
A Type-Safe HDL Verified in Coq

Hanneli Carolina Andreazzi Tavante

School of Computer Science
McGill University

Montreal, QC, Canada

Submitted in partial fulfillment of the requirements for the
degree of Master of Science

© Hanneli C. A. Tavante

Abstract
Hardware Description Languages (HDL), such as VHDL and Verilog, simplify the cir-
cuit specification, simulation, and synthesis by enabling different types of abstractions.
Hardware verification pipelines reduce design faults caused by erroneous transformations
of a design specification into the layout description. However, there is little work on the
language aspect of Verilog itself, and designers tend to trust the language as a source of
truth. Unfortunately, unverified languages may be unreliable and lead to circuit design
faults. For instance, in Verilog, values can be converted automatically from one type to
another when the context of use requires it, generating undesired bugs due to the automatic
conversion.

In this thesis, we address the need for a verified, type-safe language that can rule out
undesired faults in hardware projects occasioned by language issues. We present Verifloq, a
strongly typed HDL based on a subset of the original Verilog language.

Verifloq is developed in the Coq proof assistant, and uses the Simply-Typed Lambda
Calculus (STLC) as its core foundation. We develop a flexible small-step operational
semantics for our language, and combined with its set of typing rules, we prove that Verifloq
is a type-safe language.

We also provide several use cases for Verifloq, including a composed verification pipeline
with Hoare Logic and a multi-staged hardware verification pipeline. Finally, we also present
possible integration scenarios for High-Level Synthesis applications.

II

Résumé
Les langages de description matérielle (en anglais, Hardware Description languages, ou
les HDL), tels que le VHDL et le Verilog, simplifient la spécification, la simulation et
la synthèse des circuits en permettant différents types d’abstractions. Les pipelines de
vérification matérielle réduisent les défauts de conception causés par des transformations
erronées d’une spécification de conception en description de mise en page. Cependant, il y
a peu de travail sur l’aspect langage du Verilog lui-même, et les concepteurs ont tendance à
faire confiance au langage comme source de vérité. Malheureusement, les langages non
vérifiés peuvent ne pas être fiables et conduire à des défauts de conception de circuit. Par
exemple, dans le Verilog, les valeurs peuvent être converties automatiquement d’un type à
un autre lorsque le contexte d’utilisation l’exige, générant des bogues indésirables dus à la
conversion automatique.

Dans cette thèse, nous abordons le besoin d’un langage vérifié et de type sécurisé qui peut
exclure les défauts indésirables dans les projets matériels occasionnés par des problèmes de
langage. Nous présentons Verifloq, une HDL fortement typé basé sur un sous-ensemble du
langage Verilog original.

Verifloq est développé dans l’assistant de preuve Coq et utilise le calcul lambda simple-
ment typé (en anglais, Simply-Typed Lambda Calculus, ou le STLC) comme base de base.
Nous développons une sémantique opérationnelle flexible à petits pas pour notre langage,
et combinée avec son ensemble de règles de typage, nous prouvons que Verifloq est un
langage de type sécurisé.

Nous fournissons également plusieurs cas d’utilisation pour Verifloq, y compris un
pipeline de vérification composé avec le Hoare Logic et un pipeline de vérification matérielle
en plusieurs étapes. Pour terminer, nous présentons également des scénarios d’intégration
possibles pour les applications de synthèse de haut niveau.

III

Acknowledgements
People often insert happy stories and fond memories in this section. Sorry, this is not
exactly what you will find here, but definitely there are some folks out there who made it
all possible!

First, a sincere thanks to my advisor, prof. Zeljko Zilic. Prof. Zilic gave me the time and
space to work on this project, even though it was an idea relatively far from his expertise. In
every group meeting, he would give me room to talk about Coq, semantics, show eventually
broken proofs, and comment on the papers I was reading. He showed me it is possible to do
research regardless of your background, gender, race and previous work experiences.

Speaking of work environment, I’d like to thank my superb labmates! When Covid gave
us less severe times, we started to meet in-person. Miguel, Katyayani, Perl and Guanyi
gave me the moral support to write all the proofs for Verifloq while we went through some
freshly baked brownies and papers on Tuesdays. You folks are the best. Also, huge thanks
to Tom and the entire Kn0x team. Thanks for supporting our research group.

I don’t know how I would have wrapped up my studies without the support of the
therapists in the Wellness Hub at McGill; in particular, Devon Simpson. Thanks for taking
care of my mental health!

During my failed attempts to join the PL community, I had the opportunity to meet a lot
of people while supporting SIGPLAN conferences. I am very grateful to all the mentors I
had, in particular to all my previous SIGPLAN-M mentors, who guided me during major
academic crisis. A special shout out to C.C. 1 and their lab. C.C. adopted me as a long-term
visitor to their group. In that very diverse environment, I managed to watch and participate
in discussions about compilers, optimizations, static and dynamic analysis, etc. I also
learned a lot about the inner mechanics of academia and received useful writing tips. These
valuable suggestions helped me to become a better student.

Last, but not least, big thanks to V.R. and I.R. It is been more than 30 years, and they
keep betting on me. Unconditional love. <3

1Not their initials in real life.

IV

CONTENTS

List of Figures VII

1 Introduction 1

1.1 Motivation . 3

1.2 Contributions . 5

1.3 Thesis Outline . 6

2 Background 8

2.1 Hardware Description Languages and Verilog 8

2.2 HDL and Verification . 11

2.3 Theorem Provers and Hardware Verification 16

2.4 Brief Introduction to the Coq Proof Assistant 18

2.5 Programming Languages and Semantic Models 19

2.6 The Simply Typed Lambda Calculus 21

3 Verifloq: A Coq formalization

for Verilog 25

3.1 Verifloq: Incrementing the STLC with Verilog Components 26

3.2 Verifloq’s Small-step Operational Semantics 32

3.3 Typing Rules . 38

3.4 Type Safety Guarantees . 44

3.5 Simple Verilog-like Programs with Verifloq 46

3.6 Summary and Benefits of Verifloq . 48

4 Applications 50

4.1 Hoare Logic and Assertions . 50

4.2 Program Equivalence for HLS . 55

V

4.3 Towards a Correct-by-construct Verified Hardware Pipeline 57

5 Comparison: Alternative HDL

Formalizations 59

5.1 VHDL vs. Verilog vs. Verifloq . 59

5.2 Verifloq and HLS Formalizations . 63

6 Conclusion 65

6.1 Achieved Contributions . 66

6.2 Future Work . 66

A Code Access 68

B Coq tactics and commands 69

B.1 Verifloq’s Coq Definitions . 69

B.2 Coq Proofs . 80

B.3 Interactive theorem proving . 85

B.4 Relevant Tactics . 87

References 88

VI

LIST OF FIGURES

1.1 Key components of Verifloq: we encode a subset of Verilog’s syntax into Coq

terms, and use the STLC to develop an operational semantics and typing rules

to prove Verifloq’s type-safety. 5

2.1 Main components of ABV: original circuit, assertions, checker generator,

assertion checker and results. 15

3.1 Verifloq’s syntax. 25

3.2 Reduction rules for functions, function application, and conditional terms. 35

3.3 Reduction rules for boolean terms, natural numbers and binary operations. 36

3.4 Step relation for lists: StepCons1, StepCons2, StepLcase1, StepLcaseNil, StepLcaseCons. 36

3.5 Step relation for tuples: StepPair1, StepPair2, StepFst1, StepFstVal, StepSnd1 , StepSndVal 37

3.6 Step relation for records: StepRecord, StepRecordProj1, StepRecordProj2. 37

3.7 Step relation for sums: StepInl, StepInr, StepCase, StepCaseInl, StepCaseInr 38

3.8 Reduction rules for module terms. 39

3.9 Typing rules for functions, function application, recursion, natural numbers and

boolean terms. 40

3.10 Typing rules for lists: TRNil, TRCons, TRLcase. 40

3.11 Typing rules for pairs and records. 41

3.12 Typing rules for sums and assignments. 41

3.13 Module types throughout clock increments. 44

4.1 Proof rule for an if clause. 51

4.2 Proof rule for assign and while loops. 51

4.3 Verification pipeline with Verifloq, Hoare Triples and ABV. 54

4.4 ABV and test-bench techniques combined. 57

VII

4.5 Verification pipeline incorporating Verifloq. 58

B.1 An example of an interactive proof environment illustrated by jsCoq. 86

B.2 Interactive theorem proving: navigating through the tactics. 86

B.3 Interactive theorem proving: subgoals. 86

VIII

1 Introduction
During the mid-1980s, the idea of Very-Large-Scale Integration (VLSI) became popular.

As a direct consequence, robust Hardware Description Languages (HDL), such as VHDL

and Verilog, were developed to describe the structure and behavior of digital circuits.

With the popularization of Very-Large-Scale Integration (VLSI) during the mid-1980s,

robust Hardware Description Languages (HDL), such as VHDL and Verilog, were devel-

oped to describe the structure and behavior of digital circuits. HDL are similar to other

popular programming languages, such as C and C++, but they heavily rely on the notions

of time and concurrency, since they specify hardware. HDL aim to simplify the circuit

specification, simulation and synthesis by enabling different types of abstractions: behav-

ioral, register-transfer-level (RTL), and structural [Sagdeo 2007]. These abstractions help

developers to increase their productivity and to reduce the number of bugs and faults in

their designs.

Different types of faults can occur in hardware design [Kropf 1999]:

• Design faults are caused by an erroneous transformation of a design specification into

the layout description. This type of issue can be mitigated with hardware verification;

• Fabrication faults are generated by layout defects during the fabrication process. Even

if the design itself was correct, this type of fault might lead to unwanted behaviors in

the circuit;

• Faults during usage are often an issue of old components or other types of physical

damage that may occur after a period of usage.

1

[Kropf 1999] proposes two basic approaches to ensure that a given circuit does not

contain design faults. The first one is the idea of avoiding faults via correctness by con-

struction strategies. Specifically, a target design is established, it is necessary to generate

or synthesize the correct circuit for the design. Hence, we also need guarantees about the

synthesis environment, which should be equally verified. The second approach is to simply

detect system faults, after a designated implementation on a certain abstraction level has

been created. A reference description (a specification) allows us to verify the functional

correctness of the circuit. We also need to state a correctness relation, which has to be

established between the two descriptions.

Unfortunately, there is no silver bullet for tackling verification. A huge variety of func-

tions, interfaces, protocols, and transformations must be verified, and is not possible to

provide a general-purpose automated solution for verification. However, some parts of the

verification process can be automated, especially when applied to a narrower application

domain.

Among multiple verification strategies, [Joyce 1990] reports the well-grounded adoption

of Higher-Order Logic (HOL) as a formalism for specifying and verifying hardware. HOL

is the underlying formalism for popular theorem provers, such as HOL4 2. HOL supports

parameterized hardware specifications by functions and by data types, and it can embed

other types of logic, such as temporal logic. HOL is built on top of a small set of axioms,

and it uses this axiomatization as a basis for guaranteeing proof security: every theorem

generated by the HOL system is indeed a theorem of higher-order logic. We discuss HOL’s

versatility and wide adoption in hardware verification in Section 2.3. Nevertheless, HOL’s

simplicity comes with logical expressiveness limitations, and we have richer type theoretical

approaches. For example, proof environments with constructive type theory and dependent

2https://hol-theorem-prover.org/

2

https://hol-theorem-prover.org/

types are a promising take for hardware verification, as [Basin et al. 1991] and [Hanna et al.

1989] illustrate.

However, the fault classification proposed by [Kropf 1999] does not address potential

issues with the HDL itself. Namely, designers tend to trust the language as a source of truth,

but language construct design choices can lead to errors in the program, and subsequently

in the circuit. Specifically, Verilog has a weak type system, and values can be converted

automatically from one type to another when the context of use requires it. In certain

situations, this type of automatic conversion leads to undesired bugs [Sudhakrishnan et al.

2008]. In short, this kind of fault is unrelated to circuit specification, but deeply connected

with language aspects of the HDL. A prompt solution to this issue is the choice of an HDL

with a strong type system, such as VHDL, where unwanted conversions do not happen.

Alternatively, High-level Synthesis (HLS) tools enable circuit description in a higher-

level language (HLL), and then translate the code to a traditional HDL, such as Verilog or

VHDL ([Coussy and Morawiec 2008]). For instance, Vivado HLS 3 offers C and C++ as

HLL options, whereas Bluespec [Nikhil 2004] uses Haskell as a pure functional style for

describing circuits. However, these implementations put emphasis on the HLL, but not on

the aspects of the synthesized HDL.

1.1 Motivation

Motivated by the presence of faults generated by language design issues, this thesis imple-

ments a new HDL, Verifloq, based on a subset of Verilog. We develop a semantic model for

the language that formalizes how the execution of each language construct should behave.

Our starting point is the Simply-Typed Lambda Calculus (STLC), which we extend with

3https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-
synthesis-hub.html

3

https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html

other language constructs matching Verilog’s syntax. Verifloq is strongly typed, as we

provide designated types for every term. That means we can benefit from types to have a

partial specification of the represented program.

Our language is type-safe, meaning that well-typed terms will always evaluate to a value

or will follow a particular pre-established rule to be evaluated to another expression. In

other words, well-typed terms will never reach a stuck state. Stuck states characterize a

situation where the semantic model does not know what to do because the program has

reached an unexpected or meaningless state [Pierce 2004]. Stuck states often represent a

wide range of runtime errors in programming languages, such as segmentation faults and

undefined behavior. We verify and prove the type safety property of Verifloq using the Coq

proof assistant.

Finally, we chose Verilog as the reference HDL because it is still widely used by circuit

designers as the primary HDL choice for hardware projects. Verilog is also a common

synthesis target option in HLS tools, such as Vivado HLS.

Figure 1.1 shows the main components of Verifloq, summarizing the contents of Chapter 3.

Our entire implementation is developed in Coq. Verifloq is compatible with a subset of

the Verilog language. We accept plain Verilog files, and we provide a parser to Verifloq,

which converts plain Verilog language constructs to Verifloq’s Coq terms. Alternatively,

direct declaration of Verifloq’s Coq terms directly into the Coq is also accepted. We use

the STLC as the baseline (Section 3.1) to develop an operational semantics (Section 3.2)

and a set of typing rules (Section 3.3) for Verifloq. These two elements enable us to prove

Verifloq’s type-safety property from progress and preservation core theorems (Section 3.4).

Finally, with a verified type-safe language, we develop applications based on Hoare-style

verification and discuss the usage in Program Equivalence for HLS (Chapter 4).

4

Fig. 1.1. Key components of Verifloq: we encode a subset of Verilog’s syntax into Coq terms, and
use the STLC to develop an operational semantics and typing rules to prove Verifloq’s type-safety.

1.2 Contributions

This thesis presents Verifloq, an HDL developed in the Coq proof assistant, which uses the

Simply-Typed Lambda Calculus (STLC) as its core foundation. We develop a small-step

operational semantics and prove our language is safe with respect to the proposed semantic

model. With that, we rule out possible type mismatches or stuck terms in the language

by providing a machine-checked, mathematical proof of type safety. Verifloq extends the

hardware verification pipeline to prevent design faults by adding an extra layer of safety in

the language level. This document demonstrates and discusses the following aspects:

(1) We introduce Verifloq, a new HDL directly supporting a subset of Verilog’s language

syntax.

5

(2) We let circuit designers write specifications as if they were writing pure Verilog,

without the overhead of an entirely new language.

(3) We establish an operational semantics and a set of typing rules for Verifloq, making it

a strongly typed language.

(4) We prove Verifloq is a type-safe language with respect to the proposed semantics using

the Coq proof assistant.

(5) Verifloq is designed as an extensible formalism that can be combined with other types

of verification mechanisms. For instance, we add an additional verification layer to

Verifloq using Hoare Logic, enabling Hoare-style verification.

1.3 Thesis Outline

A short introduction to the Verilog language, its aspects, and common issues can be found

on Chapter 2. We also extensively discuss different verification techniques for HDL. We

then present multiple projects combining theorem provers and formal hardware verification.

Finally, we set the stage for richer type theories and introduce the Coq proof assistant. In

addition, we present the core calculus foundation of Verifloq - the Simply-Typed Lambda

Calculus (STLC).

In Chapter 3, we present the development of Verifloq as a rich extension to the STLC.

Then, we introduce Verifloq’s small-step operational semantics and the essential type safety

proofs (progress and preservation).

Chapter 4 describes applications for Verifloq, including an additional verification layer

with Hoare Logic and use cases for program equivalence of generated HDL from High-Level

Synthesis (HLS) tools.

Chapter 5 discusses and compares different semantic approaches for HDL, and briefly

presents the differences between Verifloq and other HLS formalization projects.

6

Finally, Chapter 6 reports the challenges in developing a project like Verifloq. It also lists

multiple suggestions for future work.

7

2 Background

2.1 Hardware Description Languages and Verilog

Hardware Description Languages (HDL), such as Verilog, SystemVerilog, or VHDL, allow

end-users to model digital systems (circuits) using different approaches. There are three

well-known abstractions: behavioral, register-transfer-level (RTL), and structural [Sagdeo

2007]. The behavioral model holds the highest-level abstraction. It enables an algorithmic

description of the circuit, allowing the user to describe synchronization between processes

or blocks. RTL is an event-driven model that describes data transfer between registers.

Lastly, the structural model expresses the hierarchy and inter-connectivity details of modules

(netlists). These abstractions can be mixed within the scope of a project, and complement

each other.

Verilog is a widely-adopted HDL that allows engineers to specify a digital system using

high-level language abstractions. Proposed initially between 1983 and 1984 as a proprietary

tool, Verilog has been standardized under IEEE 1364-2001 [IEEE 2001], and its reference

manual contains extensive information about syntactic and semantic components of the

language.

2.1.1 Describing circuits with Verilog

Circuit specifications in Verilog are declared in modules, which have input and output

ports. Events in input ports cause output events. Modules can represent simple circuits,

such as simple gate combinations, or complex systems. They can be specified behav-

iorally, via language constructs, or structurally, via hierarchical connection of submodules.

Alternatively, modules’ specifications can combine both abstractions.

8

In each module, it is possible to declare basic structures, such as continuous assignments

(denoted by the keyword assign), simple data, expressions, and statements. Statements can

be executed in sequential blocks. In general, standard module components are D-Type

registers triggered by a clock edges (positive or negative). Listing 2.1 exemplifies the idea

of basic modules, assignments and statements. The code contains a simple 4-bit counter in

Verilog:

1 module counter4b (input clk, reset, output[3:0] counter);

2 reg [3:0] counter_up;

3 always @(posedge clk or posedge reset)

4 begin

5 if(reset)

6 counter_up <= 4'd0;

7 else

8 counter_up <= counter_up + 4'd1;

9 end

10 assign counter = counter_up;

11 endmodule

Listing 2.1. Simple counter in Verilog.

Verilog supports assignments with delays, meaning that changes on the inputs can be

propagated to an output after a number of cycles. This particular type of assignment is

called transport delay (or blocking transport delay). At most one change to a given wire can

be scheduled at a time.

Non-blocking assignments describe delays behaviorally. They cause no delay in the

current module. However, they schedule an assignment of a current value after a spec-

ified delay, enabling multiple changes to be scheduled to the same variable. A detailed

9

description of blocking and non-blocking assignments can be found on [Cummings 1999].

In Listing 2.1, we provided a code example of blocking and non-blocking assignments.

Blocking statements are denoted by =, on line 10, and non-blocking statements are denoted

by <=, as lines 6 and 8 show.

Verilog supports basic datatypes such as integers, reals, strings, and vectors. Vectors of

vectors are called memories. Verilog also supports default imperative language constructs,

such as if/else blocks and while loops.

To connect all the previously described concepts about Verilog and HDL, Listing 2.2

shows the implementation of a single port RAM, where we can read and write data.

1 module single_port_RAM (parameter addr_width = 2, data_width = 3)

2 (input wire clk,

3 input wire [addr_width−1:0] addr,

4 input wire [data_width−1:0] write,

5 input wire write_enable,

6 output wire [data_width−1:0] read);

7 reg [data_width−1:0] ram[2**addr_width−1:0];

8 always @(posedge clk)

9 begin

10 if (write_enable == 1)

11 ram[addr] <= write;

12 end

13 assign read = ram[addr];

14 endmodule

Listing 2.2. Single port RAM in Verilog.

10

In general, hardware implementations consist of different design units that always run

concurrently, and HDL must model this behavior correctly. The states of some units may

imply waits, but they will provide certain outputs as a function of inputs and current state,

independent of other units. For instance, gates, module instances, and RTL assignments

are continuously providing the outputs as a function of inputs. This design paradigm is

different from other languages, such as C or Java.

A more detailed guide to the Verilog language can be found on [Sagdeo 2007], and

[Taraate 2022] provides a deeper discussion on the concurrent characteristics Verilog

operators.

Finally, Verilog is a weakly-typed language. In a weak type system, the type of an

expression carries little or no information about the denoted object. Values can be converted

automatically from one type to another when the context of use requires it, and there are

situations where the automatic conversion leads to surprising or unwanted results. This

behavior is present in other popular languages, such as JavaScript [Thiemann 2005]. VHDL,

on the other hand, has a so-called strong type system. Namely, it does not allow operations

on data that are of incompatible types.

2.2 HDL and Verification

In the context of HDLs, verification is a process to demonstrate that a particular design

and a set of specifications are preserved during implementation [Bergeron 2000]. It ensures

the results of one or more transformations correspond to what designers expected. Trans-

formations can be any set of processes that take one or more inputs and produce outputs.

Analyzing the inputs with the expected results and matching them against the actual outputs

11

in an iterative process is called reconvergence model. This strategy is essential for ensur-

ing product quality, preventing bugs, and setting standards in commercial or prototyping

scenarios. It can also save time and resources by eliminating recalls or forced updates.

[Kropf 1999] makes an important distinction between verification and validation. Val-

idation is the process of gaining confidence in the specification by examining the imple-

mentation’s behavior, and it generally does not involve reasoning about transformations or

specifications. Validation is often achieved by simulation.

There are different paths for verifying digital circuits depending on what designers aim

to verify, and we summarize these distinct aspects in the upcoming subsections.

2.2.1 Formal and Functional verification

Functional verification ensures a particular design implements an intended functionality

[Bergeron 2000]. It is often done via observed results. A popular technique is "black-

box" verification, where implementation details are not shared, and the verification is

accomplished through available interfaces. Although it lacks visibility, it is very convenient

for being implementation-agnostic, and this technique can be used in multiple contexts. It

is also helpful for decoupling results from implementation specifics.

On the other side of the spectrum, the "white-box" verification model enables total

visibility of the implementation details, allowing the users to quickly combine and try

different states and inputs. However, its immediate downside is the lack of generalization,

making it tightly coupled to one particular design.

Different "box" models are not mutually exclusive, and can complement each other in

valuable aspects. It is fairly common to find both "black-box" and "white-box" models

as different verification steps for the same project. [Howar et al. 2019] reports a recent

example of this style combination for software and hardware domains. Regardless of the

12

chosen technique, functional verification can only show that a design meets the intent of

its specification by plain evidence. Nevertheless, it cannot mathematically prove anything

about the process or the obtained results.

Circuit design correctness can also be verified through well-founded ideas from formal

verification [Kropf 1999]. Specifically, there are two principal approaches. Equivalence

checking validates equality of states and/or steps on all design transformations involved

in the process [Bening and Foster 2001]. For example, it can ensure that a reference RTL

model is logically equivalent to a transformed or refined model (see [Koelbl et al. 2009] and

[Foster 2001]). Equivalence checking can also be applied to comparing output netlists [Kam

and Subrahmanyam 1995] and matching netlists against an expected RTL code [Vasudevan

et al. 2006].

Another common technique in formal verification is Model Checking [Clarke et al. 2009].

It enables the systematic checking of one or multiple properties under a finite-state, logical

model for circuits. The foundations of model checking are derived from [Hoare 1969]. This

foundation work uses deductive reasoning to explore the mathematical logic underlying

computer programming. By specifying an initial set of axioms and a set of inference rules

derived from these axioms, all results from running programs can be proven correct. The

meaning of a statement is defined in terms of its effects, and they are materialized via

assertions that can be made about the associated program or design. Assertions are widely

adopted in hardware verification, and they have their own particularities and categorizations

in the verification domain.

2.2.2 Dynamic and Static verification

13

The idea of hardware verification through assertions is the foundation for the technique

called Assertion Based Verification (ABV). In this model, assertions are high-level state-

ments formulated under a certain type of logic (temporal, linear, or linear temporal logic, for

example), and they encode how the circuit, or parts of it, should behave [Foster et al. 2004].

Assertions are highly versatile and can be added in multiple stages of the design process.

Designers can include new assertions incrementally, according to the needs of the project.

Such flexibility brings unit-wise and system-wise benefits. Faulty or buggy implementations

can be detected locally or during integration stages [Tao 2009]. Hardware assertions are

commonly written in some kind of specification language; typical examples are the Property

Specification Language (PSL) [IEEE 2005a] and SystemVerilog Assertions (SVA) [IEEE

2005b]. These languages take declarations of linear temporal relations between signals

and rely on a checker generator to emulate the expected behavior. A checker generator

synthesizes monitor circuits from assertions, and an assertion checker, expressed in HDL,

captures the behavior of a given assertion [Boulé and Zilic 2008]. The assertion checker

produces assertion signals with the results of executed assertions. Assertion checkers are

also known as Assertion Circuits. Figure 2.1 summarizes the main components and steps of

ABV.

Assertions can be used dynamically to offer a solid support for random testing [Bird

and Munoz 1983]. Manually and automatically generated test-benches [Biederman 1997],

for example, compose simulation code that creates a predetermined input sequence to be

matched against an expected output. Simulation of all possible outcomes is a common

dynamic verification technique that behaves well for small circuits.

However, purely dynamic techniques do not scale up for larger projects, given the

excessive amounts of possible combinations [Eastham and Thirunarayan 1996]. In contrast,

ABV can be used in a static verification scope. In this static scenario, assertions are

14

Fig. 2.1. Main components of ABV: original circuit, assertions, checker generator, assertion checker
and results.

combined with formal methods techniques. For instance, model checking and assertions

have a long history of applications. As an example, [Raik et al. 2008] reports the use case

of model checking to detect untestable faults in RTL models. The project can automatically

generate a corresponding assertion in PSL from the outputs to reveal issues with the

designated sequential synchronous design.

Another example of static verification consists of processing assertions with the support

of theorem provers. More robust than pure automaton checkers, they may rely on more

expressive types of logic, which can be seen as a powerful semantic framework. In contrast

with the finite state machine (FSM) approach, which usually targets only RTL models,

some theorem provers are flexible enough to encode all the circuit formalisms - behavioral,

RTL, and structural. To illustrate from a historical perspective, works from the early 2000’s

model a subset of the PSL language using the Prototype Verification System Prover (PVS)

[Shankar et al. 2001]. In the work of [Morin-Allory and Borrione 2006], authors synthesize

provably correct monitors (observed input value sequence signals) that match a designated

temporal expression. In [Morin-Allory et al. 2008], authors take a different verification

15

path. Their project encodes PSL’s syntax and semantics in PVS, and with that, they prove

the correctness of a small set of rewrite rules.

2.3 Theorem Provers and Hardware Verification

The previous examples and use cases are directed to PVS, but other theorem provers have

been largely adopted to support hardware verification. As a concrete example, in the 1990s

and early 2000s, Isabelle [Paulson 1994] and the entire HOL [Gordon 1988] family received

significant attention from the hardware verification community. [Kropf 1999] dedicates

an entire chapter of their work to compare verification techniques in HOL versus plain

FSM. This reference provides a well-structured introduction to proofs using predicate

and first-order logic (FOL), as well as axiomatic theory principles applied to hardware

verification based on [Hoare 1969]. In a fruitful discussion about the limitations of FOL,

[Kropf 1999] demonstrates the impossibility of binding functions by quantifiers and the

separation between predicates and terms in this type of logic. These arguments justify the

need for Higher-Order Logic.

Language-wise, Higher-Order Logic is a rich construction carrying the notions of types

(tags for non-empty sets, in this context), functions, lambda-abstractions (notion derived

from the λ -calculus, see [Engeler 1984]), polymorphism, bound and free variables. [Kropf

1999] systematically drafts a compact semantics for Higher-Order Logics targeting hardware

verification, which is composed of constants, function application and conditionals. Authors

also show how to increment this rudimentary system with extensions that preserve the

correctness of the model (known as conservative extensions). Given the required axioms

and semantics, it becomes possible to state theorems (and not simple assertions) which

carry the goals to be proved. Initially described on [Kumar et al. 1991], a generalization for

the hardware verification procedure using Higher-Order Logic is stated as follows:

16

(1) Create a formal specification;

(2) Create a formal implementation;

(3) State the proof goals and theorems;

(4) Perform the correctness proof.

Distinct theorem provers may require different strategies for hardware verification. As

additional examples, [Aagaard et al. 1993] develops Nuprl [Constable et al. 1986] tactics

for automating frequently required verification tasks. Nuprl’s type system is based on a

sequent version of Martin-Loof’s constructive type theory, which is more expressive than

HOL’s simple type system. A detailed survey on formal verification strategies with multiple

theorem provers from the early 2000’s, not restricted to HOL and PVS, can be found on

[Kern and Greenstreet 1999].

Since mid-2000s, several research projects on hardware verification began targeting

High-Level Synthesis (HLS). In HLS, the circuit specification is stated in higher-level

language (HLL), such as C or C++, and then it is transcompiled into RTL design, often

using an HDL such as Verilog or VHDL. Chapter 5 reports a broader discussion on HLS

and how the techniques relate to the work in this thesis.

In the last 20 years, other theorem provers were developed or gained space in the formal

methods community. Hence, they also became an option for hardware verification. For

instance, in [Guo et al. 2016], authors combine a model checker with the Coq proof assistant

4 ([Barras et al. 1997], [Coquand and Huet 1985]) for verifying system-level security on

System-on-Chip (SoC) designs. In [Jin et al. 2017] and [Bidmeshki et al. 2017], authors

develop a Verilog-to-Coq library that generates security property theorems for circuits.

Their project, Vericoq, aims to facilitate the development of hierarchical proofs. It enables

4https://coq.inria.fr/

17

https://coq.inria.fr/

the verification of HDL code and the corresponding reusable lemmas for each module.

Vericoq uses its own axiomatic semantics to generate the translation between Verilog and

Coq.

Verifloq, the main project in this thesis, also uses the Coq proof assistant for developing a

formalization for a subset of the Verilog language. In Section 2.4, we provide an overview

of Coq.

2.4 Brief Introduction to the Coq Proof Assistant

Coq is a proof assistant for higher-order logic, along the lines of HOL (see Section 2.3). It

allows the verification of programs against a formal specification via mathematical proofs.

Coq’s foundational theory/logic is based on the Calculus of Inductive Constructions (CIC)

[Coquand and Huet 1988]; more specifically in an extension named Gallina. In a high-level

overview, it combines predicate calculus, inductive predicate definitions, and recursive

function definitions. Coq enables program extraction from the constructive contents of

proofs. In this sense, Coq is a robust tool that takes advantage of proof objects and gives

them a computational interpretation.

Coq is also a dependently typed language. That means it can include references to

programs inside of types. The classic example of dependent types is the type of arrays,

where the array type includes information about its dimensions. The idea of dependent

types is not new (see [Pierce 2004]), and it can express extremely precise specifications of

program behavior. "Dependent types also often let you write certified programs without

writing anything that looks like a proof" [Chlipala 2013].

Formalizations in Coq may benefit from multiple language safety guarantees for free.

For example, Gallina ensures that a computation always terminates (a property known as

strong normalization) [Bertot and Castéran 2004] - hence, Coq code properly developed also

18

inherits this property. Coq is also heavily driven by tactics for interactive proof development.

Tactics are commands that decompose proofs goals into simple ones or sometimes solve

a goal entirely. They are a convenient way to handle complex proofs. Tactics are also

present in Nuprl, HOL, and Isabelle. A summary of useful Coq tactics can be found on

Appendix B.4.

2.5 Programming Languages and Semantic Models

This thesis presents the development of type-safe language, Verifloq. The implementation

process requires specifying the syntactic constructs (syntax), as well as how the language

behaves, and what each of its constructs means (semantics).

By establishing a formal semantics to a language, we aim to develop its mathematical

model to understand and reason about how programs written in it behave. "Trying to define

the meaning of program constructions precisely can reveal all kinds of subtleties of which

it is important to be aware" [Winskel 1993]. A semantic model is also the basis for analysis

and verification.

Semantic models for languages are often categorized in three groups ([Schmidt 1996],

[Pierce 2002]):

(1) Axiomatic semantics: The meaning of a well-formed program is a logical proposition

(or specification) that states some property about the input and output. In other words,

this model fixes the meaning of a programming construct by giving proof rules to it,

within a particular type of logic. Instead of first defining the behaviors of programs

and then deriving laws from this definition, axiomatic methods take the specifications

as the definition of the language. The meaning of a term is just what can be proved

about it. This is the semantic style we see in Hoare Logic. The Hoare-style verification

19

system we developed in Section 4.1 is an example of axiomatic semantics, and the

proof rules we defined for each construct combined with the pre and post conditions

exemplify how this system works. Another example of an axiomatic approach is

Vericoq (see [Jin et al. 2017] and [Bidmeshki et al. 2017]), previously mentioned in

Section 2.3.

(2) Operational semantics: The meaning of a well-formed program is the trace of com-

putation steps that results from processing the inputs. In other words, the behavior of a

programming language is defined by an abstract machine for it. A state of the machine

is usually a term, and a transition function defines the behavior. For each state, this

transition function either gives the next state (by performing a step of simplification

on the term) or declares that the machine has halted. There are different styles of

operational semantics, and it is not uncommon to have multiple ones for a single

language. For example, in Structural Operational Semantics (SOS), [Plotkin 2004], as

a computation proceeds, "branches of the abstract syntax tree are gradually replaced

by the values that they have computed. In an initial state the program tree is purely

syntactic, in a final state it has been replaced by its computed value, and in between, it

is usually a mixture of syntax and computed values" [Mosses 2001]. This operational

semantic style is also known as Small-Step Operational Semantics.

Natural semantics or Big-Step Operational semantics, introduced by [Kahn 1987],

is a special case of the small-step semantics, involving initial and final states, but no

intermediate states. This style may be easier to get started, as it hides intermediate

state information. However, it generally does not allow any sort of reasoning about

concurrent behavior. Other operational semantic approaches are Modular Operational

Semantics [Mosses 1999] and Reduction Semantics [Felleisen and Friedman 1987].

20

(3) Denotational semantics: The meaning of a well-formed program is a mathematical

function from input data to output data. It emphasizes that a program has an underlying

mathematical meaning that is structured on the language’s syntax definition [Winskel

1993]. Denotations are typically higher-order functions between complete partial

orders. "The semantics of a complete program is its observable behavior, which is

obtained from its denotation." [Mosses 2001]. The original denotational style was

developed by [Scott 1972], and typically, denotations are functions of environments

and continuations. Monadic Semantics [Moggi 1991] is another denotational style,

based on category theory.

Elaborating a semantic model is a crucial step in language formalization. Instead of

elaborating an entorely new model, we often decide to build on top of other existing

computational formalisms. Section 2.6 describes the Simply-Typed Lambda Calculus, the

foundation of strong types for Verifloq.

2.6 The Simply Typed Lambda Calculus

The pure (untyped) Lambda Calculus (or λ -calculus) was proposed by Church ([Church

1932]) as a general theory of functions and logic intended for the foundations of mathe-

matics. All functions computable by Turing machines can be represented in the Lambda

calculus. The untyped version of this calculus, also known as "type-free theory", allows

every expression (a function) to be applied to every other expression (any argument) [Baren-

dregt 1993]. In the untyped Lambda calculus, all language constructs are functions, and

there are no side-effects or state. The language is built on top of lambda terms, which are

syntactically valid expressions. The simplest version of the untyped Lambda calculus is built

21

with three base terms: a set of variables V , function application and function abstraction λ ,

which are presented in Definition 2.1.

Definition 2.1 (Base terms of the untyped Lambda Calculus.).

t ::= (Terms)

| V (Set of Variables)

| λ x · t, x ∈ V (Function abstraction)

| t t (Function application)

Variables, such as x, y, z, are lambda terms. If F and G are lambda terms, their function

application, FG, is also a lambda term. If x is a variable in the set of variables V and t is a

term, the function abstraction λx · t is also a lambda term. x is the function parameter, and t

is the body of the function.

The substitution operation handles the computations in the Lambda Calculus. It is re-

sponsible for the replacement of a variable y in a term r by another term s. There are two

important rules related to substitution: α-reduction, which simply renames bound variables

in a term, and β -reduction, a recursive procedure that replaces all free occurrences of

variable x in a term E by another term F . Bound variables in E are renamed by α-reduction

(if necessary) to avoid capturing free variables in F .

In the untyped Lambda calculus, there is no restriction on how we can use functions. This

loose behavior can lead to bad combinations of terms. For example, what would it be the

successor of a boolean? The function successor would make sense for natural numbers,

but not for true or f alse.

To address this issue, typed versions of the Lambda calculus ([Curry 1934], [Church

1940], [Barendregt et al. 2013]) were proposed, and among them, we find the Simply Typed

Lambda Calculus (STLC). Types are objects of a syntactic nature and may be assigned to

22

lambda terms. Types provide a partial specification of the represented algorithms and are

useful for demonstrating partial correctness. A typed lambda-calculus has a language in

two parts: the language of types (typing rules), and the language of terms (a set of rules to

manipulate these terms) [Loader 1998]. Terms are equally expressive as HOL terms.

The simplest form of the STLC has only the type of functions as its single type [Barendregt

et al. 2013], as presented in Definition 2.2.

Definition 2.2 (Types in pure STLC.). τ := T → T

In the STLC, we revisit the base terms from the untyped Lambda Calculus, and assign

them corresponding types [Barendregt et al. 2013]. Namely, function abstractions will have

a designated type. To assign a type to a term, we use the notation x : T , meaning that x has

type T , as stated in Definition 2.3.

Definition 2.3 (Terms in pure STLC.).

t ::= (Terms)

| V (Set of Variables)

| λ x:T · t, x ∈ V (Function abstraction)

| t t (Function application)

The STLC relies on a function mapping a finite set of variables into the set of types. This

is named context, and it’s often represented by the Greek letter Γ. Γ represents a typing

declaration in x1 : T1,x2 : T2, ...,xn : Tn, meaning it maps each variable xn to a corresponding

type Tn.

Let t be any term in the STLC, and T be any type. We define the ternary relation of

typing rule Γ ⊢ t : T for each term in the language as specified in Definition 2.4. These rules

restrict what expressions are evaluated. Given a typing context Γ and expression e, if there

23

is some type T such that the previously stated ternary relation Γ ⊢ t : T holds, we say that e

is well-typed under the context Γ. If Γ is the empty context, we say e is well-typed.

Definition 2.4 (Typing rules in pure STLC.).

x : T ∈ Γ
TRVar

Γ ⊢ x ∈ T

Γ, x : T1 ⊢ t : T2 TRAbs
Γ ⊢ λx T1 · t : T1 → T2

Γ ⊢ t1 : T1 → T2 Γ ⊢ t2 : T2 TRApp
Γ ⊢ t1 t2 : T1

Lastly, to formalize the execution of a language, in this case the STLC, we must select a

semantic style among those described in Section 2.5. We can then verify properties such as

type safety: well-typed terms can never reach a stuck state during evaluation.

In Chapter 3, we will connect the concepts seen in this section by developing a type-safe

language, Verifloq, on top of the STLC, verified in Coq.

24

3 Verifloq: A Coq formalization

for Verilog
In this section, we put together the base concepts seen in Chapter 2 by presenting the

development of a new HDL. We formalize a small set of the Verilog language using the

Simply Typed Lambda Calculus (STLC) as the core foundation for our verification strategy.

Verifloq’s implementation follows the approach described on [Pierce et al. 2021].

Verifloq supports a subset of the original Verilog language, and the implemented constructs

are defined in Figure 3.1.

⟨v⟩ ::= bool | Nat

⟨op⟩ ::= + | *
| <
| >... (Mostly basic arithmetic operations)

⟨expr⟩ ::= ⟨v⟩
| x (variables)
| ⟨expr⟩ ⟨op⟩ ⟨expr⟩

⟨stmt⟩ ::= ⟨stmt⟩ ; ⟨stmt⟩
| if ⟨expr⟩ then ⟨stmt⟩ else ⟨stmt⟩
| ⟨expr⟩ = ⟨expr⟩
| ⟨expr⟩ <= ⟨expr⟩

⟨mdl⟩ ::= [always_ff @ (posedge clock) ⟨stmt⟩]

Fig. 3.1. Verifloq’s syntax.

In Section 3.1, we describe the implementation of Verifloq by expanding the STLC to

support the corresponding Verilog’s constructs. The development and details of Verifloq’s

small-step operational semantics are defined in Section 3.2. The typing relations are stated in

25

Section 3.3. Those are the necessary development steps to prove that Verifloq is a type-safe

language. Specifically, in Section 3.4, we show that well-typed terms can never reach a stuck

state during evaluation. Lastly, Section 3.5 brings some code examples, and Section 3.6

provides a quick summary of the development process.

3.1 Verifloq: Incrementing the STLC with Verilog Components

In Verifloq, we extend the pure STLC with Verilog’s language constructs. Besides the

original Arrow type, we add other simple base types (sets of simple, unstructured values).

Verifloq currently supports natural numbers (Nat), booleans (Bool) and the unit type (Unit).

The Unit type carries the notion of mutable state [Wadler 1992], and this is the type that

typically represents side effects in a language. Side effects can modify the global program

state. I/O operations, such as reading and writing from the disk, are examples of functions

with side-effects. We implement Unit for future Verifloq extensions and at this time, side

effects are not a major component of Verifloq’s formalization.

We also add multiple derived types, a composition of types that can be obtained from

the combination of other types. Specifically, we add support for generic typed lists (List T),

sums (Sum), tuples (Tuple), records (Record) and assignments (Assignment).

Sum types (denoted by T1+T2) represent heterogeneous collections of values, such as a

node in a binary tree, which can be either a leaf or another inner node with other children.

Tuples or Pairs, also known as product types T1 ∗T2, take the form of (x:T1, y:T2). (13, true)

is an example of a 2-ary tuples of type (Nat, Bool). Records are a generalization of tuples.

In our context, they are useful for storing signal declarations. Records are a collection of

labelled fields, represented as {l1 : T1, ..., ln : Tn}. In our implementation, they carry blocking

and non-blocking assignments. In Verifloq, modules correspond to Variant types in the

literature. These are a generalization of Sum types, or, in other words, a generalization of

26

n-ary labelled types. In our context, they will carrey the type of evaluated records throughout

time Variant types are represented as ⟨l1 : T1, ..., ln : Tn⟩ in our semantic model, and l1, ..., ln

are field labels.

The type constructs of Verifloq are stated in Listing 3.1, and the corresponding type

definitions in Coq code can be found in Listing 3.2.

τ := (Types)

| T → T (Function Application)

| Nat

| Bool

| Unit

| Sum (T1+T2)

| Pair (T1,T2)

| List T (Generic List)

| Record (T1,T2, ...,Tn)

| ModuleAssignment ({ l1 : T1, ..., ln : Tn })

Listing 3.1. Types in Verifloq.

27

Inductive typ : Type :=

(* Pure STLC *)

| Ty_Arrow : typ −> typ −> typ

(* Base types *)

| T_Nat : typ

| T_Bool : typ

| T_Unit : typ

(* Derived types *)

| T_Sum : typ −> typ −> typ

| T_List : typ −> typ

| T_Tupl : typ −> typ −> typ

| T_Record : typ −> typ −> typ

| T_ModuleAssignment : typ −> typ −> typ.

Listing 3.2. Verifloq’s types in Coq.

The next step consists of expanding the terms accordingly. Besides the three base terms

for the pure STLC, we add terms for the natural numbers and their respective unary and

binary operations, general recursion, blocking, and non-blocking operations, as well as

modules. Listing 3.3 shows the inductive definitions of all supported terms in our language.

In Verifloq, we only allow synchronous, positive edge modules. Currently, only one

module is supported. Register bits should be specified all at once. Vector resizing is also

not supported.

Inductive tm : Type :=

(* pure STLC *)

| tm_var : string −> tm

28

| tm_app : tm −> tm −> tm

| tm_abs : string −> typ −> tm −> tm

(* binary and arithmetic operations *)

| tm_input : string −> tm

| tm_output : string −> tm

| tm_const: nat −> tm

| tm_succ : tm −> tm

| tm_pred : tm −> tm

| tm_add : tm −> tm −> tm

| tm_sub : tm −> tm −> tm

| tm_lt : tm −> tm −> tm

| tm_gt : tm −> tm −> tm

| tm_lte : tm −> tm −> tm

| tm_gte : tm −> tm −> tm

| tm_eq : tm −> tm −> tm

| tm_or : tm −> tm −> tm

| tm_and : tm −> tm −> tm

| tm_mult : tm −> tm −> tm

| tm_div : tm −> tm −> tm

| tm_neg : tm −> tm

| tm_not : tm −> tm

(* if *)

| tm_if : tm −> tm −> tm −> tm

(* unit *)

| tm_unit : tm

(* booleans *)

29

| tm_true : tm

| tm_false : tm

(* sums *)

| tm_inl : typ −> tm −> tm

| tm_inr : typ −> tm −> tm

| tm_case : tm −> string −> tm −> string −> tm −> tm

(* lists *)

| tm_nil : typ −> tm

| tm_cons : tm −> tm −> tm

| tm_lcase : tm −> tm −> string −> string −> tm −> tm

(* tuples *)

| tm_pair : tm −> tm −> tm

| tm_fst : tm −> tm

| tm_snd : tm −> tm

(* recursion *)

| tm_rec : tm −> tm

(* records *)

| tm_emprec : typ −> tm

| tm_record : tm −> tm −> tm

| tm_lproj : tm −> tm −> string −> string −> tm −> tm

(* assignments *)

| tm_empasgn : typ −> tm

| tm_asgn : typ −> tm −> tm −> tm

| tm_casgn : tm −> tm −> string −> tm −> string −> tm −> tm

| tm_blocking : tm −> tm −> tm

| tm_nonblocking : tm −> tm −> tm

30

| tm_module : tm −> tm −> tm −> tm −> tm.

Listing 3.3. Terms in Verifloq.

We must convert the input Verilog syntax to their respective Coq terms. Notation conver-

sion is achieved with Coq’s Notation command. Notation works like a macro, converting a

designated syntax to a respective inductive definition in Coq. Listing B.1 shows how we

convert the traditional if/else syntax from Verilog to Coq encoding using Notation as an

example. It is necessary to specify one notation per language construct.

3.1.1 Verilog Programs Converted into Verifloq Terms

Listing 3.4 illustrates a simple Verilog program, and Listing 3.5 shows its respective

translation to Verifloq’s terms, using the definitions presented at Listing 3.3.

module HalfAdd(a,b,sum,carry);

input a,b;

output sum,carry;

xor(sum,a, b);

and(carry,a,b);

endmodule

Listing 3.4. Half-adder example in Verilog.

31

(tm_module (tm_var "HalfAdd") (tm_const 0)

(tm_record

(tm_tuple [(tm_input "a"), (tm_input "b")],

[(tm_output "sum"), (tm_output "carry")]

)

sum :::= (tm_xor a b)

carry :::= (tm_and a b)

)

[]

)

Listing 3.5. Half-adder example translated to Verifloq’s terms.

Note the module contents in Listing 3.5 are defined within a record type. tm_const 0

indicates the clock for the module, which will be always a positive, synchronous edge. The

first element of the module is a tuple of input and output wires. Since we have multiple

inputs and outputs, the tuple carries a list of tm_input and tm_output terms. The syntactic

element :::= represents variable assignments. Lists, represented by tm_nil and tm_cons, have

the standard representation of [].

In Section 3.2, we present the formalization to execute the computations in a Verfilog

program, using our small-step operational semantics.

3.2 Verifloq’s Small-step Operational Semantics

In this thesis, we propose a small-step operational semantics for Verifloq. Reiterating the

definitions in Section 2.5, an operational semantics consists of an abstract machine for the

language, and we define rules to describe how each term, initially in a pure syntactic form,

32

inductively steps into the program evaluation until it reaches a computed value. To specify

the small-step operational semantics for Verifloq, we execute the following items:

(1) Define a set of values for the language;

(2) Define the notion of free-variables in the system;

(3) State the substitution relation;

(4) State the small-step relation (reduction).

Values are elements that cannot be reduced any further, such as: true, false, and natural

numbers. Verifloq’s base values are defined in Listing 3.6. When dealing with function

abstractions (i.e. λ : T · t), we have a choice: either always treat them as values, or only

consider them as values after t, the body of the function, has been reduced to a value. We

take the traditional approach of the STLC and use the first option; namely, we always

treat lambda abstractions as values. This choice is also convenient for defining our step

relation, and we choose to work with only closed terms (terms with no free variables). This

maneuver simplifies the substitution operation, to be stated shortly after.

Inductive val : tm −> Prop :=

(* Pure STLC *)

| v_abs : forall x T t1,

val (tm_abs x T t1)

(* Extensions *)

| v_nat : forall n : nat,

val (tm_const n)

| v_inl : forall v T1,

val v −>

val tm_inl T1 v

| v_inr : forall v T1,

33

val v −>

val tm_inr T1 v

| v_lnil : forall T1, val tm_nil T1

| v_lcons : forall v1 v2,

val v1 −>

val v2 −>

val tm_cons v1 v2

| v_unit : val tm_unit

| v_pair : forall v1 v2,

val v1 −>

val v2 −>

val tm_pair v1 v2

| v_true : val tm_true

| v_false : val tm_false.

Listing 3.6. Base values of our implementation.

We now state the substitution operation, which replaces a given term y for occurrences

of some variable x in another term t, such that [x := y] t. It reads as "substitute y for x in

the term t". The substitution operation needs to be stated for all existing terms, and the

implementation of this recursive function can be found in Listing B.2.

In Figure 3.2 and Figure 3.3, we state the step relation for function abstractions, function

application, recursion, natural numbers and boolean terms. Some trivial binary operations,

such as multiplication or comparison of natural numbers, are omitted for brevity. They will

be similar to StepAdd1 and StepAdd2.

We use the notation −→ for representing a single step, and −→∗ for representing multiple

steps. We rely on the substitution operation defined in Listing B.2 to handle functions. The

34

corresponding Coq code is stated in Listing B.3. Note how it maps almost directly the

corresponding inference rules from Figure 3.2.

In the step rules definition, we use t (or t1, t2,..., tn) for a generic term, and v (or v1, v2,...,

vn) for a generic value.

value v
λx : T1, t v −→

[
x := v

]
t

STEPAPPABS
t1 −→ t ′1

t1 t2 −→ t ′1 t2
STEPAPP1

value v t2 −→ t ′2
v t2 −→ v t ′2

STEPAPP2

(a) Step relation for functions: StepAppAbs; and function application: StepApp1, StepApp2(
i f true t1 else t2

)
−→ t1

STEPIFTRUE

(
i f f alse t1 else t2

)
−→ t2

STEPIFFALSE

t −→ t ′(
i f t t1 else t2

)
−→

(
i f t ′ t1 else t2

) STEPIF

(b) Step relation for if: StepIfTrue, StepIfFalse, StepIf

Fig. 3.2. Reduction rules for functions, function application, and conditional terms.

Note that StepRec and StepRecAbs represent recursive functions. We use these relations to

support for loops. Namely, Verifloq handles loops using recursive functions.

Step rules for typed lists can be found in Figure 3.4. Rules StepCons1, StepCons2, StepLcase1

handle the evaluation of subterms, StepLcaseNil handles the presence of a nil element and

StepLcaseCons handles cases with values.

In Figure 3.5, a pair
(
t1, t2

)
, or tuple, is a structure with two terms with possibly different

types. The term on the left is referred to as f st (first), and the term on the right is referred to

as snd (second). The rules StepPair1, StepPair2, StepFst1 and StepSnd1 show the term evaluations

35

t1 −→ t ′1
add t1 t2 −→ add t ′1 t2

STEPADD1
value v t2 −→ t ′2
add v t2 −→ cons v t ′2

STEPADD2

(a) Step relation for arithmetic operations (addition): StepAdd1, StepAdd2

t1 −→ t ′1
rec t1 −→ rec t ′1

STEPREC

rec
(
λx : T · t

)
−→

[
x :=

(
rec

(
λx : T · t

))] STEPRECABS

(b) Step relation for recursive functions: StepRec, StepRecAbs.

Fig. 3.3. Reduction rules for boolean terms, natural numbers and binary operations.

t1 −→ t ′1
cons t1 t2 −→ cons t ′1 t2

STEPCONS1

value v t2 −→ t ′2
cons v t2 −→ cons v t ′2

STEPCONS2

t1 −→ t ′1
lcase t1 t2 x1 x2 t3 −→ lcase t ′1 t2 x1 x2 t3

STEPLCASE1

lcase
(

nil T
)

t2 x1 x2 t3 −→ t2
STEPLCASENIL

value v1 value v2

lcase
(
cons v1 v2

)
t2 x1 x2 t3 −→

[
x2 := v2

([
x1 := v1

]
t3
)] STEPLCASECONS

Fig. 3.4. Step relation for lists: StepCons1, StepCons2, StepLcase1, StepLcaseNil, StepLcaseCons.

in pairs, whereas StepFstVal, StepSndVal represent how to extract the final values of a pair. As

seen in Listing 3.5, tuples are used to store input and output wires.

Records follow the same idea, but with n-ary elements. Rules StepRecord, StepRecordProj1 and

StepRecordProj2 show the step relation for records. These rules are defined in Figure 3.6.

36

t1 −→ t ′1(
t1, t2

)
−→

(
t ′1, t2

) STEPPAIR1
value v t −→ t ′(

v, t
)
−→

(
v, t ′

) STEPPAIR2

t −→ t ′

f st
(
t
)
−→ f st

(
t ′
) STEPFST1

value v1 value v2

f st
(
v1, v2

)
−→ v1

STEPFSTVAL

t −→ t ′

snd
(
t
)
−→ snd

(
t ′
) STEPSND1

value v1 value v2

snd
(
v1, v2

)
−→ v2

STEPSNDVAL

Fig. 3.5. Step relation for tuples: StepPair1, StepPair2, StepFst1, StepFstVal, StepSnd1 , StepSndVal

ti −→ t ′i
{i1 = v1, ..., in = ti} −→ {i1 = v1, ..., in = t ′i}

STEPRECORD

t0 −→ t ′0
t0 · i −→ t ′0 · i

STEPRECORDPROJ1
value vi

{, ..., i = vi, ...} −→ vi
STEPRECORDPROJ2

Fig. 3.6. Step relation for records: StepRecord, StepRecordProj1, StepRecordProj2.

Sum types, or disjoint unions, describe a set of values drawn from one of two given types.

For example, Nat + List Nat indicates that a term can be of one of these two types. inl Nat

+ List Nat returns the left element, Nat, and inr Nat + List Nat returns the right element,

List Nat. Namely, inl and inr extract the types, such as rules StepInl and StepInr demonstrate.

Rules StepCase, StepCaseInl and StepCaseInr show the term evaluations in sums. These rules are

defined in Figure 3.7.

Variants are a generalization of sum types for n-ary types. We use variant types to

compute the type of a module taking into account the clock cycles. In our implementation,

modules are treated as variant types, giving us a typed clocked behavior in our semantics.

We describe further details in Section 3.3.1.

37

In Figure 3.8, we find the rules StepCaseEAsgn, StepCaseAsgn, StepBlocking and StepNonBlocking for

the evaluation of blocking and non-blocking assignments. Rules StepModule, StepModuleMerge,

StepModuleCommit and StepModuleEnd show the step relation for modules.

t1 −→ t ′1
inl T t1 −→ t ′1

STEPINL
t1 −→ t ′1

inr T t1 −→ t ′1
STEPINR

t −→ t ′

case
(
t x1 t1 x2 t2

)
−→ case

(
t ′ x1 t1 x2 t2

) STEPCASE

value v
case

((
inl T v

)
x1 t1 x2 t2

)
−→

[
x1 := v

]
t1

STEPCASEINL

value v
case

((
inr T v

)
x1 t1 x2 t2

)
−→

[
x2 := v

]
t2

STEPCASEINR

Fig. 3.7. Step relation for sums: StepInl, StepInr, StepCase, StepCaseInl, StepCaseInr

The corresponding Coq code stating the step relation for sums, tuples, records, lists,

assignments and module terms is defined in Listing B.3.

3.3 Typing Rules

As stated in Section 2.6, typing relations establish well-typed terms. Typing rules enable a

strong type system for Verifloq, removing issues caused by Verilog’s original weak type

system. Figure 3.9 defines the straightforward typing relation for function abstractions,

function application, recursion, natural numbers and boolean terms. Some trivial rules

for binary and arithmetic operations are omitted for brevity. Figure 3.10 states the typing

rules for lists, and Figure 3.11 defines the typing relation for pairs and records. Finally,

Figure 3.12 defines the typing rules for sums and assignments. The corresponding Coq

code is defined in Listing B.4.

38

value vi

case
(
⟨li = vi⟩ as T

)
o f ⟨li = xi⟩ ti −→

[
xi := vi

]
ti

STEPCASEEASGN

ti −→ t ′i
case

(
⟨li = vi⟩ as T

)
o f ⟨li = xi⟩ ti −→ case

(
⟨li = vi⟩ as T

)
o f ⟨li = xi⟩ t ′i

STEPCASEASGN

t1 −→ t ′1
blocking t1 t2 −→ blocking t ′1 t2

STEPBLOCKING

t1 −→ t ′1
non_blocking t1 t2 −→ non_blocking t ′1 t2

STEPNONBLOCKING

(a) Step relation for assignments: StepCaseEAsgn, StepCaseAsgn, StepBlocking, StepNonBlocking.

t1 −→ t ′1
module l1 l2 t1 t2 −→ module l1 l2 t ′1 t ′1 t2

STEPMODULE

value vi t −→ t ′

module l1 l2 vi t1 −→ module l1 l2 vi t ′1
STEPMODULEMERGE

value v1 t2 −→ value v2

module l1 l2 v1 t2 −→ module l1 l2 v1 v2
STEPMODULECOMMIT

value v
module l1 l2 v1 v2 −→ v

STEPMODULEEND

(b) Step relation for modules: StepModule, StepModuleMerge, StepModuleCommit, StepModuleEnd.

Fig. 3.8. Reduction rules for module terms.

We keep the notation t (or t1, t2,..., tn) for a generic term, and v (or v1, v2,..., vn) for a

generic value; n represents natural numbers. The prefir T R denotes an inference rule for

Typing Rule.

Note that TRRec, the type of recursive functions, is simply a special case of function

application, mapping a function to itself.

Lists carry elements of the same type, as rules TRNil, TRCons, TRLcase in Figure 3.10 show.

39

Γ
(
x
)
= T

Γ ⊢ x : T
TRVAR

Γ,x : T1 ⊢ t : T2

Γ ⊢ λx : T1 · t : T1 → T2
TRABS

Γ ⊢ t1 : T1 → T2 Γ ⊢ t2 : T2

Γ ⊢ t1t2 : T1
TRAPP

Γ ⊢ true : Bool
TRTRUE

Γ ⊢ f alse : Bool
TRFALSE

(a) Typing rules for variables TRVar, functions TRAbs, function application TRApp, booleans TRTrue

TRFalse.

Γ ⊢ t1 : Bool Γ ⊢ t2 : T Γ ⊢ t3 : T
Γ ⊢ i f t1 t2 else t3 : T

TRIF
Γ ⊢ n : Nat

TRNAT

Γ ⊢ unit : Unit
TRUNIT

Γ ⊢ t1 : T1 → T1

Γ ⊢ rec t1 : T1
TRREC

(b) Typing rules for if statement TRIf, natural numbers TRNat, unit type TRUnit, recursion TRRec.

Fig. 3.9. Typing rules for functions, function application, recursion, natural numbers and boolean
terms.

Γ ⊢ nil T1 : List T1
TRNIL

Γ ⊢ t1 : T1 Γ ⊢ t2 : List T1

Γ ⊢ cons t1 t2 : List T1
TRCONS

Γ ⊢ t1 : List T1 Γ ⊢ t2 : T2 x1 : T1, x2 : List T1, Γ ⊢ t3 : T2

Γ ⊢
(
case t1 t2 x1 x2 t3

)
: T2

TRLCASE

Fig. 3.10. Typing rules for lists: TRNil, TRCons, TRLcase.

Pairs, and more generally, records, aggregate terms of different types. The respective

typing rules are described in Figure 3.11.

Sums, and more generally, variants, will have one particular type among other possible

types. The corresponding typing rules are described in Figure 3.12.

40

Γ ⊢ t1 : T1 Γ ⊢ t2 : T2

Γ ⊢
(
t1, t2

)
:
(
T 1, T 2

) TRPAIR
Γ ⊢ t : T1 ∗T2

Γ ⊢ f st t : T1
TRFST

Γ ⊢ t : T1 ∗T2

Γ ⊢ snd t : T 2
TRSND

(a) Typing rules for pairs: TRPair, TRFst, TRSnd.

Γ ⊢ t1 : T1 ... Γ ⊢ tn : Tn

Γ ⊢ {i1 = t1, ..., in = tn} : {i1 = T1, ..., in = Tn}
TRRECORD

Γ ⊢ t : {..., i : Ti, ...}
Γ ⊢ t · i : Ti

TRPROJ

(b) Typing rules for projections: TRRecord, TRProj.

Fig. 3.11. Typing rules for pairs and records.

Γ ⊢ t1 : T1

Γ ⊢ inl T2 t1 : T1 T2
TRINL

Γ ⊢ t2 : T2

Γ ⊢ inr T1 t2 : T1 T2
TRINR

Γ ⊢ t0 : T1 T2 Γ ⊢ t1 : T1 → T3 Γ ⊢ t2 : T2 → T3

Γ ⊢ case t0 x1 t1 x2 t2 : T3
TRCASE

(a) Typing rules for sums: TRInl, TRInr, TRCase.

Γ ⊢ t j : Tj

Γ ⊢ ⟨l j = t j⟩ : ⟨li : Ti⟩
TRASGN

Γ ⊢ t0 : ⟨li : Ti⟩ Γ,xi : Ti ⊢ ti : T
Γ ⊢

(
case ti xi t

)
: T

TREASGN

(b) Typing rules for assignments in a module: TRAsgn, TREAsgn.

Fig. 3.12. Typing rules for sums and assignments.

Finally, the typing rules previously shown are not the same as type checking. Type

checking consists of an algorithm with a function that tells whether of not a term is

well-typed. It can be derived from typing rules, but it is not a requirement to prove type

safety.

41

3.3.1 Adding Clock Behavior to Verifloq

At this stage, the current semantics for Verifloq does not take into account any sort of

clocked evaluation for positive edge events. To address this issue, we adopt the ideas from

[Lööw and Myreen 2019] (and its extended work, [Lööw 2021]). In this formalization,

authors describe an alternative three-layer-style semantics for a Verilog-like language

formalized in HOL4. The first layer evaluates expressions; the second layer steps a pro-

cess. These are both unclocked phases, and are, to some extent, similar to our current

implementation for Verifloq - the main difference is that Verifloq supports fewer language

constructs.

The third layer of the semantics proposed by [Lööw and Myreen 2019] presents of a

clocked evaluation function, mrun, that steps a module forward given a specified number

of cycles. An intermediate function produces a new initial state for a respective new cycle

and merges the non-blocking statements with the program variables (blocking evaluated

expressions). We use this core idea for implementing the step relation for modules in

Verifloq, and we limit the clock cycles to one. In Listing 3.7, the function mstep_merge

recursively evaluates blocking expressions, then non-blocking expressions and merges them

in a deterministic queue, enabling the clocked evaluation of the module.

Inductive step : tm −> tm −> Prop :=

(* Previously defined step relations above... *)

| Step_Module : forall t1 t2 t1' l1 l2

t1 −→ t1' −>

tm_module l1 l2 t1 t2 −→ tm_module l1 l2 t1' t2

| Step_ModuleMerge : forall t1 t2 t1' l1 l2

val v=(mstep_merge l1 l2 t1 t2) −>

42

t1 −→ t1' −>

tm_module l1 l2 t1 t2 −→ tm_module l1 l2 v t1'

| Step_ModuleCommit : forall t1 t2 t1' l1 l2 v1

val v1 −>

t2 −→ val v2=(mstep_commit l1 l2 t1 t2) −>

tm_module l1 l2 t1 t2 −→ tm_module l1 l2 v1 v2

| Step_ModuleEnd : forall t1 t2 t1' l1 l2 v

val v −>

tm_module l1 l2 t1 t2 −→ v

Listing 3.7. Step relation for modules.

3.3.2 Typing with Clock Behavior

Recall Section 3.1.1, where we specify the terms translation in Verifloq.

(tm_module (tm_var "HalfAdd") (tm_const 0)

(tm_record

(tm_tuple [(tm_input "a"), (tm_input "b")],

[(tm_output "sum"), (tm_output "carry")]

)

sum :::= (tm_xor a b)

carry :::= (tm_and a b)

)

[]

)

Listing 3.8. Half-adder example translated to Verifloq’s terms.

43

Note that in Listing 3.8, the second argument of the module represents the clock. The last

argument represents the list of blocking and non-blocking assignment. Throughout the time

execution, we navigate the module states by assigning different disjoint union types to it,

such that module : T1 + T2 + ... + Ti, where i is the number of cycles specified as an input

for the execution. Figure 3.13 exemplifies the idea for 3 clock cycles.

Fig. 3.13. Module types throughout clock increments.

Note that our semantic model substantially differs from [Lööw and Myreen 2019], where

authors do not formalize a type system for Verilog. Instead, they check possible type errors

at runtime.

3.4 Type Safety Guarantees

Verifloq’s type system gives us an important guarantee: our language will never reach a

stuck state. Stuck terms correspond to meaningless or erroneous programs [Pierce 2002].

In this section, we state and prove crucial two theorems to demonstrate that Verifloq’s

evaluated programs are safe: Progress and Preservation. Our formalization choices keep

these proofs simple and straightforward.

In Theorem 3.1, we state that closed, well-typed terms are either a value or can safely take

a reduction step. Well-typed terms will always evaluate to a value or will follow a particular

pre-established rule to be evaluated to another expression. In other words, well-typed terms

44

will never reach a stuck state. Stuck states characterize a situation where the semantic model

does not know what to do because the program has reached an unexpected or meaningless

state [Pierce 2004]. Theorem 3.1 is also know as Progress, and the Coq definition is stated

in Listing B.6. The full development of the mechanized proof can be found on Appendix B.

THEOREM 3.1 (PROGRESS).

If t is a well-typed term, then either t is a value or there is some well-typed term t ′ with

t −→ t ′.

PROOF. By induction on terms, as shown in Listing B.6. It can also be done by induction

on the derivation of ⊢ t : T . □

We also prove the Preservation theorem for Verifloq, stated in Theorem 3.2. It ensures

that if a well-typed term takes a step, the result will be also well-typed. The corresponding

Coq mechanization is stated in Listing B.7.

THEOREM 3.2 (PRESERVATION).

If t : T and t −→ t ′ , then t ′ : T .

PROOF. By induction on the derivation of ⊢ t : T , as stated in Listing B.7. We rely on an

auxiliary theorem for showing the substitution also preserves types. This theorem is stated

in Theorem 3.5. □

Once Theorem 3.1 and Theorem 3.2 are proved, we can say that Verifloq is type-safe with

respect to the semantics we proposed.

3.4.1 Additional Guarantees

Although Progress and Preservation were the most important target guarantees to prove

Verifloq’s’ type safety, we can prove other properties of our language.

45

In Theorem 3.3, we state the theorem for type uniqueness, which says that each term t

has at most one type. The Coq definition is defined in Listing B.5.

THEOREM 3.3 (TYPE UNIQUENESS).

If Γ ⊢ e : T and Γ ⊢ e : T ′, then T = T ′.

PROOF. By induction on the derivation of ⊢ e : T . The full Coq proof is described in

Listing B.5. □

We also prove that we can safely add assumptions to our mapping function, the context Γ,

without losing any other valid typing statements. This theorem, also known as weakening

property, is stated in Theorem 3.4, and the corresponding Coq mechanization is declared in

Listing B.9.

THEOREM 3.4 (WEAKENING).

If Γ ⊢ t : T and x ∉ Γ, then Γ,x : S ⊢ t : T .

PROOF. By induction on the typing derivations. □

In Theorem 3.5, we prove that our substitution operation preserves the typing relation.

The Coq definition is defined in Listing B.8.

THEOREM 3.5 (SUBSTITUTION PRESERVES TYPES).

If Γ, x : S ⊢ t : T and Γ ⊢ s : S, then Γ [x := s] t : T.

PROOF. By induction on the derivation of the statement Γ, x : S ⊢ t : T . □

3.5 Simple Verilog-like Programs with Verifloq

Verifloq allows the development of simple Verilog programs, which should be declared in

traditional .v files. We also provide a parser to Coq. At this time, the parser is unverified.

46

Alternatively, Verifloq code can be stated directly into Coq files, since we also provide a

translation using Coq’s Notation command.

Besides Listing 3.4, previously presented, we also have Listing 3.9 and Listing 3.10 as

examples of simple Verilog programs that match Verifloq’s supported constructs.

module counter (input clk, reset, output[3:0] counter);

reg [3:0] counter_up;

always_ff @(posedge clk)

begin

if(reset)

counter_up <= 4'd0;

else

counter_up <= counter_up + 4'd1;

end

assign counter = counter_up;

endmodule

Listing 3.9. Simple counter.

module logical_operators (x1, x2, x3, z1, z2, z3, z4);

input [1:4] x1, x2, x3; output z1, z2, z3, z4;

assign z1 = (x1 && x2) && x3,

z2 = (x1 || x2) && x3,

z3 = (x1 && x3) || x2,

z4 = !(x1 || x3);

endmodule

Listing 3.10. Basic logical operations.

47

3.6 Summary and Benefits of Verifloq

The verification techniques presented in Chapter 2 do not take into consideration issues

caused by language design choices of the Verilog language itself. These issues are often

not detected in compile time. A classic example is an if statement lacking an else clause,

possibly unwantedly resulting in a latch [Chonnad and Balachander 2007] in some Verilog

implementations. This issue happens due Verilog’s weak type system, and Verifloq addresses

the problem by delivering a stronger type system for a subset of constructs for the original

Verilog language.

Concrete applications for Verifloq are described in Chapter 4, where we propose com-

bining Verifloq with Hoare Logic. Verifloq can also act as an important component of a

multi-staged hardware verification pipeline.

In Verifloq, we define a verified operational semantics, and we demonstrate it is a type-safe

HDL by stating and proving Progress and Preservation theorems. Verifloq aims to deliver

a work environment closer to the original Verilog language inside Coq. Other projects

also propose semantic models to handle HDL or HLS, and Chapter 5 brings an extensive

comparison with other existing verification models targeting language aspects of HDL.

The code reference can be found on Appendix A, and a summary of relevant Coq tactics

and commands is listed on Appendix B.

3.6.1 Limitations

Verifloq is a functional implementation of a type-safe HDL, but it has limitations. First,

although we implement a large set of language constructs, Verifloq does not support

the complete language features from the original Verilog language at this time. Another

extension that needs future work is the full verification of our current parser.

48

Also, we do not provide a type checking algorithm in this project. We work exclusively

with typing rules to prove type safety. A type checking algorithm is a function that tells

whether of not a term is well-typed.

Our development is limited to single modules and positive edge circuits. In fact, this

limitation also happens in all other existing formalizations for HOL and Coq. Building a

semantic model to handle all the concurrency aspects of HDL is an open research problem.

Hence, designing a robust semantic model for Verilog is challenging, and Chapter 5 also

examines distinct Verilog and general HDL semantic approaches.

We also do not investigate performance aspects in this thesis. Our goal is to provide a

type-safe implementation. Future versions of Verifloq may target optimizations. Similarly,

the formalization does not extend to synthesis. Section 6.2 discussed future work and other

challenging open research questions.

49

4 Applications
Verifloq, described in Chapter 3, allows us to write simple Verilog programs, such as basic

counters and adders. Initially, these implementations may sound boring, but since they are

built in Coq, we can benefit from other features of the proof assistant. An immediate feature

is verification with Hoare Logic (see [Hoare 1969] and [Pratt 1976]). By equipping each

language construct with proof rules, we can check, in a compositional way, if programs

satisfy an expected behavior. These proof rules mirror the structure of the program, making

them a convenient way to verify correctness. Section 4.1 discusses this application in depth.

Another application for Verifloq is program equivalence. Determining equivalence of

Verilog code can be useful for identifying, for example, if two High-Level Synthesis tools

produce the same outputs. Whereas pure syntactic equivalence can be derived in a straight-

forward way, behavioral or contextual equivalence often need more work. Section 4.2

expands the discussion on program equivalence.

Lastly, Section 4.3 investigates the idea of Verifloq as a component of a multi-stage

hardware verification pipeline.

4.1 Hoare Logic and Assertions

We often work with Hoare Logic by stating Hoare Triples. These are claims about the

state of a piece of code, before and after its execution. Listing 4.1 shows the notation of a

Hoare Triple. {P} is a statement that stands for pre-condition. {Q} stands for post-condition,

which represents the expected output.

{P}code{Q}

Listing 4.1. Hoare Triple.

50

In the literature, {P} and {Q} are referred to as assertions. In the context of Hoare

Logic, they have a distinct meaning from assertions we saw in Chapter 2. To avoid naming

collisions, let us refer to assertions in the context of Hoare Triples as Hoare assertions.

Hoare assertions, which will express pre and post-conditions, are often FOL formulas.

Every language construct receives its own proof rule. For instance, the proof rule for an if

clause is specified in Figure 4.1.

⊢ {P∧b} S1 {Q} ⊢ {P∧¬b} S2 {Q}
if⊢ {P} if b S1 else S2 {Q}

Fig. 4.1. Proof rule for an if clause.

In Verifloq, we implement rules for a reduced set of language constructs as a proof of

concept for a small study case in this section. These rules can be found in the applications/

↪→ hoare.v file in the repository. We currently support if/else and assign and while constructs.

The rule for if was stated in Figure 4.1; Figure 4.2 shows the proof rules for assign and

while.

assign
⊢ {[x := e] Q} x := e {Q}

⊢ {P∧b} c {P}
while⊢ {P} while b do c {P∧¬b}

Fig. 4.2. Proof rule for assign and while loops.

We also verify these rules in Coq. In Listing 4.2, we prove the assign construct and provide

an example of a valid, verified Hoare triple.

51

Theorem hoare_assign : forall Q X e,

{Q (mapsto X e)} X := e {Q}.

Proof.

unfold hoare_triple.

intros Q X e st st' HE HQ.

inversion HE. subst.

unfold assn_sub in HQ. assumption.

Qed.

Theorem hoare_e1 :

{True} X := 2 {X = 2}.

Proof.

eapply conseq_pre.

− apply hoare_asgn.

− auto.

Qed.

Listing 4.2. Proof of assign rule and corresponding Hoare triple example.

In Listing 4.3, we provide an example of a valid, verified Hoare triple for an if/else clause.

Theorem hoare_if : forall P Q b c1 c2,

{P ∧ b} c1 {Q} −>

{P ∧ ¬ b} c2 {Q} −>

{P} if b then c1 else c2 end {Q}.

Proof.

intros P Q b c1 c2 HTrue HFalse st st' HE HP.

52

inversion HE; subst; eauto.

Qed.

Theorem hoare_e2 :

{True}

if (X = 0)

Y := 10

else Y := X

end

{X <= Y}.

Proof.

apply hoare_if.

− eapply conseq_pre.

−− apply hoare_asgn.

−− assn_auto.

simpl. intros st [_ H].

apply eqb_eq in H.

rewrite H. lia.

− eapply conseq_pre.

−− apply hoare_asgn.

−− assn_auto.

Qed.

Listing 4.3. Proof of if/else rule and corresponding example.

53

It is also possible, in a relatively simple way, to extend the supported constructs using

ideas of open-source Hoare libraries. The Sail project 5, for example, offers a robust set of

verified rules for multiple constructs 6.

Hoare-style verification statically proves that, given a precondition, a particular post-

condition will hold after a piece of code executes. We generate a logical formula, the

verification condition, that demonstrates the program behaves as specified if it becomes

true.

To some extent, Hoare Triples resemble Assertion Based Verification (ABV) (covered in

Section 2.2). However, instead of an automaton checker, we have an axiomatic semantic

model for each language construct. The two verification methods can be complementary in

a verification pipeline, as shown in Figure 4.3.

Fig. 4.3. Verification pipeline with Verifloq, Hoare Triples and ABV.

5https://github.com/rems-project/sail
6https://github.com/rems-project/sail/blob/37247bb1767015bfee35d9536040d83cf151339f/lib/coq/Hoare.v

54

https://github.com/rems-project/sail
https://github.com/rems-project/sail/blob/37247bb1767015bfee35d9536040d83cf151339f/lib/coq/Hoare.v

In summary, the Hoare-verification style provides an extra layer of verification benefiting

from Coq’s settings. It can be seen as a language on top of Verifloq aiming to assert and

prove properties of programs. The proof rules we establish play the role of an assertion

checker in ABV, such as MBAC [Boulé and Zilic 2005]. We can prove the assertions and

also obtain a symbolic method for deriving them. This final asset gives margin to extend

the verification pipeline to SMT solvers, for example.

4.2 Program Equivalence for HLS

In High-level Synthesis (HLS), hardware is described in a higher-level language (HLL),

such as C or C++, and then it is translated to a traditional HDL, such as Verilog or VHDL

([Coussy and Morawiec 2008]). HLS enables teams with a stronger software background to

deliver hardware-oriented projects. It also provides an "easy way to test the performance of

the algorithmic flow by promptly prototyping the hardware design and testing it on FPGAs"

[Pundir et al. 2021]. Some vendors, such as Vivado HLS 7, offer a robust integrated

environment with the ability to generate optimized HDL. However, there are multiple

known issues with HLS. The skill and technical backgrounds associated with hardware

and software coding practices are essentially different, and can result in vulnerable HLS-

generated RTL. Moreover, translating these paradigms - HLL to HDL - can be challenging.

For example, is there a meaning for C pointers in HDL? At this time, those are open

research questions.

HLS tools also cannot always guarantee that the hardware designs they produce are

equivalent to the input software specifications they were given. Projects like Vericert

[Herklotz et al. 2021], as well as the work proposed by [Mathur et al. 2009], try to undermine

7https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-
synthesis-hub.html

55

https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html

this issue of software-to-hardware equivalence. [Herklotz et al. 2021] uses Compcert [Leroy

2009] for its HLL. Compcert is a verified C compiler, and Vericert implements the semantic

model proposed by [Lööw and Myreen 2019] to produce a verified Verilog output. In

[Mathur et al. 2009], authors describe the strategy of Sequential Equivalence Checking

(SEC). SEC checks the equivalence of two distinct designs, even when there is no one-to-

one correspondence between their state elements. Authors use SEC to establish a workflow

to enable functional equivalence check between HLLs and generated HDLs.

Besides the HLL-to-HDL equivalence, there seems to be another important open question:

what can we say about the equivalence between two or more generated HDLs? Namely, if

we input the same C program to Vivado HLS and another vendor, such as LegUp8 [Canis

et al. 2011], can we guarantee their output HDL are equivalent? Program equivalence is a

vast research area, and Verifloq can be a key component prove this kind of equivalence.

There are different definitions of equivalence we can consider in program equivalence.

In behavioral equivalence, we want to determine if expressions evaluate to the result in

every state [Simpson and Voorneveld 2020]. In contextual equivalence, we determine if two

program expressions are equivalent if any occurrences of the first expression in a complete

program can be replaced with the second one without affecting the observable results of

the program execution. In [Pitts 2000] and, more extensively, in [Pitts 1997], the author

presents a collection of techniques to design or enhance an operational semantics such that

contextual equivalence of programs can be demonstrated.

Program equivalence is a wide research field, and while specific techniques are out of the

scope of this work, we can envision an extension for Verifloq where we can demonstrate

program equivalence (behavioral or contextual) upon extension of our existing operational

semantics. Since Verifloq handles pure Verilog programs, it would be possible to design

8http://legup.eecg.utoronto.ca/

56

http://legup.eecg.utoronto.ca/

a pipeline that receives different output HDL from HLS tools, and produces proofs of

equivalence for the generated Verilog programs. This pipeline would be an interesting case

study to establish a comparison between distinct vendors.

4.3 Towards a Correct-by-construct Verified Hardware Pipeline

In Chapter 2, we became familiar with a wide range of verification options for HDL. In

many cases, these strategies can be complementary. For example, it is possible to combine

the idea of test-benches with ABV [Bombieri et al. 2006]. Figure 4.4 illustrates this use

case.

Fig. 4.4. ABV and test-bench techniques combined.

57

Verifloq can contribute with an extra layer of verification in the language aspect, in a

correct-by-construct oriented way. Incorporating the ideas of Figure 4.3 and Figure 4.4, we

can compose a more robust verification pipeline in Figure 4.5. This enhanced pipeline gives

us guarantees in different phases of the design.

Fig. 4.5. Verification pipeline incorporating Verifloq.

58

5 Comparison: Alternative HDL

Formalizations
Chapter 4 presented versatile use cases for Verifloq, and proposed its integration with other

existing verification techniques. In this section, we provide a deeper discussion on Verifloq’s

semantic model, and compare our choice with alternative formalizations.

5.1 VHDL vs. Verilog vs. Verifloq

Other HDL, such as VHDL, also have strongly typed systems. VHDL follows the Ada/-

Pascal style, and it is a relatively verbose language when compared to Verilog’s constructs

[Bailey 2003]. The language structure also makes the development of a small-step oper-

ational semantics challenging. In [Golson et al. 1994], authors show how a Finite State

Machine (FSM) model for VHDL is hard to be achieved. Specifically, issues arise with

vendor-specific extensions (which modify the entire meaning of language constructs) and

arbitrary encodings (declared as enumerated types), which are hard to be formalized as

states.

Semantic models for HDL formalizations have been an active research topic for the past

four decades. [Kloos and Breuer 1995] presents a collection of techniques to define the

formal semantics of VHDL. Among them, the book presents a semantics for VHDL based

on Petri nets. A Petri net is a graph model representing the behavior of systems exhibiting

concurrency in their operation, and it also carries information about the transitions of the

system. A Petri net represents a type of nondeterministic state machine, but in a convenient

form for modeling and analyzing concurrent systems [Dennis 2011]. This representation

59

style fits VHDL’s concurrent nature. Authors successfully cover a large set of VHDL

constructs in their formalization, but their execution model becomes very complex and

difficult to be formally verified by a theorem prover. Moreover, there is no clear indication

the Petri nets approach could be easily attached to model checkers or theorem provers.

Another semantic model for VHDL described in the same book introduces a deterministic

model using finite state machines (FSM). Authors elaborate on a series of finite automata

in which transitions are labelled with conditions and transformations. The states of this

automaton denote control flow nodes within the execution model of VHDL, and data (typed

variables) is handled in a separate space. There are dedicated automata for sequential

statements and processes. This approach turns out to be very compositional, and it can be

linked to proof systems. However, the immediate limitation of this work is the specification

of requirements, which is tightly bound to temporal logic. Users cannot specify anything

about resources, for instance.

[Kloos and Breuer 1995] also presents an operational semantics for a subset of VHDL,

named Femto-VHDL. Booleans, natural numbers, sequential statements, signal assignments,

and concurrent statements are formalized in the model. Inference rules describe a state

system for a complete simulation loop. Authors aimed to deliver a model entirely dissociated

from any particular proof assistant, as opposed to [Umbreit 1992], which, in contrast, has

a VHDL model bound to the LAMBDA proof assistant [McIsaac 1993]. Although very

robust, this model has proven to be difficult to extend, given the numerous rules for state

manipulation. It also requires the user to specify complex initial signal interrelationships in

order to keep the analysis from degenerating into an non-exhaustive simulation.

In [Goossens 1995], authors propose a combined operational and observational semantics

that includes the notions of delta time, zero-delay scheduling, arbitrary wait statements,

and resolution functions for VHDL. This work innovatively adapts the idea of bisimulation

60

to hardware settings. Bisimulation is a binary relation on the terms of a language that is

invariant under the observable states of the language. In other words, it describes behaviors

that can be observed out of the terms [Pous and Sangiorgi 2019]. Its core idea has mostly

emerged from Concurrency Theory, and it potentially fits the HDL scenario, which also

requires reasoning about concurrent states. However, the semantics proposed by [Goossens

1995] is very restricted and does not support very basic language constructs, such as

functions.

As seen in Section 2.5, a semantic model is required to formally establish type safety

guarantees for a language. Unfortunately, we lack an extensible operational semantics

for VHDL, and hence, we are not able to provide the typing guarantees we achieve with

Verifloq. In summary, although VHDL is also a strongly typed language, we do not have a

current model that allows us to formally prove its type safety properties.

Verilog, on the other hand, has language constructs more similar to C. The current

research scenario provides a well-grounded knowledge base to develop an operational

semantics for this kind of language. Nevertheless, the formalization of Verilog has also

been a last-long challenge. In the majority of the cases, including this document, a subset

of the original language is adopted. In [Gordon 1995], authors formalize a syntactic subset

of Verilog in a language called V, which is very similar to the one we have for Verifloq.

They support multiple modules by performing a flattening process (normalization) in the

program, where all the modules are condensed in a single one. A similar strategy is also

present in HLS tools. Their semantics is based on a state representation of simulating clock

cycles.

This simplified semantic model has been adopted in multiple formalizations, such as

[Meredith et al. 2010], where authors develop a much more rigorous mathematical model for

Verilog’s behavior. In [Dimitrov 2001], we find a semantic model considering the parallel

61

aspects of much larger subset of Verilog. In [Yongjian and Jifeng 2003], authors use the

semantics of V language as the baseline for a theory of bisimulation for Verilog. [Gordon

1995] delivers a compact, but robust formalization of a subset of Verilog, expanding the

original set proposed in the V language. However, [Gordon 1995] gives a strong emphasis

to simulation cycles, and therefore does not provide a structured or systematic way to

expand its syntax. In other words, an expansion "recipe", such as the one we presented in

Verifloq on Chapter 3, is not possible.

In all the aforementioned projects, there is no emphasis on typing guarantees, so none

of the proposed models for Verilog claim type-safety properties. These models do not

address the issue of Verilog’s weak type system. In contrast, Verifloq not only proposes an

operational semantics for a subset of Verilog’s constructs, but it also provides appropriate

typing rules to ensure type safety guarantees.

5.1.1 Benefits of Verifloq’s Operational Semantics

In Verifloq, we propose a small-step operational semantics. The immediate benefit of this

approach, as seen in Section 5.1, is that we can prove properties about the execution of

programs. Another advantage of this semantic style is the direct application in program

equivalence, as stated in Section 4.2. All the approaches described in [Pitts 2000] rely on

operational semantics for introducing proofs of contextual equivalence between programs.

A small-step operational semantics provides a concrete "recipe" to expand language

features when it is fully mechanized in Coq. In Chapter 3, we describe the core structure of

the Verifloq, and if we need to add another construct, we know we must follow the following

steps in the formalization:

(1) If the construct introduces new types (which can be added by our design choice), state

the type definition inductively;

62

(2) State the terms;

(3) Introduce the translation notation;

(4) If the construct introduces new values, add their inductive definitions;

(5) Adjust the substitution operation accordingly;

(6) Add the corresponding step relation;

(7) Define the required typing rules;

(8) Ensure the proofs of progress and preservation hold.

Some of these steps may be non-trivial, i.e. introducing an appropriate step rule, but the

approach we take in Verifloq presents a consistent method to give us a systematic approach

to work on.

Another advantage of building Verifloq in Coq is that every time we modify the semantics,

the proof assistant will let us know if the proofs of progress and preservation still hold.

If not, we will know immediately that our proofs need adjustments to support the new

constructs or eventual modifications, and we can catch issues if changes break the safety of

the semantic model.

5.2 Verifloq and HLS Formalizations

In Section 4.2, we saw a brief introduction to HLS. Recall that in HLS, users can describe

the circuit design in a higher-level specification language, such as C or C++, and have their

outcomes compiled to an RTL model. Vivado HLS 9 and the Intel HLS Compiler 10 are

examples of widely adopted HLS tools.

9https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-
synthesis-hub.html
10https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html

63

https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0012-vivado-high-level-synthesis-hub.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html

Vericert [Herklotz et al. 2021] is a formally verified HLS asset also built on the Coq

proof assistant. Similarly, other HLS projects have taken advantage of theorem provers to

provide a verified output design that has the same behavior as its input program. Kôika

[Bourgeat et al. 2020] targets a subset of the Bluespec 11 [Nikhil 2004] language, also using

Coq. [Reynolds et al. 2019] introduces a Coq formalization for ReWire, an HDL based in

Haskell which produces VHDL code. Authors use a monadic approach to represent time

and effects. Finally, [Flor et al. 2015] presents Π-ware, a unified typed language for the

design, simulation, verification, and synthesis of hardware circuits built on top of Agda12

[Norell 2007].

In all the HLS projects previously mentioned, there is an emphasis on HLL. These

projects control the generated Verilog (equivalent HDL code) after processing the inputs

from another HLL. In Verifloq, however, we have a formalization targeting Verilog, and not

another higher-level language. Currently, we aim to provide the users with a tool where

designers can write Verilog and, assuming their code is contained in our set of supported

constructs, then they can automatically have type-safe guarantees from the HDL. Users

can also benefit from a theorem prover environment if they need to write their own proofs.

In this sense, Verifloq does not target HLS, but rather proposes a safe HDL, with a safe

semantics verified in Coq. This is achieved by Verifloq’s strong type system, enforced by

the typing rules specified in Chapter 3.

Lastly, [Lööw and Myreen 2019] proposes a semantic model for Verilog that does not

take into account any types, and their implementation checks possible type errors at runtime.

Verifloq, on the other hand, offers guarantees at the type-level.

11https://bluespec.com/
12https://github.com/agda/agda

64

https://bluespec.com/
https://github.com/agda/agda

6 Conclusion
This thesis addressed the need for a verified, type-safe language that can rule out undesired

faults in hardware projects due to language issues. We presented and implemented Verifloq,

a strongly typed HDL based on a subset of the original Verilog language. Often neglected in

the hardware verification domain, faults generated by language design issues may happen,

and unverified languages should not be taken as an absolute source of truth. Circuit designers

should be able to detect these issues, in the same way they are able to verify other design

faults.

Verifloq uses the Simply-Typed Lambda Calculus as its baseline, and we demonstrate

how to expand the language constructs in the STLC, so they match Verilog’s syntax. We

developed a flexible small-step operational semantics for our language, and combined with

its set of typing rules, we proved Verifloq’s type safety in the Coq proof assistant. Although

both Verifloq and VHDL are strongly typed HDL, Verifloq has a verified type system, and

with the proofs of progress and preservation, we guarantee that well-typed terms can never

reach a stuck state during evaluation. We also present additional typing guarantees, such as

type uniqueness.

Our project differs from High-level Synthesis (HLS) because our core object of study is

the formalization of the HDL component, and not a Higher-Level Language (HLL). The

latter will produce HDL (pure Verilog or VHDL), which is then, once again unverified. In

addition, Verifloq extends the verification pipeline to prevent design faults by adding an

extra layer of safety at the language level.

Verifloq has a wide range of applications, and we demonstrate how it can be used with

other formal verification strategies. In particular, we develop a use case for Hoare Logic,

65

where we can easily write and prove assertions about simple Verifloq programs. We also

show how our implementation can be used in combination with HLS to prove program

equivalence of generated HDL. Finally, we also propose multi-stage verification pipelines,

and show how Verifloq can compose the language tier of the verification process.

6.1 Achieved Contributions

Verifloq achieved our initial proposed contributions stated in Section 1.2 in the following

ways:

(1) We described our implementation of a strongly typed HDL, and proved it is indeed a

type-safe language.

(2) We presented examples supporting a subset of Verilog’s language constructs, how

they are translated to Verifloq’s terms and how they are executed by our proposed

semantics.

(3) We presented semantic model and type rules for Verifloq, and used the model to prove

Progress and Preservation theorems, guaranteeing verified type-safety.

(4) We presented extensions with Hoare Logic and applications for Program Equivalence.

6.2 Future Work

Developing a semantic model that takes into account all the concurrent aspects of an HDL

is a challenging task, and it is currently an open research problem. So far, at this point,

we are not aware of any formalization in HOL or any other proof assistants supporting

multi-modules. All existing formalizations, including Verifloq, are limited to single modules,

66

synchronous edges. Representing concurrent, mutable shared data across modules is non-

trivial. Encoding these aspects in a semantic model using theorem provers or in a proof

assistant like Coq is a task that requires further investigation.

Other types of logic, such as Separation Logic (SL) [Reynolds 2002], might be an

alternative and fruitful path to explore modules formalization. Traditionally, it has been

used for formalizing pointers and memory allocations [Pym et al. 2019]. Its concurrent

version (Concurrent Separation Logic, or CSL) has been adopted to formalize shared,

mutable data in complex programming languages [Jung et al. 2018].

Although it has not been heavily explored in hardware verification, Separation Logic has

been used to verify properties of circuits produced by HLS tools. In their work, [Winterstein

et al. 2016] authors SL to reason about properties of the high-level design language. They

perform a heap analysis of C/C++ before the synthesis of Verilog code to ensure the HLL

design matches is equivalent to the input software specifications that were given to the tool.

It would be interesting to create an extension of Verifloq combining the ideas of [Winterstein

et al. 2016] and Separation Logic to prove correctness of multi-module implementations.

Another aspect to be explored is a better use of dependent types, possibly to encode

properties of circuits. The works of [Basin et al. 1991] and [Hanna et al. 1989] illustrate

the role of depdent types in formal hardware verification in other proof environments, such

as Nuprl. The Coquet library [Braibant 2011] uses dependently typed data-types to reason

about the behavior of simple circuits. It would be interesting to extend Verifloq’s language

constructs with deep embeddings.

67

A Code Access
Our Coq formalization can be found on https://github.com/galois1/Verifloq. It is currently a

private, temporary repository due to approaching and ongoing double-blind submissions.

You can request access, or wait for an eventual migration to https://github.com/hannelita/

Verifloq .

68

https://github.com/galois1/Verifloq
https://github.com/hannelita/Verifloq
https://github.com/hannelita/Verifloq

B Coq tactics and commands

B.1 Verifloq’s Coq Definitions

We mention, in Section 3.2, that the Notation command is necessary for converting Verilog’s

syntax to Coq terms. Listing B.1 specifies an example for the if/else construct. We specify

the term translation, the operator precedence and associativity rules.

Notation "'if' x y 'else' z" :=

(tm_if x y z) (in custom implv at level 79,

x custom implv at level 89,

y custom implv at level 89,

z custom implv at level 89,

left associativity).

Listing B.1. Notation to correlate Verifloq’s syntax with Coq’s encoding.

In Section 3.2, we mention the need for a substitution operation before stating the step

relation of Verifloq’s small-step operational semantics. The implementation can be found in

Listing B.2.

Reserved Notation "'[' x ':=' s ']' t" (in custom implv at level 20, x constr).

Fixpoint substitution (x : string) (s : tm) (t : tm) : tm :=

match t with

(* pure STLC *)

| tm_var y ⇒

if eqb_string x y then s else t

| tm_abs y T t1 ⇒

69

if eqb_string x y then t else (tm_abs y T ([x := s] t1)

| tm_app t1 t2 ⇒

tm_app ([x:=s] t1) ([x:=s] t2)

(* numbers *)

| tm_const _⇒

t

| tm_succ t1⇒

tm_succ ([x := s] t1)

| tm_pred t1⇒

tm_pred ([x := s] t1)

| tm_mult t1 t2 ⇒

([x := s] t1) * ([x := s] t2>

(* Same for other binary operations, ommiting code here) *

| tm_if t1 t2 t3 ⇒

tm_if (([x:=s] t1)) (([x:=s] t2)) (([x:=s] t3))

(* sums *)

| tm_inl T2 t1 ⇒

tm_inl T2 ([x:=s] t1)

| tm_inr T1 t2 ⇒

inr T1 ([x:=s] t2)

| tm_case t0 y1 t1 y2 t2 ⇒

tm_case ([x:=s] t0)

y1 (if beq_id x y1 then t1 else ([x:=s] t1))

y2 (if beq_id x y2 then t2 else ([x:=s] t2))

(* lists *)

| tm_nil _ ⇒

70

t

| tm_cons t1 t2 ⇒

tm_cons ([x:=s] t1) ([x:=s] t2) >

| tm_lcase t1 t2 y1 y2 t3 ⇒

tm_lcase ([x:=s] t1) ([x:=s] t2) y1 y2

(if beq_id x y1 then

t3

else if beq_id x y2 then t3

else ([x:=s] t3))

(* unit *)

| tm_unit ⇒ tm_unit

| tm_pair t1 t2 ⇒

tm_pair ([x:=s] t1) ([x:=s] t2)

| tm_fst t1 ⇒

tm_fst ([x:=s] t1)

| tm_snd t1 ⇒

tm_snd ([x:=s] t1)

| tm_rec t ⇒ tm_rec ([x:=s] t)

| tm_emprec _ ⇒

t

| tm_record ⇒

tm_record ([x:=s] t1) ([x:=s] t2)

| tm_lproj t0 y1 t1 y2 t2 ⇒

tm_case ([x:=s] t0)

y1 (if beq_id x y1 then t1 else ([x:=s] t1))

y2 (if beq_id x y2 then t2 else ([x:=s] t2))

71

(* assignments *)

| tm_empasgn _ ⇒

t

| tm_asgn t1 t2 y1 y2 t3 ⇒

tm_asgn ([x:=s] t1) ([x:=s] t2) y1 y2

(if beq_id x y1 then

t3

else if beq_id x y2 then t3

else ([x:=s] t3))

| tm_casgn t0 y1 t1 y2 t2 ⇒

tm_asgn ([x:=s] t0)

y1 (if beq_id x y1 then t1 else ([x:=s] t1))

y2 (if beq_id x y2 then t2 else ([x:=s] t2))

| tm_blocking t1 t2 ⇒

tm_blocking ([x:=s] t1) ([x:=s] t2)

| tm_nonblocking t1 t2 ⇒

tm_blocking ([x:=s] t1) ([x:=s] t2)

| tm_module t1 t2 t3 t4 ⇒

tm_module ([x:=s] t1) ([x:=s] t2) ([x:=s] t3) ([x:=s] t4)

end

where "'[' x ':=' s ']' t" := (substitution x s t) (in custom implv).

Listing B.2. Substitution operation.

Also in Section 3.2, we provided the inference rules for Verifloq’s small-step operational

semantics. The corresponding Coq code can be found in Listing B.3.

Inductive step : tm −> tm −> Prop :=

72

| Step_AppAbs : forall x T2 t1 v2,

val v2 −>

tm_app (tm_abs x T2 t1) v2 −→ [x:=v2] t1

| Step_App1 : forall t1 t1' t2,

t1 −→ t1' −>

tm_app t1 t2 −→ tm_app t1' t2

| Step_App2 : forall v1 t2 t2',

val v1 −>

t2 −→ t2' −>

tm_app v1 t2 −→ tm_app v1 t2'

| Step_Add1 : forall t1 t1' t2,

t1 −→ t1' −>

tm_add t1 t2 −→ tm_add t1' t2

| Step_Add2 : forall v1 t2 t2',

val v1 −>

t2 −→ t2' −>

tm_add v1 t2 −→ tm_app v1 t2'

| Step_IfTrue : forall t1 t2,

tm_if true t1 t2 −→ t1

| Step_IfFalse : forall t1 t2,

tm_if false t1 t2 −→ t2

| Step_If : forall t1 t1' t2 t3,

t1 −→ t1' −>

tm_if t1 t2 t3 −→ tm_if t1' t2 t3

| Step_Succ : forall t1 t1',

t1 −→ t1' −>

73

tm_succ t1 −→ tm_succ t1'

| Step_SuccNat : forall n : nat,

tm_succ n −→ S n

| Step_Pred : forall t1 t1',

t1 −→ t1' −>

tm_pred t1 −→ tm_pred t1'

| Step_PredNat : forall n:nat,

tm_pred n −→ Nat.pred n

| ST_Rec1 : forall t1 t1',

t1 −→ t1' −>

tm_rec t1 −→ tm_rec t1'

| ST_RecAbs : forall xab T1 t2 fn,

fn = tm_abs xab T1 t2 −>

tm_rec F −→ [xab := (tm_fix fn)] t2

| ST_Pair1 : forall t1 t1' t2,

t1 −→ t1' −>

(tm_pair t1 t2) −→ (tm_pair t1' t2)

| ST_Pair2 : forall v1 t2 t2',

val v1 −>

t2 −→ t2' −>

(tm_pair v1 t2) −→ (tm_pair v1 t2')

| ST_Fst1 : forall t1 t1',

t1 −→ t1' −>

(tm_fst t1) −→ (tm_fst t1')

| ST_FstVal : forall v1 v2,

val v1 −>

74

val v2 −>

(tm_fst (tm_pair v1 v2)) −→ v1

| ST_Snd1 : forall t1 t1',

t1 −→ t1' −>

(tm_snd t1) −→ (tm_snd t1')

| ST_SndVal : forall v1 v2,

val v1 −>

val v2 −>

(tm_snd (tm_pair v1 v2)) −→ v2

| ST_Inl : forall t1 t1' T,

t1 −→ t1' −>

(tm_inl T t1) −→ (tm_inl T t1')

| ST_Inr : forall t1 t1' T,

t1 −→ t1' −>

(tm_inr T t1) −→ (tm_inr T t1')

| ST_Case : forall t0 t0' x1 t1 x2 t2,

t0 −→ t0' −>

(tm_case t0 x1 t1 x2 t2) −> (tm_case t0' x1 t1 x2 t2)

| ST_CaseInl : forall v0 x1 t1 x2 t2 T,

val v0 −>

(tm_case (tm_inl T v0) x1 t1 x2 t2) −→ [x1:=v0] t1

| ST_CaseInr : forall v0 x1 t1 x2 t2 T,

val v0 −>

(tm_case (tm_inr T v0) x1 t1 x2 t2) −→ [x2 := v0] t2

| ST_Cons1 : forall t1 t1' t2,

t1 −→ t1' −>

75

(tm_cons t1 t2) −→ (tm_cons t1' t2)

| ST_Cons2 : forall v1 t2 t2',

val v1 −>

t2 −→ t2' −>

(tm_cons v1 t2) −→ (tm_cons v1 t2')

| ST_Lcase1 : forall t1 t1' t2 x1 x2 t3,

t1 −→ t1' −>

(tm_lcase t1 t2 x1 x2 t3) −→ (tm_lcase t1' t2 x1 x2 t3)

| ST_LcaseNil : forall T t2 x1 x2 t3,

(tm_lcase (tm_nil T) t2 x1 x2 t3) −→ t2

| ST_LcaseCons : forall v1 vl t2 x1 x2 t3,

val v1 −>

val vl −>

(tm_lcase (tm_cons v1 vl) t2 x1 x2 t3) −→ ([x2 := vl] [([x1 := v1] t3)])

| ST_Record : forall t1 t1' t2,

t1 −→ t1' −>

(tm_record t1 t2) −→ (tm_record t1' t2)

| ST_RecordProj1 : forall t t',

t −→ t' −>

(tm_lproj t) −→ (tm_lproj t')

| ST_RecordProj2 : forall t v,

val v −>

(tm_lproj t) −→ v

| ST_CaseAsgn : forall t0 t0' x1 t1 x2 t2,

t0 −→ t0' −>

(tm_asgn t0 x1 t1 x2 t2) −> (tm_asgn t0' x1 t1 x2 t2)

76

| ST_CaseEAsgn : forall t0 x1 t1 x2 t2 v,

value v −>

(tm_asgn t0 x1 t1 x2 t2) −> ([x1 := v] t0)

| ST_Blocking −> forall t1 t1' t2,

t1 −→ t1' −>

tm_blocking t1 t2 −→ tm_blocking t1' t2

| ST_NonBlocking −> forall t1 t1' t2,

t1 −→ t1' −>

tm_blocking t1 t2 −→ tm_blocking t1' t2

| Step_Module : forall t1 t2 t1' l1 l2

t1 −→ t1' −>

tm_module l1 l2 t1 t2 −→ tm_module l1 l2 t1' t2

| Step_ModuleMerge : forall t1 t2 t1' l1 l2

val v=(mstep_merge l1 l2 t1 t2) −>

t1 −→ t1' −>

tm_module l1 l2 t1 t2 −→ tm_module l1 l2 v t1'

| Step_ModuleCommit : forall t1 t2 t1' l1 l2 v1

val v1 −>

t2 −→ val v2=(mstep_commit l1 l2 t1 t2) −>

tm_module l1 l2 t1 t2 −→ tm_module l1 l2 v1 v2

| Step_ModuleEnd : forall t1 t2 t1' l1 l2 v

val v −>

tm_module l1 l2 t1 t2 −→ v

where "t '−→ ' t'" := (step t t').

Listing B.3. Step relation for Verifloq’s terms.

77

In Section 3.3, we provided the corresponding typing rules for each of Verifloq’s terms.

The Coq implementation can be found in Listing B.4.

Reserved Notation "Γ '⊢' t '\in' T"

(at level 10,

t custom implv, T custom implv at level 0).

Inductive typing : context −> tm −> typ −> Prop :=

(* pure STLC *)

| TR_Var : forall Gamma x T1,

Gamma x = Some T1 −>

Gamma |− x \ in T1

| TR_Abs : forall Gamma x T1 T2 t1,

(x |−> T2 ; Gamma) |− t1 \ in T1 −>

Gamma |− \ x:T2, t1 \ in (T2 −> T1)

| TR_App : forall T1 T2 Gamma t1 t2,

Gamma |− t1 \ in (T2 −> T1) −>

Gamma |− t2 \ in T2 −>

Gamma |− t1 t2 \ in T1

(* numbers *)

| TR_Nat : forall Gamma (n : nat),

Gamma |− n \ in Nat

| TR_Succ : forall Gamma t,

Gamma |− t \ in Nat −>

Gamma |− succ t \ in Nat

| TR_Pred : forall Gamma t,

Gamma |− t \ in Nat −>

Gamma |− pred t \ in Nat

78

| TR_Mult : forall Gamma t1 t2,

Gamma |− t1 \ in Nat −>

Gamma |− t2 \ in Nat −>

Gamma |− t1 * t2 \ in Nat

| TR_If : forall Gamma t1 t2 t3 T0,

Gamma |− t1 \ in Nat −>

Gamma |− t2 \ in T0 −>

Gamma |− t3 \ in T0 −>

Gamma |− if t1 then t2 else t3 \ in T0

| TR_Pair : forall Gamma t1 t2 T1 T2,

Gamma |− t1 \ in T1 −>

Gamma |− t2 \ in T2 −>

Gamma |− (tpair t1 t2) \ in (TProd T1 T2)

| TR_Fst : forall Gamma t T1 T2,

Gamma |− t \ in (TProd T1 T2) −>

Gamma |− (tfst t) \ in T1

| TR_Snd : forall Gamma t T1 T2,

Gamma |− t \ in (TProd T1 T2) −>

Gamma |− (tsnd t) \ in T2

| TR_Inl : forall Gamma t1 T1 T2,

Gamma |− t1 \ in T1 −>

Gamma |− (inl T2 t1) \ in (T1 + T2)

| TR_Inr : forall Gamma t2 T1 T2,

Gamma |− t2 \ in T2 −>

Gamma |− (inr T1 t2) \ in (T1 + T2)

| TR_Case : forall Gamma t0 x1 T1 t1 x2 T2 t2 T3,

79

Gamma |− t0 \ in (T1 + T2) −>

(x1 |−> T1 ; Gamma) |− t1 \ in T3 −>

(x2 |−> T2 ; Gamma) |− t2 \ in T3 −>

Gamma |− (case t0 of | inl x1 ⇒ t1 | inr x2 ⇒ t2) \in T3

| TR_Nil : forall Gamma T1,

Gamma |− (nil T1) \ in (List T1)

| TR_Cons : forall Gamma t1 t2 T1,

Gamma |− t1 \ in T1 −>

Gamma |− t2 \ in (List T1) −>

Gamma |− (t1 :: t2) \ in (List T1)

| TR_Lcase : forall Gamma t1 T1 t2 x1 x2 t3 T2,

Gamma |− t1 \ in (List T1) −>

Gamma |− t2 \ in T2 −>

(x1 |−> T1 ; x2 |−> <{{List T1}}> ; Gamma) |− t3 \ in T2 −>

Gamma |− (case t1 of | nil ⇒ t2 | x1 :: x2 ⇒ t3) \in T2

| TR_Unit : forall Gamma,

Gamma |− unit \ in Unit

| TR_Rec : forall Gamma t1 T1,

Gamma |− t1 \ in (Ty_Arrow T1 T1) −>

Gamma |− (tfix t1) \ in T1

where "Γ '⊢' t '\in' T" := (typing Γ t T).

Listing B.4. Typing relation for Verifloq’s terms.

B.2 Coq Proofs

In Chapter 3, we listed relevant proofs, and they are entirely shown in this section.

80

Theorem unique_types : forall Γ e T T',

Γ ⊢ e \in T −>

Γ ⊢ e \in T' −>

T = T'.

Proof with eauto.

intros. generalize dependent T'.

induction H; intros.

− inversion H0; subst. rewrite H3 in H. injection H as H.

symmetry in H. auto.

− inversion H0; subst. apply IHtyping in H6. subst.

reflexivity.

− inversion H1; subst. apply IHtyping1 in H5.

apply IHtyping2 in H7. inversion H5. subst. reflexivity.

− inversion H0; subst. reflexivity.

− inversion H0; subst. reflexivity.

− inversion H2; subst. auto.

Qed.

Listing B.5. Type Uniqueness.

Theorem progress : forall t T,

· ⊢ t \in T −>

value t ∨ ∃ t', t −→ t'.

Proof with eauto.

intros t.

induction t; intros T Ht; auto.

81

− inversion Ht; subst. inversion H1.

− inversion Ht; subst.

remember H2. clear Heqh.

remember H4. clear Heqh0.

apply IHt1 in H2. apply IHt2 in H4. right.

destruct H2; destruct H4.

−− apply (canonical_forms_fun t1 T2 T h) in H.

inversion H. inversion H1; subst.

exists (tm_app [x0 := t2] x1). eauto.

−− inversion H0; subst. exists (tm_app t1 x0). eauto.

−− inversion H; subst. exists (tm_app x0 t2). eauto.

−− inversion H; subst. exists (tm_app x0 t2). eauto.

− inversion Ht; subst. right. remember H3. clear Heqh.

apply IHt1 in H3. destruct H3.

apply (canonical t1 h) in H. destruct H; subst.

eauto. eauto.

inversion H.

exists (tm_if x0 t2 t3). eauto.

Listing B.6. Progress Theorem.

Lemma preservation_subst : forall Gamma x U t v T,

x ⊢ U ; Γ ⊢ t \in T −>

· ⊢ v \in U −>

Γ ⊢ [x:=v]t \in T.

Proof with eauto.

intros Gamma x U t v T Ht Hv.

82

remember (x ⊢ U; Gamma) as Gamma'.

generalize dependent Gamma.

induction Ht; intros Gamma' G; simpl; eauto.

− destruct (eqb_string x x0) eqn:eVt.

−− subst. apply weakening1.

apply eqb_str_true in eVt. subst.

rewrite updt_eq in H. injection H as H. subst.

assumption.

−− subst. apply T_Var.

apply eqb_str_false in eVt.

rewrite update_neq in H. auto. assumption.

− destruct (eqb_string x x0) eqn:eVt.

−− subst. apply eqb_str_true in eVt.

subst. rewrite updt_sh in Ht. apply T_Abs.

assumption.

−− subst. apply eqb_str_false in eVt.

apply T_Abs. apply IHHt.

rewrite updt_map_permute. auto. auto.

Qed.

Theorem preservation : forall t t' T,

· ⊢ t \in T −>

t −→ t' −>

· ⊢ t' \in T.

Proof with eauto.

intros t t' T HT. generalize dependent t'.

83

remember empty as Gamma.

induction HT;

intros t' HE; subst;

try solve [inversion HE; subst; auto].

− inversion HE; subst...

−− apply preservation_subst with T2...

inversion HT1...

Qed.

Listing B.7. Preservation Theorem.

Lemma substitution_preserves_types : forall Gamma x U t v T,

x |−> U ; Gamma |− t \ in T −>

empty |− v \ in U −>

Gamma |− [x:=v]t \ in T.

Proof with eauto.

intros Gamma x U t v T Ht Hv.

remember (x |−> U; Gamma) as Gamma'.

generalize dependent Gamma.

induction Ht; intros Gamma' G; simpl; eauto.

− destruct (eqb_string x x0) eqn:eVt.

−− subst. apply weakening_empty. apply eqb_string_true_iff in eVt.

subst. rewrite update_eq in H. injection H as H. subst. assumption.

−− subst. apply T_Var. apply eqb_string_false_iff in eVt.

rewrite update_neq in H. auto. assumption.

− destruct (eqb_string x x0) eqn:eVt.

−− subst. apply eqb_string_true_iff in eVt. subst.

84

rewrite update_shadow in Ht. apply T_Abs. assumption.

−− subst. apply eqb_string_false_iff in eVt. apply T_Abs.

apply IHHt. rewrite update_permute. auto. auto.

Qed.

Listing B.8. Substitution preserves types.

Lemma weakening : forall Gamma Gamma' t T,

inclusion Gamma Gamma' −>

Gamma |− t \ in T −>

Gamma' |− t \ in T.

Proof.

intros Gamma Gamma' t T H Ht.

generalize dependent Gamma'.

induction Ht; eauto using tac_inclup.

Qed.

Listing B.9. Weakening Lemma.

B.3 Interactive theorem proving

Interactive theorem proving consists of "arrangement where the machine and a human user

work together interactively to produce a formal proof" [Harrison et al. 2014].

To better illustrate how it works in Coq, Figure B.1 shows the online proof environment

jsCoq13, using a proof example from an initial chapter from [de Amorim Chris Casinghino

Marco Gaboardi Michael Greenberg Cătălin Hriţcu Vilhelm Sjöberg Brent Yorgey 2020].

13https://coq.vercel.app/

85

https://coq.vercel.app/

On the left side, we see the theorem we want to prove; on the right side, there is the Goals

panel, holding the status of the proof.

Fig. B.1. An example of an interactive proof environment illustrated by jsCoq.

When we interactively navigate into the proof (Figure B.2), tactic by tactic, we can

see the "Goals" panel changing accordingly. Every tactic (if properly used) represents a

required step in the proof, and Coq keeps track of what we still need to prove (subgoals as

in Figure B.3) or what is the status of the goal.

Fig. B.2. Interactive theorem proving: navigating through the tactics.

Fig. B.3. Interactive theorem proving: subgoals.

86

B.4 Relevant Tactics

An extensive list of Coq tactics can be found on the official documentation 14. This informal,

non-official cheat-sheet 15 16 can be useful for quick reference.

intros: Introduces variables appearing with forall as well as the premises (left-hand side)

of implications.

simpl: Simplifies the goal or the hypotheses.

apply: Uses implications to transform goals and hypotheses.

inversion: Reveals other necessary conditions for a hypothesis to be true.

destruct: Generates a subgoal for every constructor of an inductive type.

auto and eauto: Solves a greater variety of easy goals.

discriminate: Solves the goal if it is a trivial inequality and solves any goal if the context

contains a false equality.

14https://coq.inria.fr/refman/proof-engine/tactics.html
15https://www.cs.cornell.edu/courses/cs3110/2018sp/a5/coq-tactics-cheatsheet.html
16https://www.cs.cornell.edu/courses/cs3110/2018sp/a5/coq-tactics-cheatsheet.html

87

https://coq.inria.fr/refman/proof-engine/tactics.html
https://www.cs.cornell.edu/courses/cs3110/2018sp/a5/coq-tactics-cheatsheet.html
https://www.cs.cornell.edu/courses/cs3110/2018sp/a5/coq-tactics-cheatsheet.html

References
Mark D. Aagaard, Miriam Leeser, and Phillip J. Windley. 1993. Toward a Super Duper Hardware Tactic.

In Higher Order Logic Theorem Proving and its Applications, 6th International Workshop, HUG ’93,
Vancouver, BC, Canada, August 11-13, 1993, Proceedings (Lecture Notes in Computer Science, Vol. 780),
Jeffrey J. Joyce and Carl-Johan H. Seger (Eds.). Springer, 399–412. https://doi.org/10.1007/3-540-57826-
9_151

Stephen Bailey. 2003. Comparison of vhdl, verilog and systemverilog. Available for download from www.
model. com (2003), 29.

Henk Barendregt, Wil Dekkers, and Richard Statman. 2013. Lambda Calculus with Types. Cambridge
University Press. https://doi.org/10.1017/CBO9781139032636

H. P. Barendregt. 1993. Lambda Calculi with Types. Oxford University Press, Inc., USA, 117–309.
Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe Filliâtre, Eduardo Giménez,

Hugo Herbelin, Gérard Huet, César Muñoz, Chetan Murthy, Catherine Parent, Christine Paulin-Mohring,
Amokrane Saïbi, and Benjamin Werner. 1997. The Coq Proof Assistant Reference Manual : Version 6.1.
Research Report RT-0203. INRIA. 214 pages. https://hal.inria.fr/inria-00069968 Projet COQ.

David A. Basin, Geoffrey M. Brown, and Miriam Leeser. 1991. Formally verified synthesis of combinational
CMOS circuits. Integr. 11, 3 (1991), 235–250. https://doi.org/10.1016/0167-9260(91)90048-P

Lionel Bening and Harry Foster. 2001. Principles of Verifiable RTL Design (2nd ed.). Kluwer Academic
Publishers, USA.

Janick Bergeron. 2000. Writing Testbenches: Functional Verification of HDL Models. Kluwer Academic
Publishers, USA.

Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program Development - Coq’Art:
The Calculus of Inductive Constructions. Springer. https://doi.org/10.1007/978-3-662-07964-5

Mohammad-Mahdi Bidmeshki, Xiaolong Guo, Raj Gautam Dutta, Yier Jin, and Yiorgos Makris. 2017.
Data Secrecy Protection Through Information Flow Tracking in Proof-Carrying Hardware IP—Part
II: Framework Automation. IEEE Transactions on Information Forensics and Security 12, 10 (2017),
2430–2443. https://doi.org/10.1109/TIFS.2017.2707327

D. Biederman. 1997. An overview on writing a VHDL testbench. In Proceedings The Twenty-Ninth South-
eastern Symposium on System Theory. 384–388. https://doi.org/10.1109/SSST.1997.581677

David L. Bird and Carlos Urias Munoz. 1983. Automatic Generation of Random Self-Checking Test Cases.
IBM Syst. J. 22, 3 (1983), 229–245. https://doi.org/10.1147/sj.223.0229

N. Bombieri, F. Fummi, and G. Pravadelli. 2006. On the Evaluation of Transactor-based Verification for
Reusing TLM Assertions and Testbenches at RTL. In Proceedings of the Design Automation & Test in
Europe Conference, Vol. 1. 1–6. https://doi.org/10.1109/DATE.2006.243898

M. Boulé and Z. Zilic. 2005. Incorporating efficient assertion checkers into hardware emulation. In 2005
International Conference on Computer Design. 221–228. https://doi.org/10.1109/ICCD.2005.66

88

https://doi.org/10.1007/3-540-57826-9_151
https://doi.org/10.1007/3-540-57826-9_151
https://doi.org/10.1017/CBO9781139032636
https://hal.inria.fr/inria-00069968
https://doi.org/10.1016/0167-9260(91)90048-P
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1109/TIFS.2017.2707327
https://doi.org/10.1109/SSST.1997.581677
https://doi.org/10.1147/sj.223.0229
https://doi.org/10.1109/DATE.2006.243898
https://doi.org/10.1109/ICCD.2005.66

Marc Boulé and Zeljko Zilic. 2008. Generating Hardware Assertion Checkers: For Hardware Verification,
Emulation, Post-Fabrication Debugging and On-Line Monitoring (1 ed.). Springer Publishing Company,
Incorporated.

Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind. 2020. The essence of Bluespec: a
core language for rule-based hardware design. In Proceedings of the 41st ACM SIGPLAN International
Conference on Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20,
2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 243–257. https://doi.org/10.1145/3385412.
3385965

Thomas Braibant. 2011. Coquet: A Coq Library for Verifying Hardware. In Certified Programs and Proofs -
First International Conference, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Proceedings (Lecture
Notes in Computer Science, Vol. 7086), Jean-Pierre Jouannaud and Zhong Shao (Eds.). Springer, 330–345.
https://doi.org/10.1007/978-3-642-25379-9_24

Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason Helge Anderson,
Stephen Dean Brown, and Tomasz S. Czajkowski. 2011. LegUp: high-level synthesis for FPGA-based
processor/accelerator systems. In Proceedings of the ACM/SIGDA 19th International Symposium on Field
Programmable Gate Arrays, FPGA 2011, Monterey, California, USA, February 27, March 1, 2011, John
Wawrzynek and Katherine Compton (Eds.). ACM, 33–36. https://doi.org/10.1145/1950413.1950423

Adam Chlipala. 2013. Certified Programming with Dependent Types: A Pragmatic Introduction to the Coq
Proof Assistant. The MIT Press.

Shivakumar S Chonnad and Needamangalam B Balachander. 2007. Verilog: Frequently Asked Questions:
Language, Applications and Extensions. Springer Science & Business Media.

Alonzo Church. 1932. A Set of Postulates for the Foundation of Logic. Annals of Mathematics 33, 2 (1932),
346–366. http://www.jstor.org/stable/1968337

Alonzo Church. 1940. A Formulation of the Simple Theory of Types. The Journal of Symbolic Logic 5, 2
(1940), 56–68. http://www.jstor.org/stable/2266170

Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. 2009. Model checking: algorithmic verification
and debugging. Commun. ACM 52, 11 (2009), 74–84. https://doi.org/10.1145/1592761.1592781

Robert L. Constable, Stuart F. Allen, Mark Bromley, Rance Cleaveland, J. F. Cremer, Robert Harper, Douglas J.
Howe, Todd B. Knoblock, N. P. Mendler, Prakash Panangaden, James T. Sasaki, and Scott F. Smith. 1986.
Implementing mathematics with the Nuprl proof development system. Prentice Hall. http://dl.acm.org/
citation.cfm?id=10510

Thierry Coquand and Gérard P. Huet. 1985. Constructions: A Higher Order Proof System for Mechanizing
Mathematics. In EUROCAL ’85, European Conference on Computer Algebra, Linz, Austria, April 1-3,
1985, Proceedings Volume 1: Invited Lectures (Lecture Notes in Computer Science, Vol. 203), Bruno
Buchberger (Ed.). Springer, 151–184. https://doi.org/10.1007/3-540-15983-5_13

Thierry Coquand and Gérard P. Huet. 1988. The Calculus of Constructions. Inf. Comput. 76, 2/3 (1988),
95–120. https://doi.org/10.1016/0890-5401(88)90005-3

89

https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1007/978-3-642-25379-9_24
https://doi.org/10.1145/1950413.1950423
http://www.jstor.org/stable/1968337
http://www.jstor.org/stable/2266170
https://doi.org/10.1145/1592761.1592781
http://dl.acm.org/citation.cfm?id=10510
http://dl.acm.org/citation.cfm?id=10510
https://doi.org/10.1007/3-540-15983-5_13
https://doi.org/10.1016/0890-5401(88)90005-3

Philippe Coussy and Adam Morawiec. 2008. High-Level Synthesis: From Algorithm to Digital Circuit (1st
ed.). Springer Publishing Company, Incorporated.

Clifford Cummings. 1999. Correct Methods For Adding Delays To Verilog Behavioral Models. In Interna-
tional HDL Conference 1999 Proceedings. 23–29.

H. B. Curry. 1934. Functionality in Combinatory Logic. Proceedings of the National Academy of Sciences of
the United States of America 20, 11 (1934), 584–590. http://www.jstor.org/stable/86796

Benjamin C. Pierce Arthur Azevedo de Amorim Chris Casinghino Marco Gaboardi Michael Greenberg
Cătălin Hriţcu Vilhelm Sjöberg Brent Yorgey. 2020. Logical Foundations. Software Foundations, Vol. 1.
Electronic textbook.

Jack B. Dennis. 2011. Petri Nets. Springer US, Boston, MA, 1525–1530. https://doi.org/10.1007/978-0-
387-09766-4_134

J. Dimitrov. 2001. Operational semantics for Verilog. In Proceedings Eighth Asia-Pacific Software Engineering
Conference. 161–168. https://doi.org/10.1109/APSEC.2001.991473

R. Eastham and K. Thirunarayan. 1996. Proof strategies for hardware verification. In Proceedings of the
IEEE 1996 National Aerospace and Electronics Conference NAECON 1996, Vol. 2. 451–458 vol.2.
https://doi.org/10.1109/NAECON.1996.517689

E Engeler. 1984. HP Barendregt. The lambda calculus. Its syntax and semantics. Studies in logic and
foundations of mathematics, vol. 103. North-Holland Publishing Company, Amsterdam, New York, and
Oxford, 1981, xiv+ 615 pp. The Journal of Symbolic Logic 49, 1 (1984), 301–303.

Matthias Felleisen and Daniel P. Friedman. 1987. Control operators, the SECD-machine, and the λ -calculus.
In Formal Description of Programming Concepts - III: Proceedings of the IFIP TC 2/WG 2.2 Working
Conference on Formal Description of Programming Concepts - III, Ebberup, Denmark, 25-28 August
1986, Martin Wirsing (Ed.). North-Holland, 193–222.

João Paulo Pizani Flor, Wouter Swierstra, and Yorick Sijsling. 2015. Pi-Ware: Hardware Description and
Verification in Agda. In 21st International Conference on Types for Proofs and Programs, TYPES 2015,
May 18-21, 2015, Tallinn, Estonia (LIPIcs, Vol. 69), Tarmo Uustalu (Ed.). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 9:1–9:27. https://doi.org/10.4230/LIPIcs.TYPES.2015.9

H. Foster. 2001. Applied Boolean equivalence verification and RTL static sign-off. IEEE Design & Test of
Computers 18, 4 (2001), 6–15. https://doi.org/10.1109/54.936244

Harry Foster, Adam Krolnik, and David Lacey. 2004. Assertion-based design, Second Edition. Kluwer.
Steve Golson et al. 1994. State machine design techniques for Verilog and VHDL. Synopsys Journal of

High-Level Design 9, 1-48 (1994), 12.
Kees G. W. Goossens. 1995. Reasoning about VHDL using operational and observational semantics.

In Correct Hardware Design and Verification Methods, IFIP WG 10.5 Advanced Research Working
Conference, CHARME ’95, Frankfurt/Main, Germany, October 2-4, 1995, Proceedings (Lecture Notes
in Computer Science, Vol. 987), Paolo Camurati and Hans Eveking (Eds.). Springer, 311–327. https:
//doi.org/10.1007/3-540-60385-9_19

90

http://www.jstor.org/stable/86796
https://doi.org/10.1007/978-0-387-09766-4_134
https://doi.org/10.1007/978-0-387-09766-4_134
https://doi.org/10.1109/APSEC.2001.991473
https://doi.org/10.1109/NAECON.1996.517689
https://doi.org/10.4230/LIPIcs.TYPES.2015.9
https://doi.org/10.1109/54.936244
https://doi.org/10.1007/3-540-60385-9_19
https://doi.org/10.1007/3-540-60385-9_19

M. Gordon. 1995. The semantic challenge of Verilog HDL. In Proceedings of Tenth Annual IEEE Symposium
on Logic in Computer Science. 136–145. https://doi.org/10.1109/LICS.1995.523251

Michael J. C. Gordon. 1988. HOL: A Proof Generating System for Higher-Order Logic. Springer US, Boston,
MA, 73–128. https://doi.org/10.1007/978-1-4613-2007-4_3

Xiaolong Guo, Raj Gautam Dutta, Prabhat Mishra, and Yier Jin. 2016. Scalable SoC trust verification using
integrated theorem proving and model checking. In 2016 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST). 124–129. https://doi.org/10.1109/HST.2016.7495569

F. Keith Hanna, Neil Daeche, and Mark Longley. 1989. Veritas+: A Specification Language Based on
Type Theory. In Hardware Specification, Verification and Synthesis: Mathematical Aspects, Mathematical
Science Institute Workshop, Cornall University, Ithaca, New York, USA, July 5-7, 1989, Proceedings
(Lecture Notes in Computer Science, Vol. 408), Miriam Leeser and Geoffrey Brown (Eds.). Springer,
358–379. https://doi.org/10.1007/0-387-97226-9_37

John Harrison, Josef Urban, and Freek Wiedijk. 2014. History of Interactive Theorem Proving. In Com-
putational Logic, Jörg H. Siekmann (Ed.). Handbook of the History of Logic, Vol. 9. Elsevier, 135–214.
https://doi.org/10.1016/B978-0-444-51624-4.50004-6

Yann Herklotz, James D. Pollard, Nadesh Ramanathan, and John Wickerson. 2021. Formal verification of high-
level synthesis. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1–30. https://doi.org/10.1145/3485494

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969),
576–580. https://doi.org/10.1145/363235.363259

Falk Howar, Bengt Jonsson, and Frits W. Vaandrager. 2019. Combining Black-Box and White-Box Techniques
for Learning Register Automata. In Computing and Software Science - State of the Art and Perspectives,
Bernhard Steffen and Gerhard J. Woeginger (Eds.). Lecture Notes in Computer Science, Vol. 10000.
Springer, 563–588. https://doi.org/10.1007/978-3-319-91908-9_26

Std IEEE. 2001. IEEE Standard Verilog Hardware Description Language. IEEE Std 1364-2001 (2001),
1–792. https://doi.org/10.1109/IEEESTD.2001.93352

Std IEEE. 2005a. IEEE Standard for Property Specification Language (PSL). IEEE Std 1850-2005 (2005),
1–143. https://doi.org/10.1109/IEEESTD.2005.97780

Std IEEE. 2005b. IEEE Standard for SystemVerilog: Unified Hardware Design, Specification and Verification
Language. IEEE Std 1800-2005 (2005), 1–648. https://doi.org/10.1109/IEEESTD.2005.97972

Yier Jin, Xiaolong Guo, Raj Gautam Dutta, Mohammad-Mahdi Bidmeshki, and Yiorgos Makris. 2017.
Data Secrecy Protection Through Information Flow Tracking in Proof-Carrying Hardware IP—Part I:
Framework Fundamentals. IEEE Transactions on Information Forensics and Security 12, 10 (2017),
2416–2429. https://doi.org/10.1109/TIFS.2017.2707323

Jeffrey J. Joyce. 1990. More Reasons Why Higher-Order Logic is a Good Formalism for Specifying and
Verifying Hardware. Technical Report. CAN.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018. RustBelt: securing the
foundations of the rust programming language. Proc. ACM Program. Lang. 2, POPL (2018), 66:1–66:34.
https://doi.org/10.1145/3158154

91

https://doi.org/10.1109/LICS.1995.523251
https://doi.org/10.1007/978-1-4613-2007-4_3
https://doi.org/10.1109/HST.2016.7495569
https://doi.org/10.1007/0-387-97226-9_37
https://doi.org/10.1016/B978-0-444-51624-4.50004-6
https://doi.org/10.1145/3485494
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/978-3-319-91908-9_26
https://doi.org/10.1109/IEEESTD.2001.93352
https://doi.org/10.1109/IEEESTD.2005.97780
https://doi.org/10.1109/IEEESTD.2005.97972
https://doi.org/10.1109/TIFS.2017.2707323
https://doi.org/10.1145/3158154

Gilles Kahn. 1987. Natural Semantics. In STACS 87, 4th Annual Symposium on Theoretical Aspects of
Computer Science, Passau, Germany, February 19-21, 1987, Proceedings (Lecture Notes in Computer
Science, Vol. 247), Franz-Josef Brandenburg, Guy Vidal-Naquet, and Martin Wirsing (Eds.). Springer,
22–39. https://doi.org/10.1007/BFb0039592

T. Kam and P.A. Subrahmanyam. 1995. Comparing layouts with HDL models: a formal verification technique.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 14, 4 (1995), 503–509.
https://doi.org/10.1109/43.372376

Christoph Kern and Mark R. Greenstreet. 1999. Formal verification in hardware design: a survey. ACM Trans.
Design Autom. Electr. Syst. 4, 2 (1999), 123–193. https://doi.org/10.1145/307988.307989

Carlos Delgado Kloos and Peter T. Breuer. 1995. Formal Semantics for VHDL. Kluwer Academic Publishers,
USA.

Alfred Koelbl, Reily Jacoby, Himanshu Jain, and Carl Pixley. 2009. Solver technology for system-level
to RTL equivalence checking. In 2009 Design, Automation & Test in Europe Conference & Exhibition.
196–201. https://doi.org/10.1109/DATE.2009.5090657

Thomas Kropf. 1999. Introduction to Formal Hardware Verification. Springer. https://doi.org/10.1007/978-
3-662-03809-3

R. Kumar, T. Kropf, and K. Schneider. 1991. First Steps Towards Automating Hardware Proofs In HOL.
In 1991 International Workshop on the HOL Theorem Proving System and Its Applications. 190–193.
https://doi.org/10.1109/HOL.1991.596286

Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun. ACM 52, 7 (2009), 107–115.
https://doi.org/10.1145/1538788.1538814

Ralph Loader. 1998. Notes on simply typed lambda calculus. University of Edinburgh.
Andreas Lööw. 2021. Lutsig: a verified Verilog compiler for verified circuit development. In CPP ’21: 10th

ACM SIGPLAN International Conference on Certified Programs and Proofs, Virtual Event, Denmark,
January 17-19, 2021, Catalin Hritcu and Andrei Popescu (Eds.). ACM, 46–60. https://doi.org/10.1145/
3437992.3439916

Andreas Lööw and Magnus O. Myreen. 2019. A proof-producing translator for verilog development in
HOL. In Proceedings of the 7th International Workshop on Formal Methods in Software Engineering,
FormaliSE@ICSE 2019, Montreal, QC, Canada, May 27, 2019, Stefania Gnesi, Nico Plat, Nancy A. Day,
and Matteo Rossi (Eds.). IEEE / ACM, 99–108. https://doi.org/10.1109/FormaliSE.2019.00020

Anmol Mathur, Masahiro Fujita, Edmund M. Clarke, and Pascal Urard. 2009. Functional Equivalence
Verification Tools in High-Level Synthesis Flows. IEEE Des. Test Comput. 26, 4 (2009), 88–95. https:
//doi.org/10.1109/MDT.2009.79

Anthony McIsaac. 1993. A Formalization of Abstraction in LAMBDA. In Higher Order Logic Theorem
Proving and its Applications, 6th International Workshop, HUG ’93, Vancouver, BC, Canada, August
11-13, 1993, Proceedings (Lecture Notes in Computer Science, Vol. 780), Jeffrey J. Joyce and Carl-Johan H.
Seger (Eds.). Springer, 227–238. https://doi.org/10.1007/3-540-57826-9_138

92

https://doi.org/10.1007/BFb0039592
https://doi.org/10.1109/43.372376
https://doi.org/10.1145/307988.307989
https://doi.org/10.1109/DATE.2009.5090657
https://doi.org/10.1007/978-3-662-03809-3
https://doi.org/10.1007/978-3-662-03809-3
https://doi.org/10.1109/HOL.1991.596286
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3437992.3439916
https://doi.org/10.1145/3437992.3439916
https://doi.org/10.1109/FormaliSE.2019.00020
https://doi.org/10.1109/MDT.2009.79
https://doi.org/10.1109/MDT.2009.79
https://doi.org/10.1007/3-540-57826-9_138

Patrick Meredith, Michael Katelman, José Meseguer, and Grigore Roşu. 2010. A formal executable semantics
of Verilog. In Eighth ACM/IEEE International Conference on Formal Methods and Models for Codesign
(MEMOCODE 2010). 179–188. https://doi.org/10.1109/MEMCOD.2010.5558634

Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Comput. 93, 1 (1991), 55–92. https:
//doi.org/10.1016/0890-5401(91)90052-4

Katell Morin-Allory and Dominique Borrione. 2006. Proven correct monitors from PSL specifications. In
Proceedings of the Conference on Design, Automation and Test in Europe, DATE 2006, Munich, Germany,
March 6-10, 2006, Georges G. E. Gielen (Ed.). European Design and Automation Association, Leuven,
Belgium, 1246–1251. https://doi.org/10.1109/DATE.2006.244079

Katell Morin-Allory, Marc Boule, Dominique Borrione, and Zeljko Zilic. 2008. Proving and disproving
assertion rewrite rules with automated theorem provers. In 2008 IEEE International High Level Design
Validation and Test Workshop. 56–63. https://doi.org/10.1109/HLDVT.2008.4695875

Peter D. Mosses. 1999. Foundations of Modular SOS. In Mathematical Foundations of Computer Science 1999,
24th International Symposium, MFCS’99, Szklarska Poreba, Poland, September 6-10, 1999, Proceedings
(Lecture Notes in Computer Science, Vol. 1672), Miroslaw Kutylowski, Leszek Pacholski, and Tomasz
Wierzbicki (Eds.). Springer, 70–80. https://doi.org/10.1007/3-540-48340-3_7

Peter D. Mosses. 2001. The Varieties of Programming Language Semantics And Their Uses. In Perspectives
of System Informatics, Dines Bjørner, Manfred Broy, and Alexandre V. Zamulin (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 165–190.

Rishiyur S. Nikhil. 2004. Bluespec System Verilog: efficient, correct RTL from high level specifications. In
2nd ACM & IEEE International Conference on Formal Methods and Models for Co-Design (MEMOCODE
2004), 23-25 June 2004, San Diego, California, USA, Proceedings. IEEE Computer Society, 69–70.
https://doi.org/10.1109/MEMCOD.2004.1459818

Ulf Norell. 2007. Towards a practical programming language based on dependent type theory. Vol. 32.
Citeseer.

Lawrence C. Paulson. 1994. Isabelle - A Generic Theorem Prover (with a contribution by T. Nipkow). Lecture
Notes in Computer Science, Vol. 828. Springer. https://doi.org/10.1007/BFb0030541

Benjamin C. Pierce. 2002. Types and Programming Languages (1st ed.). The MIT Press.
Benjamin C. Pierce. 2004. Advanced Topics in Types and Programming Languages. The MIT Press.
Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, and Michael Greenberg.

2021. Programming Language Foundations. Software Foundations, Vol. 2. Electronic textbook.
Andrew M Pitts. 1997. Operationally-based theories of program equivalence. Semantics and Logics of

Computation 14 (1997), 241.
Andrew M. Pitts. 2000. Operational Semantics and Program Equivalence. In Applied Semantics, International

Summer School, APPSEM 2000, Caminha, Portugal, September 9-15, 2000, Advanced Lectures (Lecture
Notes in Computer Science, Vol. 2395), Gilles Barthe, Peter Dybjer, Luís Pinto, and João Saraiva (Eds.).
Springer, 378–412. https://doi.org/10.1007/3-540-45699-6_8

93

https://doi.org/10.1109/MEMCOD.2010.5558634
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1109/DATE.2006.244079
https://doi.org/10.1109/HLDVT.2008.4695875
https://doi.org/10.1007/3-540-48340-3_7
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1007/BFb0030541
https://doi.org/10.1007/3-540-45699-6_8

Gordon D. Plotkin. 2004. A structural approach to operational semantics. J. Log. Algebraic Methods Program.
60-61 (2004), 17–139.

Damien Pous and Davide Sangiorgi. 2019. Bisimulation and Coinduction Enhancements: A Historical
Perspective. Formal Aspects Comput. 31, 6 (2019), 733–749. https://doi.org/10.1007/s00165-019-00497-w

Vaughan R. Pratt. 1976. SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC. In 17th Annual
Symposium on Foundations of Computer Science (sfcs 1976). 109–121. https://doi.org/10.1109/SFCS.
1976.27

Nitin Pundir, Farimah Farahmandi, and Mark Tehranipoor. 2021. Secure High-Level Synthesis: Challenges
and Solutions. In 2021 22nd International Symposium on Quality Electronic Design (ISQED). 164–171.
https://doi.org/10.1109/ISQED51717.2021.9424365

David Pym, Jonathan M Spring, and Peter O’Hearn. 2019. Why separation logic works. Philosophy &
Technology 32, 3 (2019), 483–516.

Jaan Raik, Hideo Fujiwara, Raimund Ubar, and Anna Krivenko. 2008. Untestable Fault Identification
in Sequential Circuits Using Model-Checking. In 2008 17th Asian Test Symposium. 21–26. https:
//doi.org/10.1109/ATS.2008.22

J.C. Reynolds. 2002. Separation logic: a logic for shared mutable data structures. In Proceedings 17th Annual
IEEE Symposium on Logic in Computer Science. 55–74. https://doi.org/10.1109/LICS.2002.1029817

Thomas N. Reynolds, Adam M. Procter, William L. Harrison, and Gerard Allwein. 2019. The Mechanized
Marriage of Effects and Monads with Applications to High-assurance Hardware. ACM Trans. Embed.
Comput. Syst. 18, 1 (2019), 6:1–6:26. https://doi.org/10.1145/3274282

Vivek Sagdeo. 2007. The complete Verilog book. Springer Science & Business Media.
David A. Schmidt. 1996. Programming Language Semantics. ACM Comput. Surv. 28, 1 (1996), 265–267.

https://doi.org/10.1145/234313.234419
Dana S. Scott. 1972. Mathematical concepts in programming language semantics. In American Federation of

Information Processing Societies: AFIPS Conference Proceedings: 1972 Spring Joint Computer Confer-
ence, Atlantic City, NJ, USA, May 16-18, 1972 (AFIPS Conference Proceedings, Vol. 40). AFIPS, 225–234.
https://doi.org/10.1145/1478873.1478903

Natarajan Shankar, Sam Owre, John M Rushby, and Dave WJ Stringer-Calvert. 2001. PVS prover guide.
Computer Science Laboratory, SRI International, Menlo Park, CA 1 (2001), 11–12.

Alex Simpson and Niels F. W. Voorneveld. 2020. Behavioural Equivalence via Modalities for Algebraic
Effects. ACM Trans. Program. Lang. Syst. 42, 1 (2020), 4:1–4:45. https://doi.org/10.1145/3363518

Sangeetha Sudhakrishnan, Janaki T. Madhavan, E. James Whitehead Jr., and Jose Renau. 2008. Under-
standing bug fix patterns in verilog. In Proceedings of the 2008 International Working Conference
on Mining Software Repositories, MSR 2008 (Co-located with ICSE), Leipzig, Germany, May 10-11,
2008, Proceedings, Ahmed E. Hassan, Michele Lanza, and Michael W. Godfrey (Eds.). ACM, 39–42.
https://doi.org/10.1145/1370750.1370761

Yunfeng Tao. 2009. An introduction to assertion-based verification. In 2009 IEEE 8th International Confer-
ence on ASIC. 1318–1323. https://doi.org/10.1109/ASICON.2009.5351246

94

https://doi.org/10.1007/s00165-019-00497-w
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/SFCS.1976.27
https://doi.org/10.1109/ISQED51717.2021.9424365
https://doi.org/10.1109/ATS.2008.22
https://doi.org/10.1109/ATS.2008.22
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3274282
https://doi.org/10.1145/234313.234419
https://doi.org/10.1145/1478873.1478903
https://doi.org/10.1145/3363518
https://doi.org/10.1145/1370750.1370761
https://doi.org/10.1109/ASICON.2009.5351246

Vaibbhav Taraate. 2022. Concept of Concurrency and Verilog Operators. Springer Singapore, Singapore,
21–43. https://doi.org/10.1007/978-981-16-3199-3_2

Peter Thiemann. 2005. Towards a Type System for Analyzing JavaScript Programs. In Programming
Languages and Systems, 14th European Symposium on Programming,ESOP 2005, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April
4-8, 2005, Proceedings (Lecture Notes in Computer Science, Vol. 3444), Shmuel Sagiv (Ed.). Springer,
408–422. https://doi.org/10.1007/978-3-540-31987-0_28

G. Umbreit. 1992. Providing a VHDL-interface for proof systems. In Proceedings EURO-DAC ’92: European
Design Automation Conference. 698–703. https://doi.org/10.1109/EURDAC.1992.246187

S. Vasudevan, J.A. Abraham, V. Viswanath, and Jiajin Tu. 2006. Automatic decomposition for sequential
equivalence checking of system level and RTL descriptions. In Fourth ACM and IEEE International
Conference on Formal Methods and Models for Co-Design, 2006. MEMOCODE ’06. Proceedings. 71–80.
https://doi.org/10.1109/MEMCOD.2006.1695903

Philip Wadler. 1992. The Essence of Functional Programming. In Conference Record of the Nineteenth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Albuquerque, New Mexico,
USA, January 19-22, 1992, Ravi Sethi (Ed.). ACM Press, 1–14. https://doi.org/10.1145/143165.143169

Glynn Winskel. 1993. The Formal Semantics of Programming Languages: An Introduction. MIT Press,
Cambridge, MA, USA.

Felix J. Winterstein, Samuel R. Bayliss, and George A. Constantinides. 2016. Separation Logic for High-Level
Synthesis. ACM Trans. Reconfigurable Technol. Syst. 9, 2 (2016), 10:1–10:23. https://doi.org/10.1145/
2836169

Li Yongjian and He Jifeng. 2003. Towards a theory of bisimulation for a fragment of Verilog. In Proceedings
International Parallel and Distributed Processing Symposium. 8 pp.–. https://doi.org/10.1109/IPDPS.
2003.1213435

95

https://doi.org/10.1007/978-981-16-3199-3_2
https://doi.org/10.1007/978-3-540-31987-0_28
https://doi.org/10.1109/EURDAC.1992.246187
https://doi.org/10.1109/MEMCOD.2006.1695903
https://doi.org/10.1145/143165.143169
https://doi.org/10.1145/2836169
https://doi.org/10.1145/2836169
https://doi.org/10.1109/IPDPS.2003.1213435
https://doi.org/10.1109/IPDPS.2003.1213435

	Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Thesis Outline

	2 Background
	2.1 Hardware Description Languages and Verilog
	2.2 HDL and Verification
	2.3 Theorem Provers and Hardware Verification
	2.4 Brief Introduction to the Coq Proof Assistant
	2.5 Programming Languages and Semantic Models
	2.6 The Simply Typed Lambda Calculus

	3 Verifloq: A Coq formalization for Verilog
	3.1 Verifloq: Incrementing the STLC with Verilog Components
	3.2 Verifloq's Small-step Operational Semantics
	3.3 Typing Rules
	3.4 Type Safety Guarantees
	3.5 Simple Verilog-like Programs with Verifloq
	3.6 Summary and Benefits of Verifloq

	4 Applications
	4.1 Hoare Logic and Assertions
	4.2 Program Equivalence for HLS
	4.3 Towards a Correct-by-construct Verified Hardware Pipeline

	5 Comparison: Alternative HDL Formalizations
	5.1 VHDL vs. Verilog vs. Verifloq
	5.2 Verifloq and HLS Formalizations

	6 Conclusion
	6.1 Achieved Contributions
	6.2 Future Work

	A Code Access
	B Coq tactics and commands
	B.1 Verifloq's Coq Definitions
	B.2 Coq Proofs
	B.3 Interactive theorem proving
	B.4 Relevant Tactics

	References

