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Abstract

Two problems in Nuclear Physics are investigated using microscopie semi-classical

models. The lirst mode!, developed to study heavy ion collisions, is based on the

Boltzmann-Uehling-Uhienbeck theory and has been extended to include one-body

fluctuations. It has been successfully applied at low and intermediate energies and

a comparison between simulations and an el\-periment done at the Michigan State

University cyclotron facility has yielded very good agreement. The second is a nuclear .

structure model based on the Thomas-Fermi theory and describes nuclear rotations.

It has becn used to calculate nuclear shapes and limiting angular momenta across

the periodic table. It has been found that it breaches the gap between classical

Liquid Drop calculations and quantum Hartree-Fock calculations. Agreement with

experimental rcsclts is satisfactory.
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Resumé

Deux problèmes de Physique nucléaire sont traités avec des modèles microscopiques

semi-classiques. Le premier est appliqué aux collisions d'ions lourds à des bases et

moyennes énergies. Il est basé sur la théorie de Boltzmann, Uehling ct Uhlenbeck

modifiée pour traiter des fluctuations à un corps. Des comparaisons faites entre

le modèle et des données d'une expérience réalisée au cyclotron à Michigan State

University ont été très satisfaisantes. Le deuxième modèle sert à étudier des noyaux en

rotation et est basé sur la théorie de Thomas-Fermi. Les résultats obtenus permettent

de rapprocher les prédictions du modèle classique de la goute liquide avec celles des

modèles quantiques.
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Introduction

Over the last fifteen years much work has been done in the dévclopment or microscopie

models for heavy ion collisions. Until the mid-seventics most or the collision experi­

ments with nucleon-nucleus or a-nucleus systems involved measurements or inclusive

cross sections for pions and light nuclei (p, d, 3He, 4He, etc.), and the modcls devcloped

to reproduce sucb data were mostly phenomenologicaI: firebal! and fircstreak monels

(see [1] for a review), the sequentiaI decay mode! of Lynch and Friedman [2], as wel!

as others. Based on quite different assumptions, thcse modcls were quite succcssrlli

in reproducing the data, at least to the extent and accuracy set by experiments.

The insensitivity of these early models to the underlying ast'''mptions promptcd

the design of more sophisticated experiments (including aIso nucleus-nucleus systems)

aiming at accurate measurements of both differentiaI cross sections and exclusive cross

sections for a better part of the range of cluster masses emerging from the collisions.

Paralle! to the experimentaI effort, theoreticians turned towards microscopie modcls

of the nucleus describing, in a coherent fashion, both the static and quasistatic prop­

erties of isolated nuclei, and the dynamical effects observcd in collision experiments.

Amongst the latter, the dynamics of nuclear fragmentation hou: received increasing

attention over the years. It is this aspect of heavy ion collisions that prompted the

present work.

A very useful picture in the description of heavy ion collisions is that of partie-

1
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ipants and spectators. For non-central collisions at sufficient energy, only sorne of

tbe nucleons of one of the ions will interact with sorne of the nucleons in the other.

Tbese are know as the participants. The rcst will continue almost unhinderec:l by the

encolJnter. Tbcse arc the spectators. The participant nucleons coalesce and forrn a

region of dense, hot nuclear matter that will then disassemble giving rise to many

frcc mesons, baryons and low mass ions. The spectators will evaporate a few particles

but will not totally disintegrate. The qualitative difference between participants and

spectators allows to distinguish experimentally between near-central collisions and

peripheral collisions.

One of the first fully microscopie models was the cascade model [3]. It is based on

the assumption that at high enough energies (from a few hundred MeV to around 2

GeV), the outcome of a reaction is mostly dictated by nucleon-nucleor> c-:>llisions and

that the interaction of the constituents with the nuclear field can be ignored. It is

therefore weil suited for the study of phenomena in which field effects do not play an

important role, such as particle production (mostly mesonic and low-mass baryonic

states) and bulk matter distributions (like inclusive cross-sections).

Yet without field interactions much of the physics involved in heavy ion collisions

at low and interrnediate energies 55 being left out. Foremost, the cascade code is

insensitive to the nuclear equation of state (EOS), which plays an import~nt role at

these energies and is solely responsible for the evolution of the spectator nucleons.

It also renders the code useless when we want to study fragmentation mechanisms

and cluster production. The obvious solution is to turn to nuclear transport mod­

e1s. One of the most successful models is the Boltzmann-Uehling-Uhlenbeck (BUU)

equation [4,5] (it is also referred to as the Vlasov-Uehling-Uhlenbeck equation, the

Boltzmann-Nordheim equation or the Landau-'v1asov equation). In Chapter 1 we will

2
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derive the two components of the BUU equation: the Vlasov term, which dcscribes

the evolution of the nuc1ear phase-space density under its own mean-field, and the

collision integral, which deals with the nuc1eon-nuc1eon collisions. We will also discllss

the underlying EOS and a toy mode! dcscribing the fragmentation of the participant

nuc1eons.

The numerical implementation of the BUU equation has received much attention

over the last few years. The original BUU code uses the Test Partic1e Method (TPM)

to solve the Vlasov propagation, and the cascade code to solve the collision integral.

The underlying EOS is a zero-range Skyrme potential. It has been very successful in

the study of the average properties of near-central collisions at intermediate energies

sucb as flow angles, transverse momenta and pion production (see [6] for a review).

But the original BUU is not suited for the study of fragmentation dynamics,

since it can only yields average properties. Thus many alternative models have been

proposed, such as the Quantum Molecular Dynamics of the Frankfurt group [7] and

the Gaussian per particle approacb of Baal and collaborators [8]. Other models are

extensions of the BUU code, sucb as the extended BUU used in this work [9], the

stocbastic BUU model [10] and more recently Randrup's fluctuation model [11].

Despite the inclusion of fluctuations, the extended BUU still suffered from a prob­

lem that stemmed from the TPM: non-conservation of energy. For reasons that will

be discussed in cbapter 2, Vlasov propagation using the TPM method results in a

significant energy gain as the simulation procceds, and to the evaporation of particles,

rendering al! emerging clusters unstable over long periods of time. These two prob­

lems are very severe if one is attempting to study cluster production at low energies.

Lenk and Pandharipande [12] proposed an alternative numerical technique known as

thE: Lattice Hamiltonian Method (LHM) that conserves energy exact1y and does not

3
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"ulfer from particie evaporation.

Another problem with the original BUU code was that it used zero-range Skyrme

potentials. This implies that nuclei in this model have sharp surfaces. Yet theoretical

studies of peripheral collisions [13-16] show that the diffuse surfaces of real nuclei

play an important role in spectator dynamics. Diffuse surfaces can be generated in

two dilferent ways: by adding finite-range interactions in the unde~lying potential.

as done by Bonche et al. [15] in their Time-Dependent Hartree-Fock (TDHF) model,

or by using Gaussian wave-packets to describe individual nucleons, as done by the

GANIL group [1iJ.

Our task was to modify the extended BUU code using the LHM to implement

the Vlasov propagation, with proper EOS yielding diffuse surfaces. As a test of our

model, we simulated an experiment done at the National Superconducting Cyclotron

laboratory in Michigan State University by a collaboration between MSU, Chalk River

Laboratories and Université Laval, involving 20Ne on NaF at 45 'vIeV/nucleon [19,20].

In particular we studied the Z = 1 inclusive distributions and the multiplicity-impact

paramp.ter relationship. We found good agreement between our calculation and the

experimental results.

The second part of our work is concemed with the Thomas-Fermi theory for

rotating nuclei. Thomas-Fermi for static nuclei has been used in nuclear theory for

the last 30 years. The original Seyler-Blanchard model [21] has been recently revised

by Myers and Swiatecki [22] with substantial additions to the liquid drop mode! of

average nuclear properties. Our interest in Thomas-Fermi theory stemmed from the

need to generate self-consistent density distributions when the nuclear potentia! used

had finite-range tenns. These distributions could then be used in conjunction with our

BUU mode! [lS]. Combining BUU and Thomas-Fermi is justified sinee both theories

4
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can be considered semi-c1assical approximations of the full Hartrec-Fock quantum

theory.

In recent years, much experimental work has bccn donc on high-spin statcs. The­

oretical work dates back almost 20 years with the c1assical rotating liquid drop model

developed by Cohen et al. [23] and perfected by Sierk [24]. In recent years, many

quantum caJculations have also been done (see [25] and referenccs there in), in partic­

ular the cranking quantum calculations of Bonche et al. [26-28]. Since thcse quantum

mode1s are based on Hartrec-Fock theory, using the same type of potentials used in

static Thomas-Fermi theory, we thought it would be instructive to use Thomas-Fermi

theory to describe rotations in nuc1ei, attempting to link the c1assical continuum

results with the quantum caJculations.

The attractive feature of the Thomas-Fermi mode! is the relative ease with which

solutions can be obtained. Although these solutions requirc quite extensive use of

computer resources, they are nonetheless far casier than fully quantal Hartree-Fock.

At low angular momentum, it is well known that quantum effects play an important

role in collective rotations [29,30], and a semi-classicaJ model cao not describe such

situations accurate1y. Yet at high angular momenta, we expect Thomas-Fermi to

give more accurate descriptions of the physics involved. We expect our model to be

a bridge between the fully quantum and the classical caJculaiions. In chapter 3 we

present the Thomas-Fermi model both for static and rotating nuclei, and include a

comparison of our results with the classic liquid drop a.nd the cranking model results.

5
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Chapter 1

The BUU equation

1.1 The Vlasov equation

The time dependent Hartree-Fock (TDHF) theory is the most appropriate theory to

describe heavy ion collision at low energies [6,31J. We start by defining the single-

particie density from a convenient set of single particle states {i}:

(1.1)

where ai (ai) creates (annihilates) a nucleon in state i and 1lI is the many-nucleon

wavefunction. ln the Heisenberg picture, the equation of motion for ei; is then given

by:

. 1 t 1 t t
ei; = in ( 1lI 1[ ai a;, 1i] 11lI) = in ( 1lI 1[ai , 1i la; + ai [1i, a;] 1111 ) (1.2)

where 1i is the second quantized Hamiltonian:

(1.3)

The kinetic and potential contributions cao he calculated separately. Using the anti-

•
commutator a1gebra for fermionic creation and annihilation operators we have:

[ai, 1'] =2:)a 11' 1,B)(aMall- a~allan =- I:(a ITli}a~
~ 0

6

(1.4)



• and its Hermitian conjugate:

[a;,T] = LU 1TI a: )ao

'"

Thus the kinetic contribution is:

(1.5)

I?i;!kin. - i~(\lI1 [- ~(a:ITli)a~aj+~U IT1a:)a1a.,] 1111)

- i~ ~[(j ITIa:){!,o - (a: IT li){!oj] (1.6)

Similarly, wc have:

•
[aL V] - L( a:,81 VIS'}')(ata~4a.,as - ala1a.,asat)

oP
.,s

- L [( a,81 V !'Yi) - (a,81 V 1i-y)] ala1a.,
op.,

and its Hermitian conjugate:

[aj' V] = L [(ja 1V !'Y,8) - (aj 1V !'Y,8)] alapa.,
op.,

Thus the potential contribution is:

(1. i)

(1.8)

I?·IJ pot. - 2~1i. L [( a,81 V !'Yi) - (a,81 Vii'}')] (\111 ala1a.,aj 1\11)
op.,

+ 2~1i. ~ [Ua 1V 1,8'}') - (aj 1VI,8'}')]( \111 a!a~apa., 1iii) c (1.9)

•

We cao simplify the above expressions by noting that the only non-zero contributions

to the two-particle densities will be those in which the creation operators act on the

sarne states as the annihilation operators have acted: for the first term we must have

a ='}' and ,8 = j or a = j and ,8 =,},i for the second we must have i =,8 and a = '}'

or i = '}' and a = ,8. We could further simplify it if \li was a Slater determinant (if

i



• wc were dealing with non-interacting nuc1eons in a pvtentia\ weil). The Hartree-Fock

approximation assumes that the system wavefunction can thus be treated as a S\ater

determinant (which can then be used to calcuiate V). Thus the first two-partic1e

density in the last equation becomes:

( lJs 1a~llba.,aj 11Js) = (1Js 1a~aj IlJs )( lJs 1aba., 11Js)

( lJs 1a~a., IlJs >< lJs 1abaj 11Js)

•

We now introduce the singie-partic1e Hartree-Fock potential:

(i IUHF Ij) == L [(i,8IV Ija) - (i,81 V 1aj)] eop
oP

in which case the first term in eq. 1.9 becomes, after some relabelling:

? ~li L [( a,81 V hi) - (a,81 V 1il) ](UojUP., - U""YUpj)
.-t op..,

= .~ I: !,IojI: [( a,81 V hi) - (a,81 V 1Ï{ )] Up.,
l 0 p.,

- - .lli I:Uoj( al UHF 1i)
l 0

and the second term in the same equation becomes:

Thus we can rewrite the potential contribution as:

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

•
Introducing the mean-field Hamiltonian 'H.mI = T + UHF we can write the TDHF

equation:

(1.15)

8



• We are now in a position to derive the Vlas( v equation as a semi-classical al'-

proximation to TDHF. To accomplish this, wc introduce the Wigner transform of the

single-particle density, which has the properties of a classical phase-space density:

(1.16)

(1.17)

•

where we have defined nr+r_ = (lIt 1a~+ar_IIIt), r_ = r - 8/2 and r+ = r + 8/2,

and we have chosen the complete set of states {i} to be the position eigenstatc.: {r}.

Alternatively, we can chose the momentumeigenstates {pl, in which case f(r,p) can

be defined as:

f(r,p) =J dq__ exp (_!..q. r) gp p
(27l"1i )3 li + -

where we have defined gp+p_ = (lIt 14+ap_ 1lIt ), P_ = P - q/2 and p+ = p + q/2.

These two definitions are completely equivalent. We can write down the equation of

motion for f(r,p) from the TDHF equation as the sum of a kinetic contribution and

a potential contribution which have the form:

d/(r,p) 1 =
dt !cin.

d/(r,p) 1

dt pot.

IJdq (i)ili (21rli)3 exp -r;.q. r

x Jdl" [(p+ITll")gp'p_ -gp+p'(l"ITlp_)]

1 J d8 (i )- ili (21rli)3 exp r;.P· 8

X Jdr' [(r+ !UHF Ir')nr'r_ - nr+r,(r' IUHF Ir_)j

(1.18)

(1.19)

•

In the momentum representation, the kinetic energy operator the simple Corm T =

p2/2rn and eq. 1.6 bccomes (replacing the sum by an integration since we are dealing

with a continuous set of states):

9



• 1 J [q2 p2 ]= "7 dq ;;-é3(p' - q)gpq - ;;-é3(q - p)gqp'
'lil. _m ...m

= 2.. fT"2 _ p2] 9
iF, .2m 2m pp'

Thus the kinctic wntribution bccomcs:

(1.20)

where we have uscd the fact that:•

dJ(r,p) 1

dt !cin.

(1.21)

(1.22)

The eva1uation of the potential contribution is more cumbersome, and we need

to make further assumptions: UHF has no momentum dependence and is local in

configuration space (that is to say, it is diagonal in the position representation):

(r IUHF 1r') =U(r}.5'(r - r')

We can thus rewrite eq. 1.14 as:

(1.23)

•
it,.,.,\po.. - i~Jds [( r' 1UHF Is )n,... - (sIUHF 1r )n..,.,]

1
- ili [U(r') - U(r)] n,.,.' (1.24)

Furthermore we must demand that U(r) is a smooth and slowly varying function of

/
10



• ,., in which case its Taylor expansion can be truncated after the first tenu:

U(,. + s/2) - U(,. - s/2) ::::: s· 'lJr U(,.)

Thus the potential contribution becornes:

(1.25)

df("'P)j =
dt po'.

1 J ds (i )
ih (27.h J3 exp r;p, s

x Jdr' [ut,. - s/2) - U(,. + s/2)] nr+r_

1 J ds (i )- - ih 'lJrU(r)' (27.h)3 exp ïiP' s snr+r_

- 'lJrU(,.)· 'lJp J(2~~)3 exp (*p, s) nr+r_

- 'lJrU(r)· 'lJpf(,.,p) (1.26)

•

•

where wc have used the sarne trick as for the evaluation of the kinetic contribution

(eq. 1.22) cxcept that wc have taken the gradient of the kerncl in the rnornenturn

space.

Combining cqs. 1.21 and 1.26 wc obtain the Vlasov equation:

af~;p) +~ . 'lJrf(r,p) - 'lJrU(r). 'lJpf(r,p) =0 (1.27)

1.2 The collision integral

Due to nucleon-nucleon colJjsions, the right hand side of the Vlasov cquation will no

longer be O. When a binary collision occurs, nucleons originally loca.ted at r with

momenta P, and P2 will sca.tter and emerge with new momenta P3 and P., resulting

in a net change in the phase-space density at those points. If we are interestcd in

calculating the net change in f(r,PI) we must consider two types of collisions: a)

those in wwch a nucleon originally loca.tcd between (r,PI) and (1' +or,p, +OPI) is

11



• scattcrcci outsidc of that volume, resulting in a decrease of f(r,PI), and b) those in

which a scattered nuclcon ends up betwcen (r,p,) and (r + Sr,p, + SPI), resulting

in <t.1l increase in f( r, pd.

For simplicity, we will only consider local elastic collisions in our derivation. Let

w(I,2j3,4) be the transition rate at which a nucleon located at (r,PI) collides with

a nuclcon at (r,P2), scattering to (r,P3) and (r,P4)' The number Sn-(r,PI) of

nuclcons scattered outside (r,PI) in a time interva! St is (for convenience we will

write f(r,p;) as fi and (1 - fi) as A):

(1.28)

•
where the vacancy factors A account for the Pauli blocking of the final states. In-

tegrating the above exprc.>sion over P2, P3 and P4 we can obtain the total rate of

decrease of f,

n-(r,PI)

StdPI / (2d)3

(2:n.)9 ! dP2 dp3 dp4 f, J2 w(1, 2j 3,4) k ft (1.29)

Similarly, the rate of increase of J, due to type b) collisions is:

j+(r,Pl) - (2:n.)9! dP2dP3dp4hJ4 W (3,4;1,2)J;.J2

- (2:n.)9! dP2dP3dp4 hJ4 W (1,2;3,4) J;.J2 (1.30)

•
where we have used the fact that the collisions are microscopical1y time-reversible

and therefore w(3,4; 1,2) =w(1,2;3,4).

We can relate the rate w(1, 2; 3,4) to the c1ifferential cross-section for such colli-

12



• sions [11]:

where the c5-functions guarantee the conservation of momenta and energy. Thcse can

be used to replace the integrations over the final momenta by an integral over the

scattering angle:

1 Jd d (?) Jd" dO"( 1,2; 3, 4)(2r.1i)6 P3 P.w 1,_;3,4 -+ VI' "34 dfl
34

(1.32)

where VI' is the re!ative velocity of the incoming nuclcons. Thus, the net rate of

change of l, is given by:

• (1.33)

Combining the above equation with the Vlasov equation we get the BUU cquation:

j(r,p) _ a/~,p) + E... V.. /(r,p) _ V..U(r). Vp/(r,p)
t m

1 J ' dO" - - - -
- (2r.1i)3 dP2 dfl l • VI2 dfl;2 (f" h 1h - 1hl,'h) (1.34)

•

where the primes denote the outgoing nucleons.

1.3 The nuclear potential

Up to now we have not specified the nature of the potential U. Historically, the

first potentials to be used in BUU calculations were Skyrme-type potentials, which

only depend on the local density n(r). The potential energy density for the Skyrme

13



• potentials is written as:

(1.35)

where first term is attractive and the second one repulsive. The nuclear potential

associated with such an energy density is defined as the functional derivative of the

latter with respect to the density:

SV(r)
Uer) == Sn(r) =An(r) + Bn"(r) (1.36)

•

The threc parameters A, B and (J' can be determined for these potentials if we specify

the ground state properties of infinite nuclear matter: the density no, thE' energy per

nucleon B and the nuclear compressibility coefficient K.

To calculate the energy of a finite volume V of equilibrium nuclear matter (en-

closing A = noV nucleons), we must find a solution to the static Vlasov equation;

setting the left hand side of eq. 1.27 to 0 we find:

p
-. '\1.. f(r,p) = '\1.. U(r). f(r,p)
m

(1.37)

with the ca.veat the U(r) is not an external potential, and therefore a self-consistency

condition exists: the phase-space density f(r, p) must be such that the derived con-

figuration space density n(r) =no generates a potential U which, when we solve the

stationary Vlasov equation, generates the same f(r,p) we started with. For Skyrme

potentials, we cao sec by inspection tltat the required phase-space density is:

f(r,p) = i3e(>. -Uer) - pZ/2m) (1.38)

where 9 = 4 is the spin-isospin degenera.cy factor for nuclear matter, and:

• Uer) =

14

forr$R
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• À = U(no ) + pf,/2rn

A = 47.9 3\1
3h3 P,-

(The last equation is nothing but a statement of the Pauli principle). Thus the ellcrgy

per nucleon of our system is:

B = ~ = n~\I - n~\I (J drdpf(r,p) :: +] drV(r))

3h
2

(3no )"3 AB.- -- -- +-n +--n
10rn 411"9 2 ° q + 1 ° ( 1.39)

At equilibrium, the energy of our system must be a minimum (i.e. the pressure

must be 0):

• (1.40)

Finally, the nuclear compressibility K. is:

(1.41)

Various sets of parameters A, B and q can be found in the Iiterature since the com-

pressibility K. is not weil known experimentally (quoted values vary from ...., 200 MeV

to 350 MeV).

One of the major drawbacks of the Skyrme potentials is that they generate sharp

surfaces for finite-size systems. 1'0 generate diffuse surfaces, sorne groups have used

zero-range interactions but they add a term V2n(1') to the kinetic energy. We instead

followed Bonche et ai. [15] and added a Yukawa term to the potential energ)' density:

• Vol exp-lr-r'l/a
Vy(r) =2" dr'n(,.) n(,.,) Ir _ ,,'I/a

15
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• Note that for infinite nuclear matter, the contribution of such a term to the total

energy red IlCeS to 27.V0 a3 nA.

With the introduction of a Yukawa term (or any finite range term) in the potential,

eq. 1.38 is no longer a solution of eq. 1.3i for finite-size systems (such as nuclei). In

section 3.1 we present a procedure that enables us to generate self-consistent solutions

of eq. 1.3i for fini te-range potentials. The next refinement is to include a Coulomb

term to distinguish between neutrons and protons, thus breaking the isospin degen-

eracy. The potential for neutrons and protons respectively becomes:

Un(r) = An(r) + Bn"(r) + Vo Jdr'n(r') ~;~r~I;~l/a }

'J 1- Un(r)+e- dr'np(r') 1 1
r - r'

(1.43)

• Let us now consider the energy of nuclear matter subject to the above potential

with the Coulomb potential turned off, but still distinguisbing between neutrons

and protons. The potential energy will simply get a contribution from the Yukawa

potential:

(1.44)

(We sec here that the properties of nuclear matter depend on the combination (A +

4r.Vo a3
) and not on A, Vo and a individually). The kinetic energy on the other hand

will have individual contributions from neutrons and protons:

3h2( 3 )2/3T = 1;, +1: = - -'- V(nS
/

3 +n:./3)
p 10m 4r.g n-p

(1.45)

•
Introducing the asymmetry parameter 8 =(n. - np)/n, we cau expand the last term

in the equation to O(S2):

16



•
(1.46)

Thus the total energy for nuclear matter at equilibrium becomes:

(1.'1 i)

•

The 82 term is nothing but the symmetry energy. The symmetry coefficient wc obtain

for nuclear matter is a.ym =12 MeV, which is clearly too small. To correct this prob-

lem, we must add a symmetry term to the potential energy. The simplcst approach

is to make the potential between unlike nucleons more attractive than betwcen like

nucleons. For computational reasons, wc have chosen to modify the attractive term

in the Skyrme potential energy density:

~n2
-+ ~(A,(n~ +~)+ 2Au 71nTlp)

n 2

- "4((AI + Au) + (A, - AuW) (1.48)

The values of A, and Au must satisfy (A, + Au)/2 = A and A, - Au is adjustcd to

yield the correct symmetry energy. Thus the second potential we have used in our

calculations is:

• (1.49)
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•

Eq. lA3 Eq. 1.49 Units

A -1567 - MeV fm3

Al - -1313 MeV fm3

Au - -1856 MeV fm3

B 2806 2576 MeV fm7/ 2

q 7/6 7/6

Vo -668.7 -241.1 MeV

a 0.4598 0.5954 fm

Table 1.1: Numerical values of the parameters of potentials 1.43 and
1.49

In table 1.1 we list the parameters of potentials 1.43 and 1.49 that we have used

in our work. The parameters for potential 1.43 are the same as those used in [18]

and a is the same as in the original BKN parametrization [15]; a for potential 1.49

is the same as in [22]. The nuclear compressibilities associated with cach one of the

potentials are" =266.6 MeV and ,,= 207.5 MeV respectively.

To sec how rea1istic our potentials were, we generated 15 ground state nuclei

(ranging from 12C to 228Th) using our Thomas-Fermi theory (sec section 3.1) and

fitted their binding energies to the liquid drop mass formula [47]:

2/3 (N - Z)2 Z(Z -1)
ê = c1volA - a.urA - aoym A A - acoul Al/3 (1.50)

•

The values we obtain for the fit cao be found in table 1.2, along with the experimental

values. It is clear that potential 1.49 generates more realistic nuclei.

1.4 Fragmentation process

As mentioned in the introduction, the production of c1usters is associated with the

deexcitation of the hot, dense nuc1ear matter formed by the participants during a

hcavy ion collision. Although the process is not yet fu1ly understood, Bertsch and
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•

Eq. 1.43 Eq. 1..19 Experiment

avol ( MeV) 15.3 15.6 -16

a.ur ( MeV) 15..1 18.i -20

a.ym ( MeV) 8.5 21.8 - 21.4

acoul ( MeV) 0.6i O.ïl -0.i5

Table 1.2: Liquid drop coefficients for both potentials and the exper­
imental values from rer. [4i].

Siemens [32] proposed a simple scenario which describes qualitatively the onset of

c1usterization. If we assume that the hot, dense nuclear matter interacts strongly

enough that thermal equilibrium is reached soon after it is formed, wc cao use statis-

tical mechanics to describe and study its evolution. Using Fermi-Dirac statistics, wc

cao calculate temperature (entropy) dependence of the total energy and pressure of

the gas, thus allowing us to determine its phase-diagram. In appendix A we present

an outline of the calculations involved, and in fig. 1.1 wc have plotted the phase-

diagram of syrnmetric nuclear matter for ao equation of state subjcct only to Skyrme

interactions.

As a result of a collision, the hot gas is formcd at sorne point of the phase-diagram

'.Vith average density greater than the equilibrium value and positive pressure. The gas

will therefore expand (most likely adiabatically) towards equilibrium by converting

internal energy into radial motion outwards. The system will continue to expand once

it reaches the equilibrium point (where the pressure is 0). Depending on the separation

between the initial point and the equilibrium point, the system may follow three

different paths: If the separation is small, it will oscillate about the equilibrium point,

expanding and contracting with very little energy loss. Such oscillations have been

observed in simulations of slightly compressed or diluted nuclear matter [36], their

period of oscillation agreeing remarkably well with the period of the giant monopole
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Figure 1.1: Phase diagram for nuclear matter subject to a "hard"
Skyrme potential (eq. 1.36 with A = -124/no MeV fm3, B ­
70.5/n~ MeV fm6 and 0- = 2). We have plotted isotherms (solid and
dotted lines) at 4 MeV interva1s and isentropes (dashed lines) at 0.5
intervals, as weil as the coexistence curve (triangles), the isothermal
spinodal (circles) and the adiabatic spinodal (squares). The dotted
segments of the isotherms indicate the possible coexistence of both
phases of nuclear matter.
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oscillations predicted by Jennings and Jackson [33]. If the distance bdwœn the

initial and equilibrium points is large enough, the expansion will drive the system

into the unstable region delimited by the adiabatic spinodal. Then small fluctuations

in the density will no longer be dampened, and nucleation sœds will appear. If at

the point at which the system crosses the adiabatic spinodal the pressure is positive,

nucleation will be thermodynamically unfavourable, the sccds will evaporate and the

expansion will continue until the whole system evaporates. But if the pressure at the

crossing point is negative, then nucleation will be favoured, and the sccds will grow

into microscopie pockets of high density (relative to the background) that will tend

to attract the surrounding gas and become clusters in the later stages.

Even though this is a highly simplified description (we have assumed thermal

equilibrium and that the whole system is represented by a single point in the phase

diagram, thus undergoing the same evolution, whereas it is most likely that the system

occupies a finite volume in the phase diagram and so the various paths compete at

once), it gives us a useful understanding into the fragmentation mechanism.

21



•

•

•

Chapter 2

Numerical solution of the BUU
equation

Solving the BUU equation is a non-trivial task, and we must revert to numerical

methods based on Monte-Carlo sampling techniques. Ali numerical methods treat the

left hand side on the BUU equation independently from the collision integral, under

the assumption that over short time periods nucleons suifer at most one collision.

Thus we assume that all collisions occurring between time t and t + St take place

at time t, and that over the short interva! St the motion 'Jn nucleons is dictated by

the Vlasov equation (eq. 1.27). In the following sections we will describe methods to

solve the Vlasov equation and then how we solve the collision integral.

2.1 Test Particle Method

Let us integrate the Vlasov equation over a short time interva! St, over which the

potential U does not change appreciably:

f(.,. ,p, t+St) = f(.,. ,p, t)-St(Vp 'H).(V,. f(.,.,p, t))+8t(V,. 'H).(Vp f("',p, t)) (2.1)

where we have written pfm = Vp 'H. But theright hand side is nothing but the Taylor

expansion of the phase space density about the point (.,. -StVp 'H,p+StV,. 'H), thus
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• we get:

f(r,p,t + 6t) = f(r - êt'Vp 1i,p + 6t'V,. 1i,t) (2.2)

which is nothing more than the equation of motion of a point particle. Thus the Test

Particle Method (TPM) suggests itself naturally [34), and it has been extensively used

to solve the Vlasov equation [35,36]. We substitute the smooth function f(r,p) bya

laIge number N of point test nucleons, for which we can write the phase-space density

as:

f,(r,p) = CL: 63 (1' - riW(p - Pi)
i

(2.3)

where C is a norrnalization constant such that the integral over phase-space of the

density over a small volume n equals the number of real nucleons Ao in that volume:

(this is nothing but a Monte-Carlo sampling of f(r,p)). Thus (' = A/No == l/N,.•
Ao =l dr dp f(r,p) =cL: l dr dp63 (r - riW(p - Pi) =CNo

o i 0
(2.4)

N, is the number of test nueleons per real nueleon.

Taking derivatives of eq. 2.3 we have:

i

'Vpl,(r,p) _ CL:63(r-ri)('Vp 63 (p-pi»
i

CL:('V,. 63 (1' - ri)) . ri63(p - Pi) +63 (1' -1'i)('Vp 63 (p - Pi» . Pi
i

(2.5)

If ri and Pi obey Hamilton's equations, 1,(1',;:-) satisfies the Vlasov equation. The

equations of motion cao be solved by the leap-frog method:

• p(t + 8t) = p(t)-8t'V,.U(r,t+8tf2)

23
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• r(t + 5t/2) = r(t - 81/2)+ otp/m (2.i)

To calcuJate the gradient of the potential at r, we need to know the density at

that point. This we do by dividing the occupied configuration space into cubic cells

of volume (or)', and counting the number Ni of test nucleons in each cell i. The

density in that cell is then:

Ni
ni ~ N,(Or)3 (2.8)

•

•

From the density we calculate the potential, and its gradient along the i th direction is

cstimated as the half difference between the potential in the two adjacent cells along

that direction. Due to the statistica! nature of the Monte-Carlo sampling, even for a

uniform f(r,p), f,(r,p) will not be the same in each cell i, and such fluctuations give

rise to "fictitious" forces. To mitigate the problem, we assume that each test nucleon

not only contributes to the cell it belongs to, but also to the six nearest neighbours,

thlls smoothing out the density and reducing the effect of the statistica! fluctuations.

One of the major drawbacks of the TPM is that it conserves energy poody, mostly

due to the fluctuations mentioned above. For a typica! cold nucleus at rest, test

nucleons gain 1 to 2 MeV after 100 fmc-1 of simulation. Sucb energy gains also

result in the evaporation of nucleons from the nuclear volume: for cold 40Ca, 1 real

nucleon evaporates from the original volume after iS fmc-1, and it gets worse if we

are dealing with an excited system (a cluster emerging from a collision for example).

At high energies, these two drawbacks are not very important because the simulation

times are usually short (less than 100 fmc-1), but in the regimes we are interested

in they are unacceptable, even more so if we want to study clusterization processes,

since any c1usters formed would eventually evaporate away.
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• 2.2 Lattice Hamiltonian Method

•

Lenk and Pandharipande [12] proposed a different approach to the solution of the

Vlasov eql.lation. They considered that the configuration space laUice introduccd

in the TPM as a computational device to estimate the potential U was a physical

lattice. Then the~' proceeded to write down a Hamiltonian for a system of finite size

test nucleons on such a lattice, and hence obtain their equations of motion. 1

We begin by dividing configuration space into an infinite lattice of cubic ceUs of

volume (8r)3, each site Cl< centercd at 1'", in which lattice we have distributed N finite

size test nucleons. The contribution orthe i'h nucleon to the density at site Cl< (n,,) is

given by:

where S(r" - 1';) must be continuous so that n" varies smoothly as rj changes. This

is esscntial for exact cnergy conservation. Furthermore, each test nuclcon must con-

tribute to a finite number of sites. The condition that the integral (sum) of the density

over the whole lattice be equal to the number A of real nucleons in our system is then:

N

A = (8r)3:En" = (8r)3:E:ES(r" - 1';)
cr cr i

Since A must remain constant in time we have:

(2.9)

•

dA=O
dt

IThe following derivation cao easil) be extended in the case of momentum dependent fields, in
which case the equation is written down for a phase-space lattice and the folding functions for the
test nuc1eons are assumed te have finite sizes both in configuration space and in momentum space.
We have written such a code, but it's implementation is prohibitively time consuming.
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• (2.10)

where wc have used the fad that the lattice is fixed in space to set ôra/ôt = O.

Clearly, for the above equality to hold for ail ra and rj we must have:

(eSr? l: Sera - rj) = C
a

independent of r j. C cao be fixed from eq. 2.9:

N N N

A =(eSr?l:l:S(ra - r;) =l:(eSr)3l:S(ra - r;) =l:c
0' i i o. i

(2.11)

(2.12)

•
from whicl:. we get C =A/N =l/N" where N" as in the TPM, represents the number

of test nucleons per real nucleons. Note that the above conditions are not generally

satisfied byarbitrary S(r), sucb as Gaussians.

Once we have specified the density at every lattice site, we cao calculate the

potential energy density e(ra ), and integrate over the lattice sites to obtain the total

potential energy:

The Hamiltonian is then given by:

N 2

Tl =l: 2
P

; + N,V
. m•

(2.13)

(2.14)

We are now in a. position to derive the equa.tions of motion for the test nucleons:

•
(2.15)
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•
(2.16)

where Ufj =U(rfj) is the potential at site /3. Since the gradients appearing in the

equations of motion can be calculated analytically, the LHM is virtually free from

numerical inaccuracies.

It is trivial to show that in the limit (c5r)3 -> 0 and:

•
we recover the TPM equations of motion:

Pj - -Nt(c5r)3LUfj~ V r , c53(rfj - rj)
fj t

-> - Jdrfj U(rll) Vrj c53 (rll- rj) = -Vr,U(rj)

2.3 The cascade code

(2.1i)

(2.18)

•

Analytical solutions of the collision integral (eq. 1.33) cau not be obtained cxcept in

the most simplified scenarios, and several numerical algorithms have becn proposed

to solve it. One of the codes most often used is the cascade code, which we will now

describe in one of it's most simple implementations [3i]. We assume that during cach

time step, a nucleon collides with another nucleon at most once. In the energy regimes

we are interested in, the only processes we need to consider are elastic collisions, and
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• production and absorption of !:>. rcsonances:

n+n -+ n+n (a)

n+n -+ n + !:>. (b)

n + !:>. -+ n+n (c)

n + !:>. -+ n + !:>. (d)

!:>.+!:>. -+ !:>.+!:>. (e)

The cross-sections for proccsscs (a) and (h) can he taken from fits to experimental

data. Wc use:

{

55
l7:n_ nn (VS) = 35 ?

1 + 100(.JS - 1.8993) +~O

if VS < 1.8993

if VS > 1.8993
(2.19)

(2.20)
if .JS < 2.015

if .JS > 2.015
u:"'_n.o. (VS) = J 20(.JS ~ 2.015)2l C.015 + (.JS - 2.015)2

(where the energïes are expressed in GeV and the cross-sections in millibarns). The

and:

• cross-section for proccss (c) can be obtained from (b) by detailed balance:

(2.21)

where the factor of 8 accounts for the spin-isospin degeneracy and the identity of the

final states. The cross-sections for channels (d) and (e) are taken to be the same as

for (a). The differential cross-section for the elastic channels is parametrized as:

du r:
dt =aexpdlvs)t(O) (2.22)

where t(O) is the momentum transfer in the center-of-mass of the colliding nucleons

(t =-2p2(1- cos 0)), and d(.,JS) is parametrized as:

• d(VS) = 6[3.65(.,JS - 1.866)t
1 + [3.65(.,JS - 1.866))6

(2.23)
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• The inelastic channels are assumed to scatter isotropically.

Two nucleons will collide if their distance of c10sest approach is less than the

maximum nucleon-nucleon impact parameter:

(2.24)

Since the distance of c10sest approach is cumbersome to calculate, a prctcst is donc:

only if the initial separation between two nucleons is less than

(2.25)

might the collision proceed. The nucleon-nucleon center-of-mass cncrgy and vclocity

{3 -
•

are:

..;s - J(EI +~)2 - (PI +P2)2

PI +P2
EI+~

(2.26)

(2.27)

The momentum of nucleon 1 in this frame is:

(
PI.{3 ) {3 ( PI.{3{3)

P ="f -(3- - (3EI (3 + PI - -(3- (3 (2.28)

and the momentum of the other one -p. Their distance in the c.m. frame is then:

In the time interval -St/2 to St/2, the two nucleons become collision candidates if:

• \

.47'. pl (p p) St
P < JI?+rni - JI?+-rn.i "2

29
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• and:

J 2,AT .pb= (,AT) - P < bmax (2.31)

•

Once wc have a candidate pair, we must decide through which channel it will

procccd. Wc generate a random number h between 0 and 0':"" and perform the

fol1owing sequence of steps:

1. We compute the e1astic cross-section using eq. 2.19. li h is less than the com-

puted value, an elastic collision has occurred, and we proceed to step 4. Other-

wise we proceed to the next step.

2. Wc now check for inelastic scattering:

i If VS < 2.015 GeV both particles must be nucleons and there is not enough

energy to generate a Il. We proceed to step 5.

ii If the masses of both particles is greater than 0.938 GeV, both are Ils and

no ine1astic scattering cao occur. Again, we proceed to step 5.

iii If one of the particles is a Il, we proceed to step 3. Otherwise we compute

the inelastic cross-section using eq 2.20. li h is greater than 0':"_",,(VS) +

O':"'_nâ(VS), no Il is produced and we branch to step 5. Otherwise we

must now determine the mass of the excited nucleon. The parametrization

we use is:

•
1

1.077 + o.75(VS - 2.015)
mâ=

1.231

We branch to step 4

30

for 2.015 < VS < 2.220

for VS > 2.220
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•

•

3. We check for .Cl. absorption. Wc compute the cross-section from eq. 2.21. If Il

is greater than "':;"-nn(JS) + "'~~-nn(JS), no inelastic scattering has occurred

and we brancb to step 5. Otherwise we proceed to the next step.

4. We now determine the final momentum PI and the scattering angles O. and 4>•.

For elastic cbannels we Monte-Carlo the differential cross-section using eq. 2.22

to obtain the value of t. from whicb we obtain the value of O•• The azimuthal

angle 4>. is randomly cbosen between 0 and 2r.. For inelastic channels, PI is fixed

by energy conservation, and both O. and 4>. are assumed to be isotropie.

5. We revert back to the original frame (either the lab frame or the c.m. of the

colliding nuclei).

The initial state of the cascade code consists of two nuclei A and B approacbing

eacb other with sorne relative momentump. The nucleon positions ri inside the nuclei

are randomly assigned by Monte-Carlo sampling. Since there is no mean-field to bind

the nucleons inside the nuclear volume and we want them to stay within that volume

if the nucleus is isolated, no Fermi motion can be assigned to them. Then one allows

the cascade to run until the number of collisions becomes sufficiently small. Because

of the Monte-Carlo sampling, eacb run of the cascade code will generate a different

final set of positions and momenta for the nucleons and we can consider eacb run as

a simulation of a single event. Results are then averaged over many runs for each

energy and impact parameter.

2.4 BUU: Cascade code plus Vlasov propagation

We now have the necessary tools to solve the BUU equation: at each time step, we

use the cascade code to solve the collision integral (remember that we consider that
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•

collisions occurring betwccn time t and t+St take place simultancously at time t) and

then use the TPM or the LHM to propagate them through the mean-field. The initial

state is again two nuclei approaching with relative momentump; inside each nucleus,

the test nuclcons are assigned random positions. Since now there is a mean-field to

kccp nuclcons inside the nuclcar volume, we can also assign Fermi motion to them.

In coupling the cascade code to either the TPM or the LHM, we must take into

consideration the fact that in the latter the system is composed of NtA test nuclcons,

whereas the cascade code deals with A real nuclcons. Thus we must scale the cross­

sections by a factor l/Nt. Alternatively, one cao segregate the test nuclcons into Nt

separate groups, with collisions only occurring between test nuclcons belonging to the

same group.

Having included Fermi motion in the initial state and since the Vlasov equation

conserves phase-space volume (so that the Pauli principle will be respected at ail

times), we cao now properly introduce Pauli blocking of the final states. To implement

it we must calculate the phase-space density about the final positions (7"Pl') and

(r,P2') (see eq. 1.34). We build a sphere of radius R about r and radius P about

Pl' such that Np test nuclcons inside this volume implies complete filling. Some care

must be taken when choosing Np: if it is too small, the statistical fluctuations brought

about by the Monte-Carlo sampling become important; it cao not be too large since

we want to sample the phase-space close to (r,Pl'). We have chosen Np = 8. But

specifying Np does not determine both R and P. We add the extra condition that

R/P = RN/PF where RN is the radius of the static nucleus and PF is the Fermi

momentum of equilibrium nuclear matter. We then define fl' =Nl,/(Np -1) where

Nl , is the number of test nuclcons inside the phase-space volume (not counting the

one at (r,Pl'))' and similarly h =N2'/(Np -1). The probability of scattering is
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then (1- h)(l- hl, which we Monte-Carlo in the usual way.

2.5 Extended BUU: generating fluctuations

When we coupied the Cascade code to the Vlasov propagation, one of the features of

the former was lost: the fluctuations that are intrinsic to it (both from the initial state

and the scattering Monte-Carlo sampling). The scaling of the scattering cross-section

(or the segregation of the N,A test nucleons into groups) results in an averaging of

fluctuations produced by the nucleon-nucleon collisions. Thus each BUU simulation

can no longer be considered to represent a single event, but an average obtained over

N, events. While this is not a drawback if one is interestcd in flow angles or average

properties, it is a serious handicap when studying clusterization processes.

The extended BUU formalism allows us to reintroduce the fluctuations in the

mode!. In essence, we modify the Cascade code in such a way that when two test

nucleons i and j collide, not only their momenta are changed by l1p, but the 2(N, -1)

test nucleons closest to them in phase-space also change momenta by that amount.

Since N, test nucleons represent a physical nucleon, such a collision indeed corresponds

to two physical nucleons colliding. Thus fluctuations are preserved.

To determine the closest test nucleons to each i and j we need to define distance

in phase-space:

(2.33)

•
where PF is the Fermi momentum and RN is the nuclear radius. Then the Nt closest

neighbours to i change momenta. by l1p and the Nt closest to j by -l1p. Of course

one can choose to search ooly for test nucleons of the sa.me spin-isospin species.

This procedure conserves momentum, but usually not kinetic energy. With a. slight
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modification both can be conserved. As before, the (Nt - 1) test nuc1eons c10sest

to i and j are found, and their average momenta (Pi) and (Pj) calculated. Then

we recalculate t:>p as if the colliding nucleons had momenta (Pi) and (Pj). The test

nucleons of the i set then change momenta by t:>p and those of the j set by -t:>p.

We also tested another procedure that was found to be faster for systems where

A < Nt. Before executing the Cascade code, the test nuc1eons were divided into A

groups as fol1ows: starting with the test nucleon furthest from the center of mass of

the system, we chose the Nt - 1 c10sest test nuc1eons, which were then assigned to

a first physical nuc1eon. The furthest of the remaining unassigned test nu("~eons was

then seleeted, and the Nt - 1 closest ones assigned to the second physical nuc1eon,

and so on until we had A physical nuc1eons. Then the average position and momenta

of these physical nuc1eons were calculated, and the Cascade code executed with these

physical nuc1eons without rescaling the cross-sections. When a collision occurred, ail

test nuc1eons belonging to the colliding physical nucleons changed momenta.. Both

procedures gave equivalent results, and we chose the latter for numerical speed. For

systems where A > Nt, the grouping becomes too time consuming, and we revert to

the original method.

2.6 The model

We are now in a position to describe our mode! and list the set of parameters used.

The Vlasov propagation was implemented using the LHM, while the collision part

was implemented using the extended Cascade code. The numerical values for the

Vlasov propagation we set to: Nt =100, Sr =1 fIn and St =0.3 fIne-l • These were

chosen as a compromise between accuracy and speed. As in [12J, we chose the test
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• nucleon folding function to be:

{

C(l _ ILl~;\ )(1 _ ILl~;1 )(1 _ ILl~;\)
S(ro-r;) = b b b

o otherwise

(2.34)

where Ll~; = U o - U; (u being one of the cartesian components x, y or ::), C = 1IN l b3

(determined by eq. 2.9) and b = nor. In their paper, Lenk and Pandharipande argue

that n ;:: 2 for better momentum conservation in Bosc systems, since the lattice breaks

translational invariance, resulting in lattice friction and a net loss of momentum over

extended periods of time (typically a few hundred fmc-1). In our investigations with

Fermi systems wc set n = 1 and found that momentum was conserved to within 10-5

for simulations running up to 250 fmc-1
• The energy was conserved to within lO-U

•

•
In our simulations, wc use potential 1.43. In lattice form wc write it as:

U: - U~+U~

UP - U· +U· +U·Q Q a a

(2.35)

(2.36)

where the n and p superscripts refer to neutrons and protons respectively and:

U· - Ano+Bn:0

u: V
o
(or)3:E exp Iro - rpl/anp- p Iro - rplla

1
U· - e2(or)3:E nP

0 p Ir", - rpi p

Calculating ug and U~ as written is very time consuming, and wc instead solve the

associated differential equations

• (2.37)
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by a relaxation method with Gauss' accelerators [38,39]. Given that the lattice den-

sitics arc slowly varying functions of time, if one starts with the known potentials at

time t, the new solutions at time t + St converge after 3 iterations of the method.

The cascade code was implemented using the method described in sec. 2.5. Be­

cause the number of nuclcons involved was small (2°Ne+20Ne), we cbose the grouping

method. Since the beam energies we studied were low (45 MeV beam), two simplifi-

cations were possible: the inelastic cross-sections being almost negligible, the ine1astic

channels were left out of the code; also, the differential cross-section for the e1astic

cbannels (e'l' 2.22) was taken to be constant (i.e., isotropie scattering).

The initial distribution of test nucleons inside the nucleus was done with partic­

ular eare to try to obtain as cold a nucleus as possible. From the density profiles

obtained by our Thomas-Fermi solutions (sec sec. 3.1), we computed n~F, the density

at eacb lattic'~ site. We then assigned a tentative position to the i th test nucleon, and

caleulated its contribution to the density at eacb lattice site (no.). If for any one of

the sites to whicb it eontributed,

i-l

no. +L: no; ;:: (1 + e)n;F
;

(2.38)

•

(where e is a tolerance factor), then the position was rejected and the procedure

restarted; otherwise we proceeded with the next test nucleon. Depending on the

value of e, the average number of trials needed to aceo=odate a test nucleon varied

quite significantly: for e = 0.1, 50 trials were necessary; for e = 0.01, 106 trials_ In

our simulations, we set e =0.025, for whicb ~ 104 trials were needed. Onee we had

calculated no, we calculated the corresponding Fermi momentum at eacb site and

assigned momenta to eacb test nucleon again by Monte-Carlo sampling.

The nuclei thus construeted were then boosted with the appropriate momenta
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and impact parameter. Because of the low energies and the finitc-range terms of the

potential, the simulations were run up to 200 imc- I after the first nuclcon-nuclcon

collision. This required an average of 16 hours of CPU on a dt.-dicated vaX 785-11.

2.7 Testing our model

As a test for our extended BUU code we simulated an experiment done at the National

Superconducting Cyclotron Laboratory in Michigan State University (MSU) in which

the reaction studied was 2°Ne on NaF at 45 MeV per nucleon. The main components

of the detector were a forward charge detector, :'uilt at Chalk River Laboratorics, the

MSU 471" array (plastic bail) and a silicon telescope. The forward array measured the

total charge Z of particles emerging in the forward direction betwcen 2.5° and 17°,

with an energy threshold of 15 MeV per nucleon. The 471" array mcasurcd particlcs

emerging at angles between 19° and 161°, with an energy threshold of 17 MeV pcr

nucleon, and was mainly used to tag the multiplicity M (number of charged particlcs)

of each event. The silicon telescope was located at an angle of 47°. For further details

on the experiment, see [19,20,40].

The data we were interested in were: a) the inclusive spectra of Z = 1 clustersj

b) the forward charge Z versus multiplicity M. At the time of our analysis, the

experimental spectra available were: i) integrated over the whole angular range of

the plastic ball, ii) integrated over smaller angular ranges, iii) with a multiplicity tag

from the plastic ball.

In order to be able to compare the results of our simulations with the data,

we had to identify the clusters resulting from each event and to determine their

particle content (mass and charge), their energy and angle of emergence, which then

would allow us to determine the charge in the forward direction and the multiplicity
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ln the plastic bail. But BUU type models produce density distributions in which

pockets of significant local density can be identified against a diffuse background,

and a c1uster searching algorithm had to be devised with the requirement that the

c1usters produced have an integral mass and charge. This we achieved by the following

tw... step procedure. First, a coarse-grained scan in which pre!iminary c!usters were

identified: we assigned test nuc1eons to a pre!iminary c!uster if its configuration space

distance to any test nuc1eon already in the c!uster was less than a certain value "'(

(obviously, setting "'( equal to a small number corresponds to scanning for very high

density pockets and setting it to a large number corresponds to scanning for very

diffuse c!usters). Of the c!usters thus obtained, only those whose mass was greater

than 0.5 physical nuc!eons were retained, the others being dismissed and their test

nuc!eons assigned to the background. The second step was to complete the retained

c!usters so that they had integral mass and charge: for each preliminary c!uster, the

test nuc!eons in the background were ordered according to their phase-space distance

to the center of mass of the c!uster, and as many of the c!osest test nuc!eons were

assigned to the c!uster as were necessary to have integral charge and mass. After

"cornpleting" aIl c!usters, any test nuc!eons still in the background were considered

to be free nuc!eons. Note that since aIl prelir, LÏnary c!usters retained have some

neutron and sorne proton content, the smaIlest c!uster produced by our algorithm

hadA=2.

In order to determine an optimal "'(, we looked at the number of c!usters predicted

as a function of "'(, and found that there is a critical value beyond which the nUTIlber

of c!usters (as weIl as their mass distribution) quickly saturates. We chose "'( = 0.225

fm, which corresponds to twice the test nuc!eon radius if we assume that the volume

it ol"cupies is Nt times smaIler than the physical nuc!eon volume. Doubling the value
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Figure 2.1: Inclusive distribution over energy of Z = 1 particles,
integrated over the whole plastic ball polar angle coverage. The data
are the dots with the error bars and the calculation is the histograrn.
The latter has been normalized to the data..

of 'Y only changed our results by less than 10%. For this value of 'Y the average density

of the predicted clusters wa.s one third of the equilibrium nuclear matter density.

Using our model, we simulated 750 events spanning an impact pararneter range

from 0 to 6 fm. The statistics generated were adequate for high cross-section events.

To use the Si telescope data we would have needed much higher statistics. When

analyzing the inclusive spectra for Z = 1 we norma.lized the theoretical cross-sections

to their experimental counterparts (total cross-sections have not been a problem in

BUU calculations).
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Figure 2.2: As in Fig. 2.1, but for smaller angular ranges. The nor­
malization is the Saffie one used for the full angle distributions.

In fig. 2.1 we plot dN/dE for our calculation and the experiment, integrated over

the full angular coverage of the plastic ball, and the agreement is quite reasonable.

Fig. 2.2 gives more details, separating inclusive distributions into different angular

.bins. When the cross-sections are large, theory and experiment agree quite well, but

there are discrepancies at backward angles where the cross-sections are small.

Fig. 2.3 presents more exclusive data where inclusive cross-~tions are shown

•
for fixed plastic ball multiplicities; of the cases displayed, M = 5 represents the most

central collisions. We find that the calculation reproduces these very well. For brevity

M = 1 data and calculations are not shown in that figure, although the agreement
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Figure 2.3: Inclusive distributions over energy of Z =1 particles for
events with a specifie plastic ball multiplicity. The solid dots with
error bars represent the data and the histogra.m the ca.lculation.

was of similar qua.lity.

In the energy regime of this experiment, an important question often a.ddressed

is the relationship between charge mu1tiplicity and impa.ct para.meter b. On the basis

of the participant/spectator model presented in the introduction and on results from

experiments at higher energy regimes, we expect that a high charge multiplicity in

•
the plastic ba.ll (a.ccompa.nied by a low total charge in the forward array) wou1d be

the signature of a nea.r-central collision. On the other hand, a low charge mu1tiplicity

in the plastic ba.ll (a.ccompa.nied by a high total charge in the forward array) wou1d
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Figure 2.4: Relative contributions of each impact parameter to each
individual plastic ball mu1tiplicity M. The number in parentheses
gives the relative probability of a given mu1tiplicity.

be the signature of a peripheral collision. In fig. 2.4 we show the resu1ts from our

calculation. In it we have depicted the relative contributions of different impact

parameter ranges for a given plastic ball mu1tiplicity M. The numbers in parentheses

give the relative probabilities of the corresponding mu1tiplicity (relative to the total

number of events). While there is no experimental data to compare our resu1ts with,

we find such detailed analysis helps to highlight the impact parameter-mu1tiplicity

•
relationship.

In fig. 2.5 we show a plot of the ball mu1tiplicity M versus average total charge Z in
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the forward array. The error bars on the theoretical points are of a statistical nature.

This plot suggests that our connection between multiplicity and impact parameter is

quite reasonable. The trend of the calculation follows that of the experimental data,

with only one bin where there is no overlap between the theoretical results and the

data. Aiso for comparison we have included results from FREESCO simulations [41).

Thus our intuitive picture is supported by our results.
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Chapter 3

Thomas-Fermi theory

3.1 Thomas-Fermi theory for static nuclei

In section 1.3 we mentioned that as a result of the introduction of a Yukawa term in the

nuclear potential, the phase-space density defined in eq. 1.38 is no longer a solution of

the static Vlasov equation. We must devise a more general and systematic approach

that will alIow us to calculate f(r, p) for a wide range of nuclear potentials. The

starting point will be the Thomas-Fermi (TF) theory, since it cao be regarded as a

semi-classical approximation to the Hartree-Fock theory, just as the Vlasov equation

is a semi-classical approximation to TDHF. Our objective is to obtain TF solutions

with specified angular momentum, but we must start from TF solutions with no

angular momentum.

3.1.1 Derivation of the Thomas-Fermi equations for nuclei

Our goal is to find a phase-space distribution f(r, p) which will minimize the energy

of our system, in this case a nucleus composed of A nucleons and for the moment

symmetric (Z = N) with no Coulomb interaction between the protons. We cao then
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• write down the (non-relativistic) energy of snch system as:

"
E = J drdpf(r,p):~ + J drV(r) (3.1 )

where V(r) is the potential energy density at r. In turn, we write the number of

nucleons A as:

A= J drdpf(r,p):; J drn(r) (3.2)

•

Thus, we \Vant to minimize eq. 3.1 \Vith the constraint imposed by eq. 3.2. Using

Lagrange multipliers we can then do an unconstrained minimization of the quantity:

E' = J drdPf(r,p):: + J drV(r) + À (A- J drn(r)) (3.3)

Since the potential energy density is independent of p, we cao make the ansatz that

at every point r, the momentum distribution will be a filled Fermi sphere (which

guarantees that the kinetic energy at that point will be a minimum):

f(r,p) = :3S(PF(r) - p) (3.4)

where gis the spin-isospin degeneracy (4 fo: symmetric potentials and 20therwise).

We can readily calculate the density at r:

n(r) =J dp f(r,p) = :3 J dpS(PF(r) - p) = ~~;PF(r)3 (3.5)

(Note that this satisfies the Pauli exclusion principle).

Performing the momentum space integration of eq. 3.3 we get:

•
E' = J dr [:;~PF(r)5+Ver) - Àn(r)] + ÀA

[
3h2 ( 3 )2/

3 ]- Jdr - - n(r)5/3+Ver) - Àn(r) + ÀA
10m 41rg
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• Under the variation n(,,) -+ n(,,) +e5n(,,), the first order change in &' becomes:

[
h2 (3 ())2/3 ]

e5&' = Jd" 2m ;'lr: +U(,,) -.À e5n(,,) (3.7)

(remember that the potentia1 U (,,) is the functiona1 derivative of the potentia1 energy

density with respect to n(,,)). Since e5n(,,) is an arbitrary function, the above equation

will only be 0 if the term in square brackets is identica1ly 0 for ail,,:

~(3n(,,))2/3+U(,,) -.À = 0
2m 4'lrg

(3.8)

Wc can now easily prove that if n(,,) satisfies the previous equation, it will also

be a static solution of the Vlasov equation (eq. 1.27). With our ansatz for f(r,p),

the Vlasov equation becomes:

•
âf(r,p)

ât
- _J!... V,.f(r,p) +V,.U(r). Vpf(r,p)

m

- -~. V,. :30(PF(r) - p) + V,.U(r). Vp :30(PF(r) - p)

- :3 [-~e5(PF(") - plV,. PF(r) - V,.U(r)e5(PF(r) - pl] . P

- :3e5(PF(r) - p) [-~V,.PF(") - V,.U(r)] . p (3.9)

But since f(r,p) is a solution of eq. 3.8, we have:

[
h2 (3n(r))2/3] ( 3 )2/32

V,.U(r) = V,. .À - -2 -- = - - -n(r)-1/3V"n(r)
m 4'lrg 4'lrg 3

Furthermore, from eq. 3.5:

(
3h3n(r)) 1/3 (3h3)1/3 1

V,.PF(r) = V" = - _n(r)-2/3 V,.n(r)
4'lrg 4'lrg 3

(3.10)

(3.11)

•
Because of the e5(PF(r) - p) term, eq. 3.9 will automatically be 0 for p =f: PF (r); and

for p = PF(r) we cao use the last two equations:

âf(r,p) = .ff.... [ _
ât h3

46



• h2 ( 3 )2/3 ]+ 3m 4"g n(r)-1/3 vrn(r)· p = 0 (3.12)

In the more general case of non-symmetric nuclei or if wc includc the Coulomb

interaction, the derivation is much the same, except that the constraint on A is now

replaced by:

(3.13)

with the corresponding Lagrange multipliers Àn and Àp • The stcps arc the samc as

for the symmetric case (eqs. 3.1-3.8), leading to the two coupled equations:

•

h
2 (3nn (r))2/3 U ()' 0-24 +nr-An-

m "g

h
2 (3np (r)) 2/3 +U (r) _ À _ 0

2m 4"g p p

where of course, 9 is now 2.

3.1.2 Implementation of the Thomas-Fermi equation

(3.14)

(3.15)

•

To solve eq. 3.8 (or eqs. 3.14 and 3.15) we use an iterative procedure. Starting from

an initial density profile (either a Myers distribution [43], which had been previously

used in heavy ion calculations [44], or a uniform sphere) and a guessed value for À,

we proceed as follows:

1. From the current density profile, we calculate the finite range components of

the potential (the Yukawa term and, for protons, the Coulomb term).

2. Using the current value of À, we use eq. 3.8 to calculate the density n(,.) at

every point ,..
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• 3. Wc integrate the density profile n(r) to obtain the total number of nucleons

and compare it to .4, modifying >. and loop back to the previous step until both

numbers agrec within the prescribed accuracy.

4. Loop back to step 1 until two successive iterations give the same .h.

The numerical implementation of the above procedure is rather simple, and the

on1y problem is the calculation of the Coulomb and Yukawa terms in the nuclear

potential. Since eq. 3.8 (or eqs. 3.14 and 3.15 in the non-symmetric case) is spherically

symmetric, we expect n(r) (or nn(r) and np(r)) also to be spherically symmetric. In

that case, we cao write the Coulomb term as:

•
Uc(r) _ e2jdr'n (r') 1

p Ir - r'i

- 47l"e2 I;vf4;Ylm(II,,p)jdfl.'Yoo(II',</l)YÏm(II',,p') ['''' dr'r'2 ~~l np(r')
h k ~

_ 47l"c2 (OO dr'r'2~np(r')
Jo r>

- 47l"e2 (;: 10" dr' r'2 np(r') +100

dr' r' np(r')] (3.16)

•

where we have expanded \ 1 1 in terms of spherical harmonies ([42], page 102) and
r-r'

used their orthonormality to perform the angular integration. Similarly, the Yukawa

term cao be written as:

_ Vojdr'n(r)exp-1r - r'l!a
Ir -r'\/a

- -47l"Vo I;vf4; j d!l'Yoo(ll',,p')Yim(II',,p')
lm

faOO dr'r'2j/(ir</a) hl(ir>/a)n(r')

- -47l"Vo i dr'r'2jo(ir</a)ho(ir>/a)n(r')
Jo
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[exp-(rla) { dr'r' sinh(r'la)n(r')

+sinh(rla)100

dr'r' exp-(rla)n(r')]

(3.17)

•

exp-Ir-r/i/a
where we have expanded 1 Il in terms of spherical harmonies ([42), page

.,. -.,.' a

741), and il(ix) and hl(ix) are the spherical Bessel functions of a complex argument.

Thus we have reduced eqs. 3.8, 3.14 and 3.15 to ':lne-dimensional equations.

We implement the above procedure by dividing the r-component in configuration

space into cells of length 0.025 fIn and starting with a spherical nucleus of uniform
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density no. The Coulomb and Yukawa term were calculated using eqs. 3.16 and 3.17.

The accuracy demanded for the relative difference between the integrated nucleon

count (or the neutron and proton counts) and A (or N and Z) was 10-5 • Two

successive values of the chemical potentials À (or Àn and Àp ) were considered equal if

the relative change was less than 10-5 •

•
Once the density profiles n(r) (or nu(r) and np(r» are known, we can calculate

all the interesting variables of the system. In fig. 3.1 and 3.2 we show the density

profiles for different nuclei using potentials 1.43 and 1.49 respectively. Two of the
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• main differences between these two potentials can be scen in the case of the heavy

nuclei 160Er and 208Pb. The first is that for potential1.43, the proton density docs not

have its maximum at the origin, but rather close to the nuclear surface. This will have

implications in the behaviour of rotating nuclei, as will be sccn in the next section.

The second difference is that for potential 1.49, the neutron profiles extend beyond

the proton ones. This is reminiscent of the neutron skin observed in experiments.

3.2 Thomas-Fermi solutions for rotating nuclei

3.2.1 TF equations for rotating nucleus

The problem we now want to solve is to find Thomas-Fermi solutions for nuclei with a

speciiied angular momentum. As for the static solutions, we want to find the solution

• that will minimize eq. 3.1, subject to the constraints eq. 3.2 and:

Jdr dp f(r,p)(xpv - yp,,) =1:.. (3.18)

where we have assumed that the z-axis is the axis of rotation and for the moment

we consider ooly symmetric nuclei with no Coulomb interaction. Again, introducing

Lagrange multipliers, the quantity to minimize now is:

E' - JdrdPf(r,p):: +JdrV(r)+À(A- Jdrn(r))

+w (1:.. - Jdr dp f(r,p)(xpv - yp,,)) (3.19)

Since the nucleus is rotating, it is clear that at any point r, the average momentum

•
will not necessarily be 0, Le.:

{Pl =Jdpf(r,p)p;60
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1
This can be ·~li;~ved by assuming that at every point r, the Fermi sphere will be

displaccd by an amount p'(r):

f(r,p) = :3 El(PF(r)-lp-p'(r)i) (3.21)

Let us now perform the momentum integration in eq. 3.19. If we change the integra-

tion variable to q =P - p' (r) the integral becomes (suppressing for the moment the

r coordinate):

l(p')

(3.22)

•
Since this is the only term in eq. 3.19 that depends on p', we cao immediate1y perform

the minimization with respect to the latter:

c51(p') =(~ - wy) c5p'", + (~ +wx) c5p'~ + ~c5p'= =0 (3.23)

which leads to

p'(r) =-mwyî+ mwxj+Ok =mwrJ.~ (3.24)

where we have defined r J.
2 = x2 + y2. Note that the second order variation of 1(p')

with respect to p' is positive semi-definite, and therefore we are indeed at a local

minimum. Substituting back into 1(p') and using eq. 3.5 we get:

•
(3.25)
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• Substituting back into eq. 3.19 wc now have:

[
3h2 ( 3 )2

/
3 1 }E'=Jdr -- -- n(r)s/3_-mw2ri2n(r)+V(r)-.Àn(r) +.ÀA+wr.,

10m 4;:-9 2

(3.26)

The first order change in E' under the variation n(r) -> n(r ) +én(r) is then

(3.2i)

As for the static case, the above expression will only be 0 for arbitrary én(r) if the

term in square brackets is itself 0, which gives us the condition:

h2 (3n(r))2
/
3 1 2 2- -- --mwri +U(r)-.À=O

2m 4;:-9 2
(3.28)

•
Let us now retum to the expressions for the angular mornenturn and the energy

of our system and substitute for !(r,p) and 11'(r). From eq. 3.18 wc get, changing

the momentum integration to q = P - 11'(r):

1:.. - J drdq :30(PF-q)[x(q~+p'~)-y(q,,+p',,)l

- 4:: J dr dq 0(PF - q) q2 [xp'~ - yp',,]

- ~: J drPF~)3[x(mwx)_y(_mwy)]=mw J drn(r)[x2+y2]

- mw J dr n(r)rJ.2 =wI (3.29)

where l is the moment of inertia of the system. Similarly, the kinetic energy term in

eq. 3.1 becomes:

•
J

p2
dr dp !(r,p)2m J

9 '(q+p')2
- drdqh30(PF-q) 2m

- _1_4;:-9 J dr (p~ + p~ p'2)
2mh3 53
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•
(3.30)

•

where in the last line we have substituted for w from the previous equation. It is now

c1ear that the Lagrange multiplier w cao be identified with the angular ve1ocity.

As for the static case, for non-symmetric systems the derivation is the same and

wc get the two coupled equations:

(3.31)

(3.32)

3.2.2 Numerical implementation

The numerical procedure we use to solve eq. 3.28 (or eqs. 3.31 and 3.32) is similar to

the one for the statie solutions, but two more steps are necessary. For every angular

momentum 1:.= for we which we want a solution, we start from an initial density

distribution (in most cases a previous solution at a different value of 1:.= or, for sma1l

valut"> of 1:.., from the static solution) and a guessed value for À, and we proceed as

follows:

1. From the current density distribution, we calculate the moment of inertia, and

using eq. 3.29, we calculate w.

2. From the current density profile, we calculate the finite range components of

the potential (Yukawa and Coulomb terms).
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3. Using the current value of À and w, we use cq. 3.28 to calculate the density 11 (,.)

at every point,..

4. We integrate the density profile n(,.) to obtain the total number of nuclcons

and compare it to A, modifying À and loop back to the previous step until both

numbers agree within the prescribed accuracy.

5. Loop back to step 2 until two successive iteratior.s give the same À.

6. Loop back to step 1 until two successive iterations give the same w.

This procedure was implemented by dividing configuration space into cubic ceUs

of volume (0.5 fIn? Because of the refiection symmetries of the equations and of the

solutions sought, we only worked in the first quadrant. The Coulomb and Yukawa

terms in the potential calculated by solving the associated differential equations as

mentioned in section 2.6.

The self-consistency condition expressed in eq. 3.28 (or eqs. 3.31 and 3.32) is

axially symmetric. Thus if the initial densities n(,.) (or nn(,.) and np (,.)) are also

axially symmetric, the solutions found for any angular momentum will also be axially

symmetric. This family of solutions we labeled as the axial solutions. But we know

from experiment that non-axial shapes exist. To generate them we must start with

initial densities that are non-axial. In our study, we found two different families of

non-axial shapes. One was the triaxial family, which we generated by starting with

an ellipsoid whose axis ratios were 1.1 : 1 : 0.9, with the short axis aligned along the

z-axis and the long axis along the x-axis. The other, labeled saddle-shape family,

was generated from two equal mass spheres barely touching at the origin, with thcir

centers aligned along the x-axis and rotating about the z-axis.
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Figure 3.3: Evolution of the excitation energy per nucleon with an­
gular momentum for 160Er subject to potentiall.43. The solid line is
the axial family, the dashed line is the triaxial family and the dotted
line is the saddle-shaped family.
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~t .c. .cb
2'\Mg (1.43) - 15 Ji 22 Ji
126Ba (1.43) 25 li 55 Ji 70 Ji
160Er (1.43) 35 Ji 63 Ji 72 Ji

24Mg (1.49) - 15 Ji 22 Ji
126Ba (1.49) 25 Ji 70 Ji 93 Ji
160Er (1.49) 45 Ji 80 Ji 90 Ji

Table 3.1: Values of the transition values .ct, -Ca and .cb for different
nuc1ei. The number in parenthesis indicates the potential uscd.

For all the nuc1ei studied, we observed the following behaviour: for low values of

.c:, the axial farnily is the only one that exists. As the angular momentum is increascd,

the rotation axis becomes shorter and the oblate shape is accentuatcd. The other two

farnilies appear at higher values of .c:, but the axial family is the lowcst in energy.

A transition occurs at .c: = -Ca when the saddle shape family becomcs the lowcst in

energy. As.c: increases further the dumb-bell shape is accentuatcd, and at a critical

value .c: = .cb the nuc1eus breaks up into two equal mass nuc1ei. Note that the

axial solutions continue to exist up to much higher values of the angular momentum.

For masses greater than ~ 40 another transition occurs at .c: = .c, < .c. when the

triaxial shapes become the lowest in energy. This general behaviour is illustrated in

figs. 3.3 and 3.4 where we have plotted the excitation energies for 160Er as a function

of angular momentum and the density contours for 126Ba also as a function of .c:.

In table 3.1 we quote the values of .c" -Ca and .cb for the nuc1ei we have studied

(24Mg, 126Ba and 160Er, for both potentials 1.43 and 1.49). Note that the values of .c.

and .cb for 126Ba and 160Er are lower for potential 1.43 than for 1.49. This is related

to the behaviour of proton density profiles for heavy nuc1ei mentioned at the end of

the previous section. Subject to potential 1.43, protons are more likely to migrate

towards the surface of the nuc1eus than when subject to potential 1.49. As a result
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Figure 3.4: 126Ba density contours for the three shape familles: axial,
(a), (b) and (c), triaxial, (d) and (e), and sadclle shaped, (f), (g) and
(h). We used potential 1.49 for this calculation. In each frame, the
contour on the left is a cut along the x - y plane and the one on the
right along the x - z plane, with the x-axis running horizontal1y in
both cases (the tick marks are 10 fIn aporl).
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Figure 3.5: Evolution of the deformation characteristics for 24 Mg,
126Ba and 160Er using potential 1.43. The quadrupoie moment Q is
represented by the solid lines and circles (left hand side scale) and 'Y by
the dashed lines and squares (right hand side scale). The dotted iincs
indicate the transitions at which a different family becomes iowest in
energy. Note that the 'Y values for 16OEr's triaxial families are very
small.

of this, at higher angular momenta the nucleus cao withstand higher elongations at

a lower energy c':'st. Thus the lower values of .c. and .cb for the first potcntial.

The deformation characteristics for the potential 1.43 are shown in fig. 3.5 for

24Mg, 126Ba and 160Er. In this figure we have used Qcos'Y = (2z2 _:r;2 - y2) and

Q sin 'Y =(v'3(:r;2 _y2)). We keep Q positive and 'Y in the region 0° - 60° by relabelling

the axes such that (Z2) ~ (y2) ~ (:r;2). The 'Y values identified here remain unchanged
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in the Lund convention.

The axia.! solutions which are lowest in energy in for low va.lues of a.ngula.r mo­

mentum do not correspond to wha.t is a.ctua.lly found in experiment. In the ground

sta.te bands most nuclei ha.ve prola.te !ike deforma.tions and they do not rota.te a.bout

the symmetry axis. The triaxia.! sha.pes tha.t ta.ke over a.t higher angula.r momenta.

ha.ve a. better chance of being rea.liza.ble in na.ture. As mentioned ea.r!ier, these a.re
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Figure 3.7: Same plots as fig. 3.5, but using potential 1.49.

prolate and rotate about their shortest axis; the super deformed bands observed in

experiment are thought tl' )}ave similar shapes. The triaxial shapes of 126Ba and 160Er

shown in fig. 3.5 have large deformations. In the latter case, the ratio of the largest

axis to the smallest axis is 2:1, whereas in the former case the ratio is 3:2. These

happen to be the values found experimentally for both nuclei [46]. However, no

•

great emphasis should be placed on these numbers bccause wc will sec that the ex­

act numerical values depend on the potential used. Also, the saddle-shaped families

have very high deformations but we do not think these are candidates for the super

deformed bands: first, they become the lowest energy solutions at very high values
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of t:.., they only persist for a short while before they reach the nssion limit, and the

change of moment of inertia from one spin statc to another is too great. The triaxial

shapcs show much more consistency in the moment of inertia. These are shown in

fig. 3.6.

In fig. 3.7 wc show the deformation characteristics obtained with potential 1.49.

This demonstrates the sensitivity of the results to the potentials used. With this

potential, the ratio of the largest to the smalIest axis drops from 2:1 to 3:2 in the

case of 160Er. AIso, t:.b has gone from 72 to 90 n. We suspect that quantum effects

left out in Thomas-Fermi theory willlead to a larger deformation and will therefore

3.2.3 Cûmparison with other models

We will now try to establish a link between our results and the classic liquid drop

results of Cohen, Plasil and Swiatecki [23]. In that paper the authors studied the

evolution of liquid drop shapes and energies as a function of rotational energy, keeping

their volume fixed and the density constant throughout the volume. Thus the binding

energy of a liqU;d drop only depends on the surface energy, the Coulomb energy and

the rotational energy. To identify a nucleus with a given angular momentum, the

authors introduced the variables:

(3_33)

•
the superscript 0 indicating that the surface and Coulomb energies are calculated for

the ground state (spherical) solutions, and the rotation energy from the ground state

shape. Note that z (the fissibility parameter) is an intrinsic property of each nucleus

and y is a measure of the rotational energy. The evolution of any drop can then
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be universally established for all values of these variables. Their results (for nuc1ear

drops) can be summarized as follows:

1. As .c. (y) increases, the ground state spheres become oblate, and they arc the

lowest energy solutions. There is a second family of shapes (the saddle-point

solutions) which are also stable, but at higher energies.

2. At a certain value of y (YI), the oblate solutions becom<' unstable to tria."<ial

deformations which become the lowest energy solutions.

3. At a further value Ylh the triaxial shapes cease to exisl (there arc no single­

volume solutions, i.e. fission has occurred).

4. For x > 0.81, YI and Yu become equal.

(Note that the authors nomenclature does not correspond with our own, which cornes

about from the initial densities used t<> generate each family of shapes).

Qualitatively, we observe a similar behaviour in our solutions. In order to make

more quantitative comparisons, we need to estimate the x value for our solutions,

and therefore their surface energies. From our ground state Thomas-Fermi solutions

we can ca1cu1ate r90 and rlO, which are defined as the radii at which the density falls

below 90% and 10% of the maximum density respectively. We then ca1culate the

~umberof D11clco:::s ;nside the sheIl dellned by these two radii and also their energy,

as weIl as the energy that the same number of nucleons wou1d have in nuclear matter.

We define the surface energy as the difference between the two energies (as a check,

we have compared the surface energies thus obtained to the ones we wou1d expect

from the mass formu1a of eq. 1.50 and found that they always agree to within 5%).

Thus we can determine x for each of our nuclei. To ca1cu1ate the corresponding YI we
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• x .cl .c• .cu .cb
24Mg (1.43) 0.129 14.28 fi. 15 fi. ::3.23 fi. 22 fi.

126Ba (1.43) 0.575 57.56 fi. 55 fi. 64.98 fi. 70 fi.

160Er (1.43) 0.684 60.64 fi. 63 fi. 61.31 fi. 72 fi.

24Mg (1.49) 0.107 15.97 fi. 15 fi. 26.10 fi. 22 fi.

126Ba (1.49) 0.478 72.79 fi. 70 fi. 97.07 fi. 93 fi.

160Er (1.49) 0.585 80.32 fi. 80 fi. 89.29 fi. 90 fi.

Table 3.2: Values of x, .cl, .c., .cu and .cb for the different nuclei
studied (the number in parenthesis indicates the potential used) . .cl
and .cu were calculated using the interpolations from ref. 23, whereas
.c. and .cb were extracted from our calculations.

use the interpolation [23]:

YI =0.2829 - 0.3475x - 0.0016x2 + 0.0501x3 for x < 0.75

•
YI =1.4(1 - x)2 - 4.5660(1 - X)3 +6.7443(1 - X)4 for x> 0.75

Since no similar interpolation for Yu is given in ref. 23, we fitted the Yu-curve from

fig. 2b in that reference and found the fol1owing fit:

Yu = 0.787 - 1.239x +0.253x2 - 0.989x3 +1.387x· for x < 0.55

Yu =3.796 - 17.499x +31.355x2
- 25.421x3 +7.770x· for 0.55 < x < 0.81

Yu =YI for x > 0.81

•

We then proceed to calculate the corresponding angular momenta .c(YI) = .cl and

.c(yu) = .cu. The values of .cl and .c. and of .cil and .cb are quite sunilar (see

table 3.2). But the transitions involved in the first case are very different in nature,

and the numerical agreement is in itself surprising, since we are using an underlying

nuclear force, whereas in ref. 23 the authors only consider the surface tension and the

Coulomb repulsion. Also the volume constraint is a very restrictive one (in the case

of 160Er the volume changes by a. factor of 5 just before fission).
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We end our discussion with a short comparison with crankcd quantum mcchanical

calculations [26-28]. Il. is clear that there is an immense differencc bctwccn quantum

and Thomas-Fermi solutions for low 1:.: states. In the former, most nuclei arc prolate

and rotate perpendicular to the symmetry a,xis for the yrast low angular momentum

states. In our Thomas-Fermi theory nuclei are oblatc for yrast low 1:.: states and

moreover they rotate about the symmetry a,xis. One may hope to find bctter cor­

respondence at higher angular momenta. Unfortunately, low mass nuclei brcak up

before such high spin states are reached. Detailed quantum calculations havc bccn

done for 20Ne [27) and 24Mg [28). Except for values of 1:.: at which the nuclei disin­

tegrate there is not much in common between Thomas-Fermi results and quantum

mechanical cranking results for such light nuclei. Quantum mechanical calculations

in which all orbitals are included in the cranking and not just a few "valence" orbitais

are extremely time consuming for larger nuclei. The following observations are made

on the basis of the calculations on 80Sr report~-d in ref. 26. In quantum mechanics

many solutions àre possible based on different occupancies of orbitals and the best

that we cau hope is that Thomas-Fermi solutions are in sorne sense an average of the

quantum solutions. In ref. 26 many bands are shownj between 36 h and 60 h and

as weil as al! the calculated super deformed bands have small values of "'f, just as we

find in our non-axial solutions. Thus in this particular cxample the Thomas-Fermi

ca1culations do reproduce the average behaviour. The values of I:.b are also similar.
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Conclusion

The extended BUU modcl presented in chapter 2 is one of the most complete codes

used in heavy ion collisions. With fluctuations built in, high numerical accuracy,

finite-range potentials and self-consistent initial density distributions, it is the only

one at the moment that has been compared with experimental resu1ts. The quite

remarkable agreement with the MSU results leads us to believe in the validity of the

approach even at such low energies, and has established that mu1tifragmentation is

an important mode of deexitation at this energies.

Despite its success, improvements are still necessary. The most important is to

include more sophisticated potentials, mainly momentum dependent potentials such

as the one described in [48]. While it is rcIatively easy to extend the LHM to include

such potentials, it's implementation presents some very serious problems, not the

least of which is the computer power necessary to run such code (both in CPU time

and available memory). Also, the cascade code has to be modified so that energy­

conservation is guaranteed in a nucleon-nucleon collision [49]. Also one must develop

a. method that correctly treats the ine!astic channe!s within the fluctuation code.

Most important, more compa.risons of the mode! with experiments at different energy

regimes and with a wide variety of systems would be necessary to confirm the overall

validity of the mode!.

The Thomas-Fermi model of nuclear rotations has given us some very useful in-
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sights into the dynamics of nuclear rotations and the role played by the underlying

forces. It has also allowed us to bridge the gap between the classicalliquid drop modd

and the cranking quantum ca1culations. The latter have a much higher predicting

power, but the simplicity of the Thomas-Fermi equations, and the relative ease with

which solutions can be obtained for any nucleus (from one hour of CPU for low an­

gular momenta to a few days for angular momenta close to the break-up value) make

it an attractive exploratory too!.

Once more we emphasize that the quantitative agreement between our model

and the classical calculations is most surprising, given how different the underlying

assumptions are. We believe that this gives validity to the predictions of the liquid

drop mode!. Finally, although direct comparison with experiment is not possible, we

believe that the qualitative features of our solutions at large angular momenta are

probably realistic, including the break up values obtained.
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Phase-diagram for nuclear matter

Wc would like to calculate the phase-diagram of a fiuid of A interacting nucleons

enclosed in a volume V in equilibrium with a hcat reservoir at temperature T. Macro-

scopie observables are calculated as sums over the available states s of the correspond-

ing microscopie quantities, weighted by the Fermi-Dirac occupation probabilities:

• H l
FD= l+exp,8(f'-IL) (A.I)

(For our system, the states cau be conveniently label1ed by the coordinates in configu-

ration and momentum space and spin-isospin labels of the nucleons.) The microscopie

energy f' is then simply the sum of the kinetic term ",' plus the potential term u·.

For nuclear matter subject to Skyrme potentials (eq. 1.36) or Skyrme potentials aug­

mented with a Yukawa term in the limit V -+ 00 (eq. 1.42), u' is the same for ail

states s, and therefore one cau redcfine the chemical potential IL -+ IL - u and the

sum (integral) over configuration space cau be performed trivially. Then sums over

states cau be replaced by integrals over momentum:

•
J dp 47l"V {CO 2

~ -+ gV (27l"1i)3 =9 (27l"1i)3 Jo dpp
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• where 9 is the spin-isospin degeneracy of the nuc1cons. Wc can now ca.<ily calculatc

A, the kinetic energy T, the potential energy V and the entropy S of the system:

A 4r.V 100 p2
(lU)- 9(2r.n)3 0 dp 1 + exp ,8(p2/2m - p)

T 4r.V 100 d p' /2m (A..I)- 9(2r.n)3 o P1+exp,8(p2/2m-p)

V - V [Agn2 + ~n"+t] (A.5)
2 0" + 1

S -9 (~:~3f" dp [/:0 ln 1:0 + (1 - 1:0) In(l - 1:0)] (A.6)-

where wc have defined Ag = A for pure Skyrrne potentials, and Ag = A + 4r.Vo a3 if

we inc1ude a Yukawa term. Changing the integration variable to x = ,8(p2/2m - p),

the integra.1s become:

•
A _ 9 2r.V (2mkT)3/2 ,.. dx (x + ,8p)l/~

(2r.n)3 J-{J.. 1 + exp x

T _ 2r.V (2mkT)5/2joo dx (x + ,8p )3/2
9 (2r.n)3 -{J.. 1 + exp x

2ll"V jooS _ 9 3 (2mkT)3/2 dx(X+,8p)1/2
(2ll"h) -{J..

x [ln(l + exp x) _ 1xexpx ]
+expx

(A.7)

(:\.8)

(:\.9)

•

Note that if we fix two to the observables in the above equations, ail other observ-

ables cao be determined. Thus, ifwe fix A and T, wc ca.n use eq. :\.7 to deterrnine p,

and then ca.lculate T and S. We cao also take advantage of the fact that the entropy

per nucleon is only a function of ,8Il (sec eqs. A.9 and A.7) to ca.lculate the isentropes,

by first solving for f3Il and for different values of A use eq. A.7 to ca.lculate T.

We cao now ca.lculate the pressure: the microscopie kinetic pressure p' is given

by:

(A.10)
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The volume dependance of f' is fixed by the periodicity condition on the wave number:

Thus the total macroscopic pressure l' is just:

l' = 27 _ av == 27 + Ag n2 + -.!!-n<7+1
3V av 3V 2 u+ 1

(A.ll)

(A.12)

1

1

We can now calculate the coexistence curve and the isothermal and adiabatic

spinodals for nuciear matter. The latter curves are defined as the set of loci in the

phase-diagram of pressure extrema along the isothermals and the isentropes respec-

tively. The coexistence curve defines the region of the phase-diagram where both

phases of the f1uid are in chemical equilibrium, and it is determined using Maxwell's

construction. The relevance of these curves is discussed in sec. 1.4.
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