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Abstract

Real gases consist of multiple chemical species, including oxygen, nitrogen, and hydrogen.

For practical applications, a mono-species model is often used to simplify flow simulations by

representing the gas with a single chemical species. However, for combustion or mixing flows

where the different species have different masses, or for high-speed and high-temperature

flows where thermal properties such as heat capacity and enthalpy exhibit nonlinear relations

with temperature, a multi-species model under a calorically imperfect assumption becomes

essential for accurate analysis.

In computational fluid dynamics (CFD), computational methods and modelling are care-

fully chosen to balance computational costs with achieving high accuracy. The multi-species

model involves a larger number of conservation of mass equations, making it more computa-

tionally expensive compared to the mono-species model. To address this, parallel computing

techniques are employed to efficiently utilize computational resources. The discontinuous

Galerkin (DG) method stands out for its capability to achieve both high efficiency in paral-

lel computing and high-order accuracy.

Motivated by the aforementioned research background, this thesis aims to develop nu-

merical codes for multi-species flow simulations by implementing a non-reacting (mixing),

calorically imperfect physics model and conservation of mass for each species into a DG

solver. Extensive tests have been conducted to verify and validate the implemented multi-

species solver, demonstrating its accuracy.
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Résumé

Les gaz réels sont constitués de plusieurs espèces chimiques, dont l’oxygène, l’azote et

l’hydrogène. Pour les applications pratiques, un modèle monospécifique est souvent utilisé

pour simplifier les simulations d’écoulement en représentant le gaz avec une seule espèce

chimique. Cependant, pour les écoulements de combustion ou de mélange, où les différentes

espèces ont des masses différentes, ou pour les écoulements à grande vitesse et à haute

température, où les propriétés thermiques telles que la capacité calorifique et l’enthalpie

présentent des relations non linéaires avec la température, un modèle multi-espèces devient

nécessaire.

Dans la dynamique des fluides numérique (CFD), les méthodes de calcul et la modélisation

sont soigneusement choisies pour équilibrer les coûts de calcul et obtenir une grande précision.

Le modèle multi-espèces implique un plus grand nombre d’équations de conservation de la

masse, ce qui le rend plus coûteux par rapport au modèle monospécifique. Pour y remédier,

des techniques de calcul parallèles sont employées pour utiliser efficacement les ressources

informatiques. La méthode de Galerkin Discontinu (DG) se distingue par sa capacité à

atteindre à la fois une grande efficacité dans le calcul parallèle et une précision d’ordre élevé.

Motivée par le contexte de recherche susmentionné, cette thèse vise à développer des

codes numériques pour les simulations de flux multi-espèces en mettant en œuvre un modèle

physique caloriquement imparfait sans réaction (mélange) et en conservant la masse pour

chaque espèce dans un solveur DG. Des tests approfondis ont été menés pour vérifier et

valider le solveur multi-espèces mis en œuvre, démontrant ainsi sa précision.
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Chapter 1

Introduction

This thesis provides a comprehensive description of the calorically imperfect model and the

multi-species model implemented in the inviscid flow solver. These models can handle both

low-temperature, low-speed conditions and high-temperature, high-speed flow conditions.

The solver used in this work is based on the Discontinuous Galerkin (DG) method, which has

gained popularity for its ability to achieve high-order accuracy in computational simulations.

1.1 Computational Fluid Dynamics

Fluid dynamics plays a critical role in the design of various aerospace products, such as

engines. There are two primary approaches to addressing fluid dynamics problems: experi-

mental and computational methods. The experimental approach provides valuable insights

into the complex physical phenomena involved in fluid dynamics. However, the cost of the

necessary equipment is high, particularly for large-scale and complex applications such as

combusting flows, and measuring flow quantities can be challenging. On the other hand,

the computational method relies on physics-based models and offers detailed flow data. Re-

cent advancements in computer hardware, including processors and memory capacity, have

significantly enhanced computational capabilities. As a result, Computational Fluid Dy-
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namics (CFD) has emerged as a competitive and viable approach to not only studying fluid

phenomena but also designing new products through simulations.

In CFD, the methods for solving governing equations have evolved from traditional ap-

proaches such as finite difference and finite volume techniques to more advanced strategies,

such as finite element methods and high-order schemes. High-order methods, in particu-

lar, are employed to achieve greater accuracy in fluid flow simulations. Although low-order

methods are robust, reliable, and widely used in practical computations, high-order methods

have garnered significant academic and industrial interest over the past decade [3]. The pri-

mary reason for this interest is that high-order methods offer superior accuracy at a reduced

computational cost when compared to low-order methods [4]. By using higher-degree poly-

nomials to approximate solutions, high-order methods can capture finer details of fluid flow,

leading to a deeper understanding of complex fluid phenomena. In applications, high-order

methods have proven particularly effective in simulating complex flow behaviors, such as

resolving near-wall turbulence flow structures at Kolmogorov microscales. One of their key

advantages is the ability to produce accurate results with fewer computational grid points,

due to their low dissipation properties [5]. This efficiency makes them highly suitable for

large-scale, intricate scale resolving simulations, where computational resources are a con-

cern. For instance, Shu [6] discussed the applications of several non-oscillatory high-order

methods, including the Weighted Essentially Non-Oscillatory (WENO) finite difference and

finite volume schemes, as well as the Discontinuous Galerkin (DG) finite element schemes.

Among these, the DG method stands out as one of the most widely used high-order nu-

merical approaches for solving compressible flow equations on unstructured meshes [7]. The

details of the DG method, including its fundamental mathematics and advantages, will be

explored in the following chapter.
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1.2 Multi-Species Model

Multi-species flows consist of multiple chemical species interacting and mixing within a fluid.

These phenomena are extensively studied across various fields, including combustion, climate

modeling, and chemical process engineering [8–10]. A multi-species model is employed in

CFD to simulate mixing or chemically reacting flows. In aerodynamics, multi-species gases

are particularly relevant in combusting flows, ranging from subsonic to hypersonic speeds, as

illustrated in Figure 1.1. At subsonic speeds, a jet engine (drawn in Figure 1.1a) combusts

jet fuel and air to generate thrust. For supersonic speeds, a scramjet engine (illustrated

in Figure 1.1b), considered a future propulsion system for supersonic airplanes or reusable

launch vehicles, utilizes hydrogen as fuel and air as an oxidizer. At hypersonic speeds, a

rocket engine (shown in Figure 1.1c) burns liquid oxygen and liquid hydrogen to produce

energy and accelerate the flow to hypersonic velocities. Given the widespread use of jet

engines in commercial aviation and the growing potential for supersonic transportation and

space exploration, there is significant interest among researchers and engineers in studying

mixing and chemically reacting flows. Corresponding to this interest, multi-species models

have been implemented in CFD solvers [11] such as ANSYS (CFX and Fluent) [12–14],

Comsol Multiphysics [15], OpenFOAM [16, 17], as well as simulation codes developed in

various programming languages [18–21].

There are several approaches to modeling flows with multiple chemical species. One

approach is the multi-phase model using the Ghost Fluid Method (GFM), developed by

Fedkiw et al. [22,23]. This method is particularly useful for modeling multi-phase flows, such

as when fuel is in a liquid state and air is in a gaseous state. The GFM is a flexible technique

to treat compressible two-phase flows. It captures the material interface by solving the level

set equation [24–27] and treats the interface as a boundary that separates a real fluid on one

side and its corresponding ghost fluid on the other side [28]. However, a significant drawback

of the GFM is that it is a non-conservative method, potentially leading to inaccuracies in

preserving key physical quantities such as mass, momentum, and energy. Another approach

3



(a) Jet engine [36] (b) Scramjet engine [37] (c) Rocket Engine [38]

Figure 1.1: Multi-Species gas in aerospace engineering.

involves modeling the flow as a multi-species gas, where different species are distinguished

within the same state. Similar to mono-species flow simulations, the multi-species model

solves systems of conservation laws. However, unlike the mono-species model, multi-species

flows require additional conservation laws for the mass of each species. The mass fraction

of each species is considered to track the various flow properties of each chemical species

[29]. Details of the multi-species conservation laws and the methods for computing mixture

and species properties are well presented in [30], and the multi-species Euler equations are

summarized in [31–35]. The Euler equations are derived without considering viscous effects,

making them simpler and widely used in gas dynamics research [31].

When simulating non-reacting and low-temperature flows, such as ambient air under stan-

dard conditions—comprising nitrogen, oxygen, argon, etc.—average values of molar weight

and thermal properties across species can approximate the air as a single-species gas. How-

ever, in combusting or mixing flows, where different chemical species exhibit significantly

varied behaviors, a multi-species model becomes essential for accurate analysis.

Given these considerations, the multi-species Euler equations are employed in this work

as the governing equations for solving multi-species flows. These equations account for the

conservation laws of mixture mass, mixture momentum, mixture energy, and the mass of

each species.
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1.3 Calorically Imperfect Model

In CFD, the selection of physical models is crucial for balancing accuracy and computational

efficiency. From a thermal physics perspective, gas models can be classified into two cate-

gories: the calorically perfect model and the calorically imperfect model. By definition, a

calorically perfect model assumes specific heat at constant pressure (Cp) and specific heat

at constant volume (Cv) as constant values [39]. In this model, the perfect gas equations

typically use a value of 1.40 for the ratio of specific heats (γ = Cp/Cv). This assumption

is true for air at low-speed or at low-temperature conditions [40]. The calorically perfect

gas assumption significantly reduces mathematical complexity and computational effort re-

quired, and it is still applicable to a wide variety of scenarios in CFD [41]. As a result,

the calorically perfect model is often employed in general CFD applications to streamline

simulations and reduce computational costs.

However, the applicability of the calorically perfect model is limited to low-temperature

conditions. Many aeronautical engineering applications, particularly those involving com-

bustion or high-speed flows, operate beyond the temperature range where this assumption

is valid [39]. For instance, in hypersonic flows where static temperatures are high, the calor-

ically perfect gas assumption becomes inaccurate [42]. To address these limitations, the

calorically imperfect model is utilized. In this model, specific heat capacities vary with tem-

perature due to the excitation of the vibrational modes within molecules [40]. This behavior

is often modeled using empirical polynomial expressions for specific heat capacities, ini-

tially represented by five-term polynomials [43] and later extended to eight terms [1]. In this

study, the calorically imperfect model is chosen to accurately compute high-temperature and

high-speed flows. The NASA Coefficients and Properties (CAP) program [1,2] is employed,

providing polynomial coefficients for specific heat capacities and enthalpy as functions of

temperature for each species.

The calorically imperfect model has been widely used in previous CFD research for

high-speed and high-temperature flows to achieve more accurate computations. For ex-
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ample, Lampart et al. [44] implemented this model in a 3D RANS (Reynolds-Averaged

Navier–Stokes) solver and validated it on low-pressure turbine simulations, comparing re-

sults with both experimental data and the calorically perfect model. They demonstrated

that flow properties such as pressure, temperature, enthalpy, and mass flow rate were more

accurately captured by the calorically imperfect model, with better agreement to experimen-

tal data than the calorically perfect model. In addition, May et al. [45] investigated a DG

solver for high-speed flows using a calorically imperfect model. In their study, flows around

a diamond-shaped airfoil were solved using a p2 approximation. The analysis focused on

the drag coefficient around the airfoil as a function of the number of mesh elements, and

the results were compared with reference values. Their findings confirmed that the solutions

computed with the calorically imperfect model converge to the reference values as the num-

ber of elements increases, thereby validating the accuracy of the model. Jiang et al. [46] also

studied a high-order scheme under a calorically imperfect assumption to enhance hypersonic

heating predictions. They used a fifth-order WENO scheme [47] for their computations. The

benchmark test for stagnation point prediction on a blunt body compared the computational

error using both calorically imperfect and perfect gas models. A wide range of flow condi-

tions, with Mach numbers ranging from 5 to 10, was considered in this test. Jiang et al. [46]

demonstrated that the error in the calorically imperfect model was significantly smaller than

that in the calorically perfect model. Moreover, as the Mach number increased, the disparity

between the two models grew, highlighting the superiority of the calorically imperfect model,

particularly at high Mach numbers where high-temperature effects become more prominent

and cannot be ignored. Overall, the calorically imperfect model has been successfully im-

plemented in CFD solvers and used for high-speed and high-temperature flows, such as

hypersonic and combusting scenarios, leading to more accurate predictions of complex flow

dynamics.

There are a limited number of articles focusing on the use of the DG method for multi-

species gas simulations. For example, Trojak et al. [48] recently introduced a positivity-

preserving numerical stabilization approach for the high-order DG method applied to multi-
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species flow. However, their study only employed the calorically perfect model. Similarly,

Andrés et al. [49] introduced an entropy-stable discretization using a DG method for the

calorically perfect multi-species plasmas. Lv et al. [50] focused on the development of a DG

method for chemically reacting multi-species flows, and Du et al. [51] developed an oscillation-

free DG method for solving the multi-species chemically reacting flows, but both studies

restricted their approach to the calorically perfect gas model for simplicity. Moreover, Luo et

al. [52] proposed a high-order DG method for the numerical simulation of compressible multi-

species flows, but they also used constant specific heats, meaning that the gas was treated as

calorically perfect. These studies highlight a current gap in research regarding the application

of the DG method with a calorically imperfect gas model. Therefore, implementing a multi-

species model within a DG solver that includes the calorically imperfect assumption for

high-temperature flows would be a valuable contribution to the CFD field.

1.4 Thesis Objective

The primary goal of this research is to develop a multi-species high-order code with the

eventual objective of advancing the field of entropy-stability, which ensures that the total

entropy of the discrete system is conserved for dissipation-free problems, thereby respect-

ing the second law of thermodynamics [53]. However, implementing a reacting model and

a multi-species entropy-stable scheme in a DG solver presents significant challenges due to

their inherent complexity. As an initial step towards achieving this goal, the multi-species

model and the calorically imperfect model are implemented in PHiLiP (Parallel High-Order

Library for PDEs through hp-adaptive Discontinuous Galerkin methods) [54], an in-house

DG solver developed by the McGill Computational Aerodynamics Group. This implemen-

tation marks a contribution to the code development framework within the research group,

as PHiLiP previously supported only a mono-species model and a calorically perfect model.

Additionally, conducting relevant test cases using the newly developed calorically imperfect
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multi-species DG solver contributes to the CFD field, given the current scarcity of studies

that utilize these models within a DG framework.

The following outline presents the key steps for developing these models in a DG solver:

(1) understanding the fundamentals of the non-reacting multi-species model and the calori-

cally imperfect model, including algorithms to compute multi-species convective fluxes from

multi-species conservative solutions under the calorically imperfect assumption; (2) imple-

menting these models in a DG solver; (3) testing the code through verification; (4) testing

the implemented models through validation.

This thesis is structured as follows: Firstly, in Chapter 2, we will review the methodology

of DG computations, the multi-species Euler equations using the calorically imperfect model,

and the error evaluations. We will introduce the dimensional and nondimensional equations

and summarize all newly implemented functions in PHiLiP. Secondly, in Chapter 3, we

will provide the results and analysis of the computations for verification. We conducted

three verification tests using the DG solver with the implemented models, including one-

dimensional and two-dimensional tests where the multi-species model is important, as well

as a test with high-temperature conditions where the calorically imperfect model is crucial.

Following verification tests, validation tests are summarized in Chapter 4. Two numerical

tests are run, and their results are compared with previous studies using the multi-species

model to check the applicability of the implemented models. Finally, Chapter 5 will present

the conclusion of this research, and the possible future work will be discussed.

8



Chapter 2

Methodology

This chapter provides a brief overview of fundamental numerical methods central to this

work. The first section describes the Discontinuous Galerkin (DG) method employed in this

study. The second part covers the multi-species Euler equations using the calorically imper-

fect model, presented in both dimensional and nondimensional forms, along with relevant

computational algorithms. The third section details the error estimations used to evaluate

the order of accuracy.

2.1 Discontinuous Galerkin Method

The Discontinuous Galerkin (DG) method is a high-order numerical technique for solving

differential equations [55]. The method combines the high-order accuracy of Finite Element

Methods (FEM) [56] with the flexibility of permitting discontinuities at cell interfaces, a

feature characteristic of Finite Volume Methods (FVM) [57]. The DG method is an advan-

tageous high-order numerical scheme known for its high parallel computing efficiency, which

helps reduce computational time compared to other schemes [58]. This efficiency arises

from its discontinuous nature at element boundaries similar to FVM. Additionally, the DG

method is similar to the FEM as it approximates the solution within each cell as a linear

combination of basis functions. This enables the DG method to achieve high-order solutions
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without requiring a large stencil, ensuring accurate approximate solutions across the entire

domain that depend only on neighboring cells. Considering these advantages of balancing

high-order accuracy and computational cost, the DG method is employed in PHiLiP [54],

the in-house CFD solver developed by the Computational Aerodynamics Group at McGill

University. The developed calorically imperfect multi-species model has been implemented

within this framework.

The Discontinuous Galerkin (DG) method was first introduced by Reed and Hill [59] with

applications to the stationary neutron transport problem. Later, Cockburn and Shu [60–62]

demonstrated that these methods can serve as powerful computational tools for solving

systems of conservation laws. The DG method has since been expanded to address a wide

range of fluid problems, including advection-diffusion cases [63], the Euler equations [64],

and the Navier-Stokes equations [65]. The fundamental principles of the DG method will be

summarized below [55,66,67].

Consider the initial value problem,:

R(u(x, t), t) = ∂u(x, t)
∂t

+ ∇ · F(u(x, t)) − S(u(x, t)) = 0 (2.1)

where u represents the flow solution, R(u(x, t), t) denotes the residual, F(u) is the flux

vector, and S(u) is the source term. Equations of this form include the Euler equations

used in this work. The computational task involves finding a discrete solution uh such that

Rh(uh(x, t), t) = 0. Consider a discrete numerical solution uh(x, t) that approximates the

solution u to Equation 2.1 over the computational domain Ωh. The computational domain Ω

with the boundary Γ consists of non-overlapping elements Ωk ∈ Ωh with the boundary ∂Ωk.

Note that Ωh is the collection of Ωk. Each element has a local solution denoted as uk
h(x, t).

In the DG method, the solution is represented by the direct sum of local solutions over each

element as follows:

uh(x, t) =
⊕

Ωk∈Ωh

uk
h(x, t). (2.2)
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The local solution on each element is discretized to be in space of polynomial with degree

pk and can be expressed as:

uk
h(x) =

N(pk)∑
i=1

uk
i (t)ϕh,i(x),∀x ∈ Ωk, (2.3)

where ϕh,i represents the i-th basis function within the element k and N(pk) denotes the

number of basis functions. To determine the solution, the residual R(u(x, t), t) from Equation

2.1 must be orthogonal to arbitrary test functions ψ. In the DG method, test functions

are chosen as the basis functions used to represent the solution, thus we consider ψ = ϕ.

Multiplying Equation 2.1 by a basis function ϕh and performing integration by parts over

each element yields:

∫
Ωk

ϕh
∂uh

∂t
dΩ −

∫
Ωk

∇ϕh · F(uh)dΩ −
∫

Ωk

ϕhS(uh)dΩ +
∫

∂Ωk

ϕhF̂(u+
h , u

−
h , n)dΓ = 0, (2.4)

where superscripts + and − denote respectively the trace of the functions interior and

exterior to the element’s face Ωk. This formulation provides the weak form of the DG

method employed throughout this study. In this context, the term F̂ denotes the numerical

flux function, which ensures the conservation across interfaces. For flux computations in

this research, the Lax-Friedrichs flux method [68] is employed, and Gauss-Lobatto (GL)

points [69] are used for the integration. The reader is advised to refer to [70] for a thorough

derivation of the DG method employed within PHiLiP.

2.2 Calorically Imperfect Multi-Species Euler Equa-

tions

This section provides a summary of the Euler equations for multi-species gas in both dimen-

sional and nondimensional forms. The convective fluxes are derived from the conservative

solutions, and the corresponding algorithms are detailed here.
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2D Euler equations for multi-species gas [31–35] is given by:

∂Q
∂t

+ ∂E
∂x

+ ∂F
∂y

= 0 (2.5)

where

Q =



ρ̃

ρ̃u

ρ̃v

ρ̃Ẽ

ρs


,E =



ρ̃u

ρ̃u2 + P̃

ρ̃uv

ρ̃uH̃

ρsu


,F =



ρ̃v

ρ̃uv

ρ̃v2 + P̃

ρvH̃

ρsv


, s = 0 : nspecies − 2 (2.6)

in a dimensional form. In Equations 2.5 and 2.6, the first equation represents the conser-

vation of mixture mass, while the second and third equations describe the conservation of

mixture momentum. The fourth equation gives the conservation of mixture energy, and

the remaining equations address the conservation of mass for each individual species. The

following equations apply to all species, indexed from 0 to nspecies − 1, and similarly apply

to mixture properties. For example, terms denoted as ()s can be substituted with (̃).

To advance the conservative solutions to the next time step, the fluxes are computed

based on the solutions of the multi-species Euler equations at the current time step. As

shown in Equation 2.6, the convective fluxes E and F are calculated using the mixture

density ρ̃, velocities u and v, mixture pressure P̃ , mixture specific enthalpy H̃, and species

densities ρs for s = 0 : nspecies − 1.

The ratio of specific heat is defined as:

γ = Cp

Cv

, (2.7)

with the specific heats related to the gas constant by:

R = Cp − Cv. (2.8)
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In a calorically perfect model, where Cv is independent of temperature, the specific internal

energy is given by:

e = CvT. (2.9)

The equation of state is expressed as:

P = ρRT. (2.10)

Using Equations 2.7, 2.8, 2.9, and 2.10, the pressure is derived by the following equation:

P = ρ(γ − 1)(E − k), (2.11)

where E is the specific total energy and k is the kinetic energy, given in a two-dimensional

domain by:

k = 1
2(u2 + v2). (2.12)

Since the conservative variables in Q include specific total energy and velocities as seen

in Equation 2.6, the pressure P can be directly derived from Q using Equation 2.11 in a

calorically perfect model. The specific total enthalpy H is then calculated from E, P , and ρ

using the following Equation:

H = E + P

ρ
. (2.13)

Once P and H are obtained, fluxes are computed, allowing the solution to advance to the

next time step.

In contrast, for a calorically imperfect model, the mixture pressure cannot be directly

obtained from the mixture energy because Equation 2.11 no longer holds, as Cp varies with

temperature. In this case, a different approach is required. First, the temperature is com-

puted from the specific total energy using a root-finding method, and then the pressure is

derived from the equation of state. This section provides a comprehensive summary of the

equations and algorithms needed to compute convective fluxes, as well as temperature, mix-
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ture pressure, and mixture total enthalpy to solve the multi-species Euler equations under

the calorically imperfect assumption.

2.2.1 Dimensional Form

Mass fraction is a measure used in chemistry and fluid dynamics to describe the proportion

of a particular component in a mixture. It is defined as:

Ys = ρs

ρ̃
, (2.14)

where Ys is the mass fraction of species s, ρs is the density of species s, and ρ̃ is the mixture

density. The mixture property σ̃ (σ can be replaced with ρ, P,E, e,H, h, Cp, Cv, γ, R,M , and

a) is obtained using mass fraction as follows:

σ̃ =
nspecies∑

s=1
Ysσs, (2.15)

where σs represents the property of species s. This definition allows us to calculate the

overall properties of the mixture based on the properties and proportions of the individual

species. For example, the mixture density ρ̃, pressure P̃ , and internal energy Ẽ can all be

derived from the corresponding properties of the individual species and their mass fractions

within the mixture. This approach is crucial in multi-species CFD simulations. Similarly,

the species property is computed using mass fraction and mixture property as:

σs = Ysσ̃. (2.16)

This relationship indicates that the property of a specific species can be determined by its

mass fraction and the corresponding mixture property.

In terms of energy relations, specific kinetic energy is given by:

k = 1
2
(
u2 + v2

)
, (2.17)
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where u and v are the velocities in each direction. Specific species’ total energy is the sum

of specific species’ internal energy and specific kinetic energy calculated in Equation 2.17,

and it is expressed as:

Es = es + 1
2(u2 + v2) = es + k, (2.18)

where Es is the specific species’ total energy of species s. Using this specific species’ total

energy, species pressure, and species’ density, we can compute the specific species’ total

enthalpy by:

Hs = Es + Ps

ρs

, (2.19)

where Ps denotes the species pressure, and it is calculated from the equation of state:

Ps = ρsRsT, (2.20)

where Rs is the gas constant of species s, and T is the temperature.

The temperature, in the calorically imperfect model, is computed using a root-finding

algorithm applied to the equation for specific internal energy. There are two primary meth-

ods to obtain species specific internal energy. One method to obtain species specific internal

energy is using Equation 2.18. Another method involves integrating with respect to temper-

ature, as follows:

es(T ) =
∫ T

Tref

Cv,s dT + ef,s, (2.21)

where es(T ) is the specific internal energy of species s at temperature T , Tref is reference

temperature, Cv,s is specific heat at constant volume for species s, and ef,s is specific energy

of formation of species, s. Similarly, using integration with respect to temperature, specific

enthalpy of species s is given by [71]:

hs(T ) =
∫ T

Tref

Cp,s dT + hf,s, (2.22)
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where hs(T ) denotes the specific enthalpy of species s at temperature T , hf,s is specific

enthalpy of formation of species s. ef,s has the following equation using hf,s:

ef,s = hf,s −RsTref , (2.23)

where Rs is the gas constant of species, s. Its relationship to specific heat capacities is given

by the following equation:

Rs = Cp,s − Cv,s, (2.24)

where Cp,s and Cv,s are specific heat for species s at constant pressure and at constant

volume, respectively. We obtain the following equation by substituting Equations 2.22, 2.23

and 2.24 into Equation 2.21:

es(T ) =
∫ T

Tref

(Cp,s −Rs) dT + ef,s

=
∫ T

Tref

Cp,s dT −Rs(T − Tref ) + hf,s −RsTref

= hs(T ) − hf,s −Rs(T − Tref ) + hf,s −RsTref

= hs(T ) −RsT.

(2.25)

When modeling multi-species gas, it is common practice to compute thermodynamic proper-

ties of individual species using curve fits [72]. The NASA Coefficients and Properties (CAP)

program [1, 2] provides polynomial curve fits for the specific heat at constant pressure Cp,s

and specific enthalpy hs of each species s as functions of temperature:

Cp,s(T )
Rs

= a1,sT
−2 + a2,s/T + a3,s + a4,sT + a5,sT

2 + a6,sT
3 + a7,sT

4, (2.26)

hs(T )
RsT

= −a1,sT
−2 + a2,s(lnT )/T + a3,s + a4,sT/2 + a5,sT

2/3 + a6,sT
3/4 + a7,s0T

4/5 + b1,s/T,

(2.27)

where the coefficients ai,s and bj,s vary with temperature. These polynomials use a reference

pressure of Pref = 1 × 105 Pa and a reference temperature of Tref = 298.15 K. Additionally,
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the program provides the specific enthalpy of formation hf,s of species s given at Tref .

Equations 2.26 and 2.27 allow for accurate computation of thermodynamic properties of

gases, particularly for high-temperature simulations where the calorically imperfect model

is necessary.

The energy of molecules is composed of four parts of internal energy [73]:

es(T ) = et,s(T ) + er,s(T ) + ev,s(T ) + ee,s(T ), (2.28)

where et,s(T ) is the translational energy due to the random motion and collision of the

gas molecules, er,s(T ) is rotational energy of the molecule about its axes, ev,s(T ) is the

vibrational energy from molecular vibrations, and ee,s(T ) is the energy due to electronic

excitation of species s at temperature T [74]. In low-temperature conditions, vibrational and

electronic effects are negligible, and these components are omitted in the calorically perfect

model. However, for high-temperature or high-speed flows, the contributions of vibrational

and electronic energies become significant, making it essential to use a calorically imperfect

model. The NASA Coefficients and Properties (CAP) program is based on the calorically

imperfect assumption. It builds on the work of McBride and Gordon [75], who utilized

statistical mechanics to include vibrational and electronic effects in addition to translational

and rotational energies. Therefore, when using the NASA CAP polynomials for calculating

specific enthalpy hs(T ) (as in Equation 2.27), the four components of internal energy (as

expressed in Equation 2.28) are considered. Consequently, the NASA CAP polynomials are

well-suited for modeling calorically imperfect gases.

Equations 2.26 and 2.27 are rewritten as:

Cp,s(T ) = (a1T
−2 + a2/T + a3 + a4T + a5T

2 + a6T
3 + a7T

4)Rs (2.29)

hs(T ) = (−a1T
−2 +a2(lnT )/T +a3 +a4T/2+a5T

2/3+a6T
3/4+a7T

4/5+b1/T )RsT. (2.30)
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Given that we have two methods to compute specific internal energy in Equations 2.18 and

2.25, we can compute temperature implicitly by solving the following equation:

ẽ(T ) =
nspecies∑

s=1
Yses(T ) =

nspecies∑
s=1

Ys(hs(T ) −RsT ). (2.31)

2.2.2 NonDimensional Form

One significant reason to employ nondimensional properties in Computational Fluid Dy-

namics (CFD) is to facilitate comparisons with benchmark solutions or to calibrate against

key dimensionless parameters [76]. In dimensional form, the variables and coefficients in

the equations can vary widely in magnitude. Such disparities can lead to ill-conditioning of

the Jacobian matrices formed to solve the linear system at each nonlinear iteration. Nondi-

mensionalization typically normalizes these variables, bringing them within a similar range

of values. This reduction in the range of values improves the conditioning of the system

by ensuring that the numerical algorithms operate on values that are neither too large nor

too small, reducing the possibility of round-off and subtractive cancellation errors and thus

improving numerical stability. This research aligns the method of nondimensionalization

with the approach of Masatsuka [77]. The nondimensional quantities used in this study are

as follows (nondimensionalization also applies to mixture properties; for example, ()s can be
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replaced with (̃)):

ρ∗ = ρ

ρref

, u∗ = u

uref

, v∗ = v

uref

, P ∗ = P

ρrefu2
ref

, x∗ = x

Lref

, y∗ = y

Lref

, t∗ = t

Lref/uref

,

ρ∗
s = ρs

ρref

, k∗ = k

u2
ref

, P ∗
s = Ps

ρrefu2
ref

, E∗
s = Es

u2
ref

, H∗
s = Hs

u2
ref

, e∗
s = es

u2
ref

, h∗
s = hs

u2
ref

,

R∗
s = Rs

Rref

, C∗
p,s = Cp,s

Rref

, C∗
v,s = Cv,s

Rref

, γ∗
s = γs

γref

,

T ∗
ref = Tref

Tref

= 1, e∗
tr,s = etr,s

u2
ref

, e∗
v,s = ev,s

u2
ref

, e∗
e,s = ee,s

u2
ref

, e∗
f,s = ef,s

u2
ref

,

a∗
s = as

uref

, M∗
s = Ms, Y

∗
s = Ys, tol

∗ = tol, err∗ = err, dim∗ = dim, vel2∗ = vel2
u2

ref

,

L∗ = L

Lref

, N∗ = N

(2.32)

Using nondimensionalizations in Equation 2.32, the dimensional multi-species Euler equa-

tions and related equations described in the previous section are nondimensionalized as

follows. The nondimensional multi-species Euler equations (2D) are:

∂Q∗

∂t∗
+ ∂E∗

∂x∗ + ∂F∗

∂y∗ = 0 (2.33)

where

Q∗ =



ρ̃∗

ρ̃∗u∗

ρ̃∗v∗

ρ̃∗Ẽ∗

ρ∗
s


,E∗ =



ρ̃∗u∗

ρ̃∗(u∗)2 + P̃ ∗

ρ̃∗u∗v∗

ρ̃∗u∗H̃∗

ρ∗
su

∗


,F∗ =



ρ̃∗v∗

ρ̃∗u∗v∗

ρ̃∗(v∗)2 + P̃ ∗

ρ∗v∗H̃∗

ρ∗
sv

∗


, s = 0 : nspecies − 2 (2.34)

The equations introduced in the previous section will now be expressed using the nondi-

mensionalization outlined in Equation 2.32. For example, the nondimensional version of
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Equation 2.19 is given by:

H∗
su

2
ref = E∗

su
2
ref +

P ∗
s ρrefu

2
ref

ρ∗
sρref

. (2.35)

After canceling out the nondimensional terms, Equation 2.35 simplifies to:

H∗
s = E∗

s + P ∗
s

ρ∗
s

. (2.36)

This resulting equation no longer includes reference values and resembles the dimensional

form presented in Equation 2.19. Similarly, Equations 2.14, 2.15, 2.16, 2.17, 2.18, 2.24, and

2.28 can be used by simply substituting dimensional properties by nondimensional properties.

However, in Equations 2.20, 2.21, 2.22, 2.23,2.25, and 2.31, certain reference values remain

even after the nondimensionalization process described in Equation 2.32. For example, the

equation of state (Equation 2.20) transforms into its nondimensional form as follows:

P ∗
s = ρ∗

sR
∗
sT

∗
(
RrefTref

u2
ref

)
= ρ∗

sR
∗
sT

∗
(

1
γrefM2

ref

)
, (2.37)

where ρ∗
s is nondimensional density for species s, R∗

s is nondimensional gas constant for

species s, T ∗ is nondimensional temperature, Rref is reference gas constant, Tref is reference

temperature, uref is reference velocity, γref is reference specific heat ratio, and Mref is the

reference Mach number. Hence, some reference values are still present in the nondimension-

alized equation. The integration form of nondimensional specific internal energy for species

s is derived from Equations 2.21 and 2.32, and is expressed as:

e∗
s(T ∗) =

(
RrefTref

u2
ref

)∫ T ∗

T ∗
ref

C∗
v,s dT

∗ + e∗
f,s, (2.38)

where T ∗
ref is nondimensional reference temperature, C∗

v,s is nondiensional specific heat con-

stant at constant pressure, and e∗
f,s is nondimensional specific energy of formation of species

s. Using Equation 2.32, specific enthalpy of species s in Equation 2.22 is non-denationalized
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as:

h∗
s(T ∗) =

(
RrefTref

u2
ref

)∫ T ∗

T ∗
ref

C∗
p,s dT

∗ + h∗
f,s, (2.39)

where h∗
s(T ) denotes nondimensional specific enthalpy of species s at nondimensional tem-

perature T ∗, h∗
f,s is nondimensional specific enthalpy of formation of species s. Based on

Equation 2.23, e∗
f,s has the following equation using h∗

f,s:

e∗
f,s = h∗

f,s −
(
RrefTref

u2
ref

)
R∗

sT
∗
ref , (2.40)

where R∗
s is the gas constant of species s. We obtain the following equation about nondimen-

sional internal energy for species s by substituting Equations 2.39, 2.40, and nondimensional

version of 2.24 into Equation 2.38:

e∗
s(T ∗) = h∗

s(T ∗) −
(
RrefTref

u2
ref

)
R∗

sT
∗ (2.41)

Nondimensional specific enthalpy in Equation 2.41 is derived from Equation 2.27:

h∗
s(T ∗) = hs(T )

Rref

, (2.42)

where the NASA CAP [1] [2] database is used in the computation of dimensional specific

enthalpy hs(T ) and the dimensional temperature in Equation 2.42 is derived from nondi-

mensional temperature as:

T = TrefT
∗, (2.43)

where T is dimensional temperature, Tref is reference temperature, and T ∗ is nondimensional

temperature. Hence, e∗
s(T ∗) on the left hand side of Equation 2.41 are obtained using

Equations 2.42 and 2.43.

The Nondimensional and mixture version of Equation 2.18 gives the following relation-

ship:

ẽ∗ = Ẽ∗ + k∗, (2.44)
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where ẽ∗ is the nondimensional mixture specific internal energy, Ẽ∗ is the nondimensional

mixture specific total energy, and k∗ is the nondimensional kinetic energy. On the other

hand, ẽ∗(T ∗) is derived by summing e∗
s(T ∗) in Equation 2.41 over all species:

ẽ∗(T ∗) =
nspecies∑

s=1
Y ∗

s e
∗
s(T ∗)

=
nspecies∑

s=1
Y ∗

s

[
h∗

s(T ∗) −
(
RrefTref

u2
ref

)
R∗

sT
∗
]
,

(2.45)

where Y ∗
s represents the mass fraction of species s. Therefore, by combining Equations 2.44

and 2.45, the following equation holds:

Ẽ∗ + k∗ =
nspecies∑

s=1
Y ∗

s

[
h∗

s(T ∗) −
(
RrefTref

u2
ref

)
R∗

sT
∗
]

(2.46)

In Equation 2.46, nondimensional temperature is implicitly computed using the Newton-

Raphson method. Note that the derivative of h∗
s(T ∗) with respect to T ∗ is required to

perform the Newton-Raphson update, and it is derived from Equation 2.39 as:

(h∗
s(T ∗))′ =

(
RrefTref

u2
ref

)
C∗

p,s(T ∗), (2.47)

where the nondimensional specific heat at constant pressure for species s, C∗
p,s(T ∗), is given

by:

C∗
p,s(T ∗) = Cp,s(T )

Rref

, (2.48)

where the dimensional specific heat at constant pressure for species s, Cp,s(T ), is computed

using the NASA CAP polynomials as given in Equation 2.29. The dimensional temperature

T is obtained using the relation in Equation 2.43.

2.2.3 Algorithm

To implement a calorically imperfect multi-species model to a calorically perfect mono-species

discontinuous Galerkin (DG) solver, we need to introduce functions to compute nondi-
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mensional multi-species convective fluxes E∗ and F∗ including (ρ̃∗, u∗, v∗, P̃ ∗, H̃∗, and ρ∗
s)

from nondimensional multi-species conservative solutions (Q∗) under calorically imperfect

assumptions. Nondimensional multi-species conservative solutions yield the nondimensional

multi-species convective fluxes when all main functions denoted as fMi
are computed. The

supporting functions denoted as fSj
are used for the pre-processing or the post-processing.

In Algorithm 1, the nondimensional mixture density ρ̃∗ is extracted as the first element

of Q∗. Algorithm 2, calculates the nondimensional velocities u∗ and v∗ by dividing the

nondimensional mixture momentum by ρ̃∗ obtained in Algorithm 1. The squared sum of

these velocities is computed in Algorithm 3, and the nondimensional kinetic energy k∗ is

evaluated in Algorithm 4. Nondimensional mixture total energy Ẽ∗ is directly computed from

conservation of mixture energy in Q∗ using Algorithm 5. The nondimensional species density

ρ∗
s is also directly obtained from conservation of species mass in Algorithm 6. Algorithm 7

calculates the mass fraction of species s, using ρ̃∗ and ρ∗
s, while mixture property is obtained in

Algorithm 8. Dimensional temperature T is given in Algorithm 9 using reference temperature

Tref and nondimensional temperature T ∗. We then compute the nondimensional species

gas constants R∗
s in Algorithm 10. The NASA CAP database provides C∗

p,s, C∗
v,s, and h∗

s

as functions of temperature in Algorithms 11, 12, and 13, respectively. Specific internal

energy for species s is determined in Algorithm 14 using temperature. However, we need to

find the nondimensional temperature T ∗ through a root-finding algorithm in Algorithm 15.

After computing the nondimensional mixture gas constant R̃∗ from R∗
s and Y ∗

s in Algorithm

16, the nondimensional mixture pressure P̃ can be calculated using the equation of state

in Algorithm 17. Using P̃ , the nondimensional mixture total enthalpy H̃∗ is obtained in

Algorithm 18. Finally, the nondimensional multi-species convective fluxes are computed in

Algorithm 19 using ρ̃∗, u∗, v∗, P̃ ∗, H̃∗, and ρ∗
s.
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The primitive solutions are given as:

P∗ =



ρ̃∗

u∗

v∗

P̃ ∗

Y ∗
s


, s = 0 : nspecies − 2; (2.49)

where ρ̃∗ is the nondimensional mixture density, u∗ and v∗ denote nondimensional velocities,

P̃ ∗ represent nondimensional mixture pressure, and Y ∗
s is the mass fraction for species s.

The algorithms of all implemented functions to compute calorically imperfect multi-species

gas are summarized below.

Algorithm 1 Compute mixture density ρ̃∗: fM1

Input: Conservative solutions: Q∗

Output: Mixture density: ρ̃∗

1: Compute mixture density: ρ̃∗ = Q∗[0]
2: Return: ρ̃∗

Algorithm 2 Compute velocities u∗ and v∗: fM2

Input: Conservative solutions: Q∗

Output: Velocities: u∗ and v∗

1: Compute mixture density: ρ̃∗ = compute mixture density(Q∗)
2: Compute velocities: u∗ = Q∗[1]

ρ̃∗ and v∗ = Q∗[2]
ρ̃∗

3: Return: u∗ and v∗

Algorithm 3 Compute squared velocities vel2∗: fM3

Input: Conservative solutions: Q∗

Output: Squared velocities: vel2∗

1: Compute velocities: u∗ and v∗ = compute velocities(Q∗)
2: Compute squared velocities: vel2∗ = (u∗)2 + (v∗)2

3: Return: vel2∗
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Algorithm 4 Compute specific kinetic energy k∗: fM4

Input: Conservative solutions: Q∗

Output: Specific kinetic energy: k∗

1: Compute squared velocities: vel2 = compute squared velocities(Q∗)
2: Compute specific kinetic energy: k∗ = 1

2vel2
∗

3: Return: k∗

Algorithm 5 Compute mixture specific total energy Ẽ∗: fM5

Input: Conservative solutions: Q∗

Output: Mixture specific total energy: Ẽ∗

1: Compute mixture density: ρ̃∗ = compute mixture density(Q∗)
2: Compute mixture specific total energy: Ẽ∗ = Q∗[nstate−1]

ρ̃∗

3: Return: Ẽ∗

Algorithm 6 Compute species densities ρ∗
s: fM6

Input: Conservative solutions: Q∗

Output: Species densities: ρ∗
s, s = 0 : nspecies − 1

1: Compute mixture density: ρ̃∗ = compute mixture density(Q∗)
2: Set summation: sum∗ = 0.0
3: Compute (0 : nspecies − 2) th species densities and their sum:
4: for i = nstate : nstate + (nspecies − 2) do
5: s = i− nstate

6: ρ∗
s = Q∗[i]

7: sum∗ += ρ∗
s

8: end for
9: Compute nspecies − 1 th species density: ρ∗

s = ρ̃∗ − sum∗

10: Return ρ∗
s, s = 0 : nspecies − 1
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Algorithm 7 Compute mass fractions: Y ∗
s : fM7

Input: Conservative solutions: Q∗

Output: Mass fraction: Y ∗
s , s = 0 : nspecies − 1

1: Compute mixture density ρ̃∗: ρ̃∗ = compute mixture density(Q∗)
2: Compute species densities (s = 0 : nspecies − 1): ρ∗

s = compute species density(Q∗)
3: Compute mass fractions (s = 0 : nstate − 1) th
4: for s = 0 : nspecies − 1 do
5: Compute mass fractions for s = 0 : nspecies − 1 th species: Y ∗

s = ρ∗
s

ρ̃∗

6: end for
7: Return: Y ∗

s , s = 0 : nspecies − 1

Algorithm 8 Compute mixture from species: property∗
s: fM8

Input: Mass fractions and species values: Y ∗
s and property∗

s, s = 0 : nspecies − 1
Output: Mixture value: ˜property∗

1: Set summation: sum∗ = 0.0
2: for s = 0 : nspecies − 1 do
3: sum∗+ = Y ∗

s property∗
s

4: end for
5: Return: ˜property∗ = sum∗

Algorithm 9 Compute dimensional temperature T : fM9

Input: Temperature: T ∗

Output: Dimensional temperature: T
1: Compute dimensional temperature: T = T ∗Tref

2: Return: T

Algorithm 10 Compute species gas constants R∗
s: fM10

Input: Universal gas constant: R∗
u

Output: Species gas constants: R∗, s = 0 : nspecies − 1
1: for s = 0 : nspecies − 1 do
2: Compute species gas constants:

Rs = Ru

MWs

R∗
s = Rs

Rref

3: end for
4: Return R∗

s, s = 0 : nspecies − 1
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Algorithm 11 Compute species specific heat at constant pressure C∗
p,s: fM11

Input: Temperature: T ∗

Output: Species specific heat at constant pressure:
C∗

p,s, s = 0 : nspecies − 1
1: Compute dimensional temperature: T = compute dimensional temperature(T ∗)
2: for s = 0 : nspecies − 1 do
3: Compute dimensional species specific heat at constant pressure using NASA CAP:

Cp,s = fNASA−CAPCp,s
(T )Rs

4: Compute nondimensional specific heat at constant pressure: C∗
p,s = Cp,s

Rref

5: end for
6: Return C∗

p,s, s = 0 : nspecies − 1

Algorithm 12 Compute species specific heat at constant volume C∗
v,s: fM12

Input: Temperature: T ∗

Output: Species specific heat at constant volume
C∗

v,s, s = 0 : nspecies − 1
1: for s = 0 : nspecies − 1 do
2: Compute species specific heat at constant pressure: C∗

p,s = compute species Cp(T ∗)
3: Compute species specific heat at constant volume: C∗

v,s = C∗
p,s −R∗

s

4: end for
5: Return: C∗

v,s, s = 0 : nspecies − 1

Algorithm 13 Compute species specific enthalpy h∗
s: fM13

Input: Temperature: T ∗

Output: Species specific enthalpy: h∗
s, s = 0 : nspecies −1

1: Compute dimensional temperature: T = compute dimensional temperature(T ∗)
2: for s = 0 : nspecies − 1 do
3: Compute dimensional species specific enthalpy using NASA CAP: hs =

fNASA−CAPhs
(T )RsT

4: Compute nondimensional species specific enthalpy: h∗
s = hs

u2
ref

5: end for
6: Return h∗

s, s = 0 : nspecies − 1

Algorithm 14 Compute species specific internal energy e∗
s : fM14

Input: Temperature: T ∗

Output: Species specific internal energy: e∗
s, s = 0 : nspecies−1

1: for s = 0 : nspecies − 1 do
2: Compute species specific enthalpy using: h∗

s = compute species specific enthalpy(T ∗)
3: Compute species specific internal energy: e∗

s = h∗
s − Rref Tref

u2
ref

R∗
sT

∗

4: end for
5: Return e∗

s, s = 0 : nspecies − 1
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Algorithm 15 Compute temperature T ∗: fM15

Input: Conservative solutions: Q∗

Output: Temperature: T ∗

1: Compute mixture specific total energy using:
Ẽ∗ = compute mixture specific total energy (Q∗)

2: Compute specific kinetic energy: k∗ = compute specific kinetic energy (Q∗)
3: Compute mass fraction: Y ∗

s = compute mass fraction(Q∗)
4: Compute mixture density: ρ̃∗ = compute mixture density (Q∗)
5: Compute mixture gas constant: R̃∗ = compute mixture gas constant (Q∗)
6: Compute initial mixture pressure: P̃ ∗

0 = ρ̃∗(γ∗
ref − 1)(Ẽ∗ − k∗)

7: Set the initial guess temperature: T ∗
0 = P̃ ∗

0
ρ̃∗R̃∗ (γ∗

refM
2
ref )

8: while err∗ > tol∗ do
9: 1): f ∗(T ∗

n)
10: Compute Newton-Raphson function f ∗(T ∗

n)
(
= ẽ∗(T ∗

n) − (Ẽ∗ − k∗)
)

in the following
way:

11: Compute species specific internal energy at T ∗
n :

12: for i = 0 : nspecies − 1 do
13: Compute species specific internal energy at T ∗

n :
e∗

s(T ∗
n) = compute species specific internal energy(T ∗

n)
14: end for
15: Compute mixture specific internal energy:

ẽ∗(T ∗
n) = compute mixture from species(Y ∗

s , e
∗
s(T ∗

n))
16: Compute Newton-Raphson function: f ∗ = ẽ∗(T ∗

n) − (Ẽ∗ − k∗)
17: 2): f ∗′(T ∗

n)
18: Compute Newton-Raphson derivative function f ∗′(T ∗

n)
(
= C̃∗

v (T ∗
n)
)

in the following
way:

19: for i = 0 : nspecies − 1 do
20: Compute species specific heat at constant volume at T ∗

n :
C∗

v,s(T ∗
n) = compute species Cv(T ∗

n)
21: C̃∗

v (T ∗
n) = compute mixture from species(Y ∗

s , C
∗
v,s(T ∗

n))
22: end for
23: Compute Newton-Raphson derivative function: f ∗′ = C̃∗

v (T ∗
n)

24: 3): Main part
25: Newton-Raphson Method: T ∗

n+1 = T ∗
n − f∗′

(T ∗
n)

f∗(T ∗
n)

26: Compute error: err =
∣∣∣T ∗

n+1 − T ∗
n

∣∣∣
27: Update temperature: T ∗

n = T ∗
n+1

28: end while
29: Return: T ∗ = T ∗

n+1 = T ∗
n
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Algorithm 16 Compute mixture gas constant R̃∗: fM14

Input: Conservative solutions: Q∗

Output: Mixture gas constant: R̃∗

1: Compute mass fraction: Y ∗
s = compute mass fraction(Q∗)

2: Compute mixture gas constant: compute mixture from species(Y ∗
s , R

∗
s)

3: Return: R̃∗

Algorithm 17 Compute mixture pressure P̃ ∗: fM17

Input: Conservative solutions: Q∗

Output: Mixture pressure: P̃ ∗

1: Compute mixture density: ρ̃∗ = compute mixture density(Q∗)
2: Compute mixture gas constant: R̃∗ = compute mixture gas constant(Q∗)
3: Compute temperature: T ∗ = compute temperature(Q∗)
4: Compute mixture pressure: P̃ ∗ = ρ̃∗R̃∗T ∗ 1

γref M2
ref

5: Return: P̃ ∗

Algorithm 18 Compute mixture specific total enthalpy H̃∗: fM18

Input: Conservative solutions: Q∗

Output: Mixture specific total enthalpy: H̃∗

1: Compute mixture specific total energy: Ẽ∗ = compute mixture specific total energy(Q∗)

2: Compute mixture pressure: P̃ ∗ = compute mixture pressure(Q∗)
3: Compute mixture density: ρ̃∗ = compute mixture density(Q∗)
4: Compute mixture specific total enthalpy: H̃∗ = Ẽ∗ + P̃ ∗

ρ̃∗

5: Return: H̃∗
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Algorithm 19 Compute convective flux E∗ and F∗: fM19

Input: Conservative solutions: Q∗

Output: Convective flux: E∗ and F∗

1: Compute mixture density: ρ̃∗ = compute mixture density(Q∗)
2: Compute velocities: u∗ and v∗ (= velocity) = compute velocities(Q∗)
3: Compute mixture pressure: P̃ ∗ = compute mixture pressure(Q∗)
4: Compute mixture specific total enthalpy:
H̃∗ = compute mixture specific total enthalpy(Q∗)

5: Compute species density: ρ∗
s = compute species density(Q∗)

6: for i = 0 : dim− 1 do
7: A): Mixture density equation
8: f∗

lux[0][dim] = Q∗[i+ 1]
9: B): Compute momentum equation

10: for j = 0 : dim− 1 do
11: f∗

lux[1 + j][i] = ρ̃∗v∗
elocity[i]v∗

elocity[j]
12: end for
13: f∗

lux[1 + j][i] += ρ̃∗

14: C): Energy equation
15: F ∗

lux[nstate − 1][i] = ρ̃∗v∗
elocity[i]H̃∗

16: D) Species density equation
17: for k = nstate : nstate + (nspecies − 2) do
18: s = k − nstate

19: f∗
lux[k][i] = ρ∗

s[s]v∗
elocity[i]

20: end for
21: end for
22: E∗ = f∗

lux[:][0],F∗ = f∗
lux[:][1]

23: Return: E∗ and F∗
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Algorithm 20 Convert primitive to conservative Q∗: fS20

Input: Primitive solutions: P∗

Output: Species densities: Q∗

1: A) Mixture density
2: Compute mixture density: ρ̃∗ = P∗[0]
3: Q∗[0] = P∗[0]
4: B) Momentum
5: for i = 0 : dim− 1 do
6: Compute velocities: vel∗[i] = P∗[i+ 1]
7: Compute squared velocities: vel2∗ = vel∗[i]vel∗[i]
8: Q∗[i+ 1] = ρ̃∗vel∗[i]
9: end for

10: C) Energy
11: sum∗ = 0.0
12: for i = dim+ 2 : nspecies − 2 do
13: s = i− (dim+ 2)
14: Compute (0 : nspecies − 2) th species densities: ρ∗

s = P∗[i]
15: Compute summation: sum∗ += ρ∗

s

16: end for
17: Compute (nstate − 1) th species density: ρ∗

s = ρ̃∗ − sum∗

18: for i = 0 : nspecies − 1 do
19: Compute mass fractions: Y ∗

s = ρ∗
s

ρ̃∗

20: end for
21: for i = 0 : nspecies − 1 do
22: Compute mixture gas constant: R̃∗ = compute mixture from species(Y ∗

s , R
∗
s)

23: end for
24: Compute temperature: T ∗ = P̃ ∗

ρ̃∗R̃∗
u2

ref

Rref Tref

25: Compute specific kinetic energy: k∗ = 1
2vel2

∗

26: for i = 0 : nspecies − 1 do
27: Compute species specific enthalpy: h∗

s = compute species specific enthalpy(T ∗)
28: Compute species specific internal energy: e∗

s = h∗
s −R∗

sT
∗

29: Compute species specific total energy: E∗
s = e∗

s + k∗

30: end for
31: Compute mixture specific total energy: Ẽ∗ = compute mixture from species(Y ∗

s , E
∗
s )

32: D) Species densities
33: for s = 0 : nspecies − 2 do
34: Q∗[nstate − 1 + s] = ρ∗

s

35: end for
36: Return: Q∗
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Algorithm 21 Compute species specific heat ratio γ∗
s : fS21

Input: Conservative solutions: Q∗

Output: Species specific heat ratio: γ∗
s , s = 0 : nspecies −1

1: Compute temperature: T ∗ = compute temperature(Q∗)
2: for s = 0 : nspecies − 1 do
3: Compute species specific heat at constant pressure: C∗

p,s = compute species Cp(T ∗)
4: Compute species specific heat at constant volume: C∗

v,s = compute species Cv(T ∗)
5: Compute species specific heat ratio: γ∗

s = C∗
p,s

C∗
v,s

6: end for
7: Return: γ∗

s , s = 0 : nspecies − 1

Algorithm 22 Compute species speed of sound a∗
s: fS22

Input: Conservative solutions: Q∗

Output: Species specific speed of sound: a∗
s, s = 0 : nspecies−1

1: Compute temperature: T ∗ = compute temperature(Q∗)
2: for s = 0 : nspecies − 1 do
3: Compute species specific heat ratio: γ∗

s = compute species gamma(T ∗)
4: Compute species speed of sound: a∗

s =
√
γ∗

SR
∗
sT

∗

5: end for
6: Return: a∗

s, s = 0 : nspecies − 1

2.3 Error Estimation

In order to rigorously test the implemented numerical method, one should create convergence

plots. A convergence plot is a tool used to assess the accuracy of a numerical solution by

examining how the error decreases as the spatial discretization of the domain is refined. It

provides a visual and quantitative way to evaluate the effectiveness of discretization schemes

and to ensure that the solution is converging appropriately as the mesh is refined. Error

norms measure the difference between the numerical and the exact solution. The most often

used norms are [78]:

L1 error norm

ϵ1 = ||unumerical − uexact||1 =
∫

Ω
|unumerical − uexact| dΩ (2.50)

L2 error norm

ϵ2 = ||unumerical − uexact||2 =
(∫

Ω
|unumerical − uexact|2 dΩ

)1/2
(2.51)
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L∞ error norm

ϵ∞ = ||unumerical − uexact||∞ = max
Ω

(|unumerical − uexact|) (2.52)

These norms help quantify the accuracy of the numerical method and its convergence proper-

ties, providing a comprehensive evaluation of the implemented models. The over-integration

approach precisely computes L1 and L2 norms by involving additional Gauss quadrature

points, ensuring accurate error measurement and reliable convergence analysis. To create

convergence plots, one needs the exact solution of the problem. Therefore, convergence plots

are based on data from numerical solutions of problems that have well-known analytic solu-

tions [78]. In our research, since the analytic solutions are unavailable in the verification test

cases, we will run the case for one cycle to use the initial solutions as the exact solutions.

This approach allows us to rigorously test the accuracy and convergence of the numerical

method despite the absence of explicit analytic solutions. By introducing the ratio r of

coarse to fine mesh element spacing, the observed order of accuracy p becomes [79]:

p =
ln
(

ϵp,2
ϵp,1

)
ln(r) , (2.53)

where ϵp,1 and ϵp,2 indicate the Lp error norm for the fine mesh and coarse mesh, respectively.
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Chapter 3

Verification

This section presents a series of test cases to confirm the applicability of the multi-species

model and the calorically imperfect model. Verification is demonstrated in one-dimensional

and two-dimensional domains. A high-temperature test is conducted in addition to the

low-temperature test to demonstrate the applicability of the calorically imperfect physics

model. The order of accuracy is studied for low and high polynomial orders. The accuracy

of the calorically imperfect multi-species Euler equations solver is discussed by comparing

the computed order with the theoretical order as well as plots obtained in the previous study.

3.1 1D Low-Temperature Vortex Advection

The accuracy of the multi-species model is studied in a one-dimensional domain through a

series of experiments with different polynomial orders and numbers of elements. The test is

solved using calorically imperfect multi-species Euler equations. The initial conditions and

computational domain of this test case are chosen based on the numerical test by Wang et

al. [80].
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3.1.1 Problem Statement

The initial conditions of this 3-species (H2, O2, and N2) test are given by the following

equations:

T = T0 − (γ0 − 1) Γ2

8γ0π

(
1 − r2

2

)
,

YH2 = YH2,0 − 2πa1

γ0Γ exp
(

1 − r2

2

)
,

YO2 = YO2,0 − 2πa2

γ0Γ exp
(

1 − r2

2

)
,

YN2 = 1 − (YH2 + YO2) ,

(3.1)

where T0 = 300 K, Γ = 50, γ0 = 1.4, YH2,0 = 0.01277, YO2,0 = 0.101, a1 = 0.005, a2 = 0.03,

and r = x− x0; where x0 is the centre of the physical domain. The uniform initial mixture

pressure and velocity are P = 101325 Pa and u = 100 m/s, respectively. Temperature and

mass fractions are given by a Gaussian profile in Equation 3.1. Mixture density is obtained

from temperature and mixture pressure using the equation of state. The computational

domain length is L = 10 m and the center of the domain is located at x0 = 5 m. Periodic

boundary conditions are applied such that the flow advects through the domain every 0.1 s.

The initial conditions are visualized in Figure 3.1. Gaussian profiles are depicted in

Figures 3.1a, 3.1b, and 3.1c. The temperature ranges from 250 K to 300 K, as seen in Figure

3.1c, where both calorically perfect and imperfect models can be applied. Plots after 0.1

cycle (0.01 s) are shown in Figures 3.2 and 3.3 to confirm the advection of the vortex.

3.1.2 Results

L1, L2, and L∞ error norms of mixture density and mass fraction of hydrogen are computed

after 1 cycle (t = 0.1 s) by comparing results against the initial conditions, which are

considered as the exact solutions. To demonstrate the capability of computing different

polynomial orders, tests are conducted for p = 2 and p = 5, aligned with Wang et al. [80].

The number of elements is increased from N = 2 to 64 for the p = 2 test and to N = 16

for the p = 5 test until reasonable convergence of the error norm slope is reached. The ratio
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(a) Mixture density (b) H2 mass fraction

(c) Temperature

Figure 3.1: Profiles of mixture density, H2 mass fraction, and temperature at the initial
time for the 1D low-temperature vortex advection problem.

of coarse to fine mesh element spacing is set to r = 2 in both polynomial order cases. To

minimize temporal errors, a very small time step, ∆t = 1 × 10−6 s, is used for all grid sizes.

In Figure 3.2, flow profiles are drawn using a p2 approximation with varying number of

elements. When the number of elements is small (N = 2 and N = 4), the flow profiles deviate

significantly from the exact solution, and discontinuities between neighbouring elements,

which are inherent to the discontinuous Galerkin method are clearly visible. As N increases,

the results converge toward the exact solution. For N ≥ 32, the resolution appears sufficient,

as the results closely match the exact solution. Figure 3.3 illustrates the results using a p5

approximation. When N = 2, the results exhibit fluctuations, making them unsuitable for

simulations. However, for N ≥ 4, the computations yield accurate results. Comparing
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(a) Mixture density (b) H2 mass fraction

(c) Temperature

Figure 3.2: Profiles of mixture density, H2 mass fraction, and temperature after 0.1 cycle
using a p2 approximation for the 1D low-temperature vortex advection problem.

Figures 3.2 and 3.3, it is evident that a higher polynomial order provides more accurate

results for the same number of elements.

Figure 3.4 compares results using the same number of DOFs but at two different poly-

nomial degrees. Results with the p2 approximation show some deviation from the exact

solution, whereas those using p5 are very close to the exact solutions. This indicates that a

higher polynomial degree yields more accurate results at equivalent DOFs, highlighting the

advantage of higher-order computations.
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(a) Mixture density (b) H2 mass fraction

(c) Temperature

Figure 3.3: Profiles of mixture density, H2 mass fraction, and temperature after 0.1 cycle
using a p5 approximation for the 1D low-temperature vortex advection problem.

Wang et al. [80] propose using a very small time step, ∆t = 1 × 10−6 s. To validate

this choice, an additional test was conducted with a time step one-order magnitude higher.

Figure 3.5 compares results obtained using ∆t = 1 × 10−6 and ∆t = 1 × 10−5. To assess

the impact of varying the time step, the finest grid, corresponding to the largest number of

elements (DOFs = 192 with p = 2 and N = 64), was used, as this would ensure that the

temporal discretization error from the time-stepping scheme is smaller than the lower bound
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(a) Mixture density (b) H2 mass fraction

(c) Temperature

Figure 3.4: Profiles of mixture density, H2 mass fraction, and temperature after 0.1 cycle
using p2 and p5 approximations using different grid sizes such that DOFs are equivalent for
the 1D low-temperature vortex advection problem.

of the spatial discretization errors for the range of grids and polynomial orders investigated.

The results from both time steps are very similar, indicating ∆t = 1 × 10−6 is appropriate.

Figures 3.6, 3.7, and 3.8 show the L1, L2, and L∞ error norms of ρ̃∗ and Y ∗
H2 , as well as

the theoretical slopes with respect to L∗/N∗. According to these figures, the error norm plots

obtained from the p = 2 test and the p = 5 test closely match the predicted convergence

rate as L∗/N∗ decreases (N∗ increases) for both test cases. This indicates that the correct
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Figure 3.5: Profiles of mixture density after 0.1 cycle comparing results by ∆t = 1 × 10−6

and ∆t = 1×10−5 using a p2 approximation with N = 64 for the 1D low-temperature vortex
advection problem.

order of accuracy is achieved from low to high polynomial degrees. Higher polynomial degree

computations yield better slopes compared to lower polynomial degree computations because

the total number of degrees of freedom (DOFs) per element is larger with a smaller truncation

error which scales as O(∆xp+1), where ∆x is the reference mesh element spacing. DOFs per

element is defined as (p + 1)d; where d is the dimension of the problem; as such there are 6

DOFs in p5 computations and 3 for p2.

The same test has been conducted by Wang et al. [80], and their plots are reproduced in

Figures 3.6 and 3.8 for the L1 and L∞ error norms, respectively. In Figures 3.6 and 3.8, error

plots from the study by Wang et al. approach the convergence orders, but the plots obtained

in this study align more closely with expected orders. Additionally, this study requires fewer

elements than that of Wang et al. to achieve the same error magnitude.
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(a) Mixture density (b) H2 mass fraction

Figure 3.6: L1 error norms of mixture density and H2 mass fraction with a different number
of elements for the 1D low-temperature vortex advection problem including results by Wang
et al. [80]. Blue dot line: 2nd-order convergence rate; red dot line: 5th-order convergence
rate; green solid line with circle symbol: p2 results; orange solid line with square symbol: p5
results; purple dot line: 2nd-order convergence rate by Wang et al.; blown dot line: 2nd-order
convergence rate by Wang et al.; pink solid line with triangle symbol: p2 results by Wang et
al.; gray solid line with diamond symbol: p5 results by Wang et al.

3.2 1D High-Temperature Vortex Advection

Thermal properties exhibit non-linear relationships with temperature at high gas temper-

atures, while linear relationships are observed at lower temperatures. This research imple-

ments a calorically imperfect model in a DG solver to accurately simulate high-temperature

flows by capturing the non-linear relationships between thermal properties and temperature

observed in real gases. To demonstrate the applicability of the calorically imperfect model

within the multi-species DG solver, the order of accuracy is studied under high-temperature

conditions.
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(a) Mixture density (b) H2 mass fraction

Figure 3.7: L2 error norms of mixture density and H2 mass fraction with a different number
of elements for the 1D low-temperature vortex advection problem. Blue dot line: 2nd-order
convergence rate; red dot line: 5th-order convergence rate; green solid line with circle symbol:
p2 results; orange solid line with square symbol: p5 results.

3.2.1 Problem Statement

A 3-species model (H2, O2, and N2) is used, with all test conditions aligned with the 1D

low-temperature vortex advection problem, except for the temperature. In this test, the

temperature is deliberately multiplied by 5 compared to that in Equation 3.1 to evaluate

the applicability of the calorically imperfect model under high-temperature conditions. The

initial conditions are visualized in Figure 3.9, where the temperature ranges from 1250 K to

1500 K, as shown in Figure 3.9c. The flow profiles after 0.1 cycle (0.01 s) are presented in

Figure 3.10 to confirm the advection of the vortex.

3.2.2 Results

Figures 3.11, 3.12, and 3.13 present the L1, L2, and L∞ error norms of ρ̃∗ and T ∗ as functions

of L∗/N∗ for p = 2 and p = 5 tests, respectively. These figures also include the theoretical
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(a) Mixture density (b) H2 mass fraction

Figure 3.8: L∞ error norms of mixture density and H2 mass fraction with different number
of elements for the 1D low-temperature vortex advection problem including results by Wang
et al. [80]. Blue dot line: 2nd-order convergence rate; red dot line: 5th-order convergence
rate; green solid line with circle symbol: p2 results; orange solid line with square symbol: p5
results; purple dot line: 2nd-order convergence rate by Wang et al.; blown dot line: 2nd-order
convergence rate by Wang et al.; pink solid line with triangle symbol: p2 results by Wang et
al.; gray solid line with diamond symbol: p5 results by Wang et al.

slopes corresponding to the polynomial orders used. The error norms of temperature are

evaluated in this test to assess the applicability of the calorically imperfect model where

temperature is a key property. According to Figures 3.11, 3.12, and 3.13, the L1, L2, and

L∞ error norms of both ρ̃∗ and T ∗ closely match the expected convergence rate as L∗/N∗

decreases for both polynomial orders. This indicates that the correct convergence rate is

achieved for both low- and high-order approximations within the multi-species Euler equa-

tions solver with the calorically imperfect model.
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(a) Mixture density (b) H2 mass fraction

(c) Temperature

Figure 3.9: Profiles of mixture density, H2 mass fraction, and temperature at the initial
time for the 1D high-temperature vortex advection problem.

3.3 2D Vortex Advection

In addition to the one-dimensional studies, the accuracy of the multi-species model is eval-

uated in a two-dimensional domain. Error evaluations are conducted by varying polynomial

orders and element counts across several numerical experiments. The test conditions are

based on the 1D low-temperature vortex advection problem by Wang et al. [80], but have

been expanded to two dimensions.
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(a) Mixture density (b) H2 mass fraction

(c) Temperature

Figure 3.10: Profiles of mixture density, H2 mass fraction, and temperature after 0.1 cycle
for the 1D high-temperature vortex advection problem.

3.3.1 Problem Statement

A 2-species model (H2 and O2) is used, and the initial conditions are given by the following

equations:

T = T0 − (γ0 − 1) Γ2

8γ0π

(
1 − r2

2

)
,

YH2 = YH2,0 − 2πa1

γ0Γ exp
(

1 − r2

2

)
,

YO2 = 1 − YH2 ,

(3.2)

where r =
√

(x− x0)2 + (y − y0)2, represents the distance from the centre of the physical

domain at x0 = y0 = 5 m. The uniform velocities are u = v = 100 m/s. The domain extends

L = 10 m in each direction, with periodic boundary conditions applied to all boundaries.

To minimize temporal errors, a very small time step, ∆t = 10−6 s, is used for all grid sizes,
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(a) Mixture density (b) Temperature

Figure 3.11: L1 error norms of mixture density and temperature with different number of
elements for the 1D high-temperature vortex advection problem. Blue dot line: 2nd-order
convergence rate; red dot line: 5th-order convergence rate; green solid line with circle symbol:
p2 results; orange solid line with square symbol: p5 results.

consistent with the 1D vortex advection problems. However, this small time step significantly

increases the computational cost for two-dimensional simulations. To manage this, the error

norms are evaluated after 0.1 cycle (after 0.01 s) by comparing the exact solutions obtained

by shifting the initial conditions by 1 m in both the x and y directions. The initial conditions

are illustrated in Figure 3.14, which shows the contours of ρ̃∗, Y ∗
H2 , and T . The contours

after 0.1 cycle (0.01 s) are presented in Figure 3.15 to illustrate the advection of the vortex.

3.3.2 Results

The L1, L2, and L∞ error norms of ρ̃∗ and Y ∗
H2 are computed after 0.1 cycle (t = 0.01 s)

by comparing results against the exact solutions. To verify the effectiveness of low- and

high-order computations, tests are conducted for p = 1, 2, and 3 approximations.
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(a) Mixture density (b) Temperature

Figure 3.12: L2 error norms of mixture density and temperature with different number of
elements for the 1D high-temperature vortex advection problem. Blue dot line: 2nd-order
convergence rate; red dot line: 5th-order convergence rate; green solid line with circle symbol:
p2 results; orange solid line with square symbol: p5 results.

Figure 3.16 compares the cross-section of mixture density, mass fraction of H2, and

temperature along the y∗ = x∗ axis using the same number of DOFs per dimension (N = 64)

but with two different polynomial degrees, p = 1 and p = 3. The results are plotted

against the distance from (x∗, y∗) = (0, 0), calculated as
√

(x∗)2 + (y∗)2. The figures show

that the p1 approximation exhibits some deviation from the exact solution, whereas the

p3 approximation closely matches the exact solutions. This indicates that using a higher

polynomial degree produces more accurate results for equivalent DOFs in two-dimensional

computations, highlighting the advantages of higher-order methods.

Figures 3.17, 3.18, and 3.19 show the L1, L2, and L∞ error norms of ρ̃∗ and Y ∗
H2 with

respect to L∗/N∗ for p = 1, 2, and 3. These figures also include the theoretical convergence

rates for each polynomial order. According to these figures, the L1 and L2 error norms

for both ρ̃∗ and Y ∗
H2 closely match the theoretical slopes across all polynomial orders. In

contrast, the L∞ error norm tends towards the expected slopes. However, in this study, the
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(a) Mixture density (b) Temperature

Figure 3.13: L∞ error norms of mixture density and temperature with different numbers
of elements for the 1D high-temperature vortex advection problem. Blue dot line: 2nd-order
convergence rate; red dot line: 5th-order convergence rate; green solid line with circle symbol:
p2 results; orange solid line with square symbol: p5 results.

L∞ error norm illustrated in Figure 3.19 show better convergence rates than those reported

in the previous study by Wang et al. [80] (see in Figure 3.8). Overall, the error norm

plots demonstrate the predicted slopes and show a better convergence rate compared to the

previous study. This confirms that the implemented multi-species model shows the right

order of accuracy in two-dimensional computations.
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(a) Mixture density (b) H2 mass fraction

(c) Temperature

Figure 3.14: Contours of mixture density, H2 mass fraction, and temperature at the initial
time for the 2D vortex advection problem.
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(a) Contours of ρ̃∗ (b) H2 mass fraction

(c) Temperature

Figure 3.15: Contours of mixture density, H2 mass fraction, and temperature after 0.1
cycle for the 2D vortex advection problem.
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(a) Mixture density (b) H2 mass fraction

(c) Temperature

Figure 3.16: Profiles of mixture density, H2 mass fraction, and temperature at y∗ = x∗

axis after 0.1 of a cycle using p1 and p3 approximations using different grid sizes such that
DOFs are equivalent for the 2D low-temperature vortex advection problem.
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(a) Mixture density (b) H2 mass fraction

Figure 3.17: L1 error norm of mixture density and H2 mass fraction with a different number
of elements for the 2D vortex advection problem. Blue dot line: 1st-order convergence rate;
red dot line: 2nd-order convergence rate; green dot line: 3rd order convergence rate; orange
solid line with circle symbol: p1 results; purple solid line with square symbol: p2 results;
brown solid line with triangle symbol: p3 results.
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(a) Mixture density (b) H2 masss farction

Figure 3.18: L2 error norm of mixture density and H2 mass fraction with a different number
of elements for the 2D vortex advection problem. Blue dot line: 1st-order convergence rate;
red dot line: 2nd-order convergence rate; green dot line: 3rd order convergence rate; orange
solid line with circle symbol: p1 results; purple solid line with square symbol: p2 results;
brown solid line with triangle symbol: p3 results.
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(a) Mixture density (b) H2 mass fraction

Figure 3.19: L∞ error norm of mixture density and H2 mass fraction with different number
of elements for the 2D vortex advection problem. Blue dot line: 1st-order convergence rate;
red dot line: 2nd-order convergence rate; green dot line: 3rd order convergence rate; orange
solid line with circle symbol: p1 results; purple solid line with square symbol: p2 results;
brown solid line with triangle symbol: p3 results.
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Chapter 4

Validation

Validation in CFD involves comparing simulation results against experimental data to as-

sess and reduce modeling uncertainties [81]. However, due to the scarcity of experimental

benchmark tests for non-reactive multi-species models, finding suitable experimental data

for validation is challenging. Therefore, an alternative approach is to compare the simula-

tion results with those from previously conducted numerical experiments. This approach

also ensures the validation of numerical models within a CFD solver, even in the absence of

extensive experimental data.

4.1 2D Isentropic Euler Vortex Advection

The isentropic vortex test case, first introduced by Shu et al. [82], is frequently used as a

validation case for numerical solvers. This test was extended to a multi-species scenario

by Trojak et al. [48], and simulated under low-temperature conditions using a calorically

perfect model. In this research, it is further extended to a calorically imperfect test. Since

low-temperature conditions are used in both tests, the results should be similar, allowing

for a comparative investigation. The 2D isentropic Euler vortex advection problem is solved

using a calorically imperfect multi-species Euler equations solver. By comparing results
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in this study with those from Trojak et al. [48], we validate implementations of models

developed in this study.

4.1.1 Problem Statement

The two-species model (N2 and O2) is used, and the initial conditions are given by the

following equations:

ρ∗
N2 =

(
1 −

(γ∗
N2 − 1)β2M2

ref

8π2 exp(2f)
)1/(γ∗

N2
−1)

,

ρ∗
O2 =

(
1 −

(γ∗
O2 − 1)β2M2

ref

8π2 exp(2f)
)1/(γ∗

O2
−1)

,

u∗ = U0 + βy∗

2πR∗ exp(f),

v∗ = V0 − βx∗

2πR∗ exp(f),

P̃ ∗ = 1
γ̃∗M2

ref

ρ̃∗γ̃∗
,

f = 1 − (x∗ − x0)2 − (y∗ − y0)2

2R∗2 .

(4.1)

The domain is defined as Ω∗ = [x0 −L∗, x0 +L∗] × [y0 −L∗, y0 +L∗]. Given that the domain

is centered at the origin x0 = y0 = 0 and has an extent of L∗ = 10, the physical domain

becomes Ω∗ = [−10, 10] × [−10, 10]. This ensures a sufficiently large area to observe the

vortex and advection phenomena. The nondimensional parameter β = 13.5 quantifies the

strength of the vortex, with a radius of R∗ = 1.5. The advection velocities U0 = 0 and V0 = 1

imply that there is no movement in the x−direction but in the y−direction. The reference

Mach number is Mref = 0.4. This setup is appropriate for numerical simulations of vortices

with advection effects, ensuring a comprehensive analysis of the flow characteristics within

the defined computational domain.
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4.1.2 Results

The solution is advanced to 1.0 cycle (t∗ = 20), after which the flow velocities are reversed.

The test is conducted with different numbers of elements, specifically N = 16, 32, and 64

in each direction, employing a p = 4 approximation for higher-order accuracy, aligned with

the approach used by Trojak et al. [48]. Additionally, a test using a lower-order p = 2

approximation is conducted for comparison purposes. The evolution of the vortex roll-up

with time advancement is illustrated in Figure 4.1, showing the density contours of N2.

The contours after 1.0 cycle obtained in this study (see Figure 4.1f) closely resemble those

obtained by Trojak et al. [48], validating the implemented models in this work.

In addition, Figure 4.2 presents the contours of ρ∗
N2 after the flow reversal, comparing

the results with varying mesh sizes and polynomial degrees. Figures 4.2a and 4.2b show

the results with a small number of DOFs, Figures 4.2c and 4.2d depict the results with a

medium number of DOFs, and Figures 4.2e and 4.2f illustrate the results with a large number

of DOFs. These figures show that the computations with a medium and large number of

DOFs capture the vortex roll-up well, in contrast to the results with a small number of

DOFs. At all resolutions, the roll-up phenomenon is resolved better in p4 computations than

in p2 computations when the number of DOFs is similar. The differences are particularly

noticeable between Figures 4.2c and 4.2d at medium resolutions.

Figure 4.3 shows ρ∗
N2 after the flow reversal for all mesh sizes, including the results in this

study and those from the previous study by Trojak et al. [48], both using a p4 approximation.

In all resolutions, ρ∗
N2 exhibits oscillations, indicating the presence of the roll-up vortex, as

seen in Figure 4.2. The zoomed-in figure on the left highlights that the results at medium

resolutions (N = 40 and N = 32) and higher resolutions (N = 80 and N = 64) show

similar plots. Moreover, at these resolutions, results closely match those of Trojak et al. [48].

However, at low resolutions (N = 40 and N = 32), plots differ significantly from those at

medium and high resolutions. In this study, the plots show different results from those of

Trojak et al. [48] near the centre of the domain (between y∗ = −2.5 and y∗ = 2.5), although

the trend remains similar, as seen in the zoomed-in figure on the right. Compared with the
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previous study, results in this work reasonably match those of Trojak et al. [48], with better

agreement at higher resolutions.

Figure 4.4 compares results with two polynomial degrees, p = 2 and p = 4, with a

similar number of DOFs. According to the zoomed-in figure on the left, the results from a

medium number of DOFs (p = 2, N = 64 and p = 4, N = 32) and a large number of DOFs

(p = 2, N = 128 and p = 4, N = 64) show similar plots, while the results from a small

number of DOFs (p = 2, N = 32 and p = 4, N = 16) differ slightly. In the zoomed-in figure

on the right, the results using a large number of DOFs show similar plots between p2 and p4

approximations and the vortex roll-up are well-captured even at the centre of the domain,

where the phenomenon is otherwise less clearly observed.

Overall, the solver demonstrates consistent results across low- to high-order computa-

tions, closely matching the data from the previous study. These findings validate the correct

implementation of the models.

4.2 2D Fuel Droplet Advection

This test, introduced by Ma et al. [83], is designed to evaluate the performance of the

numerical schemes for multi-species flows. It involves a two-dimensional scenario in which

a fuel species droplet is advected through an inert gas under low-temperature conditions

using a calorically perfect model. In this research, it is extended to a calorically imperfect

case. Given that low-temperature conditions are employed in both scenarios, the results

should be comparable, facilitating a comparative analysis. The test is solved using the

calorically imperfect multi-species Euler equations solver. We validate the implementations

by comparing results in this work with those from Ma et al. [83].
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4.2.1 Problem Statement

The 2-species model (iso-octane as fuel and N2 as ambient gas) is used, with initial mass

fractions given by:
Yfuel = 1.0 − 0.5 (1 + tanh(α(r − r0))) ,

YN2 = 1 − Yfuel,
(4.2)

where the computational domain extends L = 1 mm in each direction, and periodic bound-

ary conditions are applied to all boundaries. This mass fraction is obtained from the

numerical results by Ma et al. [83], corresponding to the Spray A operating point [84].

The center of the domain is located at (x, y) = (x0, y0) = (0.5, 0.5) mm. The variable

r =
√

(x− x0)2 + (y − y0)2 mm represents the distance from the center of the fuel droplet,

and r0 = 1/π mm defines its radius. The parameter α controls the intensity of the transition

between the fuel droplet and the ambient gas. Specifically, α = 23 for r < r0 (within the

fuel droplet) and α = 60 for r ≥ r0 (outside of the fuel droplet). In the entire domain, the

uniform velocities u = 50, v = 0 m/s, temperature T = 573 K, and mixture pressure P = 600

kPa are used, where iso-octane is used as the fuel droplet species. The mixture density is

calculated from the mixture pressure and temperature using the equation of state.

4.2.2 Results

The fuel droplet moves positively in the x-direction, passes through the periodic boundary,

and returns to its original position after 1.0 cycle at t = 0.02 ms. The test case described

here uses a mesh with N = 32 elements in each direction and an approximation order of

p = 2. Figure 4.5 illustrates the evolution of the flow field of Y ∗
fuel over time. For comparison

purposes, additional tests are also performed using high-order computations (N = 32 and

p = 5) with the same initial temperature, as well as a scenario with a temperature five times

higher while maintaining the approximation at p = 2.

Figure 4.6 presents the plots of Y ∗
fuel at y∗ = 0.5 after 1.0 cycle, including various test

scenarios. These plots compare the initial conditions, results from the previous study by Ma

59



et al. [83], results using the p = 2 approximation at a lower temperature, results using a

higher polynomial degree with the same temperature, and results at a higher temperature

using the same polynomial degree. This figure demonstrates that the advected vortex returns

precisely to the original location after one cycle. According to the zoomed-in view, the

results using p2 approximation exhibit some differences compared to other cases, while the

p5 results are very similar to both the initial conditions and the data from Ma et al. [83].

Across varying temperatures and polynomial degrees, the results in this study closely match

the mass fraction data from the previous study throughout the domain. This comparison

validates the implementations of the models.
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(a) At initial time (b) After 0.2 Cycle

(c) After 0.4 cycle (d) After 0.6 cycle

(e) After 0.8 cycle (f) After 1.0 cycle

Figure 4.1: Contours of N2 density with the time progress using a p4 approximation for
the 2D isentropic Euler vortex advection problem.
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(a) p2, N = 32, DOFs = 96 (b) p4, N = 16, DOFs = 80

(c) p2, N = 64, DOFs = 192 (d) p4, N = 32, DOFs = 160

(e) p2, N = 128, DOFs = 384 (f) p4, N = 64, DOFs = 320

Figure 4.2: Contours of N2 density after flow reversal with the grid refinement for the 2D
isentropic Euler vortex advection problem.
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Figure 4.3: Comparison of the cross-section of N2 density at x∗ = 0 after flow reversal
using a p4 approximation. Blue dot line: N = 20 by Trojak et al.; red solid line: N = 16;
green dot line: N = 40 by Trojak et al.; orange solid line: N = 32; purple dot line: N = 80
by Trojak et al.; brown solid line: N = 64.

Figure 4.4: Comparison of the cross-section of N2 density at x∗ = 0 after flow reversal.
Blue dot line: p = 2, N = 32, DOFs = 96; red solid line: p = 4, N = 16, DOFs = 80; green
dot line: p = 2, N = 64, DOFs = 192; orange solid line: p = 4, N = 32, DOFs = 160; purple
dot line: p = 2, N = 128, DOFs = 384; brown solid line: p = 4, N = 64, DOFs = 320.
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(a) At initial time (b) After 0.2 Cycle

(c) After 0.4 cycle (d) After 0.6 cycle

(e) After 0.8 cycle (f) After 1.0 cycle

Figure 4.5: Contours of fuel mass fraction with time progress for the 2D fuel drop advection
problem (p = 3 and N = 32).
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Figure 4.6: Comparison of the cross-section of fuel mass fraction at y∗ = 0.5 after flow
reversal for the 2D fuel droplet advection problem. Black dot line: the initial conditions;
blue solid line: results by Ma et al.; red solid line: p2 results with low-temperature; p5 results
with low-temperature; orange solid line: p2 results with high-temperature.
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Chapter 5

Conclusion

In this study, we have successfully implemented the multi-species model and the calorically

imperfect model within a DG solver, thereby enhancing its capability to accurately simulate

complex flow phenomena. The integration of these models allows the solver to handle both

low-temperature and high-temperature conditions effectively. The implemented models were

tested through a series of numerical experiments conducted in both one-dimensional and

two-dimensional domains. These tests included scenarios with high-temperature conditions

to evaluate the performance of the calorically imperfect model. The results from these

experiments demonstrated that the DG solver, enhanced by the multi-species and calorically

imperfect models, achieves the expected convergence rates for both low-order and high-order

computations. Furthermore, the computed order of accuracy in this work shows improved

alignment with theoretical expectations compared to previous studies. This indicates that

the models and implementation not only meet but exceed the performance benchmarks

established by earlier research.

In addition to verifying the accuracy of the solver, extensive validation tests were con-

ducted to further assess the applicability of the multi-species model. These validation tests,

based on established numerical experiments from other researchers, were extended from the

calorically perfect framework to incorporate the calorically imperfect model. The results

obtained from these validation tests closely align with previously reported data, thereby
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confirming the successful implementation of both the calorically imperfect and multi-species

models within the Euler equations solver using the DG method.

The primary contribution of this work is the successful integration of the multi-species

model and the calorically imperfect model into the PHiLiP framework. This enhancement

enables the solver to accurately simulate both non-reacting mixing and high-temperature

scenarios, overcoming the limitations of the previous mono-species and calorically perfect

models. By addressing these limitations, our work lays a solid foundation for future develop-

ments in PHiLiP, particularly for implementing reacting models and multi-species entropy-

stable schemes.

5.1 Future Work

Several avenues for future work arise from the developments presented in this thesis. Further

numerical testing is essential to thoroughly evaluate the capabilities of the implemented mod-

els. While the current tests have been performed within two-dimensional domains and with

two-species and three-species models, extending these tests to three-dimensional domains and

incorporating a larger number of species would provide a more comprehensive assessment

of the models under diverse conditions. Moreover, incorporating limiters into the multi-

species solver would allow for the exploration of multi-species shock-involved cases, where

complex and nonlinear phenomena are prevalent. Future work could include investigating

multi-species shock tube problems [83,85] and air-helium shock bubble interactions [31,85],

both of which present challenging dynamics and complex flow patterns. These cases would

serve as valuable benchmarks for further validation.

Extending the governing equations from multi-species Euler equations to multi-species

Navier-Stokes equations would allow for testing viscous flows. Although the Navier-Stokes

equations solver is already available in PHiLiP, it would require further implementation of

viscous fluxes under multi-species assumptions. Moreover, this thesis has focused on non-

reacting flows but it would be beneficial for PHiLiP to implement the reacting model to
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enhance the capability to simulate combusting flows. For a reaction model, a very small

time step or CFL number would be necessary to capture reacting phenomena, and a mass

diffusion model would be required to capture the distribution of species particles. Lastly,

it would be valuable to consider multi-species version of the entropy stable scheme. This

scheme has been studied and implemented in PHiLiP for mono-species computations. Since

there are limited number of studies for the multi-species entropy stable scheme, it would be

beneficial to extend this scheme from mono-species to multi-species scenarios.

5.1.1 3D Test Case (Multi-Species Inviscid Taylor-Green Vortex)

The Taylor-Green vortex, first studied by Taylor et al. [86], has become a popular benchmark

case over the years due to its simplicity in geometry and the complex flow phenomena

it represents [87]. While it is extensively employed to validate computational codes for

mono-species flow, relatively few studies have explored its applicability to multi-species gas

dynamics. For example, Abdelsamie et al. [88] applied a Direct Numerical Simulation (DNS)

solver to study interactions of a Taylor-Green vortex with both non-reacting and reacting

hydrogen-oxygen flames. This demonstrates the potential of the Taylor-Green vortex as a

benchmark for multi-species flows, particularly in exploring complex interactions such as

chemical reactions in vortical structures. Similarly, Trojak et al. [48] explored the multi-

species Taylor-Green vortex flow using a DG solver. However, their analysis was limited to a

two-species system with identical specific heat constants. This simplification allowed direct

comparisons with mono-species solutions, but it did not explore the broader complexity of

multi-species dynamics.

In this study, despite current limitations in the number of governing equations available in

the existing multi-species solver, the inviscid Taylor-Green vortex flow is tested considering

two different species to assess the three-dimensional computational capabilities of the solver.

Additionally, this flow is extended to include a calorically imperfect assumption, underscoring

its potential for advancing research in high-temperature and chemically reacting flows within

three-dimensional domains.
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The two-species model comprising N2 and O2 is employed, with the initial state defined

by the following equations:

ρ̃∗ = 1,

u∗ = sin(x) cos(y) cos(z),

v∗ = cos(x) sin(y) cos(z),

w∗ = 0,

P̃ ∗ = 1
γrefM2

ref

+ 1
16 (cos(2x) + cos(2y)) (cos(2z) + 2) ,

(5.1)

where γref = 1.4 and Mref = 0.1. The initial mass fractions are given as:

Y ∗
N2 =


0.9 if x > π and y > π or x < π and y < π,

0.1 otherwise,

Y ∗
O2 = 1 − Y ∗

N2 .

(5.2)

The computational domain is defined as Ω∗ = [0, 2π]3, with periodic boundary conditions

applied on all boundaries. Tests were conducted with polynomial order p = 3 and grid

resolution of N = 4 and 8 in each direction. An initial small time step ∆t∗ = 1 × 10−3 was

employed to avoid numerical instabilities. Although previous mono-species or calorically

perfect multi-species studies typically simulate this case up to around t∗ = 15, the current

simulations became unstable at approximately t∗ = 3.9 for N = 4 and t∗ = 2.1 for N = 8

grid resolutions. Instabilities occurred due to the N2 mass fraction exceeding 1 or the O2

mass fraction becoming negative, with the temperature also violating the NASA CAP limits.

Repeated attempts to reduce the time step, halving it up to ∆t∗ = 1.25 × 10−4, failed to

extend the simulation time. In Figure 5.1, the onset of vortex breakup is visible, signifying

the transition to more complex flow structures. Concurrently, Figure 5.2 reveals the mixing

phenomena, highlighting the diffusion between the two species. This numerical experiment

demonstrates the three-dimensional multi-species computational capabilities of the current
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DG solver. However, as future work, alternative initial conditions or limiter strategies are

necessary to achieve stable solutions for the entire simulation duration.
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(a) At initial time (b) At t∗ = 0.4

(c) At t∗ = 0.8 (d) At t∗ = 1.2

(e) At t∗ = 1.6 (f) At t∗ = 2.0

Figure 5.1: Contours of vorticity magnitude with the time progress using a p = 3 approxi-
mation andN = 8 grid resolution in each direction for the multi-species inviscid Taylor-Green
vortex problem.
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(a) At initial time (b) At t∗ = 0.4

(c) At t∗ = 0.8 (d) At t∗ = 1.2

(e) At t∗ = 1.6 (f) At t∗ = 2.0

Figure 5.2: Contours of N2 mass fraction with the time progress using a p = 3 approxima-
tion and N = 8 grid resolution in each direction for the multi-species inviscid Taylor-Green
vortex problem.
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