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Abstract

Two problems in Nuclear Physics are investigated using microscopic semi-classical
models. The first model, developed to study heavy ion collisions, is based on the
Boltzmann-Uehling-Uhienbeck theory and has been extended to include one-body
fluctuations. It has been successfully applied at low and intermediate energies and
a comparison between simulations and an experiment done at the Michigan State
University cyclotron facility has yielded very good agreement. The second is a nuclear
structure model based on the Thomas-Fermi theory and describes nuclear rotations.
It has been used to calculate nuclear shapes and limiting angular momenta across
the periodic table. It has been found that it breaches the gap between classical
Liquid Drop calculations and quantum Hartree-Fock calculations. Agreement with

experimental results is satisfactory.



Resume

Deux problémes de Physique nucléaire sont traités avec des modéles microscopiques
semni-classiques. Le premier est appliqué aux collisions d’ions lourds & des bases et
moyennes €nergies. Il est basé sur la théorie de Boltzmann, Uechling et Uklenbeck
modifiée pour traiter des fluctuations & un corps. Des comparaisons [aites entre
le modéle et des données d’une expérience réalisée au cyclotron & Michigan State
University ont été trés satisfaisantes. Le deuxieme modéle sert a étudier des noyaux en
rotation et est basé sur la théorie de Thomas-Fermi. Les résultats obtenus permettent
de rapprocher les prédictions du modele classique de la goute liquide avec celles des

modeles quantiques.
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Introduction

Over the last fifteen years much work has been done in the development of microscopic
models for heavy ion collisions. Until the mid-seventies most of the collision experi-
ments with nucleon-nucleus or a-nucleus systems involved measurements of inclusive
cross sections for pions and light nuclei (p, d, *He, *He, ctc.), and the models developed
to reproduce such data were mostly phenomenological: fireball and firestreak models
(see [1] for a review), the sequential decay model of Lynch and Friedman [2], as well
as others. Based on quite different assumptions, these models were quite successful

in reproducing the data, at least to the extent and accuracy set by experiments.

The insensitivity of these early models to the underlying assmptions prompted
the design of more sophisticated experiments (including also nucleus-nucleus systems)
aiming at accurate measurements of both differential cross sections and exclusive cross
sections for a better part of the range of cluster masses emerging from the collisions.
Parallel to the experimental effort, theoreticians turned towards microscopic models
of the nucleus describing, in a coherent fashion, both the static and quasistatic prop-
erties of isolated nuclei, and the dynamical effects observed in collision experiments.
Amongst the latter, the dynamics of nuclear fragmentation has received increasing
attention over the years. It is this aspect of heavy ion collisions that prompted the

present work.

A very useful picture in the description of heavy ion collisions is that of partic-



ipants and spectators. For non-central collisions at sufficient energy, only some of
the nucleons of one of the ions will interact with some of the nucleons in the other.
These are know as the participants. The rest will continue almost unhindered by the
encounter. These are the spectators. The participant nucleons coalesce and form a
region of dense, hot nuclear matter that will then disassemble giving rise to many
free mesons, baryons and low mass ions. The spectators will evaporate a few particles
but will not totally disintegrate. The qualitative difference between participants and

spectators allows to distinguish experimentally between near-central collisions and

peripheral collisions.

One of the first fully microscopic models was the cascade model [3]. It is based on
the assumption that at high enough energies (from a few hundred MeV to around 2
GeV), the outcome of a reaction is mostly dictated by nucleon-nucleon c¢ollisions and
that the interaction of the constituents with the nuclear field can be ignored. It is
therefore well suited for the study of phenomena in which field effects do not play an
important role, such as particle production (mostly mesonic and low-mass baryonic

states) and bulk matter distributions (like inclusive cross-sections).

Yet without field interactions much of the physics involved in heavy ion collisions
at low and intermediate energies is being left out. Foremost, the cascade code is
insensitive to the nuclear equation of state (EOS), which plays an importeat role at
these energies and is solely responsible for the evolution of the spectator nucleons.
It also renders the code useless when we want to study fragmentation mechanisms
and cluster production. The obvious solution is to turn to nuclear transport mod-
els. One of the most successful models is the Boltzmann-Uehling-Uhlenbeck (BUU)
equaﬁign [4,5] (it is also referred to as the Vlasov-Uehling-Uhlenbeck equation, the

Boltzmann-Nordheim equation or the Landau-Vlasov equation). In Chapter 1 we will



derive the two components of the BUU equation: the Vlasov term, which describes
the evolution of the nuclear phase-space density under its own mean-field, and the
collision integral, which deals with the nucleon-nucleon collisions. We will also discuss

the underlying EOS and a toy model describing the fragmentation of the participant

nucleons.

The numerical implementation of the BUU equation has reccived much attention
over the last few years. The original BUU code uses the Test Particle Method (TPM)
to solve the Vlasov propagation, and the cascade code to solve the collision integral.
The underlying EOS is a zero-range Skyrme potential. It has been very successful in
the study of the average properties of near-central collisions at intermediate cnergies

such as flow angles, transverse momenta and pion production (sce {6] for a rcview).

But the original BUU is not suited for the study of fraginentation dynamics,
since it can only yields average properties. Thus many alternative models have been
proposed, such as the Quantum Molecular Dynamics of the Frankfurt group [7] and
the Gaussian per particle approach of Boal and collaborators [§]. Other models are
extensions of the BUU code, such as the extended BUU used in this work [9], the

stochastic BUU model [10] and more recently Randrup’s fluctuation model [11].

Despite the inclusion of fluctuations, the extended BUU still suffered from a prob-
lem that stemmed from the TPM: non-conservation of energy. For reasons that will
be discussed in chapter 2, Vlasov propagation using the TPM method results in a
significant energy gain as the simulation proceeds, and to the evaporation of particles,
rendering all emerging clusters unstable over long periods of time. These two prob-
lems are very severe if one is attempting to study cluster production at low energies.
Lenk and Pandharipande [12] proposed an alternative numerical technique known as

the Lattice Hamiltonian Method (LHM) that conserves energy exactly and does not



suffer from particle evaporation.

Another problem with the original BUU code was that it used zero-range Skyrme
potentials. This implies that nuclei in this model have sharp surfaces. Yet theoretical
studies of peripheral collisions [13-16] show that the diffuse surfaces of real nuclei
play an important role in spectator dynamics. Diffuse surfaces can be generated in
two different ways: by adding finite-range interactions in the unde:lying potential,
as done by Bonche et al. [15] in their Time-Dependent Hartree-Fock (TDHF) model,
or by using Gaussian wave-packets to describe individual nucleons, as done by the
GANIL group {17].

QOur task was to modify the extended BUU code using the LHM to implement
the Vlasov propagation, with proper EOS yielding diffuse surfaces. As a test of our
model, we simulated an experiment done at the National Superconducting Cyclotron
laboratory in Michigan State University by a collaboration between MSU, Chalk River
Laboratories and Université Laval, involving 2°Ne on NaF at 45 MeV /nucleon [19,20].
In particular we studied the Z = 1 inclusive distributions and the multiplicity-impact
parameter relationship. We found good agreement between our calculation and the

experimental results.

The second part of our work is concerned with the Thomas-Fermi theory for
rotating nuclei. Thomas-Fermi for static nuclei has been used in nuclear theory for
the last 30 years. The original Sé-yler-Bla.ncha.rd model [21] has been recently revised
by Myers and Swiatecki [22] with substantial additions to the liquid drop model of
average nuclear properties. QOur interest in Thomas-Fermi theory stemmed from the
need to generate self-consistent density distributions when the nuclear potential used
had finite-range terms. These distributions could then be used in conjunction with our

BUU model [18]. Combining BUU and Thomas-Fermi is justified since both theories



can be considered semi-classical approximations of the full Hartree-Fock quantum

theory.

In recent years, much experimental work has been done on high-spin states. The-
oretical work dates back almost 20 years with the classical rotating liquid drop model
developed by Cohen et al. [23] and perfected by Sierk [24]. In rccent years, many
quantum calculations have also been done (see [25] and references there in), in partic-
ular the cranking quantum calculations of Bonche et al. [26-28]. Since these quantum
models are based on Hartree-Fock theory, using the same type of potentials used in
static Thomas-Fermi theory, we thought it would be instructive to use Thomas-Fermi
theory to describe rotations in nuclei, attempting to link the classical continuum

results with the quantum calculations.

The attractive feature of the Thomas-Fermi model is the relative ease with which
solutions can be obtained. Although these solutions require quite extensive use of
computer resources, they are nonetheless far easier than fully quantal Hartree-Fock.
At low angular momentum, it is well known that quantum effects play an important
role in collective rotations [29,30], and a semi-classical model can not describe such
situations accurately. Yet at high angular momenta, we expect Thomas-Fermi to
give more accurate descriptions of the physics involved. We expect our model to be
a bridge between the fully quantum and the classical calculaiions. In chapter 3 we
present the Thomas-Fermi model both for static and rotating nuclei, and include a

comparison of our results with the classic liquid drop and the cranking model results.



Chapter 1

The BUU equation

1.1 The Vlasov equation

The time dependent Hartree-Fock (TDHF) theory is the most appropriate theory to
describe heavy ion collision at low energies [6,31]. We start by defining the single-

particle density from a convenient set of single particle states {:}:

oi; = (¥|ala; | ) (1.1)

1.

where a! (a;) creates (annihilates) a nucleon in state : and ¥ is the many-nucleon

wavefunction. In the Heisenberg picture, the equation of motion for g;; is then given
by:

bis = (¥l lale;, H]| W) = (W [a, Hlo; +allH, 0] %) (12)

where H is the second quantized Hamiltonian:

1
H=3(eIT|8)alas + 53 (eB]V|87)alap0.05 (13)
5

The kinetic and potential contributions can be calculated separately. Using the anti-

commutator algebra. for fermionic creation and annihilation operators we have:
lel, T1=3(a|T |B)(alalas - alagel) = — 3 (a|T|i)el  (14)
af o

6



and its Hermitian conjugate:

[aj,T]=Z(j['T]a)aa (1.5)

Thus the kinetic contribution is:

sl = O [- Tl T 10+ T ITla)ela,] 19)
UG T ledeia — (@ |T 16)eui (1.6)

Similarly, we have:

la}, V] = z;( af|V|éy )(a:fala}a_ras - ala},a,,asa,t)
~85

= 3 [(eB|V]vi) - {aB|V]iy)]ala}a, (L7)

afy
and its Hermitian conjugate:
[aj,V]=Zﬁ:[(ialvl'rﬁ)-(ijlvl'rﬁ)]alaaa-, (1.8)
apy
Thus the potential contribution is:

il = 55 S UeBIVI7i) — (BIV]in)] (¥lalaha,s; | ¥)

ofy

+ o= S [ialV187) = (e [V 1By (¥ |alalaga, [ W) (19)
afy

We can simplify the above expressions by noting that the only non-zero contributions
to the two-particle densities will be those in which the creation operators act on the
same states as the annihilation operators have acted: for the first term we must have
a=<and f=jora=jand B =v; for the second we must have i = 8 and @ = 7

ori =+ and & = . We could further simplify it if ¥ was a Slater determinant (if

7



we were dealing with non-interacting nucleons in a potential well). The Hartree-Fock

approximation assumes that the system wavefunction can thus be treated as a Slater

determinant (which can then be used to calculate V). Thus the first two-particle

density in the last equation becomes:
(¥|atafa,e;|¥) = (¥|cla;|¥){¥]aba,|¥)
- (¥lala, | U} ¥|abe;|¥)
= Daj03+ — Loy B85
We now introduce the single-particle Hartree-Fock potential:
(i|tar |5 ) =2 _[(iBIV]ja) = (iB|V]aj)] cas
af

in which case the first term in eq. 1.9 becomes, after some relabelling:

5 ;z;[ aB|V|7) = (aB |V |iv)] (Qaiosy — Cavoss)
= FZ e TRV~ (aBIVIimes
= 5 X eilaltheli)
and the second term in the same equation becomes:

1 .
Ezgﬂi(J[uﬂFla)

Thus we can rewrite the potential contribution as:

] 1
esjlm_=-g'z; (7 |Unr | @)ooi - gjol @ |Unr |1)]

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

Introducing the mean-field Hamiltonian Hps = 7 + Uyr we can write the TDHF

equation:

b5 = g5 T 1 Mt @Yo — g | H )]

(1.15)



We are now in a position to derive the Vlascv equation as a semi-classical ap-
proximation to TDHF. To accomplish this, we introduce the Wigner transform of the

single-particle density, which has the properties of a classical phase-space density:

ds 1
f(r,p) = j WGXP (EP'S) v (1.16)
where we have defined ny . = (‘Ifla;r._._a,-_ |¥), = =r—-s/2and r, =7 + 5/2,

and we have chosen the complete set of states {z} to be the position cigenstates {r}.

Alternatively, we can chose the momentum eigenstates {p}, in which case f(r,p) can

be defined as:

f(r,p) = f(,, 1 ( hq )gp+p_ (1.17)

where we have defined gp p = (¥ ]a}+ap_ |¥), . =p—q/2and p_=p+q/2
These two definitions are completely equivalent. We can write down the equation of

motion for f(r,p) from the TDHF equation as the sum of a kinetic contribution and

a potential contribution which have the form:
df(r,p) _ 1 dq ( )
& |, = @J @mhpET rﬂ T
[ow (21T 170, —gp (@11 (118)

Lj_d_s_ex (i . )
i J @ehe CP\RP"®

X jdf' [(7'..1. IuHF | )nr’r_ - n,.+,.:(r' | Unr I"— )] (1.19)

X

df(r,p)(

In the momentum representation, the kinetic energy operator the simple form 7 =

p?/2m and eq. 1.6 becomes (replacing the sum by an integration since we are dealing

with a continuous set of states):

o = 5 [ 2 |71 10)0p0 - (a1 Ve |

9



1 q2 <IN p2 3
= = f dg [2_756 (" — q)9pq — 2_m-5 (g - P)9gp

_ l[p,z _Pi 5
= = Ipp! (1.20)

Thus the kinetic contribution becomes:

d/(r,p)
T dt

1 dg )
Smik .[ @rh)p P (_ A ")

x |p-a/27 - (@+4/2" ) opn

kin.

1 dq i
- g (o) i,

_ _P. dq )
= w Ve h)3exP\ hq T )9p,p.
= -£.9, f(r,p) (1.21)

where we have used the fact that:
z ] /1
- —— . e — . —— - .2
Pp-Vy exp( hq r) hp qexpk hq r) (1.22)

The evaluation of the potential contribution is more cumbersome, and we need
to make further assumptions: Uyr has no momentum dependence and is local in

configuration space (that is to say, it is diagonal in the position representation):
(r|Uup|m) =UT)S(r — 1) (1.23)
We can thus rewrite eq. 1.14 as:

. 1
| = 7 [ds (77 1 Usie | 8)nrs = {52p |7 gy

= ) - U s (1.24)

Furthermore we must demand that I(r) is a smooth and slowly varying function of

I

10



7, in which case its Tavlor expansion can be truncated after the first term:
U(r +8/2) —U(r — s/2) = s- VrU(T) (1.25)

Thus the potential contribution becomes:

Yoep) L (5 )
dt |, ikJ @eRp PARP?

x [ dr (e = 5/2) ~U(r + 5/2)] nry

1 ds i
= —EVrU(f) .-/me (};P'S) Sfyr

ds t
= V,. Z/‘(‘l‘) . VP jmexp (Ep . 3) n,.+,._

= vru(r) : vp f('l‘,P) (126)

where we have used the same trick as for the evaluation of the kinetic contribution

(eq. 1.22) except that we have taken the gradient of the kernel in the momentum

space.

Combining eqgs. 1.21 and 1.26 we obtain the Vlasov equation:

3f(art,p) t % Ve f(r,0) = Vo U(r)- Vy f(r,p) =0 (1.27)

1.2 The collision integral

Due to nucleon-nucleon collisions, the right hand side of the Vlasov equation will no
longer be 0. When a binary collision occurs, nucleons originally located at » with
momenta p; and p, will scatter and emerge with new momenta p; and p., resulting
in a net change in the phase-space density at those points. If we are interested in
calculating the net change in f(r,p:) we must consider two types of collisions: a)

those in which a nucleon originally located betweex:; (r,p1) and (r + 6r,p, + 6py) is

11



scattered outside of that volume, resulting in a decrease of f(r,p,), and b) those in
which a scattered nucleon ends up between (7, p;) and (r + ér,p, + ép,), resulting

in an increase in f(r,p1)-

For simplicity, we will only consider local elastic collisions in our derivation. Let
w(1,2;3,4) be the transition rate at which a nucleon located at (7,p;) collides with
a nucleon at (r,p2), scattering to (r,ps) and (r,p4). The number én=(r,p,) of

nucleons scattered outside (r,p;) in a time interval ét is (for convenience we will

write f(r,p:) as fiand (1 — f;) as fi):

dp; f1 dp2 fo w(1,2;3,4) ilp:;_féd—p“-fi (1.28)

§n”(r.p1) = 0t (27h)® (27R)3 (2rR)® (27h)3

where the vacancy factors f; account for the Pauli blocking of the final states. In-
tegrating the above expression over p., p; and p, we can obtain the total rate of

decrease of f;

. n-(rapl)
f(r.p) = " Stdp, /(27R)3

- o [ P Re230 AR (129)

Similarly, the rate of increase of f; due to type b) collisions is:

frm) = o [ mdpdpa e S 5L B

- f‘,:—h)g [ dp2dmsdpe s fro 28,9 Ao (1.30)

where we have used the fact that the collisions are microscopically time-reversible

and therefore w(3,4;1,2) = w(1,2;3,4).

We can relate the rate w(1,2;3,4) to the differential cross-section for such colli-

12



sions [11):

9 (2"7'&)6 3
w(1,2;3,4) = == (P1 + P2 — P3 — Pa)é(er + &2 — 3 — <4)

de(1,2;3,4)

o (1)

where the é-functions guarantee the conservation of momenta and energy. These can

be used to replace the integrations over the final momenta by an integral over the

scattering angle:

de(1,2;3,4)

1
—_— 9. .
(zwh)sjdpii dP4 W(l,..., 3,4) — vl'_[d934 dQ:M

(1.32)

where v,. is the relative velocity of the incoming nucleons. Thus, the net rate of

change of f; is given by:

fl = F(T,Pl)'i‘f‘_(f,?l)

- (27r1ﬁ)3_/dpzdg““v”(w(;’Tg:}m(fodflfz—f:fzf:;fd) (1.33)

Combining the above equation with the Vlasov equation we get the BUU equation:

frp) = LGB, fr ) - V,U(r) - Vp f(r,)

de

= (27:5)3 _/dp? dQ’xz V12 a, (fofr F o= F R Ju J2) (1.34)

where the primes denote the outgoing nucleons.
1.3 The nuclear potential

Up to now we have not specified the nature of the potential #. Historically, the
first potentials to be used in BUU calculations were Skyrme-type potentials, which

only depend on the local density n(r). The potential energy density for the Skyrme

13



potentials is written as:

V(r) = Vin(r)) = %

n*(r) + n?*(7) (1.35)

o+1

where first term is attractive and the second one repulsive. The nuclear potential
associated with such an cnergy density is defined as the functional derivative of the

latter with respect to the density:

§V(r)

Ur) = _Gn(r)

= An(r) + Bn?(r) (1.36)

The three parameters A, B and ¢ can be determined for these potentials if we specify
the ground state properties of infinite nuclear matter: the density n,, the energy per

nucleon B and the nuclear compressibility coefficient .

To calculate the energy of a finite volume V of equilibrium nuclear matter (en-
closing A = n,V nucleons), we must find a solution to the static Vlasov equation;

setting the left hand side of eq. 1.27 to 0 we find:

2.9, f(r,p) = VrU(r)- f(r.p) (137

with the caveat the (r) is not an external potential, and therefore a self-consistency
condition exists: the phase-space density f(=,p) must be such that the derived con-
figuration space density n(r) = n, generates a potential &/ which, when we solve the
stationary Vlasov equation, generates the same f(r,p) we started with. For Skyrme

potentials, we can see by inspection that the required phase-space density is:
g
#(r,p) = £O( - U(r) - 7*/2m) (139)

where ¢ = 4 is the spin-isospin degeneracy factor for nuclear matter, and:

_ J U(n,) forr <R
Ur) = {0 forr>R
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A = Une) + pi/2m

dwg
A = L2V
3h3 FF

(The last equation is nothing but a statement of the Pauli principle). Thus the energy

per nucleon of our system is:

£ | p*
B_Z_noV = o (jdrdpf(r,p) 2m+]drV(r))
3h% (30, \*° A B _
= —1-—0--;(47:9) -+ Eﬂo + o+ 1110 (139)

At equilibrium, the energy of our system must be a minimum (i.c. the pressure

must bé 0):
d€ ,d &
Po = ~wl, =" @V,
R2L 3N . A Bo
—_ [ — 13 2 ol = .
- (47‘_9') ny " + 5" + p—y ™ 0 (1.40)
Finally, the nuclear compressibility « is:
K=8—| =9|— + An,+Bon{ (1.41)
dn e 3m \4rg

Various sets of parameters A, B and ¢ can be found in the literature since the com-

pressibility « is not well known experimentally (quoted values vary from ~ 200 MeV
to 350 MeV).

One of the major drawbacks of the Skyrme potentials is that they generate sharp
surfaces for finite-size systems. To generate diffuse surfaces, some groups have used
zero-range interactions but they add a term V*n(r) to the kinetic energy. We instead

followed Bonche et al. [15] and added a Yukawa term to the potential energy density:

V,(r) = y2- j dr n(r) n(r) e"pl:_lf’_"l;'av 2 (1.42)
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Note that for infinite nuclear matter, the contribution of such a term to the total

cnergy reduces to 27V, a°nA.

With the introduction of a Yukawa term (or any finite range term) in the potential,
eq. 1.38 is no longer a solution of eq. 1.37 for finite-size systems (such as nuclei). In
section 3.1 we present a procedure that enables us to generate self-consistent solutions
of eq. 1.37 for finite-range potentials. The next refinement is to include a Coulomb
term to distinguish between neutrons and protons, thus breaking the isospin degen-

eracy. The potential for neutrons and protons respectively becomes:

—|r —7'|/a
Us(r) = An(r)+Bn(r)+V, [drn(r) =20
./ ir —2|/a (1.43)

U(r) = Up(r)+e? [drng(r)

71
Let us now consider the energy of nuclear matter subject to the above potential
with the Coulomb potential turned off, but still distinguishing between neutrons

and protons. The potential energy will simply get a contribution from the Yukawa

potential:

v=[arvir) = %no A4 ——ng A+ 27V, 6¥ oA (1.44)

c+1
(We see here that the properties of nuclear matter depend on the combination (A +
4%V, a®) and not on A, V,, and ¢ individually). The kinetic energy on the other hand

will have individual contributions from neutrons and protons:

32 [ 3\ s, s
T=z‘+7;=10_m(§3) V(nn +np) (1-45)

Introducing the asymmetry parameter § = (r, — n,)/n, we can expand the last term

in the equation to O(6%):

(n3P + ng/a) = (%)513 ((1 +86 (1 - 5)513)
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AR 5 S . 5 5
(5) 0+goge 138438

2

n“/ D n

- n(;)- "0+ %5—) (1.46)

Thus the total energy for nuclear matter at equilibrium becomes:

A +47V,d® B , 3k (32,\*"
¢ = ( 2 u°+a+1n°+10m(4xg) A

h? {3n, B
+— & AT
6 (Sﬁ'g) A (1.47)

The 6° term is nothing but the symmetry energy. The symmetry cocficient we obtain
for nuclear matter is a,ym = 12 MeV, which is clearly too small. To correct this prob-
lem, we must add a symmetry term to the potential energy. The simplest approach
is to make the potential between unlike nucleons more attractive than between like
nucleons. For computational reasons, we have chosen to modify the attractive term

in the Skyrme potential energy density:

A
Enz - %(A;(n;‘: +n2) + 2A,nn;)

= ”‘Iz((A, + A + (A - A)S) (1.48)

The values of A; and A, must satisfy (A; + A.)/2 = A and A;— A, is adjusted to

yield the correct symmetry energy. Thus the second potential we have used in our

calculations is:

b

Un(r) = Amalr) + Aumglr) + Br(r) + Vo [ drvn(r) S =210

|r —r'|/a
Up(P) = Amp(r) + Aunn(r) + Br(r) +V, j dr' n(r) exl?:t';l;';l/ a |
+¢* [ drmg(r) ; 1 -

(1.49)
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Eq. 1.43 | Eq. 1.49 Units
A | -1567 - MeV fm®
A - -1313 MeV fm®
A, . -1856 MeV fm®
B 2806 2576 | MeV fm™/?
o 7/6 7/6
V.| -668.7 | -241.1 MeV
a 0.4598 0.5954 fm

Table 1.1: Numerical values of the parameters of potentials 1.43 and
1.49

In table 1.1 we list the parameters of potentials 1.43 and 1.49 that we have used
in our work. The parameters for potential 1.43 are the same as those used in [18§]
and a is the same as in the original BKN parametrization [13]; a for potential 1.49
is the same as in [22]. The nuclear compressibilities associated with each one of the

potentials are x = 266.6 MeV and x = 207.5 MeV respectively.

To see how realistic our potentials were, we generated 15 ground state nuclei
(ranging from 2C to **®Th) using our Thomas-Fermi theory (see section 3.1) and
fitted their binding energies to the liquid drop mass formula [47]:

N-2Z
A

Z(Z-1)

T (1.50)

2
€ =ayA— ‘-‘:4;::~442l3 = Gaym ( ) A = Geoul

The values we obtain for the fit can be found in table 1.2, along with the experimental

values. It is clear that potential 1.49 generates more realistic nuclei.
1.4 Fragmentation process

As mentioned in the introduction, the production of clusters is associated with the
deexcitation of the hot, dense nuclear matter formed by the participants during a

heavy ion collision. Although the process is not yet fully understood, Bertsch and
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Eq. 1.43 | Eq. 1.49 | Experiment
avot ( MeV) 15.3 15.6 ~ 16
awr ( MeV) 15.4 18.7 ~ 20
Qgym ( MeV) 8.5 21.8 ~21.4
Qeow ( MeV) 0.67 0.71 ~0.75

Table 1.2: Liquid drop coefficients for both potentials and the exper-
imental values from ref. [47].

Siemens {32] proposed a simple scenario which describes qualitatively the onset of
clusterization. If we assume that the hot, dense nuclear matter interacts strongly
enough that thermal equilibrium is reached soon after it is formed, we can use statis-
tical mechanics to describe and study its evolution. Using Fermi-Dirac statistics, we
can calculate temperature (entropy) dependence of the total energy and pressure of
the gas, thus allowing us to determine its phase-diagram. In appendix A we present
an outline of the calculations involved, and in fig. 1.1 we have plotted the phase-
diagram of symmetric nuclear matter for an equation of state subject only to Skyrme

interactions.

As a result of a collision, the hot gas is formed at some point of the phase-diagram
with average density greater than the equilibrium value and positive pressure. The gas
will therefore expand (most likely adiabatically) towards equilibrium by converting
internal energy into radial motion outwards. The system will continue to expand once
it reaches the equilibrium point (where the pressure is 0). Depending on the separation
between the initial point and the equilibrium point, the system may follow three
different paths: If the separation is small, it will oscillate about the equilibrium point,
expanding and contracting with very little energy loss. Such oscillations have been
observed in simulations of slightly compressed or diluted nuclear matter [36], their

period of oscillation agreeing remarkably well with the period of the giant monopole
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Figure 1.1: Phase diagram for nuclear matter subject to a “hard”
Skyrme potential (eq. 1.36 with A = —124/n, MeVim®, B =
70.5/n2 MeV fm® and o = 2). We have plotted isotherms (solid and
dotted lines) at 4 MeV intervals and isentropes (dashed lines) at 0.5
intervals, as well as the coexistence curve (triangles), the isothermal
spinodal (circles) and the adiabatic spinodal (squares). The dotted
segments of the isotherms indicate the possible coexistence of both
phases of nuclear matter.



oscillations predicted by Jennings and Jackson {33]. If the distance between the
initial and equilibrium points is large enough, the expansion will drive the system
into the unstable region delimited by the adiabatic spinodal. Then small fluctuations
in the density will no longer be dampened, and nucleation sceds will appear. If at
the point at which the system crosses the adiabatic spinodal the pressure is positive,
nucleation will be thermodynamically unfavourable, the sceds will evaporate and the
expansion will continue until the whole system evaporates. But if the pressure at the
crossing point is negative, then nucleation will be favoured, and the seeds will grow
into microscopic pockets of high density (relative to the background) that will tend

to attract the surrounding gas and become clusters in the later stages.

Even though this is a highly simplified description (we have assumed thermal
equilibrium and that the whole system is represented by a single point in the phase
diagram, thus undergoing the same evolution, whereas it is most likely that the system
occupies a finite volume in the phase diagram and so the various paths compcte at

once), it gives us a useful understanding into the fragmentation mechanism.
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Chapter 2

Numerical solution of the BUU
equation

Solving the BUU equation is a non-trivial task, and we must revert to numerical
methods based on Monte-Carlo sampling techniques. All numerical methods treat the
left hand side on the BUU equation independently from the collision integral, under
the assumption that over short time periods nucleons suffer at most one collision.
Thus we assume that all collisions occurring between time ¢ and t + 6t take place
at time ¢, and that over the short interval §t the motion on nucleons is dictated by
the Vlasov equation (eq. 1.27). In the following sections we will describe methods to

solve the Vlasov equation and then how we solve the collision integral.

2.1 Test Particle Method

Let us integrate the Vlasov equation over a short time interval é¢, over which the

potential ¢« does not change appreciably:

f(r,p,t+6t) = f(7,p,1)-6(Vp H)-(Vr f(r,p, 1)) +6(V+ H)-(Vp f(r,p,1)) (2.1)

where we have written p/m = Vp H. But theright hand side is nothing but the Taylor

expansion of the phase space density about the point (r — 6t Vy H, p+ 65t Ve H), thus
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we get:
frpt+6t) = f(r —5tVpH,p+ 6t V, H,t) (2.2)

which is nothing more than the equation of motion of a point particle. Thus the Test
Particle Method (TPM) suggests itself naturally [34], and it has been extensively used
to solve the Vlasov equation [35,36]. We substitute the smooth function f(r,p) by a

lazge number N of point test nucleons, for which we can write the phase-space density

as:
f(rp) = CT6(r - )8 - pi) (2.3

where C is a normalization constant such that the integral over phase-space of the

density over a small volume ) equals the number of real nucleons Agq in that volume:

Aq = fn drdp f(r,p) = CZ,/; drdp&(r — 7:)6°(p — pi) = CNa (2.4)

(this is nothing but a Monte-Carlo sampling of f(»,p)). Thus C = A/Nq = 1/N..

N, is the number of test nucleons per real nucleon.

Taking derivatives of eq. 2.3 we have:

Ve fi(rp) = CY(Vr&(r - 1:))8p —p:)

Vp fi(rp) = CT & —m:)(Vp&(p - p))

2HrP) = CTATe 8 =) 480 - pi) + 8l = r)(Tp 0 — p1) -

(2.5)

If »; and p; obey Hamilton’s equations, f.(r,;) satisfies the Vlasov equation. The

equations of motion can be solved by the leap-frog method:

p(t+6t) = p(t)— 6tV U(r,t +6t/2) (2.6)
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r(t+8L/2) = r(t—46t/2)+6tp/m (2.

o
-3
—

To calculate the gradient of the potential at », we need to know the density at
that point. This we do by dividing the occupied configuration space into cubic cells
of volume (67)%, and counting the number N; of test nucleons in each cell . The

density in that cell is then:
N;
N.(ér)3

TN A

(2.8)

From the density we calculate the potential, and its gradient along the i*! direction is
estimated as the half difference between the potential in the two adjacent cells along
that direction. Due to the statistical nature of the Monte-Carlo sampling, even for a
uniform f(r,p), fi(r,p) will not be the same in each cell ¢, and such fluctuations give
rise to “fictitious” forces. To mitigate the problem, we assume that each test nucleon
not only contributes to the cell it belongs to, but also to the six nearest neighbours,

thus smoothing out the density and reducing the effect of the statistical fluctuations.

One of the major drawbacks of the TPM is that it conserves energy poorly, mostly
due to the fluctuations mentioned above. For a typical cold nucleus at rest, test
nucleons gain 1 to 2 MeV after 100 fmc™? of simulation. Such energy gains also
result in the evaporation of nucleons from the nuclear volume: for cold 4°Ca, 1 real
nucleon evaporates from the original volume after 75 fmc™!, and it gets worse if we
are dealing with an excited system (a cluster emerging from a collision for example).
At high energies, these two drawbacks are not very important because the simulation
times are usually short (less than 100 fmc™!), but in the regimes we are interested
in they are unacceptable, even more so if we want to study clusterization processes,

since any clusters formed would eventually evaporate away.
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2.2 Lattice Hamiltonian Method

Lenk and Pandharipande [12] proposed a different approach to the solution of the
Vlasov equation. They considered that the configuration space lattice introduced
in the TPM as a computational device to estimate the potential & was a physical
lattice. Then they proceeded to write down a Hamiltonian for a system of finite size

test nucleons on such a lattice, and hence obtain their equations of motion. !

We begin by dividing configuration space into an infinite lattice of cubic cells of
volume (6r)3, each site & centered at 7, in which lattice we have distributed N finite
size test nucleons. The contribution of the i*® nucleon to the density at sitc & (n,) is
given by:

(7o) = fai = S(ry —~ 1)

where S(r, — 7;) must be continuous so that n, varies smoothly as r; changes. This
is essential for exact energy conservation. Furthermore, each test nucleon must con-
tribute to a finite number of sites. The condition that the integral (sum) of the density

over the whole lattice be equal to the number A of real nucleons in our system is then:

N
= (6r)® z ne = (6r)° 2 z S(re — ™) (2.9)
Since A must remain constant in time we have:

d
d-'f:o = +Za"” v,,A+Ea” Vs, A

= %%’;’ Vs ((Sr)azzS(ra—rJ)

i

1The following derivation can easily be extended in the case of momentum dependent fields, in
which case the equation is written down for a phase-space lattice and the folding functions for the
test nucleons are assumed to have finite sizes both in configuration space and in momentum space.
We have written such a code, but it’s implementation is prohibitively time consuming,.
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N .
= . %. - Vo, ((61‘)325(?0 - r,-)) (2.10)

7 o

where we have used the fact that the lattice is fixed in space to set 9r,/dt = 0.

Clearly, for the above equality to hold for all 7, and r; we must have:
(6> S(ra—17;)=C (2.11)

independent of ;. C can be fixed from eq. 2.9:

N N N
A= (6r)° ; Z S(ra—17i) = Z:(«Sr)3 g S(re — 1) = E C (2.12)

from whick we get C = A/N = 1/N,, where N,, as in the TPM, represents the number
of test nucleons per real nucleons. Note that the above conditions are not generally

satisfied by arbitrary S(r), such as Gaussians.

Once we have specified the density at every lattice site, we can calculate the
potential energy density e(r,), and integrate over the lattice sites to obtain the total

potential energy:
V=) e, (2.13)

The Hamiltonian is then given by:
N p2 '
H= Z S+ NY (2.14)

We are now in a position to derive the equations of motion for the test nucleons:

L _ 3V
P = —Vrj H= -Ntvfj V= _Nt ; %V'j ng

= - 2 ) ; rg—T;
= N=§anﬁ((5)¥6a)vr,~gs(ﬁ )
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Beq

= =N,(6r) Z Sap— Z 8;;Ve, S(rg — 1)
af i

L

= —Nt(ér)"z:u,gv,., S(rz—7;) (2.16)
I}

where U = U(rg) is the potential at site 5. Since the gradients appearing in the
equations of motion can be calculated analytically, the LHM is virtually free from

numerical inaccuracies.

It is trivial to show that in the limit (6r)° — 0 and:

S(re — ) — El—ﬁs(‘r,, —r) (2.17)

t

we recover the TPM equations of motion:

b = —N(6rP S UsVr, B(rg — 1)
ﬂ L
- - j drgU(rg) Ve, §(rg — 7;) = — Vo, U(T;) (2.18)

2.3 The cascade code

Analytical solutions of the collision integral (eq. 1.33) can not be obtained except in
the most simplified scenarios, and several numerical algorithms have been proposed
to solve it. One of the codes most often used is the cascade code, which we will now
describe in ore of it’s most simple implementations [37]. We assume that during each
time step, a nucleon collides with another nucleon at most once. In the energy regimes

we are interested in, the only processes we need to consider are elastic collisions, and
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production and absorption of A resonances:

n+n — n+n (2)
n+n — n+A (b)
n+A — n+n (c)
n+A — n+A (d)
A+A = A+A (e)

The cross-sections for processes (a) and (b) can be taken from fits to experimental

data. We use:

55 if /5 < 1.8993
Opn—nn(V5) = 35 o0 i (2.19)
T T T00(/% — 1.8993) +20 if /5> 1.8993
and:
0 if /3 < 2.015
ot a(VE) = 20(+/s — 2.015)° (2.20)

if /5 > 2.015
€.015 + (/5 — 2.015)° ve

(where the energies are expressed in GeV and the cross-sections in millibarns). The

cross-section for process (c) can be obtained from (b) by detailed balance:

. o
Oha—nn = 7 Opn—na (2.21)
where the factor of 8 accounts for the spin-isospin degeneracy and the identity of the
final states. The cross-sections for channels (d) and (e) are taken to be the same as

for {a). The differential cross-section for the elastic channels is parametrized as:

de

5 = eexpdlVs o) (2.22)

where #(f) is the momentum transfer in the center-of-mass of the colliding nucleons

(t ==2p*(1 - <os 6)), and d(,/s) is parametrized as:

_ 6[3.65(y/5 — 1.866)]°
dvs) = 1 + [3.65(+/5 — 1.866)]°

(2-23)
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The inelastic channels are assumed to scatter isotropically.

Two nucleons will collide if their distance of closest approach is less than the

maximum nucleon-nucleon impact parameter:

baax = /0L /7 (2.24)

Since the distance of closest approach is cumbersome to calculate, a pretest is done:

only if the initial separation between two nucleons is less than

drain = V82.ay + (ct)? (2.25)

might the collision proceed. The nucleon-nucleon center-of-mass energy and velocity

are:

Vs = V(B +EY = (o1 +p2) (2.26)
R .
B = ETE (2.27)

The momentum of nucleon 1 in this frame is:

_(p-B B _p-BB8
P—‘Y( 5 3Ex)ﬁ+(p1 3 ﬁ) (2.28)

and the momentum of the other one —p. Their distance in the c.m. frame is then:

Ar=(7-1) (('rI —72)- %) + (71— 72) (2.29)

In the time interval —6t/2 to 6t/2, the two nucleons become collision candidates if:

Ar-p
?

(2.30)

5t
2

—r ____ 2 _
‘(m \/;z+—m;)

29



and:

Ar-p

b= /(Ar) - < Bnax (2.31)

Once we have a candidate pair, we must decide through which channel it will
procced. We generate a random number h between 0 and o}, and perform the

following scquence of steps:

1. We compute the elastic cross-section using eq. 2.19. If k is less than the com-
puted value, an elastic collision has occurred, and we proceed to step 4. Other-

wise we proceed to the next step.
2. We now check for inelastic scattering:

i If /s < 2.013 GeV both particles must be nucleons and there is not enough

energy to generate a A. We proceed to step 5.

ii If the masses of both particles is greater than 0.938 GeV, both are As and

no inelastic scattering can occur. Again, we proceed to step 5.

iii If one of the particles is a A, we proceed to step 3. Otherwise we compute
the inelastic cross-section using eq 2.20. If & is greater than o2 . (1/3)+
0} na(/5), no A is produced and we branch to step 5. Otherwise we

must now determine the mass of the excited nucleon. The parametrization

we use 1s:
1.077 + 0.75(y/s — 2.015) for 2.015 < /5 < 2.220
my = (2.32)
1.231 for /5 > 2.220
We branch to step 4
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3. We check for A absorption. We compute the cross-section from eq. 2.21. If h

is greater thar 0%, (v/3) + Gha—nn(v/S), no inelastic scattering has occurred

and we branch to step 5. Otherwise we proceed to the next step.

4. We now determine the final momentum p; and the scattering angles 0, and ¢,.
For elastic channels we Monte-Carlo the differential cross-section using eq. 2.22
to obtain the value of £, from which we obtain the value of #,. The azimuthal

angle ¢, is randomly chosen between 0 and 2x. For inelastic channels, py is fixed

by energy conservation, and both 8, and ¢, are assumed to be isotropic.

5. We revert back to the original frame (either the lab frame or the c.m. of the

colliding nuclei).

The initial state of the cascade code consists of two nuclei A and B approaching
each other with some relative momentum p. The nucleon positions r; inside the nuclei
are randomly assigned by Monte-Carlo sampling. Since there is no mean-field to bind
the nucleons inside the nuclear volume and we want them to stay within that volume
if the nucleus is isolated, no Fermi motion can be assigned to them. Then one allows
the cascade to run until the number of collisions becomes sufficiently small. Because
of the Monte-Carlo sampling, each run of the cascade code will generate a different
final set of positions and momenta for the nucleons and we can consider each run as
a simulation of a single event. Results are then averaged over many runs for each

energy and impact parameter.

.

2.4 BUU: Cascade code plus Vlasov propagation

We now have the necessary tools to solve the BUU equation: at each time step, we

use the cascade code to solve the collision integral (remember that we consider that
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collisions occurring between time t and t + 6t take place simultaneously at time t) and
then use the TPM or the LHM to propagate them through the mean-field. The initial
state is again two nuclei approaching with relative momentum p; inside each nucleus,
the test nucleons are assigned random positions. Since now there is 2 mean-field to

keep nucleons inside the nuclear volume, we can also assign Fermi motion to them.

In coupling the cascade code to either the TPM or the LHM, we must take into
consideration the fact that in the latter the system is composed of N,.A test nucleons,
whereas the cascade code deals with A real nucleons. Thus we must scale the cross-
sections by a factor 1/N,. Alternatively, one can segregate the test nucleons into N,
separate groups, with collisions only occurring between test nucleons belonging to the

same group.

Having included Fermi motion in the initial state and since the Vlasov equation
conserves phase-space volume (so that the Pauli principle will be respected at all
times), we can now properly introduce Pauli blocking of the final states. To implement
it we must calculate the phase-space density about the final positions (v, py/) and
(r,pa) (see eq. 1.34). We build a sphere of radius R about = and radius P about
Py such that Np test nucleons inside this volume implies complete filling. Some care
must be taken when choosing Np: ifit is too small, the statistical fluctuations brought
about by the Monte-Carlo sampling become important; it can not be too large since
we want to sample the phase-space close to (v, py/). We have chosen Np = 8. But
specifying Np does not determine both R and P. We add the extra condition that
R/P = Rn/pr where Ry is the radius of the static nucleus and pg is the Fermi
momentum of equilibrium nuclear matter. We then define fyr = Ny/(Np — 1) where
Ny is the number of test nucleons inside the phase-space volume (not counting the

one at (r,py)), and similarly for = Ny /(Np — 1). The probability of scattering is
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then {1 — fi/)(1 — fz), which we Monte-Carlo in the usual way.
2.5 Extended BUU: generating fluctuations

When we coupled the Cascade code to the Vlasov propagation, one of the features of
the former was lost: the fluctuations that are intrinsic to it (both from the initial state
and the scattering Monte-Carlo sampling). The scaling of the scattering cross-section
(or the segregation of the N..A test nucleons into groups) results in an averaging of
fluctuations produced by the nucleon-nucleon collisions. Thus each BUU simulation
can no longer be considered to represent a single event, but an average obtained over
N, events. While this is not a drawback if one is interested in flow angles or average

properties, it is a serious handicap when studying clusterization processes.

The extended BUU formalism allows us to reintroduce the fluctuations in the
model. In essence, we modify the Cascade code in such a way that when two test
nucleons ¢ and j collide, not only their momenta are changed by Ap, but the 2(N,—1)
test nucleons closest to them in phase-space also change momenta by that amount.
Since N, test nucleons represent a physical nucleon, such a collision indeed corresponds

to two physical nucleons colliding. Thus fluctuations are preserved.

To determine the closest test nucleons to each i and j we need to define distance

in phase-space:
2 pr \? 2
d=@:—p)’+ (R—N) (re— 1) (2.33)
where pp is the Fermi momentum and Ry is the nuclear radius. Then the N, closest
neighbours to 7 change momenta by Ap and the N, closest to 7 by —Ap. Of course

one can choose to search only for test nucleons of the same spin-isospin species.

This procedure conserves momentum, but usually not kinetic energy. With a slight
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modification both can be conserved. As before, the (N, — 1) test nucleons closest
to ¢ and j are found, and their average momenta (p;) and (p;) calculated. Then
we recalculate Ap as if the colliding nucleons had momenta {p;) and {p;). The test

nucleons of the 7 set then change momenta by Ap and those of the j set by —Ap.

We also tested another procedure that was found to be faster for systems where
A < N,. Before executing the Cascade code, the test nucleons were divided into A
groups as follows: starting with the test nucleon furthest from the center of mass of
the system, we chose the N; — 1 closest test nucleons, which were then assigned to
a first physical nucleon. The furthest of the remaining unassigned test nucleons was
then selected, and the N, — 1 closest ones assigned to the second physical nucleon,
and so on until we had A physical nucleons. Then the average position and momenta
of these physical nucleons were calculated, and the Cascade code executed with these
physical nucleons without rescaling the cross-sections. When a collision occurred, all
test nucleons belonging to the colliding physical nucleons changed momenta. Both
procedures gave equivalent results, and we chose the latter for numerical speed. For
systems where A > N,, the grouping becomes too time consuming, and we revert to

the original method.

2.6 The model

We are now in a position to describe our model and list the set of parameters used.
The Vlasov propagation was implemented using the LHM, while the collision part
was implemented using the extended Cascade code. The numerical values for the
Vlasov propagation we set to: N, = 100, ér = 1 fm and §t = 0.3 fmc™1. These were

chosen as a compromise between accuracy and speed. As in [12], we chose the test



nucleon folding function to be:

o - By - By 1Baly g s <
S(re ~ 1) = (2.34)

0 otherwise

where A%, = u, —u; (u being one of the cartesian components z, y or 2}, C = 1/N, b
(determined by eq. 2.9) and b = nér. In their paper, Lenk and Pandharipande argue
that n > 2 for better momentum conservation in Bose systems, since the lattice breaks
translational invariance, resulting in lattice friction and a net loss of momentum over
extended periods of time (typically a few hundred fmc™). In our investigations with
Fermi systems we set n = 1 and found that momentum was conserved to within 10~°

for simulations running up to 250 fmc™'. The energy was conserved to within 107,

In our simulations, we use potential 1.43. In lattice form we write it as:

U = W+ (2.35)

U = U +U+US (2.36)
where the n and p superscripts refer to neutrons and protons respectively and:

U, = Ang+Bng

uv = v° 67‘3 explfa_rﬁlla'n
a ( )zﬁ: |ra_fﬁlla (]

U = S

- "al

Calculating U¥ and U< as written is very time consuming, and we instead solve the

associated differential equations

1

Ve 2UY - U= —41aVon, , Vp2US = —4me’nl, (2.37)
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by a relaxation method with Gauss’ accelerators [38,39]. Given that the lattice den-
sitics are slowly varying functions of time, if one starts with the known potentials at

time ¢, the new solutions at time ¢t + §t converge after 3 iterations of the method.

The cascade code was implemented using the method described in sec. 2.5. Be-
cause the number of nucleons involved was small (??Ne+%°Ne), we chose the grouping
method. Since the beam energies we studied were low (45 MeV beam), two simplifi-
cations were possible: the inelastic cross-sections being almost negligible, the inelastic
channels were left out of the code; also, the differential cross-section for the elastic

channels {ey. 2.22) was taken to be constant (i.e., isotropic scattering).

The initial distribution of test nucleons inside the nucleus was done with partic-
ular care to try to obtain as cold a nucleus as possible. From the density profiles
obtained by our Thomas-Fermi solutions (see sec. 3.1), we computed n1¥, the density
at each lattice site. We then assigned a tentative position to the i*® test nucleon, and
calculated its contributi’on to the density at each lattice site (n4:). If for any one of

the sites to which it contributed,
=1
Tai + 2oy 2 (14 €)ng" (2.38)
J
(where ¢ is a tolerance factor), then the position was rejected and the procedure
restarted; otherwise we proceeded with the next test nucleon. Depending on the
value of €, the average number of trials needed to accommodate a test nucleon varied
quite significantly: for ¢ = 0.1, 50 trials were necessary; for ¢ = 0.01, 10° trials. In
our simulations, we set ¢ = 0.025, for which ~ 104 trials were needed. Once we had
calculated n,, we calculated the corresponding Fermi momentum at each site and

assigned momenta to each test nucleon again by Monte-Carlo sampling.

The nuclei thus constructed were then boosted with the appropriate momenta
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and impact parameter. Because of the low energies and the finite-range terms of the
potential, the simulations were run up to 200 fmc™! after the first nucleon-nucleon

collision. This required an average of 16 hours of CPU on a dedicated VaX 785-11.
2.7 Testing our model

As a test for our extended BUU code we simulated an experiment done at the National
Superconducting Cyclotron Laboratory in Michigan State University (MSU) in which
the reaction studied was *Ne on NaF at 45 MeV per nucleon. The main components
of the detector were a forward charge detector, Luilt at Chalk River Laboratorics, the
MSU 47 array (plastic ball) and a silicon telescope. The forward array measured the
total charge Z of particles emerging in the forward direction between 2.5° and 17°,
with an energy threshold of 15 MeV per nucleon. The 47 array mcasured particles
emerging at angles between 19° and 161°, with an energy threshold of 17 MeV per
nucleon, and was mainly used to tag the multiplicity M (number of charged particles)
of each event. The silicon telescope was located at an angle of 47°. For further details

on the experiment, see [19,20,40].

The data we were interested in were: a) the inclusive spectra of Z = 1 clusters;
b) the forward charge Z versus multiplicity M. At the time of our analysis, the
experimental spectra available were: i) integrated over the whole angular range of
the plastic ball, ii) integrated over smaller angular ranges, iii) with 2 multiplicity tag
from the plastic ball.

In order to be able to compare the results of our simulations with the data,
we had to identify the clusters resulting from each event and to determine their
particle content (mass and charge), their energy and angle of emergence, which then

would allow us to determine the charge in the forward direction and the multiplicity
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in the plastic ball. But BUU type models produce density distributions in which
pockets of significant local density can be identified against a diffuse background,
and a cluster searching algorithm had to be devised with the requirement that the
clusters produced have an integral mass and charge. This we achieved by the following
twu step procedure. First, a coarse-grained scan in which preliminary clusters were
identified: we assigned test nucleons to a preliminary cluster if its configuration space
distance to any test nucleon already in the cluster was less than a certain value 4
(obviously, setting 4 equal to a small number corresponds to scanning for very high
density pockets and setting it to a large number corresponds to scanning for very
diffuse clusters). Of the clusters thus obtained, only those whose mass was greater
than 0.5 physical nucleons were retained, the others being dismissed and their test
nucleons assigned to the background. The second step was to complete the retained
clusters so that they had integral mass and charge: for each preliminary cluster, the
test nucleons in the background were ordered according to their phase-space distance
to the center of mass of the cluster, and as many of the closest test nucleons were
assigned to the cluster as were necessary to have integral charge and mass. After
“completing” all clusters, any test nucleons still in the background were considered
to be free nucleons. Note that since all preliridnary clusters retained have some

neutron and some proton content, the smallest cluster produced by our algorithm

had A =2.

In order to determine an optimal v, we looked at the number of clusters predicted
as a function of 4, and found that there is a critical value beyond which the number
of clusters (as well as their mass distribution) quickly saturates. We chose v = 0.225
fm, which corresponds to twice the test nucleon radius if we assume that the volume

it occupies is N, times smaller than the physical nucleon volume. Doubling the value
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Figure 2.1: Inclusive distribution over energy of £ = 1 particles,
integrated over the whole plastic ball polar angle coverage. The data
are the dots with the error bars and the calculation is the histogram.
The latter has been normalized to the data.

of 4 only changed our results by less than 10%. For this value of 4 the average density

of the predicted clusters was one third of the equilibrium nuclear matter density.

Using our model, we simulated 750 events spanning an impact parameter range
from 0 to 6 fm. The statistics generated were adequate for high cross-section events.
To use the Si telescope data we would have needed much higher statistics. When
analyzing the inclusive spectra for £ = 1 we normalized the theoretical cross-sections
to their experimental counterparts (total cross-sections have not been a problem in

BUU calculations).
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Counts

In fig. 2.1 we plot dN/dE for our calculation and the experiment, integrated over
the full angular coverage of the plastic ball, and the agreement is quite reasonable.
Fig. 2.2 gives more details, separating inclusive distributions into different angular

'bins. When the cross-sections are large, theory and experiment agree quite well, but

30<e< 60_1

) B,

55(J<9<161._j

25

50
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Energy (MeV)

50

75 100 125

Figure 2.2: As in Fig. 2.1, but for smaller angular ranges. The nor-
malization is the same one used for the full angle distributions.

there are discrepancies at backward angles where the cross-sections are small.

Fig. 2.3 presents more exclusive data where inclusive cross-sections are shown
for fixed plastic ball multiplicities; of the cases displayed, M = 5 represents the most
central collisions. We find that the calculation reproduces these very well. For brevity

M =1 data and calculations are not shown in that figure, although the agreement
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Figure 2.3: Inclusive distributions over energy of £ = 1 particles for
events with a specific plastic ball multiplicity. The solid dots with
error bars represent the data and the histogram the calculation.

was of similar quality.

In the energy regime of this experiment, an important question often addressed
is the relationship between charge multiplicity and impact parameter b. On the basis
of the participant/spectator model presented in the introduction and on results from
experiments at higher energy regimes, we expect that a high charge multiplicity in
the plastic ball (accompanied by a low total charge in the forward array) would be
the signature of a near-central collision. On the other hand, a low charge multiplicity

in the plastic ball (accompanied by a high total charge in the forward array) would
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Figure 2.4: Relative contributions of each impact parameter to each
individual plastic ball multiplicity M. The number in parentheses
gives the relative probability of a given multiplicity.

be the signature of a peripheral collision. In fig. 2.4 we show the results from our
calculation. In it we have depicted the relative contributions of different impact
parameter ranges for a given plastic ball multiplicity M. The numbers in parentheses
give the relative probabilities of the corresponding multiplicity (relative to the total
number of events). While there is no experimental data to compare our results with,
we find such detailed analysis helps to highlight the impact parameter-multiplicity

relationship.

In fig. 2.5 we show a plot of the ball multiplicity M versus average total charge Z in
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Figure 2.5: For a given ball multiplicity M, the average total charge
Z in the forward array is shown. For clarity, the different symbols
have been offset slightly in the vertical direction (from top to bottom
they correspond to M = 4,3,2,1,0.)

the forward array. The error bars on the theoretical points are of a statistical nature.

This plot suggests that our connection between multiplicity and impact parameter is

quite reasonable. The trend of the calculation follows that of the experimental data,

with only one bin where there is no overlap between the theoretical results and the

data. Also for comparison we have included results from FREESCO simulations [41].

Thus our intuitive picture is supported by our results.
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Chapter 3

Thomas-Fermi theory

3.1 Thomas-Fermi theory for static nuclei

In section 1.3 we mentioned that as 2 result of the introduction of a Yukawa term in the
nuclear potential, the phase-space density defined in eq. 1.38 is no longer a solution of
the static Vlasov equation. We must devise a more general and systematic approach
that will allow us to calculate f(r,p) for a wide range of nuclear potentials. The
starting point will be the Thomas-Fermi (TF) theory, since it can be regarded as a
semi-classical approximation to the Hartree-Fock theory, just as the Vlasov equation
is a semi-classical approximation to TDHF. Our objective is to obtain TF solutions
with specified angular momentum, but we must start from TF solutions with no

angular momentum.

3.1.1 Derivation of the Thomas-Fermi equations for nuclei

Our goal is to find a phase-space distribution f(r,p) which will minimize the energy
of our system, in this case 2 nucleus composed of A nucleons and for the moment

symmetric {£ = N} with no Coulomb interaction between the protons. We can then



write down the (non-relativistic) energy of such system as:

£=jdfdpf(r,p);;r;+jdr‘.)(r) (3.1)

where V(r) is the potential energy density at r. In turn, we write the number of

nucleons A as:
A= j drdp f(r.p) = j drn(r) (3.2)

Thus, we want to minimize eq. 3.1 with the constraint imposed by eq. 3.2. Using

Lagrange multipliers we can then do an unconstrained minimization of the quantity:

£ = f dr dp f(r, p)% + j drV(r) + A (.A - j dr n(r)) (3.3)

Since the potential energy density is independent of p, we can make the ansatz that
at every point r, the momentum distribution will be a filled Fermi sphere (which

guarantees that the kinetic energy at that point will be a minimum):
£(x,p) = 150(pe(r) — 7) (3.4)

where g is the spin-isospin degeneracy (4 for symmetric potentials and 2 otherwise).

We can readily calculate the density at »:

w(r) = [ srp) = & [pOme(r) - p) = Tom ) (39)

(Note that this satisfies the Pauli exclusion principle).

Performing the momentum space integration of eq. 3.3 we get:

g = [ar [;}Lipp(r)s +V(r) - An(r)] +AA

3r% (3

= f dr [H)_m (14.;5)2”“.(,-)5/3 +V(r) - )mfr)} +AA (3.6)
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Under the variation n(r) — n(r) + én(r), the first order change in £ becomes:

j dr [ (3”(’) -i-ll(‘r)—/\] Sn(r) (3.7)

(remember that the potential /() is the functional derivative of the potential energy
density with respect to n(r)). Since én(r) is an arbitrary function, the above equation

will only be 0 if the term in square brackets is identically 0 for all =:

2 (3n(r)\*?
%(%} +UF) =2 =0 (3.5)

We can now easily prove that if n(r) satisfies the previous equation, it will also
be a static solution of the Vlasov equation (eq. 1.27). With our ansatz for f(r,p),

the Vlasov equation becomes:

L(;;’i’l = ~£.9, f(,p) + Y+ t(r) - Vp f(r,p)

= -2 V,—@(pp(r) P)+ Ve lU(r)- Vp 7 £0(pe(r) —p)

- £ [—;a(mr) ~ Ve pe(r) — Ve UB(pe(r) - 7)] - P
= Lé(relr) — p) ["T%V' pe(*) — Vi Z.l(‘r)] B (3.9)

But since f(r,p) is a solution of eq. 3.8, we have:

Ve ll(r) = [ - 27(3:—15?) m] - (;—g) zls-g-n(r)-lf‘sv, n(r) (3.;0)

Furthermore, from eq. 3.5:

3n , 1/3 3 1/3
Vs pe(r) = Vs (3"%; )) (2:9) 5n( )23 Yy n(r) (3.11)

Because of the §(pr(r) — p) term, eq. 3.9 will automatically be 0 for p # pr(r); and

for p = pr(r) we can use the last two equations:

3f(r,p) _i[ _ _1_(3h3

2/3
_ o™ /3, (\—2/3
ot k3 Im 4‘Jrg) n(r) " n(r)
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B2 3\
E(a) n(r)-‘f?-] Ven(r)-p=0  (3.12)
In the more general case of non-symmetric nuclei or if we include the Coulomb

interaction, the derivation is much the same, except that the constraint on A is now

replaced by:
jdr na(r)=N jdr np(r)Z (3.13)

with the corresponding Lagrange multipliers A, and A,. The steps are the same as

for the symmetric case (egs. 3.1-3.8), leading to the two coupled equations:

2 n 2/3
;—m(g 4;(;)) FUr) =2 = O (3.14)
2 3. 2/3
2%(34;(;)) FUF) =Ny = O (3.15)

where of course, g is now 2.

3.1.2 Implementation of the Thomas-Fermi equation

To solve eq. 3.8 (or egs. 3.14 and 3.15) we use an iterative procedure. Starting from
an initial density profile (either a Myers distribution {43}, which had been previously
used in heavy ion calculations [44], or a uniform sphere) and a guessed value for A,

we proceed as follows:

1. From the current density profile, we calculate the finite range components of

the potential (the Yukawa term and, for protons, the Coulomb term).

2. Using the current value of A, we use eq. 3.8 to calculate the density n(r) at

every point ».
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3. We integrate the density profile n(r) to obtain the total number of nucleons
and compare it to .4, modifying A and loop back to the previous step until both

numbers agree within the prescribed accuracy.

4. Loop back to step 1 until two successive iterations give the same A.

The numerical implementation of the above procedure is rather simple, and the
only problem is the calculation of the Coulomb and Yukawa terms in the nuclear
potential. Since eq. 3.8 {or egs. 3.14 and 3.15 in the non-symmetric case) is spherically
symmetric, we expect n(r) (or ny(r) and ny(r)) also to be spherically symmetric. In

that case, we can write the Coulomb term as:

1
Ulr) = ¢ [drny(r) P
2 ' * r!
= 47?3 VarYim(6,9) j AR Yool@, &)Y (€', ) f dr 2y ()
im o LES
oo 1
— 2 2 ’
= 4rwe .[o dr' m np(r’)
= 4wé? li ./; " dp 2 np(r) + j = dr np(rf)] (3.16)

where we have expanded in terms of spherical harmonics ([42], page 102) and

fr—71
used their orthonormality to perform the angular integration. Similarly, the Yukawa
term can be written as:

—jr =/
r—~7|/a

Ur) = Vo [arn(rn)=E
= -4V, T Var [ 40 Yool#,4)Yin(8',4)
im

fo ~ dr r2y(ir o[ @) hu(irs fa)n(r)

- —47rV°JI:° dr 254 (ir /) holirs [a)n(r)



Density (n/n,)
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Figure 3.1: Density profiles for different nuclei using potential 1.43.
Shown are the nucleon profiles (solid lines), neutron profiles (dashed
lines) and proton profiles (dotted lines).

= L [ow—(r/a) [ drr sioblr/ane) (310

+sinh(r/e) .[- = dr v exp—(r/a) n(r')]

exp—|r = m|/a
|r —7]/a

where we have expanded in terms of spherical harmonics ([42], page
741), and ji(:z) and k(iz) are the spherical Bessel functions of a complex argument.

Thus we have reduced egs. 3.8, 3.14 and 3.15 to one-dimensional equations.

We implement the above procedure by dividing the r-component in configuration

space into cells of length 0.025 fm and starting with a spherical nucleus of uniform
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Figure 3.2: Density profiles for different nuclei using potential 1.49.
Shewn are the nucleon profiles (solid lines), neutron profiles (dashed
lines) and proton profiles (dotted lines).

density n,. The Coulomb and Yukawa term were calculated using eqs. 3.16 and 3.17.
The accuracy demanded for the relative difference between the integrated nucleon
count (or the neutron and proton counts) and A (or N and Z) was 1075. Two
successive values of the chemical potentials A (or A, and };,) were considered equal if

the relative change was less than 1075,

Once the density profiles n(r) (or ny(r) and ny(r)) are Imown, we can calculate
all the interesting variables of the system. In fig. 3.1 and 3.2 we show the density

profiles for different nuclei using potentials 1.43 and 1.49 respectively. Two of the
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main differences between these two potentials can be scen in the case of the heavy
nuclei '*°Er and %Pb. The first is that for potential 1.43, the proton density does not
have its maximum at the origin, but rather close to the nuclear surface. This will have
implications in the behaviour of rotating nuclei, as will be scen in the next section.
The second difference is that for potential 1.49, the neutron profiles exiend beyond

the proton ones. This is reminiscent of the neutron skin observed in experiments.
3.2 Thomas-Fermi solutions for rotating nuclei
3.2.1 TF equations for rotating nucleus

The problem we now want to solve is to find Thomas-Fermi solutions for nuclei with a
specified angular momentum. As for the static solutions, we want to find the solution

that will minimize eq. 3.1, subject to the constraints eq. 3.2 and:

[ érap 1(r,p)(apy — yp2) = £ (3.18)

where we have assumed that the z-axis is the axis of rotation and for the moment

we consider only symmetric nuclei with no Coulomb interaction. Again, introducing

Lagrange multipliers, the quantity to minimize now is:

g = [ardpfir, p)-zp—; + [aevir)+2 (4= [draw)

+o (L. = [ ar dp 57, 2)an, ~ 22) (3.19)

Since the nucleus is rotating, it is clear that at any point r, the average momentum

will not necessarily be 0, i.e.:
() = [dp fr,pIp #0 (3:20)
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This can be wiireved by assuming that at every point =, the Fermi sphere will be

displaced by an amount p/(r):
f(.p) = 50(pe(r) = lp — P/ (7)) (3.21)

Let us now perform the momentum integration in eq. 3.19. If we change the integra-
tion variable to g = p — p’(r) the integral becomes (suppressing for the moment the

r coordinate):

) = & [ a0t -0) (LpZE — ofata, + ) - slae + 21

4 3 2 1 3
= = [%"‘ (%_w(m-yp,)) i (3.22)

Since this is the only term in eq. 3.19 that depends on p, we can immediately perform

the minimization with respect to the latter:

§l(pr) = (% - wy) 6. + (%f + wz) op'y + %m =0 (3.23)
which leads to
?'(r) = —mwyi + mwzj+ Ok = mwr, é (3.24)

where we have defined r,? = z2 + y2. Note that the second order variation of I(p)
with respect to p’ is positive semi-definite, and therefore we are indeed at a local

minimum. Substituting back into I(p’) and using eq. 3.5 we get:

_ dmg |l o of PR\, P
) = % [2"""”( 3) " 1om
3h2 { 3 \¥° 1
= Er;'( Im?g_;) n(f)sla—gnwzr_,_zn(r) (3.25)
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Substituting back into eq. 3.19 we now have:

, 302 (3N e 1. .
g = f dr [1 - (47) n(r)** = Smwtrn(r) + V(r) = dn(r)| + A+ oL,
(3.26)

The first order change in &' under the variation n(r) — n(r) + én(r) is then

f dr ["2 (3;‘75;))-/3 - %mw'-‘rf +U(r) - ,\] dn(r) (3.27)

As for the static case, the above expression will only be 0 for arbitrary &n(r) if the

term in square brackets is itself 0, which gives us the condition:

2/3
2—7?1—(2“7(;)-) - %mwzrf +U(r)—r=0 (3.28)

Let us now return to the expressions for the angular momentum and the energy

of our system and substitute for f(»,p) and p’(+). From eq. 3.18 we get, changing

the momentum integration to ¢ = p — p’(r):

L. = f dr dq ‘%G(PF — q)(=(gy +7'y) — y(g= + 7))
= g f dr dgO(pr — ¢} ¢° [z, — yp.]
- “‘"9 79 [ a0 UL ) = y(—mo)} = s [ d i)l + 47
= mw [dr n(r)rf =wI (3.29)

where 7 is the moment of inertia of the system. Similarly, the kinetic energy term in

eq. 3.1 becomes:

2
+
[erdpfr e = [erda S0t - OEEL
_1 4mg Pr | Pr_,2
om B3 d"(s*‘a”')
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1 4ng pp(1")5 1 2 2 2

= 5w dr 5 + 2mfdrn(r)m wry

_ 1 4=ng pp(f)s 1,

= dr 5 + 5% I

_ lamg r pe(r)° L2

= 5ok d» 5 + 2T (3.30)

where in the last line we have substituted for w from the previous equation. It is now

clear that the Lagrange multiplier w can be identified with the angular velocity.

As for the static case, for non-symmetric systems the derivation is the same and

we get the two coupled equations:

h? 3“::("') 23 1 2. 2 —
.2772,_( 41:_9 ) - 2mw T +un('l') - An = 0 (3.31)
B? (3n(»\*® 1, , 3
%(W -_— 2 L +up('l") - ’\p = 0 (3.32)

3.2.2 Numerical implementation

The numerical procedure we use to solve eq. 3.28 {or egs. 3.31 and 3.32) is similar to
the one for the static solutions, but two more steps are necessary. For every angular
momentum L. for we which we want a solution, we start from an initial density
distribution (in most cases a previous solution at a different value of £ or, for small
values of L., from the static solution) and a guessed value for A, and we proceed as

follows:

1. From the current density distribution, we calculate the moment of inertia, and

using eq. 3.29, we calculate w.

2. From the current density profile, we calculate the finite range components of

the potential (Yukawa and Coulomb terms).
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3. Using the current value of A and w, we usc eq. 3.28 to calculate the density n(r)

at every point .

4. We integrate the density profile n(r) to obtain the total number of nucleons
and compare it to A, modifying A and loop back to the previous step until both

numbers agree within the prescribed accuracy.
5. Loop back to step 2 until two successive iterations give the same .

6. Loop back to step 1 until two successive iterations give the same w.

This procedure was implemented by dividing configuration space into cubic cells
of volume (0.5 fm)*. Because of the reflection symmetries of the equations and of the
solutions sought, we only worked in the first quadrant. The Coulomb and Yukawa
terms in the potential calculated by solving the associated differential equations as

mentioned in section 2.6.

The self-consistency condition expressed in eq. 3.28 (or egs. 3.31 and 3.32) is
axially symmetric. Thus if the initial densities »n(») (or ny(r) and np(r)) are also
axially symmetric, the solutions found for any angular momentum will also be axially
symmetric. This family of solutions we labeled as the axial solutions. But we know
from experiment that non-axial shapes exist. To generate them we must start with
initial densities that are non-axial. In our study, we found two different families of
non-axial shapes. One was the triaxial family, which we generated by starting with
an ellipsoid whose axis ratios were 1.1 : 1 : 0.9, with the short axis aligned along the
z-axis and the long axis along the z-axis. The other, labeled saddle-shape family,
was generated from two equal mass spheres barely touching at the origin, with their

centers aligned along the z-axis and rotating about the z-axis.
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Figure 3.3: Evolution of the excitation energv per nucleon with an-
gular momentum for *Er subject to potential 1.43. The solid line is
the axial family, the dashed line is the triaxial family and the dotted
line is the saddle-shaped family.
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Lo | L] Ly
MMg (143) | - [ 158|224
1268, (1.43) |25 A |55 K | 70 h
0% (1.43) | 35K |63 & | T2 A
Mg (149) | - (158|224
6B, (1.49) {25 K | T0h | 93 A
160Er (1.49) |45 h | 80 & | 90 &

Table 3.1: Values of the transition values £,, £, and £, for different
nuclei. The number in parenthesis indicates the potential used.

For all the nuclei studied, we observed the following behaviour: for low values of
L., the axial family is the only one that exists. As the angular momentum is increased,
the rotation axis becomes shorter and the oblate shape is accentuated. The other two
families appear at higher values of L., but the axial family is the lowest in energy.
A transttion occurs at £, = L, when the saddle shape [amily becomes the lowest in
energy. As L. increases further the dumb-bell shape is accentuated, and at a critical
value £. = L), the nucleus breaks up into two equal mass nuclei. Note that the
axial solutions continue to exist up to much higher values of the angular momentum.
For masses greater than ~ 40 another transition occurs at £. = £, < L, when the
triaxial shapes become the lowest in energy. This general behaviour is illustrated in
figs. 3.3 and 3.4 where we have plotted the excitation energies for 1®Er as a function
of angular momentum and the density contours for 1?*Ba also as a function of £..

In table 3.1 we quote the values of L;, £; and £, for the nuclei we have studied
(2*Mg, 1?Ba and '%°Er, for both potentials 1.43 and 1.49). Note that the values of £,
and £y, for 16Ba and °Er are lower for potential 1.43 than for 1.49. This is related
to the behaviour of proton density profiles for heavy nuclei mentioned at the end of
the previous section. Subject to potential 1.43, protons are more likely to migrate

towards the surface of the nucleus than when subject to potential 1.49. As a result
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Figure 3.4: 12°Ba density contours for the three shape families: axial,
(a), (b) and (c), triaxial, (d) and (e), and saddle shaped, (f), (g) and
(h). We used potential 1.49 for this calculation. In each frame, the
contour on the left is a cut along the z — y plane and the one on the
right along the z — =z plane, with the z-axis running horizontally in
both cases (the tick marks are 10 fm apart).
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Figure 3.5: Evolution of the deformation characteristics for Mg,
126Ba and %°Er using potential 1.43. The quadrupole moment Q is
represented by the solid lines and circles (left hand side scale) and « by
the dashed lines and squares (right hand side scale). The dotted lines
indicate the transitions at which a different family becomes lowest in
energy. Note that the v values for ¥°Er’s triaxial families are very
small.

of this, at higher angular momenta the nucleus can withstand higher elongations at

a lower energy cost. Thus the lower values of £, and £y, for the first potential.

The deformation characteristics for the potential 1.43 are shown in fig. 3.5 for
Mg, 1%°Ba and '*°Er. In this figure we have used Qcosy = (222 — z? — y?) and
Q@siny = (\/I?(zz—yz)). We keep @ positive and -y in the region 0°—60° by relabelling

the axes such that {z%) > (y%) > (z*). The v values identified here remain unchanged
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Figure 3.6: Plots of the mcment of inertia Z versus angular velocity
for 2*Mg, '?*Ba and *°Er using potential 1.43. Only the lowest energy
solutions are plotted for each angular momentum: the solid lines rep-
resent the axial solutions, the dashed lines the triaxial (not present in
the case of 2Mg) and the dotted lines the saddle-shaped. The arrows
indicate the direction of increasing £..

in the Lund convention.

The axial solutions which are lowest in energy in for low values of angular mo-
mentum do not correspond to what is actually found in experiment. In the ground
state bands most nuclei have prolate like deformations and they do not rotate about
the symmetry axis. The triaxial shapes that take over at higher angular momenta

have 2 better chance of being realizable in nature. As mentioned earlier, these are
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Figure 3.7: Same plots as fig. 3.5, but using potential 1.49.

prolate and rotate about their shortest axis; the super deformed bands observed in
experiment are thought tc have similar shapes. The triaxial shapes of 1**Ba and %°Er
shown in fig. 3.5 have large deformations. In the latter case, the ratio of the largest
axis to the smallest axis is 2:1, whereas in the former case the ratio is 3:2. These
happen to be the values found experimentally for both nuclei {46].  However, no
great emphasis should be placed on these numbers because we will see that the ex-
act numerical values depend on the potential used. Also, the saddle-shaped families
have very high deformations but we do not think these are candidates for the super

deformed bands: first, they become the lowest energy solutions at very high values
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of L., they only persist for a short while before they reach the nssion limit, and the
change of moment of inertia from one spin state to another is too great. The triaxial
shapes show much more consistency in the moment of inertia. These are shown in

fig. 3.6.

In fig. 3.7 we show the deformation characteristics obtained with potential 1.49.
This demonstrates the sensitivity of the results to the potentials used. With this
potential, the ratio of the largest to the smallest axis drops from 2:1 to 3:2 in the
casc of %°Er. Also, £y has gone from 72 to 90 . We suspect that quantum effects
left out in Thomas-Fermi theory will lead to 2 larger deformation and will therefore

lower Ly
3.2.3 Comparison with other models

We will now try to establish 2 link between our results and the classic liquid drop
results of Cohen, Plasil and Swiatecki {23]. In that paper the authors studied the
evolution of liquid drop shapes and energies as a function of rotational energy, keeping
their volume fixed and the density constant throughout the volume. Thus the binding
energy of a liquid drop only depends on the surface energy, the Coulomb energy and
the rotational energy. To identify a nucleus with a given angular momentum, the

authors introduced the variables:

EQ) o
— CO! —
s e (3.33)

the superscript 0 indicating that the surface and Coulomb energies are calculated for
the ground state (spherical) solutions, and the rotation energy from the ground state
shape. Note that = (the fissibility parameter) is an intrinsic property of each nucleus

and y is 2 measure of the rotational energy. The evolution of any drop can then
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be universally established for all values of these variables. Their results (for nuclear

drops) can be summarized as follows:

1. As L. (y) increases, the ground state spheres become oblate, and they are the
lowest energy solutions. There is a second family of shapes (the saddie-point

solutions) which are also stable, but at higher energies.

2. At a certain value of ¥ (y1), the oblate solutions become unstable to triaxial

deformations which become the lowest energy solutions.

3. At a further value yy, the triaxial shapes cease to exist (there are no single-

volume solutions, i.e. fission has occurred).

4. For = > 0.81, y; and y;; become equal.

(Note that the authors nomenclature does not correspond with our own, which comes

about from the initial densities used to generate each family of shapes).

Qualitatively, we observe a similar behaviour in our solutions. In order to make
more quantitative comparisons, we need to estimate the z value for our solutions,
and therefore their surface energies. From our ground state Thomas-Fermi solutions
we can calculate rgg and ryg, which are defined as the radii at which the density falls
below 90% and 10% of the maximum density respectively. We then calculate the
2umber of nucleons inside the shell defined by these two radii and also their energy,
as well as the ¢nergy that the same number of nucleons would have in nuclear matter.
We define the surface energy as the difference between the two energies {as a check,
we have compared the surface energies thus obtained to the ones we would expect
from the mass formula of eq. 1.50 and found that they always agree to within 5%).

Thus we can determine z for each of our nuclei. To calculate the corresponding y; we
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z L L, Lu Ly
MMg (1.43) 10,129 | 14.28 5 | 154 [ 23.23 A | 224
126Ba (1.43) | 0.575 [ 57.56 & |55 % | 64.98 & [ TO &
160Er (1.43) | 0.684 [ 60.64 {63 A |61.31 A [ T2 1
Mg (1.49) [0.107 | 1597 & [ 154 | 26.10 £ | 22 A
126B, (1.49) | 0.478 | 72.79 & | 70 £ | 97.07T % |93 &
1605r (1.49) | 0.585 [ 80.32 A |80 A | 89.29 & | 90 &

Table 3.2: Values of z, £;, £,, Ly and Ly for the different nuclei
studied (the number in parenthesis indicates the potential used). £L;
and L;; were calculated using the interpolations from ref. 23, whereas
L, and L, were extracted from our calculations.

use the interpolation [23]:

y; = 0.2829 — 0.3475z — 0.0016z2 + 0.0501z3 forz < 0.75
3 = 14(1 — z)? — 4.5660(1 — z)° + 6.7443(1 — z)* forz > 0.75

Since no similar interpolation for yy is given in ref. 23, we fitted the yy-curve from

fig. 2b in that reference and found the following fit:

yu = 0.787 — 1.239z + 0.253z2 — 0.989z° + 1.387z* for z < 0.55
yu = 3.796 — 17.499z + 31.3552% — 25.4212° + 7.770z* for 0.55 < z < 0.81

Im=Mn forz > 0.81

We then proceed to calculate the corresponding angular momenta L(y1) = £; and
L(yn) = Lyu. The values of £; and £, and of £y and Ly are quite similar (see
table 3.2). But the transitions involved in the first case are very different in nature,
and the numerical agreement is in itself surprising, since we are using an underlying
nuclear force, whereas in ref. 23 the authors only consider the surface tension and the
Coulomb repulsion. Also the volume constraint is a very restrictive one (in the case

of 1%°Er the volume changes by a factor of 5 just before fission).
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We end our discussion with a short comparison with cranked quantum mechanical
calculations [26-28]. It is clear that there is an immense difference between quantum
and Thomas-Fermi solutions for low £, states. In the former, most nuclei are prolate
and rotate perpendicular to the symmetry axis for the yrast low angular momentum
states. In our Thomas-Fermi theory nuclei are oblate for yrast low L. states and
moreover they rotate about the symmetry axis. One may hope to find better cor-
respondence at Ligher angular momenta. Unfortunately, low mass nuclei break up
before such high spin states are reached. Detailed quantum calculations have been
done for Ne [27] and **Mg [28]. Except for values of £. at which the nuclei disin-
tegrate there is not much in common between Thomas-Fermi results and quantum
mechanical cranking results for such light nuclei. Quantum mechanical calculations
in which all orbitals are included in the cranking and not just a few “valence” orbitals
are extremely time consuming for larger nuclei. The following observations are made
on the basis of the calculations on *°Sr report.d in ref. 26. In quantum mechanics
many solutions are possible based on different occupancies of orbitals and the best
that we can hope is that Thomas-Fermi solutions are in some sense an average of the
quantum solutions. In ref. 26 many bands are shown; between 36 & and 60 k and
as well as all the calculated super deformed bands have small values of +, just as we
find in our non-axial solutions. Thus in this particular example the Thomas-Fermi

calculations do reproduce the average behaviour. The values of Ly, are also similar.

65



Conclusion

The extended BUU model presented in chapter 2 is one of the most complete codes
used in heavy ion collisions. With fluctuations built in, high numerical accuracy,
finite-range potentials and self-consistent initial density distributions, it is the only
one at the moment that has been compared with experimental results. The quite
remarkable agreement with the MSU results leads us to believe in the validity of the
approach even at such low energies, and has established that multifragmentation is

an important mode of deexitation at this energies.

Despite its success, improvements are still necessary. The most important is to
include more sophisticated potentials, mainly momentum dependent potentials such
as the one described in [48]. While it is relatively easy to extend the LHM to include
such potentials, it’s implementation presents some very serious problems, not the
least of which is the computer power necessary to run such code (both in CPU time
and available memory). Also, the cascade code has to be modified so that energy-
conservation is guaranteed in a nucleon-nucleon collision [49]. Also one must develop
a method that correctly treats the inelastic channels within the fluctuation code.
Most important, more comparisons of the model with experiments at different energy

regimes and with a wide variety of systems would be necessary to confirm the overall

validity of the model.

The Thomas-Fermi model of nuclear rotations has given us some very useful in-
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sights into the dynamics of nuclear rotations and the role played by the underlying
forces. It has also allowed us to bridge the gap between the classical liquid drop model
and the cranking quantum calculations. The latter have a much higher predicting
power, but the simplicity of the Thomas-Fermi equations, and the relative ease with
which solutions can be obtained for any nucleus (from one hour of CPU for low an-

gular momenta to a few days for angular momenta close to the break-up valuc) make

it an attractive exploratory tool.

Once more we emphasize that the quantitative agrcement between our model
and the classical calculations is most surprising, given how different the underlying
assumptions are. We believe that this gives validity to the predictions of the liquid
drop model. Finally, although direct comparison with experiment is not possible, we
believe that the qualitative features of our solutions at large angular momenta arc

probably realistic, including the break up values obtained.
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Appendix A

Phase-diagram for nuclear matter

We would like to calculate the phase-diagram of a fluid of A interacting nucleons
enclosed in a volume V in equilibrium with a heat reservoir at temperature T. Macro-
scopic observables are calculated as sums over the available states s of the correspond-
ing microscopic quantities, weighted by the Fermi-Dirac occupation probabilities:

1
1 +expB(e — p)

frp = (A.1)

(For our system, the states can be conveniently labelled by the coordinates in configu-
ration and momentum space and spin-isospin labels of the nucleons.) The microscopic
energy €* is then simply the sum of the kinetic term x* plus the potential term u°.
For nuclear matter subject to Skyrme potentials (eq. 1.36) or Skyrme potentials aug-
mented with a Yukawa term in the limit V — oo (eq. 1.42), u* is the same for all
states s, and therefore one can redefine the chemical potential u ~ g — u and the
sum (integral) over configuration space can be performed trivially. Then sums over

states can be replaced by integrals over momentum:

d 4zV o,
g - gi (21:'1:‘1)3 =9 (2rk)? ./o dpp (A.2)
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where g is the spin-isospin degencracy of the nucleons. We can now easily calculate

A, the kinetic energy 7T, the potential energy V and the entropy S of the system:

A = 55w | P TR (A
o .

7= g(‘;;_v)sjo p1+ex;fj9(/;"7/7;m—#) (A1)

v = V[%n2+;%n"“] (A5)

S = —ogm [ P ol ot (1= Bo)n(1= Rl (AS)

where we have defined A; = A for pure Skyrme potentials, and Ay = A + 47V, a® il
we include a Yukawa term. Changing the integration variable to = = B(p*/2m — p),

the integrals become:

A=g (gzga(mkr)w '[_: dz @;I_f:;?).gi (AT)
T =g é:;s(mkr)m [ :“dm(—f%}zzz (A.S)
S =g (2;";3(2ka)3/= f_ :ﬂd:.—. (c + Bu)?

X [ln(l +expz) - la-:{-ie:l?;] (A.9)

Note that if we fix two to the observables in the above equations, all other observ-
ables can be determined. Thus, if we fix A and T, we can use eq. A.7 to determine g,
and then calculate T and S. We can also take advantage of the fact that the entropy
per nucleon is only a function of By (see egs. A.9 and A.7) to calculate the isentropes,

by first solving for S and for different values of A4 use eq. A.7 to calculate T'.

We can now calculate the pressure: the microscopic kinetic pressure p® is given
by:

.o 0
v

p (A.10)
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The volume dependance of ¢ is fixed by the periodicity condition on the wave number:
k* = 2r VY32 + 45 + 2°K] (A.11)

Thus the total macroscopic pressure P is just:

2 B on
el el _ e -2
P=yw-av=wT2" tor1® (A.12)

We can now calculate the coexistence curve and the isothermal and adiabatic
spinodals for nuciear matter., The latter curves are defined as the set of loci in the
phase-diagram of pressure extrema along the isothermals and the isentropes respec-
tively. The coexistence curve defines the region of the phase-diagram where both
phases of the fluid are in chemical equilibrium, and it is determined using Maxwell’s

construction. The relevance of these curves is discussed in sec. 1.4.
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