see [RoI. Section 8.B]). Therefore bl (Ld) = 0 as

requirecl.

Octahedrai representations can be treated in a similar fashion. In this case~

where ir = p-l (D6 ) \Vith D6 a clihedrai subgroup of index four in the octahedrai group

54· Of course bl (7r; C) = 1 as before, so we will want to argue that br (ir: C) = 2.

Let ii be the covering of Al corresponding to D6 - Then liI is an irregular covering

of degree 4 which also covers AI. As before, we extend the covering Ji -+ Al to

a degree two map between Seifert spaces: t -+ E 2 - This leads to a cliagranl quite



ï9

• sirnilar to that for the dihedral representation:

o ) E ---+ ÎÏI (t) --+

l Ip, Ip
o ---+ F ---+ 1fl (1:2 ) --+

7rprb(Ê)

l P"

~(2~ Ipl ~ Iql)

--+ 1

~1

•

•

In this case, ÊJ, the base orbifold of t, is either a 1-1 or a 2-1 cover of 52 (2 ~ Ipl ~ kIl).

In particular it is a regular cover and coker(P") is either trivial or cyclic of order

2. Since coker(P") is abelian~ it is again a factor of Hl(~(2,lpl,lql)) rv Z/b where

b = gcd(p~ q) is an odd nurnber. Thus Ê = 52(2~ Ipl, Iql) as well and~ as in the dihedral

case~ we find b l (t) = o. Since J'l has two boundary components, we may now argue

that bl (fa-; C) = 2. Thus bl (ii; Sl2(C)..\dp) = 1 and v(x) is again a smooth point of .X'"i

yielding a jump of two.

So each of the jumping points v(x) E ..Xi is a simple point of _y" (in particular,

v-l(v(x)) = x) and results in a jump of two: Zx(fJL2) - Zx(fJL ) = 2. This allows us

to calculate 5 once we have observed that 2si = 211J.Llli = 1IJ.L2 11i and that Zx(fJL2) ~

Zx(fJL ), Vx E ~Y «(CGLS, Proposition 1.1.3]).

S = LSi

- L 11J.L2 11i - 1I1llii

- L L Zx(fJL2) - Zx(fJL )
1 Zr (f,;l »Zr(J~),V(X)EXi

- L Zx(fJL2) - Zx(fJL )
Zr(f,.2 »Zr(f~ ),v(x)EX

- 2(lpql - (Ipl + Iql) + Ipq + 2(p + q) 1)/2

(5.11 ) - Ipql- (Ipl + Iql) + [pq + 2(p + q)l·

5.2. (-2,3, n) pretzel knots. Let [<n denote the (-2.3, n) pretzel knot which we

introduced in Section 2.5. If n is even, [(n is a link, so we will take n odd. Since [{n is

a j\'[ontesinos knot with three tangles~ it is small [Oe, Corollary 4] and consequently

not a satellite knot. Therefore [{Tl is either a torus knot or hyperbolic.

Lemma 5.2.1. K n is a tOïUS knot iff n = 1,3,5.
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Praof: Kawauchi [Kaw, Theorem III] shows more generally that a (p~ q, r) pretzel

knot with Ipl, Iql, Irl > 1 is torus only if {p, q, T} = {-2, 3, 3} or {-2, 3, 5}. vVe

present here a direct argument specifie to the (-2,3, n) pretzel knots.

vVe \vill show that if n =1 1,3,5, then the Alexander polynomial ~KII (t) is not

the Alexander polynomial of a toms knot. Recall ([:WIru, Proposition 14] or [Hi,

Theorem1.2]) that

~KII (t) ~ (t - l)(t-(3+n) - l)/(t + 1) + t(t-3 + l)(t-n + l)/(t + 1)2,

while the polynomial for the p, q torus knot is [Rol~ Section 7.0.8]

. (1 - t) (1 - tpq
)

~Kp.q (t) = (1 - tp)(1 - tq)"

In the discussion that follows, we will use representatives for these polynomials which

have a positive constant term and no negative powers of t.

Suppose first that n ~ 7. Then ~Kn (t) terminates with the three terms t3 - t + 1

while ~f(P'fl (t) terminates with tP - t + 1 (we will assume 0 < p < q). Thus, if !(n is a

p~ q torus knot, then p = 3. Since deg ~Kn (t) = n+3 and deg ~Kp.q (t) = pq+1-p-q,

we see that q = (n + 5)/2 ~ 6. Actually q ~ 7 since it's also relatively prime to 3.

However, although ~Kn (t) includes the term t5 (when n > 7), ~Kp.(, (t) has no t5 term

(when p = 3 and q ~ 7.) This contradiction shows that K n is not Cl torus knot when

n;::: 7.

If n < 0, ~Kn(t) inclucles the term -2t (or -3t when n = -1) while ~Kp.q(t)

always has t coefficient -1. Therefore K n (n < 0) is not a torus knot either. 0

Since we are interested in hyperbolic knots~ we will assume that n is an odd integer,

n =11,3,5. In addition, we will generally assume n =1 -1 as that case corresponds to

the twist knot K 2 treated in Section 2.3. However, we will verify that our conclusions

also hold true for this knot.

As in Equation 5.11, (p = -3, q = -n.)

s Ipql- (Ipl + Iql) + Ipq + 2(p + q)1

- 31nl- (Inl + 3) + 13n - 2(n + 3)1

- 21nl + ln - 61 - 3

- 3(ln - 21 - 1) (since n Ft [0,6] ).
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5.2.1. Bounding the Seifert slopes. BleHer and Hodgson [BH, Propositions 16 & 17]

have shown that 2n + 4 (respectively 2n + 5) surgery on K n results in a manifold

which is Seifert fibred over 5 2 (2, 4~ ln - 61) (respectively 5 2 (3,5, ln - 51/2)). (Note

that there is a small error in [BH, Proposition 17J which refers to ""4n + 14 surgery on

the (-2,3, 2n+ 7) pretzel knot." It should read '"4n+ 18 surgery on the (-2,3, 2n + 7)

pretzel knot.")

vVe can bound the Culler-Shalen seminorms of these slopes in much the same \Vay

we calculated S above. vVe ,vin connt the irreducible characters of the surgered

manifold and then show that each such character contributes 2 to the seminorms of

the corresponding slope.

2n + 4 By Equations 2.2 and 2.3, there are ln - 61- 1 irreducible PSL2 (C)-characters

of ~(2,4, ln - 61). Since d = (I~K(-l)l- 1)/2 = (In - 61 - 1)/2, half of them are

dihedral. This gÏves ~(fn - 61 - 1) irreducible SL2 CC)-characters.

Recall that

112n + 411i = L ZxCf2n+d
xE,,'(j

where Zx(f) denotes the order of zero of f at x. Since the meridian IJ. of !(n is

not a boundary slope, ZxCfJI.) < ZxCf2n+d for each x ([CGLS, Proposition 1.1.3]).

This suggests that we approach the calculation of the total norm (see Section 2.2.3)

112n + 411T by comparison \Vith 1I1-liiT = S :

(5.12)

•

Since AI is smaIl and 2n + 4 is not a strict boundary class, we may apply [CGLS,

Proposition 1.6.1J to see that ZxCf2n+4) = ZX{!JI.) at ideal points. Thus the sunl of

Equation 5.12 may be restricted to x E ..Yf.

Reducible charactcrs do not contribute to the SUffi of Equation 5.12 either. For

suppose v(x) = x.p were the character of a reducible representation p E ~ with

ZxC!2n+4) > Zx(fJl.)· Since ~ is closed and invariant under conjugation, we can

assume that p is diagonal. Then, as in Section 5.1, we can argue that the dinlension

of Z1 (71; Sl2 (C).-tdp) is at least 4.

On the other hand, ZxCf2n+.d > Zx(fJl.) implies p(2n+4) = ±I ([CGLS, Proposition

1.5.4]). So, if we take fi as the PSL2 (C) representation corresponding to p~ then fi
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factors through Hl (j\l1(2n + 4») "J Z/(2n + 4). Since p(7r) is normally generated by

p(J.L) and p is diagonal, we see that pep) = (Tf 0 ) with Tf2(2n+.J) = 1.
o Tf- 1

\Ve can use [BN, Theorem 1.1(i)] to find bl ('iï; Sl2(<C)"ldp)' Indeed~

where ,B = Tf2 is a (2n+4)th root of unity. Ofcourse [RoI, Exercise 2.E.6], bl (7r; C) = 1.

Now <Cp is C \Vith the Z-action induced by t . C = c,B where t is a generator of Z.

Since il surjects onto Hl (.LvI) ~ Z, this gives a n-action on <C.

\Ve can also think of Hl (1\11) as acting on lYÎ, the infinite cyclic cover of Al, and de

fine a C[t, t-l]-module structure on Hl (lîI; C) (see [RoI, Section 7.AD. In this context

Hl(n;Cp ) = coker(H l (l\l;C) t-~ Hl(LÎI;C» where t - ,8 represents multiplication

by t - {3. Since the Alexander polynomial ~Kn (t) is the generator of Hl (liI; C) as a

C[t, t-L]-module, we can argue that coker(t - (3) = 0 if ~Kn ((3) i= O.

In Appendix A we show that ~Kn (t) admits no roots which are 2n + 4th roots

of unity. Thus H l (7r; CB ) = 0 and bl (n; Sl2(<C)Adp) = 1. \Ve can then argue as

in Section 5.1 that dimB 1 (7r;sl2(<C)Adp) = 2 and dimZ l (7r;sl2(C)Adp) = 3. This

contradicts our earlier estimate for the dimension of the cocycles and we conclude

that there can be no jump at the character of a reclucible representation p.

It remains to examine the x E ..Xr satisfying Zx(f2n+.d > ZX(!jl) and such that

v(x) = Xp is the character of an irreducible representation p. As mentioned above,

Zx(f2n+4) > ZX(!J-l) implies the corresponding PSL2 (C) representation fi factors

through 7rl(1\1(2n + 4».

As AI(2n+4) is Seifert fibred over 5 2 (2,4, jn-61), p factors through an irreducible

representation p' : ~(2, 4, ln - 61) -+ PSL2 (C) (see Lemma 3.1.5.) No\\', as in Sec

tion 5.1, Hl(nl(AI(2n + 4»; sL2 (CLldp) I"V H l(ll(2,4, ln - 61); Sl2(C)"ldP') is trivial.

Thus, arguing as in [8Z1, Section 4], we can deduce that v(x) is a smooth point of

,X"i (and in fact a simple point of ....Y) so that v- 1(v(x») = x.

Therefore the jumping points v(x) where Zx(f2n+'.) > ZxC!J-l) are simple points of ..Y

and correspond to irreducible PSL2 (C) characters fi which factor through ~(2~ -1, In
61). Conversely, any snch representation induces a jumping point. This is immediate

if the representation is diagonalizable on nl (alvI) since then P(IL) is of finite order,
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but not ±I. On the other hand, p(2n + 4) = ±I. Thus Zx(!2n+,tl > 0 = ZX(!Il)' If

p(/r1(8A/)) is parabolic, we can appeal to [8B, Theorem Al. In any case, as the jump

Zx(!2n+4) - ZX(!Il) will he two (see [8B, Theorem Al) at each of the ~(In - 61 - 1)

SL2 (C) characters, we can evaluate the sum of Equation 5.12 ta find that 112n+411T =

S + 3(ln - 61 - 1).

2n + 5 Since AI(2n + 5) has odd order tirst homology, /rI (A/(2n + 5)) has no dihedral

characters and its irreducible characters correspond to those of ~(3, 5~ ln - 51/2).

'Vhen n =1= 5 (mod 30), the Alexander polynomial ~Kn (t) admits no zeroes which

are 2n + 5th roots of ullity (Lemma A.1.1). 50, as with 2n + 4~ there is no jump at

the character of a reducible representation. Equations 2.2 and 2.3 show that there

are ln - 41 - 1 irreducible PSL2 (C)-characters of ~(3, 5, ln - 51/2) each of which

is double covered in SL2 (C). Thus /r1(At/(2n + 5)) has 2(ln - 41 - 1) irreducihle

SL2 (C)-characters. As was the case for 2n + 4, each of these contribute two to the

Culler-5halen seminorrns of 2n + 5 50 that 112n + 51lT = S + 4(ln - 41 - 1).

This equation also holds for n = 5 (mod 30) although by a different argument. In

this case, there are ln - 4[ - 5 irreducible PSL2 (C)-characters of ~(3, 5, ln - 51/2) and

consequently 2(ln-41-5) irreducible SL2 (C)-characters of 1fl (.Al(2n+5»). Four of the

reducible characters of ~(3, 5, [n-51/2) correspond ta reducible representations which

project onto "L/15. As shown in Appendix A, the Alexander polynomial admits 15th

roots of unity among its zeroes when 151 (n-5), 50 we cannot neglect these reducible

characters. Indeed, as we will now show, each one will be covered twice in SL2 (C) by

characters contributing two sa that we again have 112n + 51fT = S + .:l(ln - 41 - 1).

If n _ 5 mod 30, then ln - 51/2 = 15k and Hl (~(2, 3, Inl) ~ "L/I5. On the other

hand, by Lemma A.1.2, ~Kn (t) admits primitive 15th roots of unity and they are

simple zeroes of ~[(n (t).

Let ç = e2rrji/15 be a primitive 15th root of unity and let p be the reducible SL2 (C)

representation of /r induced by

_ ( e:rjij15 0 )
p(J1.) - --/1- .o e-:rJl::J
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Theo p(J-L) 15 = ±I and p is a cover of one of the reducible PSL2 (C) representations of

Ll(2, 3~ Inl) projecting onto Z/15. In other words, we cao think of p as a representation

of rr which factors through iv/(2n + 5). Corresponding to the eight primitive 15th

roots of unity, we have eight SL2 (C) characters. \Ve will show that the jump at each

of these characters is 2.

Frohman and Klassen [FK, Theorem 1.1] show that such a representation p is the

endpoint of an arc of irreducible representations. So p E R, a component of the

SL2 (C)-representation variety containing an irreducible representation. The corre

sponding character x = Xp lies on the curve ..Yi = t(H.ï).

Since ç = e2..ji/15 is a primitive 15th root of unity, Xp(J-L) = 2 cos(rrj/15) # ±2.

50 Zx(!,.J = 0, x is a non-trivial character, and, nloreover, X(iii (8A/» # {±2}. (A

character is trivial if X(1r) C {±2}. See [P, Section 3.2].) On the other hand, since p

factors through A/(2n+5), p(2n+5) = 1 and Zx(!2n+5) > O. So Zx(!2n+5) > ZX(!/l)

and there is a jump at x.

Now Proposition 1.5.2 of [CGLS] shows that there is a non-abelian representation

p' E H.ï with character x and p'(2n+5) = ±I. Since X(iil(8Al» # {±2L we see that

p'(rrl(8Al» rt {±I}. Finally, as in Section 5.1, we can argue that H L(rrl(AI(2n +
5) ); sl2 (C) .-\dP') = O. This allows us to apply [BB, Theorem A] and conclude that the

jump, Zx(!2n+5) - Zx(!,J, is 2.

5.2.2. An application of Lemma 6.2. Lemma 6.2 of [BZ1] relates the Culler-Shalen

norm on a norm curve to the boundary slopes. In the case of a knot. such as [<n, for

which /-l is not a houndary slope we can wri te

(5.13)

•
where the ai are non-negative integers and the /3i are boundary slopes.

The houndary slopes of !(n can he found using the methods of [HO] (see also

Section 4.2). \Ve have /31= 0, /32 = 2n+6, /33 = 16 (respectively 10) and ,Hl = n
2y -s

(respectively 2(n + 1)2/n ) when n ~ ï (respectively n ~ -1).
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The calculatioos of the last two sections imply the following inequalities for any

Culler-Shalen seminorm:

(5.14)

(5.15)

(5.16)

Il Il I! - s < 3(ln - 21 - 1);

s < 112n + 411 < s + 3(ln - 61 - 1) and

s < 112n + 511 < s + 4([n - 51 - 2).

(5.1 ï)

These strongly restrict the possible values of the coefficients ai.

For example, suppose n > ï. Theo the equations above become

n-3
2[al +a2 +a3 + --a..] - s ~ 3(n - 3);

2

(5.18) s < 2[(2n + 4)al + 2a2 + (2n - 12)a3 + a4] < s + 3(n - 7) and

n-5
(5.19) s < 2[(2n + 5)al + a2 + (2n - Il)a3 + ~a4] < s + 4(n - 7).

It will be useful to subtract s from each of the last two equations:

•
(5.20)

(5.21)

n-5o < (2n + 3)al + a2 + (2n - 13)a3 - ~a4 < 3(n - 7)/2,

o < (2n + 3)al + (2n - 12)a3 - a.. < 2(n - 7)

•

Since ai 2: 0, Equation 5.17 implies a4 < 3. In fact, in order to have a norm

(rather than a seminorm), we would neecl at least two of the ai > O. This condition

further restricts a4 ~ 2. (Seminorms \vhich are not norms will be cliscussed further

. S . -?4)ln ectlon 0._. .

Given a" ~ 2, Equation 5.21 implies (2n + 3)al ~ 2(n - 6) 50 that al = o. Then,

the same equation implies a:J < 1. ''le will argue that, in fact, a" = 2 and a3 = 1.

Suppose instead that a4 < 1. Since al = 0, Equation 5.21 becomes (2n - 12)a3 <

2n - 13 so that a3 = o. This is a contradiction since if al and a3 are both zero, then

Equation 5:21 in fact says a" = 0 as well, and only a2 is non-zero. This would mean

that Il . Il is not a norm.

Therefore a4 = 2. Since al = 0, Equation 5.21 implies that a3 > O. Thus a3 = 1.

Finally, given these values, Equation 5.20 can be rearranged to see that 0 < a2 ~

(n - 5)/2. This implies s = 2n - 4 + 2a2, 112n + 411 = s + 2(n - 8) + 2a2 and

112n + 511 = s + 4(n - 7).

For n ~ -3 there are four possible solutions.
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1. al = o~ a3 = a4 = 1 and 0 :5 a2 :5 (1 - n)/2. Theo

s = 2(1 - n) + 2a2' 112n + 411 = 4(4 - n) + 4a2 = s + 2(7 - n) + 2a2

and 112n + 5/l = 2(7 - 3n) + 2a2 = s + 4(3 - n).

2. al = a-t = 1, U3 =0 and 0 <a2:5 (1- n)/2. Theo

s = 2(1 - n) + 2U2' 112n + 4/l = -4(n + 1) + 4U2 = S - 2(n + 3) + 2U2

and 1I2n + 511 = -6(n + 1) + 2a2 = s - 4(n + 2).

3. Ifn > -23, al = 1, U3 = U4 = 0 and 0 < U2 < (n + 25)/2. Then

s = 2 + 2a2' 112n + 411 = -2(2n + 4) + 4a2 = s - 2(2n + 5) + 2a2

and 112n + 511 = -2(2n + 5) + 2a2 = s - 2(2n + 6).

s = 4, 112n + 411 = 28 and 112n + 511 = 24.

5.2.3. Norm Curves. For n > 7, we see immediately that there is at most one norm

curve in the character variety. Indeed. if there were two~ each would have s > 2n - 4

which would force S > 3(ln - 21 - 1) = 3(n - 3). Similarly, for negative n~ we see

that there can be at most one norm curve of type 1 or 2. In arder to see how the

type 3 solution interacts \Vith the other two, \ve use the Seifert slopes.

For a type 1 norm cun,·e, we have 112n + 511 = s + 4(3 - n) which implies aIl the

jumping points for 2n + 5 surgery lie on that curve. vVe~ve shown that the jumping

points are simple, 50 they cannot lie on any other cun'-e. Thus any other norm curve

would have 112n+511 = s. However, examining the other solutions wc see that 112n+511
is greater than fi (unless n = -3). So for n < -5, if there is a curve corresponding to

a solution of type l, then there are no other norm curves. Using similar arguments,

we can show that for n :5 -11, there is at most one norm curve. For n = -9, there

are either two norm curves each corresponding to a type 3 solution or else there is

only one norDl curve.

In the following, we will assume that there is only one norm CUITe .\0 and we will

denote its Culler-Shalen norm by Il . 110. The cases -9 :::; n :5 -1 will he trcated

separately later.
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FIGURE 20. A spanning surface of K n .
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FIGURE 21. The handlebody H.
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5.2.4. 1'-Curves. vVe will argue that K n admits an T-curve only if T = 2n+6. For this~

we 1ll use the graph manifold structure of AI(2n+6): lvI(2n+6) = AI1UAI2 : is the union

of two Seifert fibred manifolds AIl and A/2 along a torus. \Ve can construct 1V[1 by

thickening the spanning surface of Figure 20. The surface is a punctured Klein bottle

so 1\;II is a twisted I-bundle over the Klein bottle. vVe denote the complementary

manifold 53 \ J.V(Afr) by 1.\12 , vVe can get a better handle on the Seifert structure of

the j\;Ii (i = 1,2) using the ideas of Dean [Dea].

A key observation [Dea, Lemma 2,2.1] is that an irreducible Haken manifold, like

lvIi , \Vith fundamental group Gm,n = (x 1 Y 1 xmyn) is Seifert fibred, the base orbifold

being a disc with cone points of order m and n. Since AIl is obtained from the

obvious genus 2 handlebody H in Figure 21 by adding a 2-handle along the knot,

we can compute ifs fundamental group. Indeed, \-vith respect to the generators

a, b of 1ïl (HL the knot represents the relator b-Iab-Ia- l . ~Iaking the change of

basis, b- l a ~ c, a ~ d- 1, the relator becornec;; c2 cf2. Thus AIl is Seifert fibred
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over D2 (2,2) with (b- 1a)2 or a 2 representing a regular fibre and fundamental group

7rr(1l-1.) = (c,d 1 2([2).

A similar argument allows us to identify 1v12 using the generators x and y of the

complementary handlebody H' (see Figure 21). In this context, the knot represents

the word yxy(n-I)/2xy(n-I)/2x . After the change of basis y(n-l)/2x ~ w, y-l -+

z, the word becomes z(n-3}/2w3. Thus 1\12 is Seifert fibred over D 2(3, ln - 31/2)

and has fundamental group 7r1(AI2) = (w,z 1 zln-3)/2·w3). J\loreover, a regular fibre

corresponds to (xy(n-I)/2)3.

\Ve can now argue that the fibres intersect once on the common boundary of JII

and AI2 • Indeed, Figure 22 shows how a fibre of AIl representing a2 and a fibre of 1\12

representing (xy(n-I)/2)3 have intersection nurnber one. Note also that the AIl fibre

a2 becomes y-2x -l = y(n-.5)/2(xy(n-I)/2)-1 = z(5-n)/2w -l in UI (.L\12) \vhereas the 112

fibre (xy(n-I)/2)3 goes to b-Iab-Iab-Ia = (b- I a)3a -1 = c3d.

Proposition 5.2.2. The P5L2 (C)-character variety ...Y(Al(2n + 6» contains exactly

one curve when 3 1 n. Otherwise dim ..Y(AI(2n + 6» = o.

Proof: \Ve will argue that irreducible PSL2 (C)-characters of AI(2n + 6) are either

isolated or eise factor through Z/2 *Z/3. The result then follows froIn [BZ2, Example

3.2J.

An irreducible representation P : Jl(2n + 6) ~ PSL2 (C) will be non-abelian or

eise have image Z/2 E9 Z/2 (Lemma 2.4.5). On the other hand, if it's abelian, it

also factors through H I (1\I(2n + 6» f"V Z/(2n + 6) and there is no cyclic group

which contains Z/2 œ7l/2. Therefore if fi is irreducibIe, it's also non-abelian. Let

Pi: 1ïl(Ald ~ PSL2 (C) (i = 1,2) be the induccd representations. If one ofthese is

non-abelian, we can show that it kills the corresponding fibre. Let hi E hl (Ald be

the class of a regular fibre.

Claim 5.2.3. If Pi is non-abelian, then Pi(hd = ±I.

Proof: (of Claim) Suppose Pl is non-abelian.

Since hl generates the center of hl (A/d, by Lemma 2.4.3, if Pl (hd =1 ±I then

we can conjugate so that Pl (h.) = E and Pl (hl (lvIr») C LV (see Definition 2.4.2 for

notation).
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Since Pl is non-ahelian, at least one of the generators, say c, of ifl (AIl) = (c, d 1 c2 dl
)

is sent to an antidiagonal element and is therefore of order two. But since c2 generates

the center of if1(Ald, this means that the image of the center is trivial, ancL in

particular, lit (hd = ±I, a contradiction.

Sinlilarly, if th is non-abelian, then we can assume (for a contradiction) that

Im(h) C LV and h(h2 ) = E. As before, one of the generators of 1r1 (1\12 ) = (w, z 1
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W3 z(n-3)/2} must be antidiagonal. If Pl (w) is antidiagonal, then Pl (W3) is as weil.

This is a contradiction since both w3 and h2 generate the center Z(1ïl(AI2 » r>.J Z and

we started out by assuming ii2(h2 ) = E. This argument also shows that ii2(z) cannot

be antidiagonal in case (n - 3)/2 is odd. If (n - 3)/2 is even, we can repeat the

argument we used for Pl' 50 we also get a contradiction in this case. D(Claim)

•

•

Let us assume p(irl(T» <t. {±l}. \Ve wish to show that Xp is then isolated

in .t(1\1(2n + 6». Since regular fibres intersect once on T~ their images generate

p(1ïdT». The Claim therefore shows that in order to satisfy p(1l"[(T» <t. {±l}~ at

least one Pi is abelian with Pi (hi) =1 ±I.

50, suppose ii2 is abelian and Pl is not. As above, th (hIl = ±I. Since the glueing

torus T contains regular fibres, we can assume hIE 1ïdT). As the Pi 's agree on the

intersection 7fl (T), ih(hd = ±I as weIl. However, we've seen earlier that a regular

fibre hl represents the word z(5-n)/2w -1 in 7fl(AI2). Since this word is killed~ th. factors

through

which is cyclic of order ln - 61.
This means that P-2(h2 ) is of finite odd order (remember that n is odd, so that

n-6 i= 0). vVe can conjugate so that h(h2 ) = ± (''7 0 ) with ''7 i= ±1, ±i. Now,
o 11T1

since pdhtl = ±l, Pl factors through the orbifold group 1l"?rb(Btl = (c, d 1 C2,~)

where BI is the base orbifold of AIl. Again, pdh2 ) = h(h2 ) is of finite order dividing

ln - 61 and represents the word c3 d. Thus Pl factors through (c, d 1Cl, cF, (cd)ln-61)

which is dihedral of order 2ln - 61. Also, pdh2 ) = ih(h2 ) = ± (TJ 0 ) is in the
o 1/TJ

image of the cyclic subgroup which is therefore diagonal (Lemma 2.4.3).

\Ve have now gjven a rather specifie description of p. Restricted to Ïli (AI2 L it is

cyc1ic of order dividing ln - 61 and diagonal. Restricted to 7ï1 (AIIl it factors through

D21n-61 with the cyclic subgroup having image in the diagonal matrices. !\loreover,

± (1] 0 ) with TI i= ±l, ±i is common to the images of 7ï1 (AIL) and Ïll (AI2 ) •

o 1/'7
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There are only a finite number of characters consistent with such a representation.

Thus characters of this form are isolated in the sense that they cannot form a curve.

Next, assume Pl is abelian and ii2 is not. Again ih.(h2 ) = ±I which implit.'s ih

goes through 1r1 (Ald/ (h2 ) = (c, d 1 c?cP, c?d) = Z/4. Then p(hd is of order divieling

4 and since it is non-trivial, it has order 2 or 4. On the other hand, as the fibre h2

is killed, P2 goes through the orbifold group Z/3 * Z/(In - 31/2). Nloreover, since

Pl (hd = ii2(h2 ) has order 2 or 4 we deduce that P2 factors through ~(3, ln - 31/2,2)

or ~(3: ln - 31/2,4). 50 we are again in a rather restrictive situation. The number

of characters of such a triangle group is finite (see Equation 2.2) and, since the third

generator of the triangle group is of order 2 or 4 and generates Pl (l\ld, there are also

only a finite number of characters for such a representation p. 50 they are isolated.

Finally we turn to the case were both ih and P2 are abelian. This means that

p(1r1 (T)) must commute with everything in the image of the non-abelian represen

tation p. vVe are assuming p(1rI(T» # {±I}, so, by Lemma 2.4.3 and after an

appropriate conjugation, p(1rt(T» = {±I,E} and p(1rl(AI(2n +6») c J.V.

Now, as Pl and ii2 are abelian, they will factor through ZœZ/2 and zœz/g, (where

9 = gcd(3, ln - 31/2» respectively. Since P is non-abelian, there is an antidiagonal

matrix in its image. On the other hand, since E E p(7fl (T», at least one of the

Pi 's has image including both diagonal and antidiagonal elements. The only \Vay this

could happen, while the Pi in question remains abelian would be for it to have image

Z/2 œ~/2 (see Lemma 2.4.5). vVe see that this is feasible only on the AIl side and

conclude that pd1rl(Ald) rv 7l/2 œ7l/2.

In particular, pr(hd has order one or two. 50 P2(7fl(Jf2» either factors through

Z/ln-61 (as above) orelse through (w,z 1 w3z(n-3)/2,(.:(5-n)/2w -I)2,[w,z]) which

is cyclic of order 21n - 61. Nloreover, we can assume that Im(ii2) consists only of

diagonal matrices. Again there are ooly a finite number of characters correspondillg

to representations of this form so they are isolated.



•

•

•

92

In summary then, the only way to construct a curve in ",Y(A/(2n+6)) is by rnaking

use of representations p which kili the glueing toros T and therefore factor through

7rl(.:vl(271. + 6))/7rl(T) - (7r l(A/d *lI"r(T) 7rl(A/2))/7rL(T)

- ILL (1\ld/1IL (T) * 7rl(Af2)/7rl(T)

- Z/2*Z/g.

where 9 = gcd(3, ln - 3[/2). If 9 = 1, this is an abelian representation, contradicting

an earlier assumption, and there is no curve in ..tY(AI(2n + 6). If 9 = 3, (Le. if 3 1 nL
we see that we are Iooking at representations of Z/2 * Z/3. Since .Y(Z/2 * Z/3)

contains exactly one curve (see [B22, Example 3.2]), we conclude that this is also the

case for ...Y(AI(2n + 6)). 0

Thus if 3 1 n, there is a unique curve in ..t(lvI(2n + 6)). Nloreover, since the

representation PL/2 (see [B21, Example 3.2] or Equation 5.22 beIow) is dihedral, this

curve contains the character of a dihedrai representation. It follows that the curve is

covered by a unique curve in the SL2 (C)-character variety ..X(AI(2n + 6)) (see [B21,

Lemma 5.5]). Thus there is exactly one T-curve, calI it "'Yh with T = 2n + 6 in this

case.

lvloreover, we can show SL = 2 for this curve. Recall that SL = IIpll L is the degree of

fil-" So we need to understand the image of p under the composition Il -7 1IL (1\J(2n +
6)) -7 7l/2 * Z/3 = (c, d 1 C?, d3

). \Ve can construct p in terms of a curve ''( in the

genus two surface which connects points on opposite sides of the knot: see Figure 23.

The idea is that we can break up the meridian as the sum of a Ioop in AlI and a

Ioop in 1\12 • \Ve will then show that those project to c and d respectively. The first

loop is ''/ plus a small arc joining the two endpoints of "Y in the interior of H, the

obvious genus two handiebody. The second Ioop is ï plus a small arc joining the two

endpoints of "y and passing through the complementary genus t\\"o handlebody H'.

In 7rl (Ald, ï represents ab- l which is conjugate to b- 1a and therefore projects

onto the generator of Z/2 = 111 (Ald/7rl (T). In 7rl(1\tf2), "Y represents xy(n-L)/2 which

projects to the generator of Z/3. Thus p is rnapped to cd in Z/2 * Z/3.
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(5.22)
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Let .Y I be the unique curve in J'Y(Zj2 * Zj3). In [BZ2~ Exarnple 3.2]~ the authors

construct a double covering C -4- "YI given by mapping zEe to the character of pz:

pz<c) = ± (~ ~.), pz (d) = ± ( z (1 _ ZZ) _ 1 1 ~ z ) .

Sincetrace(p::(cd)) =i(2z-1)~weseethatfcdCx.pJ = -(2z-1f-4hasdegree2. As

this is a double covering of J'YI by C~ the corresponding character on .Y1 has degree 1.

Finally~ lifting to the curve .\'"1 in _Y(AI) which double covers ';~1 C ..Y(AI(2n + 6)) C

J'Y(AI), we deduce SI = deg fIL = 2.

For n > 7~ the integral boundary slopes are O~ 16 and 2n + 6. vVe will show

that 0 and 16 do not adnlit T-curves. Recall that 112n + 5110 = 80 + 4(ln - 41 - 1).

i.e. aIl the jumping points for the 2n + 5 surgery are on the norm curve. 50 we

\vould have 112n + 511i = Si on any r-curve .Yi . However~ if r = 0 for exarnple,

112n + 51li = $i~(2n + 5~ 0) = (2n + 5)Si. 50 there can be no r-curve for r = O.

Similarly, there can be no T = 16 curve. Analogous arguInents show that there is no

T curve with r = 0 or 10 when n < -11 sa that r = 2n + 6 is the only candidate in

this case as weIl.

Thus when n ~ 7 or n < -11 ~ there is exactly one norm curve. There will

be one r-curve when 3 1 n and othenvise there are no additional curves containing

irreducible characters. Since the set of reducible characters forms a complex line ([Ta,

Proposition 2.5.5]), we see that ..\(I(n)~ the character variety of the knot I{n~ consists
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of two (three) curves when 3 f n (3 1 n) and n > ï or n < -Il. This observation also

holds true for -9 < n < -1 as we will now verify.

n = -9 Here 3 1 n~ so there is an T-curve "YI with T = 2n + 6 = -12 and SI = 2.

\Ve can show that there is no T-curve \Vith r = 0 or 10 as we did before and we~ve

already mentioned that if there were two norm curves~ they would bath correspond

to a type 3 solution. Let us verify that this cannot happen. Suppose then that there

were two norm curves ..Yo and "Y2' Since S = 30 and SI = 2~ we see that

28 = So + S2 = 4 + 2 (ag + a~) ~

\vhere we have given the a2 's (see Equation 5.13) superscripts showing which curye

they come from. This implies ag + a~ = 12. But then

112n + 4110 + 112n + 4112 = 80 + S2 + -4(2n + 5) + 2(ag + a~) = So + S2 + 52 + 24

which contradicts. the equation 112n + 411T = S + 3(ln - 61 - 1) = S + 42. Thus we

see that there is exactly one norm curve and one T-curve when n = -9.

n = -7 In this case there is no r-curve for T = 2n + 6 = -8. By examining the

norm of the 2n + 5 = -9 slope, we see that if there is a norm curve of type 1 ~ it is

the only curve in ..Y(I(-7) containing an irreducible character. Similarly, if there is

a norm curve of type 2, then there is no T-curve with r = 10. However~ we cannot

immediately eliminate the possibility of an T-curve for r = o.
Indeed, we know that for the type 2 norm curve "\0

So = 2(i-n) +2a2 = 16+2a:h 112n+4110 = 11-10110 = So -2(n+3) +2U2 = so+8+2a2

and 112n + 5110 = Il - 9110 = 80 - 4(n + 2) = 050 + 20.

On the other hand, ifthere were an r-curve .,(\""1 with r = 0, then 112n+4111 = 11-10111 <

s( + 3(5 - n) - 8 = s( + 28 and also 112n + 4111 = Il - 10111 = S1~( -10,0) = 108(-

This implies

10s1 < s( + 28

• => 98( < 28

=> S( < 28/9
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Since SI is an even integer1 we see that SI = 2. Similarly, an examination of the

-9 slope also leads us to the conclusion that SI = 2. 50 we cannot eliminate the

possibility of an T-curve with r = 0 directly as we did eadier. vVe need to examine

possible combinations of curves.

For example, suppose )«(K-ïL had a type 2 norm curve ...Yo and one T-curve ,X I

for r = 0 and no other norm or T-curve~. Then Il - 9/10 = sa + 20 and

" - 91h - SI~( -9,0)

- 905 1

SI + 8s 1

- SI + 16.

50

Il - 911T - /1 - 9110 + /1 - 91h

sa + SL + 36

- S+36

< S+40

- S+4(1n-41-1).

Thus, if we assume that these are the only two curves~ we see that we cannot

account for aH the jumping points associated \Vith the -9 slope. Therefore this is

not a possible configuration for ...Y(I<-ï). By analyzing the possible combinations of

norm curves and T-curves in this way, we see that the only possibility is that there is

exactly one norm curve of type 1 and no T-curves.

n = -5 A similar analysis shows that .X(I<-5) contains exactly one norm curve and

it 1S of type 1.

n = -3 ~ince 3 1 n, we know that there is an T-curve .0'\L for T = 2n + 6 = 0:

SI = 2, 112n + 41h = 11- 2/1L = SI + 2 and 112n + 51iL = [1- Illt = SL·
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If we follow the same strategy as in the previous cases we find that there are two

possible configurations:

L In addition to the T-curve there is one type 1 norm curve "\0 with

05'0 = 10, Il - 2110 = So + 22 and Il - 1110 = So + 24.

II. Here there is a type 2 norm curve .\0:

So = 8, Il - 2110 = So and Il - 1110 = So + 4

as weil as an additionaI T-cun'e .\2 with T = 10:

Both configurations are consistent with S = 3(ln - 21 - 1) = 12, Il - 211T

S + 3(ln - 61- 1) = 5 + 24 and 11- IIIT = S + 4(ln - 41- 1) = S + 24.

In order to show that the second configuration does not arise, recall that "Y2, the

PSL2(C) analogue of ..\2, would include into ..Y(AI(IO)) (see Section 2.2.3 or [BZ2,

Example 5.10]). Now, AI(-1) is Seifert fibred over 5 2 (3,4,5) and the jumping points

for II - 111 come from the six irreducible PSL2 (C)-characters of ~(3, 4,5). If the

second configuration is valid, five of these characters are on "Y2 and therefore come

from representations lying in R(A'/(IO)). vVe will argue that at least two of them do

not.

Indeed two of the characters correspond to representations which factor through

~(2, 3, 5) which has order 60. On the other hand, if such a representation fi is also

in R(A/(IO)), then it annihilates both the 10 and the -1 slopes. In other words,

the kernel of p contains an index eleven subgroup of 7r1(81\/). Therefore p(1r1(81\J))

is either Z/li or else trivial. On the other hand, p(1ï1(81\J)) also factors through

À(2, 3,5). ThllS P(7i1 (alvl)) is trivial and since 7f1 (A/) is normally generated by the

peripheral group, P(7r1 (AI» = {±I} as weil. This contradicts the faet that p is an

irreducible representation. Therefore, the irreducible representations which factor

throllgh ~(2, 3,5) are Ilot in R(l\tI(IO)). This shows that the second configuration is

not possible.
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n = -1 This knot was treated using different methods in Section 2.3 (where it is

identified as the twist knot 1(2). \rVe saw that there is one norm curve of type 1 in

the character variety.

Thus for any hyperbolic pretzel knot l(n ~ the character variety contains one norrn

curve ..Yo and one curve of reducible characters. If 3 1 n there is an additional r-cun-e

"Y1 for the slope r = 2n + 6 with S1 = 2_

If 3 f n~ then So = 3(1n - 21 - 1) and the Culler-Shalen norm is given by

when n > ï and

1-n
Il'''(110 = 2[~('110) + ~~("'(~ 2n + 6) + .:l('·Y~ 2(n + 1)2 ln)]

when n :::; -l.

If 3 1 n, then So = 31n - 21 - 5 and the Cuiler-Shalen norm is

n 2 - n - 5 n-7
Il''fllo = 2[~("'/~ 16) + 2~(1', ~ ) + -?-~(7, 2n + 6)]

2 -

when n > ï and

when n < -1.

Note that the longitude has an associated ideal point only when n = -1 or n = -3.

That is, for the boundary slope {3i = 01 the associated ai is zero unless n = -1 or

n = -3. As we mentioned in the Remark of Section 2.3, this corresponds to the

fact that these knots fibre over S1 \Vith a Seifert surface as fibre unless n = -1

(see [GaZ, Section 6]). Although l{-3 admits such a fibration there is nonetheless

at least one ideal point associated to the longitude. This is because there are other

essential surfaces which realize the longitude as a boundary slope but are not fibres

in a fibration of the knot. EssentiallY1 when n = -3~ the boundary slope 2n + 6 turrlS

out to be zero, and corresponding to the surfaces which realizes 2n + 6 in ail the other

knots1 there is a surface realizing the longitude slope of 0 for this knot. However, this

surface is not the leaf of a fibration of K_3 , just as the corresponding 2n + 6 surfaces

do not play that role for any other l(n'
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,1167.311 = 48
1

1
1

1

••,
•,,

11-1,011=16

.1123.111 = 24 ...124,111 = 36

111,011 = 16

B
--- ---

121,111 = 32

2B
--- .. ---to·

(16,1)

FIGURE 24. The fundamental polygon of [{g.

•

•

Fundamental Polygon and Newton Polygon. Figure 24 shows the fundamental poly

gon of [<9 associated to the norm curve "\'"0' For [<9, max(2so~ 050 + 8) = 280 sa

any finite surgery slopes must lie in 2B (see Section 2.2.5). However, as we see in

Figure 24, the only slopes inside 28 are 21, 22, 23 and Il = 110. According ta Snap

Pea [\Vee], JI(21) is hyperbolic and so (-2, 3~ 9) admits exactly two non-trivial finite

surgeries: 22 and 23.

As n increases, the fundamental polygon for the norm curve nlaintains the same

aspect but becomes smaller. For Il ::; n < 19. the only slopes inside 2B are 2n + 4.

2n+5 and Il and once n > 21, only 2n+4 and J.l remain. Now JI(2n+4) and AI(2n+5)

are Seifert fibred over ~(2, 4, ln - 61) and ~(3, 5, ln - 51/2) [BH, Propositions 16 &

17]. Since, for n ~ Il, 1/2 + 1/4 + l/(ln - 61) < 1 and 1/3 + 1/5 + 2/(ln - 51) < l,

these are hyperbolic 9rbifolds and consequently AI(2n + 4) and AI(2n + 5) are not

finite surgeries. Thus the (-2,3, n) pretzel knots admit no non-trivial finite surgeries

when n ~ Il.

Figure 25 gives the fundamental polygon of the (-2,3, -7) pretzel knot and illus

trates the situation for n ::; -1. \Vhen n < l, 050 < 8. Since 2B lies below the line

y = 1 there are no non-trivial finite surgeries here. \Vhen TI. = -l, we have a twist
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-------
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ta (10,1)

-- ...

•
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FIGURE 25. The fundamental polygon of 1<-7.

knot, and we have already observed that they have no non-trivial finite surgeries

(Section 2.3) .

Thus there are exactly five non-trivial finite surgeries on the (-2,3, n) pretzel

knots. As we have mentioned, /(9 admits two. \·Ve can use the same methods to see

that /(7 has three (see [Bl\'IZ, BZl]), two cyclic fillings 18 and 19 and one non-cyclic

Ruite filling of slope 1Î. These fillings \Vere already known ([FS, Section 4] and [BH,

Propositions 16 and 17]). The content here is that these are the only examples of non

trivial finite surgeries. As none of these fillings are simply connected this constitutes

a proof of Property P for these knots. However, Property P was already known as

these knots are strongly invertible [BS].

\Ve are also in a position to determine the Newton Polygons for these knots (see

S . ?')-)ectlon _._.v .

The vertices of the Newton polygon are

(0,0), (16, 1), (n2
- 2n - 15, (n - 5)/2), (2(n2

- n + 3), n - 2),

(3n2
- 4n - 25, (3n - 11)/2), (3n2

- 4n - 9, 3(n - 3)/2)

when n ~ Î and 3 f n (see Figure 26 which Iliay be compared with [Shn, Figure 5]);

(0,0), (16,1), (12(n - 7), (n - 7)/2), (3(n2
- 6n + 23), n - 2),
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a

c = (2(n2 -n+3), n-2) d = (3n2 -4n-9, 3(n-3}/2)

b = (16, 1)

e = (3n2 -4n-25, (3n-l1)/2)

a = (O,O) f = (n2
- 2n - 15, (n - 5)/2)

FIGURE 26. The Newton polygon of !(n (n 2: ï and 3 f n).

b = (10,3(1- n)/2) c = (2(n2 + 2n+6), (3 - n)/2)

d = (3(n2 +2n+3), 1)

a = (0, (1- 3n}/2)

f = (n2 + 2n - 3, -n) e = (3n2 + 6n - 1,0)
e

d

100

•

FIGURE 27. The Newton polygon of !(n (n :S -5 and 3 f n).

(3n2
- 6n - 31, (3n - 13)/2), (3(n2

- 2n - 5). (3n - II)/2)

when n = 3k, k > 3;

(0, (1 - 3n)/2), (10,3(1 - n)/2), (n2 + 2n - 3, -n),

(2(n2 + 2n + 6), (3 - n)f2), (3n2 + 6n - 1,0), (3(n2 + 2n + 3), 1)

when n ~ -5 and 3 f n (see Figure 2ï);

(0, -(3n + 1)/2), (10, (1 - 3n)f2), (n2 + 4n +.3, -n),

(2(n2 + 2n + 6), (1 - n)/2), (3n2 + Sn + 5,0), (3n2 + Sn + 15, 1)
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FIGURE 28. The (-3,3,4) pretzel knot.

when n = 3k, k < -1; and

(0, DL (0, 1), (4,2), (10, 1), (14, 2), (14,3)

when n = -1.

5.3. (-3,3, n) pretzel knots. \Ve now turn to the (-3,3, n) pretzel knots. \Ve begin

by examining the (-3,3,4) pretzel knot li as illustrated in Figure 28. First note that

K is hyperbolic. Since it's small [Oe, Corollary 4], it's not a satellite knot. The ooly

other possibility is that it is a torus knot. However, as it has Alexander polynomial

([Nlru, Proposition 14] or [Hi, Theorem 1.2J) ~K(t) . (t2 - t + 1)2 this is not possible

(see the argument of Lemma 5.2.1 or [Kaw, Theorem III]).

Note that I~K(-1)1 = 9 so that there are 4 dihedral characters contributing to

S. On the other hand, Equations 2.2 and 2.3 show that there are three irreducible

PSL2 (C) characters of ~(3, 3, 4). Using the methods of Section 5.1 we see that there

are 10 ( = 4+2(3» jumping points in the SL2 (C)-character variety, each contributing

a jump of 2. Thus S = 20.

Using the ~vlontesinos trick (forexample, see [BHl), we can see that .:\1(1) is Seifert

fibred over S2(2, 5, 7). By Equations 2.2 and 2.3, there are 6 irreducible PSL2 (C)

representations of ~(2, 5, 7) and none of these are dihedral representations since we

are looking at a surgery r = 1 \Vith odd numerator. So each of these is covered by two

SL2 (C)-characters each of which in turn contributes two to the seminorms of T = 1

surgery. That is, 1I1llT = S + 24 (see Section 5.2.1.)

By [HOL the boundary slopes of 1< are -14, 0 and 8/5 sa that [BZ1, Lemnla 6.2]

gives us
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In particular,

(5.23)

(5.24)

IItLlI = 2(al + a2 + 5a3) - oS <20; and

oS < 11111 = 2(15al + a2 + 3a3) < oS + 24.

•

•

Subtracting, we find

Now Equation 5.23 shows that a3 < 1 on a norm curve. On the other hand, from

Equation 5.25 we see that a3 = 0 implies al = 0 which is not possible for a norm

curve. (Recall that for a norm cun-e at least two of the ai's are non-zero.) Therefore

a3 = 1. Then Equation 5.25 implies al = 1. Finally, Equation 5.23 allows us ta

bound a2: 0 < a2 < 4. In particular, on a norrn curve, we have 11111 = s + 24, All the

jumping points for T = 1 surgery lie on the norm curve. As they are simple points,

this shows that there is at most one norm cun'e. Call it Ka.

Since an r curve, ....Yt, would again have none of the r = 1 surgery jumping points,

we see that 111111 = SI· But, as the norm is given by Il,111 = Sl~(1', T), the only

candidate for r aIDong the boundary slopes is r = o. wloreover, as was the case for

2n + 6 surgery on the (-2,3, n) pretzel knot, Al(O) = llIl U 1\/2 with AIL Seifert fibred

over D2 (2,2) and lvI2 Seifert over D 2 (3,3). 50 as in the previous section, there is a

unique T-curve for T = 0 and Sl = 2.

In summary then, there is one norm curve, one r-curve \Vith r = 0 and one curve of

reducible characters in the character variety of J{. The minimal nornl on the r-Clln~e

is SI = 2. As for the norm curve, sa = 18 and the norm is given by

Il,110 = 2[~(ï, -14) + 3~(''I, 0) + ~(/' 8/5)].

Figures 29 and 30 show the fundamental and Newton polygons of this knot. Note

that as the fundamental polygon lies below the Hne y = 1/2 (anel 2so > So + 8),

J< admits no non-trivial cyclic or finite surgeries. (Delman [Del] has already shown

that this knot admits a persistent lamination and therefore has no non-trivial finite

or cyclic surgeries.)
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111,111 = 42

1
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1
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110,111.= 44
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•
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•
11-1,111 = 58
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•
11-2,111 = 72

to (-14,1)
~

•

11-1,01[ = 18 111,011=18

FIGURE 29. The fundamental polygon of the (-3~ 3, 4) pretzel knot.

•
(0,4)

(0,1)
(14,0)

(22,8)

(22,5)

FIGURE 30. The Newton polygon of the (-3,3,4) pretzel knot.

•

5.3.1. Other n. vVe now generalize to the (-3,3, n) pretzel knot which we will

denote by /<n. Note that [\-n is the mirror reflection of /<n, so we will assume

n ;:: o. This family includes sorne knots we have already looked at: /{l is a twist

knot and !{2 is the reflection of the (-2,3, -3) pretzel knot. Since /{Q is not prime,

it 's not hyperbolic and therefore not amenable to the techniques we developed in the

last two sections. On the other hand, when 3 < n ::; 6, !(n is small, hyperbolic, and

moreover admits a Seifert surgery at slope r = 1. (vVe have verified this for n = 3, -1. 6

using the j\.Iontesinos trick. For n = 5 we have only the evidence of SnapPea [\Vee].)

This means we can again apply the machinery of the last section to \York out the

Culler-Shalen seminorms of the knot.
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But what of n > 7? \Vhy stop at n = 6? \Ve are obliged to stop since we have

no evidence of K n admitting a Seifert filling for n ~ 7. Indeed, the Seifert surgeries

oceur according to a nice pattern. By [HO), the boundary slopes of [{n are -(2n+6L

o and 8/(n + 1). For 1 < n ::; 6, the Seifert surgeries lie between the boundary slopes

o and S/(n + 1) as the fol1owing table illustrates.

n 1 2 3 4 ;) 6 >7

B/(n + 1) 4 8/3 2 8/5 4/3 8/7 <1

Seifert

Surgeries 1,2,3 1,2 1 1 1 1 none

As the boundary slope B/(n + 1) moves across the integers toward 0, those integers

cease to be available for Seifert surgeries. For example, when n 2: 7, the boundary

slope is < 1 and there are no more Seifert surgeries. 1 should emphasize that this

is based on experimental evidenee. These knots may admit other Seifert surgeries

beyond those l've listed in the table. In addition, although 1 (or others) have shown

that aIl the other surgeries in the table are Seifert, the only evidence 1 have in the

n = 5 case cornes from SnapPea ["Veel. Nonetheless, it is a curious pattern and it

would be nice to understand this phenomenon.

Thus we can only hope to apply our machinery to [{n when 1 < n ::; 6. The first

two cases are treated elsewhere and n = 4 was discussed in detail above. For [{3

our method breaks do\'..-n as the equations corresponding to Equations 5.23, 5.24 and

5.25 above don't result in a unique solution for the ai's. Since K 5 is not strongly

invertible, we cannot use the ~Iontesinos trick to work out the indices for the Seifert

surgery of slope 1. \Vithout that information, we cannot complete the analysis of

that knot.

However, K 6 is tractable. Using the filling 1\1(1), which is Seifert over 5 2 (2,3, 13),

we arrive at the same conclusions as for [(4: there's one norm curve \vith BO = 22 and

Il,110 = 2[~{" -18) + 3~{" 0) + ~(,,8/7)],
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and one T-curve with T = 0 and St = 2. This means that K 6 also admits no non

trivial cyclic or finite surgeries. (Again, Delman [Del] had shown this previously using

different methods.)
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6. CONCLUSIONS AND QUESTIONS

In this thesis we have shawn how the techniques developed by Culler: Shalen:

Boyer: and Zhaog cao be fruitfully applied to the study of l\'Iontesinos knots and in

particular pretzel knots. These techniques allow for a classification of cyclic surgeries

as weIl as a good understanding of the finite surgeries. By taking advantage of the

Seifert fillings of the (-2,3: n) and (-3: 3, n) pretzel knots: we were able to explicitly

calculate the Culler-Shalen serninorrns for thase knots and parlay that information

into a precise description of the character varieties. These knots therefore serve as a

concrete example of the usefulness of the Culler-Shalen seminorrns not only for the

study of cyclic and finite surgeries: but also for the study of Seifert fillings.

Along with sorne progress in understanding pretzel knots: our research raises many

questions. \Ve list sorne of these questions and suggest ways in which our work could

be extended.

• In Section 2.3 we used Ohtsuki's (üht] work to directly compute the Culler

Shalen seminorms of the twist knots. Ohtsuki sho\,,"s how to explicitly construct

the trees associated with ideal points of the character variety of a 2-bridge

knot. He can then count these ideal points by enumerating the associated trees.

This is a beautiful construction and it is evidently of great use as it allows

rapid calculation of the Culler-Shalen seminorms. It would be advantageous ta

extend his ideas to other classes of knots. Given the good understanding of

the Culler-Shalen seminorms of (P: q: r) pretzel knots presented in this thesis it

seems natural to experiment with extending Ohtsukrs ideas to pretzel knots as

a first step towards eventually looking at larger classes of knots.

• \Ve have presented caIculations showing that Zx(f~) = 1 at the character x of il

p-representation of a twist knot or (-2,3, n) knot. These caIculations could be

extended to other knots. This would be interesting as there is stilllittie known

about the zeroes of the f.., functions. For example it may well he that Zx(f~) = 1

at the character of a p-representation on any knot as we know of no evidence to

the contrary. Calculations for other knots might be used to support or disprove

this conjecture.



•

•

•

lOï

• In Section 3.3 we observed that, when m = m({31/0.1' (32/02, {33/0.3) is a three

tangle Nlontesinos knot, there is an inclusion of the PSL2(C)-character varieties:

..t(~(Oh 02, 03)) C ..t't(m). \Ve then \Vent on to lIse this observation to make

many deductions about the pretzel knots m(l/p, l/q, l/r). An ob"ious question

is, to what extent do our results extend to other three-tangle Nlontesinos knots?

On the other hand, as we mentioned in Section 3.3, it seems plausible that

there is also an overlap of character varieties when the j\[ontesinos knot has

more than three tangles. To see ho\\" this might work in a more general context,

recall (Section 3.1.2) that E 2t the two-fold branched cyclic cover of a Zvlontesinos

knot, is a Seifert fibred space with base orbifold B. In the case of a three-tangle

Nlontesinos knot t the triangle group is iI"prb(B).

Now, the SL2 (lR)-character variety of iI"prb(B) includes the Teichmüller space

of B which is homeomorphic to ]R2(r-3), T being the number of tangles of the

Nlontesinos knot. It follows that the PSL2 (C)-character variety .'t(iI"prb(B)) also

has dimension at least 2(r - 3). It seems too much to hope that _Y(7rprb(B)) C

..Y(m) when there are more than r = 3 tangles. Nonetheless, given the large

dimension of ..t(7rprb(B)) it seems likely that there is at least sorne overlap of

these character varieties. J\lIoreover, seeing how the dimension of ..'t(7rprb (B) )

grows linearly with the number of tangles T, perhaps this is also true of the

_y (m) character varieties. In other words, Nlontesinos knots are likely examples

of knots having character varieties of arbitrarily large dimension. The soHd

understanding of three-tangle knots presented in this thesis would be an excellent

platform from which to launch an exploration of the rich structure such higher

dirnensional character varieties likely present.

• The conclusion of the proof of Theorern 4.4.5 relies on Theorem 4.4.4 (the main

theorem of [E]), a rather powerful result in group theory_ It is clear that this

group theoretic result could be of great use in understanding infinite fillings of

many other j\;lontesinos knots since fillings of these knots will often admit factors

of the type (2, a, b; c) described in Theorem 4.4.4. Indeed, the original theorem

of Edjvet's [El paper actually refers to a more general type of group (d, a, b; cl .
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On the other hand~ it might also he possible to go the other way. Perhaps

conclusions about finite fillings derived frorn Culler-Shalen theory or other topo

logical arguments could he used to make sorne deductions in group theory. For

exarnple~ the finiteness of (2~ 3, 13; 4) rernains an open question. If this group

could be recognized as a factor of a finite filling of sorne knot that 'Nould prove

the group finite.

• Clearly it \Vould be nice to complete the analysis of finite surgeries on Nlontesinos

knots (Theorem 4.5.2) by understanding finite surgeries on (-2~p~ q) pretzel

knots \vith 5 ~ P ~ q. For example~ [DuL Theorem 4.1] shows that cyclic

surgeries are near non-integral boundary slopes while Theorern 4.1.3 shows that

the same is true of finite surgeries, at least on (p, q~ -r) pretzel knots with

r ~ 4. It seems plausible that the same is true for (-2~ p, q) pretzels and likely

for oUler knots as weIl. Proving this \Vould be a powerful first step in completing

the classification of finite surgeries on iVIontesinos knots.

• The detailed calculations of Culler-Shalen seminorms in Chapter 5 depend largely

on the existence of Seifert fillings of the (-2,3, n) and (-3,3, n) pretzel knots.

Such calculations could likely be carried out for other J\Iontesinos knots admit

ting such Seifert fillings. Therefore, one \Vay to extend this research is to use it

as motivation for a Inore thorough investigation of Seifert surgery on ~Iontesinos

knots. A particularly provocative point in this regard is the pattern of Seifert

surgeries of (-3,3, n) pretzel knots illustrated by the table in Section 5.3.!.

• Aside from providing information about finite and cyclic surgeries~ cletailed cal

culations of the Culler-Shalen serninorm provide a lot of information about the

A-polynomial invariant of a knot. Conversely, the A-polynomial can be used

to construct Culler-Shalen serninorms. Recently, David Boyd has proposed

techniques for efficient calculation of A-polynomials. This is an exciting de

veloprnent since, as difficult as the determination of the .4-polynomial is, it is

nonetheless even Ulore difficult to get at the Culler-Shalen seminorrn~ particu

larly if one wants to consider knots other than the 2-bridge knots (for which

Ohtsuki's methods can be employed) or knots admitting Seifert fillings. For

example, given A-polynomials for the (-2, p, q) pretzel knots (5 :s P :s q) one
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could complete the classification of finite surgeries on wlontesinos knots begun

in Theorem 4.5.2.
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ApPENOIX A. ZEROES OF ALEXANDER POLYNOMlALS

Lemma A.!.!. Let ~(t) he the Alexander polynomial of the (-2~ 3~ n) pretzel knot

K. (ln particular, n Ù; odd.) Suppose ~«() = 0 where ( is a primitive mth root of

unity. Then one of the following is true.

• 31n and 'm = 6.

• 101(n - 1) and m = 10.

• 121(n - 3) and m = 12.

• 151(n - 5) and m = 15.

Proof: The Alexander polynomial never admits zeroes which are prime powers of

unity. Indeed~ by [BuZ~ Theorern 8.21}, Hl (Em ) is finite iff no root of the Alexander

polynomial is an mth root of unity. Here Lm denotes the rn-fold branched cyclic

cover of the knot (see [RoI, Section 10.Cl). Using the NIiInor [l\tIi] sequence we can

show that bl (Ern ) = 0 \vhenever rn is a prime power of unity.

\Ve next show that ( = e21ri / m is not a root when m > 18 by Iooking at a few cases.

By [Nlru, Proposition 14] or [Hi, Theorem 1.2J,

~(t) - t Z
- 2t + 2 + tn+Z(t - 1) + (tn+l - 1)/(t + 1)

_ _1_(tn+4 _ tn+Z + t n+ 1 + t3 _ t 2 + 1)
t+1

1
- t+1 D+(t)

t n +1
_ __(tZ- n _ t 1- n + t-n - 1 + t3 - t + 1)

t+l
tn + 1

-D_(t).
t+1

Suppose first that rn > 2(2 - n) > O. Then,

«
2 - n)21r) «1 - n)21r) (-(n + 1)2/1)cos - cos + cos ----.;.-

m 'm m
61r ?1r+ cos(-) - cos(=-) + 1
m m

(.»? (?)? (? . )') .)
(

_ - n _1r) (_ - n _1r) ( _ - n _1r) (n_1r)
- 2cos cos - 2 cos cos ---

2m 2m 2m 2'm

") «2 - n)21r) «n + 4)211)+- _cos ? cos .
_m 2rn
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So, Re(D_«() = 2COS({2-;)")[COS({2-;)7T) - COS(-'::) + COS(-<n,:4)7T)]. Since m >

2(2 - n), this is positive as long as n < -4. In fact, D_«() is also positive when

n = -1, -3, so we see that ( is not a root of the Alexander polynomial when n < 0

and 2(2 - n) < 'm.

Next suppose m > 2(n + 4) and n > O. Then~

R (D ( -» «n + 4)11")[ «n+4)1ï) (n1l") «n-2)ïï)] 0e + <, = 2 cos cos - cos - + cos > .
mm m m

and ( is not a root of the Alexander polynomial.

Since n = n' mod m implies (n = çn', we can assume -m/2 < n - 2 ~ m/2. \Ve

have already looked at the case 'm > 2(2 - n) {:::> -m/2 < n - 2, as weIl as the

case m > 2(n + 4) {:::> m/2 > n + 4. 50 it remains to investigate n - 2 < m/2 and

m/2 ~ n + 4, i.e., 2n - 4 < m ~ 2n + 8. Let us now assume that m > 18. Since

m ~ 2n + 8, this implies n > 5.

If m = 2n + 8, then in fact Re~(() = 0, so we work instead with the imaginary

part:

• ImD+«() ? . «n+4)1r)[ «n+4)1I") (n1r) «n-2)ïï)]- _ sin cos - cos - + cos ---
m m m m

n1r (n - ?)1r
- 2(1)[0 - cos(-) + cos( - )].

m m

•

Thus ( is a root of the Alexander polynomial only if cos( r;:) = cos( (n~);r). But since

o < (n - 2)1r < nïï < (n + 4)7ï = ïï/2
m m m

these two values of cosine are distinct, ImD+ «() '# 0, and ( is not a root of the

Alexander polynomial in this case either.

If m = 2n + j, \Vith -4 ~ j < 7, we can use the real value:

? «
n+4)7r)[ «n+4)1r) (n1l") «n-2)7ï)]- _cos cos - cos - + cos ---

m m m rn

? (
(n + 4)1ï) [ « 2n + j 8 - j) 1r )- _ cos cos + -- -

1n 2 2 m

«
2n + j j) 1r ) ( ( 2n + j j + 4) 1r )]-cos -- - +COS ----

2 2m 2 2 m

..,. ( (n + 4) if) [ . « 8 - j) 11" ) . (j11" ) . «j + 4) ïï )]
- L. cos - SIn - SIn - + sin -----

m 2m 2m 2m

? (
(n + 4) ïï )[ ( (j + 2)1r ) ( 1ï ) . « 8 - j)1r )]_cos 2 cos cos - - SIn .

'm 2m m 2m
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Since the term in square brackets is never zero (given m > 18), we see that ( is not

a root of the Alexander polynomial when m > 18.

Next, let's look at the case wherem = 14. Again,

(A.26) R D () ? «
n+4)71)[ «n+4)7I) (n7l) «n-2)ÎÏ)Je + ( = _ cos cos - cos - + cos ,

m m mm

•

and as we've mentioned this value depends only on n mod m. By running through

the odd integers 1,3,5, ... , 13 with m = 14 in Equation A.26 we see that the value is

never zero. It fol1ows that the Alexander polynomial can never have a root ( which

is a fourteenth root of unity.

Thus far, we have shawn that the Alexander polynomial has no zeroes which are

mth roots of unity with m a prime power, nor with m ~ 18, nor \Vith m = 14. The

only remaining candidates are m = 6, 10, 12, and 15. To find out which values of

n yield a root, we again use Equation A.26 and substitute the odd integers mod m

to see which gives zero. It turus out that n =3 (mod 6), n =1 (mod 10), n =3

(mod 12), and n _ 5 (mod 15) respectively are the only candidates. Verifying that

these values also yield zero for ImD+«() completes the proof. 0

Kurt Foster [FJ has proposed a slightly different proof of this lemma. Here is a

sketch of his argument.

Proof: (of Lemma A.1.1) N[ultiplying ~(t) by t + 1 gives the equation

(:\.27)

Plugging in t = e27ri / m
, and doing a bit of algebra yields

(A.28) cos ((n + 4)71/m) - cos (n7r / m) + cos((n - 2) 71 / m) = O.

This may he recast (assuming (n + l)/m isn't a half-integer) as

(A.29) 2cos(37r/m) = cos(n7r/m)/cos«n + l)7I/m).

•
Direct verification rules out m = 3,4, and 5 as possibilities, and turns up the

solution m = 6 when n =3 (mod 6). The left side of Equation .-\.29 is positive for

m > 6, and is > 1 for m > 9. Inspection rules out any solutions in the cac;;e m = 9.

\'le assume henceforth that m > 6. "'le clearly may restrict n ta 0 < n < m.



•
113

Taking logs (assuming m isn't 9) and applying the J\llean 'Value Theorem tells us

that

7r/m tan(x) = In(2 cos(37rlm) L

If 'm is sufficiently large, we may then write

n1r/m < x < (n + l)7i/m.

(A.30) n < m/2 - ('m/1r) arctan(7i/m In(2cos(37r/m))) < n + 1.

•

•

which will, for each m, force the value of n. The limiting value of the expression

being subtracted from 'm/2 is 1/1n(2) as 'm increases without bound, 50 it will be

between 1 and 1.5 for sufficiently large m. It follows that, if m is large enough, the

integrality of m forces n = m/2 - 2 if m is even, and n = (m - 1)/2 - 1 if m is odd.

Direct substitution of these values then sho\vs the relation of Equation .-\..29 fails.

AH that remains is to mop things up for small values ofm. A simple computer rou

tine checked the values of m = 7 to 40 (except m = 9), to see whether Equation A.29

held to within 2-30 • The program flagged the pairs

m = 8, n = 6; m = 10, n = 1; m = 12, n = 3; and m = 15, n = 5.

The first value of n is even, 50 doesn't fit the original problem - Equation :\..27

isn't divisible by (t + 1) if n is even - but it does give a solution of Equation A.29,

and yields the primitive 8th roots of unity as solutions to Equation :\..27 when n - 6

(mod 8). The other pairs do give solutions (direct verification).

The program also indicates that m ~ 40 is ;;sufficiently large" for the ;;large n"

argument to apply. 0

Remark: As a consequence of Lernma A.1.1, ~(t) has no zero which is a (2n + 4)th

root of unity. For, suppose ( were such a zero. Then ( wauleL also be a 6th, 10th,

12th or 15th root of unity. However, if it were a 6th root, then 6 1 2n + 4 which

precludes 3 1 n. Similar arguments apply for 10th, 12th, and 15th roots. Analogous

reasoning shows that ~(t) admits a 2n + 5th root of unity zero iff n =5 mod 30.

Lemma A.l.2. Let ~n(t) he the Alexander polyn01nial of the (-2,3,11.) pretzel knot

/( ~Vhen n =5 nlod 30, ~n(t) admits primitive 15th roots of U7L'ity a.5 zeroes and

moreover, they are simple zeroes of ~n'



•
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Proof: Lln(t) = (tn+4 - tn
+

2 + tn + 1 + t3 - t2 + 1)/(t + 1). Let 4>I5(t) = t8 - t7 + t5 

r t + t3 - t + 1 he the polynomial whose roots are the primitive 15th roots of unity. \Ve

\\';11 show that ~I5(t) is a factor of ~n(t) by induction. \Ve illustrate the induction

for n > o. The argument for n < 0 is similar. \Vhen n = 35~ l/JI5 is indeed a factor of

Suppose 4>15 is a factor for sorne n with n = 5 mod 30.

~n+30(t) - (tn +34
- tn+32 + tn +31 + t3

- t
2 + 1)/(t + 1)

_ (tn+34 _ tn + 4 _ tn +32 + t n +2 + t n +31 - tn + 1)/(t + 1) + ~n(t)

Since 4>15 is a factor of bath t30
- 1 and ~n(tL we see that it's a factor of ~n+30(t)

as weIl.

To see that these are simple roots, it suffices to show that they are not also foots

of the derivative ~~(t). Again, we will assume that n > o. The case where n < 0 is

analogous.

~~(t) =
(n + 3)tn + 4 + (n + 4)tn + 3 - (n + 1)tn + 2 - 2tn + 1 + (n + l)tn + 2t3 + 2t2

- 2t - 1

(t + 1)2
Suppose ç is a cornmon foot of 4>15 and ~~. Since ~ is a 15th root of unity and

n =5 rnod 30~ we have

Thus ~ is a root of

J(t) = (n + 3)t9 + (n + 4)t8
- (n + l)t7

- 2t6 + (n + l)t5 + 2t3 + 2{2 - 2t - 1.

This implies that the irreducible polynomial <PI5 divides JCt). However, it's easy to

verify that 4>15 does not in fact divide J(t). 0
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