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PART A

MOLECULAR ORBITAL THEORY



CHAPTER 1

INTRODUCTION

Molgcular orbital theory provides an approximate description‘of
the electronic structure of molecules. In this introductory chapter, the
quantum-mechanical basis ¢of molecular orbital theory will be descr:lbed.l"3

According to quantum mechanics, any system is completely deécribed

by a wave function,TiV » which is a function of the space and spin

co-ordinates of all particles in the system. For time-independent or

stationary states, the wave function satisfies the time-independent
1,4

Schrodinger equation,

IC;’Y/’ = E’Y/‘ ' (1.1)

o
where H is the Hamiltonian operator for the system, and the wave function,

o .
‘}L’, is an eigenfunction of H with energy eigenvalue E.

For a molecule, the principal terms in the Hamiltonian1 are the

o o .
electronic kinetic energy (Te), nuclear kinetic energy (Tn)’ internuclear
o ‘ (e]
potential energy (Vnn), nuclear-electronic potential energy (Vne)’ and
o

interelectronic potential energy (Vee)'

(o] (o]

(o] [o] o] [o]
H = T + T+ Voo, + Vo +V,, . (1.2)

Other terms, such as the interactions studied in magnetic resonance, involve
much smaller energies and can be treated as perturbations.5

In order to solve equation (1.1) for molecules, a number of



approximations are usually made in quantum chemistry. The most basic is

1,2,6 in which the total wave function

‘the Born-Oppenheimer approximation,
is expressed as a product of an electronic wave function, ’H?Z,.and the
nuclear wave function,}fﬁn. "The electronic wave function, which is of

primary chemical interest, satisfies the electronic Schrodinger equatidn,

o ) ' .
ne'g’/‘e = BN | (1.3)

The electronic Hamiltonian He includes the electronic kinetic energy, and

the nuclear-electronic.and interelectronic potential energies.l’3

o o o (] )

He. = Te + Vne + Vee (1.4)
From equations (1.2) and (1.4), the total Hamiltonian is

o o o o -

H = H +T +V . (1.5)

e n nn

The electronic wave function and energy depend on the nuclear
o .
configuration, since Vne depends on the nuclear as well as the electronic

co-ordinates. The internuclear potential energy is not included explicitly
o .
in He’ but it must be included in the total energy, and will be considered

further in Chapter 8.
An exact solution of equation (1.3) is impossible for any molecule
1-
with two or more electrons, 4 so that approximate methods of solution must

be used. The basis of most approximate methods is the variational theorem134’6’

which states that for an arbitrary wave function,'?ff;, the expectation

value of the electronic energy, given by
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. o ! .
is greater than, or equal to, the lowest eigenvalue of He’ which is called

the ground-étaté energy of the molecule, Eo' The integrations.extend‘over
all possible values of tke space and spin coordinates of all the electrons
in the molecule., 1If Eo is a nondegenerate eigenvalue, as in all molecules
considered in the thesis, then E = Eo only when'TiVZ is the exact ground-
state electronic wave function of the molecule, and E is greater than Eo
in all other cases.4

This theorem haé been applied in two different types of quantum-
chemical calculation;8

(i) For small molecules; an approkimate wave function depending
on certain parameters is assumed. The energy E is minimized with respect
to thelparameters, and since E is an upper bound to Eo’ the wave function
corresponding to the minimum energy is taken as the best Qéve function of
the dssumed form.l’2

(ii) For larger molecules, the computation of E using the exact
Hamiltonian is impossibly difficult, even with electronic computers. As
in (i), an approximate wave function is assumed and the energy is minimized
with respect to the pafameters. Now, however, the energy is computed from
an approximate Hamiltonian.b Since the variational theorem applies only when
E is computed from the exact Hamiltonian, the computed energy is mo longer
necessarily an upper bound to the true energy. The validity of the approxi-

mate Hamiltonian must therefore be verified by comparing the values of the



energy and other physical properties computed from it with experiment.

The word semi-empirical is used to describe theories which are based on

quantum mechanics, but which employ some experimental data for "calibratlon."1
vVarious forms for approxlmate wave functions have been used in

theories of molecular electronic structures.‘ One which has proved

. especially suitable for quantitative calculationlon'a largé variety-of

molecules2 is based on molecular orbitals. Molecular orbital theory was

originally‘developed by Hund,9 Mullikenlo and Lennardl-Johes,11 and used
for qualitétive descriptions of bonding and electronic spectra in small
molecules.6.’9-11 Later, it was applied extensively to conjugated hydfo-
c:arbonsl’lz-16 and transition metal-complexes.17-19 A general formulation
of molecular orbital theory, independent.of symmetry considerations, haé
" been giveﬁ by Roolthaan.zo’21
An orbital is defined as a one-electron wave function, i.e., &
function of the co-ordinates of one electron.20 In the orbital approximation,
any ;orrelation of the instantaneous motion of different electrons is
neglectéd.1-3 The position of each electron is assumed to be independent
of the insfantaneous positioqs of the other electrons, and to depend only
on their time-average charge distribution. Orbitals have been used to
descriﬂe the electronic structure of both atoms and molecules,3’7 and the
orbitals involved are called atomic and.moleculaf orbitals respectively.
Orbitals were first used in a quantitative theofy by Hartree,22

. . 23 P )
who used them to compute atomic wave functions. Hartree initially assumed

that the total electronic wave function was a simple product of one-electron



orbitals. The Pauli exclusion principle4 states, howeveg, that the total
wave function of a many-electron system must be antisymmet;ic with respect
to the interchange of the space and spin coordinates of any two electrons.
Slater24 showed that the antisymmetry requirement is satisfied by a

determinantal wave function of the form

B I A/ A '\}fa(l)m(:)'._..ﬂff(l)v) (1)
'\If= Y (217 () 1.//(3)7) (2) ey (@ Y)N(a)

(N) (N) (N) (N) ;
N, V a '%("') TN
where 'yﬁi(k) is the ith orbital as a function of the co-ordinates of the
kth electron, and the 47 ; are spin functions (@ or B). This form of wave

function is called a Slater determinant and is often written in the short

form,

? = Det"\f{”}?l 1}/& 772 o % 7~| | (1.8)

25 , . R
Fock incorporated determinantal wave functions into the Hartree method,

and the resultant Hartree-Fock method2’7 has been widely used to compute
7,23,26

atomic wave functions.
The wave function defined by equation (1.8) represents a specific

electron configuration, in which specified orbitals are occupied by electrons

of specified spin. A completely general wave function can be formed by a
linear superposition of configurations, since the set of all possible

determinantal many-electron wave functions formed from a complete set of



one-electron spin-orbitals (products of orbitals and spin functions) is

itself a complete set.l’2

Chemical experience indicates, however, that
the ground state of most stable molecules (provided it is a singlet

ground state) can be well apbroximated by a’single closed-shell

configuration, in which each occupied orbital is doubly occupied by two
electrons of opposite spin.20 For a closed shell, the N-electron wave

function, defined by equatica (1.8) has the form

¥ omlve Ypoovp | o

where n = N/Z.is the number of occupied orbitals. The use of a singlé
determinanﬁ greatly reduces the computatiop required to determine the
eléctronic wave function of a molecule, so that approximate wave functions
may be»detérmined for molecules with a greater number of electrons than
would otherwise be possible. This thesis is concerned with the computation
of single-determinant closed-shell wave functions for molecular ground
stafes..

The object20 of a molecular orbital calculation is to find the
single-determinant wave function with the lowest energy, as determined by
equation (1.6). The molecular orbitals themselves in equation (1.9) are
arbitrary to a certain extent, since the determinant is invariant to a'
unitary transformation among the occupied moleculaf orbitals.27 In practice,
however, the wave function is usually found by solving equations which
determine a set of molecular orbitals, although it is also possible to

proceed by determining the one-electron density matrix directly.28



The Hartree-Fock equations are integro-differential equations,2’7
whose solution is feasible for atéms, due to the siwplification provided
by spherical symmetry.7’2_3 For molecules, this symmetry is absent and
direct solution éf the Hartree-~Fock equatioﬁs is not feasible. 1If, however,
the molecular orbitals are expressed as linear cbmbinations of a set of

basis orbitals,20 instead of being allowed to assume an arbitrary functional

form, then the equations can be solved by the methods of linear algebra, as
outlined inAChapters 2 and 5. 1If a méthematicaily comp1e£e>basis'ﬁere
uéed;‘this would involve no further approximation since the orbitals could
still have an arbitrary functional form. In practice, computation ist
possible only for a finite, incomplete basis, so that it is important to
chéose a basis which yields a good approximation to the wave funcfion with
a limited nﬁmber of terms.

Many different types of basis set have been‘used, especially in

: 29,30
calculations on small molecules. The most usual basis in quantum

chemistry consists of the atomic orbitals on the aifferent atoms of the
molecule. MO's compésed of linear combinations of atomic orbitals are called
LCAO-MO's and have several advantages:

(i)'.The potential acting on an electron in the neighbourhood of
a nucleus is similar to that in the free atom, éo that an atomic orbital
on a given atom is a first approximation to a molecular orbital near that

nucleus.z’29

(ii) The free-atom orbitals have the correct exponential behavior

1,2,29

at the nucleus, which Gaussian functions,31 for example, do not.



(ifi) Since the atomic orbitals are each associated with aﬁ
individual atom, the Hamiltonian matrix elements may be evaluated semi-
empirically rather than compuﬁed a priori, as discussed in Chapters 2-5,

(iv) The charge dénsity corresponding to the computed wave
function can be relateda.z-35 to chemical concepts such as atomic populations,
overlap pépulatibns, hybridization, bond orders, and orbital promotion.

A disadvantage of atomic orbitals as a basis set is that AO's
on different atoms are not necessarily orthogonal. This nonorthogonality
6f tﬁevbasis set can be handled either by tranéforming to a basis of
orthogonalized orbitals, as in Chapter 5, or by systematically neglectiné
terms due té nonorthogonality, as in Chapters 2-4.

| The size of the basis set used in molecular orbital calculations
~varies widely; For very small molecules, basis sets with a large number of
atomic orbitals on each atom are often used.30 Because of the difficulty
of using extensive basis sets for large molecules, however, a minimum basis
set34 is often used. Such 2 minimum basis inciudes a ls orbital for each
‘hydrogen atom in the molecule, and inner-shell and valéﬁce-shell s and p
orbitals for‘each other atom, as well as d orbitals for transition metals.

The size of the basis may be reduced still further by considering
only some of the electrons--usually those of principal chemiéal interest.
Lykos and Parr36.have shown that the electrons of a molecule may be divided
into groups, which may be considered separately, if the total wave function

is expressible as an antisymmetrized product of determinants built up from

mutually exclusive sets of orbitals corresponding to the groups of electrons.



The electrons are initially divided into dis£inct groups, and the
indistinguishability of the electfons is resﬁored only in the final
antisymmetrization. |

The criterion which is normally used, in deciding which electrons
in a.molecule can be tre;ted separately, is chemicgltexperience. Lykos and
Parr36 treated the separation of sigma and pi electrons in planar conjugated
molecules, a separation known as the pi-electroh apprgximation. In this
. approximation, calculétions are made involving the pi-electrons only, and
the éigma electrons are considered as a "core." The detailed,beha&iour of
the sigma electrons is assumed not to affect the conclusions derived from
the calculations. This approximation is mos£ useful for hydrocarbons, and
is of doubtful validity for heterocyclic molecules, since the results of
recent minimum-basis SCF-MO calculations37 on pyridine and pyrazine,
including all electrons, show that there is substantial charge transfer |
from carbon to nitrogen in the sigma-system, and very little in the
pi-éystém.

In this thesis, the electrons in a molecule are divided into
inner-shell and valence-shell electrons. Calculations are made involving
the valence-shell electrons only, and the inner-shell electrons of each
atom are considered, along with‘the nucleus, as a 'core" acting on the
valence-shell electrons. The molecular orbitals occupied by the inner-shell
electrons afe assumed to be identical with those in the free atoms. This

approximation is justified by’ the fact that chemical bonding can be des-

cribed using the valence electrons alone, with the inner-shell electrons
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tréated as inert. Also, the results of calculatioﬁs for small molecules
including all electrons show thgf/fnner-shell orbital energies are very
different from valence-shell §£bita1 energ’ies.2 Manne38 has considered
core-yalence interactions using perturbation theory.

| The title of this thesis indicates that it ig concerned with the
calculation of approximate electronic wave functions built up from molecular
orbitals. All valence eiectrons are considered explicitly, and the éheories-
used are semi-empirical, in that experimental data are used fo assign some
of the quéntities which are difficult to coﬁpute exactly, or té‘correct for
some of the errors inherent in the orbital approximation. Two types of
theory are gonsidered: self-consistent field molecular orbital (SCF-MO)
theories (Chapters 2-4) and independent-electron theories (Chépter 5). This

distinction arises from the nature of the electron;c Hamiltonian equation

(1.4) which may be rewritten in the form

. B, = £ ;1 + = gij : (1.10)

i 173 '

The kinetic energy and the nuclear-electronic potential energy are.writteﬁ
as a sum of one-electron energies for each electron in the molécule, while
the interelectronic potential energy is expressed as a sum of two-electron
terms ;ij’ for each pair of electrons. The two-electron terms are
difficult to handle, and are therefore not alwayg explicitly included.
In independent-electron theories (Chapter 5) a simplified Hamiltonian is

used which is a sum of one-electron terms,

(o] [o]
D oeff _ 2 hieff .11
i _—



11.

o
where hie £ is an effectlve one-electron Hamiltonlan, which 1nc1udes the

' nl
two-electron terms "in some average way.' Such methods are not rlgorousl
y

justifiable but are popular because of their computational simplicity.
SCF-MO theories, on the other hand,‘include the two-electron terms

explicitly, as in equation (1.10), and will be discussed in Chapters 2-4.
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CHAPTER 2

SELF-CONSISTENT FIELD MOLECULAR ORBITAL THEORY

In this chapter, the calculation of_determinantal wave functions;
of the form given by equation (1.8), is considered. For molecules of high

symmetry, the form of the molecular orbitals can often be written down from
2,6,20

symmetry considerations alone, but this is not true in general. It

is therefore necessary to formulate a method to find the determinantal wave

- -

fuﬁction with the lowest possible energy.

In the related problem for atoms, the orbitals are general
functions of unrestricted form;"Minimization of the energy of the deter-
minant, equation (1.8) leads to the integro-differential Hartree-Fock
euqatiops,7 which may be solved by an iterative method originally due to
Hartreé,22 For atoms, it is feasible to solve such equations because of"

spherical symmetry.7’22’23 However, the absence of such symmetry in

molecules makes the Hartree-Fock equations in their integro-differential

20,21 showed that, if the molecular orbitals

form intr_actable.2 Roothaan
are expressed as linear combinations of specified basis orbitals, such as
atomic orbitals, then the Hartree-Fock equations can be reduced to the
algebraic equations described in Section A of this chapter.

The Roothaan equations have been applied'to the determination of

29,30,39 .5 well as for atoms. >

wave functions for many small molecules,
However, the amount of computdtion involved makes it difficult to solve the,

equations, except for very small molecules, even with the use of modern
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electronic computers, because of the need to evaluate large nﬁmbers of
electron-interaction integrals, as discusséd later. Since chemisté are
often interested in much larger molecules.than those for which Roothaan's
equations ‘can be solved, it is desirable to éimplify the theory so that it
can be extended to'larger molecules. One way to do this is to use the
"Zero Differehtial’Overlap" (ZD0O) approximation, which waé.introduced by
Parr,40 and forms the basis of the highiy successful semi-empirical

1, of pi-electrons used to study.conjugated

organic molecules.1 Recently, Pople, Santry and Sega.llﬁ-46 have considered

Pariser-Parr-Pople theory4

the extension of the ZDO approximation to molecular orbital calculations
involving all valence electrons, with emphasis on the ways in which the
approximation can be made so as to preserve the invariance properties of

the wave function.43 This is discussed further in Sections B and C.

A. ROOTHAAN'S EQUATIONS -

Roothaan originally proposed equatioﬁs for the case of closed~
shell molecules,20 in which the wave function is a single Slater determinant
of the form given by equation (1.9). Later, he extended thése equations to
open-shell molecules,21 whose simplest description may be a linear combina-
tion of determinants of the general form given'by equation (1.8). This
thesis considers only the closed-shell case. |

20 : . . : .
Roothaan showed that for a single-determinant wave function,

Y = net”fla Q}fla e .'\}rnsl | @9y
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for a closed-shell molecule, in which the molecular orbitals are
orthonormal linear combinations of some basis orbitals, ¢k’ so that

o |
»\{/i= > e.c,  A=l,.... 0 : (2.1)

k=1

the energy is a minimum when the coefficients Cki

satisfy the secular

equations
n n ' :
}_:, Fu Gy = {_V_: S, €3 F 2 (ei=1, ..., 0 (2.2
1=1 =1
.In matrix form, this becomes
FC = SCE (2.3)
where E is a.diagonal matrix.

In these equations F is the matrix element of the Hartree-Fock

o kl

Hamiltonian operator, F, in the atomic orbital basis set,

o * o .
-Fkl = j¢k (1) F ¢1 (1) d V1 (2.4)
and Sk 1 is the overlap integral,
= [aF @ o, @a 2.5
Sq = | % (D 9 (D vy (2.5)

The integration extends over all spéce. 1f Skl is zero, then ¢k and ¢1
are said to be orthogonal.l”6 Atomic orbitals oh different atoms are not,
in general, orthogonal to each other.
The condition that thé molecular orbitals are orthonormal can be
d i i . i .
expressed in terms of the ovgrlap integrals. The orbitals V/i and 'qu

are orthonormal if
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¢f% av =f(-kz B C:i)(il gy ¢, ) dv

* %
= Zk.%__ ck],L °1j f¢k ¢1 dv = Sij (?.6)

On substituting equation (2.5) into equation (2.6), the orthonormality
condition becomes
2 Y ¢ .s, -8 | 2.7
T ‘T ki 1lj 7kl RS & (2.7)

or in matrix form,

ctsc = 1 L (2.8)

where C+ is the Hermitean adjoint of C, and I is the unit matrix.

Ei'is the energy eigenvalue of the molecular orbital"l, and can
be related to a molecular ionization potential (Chapter 7). The orbital
energies can be expressed in terms of the coefficients by pre-multiplying
equation (2.3) by C+:

¢t rc = c*osce _ (2.9)

From equations (2.8) and (2.9),

E = ¢ FC : (2.10)
and the orbital energy Ei is given by
*
E, = :E Cki C11 Fkl (2.11)

k,1
The secular equations (2.2) are written as linear equations,20

so that if the matrix elements Fr1 k1

equations can be solved by the methods of linear algebra. In the simplest

and S are known, the secular

case, the nondiagonal overlap matrix elements, Skl » (for k # 1) are neglected,
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so that S is the unit matrix, and equation (2.3) is simply an eigenvalue

equation. If the nondiagonal S are included, then equation (2.3) can
q K q

1

be reduced to an eigenvalue equation by Lowdin's method,47 as described

in Chapter 5.
The difficulty in solving Roothaan's equations is that the Hartree-

Fock Hamiltonian, ;, includes electron-repulsion terms, which in turn depend'

on the molecular orbitals. This'means that the matrix elements, Fk1 s

cannot be evaluated until the molecular orbitals are known. But the

.coéfficients Cki

equations. The standard procedure in self-consistent field molecular

in the molecular orbitals are determined from the secular

2
orbital theory is to solve the secular equations by an iterative method, 0

which will be described after examining the matrix elements Fkl'
Roothaan expressed the Hartree-Fock Hamiltonian operator in terms of
integrals of operators over molecular orbitals. For computation, it is

more convenient to express the matrix elements directly in terms of atomic

orbitals, as done by Lennard-Jones,27 Hall,48 and Pop_le.42 The following
form is due to Pople.42
Fkl = Hk]. * rXs PrS {(kl /rS) ) 1/2 (kS/rl)} | (2'12)
R .

All the molecular orbitals have been expanded in terms of atomic orbitals,
and the summation extends over all atomic orbitals in the basis set. Hkl

is the matrix element of the one-electron core Hamiltonian for an electron

in the field of the atomic cores, consisting of the nuclei and any inner-

shell, or sigma, electrons not considered explicitly in the problem. This
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‘Hamiltonian consists of the kinetic emergy plus the potential energy due
to all the atomic cores in the molecule, so that the form of the one-

electron core matrix elements is

o
Hkl = fﬁ: Hcore ¢1. dv =f¢: (-1/2 Vz + Z VA) ¢1 dv (2.13)
A : .

V, is the potential of the atom A; the summation extends over all the atoms

A
in the molecule, and the integration extends over all space. The matrix
P is defined by the expansion of the one-electron density matrix in terms

of the basis orbitals:28

P - Zéﬂmlﬂf kZ%a glczicu) B 9y = ZIZPM‘”;%

k
(2.14)

where i is summed over the doubly occupied molecular orbitals, and k and

are summed over the basis orbitals, so that
P, = 2 :E C* C ' (2.15)
kKl T ki TN : .

The quantities (k1 /rs) are electron-interaction integrais between two

electrons with specified charge distributions,27’42’48

k1l /rs) =ﬂ¢: (1) ¢1ll)%12 ¢: 2 8, () dv; dv, (2.16)

wvhere Ty is the distance between the two electrons. In the most general
case, k, 1 , r and s refer to orbitals of four different atoms, and the

integral given by equation (2.16) is called a four-centre integral.2

‘Equations (2.12) to (2.16) complete the specification of the terms
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in Réothaan's eéuations. If equations (2.12) and (2.15) are substituted
into equations (2.2), the fesulting equations for the coefficients ére cuﬂic
simultaneousvequations,'48 so that the methods of linear algebra camnot be
used. It is therefore more éonvenient.to solve the linear equations (2.2).
The standard method of soluéion of Roothaan's equations is the iterative
procedurezo shown in Figure (2.1):

(1) The quantities Spy .° Hkl and (kr/i s), as defined by
equations (2.5), (2.13) and (2.16) respectivelj, are initially computed,
since they do not depend on the coéfficients Cki' |

(ii) An ini£1a1 F-matrix, Fo’ is assigned arbitrarily.

(iii) The matrix equation (2.3) is solved to find the LCAO

coefficients, C

ki’
(iv) The P-matrix is computed from equation (2.15).
) A new F-matrix is computed from equation (2.12).
(vi) The C and P mafrices are found from the new F.
(vii) The new P-matrix is compared with the prévious one. If
they do not agree within a specified tolerance, another trial P-matrix is
assigned using fhe previously computed matrix as a guide, and the iterative
cycle (Steps v-vii) is repeated.
(viii) After a number of iteraéions, it will usually be found that

two successive P-matrices are identical. The calculation is then said to

have converged to self-consistency, and the final result corresponds to a

solution of Roothaan's equations.

This iterative method of solution is essentially the same as that
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used by Hartree22 for atoms. Each P-matrix corresponds to a chargé
&istribution, and each Hamiltonian matrix to an electrostatic potential
field. The physical significance of the iterative cycle, therefore; is
that the potential field of successive charge distributions ig found, and
used to generate new charge distributions. When the calculation has con-
verged, the potential field generates the same charge distribution which
produces it. But this is the only physically possible situation, so that

the self-consistent field represents a physical solution to the proBlem.

Thefe is, unfortunately, no rigorous proof that this method of.
golution will converge in every case. However, the computer programme'used
to perform the calculatioﬁs described in.this thesis (Appendix ¢) was found
to converge for most molecules considered. The method of selectiom of the
density matrix for each jteration is arbitrary, and different procedures
may affect the rate at which the calculation converges, Or may even cause
it to diverge, but they will not affect the resul;s if, in fact, the calcula-
tion does converge, since each solution of the Roothaan equations corresponds
to a possible electronic configuration of the molecule, and most molecules
with closed-shell ground states do not have low-lying excited stateé.

Adams49 has shown that the question may be more complicated for open-shell_
atoms or molecules, which do have such low-lying excited states.

1t should be noted that the above remarks would not apply strictly
if the coefficient matrix were ﬁsed as a criterion of convergence,'inétead
of the density matrix, although this might seem an equally valid procedure.

The difficulty is that if there are one or more sets of degenerate molecular
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orbitals, and the matrix C is a solution of equation (2.3), then the matrix
C' = CU, where U is a unitary transformation among the degenerate molecular
orbitals, will also be a solution. However, the density matrix and the
wave function are invariant to any unitary transformation among tﬁe

doubly occﬁpied mblecular orbitals,27 so that such a transformation has no
physical significance. This means that in a calculation in which the
orbital coefficients are used as the criterion of convergence, the
coefficients may keep changing on successive iterations after the pdpulation
matrix and waQe function have converged, so that orb@tal coefficients are
not a suitable criterion of convergence.

The Roothaan equations have been used extensively in molecular-
orbital computations on small molecules.29’3o’39 For an extended basis set,
the wave function approaches the Hartree-Fock wave function as the size of
*“ gince the permitted functional form of the
molecular orbitals becomes more and more flexible as the basis aﬁproaches
completeness.l Many calculations, however, have been done with minimum
basis sets, in the senée defined in Chapter 1. The expeétatibn values of
one-electron operators are well approximated by Hartree-Fock wave fﬁnctions;so
Physical properties involving two-electron operators are not so well
eétimated. In particular, molecular bonding energies, or dissociation
energies, are seriously underestimated.zg’30

The applicability of the Roothaan equations is limited by the

extensive computer time and memory required to evaluate and store the

electron-interaction integrals. The three- and four-centre integrals
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cannot be expressed in closed analytic form, but must be evaluated51 either
by numerical integration, or by summation of an infinite series to conver-

gence, both of which are time-consuming procedures even with a computer.

- Furthermore there are approximately N4/8 such integrals, where N is the

number of orbitals in the basis set, so that the computer time and storage
space required is proportional to the fourth power of the size of the basis.
A recent molecular-orbital calculation, including all electron-interaction

integrals, on the molecule B4H4’ with a minimum basis set of.24 Slater-type

orbitals, required 20 hours of computation time on an IBM 7094 computer,

mostly for the compﬁtation of four-centre integrals.52

The time required to evaluate a single integral is reduced for a
basis set of Gaussian-typé orbitals? for which the three- and four-centre
integrals can be evaluated in closed form.31 The disadvantage of this
method.is that it has been found necessary to use several Gaussian-typé
orbitals to approximate the behaviour of a single atomic orbital, so that
the éize‘of the Basis set required to give a good approximation to the wave
function is greatly increased.30 The use of a Gaussian basis therefore
results in only a moderate saving of computer time, and a great increase
in computer storage requirements.

In order to reduce the computation involved in the Roothaan method
so that it may be extended to larger molecules, it‘is therefore necessary
to eliminate the computation of three- and four-centre electron-interaction
integrals from the problem. One possibility is to estimate these integrals

8,54

using simple approximation formulae,53 and some authors3 have developed

30
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approximate molecular orbital theories using the Mulliken approximation.55
In this thesis, however, a theory is considered, in which the threef and

four-centre integrals are eliminated entirely.

B. THE ZERO-DIFFERENTIAL OVERLAP(ZDO) APPROXIMATION

The electronic-interaction integrals given by equation (2.16) have
as integrand a product of two one-electron orbitals and the electrostatic
potential -energy operator (1/r12)( Each one-electron function has the
form

or (1 8, (1 | 2.17)

called the differential overlap of orbitals k and 1, since its integral

over all space is the overlap integral, defined by equation (2.5). Parr40

'proposed the zero-differential-overlap approximation (ZDO), in which the

differential overlap is assumed to be zero except when k and 1 refer to
the same.orbital. It follows that all electron-interaction integrals

vanish,40 except for coulomb integrals of the form

g, = (kk/rr) = fj g (1) 9, (1) %12 B (D) 0, (2) dv, 4V, (2.18)

. . . t
representing the electrostatic repulsion between an electron in the k h

orbital and one in the rth orbital, and that the overlap integrals are
zero for k # 1. Pople42 pointed out that it is consistent to neglect both
the overlap integrals, representing the magnitude of overlap charge dis-
tributions, and the electron-interaction integrals representing their '

interaction with other charge distributions.
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The ZDO approximation has been justified56 by reference to a‘

basis set consisting of symmetrically orthogonalized orbitals, or Lowdin

orbitals. These orbitals are defined47 by the matrix equation

g = psl/? (2.19)
" where a'is a row vector containing the Lowdin orbitals, @ is a row vector
containing the original basis orbitals, and S -1/2 is a matrix satisfying

the equation

s71/2 g g71/2 I , (2.20)

where I is the unit matrix.
The basis set defined by equation (2.19) is that orthogonal basis set
which most closely resembles the non-orthogonél basis set @, in the sense

that the sum of integrals,

zﬂa . O aw

is a minimum In fact the Lowdin orbitals are similar to the orlginal
atomic orbitals, except that each is more localized around the atom on
which it is centred.58 1f tne Roothaan equations are considered to apply
to a basis set of Lowdin orbitals, then the overlap integrals vanish since
the new basis is orthogonal. The electron-interaction integrals, except
for the coulomb integrals defined by equation (2.18), have been shown to
be quite sma11.56’58 For a basis set consisting of Lowdin orbitals,
therefore, the ZDO approximation is a valid approximation. If this

approximation is used with a basis set of ordinary atomic orbitals, it is

implicitly assumed that the orbitals are similar enough to the Lowdin
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orbirals for the approximarion to remain reasonable. Adams and Millers.9
have recently shown that, in the case of conjﬁgated hydrocarbons, the
Pariser-Parr-Pople theory is improved by transforming all matrix elements
so that they refer exp11c1t1y to a basis set of Lowdin orbitals, but such
a traensformation is not usually carried out.1

The ZDO approximation has been used extensi?ely in the study of
the properties of conjugated organic molecules, together with the bi-
electron approximation.1 Pople42 described the simplification of the
Roothaan equations for the case of a basis eon51sting of one p1-orb1ta1
om each atom, and applied these simplified equations to the study of con-
jugated hydrocarbons. Pariser and Parral treated the imtegrals in the
simplified equations as empirical parameters, to be given the valﬁes
leading to best agreement with observed electronic spectra, instead of
being calculated directly, so that the method is semi-empirical in the
sense of Chapter 1. The Pariser-Parr-Pople theoryal’42 has been ueed in
molecular orbital calculations on a wide variety of conjugated hydrocarbons
and heterocyclic molecules.1 The parameters used in the Pariser-Parr-Pople
theory are discussed further in Chapters 3 and 4 in relatlon to the
parameters of the semi-empirical self-consistent field molecular orbital
theory for all valence electrons.

Pople, Santry and Sega.lza-.46 have recentiy considered the
extension of the ZDO approximation to molecular orbital calculations
including all valence electrons, and considered its effect on the invariance

. 4 .
properties of the wave function. 3 1f the Roothaan equations are solved
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without further approximation, then the determin#ntal wave function is
jnvariant to all orthogonal transformations of the basis set. Pople

et alf’3 showed that this invariance depends on the transformation properties.
of the one~ and two-electron>integrgls Hk]. and (kr/ 1 s), defined by -
equations (2.13) and (2.16) respectively, and that it is not preserved

under the ZDO approximation. However;'it is possible to make ZDO-type
approximations which preserve the invariance of the wave function to
orthogonal transformations among atomic orbitals centred cn the same

atom.43 There are two types of these atomic transformations:

-(i) Rotations - of the molecular co-ordinates, or transformations
among atomic orbitals of the same azimuthal quantum number (e.g., P py,
and pz) ~on the éame atom. Since there is in gemeral no uniquéAchoice of
axes for a molecule, it is important that any calculated wave function be

invariant to such rotatioms.

(ii) Hybridizations of the atomic orbitals, or transformations

amohg atomic orbitals of different azimuthal quantum number (e.g., s and p).
Since it is often useful to discuss cﬁemical bonding in terms of hybrid
atomic orbitals, the calculated wave functions shoul& aleo be invariant

to hybridization of the gasis.set.

It.is less important that the wave function be invariant to general
transformations among atomic orbitals on different.atoms, since non-atomic
basis sets are not normally used in descriptions of chemiéal bonding.

Pople, Santry and Segal43 therefore proposed two methods of formulating

the ZDO approximation so as to retain the invariance of the wave function

-
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with respect to orthogonal transformations among atomic orbitals on the
same atom.

(i) The simplest is that of "complete neglect of differential
ove;lap" (CNDO). In this approximation, all differential overlaps of the
form given by equation (2.17) are assumed to be zero, even when the two
overlapping orbitals are qentred on the same atom. In order to preserve
the invariance of the wave function, it is also necesséry to make certain
further appro%iﬁations, deécribed in Section C.

(ii) A less drastic approximation is that of "neglect of diatomic
differential Qverlap" (NDDO), in which the différential overlap of two
orbitals is'assumed to be zero only when they are centred on different
atoms. This means that the electron-interaction integrals (k1 /rs). are

included.in the calculations whenever the kth

and | th rbitals are
centred on one atom, and the rr'h and sth orbita;s are centred on a second
atom.

Dahl60 has shown that the CNDO approximation can be justified by
reference to a bésis of Loﬁdin orbitals, although this i; not possible for
the NDDO approximation.60 Kaufman61 also suggested a series of ZDO-type
appfoximations for use in SCF-MO theories including all valence electrons,
but did not consider their invariance properties. Ruttink62 and Manne38
have considered the invariance properties of SCF-MO theories in which
differential overlap is retained, but the electron-interaction integrals

are estimated by simple approximation formulae.

In addition to the two levels of approximation proposed by Pople,
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Santry and Segal,43 intermediate approximations have been suggested by
Dixon,63 and by Dewar and Klopman.64 The salient difference between the
theories proposed by these authors and the CNDO approximation is the

inclusion of one-centre exchange integrals, of the form

(ki /kr) = ffwz 1 9, (L %lz'sa: ) 8, (2 av, av, (2.22)

where k and r are different orbitals of the same atom. These inﬁegrals
were included by Dixon63 in order to predict splittings of configurational
degeneracies in open-shell molecules, and_by Dewér and Klopman64 to predict
accurate heats of formation for hydrocarboms.

44,45 have used the CNDO approximation in

Poﬁie and. Segal
molgcular-orbital calculations on a number of small molecules, and compared
the calculated charge distributions, dipole moments, equilibrium configura-
tions and force constants with those obtained from_the exact Roothaan
equations, as well as with experiment. Santry and Segal46 have.extgnded
this work to molecules containing atoms in the second row of the periodic
table, and included the 3d orbitals of these atoms in the basis set. The
CNDO approximation has also been used fecéntly to study dipole moments of
orgaﬁic molecules,65 hyperfine coupling constants in sigma-electron
radicals,66 and the electronic excited states of small molecules,67 and of
benzene and ethylene.68

The NDDO approximation has not yet been used in a molecular

calculation, but the intermediate approximation with inclusion of one-centre

exchange integrals has been used to study small molecules63, simple
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hydfocarbons64 and highly strained hydrocarbons.sg.

In this thesis, molecular-orbital calculations are made using
the CNDO approximation, as formulated by Pople and Ségal.45 However, the
parameters in the Hamiltonian matrix elements are evaluated by different
methods, so that the caléulations are in effect made usiﬁg a different
theory. 1In the next section, the CNDO approximation is described in

detail, and in Chapters 3 and 4, the parameters used are discussed.

C. THE COMPLETE NEGLECT OF DIFFERENTIAL OVERLAP (CNDO) APPROXIMATION

In the self-consistent field.molecular orbital theory with
complete neglect of differential overlap43 (SCFJMO—CNDO), the following
approximations are made to simplify the Roothaan equations:

(i) All integrals containing differential overlaps of the form
(2.17), where k and 1 are different atomic orbitals, are assumed to be
zero. Specifically, overlap integrals (2.5) between different orbitals
are néglected, and electron-interaction integrals given‘by equation (2.16)
a?e qeglected, except for coulomb integrals Byy® 25 defined in equation
(2.18).

If this approximation alone were made, the Hartree-Fock Hamiltohian

matrix elements giﬁen by equation (2.12) would be simplified to

Fae = Hge t 2 P8 - M2 By gy (2.23)

and
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Fg = Bgq "~ 2PFg 8g s (2.24)

These equations, however, are ndt invariant to orthogonal transforpations
among atomic orbitals on fﬁe same atom, so that further modifications must
be made. , A

In order to interpret the diagonal matrix elements givén by
equation (2.23), the expansion sf the one-electron density matrix in terms

of basis orbitals, equation (2.14), can be integrated over all space.

| frdv=Z‘ZPrsf¢:¢sdv= 2 P - (2.25)
r‘S r

since the basis orbitals are orthogonal. Equation (2.25) corresponds to
a partition of the total electronic charge among the atomic orbitals, so
that Prr is the population of the rth orbital, in the sense used by

Mulliken,33 and the P-matrix is called the population matrix. The

definition of orbital populations in molecular orbital theories which
include overlap is discussed in Chapter 5.

The concept of orbital populations leads to a~simp1e electrostatic
iqterpretation43 of equation (2.23). Fkk is the energy of an electron in
the itomic orbital ¢k, which is equal'to the sum of its energy Hkk in the
field of its atomic cores, and the electrostatic repulsion due to the
electron populations of all the valence-shell orbitals, less one-half the
population of the kth orbital itself. This lést subtracted term is the

contribution of the kth orbital to the exchange charge density,2 the

contributions of other orbitals‘being omitted in the CNDO approximation.
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(ii) _Thé coulomb integrals g, . for all orbitals ¢k and ¢r’
on atoms A and B respectively, are all assigned a common value AR’
characteristic of the atoms only and not of the orbi£als themselveg.
This value 8aB represents "a@ average repulsion between an eléctron in a
valence atomic orbital on A and another in a valence otb}tal on atom B."43
It may be seen by considering the case where A and B are thé same atom that
this assumption is not strictly valid, since the coulomb repulsion energy
between two electrons in the same atomic orbital would be expected on |
physical grounds to be greater than that between two electrons in different
orbitals, since electrons in the same orbital have a greater probability
of being close to one another. Ho@ever,'Pople, Santry and Segal43
showed that this approximatioq is a consequence of the CNDO approximation
and the requirement of invariance under orthogonal transformations of
atomic orbitals on the same atom. The magnitude of the errors introduced
by this approximation for the case when A and B are the same atom will be
examined further in the next chapter.

(iii) The diagonal core matrix elements Hkk,.defined by equation
(2.13), are each partitioned into an atomic term U Kk and a sum of terms

k

over the other atoms in the molecule.

%
.}f . v. ¢ dv = U, + }i \'
54A k 'B k- kk 37 AB

Hy =‘Jﬂ.¢: (-372+v) 8 dV +

(2.26)

Ukk is the diagonal matrix element of the th orbital on atom A with

respect to the kinetic energy and to the potential energy of the core of

atom A, and may have different values for different orbitals on the same
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AB

atom A with the core of atom B, and must be given the same value for all

atom, denoted by Uss’ Upp, etc. V,_ is the interaction of an orbital on

orbitals on atom A in order to preserve the invariance of the Roothaan
equations to atomic tfansforniations.43 The evaluation of Ukk and VA# is
considered in Chapters 3 and 4. ‘

(iv) Off-diagonal core matrix elements between orbit#ls on -the
same atom are each partitioned into a sum of an atomic term and interatomic

terms:

*
B, = U, + 5&. B Vg9 dVv . (2.27)

where ¢k and.¢1 are both orbitals on atom A. The interatomic terms
represent the interaction of an overlap charge distribution with the
potential of the core of other atoms, and therefore vanish according to

the ZDO approximation. The atomic term U is the matrix element of -the

_ ' k1l
kinetic energy and the spherically symmetric potential energy of the core

of atom A, and is zero when ¢k and ¢1 are eigenfunctions of angular
momentum, i.e., pure s, p, d,. . .orbitals. For hybrid orbitals; however,
this is not necessarilybso.43 For this reéson, the most convenient basis
sgs_ggr computation is a basis set of pure s and p (and d) orbitals. Since
the equations have been formulated so as to preserve invariance with respect
to hybridization, however, the results may be interpreted in terms‘of a
hybrid basis set.

(v) The off-diagonal core matrix elements between orbitals on

different atoms contain the differential overlap of two orbitals as a
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factor in their integrand. However they'cannot be neglected since if
they were, the theory would not predict bonding. Furthermore, it is not
necessary to néglect them for consistency with the neglect of electron-
interaction integrals, since.they are not small if evaluated over the
Lowdin orbitals, defined by equation (2.19).
These integrals are evaluated by the equation
B, =-7 (B + Bp S (2.28)
By 2 Py + Pp) Sia ) :

~where Bz and ﬁg are bonding parameters characteristic of atoms A and B

respectively, and Sk1 is the overlap integral, defined by equation (2.5).
The invariancé properties of the Roothaan equations in the CNDO approximation
are ensured by setting the off-diagonal core matrix elements between all
orbitals on a given pair of atoms proportional to the overlap integrals.
Actualiy, the proportionality constant could be allowed to vary_with the
interatomic distance or the molecular environment.43 Howevér, in order to
tesf the.theory with as few different parameters as possiblg, Pople and
Segal44 proposed the formula (2.28), in which the proportionality constant
between ‘the core matrix elements and overlap integrals depends only on the
nature of the two atoms on which the orbitals are centred.

If all the above approximations are made, the matrix-elements,
equations (2.23) and (2.24) are reduced to the simblified forms44

1

+ (PAA-—Z-Pkk) Bap + z (PBB Ban + VAB) (2.29)

B#A

and



34,
R QPSR Lo /
where the orbitals ¢k and ¢1 are on atoms A and B respectively. PAA is
the total valence-shell electronic charge on atom A, defined by
. A |
PAA = % Pk ©(2.31)

2

where the summation extends over all valence-shell orbitals on the atbm.
All pther syﬁbolé in equations (2.29) and (2.30) h;ve been defined
previously. .

For a basis set of pure s and p (and d) orbitals, equation (2.30)
applies.even when it refers to two orbitals on the same atom, when the
first term vanishes, since the orbitals are orthogonal.

The matrix elements given by equations (2.29) and (2.30) have
been used in the self-consistent field molecular orbital calculations
described in this thesis. With neglect of differential overlap, the

secular equations (2.2) reduce to

n n
& Fk1 Cqs = 5 Cli Ei (k =1,. .y M) (2.32)
which is just the eigenvalue problem,
FC = CE ' (2.33)
The orthonormality condition, equation (2.7), is néw
‘:—21: Cei C13 % * %: Cei Okj T B (2.34)

or in matrix form,
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cc = I (2.35)

A minimum basis se£ of valence-shell s and p orbitals on atoms
other than hydrogen, and 1 s orbitals on hydrogen atoms, has been used.
Thé calculations do not include any d orbitals in.the basis set, and have
-ltherefore.bégn restricted to molecules in which d orbitals are not needed
in simﬁle valence~-bond descfiptions of the chemio;i bonding.. That is, no
calculations have been méde on moleFules with a transition-metal atom, or
on ﬁolecules with an atom surrounded by a total of five or more bonds and
" lone paifs (e.g. PFS’ SF4).

The next two chapters are devoted to the evaluation of the
parameters appearing in the matrix eleménts defined by equations (2.29)
and (2.30). Detailed consideration of these parameters is essential since
their valges determine quantitatively the calculated molecular orbitals,
and therefore the values of physical properties derived from molecular
orbital theory. 1In éhapter 3, the atomic‘parameters Uss; Upp and Ban
which may‘be related to atomic spectra, are discussed. Chaptér 4 concerﬁs

the interatomic parameters parameters gAB’ ’ BZ, and Skl , which are

VaB

defined only with reference to the molecule.
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CHAPTER 3

EVALUATION OF ATOMIC PARAMETERS

A, EVALUATION OF PARAMETERS IN MOLECULAR ORBITAL THEORY

There are several different approaches for evaluating the
parameters in molecular orbital theory. In accura&e calculations,29’3o
in which all electron-interaction terms are included in the Roothaan
equations, an explicit gasis set is chosen, coﬁsisting of atomic orbitals
of a specified functional form, 'such as Slater orbitals, 70 and all the
integrals'are evaluated explicitly. The simpler integrals can be
evaluated anaiytically, and the more coﬁplex integrals computed
numerically.51 The assigned parameters are in the functions chosen as
. -basis orbitals. In the CNDO approximation, however, many térms in the
Roothaén equations are neglected, and in order to improve the SCF-MO-CNDO
theory, the remaining terms can be modified so as to include the effect
of the neglected terms, as well as to correct for errors due to appfoxi-
mating the wave function by a single Slater déterminant. The details
of these modifications are discussed in this chapter and the next.

Alternatively, all the parameters can be assigned empirically,
as in simple molecular-orbital calculations, such as the Huckel theory of
éi-electron systems, for which a set of coulomb and resonance "integrals"
for different atoms is selected to give the best agreement between

calculated and experimental physical and chemical properties for a variety

of molecules.15 Such an approach is not very satisfactory because it has
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been found that the best parameters depend on:

(i)~ The properties whose calculated values are compared with
experiment. Thus in conjugated hydrocarbons, the estimates of the carbon-
carbon resonance integral vafyvfrom -1.4 ev. to -3.14 ev., depending on
whether the ‘estimate is based on ionization potentiais, electron affinities,
electroﬁic spectra, or resonance energies.

(ii) The molecule for which the parameters are determined, as
can be seeﬁ from the wide ranges of the heteroatom parameters surveyed by
Streitwieser. | |

These defects are inherent in the simple Huckel theory which
has too few parameters for one set to correctly predict different properties
of different molecqlés. On the other hand, it would not be satisfactory
to assign all thé parameters empirically in a less approximate theory,
such as the SCF-MO-CNDO theory, since the parameters are formally defined
as quantum-mechanical integrals. If the parameters were evaluated
compieteiy empirically, then the relation of the theory to guantunlmecﬁanics
- Qould be lost. It is therefo;e necessary to base the parameters on
theoretical arguments, with systematic modifications to allow for correla-
tion and achieve agreement with experiment.l

In this thesis, the parameters which can be defined for isolated
atoms are evaluated from atomic spectroscopic data; which is thereby used
to predict malecular properties. This is the reason }or the separate
discussion of atomic and interatomic parameters.

Atomic spectroscopic data were first used in a molecular
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71
calculation by Moffitt, to predict the electronic spectrum of the
oxygen molecule by his method of "atoms in molecules". Pariser and Parr
72,4 used Moffitt's idea to determine parameters in molecular orbital

calculations on pi-electron systems of conjugated molecules, and introduced

atomic spectroscopic data in the form of valence-state energies.

B. VALENCE-STATE ENERGIES:

A valence state of an atom, as defined by van Vleck,73 is a

state in which the electronic interactions within the atom are the same as

those in a molecule.73_75

Such a valence state would be formed in a
hypothetical process in which an atom waé removed adiabatically from the
molecule, without the central atom being affected, In methane, for

example, if the neutral hydrogen atbms were removed, the carbon atom

would be left in a valence state with four tetrahedrally hybridized orbitals,

73,75 Ionic valence states are formed by

each occupied by one electron.
dissociation into ionic products.74 In the neutral valence state, each
‘carbon orbital is occupied by an electron of opposite spin to the electron
on the hydrogen atom, to which the orbital is 5onded in the original |
molecule, but the relative orientation of the electrons in any two carbon
orbitals is not fixed by the process of formation of ;he valence state, so
that it is equally prob;ble that two electrons ih different orbitals haQe'
parallel or opposite sPins.73-75 This random relative orientation of spins

is a general property of a valence state, in contrast to a spectroscopic

state, which has a definite number of electrons of each spin. Thus a
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valence state is, in general, a linear combination of several spectro-

scopic states, and its energy can, in principle, be calculated &irectly

76,77

from spectroscopic data. Unfortunately, some of the spectroscopic

components in the expansion of valence states are highly excited, and
have either not been observed, or observed only with doubtful accuracy.
Since the energy of a valence state depends on the energies of all its

component spectroscopic states, the energies of many valence states either

cannot be calculated in this way, or are seriously in error.78’79

78,79

.In order to avoid this problem, Hinze and Jaffe expressed

_ both valence and spectroscopic state energies in terms of Slater-Condon
7, 24, 80

parameters, hsing the multiplet theory of atomic spectra. The

Slater-Condon parameters were evaluated by a least-squares fit of calculated
spectroscopic state energies with the observed energies. Valence-state
energies were then calculated from the Slater-Condon parameters, thereby

81

' ' 82
making use of all available atomic spectral data. Pilcher and Skinner

used similar methods to determine valence-state energies for boron, carbon,
.nitrogen, and oxygen, and obtained almost identical results to those of
Hinze and Jaffe.

78,79

Hinze and Jaffe calculated valence state promotion energies,

defined for neutral valence states as

P°=E - E° ' . ' (3.1)

where E is the valence-state energy and EC the energy of the spectroscopic

ground state of the neutral atom. Similarly for ionic valence states,
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R (3.2)
and P =E-E (3.3),

where EY and E are ionic ground state energies.
Valence state ionization potentials, for example, are given by equations

of the form
_ -+ (] :
Iv = Ig +P -P (3.4)

Ig is the ground-state ionization potential, and P+ and P° the promation
energies of the appropriate valence states. Ground-state ionization
potentials, usually obtained by extrapolation from spectral data, are
listed by Moore,81 and may be considered as accurately known. Ground
state electron affinitieé are less accurately known. Hinze and Jaffe used
either directly determined experimental ;alues, or values detérmined by
extrapolation of experimental data.

In this work v;lencé state energies are taken from the work of
Hinze and Jaffe,78’79 and introduced into the SCF-MO-CNDO theory following

the Pariser approximation, as described in Section C.

C. MOLECULAR ORBITAL PARAMETERS FROM ATOMIC VALENCE STATE ENERGIES

The use of atomic valence state energies to determine para-
meters in molecular orbital theory is based on a suggestion made by

"
Pariser72 concerning the pi-electron theory of conjﬁgated hydrocarbons.

Pariser considered the hypothetical electron~transfer process:

Ct+ € —-—yC 4+ (3-3)
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in which an electron is transferred between the pi-orbitals of two neutral
carbon atoms at infinite distance apart in valence states suitable for pi-
bonding. In the pi-electron approximation, the energy of a singly
occupied orbital i; equal to its ionization potential, while the energy

of a doubly occupied orbital is equal to its ionization potential plﬁs thé
repulsion energy of the two elecérohs. The energy increase in the process '
represented by equation (3.5) is then equal to the electrostatic repulsion
of two pi electrons in the same orbital, or gpp in the'notation of

equation (2.18). But the process consists oflremoving an electron from
one carbon atom and transferrihg\it to another, so that the energy increase
is the difference of the ionization potential Ip’ and the electron affinity

A_, of the p orbital. That is,
P
g =1 -A . ' o (3.6)

If Ip and Ap are evaluated from the valence-state ehergies of

Hinze and Jaffe for trigonally hybridized car:bon,78’79 then gpp'equals
11.13 ev. However, the corresponding integral equals 16.93 ev., for a
Slater orbital with an effective nuclear charge of 3.18.83 ~ This large

. 72

difference was originally ascribed by Pariser = to changes in the energy

g 84-88 :
of the sigma electrons, but other authors have stressed the fact that
the motion of the two electrons occupying the same orbital in the
negative ion is correlated, so that each tends to avoid the other's instant-
aneous position. In general, the most important correlation effects in
an atom or molecule are the pair correlations between electrons in the same

orbital.89 The average distance between the two electrons in the pi-



42,

orbital is greater than it woul& be if their motion were completely
independent as assumed in the orbital approximation, so that their |
electrostatic repﬁlsion energy is less. Dewar and Wulfman,85 for
example, have shown that the empiribal value of 854 for carbon can be
rationalized by assuming that the electrons remain on opposite sides of
the nodal plane of the p orbital. Although this is an over-simplified
treatment, it does show the importance of correlation.  More detailed
treatments of the relative importance of different effects have been
given by Orloff and Sinanoglu, 20 Hermann,91 and Alexander.

In semi-empirical pi-electron calculations, the combined
magnitude of both effects is assumed to be the same in molecules and free
atoms, and gpp is evaluated from equation (3.6). This parametrization has
been highly suécessful in the molecular orbital theory of pi-electron
systems.

In this thesis, a generalization of Pariser's formula is used
to determine the atomic parameters of the SCF-MO-CNDO theory for all
valence electrons. For a basis set of s and p orbitals, there are four
distinct atomic electron-repulsion parameters: g_.» gsp, gpp’ and gpp
(where p and p' are two different valence p orbitals of the same atom.)

In the CNDO approximation, these are all assigned a common value character-

istic of the atom, 8,,, which measures the average repulsion of the two

valence electrons in atom A.

Oleari et 31.93 evaluated the i1 from valence-state energies,

but they did not evaluate the BAA required in the CNDO approximation.
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They generalized Pariser's formula and determined C, Uss’ U , 8 g

PP° "85, PP,

and gpp' so that the equation

E=Q.+§Enk-ukk,+ 2 £ 2 nknlgkl"'l/zznk(nk-l) Bk

k 1#k
3.7)

(where k and.l are summed over all valence-shell orbitals on an atom )
best fits certain atomic valence-state energies as a function of orbital
occupation numBers n, - |

Equation (3.7) is similar in form to the theoretical expréssion
for valence-state energies in the CNDO approximation,44 except that

(i) It is not invariant to rotation or hybridization (see
Section D), and

(ii) The parameters are determined from atomic ;pectra, and
vary markedly with atomic charge.93 For use in molecular calculations,
it is important to evaluate the parameters from the energies of valence
states, which are as c%&se as possible to electroneutrality. The constant
C is included in equation (3.7) so that the 'core state", with all valence
electrons removed, is not used in evaluating the parameters: If C were
set eqﬁal to zero, the core state would be fixed as the zero of energy,
. and therefore used in determining the parameters.

In this work; the following changes have been made from the
procedure of Oleari et al.:

78,79

(i) The valence-state energy data of Hinze and Jaffe have

. 9% .
been used, rather than those of Skinner and Pritchard, since the
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former are the result of a more complete examination of atomic spectral
data, and systematic calculation of Slater-Condon parameters and non-
observable states. Also, the energies of all valence states needed are
aVailable.79

(ii) Parameters for each atom have been evaluated entirely
from the valence-state energies of that atom. Oleari et al. adjusted -
their parameters to vary linearly with atomic number, since they found some
valence-state energies by extrapolation.95 Tﬁis was unnecessary in the
éresent work since more complete valence state energy data was used.
Table (3.2) shows that the assumption of a linear variation with atomic
number is not justified in all cases.

(iii) The electron-répulsion integrals, gij’ have been averaged
to find the atomic parameter g,, (Section D).
| (iv) The atomic core matrix element, Uss and Upp’ have been
adjusted‘ﬁfter the averaging process (Section D).

'Equation (3.7) contains seven atomic parameters: core integrals
U and Upp; electron-repulsion integrals gss,gsp,gpp,gpp'; and an additive
constant €.  For each atom, the core and electron-repulsion integrals were
efaluated by substituting into equation (3.7) the energies of seven
;alence states, selected according to the following principles:

(i) Each electron-repulsion integral ﬁas calculated as the
difference between an ionization potential and an electron affinity of the

‘neutral atom, as in Pariser's formula. All valence states used to evaluate

the parameters were either neutral, unipositive, or uninegative.



(ii) For each atom, the states chosen formed a set sufficient
to evaluate the seven parameters in equation (3.7).

(iii) When conéitioﬁs (i) and (ii) permitted a'further choice
of states, valence states with low promotion energies were preferred to
highly excited states, as the less excited states resemble more closely
the épectroscopic states used to derive the Slater-Condon pérameters, and
are therefore more accuraté.

(iv) Valence states were preferred which resemble the state
of the atom in a‘lafge number of molecules.

) Unipositive valence states were preferred to uninegative

45.

states, since the ground-state ionization potentials of most atoms are more

accuratel& known than the ground-state electron affinities.

In Table (3.1), the formulae for the evaluation of the core and
electron-repulsion integrals are listed for hydrogen and the atoms in the
first row of the periodic table. The formulae fo? heavier atoms are
identical with those for the corresponding first-row atoms. The

evaluation of the additive constant C is described below.

D. ATOMIC PARAMETERS IN THE CNDO APPROXTMATION:

As pointed out in Chapter 2, if the full SCF-LCAO-MO equations
are simplified by the CNDO approximation, without the additional restric-
tions necessary for invariance, the diagonal element of the total
electronic Hamiltonian for the kth orbital on atom A is given py

equation (2.23).



TABLE (3.1)

EVALUATION OF ATOMIC PARAMETERS FROM VALENCE STATE ENERGIES

o

For hydrogen,

B, = E @, 2y - 2 EH, 5) +E (H)

+
U =E (H,s) - E (H')

For lithium,

g, = E @i ,s?) - 2 E @i,s) + E Qi)

ggp = E (Li7,sp) - E (Li,3) - E(Li,p) + E@i")

g, = E G, p2) - 28 @i,p) + E (ih)
Bppt™ E @i", pp) - 2E (Li,p) + E (LiM)
U__ = E (Li,s) - E @ity
LI _E wi,p) - E @i

For befyllium,

- 2. +
© Bgg T E (Be , s p) - 2E (Be,sp) + E (Be', p)
' - 2 -2 +
gsp =E (Be", s'p) - E (Be,sp) - E (Be,s“) + E (Be', s)
-2 +
8pp = E (Be , sp ) - 2E (Be,sp) + E (Be ', s)
gpp'= E (Be, spp) - 2E (Be,sp) + E (Be+, s)
U .=E (Be, sp) - E (Be', p) - &
ss ’ ? sp
U =E (Be,sp) - E (Be+, s) - g
PP sp

46.



For boron,

8S
sp
PP
pp'
sSs

U
12%

For carbon,

S8
sp
PP
pp’
sSs

i
PP
For nitrogen,

Bss

sp

PP

47.

- 2 o
E(B, spp) - 2E (B, spp) + E (B+,pp)
- 2 2 +
E(B, spp) - E (B,spp) - E (B,s'p) + E(B', sp)
- 2 +
E (B F §p P) - 2E (B,Spp) + E (B ’ Sp)

- : +

E (B, sppp) - 2 E (B,spp) + E (B, sp)
+

E (B,spp) - E (B', pP) - 2 g

+ .
E (B: SPP) E (B 3 Sp) = gsp - gPP

- 2 +
E (C, s'ppp) - 2 E (C,sppp) + E (C', pppP)

- 2 2 +
E (C, s'ppp) - E (C,sppp) - E (C,s"pp) + E (C',spp)

- 2 +
E (C, sp pp) - 2E (C,sppp) + E (C',spp)

- 2 2
E (C, sppp) - E (C,sppp) - E (C,sp p) + E (C,spp)

-+
E (C,sppp) - E (C',ppp) - 3 8¢

p

ot
E (C,sppp) - E (C', sPP) - 8, - 28,

- 22 ' 2 4+ 2
E (N, s'ppp) - 2E (N, sp pp) +E (N', P pp)

- 22 2 2 + '
E (N, sppp) - E (N, s"ppp) -~ E (N,sp pp) + E(N', sppp)

- 22 2 42
E @, sppp) - 2E (N,s"ppp) + E (N',s pp)
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- 2 2 2 + :
=E(N, sppp)-2E (N, sppp) +E (N', sppp)

gpp'
_ "2 +
U, = E ®,sppp) - E (N, spPP) - 85 - 38y,
2 + 2
U _=E(N, s - E (N -2 -2
pp (N, s 'ppp) (N, s"pp) Bsp = 2Bppe
For oxygen,
- 222 22 4+ 22
g, =E (0, s"p'p'p) - 2E(0,spp'p) +E (0O, PP)
S - 222, 2.2 2 2 4+ 2
8, ~E (0, s'ppp) - E(Ospp p) - E (0,s"p pp) + E(O',sp PP)
- 222 22 + 22,
gp = E (0 ,5pp p) - 2E (0,sp'pp) + E (0, s'p'P)
- - 222 2.2 + 2
gopt= E (0,8 PP p) - 2E (0,sp'pp) + E (0, s ppp)
22 + 2
U, =E (0, s"ppp) - E (07,sPPP) - By~ 48,
2:2 + 2
U_=E(, s -E (0, s - 2g - -2
op (0, sp pp) (07, s"ppp) ~ 28" B, - 2B,
For fluorine,
- 2222 2 22 + 222
g =E(F,sppp)-2E(F, sppp)+E F,ppp)
- 2222 2 22 222 + 22
8, ~EF ,sppp) - E@Fsprp p) - E(F,sppp) - E(F ,spprI
- 2222 222 + 222
8op = E(F ,sppp)-2E (Fs'ppp)+EF, spp)
- 2222 222 + 2 2.
gpr= E(F, sppP ) - 2E (F,sppP) +E(F, sPPP)
222 + 2 2
U =E Esppp)-EF, spp P) - 855" 98y

2 22 + 22
U E (F,s -E(F, s -2 - 3
3 (F,s"p P P) (F", s'PPP) - 28, = 8, “8
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I1f, in addition, the diagonal core matrix elements are parti-
tioned into atomic and interatomic terms, as in equation (2.26), then the

diagonal matrix element for the kth orbital is

= 21 -

Foo = U + 2. Py 81 (- 38,0+ 2 B+ 2 Vg (3.8)
1 : m B#A

Pkk is the electronic population of the kth orbital in the molecule, 1

is summed over all valence orbitals on atom A, and m over all valence
orbitals on other atoms, denoted by B. Because of the restfictions

needed for invariance of the SCF equations in the CNDO approximatioﬁ,43
this must be modified to |

) Vs (3.9)

' 1
Fre = Uk * 8aa 2 Py - 58 +zm Pom 8t it

1

These two equations are not equivalent in general, but the para-

~
meters may be chosg;(so that they are equivalent for a specific charge

distribution. In this thesis, the parameters are evaluated by equating

the diagonal matrix elements given by equations (3.8) and (3.9), when each
atom in a molecule, except for hydrogen, has its valence-shell electron
‘population equally distributed among one s and three p orbitals. In this

casé equations (3.8) and (3.9) become

1 .

and
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7
TP = Ug O § 8Pt B%A (Pyg Bup + Vap) (3.11)

respectively, where PAA is the total valence-shell electron population on

atom A. The atomic terms are equal for

k 2 1
Z (L-25,) - (3.12)

where the superscript indicates that the matrix element for the kth

érbital is used t; evaluate gAA' The interatomic terms are dealt with in
Chapter 4.

.Eqﬁation (3.12) averages the intra-atomic.Qalence-shell electron
repulsion on an electron in the kth atomic orbital for the given charge
distribution, if the spin density in the orbital is zero, as in a closed-
shell molecule. There is no reason to prefer the use of any one orbital
for the evaluation of gAA, so equation (3.12) is averaged over all orbitals
on atom A:

gAA=%§ T}TZZg (1-zsk1) (3.13)

For a basis set of s and p orbitals,

1

gp = 28 (g  + 12 8sp T3 By + 12 8,00) (3.14)

The replacement of equation (3.12) by equation (3.13) destroys
the equality of the atomic terms in equations (3.10) and (3.11). - It is

impossible to adjust the parameﬁers, within the framework of the CNDO

‘approximation, so as to restore this equality for all values of PAA' It
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therefore seems best to restore the equality for the case of an exactly
neutral atom, so that in molecules with homopolar bonding, the error is
eliminated. In calculations involving all valence-shell electrons, the
total valence-shell electron population, P,,, of an exactly neutral atom
equals the core charge, ZA' Equality of the atbmic terms will then be

restored in the case of a neutral atom, by adJusting the core matrix

elements in equation (3.11), for any value of P,,, to

_—_— Zy
Uk = Yk ¥ 7 [Z gy (- gAA:I (3.15)

where the bar indicates an adjusted parameter. For s and p orbitals,

Z
U = _A 1 - .Z
Uss = Uss T 3 [2 Bss T 38,7 72 gAA:I (3.16)
and
- A 1
U +-= |= + + 2
Upp = pp 4 [? gpp gsp_ g gA;] (3.17)

Table (3.2) lists the atomic parameters'for hydroggn and the main
group elements of the first four rows of the perio@ic table. The para-
meter gKA is used to evaluate interatomi¢ electron-repulsion integrals,
as described in Chapter 4. The additive constant, Co, is chosen so that
valence-state energies are given by an equation similar to equation (3.7)

but with the invariance properties required in the CNDO approximation.

=C°+ank ﬁkk+-§-(%nk)(>;nk-l)sAA - (3.18)



Element
H .
Li

Be

Na

Al

Si

cl

Ca
Ga
Ge
As

Se

TABLE 3.2

SEMI;EMPIRICAL ATOMIC PARAMETERS (in ev.)

USS

13.595
4.999
15.543

30.371

50.686

70.093

-101.306

-129.544

4.502
13.083
22.828
36.494
58.610

66.796

86.774

3.170
9.842
25.032
35.844
50.151

66.005

U
PP

3.673
12.280
24.702
41.530
57.848
84.284

108.933

3.247

9.603
18.592
30.375
50.940
58.008
75.681

3.115

7.696
19.807
29.973
44 . 485

57.927

TV
12.848

3.469
5.935
8.000

10. 207

11.052

13.625

15.054
2.982
4.623
5.682
6.964
9.878
9.205

10.292
3.702
3.977
5.936
6.608
8.399

9.121

&ia
12.848
3.458
5.953
8.048
10.333
11.308
13.907
15.233
3.031
4.656
5.680
7.015
9.886
9.260
10.366
3.560
3.979
5.942

6.634

8.361

9.156

52,

c

13.
4.
25.
61.
123.
204.
335.
487.
4.
21.
47.
92,
172.
227.
335.
3.
15.
52.
92,
150.

227.

595
999
151
444
517
291
908
697
502
544
203
438
095
860
847
170
707
063
527
653

686



Element
Br

Rb

Sr.

In

Sn

Sb

Te

ﬁss
76.413

3.555

9.430
23.056
26.981
47.427
64.464

76.905

TABLE 3.2

L))
PP

65.412

2.804
7.074
17.663

21.869

1 40.923

57.144

69.091

cont.

8.823
2.495
3.749
5.530
4,297
7.657
8.985

9.448

A
8.838
2.384
3.761
5.582
4.304
7.761
9.039

9.382

53.

c
294.760
3.555
15.110
47.185
72.317
141.347
223.174

301.030



54.

relgtive to the ground state’of the neufral atom; This 1s chosen as the
zero of energy, rather than the core with all valence electrons removed,
since.the highér ionization potentials of some of the heavier atoms in
Table (3.2) are uncertain or unknown. c® was evaluated, for each atom,
by equating the energy of the most stable neutral valence state to.its

promotion energy.

E. COMPARISON WITH ATOMIC PARAMETERS OF POPLE AND SEGAL -

In contrast to the procedure described here, Pople and Segal44’45

evaluated all electron-repulsion integrals theoretically using the formal
definition, equation (2.18). For each atom, Bpp VaS found by evaluating
the integral in equation (2.18) with ¢k and ¢r equal to the same valence-
shell Slater s orbital, using integral formulae derived by Roothaan.96

In this procedure, no allowance is made for the correlation of
electronic motions, or for energy changes associated_with the electrons in
onevatoﬁic orbital, such as the sigma electrons considered by Pariser,72
due to changes in the population of other orbitals on the same atom.

After evaluating electron-repulsion integrals theoretically
they assigned empirical values to the local core matrix elements Ukk' In
their original theory,44 they assigned Ukk by equating the valence-state
ionization poténtial of the kth orbital to that féund from atomic
spectra. Later,45 they revised their method so that the average of the
jonization potential and electron affinity of a specified staée was given

correctly. This is an improvement, since the tendency of atoms to gain
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" and lose electrons is equall& well represented.

In order to compare the atomic parameters‘of Pople and Segal
with those in this thesis, atomic valence-state ionization potentials
and eléctron affinities may be determined from equation (3.18) using both
sets of parameters, and compared with those determinedidirectly from
aéomié spectra. In Tables (3.3) and (3.4), these quantities are listed
for several valence states of carbon and fluorine, as examples of
elements usually participating in relatively homopolar and heteropolar
bonds respectively. In some cases, one energy calculated from equétion
(3.18) corresponds to several valence states, since, in the CNDO
approximation, the energies of all valence states with the same number of
s and p electrons are the same.44 The valence state data of Hinze and

Jaffe78’79

show this to be true within 2-3ev. The ionization potentials
and electron affinities derived from the parameters in Table (3.2) are
accurate within 1 ev, except for the ionization potential, szpzpzp-———-—>
82p2p2 , of the singly occupied p orbital in fluorine. Those derived from
the final parameters of.Pople and Segal45 are in error by several ev., siﬁce
they are not based on electron-repulsion integrals determined from atomic
spectra.

There is another difference between the two sets of parameters.
Pople and Sega.144’45 equated BAN to the electron—repulsion‘integral
between two'electrons in the same s orbital, By g? rather than a weighted
average of gss,gpp,gsp and gpp;’ as in equation (3.14). For theoretical

electron-repulsion integrals, this difference is unimportant, since it can
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TABLE 3.3

VALENCE~STATE TONIZATION POTENTIALS RECALCULATED FROM ATOMIC PARAMETERS

(in ev.)
Ionizétion.Process‘ Valence State Iénization Potential
| From atomic From parameters From parameters
spectra - in this thesis of POPLE and
| SEGAL45

C(spPP—) PPP) 21.008 - 20.065 22,078
C(sﬁpp_;éspp) 11.269 10.909 . 13.579
F(szpzpzp._Qspzpzp) 39.389 -

922 222 39.220 45.116
F(sPPP—PPP ) 38.244
F(szpzpzp._Qszpzpp) 18.109 |
F(splpipi—9sp pp)  18.514 18.609 23.924
F(szpzpzp-—)szpzpz) 20. 860

TABLE 3.4

VALENCE-STATE ELECTRON AFFINITIES RECALCULATED FROM ATOMIC PARAMETERS

(in ev.)
Process Valence State Electron Affinity
From atomic . From parameters From parameters
spectra in this thesis of POPLE and
SEGA'L.45
C(sppp_.>s2ppp) 8.917 9.858 6.023
C(sppp — SP2PP) 0. 345 0.702 - 2.456
® F(spipipiysip pipl)  24.372 24,166 | 19.428
F(s2p2plpoysiplplp?)  3.497 3,555 = 1.764
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be éhown.from the analytical integral formulae of R.oothaan96 that BpA®

as given by equation (3.14), equals 0.992 Bgs® For most atoms, however,
8ss is the ﬁighesf of the foﬁr electron-repulsion parameters derived from
atomic speétra, and is quite different from 8pa° This may be because

an s orbital does not extend as far into space as a p orbital in the

same vaience shell, so that less correlation is possible between two
electrons in an s orbital than in a p orbital, or in two different orbitals.

When the gij are evaluated from atomic spectra, therefore, it is

impértant to evaluate Ban from equation (3.14) instead of equating Baa to
Bss*

F. DISCUSSION

The atomic parameters in this thesis are chosen so that, for a
speéific charge distribution, the atomic terms of the diagonal Hamiltonian
matrix elements, which are a measure of the atomic orbital electronegativi-

ties in the molecule, have the same values as if Bgs gsp’ g__ and gpp'

PP

were not given a common value. It is impossible, however, to assign

parameters in the CNDO approximation, so that the matrix elements depend

on érbital population in the same way as they would without this restriction.
The atomic parameters have been calculated.by considering a charge

distribution with the valence-shell electrons of each atom equally

distributed among the valence orbitals. If only s and p orbitals are

considéred, this is a rough approximation to the charge distribution in

many molecules, so that the parameters obtained are reasonable for
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molecular calculations. For main-group elements; whbse d orbitéls are
only slightly occupied in many molecules, thé inclusion of d orbitals on
the same basis as s and p érbitals would be a much worse approximation.
AThe treatment of such d orbitals in a semi-empirical theory is a.subject
for future research, although Santry and Segal46 have‘included d orbitals
in their calculations, using theoretical electron-repulsibﬁ integrals.

One possible criticism of the procedure described in this
chapter is that equation (3.13) is nof itself invariant to a change in
basis set. It ﬁas.found for several.atoms, hoﬁever, that BaA varies
by only a few tenths of an electron volt, if a hybrid basis set is used
in its evaluation, so that the value derived from s-p valence state
energies may be used in MO calculations with a basis set of hyﬂrid orbitals.
It is better to evaluate the parameters from s-p valepce state energies,
rather than hybrid orbifal valence state energies, because:

(i) the s-p valence-state promotion energies from atomic
specfral data are more accurate, and . :

(ii) as mentioned in éhapter 2, the agomic terms of the off-
diagonal elements of the core Hamiltonian matrix between pure s, p, d,....
valence orbitals on the same atom are zero because of symmetry.43 The
off-diggonal matrix elements between hybrid orbitéls are not zero, and

cannot be evaluated by the procedure of Section D.
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CHAPTER 4

EVALUATION OF INTERATOMIC PARAMETERS

Those parameters of the SCF-MO-CNDO theory which are defined
only within molecules have no meaning for free atoms, so that they canmot
be evaluated from atomic spectra. They can either be evaluated theoretically,
or assigned empirical values derived from molecular properties. As dis-
cussed earlier (Chapter 3), it is best to combine theoretical and empirical
ideas when assigning parameters.

In Sections A and B, the evaluation of the interatomic parameters

of the diagonal matrix elements Fkk is described: Section A deals with the

interatomic electron-electron repulsion integral, Bpp’ and Section B with

the interatomié electron-core attraction integral, VAB' The overlap

integrals, Skl , and the bonding parameters, BZ , in the off-diagonal core

matrix elements, Hkl , are dealt with in Sections C and D respectively.

A. TINTERATOMIC ELECTRON-ELECTRON REPULSION INTEGRALS

The interatomic electron-electron repulsion integral, 8AR’ is
defined as the average electrostatic repulsion between two electrons in the
valence-shell orbitals of two atoms.l’3 The repulsion between an electron
in the kth orbital of atom A, and one in the rth orbital of atom B is
formally defined (Cﬁapter 2) as the integral

g, = (Kk/rr) = f¢; 1 g, (L ;—11—2 6 () 8_ (D vV 4V, (2.18)
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which may be evaluated for orbitals of a specified'functional form. The
Brr may then be averaged in some way to evaluate B\p° Pople and Sega144’45
equated AR’ for eagh pair of atoms, to the integral defined by equation
(2.18) for valénce-shell-slater s orbitals, which they evaluated using
formulae listed by Roothaan.96

The CNDO approximation, however, is analogous to the zZDO approxi-
mation in pi-electron theory, which is in better agreement with experiment
if the interatomic electron-repulsion integrals, as well as the atomic
ones, are reduced below their theoretical values.l’41 This is necéssary
because of the correiation between electrons on different atoms,1’84-86’88’97
The interatomic electron-repulsion integrals in the SCF-MO-CNDO theory have
therefore been evaluated by empirical formulae similar to those which have
* been proved successful in pi-electron theory, with the ZDO approximationz.il’gs-loc
This procedure is tested by comparing physical properties, calculated using
both the empirical and the theoretical interatomic electron-repulsion
integrais, witﬁ experiment.

In the semi-empirical pi-electron theory, the interatomic electron-
repulsion integrals, Bir? are functions of the internuclear distance, and
of the atomic electron-repulsion infegrals of the two atoms. These functions
behave as follows:41’98-100

(i’ As the internuclear distancé approéches zero, the value of
Blr for two pi-orbitals of similar atoms approaches the atomic electron-

repulsion integral, Bl for a pi-orbital of either atom, while for

dissimilar atoms it approaches the arithmetic mean of the atomic electron-
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repuléion integrals for the pi-orbitals of the two atoms.

(ii) As the internuclear distance becomes infinite, the effect
of correlation becomes small, and each electron-repulsion integral approaches
its theoretical value, which is, at infinite distance, the electrostatic
repulsion of two point charges.

These conditions may be expressed mathematically as

1im
Ry 0 8, = /2 (g + grr) (4.1)
and
1lim . 1 -
Rp—00 8, = 'ﬁ;; (4.2)

where the kth and_rth orbital are on atoms A and B respectively. Pariser

and Parr41 used interatomic repulsion integrals given by

= 1/2 (g, +8,) +aR +bR.2 R, L2.854A (4.3)

Brr AB AB AB

where the constants a and b were chosen so that Bt is equal to its
theoretical value at two distances (2.8 A and 3.7 A), which were consideféd
to be large enough for the correlation effects to be negligiblie. For
internuclear distances larger than 2.8 A, they used theoretical electron-~
repulsion integrals, since 8p® 3S defined in equation (4.3), becomes
infinite at large internuclear distaﬁces. This formula is mnot satisfactory'
for all molecules, because the distances 2.8 A and 3.7 A were chosen simply
because of their frequent occurrence in conjugated hydrocarbons, and'conse-
qﬁently have no general sighificance. Also, the artificial assumption that

correlation effects vanish at distances greater than 2.8 A is due to the
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inclusion of positive powers of RAB’ which prevent equation (4.3) being
valid at large internuclear distances.
Several other formulae for the jnteratomic integrals have been

suggested, which have the correct asymptotic behéviour, and can be used

at all internuclear distances. Mataga98 used the formula

2
g = ’ a-=
kr R AB+a gkk+grr

(4.4)

In conjugated molecules,101 equation (4.4) leads to smaller By than the
Pariser-Parr.formula, equation (4.3). Bloor and Bre'arley102 have found
that the use of equation (4.4) leads to more accurate predictions of the
electronic spectra of alternant hydrocarbons.

Another formula is that of'ohno:99

(4.5)

For éonjugated hydfoéarbons,lo1 equation (4.5) leads to values of By about
equal to those found from the Parisér-Parr formula, equétioﬁ'(4.3); in the '
range of RAB for which equation (4.3) is applied. Thesg two formulae
provide a representgfive sample of the values of 8y used in semi-empirical
molecular orbital calculations on pi-electron systems.lo1
Miller et al}03 used theoretical interatomic electron-repulsion
integrals, but modified the Slater exponent of the prbitals so that the

atomic electron-repulsion integrals agreed with semi -empirical values,

derived from atomic spectra. This implies that the effects of correlation,
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and reorganization Qf the sigma electrons, may be accounted for by using
“effective atomic orbitals" more diffuse than actual atomic orbitals.
However, interatomic electron-repulsion integrals evaluated by this method
are almost identical104 to those found from Ohno's formula, and Qill not
be considered separately.

Three different ways of estimating electron-repulsion integrals
are compared here:

(i) All the electron-repulsion integrals, both atomic and
interatomic, are calculated b)} evaluating the theoretical iﬁtegral, equation_
(2.18), for_valence-shell s orbitals, as in the work of Pople and Segal.44’45

(ii) Atomic electron-repulsion integrals are evaluated from
valence state energies as described in Chapter 3, and interatémic integrals

by the Mataga formula,98 which is here adapted to calculations including

all valence electrons.

1 ‘ 2
g = ——— s a = ——— (4.6)
AB RAB + a | gAA + gBB )

where gXA and ggB are atomic limits, defined by equation (4.11).
(iii) Atomic integrals are evaluated as described in Chapter 3,
and interatomic integrals by Ohno's fo_rm.ula,99 modified to apply to all

valence electrons.

1 2 ' '
8 = T a = o x (4.7)
AB g%, + 8%
[2 4 a2 | AA " °BB

In Part B of this thesis, molecular properties are computed,
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using'elecpron-fepulsion integrals evaluated by all three methods. It is
shown that methods (ii) and (iii) are significantly better than method (i).
This justifies fhe use of electron-repulsion integrals derived from atomic
spectra.

The atomic limits 8% and 8ky of equafions (4.6) and (4.7) are
derived by slightly modifying the derivation of'tﬁe atomic electron-
repulsion integrals, Baa’ in Chapter 3. 1If the interatomic electron-
repulsion-terms of equations (3.10) and (3.11) are equated, for a basis

of s and p orbitals, and the resulting expression averéged over all orbitals

on atom A, it is found that
g S S 2[: 2:: g , (4.8)
AB 16 . * kr
r
where 81y is the electron-repulsion infegral between the kth orbital on
atom A; and the rth orbital on atom B. At zero internuclear distance, by
analogy with equation (4.1),

lim _1/a B
R~ 0 gkr T2 @kr' + gk'r) ) (4.9)
AB - '

where gﬁ;, is the electron-repulsion integral between the kth orbital, and
the valence-shell orbital r' on atom A, of the same type (s, po , PW Or
pr') as the rth_orbital on atom B. An analogous definition holds for
5 )
gklr’ .
By substituting (4.9) into the limiting form of (4.8),
lim

. -]; % *
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« .1 5 S = 3 6 3 6g_,) (4.11
B T 16 £ 4 8 = T6 (Bgg * 685, + 38, + 68,0  (4.1D)

and similarly for g:B.

The g:A values for the main-group elements qf.the first four
rows of the periodic table are listed in Table (3.2), with the corresponding
atomic parameters. In fact, gZA and Baa differ by less than 0.2 ev. for
all atoms listed, since they are both weighted averages of the orbital
parameters By ° but with different weights. The distinction betweep the
two parameters has been maintained, since there is no advantage in maying
the further approximation g:A = gAA'

For the electron-repulsion intégral between two hydrogen atoms,
equation (4.11) is replaced by

%

B T Bss (4.12)

For the electron-repulsion integral between a hydrogen atom and another

atom, equation (4.11) should formally be repléced by

L

(gSs + 3gsp) (4.13)

Eaa
for both hydrogen and the other atom. As gsp is not defined for hydrogen,
%* ' :
Bap has been equated to 8eq for hydrogen, and evaluated from equation (4.11)
for the other atom. This procedure is justified by the fact that the first
approximation raises 8ap’ and the second lowers it. Also, there is. the

*
further advantage that Ban has a characteristic value for each element,

independent of the other atom B in the electron;repulsion integral EaR"
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For theoretical electron-repulsion integrals, it can be shown
that g:A, as defined by equation (4.11), is equal to Bgg® SO that Pople
and Segai are correct in equating them. But for integralsldetermined
from atoﬁic spectra, this is not so, as discussed in Chapter 3 for Baa’

aﬁd equation (4.11), must be used, except for hydrogen.

B. INTERATOMIC ELECTRON-CORE ATTRACTION INTEGRALS

The interatomic electron-core attraction integral, VAB’ is

defined as the electrostatic attraction between an electron in a valence-

shell orbital of atom A, and the core of atom B.43 For the kth orbital,

‘it follows from equation (2.26) that

Va5 erﬁ vy B dV : (4.14)

‘Pople and Segal orlglnally evaluated equation (4.14) for the valence-shell
s orbltal, using formulae listed by Roothaan.g_6 This procedure implies a
net electrostatic interaction between an electron on atom A, and the neutral

atom B, given by

O —
Vs = Vap * Zg Eap (4.15)

. o . .
The superscript denotes that VAB refers to the potential of a neutral atom.

1f the two charge distributions of atoms A and B are spherically symmetric,

o
then V.. differs from zero entirely because of the mutual penetration of

AB
. . . ' . . 1:41’45
the two charge distributions, and is called a penetration integral.

Later, Pople and Segal45 showed that their theory is in better
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agreement with experiment when penetration integrals are neglected. They
showed that for the~hydrogen molecule-ion, ﬁ;, the errors caused by the
neglect of penétration integrals are approximately equal and opposite to
thbse.cagsed by the CNDO approximation. They therefore evaluated the
interatomic core-attraction integrals so as to eliminate penetratioh
integrals, i.e.,

v = =12

B Zy Bup (4.16)

The interatomic electron-repulsion integrals described in Section
A of this chapter are considérably smaller than the theoretical integrals
used by Pople and Segal. Theoretical interatomic core-attraction intégrals
would imply large effective penetration integrals. Penetration integrals
have therefore been eliminated by using equation (4.16) to evaluate all VAB'

The diagonal matrix elements given by equation (2.29) are then simplified

to .
FLo= U, + (B, -Lr g+ D @ -z)e (4.17)
kk kk AA 2 "kk” TAA BFA BB B’ TAB _ ’

and the diagonal core matrix elements in equation (2.26) to

Hkk = Ukk - ji ZB Bap . | (4.18)

B#A

C. _OVERLAP INTEGRALS

The overlap integral between two orbitals, ¢k and ¢1 , was defined

. % :
5, = f¢k g, dv | (2.5)

in Chapter 2 as
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Overlap integrals are explicitly included in Roothaan's equations, but are
eliminated in the CNDO.approximation. They do appear, however, in. the
off-diagonal core-Hamiltonian matrix elements, Hk1 (equation 2.28).
Overlap integrals can be evaluated for an explicit form of the
105

atomic orbitals. In a central field, every atomic orbital can be

expressed as the product of a radial and an angular function

¢n].m = R ; (r) Y 1m e, 9 (4.19)

where n, 1 and m are principal, azimuthal and magnetic quantum numbers
respectively. The angular function, Y, n’ is a spherical harmonic, and
for hydrogen-like atoms, Rnl has the form

—Zr/nao

Rnl (rx) = P(r) e | (4.20)

where P(r) is an associated Laguere polynomial, Z is the atomic number, and
ao'is the Bohr radius. For other atoms, radial functions have been calculated
from the self-consistent field theory, using either the Hartree-Fock

. 6
»23 or Roothaan's equations for atoms.2 Atomic orbitals

equations,
calculated from the Hartree or Hartree-Fock equations are expressed as

numerical tables, and those from Roothaan's equations are linear combinatiouns
7,70,106-110

of a number of basis functions.26 Several authors have proposed
approximate analytical orbitals, which are more convenient for computation.
The simplest of these are the Slater orbitals,70 which have been widely L43cv£

in molecular orbital calculations.

The radial part of a Slater orbital has the form70
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1 1
n'-1 Z't/n a

Ry, () = N e | (4.21)

Nn is a normalization constant, and the parameters Z' and n' are chosen to
fit more accurate atomic orbitals. From equations (4.20) and (4.21) it can

be seen that Z' is an effective atomic number. Slater evaluated it as

2" = 2z - s | (4.22)

'where‘s is a "shielding constant,"7q which allows for the shielding, or

screening; of the nucleus by the electrons in ofbitals other than the one
considered. Also, n' is an effective principal quantum number, Sl'ater70
found that s and.p orbitals best fit accurate atomic orbitals when n' was

given by:

n' = n, n = 1-3
n' = 3.7, n = 4
n' = 4, n = 5 - (4.23)

" gince the radial functions of Slater orbitéls have no nodes,70
valence-shell orbitals are not orthogonal to inner-shell orbitals. .However,
as inner-shell orbitals are not treated explicitly in this thesis, this
causes no non-orthogonality difficulty.

In this thesis, Slater orbitals are used, with the parémeters AR

and n' given by Slater's rules,70 except for hydrogen. In the hydrogen

atom, there is no screening, so Zﬁ = ZH = 1, and the Slater orbital is
jdentical to the exact wave function. 1In the hydrogen molecule, however,

111

it has been found that the lowest energy for an LCAO-MO wave function is
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obtained for.Zﬁ = 1.2. Also, in accurate molecular calculations for
other Enolecules,112 using the Roothaan equations, in which the hydrogen
exponent has been varied, the value Zﬁ = 1,2 leads to lower‘enefgies than
~Z! = 1.0. Physically, this is due to the fact that the contraction of

H

the hydrogen orbital leads to more.stable bonding.113 Pople and Sega144’45

used Zﬁ = 1.2, but Hoffmann,114 in the Extended Huckel theory described in |

Chapter 5, used Zﬁ =1.0. In fhié thesis both values are used, and a
" comparison is made on the basis of computed physical properties. It will
be shown in Chapter 8 that Zﬁ = 1.2 is preferred in the semi-empirical
SCF-MO-CNDO theory, since it leads to more accurate bonding energies.
OQerlap integrals for Slater orbitals, of principal quantum
number 1, 2, 3 or 5, may be evaluated analytically by the methods of
Mulliken et al.lo5 The computation of these integrals is described in
Appendix B.

For n = 4, the radial function, equation (4.21), becomes

21
9.7 Z r/3.7ao

R, (r) = N, r e S (4.24)

4

Overlap integrals for such an orbital cannot be evaluated analytically,
because of the non-integral power of r, which is present as a factor. This
difficulty can be avoided by using an approximate orbital, which is a
linear combination of orbitals for which overlap integrals can be evaluated.
The approximate combination is obtained by assuming that R, can be inter-
polated between R3 and R5 in the same way that the corresponding n' is

interpolated. Two forms for the approximate orbital were tried:
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* 2 -Z'r/3ao 3 -Z'r/4ao'
Ra'(r) = N, (0.3 Ry + 0.7 R5) = N4'(0.3 r“ e +0.7r" e )
(4.25)
and
. 2 —Z'r/3.7ao
RS (1) = N (0317 +0.71) e (4.26)

where the N's are normalization constants. The accuracy of these approxi-
mations to equation (4.24) may be examined by computing their overlap with

_ the Slater orbital. The required overlap integrals are one-centre integrals,
and can be computed using gamma functions. The overlap integrals of R4

with R4

these simple interpolations are quite justified. 1In computations for

' and R4" are 0.99651 and 0.99979, respectively, showihg that

orbitals with n = 4, R4(r) has been replaced by R4"(r), the ﬁore accurate
of the two approximations. The value of N4" is 1,01384531,

Leifer, Cotton and Leto115 used series expansions of 8-10 terms
_each tb approximate overlap integrals involving R4, but the simpler method

proposed here should be as good, since R," is such a close approximation

4
to Rl&.

D. BONDING PARAMETERS

The bonding parameters, BZ, are used to evaluate the off;diagondl

core Hamiltonian matrix elements,
._.];(o O)S 2.28
B = 2By + Bp) Sy (2.28)

which are analogous to the core resonance integrals in the Pariser-Parr-Pople
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theory of pi-electron systems. ?

In this section, a theoretical basis
for equation (2.28) is given, and the evaluation of the bonding parameters
is descfibed.

Equation (2.28) may be apéroximately derived, using arguments of

a type suggested by Mulliken55 for the evaluation of difficult integrals

in molecular orbital theory. Hkl is formally defined as

% ©
H'kl =f¢k Hoore ¢1 dv (2.13)

A;\Eﬁedenbergll6 pointed out, the orbital ¢1 can be expanded in the
complete set of orbitals, ¢k’ pf atom A:
A .
6, = E' bt Sy (4.27)
The overlap charge distribution is then
A
¢: g, = ’% ¢: Bt Sy . (4.28)

Similarly, on expanding ¢k in terms of the orbitals of atom B,

o, 97 S (4.29)

w
=2
H
(]
M

Averaging equations (4.28) and (4.29) leads to the identity

¥ TS s o 30
. 8, = 5(% B Pr Sy +1£ B, 8, 8,0 (430

55,116

In the Mulliken approximation, the dominant terms of

equation (4.30) are assumed to be the ones which are not themselves overlap

distributions, so that
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* 1 * '
¢k 8, = 3 ((?5k B, + ¢1 8 Spq : (4.31)

Equation (4;31) seems a drgstic approximation, ﬁut on integration over all
space, the errors cancel, and the definition of the overlap inéegral is
obtained. It has been shown that three- and four-centre élec;ron-interaction
integrals are fairly.well approximated using equation (4.31), or modifications.
of it.53

Substitution of equation (4.3l) into the definition of Hkl N

equation (2.13), gives

1
By = 3 (g + Hyp) Sy - (4.32)

Equation (4.32) is similar to Pople and Segal's form for Hkl s equation

(2.28), in that the overlap integral S is included as a factor.

k1l
It differs from equation (2.28), however, in that Hkk depends on

the orbital fo: which it is evaluated, as well as on the molecular

environment, whereas BZ, in the theory of Pople and Sggal,43 is characteristic'

‘of the atom A only. 1In order to transform equation (4.32) to an equation

with the same properties as equation (2.28), two further approximations

are made.

(i) The interatomic parts of Hkk and H are omitted, so that’

11

equation (4.32) becomes

[

By, = 3 W4 + U) 8§y (4.33)

where Ukk and U11 are defined by equation (2.26).
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(ii) Ukk and U11 must be averaged over the orbitals on each

atom, so that

= 1
Hkl = 3 (U’AA + UBB) Skl (4.34)
'where the atomic parameter, UAA’ is defined as
= 1 3

for a basis set of s and p orbitals. Equation (4.34) has the same form as

equation (2.28), with the bonding parameter
BA = U (4.36)

Equation (4.34) can be improved, while retaining the transforma-
tion properties of equation (2.28), by introducing a multiplicative
parameter K to allow for the effect of the terms omitted in deriving

equation (4.34), so that
-Rw o+ us (4.37)
1 2 (Uaa BB’ Sk1 o g

and the bonding parameters are given by

o
P, = KU

3
A (4.38)

Equation (4.37) is similar to the Wolfsberg-Helmholz approxima-

tion,17 used in the independent-electron theories described in Chapter 5.
In these theories, for which overlap is included, K is evaluated empirically,

and generally has values between 1 and 2. 1In the semi-empirical SCF-LCAO-MO
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theory of Yonezawa et al,54 which also includes overlap, K is empirically
evaluated as 1.1.

It was shown in Chapter 2, however, that in the CNDO approximation,
all matrix elements should refer to the basis of Lowdin orthogonalized
orbitals, defined by equétion (2.19). Lowdin47 showed that in this basis,

H is transformed to the matrix

ortho _ S-1/2

H s'll2

‘H (4.39)

Since the magnitudes of the overlap integrals, Sk]_’ are less than one,

-1/2

S ﬁay be expanded by the binomial theorem,

s1/2 _ (14 s)-1/2 -1 - % s + % 62t (4.40)

where I is the unit matrix. Substitution of equation (4.40) into equation

(4.39) yields

ortho

1
H'kl = l-"kl -E(r%c Skr Irlrl +§1 Hkr Srl) _ (4.41)

to first order in s. Since the diagonal elements of the core-Hamiltonian

matrix are largest in magnitude, then, very approximately,

or tho 1 .
B, o= H, -3 Hy +H;) S, (4.42)

From equations (4.42) and (4.32), Hﬁﬂfho is close to zero. If Hk]_ has

the form suggested by Pople and Segal, the bonding parameters 62 and Bg
must be_mucﬁ smaller than UAA and UBB' If equation (4.37) is true, K

must be much smaller than one.
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The above analysis gives the basis for the simple formula (2.28),
apd indiéates that the bonding parameters might obey equation (4.38), for'
some K less than one. Preliminary calculations, showed, however, that
computed physical properties were quite sensitive to variations in K,
and that satisfactory results could not be obtained with a single value
.of K. |

This shows that the approximations made in deriving equation (4.38),
and equation (4.42), are too drastic for equation (4.38) to be accurate for
any K. Also, no provision has yet been made for empirical evaluation of
any of the parameters of the theory, using molecular properties. It was
therefore decided to evaluate empirical bonding parameters for each element,
and then to see how closely equation (4.38) is obeyed.

There are several molecular properties which could be used to
evaluate the bonding parameters; In the Pariser-Parr ;heory of pi-e}ectron
systems,41 the core resonance integral waé evaluated using electronic
spectra, while Pople42 was concerned with ground étate jonization potentials,
electron affinities, resonance energies, and charge distributions. Dewar
and Gleicher117 have pointed out that, in a semi-empirical theory, ground-
state properties should be calculated with parameters evaluated from
ground-state properties, éince the use of parameters evaluated from
electronic spectra may include a correction for effects present only in
excited electronic states.

In this thesis, ionization potentials, molecular bonding energies,

dipole moments, and nuclear quadrupole coupling constants have been computed
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from the SCF-MO-CNDO theory, as described in Part B. Preliminary calculations
showed that the bonding energies are most sensiéive to variations in the
bonding parameters (Table 4.1). The following procedu?e was therefore used
to evaluate the bonding parameters: |

(i) The bonding parameter for hydrogen, B;, was chosen to give
the correct dissociation energy for the hydrogen molecule. For hydrogen,
the bonding molecular orbital is determined by symmetry to be

6, + 9, -

. q{/' = __J_E______ | 'v f4.43)

The dissociation energy, as shown in Chapter 8, is

- o 1 -
D, = 2By 8, + 7 (8, 8)y) (4.44)

which may be ;quated to the experimental value, 4.751 ev. (see Chapter 8)
to find ﬁ;, for a given choice of the interatomic electron-repulsion
integrals, and of the hydrogen exponent (which determines the overlap
integral 812).

(ii) The bonding parameters for other elements were chosen to
give the correct bonding energies of binary hydrides, AHn' The binary
hydrides were chosen as the reference molecules because they form a series
including a molecule for each element of interest. The bonding energy of
each hydride, AHn, was computed for a range of values of the bonding
parameter, BZ. The details of this calculation, and the variation of the
atomization energies with BZ, are shown in Chapter 8. 1In this chapter, the
best values of the bonding parameters are of prime interest. Table (4.2)
lists these values for each choice of electron-repulsion integrals and

. hydrogen exponent.
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VARTATION OF MOLECULAR PROPERTIES OF HF AND HCl WITH HALOGEN BONDING PARAMETER BZ

HF . HCl
Physical Property BZ = 20 19 18 17 ' 10 9 8 ev
Bonding Energy 7.30 . 6.87 6.44 6.03 5.22 4,66 4.11 ev
First Ionization Potential ( -1%) 16.27 16.24 16.21 16.18 13.19 13.18 13.17 ev
Second Ionization Potential (¢ ) 16.78 16.64  16.49 16.35 14,27 14,09 13.89 ev
Third Ionization Potential (¢ ) 37.90 37.79 37.69 37.58 - 24,98 24,88 24,79 ev
Dipole Moment 1.897 1.897 1.898 1.898 2.058 2.025 1.991 D
0135 Quadrupole Coupling Constant 85.72 86.02 86.29 Mc/s

Note: SCF-M0 Calculations with CNDO Approximation.

Parameters: from Atomic Spectra, g,n from Mataga formula, ZI'{ = 1.2, Bg = 5.4 ev. A

IV
Calculation of Physical Properties Described in Part B.

‘8L
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TABLE 4.2

BONDING PARAMETERS BZ (in ev.)

Code (a) M1 M2 01 02 R1 R2 PS (b)

Atomic Empiri- Empir- Empir- Theor-  Theor- Theor- Theor-
Parameters cal (c) ical ical etical etical etical etical
‘ ' ) j
Inter- Mataga Mataga  Ohno Ohno Theor-  Theor-  Theor-
atomic (e) (£) etical etical etical
8,3 @
Hydrogen 1.0 1.2 1.0 1.2 1.0 1.2 1.2
Exponent . .
L
ZH
Evaluation Empir- Empir- Empir- Empir- Empir- Empir- Pople &
of BZ ical(g) iecal ical ical ical ical Segal(h)
H 4.9 5.4 3.9 4.3 5.4 5.2 9
Li 0.4 0.7 -0.9 -0.8 2,5 3.8 9
Be 3.8 4.0 3.2 3.4 4.3 5.2 13
B 5.8 5.6 5.2 5.0 - 6.2 6.5 17
c 8.7 8.2 7.8 7.3 9.1 9.0 21
N 9.6 8.8 8.0 7.3 11,2 10.6 ~ 25
0 © 14.2 12.8  11.7  10.5  16.1  14.7 31
F 19.2 17.2 15.7 14.1 22.6 20.4 39
si ' 5.0 5.2 4.6 - 4.7
P 6.0 6.0 5.3 5.3
s 6.7 6.5 5.8 5.6

cl 9.3 8.9 8.1 7.8
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TABLE 4.2 (continued)

Ge 4.3 T 4.4 3.8 4.0

As 4.6 | 4.7 4.0 4.1
Se 5.7 5.7 5.0 4.9
Br 7.3 7.2 6.4 6.3
Sn 3.4 3.6 1.9 2.1
Sb 4.5 4.7 3.9 4.2
Te 5.7 6.1 5.1 5.4
I 6.5 6.7 5.8 6.0
NOTES

(a) Arbitrary code for parameter set.‘
(b) CNDO/2 Method of Pople and Segal.45
(e) From atomic spectra as described in Chapter 3.

(d) From theoretical integral formulae of Roothaan--first row only.
(e) From equation (4.6).
(f) From equation (4.7).

(g) From hydride bonding energies as described in text.

(h) By comparison with minimal-basis set calculations by Roothaan method.
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Since the bonding parameter for each element is evaluated with
referénce to its hydrides, it depends on the value of the hydrogen -
exponent, so that the results of calculations on molecules, which do not
contain hydrogen, depend indirectly on.the choice of the hydrogen exponent
in the calibration. It will be shown in Chapter 8, however, that the
value Zﬁ = 1,2, and the corresponding bonding parameters, lead to more
accurate molecula; energies.

The negative bonding parameter for lithium, for interatomic
electron-repulsion integrals given by the 6hno approximation, indicétes
-thaﬁ the arithmetic mean of bonding parameters, used in equation (2.28)
for Hkl , breaks down in this case. The use of a geometric mean would
resolve this particular difficulty, but it would require extensive compu-
tation to show that a geometric mean is better for all molecules. Also,
the gebmetric mean does not have a theoretical basis. In this thesis,
the arithmetic mean has been used, and the bonding perameter for lithium
has.beeﬁ treated like the others, even though it has the wrong sign.

Table (4.2) also lists the Pople-Segal44 bonding parameters for

46 for

hydrogen and the first-row elements. The values of Santfy and Seéal
second-row elements are not included, since they were published after the
completion of the work described here. These parameters were chosen by
comparing the coefficients of computed molecular drbitals, and the
differences between orbi tal energy eigenvalues, with those obtained by

accurate solution of the Roothaan equations for small molécules.44 They

are much larger than the empirical bonding parameters. A detailed comparison
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of the two sets of bonding parameters for first-row atoms is made in
Part B. It is noted here, however, that the empirical values are more
consistent with the values of core resoﬁance integrals in pi-electron
theories. For carbon, for example, Pople42 showed that the resonance
energy of benzene is correctly given for a carbon-carbon core resonance
integral of 2.13 ev. S8ince the overlap integral between two carbon pi-
orbitals at the nearest-neighbour distance in benzene is 0.248,105 this
corresponds to a carﬁon bonding parameter of 8.6 ev.

Clark and Raglé118 have recently assigned the value 11.15 ev.
for the bonding parameter of carbon in order to fit the electronic spectrum,
but they have not proposed a general empirical scheme for the evaluation
of bonding parameters, as is done here, nor tested their value in calcula-
tions on a wide variety of molecules.

From Table (4.2) the bonding parameters incfease with atomic
electronegativity, in agreement with equation (4.38), since ﬁ;s and ﬁ;p
increése similarly, as shown in Table (3.2). A more complete check of
equation (4.38) is made iﬁ Table (4.3), which contains fhe Qalues of KA’

defined as

o :
KA = BA/UAA (4.45)

for each bonding parameter. If equation (4.38) were true, then for a given

parameter set, all KA would be equal. Table (4.3) shows, however, that '

the KA‘vary too widely.for equation (4.38) to be useful in evaluating

bonding parameters.

The theoretical arguments leading to equation (4.38), however;



Parameter
Set

H

Li

Be

o =

=

Si

cl

Ge
As
Se

Br

Sn
Sb

Te

M1
0.36

0.10

0.29

- 0.22

0.20
0.16
0.16

0.17

0.16
0.11
0.11

0.12

0.14
0.10
0.10

0.11

0.15
0.11
0.10

0.09

M2

0.40

0.17
0.31
0.21
0.19
0.14
0.14

0.15

0.16
0.11
0.11

0.11

0.14
0.10

0.10

0.11

0.16

0.11
0.10

0.09

TABLE 4.3
VALUES OF KA

01
0.29

-0722
0.24
0.20
0.18
0.13
0.13

0.14

0.14
0.10
0.10

0.10

0.12
0.09
0.08

0.09

0.08
0.09
0.09

0.08

02

0.32

-0.20
0.26
0.19
0.17
0.12
0.12

0.12

0.15
0.10
0.09

0.10

0.13
0.09
0.08

0.09

0.09
0.10
0.09

0.08

R1
0.40

0.62
0.33
0.24
0.21
0.18
0.18

- 0.20

R2
0.38

0.95
0.40
0.25
0.21
0.17
0.17

0.18

83.

Ps
0.66

2,25
0.99
0.65
0.48

0.41

0.35

0.34
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are partially verified by Table (4.3), since for each row of the periodic
table, KA is approximately constant for the more electronegative elements.

For the less electroﬁegative elements, it appears that KUAA is small
enough so that the terms omitted in deriving equation (4.38) become
important. The variations between rows of the periodip table cannot be
explained in this way, But must be due to anbther systematic failure of
equation (4.38).

Finally, the fact that all the KA values, except for lithium and
beryllium, are much less than one, confirms the conclusion drawn from

equation (4.42) that K should be small if overlap is neglected, since the

matrix elements refer to Lowdin orbitals.
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CHAPTER 5

EXTENDED HUCKEL THEORY

A. INTRODUCTION

Two different versions of molecular orbital theory, which include
all valence electrons, are the SCF-MO-CNDO theory, for which a semi-
empirical parametrization has been described in Chapters 3 and 4, and the

Extended Huckel Theory (EHT) of Hoffmann,114 an example of an independent-

electron molecular orbital theory. Many of the othéf approximate all-

valence electron theories in the recent literature are modifications of

one of these two theories.63’64’119“124
In an independent-electron molecular orbital theory, the Hartree-

o
Fock Hamiltonian F of Roothaan's equations is replaced by a sum of effective

one-electron Hamiltonian operators,l’ls’16

(o] [e]
neff - Z netf - (5.1)
7 1 , .

The molecular orbitals and their energies are found by solving the secular
equations:
hC = SCE ' (5.2)

(¢]
. . . eff
where h is the matrix corresponding to the one-electron operator hi . The

matrix elements, hkl , do not depend on the electronic charge distribution,
and it is not necessary to iterate the equations to obtain a self-consistent

solution. The advantage of such a theory is that the computation involved
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is simpler. This was especially importang before the availability of
digifal computers, but eveﬁ at the present time, the shorter computétion
times and smaller storage requirements make it possible to apply ﬁon-
iterative theories to larger molecules than iterative theories. The
disadvantage, of coursg,'is that no allowance is made for variation Bf the
- matrix elements with molecular charge distribution.

Prior to tﬁe introduction of the Extended Huckel Theory,114
independent-electron theorieé-had been developed_to treat some of the
electrons in organic molecules and transigion-metal'complexes. The first
was the Huckel theory of pi-electron systéms, which was originally applied
to ethylene, benzene, and cyclic polyenes,12 in which the molecular
orbitals are determined by symmetry. A general Huckel theory for pi-
electron systems was developed by Coulson and Longuet-Higgins,l4 and has
recently been reviewed by Streitwieser,15 and by Salem.16 In this theory,

the diagonal Hamiltonian matrix elements, or Coulomb integrals, are

characteristic of each element. The off-diagonal elements, or resonance
integrals, between bonded atoms are characteristic of the bonded pair of
atoms, and those between non-bonded atoms are neglected. Overlap integrals
are also neglected.

Later, independent-electron molecular orbital theories were

. e 48 125

developed for alkanes and their derivatives. Hall and Brown constructed
molecular orbitals from linear combinations of bond orbitals, while

Sandorfy126 developed a Huckel-like theory, in which the basis orbitals are

tetrahedral carbon orbitals and hydrogen 1 s orbitals. The overlap and
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resonance interactions between non-bonded atoms were omitted, as in the

pi-electron theory. Alkyl derivatives have been treated similarly to

127,128 129

pi-electron systems with heteroatoms. Dewar and Pettit, and

later Pople and Santry,130 developed perturbation theories for alkanes,
and obtained qualitative results which do not depend on the exact values
ofthe Hamiltonian matrix elements.

Molecular orbital theory was first applied to transition-metal
complexes by Wolfsberg and Helmholz,17 who considered the electronic spectra

of the chromate, permanganate and perchlorate ions. The extensive literature

18,19

on this subject is primarily concerned with electronic spectra. The

high symmetry of many complex ions is used to simplify the secular equations,

and to classify the calculated electronic states.

7

The parameters of Wolfsberg and Helmholz1 are of interest because

they are similar to those of the EHT. The diagonal matrix element, hkk’

is defined as : )
_ % eff ' '
b = I¢k by " G dV (5-3)

h

where the operator h;ff acts on an electron in the kt orbital. It

represents the energy of an electron in the kth orbital, on atom A, in

the field of the nuclei and the other electrons, and it is equated to the

valence-state ionization potential of the kth orbital.17

Some authors have modified hkk to take into account the charge

on atom A, by choosing matrix elements corresponding to an assumed charge],'23’13

19,119,132-135

or by using an iterative procedure to evaluate the hkk' In
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the iterative theories, which are not strictly independent-eleétron
theo:ies, hkk is assumed ts depend only on the charge of atom A, and not
on the charges of other atoms. Only Basch and Gray124 have included the
effects of the charges on other atomé,'as in the SCF theory.

The off-diagonal Hamiltonian matrix elements in the Wolfsberg-

Helmholz approximation are given by

ht = %“’kk* B ) Sy (5.4)

with K an empirical constant. This equation is analogous to equation (4.32)
for tﬁe off-diagonal core-Hamiltonian matrix element in the SCF theory,and
may be derived similarly. All overlap integrals were included by Wolfsberg
and Helmholz. The problem of three- and four-centre electron-interaction
integrals does not arise in independent-electron theories, since matrix

elements do not depend on the molecular charge distribution.

B. HOFFMANN'S EXTENDED HUCKEL THEORY (EHT)

Hoffmann114 proposed an independent-electron molecular orbital
theory, including all valence electrdns of a molecﬁle, and using a basis
set consisting of a 1 s orbital for each hydrogen atom, and valenﬁe—shell
s and p orbitals for each other atom. This is the same basis that is used
in the SCF-MO-CNDO theory described in Chapters 2 to 4. Other authors

136

have introduced d orbitals in calculations on such molecules as IF7,

the xenon halides,137 and metal porphyrins;132
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Hoffmann114 used the parametrization of Wolfsberg and Helmholz.17

He evaluated the diagonal matrix element of the kth orbital, hkk’ as the
" valence-state ionization potential of the kth orbital in the neutral atom,
using the valence-state energies of Skinner and Pritchard.94‘ Off-diagonal
matrix elements were given by the Wolfsberg-Helmholz formula, equation
(5.4), with K chosen as 1.75, as a "compromise between the desire to match
the experimental barrier (to ihternal rotation) in ethane, and the
necessity to work in a region where populations are stable."114
The invariance properties of equation (5.4) under atomic
transformations of the basis set may be considered using the methods of
Pople, Santry and Segal.43 Since the hkk for all p orbitals of the same
atom are equal, equation (5.4) is invariant under rotation, but not under
hybridization, Hoffmann himself considered only ; non-hybrid basis set
of s and p ofbitals.114
All overlap integrals are included explicitly in the EHT, and are
calculatéd for Slater orbitals as described in Appendix B. The Slater
exponent for hydrogen was taken as 1.0 by Hoffmahn. The solution of the
secular equations with overlap included is described in Section C.

Hoffmann114

used his Extended Huckel Theory to compute molecular
energies, as described in Chapter 8, and molecular charge distributions,

using a Mulliken population analysis33 to assign charges to the various

atoms in a molecule. The population analysis is obtained by integrating
the expansion of the one-electron density matrix in terms of the basis

orbitals, equation (2.14), over all space,
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edV=ZZ P, ¢: ¢1dv.=Z§Pk1sk1 (5.5).

The population matrix, Q, is now defined as the matrix product

Q = P.S (5.6)

For real basis orbitals, the matrices P and § are symmetric, so that the
élements of Q are given by
le = Z Pkm Slm (5.7)
_ m
and equation (5.5) may be written as a partition of the electronic charge

among the atomic orbitals.

5€dv = ij Qe (5.8)

where the diagonal elements Qkk are (gross) orbital populations. The (gross)

atomic population of an atom, QAA’ is defined as the sum of the Qi for the

orbitals of that atom, and the atomic charge, 9> is
U N A N (5.9
k
where ZA is the core charge of atom A.
If overlap is neglected, the population matrix Q is identical with
the P-matrix, so that in the CNDO approximation., P is referred to as the
population matrix, as in Chapter 2.

Mulliken33 referred to each Qkk as a gross orbital population,

which he further partitioned into a net orbital population, and a sum of

orbital overlap populations.
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Q. T Bt 12#% Py Si1 - 5.10)

The gross overlap population between two bonded atoms, given by

A B

Us ~ Z: 21: Pr1 Sk (4 # B) (5.11)
. : 33 114
is regarded as a measure of the strength of the bond. Hoffmann

calculéted the gross atomic charge of each atom, and the gross overlap
population between each pair of bonded atoms. In the present work, however,
the emphasis is on the calculation of observable properties, so that a
complete Mulliken population amalysis is not made.

A more general type of population analysis, applicable to wave
functions calculated from an arbitrary basis set, has recently been proposed
by Davidson,35 but the Mulliken population analysis is‘s&iisfactory for
the interpretation of wave functions calculated with a minimum basis set

of atomic orbitals.

C. SOLUTION OF THE SECULAR EQUATIONS INCLUDING OVERLAP

When overlap integrals are included in a molecular orbital theory,

the secular equations are, in matrix form,.
hC = SCE - (5.2)

Equation (5.2) is not an eigenvalue equation because of the presence of the
overlap matrix S. Lowdin47 showed, however, that it can be transformed to

to eigenvalue problem in the orthogonalized basis set @, defined by
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T = psl/? : (2.19)

where @ is the original basis. 1In this basis, the transformed Hamiltonian

métrix is
o= S-1/2 h S-1/2

(5.12)
and tﬁg transformed matrix of molecular orbital coefficients is
c = sY%2¢ | (5.13)
The overlap matrix for an orthogonalized basi; is, of course, the unit
matrix. From equations (5.2), (5.12) and (5.13),
R = s/2hc = s25¢cE - T (5.14)

. . , . 7 . .
an eigenvalue equation in the new ba51s.4 The diagonal matrix, E, of
energy eigenvalues is the same as in the original basis.

Equation (5.2) may be solved, therefore, by the following procedure:

1/2

(1) the matrix s~ is evaluated, as described below.

(ii) the Hamiltonian matrix in the new basis is computed from equation
(5.12).

(iii) the eigenvalue equation in the new basis, equation (5.14), is
solved.

(iv) the coefficients of the molecular orbitals in the original basis

are found from equation (5.13).

1/2

Lowdin47 approximated the matrix S by the binomial expansion

g"1/2 a+s) V2 g -%s+ 4. ... (5.15)
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1/2 57

where I is the unit matrix, but it is possible to compute s exactly.

The overlap matrix is Hermitian, so that it may be diagonalized by a unitary

transformation.
vwsu = b (5.16)
whefe the eigenvalues Dkk are positive, since S is positive definite.138
The diagonal matrix D-ll2 can be defined as the matrix with the real
eleménts,
-1/2 _ -1/2
(D )kk‘ - (Dkk) (5.17)
since it satisfies the identity
pt/2ppl/2 o (5.18)

Actually, there is an ambiguity in sign in equation (5.17), so that there

are 2" possible.matrices D-l/z, but they are all equivalent in the present
problem, so all (D-]‘/z)kk are assumed tovbe positive. Then the matrix
S-ll2 is given by

sT/2 o yp M2yt ‘ S (5.19)

which satisfies the definition;, equation (2.20).

D. APPLICATIONS

The Extended Huckel Theory, either in its original form, or in
one of the modifications described in Section E, has been applied to a wide
variety of chemical problems,

Hoffmann calculated the equilibrium geometry of small organic
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molecules,114 and the energies of hydrocarbons’114,139

boron-nitrogen
analogues of hydrocarbons,140 carbonium ions,141 and chains and rings of
carbon atoms,139 as well as ground and excited states of diazirine and
diazomethane.142 He emphasized stereochemical aspeéts,114 such as
isomerization energies, barriers to internal rotation, and chair-boat
energy differences, He also considered ionization efficiency'curves for
alkanes,143 and qualitative interpretations of the population analyses
for some‘molecules.144’114’140’141 |

The topics dealt with by other authors may be roughly classified
into molecular energies, chemical reactivity, and physical properties
dependent on charge distribution.. Calculations of molecular energy have
concentrated on stereochemical aspects, as in the work of Hoffmann. Allen
and Russell145 have recently examined the theoretical basis of conforma-
tional predictions using the EHT, by comparing the wave functions and
orbital energies of small molecules with those calculated ﬁsing Roothaan's
equatioﬁs, without approximation.

138,146

Hoffmann and Lipscomb have studied the conformations of

boron hydrides, carboranes, and related compounds. Several other inorganic
molecules have been studied, including boron and aluminum halides and -
147,148 I 136 137 135

F7, xenon halides, phosphorus (V) chlorofluorides,

and cis- and trans-diimide149 (N2H2). Organic molecules studied using the
151

alkyls,

EHT include ¢-substituted carboxylic acids,lSO peracids and peresters,
and sydnones,152 as well as a number of molecular complexes, such as the

charge transfer complex of tetracyanoethylene.and benzene,153 excimers of
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h.ydrocarbons,154 and hydrogen-bonded species.155 Also, the electronic

spectra of metal porphyrins have been considered by an iterative EHT.132

Kato et a1¥56’1§7 have correlated the reactivities of the nitra
cation, radical and anion, with the form of the highest occupied molecular
orbital. = The trénsition state for nucleophilic substitution in methyl
chloride has been calculated using the EHT. Adam and Grimison have predicted
the site of nucleophilic substitution in pyridine, quinoline and iso-
quinpline from the ground-state charge distribution.

Physical properties have also been calculated from the molecular
charge distributions of the Extended Huckel Theory. Adam and Grimison159
have computed the dipole moments of heterocyclic molecules. Correlations
of chemical shift with charge distribution have been made by Sichel and
Whitehead160 for alkanes, halogenated alkanes, and molecules containing

methyl and vinyl groups; and by Adam and Grimison158’159

161,162

for heterocyclic
molecules. Spin-spin coupling constants, nuclear qua&rupole coupling
163 . I . o 164
constants, and hyperfine splittings in electron spin resonance have
also been considered. Finally, the vibrational force constants of acetoni-
trile adducts have been related to gross overlap populations by Purcell

and Drago.165

E. MODIFICATIONS OF THE EXTENDED HUCKEL THEORY

A number of authors have proposed modifications to the EHT.

Although the original theory of Hoffmann114 is used in this thesis, the
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modifications which have been proposed are reviewed here, and reasons given
for not using them.

Several author519’119: 132-135

have varied the diagonal matrix
elements, hkk’ with the net charge of atom A, on which the kth orbital is
centred. This is done to allow for variation of the valence-state ioniza-
tion potential witﬁ charge, and to prevent the accumulation of excess qharge
density on electronegative atoxﬁs.119 Usually, hkk is assumed to vary
linearly with the net charge of atom A, as suggested by'Cusadhs and Reynolds.166

In the notation of this thesis,

hx = hltk+qAA}ﬁ<k . | (5.20)

o . - .
where hkk is the value of hkk for a neutral atom, qA is the net atomic
charge, and A hkk can be evaluated empirically, from atomic spectra or
otherwise. Veillard and Berthier167 separated the contributions of different
orbitals to the variation in hkk’ with

o A 1 '
Be = Pt ; 4 Gy~ 3 %) (5-21)
where the q, are orbital charges, and the Il and Kkl are Coulomb and
exchange integrals respectively, derived from atomic spectra.

If the hkk are dependent on charge distribution, the secular
equations must be solved iteratively, so that the theory has been referred
to as the Iterative Extended Huckel Theory 119'(IEHT); equations (5.20) and
(5.21) may be compared with equation (2.29), in which the variation of Fkk

with charge distribution was derived by systematic simplification of the
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complete Roothaan equations. The most important difference is that in
equations (5.20) and (5.21), the matrix elements for the orbitals of one
atom are independent of the charges of other atoms. In this respect, the

IEHT is similar to the "omega technique"ls’le“170

in pi-electron theory,
in which the Coulomb integral for each atom is given by equation (5.20),
and is‘independeht of the charges of other atoms.,

Streitwieserls’170

has claimed that the omega technique is an
improvement over the Huckel method, since the effect of charge distribution
on the Coulomb integrals is included. Baird and Whitehead,17l'however,
considered the Coulomb integrals of both the Huckel theory and the omega
technique aé approximations to the diagonal matrix elements, Fkk’ of the
Pople.SCF4MO pi-electron theory,42 which includes-all electron-repulsion
integrals. THey showed that the variations in Coulomb integrals with charge
distribution in the omega technique bear little resemblance in sign, magni-
tude, or relative order to variations of Fkk in the PPP theory, since the
interatomic electron-repulsion integrals, iy which are neg;ected in the
omega technique are of comparable magnitude to the atomic integrals, gkk’
The situation is not improved if the effects of charges on neighbouring

42 All atoms in the molecule must be included, as

atoms only are included.
in the PPP theory. As Dewar87 has said,

"If one is going to make allowance for the terms in Foy involviﬁg
the charge densities q;, one might as well do the thing properly and use

the full Pople expression."

Similar objections can be made against the IEHT. Newton, Boer and
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Lipscomb172 have shown that the diagonal matrix elements in complete
minimum-basis SCF-MO calculations are not related in any simple way to
atomic charges. If an iterative method is used at all, then it is better
to use the full SCF-MO-CNDO equations, as described.in Chapters 2 to 4.
The non-iterative EHT, however, involves substantially less computation,
and thereforé may be worthwhile, if it leads to resulgs of.comparable
accuracy to the approximate SCF theory.

Other auth0r5137,173-175

have attempted to improve the off-diagonal _
matrix elements by replacing the arithmetic mean of diagonal matrix elements

in equation (5.4) by a geometric mean, so that

by = K e by Sy (5.22)

Equagion (5.22) does not have the theoretical basis of the Mulliken
approximation, but Ballhausen and Gray173 pointed out that it has the
property that the in;eraction between two orbitals, hkl’ decreases when
increases, if the suﬁ (ﬁ

the difference Ihkk - h + hll) is constant.

11 kk
This is in accordance with the concept of orbital matching,176 in which
orbitals are best suited for bonding if their energies are not too different.
The SCF-MO-CNDO theory automatically includes this feature, since the off-

diagonal matrix element, F 1’ is given by

K
= L g0, g0 Sl '
Feio = 72 By +Bp) Sy -3 Py By (2.30)

Both terms of equation (2.30) are negative, and if two orbitals are not

well matched, the bond order P is small, and does not contribute

kl
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significantly to the interaction Fii°

during the calculation, so that the geometric mean might improve the

In the EHT, however, hk1 is fixed

theory, for molecules with polar bonds. It is not used in this thesis,
however, since the EHT is only used as a comparison standard for the
approximate SCF theory, and the use of an arithmetic mean in both theories
providés a ﬁore‘difect comparison. |

Cusachs177 assumed a quédratic dependence on overlap for the

kinetic energy part of hkl’ so that equation (5.4) should be replaced by

b1 < %(hkk+h11) Sy1 (2'|Sk1|) o (5.23)

Newton178 sh&wed, however, that kinetic energy integrals for many pairs of
.6rbitals were poorly approximated by Cusachs' formula, and also that
Cusachs' original formula was not invariant to rotation. A modified form
of Cusachs' formula, which is invariant to rotation, has beeﬁ used in EHT

calculations by some authors, 122120

Since Newton's first objection still
holds however, Cusachs' formula is not used in this thesis.

Newton, Boer and Lipscomb172 have made a more systematic attempt
to improve the matrix elements of the non-iterative Extendgd Huckel Theory.
They evaluated the potential energy integrals by comparison with non-empirical
SCF calculations on small molecules, and evaluated kinetic energy integrals
exactly. Their method is essentially an attempt to reproduce the results
of an SCF calculation by a non-iterative procedure. It is similar to the

pi-electron theory of Orloff and Fitts,179 who evaluated Huckel matrix

elements by comparison with Pariser-Parr-Pople calculations. For Newton
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et al. however, the standard of comparison is the exact non-empirical SCF
theory.172

In.this thesis, physical properties are computed using Hoffmann's
original EH,TI14 as an exémple of a non-iterative, independent electron
theory for comparison with the SCF-LCAO-MO theory in the CNDO approximation.
The Iterative Extended Huckel Theory, as well as Cusachs' formula, were not
considered because of the theoretical objections outlined above. The
theory of Newton, Boer and Lipscomb is on a souqder theoretical basis, but
is not considered here, since Hoffmann's semi-empirical ;heory provides a
better comparison with the semi-empirical SCF theory described in Chapters
.2 to 4.

A few minor modifications to Hoffmann's EHT have been made,
_ however, in order to provide a more direct comparison with the SCF theorf.
Valence state ionization potentials have béen taken from the work of Hinze

78,79 rather than that of Skinner and Pritchard,94 since the

and Jaffe,
former are more complete and reliable, as explained in Chapter 3. For each
element, valence-state ionization potentials were assigned for a valence

114,140 The

state typical of the atom in a molecule, as done by Hoffmann.
actual values used, and the valence states for which they were evaluated,
are listed in Table (5.1). Values of both 1.0 and 1.2 for the Slater

exponent of hydrogen were tried, as for the SCF-MO-CNDO theory. Finally,

4s and 4p orbitals, which were not considered by Hoffmann, were approximated

by equation (4.26) in order to compute overlap integrals.
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TABLE 5.1

ATOMIC VALENCE-STATE IONIZATION POTENTIALS FOR EHT |

Element ‘ Vélence State (s) hss _ERE_
H s 13.595 ev. --
Li . 8,p - 5.390 o 3.543 ev.
Be sp 9.916 5.958
B spp 14.916 8.425
-C SPPP 21.012 11.273
N _s2ppp 25.588 13.946
0 o2plpp 32.297 17.274
F se2p%p%p. . 39.301 20.862
Si SPPP 17.307 9.190
P s2ppp 18.612 10.733
S ‘ szpng 21.135 12,396
cL s2p?p%p 25.227 15.037
Ge _ SPPP 18.578 9.432
As s2ppp 17.403 9.359
Se s2p2pp 20.811 11,675
Br s2p2p?%p 23.735 13,101

_ Sn sSppp 16.158 8.326
Sb s2ppp 16.255 8.751
Te s2p2pp 19.733 11.038

1 s’pp%p 20.833 12.670



PART B

CALCULATION OF PHYSICAL PROPERTIES
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CHAPTER 6

INTRODUCTION

The molecular orbital theories described in ‘part A can be
tested by using them to calculate the physical properties of molecules.
There are, howe&er, different views in the literature of quantum
chemistry on the question of how much the choice of parameters in ;n
approximate theory should be guided by agreement with experiment, and
how much b§ theoretical considerations.

A purely empirical approach is taken, for example, in the
Huckel theory of pi-electron systems in unsaturated organic molecules,
as outlined by Streitwieser,15 who recommends values of Coulomb integrals
for»each element, and of resonance integrals for each type of bond,
chosen to provide a good overall fit with experiment. In such a theory,
the different parameters are determined independently and have little
fheofetical basis. They vary with the class of ﬁolecules for which they
are evaluated, and with the molecular properties used to evaluate them.15

The parameters of the Extended Huckel Theory, on the other
hand, have some theoretical basis, as described in Chapter 5. The
diagonal Hamiltonian matrix elements are found from atomic valence state
energies, and the off-diégonal elements from a theoretical equation,
equation (5.4), with one empirical constant.?’14 Hoffmann, however,-

has not compared the results of the EHT, in detail, with experiment.

Although he has calculated the energies of a large number of molecules,
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only a limited number of energy differences between isomers and

114,139 Hoffmann did not

conformations are compared with experiment.
consider the bonding energies of éingle molecules, as is done in

Chapter 8. His many population analyses are not used to determine
physical properties, -although qualitative correlations‘with chemical

"114,141

reactivity are made. It is very difficult, however, to

quantitatively relate chemical reactivity directly to the ground state

1 .
wave function of a molecule. 80 Other authors have used the EHT wave

function to compute molecular properties,lss"165 but often the computed
properties are only approximately related to the ground-state wave
function, and therefore do not provide a good test of the theory. No
systematic comparison of the EHT with‘experiment‘has been made using
properties which depend directiy on the ground state wave function, as
is done in thi; thesis. |

In some approximate molecular orbital theories, the primary
emphasis is upon agreement with a less approximéte theory, rather than
with experiment. Orloff and Fitts,179 for example, derived parameters
for the Huckel theory by comparing their molecular orbita}s with those

41,42 In the non-empirical

modification of the Extended Huckel Theory by Newton et a1.172, described

calculated using the Pariser-Parr-Pople theory.

in Chapter 5, the basis df comparison is the exact SCF-MO theory, based
on Roothaan's equations for a minimum basis set.

Similarly, Pople and Segal44 determined bonding parameters by
comparison of molecular orbitals.and orbital energies for small.moiecules

with those of the exact SCF theory, since:
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"The CNDO method should be regarded ‘as an approximation
to a full LCAO-SCF calculation using a minimal basis set.....
As a number of such calculagions have already been carried out
for very small molecules withopt approximation, a reasoﬁable
procedure wﬁich we follow is go find out how well the simpli-
fied method will reproduce the accurate work (with empirical
adjustment of a limiteg number of parameters if necessary)
and then, if such 'calibration' is successful, to extend the
theory to systems beyond the present range of the fuli
calculations."44
In the author's view, however, the test of a theory is agree-
ment with experiment, rather than agreement with other approximate
theories. Pople and Segal acknowledge that ''the CNDO method....
attempts to reéroduce the results of full minimal basis LCAO-SCF
calculations which may not themselves give satisfactory agreement with
éxperimental data."44 In particular, as discussed in Chapter 2, they
are quite accurate for one-electron properties,50 but they are much less

so for dissociation or bonding energies.zg"30

Pople and Segal have not,

however, modified their bonding parameters to achieve better agreement

of computed molecular energies with experiment, as is done in this thesis.
Also, ﬁeitﬁer Newton et al., nor Pople and Segal, have

obtained complete agreement between the results of:their approximate

theories and the exact solution of Roothaan's equations, so that the

approximate theories are not a complete substitute for the exact



105.

solution of Roothaaun's equations. Since the approximate theory is in
complete agreemenf with neither experiment nor the exact SCF theory, it
is better that the parameters be chosén to give partial agreement with
. experiment than with exact SCF theory.

In this thesis, an intermediaée position is taken between the
empirical approach of Streitwieser,15 and the complete dependence on
more exact theories, as in the work of Newton et al.,172 and of Poplé

and Segal.aa’45

As described in Chapters 3 and 4, the molecular
orbital parameters are based on theoretical considerations, and 6n
atomic spectra. When a choice between alternate sets of parameters
'remains,.it is based on an overall comparison of computed molecular -

properties with experiment, as described in Chapters 7 -10. The

greatest reliance is placed on those experimental quantities, which can

be calculated from the ground state wave function of a molecule with the

fewest subsidiary assumptions. Also, as molecular orbital computations

refer to isolated molecules, computed properties are compared with gas-
phase experimental data whenever possible, to eliminate the effects of.
intermolecular, solid-state and solvent interactions.

All calculations were made for molecules in their most stable
copformation. .Experimental bond lengths and angles were taken from the
T;bles of Iqteratomic Diétances of the Chemical‘Society,181 except for
certain molecules for which the required data are not available, and had
to be estimated from data for similar molecules. The bond lengths and

angles. used are listed in Appendix A. Mo attempt has been made to
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calculate the most stable conformation of molecules by computing the
molecular energy as a function of geometry.

In Chapter 7, calculated molecular orbital energies are
compared with experimental ionization popentials, using Koopmans'
theorem.182 In Chapfer 8, the atomizaéion energies of molecules are
considered, which are given léss accurately than ionization potentials
by approximate theories, since they represent small differences between
two large quantities. They are, however, quite sensitive to variationms
in the bonding parameters, BOA, and are therefore used to evaluéte them,
as described in Chapter 4. Dipole moments are considered in Chapter 9.
They are directly related to molecular charge distribution, but are less
accurate criteria of‘a theory than energy quantities, since energies are,
in general, more accurately calculated in approximate quantum chemical
theories than charge distributions. Chapter 10 deals with nuclear
quadrupole coupling constants, which also depend upon charge distribution,
althoﬁgh less directly than dipole moments. They are, however, of
special interest to the author's research colleagues.

The sets of parameters used in the calculations are shown in
Table (6.1). For the SCF-MO theory in the CNDO approximation, the
empirical bondipg parameters,BX , evaluated from hydride energies, as
described in Chapter 4, Qere compared with those of Pople and Segal.
Values of 1.0 and 1;? for the Slater exponent of hydrogen, Z', were
compared using empirical B:'s. Sincé Z!' = 1.2 was found to give more

H

. : .. o .
accurate molecular energies for empirical BA's, only this value was
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TABLE (6.1) PARAMETER SETS FOR COMPUTATION OF MOLECULAR PROPERTIES

Ohno

Interatomic Mataga
Eap (Eq. 4.6) (Eq. 4.7)
SCF-MO Theory in Theoretical
CNDO Approximation (Roothaan integral
" formulae)
Atomic From Atomic From Atomic
Ean spectra spectra
(Chap. 3) ° (Chap. 3)
Bonding Parameters Zﬁ
o
BA
Empirical - from
hydride energies 1.0 M1 01 Rl
(Chap. 4)
Empirical - from .
hydride energies 1.2 M2 02 - ' R2
(Chap. 4)
Pople - Segal 1.2 MP (o) S RP*
Extended Huckel Theory: Zﬁ = 1.0 H1
' o= 1.2 2
ZH H

*  Parameters of Pople and Segal.



used with the BZ'S of Pople and Segal. The electron-interaction
integrals were evaluated by the three methods described in Chapter 4.
Each set of parameters is denotéd for convenience by a code given in
Table (6.1) The parameter sets MP, OP, Rl, R2, and RP were only
used in calculations of molecules containing hydrogen and first-row
atoms. It is shown, however, that these parameter sets are inferior
to the empirical sets M1, M2, Ol, and 02, so that tﬁere is no reason to
extend them to heavier atoms.

For the Extended Huckel Theory, values of 1.0 and 1.2 for

.zﬁ are also compared, as shown in Table (6.1).

108.
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CHAPTER 7

JONIZATION POTENTIALS -

- A. KOOPMANS' THEOREM

The ionization potential of a molecule, M, is defined as the

' . 183
energy required to remove one electron from the molecule,

1 = EM) -~ EQ) ' (7.1)
where E(M) and E(M+) are the eneréies of the molecule and ion respectively.
-If equation (7.1) is used to calculate ionization potentials, the SCF-MO
equations for the molecule and the ion must be solved:separately. This
proceduré has several disadvantages:

(i) More computation is required, because the SCF-MO equations
must be solved twice, and becaﬁse the equations in Part A apply to
closed-shell molecules, and must be modified to apply to open shells.21’45

(ii) The parameters evaluated for neutral molequlgs may not be
suitable for calculations on ions, especially in excited states. For

41,42

example, the parameters of the Pariser-Parr-Pople theory which are

suitable for the prediction of spectra in neutral pi-electron systems

must be modified to give accurate ionization potentials.lslh185

(iii) Ionization potentials-are given by equation (7.1) as a

small difference of two large energies, so that small errors in E(M) and

E(M+) may lead to large errors in I,.even when both E(M) and E(M+) are

Hartree-Fock energies.186
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These difficulties can be avoided by evalﬁating the ionization
potentials directly from the molecular wave function, using Koopmans'
theorem, according u:which'theenergy required to remove an electron
from the ith orbital of a molecule, leaving the nuclei fixed and the

orbitals unaltered, is given by

I, = -E (1.2)

if both the molecular and ionic wave functions satisfy the Hartree-Fock,

2,20,182

or the Roothaan, equations. E, is the energy eigenvalue of the

i

ith orbital, found by solving the secular equations. Peters187 has shown
" that the Ei correspond more closely to experimental ionization potentials
than do energies of localized orbitals.

ﬁquation (7.2) indicates that a molecule has a distinct ionization
potential for each orbital energy eigenvalue. The first ionization
potential corresponds to the removal of an electron from the highest
occupied molecular orbital, or set of degenerate orbitals, and the forma-
tion of an ion in its ground state. Higher (or inner) ionization potentials
correspond to the formation of electronically excited ions by the
188

removal of an electron from a more tightly bound orbital.

The probf of Koopmans' theorem assumes that the removal of an
2,182

electron from one orbital leaves the orbitals unaltered. In fact,
the removal of an electron alters the potential acting on the remaining

electrons, so that the ion may attain a lower energy if the orbitals are

reorganized, leading to ionization potentials lower than thosevgiven by
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186,189 b vaquet and Salem'S® have shown that the effect

equation (7.2).
of reorganization is of the order of 0.1 ev. for the first ionization
botentiél of pi-electron systems, by considering the loss of an electron
as a perturbation acting on the orbitals. Ruendenberg190 suggested that
the effect of re-organiz;tion should be small if the electron removed is
only one of many.

The empirical validity of Koopmans' theorem has been examined by
Birss and Laidlaw,186 who used accurate SCF wave functions calculated
séparately for atoms andtions to show that the amount of re-érganiéation
decreases with increasing total number of electrons in the series He, Li,
Bel The agreement of Koopmans'-theorem with experiment is best for Li,
since "No orbital pair correlations are greatly diéturbed in the ionization
pf lithium whereas in heiium and beryllium the ls and 2s electron pair
correlations are removed:upon ionization." Changes in correlation enérgy
on ionization are of course not accounted for in orbital calculations. On
compariﬁg the two closed-shell étoms, however, Koopmans' theorem is more
accurate for Be, since tﬁere are more electrons in the atom. For all these
atoms, Koopmans' theorem.leads to more accurate ionization potentials than
eéuation (7.1), when accurate SCF energies are used. Birss and Laidlaw186
also showed that the validity of Koopmans' theorem is retained if overlap
is neglected, both in atoms and in the Pariser-Parr-Pople theory for pyridine.

Kéopmans' theorem refers to the vertical ionization prbcess, in

which the nuclei remain fixed. This may or may not be identical with the

adiabatic ionization process, in which the ion is formed in its ground
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vibrational state.183 The two processes are shown in Figures (7.1) and
(7.2), for the ;ase of a diatomic molecule. If an electron is removed
from a strongly bonding molecular orbital (Figure 7.1), the ion will have
a lower bonding energy, and a greater equilibrium internuclear disténce,
than the molecule. . According to the Franck-Condon principle,183 the ion
is more likely to be formed in a vibrational state whose w;ve function
overlaps appreciably with the moleculér ground state, with the same nuclear
configuration as the molecule (vertical ionization). The calculated
orbital energies are compared with vertical ionization potenfials, when
these are known. If an electron is removed from a weakly bonding or non-
bénding orbital, however, the ion and the molecule will have approximately
equal equilibrium internuclear distances, so that the vertical and adiabatic
processes are the same.183 (Figure 7.2) Antibondingvorbitals are similar
to bonding orbitals in this regard, since the loss of an electron is
expected to cause a change in bond distance.

The different ionization potentials of é molecule are identified
by the irreducible representation of the molecular symmetry group of the
ionic state formed, and of the orbital from which an electrpn is removed.
Thé ground state of a closed-shell molecule belongs to the totally symmetric
reprgsentation, so that the orbital and the ionic state have the same
symmetry.20 Cotton's notat:ion191 has been used for symmetry groups and
their irreducible representations. For the sz and D2h groups, the assign-

ment of axes is arbitrary, and standard notation192 has been used for planar

molecules. The only nonplanar molecules of these two symmetry groupé



113,

® " FIGURE 7:1 VERTICAL AND ADIABATIC ,
IONIZATION FROM A BONDING

ORBITAL -
\ : ION
% .
O -
h .
()] )
c _
: /
© =~ 7
= \ /
c A\
2
S S| Je
s /5 MOLECULE .
s ° .
= e
8 5
v [
S <
\\ Il J/
\ [ 7 Vibrational Levels

Internuclear Distance



114,
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considered are C3H8 and B2H6, for which the choice of axes is stated later.

B. EXPERIMENTAL IONIZATION POTENTIALS

There are a number of methods for determining ionization poténtials

188,193-205

of which the most reliable is photoelectron spectroscopy. Until

recently, ionization potentials were determined by threshold methods, in
which the energy of incident electrons or photons is increased until

. 188 . - 18:
ionization occurs. In electron impact methods such as mass spectrometry,

and in the photoionizafion method of Watanabe,206 ionization is detected by
measuring the positive ion currents. In spectroséopié methods, ionization
corresponds to the convergence limit of a Rydberg series of absorption
lines. 1In each case, the ionization threshold is identified as the first
ionization potential, '

Ionization potentials corresponding to the formation of excited

ions have also been detected by threshold methods.183’20~7"212

In electron
impact, the probability of ionization from a given orbital is proportionél
to the excess energy of the incident electrons (in the approximate range of
0-50 eﬁ.), so that higher ionization potentials correspond to breaks in the
plot of ionization current against incident energy.183’208-212 In spectro-
scopic methods, higher ionization potentials correspond to the convergence
limits of Rydberg series, other than the one which converges to the first
ionization potential.207

Some apparent higher ionization potentials determined by threshold

methods, however, may correspond to processes such as dissociative ionization,
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. in which the molecule dissociates into fragment ions, and auto-ionization
(or pre-ionization), in which excitation to a neutral state of higher
. e L . . . 183,19
enexrgy than the ionic ground state is followed by spontaneous ionization.
Both of these processes result in the production of positive ions, so that
some of the observed "orbital energies" may be spurious.194
These difficulties are avoided by the use of photoelectron

188,193-205 ;| which molecules are ionized by a monochromatic

épgctrospopy,
beam of photons whose energy, 21.21 ev., is greater than the.first few
iénization potentials of most molecules. The exceés energy is carried

away by the ejected electrons, whose kinetic enérgy distribution is
observed, as in studies of the phéto-eléctric effect. Dissociative ioniza-
tion is not observed since only electrons reach the detector, while if
auto-ionization occurs, the kinetic energy of the emitted electrons is the
same ‘as for the corresponding direct ionization process. The first
derivative of the kineticlenergy distribution is the photoeléctron spectrum,
with peaks corresponding to the ionization potentials of the different

202,203 have improved the accuracy of

orbitals. Frost, McDowell and Vroom
this technique to about 0.0l ev. by using a spherical-grid analyzer to
determine the photoelectron-energy distribution.

In this thesis, calculated orbital energies are compared with
ionization potentials determined by photoelectron spectroscopy when they
are available, and by threshold methods for other molecules.

As discussed earlier (Section A), orbital energy levels should

be compared with vertical ionization potentials. If no vibrational
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strﬁcture is resolved, as in electron impact, the observed ionization
threshold does not necessarily correspond to either. the vertical or the
adiabatic ionization prdcess.ls3 If vibrational structure is resolng,
as in photoelectron spectroscopy, the peak corresponding to the lowest
ionization energy_gives the adiabatic ionization potential, and the most
intense peak corresponds to the vertical ionization potential. Only in
the recent work of Turner and Mayzqo were tﬁe intensities obtained accurately
enough so that vertical ionization potentials could be determined. For
the bonding molecular orbitals of the molecules considered in this.paper
(002, acs, CSZ’ NNO) the vertical and adiabatic ipnization potentials
differ by a few tenths of an electron volt.200 For all other molecules,
the ionization potentials detefmined by photoelectron spectroscopy are
adiabatic.

When only the values of the experimentai ionization potentials
of a molecule are known, the computed energy of the highest occupied
molécular orbital is compared with the lowest ionization potential, etc.
It is often possible, however, to obtain experimental information about
the orbital corresponding to each ionization potential, so that the order
of the calculated orbital energies may be confirmed. For example, the
electronic state of an ion may be determined by observing its vibrational

207,213

and rotational spectra. In photoelectron spectroscopy the Franck-

PR | s . s .
Condon principle 83 can be used, since significant excitation to higher
vibrational levels will be observed only for the ionization of the electron

from a strongly bonding or anti-bonding orbita1.194 The corresponding peaks
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dispiay vibrational structure, therefore, iﬁ contrast to the single sharp
peak observed for a non-bopding molecular orbital. For small moiecules,
with not too many distinct levels, this information is often enough to
identify the observed ionization potentials with specific orbitals.lgs-198
Frost et 51?03 have recently shown that it is possible, in favéurable cases,
to distinguish bonding from antibonding orbitals, since the peaks correspond-
ing to bonding orbitals have more vibrational structure, due to the asymmetry
of the potential well. | |

In electron impact methods, no information is obtained to
facilitate the identification of jonization potentials with orbitals: for
molecules céntaining only light atoms. For molecules containing heavy
atoms, however, the splitfing of degenerate ionic states, due to spin-orbit
coupling, can often be resolved since for-atoms this splitting is propor-

80,207

tional to the fourth power of the atomic number. The spin-orbit

coupling energy has the form
a
S

A
E = alL-

(7.3)

where L is the orbital angular momentum, S is the spin angular momentum,

' s . . ‘ . 2
and a is an interaction constant. In linear molecules, for example, T

2

levels are split into 21r and ™ components.210 The mean spin?orbit

1/2 3/2
coupling energy is zero, so that the computed orbital energy is compared
with the mean of the two observed ionization potentials. The fact that the

doublet is resolved, however, indicates that it corresponds to a degenerate

pair of orbitals. Frost and McDowell identified the levels of methyl
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-halide3208 and halogen3210 in this way, and have recently confirmed the

halogen assignments by photoelectron spectroscopy.204
For molecules with many distinct orbital energies in the range
observed by photoelectron spectroscopy, molecular orbital theory often
predicts groups of orbitals closely spaced in energy, which correspond to
a single observed ionization potential. In such cases it is assumed, as

64,172

has been done by other authors, that the observed ionization potential

corresponds to several ionic states which have not been resolved.

C. COMPARISON OF CALCULATED ORBITAL ENERGIES WITH IONIZATION POTENTIALS

The energies of occupied molecular orbitals, as calculated by
the molecular orbital theories described in Part A, are listed in Tables
(7.1) to (7.3) for a number of molecules; and compared with experimental
ionization potentiéls, when these are known. Results calculated using
different sets of parameters are listed in different columns, which are
identified by the symbols listed in Table (6.1).

| Table (7;1) lists orbital energies for molecules containiﬁg only
hydrogen and first row-atoms, calculated from the SCF-MO-CNDO theory with
empirical bon&ing parameters calibrated using the energies of binary hydrides
(Chapter 4). The six columns correspond to the three ways of evaluating
electron-repulsion integrals (Chapter 4), and the two choices of the Slater
exponent for hydrogen, (1.0 and 1.2). For a few molecules, no results are
listed in certain columns,.since the iterative calculation did not converge

to self-consistency.



SCF-MO ORBITAL

Parameter Set

Hy (D o)
LIH(C )

v

BeH, (D

2 «nh)

BH3(D

3h)

CH4(Ta)

NH3(C3V)

o

q

A

0

ENERGIES  (in

M1

-14,69
- 8.10

-11.11

-13.07

-11.79

-18.39

-12.32

-24,37

-12. 29
-13.27

-27.55

TABLE 7.1
ev.) OF FIRST-ROW MOLECULES USING CNDO APPROXIMATION AND EMPIRICAL SONDING PARAMETERS

M2 01 02 Rl R2 Exptl., IP. Reference

-14.69 -15.44 -15.44 -18.07 -18.62 15.45 199

- 8.09 - 7.89 - 7.90 - 9.95 - 9.9 (7.81-7.91)  -214
-11.41 -11.51 -11.77 -13.01 -13.43

12,74 -13.10 -12.83  -15.12 -14.79

-12.11 -12.59 -12.85 -14.38 -14.89 11.4 215
-17.73 -18.40 -17.78 - -21.26 -20.54

-12.70 -13.21 -13.50 -15.03 -15.64 12.99 198,212
-23.51 -24.19 -23.40 -27.14 -26.16 (24) '
-12.45 -13.18 -13.30 -15.09 -15.47 10.35 205
-13.56 -13.95 -14.20 -16.12 -16.58 14,95

-27.07 -27.07 -26.71  -31.10 -30.50

‘0Ct



TABLE 7.1 (continued)

Parameter Set Ml M2 01 02 Rl R2 Exptl. IP. Reference
HZO(CZV) bl -13.96 -14.11 -14.21 -14.33 -17.68 .. -17.90 . .b1 12.61 . 198
a; -13.79 -14,03 -14.70 -14.88 -16 .8i -17.25 . 14,23
b2 -14.41 -14,68 -15.13 -15.36 ~17.43 -17.85 18.02
a; -32.93 -32.69 -32.69 ' -32.51 -36.14 -35.84
HF (Cmv) . T -16.04 . =16.19 -16,57 -16.67 -20.59 -20.85 -t 16,06 204
a -16,16 -16.38 -17,12 -17.30 -19.71 - «20.14 o 16.48
o -37.66 -37.60 -37.93 -37.88 42,89 42,91
Nz(th) 6; -13.75 -13.57 -14,38 -14.25 -16.62 -16.49 o‘g 15.58 203
11':1 -13.84 -13.62 . -14.64 ~14.44 -16.51 -16.34_ o, 16.70
6; =23.01 -23,15 -23,31 -23.46 -25.86 T =25,94 o, 18.80
oé -30.68 -30.23 -30.06 =29.65 -34,33 =34,00

A



Parameter Set

CO(COOV)

€0y (D y,)

=

M1

-13.43
-14.03
-20. 78

-33.91

-13.66
-16.51
-13.91
-26.63
-34.04

-35.07

M2

-13.20
-13.76

-20-83

-33.40

-13.78
-16.26
-13.58
-20.69
-33.73

-34.67

TABLE 7.1

.01

-13.97
-14.68
-20.53

-33.62

-14,47
-17.07
-14.85
-21.02
-34,08

-34,81

-13.52
-15.59
-16.89
-23.,66
-29.85

-34.73

(continued)

02 Rl R2 Exptl, IP. Reference
-13.81 -16.16 . -15.94 0 14,00 199
-14.40 -17.07 -16.88 T 16.564
-20.53 -23,00 -22.97 19.65
-33.15 -36.90 -36.50
-14,55  -17.15 -17.34 g 13.79 200,196
-16.83 220.68  -20.51 ™, 17.59
-14.55 -16.66 -16.38 o, 18.07
-21.01 -23.30  -23,26 o, 19.36
-33.81 -37.64 -37.43
-34,46 -38.46 -38.18
-13.58 -15.70 -15.81 T 12.90 200,196
-15.35 -18.03 -17.88 G 16.40
-16.63 -20.38 -20.18 M 18.14
-23.83 -26.09 -26.22 0720.08
-29.54 -34,17° -33.93 5
=34.13% -39 71 -1 R



Parameter Set

03(C2v) a2

ML

"-13.98

-14.59
-14.65
-16,39
-18.27
-18.81
-29.84
-33.40

-39.34

-10 . 64
-12.15
-18.19

-24,80

M2

-14.35
-14o 72
-14.75

-16.18

 -18.11

-18.67
-30.10
-33.24

-38.78

-10.49
-12.33
-18.20

-24.20

TABLE 7.1

01

-14,31

-15.11
-15.12
-17.13
-18.45
-18.54
-30.46 -
-33.43

-38.41

-11.54
-12,.82
-18.66

-24,78

(continued)

02

-14,59

-15.20

-15.20
-16.85
-18.19
-18.34
-30.70
-33.32

-37.88 |

-11.38

) -12094

-18.63

-24,19

Rl

-13.07
-14.52
-20.52
-26.96

R2

-13.09
-14.88
-20.59
-26,57

Exptl. IP. Reference

12,3 197
12,52
13.52

16.4-17.4

:3 19.24

-“.u 11.40 201
16.44
%

o 18,42
u

‘€T



TABLE 7.1 (continued)

Parameter Set M1 M2 . 01 02 R1l R2 Exptl. IP. Reference

C,H, (D, ) b, -10.41 -10.30 -11.23 -11.11 -12.69 -12.72‘ b, (W 10.48 194
by, -10.47 -11.10 -11.43 -11.95 -12.79 -13.61 12.50
2, -11.65 -11.63 -12.39 -12.36 -14.04 -14.21 14.39
by -14.64 -14.73 -15.21 -15.25 -17.51 -17.77 15.63
b, -19.13 -19.14 -19.54 -19,48 -21.58 -21.61 (19.13)
2, -26.40 -25.43 -26.01 ©  -25.12 -28.78 -27.90
C.H (D, ) e -10.73 -11.32 -11.76 -12.26 -13.24 -14.06 194,198
2767734 8 11.49
a, -11.36 -11.32 -12.12 -12.07 -13.55 -13.76
e, . -14.05 -14.18 -14.72 -14.81 -16.91 -17.26 14.74
a, ~ -20.25 -20.22 -20.61  -20.52 -22.77 -22.80 (20.13)
a,  -27.36 -26.06 . -26.76 -25,60 29,96 -28.60

21



Parameter Set

C3H8(CZV)

M1

-10.31
-10.48
-10.66

-11.78

-12,43
-14.09
-15.07
-19.34
-23.20

-29.18

M2

-10.93
-10.64
-10.96
-12.29
12,72
-14.17
-15.06
-19.38
-22.76

-270 62

TABLE 7.1

o1

-11.38
-11.36
-11.56
-12.74
-13.26
-14,76
-15.62
-19.76
-23.19

-28.35

(continued)

02 R1 ' R2 Exptl., IP. .Référence
-11.93 -12.75 - -13.63 - 194,198
-11.47 12,63 -13.00 11.07
-11.83 -12.92 -13.44
-13.17 -14.49 -15.25 -}

13.17
-13.52 -15.06 -15.67
-14.81 -16.84 - -17.19 15.17
-15.60 -18.03 -18.24 }
-19.76 .21.85  -21.98 (19.8)
22,76 -25.74 25,36
-26,99 -31.75 -30.21

"6Cl



TABLE 7.1 (continued)

Parameter Set M1 | M2 01 . 02 Rl R2 Exptl.vIP. Reference
B2H6(D2h) b3g - 8.49 - 8.82 -9.71 .-10.02 -10.60 | -11.22 » 12.0 215
qu -10.54 -10.65 -11.44 .-11.54 -12,97 © =13,39
b3u -12.42 -12,72 -13.38 -13.63 .-14.79 -15.50
2, -13'58. -14,07 -14,10 -14.47 -16.09 -16.75
b1u -17.44 -17.20 -17.63 -17.36 -20.30 -19.96
ag -22,58 -21,28 -22,28 -21.16 -25.67 | -24,38
LiF(chv) ™ -10.34 -10.10 -11,03 -10.88 -11,18 -11,02
.o =10,39 -10.14 -11.04 -10,.88 -11.37 = -11.20
o -31.55 -31.22 -31.96 -31.75 -33.40 . -33.20
Fz(Dcoh) 1rg -17;70 -17.80 -17.87 -17.94 -22,87 -22,97 1% 15.63 204
o -17.33 -17.02 -17.91 -17.66 -20.06 -19.68 &, 17.35
T, -19.51 -19.42 -19.35 -19.27 -25.00 -24,.89 T, 18.46
o, -37.40 -37.56 -37.68 ; -37.82 | -43,03 -43.20
dé -41,52 -41,26 -41.11 -40.91 -47.69 -47.43

‘921



Parameter Set

CH3F(C3V)

HcN(Ccov)

CH4CN(C4,)

M1

-12.23
-14.33
-16.02
-23,56

-37.31

-12.48

-12.67

"20 ] 24

-28017

M2

-12.65
-14,11
-15.87
-23.15

-36.87

-12.44
-12,81
-20.33
-27.86

TABLE 7.1

01

-13.33
-15.24
-16.48
-23.80

-37.50

-13.37
-13.60
-20,67
-27.89

-12.31

-12.40

-14.91

-18.49

-25,31

-28,02

(continued)

02 Rl R2 Exptl. IP. Reference
-13,68 . -15.34 -16,02 e 12.85 208
-15.06 -16.94 -16.84 a, 14,10
-16.34 -20.39 -20.38 (a;) 16.89
-23.33 '=26.60 -26.16 '

-37.16 . -42130 -42004
-13,33 -15.20 -15.31 13.91 216
-13,72 -15.07 -15,31
-20,69 -22,67 =22, 74
-27.,60 -31,41 -31.31
212,49 - -— 12.22 217
-12.32
-14,90
-18 . 68
'24. 75
-27.62

NAAS



Parameter Set

FCN(C,,)

9 § 9 34 o H

Ml

-13.01
-14,99
-17.30
-20.61
-28,94

-39.13

M2

-13.01
-14.85
-16.94
-20.63
-28.67

-38.59

TABLE 7.1

01

-13.96
-15.97
-17.85
-21.07
-28.65

-39.30

(continued)

02

-13.97
-15.90
-17.54
-21.04
-28.41

-38.86

Rl

-16.10
-17.60
-21.71
-23.62
-32.61

-44,07

R2

| -16.18

-17.45
-21.40
-23.50
-32,53

-43,60

Exptl. IP.

Reference

‘9zl
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The molecular symmetry groups, and the irreducible représentation
of each calculated orbital, are listed in the first column on the left,
-using Cotton's notation,l91 Experimental information concerning the
symmetry of the orbitals is given next to the experimental ioﬁizationz
~potentials. When no such information is available, the experimental
ionization potentials are listed in numerical order, and d§ not necessarily
correspond to the calculated orbitals in the same rows. Experiméntal
ionization potentials in parentheses refer to uncertain values.

| The main feature of Table (7.1) is that the orbital energies
calculated using electron repulsion integrals evaluated from atomic spectra
(columns M1, M2, 01 and 62) are in all cases higher, and in most cases in
beﬁter agreement with experiment, fhan those calculéted.using theoretical
electron-repulsion integrals (columns R1 and R2). The use of theoretical
electron-repulsion integrals leads to the prediction of ionization
potentials which are too large in molecules, just as it does in atoms. If
the electron-repulsion integrals are ad justed to éive the correct atomic
ionization potentials and electron affinities, they also give more accurate
molecular ionization potentials.

The difference between the two empirical formulae for the inter-
atomic electron-repulsion integrals, 8ap’ is less significant since the
choice affects the orbital energies by less than 1 ev. in most cases, The
Ohno formula leads to closer agreement with experiment in a slightly greater
number of cases than the Mataga formula, but this is not conclusive evidence

in favour of the Ohno formula. The results are relatively insensitive to
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the exact values of the gAB's, so that the use of these approximate electron-“
repulsion integrals does not lead to serious error. |

The value of the Sl;ter exponent for hydrogen has even less effect
upon the computed orbital energies, so that no clear choice of zﬁ can be
based on them. Tt will be shown in Chapter 8, however, that the value 1,2
leads to more accurate bonding energies. The colums M2 and 02, therefore,
list the orbital energies computed using the best sets of parameters.

In Table (7.2) the energies in columns M2 and 02 are compared
with orbital energies using the Pople-Segal bonding.parameters, and with
those calculated from the Exteﬁded chkel Theory. A coméarison of columms
MP and OP with columns M2 and 02 shows that the Pople-Segal bonding parameters
leaa to ionization potentials which are much higher than those obtained
with empirical bonding paraﬁeters, and are in almost all cases in worse
agreement with experiment. For many bonding and anti-bonding molecular
orbitals, the effect of using the Pople-Segal bonding parameters is greater
than that.of using theoretical electron-repulsion integrals, since the
ionization potentials of these orbitals in columﬂs MP aﬁd Oé are higher
than the corresponding ones in columns Rl and R2. The energies of lone-
Pair or non-bonding orbitals, such as the a, and b1 orbitals of ammonia and
water respectively, are relatively insensitive to changes in the bonding
parameters. The reason for this difference is clear if the orbital energy
is expressed in terms of fhe orbital coefficients.

* .
Ei = .1(2:1 Cki Cli Fkl (2.11)
H .



. TABLE 7.2 |
COMPARISON OF ORBITAL ENERGIES OF FIRST-ROW MOLECULES (in ev.) IN DIFFERENT MO THEORIES

Parameter Set M2 02 MP or . RP H1 H2 Expti.I.P.(a)
Hz(quoh) o -14.69 =15.44 -17.11 -18.60 -20.09 -31,51 -29,65 15.45
LiH(qaov) c - 8.09 - 7.90 -12.34 -13.21 -13.15 -13.84 = -13.78 - (7.81-7.91)
BeHZ(Deoh) o -11.41 -11.77 -16.27 -17.26 -17.89 ~-13,68 -13.94

OE -12,74 -12.83 -17.15 -18.07 -18.85 - =16,21 -15.79
BH3(b3h) e! -12.11 -12.85 -16.80 -17.94 -19.16 =13.85 -14,28 11.4

al' ~17.73 -17,78 ~24,56 -25.63 -26.91 -20.02 - =19.60
CH4(Td) 't2 | -12,70 -13.50 -17.05 -18.34 -19,78 -14,88 -15.31 12,99

8 -23.51 ~23.40 A -32.32 -33.56 "-34.68 -24.61 =24,40 (24)
NH3(C3V) ay <12.45 -13.30 -13.26 -14.00 -16.30 -14.,21 -14,28 10.35

e -13.56 -14.20 -17.75 -19.22 -20.21 -16.35 -16.73 14,95

a; | -27.07 -26.71 -34.59 -35.894 ' -37.08 -27.80 -27.69

(a) " References as in Table 7.1.

“1€1



TABLE 7.2 (continued)

Parameter Set M2 02 ©MP op RP HL H2 Exptl. I.P;

HZO(CZV) b1 -14.11 -14,33 -14,11 -14,72 -17.83 § =17.27 = °-17.27 b1 12,61
a; -14,03 -14,88 -16.10 -17.11 -19.38 -17.67- -17.78 14,23
b2 -14.68 -15.36 -18.64 -20.22 -21.44 -18.75 | -19.02 . 18.02
. a -32.69 -32.51 -37.87 -39.03 -40,46 -33.34v -33.28
HF(qcpv) AL -16.19 -16.67 -16.70 -17.33 -21.28 -20.86 -20.86 T 16.06
-0, -16.38 -17.30 -19.48 - =20.75 -23,14 -21.31 -21.,43 - ©°16.48
o} -37.60 -37.88 -40,87 -41.84 -45,55 -39.77 -39.74
N2(D°‘h)' O-g -13.57 -14,25 -15.34 -15.66 -18.30 -14,05 o-g 15,58 .
v, -13.62 -14.44 -18.16 -19.40 -20,38 ' -16.24 w, 16.70
7, -23.15 -23.46 | -22.03 -22,03 -25.16 -19.99 . 18.80
oé © =30,23 -29.65 -40,95 -41.87 ~43,27 -31.59

‘2¢e1



TABLE 7.2 (continued)

Parameter Set M2 02 MP " OP RP -+ H1 H2 Exptlh. I.P,
co(C,.) o -13.20 -13.81 -14.56 -14.78 -17.26 -14.39 . & 14,00
v .13.76 14,40 -18.25 -19.52 -21,09 -17.80 T 16.54
& -20.83 -20.53  -21.62 -22.,00 -24.67 -20.09 c 19.65
o -33.40 -33.15 -43,03 44,09 -45,33 3444
€0,(D_,) m, -13.78 -14.55 ©-12,87 -13.88 -15.70 -17.20 ™, 13.79
w,  -16.26 -16.83 -21,18 -22.29 -24,81 -18.14 w, 17.59
o, -13.58 14,55 -17.24 -18.23 -20.43 - -17.51 - o, 18.07
o;  -20.69 -21.01 -21.03 -21.81 -24,42 -19.56 o, 19.36
o; -33.73 -33.81 | -41.31  -42.34 43,99 32,59
o, -34.67 -34.,46 -43,09 -44,06  -45.40 ~ -35.50

‘eel



TABLE 7.2 (continued)

Parameter Set M2 02 MP OP' RP . ' H1 ~  H2  Exptl. 1.P. .
MO(C,_ ) - -13.58 -11.83  -13.14 14,44 -15.27 12.90
15.35 -17.28 -18.21 -20.72 -16.16 ©16.40
-16.63 -21.82 -22.96 -25.44 -18.16 18.14
-23.83 ' -21.62 -22.67 -24.98 | -19.85 20.08
-29,54 -38,01 -39.16 -41,03 -29.17
-34.33 45,14 -46.22 -48.00 -35.71
05(C,) a, -14.35 -14.59  -12.05 - -13,13 -14.68 -17.16 12.3
a -14.72 -15.20 -13.32 -13.83 -17.35 -15.94 . 12.52
b, -14,75 -15.20 -13,73 -14.,29 -17.71 -16.86 13.52
by -16.18 -16.85 -20.31 © -21.40 " -23.54 -19.22 ' 16.4-17.4
b, TR -18.19 -21.17 -22.14 -24.49 -19.40
_ : : 19.24
a,  -18.67 -18.34 -21.73 -22.36 -25.73 -19.06
a -30.10 -30.70 -28.14 -28.40 -32.10 -25.22
b, -33.24 -33.32 -36.72 -37.57 -39.90 -32.54
a, -38.78 -37.88  -47.55 -48.35 -50.49 -38.71

‘el



Parameter Set

CoHy (D ggp)

Gty (Dop)

CyHg (Dg4)

M2

-10.49

.=12,33

-18.20

-24,20

-10.30
-11.10
-11.63
-14,73
-19.14

-25.43

-11.32
-11.32
-14.18
-20.22

-26,04

02

-11.38
-12.94
-18.63

-24.19

-11.11
-11,95
-12.36
-15.25
-19.48

-25.12

-12- 26
-12.07
-14.81

-20.52

-250 60

TABLE 7.2 (continued)

MP

-15.14
-18.12
-24.03

-34.98

-13.86
-13.40
-16.66
-22.33
-24.97

-37.16

-13.74
-15.94
-20.63
-26.57

-38.13

orP

-16.40

-19.35

-25.27

-36.17

-15.01
-14.54
-17.84
-23,68
-26.19

-38 030

-14.93
-17.02
-21.93
-27.79
-39.27

RP

=17.46

-20.62
-26.55

-36.84

-16.06

-15.82

-19515
-25.11
-27.49

-39,06

-16.32

-18 .21

-23‘41

-29,07

-40008

H1

-13039
-15.05

-19 . 52

 -26.70

-13,07
-13065
-14.37

-16.05

20,47

-26.57

'13'69

-13.98

-15.75

-21062

-26,28

H2

-13 .39

-15.30

-19047

-26.64

-13 .07

-14.49

14.48

-16.24
-20.38

-26.47

-14.46
-14.04
-15.96
-21.48
-26.14

Exptl. I,P.

™. 11.40
u
16.44
‘ré

- 18 ..42

by () 10.48
12.50
14.39
15.63

(19.13)

‘} 11.49

14.74

(20.13)

sreT



TABLE 7.2 (continued)

Parameter Set M2 02 MP or RP H1 H2 Exptl. I.P,
C4Hg () b, -10,93 -11.93 -12.72 -13.88 -15.28 . 413,21 -14.11
b, -10.64 -11.47 -13.78 -14.89 -16.12 -13.41 -13.62 11.07
a -10.96 -11.83 -13.42 14,55 -15.86 -13.54 -13.90
a -12.29 -13.17 -16.16 -17.42 -18.91 1444 ~15.00
2 13.17
bz . -12. 72 -13052 -18010 -19.28 "20.67 o -14.69 -15014
‘ a -14.17 -14.81 -20.76 -22.00 -23.40 -15.57  -15.77 15.17
b, -15.06 -15.60 22,67 -23,98 -25.51  -16.13 -16.24
a -19.38 -19.76 -25.94 -27.18 -28.55  ° -20,39 -20.34 (19.8)
b, =22.76 -22.76 -31.80 -32.98 -34.05 -23.75 -23.58
a -27.62 -26.99 -41.86 242,97 -43.68 -27.12 -27.04

‘9€T



TABLE 7.2 (continued)

Parameter Set M2 02 MP oP RP H1 - H2 Exptl. I.P.

ByHg(Dy) By - 8.82 -10.02 - 9.14 -10.25 -10.94 - 9.87 -10.70 12.0.
by, -10.65 -11.54 -14.56 -15.96 -16.70 -11.43 -11.78
by,  -12.72 -13.63 419,39 -20.72 -21.20 -14.12 -14.46
a,  -14.07 -14.47 21,66 -23.04 -23.64 -15.16 215.55
by,  -17.20 -17.36 -25.45 -26.87 ©  -27.55 -18.85 -18.54
a, -21.28.  -21.16 -35.01 -36.40 -36.84 -21,35 -20.98

LiF(C,_, ) 1r -10.10 -10.88 -14.11 -15.05 -14.99 -20.86
o -10.14 -10.88 -14,17 -15.01 -15.37 -20.86
o -31.22 -31.75  -37.40 -38.38 -38.61 -39.41

Fy (D gp,) T, -17.80 -17.94 16,77 -16.77 -22.09 ©-20.09 T, 15.63
o,  -17.02 -17.66 -20.22 -21.19 -22.72 . -22.46 6, 17.35
m, -19.42 -19.27 -20.45 -20.45 -25.77 -21.57 T, 18.46
o, -37.56 -37.82 -36.12 -36.12 -41,99 -36.06
o, -4L.26 -40,91 -44,31 44,52 -49.73 42,47

"LET



Parameter Set

Gl (C,)

HCN(CO°V)

9 9 9

M2

-12,

-14,

=23,

-36.

-12,

-20.

-27.

65

11

.87

15

87

44

.81

33

86

02

-13.68
-15,06
-16.34
-23.33

-37.16

-13.33
-13.72
-20.69
-27.60

TABLE 7.2
MP

-13.96
-18.61
-20.42
-28.82

43,47

-16040
-15.32
-23.81

-37.55

(continued)
oP

-14,77
-19.70
-21.39
-29.83

-44 . 40

-17.71
-15.94
-24.90
~38.64

RP

-17.57
-21.27
-24.12
-32.05

-47.10

-18.58
-18.15
-26.43

-39. 62

H1

-14,61
-20.15
-20.96
-23,64

-40 . 00

-15.09
-14,64
-19.68

-29.31

H2

-15.08

-20.08

.=20.95

-23,57

-40.00

-15.09
-14.69
-19.64
-29.30

Exptl. I.P.

e 12.85
al 14,10

(a;) 16.89

13.91

"8€1



TABLE 7.2 (continued) -

Parameter Set M2 02 MP (0 RP H1 H2 ' Exptl, I.P,
- CHyON(C, ) e -- -12.49 -13.81 - -15.09 -15.89 14,48 -14.72 12,22
' a - 12,32 -14.61 -15.29 -17.28 -14.08 -14.11
e -14.90 -20.54 -21.97 -23.21 -15.53 -15.69
a, -18.68 -20.43 -21,53 -22,88 -17.38 -17.41
a 24,75 -34.24 -35.45 -36.46  ~20.46 ~24.34
a -27.62 -39.07 40,19 -40.83 -29.56 -29.56
FCN(va) T -13.01 -13.97 -14,25 -15,20 - -17.14 -14.94
6 -14.85 -15.90 -15.92 -16.51 -19.15 -15.72
T -16.94 -17.54 -21.55 -22.49 -25.51 -20.99
o -20.63 -21.04 -22.87 -23.87 -26.26 -21.67
o -28.67 -28.41- -37.37 -38.31 -39.92 -28.74
o -38.59 -38.86 -46.08 47,14 -49,85 40,26 |

‘6€T
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The only terms in the summation which depend én the bonding parameters

are those involving matrix elements Fkl betweeﬂ orbitals on different atoms,
and these terms are only significant if the coefficients of .atomic orbitals
in at least 2 atoms in the molecular orbital are large, i.e., if the
orbital is a bonding (or anti-bonding) orbital.

Pople and Sega144’45

evaluated neither the elegtron-repulsion
integrals, nor the bonding parameters, empirically. Orbital energies
calculated with all the.parameters used by Pople and Segal are listed in
colum RP, and are genegally in worse agreement with experiment than those
calculated using either empirical bonding parameters, or empirical electron-
;epulsion iﬁtegrals. The only empirical parameters used by Pople and Segal
are the local terms of the diagonal core Hamiltonian matrix elements, Uss
and Upp’ which are evaluated from atomic spectra.45 Table (7.2) shows that
this degree of empiricism is not adequate for the calculation of accurate
orbital energies. |

The columns Hl and H2 list orbital energies calculated using the
Extended Huckel Theory. For molecules that do not contéin ﬁydrogen, the
results of the EHT do not depend on the Slater exponent for hydrogen, so
that only one set of orbital energies is listed. On the whole, the EHT
orbital energies are less accurate than the SCF-MO-CNDO energies in columms
M2 and 02 ‘although they are quite accurate for a few molecules, such as N2
and CO. The results for the hydrides, and especially hydrogen, however,

show that the EHT is unreliable. The effect of changing the Slater exponent

for hydrogen is negligible.
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Table (7.3) lists the orbital energies for molecules which
,contain atoms heavier than neon. SCF-MO-CNDO calculations for these
molecules have only been made with empirical bonding parameters and eieetron-
repulsion integrals, since empirical parameters have been shown to be better
for molecules containing only light atoms in Tables (7.1) and (7.2). The
accuracy of the computed orbital energies is about the same for both sets
of molecules, for both the SCF-MO-CNDO theory and the EHT.

In eummary, therefore, tﬁe best of the semi-empirical theories
considered is tﬁe SbFJMOjCNDO theory, with empirical electron-repuision
integrals and bonding paramerere, and a Slater exponent for hydrogen of 1.2.

The semi-empirical orbital energies of some small molecules are
compared in Table (7.4) with approximate Hartree-Fock orbital energies from

39,223-227 I1f Koopmans'

exact SCF-MO calculations with extended basis sets.
theorem is assumed to be vaiid, the overall accuracy of the semi-empirical
orbital energies is comparable with that of the Hertree-Fock orbital
energieé. Of course, the latter are far closer to exact solutions of the
Hartree-Fock equations, but they are not always in good agreement with
measured ionization potentials, since Koopmans' theorem does not hold
exactly. 1In cases where the semi-empirical orbital energies are in better
agreement with ionizarion potentials, the errors due to the approximate
solution of Roothaan's equations partially cancel those due to Koopmans'
theorem.

Some additional features of the orbital enmergies and ionization

potentials are discussed below for specific molecules.



* . TABLE 7-3
COMPARISON OF ORBITAL ENERGIES (in ev,) IN DIFFERENT MO THEORIES FOR MOLECULES WITH NOT ALL FIRST-ROW ATOMS

Parameter Set ML M2 01 02 . H1l H2 Exptl.I.P, Reference

S1H,(T,) t, -11.84 -12.08 -12.50 -12.67 -14.59 -14.79 12.2 218
a -18.62  -18.09 -18.67 -18.15 - -21.63 -21.18

GeH, (T,) t, -11.95 -12.12 -12.59 -12,75 -14.82 -14.97 12,3 218
a, -18.28 -17.78 -18.52 -18.14 -22.51 -22,07

SnH, (T,) t, -11.73 -11.85 ~15.41 -15.42 -14.42 -14.54
a -16.67 -16.22 -20.63 -20.43 -20.53  -20.02

PH, (C, ) a -12.08 -12.18 -12.68 -12.75 -11.68 -11.85 10.2 219
e -12.11 -12.31 -12,83 -13.02 -14.78 ~15.04
a,  -21.22  -20.88 . -21.05 -20.76 -22,18 -21,78

AsHy(Cy ) -11.64 -11.72 -12.12 12,17 -10.51 -10.70 10.6 220
e -11.70 -11.89 -12.35 -12.52 -14.14 -14.43
a -18.53 -18.20 -18.38 -18.10 -21.23 -20.78

44!



TABLE 7.3 (continued)

Parameter Set Ml M2 01 02 H1 H2 Exptl. I.P. Reference

SBHy(C3 ) 3 11,41 -11.42 -11.85 -11.86 -10.06 -10.27
e -11.49 -11.62 ~12,04 -12.18 -14.06 -14.29
a -18.54  -18.28 -18.33 -18.13 -20.17  -19.67
HyS(C,)) by -11.57  -11.64 -11.76 11,79 | -12.40 -12,40 10.42 . 194
' b, -12.47  -12.66 -13.19 -13.35 -15.61 -15.87 12.62
a -12,50  -12.61 -13.18 -13,25 -13.55 -13.75 14.82
a ¢ 2182 -2L.61 -21.79 -21.58  -23.59 -23.29  20.12
HySe(C, ) b, . -1L.75 -11.81 -11.94 -11.97 -11.68 -11.68 9.88 . . 221
b, 12,45 -12.59 -13.13 -13.25 -15.34 -15.55
a; -12,51 -12.59 -13.15 -13.19 -13.05 -13.27
a -20,99  -20.83 -21.02 -20.85 -23.24 -22,91

eent



Parameter Set

H,Te

HCI(Coov)

HBr(Qx:v)

HI(G, )

M1

-11.69
-12,20
-12,29

-19.93

-13.13
-13.94

-24.96

-12006
-13 . 11

-23.65

-12.06
-12,63

-20.38

M2

-11.74
-12.33
-12.37

-19 . 83

-13 . 18
-14,07

-24,87

-12.09
-13 . 22

-23.58

 -12,08

-12,68

-20.32

TABLE 7.3

01

-11.82
-12.81
-12.82

-19.95

-13.44

-25.16

-12.27
-13,77

-23.77

-12.17

-13.18

20,44

(continued)

02 H1l H2 Exptl. I,P, Reference
-11.85 -11.04 . -11.04 9.14 217
-12.92 -15.07 - -15.19
-12.87 -12.68 -12.90
-19.85 -22.07 © -21,69
-13.46 -15.04 -15.04 - 12.80 204
-14.79 -16.39 . -16.59 0" 16.28
-25.07 -26.36 -26.19
-12.28 -13.10 = -13.10 T 11.87 204
-13.86 -14.88 -15.11 c~15.31
-23.69 -24.98 -24.76
-12.19 -12.67 -12.67 T 10.75 204
-13.25 -14.62 -14.82 0 14.03

-20.38 -22.26 -22,00

791



Parameter Set

OCS(va)

Cs

A

Doty

"

9 9 9 9 4 4

o

=t
[+

o) & w)

Ml

-10.88
-12.83
-12.10
-17.62
-21.44

-25 . 64

M2

-11.71
-14.76
-12.97
-18.77
-24.05

-33.71

-10.93
-12.73
-12.01
-17.70
-21.35

"'25 . 42

TABLE 7.3

01

-12.20
-15.60
-14,04
-19,28
-24.03

-33.99

-11.30
-13.39
-12.70
-18.14
-21.61

-25.31

(continued)

Oi H1 H2 Exptl. I.P. Reference
-12.26 -13.14 o Mit.27 200,196
-15.36 -17.76 T15.60
-13.81 -14.67 S16.04
-19.32 -18.40 &18.00
-23.89 - -24.25
-33.58 -34.37
-11.33 -12.24 T, 10.11 200,196
-13.28 -14,18 w, 12.92
-12.59 -13.48 o, 14.49

. -18.23 | -15.72 o, 16.19
-21.52 -21.64 (17.05)
-25.08 -26.97

"Y1



Parameter Set

Cs

SOZ(CZV)

M1

-11.36
-11.,55
-18.41

-23.93

-12,23
-12.68
-12,94
-15.11
-15.40
-16.09
-21.58
-32.72

-33.95

M2

-11,31
-11.49
-18.46

-23.77

-12.30
-12,71
-13.31
~15.06
-15.32
-15.99
-21.59
-32.63

-33.72

01

-11,90
-12.01
-18.60

-23.70

~12.65
-13.09
-13.11
-15.40
-15.55
-15.78
-21.56
-32.41

-33.34

(continued)
02 H1 H2 Exptl. I.P. Refereﬁce
-11.82 -13.65
-11,94 12.13
-18.66 -16.96
-23.52 -25.71
-12.69 -13.03 12.32 1%
~13,09 -17.07
-13.33 -17.23 13.17
-15.30 -18.00
-15.42 -17.86 16.42 -
-15.66 C o -17.89
-21,58 -19.72 . (20.07)
-32.34 -32.64 |
-33.15 -34.82

A



Parameter Set

C

1

o(

D

eoh)

Brz(DeOh)

I

2

(D

-

»

o

=]
=

OOq ﬁq (IQq

©d 9 ¥ ¥ A

2 ) w9 PR

Ml

-13.01
-14.85

-13.57

-23.56

-27.08

-11.73
-13.22
-12.14
-22,24

-25.15

-11.81
-12,99
-11.42
-19.25

-21.50

M2

-13.05
-14.81
-13.46
-23.61

~26.98

-11.74
-13.21

-12.11

-22.25 .

-25.12

-11.79 .

-13.01

-11.47

-19.23

-21 . 55

TABLE 7.3

01

-13.13
-14;73
-14,02
-23,70

-26.86

-11.82
-13.13
-12,56
-22.36
-24,97

-11.88
-12,93
-11.79
-19.33

-21.40

(continued)

02 . H1

-13.16

-14,70
-13.94
-23.74

-26.79

-11.83
-13.12
-12,53

-22.37

=24,94

-11.86
-12,95
-11.85
-19.31

-21.45

-13.80
"'16005
-16.42

-22,04

-28,62

-11.98
-14.01
-14.36

-20.47

-26,96

-11.72

'13 ‘46

213,94

-18.40

-23,53

Exptl., I,P, Reference

v 11.50

118

" 14.11
u

. 0% 15,94

8
o, 20.61

m 10.71
g

T o12.52
u

14,44
%

1T 9.65
o 11.28
u .
-6 12,79
8

204,210

204

204

WAL




Parameter Set

ClF(Coov)

BrF(Q&ov)'

19 9 4

9 99 4 4

Ml

-14.36
-17.35
-15.37
-25.78

-38.34

-13.13
-16.40
-14.34
-24,33

-37.43

M2

-14,44
-17.24
-15.14
-25.82

-38.16

"13 . 20

-16,29 -

-14.14
-24,37

-37.25

TABLE 7.3

01

-14,28
-17.21
-15.83
-25.63

-38.14

-12,90
-16.25
-14,76
-24,05
-37.20

(continued)

02 H1 H2 Exptl. I.P, Reference
-14.34 . -14.78 £12.7 222
-17.11 -20.97
-15.64 -20.09
-25.65 -24,80
-37.98 -40.10
-12.94 -12,91 L1190 222
16,14 -20.92
-14,59 -19,52
-24.07 ' -23.62
-37.04 | -39.95

‘81




Parameter Set

IF(Cop,,)

BrCl(C_, )

999 34

93 9 9 4 4

Ml

-13.60
-15.81
-13.40
-21.60

-36.61

-12,27
-14.03
-12.77
-22.81

-26.08

M2

-13.65
-15,72
~13.25
-21.63

-36.49

-12.29
-140 00
-12,70

-22.84

-26 . 02

TABLE 7.3

01

-13.41
-15.65
-13.79
-21.37

-36.42

-12.33
-13.94
-13,21
-22.91

-25.89

(continued)

02 - Hl

-13.45
-15.57
-13.67
-21.39

-36.31

-12.35
-13.92
-13.15
-22.94

-25.84

"12. 58
-20.88

- -18.88

-21.99

-39.63

-12,53

-15.40
-15.46

-21.23

-27.83

Exptl. 1.P, Referencé

£10.5 222

£11.1 222

“6Y1



TABLE 7.3 (continued)

Parameter Set M1 M2 01 02 . Hl H2 Exptl. I.P, Reference

ICL(Cop.) M -12.39 -12.40 -12.46 -12.46 1224 7 10.55 210
s -13.85 -13.84 -13.77 -13.76 -15.29 T12.16
o -12.37-  -12.35 -12.78 12,77, -15.26
o -20.52 -20.52 -20,53 -20,54 -19.67
S~ -25.06 -25,04 -24,98 24,97 - -26,70
IBr(Cy ). T -11.77 -11.76 -11.85  -11.85 . -11.84 . W10.23 210
| T -13.13 -13.14 13,06 - -13.06 -13.75 TM11.64
o -11.76 -11,77 -12,16 - -12,17 -14,15
6~ -20.13 -20.12 ~ -20.18 -20.18 : -19.14
o -23.96 -23.97 -23.88 -23,88 T 225,55

*0ST



Parameter Set

CHyC1(C, )

C§3Br(c3v?

e

Ml

-11.53
-12.24
-14.06
-21.67

-26.64

-10,99
-11.44
-13.57
-21.17

-25.83

M2
-11.81
-12,21
-14.18

-21.64

-26.03

-11.19
-11.46

-13.76

-21,16

-25,22

TABLE 7.3

01

-12,23
-13.00
-14.67
-22,11

-26.51

~11.47
-12.17
-14.26
-21.55
-25.65

(continued)

02

12,41
-12,97
-14.79
-22,02

-25.98 .

-11,61
-12.16
-14,43
-21,51
-25.09

Hl

-13.72
-15.63
-15.96
-21.54

-27.60

-12.48
-14,20
-15.29
-20.84

-26.66

H2

-14.11
-15.63
-16,06
~21.56

-27.52

-12.68

- =14,22

-15,58
-20.90
-26.54

" a

Exptl., I.P. Referencé

e
8

e

1

11.42
12,07

13.02

18.71

10.69
11,62
12.94

19.13

208

208

"1ST



Parameter Set -

CR1(Cy)

01CN(c°°vy

Ml

-11.10
-10.93
-13.36
-16.86

-24.70

- M2

-11.30
-10.99
-13.57
-18.98

-24,02

-12.30
-12.87
-14.40
-19.48
-25.83

-28.68

TABLE 7.3

01

-11.50
-11.60
-14.06
-19.17

-24,55

-13.09.
-13.78
-15.07
-19.87
-26,23

-28 064

{continued)

02 H1 H2 Exptl. I.P, Reference
-11.64 -12.20 -12.35 e 9.80 208
-11.64 . -13.85 -13.89 a, 11.22
-14.24 . -15.19 -15.51 e 13.14
-19.26 -19.45 -19.55 a, 19.76
-23.91 °  -25.29 -25.13
-13.08 L 14,47
-13.69 -14.88
-14.93 -15.77
-20.00 - -17.70
-26.08 -25.79
-28.38 -29.99

‘TSt



Parameter Set

BrCN(CoOv) ™

ICN(Cw v)

o

I 9 9 A

qQ @ q A 2 q

Ml

-11,87
-12.17
-13.68
-18.98
-24.71

-28 [ 58

-11.76
-11.97
-13.47
-18.31
-22.03

-28 . 30

M2

-11,68
-11,92
-13.35
-18.41
-22.00

-28.03

TABLE 7.3

o1

-12.41
-12.90
-14,26
-19.48
-24.85

-28.25

-12,44
-12,46
-13.98
-18.74
-22.13

-27.97

(continued)

02

-12,40
-12.81
-14.16
-19.63
-24.75

-28.00

-12.36
-12.42
-13.90
-18.83

-22.12

-27.73

H1

-13.19
-14,.29

-15.21

-16.87 .

-24.67

-29 . 71

-14.14

-12.78

-15.15

-16.64
-22.41

-29.42

- H2

Exptl. I.P. Reference>

‘€St
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TABLE 7.4
-COMPARISON OF SEMI-EMPIRICAL AND HARTREE-FOCK ORBITAL ENERGIES

Hartree- . o ice Exptl. I.P.

Orbital Energy M2 02 Fock

CH(T) ¢, -12.70 ~13.50 14,72 223 12.99
a, -23.51 -23.40 -25.63 (24)

NE,(C, )  a, -12.45 ~13.30 -10.60 224 10.35
e -13.56 ~14.20 -16.40 14.95
a -27.07 -26.71 -30.06

B0(C,) b, -14.11 -14.33 -13.48 224 b, 12.61
8 ~14.03 -14.88 -15.13 14.23
bé -14.68 -15.36 - -18.54 18.02
a,  -32.69 -32.51 -36.08 '

HF(C_ ) T -16.19 -16.67 -17.70 39 W 16.06
o -16.38 ~17.30 -20.91 G 16.48
s -37.60  -37.88 “43.57

HCL(C g ) w -13.18 -13.46 -12.96 39 -7 12.80
& -14.07 -14.79 -17.02 G—16.28

< -24.87 -25.07 -30.38
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TABLE 7.4 (continued)

N

_Orbital Energy M2 02 Ha;;zie- Reference Exptl, I.P,
. - - _ r -
2Poop) c’é 13.57 14.25 17.36 225 g 15:58
T, -13.62 -14.44 -17.10 Tru 16.70
o, -23.15 -23.46 -20.92 o, 18.80
oy -30.23 -29.65
coc,) O  -13.20 -13.81 -15.08 39 - 0 14.00
m -13.76 <14.40 -17.40 47 16.54
o -20.83 -20.53 -21.87 6 19.65
o -33.40  -33.15  -41.39 '
co, .(Doqh) v, -13.78 -14.55 -14.81 39 W, 13.79
v, -16.26 -16.83 -19.45 M, 17.59
o, -13.58 -14.55 -20.23 o, 18.07
o, -20.69 -21.01 -21.77 o, 19.36
S, -33.73 -33.81 -40.19
o, -34.67 -34.46 ~41,63
NNO(C, ) T - -13.58 -13.37 39 T 12.90
o -15.35 -19.01 . o 16.40
W -16.63 -20.73 o 18.14
o .
, -23.83 -22.63 &~ 20.08
o
-29.54 -38.75
o

-34.33 -43.82
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TABLE 7.4 (continued)

02 Hartree-

Orbital Energy M2 Fock ‘Reference Exptl. I,P,
-CZHZ(D”h) Ty -10.49 -11.38 -11.17 39 ’ i 11.40
a—g ~12.33 -12.94 -18.58 _ o-g 16.44
oy -18.20 -18.63 -20.95 . 0:1 18.42
‘a'g -24.20 24,19 -28.02
-czHa(Dooh) b3u -10.30 -11,11 -10.38 226 b3u(‘lT) 10.48
b -11.10 -11.95 ~14.08 12,50
3g .
a.g -11.63 -12,36 -15.86 14.39
b2u -14.73 -15.25 -17.97 o "~ 15.63
blu -19.14 -19.48 -21.95 (19.13)
ag -25.43 -25.12 -28.80
F2(D°°h) -17.80 =17.94 ‘-18.04 . 227 'l'\'g 15.63
-17.02 -17.66 -20.30 o~g 17.35
-19.42 -19.27 -21.91 ’fru 18.46

“g

%

“u
o;  -31.56 -37.82 -40.68
g, -41.26 ~40.91 -47.80
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Hydrogen: In Table (7.1) the'computed ionization potential is'
" most accurate if an is given by the Ohno formula, and it is independent of
the Slater exﬁonent of the atomic orbitals. In this case, these conclusions
can be derived analytically, since the occupied orbital must by symmetry

have the form

q#=\]'%.u @, + 9,) | o

The energy eigehvalue of an orbital is given by
2 o ¥ 2D
k,1 ki "1i "kl

or, in this case,

+ F F.. +F

22) = Fpy (7.3)

1
Ey, = 3 (F +Fpy + Fyy

12

The populatlon matrix for H

) e

so that the Hamiltonian matrix elements are
F = U + l-g . (7 %)
11 11 2 °11 )
and

- - 1
Fi1o = =By S99 2 812

(7.8)
where all symbols have been defined in Chapter 2. For all the sets of
parameters considered, including that of Pople and Segal, F11 is equal to

the negative of the electronegativity of the ls orbital of a neutral hydrogen

atom (7.171 ev.).79 The ionization potential of H2 is, therefore,
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= ' o 1
I = 7.171 + BH.S12 + 28, (7.9?
Also, as shown in Chapter 8, the dissociation energy of H2 is
E. = 2%, +%(g. -g.) (7.10)
B 1272 81 7 By .

From equations (7.9) and (7.10), the ionization potential and
dissociation energ& are both predicted correctly if 811 is evaluated using
Pariser's formula,72 819 = 10.766 ev., and ﬁ; s12 = 2,896 ev. Empirical
_parameters havé not been assigned in this way, however, since for other
molecules the population matrix is not determined by symmetry, so that the
ionization potentials and atomization energies cannot be expressed simﬁly
’and solely in terms of the parameters. Instead, the interatomic electron-
fepulsion integrals were calculated using the Mataga and Ohno formulae, and
the bonding parameters were chosen to fit atomization energies alone. For
H2, the values for'g12 given by the Matagg and Ohno formulae are 7.731 ev.
and 10,713 ev. réspectively. Since the létter value is closest to the value
‘required to fit the ionization potential exactly, it leads to a more accﬁrate
ionization potential.

It is also clear from equations (7.9) and (7.10) that if the
electron-rephléion integrals, 11 and 815> are kept constant and the overlap
integral 812 is altered by varying the value of the Slater exponent, Zﬁ, then‘
the change in the bonding parameter BZ’ which.is required to maintain the
value of the dissociation energy, also keeps the predicted ionization

potential constant. (Table (7.1))
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If 811 is evaluated from the theoretical integral, equation (2.18),
the value of 819 required to fit both the ionization potential and the
dissociation energy is 3,206 ev., compared to the theoretical integral
Avalues 13.68§ eﬁ. and 15.896 ev., for Zﬁ =i,0 and 1,2 respectively, so that
fhe use of theoretical electron-repulsion integrals leads to an inaccurate

ionization potential.

Lithium hydride: No experimental wvalue for the ionization

’ potential of LiH is known. A rigorous upper bound, and a probable lower
bound, for the energy of LiH' have been'calculated exactly by Browne,2],'4
using a generalized valence-bond wave function. Such a calculation was
possible for this ion because it contains only three electrons. These
founds have been combined with the experimental energy of LiH to give fhe
ionization potentiél within the limits given in the table. The ionization

potentials calculated using the SCF-MO theory with empirical bonding

parameters and electron-repulsion integrals are in good agreement with the

* value from the ab initio calculation.

Methane; The approximate value 24 ev. for the second ioniza-
tion potential was determined by Collin and Delwiche,212 using mass
spectrometry, and is considered uncertain by the authors. An earlier value

of 19.42 ev.,based on the electron impact spectrum,208 has been shown to

212

correspond to an autoionization level. This conclusion has been confirmed

by photoelectron spectroscopy, since no second ionization potential is

observed for CH4 below 21.21 ev.198 It is probable, therefore, that the
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true second ionization potential i; within 1 ev. of the value (23.4 to

23.5 ev.) predicted by the semi-empirical SCF-MO-CNDO theory. 1In the
absence of the gxtension of photoelectron spectroscopy to higher incident
photon energies, this conclusion.would be supported if the predicted second
ionization potentials for SiH4, GéH4 and SpHa, which are in the range
observable at éresent.by photoelectron spectroscop&, were shown to be

accurate.

Ammonia and Related Molecules: The highest occupied molecular

orbital is the lone pair on nitrogen, so that its c&ﬁputed energy is
insensitive to changes in the bonding parameters. For PH,, AsH3 and SbH,,
the two highest molecular orbital energies are predicted to be so close
t;gether that the photoelectron spectra should be examined to see how many
distinct ionization potentials can be resolved. The two peaks may be
further apart than predicted, however, since their spacing is seriously

underestimated in ammonia.

Watef and Related Molecules: The order of.the computed
orbital energies depends on the‘choice of parameters. The b1 orbital, a
lone pair on, the oxygen atom, is, in fact, the highest since the first
ionization potential is much sharpef than the next two in the photoelectron
spectrum;198 For H Se and H,Te, on the other hand, the b

S, H ‘orbital is

2 2 2 1
predicted to be the highest for all parameters tried. This ié consistent
with experiment for HZS’ for which Al-Joboury and Turner194 assigned the

first ionization potential to a non-bonding orbital.
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Carbon Dioxide and Related Molecules: All the calculations

predict that the highest ah.orbital energy of CO2 is higher than one or

both T orbital energies, in disagreement with the experimental order of

+

ionization potentials, which is based on the emission spectrum of the 002

ion.213 Complete SCF-MO calculations give the correct order of orbital
eneréies with an extended basis set,39 buf not with a minimum basis set,228
so that the decrease of energy associated with improved flexibility of the
wéve function is greater for the bh orbital than for the T orbitals.

The incoyrect 6rder of orbital energies in the semi-empirical theory,
conséqueﬁtly, may also be due to the use of a minimum basis set.

For 0OCS and CSZ’ the predicted order of orbital energies is
again in disagreement with the experimental order, which is based on the
;imilarity of the photoelectron spectra to that of C02, and the absence,
as in COZ’ of a Rydberg series convérging to the second ionization
potential.196 No complete SCF-MO calculations have been made for these
molecules, but it can be assumed that the sourée of'error is the same.

For NNO, which is isoelectronic to co the second ionization

2°
potential has been found to correspond to a & orbital by photoelectron
spactroscopy, so that both the semi-empirical and the complete SCF-MO
theory are i;'égreement with experiment. The actual inversion of orbital
energies .on going from 002 to NNO may 5e due te the fact that the removal .
of the centre of.symmetry allows-mixing between g and u orbitals, which

Ccauses a greater separation of the energetically closer ¢ -orbital energies

than the T™W-orbital energies. This mixing effect is absent in the symmetric
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c(_)2 and CSZ’ and small in OCS, but is evidently important in NNO.

Sulphur dioxide and Ozone: No experimental information is

available concerning the assignment of ionization potentials to specific
orbitals, so that the predicted order cannot be verified. For 802, a good
fit is obtained if the first two observed ionization potentials are assumed
to be three incompletely resolved peaks, and the third observed peak to
correspond to three unresolved energy levels. The fourth observed ioniza-
tibn potential at 20.07 ev. is considered uncertain by Turner,lg'4 but its
existence is supéorted by the theoretical prediction of.an orbital at

-21.6 ev.

Ethylene: The b3u orbital,»which has its nodal plane in the

15,16 and has been

shéwn experimentally to be the highest occupied orbital.194 It is

plane of the nuclei, is the ‘yr-orbital of chemistry,

correctly predicted to be the highest with empirical bonding parameters,
but not with the Pople-Segal bonding parameters.

The fifth ionization potential is considered uncertain by
Turner,194 but agrees well with the energy of the blu orbital, computed

using empirical parameters,

Ethane: There are four calculatéd orbital energies (in columns
M2 and 02) higher than -2i.21 ev., and three observed ionization poteﬁtials198
in this range. Good agreement of the computed energies with experiment is
obtained only if it is assumed that the observed first ionizétion pétential

corresponds to the two highest orbital energies, which are not resolved.
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It is clear from the observed photoelectrqn spectrum198 of c2H6 that two .
peaks as close as the predicted orbital energies either would not be
resolved, or would be interpreted as the vibrational structure of a single

peak. Dewar and Klopman64 have made the same assumption in order to fit

calculated orbital energies to the observed ionization potentials,

Propane: The irreducible.representations are labelled
assuming that the z-axis is the twofold symmetry axis; and the x-axis is
normal to the plaﬁe of the three carbon atoms. The first three observed
ionization potentials are assumed to correspond to geven calculated orbital
eneréies. Dewar and Klopman64 alSé calcuiated'seven orbital energies above

-16 ev.

Diborane: The irreduciblé representations are labelled assuming
that the zréxis lies along the boron-boron line, and the x-axis connects
the two bridge.hydrogens. ' The atomic orbitals on tﬁe.bridge hydrogens
participate in the ag and b3u orbitals, which provide the b;idge bonding
corresponding to the "three centre bonds" in the localized-orbital descrip-

)
tion of BZH6'

Halogens: The dé orbital is predicted to be the highest
occupied orbital in F2 and 12, according to the semi-empirical SCF-MO-CNDO
theory, and the second highest in 012 and Br2, whereas thé photoelectron
spectra204 show that it is below one ¥ orbital in F2, énd both in the other

halogens. Complete SCF-MO calculations for FZ’ using either an extended227
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or a minimum229 basis, predict the co;rect,order of orbitel energies, so
that the error in the semi-empirical theory must be due to either the CNDO
approximation or the choice of parameters. The orbital energies calculated
with Pople-Segal bonding paremeters are in the correct order, butlare in

error by several ev. as for other molecules.

Interhalogens: For the interhalogen molecules, the highest O

orbital energy in the SCF-MO-CNDO fheory is also higher than one or both
Tr-orbital energies, in disagreement with the experimental observation of
spin-orbit splitting of the first two ionization potentials of ICl and
IBr.:j'10 |

For ClF, BrF, IF and BrCl, experimental jonization potent;als have

not been determined, but upper bounds to the first ionization potential,

determined from appearance potentials in halogen mixtures,222 are listed.

Methyl‘fluo;ide: Frost and McDowell208 list the third ioniza-
'tioﬁ poﬁential as a; in their table, but their accompanying text indicates
that this is a misprint, andlthat the third highest orbital has e symmetry,
as in the other methyl halides, and in agreement with all versions of MO

fheory considered,

Hydrogen cyanide and methyl cyanide: The computed orbital

energies indicate that the first two ionization potentials may be too close
to be resolved. This prediction could be verified by determining how many
distinct ionization potentials are resolved in the photoelectron spectra,

which have not yet been observed.
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D. CONCLUSIONS

The SCF-MO-CNDO theory leads to the prediction of fairiy accurate
ionization potentials whén empirical electron-repulsion integrals and
bonding parameters are used, and is definitely more reliable than the EHT.
The theory is, of course, a drastic semi-empirical apbroximatiqn to the
complete SCF-MO theory, in which an extended basis set is used and all
electron-interacfion integrals are evaluated explicifiy. Even in the latter
theory, ioniZatign potentials are not predicted exactly (Table'7.4), due to
errors in,Koopmans' theorem. It is therefore not'surprising that some of
.the-predicted orbital energies in the semi-empirical SCF-MO theory are
somewhat in error, or even in the wrong order for a given molecule. The
compufed orbital energies provide support; but not conclusive evidence, for
a given assignment of the ionization potentials of a molecule, when this

order has not been determined experimentally.



CHAPTER 8

BONDING ENERGIES

- A, CALCULATION OF BONDING ENERGIES FROM SCF-MO-CNDO THEORY

The complete Hamiltonian for a molecule can be partitioned

(Chapter 1) into electronic and nuclear terms:

o o o o :
H = H, + Tn + V. (1.5)
o - o
. where.He is the electronic Hamiltonian with eigenvalue Ee’ Tn is the
o

nuclear kinetic energy, and Vnn is the internuclear potential energy.
The total molecular energy is often partitioned into electronic, vibra-

tional, and rotational terms. 207

+E . +E (8.1)

E = Eelect vib rot

E is the total electronic energy, given by

elect

Eelect = Ee + Vﬁn (8.2)

166.

where th is the expectation value of the internuclear potential energy for

a fixed nuclear configuration.

At OOK, the rotational and translational energies vanish, and

only the vibrational zero-point energy230

. _
h
Esib =72 %‘vi (8-3)
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. . 23
remains; the summation extends over all vibrational normal modes. 0 For

most of the small molecules considered, all the vibrational frequencies,

and their degeneracies, are known.23o-232 At OOK, therefore, the energy
of an isolated molecule is
o h
E—Ee+Vnn+2%Vi (8.4)

For a closed-shell molecule with a single-determinant wave

function

’Yf = Det 'llj‘la ’\‘/‘15 ’\.V;al (1.9)

: 1
E, can be expressed as a summation over the occupied orbitals,

Ee = Zj_ (J1+Ei) (8.5)

Ei is the orbital energy eigenvalue, which may be written
= % : -
- E; EE% Ck. C s Fiq (2.11)

when the molecular orbitals are linear combinations of atomic orbitals.
The Cki are orbital coefficients, and F is the Hartree-Fock Hamiltonian

matrix. Similarly,
5, = 2. ¢ ¢ | (8.6)
1'k1 ki “1i "kl - ) ’

where H is the core Hamiltonian matrix. On substituting equations (2.11)

and (8.6) into equation (8.5),

Ee = 2 (B, + Py ) 4\; o Gy (8.7

k,1
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The population matrix elements, Pkl’ were defined previodsly as

B, = 22; Cfy (2.15)

so that

1 -
Ee =2 =l Prp (g + Fiq)d (8.8)
2 .

42,43

the form used by Pople, Santry and Segal. In matrix form, this

becomes

-1 '
E, = ptr P @D | (8.9)

From equations (8.2) and (8.9) the total electronic energy is

1
= = 8.10
Eelect 5 tr PH+F)+V ( )

For computation, it is convenient to use the equivalent form

! ' : |
E e = 3 tr PH +z?: By +V (8.11)

since the energy eigenvalues Ei are determined together with the orbital
coefficients.
The SCF-MO-CNDO theory has been applied by other authors only

to the calculation of the relative energies of different nuclear configu-

446 67,68

4
rations or electronic states of single molecules, although Dewar

et al. have computed heats of formation using their PNDDO approximation.6€’69
To calculate relative energies for single molecules, it is sufficient to

consider the relative values of the total electronic energy, Eelect’
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In order to find bonding‘or dissociatién energies, or heats of formation,
‘however, the choice of the energy zero implied by equation (8.11) must
be examined. |

For an all-valence-electron SCF-MO theory, the'right hand
side of equation (8.10) vanishes if

(i) the molecule has no valence-shell electroné, so that the
one-electron density matrix P is zero, and Ee vanishes, and

(ii) the atomic cores are at infinite distance apart, so that
th vanishes.

) JAn chemistry, however, one is interested not in the energy

required to remove all the electrons and atomic cores to infinite

separation, but rather in the bonding energy, or atomization energy,
required to separate the molecule into neutral atoms in their ground state

at infinite distance apart.75 This bonding energy may be expressed as

Eg = :E: Er - Eelect : (8.12)

where EA is the valence shell electronic energy of atom A, and EB is
positive for a stable molecule.
For a diatomic molecule, EB is equal to the heat of dissociation,
207

De’ measured from the minimum of the potential energy curve.

For a harmonic oscillator,

Eg= D, =D_+3 hy (8.13)



170.

where Do is the observed heat of dissociation from the vibrational ground
state, and V¥ is the vibrational £,requency.207 In general, the bonding

energy is related to the experimental heat of formation at OOK,

>

_ P o
E, = OH + (AHfo (A))+Ev

5 c0 (8.14)

ib

where Moo is the molecular heat of formation in the gas phase at OOK,

and AHfo (A) is the heat of formation of the monatomic gas of element A.231

If the heats of formation are only available at some temperature, TOK,

equation (8.14) is formally replaced by
| . E ‘ T |
= - - d
EB A HfT+ - (AHf.r a) ) + Evib 0 ACP (8.15)

The integral is neglected if the required heat capacity data
are not known.

The theoretical bonding energy is found by substituting equation
(8.2) into equation (8.12)

EB = % EA - Ee - Vnn (8.16)

The atomic energy, E formally represents the energy required

A’
‘to remove all the valence-shell electrons from atom A, just as Ee represents
the energy required to remove the valence-shell electrons from the molecule.
The successive ionization of electrons, from both atoms and molecules, |
'requires inéreasing amounts of energy for two reasons:

(1) the electrostatic repulsion of other electrons acting on the

electron to be ionized decreases. This effect is incorporated into any
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SCF theory, since the variation of the electrostatic potential with charge
distributioﬁ is explicitly included in the SCF equations.

(ii) as eléctrons are removed, the remaining electrons are
less screened from the nucleus, as implied by the Slaﬁer rules7’70 for
'screening constants, so that the orbitals which they occupy are re-
organized tohave a greater probability density near the nucleus, and the'
expectétion value of the nuclear attraction is increased. This effect is
not accounted for in SCF-MO calculations with a minimum basis, since the
orbital pérémeters are assigned fixed values. The parameters evaluated
from atomic spectra in Chapter 3 are valid only for valence states close
to electroneutrality. If the energy required to remove all the valence
electrons from an atom is calculated from these parameters, it differs
from the sum of experimental ionization potentials81 by, for example,
24.5 ev. for C, and 171.0 ev. for F. |

If, in calculating the bonding energy f?om equation (8.16), atomic
energies were equated to the sdm of the appropriate experimental ionization
potentiéls, the effect of orbital reorganization would be included only in
‘the atomic energy, and not in the molecular energy, so that the bonding
energy would be seriously in error. In order to remove this error, the
atomic and molecular energies must be calculated using the same approximations
and parameters, so that there is a cancellation of errors‘in the bonding
energies,

In the CNDO approximation, tﬁe energy of an atomic state ié

given by
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E=c+ gnkﬁkk+%(§ R (Lm Dy, 618

where n, is the number of electrons in the kth brbiéal, and‘the summations
extend over all the vélence-shell orbitals. Since the energy must now

be expressed relative to the core state, with all valence electrons
.removed, the additive constant becomes zero, and for a state with n

s - electrons and np P - electrons,

‘E = n USs + np Upp + (ns+ np) (ns + np - 1) Ban (8.17)

B. . INTERNUCLEAR POTENTIAL ENERGY

An explicit form has not yet been given for the internuclear
potential éne;gy, Vnn' If the atomic cores are assumed to be point
charges, or non-polarizable non-penetrating spherical charge distributions,
then th is simple the classiCal‘electrostatic repulsion between point
charges,

v = Z 2, 2, RA]';I V (8.18)
n A>B :

in atomic units, as assumed by Pople, Santry, and Sega1.43’45 The net

electrostatic interaction between any two atoms is then

E,, =V _+P V._+P _V

AB ~ 'nn T FaaVap * PppVsa * Paa Py Bam (8.19)

The interatomic core-attraction integral, Vv , has been chosen

so that the penetration integrals vanish (Chapter 4),

v

AB =—ZBgAB. (4.16)
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Thus for two neutral atoms, with atomic populations.PAA and PBB equal
to the atomic core charges ZA and ZB’ the use of the point-charge

expression, equation (8.18), leads to a net electrostatic repulsion,

. .
Exp = 2% Ryp - 8yp)

(8.20)
‘which makes it impossible to predict accurate bonding energies for
any reasonable choice of parameters.

For hydrogen, for example, the population matrix, as shown

previously, is

1 1 ' '
P = 1 1 (7.6)
so that equation (8.10) for the total electronic energy becomes

Belect = Hyp #Hyp +Fpy +Fp+ Vo (8.21)

Equation (4.18) and equation (2.28), for the matrix elements H11 and

le respectively, become for hydrogen

Hi, = U11 - 8, (8.22)
-and

H,,= -82s (8 23)

12 ~ H "12 ' )
Combining these with equations (7.7) and (7.8) for F11 and F12, the
electronic energy is
1 3 o
Be = W+ 38117 78, - By S,+vV, (8.24)
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and the bonding energy is

o 3 1
Bp =y S+ 38y - 28"V

- (8.25).

since for hydrogen, the atomic energy EH equals the local core- Hamiltonian
matrix element Ull' 1f the internuclear potential energy has the point-

charge form (8.18), the bonding energy is then

3 1 -1
B 7 812 ~ 7811 ~ Rap - 828

o
E_ = ZBH s +
If equation (8.26) is solved simultaneously with equation (7.9)

for the ionization potential of hydrogen,

1
2812 (7.9)

I = 7.171 + 65 +
then for the experimental bond;ng energy and ionization potential, 811
determined from the Pariser approximation,72 and Zﬁ = 1.2y the inter-
atomic electron-repulsion integral 81, = 28.052 ev., and the bonding
p;rameter B; = =~ 5.748 ev. These values are absurd, however, since
815 is much higher than even the theoretical 811 for hydrogen, 20.408 ev;,
and the bonding parameter has the wrong sign, which implies that the anti-
bonding orbital is the occupied orbital.
. 1f, on the other hand, the bonding parameter is chosen to give
the correct dissociation energy for reasonable values of 82 then the
bonding parameter.is 14.074 ev., and 10.759 ev., when 81 is determinea by
the Mataga, and by the Ohno formula respectively. The calculated ioniza-

tion potentials are then 20.53 ev., and 19.78 ev., in the two cases, in

very poor agreement with the experimental value of 15.45 ev.
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The point- charge form for th is therefore unsatisfactory.
64
Dewar and Klopman = have suggested that this is because the method of
assignment of atomic parameters fails to allow for the reorganization of
atomic orbitals, and changes in the effective nuclear charges, upon
molecule formation, and that this error must be compensated by altering
the form of Vv__.
nn
The simplest satisfactory assumption is that the net electro-

‘o .
static interaction between two neutral atoms,EAB, vanishes, so that

(8.27)

' 232
as assumed by Chung and Dewar for pi-electron systems. The electro-
static interaction between any two atoms is then simply the interaction of

" net charges.

E = (P - Z

AB An " Zy) @

R SEET (8.28)

With this choice of th, accurate bonding energies and ioniza-
tion potentials can be obtained for reasonable parameter values. For

hydrogen, substitution of equation (8.27) into equation (8.25) leads to

the bonding energy
(8.29)

which may be solved simultaneously with equation (7.9) for the ionization
potential to give 81 = 10.766 ev. and B; = 4.293 ev., (for Zﬁ = 1.2),

as in Chapter 7.
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Dewar and Klopman64 have objected to the use of equation (8.27)
in calculations including all valence electrons, since they have found
that a‘net repulsive intéraction between neutral atoms at short
internuclear distances is necessary in order to predict potential energy
minima. In this thesis, however, it is found that equation (8.27)

leads to satisfactory prediction of bonding energies at experimental

bond lengths.
The final formula used to compute bonding energies from the
semi-empirical SCF-MO theory is found by substituting equations (8.11)

and (8.27) into equations (8.16) so that
1 3 |
Ey ‘ZA Ey- 2 tr B '.lZEi T A»B Zp%pBap (8.30),

where EA is given by equation (8.17).

C. EXTENDED HUCKEL THEORY BONDING ENERGIES

In the Extended Huckel Theory, Ee cannot be evaluated from

equation (8.9), since the one-electron Hamiltonian, ﬁeff’ is not

separated into core and electron-repulsion terms. Hoffmann and

114,146

Lipscomb equated the total electronic energy of closed-shell

molecules to twice the sum of occupied orbital energies, as in the Huckel

pi-electron theory.ls’16

Eelect

2 Z E, (8.31)
¥ .
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w From equations (8.31) and (8.12), the bonding energy is given by
E = 2 E 2 Z E (8.32)
B & a 1+

The internuclear potential energy, Vﬁn’ is not included in this
calculation of the bonding energy, since Hoffmann114 found that the EHT
predicts potential energy minima for most stable molecules (althougﬁ
not hydrogen), which vanish when Vnn is included. He assumed therefore
that

"the method of guessing the matrix elements simulates wiéhin

the electronic energies the presence of nuclear repulsions

at small distances,"114
and suggested that this effect is due to a rough cancellation of electron-
electron and nuclear-nuclear repulsions, neither of which is included
explicitly in the EHT. Allen and Russell145 have shown that bond
angles are predicted correctly from Hartree-Fock calculations, using a
siméle éum of orbital energies as in equation (8.31), except for highly
ionic molecules; so that the EHT may also be expected to predict bond
angles correctly. This does mot apply, however, to bond 1engths.145

As in the SCF theory, the atomic and molecular energies must
be calculated using the same approximations and parameters, so that Ehere
is a cancellation of errors in the bonding energy. By analogy with

equation (8.31), the valence-shell energy of an atom with n_ s-elections

and np~ p - electrons is

E, = n h +n h ' (8.33)
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114,146

Hoffmann and Lipscomb have used instead

By = (g - b+ @ +1) L (8.34)

for boron and carbon, since they found that the ratios of bonding energies

for different boron hydrides are correctly predicted using equation (8.34)
146 '

in a preliminary calculation with all off-diagonal matrix elements

given by

h = KS

1 K = 21 ev (8.35)

kl’

This procedure is not justified, however, since equation (8.33) and not
equation (8;34) refers to the ground state of an atom. Table (8.1)
shows that the procedure of Hoffmann and Lipscomb is not only theoreti-
cally invalid, but also leads to much less accurate bonding energies than

are obtained using equation (8.33).

D. EXPERIMENTAL BONDING ENERGIES

The principle source for the experimental data concerning
bdnding energies is the JANAF Interim Thermochemical Tables.z31 The
disscoiation energies of some diatomic molecules are listed directly.

For other molecules, the bonding energies of some diatomic molecules are
listed directly. For other molecﬁles, the bonding energies'haye been
calculated from equation (8.14), where the molecular and atomic heats

of formation have been extrapolated to 0°K in the tables, assuming ideal-

gas heat capacities.231 The vibrational frequencies of most of the small



COMPARISON OF EHT BONDING ENERGIES (Zh

Ha
CoHy

CH,

C,Hg

C,Hg

BH3

B Hg

This work

19.552

19.792

24,883
30.781
42.037
16.398

23.475

TABLE 8.1
PER HOFFMANN AND LIPSCOMB

As per Hoffmann & Lipscomb

29.291

39.270

44.361
50. 259
71.254
22.889

36.457

Exptl.

18.18

17.53

24.36
30.82

43.56

12.1

26.00

1.0) WITH THOSE CALCULATED AS

ev.

179.
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molecules considered are listed, as well as their degeneracies.231

Anharmonicity corrections have been neglected, since the effect on EB

is only 0.004 ev. for hydrogen, and less for most other diatomics,231

and is unknown for most polyatomics.
For molecules not listed in the JANAF tables, the heats of
formation are taken from other sources, and the vibrational frequencies

230,232 The heats of formatioh of the

from the compilation of Herzberg.
following molecules at 298°K are taken from National Bureau of Standards
CN, CH

data: BrCl, ICl, C_H CBHS’ ICN, CH Cl, CH,Br, and CH,I. The

276’ 3 3 3 3

heats of formation of Group IV, V, and VI hydrides were determined by
Gunn and Gfeen235 using an explosive decomposition method, and the
dissociation energies of CIF, BrF, and IF were found from appearance
poténtials by Irsa and Friedman.222

The vibrational energy of propane was extrapolated from that of
methane and ethane, since the vibrational frequencies afe not all known.230
The unknown vibrational frequencies of IF and BrCl were assumed to be
equal to the arithmetic mean of the corresPohding pure haloéen frequencies,
since this approximation is accurate within 50 cm"1 for the other four
interhalogen molecules.231’233

The experimental bonding energies of the binary hydrides used
to calibrate the bonding parameters have been rounded off to their
probable precision. For other molecules, the bonding energies are given to

0.001 ev. from the experimental data, although this exaggerates their

precision in many cases.
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E. . CALIBRATION OF BONDING PARAMETERS

Bonding parameters for the semi-empirical SCF-MO theory have
been calibrated from the bonding energies of binary hydrides, as described
in Chapter 4. The variation of calculated bonding energies with bonding
_parameters in.the neighbourhood of the experimental bonding energy is
shown in Tables (8.2) and (8.3) for the parameter sets M2 and 02
respectively. The chosen bonding parameters, which give the experimental
bonding energies, have been rounded off to thé nearest tenth of an electron
volt, since greater precision would be inconsistent with the precision of
most of the experimental bonding energies. For other parameter sets, the
Qariation of calculated bonding energies with bonding parameters is similar
and the final bonding parameters have been listed in Table (4.2)

236
The exact electronic energy of a molecule can be written as

Eelect = EHF + Ecorr + Vﬁn ' (8.36)

where EHF is the HartréeJFock energy for the best single-determinant wave
function and Ecorr is the correlation energy. In the sémi-empiriéal theory
described here, the parameters are adjusted to give the correct bonding
enefgies, including correlation enérgy, even though the wave function is
a single determinant.

In order to determine the bonding energ& of a molecule accurately
from a single-determinant wave function, without using empirical parameters,

it would be necessary to first determine EH from a complete SCF-MO

F

calculation, and then either to calculate the exact energy by super-



LiH

BeH

CALIBRATION OF BONDING PARAMETERS FOR SCF-MO THEORY WITH CNDO APPROXIMATION -(PARAMETER SET M2)

o
BA

1.0
5.0
6.0
9.0
9.0
13.0
18.0
6.0
7.0
7.0
10.0
5.0
5.0
6.0

Ep

2.740
8.298
12.994
20.446
13.313
10.290
6.443
16.127
12.255
8.113
5.216
14.044
9.618

6.961

0

Pa
0.8
41
5.7
8.3
8.9
12.9
17.3
5.3
6.1
6.6
9.0
4.5
4.8

5.8

Ep

2.632
7.012
12.344
18.571
13.155
10.196
6.148
14,261
10.630
7.646
4.660
12.708
9.252

6.725

TABLE 8.2

Final BK
0.7
4.0
5.6
8.2
8.8

12.8
17.2
5.2
6.0
6.5
8.9
bty
4.7

5.7

Ep

2.579

6.870
12.128
18.304
12.999
10.101

6.106
13.994
10.450

7.530

4.605

12.441

9.069

6.608

o]

BA
0.6
3.9
5.5
8.1
8.7

12.7

17.1
5.1
5.9
6.4
8.8
4.3

4.6

5.6

3

2.525
6.727
11.911
18.038
12.842
10.007
6.064
13.728
10.271
7.413
4.550
12,175
8.887

6.490

o

0.0
3.0
5.0
8.0
8.0
12.5
17.0
5.0
5.0
6.0
8.0
4.0
4.0

5.0

By

Ep
2.209
5.450

10.831

17.772

11.762
9.820
6.025

13.463
8.668
6.950
4.109

11.3?6
7.796

5.789

Exptl. EB
2.6 ev,
6.9

12.1
18.18
- 12.93
10.06
6.11
13.87
10.47
7.5
4.61
12,5
9.1

6.. 6
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HBr

SnH

SbH

H,Te

HI

8.0

4.0
5.0
7.0

7.0

4,387

11.968
8.748

6.812

3.357

BA EB.
7.3 3.992
3.7 11.208
4.8 8.401
6.2 5.935
6.8 3.247

TABLE 8.2
o
Final BA EB
7.2 3.935
3.6 10.955
4,7 8.229
6.1 5.825
6.7 3.192

cont.

3.5
4.6
6.0

6.6

3.879

10.702
8.056
5.716

3.137

7.0

3.0
4.0
5.0

6.0

3.823

9.440°

7.022

4.628

2.809

Exptl. EB

3.92

11.0
8.3
5.8

3.20

‘€81



TABLE 8.3
CALIBRATION OF BONDING PARAMETERS FOR SCF-MO THEORY WITH CNDO APPROXIMATION (PARAMETER SET 02)
o]

o o] K0

Pa g Pa Eg Final B, Eg By B Pa Eg Exptl. Eg

LiR 0.0 2.933 -0.7  2.645 -0.8  2.606  -0.9 2.567 -1.0 2.529 2.6 ev.
Bell, 4.0 7.693 3.5  7.019 3.4 6.884 3.3  6.751 3.0 6.352 6.9
BH, 6.0 14.169 5.1 12,237 5.0 12,022 4.9 11.809 4.0  -9.891 12.1
CH,, | 8.0 20.091 7.4 18.501 7.3 18.235 7.2 17.970 7.0 17.441 18.18
NH, 8.0 14.075 7.4 13.140 7.3 12.985 7.2 12.831 7.0 12.524 12.93
H,0 11.0 10.499 10.6 10.132 10.5  10.040 10.4  9.949 10.0 9.585 10.06
HF 15.0 6.479 14.2 - 6.160 4.1 6.121 14.0  6.082 ‘ 6.11
SiH, 5.0 14.585 4.8  14.055 4.7 13.790 4,6 13.525 . 4.0 11,941 13.87
PH, 6.0 11.767 5.4 10.700 5.3  10.523 5.2 10.346 5.0 9.993 10.47
H,S 6.0 7.930 5.7 7.585 5.6  7.470 5.5 7.355 5.0 6.784 7.5
HC1 8.0 4.734 7.9 4.680 7.8 4.626 7.7 4.572 7.0 4.194 4.61
GeH, 5.0 15.247 41 12.884 4.0 12.623 3.9 12.362 3.0  10.032 12.5
AsH, 5.0 10.683 4.2 9.234 4.1 9.053 4.0 8.874 3.0 7.088 9.1
H,Se 6.0 7.828 5.0  6.663 4.9  6.547 4.8  6.431 4.0 5.510 6.6
HBr 7.0 4.309 6.4 3,976 . 6.3 3,921 - 6.2 3.865 6.0 3.755 3.92
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SnH
SbH
H,Te

HI

Ep
12,491
9.693
6.458

3.767

2.2
4.3
5.5

6.1

By
11.186
8.496

5.916

3.277

TABLE 8.3
Final B° E
A "B
2.1 11.033
4.2 8.326
5.4 5.808
6.0 3.223

4.0
5.0

5.0

7.985

5.376

2.683

Exptl. E
11.0
8.3
5.8

3.20

‘681
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position of configurations,236 or to estimate the correlation energy,

;as in the approximate theory of Hollister and Sinanoglu.237 The present
method is much simpler, héwever, and can therefore be applied to larger
molecules. 1Its validity is tested by examining the accuracy of bonding
energies calculated in this way for molecules other than those used in

the calibration of the bonding parameters.

F. COMPARISON OF CALCULATED BONDING ENERGIES WITH EXPERIMENT

Bonding energies calculated from SCF-MO theory using empirical
bonding parameters are shown in Table (8.4), for molecules other than those
used in calibration. The energies are.fairly accurate on the whole, in
contrast to those calculated using the Pople-Segal bonding pafameters
‘(Table 8.5), so that the theory includes correlation energy reasonably
accurately.

The bonding energies calculated for ZH"= 1.2 are more accurate
than those for zﬁ = 1.0. When electron-repulsion integrals evaluated
from atomic spectra are used, the bonding energies for Zﬁ = 1.2

(Columns M2 and 02) are more accurate for all the molecules considered,

except SO IF, IBr, CH,I and (for interatomic 8B calculated from

20 Igs 3

the Mataga formula only) LiF. When theoretical electron-repulsion
integrals are used, more accurate bonding energies are predicted for

z! = 1.2 (Column R2), except for LiF, CH

H F and F2. _ The value 1.2 is

3

therefore chosen as the better value for the Slater exponent'of hydrogen

in the SCF-MO calculations.



TABLE 8.4

BONDING ENERGIES CALCULATED BY. SCF-MO THEORY WITH CNDO APPROXIMATION AND EMPIRICAL BONDING PARAMETERS

Parameter Set

N,

co
Ccs

CO2

0ocs
CS
NNO

SO

CH,

C2H4

C,lg

38

B,Hg

LiF

Ml

12.

13.

22.

14,

11.

11.

19.

25.

31.

46.

28.

5.

325

838

.093

032

154

085
995

333

290

603
431
657

970

M2
10.480
11.931

7.414
18.981
16.142

13.012

9.494
9.804

17.724

24.250

31.032.

45.230
27.706

5.551

01
12.402
13.798
8.660
21.310
17.968
14.262
17.401
11.255
11.009
19.969
25.609
31.650
46.250
27.523

6.557

02
10.839
12.166

7.970
18.592
15.984
13.090
14.986

9.761

9.034

18.264

24.366
30,799
44.705
26.580

6.290

Rl
12.997

14.136

22,578

18.899

20.003
25.169
31.077
45.699
28.398

4.101

R2
11.566

12.579

20.160

16.634

19.448
24,831
30.867
45.373
27.652

3.822

Exptl.

9.903

ev.

11.225

7.190
16.856
14.417
11.980
11.724
11.177

6.345
17.530
24,357
30.818
43.563
26.004

5.940

“L81



TABLE 8.4 . cont.

Parameter Set Ml M2 ‘ 01 - 02 Rl . R2 Exptl.
F, 12,887 2.060 2.627 1.983 0.991  0.064 1.653
c1, 3.491 3.178 3.398 3.170 | : S 2.508
br, 2.767 2.687 2.774 2.695 1901
I, 1.677 1.837 1.750 1.907 | . 1.557
CLF _ 3.882 3.191 3.604 3.079 ' 2.668
BCF 3.369 2.799 3.216 2,778 | 2.682
BrCl 2.997 2,804 2.977 2.826 . 2.334
IF 1.524 1.153 1.570 1.295 2.91
Icl 2.382 2.307 " 2,405 2.368 . 2.190
IBr 2,162 2,201 2.212 2.251 ' 1.928
CH,F 19.558 18.634  19.126 18.234 18.813 17.847 18.384
cH,CL 17.680 17.329 17.669  17.211 17.1564
CH,Br 16.808 16.608 16.891 16.532 16.640
CH,T 15.789 15.733 15. 944 15.727 15,931
HCN 16.113 14,705 16,367 14,996 16.410 15.603 13.537
CH,CN . 30.866 28,710 26.586
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Parameter Set
FCN
ClcN
BrCN

ICN

M1

19.703

16.051

14.868

M2
17.167

15.262

13,333

TABLE 8.4

01
19.265
17.159
16.183

15.094

cont.

02
17.113
15.468
14.589

13.658

Rl R2 Exptl.
20.114 18.199 13.529
12.310

11.159

‘681
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On comparing the results in Tgble (8.4) for Zﬁ = 1.2 and
different choices of electron-repulsion intégrals, the bohding energies
calculated using theoretical integrals are less accurate than those
calculated using integrals evaluated'from atomic spectra, except for
C,H_ and B H6, for which the bonding energies calculated u;ing

276 2

theoretical integrals are more accurate than those obtained using the
Mataga formula, but not the Ohno formula. .

The bonding energies do not provide a conclusive choice
between the Mataga and Ohno formulae for interatomié electron-repulsion
integrals, since each leads to more accurate bonding energies for about
the same number of molecules. As in the calculation of molecular
ionization potentials (Chapter 7), it seems that the exact values of tﬁe
interatomic integrals do not matter, provided that the atomic integrals
and the atomic limit of the interatomic integrals, are evaluated from
atomic spectra.

Table (8.5) shows that the Pople-Segal ﬁonding parameters are
éompletely inadequate for the calculation of total molecular energies,
since the predicted bonding energies are higher than the experimental by
factors ranging from 3 to 8. The bonding energies calculated using
theoretical elgctron-repulsion integrals (Column RP) are slightly
better than the others, but the difference is negligible in view of the'
magnitude of the errors of all the calculated energies in Table (8.5).
It should be noted that, since the bonding energies are too high rather

than too low, the errors cannot be blamed on the omission of correlation

?



TABLE 8.5
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BONDING ENERGIES CALCULATED BY SCF-MO THEORY WITH CNDO APPROXIMATION

Parameter Set

H,

LiH

BeH

C,H,

CH,

C,Hg

CqHg

26
LiF

Mf.
14.700

9.542
25.117
44.931
62.505
47.787
32.552
17.639
51.344
46.269
78.196
76.386
45.767
79.055
96.015
113.428
167.580
110. 206

15.955
11.672

OP

13.209

10.509
27.240
48.392
67.602
52.018
35.672
19.271
55.082
49.706
83.951
82.387
50.183
85.021
103. 204
121.945
179.622
117.628

17.300
12.850

AND POPLE-SEGAL BONDING PARAMETERS

RP
14.398

7.987
23,591
43.312
61.033
45.279
31.020
16.366
48.316
44.377
74.404

- 70.354

38.955
78.328
93.889

110.297

163.209

105. 457

12.639

8.308

Exptl.
4.751  ev.
2.6

6.9

12.1

18.18

12.93

10.06
6.11
9.903

11.225

16.856

11.724

6.345
17.530-
24.357
30.818
43.563
26.004

5.940
1.653



Parameter Set

CH3F

HCN

CH3CN

FCN

MP
66.474
63.955

118.383

73.472

TABLE 8.5

or
71.449
68.801
126.709

78.570

cont.

RP
63.159
61.784

114.546

69.548

Exptl.
18.384
13.537
26.586

13.529

192,
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energy, but are due simply and solely to the large vélues of the fople-
Segal bonding parametefs.

It is therefore a very questionable procedure to calculate the
relative energies of different nuclear configurations with bonding para-
meters which have not been calibrated to.give accuraté bonding energies,
as in calculations of energy barriers and bending force cor.lstant:s.m*“46
Since the calculated barrier to integnal rotation in ethane is quite
sensitive to changes in the bonding'parameters44, the use of empirical
bonding parameteré would lead to very different values for the barrier
energies. The energy barriers and bending force constants calculated
by Pople, ‘Santry, and SegalM’-46 are somewhat erratic, and are in better
agreement with experiment for some molecules than for others.” In view
of the results in Table (8.5), it is concluded that the fair agreement
for some molecules is due to a fortuitous cancellation of errors.

The bonding energies calculated using the Extended Huckel
Theory are listed in'Tabye (8.6). The results fér some molecules are
ﬁuite accurate, but the theory is seriously in error for the binary
hydrides, and especially hydrogen, just‘as in the prediction of ionization
potentials. For the hydrides, the differences between the results for

H

organic molecules, however, the bonding energies are predicted relatively

the two values of Z' are insignificant in view of the errors. For

accurately by the EHT, and the values for Zﬁ = 1.0 (Coluhn Hl) are more
accurate than those for Zﬁ = 1.2, Thus it seems that the best value for

the Slater exponent of hydrogen in molecules is 1.2 in the SCF-MO theory



LiH

BeH

HC1
GeH
AsH3
H,Se
HBx
SnH
SbH
H,Te

HI

TABLE 8.6

BONDING ENERGIES CALCULATED BY EXTENDED HUCKEL THEORY

Hl

35.814

8.696
12.752
16.398
19.552
15.640
13.191

8.923
23.418
16.611
11.252

6.421
23.542
16.353
11.109

5.545
24.261
17.172
10.925

5.840

H2

32.096

8.576

12.439

17.265
21.697
17.051
13.843

9.103
23.725
17.231
11.565

6.469
23.583
17.011
11.281

5.576
23.898
17.470
10.828

5.710

Exptl.
4.751 ev,
2.6
6.9
12.1
18.18
12.93
10.06
6.11
13.87
10. 47
7.5
4.61
12.5
9.1
6.6
3.92
11.0
8.3
5.8

3.20
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co
CS
co

0Cs

C,H,

274

C.He

C4Hg

ByHg

LiF

Ccl

Br

ClF
BrF

BrCl

TABLE 8.6

H1

19.792
24.883
30.781
42.037

23.475

10.182
10.760

7.780
19.745
16.832
12,985
15.785
17.287

7.133

15.503
2.404

2.309

1.610

2.447
4.238
5.392

2.130

cont.

H2

20.071
26.770
34.298
46.994

25.947

Exptl.

9.903
11.225

7.190
16.856
14.417
11.980
11.724
11.177

6.345

17.530

24.357

" 30.818

43.563
26,004

5.940

.1.653

2.508

1.991

1.557

2.668

2.682

2.334

195.



IF
ICl
IBr
CH_F
CH,Cl
CH,Br
CH,I
HCN
CH.,CN
FCN
CICN
BrCN

ICN

21.
17.
16.
16.
16.

28.

TABLE 8.6
HL
6.771
2.753
2.073
413 |
272
167
395
420
070
15.851
14.473
14.113
14.348

cont.

H2

23.005
19.140
18.052
18. 228
16. 442

29.533

Exptl.

2.91

2.190

1.928
18.384
17.154
16.640
15.931
13.537
26.586
13.529
12.310

11.159

196,
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as claimed by Pople and Segal,44 and 1.0 in the EHT, as used by Hoffmann}14

Since the value of Zﬁ aetermines the behaviour of the molecular orbitals
near a hydrogen nucleus, it should not depend on the theory used to
calculate the orbitals, but the difference is probably due to a
cancellation of errors in one theory or the other. '

It is interesting to compare the bonding energies for BH3 and
B2H6 in the two theories. In thg SCF-MO theory, the bonding energy of
BZH6 is predicted as accurately as that of many other molecules, despite

the possible uncertainty due to the use of the unstable molecule; BH,,

to calibrate the bonding parameter for boron. The EHT, on the other hand,

predicts incorrectly that B2H6 in unstable with respect to BH3, even
though the EHT was originally developed for calculations on boron
hydrides.138’146 This is another example of the unreliability of the

EHT.

In summary, therefore, the best of the theories considered for
the calculation of bonding energies is the SCF-MO-CNDO theéry with
empirical bonding parameters, a Slater exponent for hydrogen of 1.2, and
electron-repulsion integrals evaluated from atomic spectra and either the

Mataga or the Ohno formula.
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CHAPTER 9

DIPOLE MOMENTS

A. CALCULATION OF DIPOLE MOMENTS

The electric dipole moment of a molecule is defined in.terms of
its electronic wave function as6
% o0 '
= - d ' 9.1
A 2 S AL e
where R, and Z, are the position and the atomic number of nucleus A, and

A A

. o . s s
the dipole operator, e ¥, is a sum of one-electron position operators,

multiplied by the electronic charge e,
ef = e EW+....+2 (@) (9.2)

In molecular orbital theories for valence electrons bnly, zA is interpreted
as the charge of the core of atom A, including both the nucleus and the
inner-shell electrons. In the molecules considered, the axis along which
the dipole moment lies is determined by symmetry, and ié chosen as the
X=-axis, 56 that

,1=|E|=11x=-\YW;@":;§’<'\_.l;;_dv+eZAZZAxA (9.3)

For a single-determinant wave function, the expectation value of

- a sum of identical one-electron operators 4

—ehe—cne—e}eetren—e?ereﬁefe.is the sum of the integrals of the one-electron °

operators, over the occupied molecular spin drbitals,2 so that
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p o= -ezi' “1‘[’\1&* 2 %dv + e%: z, X, 9.4)
where n, is the number of occupied spin orbitals corresponding to the
ith orbital, In a closed;éheli molecule, each molecular orbital is doubly
occupied, so that .
u=-2er~q’/‘?‘§W£dv+eZZx. (9.5)
n 2 R ATA )

A

For molecular orbitals which are linear combinations of atomic orbitals,

* * O
u=-2eZZ§CC ¢x¢,dv+esz
) m ki "1i k 1 A ATA
: (9.6)
The integrals appearing in equation (9.5) are the matrix elements of g

with respect to the atomic orbitals, and will be referred to as'digole

integrals,
xkl = f ¢k X (61 dv » : 9.7

so that the dipole moment is .
p = -e Z Z P + e Z z X (9.8)
= 4 k1 fk1 o AA
where the Pkl are defined by the expansion of the one-electron density

matrix in terms of the basis orbitals. (Chaptér 2)

In matrix form, equation (9.8) for the dipole moment becomes
= ~e tr PX + e Z Z X | 9.9
o ~ 4% (9.9)

Equation (9.9) is an exact expression for a closed-shell single-

determinant wave function, and leads to quite accurate dipole moments in
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complete SCF-MO calculations, when an extended basis set is used, so that

the wave function approaches the Hartree-Fock wave function.30’238

Dipole
moments for wave functions from complete SCF-MO calculétions with a
minimum basis set of Slater orbitals, however, may be much less accurate,
since the dibole moment is sensitive to small errors in the wave function.229
Equation (9.9) is used to compute dipole moments for the wave
functions calculated using the Extended Huckel Theory. For the SCF‘MO'theory
with the CNDO approximation, however, equation (9.9) must be modified in

- order to preserve invariance with respect to translation of axes. The

first non-zero multipole moment tensor of a molecule is independent of the
location of the origin of co-ordinates,239 so that for a neutral molecule,
the dipole moment is invariant under a change of origin. This would not be
so, however, if the dipole moment were calculated from equation (9.9) in
molecular orbital theories in which overlap is neglected, as shown below.

Consider the transformation of co-ordinates
x' = x-x, y' =y, z' = z. : (9.10)

Under this transformation, equation (9.9) for the dipole moment is trans-

formed to

p' = -e tr PX' + e :E: Z X' (9.11)

N A A

in which the transformed dipole integrals, Xﬂl’ are given by

Xa = S‘“’: (R -x) 0,4V = X4 =% S, (9.12)
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‘The'nuclear co-ordinates transform according to equation (9.10), so that
p' = -etr PX -x_8) + e :E: z, (X, -x) (9.13)
, o A A YA (o)

From equations (9.9) and (9.13), the transformation rule for the dipole
moment is

p' = n + exo(trPS-Zz

) (9.14)
L A ,

For molecular orbital theories in which overlap is included,

the orthonormality condition for the orbitals was shown to be
2 2 g

so that the total number of (valence-shell) electrons in a closed-shell

2zzzc*.c.s =ZZP = tr PS  (9.15)
= 9 %k %1 P = & P

i

ki C11 & 8ntj 2.7

molecule is

and the dipole moment is invariant for a neutral molecule.

If overlap is neglected, however, the orthonormality condition is

+*
= 2.3
Sy - 250

ij
and the total number of electrons is

No=2) D ocC, - zk P = TP (9.16)

i k

so that the dipole moment transforms as

p' = p o+ e'xo tr P (S - I) (9.17)
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Equation (9.9) cannot be used, therefore, to compute the dipole moment
when the molecular orbitals have been calcuiated without overlap.
There are several ways to calculate an approximate dipole moment,
which is invariant under translation of axes, for the SCF-MO-CNDO theory.
(i) The dipole moment can be calculated by assuming that the

electron population of each atom is a point charge at the nucleus, so that

o= e X (z, - B,,) X, (9.18)
A

Equation (9.18) is clearly invariant with respect.tq'translation for a
neutral molecule, and is in one sense consistent with the CNDO approximation,
since with this approximation, the dipole integrals between different atomic
orbitals vanish, and the dipole moment is

n o= e 2 P Ko * © > z, X, (9.19)

k A

The centre of charge of a pure s or p orbital is at the nucleus, so that for
an s-p basis set, equation (9.19) is identical with equation (9.18).
However, this is not true for a hybrid basis set since fhe éentre of charge
of a hybrid orbital is not at the nucleus. In molecules with lone pairs,
the displacement of the centre of the electron population of an atom away
from the nucleus makes a substantial contribution to the molecular dipole

55,75,44,46

moment., This atomic pelarization effect is not included in the

point-charge approximation.
(ii) Pople and Segal44 neglected all the diatomic dipole integrals

in equation (9.8), but included the dipole integrals for different orbitals
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on the same atom, so that the dipole moment is given by

' t—3 -
p' o= e X 2 B K 0, + e 2z, X, (9.20)
| k1 A
where: 6 = {'1 if ¢k and ¢1 are on the same atom,
0 otherwise,

as in the NDDO approximation,
Equation (9.20)'is invariant to translation, since atomic orbitals of the
same atom are.orthogonal, and it i; also invariant .to rotation and hybridi-
'zation, since the dipole integrals xkl of a given atom t:ansform iﬁ the
required way. .

For a basis of pure s and p orbitals, the only non-zero dipole
integral for different orbitals on the same atom is Xs_px. The term con-
. taining this integral represents the atomic polarization effect, which is
omitted in the point-charge formula, equafion (9.18). For Slater orbitals,
whose radial factor is given by equation (4.19), xs-p is found by

x
elementary_integration to be

1 .
n'(n' + 3)a
X =Lr¢ $9 dv = 2o (9.21)
s Py Vi3 z'

(iii) The CNDO approximation can be formally justified (Chapter

2) by ragarding the basis orbitals as approximations to the Lowdin orbitals,

S-1/2

9 = ¢ (2.19)

Dixon 3‘has suggested that the dipole moment be calculated with reference

to the Lowdin basis. The dipole integrals are the matrix elements of a
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one-electron operator, so that in the Lowdin basis, the X-matrix is

transformed47 to

L

g2y /2 (9.22)

and dipole moment is transformed to

B = -etrPX + e ) 2z, X = -etr(Ps'llzxs'llz) + e 2z X
A A A A A TA
(9.23)

Equation (9.23) is invariant under a change of origin, since the Lowdin
basis is orthogonal.

In this thesis, all three methods are used to calculate dipole
moments from the SCF-MO theory, and the results are compared with experi-
mental dipole moments. All computed dipole moments are multiplied by the

conversion factor 4.80294 from atomic units to Debyes, for comparison with

exerpimental values.

B. MEASUREMENT OF DIPOLE MOMENTS

The dipole moment of a molecule can be determined by observing its

microwave Stark effect, which is the splitting of its rotational spectrum

caused by a static electric field. The theory of the microwave Stark effect,

and of its use in the measurement of dipole moments is discussed in textbooks
. 240-242 , :

on microwave spectroscopy for the several cases of linear molecules,

symmetric rotors, asymmetric rotors, and molecules with hyperfine structure

due to nuclear quadrupole coupling. Dipole moments can now be measured
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using the microwave Stark effect to an accuracy243 of“0.001 to 0,003 D.

Dipole moments can also be measured by dielectric constant
measurements on bulk matter, but the results are less accurate, as
evidenced by the wide variation of reported values for the same molecules.244
This is partly due to the fact that many of the measurements are made in
solution, and dipole moments are quite sensitive to solvent effects.244
Also, the measu:ed values represent averages over vibrational states and
over naturally occurring isotopic species, whereas the values determined
using the microwave Stark effect are for individual molecules in spécific
vibrational states. Values obtained by measurement of spectral intensities244
are less accurate than those determined from the microwave Stark effect,
since intensities are harder to measure accurately than spacings between
spectral lines., Other special m.ethods244 have only been used for a few
molecnles. Dipole moment values, therefore, have been taken from measure-
ments of the microwave Stark effect for vibrational'ground states whenever
possible.

For some molecules, only the dipole moments of deuterated species
have been measured using the microwave Stark effect. The values for the
deuterated species have been taken as the dipole moments of the molecules,
and any possible isotope effects have been neglected, even though they can
be significant for some molecules.245

Tﬁe signs of most experimental dipole moments have not been

determined, so that only the magnitudes of the calculated dipole moments

can be compared with experiment. An exception is carbon monoxide, for which
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several authors have studied the sign of the small dipole moment (0.112 D)
because of its special chemical interest.246 The most definite result is
that of Ozier et al., who used a molecular beam magnetic resonance experi-

ment to show that the polarity is C+0-.

C. COMPARTSON OF CALCULATED DIPOLE MOMENTS WITH EXPERIMENT FOR FIRST ROW

MOLECULES

The different formulae for the calcplation of dipole‘moments in
a molecular orbital theory with neglect of overlap ére.compared in Table
(9.1), for the wave functions computed from the semi-empirical SCF-MO-CNDO
theory, with the parameters which were éhown to be the best for the predic-
tion of ionization potentials and bonding energies. The point-charge formula
is in overall poor agreement with experiment, showing that the prediction
of accufate dipole moments requires the inclusion of atomic polarization
effects, The results obtained with the Pople-Segal formula show that the
inclusion of these effects does lead to substantial improvement of the
results, although they are still not very accurate for some molecules. The
dipole moments computad from the Dixon formula, using Lowdin orbitals as a
basis, are less accurate on the whole, than those calculated from the Pople-
Segal formula. The Pople-Segal formula is therefore the best for the
calculation of approximate dipole moments, aﬁd the errors in the results

may be mostly due to errors in the wave function, rather than in equation

(9.20).



TABLE 9.1
COMPARISON OF METHODS OF CALCULATION OF DIPOLE MOMENTS (2) FOR FIRST-ROW MOLECULES FROM SCF-MO-CNDO THEORY

Calculation of n Point-Charge Pople and Segal Dixon Exptl. Reference -

Parameter Set M2 02 M2 02 M2 02
LiH 4,083 6.030 6.699 7.218 7.024 7.479 5.882 D 247
H,N 0.465 0.962 1.973 2,221 0.643 0.991 1.468 248
H20 0.876 1.417 1,803 2,175 0.929 1,391 1.87 A. 249
HF 1.397 1.866 1.899 2.265 1.578 2,003 1.8195 250
co 1.549 2.097 0.789 1.372 1.308 2.017 -0.112 251,246
NNO 0.838 0.601 0.862 0.166 252
0, " 0.734 0.893 0.876 0.909 0.429 0.583 0.58 253
CBHS (e) 0.183 0.106 0.084 0.041 0.151 0.082 0,083 254
LiF 6.052 6.818 6;602 7.098 6.833 - 7.222 6.328 255
CH3F 2,721 2,812 2,647 2.687 2.391 2,408 1,8555 256
HCN 1,582 1.689 3.015 2,946 1,547 1,501 2,985 257
CH,CN 2,440 3.709 2,173 3.92 258
FCN - =0,667 -0.427 0.482 0.648 -0.364 -0.165 2,17 259

‘L0T
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Notes on Table 9.1

(a) Positive sign indicates polarity AfB-, where A is first atom written.
(b) Positive sign indicates central oxygen at positive end.

(c) Positive sign indicates central carbon at positive.end.
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Table (9.1) also shows that the computed dipole moment is quite
sensitive to changes in the interatomic electron-repulsion integrals. The
Mataga formula leads to more accurate dipole moments, as computed by the .
Pople-Segal formula, than the Ohno formula, for all the molecules considered
except FCN. This is evi&ence in favour of the Mataga formula, although only
a few of the computed dipole moments are accurate enough to be used as
evidence, The vari#tion of the computed dipole moment with the parameters
of the SCF-MO-CNDO theory is considered further in connection with Table
(9.2).

Dipole moments of first-row molecules, calculated by the Pople-
Segal formula, using the different sets of parameters for the SCF-MO-CNDO
theory, are shown in Table (9.2). The values of the electron-repulsion
‘integrals have a substantial effect on dipole moments, since they determine
the potential energy corresponding to a given charge distribution, which in
turn determines the self-consistent charge distribution. Dipole moments,
like ionization potentials, are relatively unaffecte& by changes in the
Slater exponent for hydrogen, although there is a substantial effect for
some molecules,

For some molecules, the dipole moments computed using the Pople-
Segal bonding parameters are quite different.from those computed using the
empirical bonding parameters. This can be explained by considering the
dependence of the molecular energy on the bonding parameters in the SCF-MO-CNDO

theory. The energy eigenvalue of the electronic Hamiltonian has the form,

1 .
B, = 3 kzl Pe1 (B + By (8.8)



Parameter Set

LiH
H3N

H,0
HF
Cco
NNO
04

C3Hg
LiF
CH,F
HCN
CH,CN

FCN

Ml

6.649
2,166
1,975
2.032

0.614

0.860
0.121
6.494
2,638

- 3.218

0.800

M2

6.699
1.973

1.803

1.899

0.789

0.876
0.084
6.602
2.647

3.015

0.482

MP

6.218
2,212
2.190
1.929
-1.113
0.227
1.197
0.019
4,926

1,780

2,993

3.977

2.457

(a) Sign convention as in Table (9.1).

| TABLE 9.2
pIPOLE MOMENTS (®) OF FIRST-ROW MOLECULES CALCULATED AS PER POPLE AND SEGAL FROM SCF-MO THEORY AND CNDO APPROXIMATION

01

7.196

2.438
2.352
2.39%
1.138

0.558

- 0.925

0.072

7.016

2,642

3.170

4,104

0.957

02

7.218
2,221

2.175

2,265

1.372

0.601

0.909
0.041

7.098

2.687

2.946
3.709
0.648

oP

6.284
2.382
2.378
2.037

-1.510

-0.300
1.680

-0.005
4,934
1.699

3.09

4,160

3.004

Rl

6.277
2.122
1.952
1.848

0.419

0.517°

-0.018

5.898

2.055

2.745

1.094

R2

6.365
1.873
1.784
1.741
0.547

0.454

0.003
5.936
1,943

2.581

0.908

RP

6.192
2,104
2,142
1.849
-0.961
0.261
1.178
-0.001
5.079
1.719
2.463
3.053
1.704

Exptl.

5.882 €
1.468
1.87
1.8195
-0.112
0.166
0.58
0.083
6.328
1.8555
2.985
3.92

2.17

‘012
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If the bonding parameters are increased, the interatomic matrix elements
Hkl and Fkl are increased in magnitude, so_ that the molecule can attain a
lower energy by increasing the interatomic Pkl’ i.e., by the transfer of
electron density from lone-pair orbitals into bonding orbitals. The large
changes in dipdle moment can be explained in terms of this effect. For
LiF and CH3F, the decrease in dipole moment with increased bonding
parameters is due to a transfer of electron density from the fluorine lone-~
pair beitals to the bonding orbitals. In'HF, examination of the population
matrix shows that this effectAis cancelled by an increase in the atomic
polarization of the fluorine atom. For FCN, the transfer of electron density
away from tﬁe fluorine nucleus leads to an increase in the computed dipole
moment, since the polarity of the molecule is ;C&. For CO, the increase in
bonding parameters results in enough charge transfer to reverse the polarity
of the computed dipole moments.

Table (9.3) shows that the Extended Huckel Theory greatly
. exaggerates the polarities of all molecules considered except propane. In
the SCF-MO-CNDO theory, the accumulation of electron deﬂsity on the more
electronegative atom is limited by the electrostatic repulsion of the
electrons for each other. This is not so in the EHT, since the Hamiltonian
matrix elements are independent of the molecular charge distribution, and
do not include electron-repulsion terms. Comparison of Tables (9.2) and
(9.3) shows that the SCF—MO;CNDO theory predicts more accurate dipole

moments than the EHT, regardless of the choice of parameters, and even though

the dipole moment must be computed approximately, in order to preserve



TABLE

9.3

a
DIPOLE MOMENTS( ) OF FIRST-ROW MOLECULES CALCULATED

LiH
" H.N

H,0

co

NNO

C3Hg
LiF

CH,F
HCN
CH,CN

FCN

(a) Sign convention as in Table (9.1).

FROM EXTENDED HUCKEL THEORY

Calculated

H1

7.109
2.904

4,037

3.733

-0.064

4.508
7.497
9.783

3.232
1.880

3.444

7.499

4.845

H2

7.292

2.471
3.737

3.615

0.010

4.071

7.307

8.797

Exptl.

5.882 D
1.468
1.87
1.8195
-0.112
0.166
0.58
0.083
6.328
1.8555
2.985
'3.92

2.17

212,
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translational invariance. This shows that the>SCF4M0-CNDO theory is a
definite improveﬁent over the EHT, in spite of the uncertainties in some
.0of the parameﬁers.

| The above conqlusions about the accuracy of computed dipole
moments are supported by other recent calculations. Pople and Gordon65
have calculated the dipole moments of a number of organic molecules from
the SCF-MO-CNDO théory with theoretical electron-repulsion integrals and
Pople-Segal bonding parameters (Parameter Set'RP). The overall accuracy of
their results is comparable to that for the molecules considered hére, and
they have used the results as the basis for an analysis of substituent
effects in dipole moments.

As for the Extended Huckel Theory, the dipole moments of heterocyclic
"molecules calculated by Adam and Grimison159 are much larger than experimental
valueé, as for the gmall molecules conside;ed here. A similar conclusion
about the inadequacy of the charge distributions in the EHT, due to the
absénce of electron-repulsion terms in the Hamiltonian matrix elements, was
previously based on an attempt to correlate the gross atomic charges of the
EHT with chemical shifts,160 and on a comparison of the computed charge
distributions with those obtained from‘electronggativity equalization

theory, 2605261

This conclusion is now more firmly based on the predicted
values of a molecular property, the dipole moment; which is calculated

.directly from the ground-state wave function.
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D. COMPARISON OF CALCULATED DIPOLE MOMENTS WITH EXPERIMENT FOR MOLECULES

CONTAINING NON-FIRST-ROW ATOMS

Dipole moments, éalculated from both the SCF-MO-CNDO theory
(using the Pople-Segal formula) and the Extended Huckel Theory, are listed
in Table (9.4) for molecules containing atoms not in the first row of the
periodic table. The EHT predicts exaggerated polarities as for first-row
molecules, but noW the SCF-MO-CNDO theory also predicts dipole moments which
are much higher than the experimental ones, and in some cases.higher than
those from the EHT.

Santry and Segal46 have recent}y considered fhe effect of the
inclusion of d orbitals in the SCF-MO-CNDO theory for second-row elements,
using theoretical electron-repulsion integrals and bonding parameters
similar to those used by Pople and Segalha-for first-row elements. They
found that the dipole moments of molecules containing second-row atoms
include "pd-polarization' terms involving the dipole integrals.between P
and d orbitals on the same atom. For most such molecules, this pd-polariéation
is of opposite sign and comparable magnitude to the sp-polarization, so that
the inclusion of sp~polarization alone in the computed dipole moment greatly
. exaggerates the net atomic polarization. They concluded, therefore, that
the inclusion of d orbitals is essential to the accurate prediction of
dipole moments for molecules containing secona-row elements.

This conclusion is further supported by the regults of an exact

SCF-MO calculation on phosphine by Boyd and Lipscom.b,274 who found that the



Parameter Set

H3P
_H3As

H,Sb -

3

HZS

HZSe

HZTe

HC1

HI
Cs

0Ccs

CALCULATED DIPOLE MOMENTS(a) FOR MOLECULES WITH NOT ALL FIRST-ROW ATOMS

SCF-MO-CNDO as per Pople and Segal .

M1l

2.730
3,322
2.978
2.423
2.844
3,059
2.195
1.979
2.159

1,532

M2

2.379
2,908
2.587
2.152
2,565
2.789
2,022
1,813
1.979
1.614

0.241

TABLE 9.4

01

2,238
2.812
2,185
2,369
2,902
3.071
2.345
2.025
2,104
1.347

0.272

02

1.906
2,427
1.863
2.100
2,627
2,817
2,180
1.865
1,934
1.460

0.028

Extended Huckel

H1

2,397
1.301
0.235
3.569
3.353
2,829
3.759

3.651

3.624

-3 . 564

-3.609

H2

1.482
0.257
~0.834
2,957
2,652
1.958
3.477
3.232

3.113

Exptl,

0.578 D

0.22
0.116

0.974

0.24,0.62

1.12
0.83
0.445
1.97

0.7124

Reference

251
262
262

263

264,265

266
266
266

267

268

‘61¢



Parameter Set

SO2
ClF
BrF .
BrCl
IF
ICl

IBr

CH301
CH3Br
CH,I
ClCN
~ BrCN

ICN

TABLE 9.4 (continued)

SCF-MO-CNDO as per Pople and Segal

Ml

1.251
0.885
1.535
0.634
2.002
0.726
0.112
2.790
2.620

2,720

1.469

1.350

M2

1.273
0.962
1.636
0.646
2.113
0.736
0.109
2.667

2.436

2.496

0.922

1.210

01

2.215
1.295
2.138
0.820
2.722
1.014
0.237

2,685
2,459
2,497

1.206

1,596

1.516

(a) Sign convention as in Table (9.1).

02

2.190
1,386
2.260

0.835

2.841

1.021
0.233
2,588
2,304
2.297
1.014
1.412

1.365

Extended Huckel
H1 H2
6.219
3.166
4,106
-5.712
6.028
1.843
0.535
4,000 3.635
3.514 3.205
3.436 3.178
7.232
8.700

8.636

Exptl.

1.59 D
0.881
1.29

0.57

0.65

1.869
1,797
1.647
2.802
2.94

3.71

269
270
271

272

273

252
252
252
252
259

259

Reference

‘912
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inclusion of d orbitals reduced their computed dipole moment from 2.34 D
to 0.86 D, as compared to the experimental value of 0.578 D. They showed
by means of electron density difference maps that this effect is due to
the transfer of electron density awayAfrom the lone-pair region into the
bonding region, so that the atomic polarization of the phosphorus atom is
reduced.

It is therefore concluded that the omission of d orbitals in
the SCF-MO-CNDO calculations is responsible for the fact that the dipole
moments in Table (9.4) are very much less accurate‘than those calculated
using the same theory for molecules containing énly first-row atoms, since
the sp-polafization included in the computed dipole moments is not balanced
by dp-polarization. The assignment of parameters for d orbitals in the
semi -empirical SCF-MO-CNDO theory is a subject for future research,

Table (9.5) provides a comparison of the‘different methods of
computing dipole moments, from wave functions calculated without overlap,
for molecules containing atoms not in the first row of the periodic table.
The point-charge formula, which contains no atomic polafizafion terms, is,
on the whole, more accurate than the Pople-Segal formula, since the errors
due to the omission of the sp- and pd- polarizations cancel approximately,
as shown by Santry and Segal.46 For series of similar molecules, such as
the hydrogen halides, or the methyl halides, the sp-polarization increases
with the principal quantum number of the valence-shell electrons of the |
heavy atom, since the dipole integral Ps-p increases (equation 9.21).

X .
The dipole moments in Table (9.5) computed from the Dixon -formula



COMPARISON OF METHODS

Calculation of n
Parameter Set

H3P

H3As
H3$b

HI
CS

ocs

TABLE 9.5

OF CALCULATION OF DIPOLE MOMENTS(a) FOR MOLECULES WITH NOT ALL FIRST-ROW ATOMS

FROM SCF-MO THEORY AND CNDO APPROXIMATION

Point-charge Pople and Segal Dixon
M2 02 M2 02 M2 02
-0.127 -0.344 2.379 1.906 0.827 0.260
-0.064 -0.259 2.908 2,427 1.286 0.712
-0.351 -0.796 2.587 1.863 0.707 -0.120
0.408 0.576 2.152 2.100 0.985 0.932
0.648 0.961 2.565 2.627 1.340 1.435
0.662 0.930 2,789 2.817 1.503 1.550
1.006 1.296 2.022 2.180 1.453 1.650
0.727 0.919 1.813  1.865 1.050 1.122
0.548 0.659 1.979 1.934 1.154 1.109
1.234 1.410 1.614 1.460 1.406 1.869
-0.891 -1.108 0.241 0.028 -0.448 -0.766

Exptl.

0.578 D
0.22
0.116

0.974

0.24,0.62

1.12
0.83
0.445
1.97

0.7124

812



TABLE 9.5 (continued)

Calculation of n Point-Charge Pople and Segal Dixon

Parameter Set M2 02 M2 02 M2 02
S0, ' 1.633 2.919 1.273 2,190 0.179 1.548
CLF 1,412 1.780  0.962 1.386 0.977 1.401
BrF 2.160 2.710 1.636 2,260 1.668 2.292
BrCl 0. 744 0.925  0.646 0.835 -3,644 -3,143
IF 2.859 3.481 2.113 2.841 2.248 2.969
1cl 1.188 1.441 0.736 1.021 0.833 1.123
IBr 0.452 0.552 0.109 0.233 0.126 0.253
CH,C1 _ 2,101 . 2.104 2.667 2.588 2.327 2.235
CH,Br 1.697 1.649 2.436 2.304 1.994 1.847
CH,T 1.387 1.287 2.496 2.297 1.998 1.781
ClCN 0.383 ~  0.498 0.922 1.014 -0.109 -0.036
BrCN | 1.094 . 1.412 0.506
1CN 1.287 1.462 1,210 1.365 0.415 0.598

(a) Sign éonvention as in Table (9.1).

Exptl.

1.59 0O

0.881
1.29
0.57

0.65

1.869

1.797

1.647

2,802

2.9

3.71

‘61¢
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are.also more accurate; on the whole, than those from the Pople-Segal
formula, although this fact is harder to interprét on simple physical
grounds.

. In summary, then, the semi-empirical SCF-MO~CNDO theory considered
can be used to calculate approximate dipole moments for molecules containing
only first-row atoms, if atomic polarization terms are included. .The
calculation of approximately correct dipole momenté, for molecules which
contain atoms not in the first row of the periodic table, requires the
inclusion of d orbitalé.' The EHT predicts exaggerated dipole moments for

most molecules.
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CHAPTER 10

NUCLEAR QUADRUPOLE COUPLING CONSTANTS

A, INTERACTION OF NUCLEAR QUADRUPOLE MbMENTS WITH ELECTRONIC CHARGE

DISTRIBUTIONS

The quadrupole coupling constant (QCC) of a nucleus, A, in a

molecule is a measure of the interaction of the nuclear quadrupole moment

Q with the molecular charge distribution external to the nucleus. The
complete interaction of the nuclear charge distribution with the external

electrostatic potential V, due to the electrons and the other nuclei, can

be expanded in terms of the nuclear multipole moments,275
o 2
3V 1 -3
H = ZeV, + ZP. ——-> + = z Q' —_— (10.1)
ne AT ’(3";1 PO R B N

where the subscript:A indicates a quantifyvevaluated at the nucléér centre

of mass. The first term represents the interaction of the total nuclear

. charge, Ze, with the electrostatic potential at the cent;e of mass, and is

independent of nuclear orientation. The second term in tﬁe expansion is

formally the interaction of the nuclear dipole moment‘with the electric

field, but this term is zero since nuclei have no electric dipole mom.ents.276
The third term is the interaction of the nuclear quadrupole moﬁent

tensor with the electric field gradient tensor, and in the absence of an

external magnetic field, it is the leading term which depeﬁds on the

orientation of the nucleus in the molecule.275 Nuclei with spin quantum
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numbers 2 1 have non-zero quadrupole moment:s,275’276

so that the nuclear-
electronic interaction energy (equation 10.1) depends on the nuclear
orientation, and transitions can occur between different nuclear orienta-
tions in the molecules. (Section C)

The electric field gradient at the nucleus is described by the

real, symmetric tensor, 275,277

%y

Vi = aij"k A

(10.2)

The tensor can be referred to its principal axes, so that there are only
three non-zero components. Since the potential V is due to charges external

to the nucleus, it obeys Laplace's equation,

ZV

~ V33 = (g2 v, =0 | (10.3)

so that the electric field gradient can be described in terms of two indepen-

dent parameters, once the principal axes are known. The standard

paramet:er5275’277’278 are the largest component of the tensor, denoted by
3%
eq =V = =i (10.4)
2z az A
and the asymmetry parameter,
v.. -V’ ‘
7 = XX _ IV ' (10.5)
vzz
where the principal axes are conventionally chosen so that
10.6
vzz >/ Vyy > Vxx (10.6)
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~

The molecules considéred here are symmetric rotors, so that the
z-axis is the axis of symmetry, and the x- and y-axes are arbitrary axes
normal to it. In this casc, Vxx = V&y’ the asymmetry parameter vanishes,
and the nuclear quadrupole interaction energy depends.oniy on the largest
component of the electric field gradient temsor, e q . The term

which depends on the orientation of the nucleus in the molecule has the

form 277
®qq [ 2 ] '
EQ - mED 3mp - I(I+ 1) , (1Q~7)
where Q is the scalar quadrupole moment of tﬁe nucleus, hereafter referred
to as simply the nuclear quadrupole moment.275"278 I and m, are the

quantum numbers corresponding to the magnitude and the z-component of the

nuclear angular momentum. The energy levels are conventionally expressed

in terms of the quadrupole coupling constant (QCC),

2

. &£ Q4d '
c = — | | (10.8)

which has units of frequency. The QCC's for isotopic species of the same
molecule are proportional to the corresponding nuclear quadrupole moments,
so that any information about the molecular electronic structure can be

obtained from observations for a single isotopic species.

B. CALCULATION OF NUCLEAR QUADRUPOLE COUPLING CONSTANTS

The electrostatic potential acting on a nucleus, A, in.a molecule,

~ due to the electrons and the other nuclei, is given by
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V.=-efr\1”‘:%-'lpe‘dv+e§:§§— (10.9)

B#A AB

where ’We is the electronic wave function, and ZB is the atomic number
of nucleus B. If equation (10.9) is differentiated twice with respect to
the nuclear z co-ordinate,

2 2
2 2 2 (3z_ - 1)
* -
eq = v, = -e \[feﬁLs_rllﬁaVJ,eZBg
r

BfA RAB.

(10.10)

or in spherical polar co-ordinates,278

2
2 . Z (3 cos” 8 - 1)
_ * (3 cos” 0 -1) B
eq = -ef{l e r3 !lbe dv + e Z 3 (10.11)

B#A L

The operator in the integrand is a sum of identical one-electron operators,
as is the dipole operator in Chapter 9, so that for a closed-shell single-
determinant wave function, with molecular orbitals composed of linear

combinations of atomic orbitals,

eq = -e tr (PqA)_ + e Z (10.12)

Z. 4

Bfa D 4B
where P is the expansion of the one-electron density matrix in terms of the
basis orbitals. The matrix 9y describes the electric field gradient of the

electrons-at the nucleus A, and has elements which are, in the most general

‘case, three-centre integrals,

r

2
(q) = fﬁlz (3 cos 39 - 1) g, dv (10.13)
k1 - :

while g is the electric field gradient per unit charge, of nucleus B, at

nucleus A,
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= B (10.14)

The direct computation of electric field gradients, using eqﬁation
(10.12), involves the evaluation279 of the three-centre integrals,'(qA)ki.
A simple semi-empirical approach, originally due to Townes and Dailey,280
and first explicitly formulated for molecular orbital theory by Gordy et
31¢240 is often used for the interpretation of nuclear quadrupole coupling
constants. The electric field gradient is assumed to arise entirely from
the electron population of atom A, since the effect of the electroné on each
other atom approximately cancels the effect of the nuclei. The net effect
due to other atoms is assumed to be sméll, as the electric field gradient

due to the charge at any point decreases as r

The electric field gradient is therefore given by

A |
eq = -e % n (900 - (10.15)

wheré nk‘is the number of electrons in the kth orbital on atom A, and
(qA)kk is the electric field gradient per unit charge due to the electroms
in that orbital, defined by equation (10.13). The inner shells,'and the
valence s orbital, are spherically symmetric and make no net contribution
to the electric field gradient at the nucleus, which is due only to the
valence p, d, . . .electromns.

The integrals (qA) in equation (10.15) can all be related to

kk
the integral

. ‘ 2 .
_ _ * (3 cos” 6 - 1) .
q, = (3, = j ¢ . 3 ¢pz dv (10.16)
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If all three p orbitals have the same radial factor, then

- 1 .
= -34q, (10.17)

(qA)xx = (qA)yy

The effect of d orbitals in the halogens is négligible, since for all the

valence d orbitals,

(g0 & % d (10.18)

(o]

and the d populations are small anyway. The electric field gradient is

then given by240

n +4+n
eq = -eq (n --FE—%) (10.19)

In order to evaluate q,» an explicit'rédial-form for the orbitals
is needed. The overlap integrals in the molecular orbital calculation are
computéd.for Slater orbitals, but Slater orbitals do not provide a suitable
representation of the wave function near the nucleus,7 where the largest
contribution to the électric field gradient arises. Also, for the Slater
orbital defined by equation (4.19), q, is found by elementary integration

to be

'
7 3

n'(n' - P(a' - 1) 2

(10.20)

K-
I
wnis

so that the calculated electric field gradient is very sensitive to the

values of the effective atomic number, Z', and the effective principal quantum
number, n'. In order to avoid specifying the radial form of the orbitals,
therefére, Townes and Dailéy280 suggestéd that the quadrupole couplihg con-

. stant due to a single p electron,
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C = -—0° (10.21)

be evaluated from the fine or hyperfine structure of atomic spectra, just

‘as the parameters for molecular orbital theor& are‘calibfated using atomic
spectra. This procedure also avoids the need for an independent determina-
tion of the scalar quadrupole moment of the nucleus, Q. The equation used

240

for the semi-empirical evaluation of nuclear quadrupole coupling constants,

therefore, is
. n +n

¢ = Co (nz B 2

) . (10.22)

where the quadrupole coupling constant per p electron, Co’ is evaluated from
atomic spectra. Equation (10.22) has frequently been used to interpret
nuclear quadrupole coupling constants in terms 6f chemical concepts such as
ionic character, hybridization, and pi-bonding.zao’241

A similar equation, applicable to the SCF-MO-CNDO theory for all
valence electrons, can be formally derived from the exact formula, equation
(10.12), by making certain simplifying approximations.

(i) The off-diagonal matrix elements of the élecfric field

gradient, (q,), ., which contain the differential overlap of two orbitals
9

kl
as a factor in the integrand, are neglected in accordance with the CNDO

approximation. The matrix elements between two different orbitals on atom
A vanish by symmetry in any case (for the s-p basis set considered), while
the others refer to overlap regions not on atom A, and are relatively small
compared to the diagonal matrix elements for orbitals of atom A, since the

electric field gradient operator decreases as r-3. Equation (10.12) there-

fore reduces to
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eq = -eZk Pkk (qA)kk + ‘e gAZB Qp . (10.23)

(ii) The electric field gradient due to the electron population
of each other atom in the molecule is assumed to cancel that due to the
atomic core.

B

2;: Fe (W T % s (10.24)

In accurate calculations of electric field gradients, this cancellation has
been found to be approximately true, and the net effects of other atoms to
be small, again because the electric field gradientAoperator behaves as r ~.
Therefore, - . s
A

eq = -e( }E— P (900 I (10.25)

h

in the SCF-MO-CNDO theory, P,, represents the electron population of the kt

kk
orbital, so that equation (10.25) is equivalent to equation (10.15), and

the QCC is given by

(o] 2Z

P _ 4P ' .
cC = c_ (P -—’—‘x—z—ﬂ-) . (10.26)

In the Extended Huckel Theory,114 which includes overlap, it was

shown (Chapter 5) that the population of an orbital is given by

Q, = P, + % P S (5.10)
r rr rs rs
. SFTr ] .

where the Srs are overlap integrals. By analogy with equation (10,22),
one might calculate the QCC from

+
c = ¢, (Q, - XX ) (10.27)
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Cotton and Harr15281 have derived an analogbus equation by assuming that the
elecfric field gradient matrix element between the kth orbital on atom A,

and the 1th orbital on atom B, is approximated by

(441 Si1 (i (10.28)

The off-diagonal matrix elements between pairs of orbitals, both of which
are on other atoms, are still neglgcted.

. Gordy et a1.282 have sugéested, however, that the effect of the
overlap populations be neglected, since the overlap regions are faf from
tﬁe nucleus, so that equation (10.26) should be used even with the EHT. 1In
order to verify this claim, quadrupole coupling constants have been calculated
from the EHT using both equations (10.26) and (10.27).

Quadrupole coupling constants have been calculated for C135, Br79,

1 1 . . s
I 27, and N 4 in various molecules, since extensive experimental data are

available for these nuclei. For the halogens, the values of the quadrupole

coﬁpling constant per p electron, Co’ are 109.746, -769.756, and 2292.712

277,283-285 -

Mc/é, for 0135, Br79 and 1127 respectively. The ground state

‘of the nitrogen atom is an S state, so that there is no electric field
gradient at the nucleus, and Co cannot be determined as for the halogens.
Jeffrey and Sakurai278 have proposed the value c, = -7.4 Mc/s for N14, based

on a value for <r-3> :Lnterpolated286 from values derived from the hyper-

2p
fine structure of other atoms in the first row of the periodic table, and an

estimat:e287 of Q based on the magnetic hyperfine structure of NO, with

certain subsidiary approximations. Other values have been estimated from
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attempts to correlate quadrupole coupling constants with simple bonding
theories,280 but the value=-7.4 Mc/s has been used here, since it was
derived independently of the QCC in any molecule.

A possible source of error in equation (10.23) is the Sternheimer
effect, or the polarization, due to the non-spherical nucleus and the valence
electrons, of the inner shell electrons, which in turn exerﬁ an electric
field gradient on the nucleus.288-290 Sternheimer and Foley have considered
this_effect, and shown that it can lead to variations in the electric field
gradient of an order of magnitude or more for ionic crystals. For isolated
covalent molecules, the effect is much sﬁaller, and has been estimated at
247, for the Li2 molecule.290 In semi-empirical calculations of quadrupole
coupling constants, it is éssumed that the Sternheimer polarization effects
in the molecule are similar to those in the free atom, so that equation (10.22)
is valid if Co is determined from atomic hypérfine spectra.277 This is

another reason for using atomic spectra to calibrate the molecular

calculation,

C. MEASUREMENT OF QUADRUPOLE COUPLING CONSTANTS

The interaction of the nuclear quadrupole moment with the electric
field gradient depends upon the nuclear orientation in the molecule, s0 that
the QCC can be found by measuring the energy éhanges associated with transi-
tions between different orientations. .

In the gas phase, QCC's can be determined from hyperfine structure

in rotational spectra. The theory of nuclear quadrupole effects in rotational
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spectra is described in textbooks on microwave spectroscopy,zl*o_242 for

linear molgcules and symmetric rotors, which have electric dipole moments.
Molecules which do not have electric dipole moments have no rotational
spectra, so tﬁat the QCC cannot be determined in the gas phase. For
asymmetric rotors, the nuclear quadrupole effects are more complex, and
it is more difficult to determine the QCC using microwave ;pectréscopy,
but such molecules are not considered here.

Quadrupole coupling conétants can be measured in fhe solid state,
using pure nuclear quadrupole resonance (NQR),277 as well as by nuclear
magnetic resonance275 or Mossbauer specti:oscopy.291 The energy levels for
pure NQR are‘given by equation (10.7), for molecules whose asymmetry parameter
is zero. The QCC's measured in the solid state for many molecules, however,
differ from the gas-phase values for the same molecules by as much as 10%
or more.277’292 A number of reasons'have been suggested for these solid-
state effects.

(i) The direct effect of the elecfric field gradient due to
other molecules on nucleus A is relatively small in molecular crystals,
although it is appreciable in ionic crystals and metals.277

(ii) Changes in molecular electronic structure can be induced by
intermolecular forces. The ionic character~of many molecules increases in
the solid state, since this change is favoured by an increase in.Madelung
energy.277 In many halides, the halogen atom carries a pértial negative

charge, so that the increase in the ionic character leads to a lower QCC.

For ICl, however, the iodine QCC is higher in the solid state, since the
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iodine atom carries a partial positive Charge.277

(i1i) 1In some molecules, intermolecular bonding causes substantial
changes in the molecular electronic structure. The increase in the iodine
QCcC for ICN in the solid state has been attributed to this effect.292

Quadrupole coupling constants measured in the gas phase have
therefore been used whenever possible for comparison with theory.l As with
dipole moments, values measured for deuterated species have been quoted
when they are the only values available, and any possible isotope effects
have been neglected.

For homonuélear diatomics, the experimental QCC's come from pure
NQR measureﬁents in the solid state, since gas-phase values cannot be
measured for molecules with no dipole moment. The significance of the
solid-state QCC for iodine is doubtful, since the measured asymmetry
parameter is 0.15, indicating extensive intermolecular bonding in the

solid state.292

D. COMPARISONS OF CALCULATED QUADRUPOLE COUPLING CONSTANTS FOR HALOGENS

WITH EXPERIMENT

Quadrupole coupling constants calculated from the semi-empirical
SCF-MO-CNDO theory, using equation (10.26) are listed in Tables (10.1) to
(10.3). The QCC's, unlike the dipole moments for the same molecules, are
in fair agreement with experiment, despite the absence of d orbitals in the
MO calculations. They do not vary greatl& with the value of the interatomic

electron-repulsion integrals, or of the Slater exponent for hydrogen. The
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TABLE 10.1 NUCLEAR QUADRUPOLE COUPLiNG CONSTANTS FOR C135
| FROM SEMI-EMPIRICAIL SCF-MO-CNDO THEORY
Parameter Set M1 M2 01 02 Exbtl. Referenc:

HC1 -83.40 -88.25 -79.32 -82.02 -67.3 Mc/s 293
CH3CI -77.86 ~78.63 -78.53 -79.01 -74.77 294
ClF -125.73 -126.81 -131.59 -132,78 -146.00 270
Cl2 -105.88 -106.16 -106.68 -106.88 -108.95 295
BrCl -98.18 -98.27 -97.03 -97.04 -103.6 272
ICl -94.45 -94.47 -92.65 -92,64 -82.5 273
C1CN -73.96 -72.59 -69.48 -83.2 296

TABLE 10.2 NUCLEAR QUADRUPOLE COUPLING CONSTANTS FOR Br79

FROM SEMI-EMPIRICAL SCF-MO-CNDO THEORY
Parameter Set M1 M2 01 02 Exptl. Referenc

HBr 644.5 657.9 630.2 642.7 530.5 Mc/s 293
CH3Br 598.6 607.6 609.1 616.7 577.15 294
BrF 944 .4 952.4 997.8 1007.3 1089.0 271
BrCl 805.2 806.9 822.9 824.5 876.8 272
Br2 750.4 750.8 754 .4 754.7 764,86 297
IBr 721.3 721.2 718.5 718.4 722 298
BrCN 628.1 611.8 588.9 686.5 296
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127

NUCLEAR QUADRUPOLE COUPLING CONSTANTS FOR I

- FROM SEMI -EMPIRICAL SCF-MO-CNDO THEORY

01 02

Exptl, Referehce

Parameter Set M1 M2
HI -1982 -2020 -1975 -2009 -1823.3 Mc/s 293
CH, I -1871 -1907 -1919 -1949 "=1934 299
IF -2899 -2920 -3056 -3078
1cl -2460 ~2463 -2528 -« -2529 -2930.0 273
IBr -2306 -2305 -2339 -2338 -2731 298
I, -2218 -2214 -2231 -2227 -2156 300
ICN -2052 -1995 -2024 -1962 -2420 296
TABLE 10.4 NUCLEAR QUADRUPOLE COUPLING CONSTANTS FOR 0135
FROM EXTENDED HUCKEL THEORY
Calculation .From gross ‘ From net ] Exptl.
of QCC orbital populations orbital populations
2 1.0 1.2 1.0 1.2
~ HCL -42.15 49,33 -65.79 -75.49 -67.3 Mc/s
CH,C1 -52,26 -51.59 -76.49 -75.16 -74.77
ClF -162.79 -182.40 -146.00
ci, -88,21 -117.40 -108.95
Brel -68.44 -95,11 -103.6
1cl -58.68 -83.28 -82.5
ClCN -44,80 -65.38 -83.2
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results for bromine are as accurate as for chlorine and iodine, so .that
the approximate form of the orbital used to calculate overlap integrals
(equation (4.24) ) does not affect the accuracy of the theory.

Quadrupole coupling constants calculated from the EHT, using both
equations (10.26) and (10.27), are listed in Tables (10.4) to (10.6). The
QCC's for polar molecules calculated from gross orbital populations
(equation (10.27)) correspond to exaggerated polari;ies, since the calculated
values are too low, except when the halogen nucleus of interest is bonded
to fluorine, so that it carries a partial positive charge and exaggeration
_ of the polarity leads to a high QCC; The results are therefore consistent
with the hiéh dipole moments computed from the EHT. (Chapter 9)

The effect of calculating the QCC from net, instead of gross,
orbital populétions is invariably to increase the QCC. The halogen atoﬁs
are predominantly ¢-bonded so that there is a greater overlap population,
and a smaller total population, in the po -orbital thanhin the pm -orbital,
The calculated QCC depends on the difference between,the PoC - and pA -
populations, so that it is increased if the overlap population is not counted.
Tables (10.4) to (10.6) show that while those results which are too low are
improved by using net orbital populations, others which are too high are
made worse. On the whole, more accurate results are obtained using the

SCF-MO theory.
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TABLE 10.5 NUCLEAR QﬁADRUPOLE COUPLING CONSTANTS FOR Br79
FROM EXTENDED HUCKEL THEORY
Calculation From gross From net Exptl
of QCC orbital populations orbital populations PLL.
Zﬁ 1.0 1.2 1.0 1.2
HBr 379.2 441.2 576.5 653.7 530.5 Mc/s
CH,Br 488.,7 481,5 681,2 669.9 577.15
BrF 1252.2 1366.9 1089.0
BrCl 777.4 991.2 876.8
Br, 626.8 842.5 765
IBr 556.4 761.9 722
BrCN 379.0 534.8 686.5
TABLE 10.6 NUCLEAR QUADRUPOLE COUPLING CONSTANTS FOR 1127
FROM EXTENDED HUCKEL THEORY
Calculation From gross From net Exptl
of QCC orbital populations orbital populations ptl.
1
ZH 1.0 1.2 1.0 1.2
HI -1333 -1521 -1956 ~-2169 -1823.3 Mc/s
CH3I -1666 -1640 -2210 -2180 -1934
IF ~-4056 -4584
1cl -2529 -3130 -2930.0
IBr -2086 -2713 -2731
I2 -1866 2483 -2153
ICN -1399 -1876 -2420
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E.' COMPARISON OF CALCULATED QUADRUPOLE COUPLING CONSTANTS WITH EXPERIMENT

FOR_NITROGEN

The éalculated quadrupole coupling constants for nitrogen are
génerally in poor agreement with experiment. Table (10.7) §hows that the
QCC's'calculated from the SCF-MO-CNDO theory with empirical bonding parameters
bear 1i£t1e relation to experimental values. Many of the calculated values
have the wrong sign, corresponding to smaller klectron populations along the
symmetry axis than normal to it, in contradiction to the experimental
results. Most of the QCC's calculated using the Pople-Segal bonding
‘parameters (Table 10.8), on the other hand, have the correct sign, but the
values are still in poor agreement with experiment, except for NH3.

The QCC's calculated from the Extended Huckel Theory (Table 10.9)
are also quite different from the experimental §a1ues. The values calculated
: from'éross and from net orbital populations are not too different for most
molecules, since the overlap populations along the symmetry axis and normal
to it are about the same.

Some idea of the reasons for the failure of the approximate MO
theories considered to predict accurate QCC's for nitrogen may be obtained
" from the results of an ab initio calculation of electric field gradients
2,3 7 using equation (10.12). The results are found to be very sensi-

tive to the basis set, since the electric field gradient per p electron on

for N

atom A, eq > is proportional to the cube of the orbital exponent, Z'

(equation 10.20). The other electronic terms in equation (10.12) are



Parameter Set

NH3

Ny
NNO
NNO
HCN
CH,CN
FCN
CICN
BrCN

ICN

M1

+2.233

'0 . 763

+5.313

+8.143

+6.561

+6,104

TABLE 10.7

NUCLEAR QUADRUPOLE COUPLING CONSTANTS FOR Nl4

FROM_SCF-MO-CNDO THEORY WITH EMPIRICAL BONDING PARAMETERS

M2
+1.098

-0.663

+6.664

+8.823

+7.956

+7.048

01
+1.444
-0.565
+5.833
-2.583
4+4.994
+5.913
+8.458

+7.061

+6.365

+3.827

02
+0.674
-0.482
+6.104
=3.007
+6.280
+6.676
+9,208
+7.897
+7.220

+6.680

R1
+0.787
-0.988
+5.394
-4.289

+5.075

+7.708

R2
-o . 502

-0.911

+5.817

-4.792

. +6.108

+8.150

Exptl.,
--4.0842 Mc/s
-4,65
-0.792
-0.238
~4.58
<4,214
-2.67
-3.63
-3.83

-3.80

Reference
301
302
303
303
304
305

259
296
296

306

*8€T
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NUCLEAR QUADRUPOLE COUPLING CONSTANTS FOR N14

FROM SCF-MO-CNDO THEORY WITH POPLE-SEGAL BONDING PARAMETERS

Parameter Set

MP op RP Exptl.

NH, -4.111 -3.930 -4.256 ~4.0842 Mc/s

N, . =2.290 -2.290 -2.317 -4.65

NNO +0.612 +0.840 +0.437  -0.792

NNO +0.152 -0.015 -0.528 -0.238

HCN -1.923 -1.903 4,58

CH,CN -1.527 -1.482 -1.908 -4.214

FCN -0.579 -0.468 -0.995 -2.67
"TABIE 10.9 NUCLEAR QUADRUPOLE COUPLING CONSTANTS FOR i

FROM EXTENDED HUCKEL THEORY
Calculation From gross From net

of Qcc orbital populations orbital populations Exptl.
z} 1.0 1.2 1.0 1.2
NH, -4.156 -4.840 -6.188 -6.935 -4.,0842 Mc/s
N, -3.600 -3.476 -4.65
NNO -1.418 -1,111 ' -0.792
NNO +1.786 +2.818 | -0.238
HCN -1.660 -1.592 -1.882 -1.791 -4.58
CHjCN . -0.958 -1.114 -1.004 -1.206 -4.214
FCN -0.594 -0.509 | -2.67
clcN -0.649 -0.564 -3.63
BrCN -0.667 -0.560 -3.83
ICN -0.785 -0,718 . -3.80
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relatively insensitive to changes in the basis set, and in fact there is a
rough cancellation between them and the nuclear terms, as assumed in the
semi-empiricaliformula, equation (10.22). Anotheé possible source of error
in the ab initio calculation of electric field gradients is the Sternheimer
éolarization of inner shélls, although Richardson307 has estimated that this
has an effect of less than 10% in N,.

| In semi-empirical calculations of quadrupole coupling constants,
it is hoped that th; errors inherent in ab initio calculations of electric
field gradients, as well as any error in the uncertain nuclear qua&rupole
moment of N14, will be eliminated by evaluating C° from the hyperfine
structure of the atomic spectra.277 The results in this chapter show that
this approach works fairly well for halogens, but not for nitrogen.
'Townes?os has pointed out that the semi-empirical formula, equation (10.22),
is lcss satisfactory for nitrogen than for the halogens, since it is smaller
and its bonding is more complex.

The above analysis suggests that the errofs in the calculated QCC's
are primarily due to the failure of equation (10.22), but comparison of the
orbi;al populations with those obtained from complete minimum-basis set
SCF-MO calculations shows that part of the error lies in the wavevfunctions
calculated using the CNDO approximation. In HCN, for example, the dipole
moment calculated usiﬁg the parameter set M2 is accurate within 1%, (Table
9.2), but fhe orbital populations for the nitrogen atom are 1.93, 0.50 and
1,40 electrons for the v#lence-shell s, pd and pm orbitals respectively,

in contrast to gross orbital populations of 1.77, 1.37, and 0.97 calculated
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using complete SCF-MO theory.309 Although the total atomic charges predicted
by the semi-empirical SCF-MO- ~-CNDO theory are more accurate than those in

the EHT, as shown by the calculated d1pole moments, the dlstrlbution of the
valence-shell electronic populations of each atom among the valence orbitals
is often quite inaccurate.

The calculated orbital populations are sen31tive to the bonding
parameters, and the Pople-Segal parameters lead to QCC's which are somewhat
better than those obtained using the empirical bonding paraméters. This
is an example of a situation, often encountered in semi-empirical pi-
electron theory, in which parameters chosen for accurate prediction of one
molecular property do not lead to the best results for another property.
in this case, the dissociation energies are used as the over~riding criterion
for the assignment of bonding parameters, since they are more directly
calculated from the results of the SCF-MO theory, and since they can be
calculated accurately for at least one set of bonding parameters.

In summary, then, the quadrupole coupliﬁg constants calculated
for halogens using the semi-empirical SCF-MO-CNDO theory are in fairly good
agreement with experiment, while those calculated for nitrogen are unsatis-
factory. The Extended Huckel Theory leads to somewhat poorer results for

halogens, and also fails for nitrogen.
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" CHAPTER 11

CONCLUSIONS

A. SUMMARY AND DISCUSSION

The object of the present work has been to develop a semi-
empirical SCF-MO theory for the approxiﬁate prediction; and interpretation,
of ground state molecular properties. The CNDO approximation43 has been
used so that the theory can be extended to fairly large molecules without
" requiring excessive éomputer time. The predicted vélues of physical
properties have been compared with those calculated from the theoretically

44,45

based parameters of Pople and Segal, and from the Extended Huckel

Theory.114

The results in Part B show that thé physical_properties calculated
from the SCF-MO-CNDO theory, especially the ionization potentials and bonding
energies, are most accurate when the parameters are evaluated as follows: |

(i) Atomic core and electron-repulsion integrals are evaluated
from atomic valence state energies, as described in Chapter 3.

(ii) Interatomic electron repulsion integrals are calculated
either from the Mataga formula, equation (4.6), or the Ohno formula,
equation (4.7). The atomic limits of these integrals are evaluated from
"atomic valence state energies (Chapter 4). The results obtained with the

two formulae are about equally accurate, except that the Mataga formula

leads to somewhat more accurate dipole moments (Chapter 9).
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(iii) Bonding parameteré are calibrated using experimental
bonding energies (Chapter 4).

(iv) The orbital exponent for hydrogen is taken as 1.2 in the
calculation of overlap integrals.

The success of the theory is therefore to be judged by the accuracy
of the physical properties calculated using these parameters. ' (Parameter
sets M2 and 02) The ionization potentials are quite accurate, and in some
cases more accurate than those from exact SCF-MO calculations, if Koopmans'
theorem is assumed to be valid. For a few molecules, the predictéd order
of orbital energies is incorrect, but on the whole, the agreement with
experiment is quite good. The bonding energies of molecules not considered
in the calibration of the bonding parameters are also fairly accurate.
Quantities which depend on the molecular charge distribution are not as
accurately predicted. The dipole moments are accurate for some molecules
which contain only first row atoms, although not for all, and the quadrupole
coupling constants for halogens are quite accurate, ﬁut the principal
failures.of the theori are the predictions of dipole moments for molecules
containing atoms not in the first row of the periodic table, and of quad-
rupdie coupling constants for nitrogen. The reasons for these failures
have been discucsed in Chapters 9 and 10 respectively.

The results 5f the semi-empirical theory have also been compared
with those calculated using the Poplé-Segal pgrameters, and it has been
shown that the latter lead to overestimation of molecular energy quantities.

The predicted ionization potentials are tou large when calculated with
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theoretical electron-repulsion integrals, and/or with the Pople-Segal
bonding parameters. The bonding energies calpulated from the Pople-Segal
bonding parameters are very much too large. Even when the bonding
.paraﬁeters are éalibrated to give the correcﬁ bonding energies for some
molecules, the bonding energies of other molecules are predicted more
accurately when semi-empirical electron-repulsion integrals are used.

The relative merits of the various parameters are less evident
in the predicted values of properties which depend on the chérge distribu-
tion. The overall accuracy of the dipole moments is about the same for each
set of parameters. Halogen quadrupole coupling constants were not calculated
using the Pople-Segal parameters, which were fqund to be inferior for the
prediction of ionization potentials and bonding energies in molecu1e§
containing first row atoms, and were therefore not extended to heavier
atoms. The Nl4 QCC's calculated with theoretical bonding parameters are
actually somewhat more accurate than those calculated using émpirical bonding
parameters, but are still quite inaccurate. The ;dvantage of the semi-
empifical theory, therefore, is that it predicts more accurate orbital
energies and total molecular energies. The charge distribution is not
imp?oved very much.

The Extended Huckel Theory has also been compared with the semi-
empirical SCF-MO-CNDO theory. It has been shown that the energy quantities
predicted by the EHT are unreliable, since both ionization potentials and
bonding energies are fairly accurate for some molecules, but very inaccurate

for others. The EHT predicts very high dipole moments for many molecules,
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and the calculated halogen QCC;s also correspond to exaggerated poiarities.
The calculated nitrogen QCC's are in poor agreement with experiment in the
EHT as well as in tﬁe SCF-M0 theory.

It might be argued that the presenf comparison of the EHT with
the SCF{MO-CNDO theory is unfair, siﬁce no attempt wasimade to improve
the parameters of the EHT empirically. The EHT is, however; a semi-empirica1
theory since the diagonal Hamiltonian matrix elements are determined from
atomic valeﬁce state ionization potentials, and the multipliéative constant,
K, which appears in the off-diagonal elements (equation 5.4) was evaluated
to fit experimental data.114 Since the actual value of K leads to approxi-
mately correct ionization potentials and bonding energies for somé molecules,
any change in K which improved the predictions for other moiecules would be
at the expense of these.

The natural way to improve the EHT is to vary the matrix elements
with the molecular charge distribution, in which case the calculation must
be done iteratively. As explained in Chapter 5, fhg so-called Iterative

119,132-135 is unsatisfactory on theoretical grounds,

Extended.Huckel Theory
so that an attempt to improve the EHT leads naturally to an SCF-MO theory.
The EHT with Hoffmann’s.parameters has therefore been used as an example of
a non-iterative semi-empirical theory, for comparison with the semi-
empirical SCF-MO-CNDO £heory.

| The results indicate that the EHT is not as accurate as the semi-

empirical SCF-MO-CNDO theory. The computation time required in the latter

theory is only 2 to 3 times as long as in the EHT for a given molecuie, so
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that there is no reason to prefer the EHT. The semi-empirical SCF-MO-CNDO
theory is therefore the best available theory at this level of approximation.‘

These conélusions are based on the predicted values of_physical
prépérties, whose calculation involves further approximations not inherent
in the'MO theories considered, but as pointed out in Chapter 6, this is
inevitable since the propef evaluation of a theory requires the.comparisdn
of calculated quantities with experiment. Also the effect of these extra
approximations has been minimized, by considering quantities which can be
calculated directly from the ground state wave function.

The emphasis in this thesis has been on the choice of parameters
for tle semi-empirical theory. The application of the theory to the inter-
pretation of experimental data is illustrated in Chapter 7, where the
computed orbital energies are used to support the identification of certain
observed ionization potentials with specific molecular orbitals. Now that
the semi-empirical theory has been formulated, it can be used more extensively
to interpret molecular properties.

In summary, a semi-empirical molecular orbitai théory has been
developed for the calculation of ground state molecular properties, and

its accuracy and limitations have been investigated.

B. SUGGESTIONS FOR FUTURE RESEARCH

Thete are a number of ways in which the theory developed here can
be extended, and applied to different chemical problems. Some possible

directions for future research are indicated here, under the headings:
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(i) extension of the theory to different types of molecules, and
(ii) interpretation of molecular properties other than those

considered here.

Extension cf the Theory to Other Molecules

In this thesis, ;nli small molecules, which can be describeé to
a first approximation by a closed-ghell wave function built up of s and p
orbitals, are considered. An obvious extension of the theory is its
application to larger molecules, which primarily requires the use gf more
computer time and memory. The extensive computation necessary to parametrize
and test the theory was restricted to small molecules, but £he final theory
can be applied to larger molecules, with much shorter computation times than
are reguired'for complete SCF-MO calculations (Appendix C). Kaplansky and
Whitehead, for exémple, are currently applying the semi-empirical SCFéMO-CNDO‘
theory to the interpretation of halogen quadrupole coupling constants, in
molecules as large as (CZH5)3N-BCI3.

A more significant extension of the theory would be the inclusion
of valence-shell d orbitals in the basis set. TFor transition metals,'these
orbitals are partially occupied in the ground state, and the atomic parameters
can be assigned by a procedure similar to that used here. A more difficult
problem is the determination of parameters for the valence-shell d orbitals
of main gréug atoms. Santry and Segal46 have extended the theoretical

bt , 45

parameters of Pople and Segal to the second row of the periodic table,

including @ orbitals as well as s and p orbitals. As discussed in Chapter 9,
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they showed that ihe computation of approximately correct dipole moments
for molecules with seéond-row atoms requires the inclusion of d orbitals in
the basis set, even for molgcules whose elementary chemical description
does not require d orbitals; It is harder to evaluate suitable semi-
empirical parameters for the valénce shell d orbitals of main-group
elements, since they are not occupied in the atomic ground state, and the
required valence state energies have not been accurately determined.

Girard and Whitehead are currently considering this problem,'for the second
row of the periodic table. .

A further possible extension of the theory is to molecules which
cannot be described in terms of closed shell wave functions. Pople and
Segal45 have formulated the SCF-MO-CNDO equations for open shell configura-
tions, and have carried out calculations using the same parameters as for
closed shell molecules. Similarly, the semi-empirical theory can be
extended to open shell configurationms, although it may be ad§isab1e to
modify the atomic parameters, since they were derived from the énergies
of valence states with an equal number of'electrons of each spin, as in a
closed-shell molecule. A limitation of the open shell SCF-MO~-CNDO theory |
is that it does not resolve configurational degeneracies.45 The study of
singlet-triplet splits, for example, requires the use of‘é less apprqximate

theory, such as the EMZDO theory proposed by Dixon.63
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Interpretation of Molecular Properties

The eemi-empirical SCF-MO-CNDO theory can also be applied to the
iﬁterpretation of physical and chemical properties other than those‘con-
,sidered.here, such as fhe conformational and stereochemical problems, ﬁhich
have been studied by the EHT. (See Chapter 5) Since the forme; theory
predicts more accurate bonding energies, it might also be expected to
predict more accurate energy differences between molecular conformations.

Also, more'spectrpscopic quantities can be related to the ground
state wave functien. The isomer shift in the Mossbauer spectrum of a given
nucleus depends on the electron density at thae nucleus,291 although a
complete study would require the inclusion of d orbitals in the basis set,
since the nuclei which exhibit the Mossbauer effect are either tramsition _
metals, or heavy main group elements, such as tin or iodine, in which the
contribution of d orbitals to the bonding is significant.

If the theory is extended to open-shell configurationms, the
isotropic hyperfine interaction in electron spin resonance can be calculated
from the spin densities at the nuclei.310

Another interesting problem is the interpretation of chemical
shifts and spin-spin coupling constants in nuclear magnetic resonance.

These quantities are not directly related to the ground state wave function,
since the energy of a nucleus in a magnetic field must be calculated using

second - order perturbation theory, and formally includes terms which depend
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on all the excited state energies.310 1t is possible, however, to correlate

" chemical shifts and coupling constants with ground state wave functions in
a semi-empirical way, wi;hin series of related molecules.311 Preliminary
attemptsl6o to correlate chémical shifts with charge densities calculated
from the Extended Huckel Theory were abandoned in favour of developing a
better semi-empirical moleéular orbital theory, using properties directly
related to the ground-state wave function. Now that such a theory has
been developed, it might be worthwhile to resume attempts to interpret
chemical shifts, as well as spin-spin coupliﬁg constants, in terms of

ground-state wave functions.
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_Statement of Claims to Original Research

(1) The atomic core and electron repulsion integrals for the semi-
empirical SCF-MO-CNDO theory have been evaluated from atomic valence

state energies, and from an analysis of the effect of the CNDO approxi-
mation on the Hamiltonian matrix elements in SCF-MO theory. (Chapter 3)

fhe atomic limits for the interatomic electroﬁ repulsion integrals have
been evaluated similarly. (Chapter &)

(2) Bonding parametefs for the semi-empirical SCF-MO-CNDO theory

have been calibrated using the experimental bondihg energies of binary
hydrides, and'the theoretical significance of the values found has been
discussed. (Chaptef 4)

(3) An approximate method has been developed for the calculation

of overlap and dipole integrals involving Slater 4s and 4p orbitals..
(Chaptef 4)

(4) . Ionization potentials, bonding energiés, dipole moments and nuclear
quadrupole coupling conétants for a number of molecules have been calculated

from the SCF-MO-CNDO theory, using various sets of parameters. The calculated
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valués have been cémpared with experiment, and it has been shown that the
'semi-empirical parameters, evaluated as described in paragraphs (1) and

(2) above, lead toAresults in better agreement with experiment than the
theoretically based pérameters used by Pople and Segal. (Part B) It has
also been shown that the value 1.2 for the orbital exponent of hydrogen
leads to more accurate bonding energies, using the semi-empirical SCF-MO-CNDO
theory, than the value 1.0, for molecules not used in tﬁe calibration of

the bonding parameters (Chapter 8).

(5) Ionization potentials, bonding energies, dipole moments and nuclear
quadrupole coupling constants have also been calculated by the Extended
Huckel Theofy and compared with experiment, and it has been shown that the
EHT is neither as accurate, nor as reliable, as the semi-empirical
SCF-MO-CNDO theory. (Part B)

(6) The calculafed ionization potentials, for the parameters which
lead to results in best agreement with experiment, have been used to support’
the identification of certain observed ionization potentials with specific
molecular orbitals. (Chapter 7) | |

(7 It has been shown that the bonding energies calculated from the
Exéeﬁaed Huckel Theory by Hoffmann and Lipscomb are not correctly referred
to atomic ground states, and that correction of this error leads to bonding
energies'in better agreement with experiment. (Chapter 8)

(8) It.has been shown that dipole moments cannot be calculated from

a molecular orbital theory without éverlap, in the same way as if overlap

is iﬁcluded, since they would then not be invariant with respect to
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translation. Severél apbroximate formulae, which.have been proposed in the
literature for the calculation of dipole moments in molecular orbital
“theories without overlap; have been shown to have the required invariance
properties..'The Pople-Segal formula, which includes point-charge and atomic

. polarization terms, has been shown to be the most accurate for use with the

. SCF-MO-CNDO theory. (Chapfer 9)
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APPENDIX A

MOLECULAR GEOMETRIES

The input data for the computations on each molecule consisted of
the atomlc numbers and nuclear co-ordinates of all the atoms. The cd-
ordinates were determined from exper imental bond lengths and angles, which
were taken from the Tables of Interatomic Distances of the Chemical Society],'81

unless otherwise specified. When available, bond distances corresponding to

potential minima ("re" values) were preferred.

0.74130 A

Hy: R
LiH: RLiH

BeH.: No data available. Assumed linear, RBeH = 1.3431 A as in BeH.

1.59535 A

BH,: No data available. Assumed trigonal planar, RBH = 1.187 A as for
terminal H in B H6

CH4: Tetrahedral, RCH = 1.0850 A

NH,: Pyramidal, Ry, = 1.0124 A, /HWE = 106.67°
H,0: Ry, = 0.9572A, [HOH = 104.52°

HE; . Ry, = 0.9171 A

SiH4: Tetrahedral, RSiH = 1.4798 A

PHy: Pyramidal, Ry, = 1.415 A, /upu = 93.3°
H)S: Rgy = 1.328 A, /HSH = 92,2°

HCl: RHCl = 1.2746 A

GeHa: Tetrahedral RGeH =1.527 A
AsH,: Pyramidal, R, ., = 1.5192 A, /uAsH = 91.83°



H.Se:

HBr:

SnH, :
SbH., :

H,.Te:

HI:

CO:

CS:

Co,:

0CS:

CcS,:

NNO:

SO,

CZHZ:

CZH4:

C,H

38’

BZH6:

LiF:

Cl,:

26"

= _ o
Reeg = 1.460 A, /HSeH = 91.0
Repr = 1.414 A |
Tetrahedral, 'RSnH = 1.701 A
pyramidal, Ry = 1.7073 A, /HSBH = 91.30°
' o
Ry = 1.7 A, [HTeH = 89.5
RHI = 1.60904 A
RNN = 1.09758 A
Ry = 1.1282 A
Rg = 1.5349 A
Linear, RCO = 1.15979 A
Linear, R,y = 1.16021 A, R, = }.56014 A
Linear, RCS = 1.5532 A
Linear, RNN = 1.1257 A, RNO = 1.1863 A
Ry, = 1.4321 4, /0s0 = 119.536°
o
R00 = 1.278 A, /000 = 116.8
Linear, RCC = 1.2050 A, RCH = 1.0587 A
' o
Planar, R, = 1.339 A, Ry, = 1.086 A, [HGH = 117° 34
o

Staggered,l RCC = 1.543 A, Ry = 1.102 A, /HCH = 109.3
Co-ordinates determined by Lide.ZSA
Bridge structure, RBB = 1.770 A, RBH = 1.334 A (bridge H),
Ry ~ 1.187 A (terminal H), /HBE = 121.5° (terminal)
RLiF = 1.56389 A
Rep = 1.4177 A

1.988 A

Roict

255.
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Brz: RBrBr = 2.2836 A’

I,: Ry = 2.6624

CIF: Ry, = 1.6281 A

BrF: RBrF = 1.7556 A

BrCl: RBrCl = 2.138 A | ,

. IF: No data available. Assumed Rip = <% (R;q in I, + Ry, in Fy)
= 2.03985 A '

ICl: Ry, = 2.3207 A

IBr: No data ava;lable. Assumed RIBr = % (RII in 12 + RBrBr in Brz)
= 2.4728 A |

GHjF: Ry = 1.38527 A, Ry = 1.1060 A, /HCF = 108.9°

CH,Cl: Ry, = 1.78123 A, Ry, = 1.0959 A, /HCCl = 108°0

CHBr: R, = 1.9388 A, R, = 1.0954 A, /HCBr = 107°14"

GHI: R, = 2.1387 4, Ry = 1.0958 A, /HCI = 106°58

HON: Linear, Ry = 1.06317 A, R, = 1.15535 A |

CHBCN: Methyl carbon assumgd tetrahedral, RCH = 1.10250 A, RCC = 1.45836 A;
.RCN = 1.15710 A L

FCN: Linear, R, = 1.262 4, RCN; 1.159 A (Ref. 259)

CloN: Linear, R,y = 1.629 A, Ry = 1163 A

BrCN: Linear, RCBr = 1.790 A, RCN = 1.159 A

ICN: Linear, R, = 1.995 A, Roy = 1.159 A
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‘APPENDIX B

COMPUTATION OF OVERLAP AND DIPOLE INTEGRALS .

The computation of.overlap and dipole integrals is based on the

105 for the evaluation of overlap integrals

procedure’of Mulliken et al.
involving Slater orbitals, but the details have been changed sufficiently
so that the actual procedure requires further elaboration. Overlap and

dipole integrals respectively were defined previously as:

* q ' ,
Skl = ¢k ¢1 v (2.6)

and o
xkl \Y(bl'(r X (bl av (9.7)

" The X-axis is choses as the direction along which the dipole moment lies.

The integrals for each pair of atoms are dealt with separately.
For each of the two atoms, the p orbitéls along and perpendicular to the
internuléear axis are referred to as the p G and p W orbitals respectively,
as in a diatomic molecule. The integrals are fifst computed for the s,-?crahd
and p T orbitals, and then transformed so that they refer to the.molecular
basis of s, P> py and PZ orbitals.

The atomic orbitals on each atom have the form

1t - R, @) Y, (6, 9) | (4.18)

For Slater orbitals, the radial function is given By

' -
n' -1 e nr/a,

R (c) = Nr (B-15
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which is equivalent to equation (4.20), but with
p = 2Z'/n' (B.2)

The normalization constant in equation (B.1l) has the value

: n"+ 1/2
N = (é‘i) i (B.3)
o V(Zn')!
while the normalized angular functions for s and p orbitals are
N
_ ‘, 3
Yp — Zar ©os e
Y I = sin 6 (cos @ or sin @) (B.4)
P 4 2= ‘

with the internuclear axis as the polar axis. Substituting equations (4.18)
and (B.l) into equation (2.6), the overlap integral between the kth orbital

of atom A and the 1th orbital of atom B becomes

n} -1 nt -1 -(u,r,+pr)/a
= A B ATAT Fp B’/ %0
Skl = NANB T, rB e Yk Y1 dv (B.?)

with all factors, except the angular functions Y

k and Yl’ the séme for each

pair of orbitals of the two atoms.

Following Mulliken et al. the integials are evaluated ir: spheroidal

co-ordinates, given by105
p r, +r r, -°r - '
§ _ ARB, 9 - ARB’ ¢ =8, = 8, (B.6)

The volume element in these co-ordinates is
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3
av = %—(gz-qz)dé dm a9 . @.7)

so that the overla'p integral, equation (B.5), becomes

o 2¢ "
T W @ +N+1f dwf dt"f dﬂ')(§+,,7) "

n!-1 -p(§+ t) :
_\ B 7 %2_ 2
( g '7) e Yk Yl ( 1] ) (B.8)
where the parameters p and t are defined by
Rty
2
and : B, - ny

e - a’s - (.10)
LT

(B.9)

o
f
" |?

The product of the normalization constants can be expressed in terms of '
these parameters,

1 1
[} T 1 - ] —_
n A+ILB+1 n A+ 2 nB+ 5

NN - R? ©(14t) (1-1) . (B.llj

A'B
Je ot @y

so that the overlap integral can be written

S, = K d%[ d'7F(f; 77)G(§>7)ep(§+7t)

(B.12)

where n A+n 'B+1 nA+ i n '+ -2- ‘
(L+t) (1-t) (8.13)

. V(2 n'A)! (2 n};)l

kK = P
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n'-1

n'-1
(B & (k- B (8.14)

F (59

and » 2T .
¢ (5, = (&% 72) Y, Y, 40 (B.15)

(o]

The function F (%, ) is the same for each pair of orbitals of the two’
7 S

atoms and can be weitten in polynomial'form,

F (§,7) = Z c, %i .‘7j | .  (B.16)

i3
where the Cij are determined by comparison of equations (B.l4) and (B.16).

The overlap integral is now expressed in terms of ‘the elementary

A () = J‘o'o %i e-pgd%

! i -pt7 |
B, (p1) - J 7 e am | (B.17)
-1 : )

integrals

For example, if G ( §,7n) = 1, then
1

Skl = K .Z Cij Ai Bj . (B.18)
1,7 .

The actual functions G ( %,77) are found by transforming the angular

functions into spheroidal co-ordinates and then integrating over @ so that



¢ k) - %(&2_ .72) e S, _s
J%-(l - §7)(§+7) for Ss_-p‘,;
g(1+*57} (§-7)  for s .
%(1 '§2’72) for S oo
Fgtma g
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(8.19)

The overlap integrals for which no G ( %,‘7) is listed are zero. The non-

zero overlap integrals are.then given by

_ K L
Sees = 5 2 Ciy (AiyoBy = A:B500)

i,j

B x Z Ci5 BPipaBy* A8 = AoBi ~ AaByd)

- A B + A,

po-s 2 13 ij (Ai+1Bj i+l 1+23j+1 B A.i+1Bj+2)
>
_ 3K
Spar-pcr T2 13 Cij (AiBj Ai+ZBj+2)
s - = 3K C.. (A, B.+AB,.,-AB,. -A-B,.)
pw-pW 4 9 3 ij “iv27j 17342 ivj  Ti+275+2
]

(B.20)

If one or both atoms are hydrogen, the equations for the integrals involving

the corresponding p orbitals are not applicable.
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The dipole integrals are computed in terms of integrals in the

‘local co-ordinate system.

%

Xa = f¢k' x' §, dV
* . ’
f¢k y ¢1dV

2l = j(b: 2' 8,4V . (B.21)

1t

|
Y1

where x' is the co-ordinate along the internuclear axis from the origin at
A, and y' and z' are co-ordinates perpendicular to it. In terms of the

spheroidal co-ordinates, defined by equation (B.6),

o

x.' = (1 +g7)

y' = 32- {(52-1) %) -;/2) cos @

z' = % J(§2 -1 Q -»72) sin @ o (B.22)

so that the non-zero integrals are
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' = KR E - -
xs-s 4 Ci‘j (Ai+ZBj + Aa'L+3Bj+1' AiBj+2 Ai+lBj+3)

i,]
' = E——KR'; ) - ' -
Xe-po = & :L_j Cig (AppaBy+ ABsy = ApaBig ~ AuoBiys)
3
' B 3 | ) .
X o-s b Cyg (ApgBy+ 28, 0By + 83850 ~ &85 - 2B
’ .
B Ai+235+3)
3KR ’ . :
' = 28K - -
pompo © & L3 ‘i (AB+ A Boy - AoPie - AuuaPua)
3
3KR ; : ~
' = 28R - -
X ott-pT ) izj Cog (-AgBy = Ay gBay + ApoBy+ ApaBig + 448500
E]
+ AgBis T ApoByg T AaBys)
e B i ; g |
Yspm T Fspm T B Crg CAppiBy = ABpn + sy 4108
+ A B0 FABLs T A B, T A oBys)
' = 1 = 1 b
Yp o-pw 'zpa"-p-n' xp'.T-pT-' (above)
' _ oo _Bx i -
pT-s Zp'lr-s 8 4,3 Cij ( Ai+1Bj + AiBj+1 + Ai+3Bj Ai+2Bj+1
¥ A By T ABLg - AR, t ALY
3KR
' - 1 = 28R - -
Ypa-por™ Zpmpem” 8 123 Cig CABy+ A Ba ¥ 8085~ AiaPin
. ?
*ABL o~ A Big T ARy ¥ A 3B5s)

(B.23)



264,

The overlap and dipoie integrals must now be transformed so that
they refer to the molecular basis orbitals, The three valence-shell p
" orbitals of an atom transform as vectors under'g rotation about the nucleus,
while the s orbital is unaffected. 1If ax, ay, and az are the dirgction
cosines of the internuclear axié from A to B, with respect to thé molecular

co-ordinate system, then the overlap integrals in the molecular basis are

given by
SS'S - Ss-s
SS‘Pi - T Ss-pa—
Sp.-s = 2 Spo-s
.SPi'Pj = (Bij - aiaj) SP1;-p1r - aiajvspo‘-pcr (B.24)

where the subscripts i and j represent either x, y, or z.
Thé transformation of the dipole integrals to the molecular basis
involves two steps:
(i) The co-ordinates are rotated about nucleus A, with both the
p orbitals and the position.operators transfor@ing as vectors.
(ii) The origin is moved from nucleus A, with co-ordinates
(xA, yA; zA), to the molecular origin, with the dipole integrals trénsforming )

as

1 3 %a v % 8 (B.25)

The non-zero dipole integrals in the molecular basis, for the x'component



of the position operator, are then given by

xs-s = B é-s + *A Ss-s
xs-pi - <5xi ) Ys pPT %% X; -po tox Ss-pi
Xpi-s- = e ai X;O’-S + _(Sxi ) Y;1r-s + xA spi-s
Xpi-pj B (Yr')f-pf‘ xr'nr-po— ) Xr"'n'-p‘" ) Yl')f-p'f‘f) * aisxj Y'pO"-p
+ ax§ij x;TT-pTT -najsxi Y'p1r-pCP- xaspi_pj
(B.26)

where again the subscripts i and j represent either x, y, or z.
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Finally, the dipole integral between the s and the P, orbitals

of the same afom is given by equation (9.21).

The computational procedure is modified slightly for atoms of

principal quantum number 4. The orbitals of such an atom are approximated

using equation (4. 25), and the overlap and d1p01e 1ntegra1s are then computed

as linear combinations of the appropriate 1ntegrals 1nvolv1ng 3s and 5s, or

3p and 5p, orbltals.



APPENDIX C

COMPUTER PROGRAMMES

The computatioﬁs for tﬂis thesis were performed on an IBM 7044
_computer at the McGill University Computer Centre. The programme was
written in FORTRAN iv language, and the programmes used are listed here.
The progrémmes are mot applicable to ghe hydrogen molecule, for which
computation was done by hand.

The largest part of the computation time, for both the SCF-MO-
CNDO and EHT bgogrammes, is requiréd for matrix diagonalization, and
is proportional to the cube of the size of the basis set. Approximéte
computation times, on the IBM 7044, for a basis of N atomic orbitals,
are N3/4000 minutes ﬁor the SCF-MO-CNDO theory (for an average 10-12

iterations), and N3/10,000 minutes for the EHT,

266.
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' 267,

$1BFTC CNCU
DATA MAT,MUOR/20,32/
" MALN PRUGRAM FUR  SCF-MU-CNUC CALCULATIGN
MaT,MUK = MAXINMUM KNU. ATULMS,VALENCE-SHELL ATOMIC ORBITALS(S ARD P)
DIMENSION G(204520),IAT(20),PAALZ0)+X{3,2C) o
G = ELECTRON-REPULSICN INTEGRALS,IAT = ATOMIC NUMBERS -
PAA = ELCUTRUN POPULATIONS UF ATCMS.X .= NUCLEAR COURDINATES
OLMENS TUN Ll3£,:2) F()7934))H(52152),P(32932)1Pl(32,32)p
lpé(32’$C’15(32152))U(3213d)pw(22'32)yd(3&,3£)1$5(3&)
C = LCAG COUEFFICIENTSy F = TUTAL HARTREE- FUCK: HAHILTUNIAN
H = CORE HAMILTONIAN, P = PUPULATIGN MATRIX Pl AND P2 =
POPULATION MATRICES FRCHM PREVIUGUS ITERATLONS, S = GVERLAP HATRIX,
D = DIPULE INTEGRAL MATRIXy, wyUy AND SS = VAKIABLES IN SUBKRCUTINE
D1PCLE
DIMENSICN NAME(S)
NAME = NAME GF MOLECULE (MAXIMUM 30 LETTERS)
COMMUN ZH
IH = ORBITAL EXPONENT FUK HYDROGEN
LUGILAL SCF,CHECK, BVARY
"SCF = TKUE IF CALCULATICN #HAS CONVERGED TU SELF- CUNSISYENCY
CHECK = 1hUL IE INTERMEDLIATE MATRICES TU BE PRINTED FOR BDEBUGGING
BVARY = TRUE IF BGKNDING PARAMETERS TO BE VARIED
REAC(54500)CHECK 3VARY 3 ZHBE TAHO
BETAHU = PARAMETER USED IN SUBRCUTINE CORE
1 REAUIS5,50L)INAYNHyNE N8 BMAX, 03 s NAME '
WA = NUeaTGMS HET FYDRUGEN, NH=NG. HYDROGENS, NE = NOLVALENCE
ELECTRONS ’
FUK BINARY KRYDRIUES NB. = NU. VALUES FCR BUNDING PARANMETER OF
MALN ATCH, BMAX = MAXIMUNM VALUE 08 = INCREMENT
IF{ onCTeVARY) NB=1 .
CALL CLCCK(ITIME)
SUBRUUT IINE CLOCK IS PART CF MCGILL COMPUTER SYSTEN-TIMES PxUOGRAM
A T=NA+NH
NUGR=4%NA+NH
NAT = Nu.ATbmbyNuR = NG.JF VALENLE SHELL URJITALB( AND P

o O

aN g}

(]

(e}

O OO

oo oOoc

(g

REAL LRPUT CATA=-ATUHMIC NUNMDBERS AND NUCLEAR COURDINATES
HYDRUGENS MUST BE ~READ IN LAST
REALCLS 5021 J TATLIY XL ,d3) 1= 1;5)1JJ 1,MAT)
wWRITE{G,01) NAMEyNAT o NHyNE
thfE(o,DuZ)(IAT(J),(X(ng)pI=1:3),J=11NAT)
WRITE(6,603)
C CUMPUTE ELECTRUN=REPULSICN,GVERLAP AND UIPOLE INTEGRALS
"CALL REPULIGIAT yMATyNASNATX)
CaLl INTGRL (IA[)X)MATJNCRrNAJNATyNURySyoylH’
wRk1TELG,GCC)ELH
IFLNCTLCHECK) GU TO 7
WRITE(6,004)
CALL PR INTLG AT ,,NAT)
ARLTE(G,609)
Catl PRINT(SidGR,NGR)
WRITE(Gy006)
CaLl PRINT (0,MDOR,NORK)
7 CU 20 lB=1l,yNB

OO0




</

H

[

3

€

CcCoaoaaa O

LISTING FUR TRESIS _— ' 268.

ASSICN VAR IABLE BCNDING PARANETER FUR BINARY HYDRIDES
LF{BVARY )oETAANO=3MAaX—D0o*FLLCATL I6~1)
CUMPUTE CUKE MATKIX AND INITLAL F-MATRIX
CALL CURE(HsGsSsIATyBETAAC yBETAHO, MAT ,MORyNA yNAT 3 NOR)
CALL STAXT(F,GyH,1AT, ITER ;MAT 9 MGR g NA p1NUK, SCF)
IF{ .NOTL.CHECK) GO TO 1C
WRITE(G,€CT)
CALL PRIMT(Hyid0RyNCR)
WRITE{0,0609)
CALL PRINTI(F,MUR,NOK)
START ITERATIVE SUOLUTICN CF SECULAR EWQUATIONS
10 CALL EVALUELF g HCRyMUOR 3 CoMCRyM0ORyNORy Lo 0E-641)
SUBROUTINE EVALUE 1S PART OF MCGILL CUIMPUTER SYSTEMN
FINDOS EIGERVALUES AND EIGENVECTCRS OF A REAL SYMMETRIC MATRIX
INPUT MATKIX FyEIGENVALUES UUTPUT ON DIAGUNAL OF F
£ 1GENVECTURS Cy FOR = DIMENSICN OF MATRLIX F, NOR =0RDER
ACCUKACY = 1.0 E-by FINAL PARAMETER INDICATES EIGENVECTORS NEEDED

ft

SORT OREITALS ©Y ENERGY AND CUNMPUTE POPULATION MAT&[K
CALL SURT(F,C,NCKyMCR)
calL CUJLSNIC, P)Nbl(yi\”.pMUR’
IF{ NGT.CHECK) GU TO 14
WRITE(o,clZ)ITER
CALL PRINT(P,iHGR,KRGR)
TEST FUR SELF-CCNSISTENCY
14 CALL TEST (PyP1,yP231.0E~4,1TEKyMORNOR,SCF)
iF{SCF) U TU 16 ) )
IF NOT SCLF-CONSISTENT CONMPUTE MNEW HAMILTUNIAN MATRIX
CALL POPLE(F G HsIAT s MAT ) MURJNAT NOR,P,PAA)
IF (1TER-50)10,10,1 '
PRINT ENERGY LEVELS,LCAU CSEFFICIENTS, POPULATIOUNS
16 wRlITE(Ec,016)1TER
AR ITELO,6LTI(F(L,41)y1=1,NUK)
WRITE{LyCLE)
CALL PRINTICMORyNCKR)
WRITE(OL,620Q)
caLt PRINT(P,HMOR,NCR)
WRITE(6,0622) (PAA(L)1=1,NAT)
CUMPUTE DIPUL: MOMENT ANU BONDING ERNERGY ‘
CALL DIPULE(Dy 1AT P 3PALA4S, X,lATyVLR’pA,NAT NOR 55yh,U)IB)
CALL ENERGY{(F GsHy [AT 3Py MAT, MOR 9y NA» NAaTyNGR Yy NE)
CALL CLCCRUJTIME)
TIME=FLIAT(JTIME-ITIME)/CC.
2€ WRITElGy,c25)T1ME
GO 1G 1
50C FURMAT(2L1,2F4.1)
501 FORMAT(413,2F4.1,20X,5A06)
502 FURMAT(¢12,3F10.Y9)
600 FURMAT{29t SLATER EXPULNERT FUR hYDRUGENF5.2)
601 FURMAT(1HL,5A6/1436H ATUMS, 14, 1CH HYDRUGENSs 14,
1 24K VALENHCE-SHCLL ELECTREGNS)
602 FORMAT(LSHKATUMIC NUHB&RrcX)IZHCU‘G&UINATES/(5X712;6X,3F1005))
003 FORMAT (SOHJISCF=LCAU-MC #“ETHIU WwITH ZERUO DIFFERENTIAL OVERLAP)
604 FURMAT(20HKKEFULSICH [RTeCRAL MATRIX)
605 FORMAT{ LoHKGVERLAPY FATRIX)
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606 FURMAT(Z3HADIPOLE MATRLIX (X-COMPONENT))

607 FORMAT{24HKCURE HAMILTGNIAN MATRIX)

609 FORMAT(LOoRKINITIAL FMATRIX)

612 FURMAT(24HKPUPULATIGN MAIRIX AFTER,I13,11H ITERATICNS)
© 616 FURMAT(I13,20H LTERATIUNS REWUIRED)

617 FURMAT{L3HKENERGY LEVELS/{3X,14F5.4))

©l& FURMAT(13h LCAJ COEFFICIENTS)

62C FUKMAT(L8HKPOPULATIUN MATKIX) . '

622 FORMATL{Z1HKTUOTAL ATCMIC CHARGES/(14F9.4))

625 FURMAT{SHKTIME,F7.1,801 SECUNDS)

END

$IBFTC HUFMAN
DIMENSIUN X(3,25) 4NAT{25),5(50, 50)10(501J0)9p(50'50))
LH(S5Cy5C) £ 150, 50)16(5093("):51)[;\0(5(: 50) s NAHELS)
MAIN PKOGRAM FOKR EXTENUDED #idCKel THEOKY CALCULATION
X NUCLEAR CU-OROINATES,NAT = ATOMIC NUMBER, S = UVERLAP MATRIX,
D DIPOLE MATRIX, P = POPULATIUN MATKRIX, H = HAMILTONTI AN MATRIX
E TRANSFURMED HAMILTGNIAN MATRIX LN TERMS OF LOWDIN ORBITALS
whICH IS DIAGOUNALIZED TO GIVE ORBITAL ENERGIES
C = LCAGC CCEFFICIENTS
SDIAG = DUPLICATE UF UVERLAP MATRIX
NAME = NAME UF MOLECULE (MAXIMUM 50 LETTERS)
EWUIVALENCE(SUTAG,E)» {H,C)
COMPONZALPRAZAS(EZ) AP 52),EATCHM(53)
ASy AP = VALENCC-STATE ICNIZATIUN PUTENTLALS, EATUM = ISOLATED
ATGM ENERGIES ACCURDING TC EHI1
18 FORMAT{F4.1)
16 FURVAT‘3[3131X15A6)
20 FURMAT{1HLl,5%A0/13,CH HTUMS:IJ:IOH HYDROGENS,13,18H VALENCE ELECTRO
1NS/Z718H HYDROGEN EXPUNENT,F4. 1)
21 FURMAT(212,3F10.5)
REAC(5,18) ZH
1 READ(S, 19) NASNHyNEL, NAME
ZH = ORSITAL EAPCUNENT FOR KYCRGGEN, NA = NUe. AT3SHS NGT HYDRUOGENM,
NH = NU. HYUROCGERS » NEL = ND. ELECTRONS, HAH = NOD. ATOMS, N = NO.
VALENCE=-SHELL ORBITALS (S AKND P)
NARh=NA+NH
] hleL(b;ZO) NAME s NAHy NHyNEL » 2H
C KEAD IN INPUT DATA-ATOMIC NUMBERS AND CO-0ORDINATES
C HYDRUOGEN URBITALS MUST BE READ IN LAST
REAC(S5,21)(1, NAr(l)y(X(J)I)1J=1a3)v[=lyNAH)
N=4*NA+NH
C ASSIGNMENT GF CIAGCNAL HAMILIOMIAN MATKIX tLE4ENrS
WR1ITE(G6,61)
CO 8G I=1,NA
NATE=NAT(1)
R(4%]1=3,4%][-5)=—A5(NATI)
HO4%I—=2y 4% [-2)==aP{hAT1)
Hl4%1—1l,4%[-1)=—AP (NATI)
Hl 4% g 4% 1 ==AP (NATIL)
80 %RITL(O,bZ)NAT([)v(X(J,I);J l, 3),A5(JA][)1AP(NATI)
IF(NH.EW-0) GU TG €3

Wouh

aXalsXsKkakaXsE gl

aNel

[aEaXe!
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Kazag®x[NA+1
WRITE(O 63)ASLL)
D0 81l K=KA,N
[=K=-3%NA
R{KyK)=—A5(1)

8l wRITElG04)IX(J91)yd= 1,3)

61 FURMATISHKELEMENTy Xy 12HCC-CROINATES, 10X, 17HCCULOMB lNTEbRALS)

©Z FURMATULIH 213,3F1C.5%,2(FT7.3,3H EV))

63 FURMAT({4iHRKHYLRUGEN CO-URDINATES(COULOME INTEGAAL =4F7T.344H EV))

€4 FURMAT(3F10.5)

ASSIGN GVERLAP ANUD UIPULE MATRIX ELEMENTS

83 CALL INTGRULUINAT 9X3259503NA g NAH N, S,DyZH)
BC 68 I=1,N
PO G8 J=1,N

98 SULIAGLL,J)=S(1,J)

ASSIGN GFF-DIAGUNAL HAMILTUNIAN MATRIX ELEMENTS
DU 8z 1=2,N

JA=1-1

CO €2 J=1,JA
HIL,d)=0.875%{H{1,1)+H1JI,J))%S(1,4)

82 R{J,1)=H{1,J) .

SOLUTICGN UF SECULAR EGUATICNS INCLUDING CVERLAP
CALL LUWDIN
CGMMLN SULAGsHyN
PRINT LCAO CGEFFICIENTS ANU CRBITAL ENERGIES
WRITELG6,T1)
71 FOURMAT( 1t 418H LCAC CCEFFICIENTS)
CALL PKINT{C,50,nN)
WR1ITE(DL,72)

72 FURMATULIHK s 144 CNERGY LEVELS/L1H )
WK[TE‘.(O,&")(l,E(I;l);I=11N)

54 FORMAT(I343F1lCea,4H EV)

CALCULATE DONDING ENEKGIES
mMOC=NcL/2.

ETLI=0.

LU €5 1=1,N0OC

6% ETUT=ETOT+2.*%E(1,1)
WRITE(G,806)ETUT
ESEP=0.
buU 9C i=1,NAH
NATI=NAT(1)

90 ESEP=ESEP-EATOMINATI)
EATIN=LSEP—-ETOT
wRITELL,92)ESEPLEATEN

92 FORMAT(28H ENGRGY CF SEPARATEL ATGMS =,F1l0.4,4H EV/

124H ENERGY UF ATUMIZATIUON =,4F10.4,4H EV)

86 FUORMAT( L0, 13H TUTAL ENERGY»F1l044,4H EV)
CALCULATICN CF DIPCLE MCHENT AND POPULATIOMN ANALYSIS
CALL CULULSHIC ;P sNyNEL,5Q)

CALL DIPULE(D)NATyP X 425550, NAHyN)
CALL POPANIPySyNAT NANH)

Gu TO 1

END
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$1EFTC ALPH

BLGCK ULATA
C STGRES VALENCE STATE IONIZATION PGTENTIALS AND ISCLATED ATOM
C ENERGLES FUR EXTENLED HUCKEL THEOKRY

COMMUN/ALPHAZAS(53),AP(53),EATCM(53) ’

CATA AS/130556590095e39C99.516514¢916921.012,25.588432.297,
139¢3910495414098.546512.270,17.3C7,16.612,21.135,25.227,
20.,4.34C,D.055110*O.,14.5&6,18.578917.403120.811.23.735,0.,
34.18095.4T8910%04912.590,16.158916.255,19.733,20.833/

DATA AP/2%Ges3e54335.4558954425,11.273,13.946,17.274,20.862,
10.,3.037,4.519,6.406,9.190,10.733;12.396:15.03710};2.7269
230958, 10%0e96e75175042295.359,11.075913.101,0.,2.601,3.651,
310%Cey0e18598.326986.751,11.038,12.670/ '

DATA EATOM/13.59550475639C316.832,3842579644570,93.014%,
1133090, 183.09290415140,17.896,31.000952.994,69.423,

291 o654, 1250639730494.340,11.310910%04935.927,56.020,62.883,
58803229 1126975900 94.18C)1C0956910%049314365,48.968,58.763,
483.618,105.016/

END

$IBFTC ATOMIC
BLLCK DATA
STOKES SEMI-CMPIRICAL ATOMIC PARAMETERS FOR SCF-HO-CNDO THEORY
SUBSCRIPT = ATOMIC NuMBER ’
CUuMMCN/ATCM/USS(53) ,UPP(52),GAA(53),6STAR(53)
uSS, UPP = LUCAL CORE~HAMILTUNIAN DIAGUNAL MATRIX ELEMENTS FUR
Sy P URBITALS :
CATA USS/13.99540., ’
1 4¢999,154543,30.371350.686570.063,1014306,129.544+04,
2 4.502,13.083,22.8289306.464958.¢10,C6.796,864774,0.,
3 3.17019¢842, 10%043254032935.844,504151,0664005475.413,0.,
4 3.555,5.430,10%0¢923.056926.581747e427,04.404576.905/
DATA UPP/ 2%0.,
1l 3.6739124280424.7C2,414530,57.848,844284,108.933,0.,
2 5424755.603,18¢592930.375,50.54C,584008,75,681404,
3 3115, 706509 10%0ey19e807,29973,44.485,57.9273654412,04,
4 208043 ToCTayL0O%Ce ¢174663,21.86994C4923+57.144,69.091/
C GAA = ATUMIC ELECTKUN—REPULSION INTEGRALS FRUM VALENCE-STATE
C ENERGIES ‘
DATA GAA/12.848304
I 3.46995.935,8.C00,10.207,11.052413.625415.054,0.9
2 2.68254.623715.08276.5649S.87899.205410.292,04
3 3,70253.977110%C0e35.93865E46C818439999.121,8.8323,04,
4 2.49593.749y10%0475.530,4.267¢47.657:8.585,9.448/
C GSTAR = ATGWIC LIMIT UF INTERATUMIC ELECTRON-REPULSION INTEGRALS
DATA GSTAR/12.848,C .
l 3.45895.953,86.045,104333,11.308,13.907,15.233,0.,
2 3.03174.656,5.68097.01535.88099.260,10.366,0.
3 3.56093.979yL0%049503425640634,8.36199.156,8.838,0.,
4 2.38%493.T01,10%0495.582,4.30G4,T74761,%.039,9.332/
CUMMUN/CUORECH/ KUREL(S3)
C KUKE = CORE CHARGES

oo

O
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VATA Kbht/lyo l’2p3)4y5'ﬂ TsUsl,y 2 373495496, 740, 132:10%0,43494 959647

l OUy132910%05344:5906,7/

END

$IBEF1C ATCMIC

o0 2NNy

BLUCK CATA ,
STOKES ATGMIC PARAMETERS FLR  SCF—=MO-CNDG THEGRY USED bY POPLE AND
SEGAL

SUBSCRKRIPT = ATOMIC NUMBER
CUMMUN/ZATUM/USS(53),UPP(53),GAA(53) ,GSTAR(53)
USS, UPP = LUCAL COURE - HAMILTUNIAN DIAGONAL MATRIX ELEMENTS FCR
Sy P CRBITALS
DATA USS/17.38030¢164319520.403441.720,7CG.271,106.050,149.075,
1 199.227,44%0./
DATA UPP/2%C ey e4T1y17e02043661273616792+54.015,132.796 -
1 178.135,44%C./
GAA = THREQRETICAL ATOMIC ELECTRCN—REPULSION INTEGRALS
DATA GAAZ20.407530e960242529%.63754312.8503,16.0029,19.2755922.4881,
1l 25.70C7y44%0./ .
DATA GUSTAR/53%*G./
COMMUN/CORECH/KURKE(S53)
KCRE = CORE CHARGES
DATA KURE/ZL1,0, 172)5941516,7y01112131415161’ 09192'10f013)41396 Ty
1 Gy1,2,1C%C43,3445,6,7/
END
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$ILFTC CCRE

o
C
C
C
C
C
C
1
Z
C
>
4
C
1C
2¢
2&
3C

SULROGUTINE CCRE{hyGySyIATZBETAAC)bETAHOyMAT ) MOR yNA 3y NAT g NGR)
ASSIGNS. CORE HAMILTUNILIAN MATKIX FOR SCF-MI-CNDU CALCULATION
THIS VERSIUN VARIES BUMDING PARAMETER FUR CENTRAL ATOM IN
S8INARY HYORIDES-KOT APPLICABLE TO CTHER MGLECULES
BETAAUG = BULNUDING PARAMETER OF CENTRAL ATCM,BETAHO CF HYDROGEN
I ANC J AKE ATUM INCICESy K AND L AKE GRBITAL INDICES
COMMUNZATUMZUSSIS53) UPP(52) ,GAA(S53) y6GSTARIS53)/CORECH/
IKOKE(L3)

CINENSIUN H{MGRyMOR)Yy SIMCR,MOR)Yy ITATIMAT) s GUMAT,MAT)
DIAGONAL CURE WMATRIX ELEMENTS-ATOMIC TERMS

PYDRGGEN ULRBITALS LAST AS IN MAIN PRGGRAM

OO0 1 1=1,NA

LATI=1AT(1)

Hl4%1-=3,4%]-3)==USS({IATI)

H{4%1—-2,4%]-2)=—uFP({1ATI])

Fla%l-1,4%1-1)=—UPP(IATI)

Rlax] 2 4% 1 )=—ULPP(IATI)

IFI(NOR.EQ.4%NA) GO TU 3

KLl=4%NA+]

CU 2 K=K1lyhiR

HIK,K)=-USSH{1)

ODIAGCNAL ELEMENTS—-ADD INTERATCOMIC TERMS

O 4 K=1,NOR

[=MAXG I (K+3)/ 4, K—=3%NA)

CO 4 J=1,NAT

IF{J.EQ«l) GO TO 4

IaTd=TIAT(J])

BIKyR)=h{KsK)=FLUAT (KJRE(LATIY ) %G(1,J)

CONTINUE

GFF CIACUNAL CURE MATRIX ELEMENTS
CETAC=0.5{BETAAU+LETAHC)

DU 1C K=5,NOK

DU 1C L=1,4

HIK,L)==BETAO®S(K,L)

H{LsK)=H(K,L)

IF(NOR.EQ5) GO TO 25

DO 20 K=6,NUn

LtbL=K-1

DO 20 L=5,LL

RHEK L )=—BETAHO®S{K,L)

HILyK)=E(K,yL)

wRITELO6,530) BETAHIyBETAAD

FORMAT(31IHLIBUND Iine PARAMETER FUR HYCURUGEN,

1F5.1419H EV, FOR OTHER ATUMyF2.1l433H EV)

KETURN

END
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$lerTC CCRE
SUBRUUTINE CORE(HGyS s 1AT y0CTAAQ BETAHG,MAT s MOR g MNA JNAT 3 NUR)
ASSIGNS CORE HAMILTIONIAN “ATRIX FOR SCF=MO-CNDO CALCULATIUN
THIS VERSICN STCRES FIXED, sONDING PARAMETERS
BETARO IS USED TU ASSIGN CURKECT SET GF BUNDING PARAMETERS IM THIS
VERSION
DIMENSION H{MGRsMUR)Yy SUMULR,MUOR), TATIMAT), GUMAT,MAT)
By B0y R ARE SETS DETERMINED FCR MATAGA,UHNO»ROOTHAAN
REPULSION INTEGRALS RESPECTIVELY,HYDRUGEN EXPONENT 1.0
EMZ,BU29BR2 FOR HYLRUGEN CAPCNENT 1.2
BPS ARE PUPLE-SEGAL BUNDING PARAMETERS
GIMENSION BM{53),05M2(53),8C1353),802(53),8R{2),8R2(9),8P5(9)
DATA lﬁR/So‘f:Oo12.5:4.316-219.]_111-2916.1122-6/
DATA BR2/5¢290493e81342106451G691046914467420.4/
DATA Bit/ 4099009004238 95.8960719¢691%¢279196274%0415.0,6.0,
160739939 L4%0094e3,40035.73Te53914%0,51930494e595e79645/7
DI\TA 6:’12/5-4,0-,0-7,4-95-(.‘,8-2,8.8,12.8;17.2'4*0- 15-216.,
16o5,8-9’14*0094o1114-7,5o7,7o2,1‘1*0.)3.014.7160116.7/
UATA BU/3¢9)C01—0091302’5.2'708’8.111-7’1507)4*00 ’4061503’
1966980191 4%00913eB874095090064914%Ce91eG93.9,5.1,45.8/
CATA B8G2/4¢350e9=0e813:459697¢317e3910655144134%00144795.3
15-6)?-8;1‘!*0-94.14.1,4.916.3)1‘1*0092-114.2,5-4,6./
DATA BPS/3%94ey1l3e9)LlT7e92le92549214939./
C ASSIGCN BUNDING PARAMETERS 10 ORBITALS
C I AND J ARE ATUM INDICES, K AND L ARE ORBITAL INUICtS
I18=1FIX{(BETAHU+0,.1)
o0 1C0 K=1,KUOK
I=MAXOU{R+3)/4,K-3%NA)
IATI=IAT(L)
GU TU ‘10120130’40150100170),IB
1C i(K,k)=8M ([ATI)
[FIKeEGel) WKITELG,415)
GO TC 160
20 nlksK)=3M2(IATI])
IF{K.EQ.L) WRhITE(5y25)
Gu TO 100 )
30 HiK,K)=8BU ([ATI)
LF{KeEQel) WRITE(6435)
Gu 70 100
40 RIK,K)=BU2(IATIL)
60 TU 100
5C RIK,K)=38r (IATI)
IF(K.EWel) WKITE(6,55)
Gu TO 190
6C HIK,K)}=3R2(IATI)
IF(KeEwel) WRITE(S,065)
GO TG 100
71C IF(IATI.GT.9) GO 10 @6
IF{KeEQal) WRKITE(GL,75)
H{KyK)=8PS(IATI)
106G CUNTINUE
C UFF-DIAGUNAL CORE MATRIX ELEMENTS
BO 2C0 K=2,huUR

aoOC

coaon
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iLb=K-1
CU 2C0 L=1,LL
HIK L) =—0 555 K L )={{KyK)+H{L, L))
20C HI{LyR)=h{K,L)
DIAGONAL CURE MATRIX ELEMENTS—-ATOMIC TERMS
HYDRUGEN URSBITALS LAST AS IN MAIN PROGRAM :
COMMON/ATOM/USSL33),uPP(5S2),GAAL153),GSTAR(53)/CURECH/
LKORE(52) '
CO 1 [=1,NA
IATI=1AT(1)
H{4%1—-3,4%[-3)==-USS{IATI)
Rlaxl—2,4%1-2)==UPP(1ATI)
Hl4%1-1,4%1-1)=—UPPLIATI)
-1 h{4a*} g a3l )=—UPP{IATI)
IFINCREQ.4%¥iNA) GU TO 3
Kl=4g%NA+1
DU 2 K=K1l,NGR
2 HIR,yK)==US5S(1)
OLAGUNAL ELEMENTS-ADO INTEKATCVIC TERMS
DU 4 K=1,NGR
I=MAXNO{ (K+3)/4,K-3%NA)
DU 4 J=1,NAT ‘
IF{J.EJd.1) GO TO 4
[ATJ=TAT(J)
HIRgKI=H(KyK)=-FLUAT{KUORE{IATJ) )I*C(I1,J)
4 CONTINUE
RETUKN
F3S WRITE(O,95) ,
G5 FORMAT(S54HLPOPLE ANUD SEGAL BGNDING PARAMETERS ONLY FOR FIRST ROW)
CALL EXIT :
15 FORMAT(44HJIBGNUDING PARAMETERS EVALUATED FCGR MATAGA 1.0)
25 FURMAT{44HJBENDING PARAMETERS EVALUATED FOR MATAGA 1.2)
35 FURMAT(44HJBONDING PARAMETERS EVALUATED FUOR OHRNU 1.0)
45 FURMAT({4ZHJIBUNDING PARAMETERS EVALUATED FOR OHNO 1.2)
55 FORMAT(46FRuBONUING PARAMETERS EVALUATED FOR ROOTHAAN 1.0)
65 FURMATI{46HJIBONDING PARAMETERS EVALUATED FOR ROOTHAAN 1.2)
& FORMAT(35HJPUPLE AND SEGAL BUNDING PARAMETERS) '
END

[¥8}
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$1BFTC CuUULSK

61

6C

SUBRUUTINE COULSN (CyPyNyNEMi

276,

CCMPUTES ONE-ELECTRON UGENSITY HMATRIX FCR MOLECULAK GRBITAL WAVE

FUNCTIGN

UIMENSIGN C(M, M), PLM, M)
NGC=hEZ 2

DU &0 L=1,N

0O 60 Kk=1,L

P(KyL,=Oo

DC 61 1=1,NUC
PIRaLI=PIKL)I+CIKy 1)%C(LyT)
PIKsL)=2.%P{K,L)
P(L,K)=P[K,L)

RETURN

END

$IBFTC UIPULE

s NaXaX gl

OO0 N

SUBRUUTINE OIPULE (DyIAT P oPAA3SyX o MAT y MCR yINA ¢ NAT y NOR

ISS'W,U1IB’

CUMPUTES DIPULLE MOMENT FOR LCAC-MU WAVE FUNCTIUGN NORMALIZED

wlTHCUT OVERLAP GY PUINT-CHARGEs PUPLE-SEGAL,AND DIXUN FORMULAE

W OVERLAP MATRIX TO POwbK MINUS ONE-HALF

v EICENVECTURS UF ULVERLAP MATRIX

SS = EIGERVALUES TC PUwER MINLS UNE—-HALF

SIMENSIGN DGR ¢ MOR )y PUMCR g MCR Y 9 SEMOR p MCR) » w IMOR,, MOR)
DIHENSTON PAA(1AT),K(J,MAT):IAT(WAT),U(FUK,MON),SS(MDR)
CUMMUGN/CORECH/ KCKELS3)

COMPUTES A—-CUMPGNENT CUNLY IN DEBYES

ASSIGN CO—-CRUINATES SU DIPULE NMOMENT ALCNG X-AXIS
CURE CHARGE TERM (UCUR) AND ELECTKCNIC PGLNT-CHARGE
TERM (CPT)

CCOR =0.

oPT=0.

U 1 I=1,HAT

IATI=IAT(1)

UCOR=DCOR+A{ 1, [)*FLOAT(KCRE(IATL))
cri=DPT+At1,1)*PAAL])

ATCMIC POLARIZATIGN TERM (DPOL)

OPCL =0.

DU 2 1=14NA

OPLL = DPUL+2.%P (4% ]1-2,4% -3 )%D(4%][-2,4%]-3)

DIXON FORMAULA FGOR ELECTIRONIC DIPOLE MOMENT (ODIX)
IFCIB.6T.1)G0 TO 10 . )

iF BUNDING PARAMETER CHAMNCLED, CAN STILL USE SAME W-MATRIX

" DU 40 K=1,NUR

4C

50

CU 40 L=1,nN0OK

WlIK,L)=S(K,L)

CALL EVALUE(J)MUR,WUR,U;N(R,FUK;NUR,lsOE“b)l)

SEE COMMENTS UN SUBKUOUTINE evaALUE I MAIN CNDO PROGRAM
DO 50 K= l,hUK

SS{RK)I=SQRTIWI(K,K))

CO 4 l=1,NUKR
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DO 4 J=1,HUK

wlls0)=0, ‘

DU 4 K=1,hUR

W(I;J)=W(11J)+U(IrK)*U(J’K)/SS(K)

ODIX =0C. .

DO 5 1=1,NJR

0C 5 J=1,4NCR

£ 5 K=1,y,NUR

DO 5 L=1,NCR

uD1IXx =D0IX +P(ItJ)*h(J) Ky®#u(KyL)*u(l,1)

TOTAL OU1lPCOLE MOMENT IN DEEYES

CPT = 4+8Cc94%(DCUR-DPT)
DPUPLE=OPT~4.80294*0PUL

DOLX=4.80264% (GCOR-OD1X)

WRITE (E£,6)0PTOPOPLEZDDLX

EGRMAT(230HLO1IPULE MOMENT (DEBYES) /44Xy L THPUINT-CHARGE TERM,
1OX e FbBe3/4X23HPIPLE AND SEGAL FURMULA,FB8.3/4X,
213HDIXCN FURMULA, 10XyF843)

KRETURN

END

$IbETC DIPCLE

COaOn

’

SUBKOUTINE UIPOLE (D, IAT P yX,MAT,MCRyNAT,NUR)

CUMPUTES DIPGLE MCHMENT FGR LLAG-MO wAVE FUNCTION
NORNMALIZED INMCLUGING OVERLAP

CGMPLTES A—COMPUNENT OihLY IN DEBYES

ASS LGN COU-URDINATES SO DIPGLE MUMENT ALONG X-AXIS
DIMENSICN D“’UR“"OR),P(MUr\,tﬂ;R) 2 X U3, MAT) s IATLHAT) ,CORELS3)
CORE = CURE CHARGES

DATA (ORE /1e90esles2er3erite 15696091 10e91le92e3301%e
15o)0-17o70o11.,2-110*Oo13.)4015o100,7.10.'1¢y2ay10*0.,
2361403502009 Te/

CORE CHAKGE TERM

OLPOL =0,

DO 1 I=14NAT

LATI=IAT(L)

GIPCL =0IPCL + X({1l,1)}*CORE(IATI)

ELECTKGNIC TERM

DG 2 1=1,NOR

DU 2 J=1yNOK

DIPOL =D1P0OL =-P({I,3)*%0(1,J)

CONVERT TO DEUBYES AND PRINT

DIPCL =DlPCL %4.80C294

WRITE (&,3)D1PCL

FORMAT (14HKDIPOLE MOMERT,F8. 3, 7H DEBYES)

RETUKNM

END
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$loFTC ENERGY : :
SUBRUUTINE EnERGY (F,GeH, IAT ;P4 MAT s MCRy NAyNAT y NIR 9 NE)
' COUMPUTES SONDING ENERGY IN SCF-MO-CNOGU CALCULATIUN
DIMENSICN F(MOR’JUR):G(MA],MAT),H(HUR,HDR)pIAT(MAT),
LP{ACh e MCR)} yEAL53) ‘
C Ei = ENERGY GF ISULATEuU NEUTRAL ATCMS IN CNDO APPRUXIMATION
CUMMUN/ZATUR/USS(53),UPP(53) ,GAA(S53),GSTARID3)/ /2R
CUMMON/CORECH/KORE(53)
c ELECTRCENIC ENEROGY
EEL=0. '
00 1 K=2,NOUR
LL=K-1
1 EEL=EEL+P(K,L)*HIK,L)
D0 2 K=1,NOR
2 BEEL = EEL+0.5%P (K, K)%EH{K,K)
nuC=Nt/s2
0.3 K=1,NCC

3 EEL = EEL +F(K,K)
C CUKE REPULSIUN ENERGY
ELUR = Q.

00 4 1 = 2,NAT
IATI = IAT{(1)
LI = KORE (IATI)
JJ = 1-1
DU &4 J =1,JJ
IATJd = IAT(J)
LJd= KUKE(IATY)
4 ECGR=ECOR + Z1%Z2u%Gl14J)
C ENERGY GF SEPARATEC NEUTRAL ATCMS
ESEP=0.
CO 5 I[=14NAT
IATLI=1AT(1)
L=KUGRE( IATI)
5 ESCP=CESEP—AMINLI(Z,2.)*%USSUIATI)I=AMAXLIEZ=24.,0.)%UPP{IATI)+
12 (Z=-1.)¥GAAlIAT L)/ 2,
c BLNCING ENERGY
EOIS = ESEP — EEL - ECOR
WwRITE (6,6) EEL, ECOR, ESCLP, ECIS
6 FOKMAT(LBHLELECTARCHRIC ENERGY,F10.4/
122HJCORE REPULSIun ENERGY,F10.4/
234HIENERGY ULF SEPARATED NEUTRAL ATCHS,Fl0.4/
322HKENERGY GF ATUMIZATION,F10.4)
RETUKN
END
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$IBFTC INTGRL o
S\JBRDUI[N& INT GK (1LAT ,X,HAT’l"‘.CRyNA,NAT,NGR,SyD,lH’

C COMPUTES OVERLAP AND DIPCLE MATRIX ELEMENTS FOR BASIS SET OF S
c ANUL P UGROITALS FCR 1O CALCULATION
C OVERLAP INTEGRALS BY MULLIKEN ET AL., JeCHEM.PHYS. 1741248
C (1949)
C HYDRUGEN OKBITALS LAST AS IN HAIN PRCGRAM
OIMENS [ON IATU(MAT) ,X{3,MAT),y S{MCR,MCR) ,D{MOR,HORD
DIMEMS IUH Na (53) DENUM2 (4),0ELTA(S), EFFN(5),COSINEL3),
1DKREN(3,3)
OLlMENSION C(10,1C),ST(14),S5T(3,14)
COUBLE PRECISION A(10)93(10),P,T,PT,8PLUS,BAINUS
C ST=TEMPURARY STORAGE LOUCATIUNS FOR ATGM-PAIR INTEGRALS: IN
C LOCAL . CO-URDINATE SYSTEHM
C 5ST USED ONLY IF ONE QR BCTH ATCHMS HAS PRINCIPAL QUANTUM
C NOe 4.

DATA Nu/Z2%1,8%2,86%3,18%4,17%5/
DATA DENUMZ ,DELTA,EFFN/Z.,24.,720.,40320..0-,0.65,4.95,
115.15926.8531032e93e93eTybe/
LOGICAL SAME o
C SET GVERLAP(S) AND D[PULt(D) MATRICES = ZERO
DO 10 K=1,NOR
DO 10 L=1,KOR
S(K)L)=09
1C ClK,L)=0.
C CUMPUTE KRONECKER UELTA FCR LATER USE
vd 1v I=1,3 :
DG 16 J=1,3
16 CKKUN ([,4)=0.
15 CKRCN (1,1)=1. ,
C ASSTIunN ATUMIC NUMBERSIIAT) PRINCIPAL QUANTUM INUMBERS(KNQI
C ANL SLATER EXPCNENTS {(Z) FUOR ATOM PAIR.
00 400 [=2,NAT
LAT [=1ATL(1)
NeA=NG(IATI)
ZA=(0.65*FLUAT(IA[[)—DELTA(NQA))/EFFN(NQA)
IF {IATi.EWel)ZA=LH
Jd=[—-1
DO 4CG J=1,JJ
IATJ=IAT(J)
Nub=NJ(IATJ)
ZB=(O.65*FLUAT([ATJ)-DELTA(NQB))/EFFN(NQB)
IF(IATJ.EQ.L) ZB=ZH
C CUMPUTE DISTANCE (R IN ANGSTRCHKS) ANOD DIFECTICN COSINES
R=SQKT (lX(ly[)—X(l:J))**Z+(X(25[)*A(2,J))**2+(X($;[)‘
1X{(3,J4))%=x2)
Lu 20 K=1,3
20 CUSINE (K)=(X{Kyd)=X{K,I)}/R
C LGHPUTE MULLIRKEN PARAMETERS
P={ZA+72Z5)%¥R/1.05634
T={ZA~-2B)/ LLAYLY)
C ASSIGN EFFECTIVE PRINCIPAL QUARNTUNM NUMBERS
MA=MIND (NWA,4)
MOB=MINO (NWBs4)
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COMPUTE A ANUD B8 INTEGRALS-CEFINITICN IN MULLIKEWN PAPER
wWITH SUBSCKIPT INCREASED BY UNE

Al Ll)=0EXP(-P)/P

SGN=1.

B{lL)=2.

SAME=IATIEG.IATJ

IF (SAME) oG TO 35

PT=pP=T

BPLUS=DEXP (PT)/PT

- BMINUS=DEXP(-PT)/PT

36
4G

45

5C

&C

7¢C

8{1)=6PLUS-BMINUS

USE KECUKSIUN FORMULAE FUR REMAINING A AnD 3 INTEGRALS
M=MA+MB+2 :

L0 40 K=2,M

XK=K-1

A(KI=A(L) +XK*A(K-1)/P

SGN=-=SGN

17 (SAME)} GO TO 35

BIK)=SON®BPLUS=BMINUS +XK*B(K—-1)/PT

oU TO 40

BIK)I=(1e+SGN)/(XK+14)

CUNT INUE o

COMPUTE NUMBER GF ATUMS wlTH NQ=4 (ik4), AND ASSIGN MA
(ANO/OR MB) =3 FUOR FIRST TEK# IN INTEGRALS IF THERE AKE
ATGMS wITh PRINCIPAL QUANTUM NUMBER 4

NR4=0

IFINGA.NEL4) GO TGO 4YH

Nka=1 ’

NTERM =1

MA=3 ' .

IF (NUB.nE.4) GO TC 50

NR4=NR4+1

NTERM =1

Mg=3

CUMPUTE FACTCR MULTIPLYING SUMMATICN FUOR INTEGRALS
FACTOR= Pa{P#(Le+T) ) wEMAR(PR(La=T) ) REMD* '
LSWKT{(Le=TxT)/{DERNCM2(HA)XDENCMZ(MB)))

CUMPUTE C—-MATRIX

MO=MA+MB

Ml=M0-1

M2=M0~2

D0 60 K=1l,M1

DO 6C L=1,M1

ClryL)=0.

Cll,1)=1.

[F(IATJ.EQ.L) GU TU 70

SGiN=1.

D0 €5 N=1,M2

DO €5 K=1sN

L=N+1-K

CIK+1l,L)=C{K,L)

CAKyL+1)=CAK,L+L) +C(K,L)*SGN

SET INTEGRAL STURAUVE LUCATLICHS = ZERO

CU 75 K=1,14
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ST(K)=0.

COMPUTE OVERLAP ainD UDIPGLE INTEGRALS BETwEEN S ORBITALS
DU 80 K=1lyM1

L=MO~K

STEL)=STLLI+C IR L) (A(R+2)*=BIL)I-A{K)*B(L+2))
ST(O)—ST(O)+L(K,L)'(A(n+2)*B(L)+A(h+3)*B(L+l’—A(K)*b(L+7)
I—A(K+L)+B(L+3))

ST{1)=0.5%*ST{1)*FACTUR

STL6)=0.25%R¥ST(O6)*=FACTOR A

If bUTH ATOMS=H,CUMPUTE CNLY THESE TwO INTEGRALS

IF (MB.EQ.1) GU TU 30C

COMPUTE INTeURALS FuUx WHICH FLIRST OUKRBITAL 1S S,SECGND IS P
p0 100 K=1,M1

L=M0-K
ST(2)-ST(2)+C(K.L)r(A(K+1)r(u(L)—B(L+2))+B(L+1)*(A(K)-
LA(K+2)))
STUII=STUTY+CHIK LY = [AIR+L)*BILI+A(RK)*BIL+L)-A(K+3)+B(L+2)~
la(K+2)*B{L+3))
STOLLY=STLLI)+C K, L)H({AIK+L)=A(K#3))F{BIL+2)=-B(L) ) +{A(K)~
Ia(K+2) )%= {B(L+3)-BlL+1)))

S1(2)=0.060025404%ST(2)*FACTOR
STU7)=0e433012702%ST(T)*FACTUR*R
ST{11)=0.21€65006351%ST(L1)*FACTCOR*R

1F NEITHER ATSH =H,COMPUJUTE KEMAINING INTEGRALS .
IF(NMACLNESL) GO TO 260

AT THIS PLINT CKE ATOM =H.

IF QUANTUM NO. OF UTHER ATUM =4,MUST ADD TWU TERMS FGR
EACH INTEGRAL

[F (NR4.Ew.0) GG TU 30¢C

GU TU (114G, 150)4NTERM

TRANSFER FIRS! TERMS TU SST ANU SET Mb=4 FUK CUMPUTATION
UF SECUND TERMS.

CU 149 K=1,11

SST(1,K)=ST(K)

NTERM = 2

MB = 4

GO TO 50 ‘

AUU TWC TERMS TU GET TUGTAL INTEGRAL AND NURMALIZE

DC 155 K=1,11

STIK)I=(0.7=STIR)+0.3%SST(1,K})#*1.01384531

GO 106 300

COMPUTE REMAINING INTEGRALS

DU 210 K=1,M1

L=MO0-K ) .
STU3)=STU3)+CUK L) (A(K+L)*(bIL)=B3{L+2))+BIL+LI%(A(K+2)
1-Ai1K)))

51(«)—5T(4)+C(K:L)*(A(K)#u(L)—A(K+£)«B(L+z))
STUB)=STUSY+C (KoL) LLA(K)=A(K+Z) )= (B(L+2)-B(L)))
ST(E)=ST(8I+CUK LY (ALRK+L)%F{BILI=2%B{L+2))-A(K)*3(L+1)
L+A(KE2)% (2, *b(L+1)—o(L+J))+A(K+3)*b(L+2))
STU9)=STLI)+CUIK, L) (A(RI#B{L)+A(K+1IFBIL+L)~A(K+2)*B(L+2)
I-A{K+3)x3(L+3))

STELIC)=STULO)+C R L) (LAIK+2)=ALK) IR(B(L)—-B(L+2))+(A(K+3)
L —Ale+11)2(B(L+L)-B(L+3)))

STUL3)=3TOL3)+CAK L) H L LA(R+3)=A(K+1))=(B3(L)- B(L+2))+

281.
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LA(K)=AtK#2) )= {b(K+1)=B(K+3)))
21C STU14)=ST(14)+C R, LI (ALR+2)=A(K)IF(BIL)I=B(L+2))+(A(K+]1)
l=A(K+#3) )% B(L+1)~3(L+3)))
ST({3)=5T(2)*FACTUR#0.866025404
STL4)=5T{4)*¥FACTOR*1,.5
ST{5)=ST(»)*FACTUR*0.75
ST(8)=5T(8)*R*FACTUK#*#0.4320127C2
ST(9)=53T{ IV *R*¥FACTOR%0.75
ST(10)=STULO)*R*FACTUR*C.375
$1(12)=ST{10) '
ST(13)=ST(13)%R¥FACLTUR®0.21650€351
STE14)=ST( 14 )=R¥FACTUR*C. 375
LF (iWR4—-1)300,220,4250
IF QUANTUM NOJOF EITHER ATCOM =4, MUST ADb 2 TERMS
22C GU TU (230,240}, NTERM
TRANSFER FIRST TERMS TG SST AND SET MA(OR MB)=4 FUOR
COMPUTATIGN UF SECUND TERKMS
230 BU 235 K=1,14
235 SST (LiK)= ST(K)
IF (NQAEWQ<4) MA=4
1F (NGB .EQ.4)MB=4
NTERM=2
GO TO 50
ADD TwU TEKMS TO GET TCTAL INTEGKAL
24C CO 245 K=1l,14
245 STIK)=(0.7%ST{K) +0.3%SST{1,K))*1.01384531
GO TO 300
IF QUANTUM NU. GF BOTH ATCMS =4, MUST ADD 4 TCRMS
TRANSFER EACH SET UF TERMS TO SST,CHANGE HMA AND/OR MB
FOK COMPUTATION GF NEXT ST, AND FINALLY ADD TERMS AND-
NGRMAL 1 ZE ’
25C IF (NTERM.Ewe4) GU TU 290
DU 260 K=1,14
26C 55T (NTERNMK)=ST(K)
NTERM=NTERM+1
[IFINTERM=53)270,28C,270
27C Mb=4
GU TO 50
28C MA=4
MB=3
GU TU 50
290 DO 295 K=1,y14
295 STIK)I=(0e0GHSST{LK)+021%{SSTIZ,K)+SST(3,K))I+0.49%5T(K))
1%1.02768231
GO TG 300
OVERLAP AND DIPOLE MATRKRIX ELEMENTS
A—COMPONENT CinLY OF UIPOLE MATRIX
MODIFY THIS SECTION IF Y= ARKD Z- COMPUNENTS NEEDED
300 [1=MINO(4%l—=3,I1+3%NA)
JI=MINO{4%J=3,J+3%NA)
INTEGKALS FOK CASE UF ThWO HYUROGENS
SCLL,dd)=5T(1)
O(I1,dd)= STLO)%CUSINELL)I+A(L,1)%#SUIT4dd)
IF (MB.EQ.L) GO TO 400
INTEGRALS FUR CASE UF OWNE HYURGGEN
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DO 310 K=1,3
JIK=JJ+K
SUIT,JddR)I==5T{2)*COSINE(K)
310 D(I1sJuK)=DKRONIL KIFST(L1)-CISINE(L)*COSINE(K)*
LOSTCT) #STOLLI) Al 1 )=SIT]I,JdK)
IF (MALEJ.1) GU TO 400 .
INTEGRALS FOR CASE GF NO HYUROUGEN
CJO 320 K=1,3
I1IK=11+K
SULIK,JJ)=STI3)%COSINE(K)
D(LIKpJJ)=DKRINUL,K)EST(L3) +COSINE(L)#COSINEIK)*
LOSTUS)=STLL3))+X( L, 1)*S{IIK,JJ)
CU 320 L=1,3
JdL=dJ+L
S{1IKyJJL)=DKRC N(K,L)%ST())—CUSINE(K)»LDSINE(L)*(bf(w)
1+5T(5))
32C DULIKsJJL)=CUSINE(K)=COSINEC(L) *COSINE(L)*(ST(14)-ST(9)
1-ST(10)=STULZ) ) +Ca> INE(KI*DKRON(L, 1) *ST{12)+COSINE (1)*DKR3ON
20K, L)*STCL0)—COSINEIL ) ¥DRRCn{ Ly K)I*=STLL4)+ 0 (L[} %ESITIK,3JL)
40C CUNTINUE
DIAGCUNAL ELEMENTS CF GVERLAP AND DIPCLE MATRICES
0O 410 K=1,NCR
S{Ky,K)=1.
1=MAXO( (K+3) /4, K=3%KA)
41C DUIK,K)I=X{1,1) :
ATUGMIC POLARIZATIGN TERMS IH UIPGLE MATRIX
DO 420 I=1,NA '
[ATI=1AT(1)
NGA=NJ( 1ATI)
La={C 65%FLUATILATI)-DELTA(NGA) ) /EFFNINQA)
42C Ulaxl=2,4%]-3)= 0.305)1c442x(EFFn (NQA)+0.5)/ZA
SYMMETRIZE MATKICES
DU 430 K=2,NOR
LL=Kk-1
DO 430 L=1,LL
S{L,K)=S({K,L)
43C DIlLyR)=CLK,4L)
RETUKN
END
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$IEFTC LCWDIN
SUBROUTINE LOWDIN
C SCGLVES SECULAR EQUATIONS INCLUDING OVERLAP BY LOHUIN'S HMETHOD
C "W = UVERLAP MATRIX TO POnkeR MINUS ONE HALF
C U = EIGNEVECTUKS OF Sy LATER GF E
DLMENSTION  S(50450),H150,50),U(50,5C) ,#(50, 50),:(50.50),C(50,50)
CGHMCN SeHyN
EQUIVALENCE (S3E) s (H,C)

C COMPUTE wn—MATRIX = S TU PUWER MINUS UNE~HALF
CALL EVALUE(S150)5C,U1501501N)-000111)
C SUBRCUTINE EVALUE IS PART OF WCGILL CUMPUTER SYSTEM

C DIAGUNALIZES MATRIX-SEE CCTHMENTS IN CNLU MAIN PROGRAM
DU 52 I=1,N :
IFIS(Is1).LT.0.0) GUC TO 60

52 S{1,1)=1./SQKTIS{1,1))
€O 53 1=1,N
DO 53 J=1,N
W{l,4)=0.,0
DO 53 K=14N
53 h‘l;J)—h(IyJ)*U(Ilﬂ) DIy KY*S{K,yK)}

C TRANSFURM RAMILTCNIAN MATRIX TQ URTHGGUNALIZED BASIS
00 54 1 =1yN
DO 54 J =1,N
E(l;4)=0.

O 54 K =1,N
DO %4 L =1,N
54 E(Llyd) =€l sd)+nill yK)*A (KLY} (L yJ)

C DIAGUGNALIZE TRANSFURMED HARKILTCNEAN
CALL LVALUE(E,bO]DO:U,bO 50, R)-OOOI,I)
C TRANSFURM LCAU LUEFF[ClChTS BACK TO ORIGINAL BASIS

DG 55 1 =1,N
DO 55 J =1,N
C(l,4)=0.
DU %5 K =1,N

55 CUI,d)3=CLId)+nll,KIFUIK,J)

C SORT EIGENVALULS AND E1GLNVECTCRS IN OURDER ur INCREASING ENERGY

DU 56 [=2,N
Ja=1-1
DO 56 J=1,JA
[F(E(Ly 1) CEE(JrJ)) GO0 TU 56
ET=E(1,1)
E(I,1)=E(J,d)
E{JyJd)=ET
DO 57 K=1,N
CT=C(K,1)
CiKs1)=C(N,yJ)

7T CIK,d)=CT

5c CUNTINUE
RETUKN

uC wRiITE{b,E1)

61 FURMAT (3 LHKUNE OF OVERLAP MATRIX EIGENVALUES IS NEGATIVEy INDICATIN
LG £RKUK Ik INPUT GEUMETRY)
CALL EXIT
END
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SIGFTC PLPAN

2¥algR el

10

L5

20

SUBRUUTINE PUPANTIP s SeNATaNAZNH)

PEKFOR&S MULL IKEN PCPULATIGCIW ANALYSIS

GOP = GRUSS URBITAL PUOPULATIUNS, GAP = GRUSS ATOMIC POPULATIONS,

OP = UGVERLAP PLPULATICNS ’

EYOKUGEN UGRBITALS LAST AS IN MAIN PPUbhAM

DIMENS LUN P(JO,)U)15(501)C’,NMT(23)1LH(25)25),GUP(Jn)gUAP(Zb)

NAA=NA+1

NAH=NA+NH

NOR=4%NA+NH

I,J ATUM INDICES. KoL URBITAL INDILCES.,

GRUSS CRLITAL PCPULATIURS

DO 10 K=1,NOR

GUP(K)=0.

DU 1C L=1sNOR

GUPIK)Y=GUP(K)Y+P (K, L)*S(K,yL)

WRITE(6 515 )IGUP(K) yK=1,NCR)

FURMAT( 20HKGROSS URBITAL FCPULATICNS/(14F9.4))

GRLSS ATUMIC PUPULLATICNS

DU 2C I[=1,NA

Kl=4%]-3

K4g=4%]

GAP(I)=0.

DU 20 K=K1l,K4

GAP{I1)=CAP( 1) +GUP(K)

IF{NH.EQ.0) GG TO 24

LU 22 l=nkAyNAH

K=1+3%iA

GAP (I )¥=GUP(K)

WRITE(G6325)(GAP(1),1=1,NAH) :

FURMATI25HKGRUSS ATUMIC: PULPULATIONS/(14F9.4))

ATOMIC OVERLAP PCPULATIONS

L3 30 1=2,NAH

Jd=1-1

Kl=4%][-3

K4=43%1]

[F{L1.GT JA) Kl=1+32%NA

EFLLOT MNAY K4a=T+2%NA

DU 3C J=1,JJ

Ll=a%*J-3

La=4%d

IF(J.GT oNA) LLlI=J+3%NA

[F(J 6T aivic) LasJd+3%NA

UP(I4d1=0,.

DU 28 K=K1:K4

DO 28 L=L1l,L4

UP(l,J)'LP(I J)I+2.%PLIK,L)*S{K,L)
gP(JdyL)=ubkPll,3)

WRITEL6,32)

FURMAT ({ 20HKGVERLAP PUPULLATICKNS)

CALL PRINTIUP 25 NAH)

RETUKN

END
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$IBFTC PUPLE o
SUBRUUTINE PUGPLE(F G Hy1AT MAT yMGR s NAT ¢NOR P ,PAA)

C CAUMPUTES HARTKEE-FUCK HAMILTUNIAN MATRIX FCR NEW CYCLE OF
c . ITERATIGN Iiv SCF-MU-CNLCO CALCULATICN
C HYURUGEN CRBITALS AS IN MAIN PROGRAM

ULMENS LU GUAAT y0iAT )y TAT(MAT), PAA(MAT)
DIMENSICN F(UR 9 MOR )y HUMOR,MUR ) 9P { MOR » MOR)

C [ ANC J ARE ATGM INDICES, K AND L ARE UKGITAL INDICES

} NA={NOR=NAT)/ 3 . .

c DIAGGNAL MATRIX ELEMENTS

DU 3 I=1,NA

Kl=4%1-3

Ka=4%l

PAA(L)=0.

DO 2 K=K1yK4

PAACL)=PAALL)+P (K4K)

DU 3 K=K1l,K4

3 FUngK) =K oK)+ (PAALL)=0.5%P (K KII*G(T,1)

N

C UIACONAL MATRIX ELEMENTS—ADUD INTERATUMIC TERMS
IFINAGEQ.NAT) GO TO 6
NAA= NA+1 .
DG 5 1=NAANAT
K=1+3%{NA

FIKgRIZR{IK ) KI+05*¥P(K4yKIRC(I,41)
PAA(TL)=P(KyK) :
O DO 9 J=1,NAT
VU G I=1,yNAT
IF(1.EQ.J) OGU TO S
K1=INO(4%[~3,1+3%NA)
K4=MINO(4%] s L+3%NA)
00 7 K=K1l,K4
FIKyRI=FIRsKI+PAA(I)EGLL, )
CUNTINUE
C UFF-DIAGUNAL MATRIX ELEMENTS

DG 10 K=2,NOR

LL=K-1

I=MAXO({K+3)/4,K-3%NA)

J3J 1C L=1,LL

JEMAXDLIL+3)/ 45L-3%NA)

FIK L)=H{K L)} =0.5%P(K,L)*G(1,J)

1C FLyK)=F(K,L)

RETURN
END

(%3]

[Cp N
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$ICFIC PRINT
SUBKUUTINE PRINTUARKAY  MoN)
C PRINTS NXN MATKIX 14 CULUMNS AT A TIME
OIMENSICN ARRAY (M)
JJd=90
1 Jl=uJd+l
=MINJ(Ju+14yN)
ARITE(0,600)(d,d=d1,yJJ)
DU 2 I=1+N
2 WRITE(6,00L) 1y (ARRAYIT4Jd) yd=dlsdd)
IF{JU.LT.N) GUTOL
KRETURN
¢0C FrURMAT(1419)
601 FURMAT(1lH ,12,14F%9.4)
END

$I8FTC REPUL
SUBRUUTINE REPULCGy LAT $MAT yiNA,NAT, X)
C COMPUTES ELECTRUN—WEPULSICN INTEGRALS FOR SCF-HU LNDO CALCULATICN
C Y MATAGA APPRUX THATIUN
O IMENSIUN G(hAT,hAT),IAT(NAT),X‘3 MAT)
CUMMGNZATUNZUSS{53)3UPPL52) ,6AA153) yGSTAR(S53)
DU 1 l=1,NAT
LATI=TIAT( 1)
1 6(Iy,1)=GAALIATI)
CU 2 1=2,NAT
Jd=1-1
IAaTI=1AT(1)
DU 2 J=1,4J
[ATJY=IAT(J)
A=2 /L SSTARLIATL)+GSTAR(TATY))
KeSQRTO{X (L LY=K(Led) )3%2+(X(241)-X(2, J))**Z+(X(3p[) X(3,Jd))%%2)
Gllyd)=1le/(R/14.395+A)
2 6{Jds1)=GlI1,J) -
WRITE{O6,0)
6 FUKMAT (44 HKREPULSIGN INTEGRALS BY MA[AGA APPKUX[MA1[UN)
RETURN
END
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$§1EFTC REPUL

N

SuBnCUT INE KEPUL(GyIAT  MAT yNA s NAT 3 X)
CUMPUTES ELECTRUN-REPULSICN INTEGRALS FOR SCF-#0-CNDO CALCULATION
BY CHNU APFRUXIMATION
S1imENS IUN G(NAF.HAT).IAT(VAT),A($,NAT)
CUMMULN/ZATCH/USSIES3) yUPPIS 2 )1bAA(53),bSTAR(53)
DU 1 [=1,NAT
IATI=1AT(1)
ClI,1)=bAA{IATL)
CU 2 1=2,nNAT
Ji=1-1
IATI=IAT(1)
DO 2 J=1,JJ
LAT J=T1AT{J)
A2/ {GSTAR(IATLY4GSTAR(LIATJ))
RSQ=(IXTI Ly 1)=XULyd))xs2+4(X{2,1)=X(25Jd) ) %52+ (X{3431)=X[3,Jd))*%2)
GlIpJ)=le/SGRTIRSI/EDT.32+ASA)
GlJd,1)=0G(1,4)
wRITE(6,6)
kUKMAT(é&PKhEPULaILN INTEGRALS BY DHNO APPRUXIMATICN)
RETURN
END

31bFTC REPUL

s NekaEy

(e Nl

a

SUBRUUT INE RLPUL(a,IAT,1AT,NA,NAT,X)

ASSIGNS THEURETICAL ELECTRON-REPULSION INTEGRALS FUR SCF-i0-CNDO
CALCULATION .
CUMPUTATION FULLOWS RUCTHAAN, J.CHEM.PHYS. 19,1445 (1951)
PARAMETERS DEFINED IN RUOOTHAAN. PAPER

DIMENSION GIMAT yHMAT) s X{ 3, AT ), IAT(MAT) ,ZETA(9)
CUMMUNZATUM/USS(53),UPP(53)+GAA(53),GSTAR(53)//1LH

DATA ZETA/14290490.6590e975910351.625,1.9572.27542.6/
LETA(LY=LH

KEAL KAP .

A5S1GN ATOMIC INTEGRALS

0U 1 I=1,yNAT

IATI=1AT(1)

[FUIATLWOTWY) GU TU 9

G{Ly1)=GAAlIATI)

ASSLIGN INTERATCMIC INTEGRALS

HYURUGENS LAST AS IN MAIN PRCGRAM

DU 6 1=2,NAT

Jd=1-1

pU 6 J=1,44J

RESGRTILALLy 1) =X L d) )5a24 (X (2, 1) =X 2,3V )%%24(X(3 4 1)-N(3,J))%%2)
IF(J.LE.NA) GO TO 3

Y LRUGEN-HYLRUGEN CASE (TAU=0)

RHU=ZETA(1)%R /C.525117 :

Glled)=ZETALL) %L Le= (L o +RHLH*( 1o 379+RHG* (0. TS5+RHC/6.) )V /TXP(24%RHC) )
1/RHU

GJ TU 5

PARAME TERS FUR RUUTHAAN FURMULAE IN OTHER CASLS
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3 1ATI=1ATLI)
LATJ=TAT(J)
ZA=lETALIATI)
LB=LETAUTIATJ)
L=0.5%(ZA+LB)

RHG=Z*R /70.52517
LZFLIATLLEG.1ATY) € TO 7
RHOA=LA%R /70452917
KHLE=ZB*R /05917

KAP=({Z2A%ZA+.B%2B)/ {ZA*LA-LB*Lb)
IF(I.LEJNAY GU TO 4
HY DRUGEN-UTHER AaTSM CASE
G(I,J)=(2/RHU)*(1.-(1.—KAF)**3*((1.—KAP*(5.+KAP*4.))/16.—KAP*RHUA/
1 8 )HEXP{~2 ¥RHOA)~( Lo +KAP)I#:25({15.=KAPX{22.~KAP%#{15.~-KAP*4.)))/
2 160e40e375%(3e~KAPS(3e=KAF))*¥RHUB+0425%(2¢—KAP)*¥RHUB**2+KHUB**3/
3 12.)%EXP(—Z.%RHUB))
G0 TG 5
LASE OF Tw0 ATOMS 20TH NOT HYDRCGEN
4 FN(X,Y)=(l.—x)**B*EXP(—Z.*Y)*((8.—X*(1.+X*(27.+X*(30.+A*10.))))/
L 16e+{1le=A%L1l9.#X% aas+X%20e)))%Y/3204(Le—X¥(5.+X%4.) )% Y%=%2/100
2 —X*xY¥%3/24.) , .
GUI,d)=(Z/RAHUI*(1a—FNIKAPsRROA)-FN{—KAP,RAGB))
GO T0 5
7 6lIyd)=(2 JRHDI#(1e=- (80640, +RHO*( 131685, +RHU*
1 (1026G0.+RHUH{ 45580, +RHU*(10800.+RHU* (40324 +RHO*
2 (072 +RHG*¥64.)))) V) ) /718064 C*DEXP(2,%RIHE) D)
8 Gl1d)=27.210%G11,Jd)
€ G(Jd,131=G(1,4)
WRITE(G,8)
8 FUAMAT(4LHKREPULSILN INTEGRALS BY ROUTHAAN FORMULAE)
RETURN
S WRITELS,10) :
1C FURMAT{ 45hKRUGGTHAAN FURMULAE INCLUGCED ONLY FGR HYDROGEN/
112H+10 FLUOKINE)
CALL EXIT
END
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$16FTC SUCRT .
SUEBRCUT INE SGRTI(E G,y eM)
C PLACES EIGENVALUES AND EICENVECTUORS IN ORUER UF INCREASIKNG ENEKGY
. OLIMENSICN E(M, M) ,C My M) ’
DO 56 1=24N
JA=1-1
CU 56 J=1,4JA
1F{E(L4+1).GE.E(J,4D)IGU TO %6
eT=t(l.1)
c(lsI)=E(U,J)
E(J,J)=ET
DU 57 K=1,N
CT=C{K,y 1)
ClKs1)=ClK,J)
57 C{K,J)=CT
5¢ CUNTINUE
RETUKN
END

SIEFTC START
SUBRUUTINE START (F,G,H,IAT, ITERsMAT 4 MUR 9y NA 3 NOR ySCF)
C INITIALLZES SCF-LCAU-MC-CNDO CUMPUTATIUN
DIMENSICN F{MURMOR) s GUMAT  MAT ) s HMCK,MOR) s TATUMAT)
COMMUON/ATGM/USSU53) ,UPP(523),GAA(53),GSTAR(53) /CORECH/

LKUREL53)

LUGICAL SCF
c ASSIGN INITIAL HAXRTIRECL-FOCK HANMILTONIAN MATRIX
C HYDROGEN ORBITALS LAST AS IN MAIN PRUGRAM

CC 1 K=1,NCR
D0 1 L=1,NOK
1 FUK, L) =rH(K,L)
DO 2 1=1,:NA
IATI=IAT(])
L=KCRE(I1ATI)
FU4%1-3,4%1-3)=—USSUIATI)+(L-0.5)%G{I,1)
FI4%1-294%1-2)=—UPP(IATI)+(Z-0.5)%G(1,1)
FLlasI—-1,4%]1~1)=—UPPLIATI)+(Z-0.5)%G(1,1)
2 Flaxl  ,4%1  )==UPP(IATI)+{{-0.5)%C(1,1)
IFINURCEQ4%NA) GU TO 4
NH1=4%NA+1
DO 3 K=NitlyNOK
3 FIKyk)==7.1T71
C ASSIGN ITERATION NUMBER = 1 AND.SCF CRITERION = FALSE
4 1TER=1
SCF = .FALSE.
RETURN
END-
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$ILFTC TESI

2 eaYnEaNaEaNg

SUBKGUTINE TESTIP,PL,P2,EPSy ITER MyNy SCF)
TESTS FCR CONVERGENCE IN SCF-MG-CNDUG CALCULATIGN
USES AITKEN ACLELERATIUN IF oLUCR CRITERION SATISFIED
(SEE BLGURs CANeJ +CHEM. 42,133(1564))
P=CURRENT POPULATICN MATRIX,Pl AND P2 ARE PREVIOUS POPULATION
MATRICES ‘
EPS = ACCUKALY REGUIRLMENT,ITER = NU. ITERATIONS,
SCF = FRUE IF CONVERGENCE KEACHED
CIMERSICH PAMsM) P 1LH, M) 4 P2, M)
LUGICAL SCF
IF((ITER/ 2)%2.EG. ITER) GC TO 4¢C
THIS SECTICN USED FUK GDD 1TERATICNS
IFCITEKEG.L) GO TC 30
CHECK FCX CUNVEKGENCE
DU 10 I=l,N
DO 1C J=1,1
10 1F{ABS(P(L1,J)=-P2(1,J)).6T.EPS) GO TO 20
SCF=.TRUE . |
RETUKN .
If NGI CCNVEKGENT, CHECK BLOOR CRITERICN FGR APPLICABILITY OF
AITKEN ACCELERATION

"2C DO 21 I=1,N

CO 21 J=1l,1
21 IF(AB3(PI19d)=P2(143))GTLABSIP (I J)—2.%P2(14J)

1+P1(14d))) GO TO 3C

APPLY AITKEN ACCELEKATICN

00 25 I=1yN

DO 29 J=1,1

P(I,J)—R(I,J)—(P(I,J)-PZ(I,J)) 22/(PLIT,4)

1=2.%P2(1,d)+P(1,J))
2 PlJ,1)=P(1,0)

STURE CUKKENT PUPULAIILN MATRIX FOR NEXT [TEKATION
30 DO 35 I=1,N

DU 35 J=1,N
35 PLlL,Jd)=P(1,3)

GU TO 60

TH1S SECTION USED FUR EVER ITERATICNS

CHECK FCR CONVERGENCE
4C DU 45 L1=1yN

00 45 J=1,I1
45 [FLABSIP(1,4J)=PLl(1,40)).GT.EPS) GO TO 50

SUF=.TRUE .

RETURN

IF NUT CUNVEKGENT, STUKE PCPULATION MATRIX FUR NEXYT TTEXKATIOUN
5C LU 55 I=LyN '

DU b5 J=1N
59 P2(I1,J0)=P(1,d)
6C ITER=ITER+]

RETURN

cinD
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ATGMIC NUMBER CO-ORDINATES

17 ' 0.000C0O c.0000C 0.0C000
1 127460 C.00000 0.0C000

SCF-LCAO-M0 METHOD WITH ZERO DIFFERENTIAL OVERLAP

REPULSION INTEGRALS BY OHNO APPRUOXIMATION
SLATER EXPONENT FOR HYDROGEN 1.20

GONDING PARAMETERS EVALUATED FOR GOHNJ 1.2
10 ITERATIONS REQUIRED

ENERGY LEVELS

—=25.0690 —-14.7907 -13.4640 -13.464C -—-0.9218
LCAO COEFFICIENTS

1 2 3 4 5
0.9784 -0.1491 0.0000 0.C000 -0.1431
0.0311 0.7908 0.0000 0.C0CO0 -0.6113
0.0000 0.0C00 1.0000 0.000C 0.0000
0.0G00 0.0000 0.0000 1.000C ¢.0000
0.2043 0.5937 0.0000 0.0000 0.7784

VS WN -

POPULATION MATRIX
1 2 3 4 5
19591 -0.1749 0.0000 C. 0000 0.2227
-0.1749 1.2526 0.0000 0.0000 0.9516
0.0000 0.0000 2.0000 0. 0000 0.0C00
0.0000 0.0000 0.0000 2.0000 0.0000
0.2227 0.9516 0.0000 0.0000 0.7883

Vi & O\ =

TOTAL ATOMIC CHARGES
7.2117 0.7883

DIPOLE MOUMENT (DEBYES)

PUOINT-CHARGE TERM 1.266
POPLE AND SEGAL FORMULA 2.180
DIXON FURMULA 1.650

ELECTRONIC ENERGY -410.7098

CORE REPULSION ENERGY 56,6678 :
ENERGY OF SEPARATED NEUTRAL ATGMS -349.4160
ENERGY OF ATUMIZATION 4.6260

TIME 1.3 SECUNDS
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