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PART A 

MOLECULAR ORBITAL THEORY 



1. 

CHAPTER 1 

INTRODUCTION 

Molecular orbital theory provides an approximate description of 

the electronic structure of molecules. In this introductory chapter, the 

quantum-mechanical basis Qf molecular orbital the ory will be described. 1-3 

According to quantum mechanics, any system is completely described 

by a wave function,:fi ' which is a function of the space and spin 

co-ordinates of aIl particles in the system. For time-independent or 

stationary' states, the wave function satisfies the time-independent 

Schrodinger "equation,1,4 

o 

(1.1) 

where H is the Hamiltonian operator for the syste.m, and the wave function, 
o 

is an eigenfunction of H with ene~gy eigenvalue E. 

For a molecule, the principal terms in the Hamiltonianl are the 
o o 

elect.ronic kinetic energy (T ), nuclear kinetic energy 
. e 

(T ), internuclear 
n o 

potential energy (V), nuclear-electronic 
nn o 

interelectronic potential energy (V). ee 

o 
potential energy (V), and ne 

o 
H = 

00000 

Tn + Te + Vnn + Vne + Vee (1.2) 

Other terms, such as the interactions studied in magnetic resonance, involve 

much smaller energies and can be treated as perturbations. 5 

In order to solve equation (1.1) for molecules, a number of 



approximations are usually made in 'quantum chemistry. The most basic is 

h B 0 h i i · 1,2,6 i hi h h 1 f ' t e orn- ppen e mer approx mat10n, n w c t e tota wave unction 

i8 expressed as a product of an e1ectronic wave function, 1]':" and t~e 

nuc1ear wave function, 1Lr . 'The e1ectronic wave function, which is,of , l n 

primary chemica1 interest, satisfies the e1ectronic Schrodinger equation, 

2. 

= (1.3) 

The e1ectronic Hamiltonian He inc1udes the e1ectronic kinetic energy, and 

h 1 1 . d' 1 . . 1 . 1,3 t e nuc ear-e ectron1c, an 1ntere ectron1C potent1a energ1es. 

From 

0 0 0 0 
H = Te + Vne + V e ee (1.4) 

equations (1. 2) and (1. 4) , the total Hami1tonian is 

0 0 0 0 
H = H + T + V e n nn (1.5) 

The e1ectronic wave function and energy depend on the nuc1ear 
o 

configuration, since V depends on the nuc1ear as we11 as the e1ectronic ne 

co-ordinates. The internuc1ear potentia1 energy is not included exp1icit1y 
o 

in H , but it must be inc1uded in the total energy, and will be considered 
e 

further in Chapter 8. 

An exact solution of equation (1.3) is impossible for any molecu1e 

1-4 with two or more e1ectrons, so that approximate methods of solution must 

be used. The basis of most approximate methods is the variationa1 theoreml : 4 ,6, 

which states that for an arbitrary wave function, :tre' theexpectation 

value of the electronic energy, given by 



3. 

E (1.6) 

o 
is greater than, or equal to, the lowest eigenvalue of H , which is called e 

the ground-state energy of the Molecule, E. The integrations extend over 
o 

aIl possible values of the. space and spin coordinatesof aIl the electrons 

in the Molecule. If E is a nondegenerate eigenvalue, as in aIl Molecules 
o 

considered in the thesis, then E = Eo only when ~ is the exact ground-

state electronic wave function of the Molecule, and E is greater than Eo 

4 in aIl other cases. 

This theorem has been applied in two different types of quantum­

chemical calculation: 8 

(i) For small mo~ecules, an approximate wave function depending 

On certain parameters is assumed. The energy E is minimized with respect 

to the parameters, and since E is an upper bound to E , the wave function o 

corresponding to the minimum energy is taken as the best wave function of 

the ~ssumed form. l ,2 

(ii) For larger Molecules, the computation of E using the exact 

Hamiltonian is impossibly difficult, even with electronic computers. As 

in (i), an approxima te wave function is assumed and the energy is minimized 

with respect to the parameters. Now, however, the energy is computed from 

an approximate Hamiltonian. Since the variational theorem applies only when 

E is computed from the exact Hamiltonian, the computed energy is no longer 

necessarily an upper bound to the true energy. The validity of the approxi-

mate Hamiltonian must therefore be verified by comparing the values of the 



4. 

energy and other physica1 properties computed from it with experiment. -

The word semi-empirica1 is used to describe theories which are based on 

, 1 
quantum mechanics, but wh,ich employ some experimenta1 data for "calibration." 

Various for ms for approximate wave functions have been used in 

theories of mo1ecu1ar e1eétronic structures. One which has proved 

especia11y suitab1e for quantitative ca1cu1ation ona large variety of 

mo1ecu1es2 is based on mo1ecu1ar orbita1s. Mo1ecu1ar orbital theory was 

origina11y deve10ped by Hund,9 Mu11iken10 and Lennard-Jones,ll and used 

for qualitative descriptions of bonding and e1ectronic spectra in sma11 

6 9-11 
mo1ecu1es. ' Later, it was app1ied extensive1y to conjugated hydro-

1 12-16 . . 17-19 carbons ' and trans1t10n metal-complexes. A genera1 formulation 

of mo1ecu1ar orbital theory, independent of symmetry considerations, has 

, 20 21 
been given by Roothaan. ' 

An orbital is defined as a one-e1ectron wave function, i.e., a 

function of the co-ordinates of one e1ectron. 20 In the orbital approximation, 

any correlation of the instantaneous motion of different e1ectrons is 

1-3 
neg1ected. The position of each e1ectron is assumed to be independent 

of the instantaneous positions of the other e1ectrons, and to de pend on1y 

on their time-average charge distribution. Orbita1s have been used to 

3 7 describe the e1ectronic structure of both atoms and mo1ecu1es, , and the 

orbita1s involved are called atomic and molecu1ar orbitaIs respectively. 

22 OrbitaIs were first used in a quantitative the ory by Hartree, 

h d h . f· 23 w 0 use t em to compute atom1C wave unct10ns. Hartree initially assumed 

that the total electronic ,.;rave function was a simple product of one-e'lectron 
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orbita1s. The Pauli exclusion princip1e4 states, however, that the total 

wave function of a many-e1ectron system must be antisymmetric with respect 

to the interchange of the space and spin coordinates of any two e1ectrons. 

24 " 
Slater showed that the antisymmetry requirement is satisfied by a 

determinanta1 wave function of the form 

y, (1) 1, (1) '-v; li) '7 a ( d" . . . . ~(J)'?N(I) 
y= Y. ( ;l ) 1'], (d.) 'ra (a)?J

A 
(~) . YN (~) 'Y'J N 

(,ot) 

. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . 
y, (N) 'l, (N) ~ (N)7];;l. (N) ~ "(N) '7H (N) 

(1.7) 

"where ~i(k) is the i
th 

orbital as a function of the co-ordinates of the 

th 
k e1ectron, and the ~ i are spin functions (a or p). This form of wave 

function is ca11ed a Slater determinant and is often written in the short 

form, . 
= Det 1Y,1, (1.8) 

Fock25 incorporated determinanta1 wave functions into the Hartree method, 

and the resu1tant Hartree-Fock method2 ,7 has been wide1y used to compute 

.. f . 7,23,26 atOm1C wave unct1ons. 

The wave function defined by ~quation (1.8) represents a specific 

e1ectron configuration, in which specified orbita1s are occupied by e1ectrons 

of specified spin. A comp1ete1y genera1 wave function can be formed by a 

1inear superposition of configurations, since the set of a11 possible 

determinanta1 many-e1ectron wave functions formed from a complete set of 



one-electron'spin-orbitals (products of orbitaIs and spin functions)is 

l 2 
itself a ~omplete set.' Chemical experience indicates, however, that 

the'ground state of most stable molecules (provlded it is a singlet 

ground state) can be weIl approximated by a single closed-shell 

configuration, in which each occupied orbital is doubly occupied by two 

l t f ·t . 20 e ec rons 0 OppOS1 e sp1n. For a closed shell, the N-electron wave 

furiction, defined by equatic.'l (1.8) has the form 

6. 

(1.9) 

where n = N/2 is the number of occupied orbitaIs. 'The use of a single 

determinant greatly reduces the computation required to de termine the 

electronic wave function of a molecule, so that approximate wave functions 

may be determined for molecules with a greater number of electrons than 

would otherwise be possible. This thesis is concerned with the computation 

of single-determinant closed-shell wave functions for molecular ground 

states. 

The object
20 

of a molecular orbital calculation is to find the 

single-determinant wave function with the lowest energy, as determined by 

equation (1.6). The molecular orbitaIs themselves in equation (1.9) are 

arbitrary to a certain extent, since the determinant is invariant to a 

unitary transformation among the occupied molecula~ orbitals. 27 In practice, 

however, the wave function is usually found by solving equations which 

de termine a set of molecular orbitaIs, although it is also possible to 

proceed by determining the one-electron density matrix directly.28 



7. 

2 7 
Th~ Hartree-Foek equations are integro-differential equations, , 

whose solution is feasible for atoms, due to the Silûplifieation provided 

7 23 by spherieal symmetry. '. For moleeules, this symmetry is absent and 

direct solution of the Hartree-Fock equations is not feasible. If, however, 

the molecular orbitaIs are expressed as linear combinations of a set of 

basis orbitals,20 instead of being allowed to assume an arbitrary functional 

form, then the equations can be solved by the methods of linear algebra, as 

outlined in Chapters 2 and 5. If a mathematically complete basiswere 

used,this would involve no further approximation sinee the orbitaIs could 

still have an arbitrary funetional form. In praetice, computation is 

possible only for a finite, ineomplete basis, so that it is important to 

choose a basis which yields a good approximation to the wave funetion with 

a limited number of terms. 

Many different types of basis set have been used, espeeially in 
29,30 

calculations on small moleeules. The most usu~l basis in quantum 

che~stry consists of the atomic orbitaIs on the different atoms of the 

molecule. MO's composed of linear combinations of atomic orbitais are ealled 

LCAO-MO's and have several advantages: 

(i) The potential acting on an eleetron in the neighbourhood of 

a nucleus is similar to that in the free atom, so that an atomic orbital 

on a given atom is a first approximation to a molecular orbital near that 

nucleus. 2 ,29 

(ii) The free-atom orbitais have the correct exponential behavior 

at the nueleus,1,2,29 which Gaussian functions,31 for example, do not. 



(iii) Since the atomic orbitaIs are each associated with an 

individual atom, the Hamiltonian matrix elements may be evaluated semi­

empirically ~ather than computed a priori, as· discussed in Chapters 2-5. 

8. 

(iv) The charge density corresponding to the computed wave 

function can be related32- 35 to chemical concepts such as atomic populations, 

overlap populations, hybridization, bond orders, and orbital promotion. 

A disadvantage of atomic orbitaIs as a basis set is that AO's 

on different atoms are not necessarily orthogonal. This nonorthogonality 

ôf the basis set can be handled either by transform~~g to a basis of 

orthogonalized orbitaIs, as in Chapter 5, or by systematically neglecting 

terms due to nonorthogonality, as in Chapters 2-4. 

The size of the basis set used in molecular orbital calculations 

varies widely. For very small molecules, basis sets with a large number of 

30 atomic orbitaIs on each atom are often used. Because of the difficulty 

of usi~g extensive basis sets for large molecules, however, a minimum basis 

34 set . is often used. Such a minimum basis includes a ls orbital for each 

hydrogen atom in the molecule, and inner-shell and valence-shell sand p 

orbitaIs for each other atom, as weIl as d orbitaIs for transition metals. 

The size of the basis may be reduced still further by considering 

only ~ of the electrons~-usually those of principal chemical interest. 

36 Lykos and Parr have shown that the electrons of a moleculemay be divided 

into groups, which may be considered separately, if the total wave function 

is expressible as an antisymmettized p~oduct of determinants built up from 

mutually exclusive sets of orbitals corresponding to the groups of electrons. 



9. 

The electrons are initially divided into distinct groups, and the 

indistinguishability of. the electrons is restored only in .the final 

antisymmetrization. 

The criterion which is normally used, in deciding which electrons 

in a Molecule can be treated separately, is chemical experience. Lykos and 

parr36 treated the separation of sigma and pi electrons in planar conjugated 

Molecules, a separation known as the pi-electron approximation. In this 

approximation, calculations are made involving the pi-electrons only, and 

the sigma electrons are considered as a "core." The detailed .behaviour of 

the sigma electrons is assumed not to affect the conclusions derived from 

the calculations. This approximation is Most useful for hydrocarbons, and 

is of doubtful validity for heterocyclic molecules, since the resu1ts of 

recent minimum-basis SCF-MO calculations37 on pyridine and pyrazine~ 

including a1l electrons, show that there is substantial charge transfer 

from carbon to nitrogen in the sigma-system, and very little in the 

pi-system. 

In this thesis, the electrons in a Molecule are divided into 

inner-shell and va1ence-shell electrons. Calculations are made involving 
. 

the valence-shell electrons only, and the inner-shel1 electrons of each 

atom are considered, along with the nucleus, as a "core" acting on the 

valence-shell electrons. The mo1ecular orbitaIs occupied by the inner-shell 

electrons are assumed to be identlcal with those in the free atoms. This 

approximation is justified by' the fact.that chemical bonding can be des-

cribed using the valence electrons a10ne, with the inner-shell e1ectrons 



treated as inert. AIso, the resulJs of ca1culations for small mo1ecules 

including aIl e1ectrons show th~ inner-shel1 orbital energies are very 

diff f · 1 h 11 . b· 1 . . 2 38 erent rom va ence-s e or 1. ta energ1.es. Manne has considered 

core-valence interactions using perturbation theory. 

10. 

The title of this thesis indicates that it is cbncerned with the 

calculation of approxima te e1ectronic wave functions bui1t up from molecular 

orbitaIs. AlI valence electrons are considered explicit1y, and the theories' 

used are semi-empirical, in that experimental data are 'used to assign some 

of the quanti ties which are difficul t to compute exac tly, or to. corree t for 

some of the errors inherent in the orbital approximation. Two types of 

the ory are considered: self-consistent field mo1ecular orbital (SCF-MO) 

theories (Chapters 2-4) and independent-e1ectron theories (Chapter 5). This 

distinction arises from the nature of the e1ectronic Hami1tonian equation 

(1.4) .which may be rewritten in the form 

= ~ 
i )j 

o' . 

H .. 
1.J 

(1.10) 

The kinetic energy and the nuclear-electronic potential energy are.written 

as a sum of one-electron energies for each electron in the molecule, while 

the interelectronic potential energy is expressed as a sum of two-electron 
o 

terms H .. , for each pair of electrons. The two-electron terms are 
1.J 

difficult to handle, and are therefore not always explicitly included. 

In independent-electron theories (Chapter 5) a simplified Hamiltonian is 

used which is a sum of one-el'ectron terms, 

i 

o 
h eff 

i 
(1.11) 

o 
h eff = 



11. 

o 
where h

i
eff is an effective one-electron Hamiltonian, which inc1udes the 

1 
two-electron terms lIin some average way.1I Such methods are ~ rigorous1y 

justifiable but are popular because of their computationa1 simplicity. 

SCF-MO theories, on tbe other hand, include the two-electron terms 

explici tly, as in equation (1'.10), and will be discussed in Chapters 2-4. 
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CHAPTER 2 

SELF-CONSISTENT FIELD MOLECULAR ORBITAL THEORY 

In this chapter, the calculation of determinantai wave functions, 

of the form given by equation (1.8), is considered. For molecules of high 

symmetry, the form of the molecular orbitaIs can aften be written down from 

·d t· 1 2,6,20 b h" t i 1 symmetry cons~ era ~ons a one, ut t ~s ~s no true n genera • It 

is therefore necessary to formulate a method ta find the determinantal wave 

function with the lowest possible energy. 

In the related problem for atoms, the orbitaIs are general 

functions of unrestricted form.Minimization of the energy of the deter-

minant, equation (1.8) leads to the integro-differential Hartree-Fock 

euqations,7 which may be solved by an iterative method originally due to 

. 22 
Hartrce. For atoms, it is feasible to solve such equations because of 

7 22 23 spherical symmetry." However, the absence of such symmetry in 

molecules· makes the Hartree-Fock equations in their integro-differential 

2 20 21 form intractable. Roothaan' showed that, ~f the molecular orbitaIs 

are expressed as linear combinations of specified basis orbitaIs, such as 

atomic orbitaIs, then the Hartree-Fock equations caü be reduced ta the 

algebraic equations described in Section A of this chapter. 

The Roothaan equations have been applied to the determination of 

29 30 39 26 wave functions for many small mole~ules, , , as weIl as for atoms. 

However, the amount of computation involved makes it difficult to solve the 

equations, except for very small molecules, even with the use of modern 
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e1ectronic computers, because of the need to eva1uate large n~ers of 

electron-interaction integra1s, as discussed 1ater. Since chemists are 

often interested in much larger mo1ecules than thos·e for which Roothaan' s 

equations 'can be solved, it is desirab1e to simp1ify the the ory so that it 

can be extended to 1arger mo1ecules. One way to do this is to use the 

"Zero Differential Overlap" (ZOO) approximation, which was introduced by 

40 Parr, and forms the basis of the high1y successfu1 semi-empirical 

pariser-parr-pople theory41,42 of, pi-electrons used to study conjugated 

1 43-46 organic molecu1es. Recent1y, Pople, Santry and Segal have considered 

the extension of the ZOO approximation to molecular orbital calculations 

invo1ving a1l valence e1ectrons, with emphasis on the ways in which the 

approximation can be made so as to preserve the invariance properties of 

the wave function. 43 This is discussed further in Sections Band C. 

A. ROOTHAAN'S EQUATIONS 

Roothaan originally proposed equations for the case of c10sed-

20 she1l mo1ecu1es, in which the wave function is a single Slater determinant 

of the form given by equation (1.9). Later, heextended these equations to 

21 open-she11 mo1ecules, whose simp1est description may be a 1inear combina-

tion of determinants of the general form given by equation (1.8). This 

thesis considers on1y the c1osed-shell case. 

20 Roothaan showed that for a single-determinant wave function, 

(1.9) 



for a closed-shell molecule, in which the molecular orbitaIs are 

orthonormal linear combinations of sorne basis orbitaIs, 0
k

, so that 

n 

~i = ~ k=l 
(i = 1, .•• , n) 

the energy is a minimum when the coefficients C
ki 

satisfy the secular 

eguations 

n n 

14. 

(2.1) 

~. Fkl Cli = ~ SkI Cl. E. 
1 1 

(k,i = 1, ••• , n) (2.2) 
1=1 

In matrix form, this becomes 

FC = SCE (2.3) 

where E is a diagonal matrix. 

In these equations Fkl is the matrix element of the Hartree-Fock 
o 

Hamiltonian operator, F, in the atomic orbital basis set, 

(2.4) 

and Sk 1 is the overlap integral, 

(2.5) 

The integration extends over aIl space. If SkI is zero, then 0k and 01 
4 6 are said to be orthogonal.' Atomic orbitaIs on different atoms are not, 

in general, orthogonal to each other. 

The condition that thé molecular orbitaIs are orthonormal can be 

expressed in terms of the overlap integrals. The orbitaIs ~i and 1}'j 

are orthonormal if 
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(2.6) 

On substituting equation (2.5) into equation (-2.6), the orthonormality 

condition becomes 

L L 
k 1 

= (2.7) 

or in matrix'form, 

= l (2.8) 

where C+ is the Hermitean adjoint of C, and l is the unit matrix. 

Ei is the energy eigenva1ue of the m01ecu1ar orbita1~i' and can 

bè re1ated to a mo1ecu1ar ionization potentia1 (Chapter 7). The orbital 

energies can bë expressed in terms of the coefficients by pre-mu1tip1ying 

+ equation (2.3) by C : 

= 

From equations (2.8) and (2.9), 

E = 

and the orbital energy Ei is given by 

= r. 
k,l 

(2.9) 

(2.10) 

(2.11) 

20 The secu1ar equations (2.2) are written as 1inear equations, 

so that if the matrix elements Fk1 
are known, the secu1ar 

equations can be s01ved by the methods of linear a1gebra. In the simp1est 

case, the nondiagona1 overlap matrix e1ements, Sk1 ' (for k # 1) are neg1ected, 
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so that S is the unit matrix, and equation (2.3) is simply an e~genvalue 

equation. If the nondiagonal SkI are included, then equation (2.3) can 

be reduced to an eigenvalue equation by Lowdin's method,47 as described 

in Chapter 5. 

The difficulty in solving Roothaan's equations is that the Hartree-
o 

Fock Hamiltonian, F, includes electron-repulsion terms, which in turn depend 

on the molecular orbitaIs. This means that the matrix elements, Fkl 

cannot be evaluated until the molecular orbitaIs are known. But the 

coefficients C
ki 

in the molecular orbitaIs are determined from the secular 

equations. The standard procedure in self-consistent field molecular 

20 
orbital the ory is to solve the secular equations by an iterative method, 

which will be described after examining the matrix elements Fkl. 

Roothaan expressed the Hartree-Fock Hamiltonian operator in terms of 

integrals of operators over molecular orbitaIs. For computation, it fs 

more convenient to express the matrix elements directly in ter ms of atomic 
27 48 .. 42 

orbitaIs, as done by Lennard-Jones, Hall, and pop.le. The following 

form is due to Pople. 42 

= ~l + l 
r,s 

Prs fkl Irs) - 1/2 . (ks/rl ~ (2.12) 

AlI the molecular orbitaIs have been expanded in ter ms of atomic orbitaIs, 

and the summation extends over aIl atomic orbitaIs in the basis set. ~l 

is the matrix element of the one-electron core' Hamiltonian for an electron 

in the field of the atomic cores, consisting of the nuclei and any inner-

shell, or sigma, electrons not considered explicitly in the problem. This 
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Hamiltonian consists of the kinetiè energy plus the potentia1 energy due 

to aIl the atomic cores in the mo1ecule, so that the form of the one-

e1ectron core matrix e1ements is 

(2.13) 

VA is the potentia1 of the atom A; the summation extends over aIl the atoms 

in the molecule, and the integration extends over aIl space. The matrix 

r is defined by the expansion of the one-electron density matrix in terms 

f h b · b' 1 28 ote as~s or ~ta s: 

f = 2 l. ')Ir~ "/~ = 
i=l 't' ~ 'fi. = L I. Pkl 0: 01 k 1 

(2.14) 

where i is summed over the doub1y occupied mo1ecular orbitaIs, and k and 

are summed over the basis orbitaIs, so that 

= 2 

The quantities (kl /rs) are electron-interaction integrals between two 

e1ectrons with specified charge distributions,27,42,48 

(kl /rs) = rr 0
k
* (1) 0 (l'!. 0* (2) 0 (2) d V

1 
d V

2 JJ l r 12 r s 

(2.15) 

(2.16) 

where r I2 is the distance between the two electrons. In the most genera1 

case, k, 1 , rand s refer to orbitaIs of four d"ifferent atoms, and the 

i t 1 · b . (2 16)' 11 d f . 1 2 n egra g~ven y equat~on . ~s ca e a our-centre ~ntegra • 

Equations (2.12) to (2.16) complete the specification of the terms 
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in Roothaan's equations. If equations (2.12) and (2.15) are substituted 

into equations (2.2), the resulting equations for the coefficients are cubic 

i 1 . 48 h h h d f l' 1 b t b s mu taneous equat~ons, so t at t e met 0 s 0 ~near a ge ra canno e 

used. It is therefore more convenient. to solve the linear equations (2.2). 

The standard method of solution of Roothaan's equations is the Iterative 

20 
procedu~e shown in Figure (2.1): 

(i)The quantities SkI .' ~l and (kr/1 s), as defined by 

equations (2.5), (2.13) and (2.16) respective1y, are initially computed, 

since they do not depend on the coefficients C
ki 

• 

(ii) 

(Hi) 

. ' 
An initial F-matrix, F , is assigned arbitrarily. 

o 

The matrix equation (2.3) is so1ved to find the LCAO 

coefficients, C
ki

. 

(iv) The P-matrix is computed from equation (2.15). 

(v) A new F-matrix is computed from equation (2.12). 

(vi) The C and P matrices are found froID the new F. 

(vii) The new P-matrix is compared with the previous one. If 

they do not agree within a specified to1erance, another trial p-matrix is 

assigned using the previously computed matrix as a guide, and the Iterative 

cycle (Steps v-vii) is repeated. 

(viii) After a number of Iterations, it will usually be found that 

two successive P-matrices are identical. The calculation is then said to 

have converged to self-consistency, and the final result corresponds to a 

solution of Roothaan's equations. 

This Iterative method of solution is essentially the same as that 



FIGURE 2.1 ITERATIVE SOLUTION OF ROOTHAAN'S EQUATIONS 

START 

Over1ap matrix e1ements SkI 

Core Hami1tonian matrix e1ements ~1 

Electron-interaction integrals (k1 Irs) 

LCAO Coefficients and Orbital Energies 

(Population Matrix in CNDO Approximation) 

. New Coefficients and Orbital Energies 

~------- Yes ------------~~~ STOP 

New Trial Population Matrix 

19. 
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22 
used by Hartree for atoms. Each P-matrix corresponds to a charge 

distribution, and each Hamiltonian matrix to' an electrostatic potential 

field. The physical significance of the iterative cycle, therefore, is 

that the potential field of successive charge distributions 1s found, and 

used to generate new charge distributions. When the calculation has con-

verged, the potential field generates the same 'charge distribution which 

produces it. But this is the only physically possible situation, so that 

the self-consistent field represents a physical solution to the problem. 

There is, unfortunately, no rigorous proof that this method of 

solution will converge in every case. However, the computer programme used 

to perform the calculations described in.this thesis (Appendix C) was found 

to converge for most molecules considered. The method of selection of the 

density matrix for each iteration is arbitrary, and different procedures 

may affect the rate at which the calculation converges, or may even cause 

it to diverge, but they will not affect the results if, in fact, the calcula-

tion does converge, since each solution of the Roothaan equations corresponds 

to a possible electronic configuration of the molecule, and most molecules 

with closed-shell ground states do not have low-lying excited states. 

49 
Adams has shown that the question may be more complicated for open-shell 

atoms or molecules, which do have such low-lying excited states. 

It should be noted that the above remarks would not apply strictly 

if the coefficient matrix were used as a criterion of convergence, instead 

of the density matrix, although this might seem an equally valid procedure. 

The difficulty is that if there are one or more sets of degenerate molecular 
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orbitals, and the matrix C is a solution of equation (2.3), then the matrix 

C' = CU, where U is a unitary transformation among the degenerate mo1ecular 

orbitaIs, will also be a solution. However, the density matrix and the 

wave function are invariant to any unitary transformation amongthe 

doubly occupied molecular orbitals,27 so that such a transformation has no 

physical significance. This means that in a calculation in which the 

orbital coefficients are used as the criterion of convergence, the 

coefficients may keep changing on successive Iterations after the population 

matrix and wave function have converged, so that orbital coefficients are 

not a suitable criterion of convergence. 

The Roothaan equations have been used extensively in molecular-

. 29 30 39 orbital computat10ns on small molecules. " For an extended basis set, 

the wave function approaches the Hartree-Fock wave function as the size of 

. the basis s~t increases,I,2 since the permitted functional form of the 

molecular orbitals becomes more and more flexible as the basis approaches 

completeness. Many calculations, however, have been done with minimum 

basis sets, in the sense defined in Chapter 1. The expectation values of 

one-electron operators are well approximated by Hartree-Fock wave functions.
50 

Physical properties involving two-electron operators are not so well 

estimated. In particular, molecular bonding energies, or dissociation 

. . 1 d . d 29,30 energ1es, are ser10US y un erest1mate. 

The applicability of the Roothaan equations is limited by the 

extensive computer time and memory required to evaluate and store the 

electron-interaction integrais. The three- and four-centre integrals 
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51 cannot be expressed in closed analytic form, but must be evaluated either 

by numerical integration, or by summation of an infinite series to conver-

gence, both of which are time-consuming procedures even with a computer. 
" 4 

Furthermore there are approximately N /8 such integrals, where N is the 

number of orbitaIs in the basis set, so that the computer time and storage 

space required is proportional to the fourth power of the size of the basis.
30 

A recent molecular-orbital calculat~on, including aIl electron-interaction 

integrals, on the molecule B
4
H

4
, with a minimum basis set of 24 Slater-type 

orbitaIs, required 20 hours of computation time on an IBM 7094 computer, 

mostly for the computation of four-centre integrals. 52 

The time required to evaluate a single integral is reduced for a 

basis set of Gaussian-type orbitaIs, for which the three- and four-centre 

31 integrals can be evaluated in closed form. The disadvantage of this 

method is that it has been found necessary to use several Gaussian-type 

orbitaIs to approximate the behaviour of a single atomic orbital, so that 

the size of the basis set required to give a good approximation to the wave 

f .. 1· d 30 h f . b . h f unct10n 1S great y 1ncrease. T e use 0 a GaUSS1an aS1S t ere ore 

results in only a moderate saving of computer time, and a great incr"ease 

in computer storage requirements. 

In order to reduce the computation involved in the Roothaan method 

so that it may be extended to larger molecules, it is therefore necessary 

to eliminate the computation of three- and four-centre electron-interaction 

integrals from the problem. One possibility is to estimate these integrals 

using simple approximation formulae,53 and some authors38 ,54 have developed 
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approximate mo1ecu1ar orbital theories using the Mu11ikep approximation. 55 

In this' thesis, however, a the ory is considered, in which the three- and 

four-centre integra1s are e1iminated entire1y. 

B. THE ZERO-DIFFERENTIAL OVERLAP(ZDO) APPROXIMATION 

The e1ectronic-interaction integra1s given by equation (2.16) have 

as integrand a product of two one-e1ectron orbita1s and the e1ectrostatic' 

potential-energy operator (1/r12). Each one-e1ectron functioJ;l has the 

form 

* 0k (1) 01 (1) (2.17) 

ca11ed the differentia1 over1ap of orbita1s k and .1 , since its integra1 

over a11 space is the over1ap integra1, defined by equation (2.5). 40 Parr 

proposed the zero-differentia1-over1ap approximation (ZDO), in which the 

differentia1 over1ap is assumed to be zero except when k and 1 ref~r to 

the same. orbi tal. It follows that a11 e1ectron-int'eraction integrals 

. h 40 f 1 b i 1 f h f van1S, except or cou om ntegra sot e orm 

~ Jf 0= (1) 0k (1) ~12 \. (2) 0r (2) d VI d V2 

th representing the e1ectrostatic repu1sion between an e1ectron in the k 

= (kk/rr) 

b · Id' h th b' 1 d h h 1 i l or 1ta an one 1n ter or 1ta , an t at t e over ap ntegra sare 

(2.18) 

zero for k '" 1. 
42 Pople pointed out that it is consistent to neglect both 

the overlap integrals, representing the magnitude of over1ap charge dis-

tributions, and the electron-interaction integrals representing their 

interaction with other charge distributions . 



56 The ZDO approximation has been justified by reference to a 

basis set consisting of symmetrica11y orthogona1ized orbita1s, or Lowdin 

orbita1s. These orbita1s are defined
47 

by the matrix equation 

24. 

(2.19) 

where 0 is a row vector containing the Lowdin orbita1s, ~ is a row vector 

containing the original basis orbita1s, and S-1/2 is a matrix satisfying 

the equation 

l (2.20) 

where l is the unit matrix. 

The basis set defined by equation (2.19) is that orthogonal basis set 

which most c1ose1y resemb1es the non-orthogonal basis set ~, in the sense 

that the sum of integra1s, 

(2.21) 

is a minimum. 57 In fact the Lowdin orbita1s are s.imi1ar to the original 

atomic orbita1s, except that each is more loca1ized around the atom on 

h · h·· d 58 w 1C 1t 1S centre • If the Roothaan equations are considered to app1y 

to a basis set of Lowdin orbita1s, then the over1ap integra1s vanish since 

the new basis is orthogonal. The electron-interaction integra1s, except 

for the coulomb integra1s defined by equation (2.18), have been shown to 

. 56 58 be qU1te sma11.' For a basis set consisting of Lowdin orbita1s, 

therefore, the ZDO approximation is a va1id approximation. If this 

approximation is used with a basis set of ordinary atomic orbita1s, it. is 

imp1icit1y assumed that the orbita1s are simi1ar enough to the Lowdin 



orbitaIs for the approximation to remain reasonable. Adams and Miller~9 

have recently shown that, in the case of conjugated hydrocarbons, the 

pariser-parr-pople the ory is improved by transforming aIl matrix elements 

so that they refer explicitly to a basis set of Lowdin orbitaIs, but such 

a transformation is not usually carried out. l 

The ZDO approximation has been used extensively in the study of 
\ 

the properties of conjugated organic molecules, together with the pi-

1 42 
electron approximation. Pople described the simplification of the 

Roothaan equations for the case of a basis consisting of one pi-orbital 

on each atom, and applied these simplified equations to the study of con-

41 ' 
jugated hydrocarbons. pariser and Parr treated theintegrals in the 

simplified equations as empirical parameters, to be given the values 

leading to best agreement withobserved electronic spectra, instead of 

being calculated directly, so that the method is semi-empirical in the 

41,42 
sense of Chapter 1. The pariser-parr-pople the ory has been used in 

25. 

molecular orbital calculations on a wide variety of conjugated hydrocarbons 

and heterocyclic mo1ecules. l The parameters used in the pariser-parr-pople 

theory are discussed further in Chapter,s 3 and 4 in relation to the 

parameters of the semi-empirical self-consistent field molecular orbital 

theory for aIl valence electrons. 

1
43-46 

Pople, Santry and Sega have recently considered the 

extension of the ZDO approx~mation to mo1ecular orbital ca1culations 

including aIl valence electrons, and considered its effect on the invariance 

properties of the wave function. 43 If the Roothaan equations are solved 
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without further approximation, then the determinantal wave function is 

invariant to all orthogonal transformations of the basis set. Pople 

et al~3 showed that this invariance depends on the transformation properties 

of the one- and two-electron integrals l1t 1 and (kr/1 s), defined by 

equations (2.13) and (2.16) respectively, and that it is ~ preserved 

under the ZDO approximation. However, it is possible to make ZDO-type 

approximations which pr'eserve the invariancè of the wave func tion to 

orthogonal transformations among atomic orbitaIs centred cn the same 

43 atome There are two types of these atomic transformations: 

·(i) Rotations· of the molecular co-ordinates, or transformations 

among atomic orbitaIs of the same azimuthal quantum number (e.g., p ~ p , 
x y 

and p) on the same atome Since there is in general no unique choice of 
z 

axes for a molecule, it is important that any calculated wave function be 

invariant to such rotations. 

(ii) Hybridizations of the atomic orbitaIs, or transformations 

among atomic orbitaIs of different azimuthal quantum number (e.g., sand p). 

Since i t is often useful' .to discuss che~cal bonding in terms of hybrid 

atomic orbitals, the calculated wave functions should a1~0 be invariant 

to hybridization of the basis .set. 

It. is less important that the wave function be invariant to general . . 

transformations among atomic orbitaIs on different atomü, sinee non-atomic 

basis sets are not normally used in descriptions of chemieal bonding. 

43 Pople, Santry and Segal therefore proposed two methods of formulating 

the ZDO approximation so as to retain the invariance of the wave function 



with respect to orthogonal transformations among atomic orbitaIs on the 

same atome 

(i) The simplest is that of "complete neglect of differential 

overlap" (CNDO). In this approximation, aIl differential overlaps of the 

form given by equation (2.17) are assumed to be zero, even when the two 

overlapping orbit"als are centred on the.same atom. In order to preserve 

the invariance of the wave function, it is also necessary to make certain 

further approximation~, described in Section C. 

27. 

(ii) A less drastic approximation is that .. of "neglect of diatomic 

differential overlap" (NDDO), in which the differential overlap of two 

orbitaIs ~s assumed to be zero only when they are centred on different 

atoms. This means that the electron-interaction integrals (kl Irs). are 

included in the calculations whenever the k th and 1 th orbitaIs are 

th th centred on one atom, and the rand s orbitaIs are centred on a second 

atome 

60 Dahl has shown that the CNDO approximation can be justified by 

referenc.e to a basis of Lowdin orbitaIs, although this is not possible for 

h 
. , 60 t e NODO approx~mat~on. 61 Kaufman also suggested a series of ZDO-type 

~pproximations for use in SCF-MO th~ories including aIl valence electrons, 

b d 'd 'd h'" . Ruttink62 d M 38 ut ~ not cons~ er t e~r ~nvar~ance propert~es. an anne 

have considered the invariance properties of SCF-MO .theories in which 

differential overlap is retained, but the electron-interaction integrals 

are estimated by simple approximation formulae. 

In addition to the owo levels ,of approximation proposed by pople, 



28. 

43 
Santry and Segal, in~ermediate approximations have been suggeated by 

. 63 d b D d KI 64 D~xon, an y ewar an opman. The salient difference bètween the 

theories proposed by these authors and the CNDO approximation ia the 

inclusion of one-centre exchange integrals, of the form 

(ki/kr) = (2.22) 

where k and rare different orbitaIs of the same atom. These integrals 

i 1 d d b . 63. d d· 1·· f fi . l were nc u e y D~xon ~n or er to pre ~ct sp 1tt1ngs 0 con gurat10na 

64 degeneracies in open-shell ~olecules, and by Dewar and Klopman to predict 

accurate heats of formati?n for hydrocarbons. 
.. ~~ 

Pople and. Segal ' have used the CNDO approximation in 

molecular-orbital calculations on a number of small molecules, and compared 

the calculated'charge distributions, dipole moments, equilibrium configura-

tions and force constants with those obtained from the exact Roothaan 

equations, as weIl as with experiment. 46 Santry and Segal haveextended 

this work to molecules containing atoms in the second row of the periodic 

table, and included the 3d orbitaIs of these atoms in the basis set. The 

CNDO approximation has also been used recently to study dipole moments of 

65 organic molecules, hyperfine coupl.ing constants in sigma-electron 

d · 1 66 d hl· . d f Il 1 1 67 ra ~ca s, an tee ectron~c exc~te states 0 sma mo ecu es, 

68 
benzene and ethylene. 

and of 

The NDDO approximation has not yet been used in a molecular 

calculation, but the intermediate approximation with inclusion of one-centre 

63 exchange integrals has been used to study small molecules , simple 
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hydrocarbons and high1y strained hydrocarbons. 

In this thesis, mo1ecu1ar-orbita1 ca1cu1ations are made using 
. 45 

the CNDO approximation, as formu1ated by Pop1e and Segal. However, the 

parameters in the Hami1tonian matrix e1ements are eva1uated by different 

methods, so that the ca1cu1ations are in effect made using a different 

theory. In the next section, the CNDO approximation is described in 

detai1, and in Chapters 3 and 4, the parameters used are discussed. 

C. THE COMPLETE NEGLECT OF DIFFERENTIAL OVERLAP (CNDO) APPROXIMATION 

In the self-consistent field mo1ecu1ar orbital theory with 
43 . 

complete neg1ect of differentia1 over1ap (SCF-MO-CNDO), the fo110wing 

approximations are made to simp1ify the Roothaan equations: 20 

(i) A11 integra1s containing differentia1 over1aps of the form 

(2.17), where k and 1 are different ato~ic orbita1s, are assumed to be 

zero. Specifical1y, over1ap integra1s (2.5) between different orbita1s 

29. 

are neg1ected, and electron-interaction integra1s given'by equation (2.16) 

are neg1ected, except for coulomb integra1s gkr' as defined in equation 

(2.18). 
. 

If this approximation a10ne were made, the Hartree-Fock flami1tonian 

matrix e1ements given by equation (2.12) wou1d be simp1ified to 

= ~k+ (2.23) 

and 
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= l1t1 - 1/2 Pk1 
(2.24) 

These equations, however, are not invariant to orthogonal transformations 

among atomic orbita1s on the same atom, so that further modifications must 

be made. 

In order to interpret the diagonal matrix e1ements given by 

equation (2.23), the expansion of the one-e1ectron density matrix in terms 

of basis orbita1s, equation (2.14), can be integrated over a11 space. 

L 
r 

P rr 
. (2.25) 

since the basis orbita1s are orthogonal. Equation (2.25) corresponds to 

a partition of the total e1ectronic charge among the atomic orbitals, so 

that P is the population of the r th orbital, in the sense used by 
rr 

Mu1liken,33 and the P-matrix is cal1ed the population matrix. The 

definition of orbital populations in molecular orbital theories which 

inc1ude overlap is discussed in Chapter 5. 

The concept of orbital populations leads to a-simple electrostatic 

i t . 43 f . (2 23) n erpretat~on 0 equat~on • . Fkk is the energy of an electron in 

the ~tomic orbital 0k
, which is equal to the sum of its energy ~k in the 

field of its atomic cores, and the electrostatic repulsion due to the 

electron populations of all the valence-shell orbitals, less one-half the 

population of the k
th orbital itself. This last subtracted term is the 

contribution of the kth orbital to the exchange charge density,2 the 

contributions of other orbitals being omitted in the CNDO approximation. 
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(ii) The coulomb integrals gkr for aIl orbitaIs 0k and 0r , 

on atoms A and B respectively, are aIl assigned a common value gAB' 

characteristic of the atoms only and not of the orbitaIs themselves. 

31. 

This value gAB represents "an. average repulsion between an electron in a 

valence aOtomic orbital on A and another in a valence orbital on atom B."43 

It may be seen by considering the case where A and B are the same atom that 

this assumption is not strictly valid, since the coulomb repulsion energy 

between two electrons in the same atomic orbital would be expected on 

physical grounds to be greater than that between two electrons in different 

orbitaIs, since electrons in the same orbital have a greater probability 

43 of being close to one another. However,. Pople, Santry and Segal 

showed that this approximation is a consequence of the eNDO approximation 

and the requirement of invariance under orthogonal transformations of 

atomic orbitaIs on the same atom. The magnitude of the errors introduced 

by this approximation for the case when A and B are the same atom will be 

examined further in the next chapter. 

(iii) The diagonal core matrix elements ~k' defined by equation 

(2.13), are each partitioned into an atomic term Ukk and a sum of terms 

over the other atoms in the molecule. 

~k = U L. V 
kk + B:fA AB 

(2.26) 

U
kk 

is the diagonal matrix element of the k~h orbital on atom A with 

respect to the kinetic energy and to the potential energy of the core
o 

of 

atom A, and may have different values for different orbitaIs on the same 



• atom, denoted by U ,U ,etc. V
AB 

is the interaction of an orbital on ss pp 

atom A with the core of atom B, and must be given the same value for a11 

orbitaIs on atom A in order to preserve the invariance of the Roothaan 

. . . f '. 43 equat10ns to atOm1C trans ormat1ons. The evaluation of Ukk and V
AB 

is 

considered in Chapters 3 and 4. 

(iv) Off-diagonal core matrix elements between orbita1s on.the 

32 • 

same atom are each partitioned. into a sum of an atomic term and interatomic 

terms: 

l1tl = d V (2.27) 

where 91k and. 911 are both orbitaIs on atom A. The interatomic terms 

represent the interaction of an overlap charge distribution with the 

potentia1 of t~e core of other 4toms, and therefore vanish according to 

the ZDO approximation. The atomic term U
kl 

is the matrix element of·the 

kinetic energy and the spherically symmetric potential energy of the core 

of atom A, and is zero when 91k and 91 1 
are eigenfunctions of angu1ar 

momentum, i.e., pure s, p, d, ..• orbitals. For hybrid orbitaIs, however, 

43 this is not necessarily so. For this reason, the most convenient basis 

set for computation is a basis set of pure sand p (and d) orbitaIs. Since -
the equations have been formulated so as to preserve invariance with respect 

to hybridization, however, the results may be interpreted in terms of a 

hybrid basis set. 

(v) The off-diagonal core matrix e1ements between orbitaIs on 

different atoms contain the differential overlap of two orbitaIs as a 
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factor in their integrand. However they cannot be neglected since if 

they were, the the ory would not prédict bonding. Furthermore, it i8 not 

necessary to neglect them for consistency with the neglect of electron-

interaction integrals, since they are not small if evaluated over the 

Lowdin orbitals, defined by equation (2.19). 

These integrals are evaluated by the equation44 

lit 1 
1 0 =-- (13 + 2 A 

(2.28) 

o 0 
where f3

A 
and f3

B 
are bonding parameters characteristic of atoms A and B 

respectively, and Sk 1 is the overlap integral, defined by equation (2.5). 

The invariance properties of the Roothaan equations in the CNDO approx~mation 

are ensured by setting the off-diagonal core matrix elements between all 

orbitals on a given pair of atoms proportional to the overlap integrals. 

Actually, the proportionality constant could be allowed to vary with the 

interatomic distance or the molecular environment. 43 However, in order to 

test the the ory with as few different parameters as possibl~, Pople and 

44 Segal proposed the formula (2.28), in which the proportionality constant 

between ·the core matrix elements and overlap integrals depends only on the 

nature of the two atoms on which the orbitaIs are centred. 

If aIl the ab ove approximations are made, the matrix elements, 

t , (2 23) d (2 24) d d h' '1' f" d f 44 equa 10ns " an . are re uce to t e S1mp 1 1e orms 

= (2.29) 

and 
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k .; l (2.30) 

where the orbitals 0k and 01 are on atoms A and B respectively. PAA is 

the total valence-shell electronic charge on atom A, defined by 

-A 

r (2.31) 
k 

Where the summation extends over all valence-shell orbitals on the atome 

AlI other symbols in equations (2.29) and (2.30) have been defined 

previously. 

For a basis set of pure sand p (and d) orbitaIs, equation (2.30) 

applies even when it refers to two. orbitaIs on the same atom, wh en the 

first term vanishes, since the orbitaIs are orthogonal. 

The matrix elements given by equations (2.29) and (2.30) have 

been used in the self-consistent field molecular orbital calculations 

described in this thesis. With neglect of differential overlap, the 

secular equations (2.2) reduce to 

n 

= L Cli 
l =1 

which is just the eigenvalue problem, 

F C' = C E 

The or thonormal i ty condition, equation 

E, 
1 

(2. 7) , 

rx. * l * Cki Cl' Bkl = Cki J. k 1 k 

or in matrix form, 

(k = 1,. . ., n) 

is now 

B', , Ckj = 
1J 

(2.32) 

(2.33) 
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~C = !. (2.35) 

A minimum basis set of. valence-shell sand p orbitaIs on atoms 

other than hydrogen, andl s orbitaIs on hydrogen atoms~. has been used. 

The calculations do not include any d orbitaIs in the basis set, and have 

therefore been restricted to molecules in which d orbitaIs are not needed 

in simple valence-bond descriptions of the chemioal bonding. That is, no 

calculations have been made on molecules with a transition-metal atom, or 

on molecules with an atom surrounded by a total of five or more bonds and 

lone pairs (e.g. PF5 , SF4). 

The next two chapters are devoted to the evaluation of the 

parameters appearing in the matrix elements defined by equations (2.29) 

and (2.30). Detailed consideration of these parameters is essential since 

their values de termine quantitatively the calculated molecular orbitaIs, 

and therefore the values of physical properties derived frommolecular 

orbital theory. In Chapter 3, the atomic parameters U " U and gAA' ss pp 

which may be related to atomic spectra, are discussed. Chapter 4 concerns 

.0 
the interatomic parameters parameters gAB' VAB , ~A' and SkI ' which are 

defined only with reference to the molecule. 



EVALUATION OF ATOMIC PARAMETERS 

A. EVALUATION OF PARAMETERS IN MOLECULAR ORBITAL THEORY 

There are severa1 different approaches for eva1uating the 

parameters in mo1ecu1ar orbital theory. 
- 29 30 

In accurate ca1cu1ations, ' 

in which a11 electron-interaction t~rms are inc1uded in the Roothaan 

equations, an exp1icit basis set is chosen,consisting of atomic orbita1s 

70 
of a specified functiona1 form, 'such as Slater orbita1s, and a11 the 

integra1s are eva1uated explicitly. The simp1er integra1s can be 

eva1uated ana1ytica11y, and the more comp1ex integra1s computed 

numerica11y!1 The assigned parameters are in the functions chosen as 

basis orbita1s. In the CNDO approximation, however, many terms in the 

Roothaan equations are neg1ected, and in order to improve the SCF-MO-CNDO 

theory, the remaining' terms can be modified so as to inc1ude the effect 

of the neg1ected terms, as we11 as to correct for errors due to approxi-

mating the wave function by a single Slater determinant. 'rhe details 

of these modifications are discussed in this chapter and the next. 

A1ternative1y, a11 the parameters can be assigned empirica11y, 

as in simple mo1ecular-orbita1 calcu1ations, such as the Huckel theory of 

pi-e1ectron systems, for which a set of coulomb a'Qd resonance "integrals" 

for âifferent atoms is selected to give the best agreement between 

36. 

ca1culated and experimental physical and chemical prop~rties for a variety 

15 
of molecu1es. Such an approach is not very satisfactory because it has 
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been found that the best parameters depend on: 

(i) The properties whose ea1eu1a~ed values are eompared with 

experiment. Thus in eonjugated hydroearbons, the estimates pf the carbon-

carbon resonance integra1 vary from -1.4 ev. to -3.14 ev., depending on 

whether the'estimate is based on ionization potentia1s, e1ectron affinities, 

1 . . 15 e eetron1C spectra, 2E resonance energ1es. 

(ii) The mo1ecu1e for which the parameters are determined, as 

ean be seen from the'wide ranges of the heteroatom parameters surveyed by 

S .. 15 tre1tw1eser. 

These defeets are inherent in the simple Hueke1 theory which 

has too few parameters for one set to eorreet1y prediet different properties 

of different mo1eeu1es. On the other hand, it would not be satisfactory 

to assign a11 the par'ameters empiriea11y in a 1ess approximate theory, 

sueh as the SCF-MO-CNDO theory, since the parameters are formally defined 

as quantum-meehaniea1 lntegra1s. If the parameters were eva1uated 

eomp1ete1yempiriea11y, then the relation of the theory to 9uantummechanics 

wou1d be lost. It is therefore neeessary to base the parameters on 

theoretica1 arguments, with systematic modifications to a110w for corre1a-

tion and achieve agreement with experiment. 

In this thesis, the parameters whieh can be defined for iso1ated 

atoms are eva1uated fr~m atomie spectroscopie .data, which .is thereby used 

to predict mo1ecu1ar properties. This is the reason for the separate 

discussion of atomic and interatomic parameters. 

Atomic spectroscopie data were first used in a mo1eeu1ar 
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ca1culation by MOffitt,71 to predict the e1e~tronic spectrum of the 

oxygen mo1ecu1e by his method of "a toms in molecu1es". Pariser and Parr 

72 41 . , used Moffitt's idea to determ1ne parameters in molecu1ar orbital 

ca1cu1ations on pi-electron systems of conjugated mo1ecu1es, and introduced 

atomic spectroscopie ,data in the form of va1ence-state energies. 

B. VALENCE-STATE ENERGIES: 

73 A valence state pf an atom, as defined by van Vleck, is a 

state in which the e1ectronic interactions within the atom are the same as 

73-75 those in a molecu1e. Such a valence state would be formed in a 

hypothetical process in which an atom was removed adiabatica1ly from the 

mo1ecu1e, without the central atom being affected, In methane, for 

example, if the neutral hydrogen atoms were removed, the carbon atom 

wou1d be 1eft in a valence state with four tetrahedral1y hrbridized orbita1s, 

73 75 
each occupied by one e1ectron. ' 

74 dissociation into ionic products. 

Ionie va1enc~ states are formed by 

In the neutra1 valence state, each 

carbon orbital is occupied by an e1ectron of opposite spin to the e1ectron 

on the hydrogen atom, to which the orbital is bonded in the original 

mo1ecu1e, but the relative orientation of the e1ectrons in any two carbon 

orbita1s is not fixed by the process of formation of the valence state, so 

that it is equa11y probable that two e1ectrons in diff~rent orbita1s have 

para11e1 or opposite spins. 73- 75 This random relative orientation of spins 

is a genera1 property of a valence state, in contrast to a spectroscopie 

state, which has a definite number of e1ectrons of each spin. Thus a 
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valence state is, in general, a linear combinat ion of several spectro-

scopie states, and its energy can, in princip.le, be calculated directly 

. d 76,77 
from spectroscopie ata. Unfortunately, sorne of the spectroscopic 

components in·the expansion of valence. states are highly excited, and 

have either not been observed, or ob~er~ed only with doubtful accuracy. 

Since the energy of a valence state depends on the energies of all its 

39. 

component spectroscopic states, the energies of many valence states either 

. 78 79 
cannot be calculated in this way, or are seriously in error. ' 

. 78 79 
In order to av01d this problem, Hinze and ~affe' expressed 

both valence and spectroscopic state energies in· terms of Slater-Condon 

h 1 1 
7, 24, 80 parameters, using t e mu tip et theory of atomic spectra. The 

Slater-Condon parameters were evaluated by a least-squares fit of calculated 

spectroscopic state energies with the observed energies. Valence-state 

energies were then calculated from the Slater-Condon parameters, thereby 

81 making use of all available atomic spectral data. 
82 

Pilcher and Skinner 

used similar methods to de termine valence-state energies for boron, carbon, 

.nitrogen, and oxygen, and obtained almost identical results to those of 

Hinze and Jaffe. 

Hinze and Jaffe78 ,79 calculated valence state promotion energies, 

defined for neutral valence states as 

(3.1) 

where E is the valence-state energy and EO the energy of the spectroscopic 

ground state of the neutral atome Similarly for ionic valence states, 



(3.2) 

and P = E - E (3.3), 

where E+ and E are ionic ground state energies. 

Valence state ionization potentials, for example, are given by equations 

of the form 

(3.4) 

Ig is the ground-state ionization potential, and p+ and po the promotion 

energies of the appropriate valence states. Ground-state ionization 

potentials, usually obtained by extrapolation from spectral data, are 

81 
listed by Moore, and may be considered as accurately known. Ground 

40 •. 

state electron affinities are less accurately known. Hinze and Jaffe used 

either directly determined experimental values, or values determined by 

extrapolation of experimental data. 

In this work valence state energies are taken from the work of 

78 79 . Hinze and Jaffe, ' and 1ntroduced into the SCF-MO-CNDO theory following 

the Pariser approximation, as described in Section C. 

C. MOLECULAR ORBITAL PARAMETERS FROM ATOMIC VALENCE STATE ENERGIES 

The use of atomic valence state energies to determine para-

meters in molecular orbital theory is based on a suggestion made by 

pa;iser72 concerning the pi-electron theory of conj~ated hydrocarbons. 

Pariser considered the hypothetical electron-transfer process: 

C +C 
(3.5) 
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in which an electron is transferred between the pi-orbitaIs of two neutral 

carbon atoms at infinite distance apart in valence states suitable for pi- . 

bonding. In the pi-electron approximation, the energy of a singly 

occupied orbital is equal to its ionization potential, while the energy 

of a doubly occupied orbital is equal to its ionization potential plus the 

repulsion energy of the two electrons. The energy increase in the process 

.represented byequation (3.5) is then equal to the electrostatic repulsion 

of two pi electrons in the Same orbital, or g in the'notation of pp 

equation (2.18). But the process consists of removing an electron from 

one carbon atom and transferrin~it to another, so that the energy increase 

is the difference of the ionization potential l , and the electron affinity 
p 

A , of the p orbital. 
p 

That is, 

g - l _. A 
pp p p 

(3.6) 

If l and A are evaluated from the,valence-state energies of 
p p 

1'8 79 Rinze and Jaffe for trigonally hybridized carbon, , then gequals 
pp 

11.13 ev. Rowever, the corresponding integral equals 16.93 ev., for a 

Slater orbital with an effective nuclear charge of 3.18. 83 This large 

difference was originally ascribed by pariser
72 

to changes in the energy 

. 84-88 . 
of the sigma electrons, but other authors have stressed the fact that 

the motion of the two electrons occupying the same orbital in the 

negative ion is correlated, so that each tends to avoid the other's instant-

aneous position. In general, the most important correlation effects in 

an atom or molecule are· the pair correlations between electrons in the same 

89 orbital. The average distance between the two electrons in the pi-
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orbital is greater than it would be if their motion were completely 

independent as assumed in the orbital approximation, so that their 

85 
electrostatic repulsion energy is less. Dewar and Wulfman, for 

example, have shown that the empirical value of gii for carbon can be 

rationalized by assuming that the electrons remain on opposite sides of 

the nodal plane of the p orbital. Although this is an over-simplified 

treatment, it does show the importance of correlation. More detailed 

treatments of the relative importance of different effects have been 

i b 1 ff d S · 1 90 91 d 1 d 92 
g ven y Or 0 an ~nanog u, Hermann, an A exan er~ 

ln semi-empirical pi-electron calculations, the combined 

magnitude of both effects is assumed to be the same in molecules and free 

atoms, and g is evaluated from equation (3.6). 
pp 

This parametrization has 

been highly successful in the molecular orbital theory of pi-electron 

. 1 
systems. 

ln this thesis, a generalization of Pariser's formula is used 

to determine the atomic parameters of the SCF-MO-CNDO theory for all 

valence electrons. For a basis set of sand p orbitals, there are four 

distinct atomic electron-repulsion parameters: gss' gsP' gPP' and gPP' 

(where p and p' are two different valence p orbitals of the same atom.) 

ln the CNDO approximation, these are all assigned a common value character-

istic of the atom, gAA' which measures the average repulsion of the two 

l, l . A 43 
va ence e ectrons ~n atom . 

Olear i et al. 93 1 d h f l t t . 
~ eva uate t e gkl rom va ence-s a e energ~es, 

but they did not evaluate the gAA required in the CNDO approximation. 



They genera1ized pariser's formula and determined C, Uss ' Upp ' gss, gPP, 

and g ,so that the equation 
pp 

43. 

~2 
k 1;& k 

~ tt gk 1 + 1/2 ~ ~ (~ -1) gkk 

(3.7) 

(l'1here k and 1 are summed over a11 va1ence-she1l orbita1s on an atom ) 

best fits certain atomic va1ence-state energies as a function of orbital 

occupation numbers ~. 

Equation (3.7) is simi1ar in form to the theoretica1 expression 

for va1ence-state energies in the CNDO approximation,44 except that 

(i) It is not invariant to rotation or hybridization (see 

Section D), and 

(ii) The parameters are determined from atomic spectra, and 

vary marked1y with atomic charge. 93 For use in mo1ecu1ar ca1cu1ations, 

it is important to eva1uate the parameters from the energies of valence 

states, which are as c1,se as possible to e1ectroneutra1ity. The constant 

C is inc1uded in equation (3.7) so that the "core state", with a11 valence 

e1ectrons removed, is not used in eva1uating the parameters; If C were 

set equa1 to zero, the core state wou1d befixed as the zero of energy, 

. and therefore used in determining the parameters. 

In this work, the fo110wing changes have been made from the 

procedure of Oleari et al.: 

(i) 
. . 78 79 

The va1ence-state energy data of H~nze and Jaffe ' have 

b d h h h k cl • h cl 94 een use , rat er t an t ose of S inneran Pr~tc ar J since the 



former are the result of a more complete examination of atomic spectral 

dat'a, and systematic calculation of Slater-Condon parameters and non-

observable states. Also, the energies of all valencè states needed are 

, 79 
available. 

(ii) Parameters for each atom have been evaluated entirely 

from the valence-state energies of that atome Oleari et al. adjusted 

44. 

their parameters to vary linearly with atomic number, since they found sorne 

valenëe-state energies by extrapolation. 95 This was unnecessary in the 

present work since more complete valence state energy data was used. 

Table (3.2) shows that the assumption of a linear variation with atomic 

number is, not justified in all cases. 

(Hi) The electron-replllsion integrals, g." have been averaged 
1) 

to find the atomic parameter gAA (Section D),. 

(iv) The atomic core matrix elernent, Uss and Upp' have been 

adjusted' after the averaging process (Section D). 

Equation (3.7) contains seven atomic parameters: core integrals 

Uss and U ; electron-repulsion integrals g g g g ,; and an additive 
pp ss, sp, pp, pp 

constant C. For each atom, the core and ,electron-repulsion integrals were 

evaluated by substituting into equation (3.7) the energies of seven 

valence states, selected according to the following principles: 

(i) Each electron-repulsion integral was calculated as the 

difference between an ionization potential and an electron affinity of the 

'neutral atom, as in pariser's formula. All valence states used to evaluate 

the parameters were either neutral, unipositive, or uninegative. 



(ii) For each atom, the states chosen formed a set sufficient 

to evaluate the seven parameters in equation (3.7). 

(iii) When conditions (i) and (ii) permitt~d a further choice 

of states, valence states with low promotion energies were preferred to 

highly excited states, as the less excited states resemble more closely 

the spectroscopie states used to derive the Slater-Condon parameters, and 
. 79 

are therefore more accurate. 

(iv) Valence states were preferred which resemble the state 

of the atom in a large number of molecu1es. 

(v) Unipositive valence states were preferL'ed to uninegative 

45. 

states, since the ground-state ionization ~otentials of most atoms are mo~e 

accurately known than the ground-state electron affinities. 

In Table (3.1), the formulae for the eva1uation of the core and 

electron-repulsion integrals are listed for hydrogen and the atoms in the 

first ro~ of the periodic table. The formulae for heavier atoms are 

identical with those for the corresponding first-row atoms. The 

evaluation of the additive constant C is described be1ow. 

D. ATOMIC ·PARAMETERS IN THE CNDO APPROXIMATION: 

As pointed out in Ghapter 2, if the full SCF-LCAO-MO equations 

are simplified by the CNDO approximation, without the additional restric-

t~ons necessary for invariance, the diagonal e1ement of the total 

electronic Hami1tonian for the kth orbital on atom A is given by 

equation (2.23). 



TABLE (3.1) 

EVALUATION OF ATOMIC PARAMETERS FROM VALENCE STATE ENERGIES 

For hydrogen, 

For lithium, 
.• 

- 2 + 
g = E (H , s ) - 2 E(H, s) + E (H ) 
ss 

U = E (H,s) - E (H+) 
ss 

- 2 + 
8ss = E (Li ,s ) - 2 E (Li,s) + E (Li) 

8sp = E (Li-,sp) - E (Li,s) - E(Li,p) + E(Li+) 

2 
8 = E (Li-, P ) 

pp 

gpp'= E (Li- pp) - 2E (Li,p) + E (Li+) 

U = E (Li,s) - E (Li+) 
ss 

U = E (Li,p) - E (Li+) 
pp 

For beryllium, 

2 . + 
8 = E (Be-, s p) - 2E (Be,sp) + E (Be, p) 

ss 

(Be- , 2 - 2E (Be,sp) + E + s) 
gPP = E sp ) (Be • 

8 pp' = E (Be; spp) - 2E (Be, sp) +E (Be+, s) 

(Be, sp) + 
U . = E - E (Be , p) - gsP ss 

+ 
U = E (Be,sp) - E (Be, s) - g 

pp sp 

46. 
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For boron, 

For carbçm, 

8 = E (B-, S2pp) - 2 E (B, spp) + E (B+,PP) ss 

8 = E (B-, sp2p) 2E (B,spp) + E (B+, sp) pp 

8 - E pp'- (B-, sppp) - 2 E (B,spp) + E (B+, sp) 

U E + 
28sp' = (B,spp) - E (B , pp) -ss 

U + = E (B, spp) - E (B , sp) - 8 - 8pp ' pp sp 

8 = E (C-, s2ppp) - 2 E (C,sppp) + E (C+, ppp) ss 

8 = E (C-, s2ppp) E (C,sppp) - E (C,s2pp) + E (C+,spp) sp 

8 = E (C-, sp2pp) - 2E (C,sppp) + E (C+,spp) pp 

2 2 
8pp '= E (C-, sp pp) - E (C,sppp) - E (C,sp p) + E (C,spp) 

Uss = E (C,sppp) - E (C+,ppp) - 3 8sp 

U = E (C,sppp) - E (C+, spp) - 8 - 28pp ' pp sp 

47. 

For nitro8en, 

(N-, 2 2 
- 2E (N, 

2 (N+, 2 
8ss = E s ppp) sp pp) + E ppp) 

- 2 2 2 2 + 8sp = E (N , s ppp) E (N, s ppp) - E (N,sp pp) + E(N , sppp) 

8 .= E (N­
pp 

2 2 2 + 2 s ppp) - 2E (N,s ppp) + E (N ,s pp) 



For oxygell, 

- 2 2 2 + 
gPP' = E (N , sp p p) - 2 E (N, sp pp) + E (N , sppp) 

. 2 + 
Uss = E (N,s ppp) - E (N , sppp) - gss - 3g

sp 

2 + 2 
Upp = E (N, s ppp) - E (N , s pp) - 2 gsP - 2g

pp ' 

22222 + 22· 
g. = E (0-, s ppp) 2E(0,sp p p) + E (0 ,p p p) ss 

48. 

gsP = E (0-, 2 2 2 . 
s ppp) - E 

2 2 
(O,sp P p) - E 

2 2 + 2 
(O,s ppp) + E(O ,sp pp) 

- 222 2E gPP = E (0 ,s ppp) -
2 2 

(O,s ppp) +E (O+, 
2 2 

s P p) 

- 222 2 2 (0+, 2 g - E (0 ,s ppp) - 2E (O,s ppp) + E s ppp) pp,-

(0, 
2 2 + 2 

4g
sp U = E s ppp) - E (0 ,sp pp) - gss-ss 

(0, 
2· 2 + 2 

2g - 2g
pp ' U = E s ppp) - E (0 , s ppp) - gPP -pp sp 

For f1~9rine, 

- 2 2 2 2) 2 2 2 + 2 2 2 
gss = E (F s ppp 2E (F, sp pp) + E (F , ppp) 

- 2 2 2 2 2 2'2 2 2 2 + 2 2 
g = E(F ,s ppp) - E (F,s ppp) - E(F,sp pp) - E(F ,sp P l sp . 

( - 2 2 2 2 (2 2 2 ) (+ 2 2 2) g = E F ,s ppp) - 2E F,s ppp + E F, s P P pp 

- 2 2 2 2 2 2 2 + 2 2· g ,= E(F , s ppp) - 2E (F,s ppp) + E(F , s ppp) pp 

U ss 
222 + 2 2 = E (F,s ppp) - E (F , sp P p) - g -ss 

222 + 2 2 
Upp = E (F,s ppp) - E (F , s ppp) - 2gsp - gPP 3gpp ' 



If, in addition, the diagonal core matrix elements are parti-

tioned into atomic and interatomic terms, as in equation (2.26), then the 

th 
diagonal matrix element for the k orbital is 

49. 

(3.8) 

Pkk is the electronic population of the kth orbital in the molecule, 1 

i8 summed over aIl valence orbitaIs on atom A, and m over aIl valence 

orbitaIs on other atoms, denoted by B. Because of the restrictions 

needed for invariance of the SCF equations in the CNDO approximation,43 

this must be modified to 

(3.9) 

These two equations are not equivalent in general, but the para­

-rt 
meters may be chose)( so that they are equivalent for a specifie charge 

distribution. In this thesis, the parameters are eva1uated by equating 

the diagonal matrix elements given by equations (3.8) and (3.9), when each 

atom in a molecule, except'for hydrogen, has its valence-she1l electron 

'population equal1y distributed among one sand three p orbitaIs. In this 

casè equations (3.8) and (3.9) become 

(3.10) 

and 
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(3.11) 

respective1y, where PAA is the total va1ence-shell electron population on 

atom A. The atomic terms are equal for 

k 2 \ 
g ="]L. 

AA 1 

1 
~1 (1 - "2 8 k1) (3.12) 

where the superscript indicates that the matrix e1ement for the kth 

orbital is used to eva1uate g~. 

Chapter 4. 

The interatomic terms are dealt with in 

Equation (3.12) averages the intra-atomic valence-she1l electron 
'th, 

repulsion on anelectron in the k atomic orbital for the given charge 

distribution, if the spin density in the orbital is zero, as in a closed-

shell molecule. There is no reason to prefer the use of any one orbital 

for the evaluation of gAA' so equation (3.12) is averaged over aIl orbitaIs 

on atom A: 

1 
g = 4 

Mo r 
k 

IL 
1 

1 
gk1 (1 - 2' 8kl ) , (3.13) 

For a basis set of sand p orbitaIs, 

1 
gAB =,~ (gss + 12 gsP + 3 gPP + 12 gpp') (3.14) 

The replacement of equation (3.12) by equation (3.13) destroys 

the equality of the atomic terms in equations (3.10) and (3.11). ,It is 

impossible to adjust the pararneters, within the frarnework of the CNDO 

'approximation, so as to restore this equality for aIl values of PAA• It 



therefore seems best to restore the equality for the case of an exactly 

neutral atom, so that in mblecules with homopolar bonding, the error is 

eliminated. In calculations involving all valence-shell electrons, the 

total valence-shell electron population, P
AA

, of an exactly neutral atom 

equals the core charge, ZAo Equality of the atomic terms will then be 

restored,in the case of a neutral atom,by adjusting the core matrix 

elements in equation (3.ll), for any value of PAA, to 

where the bar indicates an adjusted parameter. 

ü 

and 

ss = U ss 

u u pp = pp + 

(3.15) 

For sand p orbitals, 

(3.16) 

(3.17) 

51. 

Table (3.2) lists the atomic parameters'for hydrogen and the main 

group elements of the first four rows of the periodic table. The para-

meter g~ is used to evaluate interatomic electron-repulsion integrals, 

as described in Chapter 4. The additive constant, Co, is chosen so that 

valence-state energies are given by an equation similar to equation (3.7) 

but with the invariance properties required in the CNDO approximation. 

(3.18) 
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TABLE 3.2 

SEMI-EMPIRICAL ATOMIC PARAMETERS (in ev.) 

Element Uss U gAA g* C pp AA 
R - 13.595 12.848 12.848 13.595 

Li - 4.999 - 3.673 3.469 3.458 4.999 

Be - 15.543 - 12.280 5.935 .5~953 25.151 

B - 30.371 - 24.702 8.000 8.048 61.444 

C - 50.686 - 41. 530 10.207 10.333 123.517 

N - 70.093 - 57.848 11. 052 11. 308 204.291 

0 -101. 306 - 84.284 13.625 13.907 335.908 

F -129.544 -108.933 15.054 15.233 487.697 

Na - 4.502 - 3.247 2.982 3.031 4.502 

Mg - 13.083 - 9.603 4.623 4.656 21.544 

Al - 22.828 - 18.592 5.682 5.680 47.203 

Si - 36.494 - 30.375 6.964 7.015 92.438 

P - 58.610 - 50.940 9.878 9.886 172.095 

S - 66.796 - 58.008 9.205 9.260 227.860 

Cl - 86.774 - 75.681 10.292 10.366 335.847 

K - 3.170 - 3.115 3.702 3.560 3.170 

Ca - 9.842 - 7.696 3.977 3.979 15.707 

Ga - 25.032 - 19.807 5.936 5.942 52.063 

Ge - 35.844 - 29.973 6.608 6.634 92~527 

As - 50.151 - 44.485 8.399 8.361 150.653 

Se - 66.005 - 57.927 9.121 9.156 227.686 
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e 
TABLE 3.2 cont. 

Element Üss U gAA g* C 
pp AA 

Br - 76.413 - '65.412 8.823 8.838 294.760 

Rb - 3.555 - 2.804 2.495 2.384 3.555 

Sr, - 9.430 - 7.074 3.749 3.761 15.110 

In - 23.056 - 17.663 5.530 5.582 47.185 

Sn - 26.981 - 21.869 4.297 4.304 72.317 

Sb - 47.427 - 40.923 7.657 7.761 141. 347 

Te - 64.464 - 57.144 8.985 9.039 223.174 

1 - 76.905 - 69.091 9.448 9.382 301.030 



54. 

relative to the ground state of the neutra1 atom. This is chosen as the 

zero of energy, rather than the core with a11 valence e1ectrons removed, 

since the higher ionization potentia1s of some of the heavier atoms in 

Table (3.2) are uncertain or unknown. o 
C was eva1uated, for each atom, 

by equating the energy of the most stable neutra1 valence state to its 

promotion energy. 

E. COMPARISON WITH ATOMIC PARAMETERS OF POPLE AND SEGAL· 

In. contrast to the procedure described here, Pop1e and Sega144,45 

eva1uated a11 e1ectron-repu1sion integra1s theoretica11y using the forma1 

definition, equation (2.18). For each atom, gAA was found by eva1uating 

the integra1 in equation (2.18) with 0k and 0r equa1 to the same va1ence-

96 she11 Slater s orbital, using integra1 formu1ae derived by Roothaan. 

In this procedure, no a110wance is made for the correlation of 

e1ectronic motions, or for energy changes associated with the e1ectrons in 

72 
one atomic orbital, such as the sigma e1ectrons considered by Pariser, 

due to changes in the population of other orbita1s on the same atom. 

After eva1uating e1ectron-repulsion integra1s theoretica11y 

they assigned empirica1 values to the local core matrix elements Ukk . In 

44 their original theory, they assigned Ukk by equating the valence-state 
. th 

ionization potential of the k orbital ta that found from atomic 

45 spectra. Later, they revised their method sa that the average of the 

ionization potential and electron affinity of a specified state was given 

correctly. This is an improvement, since the tendency of atoms to gain 



45 
and lose electrons is equally well represented. 

In order to compare the atomic parameters' of Pople and Segal 

with those in this thesis, atomic valence-state ionization potentials 

and electron affinities may be determined from equation (3.18) using both 

sets of parameters, and compared with those determined directly from 

atomic spectra. In Tables (3.3) and (3.4), these quantities are listed 

for several valence states of carbon and fluorine, as examples of 

elements usually partieipating in relatively homopolar and heteropolar 

bonds respectively. In some cases, one energy calculated from equation 

(3.18) corresponds to several valence states, since, in the CNDO 

approximation, the energies of all valence states with the same number of 

44 
sand p electrons are the same. The valence state data of Hinze and 

78 79 
Jaffe' show this to be true within 2-3ev. The ionization potentials 

and electron affinities derived from the parameters in Table (3.2) are 

55. 

accurate within 1 ev, except for the ionization potential, s2p2p2p ______ )~ 

222 
s p p of the singly occupied p orbital in fluorine. Those derived from 

45 
the final parameters of Pople and Segal are in error by several ev., sinee 

they are not based on electron-repulsion integrals determined from atomic 

spectra. 

There is another difference between the two sets of param~ters. 

1
44,45 

Pople and Sega equated gAA to the electron-repulsion integral 

between two electrons in the same 5 orbital, g ,rather than a weighted 
ss 

average of gss,gPP,gsP and gPP" as in equation (3.14). For theoretical 

electron-repulsion integrals, this differenee is unimportant, since it can 
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TABLE 3.3 

VALENCE-STATE IONIZATION POTENTIALS RECALCULATED FROM ATOMIC PARAMETERS 

(in ev.) 

Ionization Process Valence State Ionization Potentia1 

From atomic From parameters From parameters 

spectra in this thesis of POPLE and 

SEGAL 45 

C(sppp~ ppp) 21. 008 20.065 22.078 

C(sppp ~ spp) 11.269 10.909 13.579 

2 2 2 2 2 39.389 F(s ppp ~ sp p p) 

2 2 2 - 222 
39.220 45.116 

F(s ppp ~ ppp) 38.244 

2 2 2 2 2 
F (s ppp -i s p 1?p) 18.109 

2 2 2 -2 2 
F(sp p p ~sp p p) 18.514 18.609 23.924 

222 222 
F(s ppp -1s pp) 20.860 

TABLE 3.4 

VALENCE-STATE ELECTRON AFFINITIES RECALC~TED FROM ATOMIC PARAMETERS 

(in ev.) 

Process Valence State Electron Affinity 

From atomic From parameters From paral11eters 

spectra in this thesis of POPLE and 

SEGAL. 45 

2 
C(sPpp-?s ppp) 8.917 9.858 6.023 

2 
C(sppp ~ sp pp) 0.345 0.702 - 2.456 

e 222 222 2 
F (sp P P --) s ppp ) 24.372 24.166 19.428 

2 2 2 22 2 2 
F(s P P p~s ppp ) 3.497 3.555 .:. 1. 764 
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96 be shown from the ana1ytica1 integra1 formu1ae of Roothaan that gAA' 

as given by equation (3.14), equa1s 0.992 g • ss For most atoms, however, 

g is the pighest of the four e1ectron-repulsion parameters derived from ss 

atomic spectra, and is quite different from gAA. This may be because 

an s orbital does not extend as far into space as a p orbital in the 

same valence shel1, so that less correlation is possible between two 

electrons in a~ s orbital than in ~p ~rbital, or in two different orbitals. 

When the g.. are eva1uated from atomic spectra, therefore, it is 
1J 

important to eva1uate ~AA from equation (3.14) instead of equating gAA to 

g .• ss 

F. DISCUSSION 

The atomic parameters in this thesis are chosen so that, for a 

specifie charge distribution, the atomic terms of the diagonal Hami1tonian 

matrix e1ements, which are a measure of the atomic orbital electronegativi-

ties in the mo1ecu1e. have the same values as if g . g • g and g • ss' sp' pp pp' 

were not given a common value. It is impossible, however, to assign 

parameters in the CNDO approximation, so that the matrix e1ements depend 

on orbital population in the same way as they wou1d without this restriction. 

The atomic parameters have been ca1cu1ated by consideringo a charge 

distribution with the va1ence-she11 e1ectrons of each atom equal1y 

distributed among the valence orbita1s. If on1y sand p orbita1s are 

considered, this is a rough approximation to the charge distribution in 

many molecu1es, so that the parameters obtained are reasonable for 



molecular calculations. For main-group elements. whose d orbitals are 

only slightly occupied in many molecules. the inclusion of d orbitaIs on 

the same basis as sand p orbitaIs would be a much worse approximation. 

The treatment of such d orbitaIs in a ·semi-empirical theory is a subject 

46 for future research. although Santry·and Segal have included d orbitals 

in their calculations, using theoretical electron-repulsion integrals. 

One possible criticism of the procedure described in this 

chapter is that equation (3.13) is not itself invariant to a change in 

basis set. It was found for sev.eral atoms, however, that gAA varies 

by only a few tenths of an electron volt, if a hybrid basis set is used 

in its evaluation, so that the value derived from s-p valence state 
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energies may be used in MO calculations with a basis set of hybrid orbitals. 

It is better to evaluate the parameters from s-p valence state energies, 

rather than hybrid orbital valence state energies, because: 

(i) the s-p valence~state promotion energies from atomic 

spectral data are more accurate, and 

(ii) as mentioned in Chapter 2, the atomic terms ~f the 6ff-

diagonal elements of the core Hamiltonian matrix between pure ·s, p, d, ..•. 

43 
valence orbitals on the same atom are zero because of symmetry. The 

off-diagonal matrix elements between hybrid orbitals are not zero, and 

cannot be evaluated by the procedure of Section D. 
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CHAPTER 4 

EVALUATION OF INTERATOMIC PARAMETERS 

Those paramete~s of the SCF-MO-CNDO the ory which are defined 

only within molecules have no meaning for free atoms, so that they cannot 

be evaluated from atomic spectra. They can either be evaluated theoretically, 

or assigned empirical values derived from molecular properties. As dis-

cussed earlier (Chapter 3), it is best to combine theoretical and empirical 

ideas when assigning parameters. 

In Sections A and B, the evaluation of the interatomic parameters 

of the diagonal matrix elements Fkk is described: Section A deals with the 

interatomic electron-electron repulsion integral, gAB; and Section B with 

the interatomic electron-core attraction integral, V
AB

• The overlap 

integrals, SkI' and the bonding parameters, ~~ , in the off-diagonal core 

matrix elements, ~l ' are dealt with in Sections C and D respectively •. 

A. INTERATOMIC ELECTRON -ELECTRON REPULSION INTEGRALS 

The interatomic electron-electron repulsion integral, gAB' is 

defined as the average electrostatic repulsion between two electrons in the 

43 valence-shell orbitaIs of two atoms. The repulsion between an electron 

th . th 
in the k orbital of atom A, and one in the r orbital of atom B is 

formaÙy defined (Chapter 2) as the integral 

= (kk/rr) fIt* fit vr (2) v
r 

(2) d V1 d V2 (2.18) 
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which may be eva1uated for orbita1s of a specified functiona1 forme The 

44 45 
gkr may then be ~veraged in some way to eva1uate gAB' Pop1e and Segal ' 

equated gAB' for ea~h pair of' atoms, to the integra1 defined by equation 

(2.18) for va1ence-she11 Slater s orbitaIs, which they eva1uated using 

96 
formu1ae 1isted by Roothaan. 

The CNDO approximation, however, is ana10gous to the ZDO approxi-

mation in pi-e1ectron theory, which,is in better agreement with experiment 

if the interatomic e1ectron-repu1sion integra1s, as we11 as the atomic 

ones, are reduced be10w their theoretica1 va1ues. 1 ,41 This i8 necessary 

because of the correlation between e1ectrons on different atoms~1,84-86,88,97 

The interatomic e1ectron-repulsion integra1s in the SCF-MO-CNDO the ory have 

therefore been eva1uated by empirica1 formulae simi1ar to those which have 

b d f 1 · . 1 h . h h DO .. 41, 98-10C 
een prove success u 1n p1-e ectron t eory, W1t t e Z approx1mat10n. 

This procedure i5 tested by comparing physica1 properties, ca1cu1ated using 

both the empirica1 and the theoretica1 interatomic electron-repu1sion 

integrals, with experiment. 

In the semi-empirica1 pi-electron theory, the interatomic e1ectron-

repulsion integra1s, gkr' are functions of the internuclear distance, and 

of the atomic e1ectron-repu1sion integrals of the two atoms. These functions 

b h f 11 
41,98-100 

e ave as 0 ows: 

(i) As the internuclear distance approaches zero, the value of 

gkr for two pi-orbitaIs of similar atoms approaches the atomic electron­

repulsion integral, gkk' for a pi-orbital of either atom, while for 

dissimi1ar atoms it approaches the arithmetic mean of the atomic electron-
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repu1sion integra1s for the pi-orbita1s of the twoatoms. 

(ii) As the internuc1ear distance becomes infinite, the effect 

of correlation becomes sma11, and each e1ectron-repu1sion integra1 approaches 

its theoretica1 value, which is, at infinite distance, the e1ectrostatic 

repu1sion of two point charges. 

and 

These conditions may be expressed mathematica11y as 

lim 
R" ~OO AB 

= 

= 

(4.1) 

(4.2) 

where the k th and r th orbital are on atoms A and B respective1y. pariser 

41 and Parr used interatomic repu1sion integra1s given by 

= (4.3) 

where the constants a and b were chosen so that ~r is equa1 to its 

theoretica1 value at two distances (2.8 A and 3.7 A), which were considered 

to be large enough for the correlation effects to be neg1igible. For 

internuc1ear distances 1arger than 2.8 A, they used theoretica1 e1ectron-

repu1sion integra1s, since ~r' as defined in equation (4.3), becomes 

infini te at large internuc1ear distances. This formula is ~ot satisfactory 

for a11 mo1ecules, because the distances 2.8 A and 3.7 A were chosen simp1y 

because of their frequent occurrence in conjugated hydrocarbons, and conse-

quent1y have no genera1 significance. A1so, the artificia1 assumption that 

correlation effects vanish at distances gr~ater than 2.S A is due to the 



inclusion of positive powers of RAB' which prevent equation (4.3) being 

va1id at large internuc1ear distances. 

Sever al other formu1ae for the interatomic integra1s have been 

suggested, which have the correct asymptotic behaviour, and can be used 

98 
at a11 internuc1ear distances. Mataga used the formula 
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= 
1 a = 2 (4.4) 

101 
In conjugated mo1ecu1es, equation (4.4) 1eads to sma11er gkr than the 

pariser-Parr formula, equation (4.3). B100r and Brear1ey102 have found 

that the use of equation (4.4) 1eads to more accurate predictions of the 

e1ectr~nic spectra of alternant hydrocarbons. 

. 99 
Another formula is that of Ohno: 

= 1 2 (4.5) a = 

jR~ + a
2 

. 101 
For conjugated hydrocarbons, equation (4.5) 1eads to values of gkr about 

equa1 to those found from the Pariser-parr formula, equation· (4.3)·, in the 

range of RAB for which equation (4.3) is app1ied. These two formu1ae 

provide a representative samp1e of the values of gkr used in semi-empirical 

101 
mo1ecu1ar orbital ca1cu1ations on pi-e1ectron systems. 

Miller et al~03 used theoretica1 interatomic e1ectron-repu1sion 

integra1s, but modified the Slater exponent of the prbita1s so that the 

atomic e1ectron-repulsion integrals agreed with semi-empirica1 values, 

derived from atomic spectra. This imp1ies that the effects of correlation, 
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and reorganization of the sigma electrons, may be accounted for by using 

"effective atomic orbitalsll more diffuse than actual atomic orbitaIs. 

aowever, interatomic electron-repulsion integrals evaluated by this method 

are almost identical104 to those found from Ohno's formula, and will not 

b~ considered separately. 

Three different ways-of estimating electron-repulsion integrals 

are compared nere: 

(i) AlI the electron-repulsion integrals, both atomic and 

interatomic, are calculated by evaluating the theorerical integral, equation 

44 45 (2.181 for valence-shell s orbitaIs, as in the work of Pople and Segal. ' 

(ii) Atomic electron-repu1sion integrals are evaluated from 

valence state energies as described in Chapter 3, and interatomic integrals 

- 98 by the Mataga formula, which is here adapted to calculations including 

aIl valence electrons. 

1 = a = 2 (4.6) 

where g!A and g~B are atomic limits, defined by equation (4.11). 

(iii) Atomic integrals are evaluated as described in Chapter 3, 

and interatomic integrals by Ohno's formula,99 modified to apply to"all 

valence e1ectrons. 

1 2 
(4.7) gAB = a = 

jR2 + 2 g* + g* 
a AA BB 

AB 

In Part B of this thesis, mo1ecular properties are computed, 
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using elec~ron-repulsion integrals evaluated br aIl three methods. It is 

sho .. m that methods (ii) and (iii) are significantly better than method (i). 

This justifies the use of electron-repulsion integrals derived from atomic 

spectra. 

The atomic limits glA and g~B of equations (4.6) and (4.7) are 

derived by slightly modifying the derivation of the atomic electron-

repulsion integrals, gAA' in Chapte~ 3. If the interatomic electron­

repulsion terms of equations (3.10) and (3.11) are jaquated, for a basis 

of sand p orbitaIs, and the resulting expression averaged over aIl orbitaIs 

on atom A, it is found that 

1 
gAB = 16 IL (4.8) 

k r 

where gkr is the electron-repulsion integral between the k th orbital on 

atom A, and the r th orbital on atom B. At zero internuclear distance, by 

analogy with equation (4.1), 

~r = (4.9) 

where g~r' is the electron-repulsion integral between the kth orbital, and 

the valence-shell orbital r' on atom A, of the same type (s, poo , P1T" or 

p -.r') as the th orbital on atom B. An analogous definition holds for r 

B 
gk'r' 

By substi tuting (4.9) into the Hmiting form of (4.8), 

Hm 
1 * * gAB = (gAA + gBB) (4. 10) R

AB
-7 0 2 
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where A A * 1 
gM = 16 r· :E (4.11) 

k l 

* and simi1ar1y for gBB' 

* The gM values for the main-group e1ements of the first four 

rows of the periodic table are 1isted in Table (3.2), with the corresponding 

* atomic parameters. In fact, gM and gM differ by 1ess than 0.2 ev. for 

a11 atoms 1isted, since they are both weighted averages of the orbital 

parameters gkl ' but with different weights. The distinction between the 

two parameters has been maintained, since there is no advantage in making 

* the further approximation gM = gAA' 

For the e1ectron-repu1sion integra1 between two hydrogen atoms, 

equation (4.11) isrep1aced by 

= (4.12) 

For the e1ectron-repu1sion integra1 between a hydrogen atom and another 

atom, equation (4.11) shou1d forma11y be rep1aced by 

(4.13) 

for both hydrogen and the other atome As gsP is not defined for hydrogen, 

* gAA has been equated to g for hydrogen, and eva1uated from equation (4.11) 
ss 

for the other atome This procedure is justified by the fact that the first 

approximation raises gAB' and the second lowers it. A1so, "there is. the 

* further advantage that gAA has a characteristic value for each e1ement, 

independent of the other atom B in the e1ectron-repu1sion integra1 gAB' 



* that gAA' 

For theoretica1 e1ectron-repu1sion integra1s, it can be shown 

as defined by equation (4.11)" is equa1 to g , so that Pop1e ss 

and Segal are correct in equating them. But for integra1s determined 

from atomic spectra, this is not so~ as discussed in Chapter 3 for gAA' 

and equation (4.11), must be used, except for hydrogen. 

B. INTERATOMIC ELECTRON -CORE ATIRACTION INTEGRALS 

The interatomic electron-core attraction integra1, V
AB

, is 

defined as the e1ectrostatic attraction between an et'ectron in a va1ence­

she11 orbital of atom A, 'and the core of atom B. 43 For the k th orbital, 

it follows from equation (2.26) that 
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V AB = f~: VB ~k d V (4.14) 

Pop1e and Sega144 originally evaluated equation (4.14) for the va1ence--shell 

96 s orbital, using formulae listed by Roothaan. This procedure implies a 

net electrostatic interaction between an electron on atom A, 'and the neutral 

atom B, given by 

= V + AB 
(4.15) 

The superscript denotes that V~ 'refers to the potential of a neutral atome 

If the two charge distributions of atoms A and B are spherically symmetric, 

o then V
AB 

differs from zero entirely because of the mutual penetration of 

the two charge distributions, and is called a penetration integral. l ,4l,45 

Later, Pople and Sega145 showed that their theory i8 in better 



agreement with experiment when penetration integrals are neg1ected. They 

+ showed that for the.hydrogen molecule-ion, H2' the errors caused by the 

neg1ect of penetration integrals are approximately equal and opposite to 

thèse caused by the CNDO approximation. They therefore. evaluated the 

interatomic core-attraction integrals so as to eliminate penetration 

integrals, i.e., 
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VAB = (4.16) 

The interatomic electron-repulsion integrals described in Section 

A of this chapter are considerably smaller than the theoretical integrals 

used by Pople and Segal. Theoretical interatomic core-attraction integra1s 

wou1d imply large effective penetration integra1s. Penetration integrals 

have therefore been eliminated by using equation (4.16) to evaluate aIl VAB • 

The diagonal matrix elements given by equation (2.29) are then simplified 

to 

= (4.17) 

and the diagonal core matrix elements in equation (2.26) to 

l\k = L 
B:/:A 

(4.18) 

C. OVERLAP INTEGRALS 

The overlap integra1 between t,vo orbi taIs, Ok and 01 ' was defined 

in Chapter 2 as 

(2.5) 
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Overlap integrals are explicitlY,included in Roothaan's equations, but are 

eliminated in the CNDO approximation. They do appear, however, in· the 

off-diagonal core~Hamiltonian matrix elements, 11tl (equation 2.28). 

Overlap integrals can be evaluated for an explicit form of the 

atomic orbitals. lOS In a central field, every atomic orbital can be 

exp~essed as the product of a radial and an angular function 

= (r) Y lm (9, 0) (4~l9) 

where n, land m are principal, azimuthal and magnetic quantum numbers 

respectively. The angular function, Yl m' is a spherical harmonie, and 

for hydrogen-like atoms, Rnl has the form 

(r) = P (r) 
-Zr/na o 

e (4.20) 

where P(r) is an associated Laguere polynomial, Z is the atomic number, and 

ao'is the Bohr radius. For other atoms, radial functions have been calculated 

from the self-consistent field the ory , using either the Hartree-Fock 

. 7, 23 h' . f 26 A . b· l equat1ons, or Root aan s equat10ns or atoms. tom1C or 1ta s 

calculated from the Hartree or Hartree-Fock equations are expressed as 

numerical tables, and those from Roothaan's equations are linear combinatiolls 

f b f b . f . 26 o a num er 0 aS1S unct1ons. th 
7,70,106-110 

Several au ors have proposed 

approximate analytical orbitals, which are more convenient for computation. 

The simplest of these are the Slater orbitals,70 which have been widely U$~ 

in molecular orbital calculations. 

70 The radial p~rt of a Slater orbital has the form 
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(r) = n' -1 
Nn r 

-Z'r/n'a o 
e (4.21) 

N i8 a norma1ization constant, and the parameters Z' and n'are chosen to 
n 

fit more accurate atomic orbita1s. From equations (4.20) and (4.21) it can 

be seen that Z' is an effective atomic number. Slater eva1uated it as 

Z' = Z s (4.22) 

70 where· s is a "shie1ding constant," . which a110ws for the shie1ding, or 

screening, of the nucleus by the e1ectrons in orbita1s other than the one 

considered. Also, n' is an effective principal quantum number. Slater70 

found that sand p orbitals best fit accurate atomic orbita1s when n' was 

given by: 

n' = n, n = 1 - 3 

n' = 3.7, n = 4 

n' = 4, n = 5 (4.23) 

70 Since the radial functions of Slater orbitals have no nodes, 

va1ence-she11 orbita1s are ~ orthogonal to inner-shel1 orbitals. Rowever, 

as inner-shel1 orbitals are not treated exp1icit1y in this thesis, this 

causes no non-orthogonality difficu1ty. 

In this thesis, Slater orbitals are used, with the parameters Z' 

70 and n' given by Slater's ru1es, except for hydrogen. In the hydrogen 

atom, there is no screening, so Z~ = ZR = 1, and the Slater orbital is 

identica1 to the exact wave function. In the hydrogen mo1ecu1e, however, 

111 . 
i t has been found that the 1mvest energy for an LCAO-MO wave function is 



obtained for,Z~ = 1.2. A1so, in accurate mo1ecu1ar ca1cu1ations for 

other molecu1es,112 using the Roothaan equations, in which the hydrogen 

exponent'has been varied, the value Z~ = 1.2 1eads to lower energies than 

ZR = 1.0. Physica11y, this is due to the fact that the contraction of 

70. 

the hydrogen orbital 1eads to more stable bonding. 113 Pop1e and Sega144 ,4S 

used Z~ = 1.2, but HOffmann,114 in the Extended Hucke1 the ory described in 

Chapter 5, used Z~ = 1.0. In this thesis both values are used, and a 

comparison is made on the basis of computed physica1 properties. It will 

be shown in Chapter 8 that Z~ = 1.2 is preferred in ,the semi-empirica1 

SCF-MO-CNDO theory, since it 1eads to more accurate bonding energies. 

Over1ap integra1s for Slater orbita1s, of principal quantum 

number 1, 2, 3 or 5, May be eva1uated ana1ytical1y by the methods of 

Mulliken et al. 105 The computation of these integra1s is described in 

Appendix B. 

For n = 4, the radial function, equation (4.21), becomes 

= N 2.7 
4 r e 

-Z'r/3 7a • 0 
(4.24) 

Over1ap integra1s for such an orbital cannot be evaluated ana1ytical1y, 

because of the non-integral power of r, which is present as a factor. This 

difficulty can be avoided by using an approximate orbital, which is a 

1inear combination of orbitals for whichoverlap integra1s can be eva1uated. 

The approximate combination is obtained by assuming that R4 can be inter­

po1ated between R3 and RS in the same way that the corresponding n' is 

interpolated. Two forms for the approximate orbital were tried: 
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2 -Z'r/3a 3 -Z'r/4a . 
N

4
'(0.3 r e 0 + 0.7 r· e 0) 

and 

= 

R " (r) 4 

= 

2 3 
= N4" (0.3 r + 0.7 r) 

-Z'r/3.7a o 
e 

(4.25) 

(4.26) 

where the N's are norma1ization constants. The accuracy of these approxi-

mations to equation (4.24) may be examined by computing their over1ap with 

the Slater orbital. The required oyer1ap integrals are one-centre integra1s, 

and can be computed using gamma functions. The over1ap integra1s of R4 

with R4 ' and R4" are 0.99651 and 0.99979, respective1y, showing that 

these simple interpolations are quite justified. In computations for 

orbita1s with n = 4, R4 (r) has been rep1aced by R4"(r), the more accurate 

of the two approximations. The value of N4" is 1.01384531. 

·f C d 115 d· . f 8 10 Le1 er, otton an Leto use ser1es expanS10ns 0 - terms 

each to approxima te over1ap integra1s invo1ving R4' but the simp1er method 

proposed here shou1d be as good, since R
4

" is such a close approximation 

D. BONDING PARAMETERS 

The bonding parameters, 13~, are used to eva1uate the off-diagonal 

core Hami1tonian matrix e1ements, 

11c1 = 1 0 
"2 (l'A + (2.28) 

which are analogous to the core resonance integrals in the Pariser-Parr-Pop1e 
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1 41 theory of pi-e1ectron systems.' In this section, a theoretical basis 

for equation (2.28) is given, and the eva1uation of the bonding parameters 

i8 described. 

Equation (2.28) may be approximate1y derived, using arguments of 
. 55 

a type suggested by Mulliken for the eva1uation of difficu1t integrals 

in mo1ecular orbital theory. ~l is formally defined as 

=J~: 
0 

~1 H ~1 d V core 
(2.13) 

~ 116 As R edenberg pointed out, the orbital ~l can be expanded in the 

complete set of orbitaIs, ~k' of atom A: 

A 
= L (4.27) 

k l 

The overlap charge distribution is then 

* 
A 

'/J* ~k ~l = I: '/Jk 1 Sk'l 
k l k (4.28) 

Similarly, on expanding ~k in terms of the orbitais of atom B, 

* 
B 

* 
~k ~l = L ~l '/Jl' Ski' 1 1 

(4.29) 

Averaging equations (4.28) and (4.29) leads to the identity 

* 1 A 
* 

B 
~* '/Jk '/JI = (1: '/Jk ~kl Skll +[ '/J 11 Sk 11) 2 k l . 1 1 1 

(4.30) 

In the Mulliken approximation,55,116 the dominant terms of 

equation (4.30) are assumed to be the ones which are not themselves overlap 

distributions, so that 
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= (4.31) 

Equation (4.31) seems a drastic approximation, but on integration over a~l 

space, the errors cancel, and the definition of the overlap integral is 

obtained. It has been shown ,that three- and four-centre electron-interaction 

integrals are fairly weIl approximated using equation (4.31), or modifications. 

f
. 53 

o 1. t. 

Substitution of equation (4.31) into the definition of 1\1 ' 

equation (2.13), gives 

1\1 , (4.32) 

Equation (4.32) is similar to, Pople and Segal's form for 1\1 ' equation 

(2.28), in that the overlap integral SkI is included as a factor. 

It differs from equation (2.28), however, in that 1\k depends on 

the orbital for which it is evaluated, as wellas on the molecular 

o ~ 
environment, whereas ~A' in the the ory of Pople and S~gal, is characteristic 

'of the atom A only. In order to transform equation (4.32) to an' equation 

with the same properties as equation (2.28), two further approximations 

are made. 

(i) The interatomic parts of ~k and Hll are omitted, 50 that 

equation (4.32) becomes 

1\1 = (4.33) 

where Ukk and Ull are defined by equation(2.26). 
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(ii) Ukk and U 11 must be averaged over the orbi tals on each 

atom, so that 

1 
~l = '2 (UAA + UBB) Skl (4.34) 

where the atomic par ame ter , U
AA

, is defined as 

UAA = lu 
4 ss + ~U 4 pp 

(4.35) 

for a basis set of sand p orbitals. Equation (4.34) has the same form as 

equation (2.28), with the bonding parameter 

~o 
A 

(4.36) 

Equation (4.34) can be improved, while retaining the transforma-

tion properties of equation (2.28), by introducing a multiplicative 

parameter K to allow for the effect of the terms omitted in deriving 

equation (4.34), so that 

~l 

and the bonding parameters are given by 

~o 
A = 

(4.37) 

(4.38) 

Equation (4.37) is similar to the Wolfsberg-Helmholz approxima­

tion,l7 used in the independent-electron theories described in Chapter 5. 

In these theories, for which overlap is included, K is evaluated empirically, 

and generally has values between land 2. In the semi-empirical SCF-LCAO-MO 
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theory of Yonezawa et a1,54 which a1so inc1udes over1ap, K is empirica11y 

eva1uated as 1.1. 

It was shown in Chapter 2, however, that in the CNDO approximation, 

a11 matrix e1ements shou1d refer to the basis of Lowdin orthogona1ized 

orbita1s, defined by equation (2.19). Lowdin47 showed that in this basis, 

H is transformed to the matrix 

= (4.39) 

Since the magni tudes of the over1ap integra1s, Sk 1 ' are 1ess than one, 

-1/2 ' S may be expanded by the binomial theorem, 

S-1/2 = (1 + s)-1/2 = l - î s + ~ s2 •... (4.40) 

where l is the unit matrix. Substitution of equation (4.40) into equation 

(4.39) yie1ds 

= H. - 1:. cI 
-K 1 2 r:fk 

S H +>=" lI. S ) kr r 1 ri1 -Kr r 1 (4.41) 

to first or der in s. Since the diagonal e1ements of the core-Hami1tonian 

matrix are 1argest in magnitude, then, very approximate1y, 

lI.0rtho 
-K1 =- (4.42) 

ortho 
From equations (4.42) and (4.32), ~ 1 is close to zero. If ~ 1 has 

h f d h 1 d 1 h b d o d ~o t e orm suggeste y Pop e an Sega, t e on ing parameters ~A an ~B 

must he much sma11er than U
AA 

and U
BB

• If equation (4.37) is true, K 

must he much smaller than one. 
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The above analysis gives the basis for the simple formula (2.28), 

and indicates that the bonding parameters might obey equation (4.38), for 

sorne X'less than one. Preliminary calculations, showed, however, that 

computed physical properties were quite sensitive to variations in K, 

and that satisfactory results could not be obtained with a single value 

,of K. 

This shows that the approximations made in deriving equation (4.38), 

and equation (4.42), are too drastic for equation (4.38) to be accurate for 

any K. Also, no provision has yet been made for empirical evaluation of 

any of the parameters of the theory, using molecular properties. It was 

therefore decided to evaluate empiricalbonding parameters for each element, 

and then to see how closely equation (4.38) is obeyed. 

There are several molecular properties which could be used to 

evaluate the bonding parameters. In the Pariser-parr theory of pi-electron 

41 systems, the core resonance integral was evaluated using electronic 

42 spectra, while Pople was concerned with ground state ionization potentials, 

electron affinities, resonance energies, and charge distributions. Dewar 

and Gleicher l17 have pointed out that, in a semi-empirical theory, ground-

state properties should be calculated with parameters evaluated from 

ground-state properties, since the use of parameters evaluated from 

electronic spectra may include a correction for effects present only in 

excited electronic.states. 

In this thesis, ionization potentials, molecular bonding energies, 

dipole moments, and nuclear quadrupole coupling constants have been computed 
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from the SCF-MO-CNDO the ory , as described in Part B. Pre1iminary ca1cu1ations 

showed that the bonding energies are most sensitive to variations in the 

bonding parameters (Table 4.1). The fo11owing procedure was therefore used 

to eva1uate the bonding parameters: 

(i) 
o 

The bonding parame ter for hydrogen, ~H' was chosen to give 

the correct dissociation energy for the hydrogen mo1ecu1e. For hydrogen, 

the 

~e 

bonding mo1ecu1ar orbital is determined by 

y = 

dissociation energy, 

D = e 

~1 + ~2 

~ 

as shown in Chapter 8, 

symmetry to be 

(4.43) 

is 

(4.44) 

which may be equated to the experimenta1 value; 4.751 ev. (see Chapter 8) 

to find ~~, for a given choice of the interatomic e1ectron-repu1sion 

integra1s, and of the hydrogen exponent (which de termines the over1ap 

integra1 S12)' 

(ii) The bonding parameters for other e1ements were chosen to 

give the correct bonding energies of binary hydrides, AH. The binary n 

hydrides were chosen as the reference mo1ecu1es because they form a series 

inc1uding a mo1ecu1e for each e1ement of interest. The bonding energy of 

each hydride, AH , was computed for a range of values of the bonding n 

parameter, ~~. The detaiis of this calculation, and the variation of the 

atomization energies with ~~, are shown in Chapter 8. In this chapter, the 

best values of the bonding parameters are of prime interest. Table (4.2) 

lists these values for each choice of e1ectron-repu1sion integra1s and 

. hydrogen exponent. 
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. TABLE 4.1 

VARIATION OF MOLECULAR PROPERTIES OF HF AND Hci WITH HALOGEN BONDING PARAME TER ~: 

HF HC1 

Physi~al_Pr9perty 
~o = 20 

A 
19 18 17 10 9 8 

Bonding Energy 7.30 6.87 6.44 6.03 5.22 4.66 4.11 

First Ionization Potentia1 ( 11 ) 16.27 16.24 16.21 16.18 13.19 13.18 13.17 

Second Ionization Potentia1 (~ ) 16.78 16.64 16.49 16.35 14.27 14.09 13.89 

Third Ionization Potentia1 «(j ) 37.90 37.79 37.69 37.58 24.98 24.88 24.79 

Dipole Homent 1.897 1.897 1.898 1.898 2.058 2.025 1.991 

C135 Quadrupole Coupling Constant 85.72 86.02 86.29 

Note: SCF-MO Calcu1ations with CNDO Approximation. 

Parameters: 
o 

gAA from Atomic Spectra, gAB from Mataga formula, Z~ = 1.2, ~H = 5.4 ev. 

Calculation of Physical Properties Described in Part B. 

ev 

ev 

ev 

ev 

ev 

D 

MC/s 

--.! 
00 
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TABLE 4.2 

BONDING PARAMETERS 13~ (in ev.) 

Code (a) Ml .M2 01 02 R1 R2 PS (b) 

Atomic Empiri- Empir- Empir- Theor- Theor- Theor- Theor-
Parameters cal (c) ica1 ica1 etica1 etica1 etical etica1 

.a.J (d) 
Q) 
fil 

Ohno Ohno Theor- Theor- Theor-
~ 

Inter- Mataga Mataga 
Q) atomic (e) (f) etica1 etica1 etica1 

.a.J 

~ gAB (d) 

fil Hydrogen 1.0 1.2 1".0 1.2 1.0 1.2 1.2 
Po. 

Exponent 
Z' 

H 

Evaluation Empir- Empir- Empir- Empir- Empir- Empir- Pop1e & 
of BO 

A 
ica1(g) . ica1 ica1 ica1 ica1 ica1 Sega1(h) 

----------------------------------------------------------------------------
H 4.9 5.4 3.9 4.3 5.4 5.2 9 

~i 0.4 0.7 -0.9 -0.8 2.5 3.8 9 

Be 3.8 4.0 3.2 3.4 4.3 5.2 13 

B 5.8 5.6 5.2 5.0 6.2 6.5 17 

C 8.7 8.2 7.8 7 .. 3 9.1 9.0 21 
0< co. 

9.6 8.8 
'H N '8.0 7.3 11.2 10.6 25 
0 

Ul 0 14.2 12.8 11.7 10.5 16.1 14.7 31 
~ 

. .-1 

17.2 QI F 19.2 15.7 14.1 22.6 20.4 39 > 

Si 5.0 5.2 4.6 4.7 

P 6.0 6.0 5.3 5.3 

S 6.7 6.5 5.8 5.6 

Cl 9.3 8.9 8.1 7.8 
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TABLE 4.2 (continued) 

Ge 4.3 4.4 3.8 4.0 

As 4.6 4.7 4.0 4.1 

Se 5.7 5.7 5.0 4.9 

Br 7.3 7.2 6.4 6.3 

Sn 3.4 3.6 1.9 2.1 

Sb 4.5 4.7 3.9 4.2 

Te 5.7 6.1 5.1 5.4 

1 6.5 6.7 5.8. 6.0 

----------------------------------------------------------------------

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

NOTES 

Arbitrary code for parameter set. 

45 CNDO/2 Method of Pople and Segal. 

From atomic spectra as described in Chapter 3. 

From theoretical integral formulae of Roothaan--first row only. 

From equation (4.6). 

From equation (4.7). 

From hydride bonding energies as described in texte 

By comparison with minimal-basis set calculations by Roothaan method. 
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Since the bonding pararneter for each element is evaluated with 

reference to its hydrides, it depends on the value of. the hydrogen . 

exponent, so that the resu1ts of calculations on mo1ecules, which do not 

contain hydrogen, depen~ indirect1y on the choice of the hydrogen exponent 

in the calibration. It will be shown in Chapter 8, however, that the 

value ZR = 1.2, and the corresponding bonding parameters, lead to more 

accurate molecular energies. 

The negative bonding pararneter for lithium, for interatomic . 

electron-repulsion integra1s given by the Ohno approximation, indicates 

that the arithmetic mean of bonding parameters, used in equation (2.28) 

for ~1 ' breaks down in this case. The use of a geometric mean wouid 

reso1ve this particular difficulty, but it would require extensive compu-

tation to show that a geometric mean is better for aIl molecu1es. AIso, 

the geometric mean does not have a theoretical basis. In this thesis, 

the arithmetic mean has been used, and the bonding p~rameter for lithium 

has been treated like the others, even though it has the wrong signe 

44 Table (4.2) also lists the Pople-Segal bonding parameters for 

hydrogen and the fitst-row elements. 
. 46 

The values of Santry and Segal for 

second-row elements are not included, since they were pub li shed after the 

completion of the work described here. These parameters were chosen by 

comparing the coefficients of computed molecular orbitaIs, and the 

differences between orbital energy eigenvalues, with those obtained by 

. 44 
accurate solution of the Roothaan equations for small moiecules. They 

are much Iarger than the empirical bonding parameters. A detailed comparison 



of the two sets of bonding parameters for first-row atoms is made in 

Part B. It is noted here, however, that the empirical values are more 

consistent with the values of core resonance integrals in pi-electron 

theories. 42 For carbon, for example, Pople showed that the resonance 

energy of benzene i8 correctly given for a carbon-carbon core resonance 

integral of 2.13 ev. Since the overlap Integral between two çarbon pi­

orbitaIs at the nearest-neighbour distance in benzene is 0.248,105 this 

corresponds to a carbon bonding parameter of 8.6 ev. 

Cl k d R 1 '118 hl' d h 1 Il 15 ar an ag e ave recent y ass~gne ,~e va ue • ev. 
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for the bonding parameter of carbon in order to fit the electronic spectrum, 

but they have not proposed a general empirical scheme for the evaluation 

of bonding parameters, as is done here, nor tested their value in calcula-

tions on a wide variety of molecules. 

From Table (4.2) the bonding parameters increase with atomic 

elec tronegativity , in agreement with equation (4.38), since uss and Upp 

increase similarly, as shown in Table (3.2). A more complete check of 

equation (4.38) is made in Table (4.3), which contains the values of KA' 

defined as 

= (4.45) 

for each bonding parameter. If equation (4.38) were true, then for a given 

parameter set, aIl KA would be equal. Table (4.3) shows, however, that 

the KA vary too widely for equation (4.38) to be useful in evaluating 

bonding parameters. 

The theoretical arguments leading to equation (4.38), however, 
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e. 
TABLE 4.3 

VALUES OF KA 

Par ame ter Ml M2 01 02 RI R2 PS 
Set 

H 0.36 .0.40 0.29 0.32 0.40 0.38 0.66 

Li 0.10 0.17 -0.22 -0.20 0.62 0.95 2.25 

Be 0.29 0.31 0.24 0.26 0.33 0.40 0.99 

B 0.22 0.21 0.20 0.19 0.24 0.25 0.65 

C 0.20 0.19 0.18 0.17 0.21 0.21 0.48 

N 0.16 0.14 0.13 0.12 0.18 0.17 0.41 

0 0.16 0.14 0.13 0.12 0.18 0.17 0.35 

F 0.17 0.15 0.14 0.12 . 0.20 0.18 0.34 

Si 0.16 0.16 0.14 0 •. 15 

P 0.11 0.11 0.10 0.10 

S 0.11 0.11 0.10 0.09 

Cl 0.12 0.11 0.10 0.10 

Ge 0.14 0.14 0.12 0.13 

As 0.10 0.10 0.09 0.09 

Se 0.10 0.10 0.08 0.08 

Br 0.11 .0.11 0.09 0.09 

Sn 0.15 0.16 0.08 0.09 

Sb 0.11 0.11 0.09 0.10 

Te 0.10 0.10 0.09 0.09 

1 0.09 0.09 0.08 0.08 
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are partially verified by Table (4.3), since for each row of the periodic 

table, KA is approximately constant for the more electronegative elements. 

For the less electronegative elements, it appears that KU
AA 

is small 

enough so that the terms omitted in deriving equation (4.38) become 

important. The variations between rows of the periodic table cannot be 

explained in this way, but must be due to another systematic failure of 

equation (4.38). 

Finally, the fact that aIl the KA values, except for lithium and 

beryllium, are much less than one, confirms the conclusion drawn from 

equation (4.42) that K should be small if overlap is neglected, since the 

matrix elements refer to Lowdin orbitaIs. 
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CHAPTER 5 

EXTENDED HUCKEL THEORY 

A. INTRODUCTION 

Two different versions of mo1ecu1ar orbital theory, which inc1ude 

al1 valence e1ectrons, are the SCF-MO-CNDO theory, for which a semi-

empirica1 parametrization has been described in Chapters 3 and 4, and the 

, 114 
Extended Hucke1 Theory (EHT) of Hoffmann, an examp1e of an independent-

e1ectron mo1ecu1ar orbital theory'. Many of the other approximate a11-

valence e1ectron theories in the recent 1iterature are mod{fications of 

f these h · 63,64,119-124 one 0 two t eor1es. 

In an independent-e1ectron mo1ecu1ar orbital theory, the Hartree­
o 

Fock Hami1tonian F of Roothaan's equations is rep1aced by a sum of effective 

1 15 16 one-e1ectron Hami1tonian operators,' , 

(5.1) 

The mo1ecu1ar orbita1s and their energies are found by solving the secu1ar 

equations: 

h C = S C E (5.2) 

o 
where h is the matrix corresponding to the one-e1ectron operator h~ff. The 

1 

matrix e1ements, ~1 ' do not depend on the e1ectronic charge distribution, 

and it is not necessary to iterate the equations to obtain a self-consistent 

solution. The advantage of such a theory is that the computation invo1ved 
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is simp1er. This was especia11y important before the avai1abi1ity of 

digital computers, but even at the present time, the shorter computation 

times and sma11er storage requirements make it possible to app1y non-

iterative theories to 1arger mo1ecu1es than iterative theories. The 

disadvantage, of course, is that no a110wance is made for· variation of the 

matrix e1ements with mo1ecu1ar charge distribution. 

114 Prior to the introduction of the Extended Hucke1 Theory, 

independent-e1ectron theories had been deve10ped to treat some of the 

e1ectrons in organic mo1ecu1es and transition-meta1 complexes. The first 

was the Hucke1 theory of pi-e1ectron systems, which was origina11y app1ied 

12 to ethy1eneO, benzene, and cyc1ic po1yenes, in which the mo1ecu1ar 

orbita1s are determined by symmetry. A genera1 Hucke1 the ory for pi-

1 d 1 d b 1 d . . 14 d h e ectron systems was eve ope y Cou son an Longuet-H~gg~ns, an as 

1 b . db·· 15 d b 1 16 recent y een rev~ewe y Stre~tw1eser, an y Sa em. In this theory, 

the diagonal Hami1tonian matrix e1ements, or Coulomb integra1s, are 

characteristic of each e1ement. The off-diagonal e1ements, or resonance 

integra1s, between bonded atoms are characteristic of the bonded pair of 

atoms, and those between non-bonded atoms are neg1ected. Over1ap integra1s 

are a1so neg1ected. 

Later, independent-e1ectron mo1ecu1ar orbital theories were 

deve10ped for a1kanes and their derivatives. 
48 125 

Hall and Brown constructed 

mo1ecu1ar orbita1s from 1inear combinations of bond orbita1s, whi1e 

126 Sandorfy deve10ped a Hucke1-1ike the ory , in which the basis orbitais are 

tetrahedra1 carbon orbita1s and hydrogen 1 s orbita1s. The overlap and 



resonance interactions between non-bonded atoms were omitted, as in the 

pi-e1ectron theory. A1ky1 derivatives have been treated simi1ar1y to 

pi-e1ectron systems with heteroatoms. 127 ,128 Dewar and pettit,129 and 

130 
1ater Pop1e and Santry, deve10ped perturbation theories for a1kanes, 

and obtained qualitative results which do not depend on the exact values 

of the Hamiltonian matrix elements • 
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. Molecular orbital the ory was first applied to transition-metal 

17 complexes by Wolfsberg and Helmholz, who considered the electronic spectra 

of the chromate, permanganate and perchlorate ions. The extensive literature 

18 '19 on this subject is primarily concerned with electronic spectra.' The 

high symmetry of many complex ions is used to simplify the secular equations, 

and to classify the calculated electronic states. 

The parameters of Wolfsberg and He1mholz17 are of interest because 

they are simi1ar to those of the EHT. The diagonal matrix e1ement, ~k' 

is defined as 

~k = J -: ~ff Ok d V (5.3) 

eff th where the operator hk acts on an electron in the k orbital. It 

represents the energy of an electron in the k th orbital, on atom A, in 

the field of the nuclei and the other electrons, and it is equated to the 

th " 17 valence-state ionization potential of the k orb1tal. 

Some authors have modified ~k to take into account the charge 

on atom A, by choosing matrix elements correspanding ta an assumed charge!23,13 

b " "t t" d t 1 t th h. 19,119,132-135 1 or y uS1ng an 1 era 1ve proce ure a eva ua e e -1tk. . n 



the iterative theories, which are not strict1y independent-e1ectron 

theories, ~k is assumed to de pend on1y on the charge .of atom A, and not 

on the charges of other atoms. On1y Basch and Gray124 have inc1uded the 

effects of the charges on other atoms, ·as in the SCF the ory . 

The off-diagonal Hami1tonian matrix e1ements in the Wo1fsberg-

He1mho1z approximation are given by 
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= (5.4) 

with K an empirica1 constant. This equation is ana~ogous to equation (4.32) 

for the off-diagonal core-Hami1tonian matrix e1ement in the SCF theory,and 

may be derived simi1ar1y. A11 over1ap integra1s were inc1uded by Wo1fsberg 

and He1mho1z. The prob1em of three- and four-centre electron-interaction 

integra1s does not arise in independent-e1ectron theories, since matrix 

e1ements do not depend on the mo1ecu1ar charge distribution. 

B. HOFFMANN' S EXTENDED HUCKEL THEORY (EHT) 

114 Hoffmann pr.oposed an independent-e1ectron mo1ecu1ar orbital 

theory, inc1uding a11 valence e1ectrons of a mo1ecu1e, and using a basis 

set consisting of a 1 s orbital for each hydrogen atom, and valence-she11 

sand p orbita1s for each other atome This is the same basis that is used 

in the SCF-MO-CNDO the ory described in Chapters 2 to 4. Other authors 

136 
have introduced d orbitais in ca1culations on such molecules as IF7, 

th h l 'd 137 d 1 h' 132 e xenon a ~ es, an meta porp yr~ns. 
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ff 114 d h .. f 1f b d 1mh 1 17 Ho mann use t e parametr1zat1on 0 Wo s erg an He 0 z. 

He eva1uated the diagonal matrix e1ement of the k th orbital, ~k' as the 

va1ence-state ionization potentia1 of the kth orbital in the neutra1 atom, 

using the va1ence-state energies of Skinner and pritchard. 94 Off-diagonal 

matrixe1ements were given by the Wo1fsberg-He1mho1z formula, equation 

(5.4), with K chosen as 1.75, as a "compromise between the desire to match 

the experimenta1 barrier (to intern~l rotation) in ethane, and the 

114 necessity to work in a region where populations are stable." 

.The invariance properties of equation (5.4) under atomic 

transformations of the basis set may be considered using the methods of 

43 Pop1e, Santry and Segal. Since the ~k for a11 p orbita1s of the same 

atom are equa1, equation (5.4) is invariant under rotation, but not under 

hybridization. Hoffmann himse1f considered on1y a non-hybrid basis set 

f d b · 1 114 o s an p or 1ta s. 

A11 over1ap integra1s are inc1uded exp1icit1y in the EHT, and are 

ca1cu1ated for Slater orbita1s as described in Appendix B. The Slater 

exponent for hydrogen was taken as 1.0 by Hoffmann. The solution of the 

secu1ar equations with over1ap inc1uded is descrihed in Section C. 

Hoffmannl14 used his Extended Hucke1 Theory to compute mo1ecu1ar 

energies, as described in Chapter 8, and mo1ecu1ar charge distributions, 

using a Mulliken population ana1ysis
33 

to assign charges to the various 

atoms in a mo1ecu1e. The population ana1ysis is obtained by integrating 

the expansion of the one-e1ectron density matrix in terms of the basis 

orbita1s, equation (2.14), over a11 space, 



90. 

Sf d V = LI Pkl f~= ~I d V = r L Pkl Skl 
k 1 k 1 

(5.5) 

The population matrix, Q, is now defined as the matrix product 

Q = P S (5.6) 

For real basis orbitaIs, the matrices P and Sare symmetric, so that the 

elements of Q are given by 

(5.7) 

and equat.ion (5.5) may be wri tten as a partition of the electronic charge 

among the atomic orbitaIs. 

= l (5.8) 
k 

where the diagonal elements Qkk are (gross) orbital populations. The (gross) 

atomic population of an atom, QAA' is defined as the sum of the Qkk for the 

orbitaIs of that atom, and the atomic charge, qA' is 

= Z - Q = A AA 
(5.9) 

where ZA is the core charge of atom A. 

If overiap is neglected, the population matrix Q is identicai with 

the P-matrix, so that in the CNOO approximation. P is referred to as the 

population matrix, as in Chapter 2. 

Mulliken33 referred to each Qkk as a gross orbital population, 

which he further partitioned into a net orbital population, and a sum of 

orbital overlap populations. 
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(5.10) 

The gross overlap population between two bonded atoms, given by 

A B 

=~ 2: 
1 

(A 1: B) (5.11) 

33 114 is regarded as a measure of the strength of the bond. Hoffmann 

calculated the gross atomic charge of each atom, and the gross overlap 

populationbetween each pair of bonded atoms. In the present work, however, 

the emphasis ison the calculation of observable properties, so that a 

complete Mulliken population &lalysis is not made. 

A more general type of population analysis, applicable to wave 

functions calculated from an arbitrary basis set, has recently been proposed 

by Davidson,35 but the Mulliken population analysis iS~isfactory for 

the interpretation of wave functions calculated with a minimum basis set 

of atomic orbitaIs. 

c. SOLUTION OF THE SECULAR EQUATIONS INCLUDING OVERLAP 

Wh en overlap integrals are included in a molecular orbital theory, 

the secular equations are, in matrix form, 

h C = S C E . (5.2) 

Equation (5.2) is not an eigenvalue equ8.tion because of the presence of the 

overlap matrix S. Lowdin47 showed, however, that it can be transformed to 

to eigenvalue problem in the orthogonalized basis set 0, defined by . 
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= 9) S-1/2 (2.19) 

where 9) is the original basis. In this basis, the transformed Hami1tonian 

matrix is 

h = -1/2 -1/2 
S h S (5.12) 

and the transformed matrix of mo1ecu1ar orbital coefficients is 

c = (5.13) 

The over1ap matrix for an orthogona1ized basis is, of course, the unit 

matrix. "From equations (5.2), (5.12) and (5.13), 

iï ë = S-1/2 h C = S-1/2 S C E = C E (5.14) 

. 1 .. h b' 47 an e1genva ue equat~on 1n t e new aS1S. The diagonal matrix, E, of 

energy eigenva1ues is the same as in the original basis. 

Equation (5.2) may be solved, therefore, by the fo11owing procedure: 

(1') h . S-1/2. 1 d d 'b d b 1 t e matr1x 1S eva uate ,as escr1 e e ow. 

(ii) the Hami1tonian matrix in the new basis is computed from equation 

(5.12) . 

(iii) the eigenva1ue equation in the new basis, equation (5.14), is 

solved. 

(iv) the coefficients of the molecu1ar orbitaIs in the original basis 

are found from equation (5.13). 

Lowdin47 approximated the matrix S-1/2 by the binomial expansion 

-1/2 
S = (1 + s) -1/2 = 

1 3 2 1--s+-s + 2 8 
(5.15) 
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where l is the unit matrix~ but it is possible to compute S-1/2 exact1y.57 

The over1ap matrix is Hermitian~ so that it may be diagona1ized by a unitary 

transformation. 

= D (5.16) 

h h o 1 DOt 0 0 S 0 0 t 0 d f 0 0 138 w ere t e e~genva ues kk are pos~ ~ve~ s~nce ~s pos~ ~ve e ~n~te. 

The diagonal matrix D-1/ 2 can be defined as the matrix with the rea1 

e1ements~ 

(D-1 / 2) 
kk = 

sinceit satisfies the identity 

(D ) -1/2 
kk 

l 

(5.17) 

(5.18) 

Actua11y~ the~e is an ambiguity in sign in equation (5.17)~ so that there 

2n °b1 . 0 D-1/ 2 b h 11 i 1 0 h are poss~ e matr~ces ,ut t ey are a equ va ent ~n t e present 

prob1em, so a11 (D-1/ 2)kk are assumed to be positive. Then the matrix 

S-1/2 is given by 

which satisfies the definition, equation (2.20). 

D. APPLICATIONS 

(5.19) 

The Extended Hucke1 Theory~ either in its original form~ or in 

one of the modifications described in Section E, has been applied to a wide 

variety of chemica1 prob1ems. 

Hoffmann calcu1ated the equi1ibrium geometry of smal1 organic 



114 114 139 mo1ecu1es, and the energies of hydrocarbons, , boron-nitrogen 

analogues of hydrocarbons,140 carbonium ions,141 and chains and rings of 

139 carbon atoms, 

d · h 142 1azomet ane. 

as weIl as ground and excited states of diazirine and 

114 He emphasized stereochemica1 aspects, such as 

isomerization energies, barriers to internaI rotation, and chair-boat 

energy differences. He a1so considered ionization efficiency curves for 

1k 143 d 1· .. . a anes, an qua 1tat1ve 1nterpretat10ns 

1 1 144,114,140,141 
for sorne mo ecu es. 

of the population analyses 
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The topics dea1t with by other autbors may be rough1y c1assified 

into mo1ecu1ar energies, chemica1 reactivity, and physica1 properties 

dependent on charge distribution. Ca1cu1ations of mo1ecu1ar energy have 

concentrated on stereochemica1 aspects, as in the work of Hoffmann. Allen 

145 and Russell have recent1y examined the theoretica1 basis of conforma-

tional predictions using the EHT, by comparing the wave functions and 

orbital energies of sma11 mo1ecu1es with those calcu1ated using Roothaan's 

equations, without approximation. 

Hoffmann and Lipscomb138 ,146 have studied the conformations of 

boron hydrides, carboranes, and re1ated compounds. Severa1 other inorganic 

mo1ecules have been studied, including boron and a1uminum halides and 

a1kyls,147,148 IF 136 xenon ha1ides,137 phosphorus (V) ch10rof1u6rides,135 
7, 

d · d d·· . d 149 ( ) 0 . 1 1 d· d i th an C1S- an trans- 11m1 e N
2
H

2
. rgan1c mo ecu es stu 1e us ng e 

EHT inc1ude a-substituted carboxy1ic acids,150 peracids and peresters,151 

152 and sydnones, as weIl as a number of mo1ecu1ar complexes, such as the 

h t f 1 f h 1 d b 153. f c arge rans er comp ex 0 tetracyanoet y cne an enzene, eXC1mers 0 



hydrocarbons,154 and hydrogen-bonded species. 155 A1so, the e1ectronic 

132 spectra of meta1 porphyrins have been considered by an iterative EHT. 

Kato et a1~56,1.57 have correlated the reactivities of the nitro 
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cation, radical and anion, with the form of the highest occupied mo1ecu1ar 

orbital. The transition state for nucleophi1ic substitution in methy1 

ch1oride'has been ca1cu1ated using the EHT. Adam and Grimison have predicted 

the site of nuc1eophi1ic substitution in pyridine, quino1ine and iso-

quinoline from the ground-state charge distribution. 

Physica1 properties have a1so been calcu1ated from the mo1ecu1ar 

charge distributions of the Extended Hucke1 Theory. Adam and Grimison159 

have computed the dipo1e moments of heterocyc1ic mo1ecu1es. Correlations 

of chemica1 shift with charge distribution have been made by Siche1 and 

Whitehead160 for a1kanes, ha10genated a1kanes, and mo1ecu1es containing 

. 158 159 methy1 and viny1 groups; and by Adam and Gr~mison ' for heterocyc1ic 

161 162 mo1ecu1es. Spin-spin coup1ing constants, , nuc1ear quadrupo1e coup1ing 

constants,163 and hyperfine sp1ittings in e1ectron spin resonance164 have 

a1so been considered. Fina11y, the vibrationa1 force constants of acetoni-

tri1e adducts have been re1ated to gross over1ap populations by Purcell 

165 and Drago. 

E. MODIFICATIONS OF THE EXTENDED HUCKEL THEORY 

A number of authors have proposed modifications to the EHT. 

114 A1though the original the ory of Hoffmann is used in this thesis, . the 
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modifications which have been proposed are reviewed here, and reasonsgiven 

for not using them. 

19 119 132-135 Several authors " have varied the diagonal matrix 

e1ements, ~k' with the net charge of atom A, on which the k
th 

orbital is 

centred. This is done to a110w for variation of the va1ence-state ioniza-

tion potential with charge, and to prevent the accumulation of excess charge 

d • 1 . 119 ens~ty on e ectronegat~ve atoms. Usua1ly, ~k is assumed to vary 

166 1inear1y with the net charge of atom A, as suggested byCusachs and Reynolds. 

In the notation of this thesis, 

~k = (5.20) 

o 
where hkk is the value of ~k for a neutrai atom, qA is the net atomic 

charge, and 6 ~k can be evaluated empirically, from atomic spectra or 

otherwise. Vei1Iard and Berthier167 separated the contributions of different 

orbitaIs to the variation in ~k' with 

A 

~k = ~ 
I 

where the ql are orbital charges, and the J kl and ~l are Coulomb and 

exchange integra1s respective1y, derived from atomic spectra. 

(5.21) 

If the ~k are dependent on charge distribution, the secular 

equations must be solved iterative1y, so that the theory has been referred 

to as the Iterative Extended Huckel Theory 119, (IEHT); equations (5.20) and 

(5.21) may be compared with equation (2.29), in which the variation of Fkk 

with charge distribution was derived by systematic simplification of the 
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complete Roothaan equations. The most important difference is that in 

equations (5.20) and (5.21), the matrix elements for the orbitaIs of one 

atom are independent of the charges of other atoms. In this respect, the 

IEHT · i·l h" th· ,,15,168-170 i . 1 h 1S S ffi1 ar to t e omega ec n1que n p1-e ectron t eory, 

in which the Coulomb integral for each atom is given by equation(5.20), 

and isindependent o~ the charges of other atoms. 

Streitwieser15 ,170 has claimed that the omega technique is an 

improvement over the Huckel method, since the effect of charge distribution 

171· on the Coulomb integrals is included. Baird and Whitehead, however, 

considered the Coulomb integrals of both the Huckel theory and the omega 

technique as approximations to the diagonal matrix elements, Fkk' of the 

42 pople SCF-MO pi-electron theory, which includes·all electron-repulsion 

integrals. They showed that the variations in Coulomb integrals with charge 

distribution in the omega technique bear little resemblance in sign, magni-

tude, or relative order to variations of Fkk in the ppp theory, since the 

interatomic electron-repulsion integrals, gkr' which are negiected in the 

omega technique are of comparable magnitude to the atomic integrals, gkk. 

The situation is not improved if the effects of charges on neighbouring 

atoms only are included. 42 AlI atoms in the molecule must be included, as 

in the ppp theory. 87 As Dewar has said, 

"If one is going to make ailowance for the terms in F .. invoiving 11 

the charge densities qi' one might as weIl do the thing properly and use 

the full Pople expression." 

Similar objections can be made against the IEHT. Newton, Boer and 
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Lipscomb172 have shown that the diagonal matrix elements in complete 

minimum-basis SCF-MO calculations are ~ re1ated in any simple way to 

atomic charges. If an i~prative method is used at all, then it is better 

to use the full SCF-MO-CNDO equations, as described in Chapters 2 to 4. 

The non-iterative EHT, however, involves substantially less computation, 

and therefore may be worthwhile, if it leads to results of comparable 

accuracy to the approximate SCF theory. 

O h th 137,173-175 h d i h ff di 1 t er au ors ave attempte to mprove t e 0 - agona 

matrix e1ements by rep1acing the arithmetic mean of diagonal matrix e1ements 

in equation (5.4) by a geometric mean, so that 

~1 = 

Equation (5.22) does not have the theoretica1 basis of the Mulliken 

approximation, but Bal1hausen and Gray173 pointed out that it has the 

(5.22) 

property that the interaction between two orbitals, ~l' decreases when 

the difference 1 h
kk 

- hll 1 increases, if the sum (hkk + hl1 ) is constant. 

This is in accordance with the concept of orbital matching,176 in which 

orbita1s are best suited for bonding if their energies are not too different. 

The SCF-MO-CNDO the ory automatically includes this feature, since the off-

diagonal matrix e1ement, Fkl' is given by 

= (2.30) 

Both terms of equation (2.30) are negative, and if two orbitals are ~ot 

we11 matched, the bond order P
kl 

is small, and does not contribute 



significant1y' to the interaction Fk1 • In the EHT, however, ~1 is fixed 

during the ca1cu1ation, so that the geometric mean might improve the 

the ory , for mo1ecu1es with polar bonds. It is not used in this thesis, 

however, since the EHT is on1y used as a comparison standard for the 
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approximate SCF theory, and the use of an arithmetic mean in both theories 

provides a more direct comparison. 

177 
Cusachs assumed a quadratic dependence on over1ap for the 

kinetic energy part of ~1' so that equation (5.4)shou1d be rep1aced by 

~1 = (5.23) 

178 Newton showed, however, that kinetic energy integra1s for many pairs of 

orbita1s were poor1y approximated by Cusachs' formula, and a1so that 

Cusachs' original formula was not invariant to rotation. A modified form 

of Cusachs' formula, which is invariant to rotation, has been used in EHT 

ca1cu1ations by sorne authors. 119 ,120 Since Newton's first objection still 

ho1ds however, Cusachs' formula is not used in this thesis. 

N t B d Ll.·pseomb172 have d t t' tt t ew on, oer an ma e a more sys ema I.e a emp 

to improve the matrix e1ements of tœ non-iterative Extended Hucke1 Theory. 

They eva1uated the potentia1 energy integra1s by eomparison with non-empirica1 

SCF ea1cu1ations on sma11 mo1eeu1es, and eva1uated kinetie energy integra1s 

exaet1y. Their method is essentia11y an attempt to reproduee the resu1ts 

of an SCF ea1eu1ation by a non-iterative procedure. It is simi1ar to the 

pi-e1eetron the ory of Or1off and Fitts,179 who eva1uated Hucke1 matrix 

e1ements by eomparison with Pariser-Parr~Pop1e ca1eu1ations. For Newton 
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et al. however, the standard of comparison is the exact non-empirica1 SCF 

172 theory. 

In this thesis, physica1 properties are computed using Hoffmann's 

114 original EHT as an examp1e of a non-iterative, independent e1ectron 

theory for comparison with the SCF-LCAO-MO theory in the CNDO approximation. 

The Iterative Extended Hucke1 Theory, as we11 as Cusachs' formula, were not 

considered because of the theoretica1 objections out1ined above. The . 

theory of Newton, Boer and Lipscomb is on a sounder theoretica1 basis, but 

is not considered here, since Hoffmann's semi-empirica1 the ory provides a 

better comparison with the semi-empirica1 SCF theory described in Chapters 

2 to 4. 

A few minor modifications to Hoffmann's EHT have been made, 

however, in order to provide a more direct comparison with the SCF theory. 

Valence state ionization potentia1s have been taken from the work of Hinze 

and Jaffe,7S,79 rather than that of Skinner and pr~tchard,94 since the 

former are more complete and re1iable, as exp1ained in Chapter 3. For each 

e1ement, valence-state ionization potentials were assigned for a valence 

. 1 f h . 1 1 d b H ff 114,140 state typ1ca 0 t e atom 1n a mo ecu e, as one y 0 mann. The 

actual values used, and the valence states for which they were evaluated, 

are 1isted in Table (5.1). Values of both 1.0 and 1.2 for the Slater 

exponent of hydrogen were tried, as for the SCF-MO-CNDO theory. Finally, 

4s and 4p orbitals, which were not considered by Hoffmann, were approximated 

by equation (4.26) in order to compute over1ap integrals. 
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e· TABLE 5.1 
. 

ATOMIC VALENCE-STATE IONIZATION POTENTIALS FOR EHT 

Element Valence State (s) h h ss pp 

H s 13.595 ev. 

Li s,p 5.390 3.543 ev. 

Be sp 9.916 5.958 

B spp 14.916 8.425 

·C sppp 21.012 11.273 

N 
2 25.588 13.946 . s ppp 

0 
2 2 32.297 17.274 s p p~ 

F 
222 39.391 20.862 s p p E. 

Si sppp 17.307 9.190 

P 
2 18.612 10.733 s ppp 

S 
2 2 

21.135 12.396 s p PE. 

Cl 222 25.227 15.037 s p p E. 

Ge sppp 18.578 9.432 

As 2 17.403 9.359 s ppp 

Se 2 2 
20.811 11. 675 s p PE. 

Br 222 
23.735 13 .101 s p p E. 

Sn sppp 16.158 8.326 

Sb 2 16.255· 8.751 s ppp 

Te 2 2 19.733 11.038 s p PE. 

l 
222 20.833 12.670 s p PE. 



PART B 

. CALCULATION OF PHYSICAL PROPERTIES 
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CHAPTER 6 

INTRODUCTION 

The molecular orbital theories described in 'part A can be 

tested by using them to calculate the physical properties of molecules. 

There are, however, different views in the Iiterature of quantum 

chemistry on ,the question of how much the choice of parameters in an 

approximate theory should' be guided by agreement with experiment, and 

how much by theoreticai considerations. 

A purely empirical approach is taken, for example, in the 

Huckei theory of pi-electron systems in unsaturated organic m9lecuIes, 

as outlined by Streitwieser,15 who recommends values of Coulomb integrais 

for each element, and of resonance integrals for each type of bond, 

chosen to provide a good overall fit with experiment. In such a theory, 

the different parameters are determined independentIy and have little 

theoretical basis. They vary with the class of molecules for which they 

are evaluated, and with the molecular properties used to evaluate them. 15 

The parameters of the Extended Huckel Theory, on the other 

hand, have sorne theoretical basis, as described in Chapter 5. The 

diagonal Hamiltonian matrix elements are found from atomic valence state 

energies, and the off-diagonal elements from atheoretical equation, 

equation (5.4), with one empirical constant. 114 Hoffmann, however, 

has not compared the results of the EHT, in detail, with experiment. 

Although he has calculated the energies of a large number of molecules, 
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on1y a 1imited number of energy differences between isomers and 

" 114 139 conformations are compared with exper1ment. ' Hoffmann d1d not 

consider the bonding energies of single mo1ecu1es, as is done in 

Chapter 8. His many population analyses are not used to determine 

physica1 properties, 'although qualitative correlations with chemica1 

" i d '114,141 i d"ffi 1 h . react1v ty are ma e. It s very 1 cu t, owever, to 

quantitatively relate chemical reactivity directly to the ground state 

wave function of a mo1ecule.
180 

Other authors have used the EHT wave 

" 158-165 function to compute molecu1ar propert1es, but often the computed 

properties are on1y approximate1y related to the ground-state wave 

function, and therefore do not provide a good test of the theory. No 

systematic comparison of the EHT with experiment has been made using 

properties which depend directly on the ground state wave function, as 

is done in this thesis. 

In sorne approximate molecu1ar orbital theories, the primary 

emphasis is upon agreement with a less approximate theory, rather than 

with experiment. Orloff and Fitts,179 for example, derived parameters 

for the Huckel theory by comparing their molecular orbitaIs with those 

41 42 
ca1cu1ated using the pariser-parr-pople theory.' In the non-empirical 

172 
modification of the Extended Huckel Theory by Newton et al. ,described 

in Chapter 5, the basis of comparison is the exact SCF-MO theory, based 

h ' . f ". b" 20 on Root aan s equat10ns or a m1n1mum aS1S set. 

Similarly, Pople and Sega144 determined bonding parameters by 

comparison of molecular orbitaIs and orbital energies for small molecules 

with those of the exact SCF theory, since: 
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"The CNDO method should be regarded 'as an approximation 

to a full LCAO-SCF calculation using a minimal basis set ••••• 

As a number of such calculations have already been carried out 

for very small molecules without approximation, a reasonable 

procedure which we follow is to find out how well the simpli-

fied method will reproduce the accurate work (with empirical 

adjustment of a limited number of.parameters if necessary) 

and then, if such 'calibration' is successful, to extend the 

theory to systems beyond the present range of the full 

calculations.,,44 

In the author's view, however, the test of a theory is agree-

ment with experiment, rather than agreement with other approximate 

theories. Pople and Segal acknowledge that "the CNDO method •••• 

attempts to reproduce the results of full minimal basis LCAO-SCF 

calculations which May not themselves give satisfactory agreement with 

44 experimental data." In particular, as discussed in Chapter 2, they 

. f 1 . 50 b h h 1 are qU1te accurate or one-e ectron propert1es, ut t ey are muc ess 

. 29 30 so for dissociation or bonding energ1es. ' Pople and Segal have not, 

however, modified their bonding parameters to achieve better agreement 

of computed molecular energies with experiment, as is done in this thesis. 

Also, neither Newton et al., nor Pople and Segal, have 

obtained complete agreement between the results of their approximate 

theories and the exact solution of Roothaan's equations, so that the 

approximate theories are not a complete substitute for the exact 
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solution of Roothaan's equations. Since the approximate theory is in 

complete agreement with neither experiment nor the exact SCF theory~ it 

is better that the parameters be chosen to give partial agreement with 

experiment than with exact SCF theory. 

In this thesis~ an intermediate position is taken between the 

empirical approach of Streitwieser,lS and the cbmplete dependence on 

more exact theories, as in the work of Newton et al.,l72 and of pople' 

44 45 and Segal. ' As described in Chapters 3 and 4, the molecular 

orbital parameters are based on theoretical considerations~ and on 

atomic spectra. When a choice between alternate sets of parameters 

remains, it is based on an overall comparison of computed molecular 

properties with experiment, as described in Chapters 7 -10. The 

greatest reliance is placed on those experimental guantities. which can 

be calculated from the ground state wave function of a molecule with the 

fewe~t subsidiary assumptions. Also, as molecular orbital computations 

refer to isolated molecules, computed properties are compared with gas-

phase experimental data whenever possible, to eliminate the effects of, 

intermolecular, solid-state and solvent interactions. 

All calculations were made for molecules in their most stable 

copformation. Experimental bond lengths and angles were taken from the 

Tables of Interatomic Distances of the Chemical Society,l8l except for 

certain molecules for which the required data are not available, and had 

to be esti~ated from data for similar molecules. The bond lengths and 

angles, used are listed in Appendix A. No attempt has been made to 



calculate the most stable conformation of molecules by computing the 

molecular energy as a function of geometry. 

In Chapter 7,' calculated molecular orbi.tal energies are 

compared with experimental ionization potentials, using Koopmans' 

182 
theorem. In Chapter 8, the atomization energies of molecules are 

considered, which are given less accurately than ionization potentials 
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by approximate theories, since t~ey represent small differences betwe~n 

~wo large quantities. They are, however, quite sensitive to variations 

o in the bonding pararneters, ~ A' and are therefore used to evaluate them, 

as described in Chapter 4. Dipole moments are considered in Chapter 9. 

They are directly related to molecular charge distribution, but are less 

accurate criteria of a theory than energy quantities, since energies are, 

in general, more accurately ca1cu1ated in approximate quantum chemica1 

theories than charge distributions. Chapter 10 deals with nuc1ear 

quadrupole coupling constants, which also depend upon charge distribution, 

although 1ess directly than dipole moments. They are, however, of 

special interest to the author's research col1eagues. 

The sets of parameters used in the calcu1ations are shown in 

Table (6.1). For the SCF-MO theory in the CNDO approximation, the 

empirical bonding parameters,~~ , evaluated from hydride energies, as 

described i~ Chapter 4, were compared with those of Pop1e and Segal. 

Values of 1. 0 and 1.:2 for the Slater exponent of hydrogen, ZR' were 

c~mpared using empirical ~~'s. Since ZR = 1.2 was found to give more 

accurate molecular'energies for empirical ~~'s, on1y this' value was 
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TABLE (6.1) PARAMETER SETS FOR COMPUTATION OF MOLECULAR PROPERTIES 

Interatomic Mat aga-

gAB 

SCF-MO Theory in 

CNDO Approximation 

Atomic 
gAA 

Bonding Parameters Zl 
H 

~o 
A 

Empirical- from 
hydride energies 1.0 

(Chap. 4) 

Empirica1 - from 
hydride energies 1.2 

(Chap. 4) 

Pop1e - Segal 1.2 

Extended Huckel The~ry: 

(Eq •. 4.6) 

From Atomic 

spectra 

(Chap. 3) 

Ml 

M2 

MP 

ZI = 1. 0 
H 

ZR = 1.2 

* Parameters of Pople and Segal. 

Ohno 

(Eq. 4.7) 

Theoretica1 

(Roothaan integra1 

formu1ae) 

From Atomic 

spectra 

(Chap. 3) 

01 R1 

02 R2 

OP RP* 

H 1 

H 2 
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o used with the ~A's of Pople and Segal. The electron-interaction 

tntegrals were evaluated by the three rnethods described in Chapter 4. 

Each set of pararneters is denoted for convenience by a code given in 

Table (6.1) The pararneter sets MP, OP" R1, R2, and RP were on1y 

used in ca1cu1ations of mo1ecu1es containing hydrogen and first-row 

atoms. It is shown, however, that these parameter sets are inferior 

to the empirica1 sets Ml, M2, 01, and 02, so that there is no reason to 

extend them to heavier atoms. 

For the Extended Huckel Theory, values of 1.0 and 1.2 for 

,ZR are a1so compared, as shown in'Table (6.1). 



CHAPTER 7 

IONIZATION POTENTIALS ' 

. A. KOOPMANS' THEOREM 

The ionization potential of a molecule, M, is defined as the 

183 energy required to remove one electron from the molecule, 
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(7.1) 

where E(M) and E(M+) are the energies of the molecule and ion respectively. 

·If equation (7.1) is used to calculate ionization potentials, the SCF-MO 

equations for the molecule and the ion must be solvedseparately. This 

procedure has several disadvantages: 

(i) More computation is required, because the SCF-MO equations 

must be solved twice, and because the equations in Part A apply to 

21 45 c1osed-shell molecules, and must be modified to apply to open shells. ' 

(ii) The parameters evaluated for neutral molecules may not be 

suitable for calculations on ions, especially in excited states. For 

example, the parameters of the pariser-parr-pople theory4l,42 which are 

suitable for the prediction of spectra in neutral pi-electron systems 

.184 185 must be modified to give accurate ionization potent1als. ' 

(iii) Ionization potentials'are given by equation (7.1) as a 

small difference of two large energies, so that small errors in E(M) and 

E(M+) may lead to large errors in I,.even when both E(M) and E(M+) are 

H k · 186 artree-Foc energ1es. 



These difficulties can be avoided by eva1uating the ionization 

potentials directly from the molecular wave function, using Koopmans' 

theorem, according towhich theenergy required to remove an electron 

from the i th orbital of a mo1ecule, leaving the nuclei fixed and the 

orbitaIs unaltered, is given by 
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= -E 
i 

(7.2) 

if both the molecular and ionic wave functions satisfy the Hartree-Fock, 

. 2 20 182 
or the Roothaan, equat10ns." Ei is the energy eigenvalue of the 

i th orbital, found by solving the secu1ar equations. petersl87 has shown 

that the Ei correspond more closely .to experimental ionization potentia1s 

than do energies of localized orbitaIs. 

Equation (7.2) indicates that a molecu1e has a distinct ionization 

potential for each orbital energy eigenvalue. The first ionization 

potential corresponds to the removal of an electron from the highest 

occupied molecular orbital, or set of degenerate orbitaIs, and the forma-

tion of an ion in its ground state. Higher (or inner) ionization potentials 

correspond to the formation of electronically excited ions by the 

removal of an electron from a more tightly bound orbital. 188 

The proof of Koopmans' theorem assumes that the removal of an 

electron from one orbital Ieaves the orbita1s unaltered. 2,182 In fact, 

the removal of an electron aiters the potential acting on the remaining 

electrons, so that the ion May attain a Iower energy if the orbitaIs are 

reorganized, Ieading to ionization potentials lower than those given by 
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. 186 189 equat10n (7.2). ' Devaquet and sa1em189 have shown that the effect 

of reorganization is of the order of 0.1 ev. for the first ionization 

potential of pi-e1ectron systems, by considering the loss of an electron 

190 as a perturbation acting on the orbitals. Ruendenberg suggested that 

the effect of re-organization shou1d be small if the electron removed is 

on1y one of many. 

The empirica1 validity of Koopmans' theorem has been examined by 

Birss and Laid1aw,186 who used accurate SCF wave functions ca1cu1ated 

separate1y for atoms and ions to show that the amount of re-organization 

decreases.with increasing total number of e1ectrons in the series He, Li, 

Be. The agreement of Koopmans' theorem with experiment is best for Li, 

since "No ~rbita1 pair c?rre1ations are greatly disturbed in the ionization 

of lithium whereas in he1ium and bery11ium the ls and 2s electron pair 

correlations are removed upon ionization." Changes in correlation energy 

on ionization are of course not accounted for in orbital ca1cu1ations. On 

comparing the two c10sed-she11 atoms, however, Koopmans' theorem is more 

accurate for Be, since there are more e1ectrons in the atome For a11 these 

atoms, Koopmans' theorem 1eads to more accurate ionization potentia1s than 

(7 1) h . d' d L 'd1 186 equation • ,w en accurate SCF energ1es are use. B1rss an a1 aw 

a1so showed that the va1idity of Koopmans' theorem is retained if over1ap 

is neg1ected, both in atoms and in the pariser-parr-pop1e the ory for pyridine. 

Koopmans' theorem refers to the vertical ionization process, in 

which the nuc1ei remain fixed. This may or may not be identica1 with the 

adiabatic ionization process, in which the ion is formed in its ground 
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183 
vibrational state. The two processes are shown in Figures (7.1) and 

(7.2), for the case of a diatomic molecule. If an electron is removed 

from a strongly bonding molecular orbital (Figure 7.1), the ion will have 

a lower bonding energy, and a greater equilibrium internuclear distance, 

than the molecule. 
.. 183 

According to the ~anck-Condon princ1ple, the ion 

fs more likely to be formed in a vibrational state whose wave function 

overlaps appreciably with the molecular ground state, with the same nuc1ear 

configuration as the molecule (vertical ionization). The calculated 

orbital energies are compared with vertical ionization potentials, when 

these are known. If an electron is removed from a weakly bonding or non-

bonding orbital, however, the ion and the molecule will have approximately 

equal equilibrium internuclear distances, so that the vertical and adiabatic 

l~ processes are the same. (Figure 7.2) Antibonding orbitaIs are similar 

to bonding orbitaIs in this regard, since the loss of an electron is 

expected to cause a change in bond distance. 

The different ionization potentials of a molecule are identified 

by the irreducible representation of the molecular symmetry group of the 

ionic state formed, and of the orbital from which an electron is removed. 

The ground state of a closed-shell molecule belongs to the totally symmetric 

repr~sentation, so that the orbital and the ionic state have the same 

symmetry.20 Cotton's notation19l has been used for symmetry groups and 

their irreducible representations. For the C
2v 

and D2h groups, the assign­

ment of axes i8 arbitrary, and standard notation192 has been used for planar 

moleéules. The only nonplanar molecules of these two symmetry groups 
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considered are C3H8 and B2H6' for which the choice of axes is stated 1ater. 

B. EXPERIMENTAL IONIZ.ÀTION POTENTIALS 

There are a number of methods for determining ionization potentia1s 

188 193-205 of which the most re1iab1e is photoe1ectron spectroscopy.' Unti1 

recent1y, ionization potentia1s were determined by thresho1d methods, in 

which the energy of incident e1ectrons or photons is increased unti1 

188 18~ 
ionization occurs. In e1ectron impact methods such as mass spectrometry, 

206 and in the photoionization method of Watanabe, ionization is detected by 

measuring the positive ion currents. In spectroscopie methods, ionization 

corresponds to the convergence 1imit of a Rydberg series of ab$orption 

lines. In each case, the ionization thresho1d is identified as the first 

ionization potentia1. 

Ionization potentia1s corresponding to the formation of excited 

ions have 1 b d t t d b th h Id th d 183,207-212 a so een e ec e y res 0 me 0 s. . In e1ectron 

impact, .the probability of ionization from a given orbital is proportiona1 

to the excess energy of the incident e1ectrons (in the approximate range of 

0-50 ev.), so that higher ionization potentials correspond to breaks in the 

183,208-212 plot of ionization current against incident energy. In spectro-

scopie methods, higher ionizationpotentia1s correspond to the convergence 

limits of Rydberg series, other than the one which converges to the first 

i .. . 1 207 on1zat10n potent1a • 

Some apparent higher ionization potentials determined by threshold 

methods, however, may correspond to processes such as dissociative ionization, 
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in which the mo1ecu1e dissociates into fragment ions, and auto-ionization 

(or pre-ionization), in which excitation to a neutra1 state of higher 

h h ·· d • f 11 d b i . . 183,194 energy t an t e 10nl.C groun state 1S 0 owe y spontaneous onl.zatl.on. 

Both of these processes resu1t in the production of positive ions, so that 

some of the observed "orbital energies" may be spurious. 194 

These difficu1ties are avoided by the use of photoe1ectron 

188 193-205 .. . spectroscopy,' l.n whl.ch mo1ecu1es are ionized by a monochromatic 

beam of photons whose energy, 21.21 ev., is greater than the first few 

ionization potentia1s of most mo1ecu1es. The excess energy is carried 

away by the ejected e1ectrons, whose kinetic energy distribution is 

observed, as in studies of the photo-e1ectric effect. Dissociative ioniza-

tion is not observed since on1y e1ectrons reach the.detector, whi1e if 

auto-ionization occurs, the kinetic energy of the emitted e1ectrons is the 

same ·as for the corresponding direct ionization process. The first 

derivative of the kinetic energy distribution is the photoe1ectron spectrum, 

with peaks corresponding to the ionization potentia1s of the different 

202 203 orbita1s. Frost, McDowe11 and Vroom ' have improved the accuracy of 

this technique to about 0.01 ev. by using a spherica1-grid ana1yzer to 

de termine the photoe1ectron-energy distribution. 

In this thesis, ca1cu1ated orbital energies are compared with 

ionization potentia1s determined by photoe1ectron spectroscopy when they 

are avai1ab1e, and by thresho1d methods for other mo1ecu1es. 

As discussed ear1ier (Section A), orbital energy 1eve1s shou1d 

be compared with vertical ionization potentia1s. If no vibrationa1 



structure is resolved, as in electron impact, the opserved ionization 

threshold does not necessarily correspond to either. the vertical or the 

d · b i . .. . 183 a 1a at c 10n1zat10n process. If vibrational structure is resolved, 

as in photoelectron spectroscopy, the peak corresponding to the lowest 

ionization energy gives the adiabatic ionization potential, and the most 
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intense peak corresponds to the vertical ionization potential. Only in 

200 the recent work of Turner and May were tbe intensities obtained accurately 

enough so that vertical ionization potentials could be determined. For 

the bonding molecular orbitaIs of the molecules considered in this paper 

(C02 , OCS, CS2 ' NNO) the vertical and adiabatic ionization potentials 

differ by a few tenths of an electron volt. 200 For aIl other molecules, 

the ionization potentials determined by photoelectron spectroscopy are 

adiabatic. 

When only the values of the experimental ionization potentials 

of a molecule are known, the computed energy of the highest occupied 

molecular orbital is compared with the lowest ionization potential, etc. 

It is often possible, however, to ob tain experimental information about 

the orbital corresponding to each ionization potential, so that the order 

of the calculated orbital energies may be confirmed. For example, the 

electronic state of an ion may be determined by observing its vibrational 

207 213 and rotational spectra. ' In photoelectron spectroscopy the Franck-

Condon principle183 can be used, since significant excitation to higher 

vibrational levels will be observed only for the ionization of the electron 

from a strongly bonding or anti-bonding orbital.
194 

The corresponding peaks 
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dis~~ay vibrational structure, therefore, in contra~t to the single sharp 

peak observed for a non-bonding mo1ecu1ar orbital. For smal1 molecu1es, 

with not too many distinct 1evels, this information is often enough to 

identify the observed ionization potentials with specifie orbita1s.193-198 

" 203 
Frost et al. have recent1y shown that it is possible, in favourab1e cases, 

to distinguish bonding from antibonding orbita1s, since the peaks correspond-

ing to bonding orbita1s have more vibrational structure, due to the asymmetry 

of the potentia1 weIl. 

In e1ect"ron impact methods, no information is obtained to 

faci1itate the identification of ionization potentials with orbita1s" for 

molecu1es containing on1y 1ight atoms. For mo1ecu1es containing heavy 

atoms, however, the splitting of degenerate ionic states, due to spin-orbit 

coup1ing, can often be reso1ved since for·atoms this sp1itting is propor-

h b 80,207 h b tiona1 to the fourth power of t e atomic num er. T e spin-or i t 

coupling energy has the form 

~~ 

E = a L·S (7.3) 

where L is the orbital angu1ar momentum, S is the spin angu1ar momentum, 

and a is an interaction constant. 

1eve1s are split into 21T1 /2 and 

2 In linear molecules, for example, Tr 

2 210 7T 3/ 2 components. The mean spin-orbit 

coupling energy is zero, so that the computed orbital energy is compared 

with the mean of the two observed ionization potentials. The fact that the 

doublet is resolved, however, indicates that it corresponds to a degenerate 

pair of orbita1s. Frost and McDowel1 identified the levels of methyl 
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208 210 halides and halogens in this way, and have recently confirmed the 

halogen assignments by photoelectron spectroscopy.204 

For molecules with many distinct orbital energies in the range 

observed by photoelectron spectroscopy, molecular orbital theory often 

predicts groups of orbitaIs closely spaced in energy, which correspond to 

a single observed ionization potential. In suchcases it is assumed, as 

64 172 . has been done by other authors, , that the observed ionization potential 

corresponds to several ionic states which have not been resolved. 

C. COMPARISON OF CALCULATED ORBITAL ENERGIES WITH IONIZATION POTENTIALS 

The energies of occupied molecular orbitals, as calculated by 

the molecular orbital theories described in Part A, are listed in Tables 

(7.1) to (7.3) for a number of molecules, and compared with experimental 

ionization potentials, when these are known. Results calculated using 

different sets of parameters are listed in different columns, which are 

identified by the symbols listed in Table (6.1). 

Table (7.1) lists orbital energies for molecules containing only 

hydrogen and first row-atoms, calculated from the SCF-MO-CNDO the ory with 

empirical bonding parameters calibrated using the energies of binary hydrides 

(Chapter 4). The six columns correspond to the three ways of evaluating 

electron-repulsion integrals (Chapter 4), and the two choices of the Slater 

exponent for hydrogen, (1.0 and 1.2). For a few molecules, no results are 

listed in certain columns, since the iterative calculation did not converge 

·e to self-consistency. 
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TABLE 7.1 

SCF-MO ORBITAL ENERGIES' (in ev.) OF FIRST-ROW MOLECULES USING CNDO APPROXIMATION AND EMPIRICAL ~SONDING PARAMETERS 

Parameter Set Ml M2 01 

H2(D Q)h) og -14.69 -14.69 -15.44 

LiH(C ) ~ - 8.10 - 8.09 - 7.89 CX)v 

BeH2(D CDh) es-_u. -11.11 -11.41 -11.51 

~ -13.07 -12.74 -13.10 

BH3 (D3h) el -11. 79 -12.11 -12.59 

a 1 

1 -18.39 -17.73 -18.40 

CH4(Td) t 2 -12.32 -12.70 -13.21 

al -24.37 -23.51 -24.19 

~(C3v) al -12.29 -12.45 -13.18 

e -13.27 -13.56 -13.95 

al -27.55 -27.07 -27.07 

02 RI R2 

-15.44 -18.07 -18.62 

- 7 .• 90 - 9.95 - 9.94 

-11.77 -13.01 -13.43 

-12.83 -15.12 -14.79 

-12.85 -14.38 -14.89 

-17.78 -21.26 -20.54 

-13.50 -15.03 -15.64 

-23.40 -27.14 -26.16 

-13.30 -15.09 -15.47 

-14.20 -16.12 -16.58 

-26.71 -31.10 -30.50 

Expt1. !.P. 

15.45 

(7.81-7.91) 

11.4 

12.99 

(24) 

10.35 

14.95 

Reference 

199 

"214 

215 

198,212 

205 

.... 
N o 
• 
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TABLE 7.1 (continued) 

Parameter Set Ml M2 01 02 

H2O(C 2v) b1 -13.96 -14.11 -14.21 '-14:33 

al -13.79 -14.03 -14.70 -14.88 

b2 -14.41 -14.68 -15.13 -15.36 

al -32.93 -32.69 -32.69 -32.51 

HF (C ) oov . 'Tf -16.04 . -16.19 -16.57 -16.67 

tr -16.16 -16.38 -17.12 -17.30 

fT -37.66 -37.60 .,.37.93 -37.88 

N2(Dcoh) Cf -13.75 -13.57 -14.38 -14.25 

~ -13.84 -13.62 -14.64 -14.44 

() -23.01 -23.15 -23.31 -23.46 u 

tS -30.68 -30.23 -30.06 -29.65 g 

R1 R2 

-17.68 -17~90 

-16.81 -17.25 

-17.43' -17.85 

-36.14 -35.84 

-20.59 -20.85 

-19.71 -20.14 

-42.89 -42.91 

-16.62 -16.49 

-16.51 -16.34 

-25.86 -25.94 

-34.33 -34.00 

Expt1. !.P. 

.b1 12.61 

14.23 

18.02 

"'Tf 16.06 

(1' 16.48 

t5" 15.58 
g 

1T. 16.70 .. u 

cr 18.80 
C· u 

• 

Reference 

198 

204 

203 

.... 
N .... 
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TABLE 7.1 (continued) 
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TABLE 7.1 (continued) 

Parame ter Set Ml . M2 01 02 RI R2 Exptl. !.P. Reference 

°3 (C2v) a2 
'-13.98 -14.35 -14.31 -14.59 12.3 197 

al -14.59 -14.72 -15.11 .-15.20 12.52 

b2 -14.65 -14.75 -15.12 -15 •. 20 13.52 

b1 -16.39 -16.18 -17.13 -16.85 16.4-17.4 

b
2 

-18.27 -18.11 -18.45 -18.19 
) 19.24 

al -18.81 -18.67 -18.54 -18.34 

al -29.84 -30.10 -30.46 -30.70 

b2 -33.40 -33.24 -33.43 -33.32 

al -39.34 -38.78 -38.41 -37.88 

C2H2(Doo h) "'u -10.64 -10.49 -11.54 -11.38 -13.07 -13.09 "1T" 11.40 201 u 

cg -12.15 -12.33 -12.82 -12.94 -14.52 -14.88 cr.. 16.44 
g 

tr -18.19 -18.20 -18.66 -18.63 -20.52 -20.59 0- 18.42 u u 

"8 -24.80 -24.20 -24.78 -24.19 -26.96 -26.57 

t-I 

~ 
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TABLE 7.1 (c'ontinued) 

Parame ter Set Ml M2 01 02 

C2H4(D2h) b3u -10.41 -10.30 -11.23 ~11.11 

b
3g -10.47 -11.10 -11.43 -11.95 

a -11.65 -11.63 -12.39 -12.36 g 

b2u -14.64 -14.73 -15.21 -15.25 

b1u -19.13 -19.14 -19.54 -19.48 

a -26.40 -25.43 -26.01 -25.12 g 

C2H6 (D3d) e -10.73 -11.32 -11.76 -12.26 g 

a1g -11.36 -11.32 -12.12 -12.07 

.e -14.05 u -14.18 -14.72 -14.81 

a2u -20.25 -20.22 -20.61 -20.52 

a1g -27.36 -26.04 -26.76 -25.60 

R1 R2 

-12.69 -12.72 

-12.79 -13.61 

-14.04 -14.21 

-17.51 -17.77 

-21.58 -21.61 

-28.78 -27.90 

-13.24 -14.06 

-13.55 -13.76 

-16.91 -17.26 

-22.77 -22.80 

-29.96 -28.60 

Exptl. !.P. 

b3u(1T) 10.48 

12.50 

14.39 

15.63 

(19.13) 

3 11.49 

14.74 

(20.13) 

• 

Reference 

194 

194,198 

.... 
N 
.j::-. 
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TABLE 7.1 (continued) 

Parameter Set Ml M2 01 02 

C3H8(C 2v) b1 -10.31 -10.93 -11.38 -11.93 

b2 -10.48 -10.64 -11.36 -11.47 

al -10.66 -10.96 -11.56 -11.83 

a2 -11.78 -12.29 -12.74 -13.17 

b2 -12.43 -12.72 -13.26 -13.52 

al -14.09 -14.17 -14.76 -14.81 

bl -15.07 -15.06 -15.62 -15.60 

al -19.34 -19.38 -19.76 -19.76 

b2 -23.20 -22.76 -23.19 -22.76 

al -29.18 -27.62 -28.35 -26.99 

R1 R2 

-12.75 -13.63 

-12.63 -13.00 

-12.92 -13.44 

-14.49 -15.25 

-15.06 -15.67 

-16.84 -17.19 

-18.03 -18.24 

-21.85 -21.98 

-25.74 -25.36 

-31.75 -30.21 

Expt1. tF. 

1" 
, 11.07 

] 13.17 

J 
15.17 

(19.8) 

• 

Reference 

194,198 

.... 
fi,) 

VI 
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TABLE 7.1 (continued) 

Parame ter Set Ml M2 01 02 R1 R2 Expt1. !.P. Reference 

B2H6(D2h) b3g - 8.49 - 8.82 - 9.71 -10.02 -10.6Q -11.22 12.0 215 

b2u -10.54 -10.65 -11.44 -11.54 -12.97 -13.39 

b3u -12.42 -12.72 -13.38 -13.63 -14.79 -15.50 

a -13.58 -14.07 -14.10 -14.47 -16.09 -16.75 g 

b1u -17.44 -17.20 -17.63 -17.36 -20.30 -19.96 

a -22.58 -21.28 -22.28 -21.16 -25.67 -24.38 g 

LiF(C· ) -sr -10.34 -10.10 -11.03 -10.88 -11.18 -11.02 
cov 

0- -10.39 -10.14. -11.04 -10.88 -11.37 -11.20 

cr -31.55 -31.22 -31. 96 -31.75 -33.40 -33.20 

F2(Dcoh) 1rg -17.70 -17.80 -17.87 -17.94 -22.87 -22.97 "\T 15.63 204 g 

cg -17.33 -17.02 -17.91 -17.66 -20.06 -19.68 trg 
17.35 

1f'u -19.51 -19.42 -19.35 -19.27 -25.00 -24.89 -n:: 18.46 u 

cru -37.40 -37.56 -37.68 -37.82 -43.03 -43.20 

~ -41.52 -41.26 -41.11 -40.91 -47.69 -47.43 

.... 
N 
0\ . 
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TABLE 7.1 (continued) 

Parameter Set Ml M2 01 02 R1 R2 Expt1. 'Lf. Reference 

C~F(C3v) e -12.23 -12.65 -13.33 -13.68 -15.34 -16.02 e 12.85 2'08 

al -14.33 -14.11 -15.24 -15.06 -16.94 -16.84 al 14.10 

e -16.02 -15.87 -16.48 -16.34 -20.39 -20.38 (al) 16.89 

al -23.56 -23.15 -23.80 -23.33 '-26.60 -26.16 

al -37.31 -36.87 -37.50 -37.16 -42.30 -42.04 

HC,N(C oov) Tf' -12.48 -12.44 -13.37 -13.33 -15.20 -15.31 13.91 216 

cr -12.67 -12.81 -13.60 -13.72 -15.07 -15.31 

0- -20.24 -20.33 -20.67 -20.69 -22.67 -22.74 

t:r -28.17 -27.86 -27.89 -27.60 -31.41 -31.31 

CH3CN(C3v) e -12.31 -12.49 12.22 217 

al -12.40 -12.32 

e -14.91 -14.90 

al -18.49 -18.68 

al -25.31 -24.75 
.... 

al -28.02 -27.62 N 

" • 
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Parameter Set Ml M2 

FCN(Coo) "1T -13.01 -13.01 

fr -14.99 -14.85 

".. -17.30 -16.94 

cr -20.61 -20.63 

t:r -28.94 -28.67 

cr -39.13 -38.59 

TABLE 7.1 (continued) 

01 02 

-13.96 -13.97 

-15.97 -15.90 

-17.85 -17.54 

-21.07 -21.04 

-28.65 -28.41 

-39.30 -38.86 

R1 R2 

-16.10 -16.18 

-17.60 -17.45 

-21.71 -21.40 

-23.62 -23.50 

-32.61 -32.53 

-44.07 -43.60 

• 

Expt1. !P. Reference 

.... 
N 
00. 
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The molecular symmetry groups, and the irreducible representation 

of each calculated orbital, are listed in the first column on the left, 

191 ,using Cotton's notation., Experimental information concerning the 

symmetry of the orbitaIs is given next to the experimental ionization 

potentials. When no such information is available, the experimental 

ionization potentials are listed in numerical order, and do not necessarily 

correspond to the calculated orbitaIs in the same rows. Experimental 

ionization potentials in parentheses refer to uncertain values. 

The main feature of Table (7.1) is that the orbital energies 

calculated using electron repulsion integrals evaluated from atomic spectra 

(columns Ml, M2, 01 and 02) are in allcases higher, and in most cases in 

better agreement with experiment, than those calculated using theoretical 

electron-repulsion integrals (columns Rl and R2). The use of theoretical 

electron-repulsion integrals leads to the prediction of ionization 

potentials which are too large in molecules, just as it does in atoms. If 

the electron-repulsion integrals are adjustedto give the ~orrect atomic 

ionization potentials and electron affinities, they also give more accurate 

molecular ionization potentials. 

The difference between the two empirical formulae for the inter-

stomic electron-repulsion integrals, gAB' is less significant since the 

choice affects the orbital energies by less than 1 ev. in most cases. The 

Ohno formula leads to closer agreement with experiment in a slightly greater 

number of cases th an the Mataga formula, but this ts not conclusive evidence 

in favour of the Oh no formula. The results are relatively insensitive to 
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the exact values of the gAB'S, so that the use of these approximate electron­
repulsion integrals does not lead to serious error. 

The value of the Slater exponent for hydrogen has even less effect 
upon the computed orbital energies, so that no clear choice of z~ can be 

based on them. It will be shown in Chapter 8, however, that the value 1.2 

leads to more accurate bonding energies. The colums M2 and 02, therefore, 

list the orbital energies computed using the best sets of parameters. 

In Table (7.2) the energies in columns M2 and 02 are compared 

with orbital energies using the Pople-Segal bonding parameters, and with 

those calculated from the Extended Huckel Theory. A comparison of columns 
MP and OP with columns M2 and 02 shows that the Pople-Segal bonding parameters 
lead to ionization potentials which are much higher than those obtained 

with empirical bonding parameters, and are in almost aIl cases in worse 

agreement with experiment. For many bonding and anti-bonding molecular 

orbitaIs, the effect of using the Pople-Segal bonding parametersis greater 

than that of using theoretical electron-repulsion integrals, since the 

ionization potentials of these orbitaIs in columns MP and OP are higher 

than the corresponding ones in columns RI and R2. The energies of lone-

pair or non-bonding orbitaIs, such as the al and b l orbitaIs of ammonia and 

water respectively, are relatively insensitive to changes in the bonding 
parame ter s.. The reason for this difference is clear if the orbital energy 

is expressed in terms of the orbital coefficients. 

= (2.11) 



ft • 
TABLE 7.2 

COMPARISON OF ORBITAL ENERGIES OF FIRST-ROW MOLECULES (in ev .. ) IN DIFFERENT MO THEORIES 

Parame ter Set M2 02 MP OP . RP Hl H2 
. (a) 

Expt1.I.P. 

H2(Dooh) erg -14.69 -15.44 -17.11 -18.60 -20.09 -31.51 -29.65 15.45 

LiH(C ) 0- - 8.09 - 7.90 -12.34 -13.21 -13.15 -13.84 -13.78 (7.81-7.91) ccv 

BeH2(D
coh

) <iu -11.41 -11.77 -16.27 -17.26 -17.89 -13.68 -13.94 

erg -12.74 -12.83 -17.15 -18.07 -18.85 -16.21 -15.79 

B~(D3h) el -12.11 -12.85 -16.80 -17.94 -19.16 -13.85 -14.28 11.4 

a 1 

1 -17.73 -17.78 -24.56 -25.63 -26.91 -20.02 -19.60 

CH4 (Td) t 2 -12.70 -13.50 -17.05 -18.34 -19.78 -14.88 -15.31 12.99 

al -23.51 -23.40 -32.32 -33.56 . -34.68 -24.61 -24.40 (24) 

~(C3v) al -12.45 -13.30 -13.26 -14.00 -16.30 -14.21 -14.28 10.35 

e -13.56 -14.20 -17.75 -19.22 -20.21 -16.35 -16.73 14.95 

al -27.07 -26.71 -34.59 -35.89 -37.08 -27.80 -27.69 

(a) . References as in Table 7.1. 
. .... 

W) 
..... . 
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TABLE 7.2 (continued) 

Parame ter Set M2 02 MP OP 

H2O(C2v) hl -14.11 -14.33 -14.11 -14.72 

al -14.03 -14.88 -16.10 -17.11 

b2 -14.68 -15.36 -18.64 -20.22 

. al -32.69 -32.51 -37.87 -39.03 

HF(Ccov) "Tt -16.19 -16.67 -16.70 -17.33 

<5"'; -16.38 -17.30 -19.48 . -20.75 

Ô -37.60 -37.88 -40.87 -41.84 

N2(D~h) as -13.57 -14.25 -15.34 -15.66 

1fu -13.62 -14.44 -18.16 -19.40 

~ -23.15 -23.46 -22.03 -22.03 

<18 -30.23 -29.65 -40.95 -41.87 

RP Hl H2 

-17.83 -17.27 '-17.27 

-19.38 -17.67' -17.78 

-21.44 -18.75 -19.02 

-40.46 -33.34 -33.28 

-21.28 -20.86 -20.86 

-23.14 -21.31 -21.43 

-45.55 -39.77 -39.74 

-18.30 -14.05 

-20.38 -16.24 

-25.16 -19.99 

-43.27 -31.59 

• 

Expt1. I.P~ 

b1 12.61 

14.23 

18.02 

"TT 16.06 

<r 16.48 

cr 15.58 g 

-Wu 16.70 

cr 18.80 u 

.... 
W 
N 
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TABLE 7.2 (continued) 

Parameter Set M2 02 MP OP 

CO (Coov) tS" -13.20 -13.81 -14.56 -14.78 

". -13.76 -14.40 -18.25 -19.52 

(j -20.83 -20.53 -21.62 -22.00 

d'" -33.40 -33.15 -43.03 -44.09 

CO2(Doc!)h) 1T g 
-13.78 -14.55 . -12.87 -13.88 

""u -16.26 -16.83 -21.18 -22.29 

0; -13.58 -14.55 -17.24 -18.23 

OS -20.69 -21.01 -21.03 -21.81 

CIu -33.73 -33.81 -41.31 -42.34 

erg -34.67 -34.46 -43.09 -44.06 

RP .. Hl H2 

-17.26 -14.39 

-21.09 -17.80 

-24.67 -20.09 

-45.33 -34.44 

-15.70 -17.20 

-24.81 -18.14 

-20.43 -17.51 

-24.42 -19.56 

-43.99 -32.59 

-45.40 -35.50 

• 

Expt1. l.P. 

CS 14.00 

11 16.54 

(j 19.65 

"1T 13.79 
g 

"Tru 17.59 

c: 18.07 u 

<S'" 19.36 g 

.... 
w 
~ 
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TABLE 7.2 (continued) 

Parameter Set M2 02 MP OP RP Hl H2 Expt1. I.P •. 

NNO(C ) -13.58 -11.83 -13.14 -14.44 -15.27 12.90 
DOV 

-15.35 -17.28 -18.21 -20.72 -16.16 16.40 

-16.63 -21.82 -22.96 -25.44 -18.16 18.14 

-23.83 -21.62 -22.67 -24.98 -19.85 20.08 

-29.54 -38.01 -39.16 -41.03 -29.17 

-34.33 -45.14 -46.22 -48.00 -35.71 

03 (C2v) a2 -14.35 -14.59 -12.05 -13.13 -14.68 -17.16 12.3 

al -14.72 -15.20 -13.32 -13.83 -17.35 -15.94 12.52 

h2 -14.75 -15.20 -13.73 -14.29 -17.71 -16.86 13.52 

hl -16.18 -16.85 -20.31 -21.40 -23.54 -19.22 16.4-17.4 

h2 -18.11 -18.19 -21.17 -22.14 -24.49 -19.40 
19.24 

al -18.67 -18.34 -21.73 -22.36 -25.73 -19.06 

al -30.10 -30.70 -28.14 -28.40 -32.10 -25.22 

h2 -33.24 -33.32 -36.72 -37.57 -39.90 -32.54 

al -38.78 -37.88 -47.55 -48.35 -50.49 -38.71 ~ w 
~ . 



e • 
TABLE 7.2 (continued) 

Parameter Set M2 02 MP OP RP Hl H2 Exptl. I.P. 

C2H2 (D OOh) 1f -10.49 -11.38 -15.14 -16.40 -17.46 -13.39 -13.39 -n 11.40 
u 

u 

~ " -12.33 -12.94 -18.12 -19.35 -20.62 -15.05 -15.30 tr 16.44 g 

~ -18.20 -18.63 -24".03 -25.27 -26.55 -19.52 -19.47 <r. 18.42 u 

~ -24.20 -24.19 -34.98 -36.17 -36.84 -26.70 !"'26.64 

C2H4(D2h) b3u -10.30 -11.11 -13 .86 -15.01 -16.06 -13.07 
. -13.07 b3u(~) 10.48 

b " 
3g -11.10 -11.95 -13.40 -14.54 -15.82 -13.65 -14.49 12.50 

a -11.63 -12.36 -16.66 -17.84 -19.15 -14.37 -14.48 14.39 
g 

b2u -14.73 -15.25 -22.33 -23.68 -25.11 -16.05 -16.24 15.63 

b1u 
-19.14 -19.48 -24.97 -26.19 -27.49 -20.47 -20.38 (19.13) 

a -25.43 -25.12 -37.16 -38.30 -39.06 -26.57 -26.47 
g 

C2H6 (D3d) e -11.32 -12.26 -13.74 -14.93 -16.32 -13.69 -14.46 
} 11.49 g 

aig -11.32 -12.07 -15.94 -17.02 -18;21 -13.98 -14.04 

e -14.18 -14.81 -20.63 -21.93 -23.41 -15.75 -15.96 14.74 
u 

a2u -20.22 -20.52 -26.57 -27.79 -29.07 -21.62 -21.48 (20.13) 

a1g -26.04 -2S.60 -38.13 -39.27 -40.08 -26.28 -26.14 l-
I. 

" . 
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TABLE 7.2 (continued) 

Parameter Set M2 02 MP OP 

C3H8(C2v) b, -10~93 -11.93 -12.72 -13.88 ... 
b2 -10.64 -11.47 -13.78 -14.89 

al -10.96 -11.83 -13.42 -14.55 

a2 -12.29 -13 .17 -16.16 -17.42 

b2 . -12.72 -13.52 -18.10 -19.28 

al -14.17 -14.81 -20.76 -22.00 

b1 -15.06 -15.60 -22.67 -23.98 

al -19.38 -19.76 -25.94 -27.18 

b2 -22.76 -22.76 -31.80 -32.98 

al -27.62 -26.99 -41,.86 -42.97 

RP Hl 

-15.28 -13.21 

-16.12 -13.41 

-15.86 -13.54 

-18.91 . -14.44 

-20.67 .. -14.69 

-23.40 -15.57 

-25.51 -16.13 

-28.55 -20.39 

-34.05 -23.75 

-43.68 -27.12 

H2 

-14.11 l 
-13.62 

-13.90 

-15.00 } 

-15.14 

-15.77 ] 

-16.24 

-20.34 

-23.58 

-27.04 

• 

Expt1. I.P. 

11.07 

13.17 

15.17 

(19.8) 

..... 
UJ 
0\ 
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TABLE· 7.2 (continued) 

Parameter Set M2 02 MP OP RP Hl H2 Expt1. I.P. 

B2H6(D2h) b3g - 8.82 -10.02 - 9.14 -10.25 -10.94 - 9.87 -10.70 12.0. 

b2u -10.65 -11.54 -14.56 -15.96 -16.70 -11.43 -11.78 

b3u -12.72 -13.63 -19.39 -20.72 -21.20 -14.12 -14.46 

a -14.07 -14.47 -21.66 g -23.04 -23.64 -15.16 ':'15.55 

b1u -17.20 -17.36 -25.45 -26.87 -27.55 -18.85 -18.54 

a -21.28 . -21.16 -35.01 g -36.40 -36.84 -21.35 -20.98 

LiF(C ) oov 1T -10.10 -10.88 -14.11 -15.05 -14.99 -20.86 

tr -10.14 -10.88 -14.17 -15.01 -15.37 -20.86 

t:r -31.22 -31.75 -37.40 -38.38 -38.61 -39.41 

F2(Dœh) if g -17.80 -17.94 -16.77 -16.77 -22.09 -20.09 1T" 15.63 g 

6"g -17.02 .-17.66 -20.22 -21.19 -22.72 -22.46 6': 17.35 g 

llu -19.42 -19.27 -20.45 -20.45 -25.7.7 -21.57 .".. 18.46 u 

~ -37.56 -37.82 -36.12 -36.12 -41.99 -36.06 

d'g -41.26 -40.91 -44.31 -44.52 -49.73 -42.47 
~ 
U) . ...., . 
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TABLE 7.2 (continued) 

Parame ter Set M2 02 MP OP 

C~F(C3v) e -12.65 -13.68 -13.96 -14.77 

al -14.11 -15.06 -18.61 -19.70 

e -15.87 -16.34 -20.42 -21.39 

al -23.15 -23.33 -28.82 -29.83 

al -36.87 -37.16 -43.47 -44.40 

HCN(Coov) "Ir -12.44 -13.33 -16.40 -17.71 

cr -12.81 -13.72 -15.32 -15.94 

fS"" -20.33 -20.69 -23.81 -24.90 

ts- -27.86 -27.60 -37. ,5 -38.64 

RP Hl 

-17.57 -14.61 

-21.27 -20.15 

-24.12 -20.96 

-32.05 -23.64 

-47.10 -40.00 

-18.58 -15.09 

-18.15 -14.64 

-26.43 -19.68 

-39.62 -29.31 

H2 

-15.08 

-20.08 

.-20.95 

-23.57 

-40.00 

-15.09 

-14.69 

-19.64 

-29.30 

• 

Expt1. I.P. 

e 12.85 

al 14.10 

(al) 16.89 

13.-91 

... 
w 
00 
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Parame ter Set M2 02 

C~CN(C3v) e -12.49 

a . 
1 -12.32 

e -14.90 

al -18.68 

al -24.75 

al -27.62 

FÇN(Coov) lT -13.01 -13.97 

(J'" -14.85 -15.90 

ïT" -16.94 -17.54 

es- -20.63 ~21.04 

cr -28.67 -28.41· 

tr -38.59 -38.86 

TAELE 7.2 (continued)· 

MP OP RP 

-13 .81 . -15.09 -15.89 

-14.61 -15.29 -17.28 

-20.54 -21.97 -23.21 

-20.43 -21.53 -22.88 

-34.24 -35.45 -36.46 

-39.07 -40.19 -40.83 

-14.25 -15.20 -17.14 

-15.92 -16.51 -19.15 

-21.55 -22.49 -25.51 

-22.87 -23.87 -26.26 

-37.37 -38.31 -39.92 

-46.08 -47.14 -49.85 

Hl H2 

-14.48 -14.72 

-14.08 -14.11 

-15.53 -15.69 

-17.38 -17.41 

-24.46 -24.34 

-29.56 -29.56 

-14.94 

-15.72 

-20.99 

-2l.67 

-28.74 

-40.26 . 

• 

Exptl. l.P. 

·12.22 

1-' 
W 
\Q 
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The only terms in the summation which depend on the bonding parameters 

are those involving matrix elements Fkl between orbitaIs on different atoms, 

and these terms are only significant if the coefficients of.atomic orbitaIs 

in at least 2 atoms in the molecular orbital are large, i.e., if the 

orbital is a bonding (or anti-bonding) orbital. 

Pople and Sega144 ,45 evaluated neither the electron-repulsion 

integrals, nor the bonding parameters, empirically. Orbital energies 

calculated with aIl the parameters used by Pople and Segal are listed in 

column RP, and are generally in worse agreement with experiment than those 

calculated using either empirical bonding parameters, or empirical electron-

repulsion integrals. The only empirical parameters used by Pople and Segal 

are the local terms of the diagonal core Hamiltonian matrix elements, Uss 

45 and U ,which are evaluated from atomic spectra. Table (7.2) shows that pp 

this degree of empiricism is ~ adequate for the calculation of accurate 

orbital energies. 

The columns Hl and H2 list orbital energies calculated using the 

Extended Huckel Theory. For molecules that do not contain hydrogen, the 

results of the EHT do not depend on the Slater exponent for hydrogen, so 

that only one set of orbital energies is listed. On the whole, the EHT 

orbital energies are less accurate than the SCF-MO-CNDO energies in columns 

M2 and 02 'although they are quite accurate for a few molecules, such as N2 

and CO. The results for the hydrides, and especially hydrogen, however, 

show that the EHT is unreliable. The effect of changing the Slater exponent 

for hydrogen is negligible. 
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-" Table (7.3) lists the orbital energies for molecules which 

contain atoms heavier than neon. SCF-MO-CNDO calculations for these 

molecules have only been made with empirical bonding parameters and electron-

repulsion integrals, since empirical parameters have been shown to be better 

for molecules containing only light atoms in Tables (7.1) and (7.2). The 

accuracy of the computed orbital energies is about the same for both sets 

of molecules, for both the SCF-MO-CNDO the ory and the EHT. 

In summary, therefore, the best of the semi-empirical theories 

considered is the SCF-MO-CNDO theory, with empirical electron-repulsion 

integrals and bonding parame~ers, and a Slater exponent for hydrogen of 1.2. 

The semi-empirical orbital energies of sorne small molecules are 

compared in Table (7.4) with approximate Hartree-Fock orbital energies from 

C 0 1 1 · . h d db· 39,223-227 f ' exact S F-M ca cu at~ons w~t exten e as~s sets. I Koopmans 

theorem is assumed to be valid, the overall accuracy of the semi-empirical 

orbital energies is comparable with that of the Hartree-Fock orbital 

energies. Of course, the latter are far closerto exact solutions of the 

Hartree-Fock equations, but they are not always in good agreement with 

measured ionization potentials, since Koopmans' theorem does not hold 

exactly. In cases where the semi-empirical orbital energies are in better 

agreement with ionization potentials, the errors due to the approximate 

solution of "Roothaan's equations partially cancel those due to Koopmans' 

"theorem. 

Sorne additional features of the orbital energies and ionization 

potentials are discussed below for specifie molecules. 
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TABLE 7.3 

COMPARISON OF ORBITAL ENERGIES (in ev.) IN DIFFERENT MO THEORIES FOR MOLECULES WITH NOT ALL FIRST-ROW ATOMS 

Parame ter Set Ml M2 01 02 Hl H2 Exptl. I.P. Reference 

SiH4(Td) t 2 -11.84 -12.08 -12.50 -12.67 -14.59 . -14. 79 12.2 218 

al ~18.62 -18.09 -18.67 -18.15 -21.63 -21.18 

GeH4(Td) t 2 -11.95 -12.12 -12.59 -12.75 -14.82 -14.97 12.3 218 

. al -18.28 -17.78 -18.52 -18.14 -22.51 -22.07 

snH4(Td) t 2 -11.73 -11.85 -15.41 -15.42 -14.42 -14.54 

al -16.67 -16.22 -20.63 -20.43 -20.53 -20.02 

PH3(C3v) al -12.08 -12.18 -12.68 -12.75 -11.68 -11.85 10.2 219 

e -12.11 -12.31 -12.83 -13.02 -14.78 -15.04 

al . -21.22 -20.88 -21.05 -20.76 -22.18 -21. 78 

AS~(C3v) al -11.64 -11.72 -12.12 -12.17 -10.51 -10.70 10.6 220 

e -11.70 -11.89 -12.35 -12.52 -14.14 -14.43 

al -18.53 -18.20 -18.38 -18.10 -21.23 -20.78 

t-' 
.;0.. 
N . 
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Parameter Set Ml M2 

Sb~(C3v) al -11.41 ·11.42 

e -11.49 -11.62 

al -18.54 -18.28 

H2S(C2v) b1 -11.57 -11.64 

b2 -12.47 -12.66 

al -12.50 -12.61 

al -21.82 -21.61 

H2Se(C2v) b1 -11.75 -11.81 

b2 -12.45 -12.59 

al -12.51 .-12.59 

al -20.99 -20.83 

TABLE 7 •. 3 (continued) 

01 02 Hl 

-11.85 -11.86 -10.06 

·-12.04 -12.18 -14.06 

-18.33 -18.13 -20.17 

-11.76 -11.79 -12.40 

-13.19 -13 .35 -15.61 

-13 .18 -13.25 -13.55 

-21. 79 -21.58 -23.59 

-11.94 -11.97 -11.68 

-13.13 -13.25 -15.34 

-13 .15 -13.19 -13.05 

-21.02 -20.85 -23.24 

H2 

-10.27 

-14.29 

-19.67 

-12.40 

-15.87 

-13.75 

-23.29 

-11.68 

-15.55 

-13.27 

-22.91 

• 

Exptl. 1. P. Reference 

10.42 , - 194 

12.62 

14.82 

20.12 

9.88 221 

.... 
~ 
w 



et 

Parameter Set 

H2Te b
1 

HC1(Coov) 

HBr(Coov) 

HI (Co.ov ) 

b
2 

al 

al" 

". 

a-

tr 

11 

t7" 

fT 

Tf" 

a-

tr 

Ml M2 

-11.69 -11.74 

-12.20 -12.33 

-12.29 -12.37 

-19.93 -19.83 

-13.13 -13.18 

-13.94 -14.07 

-24.96 -24.87 

-12.06 -12.09 

-13.11 -13.22 

-23.65 -23.58 

-12.06 -12.08 

-12.63 -12.68 

-20.38 -20.32 

tABLE 7.3 (continued) 

01 02 Hl 

-11.82 -11.85 -11.04 

-12.81 -12.92 -15.07 

-12.82 -12.87 -12.68 

-19.95 -19.85 -22.07 

-13.44 -13.46 -15.04 

-14.68 -14.79 -16.39 

-25.16 -25.07 -26.36 

-12.27 -12.28 -13.tO 

-13.77 -13.86 -14.88 

-23.77 -23.69 -24.98 

-12.17 -12.19 -12.67 

-13.18 -13.25 -14.62 

-20.44 -20.38 -22.26 

H2 

. -11.04 

-15.19 

-12.90 

-21.69 

-15.04 

-16.59 

-26.19 

-13.10 

-15.11 

-24.76 

-12.67 

-14.82 

-22.00 

e 

Exptl. 1. P. Reference 

9.14 217 

T 12.80 204 

cr 16.28 

ït' 11.87 204 

cr1S.31 

-rr 10.75 204 

tr 14.03 

.... 
~ 
~ 
• 
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Parame ter Set Ml M2 

OCS(CoDv' if -11.71 

"TT -14.76 

cr -12.97 

a- -18.77 

~ -24.05 

()" -33.71 

CS2(DaOh) Tf -10.88 -10.93 
g 

1Tu 
-12.83 -12.73 

~ -12.10 -12.01 

<18 -17.62 -17.70 

<ru -21.44 -21.35 

erg -25.64 -25.42 

TABLE 7.3 (continued) 

01 02 Hl 

-12.20 -12.26 -13.14 

-15.60 -15.36 -17.76 

-14.04 -13.81 -14.67 

-19.28 -19.32 -18.40 

-24.03 -23.89 -24.25 

-33.99 -33.58 -34.37 

-11.30 -11.33 -12.24 

-13.39 -13.28 -14.18 

-12.70 -12.59 -13.48 

-18.14 -18.23 -15.72 

-21.61 -21.52 -21. 64 

-25.31 -25.08 -26.97 

•• 

H2 Expt1. 1. P. Reference 

1T 11.27 200,196 

1J 15.60 

<S'16.04 

~18.00 

1t"g 10.11 200,196 

"lru 12.92 

<r 14.49 u 

cr 16.19 g 

(17.05) 

.... 

.,::.. 
\JI 
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Parame ter Set Ml M2 

CS ". -11.36 -11.31 

<:J -11.55 -11.49 

cr -18.41 -18.46 

<J -23.93 -23.77 

S02(C2v) al -12.23 -12.30 

b2 -12.68 -12.71 

a2 -12.94 -13.31 
, 

b1 -15.11 -15.06 

b2 -15.40 -15.32 

al -16.09 -15.99 

al -21.58 -21.59 

b2 -32.72 -32.63 

al -33.95 -33.72 

TABLE 7.3 (continued) 

01 02 Hl 

-11.90 -11.82 

-12.01 -11.94 

-18.60 -18.66 

-23.70 -23.52 

-12.65 -12.69 

-13.09 -13.09 

-13.11 -13 .33 

-15.40 -15.30 

-15.55 -15.42 

-15.78 -15.66 

-21.56 -21.58 

-32.41 -32.34 

-33.34 -33.15 

H2 

-13.65 

-12.13 

-16.96 

-25.71 

-13.03 

-17.07 

-17.23 

-18.00 

-17.86 

-.17.89 

-19.72 

-32.64 

-34.82 

e 

Expt1. I.P. Reference 

12.32 194 

13.17 

) 16.42 . 

(20.07) 

.... 
,Jlo-
0\ 



e • 
TABLE 7.3 (continued) 

Parameter Set Ml M2 01 02 Hl H2 Exptl. I.P. Reference 

C12(DoDh) '!Tg -13.01 -13.05 -13.13 -13.16 -13.80 lTg il.50 204,210 

lTu -14.85 -14.81 -14.73 -14.70 -16.05 11 14.11 u 

ag -13.57 -13.46 -14.02 -13.94 -16.42 cr '15.94 g 

~ -23.56 -23.61 -23.70 -23.74 -22.04 tr: 20.61 u . 
~ -27.08 -26.98 -26.86 -26.79 -28.62 

Br 2 (DCOh) "fT -11. 73 -11.74 -11.82 -11.83 -11.98 ". 10.71 204 g 
g 

7T -13.22 -13.21 -13 .13 -13.12 -14.01 11' 12.52 u 
u 

cr -12.14 -12.11 -12.56 g -12.53 -14.36 cr. 14.44 g 
tr -22.24 -22.25 -22.36 -22.37 -20.47 u 

Q 
g -25.15 -25.12 -24.97 ' -24.94 -26.96 

I2(D~h) -ng -11.81 -11.79 . -11.88 -11.86 -11.72 11"g 9.65 204 
7r .. 12.99 -13.01 -12.93 -12.95 -13.46 "1T ll.28 u 

u 
<f" -11.42 -11.47 -11.79 -11.85 -13.94 cr 12.79 g 

g 
t:r -19.25 -19.23 -19.33 -19.31 -18.40 u 

.... 
~ Ir -21.50 -21.55 -21.40 -21.45 -23.53 ~ g . 



• 

Parame ter Set Ml M2 

C1F(C ) ".. -14.36 -14.44 OOv 

1t'" -17.35 -17.24 

~ -15.37 -15.14 

~ -25.78 -25.82 

~ -38.34 -38.16 

BrF(C~v)' lT -13.13 -13.20 

'TT -16.40 -16.29 . 

(J. -14.34 -14.14 

r:r -24.33 -24.37 

6"" -37.43 -37.25 

TABLE 7.3 (continued) 

01 02 Hl 

-14.28 -14.34 

-17.21 -17.11 

-15.83 -15.64 

-25.63 -25.65 

-38.14 -37.98 

-12.90 -12.94 

-16.25 -16.14 

-14.76 -14.59 

-24.05 -24.07 

-37.20 -37.04 

H2 

-14.78 

-20.97 

-20.09 

-24.80 

-40.10 

-12.91 

-20.92 

-19.52 

-23.62 

-39.95 

•• 

Exptl. 1. P. Reference 

~ 12.7 222 

~ 11.9 222 

,.. 
.r:--
00 
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TABLE 7.3 (continued) 

Parame ter Set Ml M2 01 02 Hl H2 Expt1. I. P. Reference 

IF(Coov) if -13.60 -13.65 -13.41 -13.45 -12.58 ~ 10.5 222 

ï1' -15.81 -15.72 -15.65 -15.57 -20.88 

cr -13.40 -13.25 -13.79 -13.67 -18.88 

0 -21.60 -21.63 -21.37 -21.39 -21.99 

cs- -36.61 -36.49 -36.42 -36.31 -39.63 

B;rC1(Ccov? "Ji -12.27 -12.29 -12.33 -12.35 -12.53 6 11 •1 222 

Tl' -14.03 -14.00 -13.94 -13.92 -15.40 . 

6" -12.77 -12.70 -13.21 -13.15 -15.46 

tr -22.81 -22.84 -22.91 -22.94 -21.23 

~ -26.08 -26.02 -25.89 -25.84 -27.83 

1-' 

~ 
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Parame ter Set· Ml M2 

ICI (CoOv) 1T -12.39 -12.40 

Tt" -13 .85 -13.84 

(J" -12.37 -12.35 

a- -20.52 -20.52 

cs- -25.06 -25.04 

IBr(C ) 11' cpv. -11.77 -11.76 

-rr -13.13 -13.14 

cr -11. 76 -11. 77 

cs- -20.13 -20.12 

cr -23.96 -23.97 

TABLE 7.3 (continued) 

01 02 Hl 

-12.46 ':12.46 

-13.77 -13.76 

-12.78 -12.77 

-20.53 -20.54 

-24.98 -24.97 

-11.85 -11.85 

-13.06 -13.06 

-12.16 -12.17 

-20.18 -20.18 

-23.88 -23.88 

H2 

-12.24 

-15.29 

-15.26 

-19.67 

-26.70 

-11.84 

-13.75 

-14.15 

-19.14 

-25;55 

• 

Expt1. 1. P. Reference 

11' 10.55 210 

1112.16 

-n' 10.23 210 

11"11.64 

... 
VI 
o 
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TABLE 7.3 (continued) 

Parameter Set Ml M2 01 02 

CH3C1(C
3v

) e -11.53 -11.81 -12.23 -12.41 

al -12.24 -12.21 -13.00 -12.97 

e -14.06 -14.18 -14.67 -14.79 

al -21.67 -21.64 -22.11 -22.02 

al -26.64 -26.03 -26.51 -25.98 

C~Br(C3v: e -10.99 -11.19 -11.47 -11.61 

al -11.44 -11.46 -12.17 -12.16 

e -13.57 -13.76 -14.26 -14.43 

al -21.17 -21.16 -21.55 -21.51 

al -25.83 -25.22 -25.65 -25.09 

Hl H2 

-13.72 -14.11 

-15.63 -15.63 

-15.96 -16.06 

-21.54 -21.56 

-27.60 -27.52 

-.12.48 -12.68 

-14.20 -14.22 

-15.29 -15.58 

-20.84 -20.90 

-26.66 -26.54 

• 

Expt1. I.P. Reference 

e 11.42 208 

al 12.07 

e 13.02 

. al 18.71 

e 10.69 208 

al 11.62 

e 12.94 

al 19.13 

.... 
I.J'I .... 
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Parame ter Set· Ml . M2 

C~I(C3v) e -11.10 -11.30 

al -10.93 -10.99 

e -13.36 -13.57 

al -16.86 -18.98 

. al -24.70 -24.02 

C1CN(Coov" -rr -12.30 

fr -12.87 

". -14.40 

fT -19.48 

ff" -25.83 

cs- -28.68 

!ABLE 7.3 (continued) 

01 02 Hl 

-11.50 -11.64 -12.20 

-11.60 -11.64 -13.85 

-14.06 -14.24· -15.19 

-19.17 -19.26 -19.45 

-24.55 -23.91 -25.29 

-13.09 -13.08 

-13.78 -13.69 

-15.07 -14.93 

-19.87 -20.00 

-26.23 -26.08 

-28.64 -28.38 

H2 

-12.35 

-13 .89 

-15.51 

-19.55 

-25.13 

-14.47 

-14.88 

-15.77 

-17.70 

-25.79 

-29.99 

• 

Expt1. I.P. Reference 

e 9.80 208 

al 11.22 

e 13.14 

al 19.76 

t-' 
V1 
N 
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Parame ter Set Ml M2 

BrCN(Coa) ". -11.87 

(T -12.17 

1T -13.68 

CT -18.98 

(J -24.71 

0- -28.58 

ICN(Coa v) t:::r -11.76 -11.68 

TT -11.97 -11.92 

11 -13.47 -13.35 

cr -18.31 -18.41 

t:J' -22.03 -22.00 

(j -28.30 -28.03 

TABLE 7.3 (continued) 

01 02 

-12.41 -12.40 

-12.90 -12.81 

-14.26 -14.16 

-19.48 -19.63 

-24.85 -24.75 

-28.25 -28.00 

-12.44 -12.36 

-12.46 -12.42 

-13.98 -13.90 

-18.74 -18.83 

-22.13 -22.12 

-27.97 -27.73 

Hl . H2 

-13.19 

-14.29 

-15.21 

-16.87 

-24.67 

-29.11 

-14.14 

-12.78 

-15.15 . 

-16.64 

-22.41 

-29.42 

• 

Exptl. I.P. Reference 

.... 
Ut 
W 
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TABLE 7.4 

·COMPARISON OF SEMI-EMPIRICAL AND HARTREE-FOCK ORBITAL ENERGIES 

Orbital Energy M2 02 

CH4(T
d

) t 2 -12.70 -13.50 

al -23.51 -23.40 

-12.45 -13.30 

e -13.56 -14.20 

-27.07 -26.71 

H2O(C2v) b1 -14.11 -14.33 

al -14.03 -14.88 

b2 -14.68 -15.36 

al -32.69 -32.51 

-16.19 -16.67 

-16.38 -17.30 

.<S' -37.60 -37.88 

-13.18 -13.46 

. -14.07 -14.79 

-24.87 -25.07 

Hartree- Reference Fock 

-14.72 223 

-25.63 

-10.60 224 

-16.40 

-30.06 

-13.48 224 

-15.13 

-18.54 

-36.08 

-17.70 39 

-20.91 

-43.57 

-12.96 39 

-17.02 

-30.38 

Exptl. I.P. 

12.99 

(24) 

10.35 

14.95 

b1 12.61 

14.23 

18.02 

1'f 16.06 

~16.48 

lf 12.80 

cr16.28 



155. 

e TABLE 7.4 (continued) 

Orbi ta1 Energy M2 02 Hartree-
Reference Exptl. l.P. Fock 

N2(DOOh) cr -13.57 -14.25 -17.36 225 0- 15.58 g g 

l1u -13.62 -14.44 -17.10 Tf 16.70 
u 

cru -23.15 -23.46 -20.92 tr 18.80 
u 

OS -30.23 -29.65 

CO (Coov) 0- -13.20 -13.81 -15.08 39 (("14.00 

TT -13.76 -14.40 -17.40 1f 16.54 

(F -20.83 -20.53 -21.87 tr 19.65 

() -33.40 -33.15 -41.39 

CO2 (Deoh) ïf g -13.78 -14.55 -14.81 39 "'Ifg 13.79 

1fu -16.26 -16.83 -19.45 llu 17.59 

""u -13.58 -14.55 -20.23 
~ 18.07 

~ -20.69 -21.01 -21.77 O'"g 19.36 

6 u -33.73 -33.81 -40.19 

~ -34.67 -34.46 -41.63 

NNO(CoOv) 1T -13.58 -13.37 39 'Tf 12.90 
d" -15.35 -19.01 () 16.40 
11 

-16.63 -20.73 7f 18.14 
0-

-23.83 -22.63 tr 20.08 
fT 

-29.54 -38.75 
0-

-34.33 -43.82 
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TABLE 7.4 (continued) 

Orbi ta1 Energy M2 02 Hartree- . Reference Expt1. I.P • Fock 

C2H2(Dooh) ïfu -10.49 -11.38 -11.17 39 nu 11.40 

D"'g -12.33 -12.94 -18.58 O"g 16.44 

cru -18.20 -18.63 -20.95 ~ 18.42 

.O"g -24.20 -24.19 -28.02 

. C2H4 (Dooh) b3u -10.30 -11.11 -10.38 226 b3u("Tt') 10.48 

b3g -11.10 -11.95 -14.08 12.50 

a -11.63 g -12.36 -15.86 14.39 

b2u -14.73 -15.25 -17.97 15.63 

b1u -19.14 -19.48 -21.95 (19.13) 

a -25.43 -25.~2 -28.80 g 

F2(DOOh) 11" g -17.80 -17.94 -18.04 227 1lg 15.63 

OS -17.02 -17.66 -20.30 o-g 17.35 

-nu -19.42 -19.27 -21.91 11"u 18.46 

-GÇ. -37.56 -37.82 -40.68 

IF -41.26 -40.91 -47.80 g 
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Hydrogen: In Table (7.1) the computed ionizàtion potential is 

most aceurate if gAB is given by the Ohno formula, and it is independent of 

the Slater exponent of the atomic orbitaIs. In this case, these conclusions 

can be derived analytically, since the occupied orbital must by symmetry 

have the form 

(7.4) 

The energy eigenvalue of an orbita1 is given by 

=L (2.11) 
k,l 

or, in this case, 

= (7.5) 

The population matrix for H
2 

is 

P = (~ ~) (7.6) 

so that the Hamiltonian matrix ~lements are 

= (7.7) 

and 

= (7.8) 

where aIl symbols have been defined in Chapter 2. For aIl the sets of 

parameters considered, including that of Pople and Segal, FIl is equal to 

the negative of the electronegativity of the ls orbital of a neutral hydrogen 

79 atom (7.171 ev.). The ionization potential of H2 is, therefore, 
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1 = 7.171 + 1 
'2 ~12 (7.9) 

A1so, as shown in Chapter 8, the dissociation energy of H2 i8 

= (7.10) 

From equations (7.9) and (7.10); the ionization potentia1 and 

dissociation energy are both predicted correct1y if g11 is evaluated using 

72 0 
pariser's formula, g12 = 10.766 ev., and ~H S12 = 2.896 ev. Empirica1 

parameters have not been assigned in this way, however, since for other 

m91ecu1es the population matrix is not determined by symmetry, so that the 

ionization potentia1s and atomization energies cannot be expressed simp1y 

and sole1y in terms of the parameters. Instead, the interatomic e1ectron-

repu1sion integra1s were ca1cu1ated using the Mataga and Ohno formulae, and 

the bonding parameter8 were chosen to fit atomization energies alone. For 

H2 , the values for g12 given by the Mataga and Ohno formulae are 7.731 ev. 

and 10.713 ev. respective1y. Since the latter value is c10sest to the value 

. required to fit the ionization potentia1 exact1y, it leads to a more accurate 

ionization potential. 

It i8 also c1ear from equations (7.9) and (7.10) that if the 

electron-reput'sion integrals, g11 and g12' are kept constant and the' overlap 

in~egral S12 i8 altered by varying the value of the Slater exponent, z~, then 

. 0 
the change in the bonding parame ter ~H' which i8 required to main tain the 

value of the dissociation energy, also keeps the predicted ionization 

potential constant. (Table (7.1» 



159. 

If gll is eva1uated from the theoretical integral, equation (2.18), 

the value of g12 required to fit both the ionization potential and the 

dissociation energy is 3~206 ev., compared to the theoretical integral 

values 13.688 ev. and 15.896 ev., for 2â =1.0 and 1.2 respectively, so that 

the use of theoretica1 electron-repulsion integrals leads to an inaccurate 

ionization potential. 

Lithium hydride: No experimental value for the ionization 

potential of LiH is known. A rigorous upper bound, and a probable lower 

~ound, for the energy of LiH+ have been'calculated exactly by Browne,2l4 

using a generalized valence-bond Wélve function. Such a c~llculation was 

possible for this ion because it contains only three electrons. These 

bounds have been combined with the experimental energy of LiH to give the 

ionization potential within the limits given in the table. The ionization 

potentials calculated using the SCF-MO theory with empirical bonding 

parameters and electron-repulsion integrals are in good agreement with the 

value from the ab initio calculation. 

Methane: The approximate value 24 ev. for the second ioniza-

tion potent~al was determined by Collin and Delwiche,2l2 using mass 

spectrometry, and is considered uncertain by the authors. An earlier value 

, 2œ 
of 19.42 ev.,based on the electron impact spectrum, has been shown to 

d . . . 1 1 212 correspon to an auto~on~zat~on eve. This conclusion has been confirmed 

by photoelectron spectroscopy, since no second ionization potential is 

observed for CH4 below 21.21 198 
ev. It is probable, therefore, that' the 
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true second ionization potential is within 1 ev. of the value (23.4 to 

23.5 ev.) predicted by the semi-empirical SCF-MO-CNDO theory. In the 
, , 

absence of the extension of photoelectron spectroscopy to higher incident 

photon energies, this conclusion.would be supported if the predicted second 

ionization potentials for SiH4 , GeH4 and S~H4' which are in the range 

observable at present by photoelectron spectroscopy, were shoWn to be 

accurate. 

Ammonia and Related Molecules: Thè highest occupied molecular 

orbital is the lone pair on nitrogen, so that its computed energy is 

insensitive,to changes in the bonding parameters. For PH
3

, As~ and SbH3 , 

the two highest molecular orbital energies are predicted to be so close 

together that the photoelectron spectra should be examined to see how many 

distinct ionization potentials can be resolved. The two peaks may be 

further apart than predicted, however, since their spacing i8 seriously 

underestimated in ammonia. 

Water and Related Molecules: The or der of the computed 

orbital energies depends on the choice of parameters. The b
l 

orbital, a 

lone pair on, the' oxygen atom, is, in fact, the highest since the first 

ionization potential is much sharper than the next two in the photoelectron 

'198 
spectrum. For H2S, H2Se and H2Te, on the other hand, the bl orbital is 

predicted to be the highest for aIl parameters tried. This is consistent 

194 
wit~ experiment for H2S, for whi~h Al-Joboury and Turner assigned the 

first ionization potential to a non-bonding orbitai. 
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Carbon Dioxide and Related Molecules: AlI the calculations 

predict that the highest Uu orbital energy of CO
2 

is higher than one or 

both Tr orbital energies, in disagreement with the experimental order of 

ionization potentials, which is based on the emission spectrum of the CO
2
+ 

i 
213 

on. Complete SCF-MO calculations give the correct order of orbital 

energies with an extended basis set,39 bu~ not with a minimum basis set,228 

so that the decrease of energy associated with improved flexibility of the 

wave function is greater for the q orbital than for the 1T orbitaIs. 
u 

The incorrect order of orbital energies in the semi-empirical theory, 

consèquently, may also be due to the use of a minimum basis set. 

For OCS and CS2 , the predicted order of orbital energies is 

again in disagreement with the experimental order, which is based on the 

similarity of the photoelectron spectra to that of CO 2, and the absence, 

as in CO2, of a Rydberg series converging to the second ionization 

potential. 196 No complete SCF-MO calculations have been made for these 

molecules, but it can be assumed that the source of error is the same. 

For NNO, which is isoelectronic to CO2, the second ionization 

potential has been found to correspond to a U orbital by photoelectron 

spactroscopy, so that both the semi-empirical and the complete SCF-MO 

theory are in' agreement with experirnent. The actual inversion of orbital 

energies.on going from CO
2 

to NNO may be due te the fact that the removal 

of the centre of symmetry allows·mixing between g and u orbitaIs, which 

causes a greater separation of the energetically closer ~-orbital en~rgies 

than the lT-orbital energies. This mixing effect is absent in the symmetric 



162. 

CO
2 

and es2 , and small in oes, but is evidently important in NNO. 

'Sulphur dioxide and Ozone: No experimental information is 

available concerning the'assignment of ionization potentials to specific 

orbitaIs, so that the predicted order cannot be verified. For S02' a good 

fit is obtained if the first two observed ionization potentials are assumed 

to be three incompletely resolved peaks, and the third observed peak to 

corre~pond to three unreso1ved energy levels. The fourth observed ioniza­

tion potential at 20.07 ev. is considered uncertain by Turner,194 but its 

existence is supported by the theoretical prediction of an orbital at 

-21.6 ev. 

Ethylene: The b3u orbital, which has its nodal plane in the 

, 15 16 plane of the nuclei, is the ',7I'-orbital of cheml.stry, ' and has been 

h '11 b h h' h 'd b' 1 194 S own experl.menta y to ete l.g est Occupl.e or l.ta • It is 

correctly predicted to be the highest with empirical bonding parameters, 

but not with the Pople-Segal bonding parameters. 

The fifth ionization potential is considered uncert.ain by 

Turner,194 but agrees weIl with the energy of the b
lu 

orbital, computed 

using empirical p~rameters. 

Ethane: There are four ca1culated orbital energies (in columns 

, 198 
M2 and 02) higher than -21.21 ev., and three observed ionization potentia1s 

in this range. Good agreement of the computed energies with experiment is 

obtained only if it is assumed that the observed first ionization potential 

corresponds to the two highest orbital energies, whichare not resolved. 
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198 1t is c1ear from the observed photoelectron spectrum of C
2
H

6 
that two . 

peaks as close as the predicted orbital energies either would not be 

resolved, or would be interpreted as the vibrational structure of a single 

64 peak. Dewar and Klopman have made the same assumption in order to fit 

calculated orbital energies to the observed ionization potentials. 

Propane: The irreducible representations are labelled 

assuming that the z-axis is the twofold symmetry axis, and the x-axis is 

normal to the plape of the three carbon atoms. The first three observed 

ionization potentials are assumed to correspond to seven calculated orbital 

~nergies. 
64 

Dewar and Klopman also ~alculated seven orbital energies above 

-16 ev. 

Diborane: The irreducible representations are labelled assuming 

that the z.-axis lies alon& the boron-boron line, and the x-axis connects 

the two bridg~ hydrogens. The atomic orbitaIs on the bridge hydrogens 

par.ticipate in the a and b3u orbi taIs, which provide the bridge bonding 
.g 

corresponding to the "three centre bonds" in the localized-orbital descrip-

tion
6 

of B2H6. 

Halogens: The ~ orbital is predicted to be the highest 
g 

occupied orbital in F2 and 12, according to the semi-empirical SCF-MO-CNDO 

theory, and the second highest in C1 2 and Br 2 , whereas the photoelectron 

204 spectra show that it is below one '1T orbital in F
2

, and both in the' other 

halogens. 
227 

Complete SCF-MO calculations for F2, using either an extended 
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" 229 b' d' h d f b' 1 ' or a ~n1mum aS1S, pre 1ct t e correct,or er 0 or 1ta energ1es, so 

that the error in the semi-empirical the ory must ,be due to either the CNDO 

approximation or the choice of parameters, The orbital energies calculated 

with Pople-Segal bonding parameters are in the correct order, but are in 

error by several ev. as for other molecules. 

Interhalogens: For the interhalogen molecules, the highest ~ 

orbital energy in the SCF-MO-CNDO the ory is also higher than one or both 

Tr-orbital energies, in disagreement with the experimental observation of 

spin-orbit splitting of the first two ionization potentials of ICI and 

IBr.
2lO 

For ClF; BrF, IF and BrCl, experimental ionization potentials have 

not been determined, but upper bounds to the first ionization potential, 

d . , d f ' 1 i hl' 222 l' d eterID1ne rom appearance po~ent1a s n a ogen m1xtures, are 1ste. 

Methyl fluoride: 208 Frost and McDowell list the third ioniza-

'tion potential as al in their table, but their accompanying text indicates 

that this is a misprint, and that the third highest orbital has e symmetry, 

as in the other methyl halides, and in agreement with aIl versions of MO 

the ory considered. 

Hydrogen cyanide and methyl cyanide: The çomputed orbital 

energies indicate that the first two ionization potentials may be too close 

to be resolved, This prediction could be verified by determining how many 

distinct ionization potentials are resolved in the photoelectron spectra, 

which have not yet been observed. 
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D. CONCLUSIONS 

The SCF-MO-CNDO theory leads to the prediction of fairly accurate 

ionization potentials when empirical electron-repulsion integrals and 

bonding parameters are used, and is definitely more reliable than the EHT. 

The theory is, of course, a drastic semi-empirical approximati~n to the 

complete SCF-MO theory, in which an extended basis set is used and aIl 

electron-interaction integrals are evaluated explicitly. Even in the latter 

theory, ionization potentials are not predicted exactly (Table 7.4), due to 

errors in Koopmans' theorem. It is therefore notsurprising that ~ of 

the predicted orbital energies in the semi-empirical SCF-MO theory are 

somewhat in error, or even in the wrong order for a given molecule. The 

computed orbital energies provide support, but ~ conclusive eVidence, for 

a given assignment of the ionization potentials of a molecule, when this . 

order has not been determined experimentally. 



CHAPTER 8 

BONDING ENERGIES 

. A. CALCULATION OF BONDING ENERGIES FROM·SCF-MO-CNDO THEORY 

The complete Hamiltonian for a molecule can be partitioned 

(Chapter 1) into electronic and nuclear terms: 

0 0 0 0 

H = H +T e· n + V nn 

0 

where.H is the electronic Hamiltonian with e eigenvalue Ee' 

(1.5) 

o 
T is the 

n o 
nuclear kinetic energy, and V nn is the internuclear potential energy. 

The total molecu1ar energy is often partitioned into electronic, vibra-

. 207 
tional, and rotational terms. 

(8.1) 

Eelect is the total electronic energy, given by 

E = E + V elect e nn (8.2) 

166. 

where V is the expectation value of the internuclear potential energy for nn 

a fixed nuclear configuration. 

At OOK, the rotational and translational energies vanish, and 

230 only the vibrational zero-point energy 

o 
E .b Vl. 

=~ ~~. 
2 • l. 

1. 

(8.3) 
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230 remainsj the summation extends over a11 vibrationa1 normal modes. For 

most of the sma11 mo1ecu1es considered, a11 the vibrationa1 frequencies, 

k 230-232 and their degeneracies, are nown. At OOK, therefore, the energy 

of an iso1ated mo1ecu1e is 

E = E + V
O 

+ ~2 ~ v. 
e nn i 1 

" (8.4) 

For a "c1osed-she11 mo1ecu1e with a sing1e-determinant wave 

function 

. 'f = Det 1 ~a 
1 

Ee can be expressed as a summation over the occupied orbita1s, 

E = e 

Ei is the orbital energy eigenva1ue, which may be written 

= E 
k,l 

(1.9) 

(8.5) 

(2.11) 

when the mo1ecu1ar orbita1s are 1inear combinations of atomic orbita1s. 

The C
ki 

are orbital coefficients, and F is the Hartree-Fock"Hami1tonian 

matrix. Similar1y, 

=~ (8.6) 
k,l 

where H is the core Hami1tonian matrix. On substituting equations (2.11) 

and (8.6) into equation (8.5), 

= r:." 2:- (8.7) 
k,l i 

.:... 



The population matrix elements, Pk1 , were defined previous1y as 

so that 

= 

- ! I. Pk1 (l1t1 + Fk1 ) 
k,l 

(2.15) 

(8.8) 

th f d b P 1 S d S 1 42,43 e orm use y op e, antry an ega. In matrix form, this 

becomes 

E e 
= 1 tr 

2 
P (H +1') 

From equations (8.2) and (8.9) the total electronic energy is 

1 
= 2' tr P (H + F) + V no 

For computation, it is convenient to use the equivalent form 

l~ 
E 1 t = -2 tr PH +~ E. + V e ec i 1 no 

(8.9) 

(8.10) 

(8.11) 

since the energy eigenvalues E. are determined together with the orbital 
1 

coefficients. 

The SCF-MO-CNDO theory has been applied by other authors only 

168. 

to the calculation of the relative energies of different nuclear configu-

44-46 67 68 . rations or electronic states ' of s1ngle molecules, although Dewar 

et al. have computed heats of formation using their PNDDO ~pproximation.64,69 

To calculate relative energies for single molecules, it is sufficient to 

consider the relative values of the total electronic energy, E l t. e ec 
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In order to find bonding or dissociation energies, or heats of formation, 

however; the choice of the energr zero implied by equation (8.11) must 

be examined. 

For an all-valence-electron SCF-MO theory, the right hand 

side of equation (8.10) vanishes if 

(i) the mo1ecule has no valence-shel1 electrons, so that the 

one-electron densi.ty matrix P is zero, and E vanishes, and 
e --

(ii) the atomic cores are at infini te distance apart, so that 

V vanishes. 
nn 

~n chemistry, however, one is interested ~ in the energy 

required to remove aIl the e1ectrons and atomic cores to infinite 

separation, but rather in the bonding energy, or atomization energy, 

required to separate the molecule into neutral atoms in their ground state 

75 at infinite distance apart. This bonding energy may be expressed· as 

E elect (8.12) 

where E
A 

is the valence shell electronic energy of atom A, and E
B 

is 

positive for a stable molecule. 

For a diatomic molecule, E
B 

is equal to the heat of dissociation, 

207 D , measured from the minimum of the potential energy curve. 
e 

For a harmonic oscillator, 

D e 
1 = D + - hY o 2 

(8.13) 
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where D is the observed heat of dissociation from the vibrationa1 ground 
o 

207 state, and ~ is the vibrationa1 (requency. In genera1, the bonding 

energy is re1ated to the experimenta1 heat of formation at OOK, 

(8.14) 

o where 6H fO is the mo1ecu1ar heat of formation in the gas phase at 0 K, 

231 and ~fO (A) is the heat of formation of the monatomic gas of e1ement A. 

If the heats of formatïon are on1y avai1ab1e at some temperature, TOK, 

equation (8.14) is forma11y rep1aced by 

E = 
B :fT ~c dT 

o p 
(8.15) 

The integra1 is neg1ected if the required heat capacity data 

are not known. 

The theoretica1 bonding energy is found by substituting equation 

(8.2) into equation (8.12) 

(8.16) 

The atomic energy, EA' forma11y represents the energy required 

°to remove a11 the va1ence-she11 e1ectrons from atom A, just as E represents e 

the energy required to remove the va1ence-she11 e1ectrons from the mo1ecu1e. 

The successive ionization of e1ectrons, from both atoms and mo1ecu1es, 

requires increasing amounts of energy for two reasons: 

(i) the e1ectrostatic repu1sion of other e1ectrons acting on the 

e1ectron to be ionized decreases. This effect is incorporated into any 
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SCF theory, since the variation of the electrostatic potential with charge 

distribution is explicitly included in the SCF equations. 

(ii) as electrons are removed, the remaining electrons are 

less screened from the nucleus, as implied by the Slater rUles 7,70 for 

screening constants, so that the orbitals which they occupy are re­

organized tohave a greater probability density near the nucleus, and the 

expectation value of the nuclear attraction is increased. This effect is 
not accounted for in SCF-MO calculations with a minimum hasis, since the 

orbital parameters are assigned fixed values. The parameters evaluated 

from atomic spectra in Chapter 3 are valid only for valence states close 

to electroneutrality. If the energy required to remove all the valence 

electrons from an atom is calculated from these parameters, it differs 

from the sum of experimental ionization potentials8l 
by, for example, . 

24.5 ev. for C, and 171.0 ev. for F. 

If, in calculating the bonding energy from equation (8.16), atomic 

energies were equated to the sum of the appropriate experimental ionization 

potentials, the effect of orbital reorganization would be included only in 
'the atomic energy, and not in the molecular energy, so that the bonding 

energy would be seriously in error. In order to remove this error, the 

atomic and molecular energies must be calculated using the same approximations 
and parameters, so that there is a cancellation of errors in the bonding 

energies. 

In the CNDO approximation, the energy of an atomic state is 

given by 
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o ~ - 1, 
E = C + t- ~ Ukk +"2 ('k. (3.18) 

where ~ is the number of e1ectrons in the kth orbital, and the summations 

extend over a11 the va1ence-she11 orbita1s. S~nce the energy must now 

be expressed relative to the core state, with a11 valence e1ectrons 

. removed, the additive constant becomes zero, and for astate with n 
s 

s - e1ectrons and n p - e1ectrons, 
p 

'E = n U + n U + (n + n ) (n + n - 1) gAA s ss P pp s p s p 

B. . INTERNUCLEAR POTENTIAL ENERGY 

(8.17) 

An exp1icit form has not yet been given for the internuc1ear 

potentia1 energy, V . . . nn If the atomic cores are assumed to be point 

charges, or non-po1arizab1e non-penetrating spherica1 charge distributions, 

then V is simple the c1assica1 e1ectrostatic repu1sion between point nn 

charges, 

V = nn 

i ., d b 1 S d S 1 43,45 n atom1C un1ts, as assume y Pop e, antry, an ega. 

e1ectrostatic interaction between any two atoms is th en 

(8.'18) 

The net 

(8.19) 

The interatomic core-attraction integra1, V
AB

, has been chosert 

so that the penetration integra1s vanish (Chapter 4), 

(4.16) 



Thus for t'ol0 neutra1 atoms, with atomic po?u1ations 'P
AA 

and P
BB 

equa1 

to the atomic core charges ZA and ZB' the use of the point-charge 

expression, equation (8.18), 1eads to a net electrostatic repu1sion, 

o 
E

AB 
- g ) 

AB 
(8.20) 

lolhich makes it impossible to predict accurate bonding energies for 

any reasonab1e choice of parameters • 

. For hydrogen, for examp1e, the population matrix, as shown 

previous1y, is 

P = G ~) 
so that equation (8.10) for the total e1ectronic energy becomes 

E e1ect = 

(7.6) 

(8.21) 

Equation (4.18) and equation (2.28), for the matrix e1ements H11 and 

H12 respective1y, become for hydrogen 

(8.22) 

·and 

(8.23). 

Combining these with equa~ions (7.,7) and (7.8) for F 11 and F 12' the 

e1ectronic energy is 

E = e 
(8.24) 
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and the bonding energy is 

1 V '2 gn - nn (8.25). 

since for hydrogen, the atomic energy EH equals the local core- Hamiltonian 

matrix element Ul1 . If the internuc1ear potentia1 energy has the point-

charge form (8.18), the bonding energy is then 

3 1 -1 
+ ï g12 - zgll - RAB (8.26) 

If equation (8.26) is solved simultaneous1y with equation(7.9) 

for the ionization potent~al of hydrogen, 

I = (7.9) 

th en for the experimenta1 bonding energy and ionization potential, gll 

determined from the Pariser approximation,72 and ZR 1.2; the inter-

atomic e1ectron-repulsion integral g12 = 28.052 ev., and the bonding 

parameter ~o 
H 

= - 5.748 ev. These values are absurd, however, since 

g12 is much higher "than even the theoretical gll for hydrogen, 20.408 ev., 

and the bonding parameter has the wrong sign, which implies that the anti-

bonding orbital is the occupied orbital. 

If, on the other hand, the bonding parameter is chosen to give 

the correct dissociation energy for reasonable values of g12' then the 

bonding parameter is 14.074 ev., and 10.759 ev., when g12 is determined by 

the Mataga, and by thft Qhno formula respective1y. The ca1cu1ated ioniza-

tion potentia1s are then .20.53 ev., and 19.78 ev., in the two cases, in 

very poor agreement with the experimenta1 value of 15.45 ev. 



The point- charge form for V is therefore unsatisfactory. 
nn 

64 
Dewar and K10prnan have suggested that this is because the method of 

assignment of atomic parameters fai1s to a1low for the reorganization of 

atomic orbita1s, and changes in the effective nuclear charges, upon 

molecule formation, and that this error must be compensated by altering 

the form of V nn 

The simp1est satisfactory assumption is that the net electro-

·0 
static interaction between two neutral atoms,E

AB
, vanishes, so that 

V = L. ZAZBgAB (8.27) nn 
A>B 

as assumed by Chung and Dewar for pi-electron 
232 

The electro-systems. 
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static interaction between any two atoms is then simp1y the interaction of 

net charges. 

= (8.28) 

With this choice of V , accurate bonding energies and ioniza­
nn 

tion potentials can be obtained for reasonable parameter values. For 

hydrogen, substitution of equation (8.27) into equation (8.25) leads to 

the bonding energy 

(8.29) 

which may be solved simu1taneously with equation (7.9) for the ionization 

potential to give g12 = 10.766 ev. and ~~ = 4.293 ev., (for Z~ = 1.2), 

as in Chapter 7. 
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64 
Dewar and Klopman have objected to the use of equation (8.27) 

in ca1culations including all valence electrons, since the y have found 

that a net repulsive int~raction between neutral atoms at short 

internuclear distances is necessary in order to predict potential energy 

minima. In this thesis, however, it is found that equation (8.27) 

1eads to satisfactory prediction of bonding energies at experimental 

bond lengths. 

The final formula used to compute bonding energies from the 

semi-empirica1 SCF-MO theory is found by substituting equations (8.11) 

and (8.27) into equations (8.16) so that 

=~ 
A 

E -A 
!2 tr PH -LE· 

. i 
1 

where E
A 

is given by equation (8.17). 

L. 
A)B 

C. EXTENDED HUCKEL THEORY BONDING ENERGIES 

(8.30), 

In the Extended Hucke1 Theory, E cannot be eva1uated from 
e 

equation (8.9), since the one-e1ectron Hamiltonian, Reff , is not 

separated into core and e1ectron-repu1sion terms. Hoffmann and 

i b1l4,146 d h 1 l' f 1 d h 11 L pscom equate t e tota e ectron1C energy 0 C ose -s e 

mo1ecu1es to twice the sum of occupied orbital energies, as in the Hucke1 

15 16 
pi-e1ectron theory. ' 

E e1ect = 2 E. 
1 

(8.31) 
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~ From equations (8.31) and (8.12), the bonding energy"is given by 

=L E 
A A 

(8.32) 

The internuclear potential energy, V , is not included in this 
nn --

ca1culation of the bonding energy, since Hoffmannl14 found that the EHT 

predicts potential energy minima for most stable molecules (a1though 

not hydrogen), which vanish when V is included. nn 

that 

He assumed therefore 

"the method of guessing the matrix elements simulates within 

the electronic energies the presence of nuclear repulsions 

114 
at small distances," 

and suggested that this effect is due to a rough cancellation of electron-

electron and nuclear-nuclear repulsions, neither of which is included 

explicitly in the EHT. 145 
Allen and Russell have shown that bond 

angles are predicted correctly from Hartree-Fock calculations, using a 

simple sum of orbital energies as in equation (8.31), except for highly 

ionic molecules; so that the EHT may also be expected to predict bond 

145 
angles correctly. This does not apply, however, to bond lengths. 

As in the SCF theory, the atomic and molecular energies must 

be calculated using the same approximations and parameters, so that there 

is a cancellation of errors in the bonding energy. By analogy wi th 

equation (8.31), the valence-shell energy of an"atom with n s-elections 
s 

and n p - electrons is 
p 

= n h + n h s ss p pp 
(8.33) 
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Hoffmann and Lipscombl14,146 have used instead 

= (n - l)'hss + (n + 1) h s p pp (8.34) 

for boron and carbon, since they found that the ratios of bonding energies 

for different boron hydrides are correct1y predicted using equation (8.34) 
146 

in a pre1iminary ca1cu1ation with a11 off-diagonal matrix e1ements 

given by 

= KS
k1

, K = 21 ev. (8.35) 

This procedure is not justified, however, since equation (8.33) and not 

equation (8.34) refers to the ground state of an atom. Table (8.1) 

shows that the procedure of Hoffmann and Lipscomb is not only theoreti-

cally invalid~ but also leads to much less accurate bonding energies than 

are obtained using equation (8.33). 

D. EXPERIMENTAL BONDING ENERGIES 

The principle source for the experimental data concerning 

231 
bonding energies is the JANAF Interim Thermochemical Tables. The 

disscoiation energies of sorne diatomic molecules are listed directly. 

For other molecules, the bonding energies of sorne diatomic molecules are 

listed directly. For other molecules, the bonding energieshave been 

ca1culated from equation (8.14), where the mo1ecu1ar and atomic heats 

of formation have been extrapolated to OOK in the tables, assuming ideal-

h 
., 231 gas eat capac1t1es. The vibrational frequencies of most of the smal1 



TABLE 8.1 

COMPARISON OF EHT BONDING ENERGIES (ZR = 1.0) WITH THOSE CALCULATED AS 

PER HOFFMANN AND LIPSCOMB 

This work As per Hoffmann & Lipscomb Exptl. 

~H4 19.552 29.291 18.18 ev. 

C2H2 19.792 39.270 17.53 

C2H4 24.883 44.361 24.36 

C2H6 
30.781 50.259 30.82 

C3H8 
42.037 71.254 43.56 

BH3 16.398 22.889 12.1 

B2H6 23.475 36.457 26.00 

179. 
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231 molecules considered are listed, as weIl as their degeneracies. 

Anharmonicity corrections have been neglected, since the effect on E
B 

i 1 0 004 f h d d 1 f h di . 231 s on y. ev. or y rogen, an ess or most ot er atom~cs, 

and is unknown for most polyatomics. 

For molecules not listed in the JANAF tables, the heats of 

formation are taken from other sources, and the vibrational frequencies 

230 232 from the compilation of Herzberg. ' The heats of formation of the 

o following molecules at 298 K are taken from National Bureau of Standards 

data: BrCl, IC1, C2H6, C3HS' ICN, CH3CN, CH3Cl, CH3Br, and CH3I. The 

heats of formation of Group IV, V, and VI hydrides were determined by 

. 235 . 
Gunn and Green us~ng an explosive decomposition method, and the 

dissociation energies of CIF, BrF, and IF were found from appearance 

. 222 
potentials by' Irsa and Fr~edman. 

180. 

The vibrational energy of propane was extrapolated from that of 

methane and ethane, since the vibrational frequencies are not all known. 230 

The unknown vibrational frequencies of IF and BrCl were assumed to be 

equal to the arithmetic mean of the corresponding pure halogen frequencies, 

. hi i' i . h' 50 -1 s~nce t s approx mat~on s accurate w~t ~n cm for the other four 

. 231 233 
~nterhalogen molecules. ' 

The experimental bonding energies of the binary hydrides used 

to calibrate the bonding parameters have been rounded off to their 

probable precision. For other molecules, the bonding energies are given to 

0.001 ev. from the experimental data, although this exaggerates their 

precision in many cases. 



181. 

E. . CALIBRATION OF BONDING PARAMETERS 

Bonding parame~ers for the semi-empirical SCF-MO theory have 

been calibrated from the bonding energies of binary hydrides, as described 

in Chapter 4. The variation of calculated bonding energies with bonding 

,parameters in~the neighbourhood of the experimental bonding energy is 

shown in Tables (8.2) and (8.3) for the parameter sets M2 and 02 

respective1y. The chosen bonding parameters, which give the experimental 

bonding energies, have been rounded off to the nearest tenth of an electron 

volt, since greater precision would be inconsistent with the precision of 

most of the experimental bonding energies. For other parameter sets, the 

variation of calculated bonding energies with bonding parameters is similar 

and the final bonding parameters have been listed in Table (4.2) 

236 The exact electronic energy of a molecule can be written as 

E = E +E +V elect HF corr nn (8.36) 

where ~F is the Hartree-'Fock energy for the best single-determinant wave 

function and E is the correlation energy. In the semi-empirical theory corr . 
described here, the parameters are adjusted to give the correct bonding 

energies, including correlation energy, even though the wave function is 

a single determinant. 

In order to determine the bonding energy of a molecule accurately 

from a single-determinant wave function, without using empirical parameters, 

it would be necessary to first determine EHF from a complete SCF-MO 

calculation, and then e'ither to calculate the exact energy by super-



• 
TABLE 8.2 

CALIBRATION OF BONDING PARAME'rERS FOR seF-MO THEORY WITH CNDO APPROXIMATION "(PARAME'rER SET M2) 

~o ~o 0 ~o ~o EB EB Final ~A EB ~ EB A A A A 

LiR 1.0 2.740 0.8 2.632 0.7 2.579 " 0.6 2.525 0.0 2.209 

BeR
2 

5.0 8.298 4.1 7.012 4.0 6.870 3.9 6.727 3.0 5.450 

BR3 6.0 12.994 5.7 12.344 5.6 12.128 5.5 11.911 5.0 10.831 

eR " 4 
9.0 20.446 8.3 18.571 8.2 18.304 8.1 18.038 8.0 17.772 

NH3 9.0 13.313 8.9 13.155 8.8 12.999 8.7 12.842 8.0 11.762 

R20 13.0 10.290 12.9 10.196 12.8 10.101 12.7 10.007 12.5 9.820 

HF 18.0 6.443 17.3 6.148 17.2 6.106 17.1 6.064 17.0 6.025 

SiR4 6.0 16.127 5.3 14.261 5.2 13.994 5.1 13.728 5.0 13.463 

PH3 7.0 12.255 6.1 10.630 6.0 10.450 5.9 10.271 5.0 8.668 

H2S 7.0 8.113 6.6 7.646 6.5 7.530 6.4 7.413 6.0 6.950 

Rel 10.0 5.216 9.0 4.660 8.9 4.605 8.-8 4.550 8.0 4.109 

GeR4 
5.0 14.044 4.5 12.708 4.4 12.441 4.3 12.175 4.0 11. 376 

ASR3 5.0 9.618 4.8 9.252 4.7 9.069 4.6 8.887 4.0 7.796 

R2Se 6.0 6.961 5.8 6.725 5.7 6.608 5.6 6.490 5.0 5.789 

• 

Expt1. E
B 

2.6 ev. 

6.9 

12.1 

18.18 

12.93 

10.06 

6.11 

13.87 

10.47 

7.5 

4.61 

12.5 

9.1 

6.6 

~ 
00 
N 
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TABLE 8.2 

(30 
A 

EB 
(30 

A 
E
B

· Final (3 ~ EB 

HBr 8.0 4.387 7.3 3.992 7.2 3.935 

SnH4 4.0 11. 968 3.7 11. 208 3.6 10.955 

SbH3 5.0 8.748 4.8 8.401 4.7 8.229 

H2Te 7.0 6.812 6.2 5.935 6.1 5.8is 

HI 7.0 3.357· 6.8 3.247 6.7 3.192 

cont. 

(30 
A 

EB 

7.1 3.879 

3.5 10.702 

4.6 8.056 

6.0 5.716 

6.6 3.137 

(30 
A ~ 

7.0 3.823 

3.0 9.440 

4.0 7.022 

5.0 4.628 

6.0 2.809 

•• 

Expt1. ~ 

3.92 

11.0 

8.3 

5.8 

3.20 

.... 
00 
w 
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TABLE 8.3 

CALIBRATION OF BONDING PARAMETERS FOR SCF-MO THEORY WITH CNDO APPROXIMATION (PARAMETER SET 02) 

-t30 
t3

0 ° 13° . -° Exptl. E
B 

E
B 

EB Fina.l t3A EB 
.E .f3A E

B _A A _A B 

LiH 0.0 2.933 -0.7 2.645 -0.8 2.606 -0.9 2.567 -1.0 2.529 2.6 ev. 

BeR2 4.0 7.693 3.5 7.019 3.4 6.884 3.3 6.751 3.0 6.352 6.9 

BR3 6.0 14.169 5.1 12.237 5.0 12.022 4.9 11.809 4.0 . 9.891 12.1 

CR4 · 8.0 20.091 7.4 18.501 7.3 18.235 7.2 17.970 7.0 17 .441 18.18 

NH3 8.0 14.075 7.4 13.140 7.3 12.985 7.2 12.831 7.0 12.5·24 12.93 

R20 11.0 10.499 10.6 10.132 10.5 10.040 10.4 9.949 10.0 9.585 tO.06 

HF 15.0 6.479 14.2 . 6.160 14.1 6.121 14.0 6.082 6.11 

SiH4 
5.0 14.585 4.8 14.055 4.7 13.790 4.6 13.525 4.0 11.941 13.87 

PR3 6.0 11.767 5.4 10 • .700 5.3 10.523 5.2 10.346 5.0 9.993 10.47 

R2S 6.0 7.930 5.7 7.585 5.6 7.470 5.5 7.355 5.0 6.784 7.5 

RC1 8.0 4.734 7.9 4.680 7.8 4.626 7.7 4.572 7.0 4.194 4.61 

GeH4 5.0 15.247 4.1 12.884 4.0 12.623 3.9 12.362 3.0 10.032 12:5 

AsR3 5.0 10.683 4.2 9.234 4.1 9.053 4.0 8.874 3.0 7.088 9.1 

H2Se 6.0 7.828 5.0 6.663 4.9 6.547 4.8 6.431 4.0 5.510 6.6 

HBr 7.0 4.309 6.4 3.976 6.3 3.921 6.2 3.865 6.0 3.755 3.92 

.... 
00 
.j::oo 



e 

TABLE 8.3 

f30 f30 EB 
. ° 

A EB A Final f3A . EB 

SnH4 3.0 12.491 2.2 11.186 2.1 11.033 

SbH3 5.0 9.693 4.3 8.496 4.2 8.326 

H2Te 6.0 6.458 5.5 5.916 5.4 5.808 

HI 7.0 3.767 6.1 3.277 6.0 3.223 

cont. 

f30 
A EB 

f30 
. A 

2.0 10.882 

4.1 8.155 4.0 

5.3 5.700 5.0 

5.9 3.168 5.0 

EB 

7.985 

5.376 

2.683 

• 
Expt1. EB 

11.0 

8.3 

5.8 

3.20 

.-
00 
1.11 
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. i f f' . 236 . hl' pOS1t on 0 con 19urat10ns, or to est1mate t e corre at10n energy, 

as in the approximate theory of Rollister and sinanog1u. 237 
The present 

method is much simpler, however, and can therefore be applied to larger 

molecules. Its validity is tested by examining the accuracy of bonding 

energies calculated in this way for molecules other than those used in 

the calibration of the bonding parameters. 

F. COMPARISON OF CALCULATED BONDING ENERGIES·WITH EXPERIMENT 

Bonding energies calculated from SCF-MO theory using empirical 

bonding parameters are shown in Table (8.4), for molecules other than those 

used in calibration. The energies are fairly accurate on the whole, in 

contrast to those calculated using the Pople-Segal bonding parameters 

(Table 8.5), so that the theory includes correlation energy reasonably 

accurately. 
, 

The bonding energies calculated for ZR .= 1.2 are more accurate 

than those for ZR = 1.0. When electron-repulsion integrals evaluated 

from atomic spectra are used, the bonding energies for Z' = 1.2 
.H 

(Columns M2 and 02) are more accurate for all the molecules .considered, 

except S02' 12, IF, IBr, CH3I and (for interatomic gAB calculated from 

the Mataga formula only) LiF. When theoretical electron-repulsion 

integrals are used, more accurate bonding energies are predicted for 

ZR = 1.2 (Column R2), except for LiF, CR
3
F and F2 .. The value 1.2 is 

therefore chosen as the better value for the Slater exponent of hydrogen 

in the SCF-MO calculations. 
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TABLE 8.4 

BONDING ENERGIES CALCULATED BY.SCF-MO THEORY WITH CNDO APPROXIMATION AND EMPIRICAL BONDING PARAMETERS 

Parame ter Set Ml M2 01 ·02 R1 R2 Exptl. 

N2 12.325 10.480 12.402 10.839 12.997 11.566 9.903 ev. 

CO 13.838 11.931 13.798 12.166 14.136 12.579 11. 225 

CS 8.093 7.414 8.660 7.970 7.190 

CO
2 

22.032 18.981 21. 310 18.592 22.578 20.160 16.856 

OCS 16.142 17.968 15.984 14.417 

CS2 14.154 13.012 14.262 13.090 11. 980 

NNO 17.401 14.986 18.899 16.634 11. 724 

S02 11. 085 9.494 11. 255 9.761 11.177 

°3 11.995 9.804 11.009 9.034 6.345 

C2H2 
19.333 17.724 19.969 18.264 20.003 19.448 17.530 

C2H4 25.290 24.250 25.609 24.366 25.169 24.831 24.357 

C2H6 
31. 603 31.032. 31.650 30.799 31.077 30.867 30.818 

C3H8 
46.431 45.230 46.250 44.705 45.699 45.373 43.563 

B2H6 28.657 27.706 27.523 26.580 28.398 27.652 26.004 

LiF 5.970 5.551 6.557 6.290 4.101 3.822 5.940 
~ 
00 ..... . 
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TABLE 8.4 cont. 

Parameter Set Ml M2 01 02 R1 R2 Expt1. 

F2 
2.887 2.060 2.627 1.983 0.991 0.064 1.653 

C1 2 3.491 3.178 3.398 3.170 2.508 

Br2 2.767 2.687 2.774 2.695 1. 991 

12 1.677 1.837 1.750 1. 907 1.557 

C1F 3.882 3.191 3.604 3.079 2. M8 

BrF 3.369 2.799 3.216 2.778 2.682 

BrC1 2.997 2.804 2.977 2.826 2.334 

IF 1. 524 1.153 1.570 1. 295 2.91 

IC1 2.382 2.307 2.405 2.368 2.190 

IBr 2.162 2.201 2.212 2.251 1. 928 

CH3F 19.558 18.634 19.126 18.234 18.813 17.847 18.384 

CH3C1 17.680 17.329 17.669 17.211 17.154 

CH3Br 16.808 16.608 16.891 16.532 16.640 

CH31 15.789 15.733 15.944 15.727 15.931 

HCN 16.113 14.705 16.367 14;996 16.410 15.603 13.537 

CH3CN 30.866 28.710 26.586 
.... co 
00 . 
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TABLE 8.4 

Parameter Set Ml M2 01 

FCN 19.703 17.167 19.265 

C1CN 15.262 17 .159 

BrCN 16.051 16.183 

ICN 14.868 13.333 15.094 

cont. 

02 R1 

17.113 20.114 

15.468 

14.589 

13.658 

R2 

18.199 

• 

Exptl. 

13.529 

12.310 

11.159 

• 

,... 
00 
\0 



On comparing the resu1ts in Table (8.4) for ZR = 1. 2 and 

different choices of e1ectron-repu1sion integra1s, the bonding energies 

ca1cu1ated using theoretica1 integrals are 1ess accurate than those 

ca1cu1ated using integra1s eva1uated from atomic spectra, except for 

C2H6 and B2H6' for which the bonding energies ca1cu1ated using 

theoretica1 integra1s are more accurate than those obtained using the 

Mataga formula, but not the Ohno formula. 

The bonding energies do not provide a conclusive choice 

between the Mataga and Ohno formulae for interatomic e1ectron-repu1sion 

integra1s, since each 1eads to more accurate bonding energies for about 

the same number of molecu1es. As in the calcu1ation of mo1ecu1ar 
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ionization potentia1s (Chapter 7), it seems that the exact values of the 

interatomic integra1s do not matter, provided that the atomic integra1s, 

and the atomic 1imit of the interatomic integra1s, are evaluated from 

atomic spectra. 

Table (8.5) shows that the Pop1e-Sega1 bonding parameters are 

complete1y inadequate for the calcu1ation of total mo1ecu1ar energies, 

since the predicted bonding energies are higher than the experimenta1 by 

factors ranging from 3 to 8. The bonding energies calcu1ated using 

theoretical e1ectron-repu1sion integra1s (Co1umn RP) are slightly 

better than the others, but the difference is negligible in view of the 

magnitude of the errors of a11 the calculated energies in Table (8.5). 

It shou1d be noted that, since the bonding energies are too high rather 

than too low, the errors cannot be blamed on the omission of correlation 



• TABLE 8.5 

BONDING ENERGIES CALCULATED BY SCF-MO THEORY WITH CNDO APPROXIMATION 

AND POPLE-SEGAL BONDING PARAMETERS 

Parameter Set MP OP RP Expt1. 

H2 14.700 13.209 14.398 4.751 

LiH 9.542 10.509 7.987 2.6 

BeH2 25.117 27.240 23.591 6.9 

BH3 44.931 48.392 43.312 12.1 

CH4 
62.505 67.602 61.033 18.18 

NH3 
47.787 52.018 45.279 12.93 

H20 32.552 35.672 31.020 10.06 

HF 17.639 19.271 16.366 6.11 

N2 51.344 55.082 48.316 9.903 

CO 46.269 49.706 44.377 11. 225 

CO2 
78.196 83.951 74.404 16.856 

NNO 76.386 82.387 . 70.354 11. 724 

°3 
45.767 50.183 38.955 6.345 

C2H2 79.055 85.021 78.328 17.530 

C2H4 
96.015 103.204 93.889 24.357 

C2H6 
113.428 121.945 110.297 30.818 

C3H8 
167.580 179.622 163.209 43.563 

B2H6 110.206 117.628 105.457 26.004 

LiF 15.955 17.300 12.639 5.940 

F2 
11.672 12.850 8.308 1.65;3 

191. 

ev. 
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TABLE 8.5 cont. 

Parameter Set MF OP RP Expt1. 

CH3F 66.474 71. 449 63.159 18.384 

HCN 63.955 68.801 61. 784 13.537 

CH3CN 118.383 126.709 114.546 26.586 

FCN 73.472 78.570 69.548 13.529 
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energy, but are due simply and solely to the large values of the pople­
. 44 

Segal bonding parameters. 

It is therefor~.a very questionable procedure to calculate the 

relative energies of different nuclear configurations with bonding para-

meters which have not been calibrated to give accurate bonding energies, 

. 44-46 
as in calculations of energy barriers and bending force constants. 

Since the calculated barrier to int~l rotation in ethane is quite 

44 sensitive to changes in the bonding parameters , the use of empirical 

bonding parameters would lead to very different values for the barrier 

energies. The energy barriers and bending force constants calcu1ated 

b 1 d S 144-46 h . d i b y Pop e, ·Santry, an ega are somew at errat~c, an .are n etter 

agreement with experiment for some molecu1es than for others. In view 

of the resu1ts in Table (8.5), it is concluded that the fair agreement 

for some mo1ecu1es is due to a fortuitous cance11ation of errors. 

The bonding energies calcu1ated using the Extended Hucke1 

Theory are 1isted in Table (8.6). The resu1ts for some mo1ecules are 

quite accurate, but the theory is seriously in error for the binary 

hydrides, and especia11y hydrogen, just as in the prediction of ionization 

potentia1s. For the hydrides, the differences between the resu1ts for 

the two values of ZR are insignificant in view of the errors. For 

organic mo1ecu1es, however, the bonding energies are predicted re1atively 

accurate1y by the EHT, and the values for ZR = 1.0 (Co1umn Hl) are more 

accurate than tho5e for ZR = 1.2. Thus it seems that the best value for 

the Slater exponent of hydrogen in mo1ecules i5 1.2 in the SCF-MO theory 
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TABLE 8.6 

BONDING ENERGIES CAL CULATED BY EXTENDED HUCKEL THEORY 

Hl H2 Expt1. 

H2 35.814 32.096 4.751 ev. 

LiH 8.696 8.576 2.6 

BeH2 12.752 12.439 6.9 

BH3 16.398 17.265 12.1 

CH4 19.552 21.697 18.18 

NH3 15.640 17.051 12.93 

H20 13.191 13.843 10.06 

HF 8.923 9.103 6.11 

SiH4 23.418 23.725 13.87 

PH3 16.611 17.231 10.47 

H S 11. 252 11. 565 7.5 
2 

Hel 6.421 6.469 4.61 

GeH4 23.542 23.583 12.5 

AsH3 16.353 17.011 9.1 

H2Se 11.109 11. 281 6.6 

HBr 5.545 5.576 3.92 

SnH4 
24.261 23.898 11.0 

SbH3 17.172 17.470 8.3 

H2Te 10.925 10.828 5.8 

HI 5.840 5.710 3.20 
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e 
TABLE 8.6 cont. 

Hl H2 Expt1. 

N2 10.182 9.903 

.CO 10.760 11. 225 

·CS 7.780 7.190 

CO2 19.745 16.856 

OCS 16.832 14.417 

CS2 12.985 11. 980 

NNO 15.785 11. 724 

S02 17.287 11.177 

°3 7.133 6.345 

C2H2 19.792 20.071 17.530 

C2H4 24.883 26.770 24.357 

C2H6 30.781 34.298 30.818 

C3H8 42.037 46.994 43.563 

B2H6 23.475 25.947 26!004 

LiF 15.503 5.940 

F2 2.404 . 1. 653 

C1 2 2.309 2.508 

Br2 1.610 1. 991 

12 2.447 1.557 

C1F 4.238 2.668 

BrF 5.392 2.682 

BrC1 2.130 2.334 
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e 
TABLE 8.6 cont. 

Hl H2 Expt1. 

IF 6.771 2.91 

IC1 2.753 2.190 

IBr 2.073 1.928 

CH3F 21.413 23.005 18.384 

CH3C1 17.272 19.140 17.154 

CH3Br 16.167 18.052 16.640 

CH3! 16.395 18.228 15.931 

HCN 16.420 16.442 13.537 

CH3CN 28.070 29.533 26.586 

FCN 15.851 13.529 

C1CN 14.473 12.310 

BrCN 14.113 

ICN 14.348 11.159 
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44 114 as c1aimed by Pop1e and Segal, and 1.0 in the EHT, as used by Hoffmann. 

Since the value of ZR determines the behaviour of the mo1ecu1ar orbita1s 

near a hydrogen nuc1p-us, it shou1d not depend on the theory used to 

ca1cu1ate the orbita1s, but the difference is probab1y due to a 

cance11ation of errors in one theory or the other. 

It is interesting to compare the bonding energies for BH3 and 

B2H6 in the two theories. In the SCF-MO theory, the bonding energy of 

B2H6 is predicted as accurate1y as that of many other mo1ecu1es, despite 

the possible uncertainty due to the use of the uns table mo1ecu1~j BH3' 

to ca1ibrate the bonding parameter for boron. The EHT, on the other hand, 

predicts incorrect1y that B2H6 in uns table with respect to BH3' even 

though the EHT was origina11y deve10ped for ca1cu1ations on boron 

hydrides. 138 ,146 This is another examp1e of the unre1iabi1ity of the 

EHT. 

In summary, therefore, the best of the theories considered for 

the ca1cu1ation of bonding energies is the SCF-MO-CNDO theory with 

empirica1 bonding parameters, a Slater exponent for hydrogen of 1.2, and 

e1ectron-repu1sion integra1s eva1uated from atomic spectra and either the 

Mataga or the Ohno formula. 
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CHAPTER 9 

DIPOLE MOMENTS 

A. CALCULATION OF DIPOLE MOMENTS 

The e1ectric dipo1e moment of a mo1ecu1e is defined in.terms of 

its e1ectronic wave function as6 

I!. = -e S't: o 
r 'lTr d V + 

~e 
(9.1) 

wh~re ~ and ZA are the position and the atomic number of nucleus A, and 

the dipo1e operator, e ~, is a sum of one-e1ectron position operators, 

mu1tip1ied by the e1ectronic charge e, 

000 
e r = e (E.. (1) + . . . . + r (n) ) (9.2) 

In mo1ecu1ar orbital theories for valence e1ectron.s on1y, ZA is interpreted 

as the charge of the core of atom A, inc1uding both the nucleus and the 

inner-she11 e1ectrons. In the mo1ecu1es considered, the axis a10ng which 

the dipo1e moment lies is determined by symmet!y, and is chosen as the 

x-axis, so that 

II = J I!. 1 = llx = -eStk: ~1f.dV + eL ZA XA 
(9.3) 

A 

For a sing1e-determinant wave function, the expectation value of 

a sum of identica1 one-e1ectron operators i~ t~Q &~m gi ~àe iBtegrals oi 

the one eleetl!'eft epel!'atsl!'s is the sum of the integrals of the one-e1ectron 

operators, over the occupied mo1ecu1ar spin orbita1s,2 so that 



= 
o 
x 1/1;, d V + 

where ni is the number of occupied spin orbita1s corresponding to the 
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(9.4) 

i th orbital. In a closed'-'shell mo1ecule, each molecu1ar orbital is doub1y 

occupied, so that 

-2el: S1V~ 
i ..(., 

J1 = o 
x 1/!i. d V + (9.5) 

For molecular orbitals which are linear combinations of atomic orbitals, 

J1 = -2e E r. \ 
i k" 

The integrals appearing in equation (9.5) are the matrix elements of ~ 

with respect to the atomic orbitals, and will be referred ta as dipole 

integrals, 

so that the dipolemoment is 

J1 = 

where the P
kl 

are defined by the expansion of the one-electron density 

matrix in terms of the basis orbitals. (Chapter 2) 

In matrix form, equation (9.8) for the dipole mo~ent becomes 

.J1 = -e tr PX + 

(9.6) 

(9.7) 

(9.8) 

(9.9) 

Equation (9.9) is an exact expression for a closed-shell sing~e-

determinant wave function, and 1eads to quite accurate dipole moments in 
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complete SCF-MO calculations, when an extended basis set is used, so that 

30 238 
the wave function approaches the Hartree-Fock wave functiort.' Dipole 

moments for wave functions from complete SCF-MO calculations with a 

minimum basis set of Slater orbitaIs, however, may be much less accurate, 

since the dipole moment is sensitive to small errors in the wave function. 229 

Equation (9.9) is used to compute dipole moments for the wave 

functions calculated using the Extended Huckel Theory. For the SCF-MO theory 

with the CNDO approximation, however, equation (9.9) must be modified in 

order to preserve invariance with respect to translation of axes. The 

first non-zero multipole moment tensor of a molecule is independent of the 

1 . i f h ° ° f dO 239 h fIl 1 ocat on 0 t e or1g1n 0 co-or 1nates, so t at or a neutra mo ecu e, 

the dipole moment is invariant under a change of origine This would not be 

so, however, if the dipole moment were calculated from equation (9.9) in 

molecular orbital theories in which overlap is neglected, as shown below. 

Consider the transformation of co-ordinates 

x' = y' = y, z' = z· (9.10) 

Under this transformation, equation (9.9) for the dipole moment is trans-

formed to 

p' = -e tr PX' .+ e.L ZA ~A' 
A 

in which the transformed dipole integrals, ~l' are given by . 

Xkl = S~: (~ -xo) ~\ d V = 

(9.11) 

(9.12) 
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The nuclear co-ordinates transform according to equation (9.10), so that 

}1' = -e tr P(X - x S) o (9.13) 

From equations (9.9) and (9.13), the transformation rule for the dipole 

moment is 

= }1 + e x (tr PS -o 

For molecular orbital theories in which overlap is included, 

the orthonorma1ity condition for the orbitals was shown to be 

= 

(9.14) 

(2.7) 

so that the total number of (valence-she1l) e1ectrons in a closed-shel1 
1 

molecu1e is 

N = = LL = tr PS (9.15) 
i k 1 k 1 

and the dipole moment is invariant for a neutra1 mo1ecu1e. 

If over1ap is neg1ected, however, the orthonorma1ity condition ls 

L * ô
1j C

ki 
Ckj = 

k 

and the total number of e1ectrons is 

N = 2[ r 
i k 

so that the dipo1e moment 

= }1 + 

* ~ Cki Cki = Pkk k 

transforms as 

e x tr P (S - l) o 

(2.34) 

= tr P (9.16) 

(9.17) 



Equation (9.9) cannot be used~ therefore~ to compute the dipole moment 

when the molecular orbitaIs have been calculated without overlap. 
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There are several ways to calculate an approximate dipole moment~ 

which is invariant under translation of axes, for the SCF-MO-CNDO theory. 

(i) The di pole moment can be calculated by assuming that the 

e1ectron population of each atom is a point charge at the nuc1eus~ so that 

p = (9.18) 

Equation (9.18) is clearly invariant with respect t~. translation for a 

neutral molecu1e, and is in one sense consistent with the CNDO approximation, 

since with this approximation~ the dipole integrals between different atomic 

orbitaIs vanish, and the dipole moment is 

p = -e L Pkk ~k + 
k 

(9.19) 

The centre of charge of a pure s or p orbital is at the nucleus, so that for 

an s-p basis set, equation (9.19) is identical with equation (9.18). 

However, this is not true for a hybrid basis set since the centre of charge 

of a hybrid orbital is not at the nucleus. In molecules with lone pairs, 

the displacement of the centre of the electron population of an atom away 

from the nucleus makes a substantial contribution to the molecu1ar dipole 

t 
55,75,44,46 

momen • This atomic polarization effect is not inc1uded in the 

p~int-charge approximation. 

(ii) 44 Pople and Segal neglected aIl the diatomic dipole integrals 

in equation (9.8), but included the dipole integrals for different orbitaIs 
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on the same atom, so that the dipolemoment is given by 

pl = -e E L Pkl ~l Qk1 + eL ZA XA 
(9.20) 

k 1 A 

where: Qkl = C if 0k and 01 
are on the same' atom, 

otherwise, 

in the NDDO approximation! 43 
as 

Equation (9.20) is invariant to translation, sinee atomic orbita1s of the 

same atom are orthogonal, and it is also invariant·to rotation and hybridi-

zation, since the dipo1e integra1s ~1 of a given atom transform in the 

43 
required way. 

For a basis of pure sand p orbita1s, the on1y non-zero dipo1e 

integra1 for different orbitals on the same atom is X . The term con­s-p x 
. taining this integral represents the atomic po1arization effect, which is 

omitted in the point-charge formula, equation (9.18). For Slater orbita1s, 

whose radial factor is given by equation (4.19), X is found by 
s-Px 

elementary integration to be 

S~s ~ 
ni (n' .,. l)a . 

2 o' 
X = 0 d V = (9.21) 

s-Px Px V3 Z' 

(iii) The CNDO approximation can be forma11y justified (Cbapter 

2) b d ' b b' b' 1 " h d' b' 1 47 y ragar 1ng t e aS1S or 1ta s as approx1mat10ns to t e Low 1n or 1ta s, 

= -1/2 
S (2.19) 

Dixon
63 

bas suggested that the dipole moment be calcu1ated with reference 

to the Lowdin basis, The dipo1e integrals are the matrix e1ements of a 



one-electron operator, so that in the Lowdin basis, the X-matrix i8 

transformed
47 

to 
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x = -1/2 S-1/2 'S X (9.22) 

and dip01e moment is transformed to 

JI = -e tr PX + + 

Equation (9.23) is invariant under a change of origin, since the Lowdin 

basis is orthogonal. 

In this thesis, a1l three methods are used to calculate dipole 

moments from the SCF-MO theory, and the results are compared with experi-

mental dipo1e moments. AIl computed dipole moments are mu1tip1ied by the 

conversion factor 4.80294 from atomic units to Debyes, for comparison with 

exerpimenta1 values·, 

B. MEASUREMENT OF DIPOLE MOMENTS 

The dipo1e moment of a mo1ecule can be determined by observing its 

microwave Stark effect, which is the splitting of its rotationa1 spectrum 

caused by a static electric field. The theory of the microwave Stark effect, 

and of its use in the measurement of dipole moments is discussed in textbooks 

. 240-242 on m~crowave spectroscopy for the severa1 cases of linear mo1ecules, 

symmetric rotors, asymmetric rotors, and molecu1es with hyperfine structure 

due to nuc1ear quadrupole coup1ing. Dipole moments can now be measured 



205. 

243 
using the microwave Stark effect to an accuracy of 0.001 to 0.003 D. 

Dipo1e moments ean a1so be measured by die1eetrie constant 

measurements on bu1k matter, but the resu1ts are 1ess aeeurate, as 

evideneed by the wide variation of reported values for the same mo1eeu1es. 244 

This is part1y due to the faet that many of the measurements are made in 

1 d d o 1 0 0 i 1 ff 244 so ution, an 1pO e moments are qU1te sens1t ve to so vent e eets. 

A1so, the measured values represent averages over vibrational states and 

over natura11y oeeurring isotopie speeies, whereas the values determined 

using the mierowave Stark effeet are for individua1 mo1eeu1es ~n specifie 

b 1 1 b i d b f 1 i i ' 244 vi rationa states. Va ues 0 ta ne y measurement 0 spectra ntens t1es 

are 1ess accurate than those determined from the microwave Stark effect, 

since intensities are harder to measure accurate1y than spacings between 

spectral 1ines. Other special methods244 have on1y been used for a few 

molecu1es. Dipo1e moment values, therefore, have been taken from measure-

ments of the microwave Stark effect for vibrationa1 ground states whenever 

possib1e~ 

For some mo1ecu1es, only the dipole moments of deuterated species 

have been measured using the microwave Stark effect, The values for the 

deuterated species have been taken as the dipole moments of the mo1ecu1es, 

and any possible isotope effects have been neg1ected, even' though they can 

b 'Of' f 1 1 245 e s1gn1 1cant or some mo ecu es. 

The signs of most experimental dipole moments have not been 

determined, so that on1y the magnitudes of the ca1culated dipole moments 

ean be compared with experiment. An exception is carbo~ monoxide, for which 
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several authors have studied the sign of the small dipole moment (0.112 D) 

b f i . 1 h . 1 i 246 h d fi . 1 i ecause 0 ts spec~a c e~ca nterest. T e most e n~te resu t s 

that of Ozier et al., whq used a molecular beam magnetic resonance experi­

ment to show that the polarity is C+O-. 

C. COMPARISON OF CALCULATED DI POLE MOMENTS WITH EXPERIMENT FOR FIRST ROW 

MOLECULES 

The different formulae for the calculation of dipole moments in 

a molecular orbital theory with neglect of overlap are.compared in Ta~le 

(9.1), for the wave functions computed from the semi-empirical SCF-MO-CNDO 

the ory , with the parameters which were shown to be the best for the predic-

tion of ionization potentials and bonding energies. The point-charge formu~a 

is in overall poor agreement with experiment, showing that the prediction 

of accurate dipole moments requires the inclusion of atomic polarization 

effects. The results obtained with the Pople-Segal formula show that the 

inclusion of these effects does lead to substantial improvement of the 

results, although they are still not very accurate for sorne molecules. The 

dipole moments compu.t2d from the Dixon formula, using Lowdin orbi taIs as a 

basis, are less accurate on the whole, than those calculated from the Pople-

Segal formula. The Pople-Segal formula is therefore the best for the 

calculation of approxima te dipole moments, and the errors in the results 

may be mostly due to errors in the wave function, rather than in equation 

(9.20). 
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TABLE 9.1 

COMPARISON OF METRODS OF CALCULATION OF DI POLE MOMENTS (a) FOR FIRST-ROW MOLECULES FROM SCF-MO-CNDO nmORY 

Ca1cu1ation of p Point-Charge Pop1e and Segal Dixon Expt1. Reference . 
parameter Set M2 02 M2 02 M2 02 

LiH 4.083 6.030 6.699 7.218 7.024 7.479 5.882 0 247 

~N 0.465 0.962 1.973 2.221 0.643 0.991 1.468 248 

H20 0.876 1.417 1.803 2.175 0.929 1.391 1.87 249 

HF 1.397 1.866 1.899 2.265 1.578 2.003 1.8195 250 

CO 1.549 2.097 0.789 1.372 1.308 2.017 -0.112 251,246 

NNO 0.838 0.601 0.862 0.166 252 

03 
(b) .0.734 0.893 0.876 0.909 0.429 0.583 0.58 253 

C3H8 
(c) 0.183 0.106 0.084 0.041 0.151 0.082 0.083 254 

LiF 6.052 6.818 6.602 7.098 6.833 . 7.222 6.328 255 

C~F 2.721 2.812 2.647 2.687 2.391 2.408 1.8555 256 

HCN 1.582 1.689 3.015 2.946 1.547 1.501 2.985 257 

CH3CN 2.440 3.709 2.173 3.92 258 

FCN -0.667 -0.427 0.482 0.648 -0.364 -0.165 2.17 259 

N 
0 
~ . 



208. 

Notes on Table 9.1 

(a) Positive sign indicates polarity A+B-, where A is first atom written. 

(b) Positive sign indicates central oxygen at positive end. 

(c) Positive sign indicates central carbon at positive. end. 
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Table (9.1) also shows that the computed dipole moment is quite 

sensitive to changes in the interatomic electron-repulsion integrals. The 

Mataga formula leads to more accurate dipole moments, as computed by the 

Pople-Segal formula, than the Ohno formula, for aIl the Molecules considered 

except FCN. This is evidence in favour of the Mataga formula, although only 

a few of the computed dipole moments are accurate enough to be used as 

evidence. The variation of the computed dipole moment with the parameters 

of the SCF-MO-CNDO theory is considered further in connection with Table 

(9.2) • 

Dipole moments of first-row molecules, calculated by the Pople-

Segal formula, using the different sets of parameters for the SCF-MO-CNDO 

theory, are shown in Table (9.2). The values of the electron-repulsion 

integrals have a substantial effect on dipole moments, since they de termine 

the pOtential. energy corresponding to a given charge distribution, which in 

turn de termines the self-consistent charge distribution. Dipole moments, 

like ionization potentials, are relatively unaffected by changes in the 

Slater e~ponent for hydrogen, although there is a substantial effect for 

some molecules. 

For some molecules, the dipole moments computed using the pople-

Segal bonding parameters are quite different from those computed using the 

empirical bonding parameters. This can be explained by considering·the 

dependence of the molecular energy on the bonding parameters in the SCF-MO-CNDO 

theory •. The energy eigenvalue of the electronic Hamiltonian has the form, 

E e 
= (8.8) 
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TABLE 9.2 

DI POLE MOMENTS (a) OF FIRST-ROW MOLECULES CALCULATED AS PER POPLE AND SEGAL FROM SCF-MO THEORY AND CNDO APPROXIMATION 

Parameter Set Ml M2 MP 01 02 

LiH 6.649 6.699 6.218 7.196 7.218 

~N 2.166 1.973 2.212 2.438 2.221 

H20 1.975 1.803 2.190 2.352 2.175 

HF 2.032 1.899 1.929 2.394 2.265 

CO 0.614 0.789 -1.113 1.138 1.372 

NNO 0.227 0.558 0.601 

03 0.860 0.876 1.197 0.925 0.909 

C3H8 0.121 0.084 0.019 0.072 0.041 

LiF 6.494 6.602 4.926 7.016 7.098 

CH3F 2.638 2.647 1.780 2.642 2.687 

HCN 3.218 3.015 2.993 3.170 2.946 

CH3CN 3.977 °4.104 3.709 

FCN 0.800 0.482 2.457 0.957 0.648 

(a) Sign convention as in Table (9.1). 

OP R1 R2 

6.284 6.277 6.365 

2.382 2.122 1.873 

2.378 1.952 1.784 

2.037 1.848 1. 741 

-1.510 0.419 0.547 

-0.300 0.517 0.454 

1.680 

-0.005 -0.018 0.003 

4.934 5.898 5.936 

1.699 2.055 1.943 

3.094 2.745 2.581 

4.160· 

3.004 1.094 0.908 

RP 

6.192 

2.104 

2.142 

1.849 

-0.961 

0.761 

1.178 

-0.001 

5.079 

1. 719 

2.463 

3.053 

1.704 

Exptl. 

5.882 t 

1.468 

1.87 

1.8195 

-0.112 

0.166° 

0.58 

0.083 

6.328 

1.8555 

2~985 

3.92 

2.17 

N .... 
o . 
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If the bonding parameters are increased, the interatomic matrix e1ements 

~l and Fk1 are increased in magnitude, so. that the mo1ecu1e can attain a 

10wer energy by increasing the interatomic Pk1' i.e., by the transfer of 

electron density from 10ne-pair orbita1s into bonding orbita1s. The large 

changes in dipo1e moment can be exp1ained in terms of this effect. For 

LiF and CH3F, the decrease in dipole moment with increased bonding 

parameters is due to a transfer of electron density from the fluorine lone-

pair orbitais to the bonding orbita1s. In HF, examination of the population 

matrix shows that this effect is cancel1ed by an increase in the atomic 

polarization of the fluorine atome For FCN, the transfer of e1ectron density 

away from the fluorine nucleus 1eads to an increase in the computed di pole 
+ -

moment, since the polarity of the mo1ecule is FCN. For CO, the increase in 

bonding parameters results in enough charge transfer to reverse the po1arity 

of the computed dipole moments. 

Table (9.3) shows that the Extended Hucke1 Theory greatly 

exaggerates the po1arities of ail molecules considered except propane. In· 

the SCF-MO-CNDO theory, the accumulation of electron density on the more 

electronegative atom is limited by the electrostatic repulsion of the 

electrons for each other. This is not so in the EHT, since the Hamiltonian 

matrix elements are independent of the molecular charge distribution, and 

do not include electron-repulsion terms. Comparison of Tables (9.2) and 

(9.3) shows that the SCF-MO-CNDO theory predicts more accurate dipole 

moments than the EHT, regardless of the choice of parameters, and even though 

the dipole moment must be computed approximately, in order to preserve 
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TABLE 9.3 

DIPOLE MOMENTS<a) OF FIRST-ROW MOLECULES CALCULATED 

FRÇ>M EXTENDED HUCIŒL THEORY 

Ca1cu1ated Expt1. Hl H2 

LiH 7.109 7.292 5.882 0 

~N 2.904 2.471 1.468 

H20 4.037 3.737 1.87 

HF 3.733 3.615 1.8195 

CO 3.232 -0.112 

NNO 1.880 0.166 

03 3.444 0.58 

C3H8 -0.064 0.010 0.083 

LiF 7.499 6.328 

CH3F 4.508 4.071 1.8555 

HCN 7.497 7.307 2.985 

CH3CN 9.783 8.797 3.92 

FCN 4.845 2.17 

. (a) Sign convention as in Table (9.1). 



translational invariance. This shows that the SCF-MO-CNDO theory is a 

definite improvement over the EHT, in spite of the uncertainties in·some 

.of the parameters. 

The above conclusions about the accuracy of computed dipole 

moments are supported by other recent calculations. 65 Pople and Gordon 

have calculated the dipole moments of a number of organic Molecules from 

the SCF-MO-CNDO theory with theore~ical electron-repulsion integrals and 
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Pople-Segal bonding parameters,(Parameter Set RP). The overall accuracy of 

their results is comparable to that for the nlolecules considered here, and 

they have used the results as the basis for an analysis of substituent 

effects in dipole moments. 

As for the Extended Huckel Theory, the dipole moments of heterocyclic 

molecules calculated by Adam and Grimison159 are much larger than experimental 

values, as for the small Molecules considered here. A similar conclusion 

about the inadequacy of the'charge distributions in the EHT, due to the 

absence of electron-repulsion terms in the Hamiltonian matrix elements, was 

previously based on an attempt to correlate the gross atomic charges of the 

. h h . 1 h' ft 160 d . f h d h EHT W1t c em1ca s 1 s, an on a compar1son 0 t e compute c arge 

distributions with those obtained from electron~gativity equalization 

theory.260,26l This conclusion is now more firmly based on the predicted 

values of a molecular property, the dipole moment, which is calculated 

directly from the ground-state wave function. 
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D. COMPARISON OF CALCULATED DI POLE MOMENTS WITH EXPERlMENT FOR MOLECULES 

CONTAINING NON-FIRST-ROW ATOMS 

Dipole moments, calculated from both the SCF-MO-CNDO the ory 

(using the Pople-Segal formula) and the Extended Huckel Theory, are listed 

in Table (9.4) for molecules containing atoms not in the first row of the 

periodic table. The EHT predicts exaggerated polarities as for first-row 

molecules, but noWthe SCF-MO-CNDO the ory also predicts dipole moments which 

are much higher than the experimental ones, and in some cases higher than 

those from the EHT. 

46 Santry and Segal have recently considered the effect of the 

inclusion of d orbitaIs in the SCF-MO-CNDO theory for second-row elements, 

using theoretical electron-repulsion integrals and bonding parameters 

44 similar to those used by Pople and Segal for first-row elements. They 

found that the dipole moments of molecules containing second-row atoms 

include "pd-polarization" terms involving the dipole integrals between p 

and d orbitaIs on the same atom. F~r most such molecules, this pd-polarization 

is of opposite sign and comparable magnitude to the sp-polarization, so that 

the inclusion of sp-polarization al one in the computed dipole moment greatly 

exaggerates the net atomie polarization. They concluded, therefore, that 

the inclusion of d orbitaIs is essential to the accurate prediction of 

dipole moments for molecules containing second-row elements. 

This conclusion is further supported by the results of an exact 

274 SCF-MO ealculation on phosphine by Boyd and Lipscomb, who found that the 
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TABLE 9.4 

CALCULATED DIPOLE MOMENTS(a) FOR MOLECULES WITH NOT ALL FIRST-ROW ATOMS 

SCF~MO-CNDO as per Pop1e and Segal . Extended Hucke1 
Parameter Set Ml M2 01 02 Hl H2 

~P 2.730 2.379 2.238 1.906 2.397 1.482 

.~As 3.322 2.908 2.812 2.427 1.301 0.257 

H
3
Sb. 2.978 2.587 2.185 1.863 0.235 -0.834 

H2S 2.423 2.152 2.369 2.100 3.569 2.957 

H2Se 2.844 2.565 2.902 2.627 3.353 2.652 

H2Te 3.059 2.789 3.071 2.817 2.829 1.958 

HC1 2.195 2.022 2.345 2.180 3.759 3.477 

HBr 1.979 1.813 2.025 1.865 3.651 3.232 

HI 2.159 1.979 2.104 1.934 .3.624 3.113 

CS 1.532 1.614 1.347 1.460 -3.564 

OCS 0.241 0.272 0.028 -3.609 

Expt1. 

0.578 0 

0.22 

0.116 

0.974 

0.24,0.62 

1.12 

0.83 

0.445 

1.97 

0.7124 

• 

Reference 

251 

262 

262 

263 

264,265 

266 

266 

266 

267 

268 

N .... 
Ut 

" -
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TABLE 9.4 (continued) 

SCF-MO-CNDO as per Pop le and Segal 
Parameter Set Ml M2 01 02 

S02 1.251 1.273 2.215 2.190 

C1F 0.885 0.962 1.295 1.386 

BrF. 1.535 1.636 2.138 2.260 

BrC1 0.634 0.646 0.820 0.835 

IF 2.002 2.113 2.722 2.841 . 

IC1 0.726 0.736 1.014 1.021 

IBr 0.112 0.109 0.237 0.233 

C~C1 2.790 2.667 2.685 2.588 

C~Br 2.620 2.436 2.459 2.304 

CR31 2.720 2.496 2.497 2.297 

C1CN 0.922 1.206 1.014 

BrCN 1.469 1.596 1.412 

ICN 1.350 1.210 1.516 1.365 

(a) Sign convention as in Table (9.1). 

Extended Huckel 
Hl H2 

6.219 

3.166 

4.106 

-5.712 

6.028 

1.843 

0.535 

4.000 3.635 

3.514 3.205 

3.436 3.'178 

7.232 

8.700 

8.636 

Exptl. 

1.59 0 

0.881 

1.29 

0.57 

0.65 

1.869 

1.797 

1.647 

2.802 

2.94 

3.71 

• 

Reference 

269 

270 

271 

272 

273 

252 

252 

252 

252 

259 

259 

1>0) .... 
0\ 
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inclusion of d orbitaIs reduced their computed dipo1e mo~nt from 2.34 D 

to 0.86 D, as compared to the experimental value of 0.578 D. They showed 

~y means of electron density difference maps that this effect is due to 

the transfer of electron density away from the lone-pair region into the 

bonding region, so that the atomic polarization of the phosphorus atom is 

reduced. 

It is therefore concluded that the omission of d orbitaIs in 

the SCF-MO-CNDO calculations is responsible for the fact that the dipole 

moments in Table (9.4) are very much less accurate than those calculated 

using the same the ory for molecules containing only first-row atoms, since 

the sp-polarization included in the computed dipole moments is not balanced 

by dp-polarization. The assignment of parameters for d orbitaIs in the 

semi-empirical SCF-MO-CNDO theory is a subject for future research. 

Table (9.5) provides a comparison of the different methods of 

computing dipole moments, from wave functionscalculated without overlap, 

for molecules containing atoms not in the first row of the periodic table. 

The point-charge formula, which contains no atomic polarization terms, is, 

on the whole, more accurate than the Pople-Segal formula, since the errors 

due to the omission of the sp- and pd- polarizations cancel approximately, 

46 as shown by Santry and Segal. For series of similar molecules, such as 

the hydrogen halides, or the methyl halides, the sp-polarization increases 

with the principal quantum number of the valence-shell e1ectrons of the 

heavy atom, since the dipole integral P 
s-Px 

increases (equation 9.21). 

The dipole moments in Table (9.5) computed from the Dixon'formu1a 
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TABLE 9.5 

COMPARISON OF METHODS OF CALCULATION OF DI POLE MOMENTS (a) FOR MOLECULES WITH NOT ALL FIRST-ROW ATOMS 

FROM SCF-MO THEORY AND CNDO APPROXIMATION 

Ca1cu1ation of ~ Point-Charge Pop1e and Segal Dixon 
Parame ter Set M2 02 M2 02 M2 02 Expt1. 

H3P -0.127 -0.344 2.379 1.906 0.827 0.260 0.578 0 

~As -0.064 -0.259 2.908 2.427 1.286 0.712 0.22 

~Sb -0.351 -0.796 2.587 1.863 0.707 -0.120 0.116 

H2S 0.408 0.576 2.152 2.100 0.985 0.932 0.974 

H Se . 
2 0.648 0.961 2.565 2.627 1.340 1.435 0.24,0.62 

H2Te 0.662 0.930 2.789 2.817 1.503 1.550 

HC1 1.006 1.296 2.022 2.180 1.453 1.650 1.12 

HBr 0.727 0.919 1.813 1.865 1.050 1.122 0.83 

HI 0.548 0.659 1.979 1.934 1.154 1.109 0.445 

CS 1.234 1.410 1.614 1.460 1.406 .1.869 1.97 

OCS -0.891 -1.108 0.241 0.028 -0.448 -0.766 0.7124 

N 

""' co 



e 

TABLE 9.5 (continued) 

Ca1cu1ation of ~ Point-Charge Pop1e and Segal 
Parameter Set M2 02 M2 02 

S02 1.633 2.919 1.273 2.190 

C1F 1.412 1.780 0.962 1.386 

BrF 2.160 2.710 1.636 2.260 

BrC1 0.744 0.925 0.646 0.835 

IF 2.859 3.481 2.113 2.841 

IC1 1.188 1.441 0.736 1.021 

IBr 0.452 0.552 0.109 0.233 

CH3C1 2.101 2.104 2.667 2.588 

CH3Br 1.697 1.649 2.436 2.304 

CH31 1.387 1.287 2.496 2.297 

C1CN 0.383 0.498 0.922 1.014 

BrCN 1.094 1.412 

ICN 1.287 1.462 1.210 1.365 

(a) Sign convention as in Table (9.1). 

Dixon 
M2 02 

0.179 1.548 

0.977 1.401 

1.668 2.292 

-3.644 -3.143 

2.248 2.969 

0.833 1.123 

0.126 0.253 

2.327 2.235 

1.994 1.847 

1.998 1. 781 

-0.109 -0.036 

0.506 

0.415 0.598 

Exptl. 

1.59 0 

0.881 

1.29 

0.57 

0.65 

1.869 

1. 797 

1.~47 

2.802 

2.94 

3.71 

• 

N 
t-l 
\0 
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are also more accurate, on the whole, than those from the Pople-Segal 

formula, although this fact is harder to interpret on'simple physical 

grounds. 

2W. 

In summary, then, the semi-empirical SCF-MO-CNDO theory considered 

can be used to calculate approximate dipole moments for molecules containing 

only first-row atoms, if atomic polarization ter ms are included. The 

calculation of approximately correct dipole moments, for molecules which 

contain atoms not in the first row of the periodic table, requires the 

inclusion of d orbitaIs. The EHT predicts exaggerated di pole moments for 

most molecules. 
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CHAPTER 10 . 

NUCLEAR QUADRUPOLE COUPLING CONSTANTS 

A. INTERACTION OF NUCLEAR QUADRUPOLE MOMENTS WITH ELECTRONIC CHARGE 

DISTRIBUTIONS 

The quadrupo1e coup1ing constant (QCC) of a nucleus, A, in a 

mo1ecu1e is a measure of the interaction of the nuc1ear quadrupo1e moment 

Q with the mo1ecu1ar charge distribution externa1 to the nucleus. The 

complete interaction of the nuc1ear charge distribution with .the externa1 

e1ectrostatic potentia1 V, due to the e1ectrons and the other nuc1ei, can 

275 be expanded in terms of the nuc1ear mu1tipo1e moments, 

o 
H ne = 1 

2 L 
j,k 

Q'jk (~;.~) (1~.1) 
J ~ A .... 

where the subscript A indicates a quantity eva1uat~d at the nuc1ear centre 

of masse The first term represents the interaction of the total nuc1ear 

charge, Ze, with the e1ectrostatic potentia1 at the centre of mass, and is 

independent of nuc1ear orientation. The second term in the expansion is 

forma11y the interaction of the nuc1ear di pole moment with the e1ectric 

field, but this term is zero since nuc1ei have no e1ectric dipo1e moments.
276 

The third term is the interaction of the nuc1ear quadrupo1e moment 

tensor with the e1ectric field gradient tensor, and in the absence of an 

externa1 magnetic field, it is the 1eading term which depends on the 

orientation of the nucleus in the mo1ecu1e. 275 Nuc1ei with spin quantum 
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numbers 
275 276 

~ 1 have non-zero quadrupo1e moments, , so that the nuc1ear-

e1ectronic interaction energy (equation 10.1) depends on the nuc1ear 

orientation, and transitions can occur between different nuc1ear orienta-

tions in the mo1ecu1es. (Section C) 

The e1ectric field gradient at the nucleus is described by the 

1 . t 275,277 rea , symmetr1c ensor, 

= (10.2) 

The tensor can be referred to its principal axes, so that there are on1y 

three non-zero components. Since the potentia1 V is due to charges externa1 

to the nucleus, it obeys Lap1ace's equation, 

L = o (10.3) 
j 

so that the e1ectric field gradient can be described in terms of two indepen-

dent parameters, once the principal axes are known. The standard 

275 277 278 parameters ' , are the 1argest component of the tensor, denoted by 

e q = V zz = (~\ 
and the asymmetry parameter, 

= 
V-V· 

xx yy 
Vzz 

where the principal axes are conventiona11y chosen so that 

V xx 

(10.4) 

(10.5) 

(10.6) 
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The molecules considered here are symmetric rotors, so that the 

z-axis is the axis of symmetry, and the x- and y-axes are arbitrary axes 

normal to i t . In this case, V = V ,the asymmetry parameter vanishes, xx yy 

and the nuclear quadrupole interaction energy depends only on the largest 

component of the electric field gradient tensor, e q • The term 

which depends on the orientation of the nucleus in the molecule has the 

f 
277 

orm 

= 

2 
e Q q 

41(21 - 1) 
r3 ne L.: 1 - 1(1 + (10.7) 

where Q is the scalar quadrupole moment of the nucleus, hereafter referred 

. 275-278 to as s~mply the nuclear quadrupole moment. l and ~ are the 

quantum numbers corresponding to the magnitude and the z-component of the 

nuclear angular momentum. The energy levels are conventionally expressed 

in ter ms of the quadrupole coupling constant (QCC), 

C = 
2 e Q q 
h 

(10.8) 

which has units of frequency. The QCC's for isotopie species of the same 

molecule are pr.oportional to the corresponding nuclear quadrupole moments, 

so that any information about the molecular elect:!:,onic structure can be 

obtained from observations for a single isotopie ~pecies. 

B. CALCULATION OF NUCLEAR QUADRUPOLE COUPLING CONSTANTS 

The electrostatic potential acting on a nucleus, A, in.a molecule, 

. due to the electrons and the other nuclei, is given by 



224. 

v = -e f 'If: ! 1Jf. d V + (10.9) 

where ~ e is the e1ectronic wave function, and ZB is the atomic number 

of nucleus B. If equation (10.9) is differentiated twice with respect to 

the nuc1ear z co-ordinate, 

-eJ"!: pz2 2 
eq = V = - r } 

zz 5 r 
tf:dV + (10.10) 

or in spherical polar co-ordinates, 278 

-e flf: 
2 ZB(3 

2 
- 1) P cos 9 - l} '"If. d V L cos 9 

eq = 3 + e 
R

3 
r B:lA 

AB 

(10.l1) 

The operator in the integrand is a sum of identica1 one-e1ectron operators, 

as is the dipole operator in Chapter 9, so that for a closed-shell sing1e-

determinant wave function, with mo1ecular orbitaIs composed of linear 

combinations of atomic orbitaIs, 

eq = + e (10.12) 

where P is the expansion of the one-electron density matrix in terms of the 

basis orbitaIs. The matrix qA describes the e1ectric field gradient of the 

e1ectrons'at the nucleus A, and has elements which are, in the most genera1 

'case, three-centre integrals, 

2 
(3 cos 9 - 1} 

3 ~\ d V (10.13) 
r 

whi1e qAB is the electric field gradient per unit charge, of nucleus B, at 

nucleus A, 
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2 

= 
3 cos 9

B 
- 1 

3 (10.14) 

RAB 

The direct computation of electric field gradients, using equation 

(10 12) . 1 hl· 279 f h h . 1 ( ) • ,1nvo ves t e eva uat10n 0 t e t ree-centre 1ntegra s,' qA kl. 
A simple semi-empirica1 approach, origina1ly due to Townes and Dailey,280 

and first explicitly formulated for molecular orbital the ory by Gordy et 

al., 240 ';s often used for th i t t t· f 1 d 1 1· g ~ e n erp~e a 10n 0 nuc ear qua rupo e coup 1n 

constants. The electric field gradient is assumed to arise entirely from 

the electron population of atom A, since the effect of the e1ectrons on each 

other atom approximately cancels the effect of the nuclei. The net effect 

due to other atoms is assumed to be small, as the electric field gradient 

-3 
due to the charge at any point decreases as r 

The electric field gradient is therefore given by 

e q = (10.15) 

where ~ is the number of electrons in the k
th 

orbital on atom A, and 

(qA)kk is the e1ectric field gradient per unit charge due to the electrons 

in that orbital, defined by equation (10.13). The inner shells, and the 

valence s orbital, are spherically symmetric and make no net contribution 

to the electric field gradient at the nucleus, which is due only to the 

valence p, d, ••. e1ectrons. 

The integrals (qA)kk in equation (10.15) can aIl be related to 

the integral 

= = s 2 0* (3 cos e - 1) 0 
Pz ·3 p r z 

d V (10.16) 



\ 

If all three p orbitals have the same radial factor, then 

= 1 
- - q 2 0 
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(10.17) 

The effect of d orbitals in the halogens ois negligible, since for all the 

valence d orbitals, 

(10.18) 

and the d populations are small anyway. The electric field gradient is 

h . b 240 t en gl.ven y 

n + n 
e q = -e q (n _ x y) 

o z 2 
(10.19) 

In order to evaluate q , an explicitradial form for the orbitals 
o 

is needed. The overlap integrals in the molecular orbital calculation are 

computed for Slater orbitals, but Slater orbitaIs do not provide a suitable 

7 representation of the wave function near the nucleus, where the largest 

contribution to the electric field gradient arises. Also, for the Slater 

orbital defined by equation (4.19), q is found by elementary integration 
o 

to be 

= 4 
5 n' (n' -

'3 
Z 

1 
-)(n' 
2 

(10.20) 

so that the calculated electric field gradient is yery sensitive to the 

values of the effective atomic number, Zr, and the effective principal quantum 

number, n'. In order to avoid specifying the radial form of the orbitaIs, 

" 280 
therefore, ToWnes and Dailey suggested that the quadrupole coupling con-

stant due to a single p electron, 
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(10.21) 

be evaluated from the fine or hyperfine structure of atomic spectra, just 

as the parameters for molecular orbital theory are calibrated using atomic 

spectra. This procedure also avoids the need for an independent determina-

tion of the scalar quadrupole moment of the nucleus, Q. The equation used 

. 240 
for the semi-empirical evaluation of nuclear quadrupole coupling constants, 

therefore, is 
n + n 

C = C (n _ x y) 
o z 2 

(10.22) 

where the quadrupole coupling constant per p electron, Co' is evaluated from 

atomic spectra. Equation (10.22) has frequently been used to interpret 

nuclear quadrupole coupling constants in terms of chemical concepts such as 

i . h h b 'd" d' b d' 240,241 on1C c araeter, y r1 1zat10n, an P1- on 1ng. 

A similar equation, applicable to the SCF-MO-CNDO the ory for aIl 

valence electrons, can be formally derived from the exact formula, equation 

(10.12), by making certain simplifying approximations. 

(i) The off-diagonal matrix elements of the electric field 

gradient, (qA)kl' which contain the differential overlap of two orbitaIs 

as a factor in the integrand, are neglected in accordance with the CNDO 

approximation. The matrix elements between two different orbitaIs on atom 

A vanish by symmetry in any case (for the s-p basis set eonsidered), while 

the others refer to overlap regions not on atom A, and ,are relatively small 

compared to the diagonal matrix elements for orbitaIs of atom A, sinee the 

-3 electrie field gradient operator deereases as r . Equation (10.12) there-

fore reduees to 
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e q = (10.23) 

(ii) The electric field gradient due to the electron population 

of each other atom in the molecule is assumed to cancel that due to the 

atomic core. 

= (10.24) 

In accurate ca1culations of e1ectric field gradients, this cance11ation has 

been found to be approximately true, and the net effects of other atoms to 

be sma11 , again because the e1ectric field gradient operator behaves as r-3 

Therefore, 

e q = (10.25) 

in the SCF-MO-CNDO theory, P
kk 

represents the e1ectron population of the k th 

orbital, sd that equation (10.25) is equiva1ent to equation (10.15), and 

the QCC is given by 

P + P 
c = C (P -o zz 

xx YY) 
2 

(10.26) 

In the Extended Hucke1 Theory,ll4 which inc1udes over1ap, it was 

shown (Chapter 5) that the population of an orbital is given by 

~r = P rr + P 
rs S 

rs 
(5.10) 

where the Sare over1ap integra1s. By ana10gy with equation (10.22), 
rs 

one might ca1cu1ate the QCC from 

C = 
Q + \y 

C (Q _ xx) 
o zz 2 

(10.27) 
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Cotton and Harris
28l 

have derived an analogous equation by assuming that the 

electric field gradient matrix element between the kth orbital on atom A, 

and the lth orbital on atom B, is approximated by 

= (10.28) 

The off-diagonal matrix elements betweenpairs of orbitaIs, both of which 

are on other atoms, are still neglected. 

282 . Gordy et al. have suggested, however, that the effect of the 

overlap populations be neglected, sinee the overlap regions are far from 

the nucleus, so that equation (10.26) should be used even with the EHT. In 

order to verify this claim, quadrupole coupling constants have been ealculated 

from the EHT using both equations (10.26) and (10.27). 

Quadrupole coupling constants have been calculated for C1
35

, Br 79 , 

1127, and N14 in various molecules, since extensive experimental data are 

available for these nuelei. For the halogens, the values of the quadrupole 

coupling constant per p electron, C , are 109.746, -769.756, and 2292.712 
o 

. 35 79 127 . 277 283-285 
MC/S, for Cl ,Br and l respectLvely.' The ground state 

·of the nitrogen atom is an S state, so that there i8 no electric field 

gradient at the nucleus, and C cannot bedetermined as for the halogens. 
o 

ff d k .278 h d h 1 7 4 / f 14 b d Je rey an Sa uraL ave propose t e va ue C = -. Mc s or N , ase o 

(r -3 > 2p 286 on a value for interpolated from values derived from the hyper-

fine structure of other atoms in the first row of the periodic table, and an 

. 287 f b d h . h f . f 0 . h est1mate 0 Q ase on t e magnetLc yper 1ne structure 0 N , WLt 

certain subsidiary approximations. Other values have been estimated from 



attempts to correlate quadrupole coupling constants with simple bonding 

280 
theories, but the value-7.4 Mc/s has been used here, since it was 

derived independently of the QCC in any Molecule. 
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A possible source of error in equation (10.23) is the Sternheimer 

effect, or the polarization, due to the non-spherical nucleus and the valence 

electrons, of the inner shell electrons, which in turn exert an electric 

288-290 field gradient on the nucleus. Sternheimer and Foley have considered 

this effect, and shown that it can lead to variations in the electric field 

gradient of an order of magnitude or more for ionic crystals. For isolated 

covalent Molecules, the effect is much smaller, and has been estimated at 

24% for the Li2 molecule. 290 In semi-empirical calculations of quadrupole 

coupling constants, it is assumed that the Sternheimer polarization effects 

in the Molecule are similar to those in the free atom, so that equation (10.22) 

is valid if C is determined from atomic hyperfine spectra. 277 This is o 

another reàson for using atomic spectra to calibrate the molecular 

calculàtion. 

C. MEASUREMENT OF QUADRUPOLE COUPLING CONSTANTS 

The interaction of the nuclear quadrupole moment with the electric 

field gradient depends upon the nuclear orientation in the Molecule, so that 

the QCC can be found by measuring the energy changes associated with transi-

tions between different orientations. 

In the gas phase, QCC's can be determined from hyperfine structure 

in rotational spectra. The the ory of nuclear quadrupole effects in rotational 
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240-242 spectra is de~cribed in textbooks on microwave spectroscopy, for 

1inear mo1ecu1es and symmetric rotors, which have e1ectric dipo1e moments. 

Molecules which do not ha~7e e1ectric dipo1e moments have no rotationa1 

spectra, so that the QCC cannot be determined in the gas phase. For 

asymmetric rotors, the nuc1ear quadrupo1e effects are more comp1ex, and 

it is more difficu1t to de termine the QCC using microwave spectroscopy, 

but such mo1ecu1es are not considered here. 

Quadrupo1e coup1ing constants can be measured in the solid state, 

277 using pure nuc1ear quadrupo1e resonance (NQR) , as we11 as by nuc1ear 

275 "291 magnetic resonance or Mossbauer spectroscopy. The energy 1eve1s for 

pure NQR are given by equation (10.7), for molecu1es whose asymmetry parameter 

is zero. The QCC's measured in the solid state for many mo1ecules, however, 

differ from the gas-phase values for the same mo1ecu1es by as much as 10% 

277,292 or more. A number of reasons have been suggested for these solid-

state effects. 

(i) The direct effect of the e1ectric field gradient due to 

other mo1ecu1es on nucleus A is re1ative1y sma11 in mo1ecular crysta1s, 

277 
a1though it is appreciab1e in ionic crysta1s and meta1s. 

(ii) Changes in mo1ecu1ar e1ectronic structure can"beinduced by 

intermo1ecu1ar forces. The ionic character of many mo1ecules increases in 

the solid state, since this change is favoured by an increase in Made1ung 

277 energy. In many ha1ides, the ha10gen atom carries a partial negative 

charge, so that the increase in the ionic character 1eads to a lower QCC. 

For IC1, however, the iodine QCC is higher in the solid state, since the 
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iodine atom carries a partial positive charge. 
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(iii) In some molecules, intermolecular bonding causes substantial 

changes in the molecular electronic struc'ture. The increase in the iodine 

QCC for ICN in the sol id state has been attributed to this effect. 292 

Quadrupole coupling constants measured in the gas phase have 

therefore been used whenever possible for comparison with theory. As with 

dipole moments, values measured for deuterated species have been quoted 

wh en they are the only values available, and any possible isotope effects 

have been neglected. 

For homonuèlear diatomics, the experimental QCC's come from pure 

NQR measurements in the solid state, since gas-phase values cannot be 

measured for molecules with no dipo1e moment. The significance of the 

solid-state QCC for iodine is doubtfu1, since the measured asymmetry 

parameter is 0.15, indicating extensive intermo1ecular bonding in the 

1 .d 292 so 1 state. 

D. COMPARISONS OF CALCULATED QUADRUPOLE COUPLING CONSTANTS FOR HALOGENS 

WITH EXPERlMENT 

Quadrupo1e coup1ing constants ca1cu1ated from the semi-empirica1 

SCF-MO-CNDO theory, using equation (10.26) are 1isted in Tables (10.1) to 

(10.3). The QCC's, un1ike the dipo1e moments for the same molecu1es, are 

in fair agreement with experiment, despite the absence of d orbita1s in the 

MO ca1culations. They do not vary great1y with the value of the interatomic 

electron-repulsion integrals, or of the Slater exponent for hydrogen. The 
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TABLE 10.1 NUCLEAR QOADRUPOLE COUPLING CONSTANTS FOR C135 

FROM SEMI-EMPIRICAL SCF-MO-CNDO THE ORY 

Parame ter Set Ml M2 01 02 Expt1. Referene~ 

HC1 -83.lj,0 -88.25 -79.32 -82.02 -67.3 Me/s 293 

C~C1 -77.86 -78.63 -78.53 -79.01 -74.77 294 

C1F -125.73 -126.81 -131.59 -132.78 -146.00 270 

C12 -105.88 -106.16 -106.68 -106.88 -108.95 295 

BrC1 -98.18 -98.27 -97.03 -97.04 -103.6 272 

IC1 -94.45 -94.47 -92.65 -92.64 -82.5 273 

C1CN -73.96 -72.59 -69.48 -83.2 296 

TABLE 10.2 NUCLEAR QUADRUPOLE COUPLING CONSTANTS FOR Br79 

FROM SEM! -EMPIRICAL SCF-MO-CNDO THEORY 

Parame ter Set Ml M2 01 02 Expt1. Referene 

HBr 644.5 657.9 630.2 642.7 530.5 Me/s 293 

CH3Br 598.6 607.6 609.1 616.7 577.15 294 

BrF 944.4 952.4 997.8 1007.3 1089.0 271 

BrC1 805.2 806.9 822.9 824.5 876.8 272 

Br2 750.4 750.8 754.4 754.7 764.86 297 

IBr 721.3 721.2 718.5 718.4 722 298 

BrCN 628.1 611.8 588.9 686.5 296 
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TABLE 10.3 NUCLEAR QUADRUPOLE COUPL1NG CONSTANTS FOR 1127 

. FROM SEM! -EMP1R1CAL SCF-MO -CNDO THEORY 

Parame ter Set Ml M2 01 02 Exptl. ReferencE 

HI -1982 -2020 -1975 -2009 -1823.3 Mcfs 293 

CH31 -1871 ~1907 -1919 -1949 '-1934 299 

IF -2899 -2920 -3056 -3078 

IC1 -2460 -2463 -2528 . -2529 -2930.0 273 

IBr -2306 -2305 -2339 -2338 -2731 298 

12 -2218 -2214 -2231 -2227 -2156 300 

ICN -2052 -1995 -2024 -1962 -2420 296 

TABLE 10.4 NUCLEAR QUADRUPOLE COUPL1NG CONSTANTS FOR C135 

FROM EXTENDED HUCKEL THEORY 

Calculation From gross ~om net Exptl. of QCC orbital populations orbital populations 

Z' H 1.0 1.2 1.0 1.2 

HC1 -42.15 -49.33 -65.79 -75.49 -67.3 Mcfs 

CH3C1 -52.26 -51. 59 -76.49 -75.16 -74.77 

C1F' -162.79 -182.40 -:146.00 

C1 2 -88.21 -117.40 -108.95 

BrC1 -68.44 -95.11 . -103.6 

IC1 -58.68 -83.28 -82.5 

e C1CN -44.80 -65.38 -83.2 



results for bromine are as accurate as for chlorine and iodine, so.that 

the approximate form of the orbital used to ca1culate overlap integrals 

(equation (4.24) ) does not affect the accuracy of the theory. 
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Quadrupo1e coup1ing constants calcu1ated from the EHT, using both 

equations (10.26) and (10.27), are 1isted in Tables (10.4) to (10.6). The 

QCC's for polar mo1ecu1es calcu1ated from gross orbital populations 

(equation (10.27» correspond to exaggerated po1arities, since the ca1cu1ated 

values are too 10w, except when the ha10gen nucleus of interest is bonded 

to fluorine, so that it carries a partial positive charge and exaggeration 

of the po1arity 1eads to a high QCC. The resu1ts are therefore consistent 

with the high dipo1e moments computed from the EHT. (Chapter 9) 

The effect of ca1cu1ating the QCC from net, instead of gross, 

orbital populations is invariably to increase the QCC. The ha10gen atoms 

are predominant1y U-bonded so that there is a greater over1ap population, 

and a sma11er total population, in the pO'" -orbital 'than in the p'7f -orbital. 

The ca1cu1ated QCC depends on the difference between. the pa" - and p JII -

populations, so that it is increased if the overlap population is not counted. 

Tables (10.4) to (10.6) show that whi1e those resu1ts which are too 10w are 

improved by using net orbital populations, others which are too high are 

made worse. On the who1e, more accurate resu1ts are obtained using the 

SCF-MO theory. 
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TABLE 10.5 NUCLEAR QUADRUPOLE COUPLING CONSTANTS FOR Br 79 

FROM EXTENDED HUCKEL THEORY 

Ca1eu1ation From gross From net Exptl. of QCC orbital populations orbital populations 

Z' H 1.0 1.2 1.0 1.2 

HBr 379.2 441.2 576.5 653.7 530.5 Mels 

CH3Br 488.7 481.5 681.2 669.9 577 .15 

BrF 1252.2 1366.9 1089.0 

BrCl 777 .4 991.2 876.8 

Br2 626.8 842.5 765 

IBr 556.4 761.9 722 

BrCN 379.0 534.8 686.5 

TABLE 10.6 NUCLEAR QUADRUPOLE COUPLING CONSTANTS FOR 1
127 

FROM EXTENDED HUCKEL THE ORY 

Ca1eu1ation From gross From net Exptl. of QCC orbital populations orbital populations 

Z' H 1.0 1.2 1.0 1.2 

HI -1333 -1521 -1956 -2169 -1823.3 Mels 

CH31 -1666 -1640 -2210 -2180 -1934 

IF -4056 -4584 

ICI -2529 -3130 -2930.0 

IBr -2086 -2713 -2731 

12 -1866 -2483 -2153 

ICN -1399 -1876 -2420 
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E. COMPARISON OF CALCULATED QUADRUPOLR COUPLING CONSTANTS WITH EXPERIMENT 

FOR NITROGEN 

The ca1cu1ated quadrupo1e coup1ing constants for nitrogen are 

genera11y in poor agreem~nt with experiment. Table (10.7) shows that the 

QCC's ca1cu1at~d from the SCF-MO-CNDO theory with empiricâ1 bonding parameters 

bear 1itt1e relation to experimenta1 values. Many of the ca1cu1ated values 

have the wrong sign, corresponding to sma11er e1ectron populations a10ng the 

symmetry axis than normal to it, in contradiction to the experimenta1 

resu1ts. Most of the QCC's ca1cu1ated using the Pop1e-Sega1 bonding 

parameters (Table 10.8), on the other hand, have the correct sign, but the 

values are still in poor agreement with experiment, except for NEJ. 
The QCC's ca1cu1ated from the Extended Hueke1 Theory (Table 10.9) 

are a1so quite different from the experimenta1 values. The values ea1cu1ated 

. from gross and from net orbital populations are not too different for most 

mo1ecules, sinee the over1ap populations a10ng the symmetry axis and normal 

to it are about the same. 

Some idea of the reasons for the fai1ure of the approximate MO 

theories considered to prediet aeeurate QCC's for nitrogen may be obtained 

from the resu1ts of an ab initio ea1eu1ation of e1eetrie field gradients 

307 for N2, using equation (10.12). The resu1ts are found to be very sensi-

tive to the basis set, sinee the e1eetrie field gradient per p e1eetron on 

atom A, eq , is proportional to the cube of the orbital exponent, Z' 
o. 

(equation 10.20). The other e1eetronie terms in equation (10.12) are 
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Parameter Set Ml 

~ +2.233 

N2 -0.763 

NNO 

NNO 

HCN +5.313 

CH3CN 

FCN +8.143 

CICN 

BrCN +6.561 

ICN +6.104 

TABLE 10.7 NUCLEAR QUADRUPOLE COUPLING CONSTANTS FOR N14 

FROM SCF-MO-CNDO THEORY WITH EMPIRICAL BONDING PARAMETERS 

M2 01 02 R1 R2 

+1.098 +1.444 +0.674 +0.787 -0.502 

-0.663 -0.565 -0.482 -0.988 -0.911 

+5.833 +6.104 +5.394 +5.817 

-2.583 -3.007 -4.289 -4.792 

+6.664 +4.994 +6.280 +5.075 +6.108 

+5.913 +6.676 

+8.823 +8.458 +9.208 +7.708 +8.150 

+7.956 +7.061 +7.897 

+6.365 +7.220 

+7.048 +5.827 +6.680 

Expt1. 

-4.0842 Mcls 

-4.65 

-0.792 

-0.238 

-4.~8 

-4.214 

-2.67 

-3.63 

-3.83 

-3.80 

e 

Reference 

301 

302 

303 

303 

304 

305 

259 

296 

296 

306 

N 
U) 
00 



TABLE 10.8 NUCLEAR QUADRUPOLE COUPLING CONSTANTS FOR N14 

FROM SCF-MO-CNDO THEORY WITH POPLE-SEGAL BONDING PARAMETERS 

Parame ter Set MP OP RP Expt1. 

N~ -4.111 -3.930 -4.256 -4.0842 Me/s 

N2 -2.290 -2.290 -2.317 -4.65 

!!NO +0.612 +0.840 +0.437 -0.792 

N!!,O +0.152 -0.015 -0.528 -0.238 

HCN -1.923 -1.903 -4.58 

CH3CN -1. 527 -1.482 -1. 908 -4.214 

FCN -0.579 -0.468 -0.995 -2.67 

TABLE 10.9 NUCLEAR QUADRUPOLE COUPLING CONSTANTS FOR N14 

FROM EXTENDED HUCKEL THEORY 

Ca1eu1ation From gross 
of QCC orbital populations 

z' H 1.0 1.2 

From net 
or~ita1 populations 

1.0 1.2 

Expt1. 

239. 

N~ -4.156 -4.840 -6.188 -6.935 -4.0842 Me/s 

N2 -3.600 -3.476' -4.65 

!!NO -1.418 -1.111 -0.792 

NNO +1.786 +2.818 -0.238 

HCN -1.660 -1.592 -1.882 -1.791 -4.58 

CH3CN -0.958 -1.114 -1.004 -1.206 -4.214 

FCN -0.594 -0.509 -2.67 

C1CN -0.649 -0.564 -3.63 

BrCN -0.667 -0.560 -3.83 

ICN -0.785 -0.718 -3.80 
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relatively insensitive to changes in the basis set, and in fact there is a 

rough cancellati,on between them and the nuclear terms, as assumed in the 

semi-empirical formula, equation (10.22). Another possible source of error 

in the ab initio calculation of electric field gradients is the Sternheimer 

polarization of inner shells, although Richardson307 has estimated that this 

has an effect of less than 10% in N2 • 

In semi-empirical calculations of quadrupole coupling constants, 

it is hoped that the errors inherent in ab initio calculations of electric 

field gradients, as weIl as any error in the uncertain nuclear quadrupole 

moment of N14, will be eliminated by evaluating C from the hyperfine o 

structure of the atomic spectra. 277 The results in this chapter show that 

this approach works fairly weIl for halogens, but not for nitrogen. 

Tovmes
308 

has pointed out that the semi-empirical formula, equation (10.22), 

is l~ss satisfactory for nitrogen than for thehalogens, since it is smaller 

and its bonding is more complexe 

The above analysis suggests that the errors in the calculated QCC's 

are primarily due to the failure of equation (10.22), but comparison of the 

orbital populations with those obtained from complete minimum-basis set 

SCF-MO calculations shows that part of the error lies in the wave functions 

calcu1ated using the CNDO approximation. In HCN, for example, the dipo1e 

moment ca1culated using the parameter set M2 is accurate within 1%, (Table 

9.2), but the orbital populations for the nitrogen atom are 1.93, 0.50 and 

1.40 electrons for the valence-shell s, peT' and p1T orbitaIs respectively, 

in contrast to gross orbital populations of 1.77, 1.37, and 0.97 ca1cu1ated 



241. 

309 
using complete SCF-MO theory. A1though the total atomic charges predicted 

by the semi-empirica1 SCF-MO-CNDO theory are more accurate than those in 

the EHT, as shown by the ~a1culated dipole moments, the distribution of the· 

va1ence-she11 e1ectronic populations of each atom among the valence orbitaIs 

is often quite inaccurate. 

The ca1culated orbital populations are sensitive to the bonding 

parameters, and the Pople-Segal parameters lead to QCC's which are somewhat 

better than those obtained using the empirical bonding parameters. This 

is an examp1e of a situation, often encountered in semi-empirica1 pi-

e1ectron theory, in which parameters chosen for accurate prediction of one 

molecu1ar property do not 1ead to the best resu1ts for another property. 

In this case, the dissociation energies are used as the over-riding criterion 

for the assignment of bonding parameters, since they are more direct1y 

ca1cu1ated from the results of the SCF-MO theory, and since they can be 

calculated accurately for at least one set of bonding parameters. 

In summary, then, the quadrupole coupling constants calculated 

for halogens using the semi-empirical SCF-MO-CNDO the ory are in fairly good 

agreement with experiment, while those caiculated for nitrogen are unsatis-

factory. The Extended Huckei Theory Ieads to somewhat poorer results for 

halogens, and aiso faiis for nitrogen. 
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CHAPTER 11 

CONCLUSIONS 

A. SUMMARY AND DISCUSSION 

The object of the present work has been to deve10p a semi-

empirica1 SCF-MO the ory for the approximate prediction, and interpretation, 

of ground state mo1ecu1ar properties. 43 The CNDO approximation has been 

used so that the the ory can be extended to fair1y large molecu1es without 

" requiring excessive computer time. The predicted values of physica1 

properties have been compared with those calcu1ated from the theoretical1y 

44 45 " based parameters of Pop1e and Segal, ' and from the Extended Hucke1 

Theory. 114 

The"resu1ts in Part B show that the physica1 properties ca1culated 

from the SCF-MO-CNDO theory, especia11y the ionization potentia1s and bonding 

energies, are most accurate when the parameters are eva1uated as fo1lows: 

(i) Atomic core and e1ectron-repu1sion integrals are eva1uated 

from atoŒdc valence state energies, as described in Chapter 3. 

(ii) Interatomic electron repu1sion integrals are calcu1ated 

either from the Mataga formula, equation (4.6), or the Ohno formula, 

equation (4.7). The atomic limits of these integrals are evaluated from 

atomic valence state energies (Chapter 4). The resu1ts obtained with the 

two formu1ae are about equa1ly accurate, except that the Mataga formula 

1eads to some\vhat more accurate dipo1e moments (Chapter 9). 



(iii) Bonding parameters are calibrated using experimental 

bonding energies (Chapter 4). 

(iv) The orbital exponent for hydrogen is taken as 1.2 in the 

ca1cu1ation of overlap integrals. 
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The success of the theory is therefore to be judged by the accuracy 

of the physica1 properties calcu1ated using these parameters. (Parame ter 

sets M2 and 02) The ionization potentials are quite accurate, and in some 

cases more accurate than those from exact SCF-MO calculations, if Koopmans' 

theorem is assumed to be va1id. For a few mo1ecu1es, the predicted order 

of orbital energies is incorrect, but on the who1e, the agreement with 

experiment is quite good. The bonding energies of mo1ecules not considered 

in the calibration of the bonding parameters are also fairly accurate. 

Quantities which depend on the mo1ecular charge distribution are not as 

accurate1y predicted. The dipo1e moments are accurate for some mo1ecules 

which contain only first relIT atoms, although not for aU, and the quadrupo1e 

coupling constants for halogens are quite accurate, but the principal 

fai1ures of the theory are the predictions of dipole moments for molecules 

containing atoms not in the first row of the periodic table, and of quad­

rupole coupling constants for nitrogen. The re:asons for these failures 

have been discussed in Chapters 9 and 10 respectively. 

The results of the semi-empirical theory have also been compared 

with those calculated using the Pople-Segal parameters, and it has been 

shown that the latter lead to overestimation of molecular energy quantities. 

The predicted ionization potentials are tou large when calculated with 
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theoretical electron-repulsion integrals, and/or with the Pople-Segal 

bonding parameters. The bonding energies calculated from the Pople-Segal 

bonding parameters are very much too large. Even when the bonding 

parameters are calibrated to give the correct bonding energies for some 

molecules, the bonding energies of other molecules are predicted more 

accurately when semi-empirical electron-repulsi~n integrals are used. 

The relative merits of the various parameters are less evident 

in the predicted values of properties which depend on the charge dis tribu­

~ion. The overall accuracy of the dipole moments is about the same for each 

set of pàrameters. Halogen quadrupole coupling constants were not calculated 

using the Pople-Segal parameters, which were found to be inferior for the 

prediction of ionization potentials and bonding energies in molecules 

containing first row atoms, and were therefore not extended to heavier 

atoms. The Nl4 QCC's calculated with theoretical bonding parameters are 

actually somewhat more accurate than those calculated using empirical bonding 

parameters, but are still quite inaccurate. The advantage of the semi­

empirica~ theory, therefore, is that it predicts more accurate orbital 

energies and total molecular energies. The charge distribution is not 

improved very much. 

The Extended Huckel Theory has also been compared with the semi­

empirical SCF-MO-CNDO theory. It has been shown that the energy quantities 

predicted by ~he EHT are unreliable, since both ionization potentials and 

bonding energies are fairly accurate for some molecules, but very inaccurate 

for others. The EHT predicts very high dipole moments for many molecules, 
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and the calculated halogen QCC's also correspond to exaggerated polarities. 

The, calculated nitrogen QCC's are in poor agreement with experiment in the 

EHT as well as in the SCF.,.!10 the ory • 

It might be argued that the present comparison of the EHT with 

the SCF-~O-CNDO the ory is unfair, since no attempt was'made to improve 

the parameters of the EHT empirically. The EHT is, however, a semi-empirical 

theory since the diagonal Hamiltonian matrix elements are determined from 

atomic yalence state ionization potentials, and the multiplicative constant, 

K, which appears in the off-diagonal elements (equation 5.4) was evaluated 

to fit experimental data. 114 Since the actual value of K leads to approxi-

mately correct ionization potentials and bonding energies for sorne molecules, 

any change in K which improved the predictions for other molecules would be 

at the expense of these. 

The natural way to improve the EHT is to vary the matrix elements 

with the molecular charge distribution, in which case the calculation must 

be done iteratively. As explained in Chapter 5, the so-called Iterative 

119 132-135. . Extended Huckel The ory , is unsat1sfactory on theoret1cal grounds, 

so that an attempt to improve the EHT leads naturally to an SCF-MO theory. 

The EHT with Hoffmann's parameters has therefore been used as an exampie of 

a n9n-iterative semi-empirical theory, for comparison with the semi-

empirical SCF-'HO-CNDO theory. 

The results indicate that the EHT is not as accurate as the semi-

empirical SCF-MO-CNDO theory. The computation time required in the latter 

theory is only 2 to 3 times as long as in the EHT for a given molecule, so 
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that there is no reason to pre fer the EHT. The semi-empirical SCF-MO-CNDO 

theory is therefore the'best available theory at this level of approximation. 

These conclusions are based on the predicted values of physical 

properties, whose calculation involves further approximations not inherent 

in the ~O theories considered, but as pointed out in Chapter 6, this is 

inevitable since the proper evaluation of a the ory requires the cornparison 

of calculated quantities with experiment. Also the effect of these extra 

approximations has been minimized, by considering quantities which can be 

calculated directly from the ground state wave function. 

, The emphasis in this thesis has been on the choice of parameters 

for the semi-empirical theory. The application of the theory to the inter­

pretation of experimental data is illustrated in Chapter 7, where the 

computed orbital energies are used to support the identification of certain 

observed ionization potentials with specific molecular orbitals. Now that 

the semi-empirical the ory has been formulated, it can be used more extensively 

to interpret molecular properties. 

In summary, a semi-empirical molecular orbital theory has been 

developed for the calculation of ground state molecular properties, and 

its accuracy and limitations have been investigated. 

B. SUGGESTIONS FOR FUTURE RESEARCR 

There are a number of ways in which,the theory developed here can 

be extended, and applied to different chemical problems. Sorne possible 

directions for future research are indicated here, under the headings: 
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(i) extension of the theory to different types of molecules, and 

(ii) Interpretation of molecular properties other than those 

considered here. 

Extension cf the Theory to Other Molecules 

In this thesis, only small molecules, which can be described to 

a firs.t approximation by a closed-shell wave function buil t up of sand p . 

orbitaIs, are considered. An obvious extension of the theory is its 

application to larger molecules, which primarily requires the use of more 

computer time and memory. The extensive computation necessary to parametrize 

and test the theory was restricted to small mo.1ecules, but the final the ory 

can be applied to larger molecules, with much shorter computation times than 

are required ·for complete SCF-MO calculations (Appendix C). Kaplansky and 

Whitehead, for example, are currently applying the semi-empirical SCF-MO-CNDO 

theory to the Interpretation of halogen quadrupole coupling constants, in 

A more significant extension of the the ory would be the inclusion 

of valence-shell d orbitaIs in the basis set. For transition metals, these 

orbitaIs are partially occupied in the ground state, and the atomic parameters 

can be assigned by a procedure similar to that used here. A more difficult 

problem is the determination of parameters for the valence-shell d orbitaIs 

of main grou~ atoms. 
46 Santry and Segal have extended the theoretical 

44 45 parameters ·of Pople and Segal ' to the second rm-l of the periodic table, 

including d orbitaIs as weIl as sand p orbitaIs. As discussed in Chapter 9, 
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they showed that the computation of approximately correct dipole moments 

for molecules with second-row atoms requires the inclusion,of d orbitaIs in 

the basis set, even for molecules whose elementary chemical description 

does not require d orbitaIs. It is harder to evaluate suitable semi-

empirical parameters for the valence shell d orbitaIs of main-group 

elements, since they are not occupied in the atomic ground state, and the 

required valence state energies have not been accurately determined. 

Girard and Whitehead are currently considering this problem, for the second 

row of the periodic table. 

A further possible extension of the the ory is to molecules which 

cannot be described in terms of closed shell wave functions. Pople and 

45 Segal have formulated the SCF-MO-CNDO equations for open 'shell configura-

tions, and have carried out calculations using the same parameters as for 

closed shell molecules. Similarly, the semi-empirical theory can be 

extended to open shell configurations, although it may be advisable to 

modify the atomic parameters, sinee they were derived from the energies 

of valen~e states with an equal number of eleetrons of eaeh spin, as in a 

closed-shell moleeule. A limitation of the open shell SCF-MO-CNDO the ory 

45 is that it does not resolve eonfigurational degeneraeies. The study of 

singlet-triplet splits, for example, requires the use of a less approxima te 

the ory , sueh as the EMZDO the ory proposed by Dixon. 63 
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Interpretation of Mo1ecu1ar Properties 

The semi-empir
o

ica1 SCF-MO-CNDO the ory can a1so be applied to the 

interpretation of physica1 and chemica1 properties other than those con-

sidered here, such as the conformationa1 and stereochemica1 prob1ems, which 

have been studied by the EHT. (See Chapter 5) Since the former theory 

predicts more accurate bonding energies, it might also be expected to 

predict more accurate energy differences between mo1ecu1ar confor~tions. 

A1so, more spectrpscopic quanti ties can be re1ated to the ground 

state wave function. The isomer shift in the Mossbauer spectrum of a given 

291 nucleus depends on the e1ectron density at that nucleus, a1though a 

complete study wou1d require the inclusion of d orbita1s in the basis set, 

since the nuc1ei which exhibit the Mossbauer effect are either transition 

meta1s, or heavy main group e1ements, such as tin or iodine, in which the 

contribution of d orbita1s to the bonding is significant. 

If the the ory is extended to open-she11 ~onfigurations, the 

isotropie hyperfine interaction in e1ectron spin resonance can be ca1cu1ated 

f h "d °t" hl" 310 rom t e sp~n ens~ ~es at t e nuc e~. 

Another interesting prob1em is the interpretation of chemica1 

shifts and spin-spin coup1ing constants in nuc1ear magnetic resonance. 

These quantities are ~ direct1y related to the ground state wave function, 

since the energy of a nuc1eous in a magnetic field must be calculated using 

second-order perturbation theory, and formally includes terms which depend 
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310 on a11 the excited state energies. It is possible, however, to corre1ate 

chemica1 shifts and coup1ing constants with ground state wave functions in 

a semi-empirica1 way, within series of re1ated mo1ecu1es.
311 

Pre1iminary 

160 attempts to corre1ate chemica1 shifts with charge densities ca1cu1ated 

from the Extended Hucke1 Theory were abandoned in favour of deve10ping a 

better semi-empirical molecular orbital the ory , using properties direct1y 

re1ated to the ground-state wave function. Now that such a the ory has 

been deve1oped, it might be worthwhile to resume attempts to interpret 

chemical shifts, as well as spin-spin coupling constants, in terms of 

ground-state wave functions~ 



Statement of C1aims to Original Research 

(1) The atomic core and e1ectron repu1sion integra1s for the semi-

empirica1 SCF-MO-CNDO theo~y have been eva1uated from atomic valence 

state energies, and from an ana1ysis of the effect of the CNDO approxi­

mation on the Hami1tonian matrix elements in SCF-MO theory. (Chapter 3) 

The atomic limits for the interatomic e1ectron repu1sion integrals have 

been eva1uated simi1ar1y. (Chapter 4) 

(2) Bonding parameters for the semi-empirica1 SCF-MO-CNDO the ory 

have been ca1ibrated using the experimenta1 bonding energies of binary 

hydrides, and the theoretica1 significance of the values found has been 

discussed. (Chapter 4) 

(3) An approximate method has been deve10ped for the ca1cu1ation 

of over1ap and dipo1e integra1s invo1ving Slater 4s and 4p orbita1s. 

(Chapter 4) 

251. 

(4) . Ionization potentia1s, bonding energies, dipo1e moments and nuc1ear 

quadrupo1e coup1ing constants for a numher of mo1ecu1es have been ca1cu1ated 

from the SCF-MO-CNDO theory, using various sets of parameters. The ca1cu1ated 
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values have been compared with experiment, and it has been shown that the 

semi-empirical parameters, evaluated as described in paragraphs (1) and 

(2) ab ove , lead to results in better agreement with experiment than the 

theoretically based parameters used by Pople and Segal. (Fart B) It has 

also been shown that the value 1.2 for the orbital exponent of hydrogen 

leads to more accurate bonding energies, using the semi-empirical SCF-MO-CNDO 

the ory , than the value 1.0, for molecules not used in the calibration of 

the bonding parameters (Chapter 8). 

(5) Ionization potentials, bonding energies, dipole moments and nuclear 

quadrupole coupling constants have also been calculated by the Extended 

Huckel Theory and compared with experiment, and it has been shown that the 

EHT is neither as accurate, nor as reliable, as the semi-empirical 

SCF-MO-CNDO theory. (Part B) 

(6) The calculate4 ionization potentials, for the parameters which 

lead to results in best agreement with experiment, have been used to support 

the identification of certain observed ionization potentials with specific 

molecular orbitaIs. (Chapter 7) 

(7) It has been shown that the bonding energies'calculated from the 

Extended Huckel Theory by Hoffmann and Lipscomb are not correctly referred 

to atomic ground states, and that correction of this error leads to bonding 

energies in better agreement with experiment. (Chapter 8) 

(8) It has been shown that dipole moments cannot be calculated from 

a molecularorbital theory without overlap, in the same way as if overlap 

is included, since they would then not be invariant with respect to 
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translation. Several approxima te formulae, which have been proposed in the 

literature for the calculation of dipole moments in molecular orbital 

·theories without overlap, have been shown to.have the required invariance 

properties. 'The Pople-Segal formula, which includes pOint-charge and atomic 

. polarization terms, has been shown to be the most accurate for use with the 

. SCF-MO-CNDO theory. (Chapter 9) 

. . 
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APPENDIX A 

MOLECULAR GEOMETRIES 

The input data for the computations on each molecule consisted of 

the atomic numbers and nuc1ear co-ordinates of a11 the atoms. The co-

ordinates were determined from experimenta1 bond 1engths and angles, which 

181 
were taken from the Tables of Interatomic Distances of the Chemica1 Society, 

un1ess otherwise specified. When avai1ab1e, bond distances corresponding to 

potentia1 minima ("r Il values) were preferred. 
e 

~ = 0.74130 A 

~iH = 1.59535 A 

No data 

No data 

availab1e. 

available. 

Assumed linear, ~eH = 1.3431 A as in BeH. 

Assumed trigonal planar, ~H = 1.187 A as for 

terminal H in B2H6' 

CH4
: Tetrahedral, RCH = 1.0850 A 

NH3
: Pyramidal, ~ = 1. 0124 A, IHNH = 106.67

0 

H20: ROH = 0.9572A, /HOH = 104.52
0 

RF; ~F = 0.9171 A 

SiH
4

: Tetrahedral, RSiR = 1.4798 A 

PH3
: Pyramidal, ~H = 1.415 A, /HPH = 93.3

0 

R2S: RSH = 1.328 A, /HSH = 92.2
0 

HC1: ~C1 = 1.2746 A 

GeH4
: Tetrahedral RGeH = 1.527 A 

Pyramidal, RAsH = 1.5192 A, /HAsH = 



e 
H2Se: 

HBr: 

SnR4: 
SbH3 : 

H2Te: 

HI: 

N2 : 

CO: 

CS: 

CO2: 

OCS: 

CS 2 : 

NNO: 

S02: 

03 : 

C2H2: 

C2H4 : 

C2R6 : 

C3H8: 

B2H6 : 

RSeH = 1. 460 A, IRSeR = 91.0° 

~Br = 1.414 A 

Tetrahedra1, . R
SnH = 1. 701 A 

Pyramidal, RSbH = 1.7073 A, IHSbR = 91.30° 

R- '= 1.7 A, IRTeR = 89.5° 
-'feH 

~I = 1.60904' A 

I)m = 1. 09758 A 

RCO = 1.1282 A 

RCS = 1. 5349 A 

Linear, RCO = 1.15979 A 

Linear, 

Linear, 

RCO 

RCS 

= 1.16021 A, RCS = 1.56014 A 

= 1.5532 A 

Linear, ~ = 1.1257 A, ~O = 1.1863 A 

RSO = 1.4321 A, loso = 119.536° 

ROO = 1.278 A, 1000 = 116.8° 

Linear, RCC = 1.2050 A, RCH = 1.0587 A 

pl anar , RCC = 1.339 A, RCR = 1.086 A, IHCH = 117° 34' 

Staggered, RCC = 1.543 A, RCR = 

Co-ordinates determined by Lide. 254 

° 1.102 A, IRCH = 109.3 

Bridge structure, ~B = 1.770 A, ~H = 1.334 A (bridge H), 

~H = 1.187 A (terminal H), IHBR = 121.5° (terminal) 

LiF: ~iF = 1.56389 A 

F2 : ~F'= 1.4177 A 

C12 : RC1C1 = 1.988 A 

255. 
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Br2 : ~rBr = 2.2836 A' 
. 

12 : Rn = 2.662 A 

C1F: RC1F = 1.6281 A 

BrF: ~rF = 1. 7556 A 

BrC1: ~rC1 = 2.138 A 

IF: No data availab1e. Assumed RIF 
1 

(RI l in 12 + ~F in F2) = "2 
= 2.03985 A 

IC1: RIC1 = 2.3207 A 

IBr: No data avai1ab1e. Assumed ~Br 
1 

(RII in 12 + ~rBr in Br2) = "2 
= 2.4728 A 

CH3F: RCF = 1.38527 A, RCR = 1.1060 A, IHCF = 108.9° 

CH3C1: RCC1 = 1. 78123 A, RCH = 1.0959 A, IHCC1 = 108°0' 

CH3Br: RCBr = 1.9388 A, RCH = 1. 0954 A, IHCBr = 107°14' 

CH3I: R
CI = 2.1387 A, R = 1. 0958 A, IHCI = 106°58' 

CH 

HCN: Linear, RCH = 1.06317 A, ~CN = 1.15535 A 

CH3CN: Methy1 carbon assumed tetrahedra1, RCH = 1.10250 A, RCC = 1-.45836 A, 

RCN = 1.15710 A -, 

FCN: Linear, RCF = 1~ 262 A, RCN = 1.159 A (Ref. 259) 

C1CN: Linear, RCCl = 1. 629 A, RCN = 1.163 A 

BrCN: Linear, RCBr = 1. 790 A, RCN = 1.159 A 

ICN: Linear, RCI = 1. 99? A, RCN = 1.159 A 
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°APPENDIX B 

COMPUTATION OF OVERLAP AND DIPOLE INTEGRALS . 

The .computation of overlap and dipole integrais is bas~d on the 
° • • 

procedure·of Mulliken et al. 105 for the evaluation ofoverlap integrals 

involving Slater orbi~als, but the details have been;changed sufficiently 

so that the actual procedure requires further elaboration. Overlap and 

dipole integrals respectively were defined previously as: 

SkI = S< (1\ dV (2.6) 

and 

= S0~ 0 01 
dV ~l x (9.7) 

The X-axis is choses as the direction along which the dipole moment lies. 

The integrals for each pair of atoms are dealt with separately. 

For each of the two atoms, the p orbitaIs along and perpendicular to the 

internulcear axis are referred to as the p 6" and p Tt' orbitaIs respectively, 

as in a diatomic molecule. The integrals are fi~st computed for the s,· f(rand 

and p~orbitals, and then transformed so that they refer to the molecular 

basis of s, p ,p and p orbitaIs. 
x y . z 

The atomic orbitals on each atom have the form 

For Slater orbitals, the radial funct.i.on is given by 

= n' - 1 - nr/ao Nr e (B.l) 
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which 1s equiva1ent to equation (4.20), but with 

JI = Z'ln' 

The "norma1ization constant in equation (B.1) has the value 

N = 
n' + 1/2 

(~ ) 
a o 

1 

V(2n')! 

while the norma1ized angu1ar functions for sand p orbitaIs are 

y 1 = s 'l4TT' 

y = ~43"Tf cos e p 

y = J4:'" sin e (cos ~ or sin ~) p 
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(B.2) 

(B.3) 

(B.4) 

with the internuclear axis as the polar axis. Substituting equations (4.18) 

and (B.1) into equation (2.6), the overlap integral between the k th orbital 

of atom A and the lth orbital of àtom B becomes 

(B.S) 

with aIl factors, except the angular functions Y
k 

and YI' the same for each 

pair of orbitaIs of the two atoms. 

Following Mulliken et al; the integrals are evaluated in spheroidal 

d o • bylOS co-or ~nates, g~ven 

~ = , '? = , ~ = (B.6) 

The voltune element in these co-ordinates is 
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3 
d V = ~ (~2 _ '} 2) d ~ d.,., d ~ (B.7) 

so that the overlap integral, equation (B.S), becomes 

(B.S) 

where the parameters p and t are defined by 

PA + PB R (B.9) P = 2 a 
0 

and ~A - PB 
t = (B.lO) 

PA + PB 

The product of the normalization constants can be expressed in terms of 

these parameters, 

1 
n'+~+l n'+ -

(~R) A .IS . A 2 
(l+t) . (l-t) 

so that the overlap integral can be written 

1 n'+ -
B 2 

(B.ll) 

= KfcP d~ (1 
1 J-l 

dT) F (~,,?) G (~,?) e-p(~+'7t) 
(B.12) 

where 1 1 n'+n'+l n'+ - n'+ -
K = P A e (l+t) A 2 (l-t) B 2 

(B.13) 

. V( 2 n'A)! (2 n~)! 



260. 

n' -1 
(~-?J) B F ( ki,~) = 

n'-l 
(~+"7) A" (B.14) 

and 

G <~ • ..,) .. <\2_>/) 12

11" Yk Y1 d ~ 

The function F (5',) is the same for each pair of orbita1s of the two 

atoms and can be weitten in polynomial form, 

= r" 
i,j 

c .. 
l.J 

where the Cij are determined by comparison of equations (B.14) and (B.16). 

The over1ap integtal is now expressed in terms of "the e1ementary 

integrals 
-p ~ 

Ai(P) ro Si ~ = e d 

1 
j -pt "7 

fl B j (pt) = 1 e d'? (B.17) 

For examp1e, if G ( ~''7) = 1, then 

Sk1 = K 2: C .. A. B. (B.18) 
i,j l.J l. J 

The actua1 functions G (~'7]) are found by transforming the angu1ar 

functionsinto spheroida1 co-ordinates and then integrating over ~ so that 
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. G ( ~'1) = t ( ~2_ "]2) for S s-s 

Jf (1 - ~7J)( {+'7) for S s.-p cr 

~(1+ \ '7). (~-') for S . p 6"-s 

! (1 
2 

_ ~ 2 1)2) for S . 
pr-pr 

3 ~2 2 4" ( - 1)(~ - 7 ) for S 
p 1f" - P '1!" 

(B.19) 

The over1ap integra1s for which no G ( ~, '1) is listed are zero. The non­

zero over1ap integra1s arethen given by 

~K!: 
Ss_p 0- = 2 i,j 

S 
P CS"-s 

= -â2
K L 

i,j 

S 
'3' K r Cij (A.B. - Ai+2B j+2) = 

pcr -pC5'" 2 i,j 1 J 

S ' = 3 K L C •• (Ai+2B j + Ai B j+2 - A.B. - Ai+2Bj+2) p-rr-p"'IT 4 i,j 1J 1 J 
(B.20) 

If one' or bot~ atoms are hydrogen, the equations for the integra1s invo1ving 

the corresponding p orbita1s are not applicable. 
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The dipole integrals are computed in terms of integrals in the 

'local co-ordinate system. 

(B.2l) 

where x' is the co-ordinate along the internuclear axis from the origin at 

A, and y' and z' are co-ordinates perpendicu1ar to it. In terms of the 

spheroida1 co-ordinates, defined by equation (B.6), 

x' = (1 + ~,) B. 
2 

y' R J< ~ 2 - 1) 
. 2 

= (1 -, ) 2 
cos 0 

z' B. h 2 2 = 1 (1 - '7 ) 2 
sin 0 (B.22) 

so that the non-zero integra1s are 
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x· = K4
R L C

ij (Ai+2B j + Ai+3B j+l . - AiB j+2 - Ai+lBj+3) s-s 
i,J 

X· = g KR E C .. (Ai+lB j + AiB j+l - Ai~3Bj+2 - Ai+2Bj+3) s-ptr 4 i,j 1J 

X· _IIKR L C
ij (Ai+lBj + 2Ai+2Bj+l + Ai+3Bj+2 - AiBj+l - 2Ai+lBj+2 P cr-s - 4 

i,j 

- Ai+2Bj+3) 

X· = 3KR L- C .. (AiBj + Ai+lBj+l - Ai+2Bj+2 - Ai+3Bj+3) pcr-pcr 4 i,j 1J 

y' = s-p .".. 

yI = Zl = Xl 
P cr-p"lf . po--p-rr p ii -pT. 

(above) 

yI = Zl 
P 17' -s pT-S 

yI = 
P -rI-pO'" 

. (B.23) 
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The overlap and dipole integrals must now be transformed 80 that 

they refer to the molecular basis orbitaIs. The three valence-shell p 

orbitaIs of an atom transform as vectors under a rotation about the nucleus, 

while the s orbital is unaffected. If a , a , and a are the direction x y z 

cosines of the internuclear axis from A to B, with respect to the molecular 

co-ordinate system, then the overlap integrals in the molecular basis are 

given by 

s = S s-s s-s 

s = - a S s-Pi i s-p cr 

S = (ÔiJ. - a1..aJ.) S - a.a. S . Pi -p j p-.t -p"11" 1. J P cr- -p 0-
(B.24) 

where the subscripts i and j represent either x, y, or z. 

The transformation of the dipole integrals to the molecular basis 

involves two steps: 

(i) The co-ordinates are rotated about nucleus A, with both the 

p ~rbitals and the position.operators transforming as vectors. 

(ii) The origin is moved from nucleus A, with co-ordinates 

(xA, YA' zA)' to the molecular origin, with the dipole integrals transforming 

as 

+ (B.2S) 

The non-zero dipole integrals in the molecular basis, for the x·component 
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of the position operator, are then given by 

x = a Xl + x S s-s x s-s A s-s 

X = (5 . - a a.) yi _ a a. Xl + x S s-p. Xl. X l. s-p 1'i . X l. s-pc:r AS-Pi l. 

X = a ai Xl + . (5Xi - a a.) yi + X S p. -s· x pcr-s X l. P-n'-s A P -s l. i 

X = a a. a. (y 1 - Xl - Xl _ - yi ..... ) + 
Pi-Pj x l. J . p'1t"-pc:r P1T-Pc:r P7T-P" P"--p l' 

+ a 5
i

. Xl - a. 5 • Y 1 - X S 
x J p"ll' -p7T J Xl. p1T -po- a Pi -p j 

(B.26) 

where again the subscripts i and j represent either x, y, or z. 

Fina11y, the dipo1e integra1 between the s and the Px orbita1s 

of the same atom is given by equation (9.21). 

The computationa1 procedure is modified slight1y for atoms of 

principal quantum number 4. The orbita1s of such an atom are approximated 

using equation (4.25), and the over1ap and dipo1e integra1s are then computed 

as 1inear combinations of the appropriate integra1s invo1ving 3s and 5s, or 

3p and 5p, orbita1s. 



APPENnIX C 

COMPUTER PROGRAMMES 

The computations for this thesis were performed on an IBM 7044 

computer at the McGill University Computer Centre. The" prograuulle was 

written in FORTRAN IV language, and the progrannnes used are listed here. 

The progrannnes are not applicable to the hydrogen molecule, for which 

computation was done by hand. 

The largest part of the computation time, for both the SCF-MO-

CNDO and EHT progrannnes, is required for matrix diagonalization, and 

is proportional" to the cube of the size of the basis set. Approximate 

computation times, on the IBM 7044, for .a basis of N atomic orbitaIs, 
3 " 

are N /4000 minutes for the SCF-MO-CNDO theory (for an average 10-12 

iterations), 
3 " 

and N /10,000 ~inutes for the EHT. 
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), 

:'e 
'. 

-'. 

.... 

..1 

) 

c 

c 

LISTINu FuR THESIS 
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Ut3fTC cr"co 
ùATA HJ\T,."1ùl'./2.0,32./ 

C '. jv1A 1 N PkGGH.Ai-1 FUR. SCf -r·iù- Ci'.J:JO CALCuLAT 1 or .. 
C MAT,MU~ = MAXIMUM ~U. ATLMS,VALENCE-ShEll ArOMIC ORHlfALS(S AND P) 

c 
c 

c 
c 
c 
c 
c 

c 

c 

c 
C 
c 

C 

C 
C 
C 
C 

C 

C 
C 
C 
C 

C 

1 

DiM~~SIGN G(2.0,20),IAf(ZO),PAA(ZO),X(3,20) 
G = ELECT~ON-R[PULSICN INTEGkALS,lAT = A10MIC NUMbERS 
PAi~ = ELE(,TRGN POPl.JU\TIOI~$ JF A1GNS,X.= NUCLEA~ COORDINATES 
Ü 1:-'4 EN S 1 Ù i'~ (, t 32, 3 Z ) ,F ( 32, 3.2 ) ,H ( 32 ,3 2) , P (32 ,3 2 ) , t' l ( 32 , 32 ) , . 

lP ,2( 32 d .2 J , S ( 32,32. ) , [) ( 32, 32) , rd 32 ,32) ,i.n 32 ,3.2) , 5 S ( 32) , 
C = LCAÛ CGEFfICIEhTS, F = TOTAL HARTREE-FùCK' HA~lLTUNIAN 
H = CO~E flAI"iILTOfHAN, P = P~PuLATI(jN NATfdX , Pl ANiJ PZ = 
PUPULATIUN MAfRICES FRCM PkE~lGUS ITEkATIONS, S = GV~RLAP MATRIX, 
D = OlPUlE iNfEGRAl MATRIX, ~,U, AND S5 = VAkIABLESIN SUB~UUTINE 
OlPCLE 
ùIMENSICN NAME(S) 
NAHE = NAME OF I-aULECUlE (t-:AXUlliM JO LETTERS' 
CUf'UIJUN lH 
lH = ORalTAl EXPON~NT FUk HYDRUGEN 
lÙGILAL SCF,CHEC~,eVARY 
SCf = TkUE ,IF CAlCULATICN HAS CONVERGED TO SELF-CU~SISTENCY 
CHECK = TKU~ IF I~TE~MEOIATE M~TRICES TU ~E PKINTEO FOk UEaUGGING 
8VARY = fRL~ IF aONOING PARAMETEHS TO BE VA~IED 
~EAC(SfjOU)GHE~K,aVA~Y,lH,bErAHO 
6ETAHU = PA~AMET~R USED IN SUBRCUTI~E COKE 
REAU(S,SOl)NA,NH,NE,Nb,UMAx,Œd,NAME 
NA. = NÙ.I\TUi'lS j'jeT ,",YUROGEl\,I\H=.\iO. HYORUGENS, NE = NU.VALENCE 
tlI:CL~ONS 

fO~ Gl~A~Y hYDKIUES Nb. = NU. VALUES FeR 3GNOING PA~A~ETE~ Of 
MAiN hTGM, D~AX = MAXJMUM VA(U~,0B = I~CREMENT 

If( .i'lor.üVAkY) Nt/=l' 
CALl CLC~K(ITIME' 
~0ti~UUTl~E LLOCK I~ PA~T CF ~CGILL COMPUTER SYSTE~-TIMES P~OGRAM 

.'Ji" 1=.\A+NIi 
iIJGR=4*NlHi\H 
NAT = ;\jù.ATOi'iS,NCJR = NC.Jf VALENCE SHELl ORJITALS(S A.>JiJ P; 

REAL l~PuT CAfA-ATGHIC NU~bERS A~O NUCLEAR C8ÜKOINATES 
HYURUGE~S MUST BE ~EAD IN LAST 
KEA. C. ( ~ , ~ ü z ) ( J , lAT ( J ) , ( x ( l ,J) , 1 = l , 3) , J J = l , ~·l AT) 
~RIT~(6,L01) N4NC,NAT,NH,NE 
h R lIE (6, oû (:) ( 11-\ T (J ) , ( x ( l , J ) , 1 = l , 3) ,J = l ,"JA l' 
~idTc(6,b03) 

CÜMP~TE ~L['T~ON-~EPUl5IC~,OvERlAP AND UIPOlE INTEGRALS 
CAlL R~PUl(G,I~f,M~T,NA,~AT,X) 
CALL I~TGkL (lAr,X,MAT,~Uk,NAJN~T,NURrS,O,lH) 

!f.R 1 Tt:: U:" Le. c ) lH 
IF(.I\Cr.CIiECK) Lu TO 1 
~"iKlr(6,o04) 

CAL L PI<: l.H (G , i'l,.\T ,;'l.A T) 
,\, ... 1 T ( ( 6 , b 8 ~ ) 
C~LL PKli'·.j'( (S,l'1ül{,i,OR) 
\\ RIT E: ( {; , 0 (.. b ) 

CALL P~lNT (ü,MOR,NU~) 

1 ou 2b lt):l,Nti 
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r . .... 

C 

C 

C 

C 
C 
C 
C 
C 
C 
(: 

C 

C 

C 

c 
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LI~TING FOR ThESIS 

ASSIGN VA't\.L .. BLE I:H:(l.ülN~ PAr{i\o"iETEF- FÙk BINA,",Y HYLJKIOES 
1 F ( cV AK y) 0 f: T A,\O =d,\lilX-Dù*f Ll!A T ( 1 &-1 ) 
CU~p~rE COkE NATKIX ~~O INITIAL F-HATRIX 
CALL C~K~(h,G,S,IAT,~ETAAC,dETAHO,MAl,MOR,NA,~AT,NOR) 
GALL ~TA~T(F,G,h,lAT, IJER,MAT,MûR,NA,NOk,SCF) 
IF(.~üT.CHECKJ bU Ta IG 
WKITE(é,tC7) 
CALL ~KIh'(H,MO~,NCKJ 

.~K IlE (\.) 'OO~ J 
CALL PkI~T(F,MOR,NOK) 

START ITi:KÀTIVé SOLUTiC.N Cf SEGULAR EQUATIONS 
CALL EVALUE(F,~GR,MG~JC,M(R,MO~,NOR,1.OE76,1) 

SUdRUUTINE EVALUE IS PA~r OF NGGILL CUhPUTERSYSTEM 

268. 

FH~OS EI~Hnit\LJES Jd~Ù EIGENVECTGKS Of A REAL SYtvll'1ETRIC MAIRIX 
INP~T MATklX = F,EIGENVALUES uUTPUT ON OlAG0NAl OF F 

14 

16 

~lGEN~EG1U~S = C, ~DR = UiMENSICN OF MATklX F, ~OK =ORUER 
ACGUI-~ACY = 1.0 E-6, FINAL PAFI,AI.,ETER INDICATES EIGEïJVECTOliS NEEDED 

SO~T o~eITALS bY E~ERGY A~O GU~PUTE POPULATION MAT~IX 
CAlL S~RT(F,C,NGK,MO~) 
C ALL COUL SI\! (C , P , NUi< , i~E, HOR) 
IF ( .f'!GT .(,IiI:CK) Gu TU 14 
wKITt(o,c12){TER 
CALL PRINT(P,MGR,~LR) 

TEST fUK 5El~-CCNSISTENCY 
CALL r~Sl (P,Pl,P2,1.OE-4,lTEk,MO~tNOR,SCF) 
If(SCF) GO TU 16 . 
iF NOT SEU--(ONSISfCi'.r,CU:':PliTE t-.H~ HANILTUNIM~ i'1ATRIX 
CALL ~ûPLE(F,G,H,IAT,MAr,~UR,NAT,NOR,P,PAA) 
IF (lrc~-Sc.)lü,lO,l . 
tJRI/'\T ù.t:RGY LEVElS,LCAU CGEfFICIEf\oTS, POPUU\TIUNS 
I~ RIT E ( (; , 6 16 ) 1 r E R 
~klrE(&,b17)(f(I,1),1=1,NUh) 

w R 1 r E { 0 , (;. un 
GALL P~I~T«(,,~üK,NCK) 

wK 1 TE (L"b2ù) 
CALL PRl~T(P,MüR,NCR) 

fi KIT E ( 6 , {J 2. 2) (P :... A ( 1 , , 1 = 1 , .'J AT) 
CuNPuTt ùll)ùLé: ."1ü,\IENT Ai\!() i30i'lDING ENERGY 
CALL UIP~LE{O,IAT,P,~AÀ,S,X,~AT,MGR,~A,~AT,NUR,SS,h,U,IB) 
CAlL E~EKGY(f,G,H,IAT,P,MAT,MOH,NA,~AT,~üR,NE) 
CALL ClûCK(JTIHE) 
TIME=FLJAT(JTIME-ITIME)/6C. 

2f ~RIIE(D,~l~)ll~E 
GO ro 1 

soc FU~M~T(2Ll,2F4.1) 
501 FGRMAT(413,2f4.1,20X,5A6) 
502 fURMAT(~ll,3F10.~) 
bQO HJRHAT(Z'JH SU'tlb, EXPLi\jEI"T FUR. hYOr,UGEl'l,f5.2) 
601 FLJRMAT( UIl,5A6/14,U-j t.rU/·IS, Itt,lCH hYDRUGf.NS,14, 

1 L4r. VALEIKE-SH[LL ELt:CTRGi\JS) 
602 FJkl"iA r ( 14Ht\A Hli'lIC I-iUI·ii:H:'" eX, 12HCC-GI\ûlhAI ES/ (5X, 12 ,6X ,3F 1ù. S) J 
b03 FU/-'.MAT(S.jiiJSCF-lCAü-;·lC i·îi.-.THOÛ hiTH lEKU l)[FfERENTli\L OVEKLAP) 
604 fURMAT(26HKk~PULS1CN [~rtGkAL MATRIX) 
6U~ FURMAT( l~HKOVE~LA~ KAT~IX) 
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~06 FUKMAT(2JhKDIPOL~ ~ATKIX (X-CO~PONC~r» 

607 fJRMAT(24HKCDkE HA~ILTUNIA~ M~TKIX) 
60S FilKMAT(16hKINITIAL FMATKIX) 
b12 filRMATl24HKPOPULATIGN MA1RIX AfTER,I3,11H ITE~ATICNS) 
bIt FURMAT(I3,20H ITEKATlûNS ~EWUl~ED) 
617 FJkMAT(l~HKENERGY LEVELS/(3X,14FS.4» 
blE FURMAT(lcih LCA0 COEFFICIENTS) 
b2C FURMAT(ldHKPUPULATIUN MATkIX) 
622 fOkMAT(Z1HKIOTAL ATCMIC CHARGES/(14f9.4» 
625 FûRMAT'5HKTIjI,E,F7.1,~jl SECUNûS) 

éND 

516fTC HUFMAN . 
ù Hi ENS Iül~ X ( 3 , 25) , (\; A T ( 2 S) , S ( 50 , 50) , 0 ( 50 , 50) , P , 50 , !) 0 ) t 

Hi( 5 C , 5 0 ) , E t 50 , 50} , C ( 50 , 5 () , SOI AG ( S Co , 5 0) , N j\ 1-\ E ( 5 ) 
C MAIN PKOGKMi FOR EXTENUEO liUCKt.L THEORY ('J\LCULA fION' 

2'9. 

C X = ~UClEAR CG-ORDINATES,NAT = ATONIC NUMBER, S = UVERLAP M4TRIX, 
C D = DIPOLE N~TklXt P = POPULATlüf'. j·lATh.IX, H = HA~HLTGl\IAI~ ;",\T~IX 
Ct': TRANSFlJ.RMEO h·\i-IILTONIAI'\ ,V.ATRIX IN TERi'1S [Jf Lüy;DIN ORbITAL:> 
C ~hlCh I~ OlAGQNALIlED TO GIVE O~6ITAL ENE~GIES 

C C= LCAG COEFFICIENTS 
C SDIA~ = Uu~LICATt UF UVEkLAP MATRIX 
C NAME = NAME UF MOLECULE (~AXIMUM jO LETTERS) 

t~ U l'v Il L ti\! C El Su 1 AG , E ) , ( H , C ) 
COMPCN/~LP~h/AS(53),A?(53),E~TCM(53) 

CAS, AP = VALEN(.[-SlAlt: lCl\llAT IUN PUTENTIAlS, EATUf·1 = ISULATtO 
C AIOM ENEKGIES ACCU~UING TC EHl 

18 F-Gk;~AT(F4.l) 
lS fUkMhf(313,31X,~A6) 
20 fùRj'1AT(lIil,5t\6/13,6H Al0i'~S,r3,1CH liYOROGf:r~S,I3rl8H VJ\LtIJCE ELECTRO 

11\lS/ltiH HYOK.Ot.,E:N EXPU~[NT,F~.l) 
21 FURMAT(212,3flO.5) 

RE:AD(S, un lH 
1 RtAC(5, 19) l~t\fNH,i~t:L,~-JM1E 

C lH = O~dlTAL EA?lNENf fOR hYCROGEN, NA = NO. AIJ~S NUT HYOROCEN, 
C NH = NU. HYUROGENS, N~L = ~O. ELECTRONS, NAH = NO. ATOMS, N = NO. 
C VALENCE-SHELL OKbllALS (S Mm Pl 

f\t.h=NAtNH 
Vi kIT [ ( 6 , 2 0) N M·l E , N A li , t\ t1 , h EL, 1. Ii 

C ktAD IN INPUT UAL\-ATOi'l1(. t\U,~GEKS ANû CU-OKOINAfES 
C hYURUGEN ORBITALS MuST GE hEAO IN LAST 

REAC(5,2.1)( I,NAr(I), (X(J,I) ,J=1,3) ,1=l,N,\H) 
N =Lt "~N A+I'J1i 

C ASSIG~hENT OF CIA~CNAL HA~lL1J~!!AN MATRIX ~LEMENrs 
wklTE(u,bl) 
cu 8C 1 = l, NA 
l'JII T 1= N AT ( 1 ) 
h(4*I-J,4*I-J)=-AS(NAfI) 
H(4*1-2,~$1-2)=-~P(NATl) 

h(4*1-1,4*1-1)=-AP(~ATIJ 
H(4*1 ,~*1 )=-AP(~ATI) . 

H G J,-.. RIT [; ( 6 , b 2 ) 1 >j AT ( 1 ) , (X ( J , 1 ) , J = 1 , 3) , I~ S ( N 1\ 1 1 ) , Il P ( NAT 1 ) 
IF(NH.c~.O) Gu TU t3 
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K J\='i*f'~A + 1 
h"lT(6,6::»A~(U 
lJO 81K=KA,N 
1=K-3*NA 
h(t<,K)=-A~(l) 

81 
61 
b2 

wKITE(6,b4)(X(J,I),J=1,3) 
fGRMAT(dhKEL~MENT,~X,12HCC-CROINATES,10X,11rlCOULOMB INTEGRALS) 
fURMAJ(lH ,I3,~FIC.5,2(F7.3,3H E~» 

6j 

64 
C 

83 

98 
C 

82 
C 

FUi,t-',A Tl 41HKHYUiWGEN CO-OkO lIM Tf S (COULOf'l.{j 1 NTEGRAL =, F7. 3, 'tH EV» 
FUi--I'.ATt 3flO.~) 
ASSI~N OVERLAP ANu UIPCLE MhlRIX ELEMENTS 
CALL INTG"L(NAT,X,2~,50,~A,NAH,N,S,D,lH) 
00 ..,8 1=1,1\1 
00 S8 J=l,N 
~U1AG(1,J)=S(I,J) 

A~SIG,'i UFF-DIAC,U,-.JAL hAI"iILTGI"IAÎ'l f\lATRIX ELEMENTS 
Dû a;!: 1=2,N 
J A= 1-1 
DO t2 J=l,JA 
h ( 1 , J ) '= 0 • 87 !J* ( H ( l , 1 ) + li ( J 1 J) ) * S ( l , J ) 
he J,l )=H( 1 ,J) 
SOL~TICN OF SECULA~ E~UAIICNS I~CLUOI~G OVERLAP 
CALL lUV\ülN 
CGj~,lo1U~ SD 1 AG, H, N 

C PKINT LeAU CO~fFICIENTS AND CKblTAL ENERGIES 
hkITE:(6,lU 

71 FûRNAT( IH rlbH LCAl CCEFfICIENTS) 
GALL PklNT(C,50,N) 
... IUTf:(D,72) 

72 FUR I~ I~ Tt 1 hl\ , l 't H 1; Î'l t K GY LEV EL S / 111 
Wt'i. 1 T E:. (u, 64 ) ( 1 , E ( 1 ,1 ) , 1 = l, N) 

b4 fUkMAT(13,flC.4,4H EV) 
C L~LLULATE GONOING ENEkGIES 

i"-JOC=NEL/ L. 
ETG f=O. 
GU 135 1 =1 ,NOC 

85 ETLT=ETür+2.*E (1 rI) 
Vi R rTE ( 6 , ê b ) E TUT 
éSEP=O. 
Où 9C 1=1, NA H 
NATI=NAf(l) 

90 tSEP=ESEP-EATUH(NATl) 
EATl!'.=ESi:P-I:TDT 
~KITE(G,92)ESEP,EATlN 

92. F Ù R 1"1 A T ( 2 tî H ~ M: /<. Gye F .':> E P J.< RAT E ü j., T L ~1 S =, F 1 0 • 't , ft Il E V / 
1~4H H,,~RGY liF ATù:·IIlATIOI\t =,f10.'.,.,41-1 EV) 

H6 FOI"jvjl>.TtlHO,13H TuTAL ENLI~GY,FIO.4,4H E:V) 
C CtlL(,uLA11U'oI Cf DIPOU: l'\CI'IE!\T M\jO POPULATION AN/\LYSIS 

CALL CLULSIHC,P,N,t\El,50) 
CA LL 0 1 P U l E ( D , N A f , P , x , 2 ~ , 5 0 , 1. /Hl , N ) 
CALL POPAM(p,S,NAr,NA,~H) 

Gu TO 1 
END 
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$!E;f-TC ALPH 
ëlLCK. GATA 

C STOkES VALENCE STATE IONIZATIU~ POTE~TIAlS ANa lSOLATED ATOM 
C ENeRGIES FUR EXTb\lOEÛ HUC!<-EL THEOkY 

COMMUN/AlPHA/AS(53),AP'53),EATüM'~3) 
C~TA AS/13.~95,O.,5.39C,9.S1b,14.916,21.012,25.588,32.297, 

139.391,O.,5.140,B.S40,12.270,17.3C7,18.612,21.135,25.227, 
20.,4.34C,~.b55,lL*J.,14.5Eb,18.578,17.403,ZO.U11,23.735,0., 

34.1tO,S.47u,iO*O.,12.S~O,16.1S8,16.255,19.733,20.H33/ 

DATA AP/2~0.,3.~43,S.958,o.425,11.273,13.946,17.274,20.ti62, 
1 0 • , 3 • 0 37 , 4. 5 1 9 , 6. 4 (; 6, S. 1 <; 0 , 1 C. 733 , 12 • 3 96 , 1 5. 0 3 7 , o. , 2 • 7 26 , 
23.958,10*O.,b.751,S.432,9.359,11.b75,13.101,O.,2.6ù1,3.651, 
310*U.,b.1US,8.326,b.7S1,11.03d,12.6701 . 

DATA EAfOM/13.595,O.,5.39C,19.832,38.257,64.570,93.014, 
11j3.a90,183.092,O.,S.140,17.896,31.00b,52.994,b9.423, 
291.t54,125.t39,O.,4.340,11.310,10*O.,35.927,56.020,62.883, 
~88.~22,112.975,0.,4.1~C,IC.956,10*O.,31.365,48.968,5b.763, 

483.018,105.016/ 
END 

$lI:)FTC ATm'ilC 
~L~CK DATA 

C S'IOReS SEMI-[MPlklC/\L A10f'IC PAKAMETERS FOK. SCF-r'iO-CNDO THEORY 
C SUdSCRIPT = ATONIC NuMHER . 

C0MM(N/ATCM/~SS(53),UPP(53),GAA(53),GSTAR(53) 

C uSS, UPP = LUCAL CGRE-HA~lLTJNIAN DIAGO~AL MAT~IX ELEMENTS FG~ 
C S, P U~tiiTALS 

CATA USS/13.~95,O., 
1 4.999,15.543,30.371,50.b86,70.0Q3,lOl.306,129.544,O., 
2 4.502,13.0S3,22.o28,36.4S4,~Ù.é10,66.796,S6.714,O., 
3 3.17G,9.H42,lO*O.,2j.032,35.844,50.151,bb.005,76.413,O., 
4 3.555,9.430,lO*O.,23.056,26.~81,47.427,64.464,76.905/· 

Din A UP P 1 2 *0 • , 
1 3.613,12.2BO,24.7C2,41.530,~1.84H,B4.2H4,108.933,0., 
2 j.247,S.6C3,18.5Jl,30.375,50.940,58.008,75.b81,O., 
3 3.115,7.69&,lO*O.,14.U07,29.973,44.485,57.927,bS.412,O., 
4 2.804,1.C74,10*C.,17.é63,21.869,40.923,57.144,69.0911 

C 'ÛAA = IHUNIC ELECTkLi~-I\EPULSION INH:l>KALS·FRJt-1 VALENCE-STATE 
C ENERGIES 

DATA GAA/12.848,O., 
1 3.469,~.~35,a.COO,10.207,11.052,13.b25,15.054,O., 
22.S82,4.b23,5.u8Z,6.964,S.S"78,9.Z05,10.292,O., 
33.70Z,3.977,10*C.,5.936,é.6Ce,b.3Y9,9.121,8.G2J,O., 
4 2.~~5,3.749,10*O.,5.5JO,4.ZS7,7.657,8.~05,9.4481 

C GSTAI<. = ATOHIC LlrHT UF If\lEt\ATlJt-1IC ELI:CTi~L1N-KtPULSIUI"j INTEGk/~LS 

C 

UATA GSTAk/12.S48,C., 
1 3.4~a,5.953,b.04ti,lO.J33,11.308,13.901,15.233,O., 
2 3.031~~.656,5.bB0,7.01S,S.aU6,9.2bO,10.366,O., 
3 3.560,j.979,lO*ü.,5.~42,t.634,8.3b1,~.156,8.838,O., 
4 2.3U4,3.7bl,lO*O.,5.5H2,~.3ù4,7.761,9.0j9,9.3321 

C lJ,'-1i'1WU CCi, E CHI KUI< F. ( 53) 
KUk[ = CGRE CH~kGES 
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0ATA KU~E/L,O,1,2,3,4,5,t,7,u,1,2,3,4,5,6,7,O,1,2,10*O,3,4, 5,b,7, 

1 0, 1,2,10*0,3,4,5,6,71 
I:ND 

$lbFTC ATCMIC 
ûLOCK CAlA 

C STOi<.I:S ATLi-HL PARAiJf.TtRS FLR SCf-I,1Q-CNIJG THEûRY USED uY PùPLE ArIiD 
C SEGAL 
C SUbSC~IPI = ATUMIC NUMtlER 

C UI'i 1'1 UN/ AT 0 r-1/ U S S ( 5 3 ) , U P P ( 5 3 ) , G A A ( 53) ,G S T A lU 53 ) 
C USS, upp = LUCAL CORE - HAMILTLNIAN DIAGONAL MATRIX ELEMENrs FOR 
C S, P GkBITALS 

ü A TAU S S / 1 7 • 3 80 , 0 • , b. 3 1 9 , 20 • " 0 3 ,41 • '720 , 7 G • 271 , 1 0 1:> • 05 il , 1 49 • 0 75 , 
1 199.327,44*0./ 

DA1A UPP/2*C.,4.471,17.020,3é.127,él.792,94.015,132.796, . 
l 17e.135,44*G./ 

C GAA : T~EÜkETICAL ATOMIC ELECTRO~-k[PUlSIO~ INTEGRALS 
UATA GAA/20.4J75,O.,6.~252,S.637b,12.8503,16.0029,19.2755,22.48el, 

l 25.70C7,44*O./ 
DATA ~srAR/53*O.1 

CU/I';i'IGd/CUk ECH/KU"E (53) 
C KCRE = COk~ CHARGES 

OATA KOKE/l,O,1,l,j,4,~,6,7,G,l,2,3,4,5,6,1,O,1,2,lO*O,3,4,5,6,7, 
10,1,2,lO*C,3,4,5,6,1/ 

tNU 
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$!l;fTC C(;RE 
SUl: K. 0 J T lt .. t CC k t: ( h , G , S , lJ~ T , i3 E T /\ AC, b E TA HO, ~, AT, f·'jÜ ~ ,N A , ~ AT, i-J (j " ) 

C ASSI &1\1$. CURE HA!'d L TLN lId\j MA TI'. 1 X fUr:. SCF-l·îJ-crwù C AlCulAT 1 ON 
C lHIS VERSIUN VAKIES ~LNDl~G PARAMETER FOR CENTRAL ATUM IN 
C aINA~Y HYOKIDES-kOl APPLICABLE TO eTHER ~OLECULES 
C BETAAü = bLfmli'~G PARM"l[TEf< Of- CENTRAL ATG:-.1,I3E:lAHO CF hYûROGEN 
C 1 AND JAkE ATûM l~DICES, K AND LAkE OKbITAL INUICES 

CU~MLN/~1~M/U$~(53),UPP(~3),GAA(53),GSTAR(53)/CO~ECHI 
lK.Okt:( 53) 
CIHEN~ION H(~OR,MOK), S(~(K,MGR), IAT(MAT), G(MAT,MATJ 

C DIAGONAL CURE ~AT~IX EL~MENTS-ATOMIC TERMS 
C hYCRGGEN LKdITAlS LAST AS IN NAIN PRUGRAM 

DO 1 I=l,NA 
lATl=iAT(I) 
h(4*1-3,4*I-3)=-USS{IATI) 
H(4:(:1-2,4*I-2)=-LJf'P( IATU 
b(4*1-I,4*I-l)=-UPP(IATI) 

1 h(4*1 ,4*1 )=-0PP(IATI) 
IF(NOR.EW.4*NA) Ga TU 3 
1<1=Lt*N;\+1 
CiJ 2 j(=K l, NOR 

2 H(K.,K)=-USS(l) 
C DiAGONAL ELEM~NT~-AGD INTEkATOMIC TERMS 

~ DU 4 K=l,NUR 
I=MAXO«K+3)/4,K-3*NA) 
co 4 J = l,NA T 
1 F ( J • i:: Q. l' GO Ta 4 
lATJ=IAJ{J) 
H(K.,K)=h(K,K)-FLUAT(K0KE(iATJ) )*GlI,J) 

't COi" Tl NUE 
C Gff CIAGONAL CUKE ~ATKIX ELEMENTS 

DETAC=G.5*(BETAAUtblTAHO) 
Dù le K=5, Nüf<. 
DU 10 l=1,4 
H(K,L)=-BETAO*S(K,L) 

le h(L,K)=H(K,L) 
1 F ( I~U R • Ef.;j • 5) GO T 0 25 
UO 20 K =6 1 t~ùk. 
Ll=K-l 
00 20 L=5,LL 
h(K,l)=-HETAHO*SlK,L) 

2(; H(l,K)=HK,L) 
25 aRITE(6,iO) bEfAHJ,bET~AO 
3e fO~MA'(31HlbL~Ol~~ PARAM~TER fUR HYDROGEN, 

1 f :; • l , 1 C) H EV, F U i~ U T Il E RAT U i'" , F :5 • 1 ,3 H EV) 
kElUI-'.N 
END 
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:I>l lif 1 C CCRE 
SUbRUullNE CGRE(h,G,~,lAr,d[TAhO,dETAHO,MAT,MUR,~A,NAr,NGk) 

C ASSIGNS (..OkE HAl":1L101'HAN i"·,HKIX FOR SCF-r"O-Ci~Oi.l Ci~LCULATIUN 
C THIS VERSICN SrCRES FIXEù. bOr-.ülN(, PARM\ETE\{S 
C bETAhO IS USEU TO A5SlGN CU~kECT SET UF bUNDING PARA~ETE~S IN IHIS 
C \tEKSION 

ûlMêl\iSlüN H(j·.Ui-;.,j>jUR), S(j/iU~,I~O.{), IAfU1ATl, G(MAf,MAT) 
~ 8M,BO,eK ARC SETS GET~KkINED FCK MATAGA,DHNJ,ROOTHAAN 
C REPULSION INf[G~~LS RESP~CIIVtLY,HYü~UGEN EXPONENT 1.0 
C bM2,BU2,tlR2 fO~ HYG~GG~N [XPCNENT 1.2 
C tiPS A~~ PGPLE-SEGAl BùNDING PA~AMETERS 

ûIM[NSIO~ bM(~3),a~2(53),UC(53),bU2(53),BR(9),BR2(9),BPS(9) 

DATA ~R/5.~,0.,2.S,4.3,t.2,9.1,11.2,16.1,22.61 

DAT~ UR215.2,O.,j.8,j.l,6.~,9. ,10.6,14.7,20.4/ 
OATA BM/4.9,O.,G.4,3.B,5.B,&.7,9.6,14.2,19.2,4*0. ,5.0,6.0, 
16.7,9.~,14*0.,4.3J~.6J5.7,7.3,14*0.,3.4,4.5,5.7,6.5/ 

DATA dM2/~.4,O.,0.7,4.,5.t,a.2,8.8,12.B,17.2,4*o.,5.2,6., 
16.5,6.9,14*O.,4.4,~.7,S.7J7.2,i4*0.,3.0,4.7,6.1,6.11 

OATA BO/3.9,C.,-O.S,3.2,5.2,7.a,B.,ll.7,15.7,4*0. ,4.6,5.3, 
15. b, H. 1, 14* o. , 3.8 J 4. , ~. ,6.4, L 4*0. ,1. C;, 3.9 ,5. 1,5.81 

CAlA b02/4.3,O.,-O.8,3.4,~.,7.3,7.3,10.5,14.1,4*0. ,4.7,5.3, 
15.6,7.8,14*0.,4.,4.1,4.9,6.3,14*0.,2.1,4.2,5.4,6.1 

UATA dPS/3*~.,13.,17.,21.,25.,~1.,39./ 

C ASSI~N BUNOING PA~AMETEKS 10 O~BITAlS 
C 1 ANU J ARt ATGM I~OI~ES, K AND lARE OKBITAL INillC~S 

Id=IFIX(SETAH0+0.1) 

le 

20 

30 

40 

5C 

bC 

le 

IG 0 
C 

DO 100 K=l,I'JOR 
1 = t'l A X 0 l (~+::1) 1 4 , K - 3 * NA. 
IATl=II\T(I) 
GO TU llU,20,30,40,SO,uO,70),IB 
li ( K. , K ) = 8.'" (1 AT 1 ) 
IF(K.b,J.l) v;klTEl6,1~) 

GO TO 100 
h ( " , l\ ) = J (~ 2 ( 1 A rI) 
IF(K.EQ.ll likIfE(6,2~) 

GU TO 100 
h(K,I\)=6ü (lATI) 
l~(K.E~.I) nKITE(6,3S) 
Gu fa 100 
HK,K)=Bu2(IATI) 
If(K.EW.l) hklft(6,4S) 
GO 10 100 
h(K,K)=ôK (lAT!) 
IF(K.E~.l) ~kITE(6,S5) 

GU TO 100 
h( K, l\ )=dl{Z ( lAT 1 ) 
IF(K.tw.l) h~lTt(6,b5) 

GO TO 100 
1 F ( 1 AT 1 • G T • ~) GU 10 (,](; 
IF(K.EQ.l) hklfE(6,75) 
H(K,K)=üP!:>(lATI) 
CUNflllJut 
UFF-OIAGUNAl CO~E MAT~IX ElE~ENTS 
un 200 K=2,NuK 
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LL=K-l 
CU 200 L=l,LL 
H(K,L)=-O.~*S(K,l)*'rl(K,K)+H(L,L)) 

20C HlL,K)=h(K,L) 
C DIAGONAL CO~E MArKIX ELEM~NTS-ATOMIC lERMS 
C hYO~UGEN U~dITAl5 LAST A~ IN MAIN P~ULRAM 

COMMUN/ATüM/USSlj3),uPP(5~),GAAl53),GSTAH(53)/CUR~CHI 
lKüKc(53) , 

CO 1 1 = l, NA 
lATl=lAT(l) 
Hl4*1-3,4*1-3)=-U~S(!ATl) 
hl4*!-2,4*I-2)=-UPP(lATI) 
h ( 't * 1 - 1 , 4 * 1 - 1 ) =-liP P ( 1 A Tl) 

, 1 h(4*1 ,4*1 )=-~PP(IATI) 

If(NGk. .E(J.4*i~A) GU TO 3 
Kl=4*NA+l 
DU 2 K=K1,hOR 

2 H(",I()=-u!)SlU 
C DIA~GNAL ~L~MENTS~ADJ INTERATCMIC TERMS 

,j Dû 4 K=l,NUR 
I=MA~0«(K+3)/4,K-3*Nh) 

DU 4 J=l,I\IAT 
If(J.E~.l) GO TU 4 
lATJ=IAHJ) 
ri ( ~ , K ) = H l K , K) -F Lu ln ( KU RE ( 1 J\ 1 J) ) * G ( 1 , J ) 

4 COI\iT INUE 
~EIUkN 

9S \";RlTE(6,S~) 

275. 

~~ FO~MAJ(54HlPOPLE A~U SEGAL SONDING PA~AMETERS ONLY FUR FIRSf ROW) 
CALL EX 1T 

l~ fORMAT(44hJ~GNul~G PA~AMETERS EVALUATEO FOR MAlAGA 1.0) 
2~ F0kMAT(44hJùCNDING PARAMET~~S EvALUATED FOk MATAGA 1.2) 
3S FURI"1Af(4LHJGGNDING PM{A,"iEH.RS EVALUATE:D FOR. OHNù 1.0) 
45 FUKMAT('i2HJBt.;i\jOli.JG P/-\RA,\1ETEi{S EVflLUATEIJ FJR. OH NO 1.2) 
~5 FORhAT(46~~bONuI~~ PA~AM~rE~S EVALUATED FOR RGOfHAAN 1.0) 
65 fU~MAr(4bhJBüNIJIN~ PARAMETERS ~VALUATED FOR ROOTHAAN 1.2) 
75 FUkMAT(3SHJPUPLE AND SEGAL 3CNDING PARAN~TE~S) 

ENO 
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~ IGFTC CGULSf..J 
SUbRüUTINE COuLSN (C,P,N,N~,M~ 

C CG~pulLS O~[-ELECTRON UEN~iTY MAlkIX feR MOLECULAk OKBITAL ~AVE 

.c fUNCTlûN 
ulMEN510N C(M,M),PIM,M) 
NGC=I\E/2 
DU 60 L = l, N 
CO 60 K= 1. L 
P(K,L)=O. 
DG 01 l=l,NüC 

61 P(K,L)=P(K,L)+C(K,l)*C(L,l) 
P(K,L)=2.*P(K,L) 

6C P(L,K)=P(K,L) 
RETURN 
E/'-IO 

$lf:>FTC DiPUlE 
SUERGJTIN~ 01PûlE lO,IAT,P,PAA,S,X,MAT,MCK,NA,NAT,NOR, 

1 S S , v. , U, 1 ti ). 
e C0MPLrE5 DIPCLE MOMENT FOk LCAC-MO ~AVE fUNCTION ~ORMAlIlEO 
C ~lTHLGT OV~kLAP bY PGI~T-CHA~GE, PüPLE-S~~AL,AND DIXO~ FORMUlAE 
C ~ = OVERLAP MArKIX TO PO~tH Ml~US ONE-HALF 
C U = EIGEkVECTURS UF GVERLAP ~~TRIX 
C 55 = EIGEN~ALU~S Ta Pù~ER MI~LS GNE-HALF 

DIME~SlGN D(MUK,MUk),P(NCR,MCR),SlMGK,MCK) ,~(MOR,MOR) 
Dl N El\ ~ ION P /, A ( Î'1 AT) , x ( j, l\jA T ) ,lA T ( MA T) ,U l ~,OK , !'tOk.) , S S ( MOR) 
CUM~UN/COkECH/KO~f(53) 

C COMPUTES X-CLMPC~E~T LNLY IN UEBYES 
C ASSILN CO-ORUINAT~~ ~o UIPULE ~UME~T ALONG X-AXIS 
C CUI~E CHAi<.Gé 1EI\;-1 (LiCuR) M\;LJ ELECfl<,CNIC. POl:'-JT-CHARGE 
C TEiJ..M (CPT) 

GCOK =0. 
01'1=0. 
Gu l l=l,j~AT 

IAT!=IAT< 1) 
CCOR=UCCR+," 1,1 PFLOAT (KCKE( lJ\TI») 

1 CP1=DPf+X( 1,l)'::PA/.\( 1) 

C AfCMIC POLARllATIGN rERM (DPOL) 
oreL =0. 
IJU 2 l=l·,NA 

2 D?GL = DPGL+2.*P(4*1-2,4*I-3)*D(4*1-2,4*1-3) 
C DIXOI"-J FlJKi·1ULA fGR ELtC riWtdC iJIPOLE /-Iul';ENT (iJUIX) 

l f ( 1 B • G T • l ) GO T 0 10 
C 1~ UUNUI~G PAkANETEk L~A~CLO, CAN STILL USE SAME W-MATRIX 

DU 40 K=l,NJk 
CU 40 L=l,NOk 

40 w(K,L)=S(K,L) 
CALL fvJ\LLJE(I/J,r-1UR,Iv"Uk,U,Î'"iCf<,I';Uh,t~lJR,1.0E-6,1) 

C SEE CU~MENTS UN SJbkOUIINE EV~LUE IN MAIN CNOD PRUG~AM 
(Jl] sa K= l, NU/{ 

SC SS(K)=S~KT(~(K,K» 

GO 4 l = 1 ,1'1 G ,<. 
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ÜO 4 J=l,i~(jh 

\~ ( 1 , J ) = O. 
DG 4 K= l, I .. UR 

4 rd 1 , J ) = W ( 1 , J ) +Ij ( 1 1 K ) * U ( J , K) /5 S ( K ) 
10 DDIX =0. 

DO 5 l=l,NJK. 
DO :> J=l,NUR 
CO 5 K=l,NuR 
00 5 L=l,I\ICR 

~ UOIX =OLJlx +P(I,J)*~dJ,K)*lJ(K,L)*fi(L,l) 

C rOTAL DIPOLE MOMENT IN DEEY[S 
DPT = 4.dC~94*(DCuK-OPT) 
ùpuPLE=ùPT-4.8029~*OPUL 

OOIX=4.802~4*(OCOR-DDIX) 
WRITE (6,61DPT,OPOPLE,VOIX 

6 fURMAT(23HLDIPULE ~OMENT (UEbYES)/4X,17HPUINT-CHARGE TERM, 
16X,fb.~/4X,23HPOPL~ AND SEGAL F~RMULA,fH.3/4X, 

213HGiXCN FLRM0LA,lOX,FH.3) 
kE Tl.RN 
END 

$!tJFIC OIPOLE 
~~tlkOUTIN~ ulPOLE (D,IAT,P,X,MAT,HCR,~AT,NUK) 

C CUI-iPUTES OIPOLE HU1HH FOR U .. J\ü-~lO "/JAVE FU1~C TION 
C ~GR~ALIZ~D INCLLDI~G OVERLAP 
t GGMPL1ES X-COMPUNENT O~LY IN D~GYES 
C ASS1~N Cû-UkUINATES SO DIPOLE MC~ENT ALO~G X-AXIS 

D L"i E î-. S 1 (jj~ ü ( HüR 1 ~or\) , P l NO;;' , i'1ljj~) ,X ( 3 , M 1\ T ) J 1 lU ( 1·\ H T ) , CU lU: { 53) 
C GüRE = COKE CHARbES' 

DA TA (,0" t: 1 1 • , 0 • , 1 • , 2. , 3. , 't • , 5. , 6. , 7. ,0. , 1. , 2. , 3. , 4. " 
15. ,b. , 7 • , o. , l • , 2. , 10* o. ,3 • , t~. , 5 • , u • ,7. ,o. , 1. ,2. , 10 :j;O. , 
23.,4.,5.,6.,7.1 

C COkE CHA~GE TEkM 
ùlPOl =0. 
Où 1 l=l,~ÂT 

lATl=lAT(l) 
1 D IPCL =JIPOl ... X ( l,I 1 *COJ{[( 11\ Tl) 

C ELECTkGNIC lEkM 
OU 2 l=l,NOR 
Où 2 J=l,NûR 

L DIPOl =[)lPUL -P(I,J)*lHI,J) 
C CONv~RT TO DE~YES A~D P~l~T 

OlPeL =OlPGL *4.8C294 
"i{ITE (L,3)OIPUL 

3 FO~M~T (14hKDIPOLE MOMENT,F8.3, 7rl DEBYES) 
j{ETUkN 
b\JD 

277. 
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$lbf TC. ENERGY 
SLJbKLJJT1:'JE EI .... cH~Y (F,G,H,IAT,P,fJ.AT,tJCR.,NA,NAl,~iJ.f<,NE) 

C tONPUTES aGND1~G ENEKGY I~ SCf-~O-CNJO CALCULATIUN 
UIME~SICN F(MOR,MOK),G(MAJ,MAT),H(HOk,ML~) ,IAT(MAT), 

l fi ( rI. C k. , I~ CtU , E A ( ~ 3 ) 
C E~ = ENERGY OF I~~LATE0 ~cUTRAL ATOMS IN CNOD APPROXIMATION 

CGMMLN/ATUk/US~(53),U~P(~3),GAA(53),GSTA~(53)lllH 

CUMMO~/LGKECH/KORE(~3) 

e ElECTRCNle ENER~Y 
EEL=O. 
DO 1 K=2,NOR 
LL=K-1 
Dù 1 L=l,LL 

1 EE:L=I:I:L+P(K,L)*H(K,L) 
DO 2 K= 1, NOR 

2 ~EL = EEL+O.5*P(K,K)*H(K,K) 
i'~uC=NE/ 2 
CO . 3 K= 1 , NOe 

3 EEL = EEl +FlK,K)' 
e CükE REPULSION ENERGY 

ECOR = O. 

c 

OU 4 1 = 2,NAT 
lA r 1 = lA l" ( 1 , 
li = KOK E (lA Tl) 
JJ = 1-1 
DU 4 J =l,JJ 
lATJ = IAT(J' 
L J = K C 1<. E ( 1 AT J , 

4 ECG~=teUK + ll*ZJ*G(I,J) 
tN~RLY Cf SEPA~ATEü NEUr~AL ATCMS 
ESEP=O. 
CO S l=l,NAT 
li-\TL=lAT(1) 
l=Kûi-(E( lATI) 

5 E SEP = t: SEP - M·i l j\j 1 ( Z , 2 • ) * u S S ( 1 A TI) - A N A Xl' Z - 2 • ,\) • ) * U P P ( 1 AT 1 ) + 
lZ*(Z-l.H'GMd 11\11)/2. 

e ~LNGING ENERGY 
EùI~ = ESEP - El:l - ECOK 
WKITI: (6,6) EEL, ECOR, ESEP, EClS 

6 FUkMAT(luHLElECT~C~IC fNERGy,FIO.4/ 
122HJCO~E REPULSILN iNEKGY,FIO.4/ 
2';4HJEi~ER~Y Gf $EP;~i'(/d[ù j\jtUTI~AL I\TCi1SiF10.lt/ 
322HKENtRGY GF ATOHIlii.TIOJ\J,F10.4) 

,{ETUkN 
END 

278. 
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UBfTC Il\TGRL 
SuBRG0TINE INTGRL (lAT,X,~AT,MCR,~A,NAT,NOR,S,D,lH) 

G COi-lpufES OVERLAP Î\I'lO DIPCLc l'iATRIX ELEi-1ENTS FOK dASlS SET OF S 
C ANU P GRblTALS fC~ hO C~LCULATION 
C O~ERLAP INTEGRALS BY MULLIKEN ET AL., J.CHEM.PHYS.17,1248 
C (1949) 
C hYD/{OGEN OkBITALS LAST AS IN MAIN PKCGRAM 

OH1EI\i:lION IAJ(i-1AT) ,X{3,t·li\T) ,S(~~GR,r'lGk) ,D(j'\OR,f.\QRJ, 
Dl MEN S 1 ùi'J N.J (53),0 E;'IIU ML' 4 ) , tJ E L TA ( 5), E f~ r N ( 5 ) J C OS l NE ( 3 ) , 

IDKRCl'l(3,3) 
Ù 11'1 E/\ SION C ( 10 , 1 ( ) , :> T ( 14) , S S T ( 3 , 14 ) 
VUUSLE PRECISiON A(10),3(10),P,T,PT,BPlUS,B~INU$ 

C S T=TEi-1PQKA~Y S rORAliE LUCA T 1 (j/\I$ FOR AfCM-PAIR 1 NTEG,,-ALS" IN 
C LOCAL.CO-URDINATE SYSTEM 
C ~Sl ~SEO ONLY IF O~l OR UCTH ATCMS HAS PRINCIPAL QUANTU~ 
C Nl). 4 • 

DATA N~/2*l,8*2,û*3,l8*4,17*51 
DATA DE.NUHZ ,OELTA,EFFN/Z.,24.,7Z0. ,40320.,0.,0.65,4.95, 

115.15,26.85,1.,2.,3.,3.7,4.1 
LOG ICAL SAM,!: 

C SET OVERLAP(S) AND OIPOlE(D) MATRICES = ZERO 
00 10 K= l, NOR 
DO 10 l=l,NOR 
S(K.,L)=O. 

le i;(K.,l)=O. 
c CGMPUT~ KRONECKE~ uELTA feR LATER USE 

uo 1 ~ 1 = 1,3 
O(j 16 J=1,3 

lé ~K.kLN (I,J)=O. 
1 ~ CK RCN (1, 1 ) = 1. 

C ASSIGI'I ATUNIe hjUi-î3ERS( lAT) ,PKINCIPAL QLJAiHU,.'l 1,.U;'46ERS(t~Qi 

C M~u ~LAT[;R EXPCI-.JEiHS (Z) FOR ATOt-1 PAIR. 
00 4CJü [=2,NÂT 
i AT 1 = 1 J.\ T ( 1 ) 
j'l l.;. A = N lot ( 1 AT 1 ) 
Z A = ( 0 • (; 5 * FLUA T ( 1 A rI) - DE: L T Id i ~ t,j 1\ ) ) 1 E F f- N ( N t~A ) 
IF tIATi.Ew.l)lA=lH 
JJ=I-l 
00 4Cü J=l,JJ 
IATJ=IAT(J) 
N":b=t\I"l( lAT J) 

l13=(O .65*FLUAl ( IATJ )-OL:L fA(N..i[) )/EFFN(NtJo' 
iF' 1 A T J • E ,~ • 1) Z I:j = Z H 

C CUI"IPUTE ûlSTANCE lR IN AÏ\GST:{UiS' l'ND OIF.I:CTICN C05INES 
R = S W h T « x , 1 , 1 ) - x ( 1 , J ) ) * * 2 + (X ( 2 j 1 , - id 2 , J) ) >;: :;: 2 + ( x ( } , 1 )­

lX(3,J) )**2) 
~u 20 K=I,3 

20 CU!:dNt (K)=(X(K,J)-X(K;I')/K 
C (, G f.i P LJ Tl: HU L L 11, ENi) M~ J~ NET f ~ S 

P=(ZA+ZB)*K/l.05b34 
T=(lA-lD)/(lA+Z~) 

C ASSIGN EffECTIVE pl<INCIPfiL QLANTUI1 r,UÏ"1l}ERS 
(-lA=141NQ (Nt"..I\,4) 

i"l U = jJ,l NO (I\i ~~ [3 , 't ) 
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C COMPuTE A AND d INTEGRALS-DEFINIIICN IN MULLIKEN PAPER 
C ~lTH SU6SCklPT INCkEASEU UY UNE 

A(l'=LJiXP(-P)/P 
SGN=I. 
B( 1)=2. 
SAME=IATI.EQ.IATJ 
if (SAME' bU Ta 35 
PT=P*T 
bPLuS=JEXP(PT'/PT 
dMINUS=DEXP(-Pl)/PT 
o(l}=bPLuS-ôMINUS 

CUSE kECURSlUN fORf'1LJLAE FUi{ kEHAIIHNG A AI'4D B INTEGRALS 

C 
C 
C 

35 1\1=HAH1iH2 
DO 40 K=2,M 
XK=K-l 
À(K~=A(I'+XK*A(K-l)/P 
SGj\j=-SGN 
IF (SAME) bü Ta 39 
ô(K)=SGN~BPLUS-B~INUS+XK*~(K-l)/PT 

GG TO 40 
3S ô(K)=(l.+SG~)/(XK+l.) 
40 CUN T Ii'llUE 

COM?UTE ~0MBER QF ATUMS "lTH NQ=4 (Nk4)t AND ASSIGN MA 
(AND/OK MD) =3 FOR FIKST TEhM IN INTEGRALS IF THERE AkE 
ArG~S ~ITh PRINCIPAL ~UA~TUM NUMBER 4 
I~R4=0 

1~(N~A.NE.4) GO TO 4~ 
Nk4=1 
iHEt{M =1 
."A=3 

45 IF (1\(.jU.i~E.4) GO TC 50 
j~K4 =NR ft + 1 
NTEKI"\ =1 
i~B= 3 

C CuHPurE FACTOR t-\liLTIPLYING SUM-i/dICN fOR INTEGRALS 
5 CfA CT 0 R = P",: ( p * ( 1 • + T ) , *.:< f'i A':< ( p * ( 1 • - T) ) * >',: M l3 * 

IS\,/id ( ( 1.-1;'tJ' 1 (DENLM2 (HA) *Dc I\CI-'I2 (t'lB) , ) 

C CUMPUTE C-NATRIX 
l'lO=rlAH18 
iJ\ 1 =1'10-1 
i42=jv10-2 
00 60 K=1,M1 
DU 60 L=I,t-tl 

6C C(K,L'=O. 
C( 1,1)=1. 
IF(IATJ.EQ.1) GU TU 70 
SGN=1. 
üO 65 N=1,M2 
IF(N.~~.MA)SGN=-1. 
UO 65 K=l,N 
L=N+I-K 
C. (K +1, L) =C (K t L ) 

65 C(K,L+l'=C(~,L+1)+C(K,L)*SGN 
C SET UHEGI<AL STÜK:\Gt: LIJCJ\llCr·IS = ZERO 

"lC OU 7'i K=1,14 

280. 
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75 Sf(K)=O. 
C COlvWuTE i)VEKLAP l\j~iJ Û IPOLE ItHEGRALS i3ETi-.EEN S O?i3 ITALS 

OlJ BO K=" l, lH 
L=MO-K 
S Tt 1) =!) T( U +C l r\ , L H: (t" l K + .:: J * B l L ) - A l I\} * 1:) ( L + i::' , 

~O ST(o'=STlb)+CCK,L)*[AlK+2)*BCL'+A(K+3'*B(L+l)-A(K'*~lL+2) 
l-ACK+l)*Û(L+3) 
Sl(1)=O.5*STll)*FACTUR 
ST(6)=0.25*K*STl6)*FACrOR 
IF bOTH ~TOMS=H,CUMPUT~ CNLY THESE T~O INTEGRALS 
If (MI3.EQ.l) Gû TU 30G 
COhPuT~ INr~GkALS F~~ hHICh ~l~ST ù~ûlTAL L5 S,SECOND 15 P 
ua 100 K=l,Nl 
l=NO-K 
STlZ)=ST(2)+C(K,l)*(AlK+l'*(6lL)-BlL+Z»+BCL+l'*(A(K)-

1II(K+2») 
~l(7)=$Tl7)+C(KrL)*(A(K+l)*B(L)+A(K)*BlL+l)-A(K+3)*B(L+Z)­

lA(K.+2'*IHL+3) ) 
100 sre ll)=ST( ll)+ClK,L)*l lA(K+l)-AlK·t-3»OCIHL+2)-iHL' )+(AlK)-

1AlK+2»*lBlL+3)-blL+l») 
Sl(2)=0.bo~02S404*Sll2)*rACTOR 
Sr(7)=0.~33012702*STl7)*fACTù~.R 
ST l 11) =0. 21é506351* ST( lU *FAC T OR*R 
l~ NtlTHEK AT~M =rl,COMPUTE kENAINI~G INTEGRALS 
IFC~A.NE.l) GU TO ZOO 
AT rHIS PlJli'lT CNE ATOM =H. 
IF QUANT0M ~O. OF UTHER ATUM =4,MUSr AOJ TWU TEKMS FQ~ 
t:,\Ch IjHEG~AL 

IF (NR4.E~.0) GO ru 30C 
GO TU l ilt G, 150 ) , N T [ ~f1 
JKANSfER Fl~SI TE~NS TU SST AND SET Mb=4 FOk COMPuTArIO~ 
UF ;)ECUNU lERNS. 

14C CU 14~ K=1,11 
14~ SSll1,K)=STCK) 

I\ITEi~N = 2 
MB = 4 
GO TO 50 
AliU TIJC TEKI:,~ ru GEl TOTAL II\TEGRAL AND j\lüRr-lALIZE 

Ise 00 155 K=1,11 
155 STlK)=lO.7*STlK)+0.3*SST(1,K»*l.01384531 

GU 1G 300 
C COMPur~ KE~AINING INTEGkALS 

2UG O~ 21U K=l,Ml 
L=t-:Q-K 
ST(3)=srl3)+C(K,L)*lA(K.+1)*(b(L)-~lL+2')+B(L+l)*(A(K.2) 

l-A',<.» ) 
STlq)=ST(4)+ClK,L)*(A(K)*blL)-AlK+2)*Ull+2) 
S r ( 5 ) = S T l S ) +(. ( K , L ) ':< l ( A ( K.) - A ( K + Z) ) * ( li l L" 2 ) - G (l) ) ) 

5T(8)=STl8)+ClK,L)*lAlK+l)*(blL)-2.*~(L+2»-AlK)*d(L+l) 
1 + Id t( .2 ) * l 2 • >,'< 0 ( L + 1 ) - i'H L + 3) .) + A l K + 3 ) * b l L + 2) ) 
~1(~}=sr(9)+C(K,L)*(AlK)*d(L)+A(K+l)*B(L+l)-A(K+2)*BCL+2) 

1- A ( K + :3 ) ,;: t> ( L + 3 ) ) 
!:) r l 1 0 ) = ST l 1 J ) +C l " , L ) >!: ( (ft ( K + 2 ) - A ( J<.) ) >:: l fj l L ) - L~ l L + 2 ) ) + ( A ( K + 3 ) 

1 -A ( K + 1) ):::( B l L + 1)-B ( L + 3) ) ) 
~ l' , 13 ) = $ T ( 13) +C l K , L ) * ( ( i\ l K + 3 ) -Il ( K + 1 ) ) 0 ( ô ( L ) - B C L + 2 ) ) + 

281. . 
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UA(K)-A(K+2) »::(b(K+l)-lj(K+3») 
21.G ~T( 14)=Sr( 14) tC(I\,L)*( (Alk.+n-/dKl )*UHL)-ti(L+2))+(J\(K+l) 

1- i\ ( K + 3) )::: ( 1'>< L + l ) - J ( L .. 3) ) ) 
5T(3)=~r(3)*fÀCTU~*O.a6b025404 

~T(4)=~T(4)*FACTOR*1.5 
Sr(S)=ST(~)*FACTOR*O.75 
ST(8)=ST(8)*R:::fACrUR*0.433012102 
Sr(9)=iT(9'*K*fACTOR*O.75 
Sr< lC)=STt 1ù)*k*FAC1UR*O.375 
Sl (12)=Sf( 10) 
S Tl 1 3 ) = ST( 13) * R * fA (, TG 1\ * 0 • 2 16 5 C é 3 S l 
~T( 14)=SH 14)*R*fACTüK*C. 3-/5 
If (i'lR4-l)300,220,250 

C IF ~UANTUM NO.OF EITH~R ATOM =4, MUST AOU 2 TERMS 
22C GU TU (230,240), NTE~M 

C TkÀN~F[R FIRST T~~MS TG SST ANO SET MA(OR MB)=4 FOR 
C CUMPUfATIGN ~F SECûNU TERMS 

C 

C 
C 
C 
C 

230 DU 235 K=1,14 
235 SST· (1~~)= ST(K) 

4::4C 
245 

250 

26C 

27e 

1 F (I\i ~ A • E I.l • 4 ) i4 A = 't 
lF (NQa.E~.4)MB=4 

j'~TE~M=2 

GO TU 50 
AOO T~u TEkM~ TO GET TOTAL INTEGkAL 
CO 245 K=1,14 
ST(K)=(0.1*ST(K}+O.J*SST(1,K)'*1.01384531 
GO TO 300 
IF ~UANT~M Na. Uf BaTH ATCMS =4, MCST AOD 4 TERMS 
Tr,,\N!:>FEK EACH !:lET üF TI::Kf'lS TO SST,CHANGE î-1A I\i~O/OR HB 
FJk CUMPUTATION Of NEXl SET, ~ND FINALLY ADD TERMS AND· 
NÛKHALIll:: 
if I~T~RM.E~.4) GU TU 290 
Où 2tù K=l,l /-+ 
SST (NTEk~,K)=STIK) 
IH E "t-l=~ T EJ<.M+ 1 
IFINTEKM-3}270,28C,210 
Mb=4 
GJ TO 50 

zac MA=4 
HG=3 
GU Ta 50 

290 DO 2S5 K=1,14 
29~ ~T{~}=(O.LS*SSTIl,K)+ü.21*(SSr(2,K)+SST(3,K)I+O.49*ST(K») 

1",: l • 0 2 Of 0 82 3 1 
GO TO 300 

C UVERLAP AND OlPOlE MATkIX ELEM~NTS 

C X-COMP~NENl thLY OF 0lPOLE MATRIX 
C MOOI~Y THIS SECTiON IF Y- A~U l- COMPONENTS NEEDED 

~OO 11=MINO(~*I-3,I+3*NA) 

JJ=Ml~O(4*J-3,J+3*NA) 
C li~ T EGkAL S FOR CAS E ur- n.o HYUROGENS 

S( 11,JJ 1=!:lT( 1) 
o ( 1 l, J J 1 =. ST ( b ) ~,c U S lN l ( l ) +;< ( l , 1 ) ':: S ( 1 l , J J ) 
IF (IAB.Ei,t.ll Glj 1'0 4ao 

c I~TEGRALS FU~ CASE ùF U~E HYGkUGEN 
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DO 310 1<.=1,3 
JJK.=JJ+r<. 
~(II,JJK)=-~1(2)*CJSINE(K) 

310 U(11,JJK)=OKkù~(1,K)*Sr'L1)-LJSI~~(1)*CDSINE(K)* 
II S Tt 7) .$ T ( 11) ) t-i\ ( 1 , 1 ) .. ': S ( 1 .I , J J K ) 

IF ''''.A.E-J.U GD TD 400 
C INTEG~ALS FOR CAS~ U~ NO HYDKOGEN 

Où 320 K=1,3 
I1K=11+K 
S ( ! 1 i'.. , J J ) = ST ( 3 ) *C U S Hl E ( K) 
ü( llK,JJ)=Di<RJrJ( l,I<.)*ST( 13) tCOSHŒ(l)*CGSINE(K,* 

1(ST(6)-Sr(L3»+X(1,1'*S(IIK,JJ) 
CU 320 L=1,3 
JJl=JJ+L 
S(lIKJJJL)=DKRC~(K,L)*ST(5)-CUSl~E(K)*COSINE(L)*(~!(4) 

I+S1(5» 
J2C D(IIr<.,JJL)=CUSI~c(K)*COSlhE(L)*COSINE(1)*(ST(14)-ST(9) 

1-ST(10)-ST(12»+CO~INE(K)*OKRüN(L,1)*ST(12)+COSINE(I)*DKKON 
2(K, U*ST( 10)-CJSINE(L )*Oi\~Cld l ,K)*STll4)+>.( 1. 1 ,*S( IIK,JJL) 

4ÙC CLINT INUt 
C DIAGUNAL ELEMENTS CF UVERLAP AND OIPGLE MAT~ICES 

DO 410 K:;I,NCR 
S(K,K)=l. 
l=i'IAXO( ('K+3)J4,K-3*NA) 

41C O(I\.,K)=X(l,l) 
C ATUMIC POLhRllATIC~ TER~S IN OlPGLE MATRIX 

DO 420 l=l,r-..A 
lATI=IAHI) 
Nl.iA =j\j..,J( li\T 1) 
LA=(Co.65'!:FLUI.\1 (lAT 1 )-Ot:LTA(i\QA) )/tfFN( NQA' 

4~C O(4*1-2,4*1-3)=O.305~16442*(EFFh (N~A).O.5)/ZA 

C SYNMETRllE MATRICES 
DO (i3CJ K·-=2,NJK 
lL=K.-l 
00 '130 L=l,LL 
S(L,K)=S(K.,L) 

43C O(L,K)=C{K.,L) 
kETUkN 
t:ND 

• 
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$IRfTC LCl'iOlN 
SuSRGUTINE LOftDIN 

C SOLvl:!l SECuLAR. ElJUATIUf\S INCLUDli',G U\lERLAP BY LmWp.j·S l'IETHJO 
C . ~ = UVERLAP MATRIX TO PO~~R Ml~US ONE HALF 
~ U = ~IGNEVtCTOk!l ùf S, LATER GF E 

ù li" ENS 1 0 i-J S ( S 0 , 5 ;) , H ( ~ 0, ~ 0 ) • U ( 50 , 5 C) "i( 5 0 ,5 0) ,E ( 50 , !:> 0) ,C' ') 0 , 5 0 ) 
COhMCN S,H,N 
El./LJI\iJ..\Lb-..Ct: (S,E), (H,C) 

C CGMPUf2 ~-MATR.X = ~ TG PL~E~ MINUS ONE-HALF 
CALL EVALuE(S,~O,5C,U,50,50,N,.C001,l) 

C . SUo,{Lulli.,.E E:VI-<LU[ IS PART Of !'lCGILL CUhPUTER 5YSTEÏ"1 
C 0IA~uï~~L IlES t'1ATiUX-SEE tCHj~EIHS IN C"-.JOU 1'1AIN PROGKAI4 

DU 52 1 = l,r~ 
IF(S(I,I).LT.O.O) GU TO 60 

52 S(I,I)=l./SWkT(S(l,I» 
CO 53 1= l, N 
DU ~3 J = l, N 
w(I,J)=O.O 
(JU 53 K=l,N 

53 i'1 ( 1 , J ) = h ( 1 ,.J ) +0 (I , iO * U ( J , K) * S ( K , K) 
C TRANSFORH hAMILTC~lA~ MAT~IX TU URTHGGONALIZEO GASIS 

DU S4 1 =l,N 
00 54 J =l,N 
E(I,J)=O. 
DO S4 K =l,N 
DO 54 L =l,N 

5 4 E ( 1 , .J ) = c ( l , J ) + ~j ( 1 , K ) * H ( K , L ) :;! ~~ ( L , J ) 
C (J 1 AGUi'~AL Il E T RANSH':ri.Hf: 0 HAI-i 1 L rci'J 1 AN 

CALL ~VALUE(E,50,50,U,50,50,N,.OOOl,l) 

C TRi\I'J!>FJj{N LCAU U1EFF1CIENTS U/~CK TO ORIGII'-tAL tMSlS 
DO 55 l =l,N 
(JO ~5 J =l,N 
C(l,J)=O. 
(JU ~~ K =l,N 

55 c( I,J)=C(I,J)+i-i(l,K)*U(K,J) 
C SOKT I:IGENVAL0LS AND ~lGlNVECTCkS IN URUEK OF INCREASI~~ ENERGY 

OU 56 1=2,N 
JA= 1-1 
DO 56 J=l,JA 
1 f ( E ( l , 1 ) • CE. E ( J , .J ) ) GU TU 56 
ET =.E ( l ,1 ) 
é ( l, 1 ) =E (J , J ) 
E(J,J)=ET 
(JO 57 K=l,N 
CT=C(I\.,l) 
C ( K, 1 ) =C ( " , J) 

',)7 C(K,J)=Cr 
50 CulH INuE 

r<.ETuKN 
(; C ~,R 1 T 1: ( 6 , é l ) 
61 fUi~HAT(u1HKLNE OF UVr:"LAP IAAfklX é.lGéNVALUES 15 r-Jt:('ATIV[,Ii~l)IU\TIN 

LG lRkUK IN INPUT GEUMETRY) 
CALL EX n 
END 



L l~ TING fOK HIES lS 
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$UlFIC PLPAN 
SLJ~Rt;Uf L~E .... (jPM~ (i>,~, NA T, t\A, NH J 

C PEr.FOiU;S l'iUlL IKE:r\ pOPULAT lCI~ AI\ALYSIS 
C GOP = GRUSS UkBITAL PüPUL~TILNS, GAP = G~USS ATOHIe POPULATIONS, 
c OP = üVEKLAP PLPULATlCNS 
C hYLJKLJGf:N UR1HTi~LS LAST AS IN HAIN PRUGRA14 

o 1 fol E f\ S lU NP' 5 0 , 5 li) , S ( 5 C , 5 C , , ~ iU ( 2 :» , CP' 2 5 , 2 5 ) ,G 0 P ( 50 , , GAP ( 2 5 , 
NAA=NA+l 
;\J /lH=I'\iIHNH 
i~O k= 4*N A +~ H 

C 1,J J.\TUi"1 H~vI('ES. K,L ùkBITAl INDICES. 
C GRGSS ORbITAL POPULATIONS 

DO lù K=l,NOR 
GUP (10 =0. 
00 le l=l,NOR 

10 GUP(K'=GUP(K)+P(K,l'*S(K,l) 
~klTE(6,1~'(GOP(K"K=l,NUR) 

1 5 FOR.-1 A T( 2011 K GK 0 S S lJl< Ci 1 T A l Fe Pli lAT le N S / ( 1't f 9 • 4) , 
C GKLSS ATUMlC PUPLlATICNS 

Du 2(, l=l,tiJA 
Kl=4*1-3 
K4=4*1 
GAP ( 1) =0. 
DU 20 K=Kl,Ktt 

20 GAP( 1)=Gt\P( U+GOP(Kl 
IF(l\;H.EQ.O) GO TU 24 
GU 22 1 = i'ü;, A , NA H 
K=l+.3*NA 

22 GAP(l'=GûP(I\) 
l4 wklT[(6,2S)'GAP( l"l=l,~AH' 
25 FUk/'iAI"2SHKGihJSS i\TLHIC PLPULATIOf\S/(14F9.4» 

c ATOMIC OVEklAP PCPulATIONS 
DO 30 1=2,NAH 
JJ=l-l 
Kl=Lt*I-3 
K4=4*I 
If( 1.GT .I~A) Kl=1+3*NA 
1ft l.G' .Nld K4=1+3*NA 
DO 30 J=l,JJ 
ll= ... *J-3 
L4=4*J 
lHJ.GI'.f~A) Ll=J~3*NA 
1 f ( J • G T .l'jj,) L -=t = J + 3 t,: NA 
ùP(I,J)=U. 
OU 28 K =K 1 , K 't 
00 ;28 L=Ll,L4 

28 UP( I,J)=CPtl,J)+2.*P(K,l)*S(K,L) 
3(; O/)(J,I)=uP(I,J) 

I,;{ l Tf: ( 6, J 2 , 
32 fLRMAI(20HKOvERlAP PUPLLAfIOf\S) 

C~LL P~I~T(UP,25,NAH' 

i-\EfUkl\l 
END 
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$lbfTC PUPLE 
S \.J t.:i i< tj U T 1 i\l E P G? L E (F , G , H , li, l , H f~ T , Î'1 GR, r-. AT, NOR. , P , P AlU 

C CÙj-lt'UH:S HJ\i.:.lKEf:-FLJCK hiH1ILTLiHM'-4 I-lAH<IX fOI{ NEi~ C'VCLE OF 
C {Tf:I{ATIGi~ li' ... SCF-MG-Cf\J()(J ÇALCuLAll(.N 
C H'V~RLGE~ CKblT~LS AS lr-. MAIN PkOGRAM 

Li li'/iENS lül. G( 1/11\ T ,;'11-\ T ) , U. T' MA l) , PAA (l"1A T) 
û H~Er-.S ICi\! f (düR, r-:Ûi\) , j"i( ~O K, j'luK) , P ( ,\lOR , l'lOI{) 

C 1 "AND J ARE ATON I~OICES, K ANU LAkE URUITAL INUIeES 
"IA= 'NOK-f"~A T ) /3 " 

C DIAGGN~L MATRIX ELEMENTS 
Du 3 1 = l, NA 
Kl=4*1-3 
K4=4*1 
PAA(l)=O. 
DO "2 K=Kl,K4 

2 ~AA(l)=~AA(I)+P(K,K) 
DlJ 3 K=Kl,K4 

3 F(~,K)=rl(K,K)+(PAA(l)-O.~*P{K,K})*G(I,I' 
C uIAGUNAL t'lATRIX ELEt1Ei~lS-A(jD II'.TERJ\TÛt-lIC TERMS 

IF(NA.EQ.I~AT) GO ra 6 
NAA= NA+l , 
DO 5 1 =NAA , NA T 
K=1+3*i~A 
f(K,K)=h{~,K)+O.5*P(K,K)*G(I,I) 

5 P J\ A ( 1 ) = P ( 1\ , ri. ) 
o 00 <) J=l,NAT 

Du li 1 = l, NAT 
IF(I.EQ.J) GU TU 9 
Kl=~I~O(4*I-3,1+3*N~) 
K4=MINO{4*1 ,1+j*~A) 

00 7 K=Kl,K4 
7 F(K,ri.)=F(K,K)+PAA(JJ*G(I,J) 
C; CUI..;flNUE 

c UFf-DIAG~~AL MATKIX ELEMENTS 
DG 10 K=2,NOK 
LL=K-l 
I=MAXO«~+31/4,K-3*NA) 

:)0 le L=l, LL 
J=MAXOI (L+3)/~,L-J*NA) 
F(K,L)=H(K,L)-O.~*P(K,L)*G( I,J} 

le f(L,K)=F(K,LJ 
:{ETURN 
t:NO 
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HGffC PRH\jT 
SuBkûUTINE PRINTlAKkAy,M,~, 

C PKINTS I~XN t1ATkIX lit LULUtv:i\S AT A TIME 
DIMENSIGN AKRAY(M,~) 
JJ=O 

1 J l=.JJ+ 1 
J.J=t'HNJ( JJ+ l't, N) 
~RITE(b,60G)(J,J=Jl,JJ' 

DO 2 I=l,N 
;:: ~f<.lTE(b,601)1,(AK.R.AY' l ,J) ,J=Jl,JJ) 

IF(JJ.lT.N) GOrOl 
kETl.lRN 

t;OC fOkMAT(1419) 
bOl FU~MAT(lH ,I2,14F9.4) 

EN 0 

lltlfTC kl::PUL 

C 
C 

SUDRUJTINE ~EPUL(~,{Ar,MAT,NA,NAT,X) 
CGMPUTES ELECIRuN-KEPuLSICN INTEGKALS FO~ SCF-HU-C~DO CALCUlATION 
UY MATAG~ APPküXIM~TIU~ 

OIMENSIUN G{hAT,hAT),IAT(~AT),X(3,MAT) 
l. ut-ll"l(jj'U Al (j ri 1 us:) ( 'j J ) , U fJ P ( 5,:n , l7A Id !) 3) ,G S T Ak ( 53 ) 
OU 1 l=l,I~AT 

lATI=IAH Il 
1 G(I,I)=GMd lATI) 

DU 2 1 = 2, NA T 
JJ=I-l 
~ÀT 1=IAT{ 1) 
Où 2 J=l,JJ 
I~TJ=IAT(J) 

A=2.1'~STA~(lATI)+GSTAR(IATJ» 
K = S Qk T ( (.lI,{ 1 , 1) - x ( l, J ) ) ",,,,,: 2 + ( x ( 2 ,I ) - x ( 2 , J) ) >(, * 2 + ( x (3 , { ) - x ( 3 , J) H' ", 2 ) 
..:; ( 1 , J ) = 1 • 1 ( RI 1 4 • 3 ,-) S + A ) 

2 \,dJ,I)=GlI,J)' 
hRITE(6,(;) 

6 FUKMAT(44HKREPULSIGN I~TEGRALS SY MAlAGA APPKUXIMAl ION)' 
KETuRN 
END 
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:lI Ef T C iH..PUL 
SuB~00TrNE KEPUL(G,IAT,MAl,NA,NAT,X) 

C CJf,PU lE S ELEC T !{ùN-REPuLS 1 Cl\: IN TEGRALS FOR SCF-HQ-CNDO C ALCULAT ION 
C tj y Ohl'~ù AP PI'-I..JX HIA T 1 (J/~ • 

DIMENSION G(MAT,MAT),IAT(MAr),A'3,~AT) 
Cl..JhMLN/ATOM/U~S(53),U~P'5~),GAA(53)7GSTAK(53) 
DO 1 1 = 1 , 1-1 AT 
lATI=IAT(I) 

1 G ( 1 ,1 ) = GJ\id lA Tl) 
DU 2 1 =2, NA T 
JJ=l-l 
lATl=IAH il 
DO 2 J=l,JJ 
lATJ=[AT(J) 
.~=2./( GSTj\R( IAr 1 )tGSTAK( lAT J» 
K S W = ( ( Jd l, 1 ) - X ( l, J ) ) * *' 2 + ( X ( 2 , 1 ) - X ( 2, J) ) *"': 2 + ( X ( 3 , 1 ) -X .(3 , J) ) ':t * n 
G(I,J)=1./S~RT(kSW/207.32+A*A) 

2 G ( J , 1 ) =G ( 1 , J ) 
;'/ kIT f: ( 6 1 6 ) 

b FOkMAT(42hKREPULSICN INfEGRALS BY OHNO APPR0XIMAT10N) 
kETURN . 
END 

:i>lb'~TC REPUL 
S li b i{ I..J u r Il a: lU: P U L ( ~ ,lA T , 1\' Ar, NA, l, AT, X ) 

C ASSIGNS THEORETIGAL ELECTRON-REPULSiON I~TEGRALS FUR SCF-MG-CNDU 
C CALCULATION 
C Cu 1"1 i-' U T AT 1 Ü 1'1 f ü L L [) h S' i~ (J eTH l\ AN, J • CH Etl, • PH YS. 1 9 , 1 44 S (19 :'> 1) 
C PM{1\i1ETEkS DEf 1:'4EO IN i\ùOTHAi-ü.J PAPER 

C 

c 
C 

l) Hi t.:r ... S l Ùi>o.J G ( ~'Jj:' T , H/\ l ) , X ( 3, l" AT) ,lA r ( j\j AT), LE rA ( 9 » 
CGI-"IJ'vlU,'J/A1Uj;\/U::;S( 53) ,UPP(53) ,GAl\(53) ,GST .. \k(S3)//lH 
UATA lETA/l.2,O.,O.65,ü.915,1.3,1.625,1.95,2.275 9 2.6/ 
LE.TA(l)=lH 
KEAL KAP 
ASSIGN ATOMIL INTEGHALS 
Où 1 1 = l, NAT 
1.\ T 1 = 1 ~\ Tt 1 ) 
If( lATl.uT.Y) GU TU 9 

1 G( I,I)=Glu·dlJ\Tl) 
ASSLGN INTEkATUMIC I~TEGkALS 

HYU~uGEN~ LAST AS LN MAIN P~CGRAM 
DU b 1=2,NAT 
J J= (-1 
Dû 6 J = 1,J J 
I{ = S '..;" T ( ( A ( l, 1 ) - X ( l , J ) ):;, >',: L + ( X ( Z , 1 ) -)( ( 2 , J ) ) ':c .;, 2 + ( X ( 3 , 1 ) - X ( 3, J) ) >:' t.' 2 , 
If(J.LE.~A) GO ra 3 

C ItYLJ~uGU\-HYL/'\OG((\j CJ\SE (TJ\U=O) 
k Hu = Z t rA ( 1 ) ':c R /0. 5 2 ~ 1 7 
G ( 1 , J )'': l [ TA ( 1) 1,' ( 1. - ( 1 • H,J-i l ::« 1. 3 7 ~ + Rm]'::: ( 0 • -( 5 + K tlO / 6 • ) ) , / [ X P ( 2 • ~'RHO) ) 

l/RHO 
GU TU 5 

C PAkJ~"itftKS FUr, KUUrH':\M'~ fl./'\l'.iuLAI:: IN UHtEl{ CA~I:S 



) 

) 

" 

Ll~TING FU!( TIiE~lS 

31ATI=lAT(I) 
iATJ=IAT(J) 
lA=lETA( IATI) 
lti=i.l:TA(IATJ) 
l = 0 • 5 ~,C( lI, + lB) 
KHG=Z*R /0.52<;17 
IFIIATl.EW.l.id·J) Ge Ta 7 
RHOA=lA*K /0.52917 
kHL~=ZG*K IC.~~917 
~AP=(lA*lA+lb*lù)/(L~*LA-Lë*lô) 
1 f ( 1 • LE. NA) Gu Ta' .. 

C HY OKuGél\l-ûl HU~ J\ TGl". ~/\SE 

289. 

G(I,J)=(l/RHL)*(1.-(1.-KAf)~*3*«1.-KAP*(5.+KAP*4. »/lb.-KAP*RHOAI 
1 8.)*EXP(-2.*RHOA)-(1.+KAP'**l*«15.-KAP*l22.-KAP*(lS.- KAP*4.»)1 
2 Ib.+0.315*13.-KAP*(3.-~Af»*RHC6+0.25*(Z.-~AP)*RHLU**2+KHûS**3/ 
:3 12.)*EXP(-~.,,'tRHlW» 

GO TO 5 
C CASt OF T~O ArUMS aOTH NUT HYDRCGEN 

4 FNIX,V)=(1.-X)**3*EXP(-2.*V)*I(H.-X*'1.+X*127.+X*(30.+A*lO.»)))/ 
1 16.+(11.-X*(19.+X*(~4.+X*20.) »*V/32.+11.-X*(5.+X*4.»*V**2/16. 
2 -X*V*:~3/24.) 

G( 1,J)=(l/RHÜ)*(1.-FN(KAP,RhUA)-FN(-KAP,~rlOU» 
GO TO 5 

"/ G(I,J)=(l /kH;):;:(1.-(S06'tO.+KI10*(1319t;5.+RHÙ* 
1 (102690.+RHu~(4SC;80.+I{Hü*(lo80G.+RHu*(4032.+RHO* 
2 (ù"12. +I{HG*tA.) ) » ; » 1 (e064C.*OEXP (2 .*kHG) » 

5 G( 1,J)=27.21ü';tC,(1,J) 
é (,(J,I)=G(l,J) 

wRIrE(6,8) 
8 FU~MAT(41HKKtPULSllN INTEGRALS ~V RUUTHAAN FORMULAE) 

KETURi>J 
S rIRITU6,lO) 

10 fUK,V,AT(45hKKUGTHAl\N FUf',j·!i.JLM: It'lC'LU[jED ONLY fOR HVO~OGEN/ 
112H+l0 fLUOkI~E) 
(.AlL EXIT 
END 



LISrtN~ FOR THESIS 
290. 

$lbfTC 5G/{T 
SUbkUUTINE SORI(E,C,N,Ml 

C PU~Cc5 cIGb\lVALùES AND 1:1CENVECrOhS IN OkûEk Uf INCREi\Sli~G Ei\iEi~GY 
DIMENSION ~(~,M),C(MrM' 
DO 56 I=i,N 
JA= 1-1 
DO 5b J=l,JA 
If(E(I, 1) .GE.E(J,J»G(J TQ 56 
I:T=E(l,l, 
t: ( 1 rI) =E ( J , J ) 
c(J,J'=ET 
DU 57 .<.= 1 , N 
CT=C(K,I) 
C ( K. 1 , =C ( K. , J ) 

57 C(K,J'=CT 
50 CUI\ T INUE 

i{ETUfi.i\I 
hW 

SIfflC START 
SUHRGUTINE ST~KT (f,G,H,IA1, ITER,MAT,MùR,NA,NOR,SCF) 

C INITIALllES SCF-LCAO-~C-CNOO Cù~PUTATIUN 
01MEI\SlCN F(MOK,MOR),G(~Al,MAT),H(MCk,MUR) ,IAT(MAT) 
CUKMG~/ATGh/USS(53),lJPP(53),GAA(53),GSIA~(53)/COKECHI 

1.<.Wa:(53) 
LOGll..AL SCf-

C ASSIG~ INlTIAL HA~lRE[-FGCK. HA~llT(~IAN MATRIX 
C HYUROG~N URUIT~LS LAsT AS IN MAIN P~üGRAM 

DG 1 K=l,NO~ 
DO 1 L=l,NOk 

1 r ( K , L ) =H ( K , L) 
Où 2 l = l,NA 
11\TI=IATll) 
l=KLRE ( lAT l' 
f(4*1-3,4*I-3)=-USS(lATl'+(1-O.5'*G(I,I' 
F(4*1-;::,'t'" 1-2)=-UPP( lAT 1 )+(Z-O.5)*G( 1,1) 
F{4*1-1,4*I-l)=-uPP(IATI)+(Z-ü.5)*G(1,1) 

2 F(4*1 ,4*1 )=-UPP(lATI)+(l-O.S)*G(I,I) 
IF(~UK.E~.4*NA) GJ Ta 4 
I\H 1 =4*l\iA+ l 
UO 3 K=f\l-11,NOR 

.:3 F ( K. , K ) =-1. 1 71 
C ASSIG~ IllkATlUN ~~NG[R = 1 AND.~CF CRITERION = FALSE 

4 ITEK=l 
SCF = .FALSE. 
KlTUkN 
lND 
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291, 

$IbF1C TESl 
SUbRGUTINE TtST(P,P1,P2,~PS,lTER,M,N,StF) 

C TESTS FCR Cü~VERGE~CE IN Stf-MG-CNOO CALCULATIGN 
C U~[S AIT~EN ACLELE~ATILN )F oLOCR CKIIERIGN SATISFIED 
C (SEE tiLGu~, CAN.J.CHEM. 42,133(1964» 
C P=CUK~tNT ?ûPULATICN MATRIX,Pl AND P2 ARE PREVIOUS POPULATION 
C MATRICES 
CEPS = ACtUkALY RE~LIRLME~T,ITER = Nù. IT~RATlüNS, . 
C ~Cf = rKUE IF CONVE~GENlE kEACHEO 

~IMENSIL~ P(M,~),Pl(M,M),P2(K,M) 
UJG ICAL SCF 
IF«lTER/2)*2.EQ.ITER) GO TO 40 

C THIS SECTION USED fUI .. GOD ITERATIONS 
I~(lTEk.EW.l) GO TC 30 

C CHtCK FCk lUNVE~GENCE 
OU 10 I=1,N 
DO 10 J= l, 1 

1 0 l F ( Ab S ( P ( l ,J ) - P 2 ( 1 , J ) ) • G T • EPS) (,0 T 0 20 
SCF=.TRlJE. 
RETUkN 

C If Nüf CCNVtKGENT, CHECK BLOûR CKITERICN FOR APPLICABILITY OF 
C ~ll'K~N' ACCELERATiON 

2e 00 21 I=l,N 
CO 21 J=1,I 

2: 1 1 f ( A i:i ;; ( P ( 1 , J ) - P ~ ( l , J ) ) • G T • AU S ( P ( l , J ) - 2. *p 2 ( 1 , J ) 
l+PU 1 ,J») GO TO 3C 

C APPLY AITKEN ACCllEkATICN 
DO 25 I=l,N 
UO 25 J=l,l 
P( I,J )=P( 1,J )-(P( l ,J)-P2( 1 ,J» >:'*Z/(Pll I,J) 

1-2.*P2( I,J)+i>( I,J» 
25 P(J,l )=P(l ,J) 

C STOH~ CUkRENl POPULAfiGN MATKIX FUR NEXl lTEkATION 
30 00 ..15 I=l,N 

Du 35 J=l,N 
~5 P.l(I,J)=P(I,J) 

GU TO 60 
C HilS SI:CllOl'l U$tLJ FLR 1: Vf: r\ ITEi-\ATICNS 
C CHECK flR CG~VERGE~CE 

4C DU 45 1= l, N 
(JO 4~ J=1,1 

4~ If(A6~(P(1,J)-fJlllf.J»'Gl.EP~) GO Ta 50 
SLF=.TRUE. 
I<ETlJRN 

C IF NûT CCJ;--.lVEkGENT, STCkE PCPUL~TION NATRIX flJR Nf:XT ITE:<'ATluN 
5C [;U 55 l=l,N 

[H) S5 J= 1,N 
55 P2( I,J)=!>( 1,J) 
00 ITEi'/"=ITEK+l 

kETUKN 
i:NO 



~C1.UL1-'.LC V ..... -=1-'_ .... _ .. ______________________ _ 

hYCRCGEN ChLORIDE 
2 ATOMS 1 HYDROGENS 8 VALENCE~SHELL ELECTRONS 

ATOMIC NUMBER CO-ORO INA TES 
17 0.00000 c.oocoe o.OCOOO 

1 . 1.27460 0.00000 0.00000 
SCf-LCAO-MO METHOD HITH ZERO OIFFERENTIAL OVERLAP 

REPULSION INTEGRALS BY OH~O APPROXIMATION 
SLATER EXPONENT FOR HYDROGEN 1.20 
~ONOING PARAMtTERS EVALUATEO FOR OHNO 1.2 
10 ITERATIONS REQUIREO 

ENERGY LEVELS 
-25.0690 -14.7907 -13.4640 -13.'t640 -0.9218 

LCAO COEFFICIENTS 
1 2 

1 0.9784 -0.1491 
2 0.0311 0.7908 
3 0.0000 0.0000 
4 0.0000 0.0000 
5 0.2043 0.5937 

POPULATION MATRIX 
1 2 

1 1.9591 -0.1149 
2 -0.1749 1.2526 
3 0.0000 0.0000 
4 0.0000 0.0000 
5 0.2227 0.9516 

TOTAL ATOMIe CHARGES 
7.2117 0.1883 

DIPOlE MOMENT (DEBYES) 
POINT-CHARGE TERM 

3 
0.0000 
0.0000 
1.0000 
0.0000 
0.0000 

3 
0.0000 
0.0000 
2.0000 
0.0000 
0.0000 

POPLE AND SEGAL FURMULA 
OIXON FURHULA 

4 
o.cooo 
o.OOCO 
0.0000 
1.000e 
0.0000 

4 
0.0000 
0.0000 
0.0000 
2.0000 
0.0000 

1.296 
2.180 
1.650 

ELECTRONIC ENERGY -410.1098 
CORE REPULSION ENERGY 56.6678 

5 
-0.1431 
-0.6Lt3 

0.0000 
0.0000 
0.7784 

5 
0.2221 
0.9516 
O.OCOO 
0.0000 
0.7883 

ENERGY OF SEPARATED NEUTRAL ATOMS -34Q.4160 

ENERGY OF ATUMIIATION ' .. 6260 

TIME 1.3 SECONOS 

292. 
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