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Abstract—Massive machine-to-machine (M2M) is an important
application for IoT in 5G. In this letter, we focuss on solving the
multiuser detection (MUD) problem supported by Low-Activity
Code Division Multiple Access (LA-CDMA) for M2M communi-
cations. To address the user activity factor unknown issue in the
optimal maximum a posterior probability (MAP) and improve
the signal reconstruction ability, we propose iterative reweighed
(IR) and minimum mean-square-error iterative reweighed (MM-
SEIR) algorithms based on compressive sensing (CS) theory.
The simulation results demonstrate that the proposed algorithms
achieve substantial performance gain over traditional detectors.

Index Terms—5G, M2M Communications, Multiuser Detec-
tion, Compressive Sensing, Iterative Reweighed Algorithm.

I. INTRODUCTION

The next generation (5G) is a true sense of the integration
network, it mainly contains two networks, i.e., the mobile
Internet and the Internet of Thing (IoT) [1]. Among them, the
new paradigm IoT has been receiving a lot of attention, which
contains human-to-machine and machine-to-machine (M2M).
With its low-cost, low power consumption and narrow band-
width advantages, M2M is an inevitable trend to transform
various vertical sectors such as smart home, car networking,
disaster scenarios, etc.

Meanwhile, we notice that there are some technical issues
to be solved, for instance, communications among machines
require suitable multiple access method. Code Division Mul-
tiple Access (CDMA) system is flexible to support variable
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rate services and scalable number of users, which makes it
very attractive for M2M communications. Note that the total
number of users is typically large and just a small part of them
(i.e.,10%) will transmit signal at any given time interval, in this
letter, we exploit the Low-Activity Code Division Multiple
Access (LA-CDMA) for M2M communications.

Accurate multiuser detection (MUD) in M2M communica-
tions help us to address the challenges such as reducing the
cost of machine terminals, resource allocation and low-cost
M2M terminal coverage. Indeed, there are some studies to
solve the MUD problems recently. In [2], Zhu and Giannakis
proposed Ridge detector (RD) and Lasso detector (LD) to
approach the optimal maximum a posterior probability (MAP)
for data detection. However, the two detectors require to know
the value of user activity factor pa (the probability of active
user), which is unknown in the practical MUD scenarios,
because any user enters/leaves the communication systems
randomly. In our previous work [3], we proposed Bayesian
inference algorithms for data detection but the computational
complexity is relatively large.

The objective of this letter focuses on the MUD problem
in the uplink of LA-CDMA based on compressive sensing
(CS). Encouraged by the observation of the total number of
users is very large and the rate of active users is typically
low, we consider the transmitted signal as sparse vector (many
elements in the signal vector are zero). The recovery of sparse
signal in CS has been received a great deal of attention
recently from both academic and industry [4], [5]. Note that
the transmitted signal in M2M communications has sparse
feature, we are able to address the MUD problem via the
theory of CS. For the special non-sparse signal situation, we
first convert the system into sparse format, then do estimation.

The main contributions of this letter are summarized as
follows: 1) We develop two computationally efficient algo-
rithms for recovering the transmitted signals, respectively, iter-
ative reweighed (IR) and minimum mean-square-error iterative
reweighed (MMSEIR) algorithms; 2) For sparse transmitted
signal, we first reformulate the traditional input-output sys-
tem model under CS framework, and replace 0-norm with
log-sum function. Then we propose the IR algorithm based
on majorization-minimization (MM) strategy and transform
the non-convex MUD optimization problem into an iterative
problem [6], [7]; 3) For non-sparse situation, we first convert
the system into sparse framework, then embed the minimum
mean-square-error (MMSE) into IR, and propose MMSEIR
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algorithm [8]; 4) The two schemes overcome the user activity
factor pa unknown difficulty in data detection. The efficacy is
largely enhanced and the computational complexity is substan-
tially reduced compared with the traditional MUD algorithms.

II. SYSTEM MODEL

We consider the LA-CDMA uplink system where there
are K users, the spreading factor is N . In this system, the
relationship between the transmitted signal b and the received
signal y can be formulated as follows

y = Hb+w, (1)

which are expressed by

y = [y1, y2, ..., yN ]T ,
b = [b1, b2, ..., bK ]T ,
w = [w1, w2, ..., wN ]T ,
H = [h1,h2, ...,hK ],

(2)

where y ∈ CN×1 is the received signal vector, H ∈ CN×K is
a complex matrix containing the spreading process and the
channel information, w ∈ CN×1 is the complex Gaussian
noise (w ∼ CN (0, σ2I)). At the transmitter, b ∈ RK×1 ∈
(B ∪ {0}) is the transmitted signal vector for the K devices
whose elements are selected from a finite alphabet set. Let bi
be the ith signal to be transmitted by user i (i = 1, 2, ...K).
When the device is active, bi ∈ B, where B stands for
the modulation alphabet such as Binary Phase Shift Keying
(BPSK), i.e., B = {−1,+1}. When the device is inactive,
bi ∈ {0}. Note that in such transmission, if most devices are
inactive, namely, most of the elements in b are zero, then the
transmitted signal vector to be sparse; otherwise, the signal is
non-sparse. Let pa be the user activity factor, which defines
the probability of active user. The main objective of this letter
is to detect the transmitted signal b using the given channel
matrix H and the received signal y.

Indeed, there are some traditional MUD methods to solve
the MUD problems recently. Linear receivers with low com-
plexity for zero-forcing (ZF) and MMSE detectors and non-
linear detectors based on MAP for RD and LD are listed as
follows [2], [3]:

b̃ =


(HHH)

−1
HHy, for ZF,

(HHH+ σ2I)
−1

HHy, for MMSE,
(HHH+ 2λI)

−1
HHy, for RD,

argmin
b

{
1
2 ∥y −Hb∥22 + λ∥b∥1

}
, for LD,

(3)

in which λ
∆
= log

(
1−pa

pa

)
.

In general, the nonlinear detectors have better recovery
ability than the linear receivers, however, they need to know
the value of user activity factor pa, which is hard to be
obtained in a practical system, because any user enters/leaves
the communication systems randomly. In addition, the value of
user activity factor pa for RD and LD should be very small [2].
In the following, we propose the IR and MMSEIR algorithms
based on CS theory to address the challenges.

III. IR FOR MUD

In this section, we exploit the CS based scheme to solve
the MUD problem for LA-CDMA uplink in massive M2M
communications. For the traditional system model (1), H is
assumed to be an N ×K dictionary matrix, b is the recover
vector, and y is the measurement vector. In massive M2M
communications, the number of users is large, and the rate
of active users is typically low, which makes the transmitted
signal vector has sparse feature. The sparsity can be defined
as the total number of active devices, i.e., S = ⌈pa ×K⌉,
where ⌈a⌉ is a smallest integer greater than or equal to a,
then signal vector b is treated as S-sparse. For a better CS
estimate of the transmitted signal b, the form of our MUD
system model based on CS can be written as

min
b

∥b∥0
s.t.∥y −Hb∥2 ≤ ς,

(4)

where the objective function ∥b∥0 denotes the number of ac-
tive devices in b, and ς is a specified error tolerance parameter
and related to the noise. In this way, the MUD problem is
reduced to the recovery of sparse signal in CS. Problem in
(4) is a non-convex and NP-hard problem. Conventionally,
we can relax the non-convex 0-norm to the convex 1-norm
MUD problem, and obtain a sub-optimal solution. Thus we can
associate the relaxed 1-norm MUD problem with traditional
CS recovery method such as Basis Pursuit (BP) technology [9].
However, it has been proved that the log-sum function can be
used to promote sparsity, and has better sparse recovery ability
than 1-norm [10]. In order to have computationally efficient
solution, we replace 0-norm by log-sum function to detect the
transmitted signal b in M2M communications

min
b

(
K∑
i=1

log(|bi|2 + ε)

)
s.t.∥y −Hb∥2 ≤ ς,

(5)

in which ε > 0 is small regularization constant, and is used to
make sure that the log-function does not go to negative infinity.
Based on the theory of convex optimization, we combine the
objective function and constraint condition, the optimization
problem (5) can be formulated as a Lagrange function

min
b

L(b)
∆
=

K∑
i=1

log(|bi|2 + ε) + η ∥y −Hb∥22 , (6)

in which η is a lagrangian multiplier of
K∑
i=1

log(|bi|2 + ε)

and ∥y −Hb∥22. Since then, the subject has been reduced to
minimize the Lagrange function with respect to the transmitted
signal b in M2M communications.

In the following, we exploit IR algorithm based on (5) and
(6) to address the MUD problem. The introduced IR algorithm
is based on MM strategy to recover sparse transmitted signal
b. The MM algorithm helps to minimize a relative simple sur-
rogate function majorizing the given aim function iteratively.

We first assume that a surrogate function Q(b|b̃(t)) is
the upper bound for the objective log-sum function, i.e.,
K∑
i=1

log(|bi|2 + ε) ≤ Q(b|b̃(t)). It is easy to verify that an
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appropriate choice of such surrogate function for log-sum

function
K∑
i=1

log(|bi|2 + ε) is given by

Q(b|b̃(t))
∆
=

K∑
i=1

log
(∣∣∣b̃(t)i

∣∣∣2 + ε

)
+

|bi|2 + ε∣∣∣b̃(t)i

∣∣∣2 + ε
− 1

, (7)

in which b̃
(t)
i is the estimated signal bi at tth iteration.

Proof: To prove the upper bound inequation, which amounts
to

K∑
i=1

log

∣∣∣b̃(t)i

∣∣∣2 + ε

|bi|2 + ε
+

|bi|2 + ε∣∣∣b̃(t)i

∣∣∣2 + ε
− 1

 ≥ 0, (8)

we set x = |bi|2+ε∣∣∣b̃(t)i

∣∣∣2+ε
, where x > 0. Then the left-hand side

of (8) f(x) = log x + 1/x − 1 and f ′(x) = (1− 1/x) /x.
When x > 1, f ′(x) > 0, then f(x) > f(1). When 0 < x < 1,
f ′(x) < 0 , then f(1) < f(x). So when x = 1, f(x) has the
minimum value. As f(1) = 0, we can conclude f(x) ≥ 0.
Thus the upper bound inequation is proven.

Note that the above surrogate function Q(b|b̃(t)) is convex
and differentiable. Consequently, the optimization problem can
be formulated as follows

min
b

(Q(b|b̃(t)) + η ∥y −Hb∥22)

=min
b

(
K∑
i=1

(log(
∣∣∣b̃(t)i

∣∣∣2 + ε) +
|bi|2 + ε∣∣∣b̃(t)i

∣∣∣2 + ε
− 1)

+ η ∥y −Hb∥22). (9)

Take the first derivation of (9) over the transmitted signal
b, we can easily obtain the IR solution

bIR = (HHH+ η−1D(t))−1HHy, (10)

where D(t) is a diagonal matrix defined as D(t) ∆
=

diag

((∣∣∣∣∣∣∣b̃(t)1

∣∣∣2 + ε

∣∣∣∣)−1

, ...,

(∣∣∣∣∣∣∣b̃(t)K

∣∣∣2 + ε

∣∣∣∣)−1
)

.

IV. MMSEIR FOR MUD

As mentioned above, the advantage of IR is that we can
detect the optimal b without the activity factor information.
However, the IR method only makes use of the sparsity
property of the transmitted signal b, thus making the recovery
result accurate only if the user activity is very low. In this
section, we try to recover the special non-sparse signal, which
is applicable for the large user activity factor cases in M2M
communications. The proposed detector is called MMSEIR
and derived in two steps: 1) transfer the non-sparse system
model into sparse error format with the help of MMSE
detector; 2) apply the IR algorithm to estimate the error vector.
Here are the details.

Referring to (1), the transmitted signal b is non-sparse. In
order to transform the non-sparse system (1) into a sparse
error format, here we remove the observed signal Hb̂ from

the received signal y, and obtain a new sparse error system,
that is,

ynew = y −Hb̂ = H(b− b̂) +w = He+w, (11)

in which ynew is the newly built received signal, the error
vector e is defined as e = b− b̂. For the signal b̂, it obtained
with the help of the estimated signal b̃ in Section II. To ease
the notations, here we take the conventional linear receiver
MMSE as an example

b̂ = S(b̃MMSE) = S((HHH+ σ2)−1HHy), (12)

in which S(·) is a slicing function which maps the input
b̃MMSE to a finite set {−1, 0,+1}. Obviously, if the con-
ventional method MMSE leads to perfect hard decisions, all
elements in error vector e will be zero. In practice, however,
the elements might not be all zero. It is natural to consider
the error vector e as a sparse one. Additionally, it is worthy to
mention that the linear MMSE tries to maximize the Signal to
Interference-plus-Noise Ratio, it is a low complexity detector
and easy to implement, but the performance is not as efficient
as nonlinear detectors.

As we discussed above, the newly built (11) is a sparse
system model. Now we consider to recover the error vector e
in (11), and the form of the sparse error system model based
on CS can be reformulated as follows

min
e

∥e∥0
s.t.ynew = He+w.

(13)

The following problem reduces to estimate the error vector
e from the new received signal ynew by the IR approach we
proposed in Section III, we get the IR solution of the error
vector

eIR = (HHH+ η−1E(t))−1HHynew, (14)

where E(t) is a diagonal matrix defined as E(t) ∆
=

diag

((∣∣∣∣∣∣∣ẽ(t)1

∣∣∣2 + ε

∣∣∣∣)−1

, ...,

(∣∣∣∣∣∣∣ẽ(t)K

∣∣∣2 + ε

∣∣∣∣)−1
)

.

Accordingly, we obtain a more precise transmitted signal
vector based on (12) and (14)

bMMSEIR = bMMSE + eIR. (15)

V. SIMULATION RESULTS

We consider the uplink of CDMA system with K = 20
users. We exploit random sequences with length N = 32
for spreading. We consider additive white Gaussian noise
(AWGN) channels and each user has the same received power
when the user is active. The regularization parameter ε is 1,
the Lagrangian multiplier η is 1 and the number of iterations
rpt is 1000. The metric to evaluate the reconstruction ability
is the symbol error rate (SER), which is defined as

SER ∆
=

ERR
rpt ×K

, (16)

in which rpt stands for the number of iterations of each Monte
Carlo simulation. K is the number of devices, which is used at
each Monte Carlo round. ERR denotes the number of devices
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Fig. 1. SER versus SNR of MUD algorithms when the transmitted signal
are respectively (a) sparse for pa = 0.1; (b) non-sparse for pa = 0.9.

whose signal is erroneously decoded, which is the total number
of errors over all Monte Carlo runs.

First, we validate the effectiveness of the designed IR and
MMSEIR algorithms. We compare the IR and the MMSEIR
with the ZF, the MMSE, the RD and the LD. We test the
recovery performance of the SER with respect to the signal
noise rate (SNR) in both low and large user activity factor
situations, as shown in Fig.1. Fig.1(a) shows a comparison of
the recovery performance between the conventional detectors
and the proposed IR and MMSEIR algorithms for sparse
scenario. The simulation results clearly demonstrate that the
IR outperforms the existing traditional detectors, because the
IR method well exploits the sparse property of the transmitted
signal. When pa is large, as shown in Fig.1(b), the IR becomes
worse but the MMSEIR performs the best. Also, we record
the corresponding running time of different MUD algorithms
in Table I. We can see that the running time of the LD is
extremely large, because it is simulated under the help of CVX
tool box. In a word, the two algorithms’ efficacy is largely
enhanced and the computational complexity is substantially
reduced compared with the traditional MUD algorithms.

Next, in order to test the impact of the user activity factor,
we fix the SNR = 10 dB and test the SER versus the
user activity factor, as shown in Fig.2. Fig.2(a) shows the
results when the small activity factor varies from 0.1 to 0.5
while the results for large activity factor varying from 0.1
to 0.9 are presented in Fig.2(b). Due to fact that the RD
and the LD methods can be used only in low user activity
factor scenarios, we simulated the recovery performance of
them in Fig.2(a). From Fig.2(a) and Fig.2(b), we find that
the IR exhibits the best recovery performance at low SNR.
As the user activity factor grows, the performance becomes
worse. Obviously, the advantage of the IR algorithm is in
lower user activity scenarios, namely, the sparse transmitted
signal situation. We also observe that the SER of MMSEIR
algorithm appears a decreasing trend with respect to pa, but
relatively stable. The performance of MMSEIR gets better in
the situation that the activity factor is large. This means that,
if the user activity factor is relatively small (i.e., pa < 0.27 in
Fig.2(a) and Fig.2(b), the IR approach is employed; otherwise,
the MMSEIR detector is recommended.

TABLE I
RUNNING TIME OF DIFFERENT MUD ALGORITHMS.

Algorithm runtime(s) (pa = 0.1) runtime(s) (pa = 0.9)

ZF 0.3063 0.3178
MMSE 0.3539 0.2844

RD 0.1075 X
LD 156.2926 X
IR 6.6515 3.0477

MMSEIR 9.3243 9.9684

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−2

10
−1

10
0

p
a

S
E

R

 

 
ZF
MMSE
RD
LD
IR
MMSEIR

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

−2

10
−1

10
0

p
a

S
E

R

 

 
ZF
MMSE
IR
MMSEIR

(a) (b)
Fig. 2. SER versus pa of MUD algorithms when SNR = 10 dB.

VI. CONCLUSIONS

In this letter, we reformulate the input-output system model
for M2M communications for LA-CDMA uplink system.
Based on CS theory, we introduced the IR and the MMSEIR
strategies for recovering transmitted signal. The simulation
results over massive M2M systems demonstrate the proposed
methods have superior performance both in the recovery rate
and running time.
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