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Abstract 
 
Cancerous tumors are often heterogenous in their cellular composition and morphology. The tumor 

subregions can differ in many properties including growth rate, ability to metastasize, 

immunological characteristics, and sensitivity to therapies. Characterizing the tumor 

microenvironment could be beneficial for cancer diagnosis and the development of targeted 

therapy. Diffusion-weighted MRI is a powerful tool for the characterization of tumor 

microenvironment, due to its sensitivity to the Brownian motion of water molecules. By relating 

plausible models of the underlying tissue architecture to the acquired diffusion signal, 

microstructural information such as cell size and volume fraction can be obtained.  The overall 

goal of this thesis was to develop novel DW-MRI based techniques to characterize tumor 

microenvironment. Our first aim was to characterize heterogeneity in the tumor microenvironment, 

by identifying different tumor habitats in soft tissue sarcoma. To this end, we developed a novel 

reference-tissue-based method for probabilistic classification of up to five tumor habitats, using 

maps of the apparent diffusion coefficient (ADC), T2 relaxation maps, and a calculated map 

representing high-b-value diffusion-weighted MRI. The classification method was demonstrated 

in soft-tissue sarcoma. The classification results were qualitatively consistent with histopathology. 

The second part of our work focused on further characterization of tumor microenvironment by 

extracting microstructural information on a cellular level, such as cell size and volume fractions. 

Building on the existing microstructure imaging framework which assumed a single cell 

population in the tumor, we developed microstructure mapping with two cell populations co-

existing in the same space. It was found that for a minimum difference of 3 𝜇𝑚 in radius between 

the large and small cell populations and an SNR of 50, the radii and volume fractions of both cell 

populations could be accurately estimated. To demonstrate the potential application of 
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microstructure mapping in cancer treatment monitoring, the final component of this thesis focused 

on differentiating three potential post-treatment tumor microenvironments including necrosis, 

progression of disease, and infiltration of T-cells, all without a priori knowledge. This was 

achieved by developing a model selection method that chose the most suitable diffusion model to 

describe the tumor microenvironment. The method was evaluated with simulated diffusion data. 

Overall, this thesis introduced three novel DW-MRI based techniques for the characterization of 

tumor microenvironment. 
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Résumé 
 
Les tumeurs cancéreuses sont souvent hétérogènes dans leur composition cellulaire et leur 

morphologie. Les sous-régions tumorales peuvent différer selon de nombreuses propriétés, 

notamment le taux de croissance, le potential de métastase, les caractéristiques immunologiques 

et la sensibilité aux traitements. La caractérisation du microenvironnement tumoral pourrait être 

bénéfique pour le diagnostic du cancer et le développement d'une thérapie ciblée. L'imagerie par 

résonance magnétique (IRM) de diffusion est un outil puissant pour caractériser le 

microenvironnement tumoral, en raison de sa sensibilité au mouvement brownien des molécules 

d'eau. En reliant des modèles réalistes de l'architecture sous-jacente des tissues au signal de 

diffusion, des informations microstructurales telles que la taille des cellules et la fraction 

volumique peuvent être obtenues. L'objectif général de cette thèse était de développer de nouvelles 

techniques d'imagerie basées sur l'IRM de diffusion pour caractériser le microenvironnement 

tumoral. Notre premier objectif était de caractériser l'hétérogénéité dans le microenvironnement 

tumoral, en identifiant différents habitats tumoraux dans des sarcomes des tissus mous. Nous avons 

développé une nouvelle méthode basée sur les tissus de référence pour la classification probabiliste 

d'un maximum de cinq habitats tumoraux, en utilisant le coefficient de diffusion apparente (ADC), 

la carte de relaxation T2 et une carte calculée représentant une IRM de diffusion avec une valeur 

b élevée. La méthode de classification a été démontrée dans des sarcome des tissus mous. Les 

résultats de la classification étaient qualitativement comparables avec l'histopathologie. La 

deuxième partie de mon travail s'est concentrée sur une caractérisation plus détaillée du 

microenvironnement tumoral en calculant des informations microstructurales au niveau cellulaire, 

telles que la taille moyenne des cellules et les fractions de volume cellulaire. En s'appuyant sur des 

méthodes existantes d'imagerie de la microstructure qui supposent une population de cellules 
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uniques dans les tumeurs, nous avons développé une approche de cartographie de microstructure 

avec deux populations de cellules coexistant dans le même espace. Il a été constaté que pour une 

différence de rayon minimum de 3 μm entre les populations de cellules de grande et petite taille et 

un rapport signal-sur-bruit de 50, les rayons et les fractions de volume des deux populations 

cellulaires ont pu être estimés avec précision. Pour démontrer l'application potentielle de la 

cartographie de la microstructure dans l'évaluation des traitements du cancer, la dernière partie de 

cette thèse portait sur la différenciation de trois microenvironnements tumoraux plausibles suivant 

un traitement. Les microenvironnements post-traitement comprenaient la nécrose, la progression 

de la maladie et l'infiltration des lymphocytes T. Cet objectif a été atteint en développant une 

méthode de sélection de modèle qui choisit le modèle de diffusion le plus approprié pour décrire 

le microenvironnement tumoral. La méthode a été évaluée avec des données de diffusion simulées. 

Dans l'ensemble, cette thèse a introduit trois nouvelles techniques basées sur l'IRM de diffusion 

pour la caractérisation du microenvironnement tumoral. 
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Original Contributions 
 
The original scientific contributions of this PhD thesis are: 

 

1. Development of a probabilistic classification algorithm that allows the automated 

classification of tumor habitats 

2. The design, programming and validation of the analysis program, used for microstructure 

mapping with the one cell population model 

3. Contribution to the Microstructure Imaging Sequence Simulation Toolbox by 

incorporating tissue geometry with two cell populations 

4. The design, testing and validation of the two-cell population model.  

5. The design, testing and validation of the model selection method which allows the 

differentiation of three post-treatment scenarios. 

 

 

 

 

 

 





 
 
 
Chapter 1  

 

1 Introduction 

 
Cancer is a group of diseases characterized by the uncontrolled growth and spread of abnormal 

cells, which has major impacts on the population in Canada and world-wide [1]. It is estimated 

that approximately one in two Canadians will develop cancer in their lifetime, and one in four 

Canadians will die from cancer, making cancer the number one cause of death in Canada. In 2019 

alone, approximately 220,400 Canadians will be diagnosed with cancer and 82,100 will die from 

the disease [2]. 

 

Most cancerous tumors are not homogenous in their cellular composition and morphology, but are 

often composed of multiple sub-populations of cancer cells [3]. The sub-populations differ in many 

properties, including growth rate, ability to metastasize, immunological characteristics and 

sensitivity to therapeutic modalities [4]. These intra-tumoral variations can in turn create different 

morphologies for different sub-regions within the tumor. These sub-regions can be termed habitats 

[5].   

 

Tumor heterogeneity poses challenges for the development of effective therapy. Currently, the 

most prevalent treatment modalities including surgery, chemotherapy, radiotherapy, and recently 

immunotherapy, tend to treat the tumor as a homogenous entity. For example, in radiotherapy, the 
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same amount of radiation is often prescribed to the entire tumor. As our understanding of tumor 

biology improves, a considerable amount of evidence has suggested that the cancer cell sub-

populations differ in susceptibility to chemotherapy [6]–[8], radiation therapy [9], [10] and 

immunotherapy [11], [12]. To overcome these limitations, personalized approaches are developed 

to provide different treatments for each tumor. For instance, dose painting in radiotherapy has been 

considered to deliver different amounts of radiation to various tumor habitats [9]. Targeted 

therapies such as anti-HER2 (human epidermal growth receptor 2) therapy has been applied to 

treat HER2-positive breast cancer, by blocking the function of the HER2 protein [13]. The clinical 

translation of these personalized treatments could greatly benefit from the ability to accurately map 

tumor habitats and to characterize the tumor microenvironment at a cellular level. To this end, 

imaging techniques with capability to characterize the tumor microenvironment are of great 

interest to clinicians. 

 

Magnetic resonance imaging (MRI) has become a powerful tool for cancer diagnosis, treatment 

planning, and treatment assessment, because of its superior soft tissue contrast and the absence of 

ionizing radiation. The non-invasive nature of MRI allows repeated measurements at different time 

points during the course of treatment to monitor treatment induced changes. Among various MR 

techniques, diffusion-weighted MRI (DW-MRI) has become an increasingly popular tool for the 

characterization of tumor microenvironment, due to its sensitivity to the Brownian motion of water. 

In free water, the water molecular displacements follow a Gaussian distribution. In biological 

tissue, water diffusion is constrained by the presence of molecular and cellular obstacles. Thus, the 

displacement distribution is no longer Gaussian. Characterizing MRI signal behavior due to non-

Gaussian diffusion can therefore provide valuable information on the tissue microstructure, such 

as cell size, shape, and volume fractions. This is achieved by developing realistic models of the 

underlying tissue architecture and relating them to the acquired diffusion signal. A brief overview 

of essential principles of MRI is presented in Chapter 2. In addition, a more comprehensive review 

of DW-MRI and diffusion modeling including microstructure modeling is provided in Chapter 2. 

 

The overall goal of this thesis is to develop DW-MRI based imaging techniques to characterize 

tumor microenvironment. The first aim was to characterize heterogeneity in the tumor 

microenvironment, by identifying different tumor habitats in soft tissue sarcoma. To this end, we 
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proposed a method, allowing automated classification of five distinct tumor habitats. This work is 

presented in Chapter 3. The second objective of this thesis was to further characterize tumor habitat 

by extracting microstructural information on a cellular level, such as cell size and volume fractions. 

Concrete and careful steps were taken to ensure accurate and robust estimations of these 

microstructural parameters through computer simulations, in vitro and in vivo experiments. These 

steps are summarized in Chapter 4. While studying tumor microstructures, a type of soft tissue 

tumor with two cancer cell populations co-existing in the same space caught our attention. The 

existing microstructure imaging techniques assume that the tumor only contains a single cell 

population. To address this limitation, a computational proof-of-concept study was conducted on 

the feasibility of estimating cell radii and volume fractions of a mixture of two cell populations, 

when they co-exist in the same MR voxel. The results of this study are presented in Chapter 5. The 

final aim of this thesis was to differentiate tumor microenvironment with one cell or two cell 

populations without a priori knowledge. This was achieved by developing a model selection 

method that chose the most suitable diffusion model to describe the tumor microenvironment. The 

work is presented in Chapter 6.  Lastly, the thesis concludes with summary discussion of major 

findings and future work in Chapter 7.



 
 
 
Chapter 2 

 
2 Background 

 
This chapter provides the necessary information to understand the principles of MRI, and more 

specifically the principles of diffusion weighted MRI and its applications in microstructure 

imaging. The first section (section 2.1) introduces the motivation of characterizing tumor 

microenvironment. Section 2.2 provides a brief overview on the basic theory of MRI, including 

the phenomenon of nuclear magnetic resonance, signal generation, detection and spatial 

localization.  In the following sections 2.3 and 2.4, we discuss in detail the fundamental principles 

of diffusion, diffusion contrast in free and restricted environments and diffusion microstructure 

modeling.  

 

2.1 Imaging tissue microstructures  
 

2.1.1 Tumor heterogeneity 

 

Tumors are commonly heterogeneous populations of cancer cells that experience uncontrollable 

growth. Among patients with the same type of cancer, there is a variety of tumor morphology, 

such as tumor shape and size. Heterogeneity is seen within the tumor for the same patient over the 

course of time, where the biological characteristics of a tumor can vary remarkably at different 
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stages of progression.  Recent imaging studies have shown that some tumors are heterogenous at 

the time of diagnosis, with multiple distinct subregions, namely habitats, present within the tumor 

(Figure 2.1) [14]. Histological examination of a tumor specimen often reveals considerable 

differences in the morphology of cancer cells in different areas of the same lesion. Depending on 

the tumor size and grade, necrosis may be present as well as alterations in vasculature distributions, 

leading to differences in oxygenation [3].  

 

Tumor heterogeneity presents challenges and opportunities for the development of effective 

therapy. Habitats of varying characteristics may differ in susceptibility to chemotherapy, 

radiotherapy or immunotherapy. For example, it has been demonstrated that poorly oxygenated 

tumor regions (i.e. hypoxia) are associated with greater risk of metastasis and are more resistant to 

radio- and chemotherapies [15], [16].  In addition, the presence of high cellularity regions in 

pancreatic cancer has been shown to relate to worse prognosis [17].  To overcome these limitations, 

strategies such as dose painting in radiotherapy have been considered to deliver different amounts 

of radiation to various habitats. This strategy aims to provide a radiation dose boost to the hypoxic 

volume and regions of high cellularity, while minimizing excess dose to the surrounding healthy 

tissue [18]. The clinical translation of dose painting relies in part on the ability to accurately map 

radioresistant regions. To this end, imaging techniques with the capability to characterize various 

tumor habitats are of great interest to clinicians. 

 

 
Figure 2.1 T2-weighted image of myxofibrosarcoma located on the flank demonstrates 

considerable heterogeneity within the tumor. Data collected as part of a local study[18]. 
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2.1.2 Tumor microstructures 

 

Looking beyond the tumor habitats on a macroscopic scale, the fundamental abnormality causing  

the development of cancer is the continual unregulated proliferation of cancer cells [19]. 

Microstructural features on a micron scale such as cell size and cellularity have been found to play 

an important role in cell proliferation and tumor growth [20]. For cancer diagnosis and prognosis, 

cell size and volume fraction (i.e. % volume occupied by cells) have reportedly been linked to 

cancer types and grade [21], [22].  For example, tumor cell size is one of the key histological 

characteristics differentiating large cell neuroendocrine carcinoma and small cell lung carcinoma 

[21].  In the following paragraph, I further exemplify how cell size helps the grading of myxoid 

liposarcoma, which is an application of interest that motivates the current work. 

 

 
Figure 2.2 Myxoid liposarcoma demonstrates a morphological continuum varying the amount of 

round cell component. Figure adapted from Bone and Soft Tissue Pathology Chapter 4. Angelo 

Paolo Dei Tos. Adipocytic Tumors, Page  22, © 2010, with permission from Elsevier [23].  

Myxoid liposarcoma is a type of soft-tissue sarcoma which accounts for 30% -35% of all 

liposarcomas. Myxoid liposarcoma forms a morphological continuum that includes a hypercellular 

neoplasm composed of oval to round neoplastic cells, known as round cells [23], [24] (Figure 2.2).  

Pure myxoid liposarcomas are well differentiated tumors with cell sizes 5-10	𝜇𝑚 in diameter, 

whereas their hypercellular round cell counterparts are poorly differentiated tumors with cell sizes 

15-20 𝜇𝑚 in diameter [24]. The amount of round cell component in a myxoid liposarcoma is 

Morphological continuum 

Myxoid  

liposarcoma 

Myxoid/round cell 

liposarcoma 

round cell 

liposarcoma 
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directly related to tumor grade, metastasis, and patient survival [25].  Lesions with less than 5% 

round cell component are classified by clinicians as low grade lesions, and lesions with greater 

than 5% round cell component are classified as high grade [26]. The amount of round cell 

component is also linked to metastatic potential.  Kilpatrick et al.  found that 58% of the patients 

with > 25% of round cell component developed metastasis, whereas only 23% of patients with < 

5% round cell component developed metastasis [27].  

 

In addition to cancer diagnosis, variations in cell size and volume fraction have important 

implications for monitoring treatment response (Figure. 2.3).  During therapy, cells may undergo 

a transient cell-swelling phase, which could be an indication of chemotherapy- or radiotherapy- 

induced cell injury, before going through apoptosis [27]. Cell shrinkage is a hallmark of 

morphologic features associated with apoptosis or necrosis, which is a common indicator for 

successful anti-cancer therapies [28].  

 

 
Figure 2.3 Schematic illustrations of biological processes involved in therapy induced changes in 

tumors. Figure reprinted by permission from the Springer Nature Customer Service Centre GmbH: 

Springer Nature, Nature Clinical Practice Oncology, Technology Insight: water diffusion MRI-a 

potential new biomarker of response to cancer therapy, Daniel M Patterson et al. © 2008  [28]. 
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2.1.3 Imaging tumor microstructures 

 

Currently, both cellular and subcellular information is obtained by means of invasive biopsy, 

which is the gold standard for tumor diagnosis and grading.  Direct visual observation of cancerous 

cells provides an intuitive understanding of the tumor microenvironment; staining leads to high 

specificity to pathological observations [25].  However, biopsy only captures the characteristics of 

a limited sample of the tumor. The invasive nature of biopsy may cause clinical complications, 

including pain, hemorrhage and infections, making it unfeasible for repeated measurements. 

Therefore, a non-invasive imaging technique with the capability of detecting tissue microstructural 

information on the cellular scale would be of great interest to clinicians. Such technique could 

become a complementary tool to biopsy, allowing better characterization of the tumor 

microenvironment for the application of cancer diagnosis and treatment monitoring. 

 

Different imaging techniques have been developed for the characterization of tumor 

microenvironment (Figure 2.4).  For instance, dynamic contrast-enhanced MRI (DCE-MRI) has 

been used to assess tumor blood supply. Tumor hypoxia have been characterized by blood 

oxygenation level-dependent MR imaging (BOLD-MRI). Among these valuable techniques, 

diffusion-weighted MRI (DW-MRI) has become an increasingly popular tool that allows the 

characterization of multiple features in the tumor microenvironment due to its sensitivity to the 

Brownian motion of water. These features include heterogeneity, cellular density, proliferation, 

apoptosis/necrosis and tumor microenvironment (Figure 2.4). The principles of DW-MRI are 

discussed in detail in section 2.3.  
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Figure 2.4 Schematic illustration of major imaging techniques in the evaluation of tumor 

microenvironment. Figure reprinted from Insights into imaging 10 (28), Roberto Barcia-Figueiras 

et al. How clinical imaging can assess cancer biology © 2019 with permission under the Creative 

Commons CCBY license [4].  

 

2.2 Magnetic Resonance Imaging 
 

Magnetic resonance imaging (MRI) is a powerful noninvasive imaging modality that has 

widespread applications in research and clinical medicine. The origin of NMR in condensed matter 

can be tracked back to 1930’s, when Isidor Isaac Rabi found that certain nuclei could be induced 

to flip their principal magnetic orientation by an oscillating magnetic field.  Their work was 

awarded the Nobel Prize in Physics in 1944 and is the essence of MRI today.  This section provides 

a brief overview of the fundamental principles of MRI. The concepts described here are based on 

the book written by Dwight G. Nishimura [29].  
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2.2.1 The Fundamentals of MRI  

 

The phenomenon of nuclear magnetic resonance (NMR) is based upon the interaction between 

nuclei with non-zero intrinsic angular momentum (i.e. spin) and a magnetic field.  Several nuclei 

with non-zero net spins, including 1H, 13C, 15N, 17O, 19F, 23Na and 31P, are most suitable for 

detection by magnetic resonance, and are thus referred to as MR active nuclei [30].  The hydrogen 

nucleus 1H is the MR active nucleus most commonly used in biomedical imaging with MRI, 

because of its abundance in the human body (in H2O and lipids).   

 

The spin angular momentum is a vector quantity expressed as: 

 

𝑺 = ℏ𝑰	 (1) 

 

where ℏ is the Planck’s constant divided by 2𝜋 and I is the spin quantum number.  For nuclei with 

a net spin of ½, I has two allowed discrete values.  As a result, the magnitude of spin angular 

momentum is quantized.  Associated with S is a magnetic moment 𝜇, which can be expressed as 

 

𝝁 = 𝛾𝑺 = 𝛾ℏ𝑰	 (2) 

 

where 𝛾  is the gyromagnetic ratio, a constant unique for different nuclear species. The 

gyromagnetic ratio for 1H is 2.675× 10+rad	s,"T," [29].  

 

 
Figure 2.5 In the absence of an external magnetic field, spins are randomly orientated (a).  The 

spins align in parallel or antiparallel with the direction of 𝑩𝟎 field, in the presence of an external 

magnetic field (b).  

a b 

𝑩𝟎"""""⃗  
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In the presence of an external magnetic field 𝑩𝟎, the magnetic moment 𝝁 tends to align in parallel 

or antiparallel with the direction of the 𝑩𝟎 field (Figure 2.5), creating two possible energy states 

separated by: 

 

Δ𝐸 = 𝛾ℏ𝐵!	 (3) 

 

The spins aligned parallel to 𝑩𝟎 are considered to be in a lower energy state, while spins aligned 

antiparallel are in a higher energy state. The ratio of the number of spins in each state is determined 

by the thermal energy of the spin system, which can be described by the Boltzmann distribution:   

 
𝑛,
𝑛.

= exp h−
𝛥𝐸
𝑘𝑇k

(4) 

 

where 𝑛. and 𝑛, represent number of spins in the low and high energy states, respectively.  k is 

Boltzmann’s constant and T is the absolute temperature. Macroscopically, the excess number of 

parallel spins creates a net magnetization 𝑴 = ∑	𝝁 in the same direction as 𝑩𝟎.  

 

When the net magnetization M is tipped away from the direction of 𝑩𝟎, the magnetic field imposes 

a torque on the magnetic moment, inducing a precession of the magnetic moment about the applied 

field 𝑩𝟎 . The precessions of individual magnetic moments cause a precession in the net 

magnetization around the 𝑩𝟎 field, which can be expressed as:   

 
𝑑𝑴
𝑑𝑡

= 𝑴× 𝛾𝑩	 (5) 

 

The solution to Eq. 5 provides the expression of the precession resonance frequency, termed the 

Larmor frequency. Since 𝛾 is a unique constant for each nuclide with a nuclear magnetic moment, 

for a given nuclide, the Larmor frequency only depends on the strength of the magnetic field: 

 

𝜔 = 𝛾𝐵	 (6) 
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2.2.2  Signal generation and detection 
 

To induce a MR signal, an oscillating radiofrequency (RF) magnetic field B1 perpendicular to the 

𝑩𝟎 field and tuned to the resonance frequency of the spins is applied. The B1 field causes some 

spins to absorb sufficient energy to move to a higher energy state. As a result, this process is often 

referred to as excitation. This causes the net magnetization M to rotate away from the direction of 

the 𝑩𝟎 field in an amount proportional to the duration 𝑡	and magnitude 𝐵"	of the RF pulse. The 

amount of rotation is often referred to as the flip angle, expressed as 𝜃 = 𝛾𝐵"𝑡. The common flip 

angles are 90o and 180o corresponding to complete net magnetization transfer to the transverse 

plane and magnetization inversion respectively.  For example, if the 𝑩𝟎  field is along the z-

direction, a B1 field with flip angle 90o would rotate M into the x-y plane (Figure 2.6) in a rotating 

frame of reference. 

 

 
Figure 2.6 In a rotating frame of reference, the net magnetization M is tipped from the longitudinal 

plane to the transverse plane with a flip angle of 90o (a).  The behavior of the same magnetization 

rotation is observed to be more complicated in a fixed laboratory frame (b).  Figure reprinted by 

permission from WILEY: John Wiley and Sons, Magnetic Resonance Imaging: Physical Principle 

and Sequence design, 2nd Edition, E. Mark Haacke et al. © 2014 [32].  

After the B1 field is turned off, the net magnetization M continues to precess in the transverse plane 

and returns to re-align with the 𝑩𝟎 field and to restore its original magnitude. This phenomenon is 

associated with the loss of stored energy from spins to the surrounding lattice, thus termed spin-

lattice relaxation or longitudinal T1 recovery. The rate of recovery of the longitudinal 

magnetization is characterized by: 

M (0) 

M  M  
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dM/

dt
= −

M/ −M!

T"
	 (7) 

 

where T1 represents the spin-lattice relaxation time, characterizing the return of M to its 

equilibrium state along the z-axis. Taking M/(𝑡!)  as the initial magnetization, Eq. 7 has the 

solution: 

𝑀)(𝑡) = 𝑀! − [𝑀! −𝑀)(𝑡!)] exp h−
𝑡 − 𝑡!
𝑇"

k	 (8) 

 

At the same time, spin-spin interactions also contribute to relaxation. The interaction of 

neighboring spins with each other causes the loss of phase coherence (dephasing) of the transverse 

magnetization. This behavior is therefore called spin-spin relaxation or transverse 𝑇* decay, with 

characteristic time T2. The rate of the relaxation can be described as: 

 

𝑀&((𝑡) = 𝑀&((𝑡!) exp h−
𝑡 − 𝑡!
𝑇*

k	 (9) 

 

The dephasing of spins is further increased by local magnetic field inhomogeneities. The actual 

decay time 𝑇*∗ is therefore shorter than T2, accounting for the additional decay time 𝑇*′ due to field 

inhomogeneities.  
1
𝑇*∗
=
1
𝑇*
+
1
𝑇*1
	 (10) 

 

For a MR experiment, signal detection occurs after the RF excitation pulse is turned off. The 

magnetization continues to precess in the transverse plane with the Larmor frequency of the spins. 

A precessing magnetic moment generates a rotating magnetic field, which in turn produces an 

electromotive force (EMF), according to Faraday’s law of induction. The same RF coil used to 

generate the RF excitation pulse is used to detect the EMF.  The resulting basic MR signal is called 

the free induction decay (FID).  It is important to realize that the receiver coil only detects signal 

generated from the transverse magnetization.  As T1 and T2 relaxation effects take place, the signal 

amplitude decreases.  FID is thereby a time dependent signal, which decays with 𝑇*∗.  To measure 

signal decay due to T2 relaxation, the 𝑇*′ effect can be corrected by applying an additional 180o 
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pulse.  The 180o pulse inverts the spin precession direction and creates an echo of the original FID 

signal at a moment called echo time (2𝜏).  The amplitude of the signal at 2𝜏 decays according to 

T2 relaxation.  The combination of 90o and 180o pulses is referred to as the spin-echo sequence 

(Figure 2.7). 

  
 Figure 2.7 Schematic illustration of the spin-echo pulse sequence. After the 90o pulse, the signal 

decays with 𝑇*∗. Following the 180o pulse, an echo appears at t = 2𝜏, with amplitude proportional 

to 𝑒,*2/4!.  

 

2.2.3 Spatial localization 

 

The signal acquisition described in section 2.2.2 provides an average signal for the entire sample 

of interest.  In order to distinguish signal from different spatial locations, a gradient field 𝑮 =

(𝐺& , 𝐺( , 𝐺)) that provides field strength variation on the 𝑩𝟎 field is often applied in three steps: 1) 

slice selection 2) frequency encoding and 3) phase encoding. 

 

Slice selection is realized by applying a gradient field usually along the z-direction, which 

introduces a linear variation of the resonance frequency as a function of location along the z-axis. 

A RF pulse with a limited range of frequencies (i.e. bandwidth) is then applied, affecting only the 

slice that has the same resonance frequencies.  

 

90' 180' 

𝝉 𝝉 

Signal 
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After a slice has been selectively excited, the signal coming from the slice must be located along 

both axes of the image.  Frequency encoding is used to provide information about position along 

the x-axis.  When the frequency encoding gradient G5 is on, the magnitude of the magnetic field 

in the z-direction now has a position dependence on 𝑥. As a result, the precession frequency of the 

spins varies linearly with position 𝑥, mathematically expressed in Eq. 11.   

 

ω(x) = γ(B! + G5x) = ω! + γG5x	 (11) 

 

The signal generated from spins at point x in an infinitesimal interval dx is: 

 

𝑆(𝑥, 𝑡)𝑑𝑥 = 𝜌(𝑥)𝑒,#(7".89#&:)𝑑𝑥 (12) 

 

where 𝜌(𝑥) accounts for spin density, T1 and T2 relaxation and flip angles.  After demodulation 

(i.e. removal of the 𝑒,#7": term), the signal from the entire object becomes: 

 

𝑆(𝑡) = 	� 𝑆(𝑥, 𝑡)𝑑𝑥
<

,<
= � 𝜌(𝑥)𝑒,#89#&:𝑑𝑥

<

,<
(13) 

 

Phase encoding is applied between excitation and frequency encoding to provide spatial 

information along the y-axis.  Similar to frequency encoding, G= is applied to alter the magnitude 

of the external magnetic field and therefore the precessional frequency as a function of 𝑦.  As the 

precession frequency changes, the accumulated phase of the magnetic moment also changes. The 

phase dependence on the location of 𝑦 provides the spatial location of the signal along y-axis. 

 

The FID signal generated from spins in an infinitesimal interval dy at point y is: 

 

𝑆(𝑦, 𝑡)𝑑𝑦 = 𝜌(𝑦)𝑒,#>7".89$(:?𝑑𝑦 (14) 

 

The phase encoded signal after demodulation is: 
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𝑆(𝑡) = 	� 𝑆(𝑦, 𝑡)𝑑𝑦
<

,<
= � 𝜌(𝑦)𝑒,#89$(:𝑑𝑦

<

,<
(15) 

 

Frequency and phase encoding can then be used to localize the signal in a 2D plane, with the total 

signal of:   

𝑆(𝑡) = 	�𝐼(𝑥, 𝑦) 𝑒,#89#&4%&𝑒,#89$(4'&𝑑𝑥𝑑𝑦 (16) 

 

where 𝑇@A and 𝑇BA represent the frequency encoding and phase encoding interval.  Eq. 16 can be 

re-written by substituting the spatial frequencies (Eq.17).  

 

𝑘& =
1
2𝜋 	𝛾𝐺&𝑥𝑇@A 

𝑘( =
1
2𝜋 𝛾𝐺(𝑦𝑇BA

(17) 

We obtain: 

𝑆�𝑘& , 𝑘(� = �𝐼(𝑥, 𝑦)𝑒,*C#D#𝑒,*C#D$𝑑𝑥𝑑𝑦 (18) 

 

The Fourier relationship between the image function  𝐼(𝑥, 𝑦) and the signal in k-space 𝑆�𝑘& , 𝑘(� 

demonstrated in Eq. 18 is an important concept in image acquisition. This means by measuring 

signal in k-space, we can recover the image function, which is the quantity of interest.  The k-

space can be traversed by manipulating the frequency and phase encoding gradients 𝐺& and 𝐺(; 

various sampling schemes including linear, radial and spiral can be used to cover the entire k-space 

of interest. 

 

The reconstruction of the image function  𝐼(𝑥, 𝑦) can be achieved by applying a two-dimensional 

inverse Fourier transform for each slice. The resulting image function is complex, which is used 

to create both the magnitude and phase images. 
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2.3 Diffusion MRI 
 
2.3.1 Introduction to diffusion and Fick’s Law 

 

Diffusion is a naturally occurring mass transport process, which results in particle mixing without 

bulk motion.  Macroscopically, diffusion describes the random motion of particles from a region 

of high concentration to a region of low concentration. Imagine carefully introducing a drop of 

fluorescent dye into a glass of lukewarm water.  Initially, the dye appears to remain concentrated 

at the point of release, but over time it spreads radially until it is uniformly distributed throughout 

the water.  The mixing process takes place without stirring or other bulk fluid motion.  

 

Adolf Fick, a German physicist, proposed a mathematical description of this phenomenon in 1855, 

which relates the flux of particles to the concentration gradient with Eq. 19.  This relationship is 

known as Fick’s first law and is illustrated in Figure 2.8. 

 

𝑱(𝒓, 𝑡) = 	−𝐷𝛻𝑛(𝒓, 𝑡)	 (19) 

 

where 𝑱(𝒓, 𝑡) represents the particle flux, D is the diffusion coefficient and 𝑛(𝒓, 𝑡) is the particle 

concentration.  Intuitively, the minus sign in this equation describes that the direction of flow is 

from high to low concentrations [35]. 

 
Figure 2.8 Illustration of the Fick’s first Law. The net diffusion flux J is caused by a concentration 

gradient 𝛻𝑛.  

In addition, the conservation of particles requires that the rate of change of particle concentration 

is related to the change of flux 

𝑱 

𝜵𝒏 
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−∇	 ⋅ 𝐉 =
𝜕𝑛
𝜕𝑡
	 (20) 

 

Combining Equation 19 and 20, we arrive at Fick’s second law of diffusion: 

 

𝜕𝑛(𝒓, 𝑡)
𝜕𝑡

= 𝐷∇*𝑛(𝒓, 𝑡) (21) 

 

which is also known to as the diffusion equation [36]. 

 

2.3.2 Probabilistic description of diffusion 

 

Fick’s law was originally developed to describe the behavior of solute molecules drifting from 

higher to lower concentration to equalize the concentration gradient. In the absence of a 

macroscopic concentration gradient, however, random molecular motion still exists. This 

phenomenon has its origins in the observation of Scottish botanist Robert Brown, who first 

reported the random migrations of pollen grains suspended in water without any apparent cause in 

1827, while studying them under the microscope.  This random motion was thereafter named the 

Brownian motion [37].  

 

In the early part of the twentieth century, Albert Einstein recognized that Brownian motion was 

associated with diffusion through a process known as self-diffusion, where molecules undergo 

diffusion arising from local concentration fluctuations. Self-diffusion is driven by the random 

motions associated with thermal energy. Einstein showed that while the macroscopic particle 

concentration 𝑛(𝒓, 𝑡) may be uniform, the probability density function	𝑝(𝒓, 𝑡) for the position of 

particles still obeys Fick’s law in the same manner as 𝑛(𝒓, 𝑡) [38].  This important insight from 

Einstein enabled the quantification of the displacement distribution of particles, which is the 

fundamental concept that allows diffusion weighted MR to be sensitive to microstructural features. 

The mathematical theories in this section are based on the book “Translational dynamics and 

magnetic resonance : principles of pulsed gradient spin echo NMR”, by Callaghan et al [35].  
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In order to describe the dynamics of Brownian motion, it is crucial to know the probabilities 

associated with the various possible paths of Brownian particle displacement 𝑥(𝑡)  as time 

advances.  This can be represented by the conditional probability that a Brownian particle starts at 

𝑥! at 𝑡!, and would be found between 𝑥" and 𝑥" + 𝑑𝑥" at time 𝑡":  

 

𝑃(𝑥", 𝑡"|𝑥!, 𝑡!)𝑑𝑥" 	=
𝑃(𝑥!, 𝑡!; 	𝑥", 𝑡")𝑑𝑥"

𝑝(𝑥!, 𝑡!)
(22) 

 

where 𝑃(𝑥!, 𝑡!; 	𝑥", 𝑡") represents the joint probability that 𝑥! ≤ 𝑥!(𝑡) ≤ 𝑥! + 𝑑𝑥!   while 𝑥" ≤

𝑥"(𝑡) ≤ 𝑥" + 𝑑𝑥".  

 

Since the conditional probability 𝑃(𝑥, 𝑡|𝑥!, 𝑡!) also obeys Fick’s law, Fick’s second law (Eq. 21) 

can then be expressed in terms of the conditional probability as: 

 

𝜕	𝑃(𝑥, 𝑡|𝑥!, 𝑡!)
𝜕𝑡

= 𝐷∇*𝑃(𝑥, 𝑡|𝑥!, 𝑡!)		 (23) 

 

2.3.3 Diffusion in free medium 

 

The one-dimensional, time-dependent diffusion equation (Eq. 23) can be solved for specific initial 

and boundary conditions.  For diffusion in homogeneous and free medium (i.e. fluid of infinite 

extent), the boundary condition becomes	𝑃(𝑥, 𝑡|𝑥!, 𝑡!) → 0	𝑤ℎ𝑒𝑛	𝑥 → 	∞, with initial condition 

of 𝛿(𝑥 − 𝑥!)	𝑎𝑡	𝑡 = 0.  The solution to Eq. 23 has previously been reported [39]: 

 

𝑃(𝑥, 𝑡|𝑥!, 𝑡!) = �
1

4𝜋𝐷(𝑡 − 𝑡!)
𝑒E,

(&,&")!
FG(:,:")

H (24) 

 

where 𝑃(𝑥, 𝑡|𝑥!, 𝑡!) represents the conditional probability of finding a Brownian particle at 𝑥 at 

time 𝑡, given it started at 𝑥! at time 𝑡!.  
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For 3-dimensional diffusion along 𝑥, 𝑦	𝑎𝑛𝑑	𝑧 directions, the conditional probability of the particle 

displacements can be written as 

 

𝑃(𝒓, 𝑡|𝒓!, 𝑡!) = �4𝜋𝐷(𝑡 − 𝑡!)�
,I*exp	(−

(𝒓 − 𝒓!)*

4𝐷(𝑡 − 𝑡!)
)	 (25) 

 

The expressions of conditional probability shown in Equation 24 and 25 demonstrate that the 

distribution of particle displacements takes a Gaussian form in a free medium.  The displacement 

distribution depends on both the diffusion time t and the diffusion coefficient D.  As the diffusion 

time increases, Brownian particles travel a greater distance for a given diffusion coefficient D, 

leading to wider distributions (Fig.2.9 (a)).  Similarly, increasing the coefficient of diffusion also 

increases the width of the distribution for a given diffusion time (Fig. 2.9 (b)).  The Gaussian nature 

of the distribution allows us to characterize the average squared displacement of particles from 

their starting point over time t:  

 

〈(𝒓 − 𝒓!)*〉 = 	� (𝒓 − 𝒓!)*𝑃(𝒓, 𝑡|𝒓!, 𝑡!)𝑑𝒓!𝑑𝒓
<

,<
= 𝑛𝐷(𝑡 − 𝑡!)	 (26) 

 

where n= 2, 4, 6 for one, two and three dimensions respectively. e.g. 〈(𝑥 − 𝑥!)*〉 = 	2𝐷(𝑡 − 𝑡!). 

 
Figure 2.9 (a) As diffusion time t increases, the probability distribution of Brownian particles 

becomes wider (diffusion coefficient D = 2 μm2/ms). Similarly, increasing the coefficient of 

diffusion D increases the width of the displacement distribution, shown in (b) (diffusion time t = 

1.5 ms.  
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This relationship (Eq. 26) referred to as “Einstein’s equation” has important significance in 

diffusion-weighted MR imaging.  For a body of water at body temperature (37'𝐶	), the diffusion 

coefficient of water is approximately 3 × 10,I𝑚𝑚*𝑠,".  Thus, if we observe water molecules for 

30 ms, they will have displaced over a mean distance of 25	𝜇𝑚 in all directions.  If the measured 

mean distance is much smaller compared to 25	𝜇𝑚, finite structures might be present causing 

water molecules to slow down.  This property has been applied to differentiate cancerous cells 

from normal tissue, based on the assumption that cancer cells are more densely packed.  For cases 

where the mean distance measured is smaller in two out of three directions, this could be indictive 

of structure shape.  Water could be diffusing in a cylindrical, ellipsoidal or rectangular structure.   

 

2.3.4 Diffusion inside finite boundaries 

 

In the previous section (2.3.3), we have discussed the solution to Fick’s law in the case of free 

diffusion in an infinite medium with the initial condition of 𝑃(𝒓, 0|𝒓!, 0) = 𝛿(𝒓 − 𝒓!).  For real 

life applications in biology, water molecules are often trapped inside structures, such as cells.  The 

diffusion of water molecules is slowed by the dimensions of the obstructions. Therefore, it is 

important to obtain a solution of the conditional probability of particle displacement 𝑃(𝒓, 𝑡|𝒓!, 𝑡!) 

for diffusion inside finite boundaries.  This type of diffusion is referred to as restricted diffusion.  

 

The diffusion equation in terms of 𝑃(𝒓, 𝑡|𝒓!, 𝑡!)  (Eq. 21) can be solved using separation of 

variables.  𝑃(𝒓, 𝑡|𝒓!, 𝑡!) is expressed as a product of functions 𝑢(𝒓) and 𝑣(𝑡), where 𝑢 and 𝑣 are 

functions of 𝒓 and 𝑡, respectively.  The general solution may be written as the linear superposition 

of eigenmodes [35]: 

 

𝑃(𝒓, 𝑡|𝒓!, 𝑡!) = ∑ 𝑢$∗ (𝒓)𝑢$(𝒓!)𝑒,GJ((:,:")<
$K! 	 (27)  

 

where 𝑢$(𝒓) are the eigenfunctions of the diffusion equation parameterized by the eigenvalues 𝜆$.  

The function 𝑢$ depends on the boundary conditions of specific structures, in which Brownian 

particles are enclosed in.   
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2.3.5 Diffusion contrast 

 

This section explains how MR measurements can be sensitive to molecular displacements.  When 

the external magnetic field B0 is homogeneous, the cumulative phase of individual spins is 𝜙(𝑡) =

	𝜔! ⋅ 𝑡 = 𝛾𝐵!𝑡.  When a spatially dependent gradient field G(t) is applied, the cumulative phase 

becomes: 

 

𝜙(𝑡) = 	� �𝜔! + 𝛾𝐺(𝑡1)𝑟(𝑡1)�𝑑𝑡1 = 𝜔!𝑡 + 𝛾� 𝐺(𝑡1)𝑟(𝑡1)𝑑𝑡1
:

!
	

:

!
(28) 

 

In 1965, Stejskal and Tanner introduced an MR sequence sensitive to the Brownian motion of 

water as illustrated in Figure 2.10 [40].  The 90' RF excitation pulse brings the net magnetization 

into the transverse plane.  The first gradient causes spins from hydrogen nuclei in water molecules 

to de-phase depending on the combined external field they experience.  After the gradient is turned 

off, the spins evolve freely. Static spins stay in the same position while diffusing spins change their 

relative positions. A 180'  RF pulse then flips the phase of all spins to the opposite direction. 

Another identical gradient is used to rephase the spins. The static spins restore their phase 

coherence.  The diffusing spins, however, do not recover their phase coherence completely, leading 

to a signal attenuation. This sequence is commonly known as “pulsed gradient spin-echo” (PGSE). 

 

Figure 2.10 Schematic representation of the DW-MR sequence of Stejskal and Tanner. The 

introduction of diffusion weighting illustrated by the green, orange and blue filled circles 

represents spins at different locations. G represents the strength of the gradient. δ is a measure of 

the gradient duration. ∆ represents the time interval between the two gradient lobes.  

G 

Moving spins 

Static spins 
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2.3.6 The Bloch-Torrey equation for diffusion 

 

The mathematical formulations relating the signal attenuation to diffusion were first introduced by 

H.C. Torrey, by adding an additional term (red in Eq. 29) to the Bloch equations, accounting for 

the effect of molecular self-diffusion [41]. The self-diffusion is represented as a “transport of 

magnetization” [35]. The transverse magnetization 𝑀. in the rotating frame is therefore: 

 

𝜕𝑀.

𝜕𝑡
= 	−𝑖𝛾𝒓 ⋅ 𝑮∗(𝑡)𝑀. −

𝑀.

𝑇*
+ 𝐷𝛻*𝑀.	 (29) 

 

where 𝑀. = 𝑀& + 𝑖𝑀( and 𝑮∗(𝑡) is the effective gradient, which is the equivalent total gradient 

accounting for the effect of the 180o RF pulse.  

 

If we consider the part of Eq. 29 that accounts for diffusion separately from the rest, we can write 

down a solution for 𝑀.. 

𝑀. = 𝐸(𝑡) ⋅ exp�−𝑖𝛾𝒓 ⋅ � 𝑮∗(𝑡1)𝑑𝑡1
:

!
� ⋅ exp h−

𝑡
𝑇*
k	 (30) 

 

where 𝐸(𝑡) here represents the signal attenuation due to diffusion. If we substitute Eq. 30 into  

Eq. 29 and compute the expression for both sides of Eq. 29, an expression for 𝐸(𝑡) can be obtained: 

 

𝜕𝐸(𝑡)
𝜕𝑡 = −𝐷𝛾*  � 𝑮∗(𝑡1)𝑑𝑡1

:

!
¡
*

𝐸(𝑡) 

 

𝐸(𝑡) = exp¢−𝐷𝛾*�  � 𝑮∗(𝑡11)𝑑𝑡11
:)

!
¡
*:

!
𝑑𝑡1£	 (31) 

 

Note that the signal attenuation due to diffusion is often expressed as 𝐸(𝑡) = exp(−𝑏𝐷), where 

the gradient terms are gathered in a “b-value” [42]. This quantity named by the French scientist 

Denis Le Bihan is frequently used to quantify the diffusion weighting [42].  
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𝑏 = 	𝛾*�  � 𝑮∗(𝑡11)𝑑𝑡11
:)

!
¡
*:

!
𝑑𝑡1	 (32) 

 

For a typical PGSE sequence (Figure 2.10), the signal attenuation due to diffusion can be 

calculated by integrating Eq. 31 from 0 to the echo time TE: 

 

𝐸(𝑡) = exp¢−𝐷𝛾*𝐺*𝛿* h𝛥 −
𝛿
3k£	  

 

This mathematical formalism is commonly used for mapping of the isotropic apparent diffusion 

coefficient (ADC) or the diffusion tensors.  

 

2.3.7 Diffusion contrast at short measurement time 

 

The Bloch-Torrey equation describes the analytical relationship between signal attenuation and 

diffusion coefficient for free diffusion on a macroscopic scale.  In the case of restricted diffusion 

inside of finite structures, this macroscopic approach becomes mathematically intractable. As a 

result, a variety of different approximations have been introduced to find analytical formulations 

of signal attenuation, accounting for the diffusion coefficient, boundary and experimental 

conditions [43].  Two common approximations have been developed, the short pulse gradient (SPG) 

approximation and the Gaussian phase distribution (GPD) approximation. In this section, we are 

going to discuss the theory behind both approximations [35].  

 

Short pulse gradient (SPG) approximation 

 

The SPG approximation is the basis of the diffusion signal simulation code - Microstructure 

imaging sequence simulation toolbox (MISST), used in this manuscript.  The restricted diffusion 

under general gradient waveforms were handled by breaking the gradient pulse into successive 

narrow intervals and writing a propagator for each stage of the evolution. These evolutions were 

expressed in terms of a product of matrix operators [43].  Hence, this method was referred to as 
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the matrix method. The detailed formulations and validations can be found in multiple published 

studies [44], [45]. 

 

The underlying principle of the short pulse gradient (SPG) approximation is that gradient field 

pulses must be sufficiently narrow so that we may neglect molecular motion over the gradient 

pulse duration, i.e. 𝛿 ≪ Δ.  This way, the effect of the first gradient field pulse is merely to impart 

a phase shift 𝛾𝛿𝑮 ⋅ 𝒓𝟎 .  This effect is subsequently inverted by the 180'  RF pulse.  After the 

second gradient field pulse, the net phase shift Δ𝜙 is 𝛾𝛿𝑮 ⋅ (𝒓𝟏 − 𝒓𝟎).  If the spins are stationary, 

a perfectly refocused echo will occur.  If the spins have moved, the net phase shift will contribute 

to the loss of signal in the echo. 

 

The signal attenuation due to diffusion can be written as 〈exp(𝑖Δ𝜙)〉 = 	 〈exp	(𝑖	𝛾𝛿𝑮 ⋅ (𝒓𝟏 − 𝒓𝟎))〉. 

If we neglect the relaxation effects and consider the initial distribution of particles 𝜌(𝒓!), the total 

echo signal is given by the ensemble average of the phase term ∫𝜌(𝒓!) ⋅ 〈exp	(𝑖	𝛾𝛿𝑮 ⋅ (𝒓𝟏 − 𝒓𝟎))〉. 

Therefore, the ensemble average accounting for the probability that a particle moves from position 

𝒓! to 𝒓" in the time interval Δ is: 

 

𝐸(𝑮, Δ) = ��𝜌(𝒓!)𝑃(𝒓!|𝒓", Δ) exp�𝑖𝛾𝑮 ⋅ (𝒓" − 𝒓!)� 𝑑𝒓!𝒓" 	 (33) 

 

We can then define a reciprocal space 𝒒 = "
*C
𝛾𝛿𝑮. 	𝐸(𝑮, Δ) is therefore, 

 

𝐸(𝒒, Δ) = ��𝜌(𝒓!)𝑃(𝒓!|𝒓", Δ) exp�2𝜋𝑖𝒒 ⋅ (𝒓" − 𝒓!)� 𝑑𝒓!𝒓" 	 (34) 

 

Since the integrand is only displacement dependent, we can define 𝒓𝟏 = 𝒓𝟎 + 𝑹 and the average 

propagator as 𝑃̈(𝑹, Δ) = ∫ 𝜌(𝒓!)𝑃(𝒓!|𝒓! + 𝑹, Δ)𝑑𝒓!. Therefore, Equation 33 can be simplified 

to: 

 

𝐸(𝒒, Δ) = � 𝑃̈(𝑹, Δ)	exp(2𝜋𝑖𝒒 ⋅ 𝑹)𝑑𝑹 (35) 
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Note that there is a Fourier relationship between 𝐸(𝑮, Δ)  and 𝑃̈(𝑹, 𝑡) . Using the SPG 

approximation, acquiring the signal in q-space allows the estimation of 𝑃̈(𝑹, 𝑡). 

 

Gaussian phase distribution approximation (GPD) 

 

The SPG approximation requires a sufficiently narrow gradient pulse. However, due to hardware 

limitations of the clinical MR scanner, such a requirement is difficult to meet. An analytical 

expression of the restricted diffusion signal can be constructed assuming the displacement of the 

spins and their phases follow a Gaussian distribution [46], [47].  The signal equation is derived 

here. The significance of the Gaussian phase distribution will become apparent in the derivation.  

 

Recall the net phase shift after the second RF pulse Δ𝜙 = 𝛾𝛿𝑮 ⋅ (𝒓𝟏 − 𝒓𝟎).  In a more general form,  

 

Δ𝜙 = 𝛾� 𝑮∗(𝑡1) ⋅ [(𝒓𝟏(𝑡1) − 𝒓𝟎)]𝑑𝑡1
:

!
	 (36) 

 

Using integration by parts,  

 

𝑎 = [(𝒓𝟏(𝑡1) − 𝒓𝟎]																𝑙 = 	𝛾� 𝑮∗(𝑡1)	𝑑𝑡1
:

!
 

𝑑𝑎
𝑑𝑡 = 𝒗𝟏(𝑡1)													

𝑑𝑙
𝑑𝑡 = 𝛾𝑮∗(𝑡1) 

 

where 𝒗𝟏 here signifies the particle velocity.  The expression of Δ𝜙 then becomes: 

 

Δ𝜙 = 	 [(𝒓𝟏(𝑡1) − 𝒓𝟎]	𝛾 � 𝑮∗(𝑡1)	𝑑𝑡1
:

!
−� 𝒗𝟏(𝑡1)

:

!
𝑑𝑡1	𝛾 � 𝑮∗(𝑡1)	𝑑𝑡1

:

!
 

 

To simplify this equation further,  

 

𝑭(𝑡) = 	𝛾� 	𝑮∗(𝑡1)	𝑑𝑡1	
:

!
(37) 
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And 

 

Δ𝜙 = [(𝒓𝟏(𝑡1) − 𝒓𝟎]	𝛾 � 𝐺∗(𝑡1)	𝑑𝑡1
:

!
−� 𝒗𝟏(𝑡1)

:

!
	𝑭(𝑡)𝑑𝑡1 

 

At the point of echo formation, ∫ 𝑮∗(𝑡1)	𝑑𝑡1	4A
! = 0, thus,  

 

Δ𝜙 = 	−� 𝒗𝟏(𝑡1)
:

!
	𝑭(𝑡1)𝑑𝑡1 (38) 

 

As mentioned previously, the signal attenuation due to diffusion can be written as the ensemble 

average of spin shifts as: 

 

〈exp(𝑖Δ𝜙)〉 = 	 〈exp	(−𝑖	� 𝒗(𝑡1)
:

!
	𝑭(𝑡1)	𝑑𝑡1〉 

 

The total echo signal has contribution from the initial spin distribution, hence, 

 

𝑆 = 𝑆!〈exp(𝑖Δ𝜙)〉	 

 

Let the normalized signal 𝐸(𝑡) = 	 〈exp(𝑖Δ𝜙)〉, and applying the cumulant expansion theorem, 

 

𝐸(𝑡) = 	 〈exp(𝑖Δ𝜙)〉 = exp(𝑖〈Δ𝜙〉 −
1
2
(〈Δ𝜙*〉 − 〈Δ𝜙〉*) + ℎ𝑖𝑔ℎ𝑒𝑟	𝑜𝑟𝑑𝑒𝑟	𝑡𝑒𝑟𝑚𝑠) 

 

Because of the stochastic nature of the interaction, we can assume that the particle velocity changes 

in small independent steps. In this case, the central-limit theorem allows a Gaussian approximation 

of the modulation distribution function. This means that one can neglect all higher correlations but 

the second term [46]. 

 

𝐸(𝑡) = exp(𝑖〈Δ𝜙〉 −
1
2
(〈Δ𝜙*〉 − 〈Δ𝜙〉*)) = 	exp	(𝑖𝛼(𝑡) − 𝛽(𝑡)) 



Background 28 

where, 

 

𝛼(𝑡) = Δ𝜙 = 	−� 〈𝒗(𝑡1)〉
:

!
𝑭(𝑡1)𝑑𝑡1 

𝛽(𝑡) =
1
2¢

〈 � 〈𝒗(𝑡1)〉
:

!
𝑭(𝑡1)𝑑𝑡1¡

*

〉 −	 � 〈𝒗(𝑡1)〉
:

!
𝑭(𝑡1)𝑑𝑡1¡

*

£

=
1
2� � 𝑭(𝑡1)〈𝒗(𝑡1)𝒗(𝑡11)〉𝑭(𝑡11)𝑑𝑡1𝑑𝑡11

:

!

:

!
	 (39)

 

 

The 𝛼 term represents the phase change due to flow drift and the 𝛽 term represents the phase 

change because of random particle migration, namely diffusion. Notice that there is a velocity 

autocorrelation function in Eq. 39, which describes the correlation between particle velocity at a 

time point with its velocity at a later time.  

 

We can also re-write Equation 39 in terms of the particle-particle correlation 〈𝑟(𝑡")𝑟(𝑡*)〉: 

 

𝛽(𝑡) =
𝛾*

2
� � 𝑮∗(𝑡")〈𝑟"(𝑡")𝑟*(𝑡*)〉𝑮∗(𝑡*)𝑑𝑡"𝑑𝑡*

:

!

:

!
	 (40) 

 

In the case of restricted diffusion, 

 

𝛽(𝑡) =
𝛾*

2
� � 𝜌(𝒓𝟏)� �𝒓𝟏𝑃(𝒓𝟏, 𝑡"|𝒓𝟐, 𝑡*)

N
𝒓𝟐𝑑𝒓𝟏𝑑𝒓𝟐

N
𝑮∗(𝑡")𝑮∗(𝑡*)𝑑𝑡"𝑑𝑡*

:

!

:

!
	 (41) 

 

Using the general solution of conditional probability for bounded medium (Eq. 27):  

𝑃(𝒓", 𝑡"|𝒓𝟐, 𝑡*) = ∑ 𝑢$∗ (𝒓𝟐)𝑢$(𝒓")𝑒,GJ((:!,:*)<
$K! , Equation 41 becomes: 

 

𝛽(𝑡) =
𝛾*

2
� � 𝜌(𝒓𝟏)� �𝒓𝟏

N
®𝑢$∗ (𝒓𝟐)𝑢$(𝒓")𝑒,GJ((:!,:*)
<

$K!

𝒓𝟐𝑑𝒓𝟏𝑑𝒓𝟐
N

𝑮∗(𝑡")𝑮∗(𝑡*)𝑑𝑡"𝑑𝑡*
:

!

:

!
	(42) 

 

Let 𝐵$ =
"
O ∫ 𝑑𝒓𝟏 ∫ 𝒓𝟏N 𝒓𝟐𝑢$∗ (𝒓𝟐)𝑢$(𝒓")𝑑𝒓𝟐N , Equation 41 then becomes: 
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𝛽(𝑡) =
𝛾*

2 ®𝐵D

<

DK!

� � 𝑒,GJ((:!,:*) ⋅ 𝑮∗(𝑡")𝑮∗(𝑡*)𝑑𝑡"𝑑𝑡*
:

!

:

!
	 (43) 

 

Here, 𝐵$, 𝜆$  are geometry dependent factors, which have analytical expressions for simple 

geometries including impermeable parallel planes, cylinders, spheres and spherical shells [46], 

[48], [49] . 

 

Under the GPD approximation, the signal due to diffusion becomes: 

 

𝐸(𝑡) = exp�−𝛽(𝑡)� = exp¢−
𝛾*

2 ®𝐵D

<

DK!

� � 𝑒,GJ((:!,:*) ⋅ 𝑮∗(𝑡")𝑮∗(𝑡*)𝑑𝑡"𝑑𝑡*
:

!

:

!
£	 (44) 

 

2.3.8 Diffusion spectrum 

 

The PGSE sequences are widely used for diffusion weighted imaging to capture the average 

diffusion properties in tissue. Narrow pulses are necessary to provide the short diffusion times 

required to probe the dimensions of cellular structures. Short pulses are often challenging to fulfill, 

partly due to the limitation on the gradient system hardware.  A different approach was proposed 

in the 1980s by Stepisnik et al., in which the use of gradients to measure motion is described in 

the frequency domain. This method is termed temporal diffusion spectroscopy [50].  

 

The diffusion spectrum can be expressed as the Fourier transform of the velocity autocorrelation 

function [50]: 

 

𝐷(𝜔) =� 〈𝑣(𝑡1)𝑣(0)〉 exp(𝑖𝜔𝑡1) 𝑑𝑡1
<

!
	 (45) 

 

The velocity autocorrelation function 〈𝑣(𝑡1)𝑣(0)〉 indicates the dependence of the particle velocity 

at time 𝑡1 on the velocity at 𝑡 = 0.  For free diffusion, the particle velocity is independent of its 

previous state. As a result, 〈𝑣(𝑡1)𝑣(0)〉 resembles a delta function, leading to a flat spectrum of 
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D(𝜔) (Figure 2.11). When diffusion is restricted, D(𝜔) is no longer flat. There is a negative 

velocity autocorrelation caused by the reflection on the boundaries. The diffusion spectrum is 

frequency dependent and exhibits a dip at low frequencies [51]. The manner in which D (𝜔) 

disperses with frequency can provide unique information on the structure of the medium.  

 

 
Figure 2.11 Qualitative illustration of velocity autocorrelation functions and their corresponding 

diffusion spectra. Unrestricted water (top) experiencing only Brownian motion exhibits a flat 

diffusion spectrum, while restriction (bottom) acts to decrease the diffusion spectrum amplitude at 

lower frequencies. Figure reprinted from Magnetic Resonance Imaging 21 (3-4), Parsons EC et al. 

Modified oscillating gradient pulses for direct sampling of the diffusion spectrum suitable for 

imaging sequences, Pages  279-285, © 2003, with permission from Elsevier [52]. 

The velocity autocorrelation function can also be expressed in terms of the diffusion spectrum 

𝐷(𝜔) by applying the inverse Fourier transform: 

 

〈𝑣(𝑡")𝑣(𝑡*)〉 =
1
𝜋
� 𝐷(𝜔) exp�−𝑖𝜔(𝑡" − 𝑡*)� 𝑑𝜔
<

,<
	 (46) 

 

Substituting Eq. 46 to Eq. 39, 𝛽(𝑡) can be expressed in terms of the frequency spectrum as:  
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𝛽(𝑡) =
1
2
� � 𝐹(𝑡")〈𝑣(𝑡")𝑣(𝑡*)〉𝐹(𝑡*)𝑑𝑡"𝑑𝑡*

:

!

:

!
	

=
1
2
� � 𝐹(𝑡")

1
𝜋
� 𝐷(𝜔) exp�−𝑖𝜔(𝑡" − 𝑡*)� 𝑑𝜔
<

,<
𝐹(𝑡*)𝑑𝑡"𝑑𝑡*

:

!

:

!

=
1
2𝜋

� 𝐹(𝑡") exp(−𝑖𝜔𝑡") 𝑑𝑡"� 𝐹(𝑡*) exp(𝑖𝜔𝑡*) 𝑑𝑡*� 𝐷(𝜔)𝑑𝜔
<

,<

:

!

:

!

=
1
2𝜋

� 𝐹(−𝜔)𝐷(𝜔)𝐹(𝜔)𝑑𝜔
<

,<
(47)

 

where, 

𝐹(𝜔) = 	� exp(𝑖𝜔𝑡)𝐹(𝑡1)𝑑𝑡1
:

!
	 (48) 

The signal attenuation due to diffusion expressed in the frequency domain is thus:  

 

𝐸(𝑡) = exp�−𝛽(𝑡)� = exp�−
1
2𝜋� 𝐹(𝜔)𝐷(𝜔)𝐹(−𝜔)𝑑𝜔

<

!
� (49) 

 

Equation 49 has important implications that the signal attenuation depends on the shape and the 

frequency of the gradient waveforms. This is particularly useful when studying the effect of an 

oscillating gradient waveform on the measurement of diffusion coefficients.  

 

2.3.9 Diffusion encoding sequences 

 

The standard diffusion encoding PGSE sequence uses gradient field pulses in the shape of a 

rectangle (assuming infinite slew rate), with relatively long diffusion intervals and gradient pulses 

of finite width (Figure 2.12).  In light of the development in temporal diffusion spectroscopy 

(described in section 2.3.7), alternative gradient waveforms can be used to improve the sensitivity 

of the diffusion signal to tissue characteristics on a cellular level. For example, oscillating gradient 

spin echo (OGSE) sequences replace the rectangular gradient with oscillating gradients, such as 

sine, cosine, square or trapezoidal waveforms (Figure 2.12). The OGSE sequences allow us to 

probe shorter diffusion times, with more relaxed requirements on the gradient coil hardware.  

 



Background 32 

 

Figure 2.12 Schematic illustration of the standard pulsed gradient spin echo (PGSE) sequence, the 

sine-modulated and cosine-modulated oscillating gradient spin echo (OGSE) sequences. The 

sinusoidal waveform can be replaced with square or trapezoidal waveforms. 

It is worth noting that the cosine-OGSE poses the challenge of a sharp initial pulse edge. 

Experimentally, we need to smooth the initial transient by replacing the first quarter cycle cosine 

with a half cycle sine-lobe at twice the frequency (Figure 2.12). This sequence is often referred to 

as the apodised cosine-OGSE [52]. 

 

For PGSE sequences, the diffusion weighting imparted by the gradient is represented by the b-

value (discussed in section 2.3.6) as: 

 

𝑏 = � 𝑑𝑡
:

!
°𝛾 � 𝐺(𝑡11)𝑑𝑡11

:′

!
±

*

=	𝛾*𝐺*𝛿* hΔ −
𝛿
3k 

 

Apodised 
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For OGSE sequences, the b-values can be derived in a similar fashion, by replacing the gradient 

pulses of a constant amplitude with the oscillating gradient waveforms. For example, the b-value 

of a sine-modulated gradient waveform is expressed as 

 

𝑏 = � 𝑑𝑡
:

!
°𝛾 � 𝐺(𝑡11)𝑑𝑡11

:′

!
±

*

=		� 𝑑𝑡
*2

!
°𝛾 � 𝐺𝑠𝑖𝑛(𝜔𝑡11)𝑑𝑡11

:′

!
±

*

(50) 

 

where 𝜏 represents the echo time, 𝜔 as the modulation frequency of the gradient waveform 𝜔 =

	*C
4

  and 𝑇 as the period of the oscillation. The total duration of the gradient contains N periods, 

hence 𝛿 = 𝑁𝑇. Solving the integral in Eq. 50 gives us an expression for the b-value for a sine-

modulated gradient waveform:  

 

𝑏 = � 𝑑𝑡
*2

!
 𝛾𝐺 �

− cos(𝜔𝑡1)
𝜔 +

1
𝜔�

¡
*

=
3
4	h

𝛾𝐺
𝜋𝑁k

*

𝛿I	 (51) 

 

Similarly, the b-value for the apodised-cosine-modulated waveform can be computed using Eq.32 

in a piecewise manner. The first and last gradient lobes have twice the oscillating frequency. 

  

𝐺(𝑡) =

⎩
⎪
⎨

⎪
⎧ 𝐺𝑠𝑖𝑛(2𝜔𝑡),															0 ≤ 𝑡 <

𝑇
4

𝐺𝑐𝑜𝑠(𝜔𝑡),
𝑇
4 ≤ 𝑡 < 𝛿 −

𝑇
4

𝐺𝑠𝑖𝑛(2𝜔𝑡), 𝛿 −
𝑇
4
≤ 𝑡 < 𝛿	

 

 

The expression for the b-value of the apodised cosine modulated gradient waveform is derived as:  

 

𝑏 = 2$% 𝑑𝑡
!
"

#
(𝛾 % 𝐺𝑠𝑖𝑛(2𝜔𝑡$$)𝑑𝑡$$

%′

#
1

&

+% 𝑑𝑡
'(!"

)
"

(𝛾% 𝐺𝑐𝑜𝑠(𝜔𝑡$$)𝑑𝑡$$
%′

#
1

&

+% 𝑑𝑡
'

'(!"

(𝛾% 𝐺𝑠𝑖𝑛(2𝜔𝑡$$)𝑑𝑡$$
%′

#
1

&

5

	

= 	
1
4
	9
𝛾𝐺
𝜋𝑁<

&
𝛿* 91 −

1
8𝑁<

																																																																																													(52)
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The effective diffusion time (𝛥%PP)  provides an intuitive sense of the time scale of the diffusion 

measurement and can be computed for OGSE by comparison to the 𝛥%PP calculation of PGSE. For 

a PGSE sequence, b= 𝛾*𝐺*𝛿* »Δ − Q
I
¼,  where 𝐺𝛿 is the area of the rectangular gradient pulse and 

»Δ − Q
I
¼ is defined as 𝛥%PP [53]. For a sine-modulated waveform of period 𝜏 , the area under one 

lobe is ∫ Gsin(𝜔𝑡) 𝑑𝑡 =C
!

92
C

.   Rewriting the b-value expression for sine-modulated waveform (Eq. 

51): 

 

𝑏 =
3
4	h

𝛾𝐺
𝜋𝑁k

*

𝛿I = 𝑁𝛾* h
𝐺𝜏
𝜋 k

*

h
3𝛿

4𝑁
k	 (53) 

 

where the effective diffusion time 𝛥%PP = IQ
FR

.  The leading term N in Eq. 46 reflects the repeated 

gradient periods.  Similarly, the 𝛥%PP can be computed for other waveforms (Table 2.1). As the 

𝛥%PP is inversely dependent on the number of oscillations N, a shorter 𝛥%PP (< 10 ms) could be 

achieved by increasing N for the same gradient duration time. Reaching shorter diffusion times 

greatly improves the sensitivity of the diffusion signal to tissue microstructure characteristics, such 

as cell size and volume fractions. As a result, OGSE sequences are widely used to study the tumor 

microenvironment and their changes during cancer therapy. 

 

Table 2.1 Summary of b-values and effective diffusion time for various waveforms 

 

 

 

Pulse shape b-values Effective diffusion time 𝚫𝐞𝐟𝐟 

PGSE 
𝛾+𝐺+𝛿+ +Δ −

𝛿
3. +Δ −

𝛿
3. 

OGSE-sine 3
4	+

𝛾𝐺
𝜋𝑁.

+

𝛿, 
3𝛿
4𝑁 

OGSE-cosine 1
4	+

𝛾𝐺
𝜋𝑁.

+

𝛿, 
𝛿
4𝑁 

OGSE- apodised cosine 1
4	+

𝛾𝐺
𝜋𝑁.

+

𝛿, +1 −
1
8𝑁. 

𝛿
4𝑁 
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2.4 Diffusion MRI Modelling 
 

In order to extract physically or biologically meaningful information from the diffusion signals, 

various diffusion models were proposed. Depending on the complexity of the diffusion 

measurements, different models can be applied to infer a wide range of parameters representing 

tissue characteristics. Here, we present several of the most commonly used models, starting with 

the simplest mono-exponential model. 

 

2.4.1 Apparent diffusion coefficient (ADC) 

 

In a free medium, the conditional probability distribution of diffusion follows a Gaussian 

distribution. The diffusion signal can be written as 𝑆 = 𝑆!𝑒,S⋅G (discussed in section 2.3.6). This 

means that if we assume free diffusion in an isotropic, homogeneous environment, such as water, 

the MR signal follows a mono-exponential decay. A linear fit to the log of the measured signal at 

different b-values would allow us to estimate the diffusion coefficient 𝐷 of water. 

 

In more complex media, e.g. biological tissues, the water molecules are slowed down by various 

barriers, such as cell membranes and macromolecules. If we assume that we have no prior 

knowledge of the media, we can perform the same measurement as if it was done in free water. 

However, the negative slope of the linear fit no longer represents the true water diffusion 

coefficient. It characterizes the water diffusion coefficient modulated by inhomogeneities, namely 

the apparent diffusion coefficient (ADC). 

 

𝐴𝐷𝐶 = −
log » 𝑆𝑆!

¼

𝑏
	 (54) 

 

ADC is of particular interest for cancer applications because it is related to cellularity. In general, 

malignant tumors have more densely packed cells than normal tissue, leading to lower ADCs 

(Figure 2.13 (a)-(b)).  Liquefactive necrosis (i.e. cell death) with an ADC close to free water 

occasionally occurs in advanced tumors and in response to successful treatment (Figure 2.13 (c)). 
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Therefore, ADC has been used as a clinical biomarker to aid cancer diagnosis and treatment 

assessment [54]. 

 

 

Figure 2.13 Schematics of water molecule diffusion in (a) normal tissue: loosely packed cells, (b) 

cancerous tissue: densely packed cells and (c) fluid or necrosis: close to free diffusion 

 

2.4.2 Diffusion Tensor Imaging 

 

Pure water is known to have isotropic diffusion properties, meaning that the molecules are equally 

likely to displace in any direction. This implies that the diffusion can be measured in any physical 

direction and the effect on the MR signal would be identical. Diffusion in cancer cells is assumed 

to be isotropic, where a single ADC is sufficient to characterize the behavior of the water molecules 

in a restricted environment (Figure 2.14 (a)). 

 

For anisotropic tissues, such as neurons in the white matter of the brain, the magnitude of the 

diffusion coefficient is direction dependent. As demonstrated Figure 2.14 (b), water diffusion 

along the cylinder would experience faster diffusion compared to the water diffusion perpendicular 

to the cylinder, i.e. 𝐷&& = 𝐷(( ≪ 𝐷)).  The diffusion properties can be described mathematically 

by a diffusion tensor with diffusion coefficients along 9 different directions: 

 

[𝐷] = °
	𝐷&& 𝐷&(	 𝐷&)
𝐷(& 𝐷(( 𝐷()	
𝐷)& 𝐷)( 𝐷))

	±	 (55) 

 

The diffusion tensor is symmetric (i.e. 𝐷&( = 𝐷(&), thus it contains only 6 unique values (marked 

in blue, Eq. 55). For the special case of isotropic diffusion, the off-diagonal elements are all zero 

(a) (b) (c)
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and the diagonal elements are the same and equal to a single value,  𝐷&& = 𝐷(( = 𝐷)) = 𝐴𝐷𝐶. 

For anisotropic diffusion, however, the diagonal elements are no longer the same and the off-

diagonal elements are not negligible. To make a full measurement of ADC in anisotropic tissue, 

diffusion images in 6 directions and a b = 0 unweighted image are required. 

 

 

Figure 2.14 The first row demonstrates the isotropic diffusion of water molecules in a hindered 

environment. The displacement distribution can be described by a Gaussian function with a single 

ADC. The second row demonstrates diffusion in anisotropic tissues. The diffusion coefficients are 

direction dependent. The diffusion properties have to be described by a diffusion tensor.  
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2.4.3 IVIM model  

 

When the diffusion measurement is performed in well-perfused body tissues, such as liver, prostate 

or brain, the signal attenuation at low b-values (< 200𝑠/𝑚𝑚*) arises not only from diffusion, but 

also from the microcirculation within the normal capillary network [55]. This phenomenon is 

termed the intravoxel incoherent motion (IVIM) effect [56], which leads to a much faster signal 

decay at low b-values (Figure 2.15). As a result, a mono-exponential model is unable to fit the 

signal properly.  

 

Figure 2.15 Illustration of the influence from the IVIM effect on the diffusion signal in liver at 

lower b-values. A biexponential behavior is clearly observed in the signal with respect to b-values. 

Figure reprinted from Radiology 249 Luciani A, Vignaud A. et al. Liver Cirrhosis: Intravoxel 

Incoherent Motion MR Imaging – Pilot Study, Pages  891-899, © 2008, with permission from 

Radiological Society of North America [57]. 

Le Bihan et al. have proposed a bi-exponential model to describe the IVIM effect [56]: 

 

𝑆 = 𝑆!	Ã(1 − 𝑓)𝑒,SG + 𝑓𝑒,S(G
∗)Ä	 (56) 
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where signal is composed of slow and fast diffusion compartments. D and D* represent the slow 

and fast diffusion coefficients respectively, and 𝑓 represents the fraction of signal decay from the 

fast compartment due to microcirculatory perfusion. Microcirculatory perfusion has no specific 

orientation and therefore can be considered as a type of “pseudo diffusion” with coefficient D*.  

 

The bi-exponential model provides a more appropriate description of the signal attenuation in well-

perfused body tissues.  For studies that are solely interested in the diffusion characteristics, the 

IVIM effect can be reduced by fitting the mono-exponential model to signals from higher b-values 

(> 200𝑠/𝑚𝑚*) only.  

 

2.4.4 Stanisz’ model  

 

In the previous decades, extensive research has been done on improving the image quality of ADC 

mapping (section 2.3) and diffusion tensor imaging (section 2.4). These techniques have been 

gradually integrated into the clinical workflow. One downfall of these techniques is that they can 

only provide information above the nominal resolution of clinical MRI, which is constrained to 

the millimeter level. Unwilling to settle for the resolution limitation, the diffusion MR community 

started to explore the feasibility of mapping cellular-level biophysics parameters, such as cell size, % 

cell volume and membrane permeability [58].  

 

One of the first biophysical models was proposed by Stanisz et al., which described restricted 

diffusion signal in bovine optic nerves [59]. The study represented the tissue using three 

compartments: prolate ellipsoids for axons, spheres for glial cells and hindered diffusion for the 

extracellular space. The short pulse gradient (SPG) approximation was applied to compute the 

analytical expression for the restricted diffusion signal in the axons and glial cells. Fitting the 

analytical equation to the measured signals allowed the estimation of the average axon diameter 

and length, the radius of glial cells and the intra-/extra-cellular diffusivities. While this study 

pioneered the development of microstructure imaging, the signal-to-noise ratio (SNR) requirement 

(>1000) makes the clinical translation of this model unfeasible.  
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2.4.5 CHARMED Model 

 

A simpler version of the multi-compartment model for the characterization of axons was 

introduced by Assaf et al.[60], where tissue was represented with two compartments. The intra-

axonal space was modeled as a distribution of cylinders, the extracellular space was represented 

as hindered diffusion with a cylindrically symmetric diffusion tensor [61]. This is referred to as 

the composite hindered and restricted model of diffusion (CHARMED). It is worth noting that 

hindered diffusion differs from restricted diffusion. Hindered diffusion refers to the delay of 

passage of water molecules as they navigate around cellular obstacles, such as in the extracellular 

space. On the other hand, restricted diffusion is used to describe the trapping of water molecules 

within an enclosed compartment, such as within cell membranes. The CHARMED model 

estimated axon orientation, intracellular diffusivity parallel to the axons, extracellular diffusivity 

and the relative volume fraction of each compartment, while keeping the axon diameters fixed to 

a pre-defined value. 

 

Building on their own CHARMED model, Assaf et al. later developed a technique, AxCaliber, 

which allowed the estimation of axon diameters, assuming a known axon orientation and a Gamma 

distribution for the axon diameters [62]. AxCaliber was then validated with ex-vivo experiments 

using porcine optic and sciatic nerves. The estimated axon diameter distributions from MRI 

showed agreement with the axon diameter distribution derived from electron microscopy 

measurements. 

 

CHARMED and AxCaliber models served as a foundation for the development of in-vivo 

microstructure imaging in the brain. Other techniques including ActiveAx [63], high angular 

resolution diffusion imaging (HARDI) [64] and neurite orientation dispersion and density imaging 

(NODDI) [65] built on the existing framework and tried to address some of their limitations.  

 

2.4.6 VERDICT Model 

 

The majority of the early microstructure imaging work, such as CHARMED, was developed for 

neurological applications. As MRI became increasingly popular for the diagnosis of cancerous 
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tumors, the use of biophysical models was extended for microstructure imaging in tumors.  

Vascular, extracellular and restricted diffusion for cytometry in tumors (VERDICT) was one of 

the first models to describe diffusion in the tumor microenvironment. The diffusion signal from 

tumor tissue was represented by the linear combination of signal from three compartments: 1) 

restricted diffusion inside the cell, modeled as impermeable spheres, 2) hindered diffusion outside 

the cells and blood vessels, and 3) pseudo-diffusion inside the blood vessels (Figure 2.16).  The 

VERDICT model contained 6 variables including the cell radius R, the intracellular and 

extracellular diffusivity 𝐷#X and 𝐷%%Y, the pseudo-diffusivity 𝐷Z and the intra- and extra-cellular 

volume fraction 𝑓#X  and 𝑓%%Y . The vascular volume fraction 𝑓[\Y  was calculated as 1- 𝑓#X  - 𝑓%%Y .  

This technique was demonstrated in prostate cancer patients, where the estimated model 

parameters clearly differentiated benign from cancerous tumor subregions.  

 

 
Figure 2.16 Schematic representations of the prostate tissue and the corresponding VERDICT 

model. Figure reprinted from Investigative Radiology 50 (4), Panagiotaki et al. Microstructural 

characterization of normal and malignant human prostate tissue with vascular, extracellular and 

restricted diffusion for cytometry in tumors magnetic resonance imaging, © 2015, with permission 

from Wolters Kluwer Health, Inc.[66].  

While the VERDICT framework has the potential for clinical translation, it also has several 

limitations. For example, the diffusion signals were acquired using PGSE sequences with narrow 

gradient to reach short diffusion time and high b-values (= 3000𝑠/mm*). This requires high-

performance gradient coils, which are not readily available in the clinic. In addition, due to the 
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complexity of the VERDICT model, some of the variables (𝐷#X,	𝐷%%Y, 𝐷Z) were often fixed to 

improve the stability of the fitting. 

 

2.4.7 IMPULSED Method 

 

To overcome the limitation of the VERDICT model, the imaging microstructural parameters using 

limited spectrally edited diffusion (IMPULSED) method was proposed. The IMPULSED method 

used a combination of diffusion signals from the conventional PGSE sequence and OGSE 

sequences, where OGSE sequences could reach short diffusion times with a lower requirement on 

the maximum gradient strength [49]. Instead of the three-compartment model in VERDICT, the 

tumor tissue was described by two compartments (Figure 2.17): the restricted diffusion inside the 

cell, model as impermeable spheres, and the hindered diffusion outside of the cell. 

 

 
 

Figure 2.17 Schematic representation of the tissue model used in the IMPULSED method. The 

cancer cells were modeled as impermeable spheres. The extracellular diffusion was considered 

as hindered diffusion. 

The normalized diffusion MR signal was modeled with an analytical expression combining the 

signal of intracellular restricted diffusion 𝑆#$, with the signal from hindered extracellular diffusion 

	𝑆%&' (Eq. 57).  

 

𝑆/𝑆! = 𝑣#$	𝑆#$(𝑅, 𝐷#$) + (1 − 𝑣#$)	𝑆%&'(𝐷%&')				 (57) 

Cancerous cells (𝟖 − 𝟏𝟎𝝁𝒎) 

Extracellular matrix 
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Four variables in Eq. 57 were estimated including 𝑣#$ , representing the percentage volume 

occupied by cells, referred to as the intracellular volume fraction, the cell radius R, and 𝐷#$/𝐷%&' 

representing the intra- and extra-cellular diffusion coefficient, respectively.  

 

The IMPULSED method was tested with in-vitro [49] and in-vivo experiments [67], where the 

cell radius extracted from the diffusion signal demonstrated good agreement with cell radius 

measured from histological slides viewed under the light microscope.  
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Chapter 3 
 

3 Probabilistic Classification of Tumor Habitats 
 

 

 

 

3.1 Preface 
 

As discussed in Chapter 2, characterization of tumor heterogeneity has important clinical 

applications for designing effective radiotherapy, where dose boost can be provided to regions of 

high cellularity. Various tumor habitats (i.e. sub-regions) have different imaging signatures that 

can be recognized by visual inspection. However, this is both time consuming and error prone. In 

this chapter, we propose a method to characterize tumor heterogeneity via MRI, using probabilistic 

classification based on a reference tissue. This method emulates the thought process of radiologists 

by automating the habitat classification process. Using maps of the apparent diffusion coefficient 

(ADC), T2 relaxation, and a calculated map representing high-b-value diffusion-weighted MRI 

(denoted simDWI), up to five habitats can be identified, including hypercellular tumor, high T2 

proteinaceous fluid, necrosis, collagenous stroma, and fibrosis. The feasibility of the proposed 

method was demonstrated in 7 patients with biopsy-confirmed soft tissue sarcoma, and results 

were qualitatively consistent with histopathology.  
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3.2 Abstract 
 

Purpose: Τo propose a method to characterize tumor heterogeneity on magnetic resonance 

imaging (MRI), using probabilistic classification based on a reference tissue. The method uses 

maps of the apparent diffusion coefficient (ADC), T2 relaxation, and a calculated map representing 

high-b-value diffusion-weighted MRI (denoted simDWI), to identify up to five habitats (i.e. sub-

regions) of tumors. 

 

Theory: In this classification method, the parameter values (ADC, T2, and simDWI) from each 

tumor voxel are compared against the corresponding parameter probability distributions in a 

reference tissue. The probability that a tumor voxel belongs to a specific habitat is the joint 

probability for all parameters. The classification can be visualized using a custom color scheme. 

 

Methods: The proposed method was applied to data from seven patients with biopsy-confirmed 

soft tissue sarcoma, at three times-points over the course of pre-operative radiotherapy. Fast-spin-

echo images with two different echo times and diffusion MRI with three b-values were obtained 

and used as inputs to the method. Imaging findings were compared to pathology reports from pre-

radiotherapy biopsy and post-surgical resection. 

 

Results: Regions of hypercellularity, high T2 proteinaceous fluid, necrosis, collagenous stroma, 

and fibrosis were identified within soft tissue sarcoma. The classifications were qualitatively 

consistent with pathological observations. The percentage of necrosis on imaging correlated 

strongly with necrosis estimated from FDG-PET, at pre-radiotherapy (R2 = 0.97) and post-

radiotherapy (R2 = 0.96). 

 

Conclusion: The probabilistic classification method identifies realistic habitats and reflects the 

complex microenvironment of tumors, as demonstrated in soft tissue sarcoma. 
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3.3 Introduction 
 

Magnetic resonance imaging (MRI) is the modality of choice for diagnosis, staging, and follow-

up of soft tissue sarcoma (STS) [13]. Conventional T1- and T2-weighted fast spin-echo (FSE) MRI 

allow the differentiation of STS from surrounding normal tissues and gross characterization of 

tumor properties[14]. Many STS present heterogeneous composition, with several compartments 

of viable tumor and of necrotic tissue [15], reflecting a complex histological composition [16], 

[17]. 

 

Diffusion-weighted MRI (DW-MRI) can be added to conventional MRI to refine diagnosis and 

soft tissue tumor characterization [18]–[20]. Water diffusion is dependent on tissue constituents; 

for example, the dense cellular environment of tumors generally results in restricted diffusion and 

high signal intensity on high b-value DW-MRI. Thus, DW-MRI offers qualitative visual 

assessment of cellularity, which has been reported to help with tumor delineation and 

differentiation between benign and malignant lesions [21]–[23]. The average diffusion of water 

molecules can be quantified by the apparent diffusion coefficient (ADC). ADC analysis has been 

used to characterize various types of STS and to differentiate malignant from benign STS [23]–

[25]. 

 

Studies using DW-MRI in combination with T2-weighted MRI have demonstrated that the addition 

of DW-MRI to standard protocols improves diagnostic accuracy for soft tissue tumors. For 

instance, visual comparison of tumor signal intensity to surrounding muscles on DW-MRI (b = 

1400 s/mm2) revealed that hyperintensity relative to muscle was more frequent in malignant soft 

tissue tumors [26]. In soft tissue tumors that are hyperintense on T2-weighted MRI, the ratio 

between minimum tumor ADC and average muscle ADC can differentiate benign and malignant 

tumors with 90 % sensitivity and 96.4 % specificity [15]. 

 

Prior studies have mainly characterized STS based on minimum or average diffusion properties 

(DW-MRI and/or ADC); however, tumor characterization based on whole-tumor ADC metrics 

does not capture tumor sub-region heterogeneity. Genetic heterogeneity within individual tumors, 

which is likely reflected on imaging, is one of the major problems limiting the efficacy of targeted 
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therapies [27], [28]. Therefore, further understanding of intra-tumoral heterogeneity has important 

implications for personalized medicine. The term “habitat” is used to describe the sub-regions 

within tumors [29].  

 

Recent preclinical studies have reported that the multispectral analysis of ADC, T2, and proton 

density parameter maps with k-means clustering algorithms can aid the differentiation between 

viable and necrotic tumor, and the identification of multiple compartments within necrotic tissue 

[30]–[32]. A similar approach using k-means clustering and Gaussian mixture modeling of ADC 

and positron emission tomography with fluorodeoxyglucose (FDG-PET) differentiated two types 

of viable tissue and necrosis tissue in xenograft tumors [33]. While these are promising methods 

to study intra-tumor heterogeneity, k-means clustering partitions voxels into mutually exclusive 

clusters. This imposes that a tumor voxel can only belong to a single habitat, which might not 

reflect the complex microenvironment in a voxel, especially at the border of two habitats.  

 

To address the limitations of qualitative analysis and data-driven clustering methods, we propose 

a novel reference-tissue-based method for probabilistic classification of tumor habitats. The main 

contribution of this work is to emulate the thought process of the radiologists by automating the 

habitat classification process.  The method is based on prior qualitative work used to describe 

tumor habitats by visual inspection (Table 3.1) [13], [34], [35]. Analysis of parametric maps of T2, 

ADC, and a quantitative surrogate for high-b-value diffusion weighted MRI (called simDWI) was 

employed to distinguish tumor habitats. The proposed approach calculates the probability that a 

voxel belongs to each habitat and allows the co-existence of different habitats in the same voxel. 

These habitats include hypercellular tumor, high T2 proteinaceous fluid, necrosis, collagenous 

stroma, and fibrosis. The term “necrosis” is used here to specify necrosis identified on imaging. 

The distinction from pathological necrosis will be discussed. The method was demonstrated on 7 

patients with confirmed high-grade soft tissue sarcoma. Habitats were compared across multiple 

exams during the course of neo-adjuvant radiation therapy. Observations were compared with 

histology. 
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3.4 Theory 
 

Quantitative MRI Inputs 

 

Prior work has identified habitats by comparing the tumor signal intensity on T2-weighted images, 

high b-value DW-MRIs, and ADC maps to a reference tissue [13]. The signal intensity pattern 

from all three images was used to interpret the habitats as described in the Qualitative classification 

of Table 3.1. 

 

Table 3.1 Interpretation of tumor sub-regions from diffusion and T2 MRI. The qualitative 

interpretations were proposed by Patterson et al. [23] and served as the basis for our quantitative 

method (column 4: “Quantitative”). The habitats are listed in column 5 (“Interpretation”) and 

colour coded according to the visual representation of the classification result. 

Qualitative Quantitative Interpretation 

T2-w DWI ADC Joint probability of a habitat1  

High High High 𝐹(𝑇*)𝐹(𝐴𝐷𝐶)𝐹(𝑆𝑖𝑚𝐷𝑊𝐼) 

T2 shine-through, high T2 content, 

often proteinaceous fluid 

High High Low 𝐹(𝑇*)𝐹(𝐴𝐷𝐶)[1 − 𝐹(𝑆𝑖𝑚𝐷𝑊𝐼)] Tumor of high cellularity 

High Low High 𝐹(𝑇*)[1 − 𝐹(𝐴𝐷𝐶)]𝐹(𝑆𝑖𝑚𝐷𝑊𝐼) 
Fluid, necrosis, lower cellularity 

Collagenous tissue2 

Low Low Low [1 − 𝐹(𝑇*)][1 − 𝐹(𝐴𝐷𝐶)][1 − 𝐹(𝑆𝑖𝑚𝐷𝑊𝐼)] 
Fibrous tissue with low water 

content 

1𝐹(𝑥:) = 	 ∫ 𝑝](𝑥)𝑑𝑥
&.
! , where 𝑥 ≡ 𝐴𝐷𝐶, 	𝑇2	𝑜𝑟	𝑠𝑖𝑚𝐷𝑊𝐼 

2This habitat was not included in the interpretations proposed by Patterson et al. 

 

The signal values in T2-weighted and DW-MRI have an arbitrary scaling that depends on factors 

such as the field strength, receive coil sensitivity, pulse sequence, actual flip angle, receive gain, 

and analog-to-digital conversion. As a result, these signal values have no absolute meaning. The 

ADC, however, is a quantitative parameter that can be used in reference tissue comparison. To 
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automate the reference-based analysis process, we must first identify comparable quantitative 

spaces for T2-weighted and high b-value DW-MRI. 

 

T2-weighted MRI reflects the T2 relaxation time of tissue. Quantitative T2 mapping is therefore a 

natural choice to represent T2-weighted images. Selecting a quantitative parameter to represent 

DW-MRI seems more challenging. In the pulsed-gradient spin-echo pulse sequence, the signal at 

the echo time (TE) reflects the loss of phase coherence in the transverse magnetization due to the 

combination of the spin-spin relaxation process, proportional to exp(−𝑇𝐸/𝑇*), and the additional 

spin-echo amplitude attenuation due to the diffusion process, which can be modelled as 

exp(−𝑏 ∙ 𝐴𝐷𝐶).  The theoretical signal for DW-MRI can be expressed as [6]: 

 

𝑆^A(𝑇𝐸, 𝑏) = 𝑆^A(𝑇𝐸 = 0, 𝑏 = 0) exp h−
𝑇𝐸
𝑇*
k exp(−𝑏 ∙ 𝐴𝐷𝐶)		(1) 

 

where 𝑆^A(𝑇𝐸 = 0, 𝑏 = 0) is the theoretical signal with negligible T2 and diffusion weighting, 

which reflects proton density and incomplete T1 relaxation and is constant for a given voxel and 

pulse sequence. Therefore, the major physical characteristics of DW-MRI can be captured by the 

product of the two exponential terms in Equation 1, which can be used to construct a surrogate 

map. We refer to this surrogate map as “simulated DW-MRI” or simDWI, calculated with Equation 

2.  simDWI ranges from 0 to 1 and reflects the relative contribution of T2 relaxation and diffusion 

to DW-MRI signal attenuation. When both T2 and ADC of the tumor are greater than for the 

reference tissue, simDWI serves to differentiate necrosis from high T2 proteinaceous fluid. 

simDWI varies predictably as a function of T2 and ADC (Figure 3.1) and will be discussed further. 

 

simDWI = 	exp h−
𝑇𝐸G_`/
𝑇*

k ∙ exp(−𝑏 ∙ 𝐴𝐷𝐶)									(2) 
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Figure 3.1 Plot of the values of simDWI for ranges of T2 and ADC values with TE= 88 ms and b 

= 1000 s/mm2. The contour lines from left to right represent simDWI values equal to the 90th 

percentile (dash-dot), median (solid), and 10th percentile (dash) of the distribution of simDWI in 

muscle. When both T2 and ADC are higher in a tumor pixel than in muscle, the value of simDWI 

serves to differentiate necrosis from high T2 proteinaceous fluid, like the high b-value DW-MRI 

in the qualitative approach. 

The T2, ADC, and simDWI maps can then be used as inputs to the probabilistic classification.  The 

workflow of the reference-region based probabilistic classification is summarized in Figure 3.2.   
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Figure 3.2 Workflow of the classification method: A. Image acquisition, B. Parameter calculation, 

C. Classification. Spin-echo MRIs must be acquired for at least 2 TEs to compute the T2 map. 

DWI-MRI must be acquired for at least 2 b-values to produce the ADC map. The T2, ADC and 

simDWI maps are fed to the algorithm to produce classification maps. Reference tissue parameter 

distributions are shown in Figure 3.3 
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Habitat Classification 

 

Prior to the classification, a reference tissue is selected. The distribution of parameter values in the 

reference tissue is used to define probability density functions pr(𝑥) for each parameter, where 𝑥 

represents ADC, T2, or simDWI.  The parameter values from each tumor voxel are compared 

against the parameter distributions of the reference tissue in a 3-step process: 

 

1. The probability for a parameter in a tumor voxel, denoted 𝑥: (where 𝑥: =ADC, T2, or 

simDWI in the tumor), of being greater than in the reference tissue is computed by 

integrating the probability density function 𝑝](𝑥) from 0 to 𝑥:. This is equivalent to the 

cumulative distribution function 𝐹(𝑥) of the reference tissue, evaluated at 𝑥:: 

𝐹(𝑥:) = � 𝑝](𝑥)𝑑𝑥

&.

!

																				(3) 

             𝐹(𝑥:) ranges from 0 to 1, with 𝐹(𝑥:) = 1	when 𝑥: 	≫ max	(𝑥) of the reference tissue.  

2. The probability that 𝑥: is smaller than the reference is 1-	𝐹(𝑥:). 

3. The probability that a voxel belongs to a specific habitat is the joint probability for all 

parameters (ADC, T2, and simDWI) according to the expressions in Table 3.1 

(Quantitative column). 

 

The output of the classification can be visualized by representing each habitat with a different color 

(green, red, blue, purple, and yellow), overlaid on a conventional image for anatomical reference. 

The color transparency reflects the magnitude of the probability, between 0 (full transparency) and 

1 (fully opaque), controlled by the alpha channel. Voxels with negative or non-physical T2 or ADC 

values are classified as “artifact” and are marked black. Voxels with realistic parameter values not 

assigned a habitat—i.e. those that do not fall in any of the classes in Table 3.1—are labeled as 

“other” and are ignored in the visualization. 

 

During this study, a habitat with similar imaging signatures to necrosis was identified, but with T2 

considerably lower (median T2 ≈ 60 ms) than for necrosis (median T2 > 300 ms) (Table 3.1). Also, 

FDG-PET images showed high uptake for this habitat, in contrast to the conventional 

understanding of necrosis. In our approach, this habitat was separated from necrosis based on i T2 
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values compared to the T2 distribution of muscle. This habitat is suspected to be collagenous 

stroma based on pathological observations from resected tumors, as presented in the Results. It 

also shares a similar imaging signature with collagenous stroma as reported in the literature: hypo-

intense on T1-weighted, iso-/hypointense on T2-weighted, and enhancing on post-contrast T1-

weighted MRI [36]. Necrosis was assigned when T2 was much larger than that of muscle (i.e. when 

𝐹(𝑇*) = 1); collagenous stroma if T2 was closer to but still larger than T2 of muscle (𝐹(𝑇*) < 1). 

The probability of either habitat was computed by 𝐹(𝑇*)[1 − 𝐹(𝐴𝐷𝐶)]𝐹(𝑆𝑖𝑚𝐷𝑊𝐼).  

 

3.5 Methods 
 

Patients 

 

The study was approved by the local Research Ethics Board and written informed consent was 

obtained from each patient. Eighteen patients with pathologically confirmed STS were recruited 

to participate in a prospective study on multi-modality imaging in STS treated with surgery and 

neo-adjuvant radiotherapy. Recruited patients satisfied the following criteria: (a) biopsy performed 

within 8 weeks prior to registration, (b) surgically resectable tumor, (c) patient was fit for surgery, 

(d) patient at least 18 years old, (e) for females with childbearing potential, a serum 𝛽HCG had to 

be done within 2 weeks prior to registration and the patient had to practice adequate contraception. 

Patients with rhabdomyosarcoma, Ewing sarcoma, osteosarcoma, or Kaposi sarcoma were 

excluded from this study. Patients with contraindications to MRI, prior radiotherapy, or excisional 

biopsy leading to the removal of the majority of the tumor were also excluded. 

 

Seven of the 18 patients (5 females and 2 males; age range 48-81) had complete imaging data 

acquired at pre-, mid- and post-radiotherapy, with the exception of P5 who was missing the FDG-

PET scan at post-radiotherapy. Tumor types for these patients were: myxofibrosarcoma (P1: thigh; 

P2: flank; P3: thigh), round cell/myxoid liposarcoma (P4: thigh), myxoid liposarcoma (P5: thigh), 

synovial sarcoma (P6: forearm), and fibromyxoid sarcoma (P7: thigh). 

 

All patients underwent diagnostic and therapeutic procedures according to our institutional 

standards. Diagnosis was confirmed by needle biopsy performed by a surgeon or an interventional 
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radiologist. Radiotherapy was administered with a minimum dose of 50 gray in 25 fractions to 

cover at least 95% of the tumor (defined as the planning target volume). The tumor was resected 

following radiotherapy. The median time interval between the last radiation fraction and surgery 

in this patient cohort was 26 days (ranging 22-41 days). The median time interval between the 

post-radiotherapy imaging and surgery was 8 days (ranging 6-9 days for 5/7 patients, 13 days for 

P6, and 27 days for P2). After formalin fixation of the resected specimen, representative sections 

of the tumor were taken and stained (haemotoxylin and eosin, or H&E) for histopathological 

evaluation. 

 

Image Acquisition 

 

Axial multi-slice two-dimensional DW-MRI and FSE images with fat saturation were acquired on 

a 1.5 T scanner (GE Healthcare, Waukesha, WI, USA). Imaging was performed at three time-

points: one week prior to the start of radiotherapy, at the mid-point of the treatment course (week 

3), and post-radiotherapy in the week leading up to surgery. DW-MRI were acquired with b = 0, 

100, and 800 s/mm2, and TR/TE = 5000/88 ms (Fig. 3.2A). FSE images were acquired twice, using 

a short TE of 9 to 12 ms (PD-weighted) and a long TE of 64 to 83 ms (T2-weighted), to be used in 

T2 mapping (Fig. 3.2A). For FSE images, the TR ranged between 3.95 s and 6.65 s and was held 

constant for both scans for a given patient. The echo train length was 9. The field-of-view, number 

of slices, and slice thickness were adapted for each patient (Sup. Table S1).  

 

FDG-PET was performed on a PET/CT scanner (Discovery ST, GE Healthcare, Waukesha, WI, 

USA). Patients were required to fast for at least six hours before their appointment. Blood glucose 

levels were recorded immediately prior to FDG administration, allowing a maximum serum 

glucose level of 11.1 mmol/L. Barium sulfate oral contrast (400 mL) was administered and FDG 

was injected intravenously (370 to 500 MBq). Sixty minutes after the FDG injection, PET/CT 

images were acquired from the base of the skull to the upper thighs, with additional images 

acquired as needed for the STS location. 
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Quantitative Image Processing 

 

The gross tumor volumes were identified on T2-weighted axial fat-suppressed FSE images by an 

experienced radiation oncologist and used to restrict habitat classification.  

 

ADC and T2 maps were computed using MATLAB (The Mathworks Inc., Natick MA USA). The 

ADC was computed from images with b =100 and 800 s/mm2 (Fig. 3.2B), using the expression 

 

ADC =
1

(𝑏"!! − 𝑏+!!)
ln h

𝑆+!!
𝑆"!!

k																(4) 

 

S100 and S800 represent the signal intensity with b = 100 and 800 s/mm2 respectively. The signal 

from b = 0 s/mm2 was not used in the calculation of ADC to avoid the effect of perfusion. DW-

MRIs were registered to the image with b = 0 s/mm2 prior to ADC calculation, via rigid registration 

(MIMVista, MIM Software Inc., Cleveland OH USA). 

 

The apparent T2 (Fig. 3.2B) was computed using a 2-parameter model applied to the logarithm of 

the FSE signal: 

𝑇* =
(𝑇𝐸* − 𝑇𝐸")
ln(𝑆4A" 𝑆4A*⁄ )																						(5) 

 

where STE1 and STE2 represent the signal intensity of the FSE images. 

 

Voxels with negative, non-physical values of ADC or T2 were likely due to image noise, artifacts, 

or imperfect image registration (between the various b-values or TE images). These were replaced 

with values based on their neighbouring voxels, using a Laplacian filter [37]. 

 

ADC and T2 values were used to generate simDWI maps (Fig. 3.2B).  In this calculation, the TE 

of the DW-MRI sequence was used (88 ms) and the b-value was set to 1000 s/mm2. ADC maps 

were rigidly registered to the T2-weighted FSE images, and therefore, to the T2 maps, prior to 

simDWI calculation. 
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Reference Tissue Values and Habitat Segmentation 

 

Muscle was used as the reference tissue. Regions-of-interest (ROIs) were manually identified in 

muscle on the pre-treatment T2-weighted FSE images, for each patient. These ROIs were then 

copied onto the ADC, T2, and simDWI maps, and parameter values were extracted. For each 

parameter, the probability distributions from all patients were combined (to include all muscle 

voxels). Each of the distributions was then fitted with a 3-term Gaussian model to produce an 

analytical form for subsequent integration (per Equation 3) resulting in the cumulative distribution 

function. The 3-term Gaussian model was chosen to provide very close fits to the data (i.e. R2 > 

0.999) and hence accurate analytical representations of the probability density functions. The 3-

term Gaussian distributions are not believed to represent specific physical characteristics of the 

distribution.  The fitted functions were then used as the reference probability density functions 

𝑝](𝑥), 𝑥 ≡ 𝐴𝐷𝐶, 𝑇*, 𝑠𝑖𝑚𝐷𝑊𝐼.  Using the reference probability density functions, the 

classification method was applied to classify voxels in the gross tumor volume of each patient. 

 

FDG-PET was used for the independent assessment of necrosis. The mean and standard deviation 

of muscle standard uptake values (SUV) were calculated for individual patients. The CT images 

from the combined PET/CT acquisition were rigidly registered and resampled to the T2-weighted 

FSE images, in MIMVista. By extension, FDG-PET images were also spatially aligned to T2-

weighted FSE images and to the habitat maps. The muscle ROIs were defined on T2-weighted 

images and copied to the registered PET images. Tumor regions with an SUV two standard 

deviations below the mean in muscle were defined as low uptake and interpreted as necrosis [38]. 

The accuracy of this approach to automated identification of low FDG uptake regions was assessed 

visually prior to proceeding.  

 

Longitudinal analysis 

 

The classification method allowed the longitudinal comparison of tumor composition over the 

course of radiotherapy. Each voxel was added to a histogram according to the habitat with the 

highest probability, on a per-patient basis. For instance, a voxel with probabilities of [0.93 

proteinaceous fluid; 0.02 hypercellular tissue; 0.05 necrosis] was counted as proteinaceous fluid. 
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3.6 Results 
 

Reference Tissue Analysis 

 

Parameter distributions were calculated in the reference tissue and used to define the probability 

density functions. Representative muscle ROIs from five patients are shown in Figure 3.3 (a-e), 

with the probability density functions for the ADC, T2, and simDWI in muscle from all patients 

(f-h). The ADC in muscle was normally distributed, in individual patients (Sup. Fig. 3.S1) and for 

all patients combined (Fig. 3.3g). The mean and mode ADC were both 1.0× 10,I mm2/s, with a 

standard deviation of 0.2 × 10,Imm2/s. Muscle T2 skewed positively for individual patients and 

for the combined distribution (Fig. 3.3 (f)).  The mean T2 (= 45 ms) of muscle was slightly higher 

than the mode T2 (= 41 ms), with a standard deviation of 31 ms and skewness of 117. The simDWI 

of muscle had a mean of 0.05, mode of 0.04, standard deviation of 0.02, and positive skewness of 

3 (Fig. 3.3 (h)). The Gaussian models provided good fits to the muscle ADC, T2, and simDWI 

distributions, with R2 of 0.9994, 0.9995, and 0.9994, respectively. Patient P2, with 

myxofibrosarcoma in the flank, was excluded from this part of the analysis due to the absence of 

identifiable muscle in the images.  
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Figure 3.3 Regions of interests (ROIs) in muscle are shown as red overlays on T2-weighted FSE 

images acquired prior to radiotherapy: (a) Patient 1: lower thigh, (b) patient 2: lower thigh, (c) 

patient 3: lower thigh, (d) patient 4: forearm, and (e) patient 5: lower thigh. A representative slice 

from each patient is shown. Probability density functions of T2 (f), ADC (g), and simDWI (h) in 

muscle voxels are also shown. The x-axis of T2 and simDWI distributions was truncated for better 

visualization. A 3-term Gaussian model was fitted to each distribution, shown as solid orange lines. 

Tumor Habitats  

 

The probabilistic classification was applied to all seven datasets at all time points. As an illustrative 

example, the case of high-grade myxofibrosarcoma in the flank (P2) featured regions of high T2 

proteinaceous fluid, tissue of hypercellularity, and necrosis (Figure 3.4). This tumor was 

heterogeneous in all images, qualitative or quantitative. The classification identified three distinct 

regions (identified in the figure as I, II, and III) with high probability of being hypercellular, high 

T2 proteinaceous fluid, and necrosis, respectively. Region I was hyperintense on T2-weighted MRI 

and DW-MRI (b=800 s/mm2), had higher T2 and simDWI, and lower ADC, than the reference 

tissue. Region II was hyperintense on T2-weighted MRI and DW-MRI, and had high T2, simDWI, 

and ADC values. Region III was hyperintense on T2-weighted MRI but hypointense on DW-MRI, 

had high T2 and ADC, and low simDWI. In the visualization, color mixtures were observed in 

region III and at the transition between habitats. 
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Figure 3.4 A representative case of high grade myxofibrosarcoma demonstrates three regions of 

distinct intensity patterns. These regions were classified as hypercellular (red), proteinaceous fluid 

(green), and necrosis (blue), respectively, by the classification algorithm. This corresponds to the 

interpretation in Table 1. Regions I, II, and III are discussed in the text. The ADC map is the same 

for both the qualitative and quantitative approaches. 

The parameter values (median and interquartile range) at pre-, mid-, and post-radiotherapy show 

variations between habitats (Table 3.2). Necrosis and collagenous stroma regions both had high 

ADC and low simDWI, but different T2 by definition (long for necrosis and shorter for collagenous 

stroma). Hypercellular tissue had lower ADC and T2 values than proteinaceous fluid.  Fibrosis had 

low ADC, T2, and simDWI values.  
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Table 3.2 Median parameter values (with interquartile range), for different tissue habitats 

following the probabilistic classification at pre-, mid- and post-radiotherapy (RT). 

Visit Tissue Class ADC 

(×10-3 mm2 s-1) 

T2 

(ms) 

simDWI 

 

 Muscle (reference) 1.00  (0.19) 43  (8) 0.046 (0.021) 

Pre-RT 

 

Hypercellular 0.78 (0.22) 93 (37) 0.174 (0.082) 

Proteinaceous Fluid 1.76 (0.62) 231 (212) 0.110 (0.053) 

Necrosis 3.10 (0.54) 379 (956) 0.036 (0.010) 

Collagenous stroma 1.95 (0.54) 61 (20) 0.034 (0.012) 

Fibrosis 0.79 (0.25) 33 (5) 0.031 (0.013) 

Mid-RT Hypercellular 0.80  (0.32) 98  (78) 0.184  (0.136) 

Proteinaceous Fluid 1.91 (0.84) 217 (240) 0.087 (0.054) 

Necrosis 3.10 (0.43) 535 (1703) 0.037 (0.010) 

Collagenous stroma 2.13 (0.66) 66 (24) 0.032 (0.010) 

Fibrosis 0.70 (0.30) 33 (5) 0.034 (0.012) 

Post-RT Hypercellular 0.85  (0.24) 107 (69) 0.192  (0.116) 

Proteinaceous Fluid 1.86  (0.76) 178 (149) 0.079 (0.053) 

Necrosis 2.99  (0.40) 352 (832) 0.039 (0.008) 

Collagenous stroma 1.92 (0.36) 63 (16) 0.037 (0.011) 

Fibrosis 0.77  (0.24) 33  (5) 0.033  (0.012) 

 

Tumor composition from the classification method at pre- and post-radiotherapy was compared 

with the histopathological assessment from the pre-radiotherapy biopsy and post-surgical 

specimen, respectively. FDG-PET was used to identify necrosis. Tumor habitats identified on pre-

radiotherapy images agreed with pathological observations from biopsy (Fig. 3.5 columns a and c, 

and Table 3.3). High T2 proteinaceous fluid dominated tumors from P1, P3, P4, and P5 (>90%), 

consistent with histopathology showing large areas of myxoid stroma. One of the 

myxofibrosarcomas (P2) had markedly different composition, with 16% necrosis. No necrosis was 

observed in the other myxofibrosarcomas. The tumor from P4 was a round cell/myxoid 

liposarcoma, a particular type of myxoid tumor that combines low-grade myxoid and high-grade 
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round cells. Image analysis showed 93% high T2 proteinaceous fluid and 2% hypercellular tissue. 

This was qualitatively consistent with histopathological observations from biopsy (Fig. 3.5 column 

c), which showed large areas of low-grade myxoid area (proteinaceous fluid) and less than 5% 

high grade round cells (hypercellular). A small area of necrosis (left lower edge in Fig. 3.5 column 

a, P4) was possibly misclassified. This may have originated from the bright band on the ADC map, 

a possible artifact due to imperfect rigid registration among DW-MRIs of different b-values. The 

synovial sarcoma (P6) was identified to be primarily hypercellular (75%). Histopathology from 

the biopsy of this tumor showed predominantly densely packed cells. Post-radiotherapy, tumor 

composition agreed qualitatively with pathological observations from the resected specimen 

(Table 3.3). There were discrepancies on the percentage of necrosis between imaging and 

pathological findings. Pathological evidence suggested two types of treatment-related necrosis 

were present: liquefactive and treatment-related necrosis with intact stroma (Sup. Fig. 3.S2). 
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Figure 3.5 Classification results in all 7 patients (representative slices, column a), FDG-PET 

images (column b) and histopathological images (column c), from pre-radiotherapy imaging and 

biopsy samples. Each tumor was classified into 5 possible habitats: hypercellular (red), high T2 

proteinaceous fluid (green), necrosis (blue), collagenous stroma (purple) and fibrosis (yellow). 

Tumor habitats at pre-radiotherapy generally agreed with pathological observations from biopsy 

(discussed in the text).  Regions of necrosis (blue) from MRI correspond well to the low uptake 

on FDG-PET. 
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Table 3.3 Comparison of MRI-based sub-region classification results with FDG-PET and 

pathological observations 

 
 

Necrosis observed in tumors of P2 and P7 was confirmed by low FDG uptake in the necrotic area, 

shown overlaid on T2-weighted MRI (Fig. 3.5 column b). The fraction of necrosis identified by 

the classification correlated strongly with low uptake on FDG-PET at both pre- and post-

radiotherapy with R2 of 0.97 and 0.96, respectively (Fig. 3.6). FDG uptake was high for the other 

habitats. In the fibromyxoid sarcoma (P7), 39% of the lesion was identified as collagenous stroma 

(purple), which is similar to necrosis on MRI but with a lower T2.  The high FDG uptake of this 

habitat suggests that it might not be necrotic. Collagenous stroma also appeared in the synovial 

sarcoma (P6) post-radiotherapy. According to pathology, both tumors (P6 post-radiotherapy and 

P7 pre- and post-radiotherapy) presented high percentages of collagenous stroma. 
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Figure 3.6 Percentage of necrosis estimated by the classification method plotted versus 

quantitative estimates of necrosis from FDG-PET uptake. A strong correlation was observed at 

both pre-radiotherapy and post-radiotherapy, with R2 of 0.97 and 0.96 respectively. 

 

The relative composition varied between tumors and treatment time points (Fig. 3.7). The 

longitudinal analysis revealed a decrease in hypercellular tissue in 4 of 7 tumors (P2, P3, P5, and 

P6) from pre- to post-radiotherapy. In this cohort, 99.9% of the tumor voxels from each patient 

were characterized by one habitat with probability greater than 50%.  

 

Voxels with non-physical T2 or ADC (negative or zero) remaining after Laplacian filtering were 

categorized as artifact. This constituted less than 0.2% of voxels for all cases except one—the 

second myxofibrosarcoma (P2) at visit 1, with 1.5 % artifact. In all cases, artifacts were located 
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near the tumor edges and were likely due to imperfect rigid image registration among DW-MRI 

images of different b-values. Voxels classified as “other” were less than 0.3% in all cases, with 

the exception of the fibromyxoid saroma (P7), with 10% of voxels as “other”. 

 

 

Figure 3.7 The relative tumor composition from the classification method are reported in all 

tumors in this study, including myxofibrosarcoma (MFS, P1, P2, P3), round cell/myxoid 

liposarcoma (RMLS, P4), myxoid liposarcoma (MLS, P5), synovial sarcoma (SS, P6) and 

fibromyxoid sarcoma (FMS, P7). MRI data were collected and analyzed at 3 time-points: pre-

radiotherapy, during the 3rd week of radiotherapy, and after radiotherapy. 

 

3.7 Discussion 
 

We have proposed a method to assess tumor heterogeneity in STS on MRI, using maps of the ADC 

and T2 to identify tumor habitats: high T2 proteinaceous fluid, hypercellular tumor, necrosis, 

collagenous stroma, and fibrosis. Our quantitative approach exploits the intrinsic properties of 

tumor tissue and is theoretically independent of acquisition parameters. The probabilistic method 

allows the co-existence of multiple habitats within the same voxel. Habitats can be visualized as a 

mixture of colors with different degrees of transparency, based on the probability of the voxel 

being in that habitat.  

 

Probability density functions of the ADC, T2 and simDWI were computed for a reference tissue: 

muscle was used in this study. This approach can classify any image including those without 
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identifiable muscle, using data from other patients. In our work, the case of high-grade 

myxofibrosarcoma located in the flank (P2) had minimal muscle volume, and our classification 

distinguished tumor habitats nonetheless. The reference value distributions could be re-used to 

perform tissue classifications in future cases. Muscle contouring is not necessary in every patient. 

 

In addition to the use of T2 mapping, our approach innovates by representing high b-value DW-

MRI with a quantitative surrogate, namely simDWI (Eq. 2). Either exponential term can dominate 

simDWI, depending on the T2 and ADC. For a given ADC, the value of simDWI increases quickly 

with T2 for low T2 values and very slowly for high T2 values. For a given T2, simDWI decreases 

with increasing ADC (Fig. 3.1). For larger T2 values, ADC has an increasing impact on simDWI, 

superseding T2 as the main effect in simDWI. In the proposed method, simDWI is crucial to 

distinguish necrosis from high T2 proteinaceous fluid, by analogy to high-b-value DW-MRI.  

Necrosis and high T2 proteinaceous fluid both have high ADC and high T2, but simDWI is lower 

for necrosis and it appears darker than muscle on the simDWI map. Specifically, outside of the 

10th and 90th percentile contour lines (Fig. 3.1, dash and dash-dot lines respectively), the 

probability is highest for necrosis or high T2 proteinaceous fluid, respectively. When the tumor 

simDWI falls within the contour lines, the differentiation is less clear and the voxel is labeled as a 

mixture of necrosis and high T2 proteinaceous fluid. 

 

The simDWI can be computed for any b-value. Necrosis and high-ADC tumor regions have 

previously been differentiated using DW-MRI with b = 1000 s/mm2 [39], [40] and b = 925 s/mm2 

[41], but only partial differentiation for b < 800 s/mm2 [13], [42], [43]. In this study, data were 

acquired using b = 800 s/mm2 prior to the refinement of the proposed algorithm. We observed that 

necrosis and proteinaceous fluid were better differentiated using simDWI computed at b = 1000 

s/mm2, consistent with the literature on DWI. Only partial differentiation was observed when using 

simDWI calculated with b = 800 s/mm2 (data not shown). 

 

The five habitats identified by our method (hypercellular tissue, high T2 proteinaceous fluid, 

necrosis, collagenous stroma, and fibrosis) were compared with the habitats obtained by other 

investigators using clustering algorithms. Four compartments were identified in prior studies of 

colon cancer xenografts using k-means clustering algorithms, including two types of viable tumors 
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and two types of necrosis [31], [32]. Connective tissue, viable tumor, and necrosis were 

distinguished based on FDG-PET and ADC in lung cancer xenografts [33].  Our hypercellular 

tumor habitat likely corresponds to the viable tumor reported in literature, extremely cell-dense 

and presumably well-oxygenated with low ADC and T2 [31]–[33]. Necrosis featuring long T2 and 

high ADC resembles that reported in the literature, generally acellular and similar to bulk water 

[31]–[33]. The collagenous stroma habitat is new and warrants further investigation. An alternative 

interpretation of this habitat could be severe necrosis with accumulation of blood products, which 

has been previously described[32], [44]. Blood products would reduce T2. If this is the case, the 

observation of FDG uptake in a necrotic habitat would require an explanation. Voxels classified 

as “other” in our work (especially in P7) had combinations of physically realistic parameters that 

did not fit the pre-defined habitats of Table 1, and do not yet have a straightforward interpretation. 

 

The proposed method can characterize the entire tumor non-invasively. Pre-radiotherapy tumor 

composition identified myxoid and non-myxoid containing lesions. The proteinaceous myxoid 

forms an amorphous extracellular matrix which contains abundant free water [45].  In this study, 

all myxoid-containing lesions except the fibromyxoid sarcoma (P7) were classified as mostly high 

T2 proteinaceous fluid, consistent with the characteristics of water-abundant myxoid. On biopsy, 

the fibromyxoid sarcoma had collagenous stroma and focal mildly myxoid stroma, in qualitative 

agreement with our segmentation result (31% high T2 and 39% collagenous stroma). Interestingly, 

most tumors in this study presented only two of the five habitats, and not always the same two. 

Only two presented more than two habitats prior to radiotherapy (P2, with 3 habitats, and P7, with 

5 habitats). This reflects the intra-tumoral and inter-patient heterogeneity in soft-tissue sarcoma. 

 

Pre-treatment tumor necrosis has been shown to be an important prognostic factor for disease 

recurrence and survival rate in STS [46]. FDG-PET and dynamic contrast enhanced (DCE)-MRI 

have been proposed to detect necrosis [46]–[48]. Both require intravenous injection of contrast 

agents, and the former uses ionizing radiation. Our classification method provides a non-invasive 

tool for identification of necrosis without a contrast agent.  It correctly identified the necrosis in 

the high-grade myxofibrosarcoma (P2), round cell/myxoid liposarcoma (P3), and fibromyxoid 

sarcoma (P7), at pre- and post-radiotherapy, corroborated by low uptake on FDG-PET. None of 

the other tumors had obvious regions of necrosis based on FDG-PET. Discrepancies in the 
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observation of necrosis at pre-radiotherapy could be due to biopsy sampling from non-necrotic 

areas. 

 

Pathological observations from resection (Table 3) indicated substantial percentage of treatment-

related necrosis for 6 out of 7 tumors, with greater percentage than the necrosis identified on 

imaging. For instance, in round cell/myxoid liposaroma (P4), the classification method identified 

7% necrosis with 90% of high T2 proteinaceous fluid (Table 3), whereas pathology estimated 70% 

of the tumor as treatment-related necrosis. It has been suggested that radiology and pathology do 

not correlate well when evaluating complete tumor necrosis [49], [50]. This can be related to 

differences between necrosis identified on imaging and treatment-related necrosis from pathology. 

Treatment-related necrosis includes different types of necrosis with distinctive morphological 

patterns [51]. We speculate that two types of necrosis were present in this study (Sup. Fig. 3.S2): 

liquefactive necrosis, characterized by liquid viscous mass and the absence of stroma, most 

obvious in one myxofibrosarcoma (P2), and coagulative necrosis, where tumor cells are destroyed 

by radiation leaving the stroma intact (P2-P7). Necrosis on MRI refers to regions of high fluid 

content, and therefore likely reflects a subcategory of necrosis.  For the tumor in P4, the tumor 

cells were destroyed by radiation in the regions of treatment-related necrosis. Nevertheless, the 

myxoid stroma was still intact to various degrees. Myxoid was associated to the high T2 

proteinaceous fluid habitat, and treatment-related necrosis was likely classified as such. In the 

synovial sarcoma (P6), therapy-related necrosis was characterized by intact collagenous stroma.  

 

Radiotherapy effects on tumor composition were quantitatively evaluated. In 4 of 7 patients in the 

study, the percentage of hypercellular tissue decreased from pre- to post-radiotherapy, a likely 

effect of radiotherapy. Our findings are consistent with reports of effective therapy response 

resulting in tumor lysis, loss of cell membrane integrity, and increase of extracellular space [35].  

The probabilistic nature of this approach allows the co-existence of different habitats in the same 

voxel, providing a more realistic reflection of the complex microenvironment, especially at habitat 

boundaries.  The identification of these habitats can provide valuable information about tumor 

composition and its changes during radiotherapy. This classification technique provides 

information about sub-regions that could be targeted by radiation dose painting, for use of systemic 

agents that target more resistant tumor components, or in the assessment of treatment response. 
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Other clinical studies have classified soft tissue sarcoma habitats using Otsu segmentation methods 

applied to the signal intensity of post-contrast T1-weighted[52] or to the combination of pre-

contrast T1-weighted, post-contrast T1-weighted, and T2-weighted images[53], [54]. These 

studies showed that texture analysis within each distinctive habitat improved the accuracy for the 

prediction of metastatic and necrotic tumor.  It is also possible to envision an approach building 

on the proposed method where the surrounding normal tissue would be analyzed and used to assess 

the infiltrative nature of the tumor. 

 

Limitations 

 

The accuracy of the classification relies on the accuracy of reference ADC and T2 distributions in 

tumor and muscle. The T2 and ADC are intrinsic properties of the tissue but the choice of 

measurement technique, acquisition parameters, receive coil, and field strength could impact the 

estimation of these parameters [55], [56]. The most notable impact of variations in the quantitative 

parameters might be the re-use of reference data in studies where the new data are acquired with 

different parameters, which could be resolved by standardization of the acquisition parameters. 

 

The use of probability distributions of ADC and T2 from selected muscles in a small group of 

patients assumes that this sample is representative of muscle in the population and independent of 

anatomic location. Variations of ADC and T2 in muscle could lead to inaccurate classification of 

tumor sub-regions. The ADC and T2 from the forearm had slightly higher means than other 

regions, resulting in skewed sample distributions (Sup. Fig. 3.S1). Anatomical variations in the 

ADC of skeletal muscle have been reported [57]. Literature on ADC and T2 in muscle is focused 

on limited anatomical locations [39] or to changes under specific conditions [58], [59]. A 

systematic study of ADC and T2 in muscle in a larger group of participants, possibly including 

patients and healthy individuals, would be of interest for this method. 

 

The classification depends on the registration and resampling of DW-MRI and T2 maps to 

compensate for differences in field-of-view and voxel dimensions, and for patient motion. We 

used rigid registration in this proof-of-principle study, which left discrepancies due to patient 

motion. Attempts at non-linear registration with the “VoxAlign” algorithm (available in MIMvista 
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software) did not improve the results and in some cases produced unusable quantitative maps. 

More advanced non-linear registration methods could be used to improve the registration [60]. 

Laplacian filtering [37] was applied to ADC and T2 maps to replace non-physical negative values 

in certain voxels (due to image artifacts, noise, or imperfect image registration) with values 

interpolated from neighbouring voxels. In certain cases of imperfect registration, non-physical 

values spanned multi-voxel regions and Laplacian interpolation became ineffective. Overall, the 

ADC values in muscle in this study agree with others [15], [26]. However, the ADC measured here 

in necrosis at pre-treatment (median 3.1×10-3 mm2/s, interquartile range 2.8×10-3 mm2/s–3.2×10-3 

mm2/s) is similar to the accepted diffusion coefficient of water at body temperature (3×10-3 

mm2/s)[61], and may be higher than expected. Studies have reported similarly high ADC in 

cerebrospinal fluid (3.0×10-3  – 3.4×10-3 mm2/s) [62], [63]. This does not affect the quality of the 

habitat classification in this work. 

 

Biopsy results in this study were obtained retrospectively and were likely to reflect the presence 

of viable tumor cells, as is the goal of a clinical biopsy. Biopsy procedures were not explicitly 

recorded; therefore, the location and path of these biopsies were not available. This is a limitation. 

In this study, a single orthopaedic surgeon (RT) obtained 6 of the 7 biopsies. The biopsy in P6 was 

collected by a neurosurgeon. Biopsy practice at our institution is largely guided by the tumor 

position, depth, and morphology, patient considerations, the surgical plan, and surgeon’s 

experience. The physician always aims for soft tissue and to sample viable tumor, avoiding nerves, 

bones, and joints. In STS, viable tumor is often found at the periphery.  The physician reviews 

available images (cross-sectional imaging on CT or MRI) prior to biopsy. Multiple samples are 

taken at one puncture position, by angulating the biopsy needle. The biopsy tract is based on the 

surgical plan and is therefore resected along with the tumor. A typical core is 2.5 cm in length and 

collected no deeper than the central portion of the tumor, to avoid going beyond the tumor. 

 

Generalizability of the technique to a broader range of STS and to other tumor types remains to be 

demonstrated. We performed an initial demonstration of the technique in a small cohort of patients 

with STS of different types, participating in a larger study to validate a model developed by our 

team that relates imaging findings with the subsequent development of lung metastases [64]. 
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3.8 Conclusion 
 

In conclusion, we have automated the process of identifying pathologically relevant tumor habitats 

of hypercellularity, high T2 proteinaceous fluid, necrosis, collagenous stroma, and fibrosis, with a 

reference-region-based probabilistic classification technique applied to MRI. This technique was 

demonstrated in 7 patients with biopsy-confirmed soft tissue sarcoma, and results were 

qualitatively consistent with histopathology.  
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3.9 Supporting Information 

 

 
Supporting Figure 3.1 Histograms of ADC (a), T2 (b), and simDWI (c) in muscle across 

patients yield similar mean values. Each data point is the center value for the histogram bin, and 

the bin height normalized to the total number of voxels. A Gaussian function is fitted to the 

histogram from each patient.  
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(a)           (b) 

Supporting Figure 3.2 Histology sample of (a) myxofibrosarcoma (P2) and (b) round cell/myxoid 

liposarcoma (P4) shows different morphologies of treatment-related necrosis. Liquefactive 

necrosis in (a), indicated by the dotted lines, is an acellular geographic area of necrosis with 

necrotic nuclear debris and viscous consistency. In (b), the myxoid stroma still appears to be 

retained, but with no cellular component present in treatment-related necrotic areas (dotted lines) 

reflected by a homogeneous acellular myxoid/hyalinised appearance in the stain. 

 

Supporting Table  3.1 The minimum and maximum value of the imaging parameters for 

patients in this study at pre-radiotherapy are reported. 

 Matrix  FOV 
(mm) 

Number 
of slices 

Slice 
thickness
(mm) 

Readout 
bandwidth 
(Hz/pixel) 

TR(ms) TE 
(ms) 

FSE (longTE) 512× 512 120-400  32-60 4-5 98  3650-5900 76-83 
FSE (minTE) 512× 512 120-400  32-60 4-5 98 3650-5900 11-12 
DWI b=100 
s/mm2 

256× 256 300-440 21-52 6 1953 5000 88-91 

DWI b=800 
s/mm2 

256× 256 300-440 21-52 6 1953 5000 88-91 
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Chapter 4 

 

4 Non-invasive apparent cell size mapping with 

diffusion weighted MRI 
 

 

 

4.1 Preface 

 
After the automated classification of tumor habitats (Chapter 3), I aim to further characterize each 

habitat to understand the underlying biophysical structures. A method named Imaging 

Microstructural Parameters Using Limited Spectrally Edited Diffusion (IMPULSED) has been 

proposed to map voxel-wise cancer cell size and cellularity non-invasively, by Dr. Gore’s group 

at Vanderbilt University.  In the effort to implement the IMPULSED method at the 3T clinical 

scanner in the McGill University Health Center, I spent a month at Vanderbilt University to learn 

about the IMPULSED method. This chapter summarizes the three steps that I took to ensure 

accurate and reproducible estimation of cell size and cell volume fractions.  The simulation and 

experimental work done in this chapter provided me with a thorough understanding of cell size 

mapping with the IMPULSED method, which served as a starting point for my second and third 

PhD projects (Chapter 5, 6). 
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4.2 Introduction 

 
Histopathologic examination of the sample tumor specimen is the current gold standard for clinical 

tumor diagnosis. Multiple specimens are extracted at different regions of the tumor via biopsy, or 

obtained from a resected mass, and examined under the microscope by pathologists for abnormal 

cell size, shape, and arrangement [1]. Direct visual observation of cancerous cells provides an 

intuitive understanding of the tumor microenvironment; staining leads to high specificity to 

pathological observations [2].  However, since only a small amount of tumor tissue is obtained by 

biopsy, the extracted sample might not fully reflect the tumor heterogeneity. In addition, the 

invasive nature of biopsy can cause significant discomfort to the patients, making it unsuitable for 

repeated measurements for treatment monitoring and assessment. 

 

Non-invasive imaging techniques such as magnetic resonance imaging (MRI) have been proposed 

to characterize the tissue microenvironment over the entire tumor. In particular, diffusion-weighted 

MRI (DW-MRI) provides a non-invasive way to map the diffusion properties of tissue water 

molecules that are affected by restriction and hindrance to free movement and is thereby able to 

provide information on tissue microenvironment [3]. For instance, the apparent diffusion 

coefficient (ADC) calculated from DW-MRI has been shown to inversely correlate with tumor 

cellularity[4]–[6]. The difference in ADC values has been used to differentiate malignant tumors 

from benign tumors in multiple cancer types [7]–[9]. The increase in ADC values was reportedly 

indicative of positive therapy response[10], [11].  

 

In a clinical study of soft-tissue sarcoma conducted at the McGill University Health Centre, we 

successfully delineated various tumor sub-regions including regions of hypercellularity, necrosis, 

and proteinaceous fluid, using the combination of T2-weighted images, DWI, and ADC maps [12] 

(Chapter 3). In addition, we have observed elevated average ADC of the tumor from pre-

radiotherapy to post-radiotherapy [13], with increased ADC in the hypercellular and proteinaceous 

fluid habitats. However, the underlying variations in the biophysical structure of each sub-region 

and their response to treatment are only partially reflected by ADC. A more specific measurement 

of tumor microstructure at the cellular level, including cell size and cellular density, could provide 

valuable information about tumor development and therapeutic response. 
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The sensitivity to microstructural features generally requires a very powerful gradient coil 

(~300mT/s), which is beyond the capacity of common clinical scanners (~60mT/s)[14], [15]. An 

alternative DW-MR technique, developed by Dr. John Gore’s group at Vanderbilt University on a 

3 T clinical scanner, combines long-diffusion-time pulsed gradient spin echo (PGSE) and low-

frequency oscillating gradient spin-echo (OGSE) sequences to provide sensitivity to 

microstructural features. This method is named Imaging Microstructural Parameters Using 

Limited Spectrally Edited Diffusion (IMPULSED), and has been proposed to map voxel-wise 

cancer cell size and cellularity non-invasively [16], [17]. Promising results were shown for both 

in-vivo colon cancer mouse models and human breast tumors [17], [18].  

 

In the effort to implement the IMPULSED method at the 3T clinical scanner in the McGill 

University Health Center, three steps were taken to ensure accurate and reproducible estimations 

of cell size and volume fractions. This chapter provides an overview of these steps which include 

1) development of analysis tools for the IMPULSED method, validated with simulated diffusion 

signals at different levels of SNR; 2) cross-site validation of data analysis, comparing estimated 

microstructural parameters from analysis tools independently developed at Vanderbilt and McGill 

using a shared in-vitro dataset; 3) establishing feasibility of in-vivo cell size mapping with 

IMPULSED. The image acquisition involved in step 3 was completed at Vanderbilt University.   

 

4.3 Theory 

 

4.3.1 Diffusion modeling 

 
In order to quantify tissue parameters below the nominal resolution of MRI, a biophysical model 

of the underlying cellular geometry and its contribution to the diffusion signal have to be 

established. 

 

The normalized diffusion MR signal can be modeled with an analytical expression combining the 

signal of intracellular water undergoing restricted diffusion inside the cells 𝑆#$, with the signal 

from extra-cellular water undergoing hindered extracellular diffusion 	𝑆%&' (Eq.1).  
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𝑆/𝑆! = 𝑣#$	𝑆#$(𝑅, 𝐷#$) + (1 − 𝑣#$)	𝑆%&'(𝐷%&')				 (1) 

 

where 𝑣#$  represents the percentage volume occupied by cells, referred to as the intracellular 

volume fraction. The cells are modeled as spheres with radius 𝑅 [19].  𝐷#$ and 𝐷%&' are the intra- 

and extra-cellular diffusion coefficient, respectively. The water exchange between intra- and 

extracellular spaces is not considered, due to its negligible effect on the estimation of mean cell 

size [20].   

 

The mathematical expression of 𝑆#$ depends on the pulse sequence, the shape of the diffusion 

gradient, and the cell shape. The IMPULSED method uses a combination of diffusion signals from 

the conventional pulsed gradient spin echo (PGSE) sequence and oscillating gradient spin echo 

(OGSE) sequences[17] (see Chapter 2, Section 2.3.9). 

 

The analytical expression of the intracellular diffusion signal, measured with cosine-modulated 

gradient waveforms can be expressed as 

 

𝑆#$(𝑂𝐺𝑆𝐸) = exp5−2(𝛾𝑔)*9
𝐵$𝜆$*𝐷#$*

(𝜆$*𝐷#$* + 4𝜋*𝑓*)*
?
𝜆$*𝐷#$* + 4𝜋*𝑓*

𝜆$𝐷#$
@
𝛿
2 +

sin(4𝜋𝑓𝛿)
8𝜋𝑓 F − 1

$

+ exp(−𝜆$𝐷#$𝛿)

+ exp(−𝜆$𝐷#$Δ)(1 − cosh(𝜆$𝐷#$𝛿)KL																																																(2) 

 

The expression for the intracellular signal 𝑆#$ contains terms for the gradient pulse: the gradient 

amplitude 𝑔, the gradient pulse duration 𝛿, the separation time between the two diffusion gradients 

Δ, the oscillation frequency of the gradient 𝑓, the geometrical structure dependent parameters 𝜆$ 

and 𝐵$ (e.g. spheres, plane, cylinder) and the intracellular diffusivity 𝐷#$. The expressions for 𝜆$ 

and 𝐵$ have been reported in published literature [21] as, 

 

𝐵$ =
2(𝑅 𝜇$⁄ )*

𝜇$* 	 − 2
,				𝜆$ =

𝜇$*

𝑅*	  
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where 𝜇$ is the nth root of the equation 𝜇𝐽I *⁄
1 (𝜇) − "

*
𝐽I *⁄ 	(𝜇) = 	0.  𝐽I *⁄  is the Bessel function of 

order 3/2.  

 

Similarly, the diffusion signal measured with PGSE within impermeable spheres can be 

expressed as, 

 

𝑆#$(𝑃𝐺𝑆𝐸) = exp 5−2S
𝛾𝑔
𝐷#$

T
*
9

𝐵$
𝜆$*
{𝜆$𝐷#$𝛿 − 1 + exp(−𝜆$𝐷#$𝛿)

$

+ exp(−𝜆$𝐷#$Δ)(1 − cosh(𝜆$𝐷#$𝛿)}L		(3) 

 

The extracellular diffusion is considered hindered, and can be expressed with a mono-

exponential function of 𝐷%&' as: 

𝑆%&' 	= exp(−𝑏	 ⋅ 𝐷%&') (4) 

 

4.4 Methods 
 

4.4.1 Computer simulations 

 

Simulations were performed to explore the performance of model fitting under the influence of 

noise. The matrix method (Microstructure Imaging Sequence Simulation Toolbox (MISST), UCL) 

[22] was used to simulate diffusion signals for each tissue microstructure from PGSE and OGSE 

diffusion sequence [20], [21]. The term “microstructure” represents the tissue model with a single 

combination of input parameters. The tissue microstructure was characterized in terms of cell 

radius R, intracellular volume fraction 𝑣#$, and the intra- and extra-cellular diffusivities 𝐷#$ and 

𝐷%&'. Diffusion signals were generated for 36 tissue microstructures with cell radius R = 4, 5, 6, 

7, 8µm and volume fraction 𝑣#$= 25%, 50%, 75%. 𝐷#$ and 𝐷%&' were set to be 1μm2/ms and 2 

μm2/ms respectively. For each tissue microstructure, PGSE diffusion signals were simulated at 

effective diffusion time Δbcc = 66.7𝑚𝑠, with diffusion gradient duration 𝛿 = 	10	𝑚𝑠 and gradient 

separation time Δ = 70ms. OGSE diffusion signals were simulated at lower Δbcc = 5	and	10ms, 
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with 𝛿/	Δ = 40/50.5ms. The oscillating frequencies of the gradient waveform were 25 and 50Hz. 

Nine b-values were simulated from 0 to 2000 𝑚𝑠 𝜇𝑚*⁄  in intervals of 250 𝑚𝑠 𝜇𝑚*⁄ . The 

maximum gradient strength used was 150 mT/m, which is readily achievable for most pre-clinical 

scanners. 1,500 noisy synthetic signals with SNR = 20, 35, 50 and 80 were generated for each 

microstructure, with the signal-to-noise-ratio (SNR) defined for the 𝑏 = 0	𝑚𝑠/𝜇𝑚* signal. The 

SNR was calculated by dividing the signal generated using 𝑏 = 0	𝑚𝑠/𝜇𝑚* by the noise standard 

deviation. 

 

4.4.2 Cell preparation 

 

The in	vitro  experiment including cell preparation was conducted by our collaborators at 

Vanderbilt University. The measured signal data from the in vitro experiment was given to us to 

test our analysis program. The cell preparation protocol was provided by our collaborators. Human 

breast cancer MDA-MBA-231 cells were purchased from American Type Culture Collection 

(ATCC, Manassas, VA). The cells were cultured in Dulbecco’s modified eagle medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS), 50 units/ml penicillin, and 50 µg/ml 

streptomycin (Invitrogen, CA) under standard culture conditions in a humidified incubator 

maintained at 5% CO2 and 37 °C. Cells were spread every three days by 1:10 dilution and cell 

density was limited to be no more than 8 ×105 cells/ml. All cell samples were collected, washed 

with phosphate buffered saline (PBS), and fixed with 4% paraformaldehyde in PBS for over 2 

hours. After fixation, the cells were washed, and transferred to 0.65ml Eppendorf tubes. The tubes 

were centrifuged (Bio-Rad microcentrifuge, Bio-Rad, CA, US) at 1000g centrifugal force for 2 

minutes. The medium from the top of the tube was carefully removed, and the residual cell pellets 

were used for NMR measurements. A total of four sample tubes of MDA-MBA-231 cells were 

prepared.  

 

4.4.3 In-vitro cell imaging   

 

The in-vitro measurements were performed by our collaborator at Vanderbilt University on a 7.0-

T, 16-cm bore spectrometer (DirectDrive, Varian Inc., Palo alto, CA, USA). Nine b-values evenly 
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distributed between 0 and 2000 s/mm2 were used for both PGSE and OGSE measurements. For 

PGSE experiments, the diffusion gradient pulse duration was δ=4 ms, with gradient pulse 

separation Δ=52 ms.  For the OGSE sequence, the gradient waveform oscillation frequencies were 

at 40, 80, and 120 Hz with δ/Δ=25/30 ms. The same echo time (TE=60 ms) was used for both 

PGSE and OGSE measurements.  

 

 

4.4.4 Diffusion phantom preparation 

 

To ensure that the newly implemented OGSE sequence works as expected on a 3T clinical scanner 

before in-vivo volunteer imaging, the water ADC is measured using the diffusion standard 

phantom 128 (QalibreMD, Boulder, CO, USA) (Figure 4.1). The phantom consists of ten 30-ml 

vials of polymer in aqueous solution at different concentrations and 3 vials of deionized water. 

Since the reference ADC values are provided at temperature 0 ℃ by the National Institute of 

Standards and Technology (NIST), the temperature of the phantom has to be kept at approximately 

0 ℃ at the time of image acquisition. To achieve the desired temperature, crushed ice was added 

to fill the phantom the evening before the measurement. The phantom was placed into a 4 ℃ 

sample refrigerator. To ensure that the temperature of the phantom is at 0 ℃, more ice is added 

before the measurement. A thermocouple probe is used to verify that the temperature of the 

phantom is within 0±0.2℃.  
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Figure 4.1 The standard diffusion phantom used for the characterization of PGSE and OGSE 

sequences. The phantom consists of 30ml vials of aqueous solutions of polymer at different 

concentrations (a). The vials are submerged in an ice water bath to maintain 0 ℃ at the time of the 

measurement (b). 

 

4.4.5 Diffusion phantom imaging 

 

The diffusion standard phantom 128 was imaged with a 32-channel head coil in a 3T scanner 

(Achieva, Philips Healthcare, Eindhoven, NL). DW-MR images were acquired with both PGSE 

and OGSE sequences for b = 10, 100, 300, 600, 900 s/mm* , Td/Te  = 6500/107ms, field of view 

(FOV) 224×224mm2, 20 slices, voxel size 2×2×2 mm3 with SENSE factor of 3.  The diffusion 

gradient parameters 𝛿/	Δ were 70 ms/12ms for PGSE and 52.4ms /34.8ms for OGSE sequence. 

To evaluate the accuracy and consistency of the apparent diffusion coefficient (ADC) from PGSE 

and OGSE, three separate diffusion measurements were performed with the diffusion gradient in 

x, y and z directions. Geometric diffusion was present on the DW-MR images, acquired with EPI 

sequences. Turbo spin echo (TSE) images were therefore acquired to visualize the phantom 

without distortion, using acquisition parameters of  Td/Te = 3921/80ms and voxel size 2×2×2 mm3.  

 

 

a b 
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4.4.6 In-vivo volunteer imaging  

 

In-vivo data were acquired in the liver of one healthy volunteer with a 32-channel body array, on 

a 3 T scanner (Achieva, Philips Healthcare, Eindhoven, NL). The volunteer was screened for 

contraindication of MRI examination and gave informed written consent, under approval from the 

Research Ethics Board (REB) of the Vanderbilt University Institute of Imaging Science. A single 

shot echo-planer imaging technique was used with breath-hold to reduce motion artifacts during 

image acquisition. DW-MR images were acquired with 𝑇f/𝑇A=4500/110ms, FOV 336 ×224mm2, 

number of slices 3, 1.5 × 1.5 × 10 mm3 voxel size, SENSE factor of 3 and fat suppression with 

spectral attenuated inversion recovery (SPAIR). Three set of DW-MR images were acquired, with 

the diffusion gradient parameters summarized in Table 4.1. Note that N represents the number of 

full cycle oscillations of the gradient waveform. 

 

Table 4.1 Image acquisition parameters with 3T clinical scanner 

 𝜹/	𝚫 (ms) N f(Hz) b (𝐬/𝐦𝐦𝟐) 𝚫𝐞𝐟𝐟 

PGSE 12/74 N/A 0 0,200,400,600,800,1000 70 

OGSE 40/56 1 25 0,200,400,600,800,1000 10 

2 50 0,300 5 

 

4.4.7 Image processing and analysis 

 

The PGSE and OGSE diffusion signals from computer simulation, in-vitro, phantom and in-vivo 

measurements were normalized to the b=0 s/mm*  signal before further analysis. Due to the 

abundance of blood vessels in the liver, in-vivo liver measurements were more likely subject to the 

intravoxel incoherent motion (IVIM) effect, caused by the microcirculation within the blood 

vessels. To reduce the IVIM effect on the signal, a linear regression model was fitted to the PGSE 

and OGSE (N=1) signals with b ≥ 200	s/mm*, from which the y-intercept was taken as the new 

b=0 s/mm* signal. The signals with b≠0 s/mm* were then re-normalized to the new b=0 s/mm* 

signal. 
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The apparent coefficient values (ADC) of the central deionized water vial from the standard 

diffusion phantom were computed, by fitting a mono-exponential model to the signals at b= 10, 

300, 600, and 900	s/mm*. The average ADC from the water vial was compared with the reference 

ADC value at 0℃ provided from the National Institute of Standards and Technology.  

 

To obtain the desired parameters including cell radius R	and intracellular volume fraction vij, Eq. 

1 was jointly fitted to the PGSE and OGSE diffusion signals acquired from simulation, in-vitro, or 

in-vivo experiments. To ensure convergence on the global solution, every fit was performed using 

a multi-start technique, from one hundred uniformly distributed random starting points. The final 

parameter estimates were taken as those giving the lowest value of the objective function. The four 

free parameters from Eq. 1 were constrained to the following ranges: 0.1 ≤ R(µm) ≤ 25, 0.01 ≤

vij ≤ 1	, and	0.1 ≤ Dij, Db5k(µm*/ms) ≤ 3.0.   Fits within 1% of the fit constraints were 

excluded from future analysis [23].  All analyses were carried out in MATLAB 2019b, with least 

squares fitting performed using a Trust-Region reflective algorithm (Multistart, lsqcurvefit in 

MATLAB). 

 

4.5 Results 

 

4.5.1 Computer simulations 

 

The estimation accuracy and precision of the model parameters improved with increased SNR, 

with greater improvements on the estimation precision. The accuracy and precision metrics were 

taken as the median and the interquartile range of the difference between the fitted parameters and 

the ground-truth values, respectively. The median difference of fitted 𝑅  and 𝑣#$  were within 

±1µm,±2% , respectively for all SNR levels (Figure 4.2). Another observation from these 

simulation results was that the estimation precision also depended on the simulated radius. Poorer 

estimation precision was observed for  microstructures with larger radius, consistent with previous 

simulation results in literature[23]. Similar behavior was exhibited for simulations with 

microstructures R=4, 5 ,6, 7, and 8	µm at 𝑣#$ =25% and 75% (data not shown). 
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Figure 4.2 The difference between fitted model parameters and the ground truth values for R, vij 

demonstrates improved accuracy and precision as SNR increases from 20 to 80. Fitted parameters 

were extracted from fitting Eq.1 to the diffusion signals from 5 microstructures with R=4,5,6,7, 

8	µm and 𝑣#$ =50%. For each box, the central line (red) indicates the median and the edges of the 

box indicate the 25th and 75th percentiles, respectively. The error bars represent the maximum 

and minimum values.  

 

SNR=20 SNR=35 SNR=50 SNR=80 
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4.5.2 In-vitro cell imaging   

 

Identical estimated model parameters were obtained from our in-house analysis program and the 

analysis program from our collaborators. The estimated cell diameter was comparable to the 

measured cell diameter using the light microscope. A representative example of PGSE and OGSE 

signals for a sample of MDA-MBA-231 cell pellet is demonstrated in Figure 4.3.  The rate of 

signal decay increases as the effective diffusion time decreases for the same set of b-values. A total 

of four parameters Dij, R, vij  and Db5k  were estimated from the joint fit of PGSE and OGSE 

signals. The mean (± standard deviation) of the estimated parameters were 1.2 ±0.3	µm*/ms, 7.7 

±2.6	µm , 0.4 ±0.1 , and 0.9 ±0.2	µm*/ms , respectively. The same parameter values were 

obtained using the analysis from our collaborators. The average diameter of approximately 1000 

cells were determined as 7.9±1.8		µm from the light microscope images.  

 

 
Figure 4.3 Representative fits (solid line) to PGSE (orange square) and OGSE (N=1, yellow 

triangle; N=2 purple circle; N=3, blue hexagon) signals from a single voxel of the MDA-MBA-

231 cell pellet are demonstrated. The diffusion signals decay faster as the effective diffusion time 

decreases. 
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4.5.3 Ice-water phantom imaging 

 
Figure 4.4 Compare to the T2-weighted image acquired from turbo spin echo sequence (a), the 

single shot EPI diffusion sequence (b) at b=0 s/mm2 demonstrated noticeable geometric 

distortions. The center vial with deionized water (red circle) was easily visible and used for ADC 

analysis. 

 

Accurate and consistent ADC values were obtained from both PGSE and OGSE (N=1) sequences.  

The acquired diffusion weighted image (Figure 4.4 b) allowed good image quality for vials with 

deionized water and low polymer concentrations (<30%). The computed mean ADC values of 

deionized water averaged spatially over the selected region of interest were comparable among 

three gradient orientations (Table 2). All average ADC values measured at 0 ℃ were close to the 

reference ADC =1.127× 10,Imm*/s, with a maximum discrepancy of 0.05× 10,Imm*/s along 

the phase encoding direction (y-direction). The ADC values from the OGSE signals were slightly 

greater than the ADCs from PGSE signals.  

   

Table 4.2 ADC measurements of deionized water with PGSE and OGSE sequences 

 ADCx 

(×10-3mm2/s) 

ADCy 

(×10-3mm2/s) 

ADCz 

(×10-3mm2/s) 

Reference ADC 

(×10-3mm2/s) 

PGSE 1.10±0.03 1.12±0.03 1.10±0.03 1.127±0.001 

OGSE (N=1) 1.16±0.04 1.18±0.07 1.12±0.03 1.127±0.001 

a b 
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4.5.4  In-vivo healthy volunteer imaging  

 
The liver from a healthy volunteer could be clearly identified in all three DW-MR from PGSE and 

OGSE sequences (Figure 4.5, red arrow).  The SNR in the liver was approximately 30.  Example 

diffusion signals over a range of b-values from a region-of-interest (ROI) (Figure 4.5, yellow circle) 

in the liver were shown in Figure 4.6.   

 

 
Figure 4.5 A representative example image of liver (pointed by red arrow) from a healthy 

volunteer, acquired with PGSE and OGSE sequences at b=0𝑠/𝑚𝑚*. An example liver ROI was 

drawn (yellow circles). The average diffusion signals from this ROI are shown in Figure 4.6.   

 
Diffusion signals measured at longer diffusion times exhibited bi-exponential signal decay as a 

function of increasing b-values. The diffusion signal acquired with PGSE sequence at Δbcc=70ms 

showed a steep slope of attenuation for b-values from b=0 s/mm2 to b=200s/mm2, followed by a 

slower signal decay at higher b-values (Figure 4.6 a). This bi-exponential signal decay behavior is 

commonly referred to as the IVIM effect, caused by the microcirculatory perfusion of blood within 

capillaries located in the liver [24]. Contrary to the diffusion signals from MDA-MBA-231 cell 

pellet (Figure 4.3), the PGSE signals in the liver presented with much faster signal decay across 

all non-zero b-values, compared to the OGSE signals. This observation suggests that signals at 

longer diffusion time are subjected to greater IVIM effect. To reduce the IVIM effect, a new b = 

0 s/mm2 signal was calculated by fitting a mono-exponential model to the PGSE and OGSE (N=1) 

signals with b ≥ 200	s/mm*, from which the non-b0 signals were then re-normalized to the new 

b = 0 s/mm2 signal. 

 

PGSE (∆eff = 70ms) OGSE (∆eff = 10ms) OGSE (∆eff = 5ms) 
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Figure 4.6 A representative example of signals from PGSE and OGSE from a liver ROI 

demonstrates bi-exponential signal decay as a function of increasing b-values (a). Greater IVIM 

effect was observed for signals at longer diffusion times. Mono-exponential model was fitted to 

signals with b ≥ 200	𝑠/𝑚𝑚* (b) to reduce the IVIM effect. 

 

The expected signal decay behavior from restricted diffusion was recovered after re-normalization 

to the synthesized b = 0 s/mm2 signal (Figure 4.7). For the same b values, signals acquired with 

OGSE with an effective diffusion time of 10ms decayed considerably more than those obtained 

with PGSE at 70 ms. The increase in ADC at shorter diffusion times provides the contrast that 

enables the measurement of cell size. The two-compartment signal model (Eq.1) was jointly fitted 

to the PGSE and OGSE signals to extract model parameters R and vij, with R* = 0.99. 
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Figure 4.7 Average diffusion signal attenuations as a function of increasing b-values for corrected 

PGSE and OGSE signals from an example ROI in the liver. Markers represent the mean signals 

with the error bars as the standard deviations. The solid lines are fitted results using Eq.1. 

 

The parametric R and vij maps (Figure 4.8) overlaid on the PGSE b = 0 s/mm2 image demonstrated 

significant heterogeneity within the liver. The mean ADC of the liver, calculated using PGSE 

signals from b ≥ 200	s/mm*  was determined as (1.05 ± 0.28) × 10,Imm*/s, comparable to 

the ADC values reported in literature of 1.02× 10,Imm*/s to 1.25× 10,Imm*/s[25]–[27].  The 

mean estimated radius and volume fraction were 10.1±	6.3µm and 37%± 24%, respectively. The 

fitted radius is comparable to cell radius reported in literature i.e. ~10-15 µm for human hepatic 

cells [28]. Increased ADC was observed at the center of the liver, with low cell radius and volume 

fraction, possibly caused by the IVIM effect that are not completely corrected. The T2-weighted 

image of the same slice (image not shown) acquired with turbo spin echo MR sequence confirms 

the presence of a major blood vessel, likely the portal vein. Moreover, multiple regions with high 

percentage cell volume fraction exhibited lower ADC values, consistent with our expectations. 
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Figure 4.8 Parametric maps of ADC, R and 𝑣#$ overlaid on the PGSE b=0 s/mm2 image 

demonstrated significant heterogeneity within the liver. The estimated range of ADC and R are 

within the expected values from previous literatures. 

 

4.6 Discussion 

 
In this chapter, we have demonstrated through computer simulation, in-vitro and in-vivo 

experiments that the cell size and volume fraction can be reliably estimated using the IMPULSED 

method. The accuracy of our in-house analysis program for the joint fitting of PGSE and OGSE 

signals was cross validated with the one developed by Dr. Gore’s group in Vanderbilt. Both 

programs returned the same estimated parameters. This non-invasive imaging technique capable 

of characterizing tumor microstructural properties and their changes could help us further 

characterize tumor habitats in soft-tissue sarcoma and assess changes on a cellular level during 

radiotherapy. For example, we observed a decreased average ADC value of certain soft tissue 

sarcoma at the mid-point of the treatment course (week 3), before it increased after the completion 

of treatment. The decreased ADC could be caused by the swelling of the cells, which is the pre-

phase for cell apoptosis, or by increasing cellular density, indicating progression of disease [29]. 

The IMPULSED method would allow us to differentiate these two scenarios at the mid-point of 

the treatment, which could impact future treatment. 

 

The estimation accuracy and precision of model parameters depend on both the SNR and the 

underlying microstructure properties. Our simulation studies have shown that increasing SNR has 

a greater impact on the precision of the estimated parameters than the accuracy, consistent with 

previous simulation results [23]. In addition, greater SNR is necessary to maintain the estimation 
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precision at larger radius. This might be practically important for in-vivo imaging with clinical 

scanners, which could achieve limited SNRs due to the gradient coil strength. For example, at a 

given SNR, different precision should be expected between imaging cancerous cells (R~ 8-10 µm) 

and T-cells (R~ 4 µm). Previous studies have demonstrated that using pre-defined Din values could 

improve fitting stability, leading to better estimation precision at lower SNRs[20]. Techniques 

such as signal averaging can also be used to improve SNRs at the cost of imaging time.  

 
The parameter maps of radius R and volume fractions vij demonstrated heterogeneity in the liver. 

The accuracy of the estimated R and 𝑣#$  requires further validation, possibly by examining 

histological tissue sample under the microscope, which was not possible for healthy volunteers. In 

addition, in-vivo experiment should be repeated on a larger cohort of volunteers to better evaluate 

the robustness and variability of the measurements.  

 
While the IMPULSED technique has been implemented on a 3T clinical scanner, the clinical 

translation of this technique still faces several challenges.  The protocol used for the in-vivo 

measurements requires a minimum gradient strength of 60 mT/m, which is not readily available 

for some clinical MRI systems. For example, the 3T clinical scanner at the McGill University 

Health Center has a maximum gradient strength of 45mT/m.  Limited gradient strength can be 

compensated to reach similar b-values by using a trapezoidal oscillating waveform [30]. In 

additional, recent development in scanner hardware has introduced more powerful gradient coils, 

such as the 3T Siemens Prisma (~80mT/m) and the Human Connectome gradient coil (~300mT/m). 

These advancements can remarkably improve the ability of IMPULSED to probe tumor 

microstructures. The other limitation lies in the availability of the OGSE sequence. Since OGSE 

sequence is not used routinely in the clinic, it has to be implemented separately, which often 

requires a research agreement with the vendor.  

 

4.7 Conclusion 

 
In this chapter, we have demonstrated through computer simulation, in-vitro and in-vivo 

experiments that the cell size and volume fraction can be reliably estimated using the IMPULSED 
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method. The estimated model parameters demonstrated agreement with the ground truth values 

during the simulation experiment. The estimated cell diameters from in-vitro and in-vivo 

experiments were comparable to literature values. This non-invasive imaging technique could help 

us further characterize tumor habitats in soft-tissue sarcoma and assess changes on a cellular level 

during radiotherapy.  
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Chapter 5 

 

5 Microstructure modeling of tumor with two cell 

populations 
 

 

 

 

5.1 Preface 
 

The non-invasive cell size mapping technique in Chapter 4 assumes that the tumor tissue only 

contains a single cell population. This assumption may not be valid for tumors where two cell 

populations co-exist in the same space, such as round cell/myxoid liposarcoma (introduced in 

section 2.1.2).  This chapter presents a proof-of-concept study on the feasibility of estimating cell 

radii and volume fractions of two cell populations, when they co-exist in the same MR voxel. This 

is done by fitting the proposed two-cell population microstructure model to simulated diffusion 

data. Three additional models were proposed to stabilize the fit, which in turn improves the 

robustness of fitting. We have demonstrated for the first time that the cell radii and volume 

fractions of both cell populations can be accurately estimated under specific constraints.  
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5.2 Abstract 
 

Purpose: To propose a method for voxel-wise estimation of cell radii and volume fractions of two 

cell populations, when they co-exist in the same MR voxel, using the combination of diffusion 

weighted MRI and microstructural modeling.  

 

Method: The proposed two-cell population microstructure models were validated using simulated 

diffusion data for a range of microstructures.  The effect of noise was investigated for a subset of 

these microstructures. The accuracy and precision of the estimated model parameters 

𝑅l , 𝑅Y, 𝑣#$,l , 𝑣#$,Y  were evaluated by comparing the estimates to their ground truth values. The 

robustness of the fitting was characterized by the percentage of accepted fits. 

 

Results: The estimation accuracy and precision, and thus the ability to robustly distinguish the two 

cell populations depended on the microstructural properties and SNR.  For a SNR of 50, a 

minimum difference of 3𝜇𝑚 between the radius of the large and small cell populations is required 

for differentiation. Proposed modifications to the two-cell population model, including constrained 

fits, improved robustness over brute-force fitting. 

 

Conclusions: In this proof-of-concept study, we have proposed a diffusion MRI-based method for 

voxel-wise estimation of cell radii and volume fractions of two cell populations, when they co-

exist in the same MR voxel. The ability to reliably estimate cell radii and volume fractions for 

tissue with two cell populations opens exciting avenues of potential applications in both tumor 

diagnosis and treatment monitoring. 
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5.3 Introduction 
 

Characterizing complex histological features such as cellular density/volume fraction and cell size 

is important for an accurate representation of cancerous tumors.  Cell size has been reportedly 

linked to cancer types and grade [1]; and changes in cell size could be a potential early therapeutic 

biomarker for treatment-induced apoptosis [2], [3].  Invasive biopsy is the currently standard-of- 

care to assess microstructural information in the cancerous tumor. However, the small specimen 

size from biopsy might not be representative of the entire tumor, especially in highly 

heterogeneous tumors[4]. In addition, the invasive nature of biopsy makes repeated assessment 

during treatment for monitoring therapy-induced changes unfeasible. To this end, a non-invasive 

imaging technique capable of characterizing tumor microstructural properties and their changes 

would be of great clinical interest to aid cancer diagnosis and treatment response monitoring. 

 

Diffusion-weighted magnetic resonance imaging (DW-MRI) has been recognized as a potential 

tool to probe the tumor microenvironment [4], [5], due to its sensitivity to the Brownian motion of 

water molecules [6]. The mean diffusivity of water molecules can be quantified by the apparent 

diffusion coefficient (ADC) [7], which is related to cellularity [8]–[10]. As a result, ADC analysis 

has been applied to characterized various tumor types and to differentiate malignant from benign 

tumors [4], [11], [12]. The changes in ADC values from pre- to post-treatment have been 

considered as a probable imaging biomarker for monitoring therapy response [13].A number of 

clinical studies have shown that an increased ADC in response to treatment is associated with 

better clinical outcome [14]–[16]. While ADC measurements might be sensitive to microstructural 

changes, ADC only represents the overall water diffusion properties, influenced by multiple 

factors such as cell size, intracellular volume fraction, and intra-/extra-cellular compartment 

diffusivities[17]–[19].  In order to capture these complex histological features, more advanced 

imaging techniques are required.  

 

Recent developments in DW-MRI have enabled the quantification of tissue parameters far below 

the nominal imaging resolution, i.e. microstructural mapping[20]. Advanced DW-MRI methods 

and analysis frameworks, such as IMPULSED (Imaging Microstructural Parameters Using 

Limited Spectrally Edited Diffusion) [21], VERDICT (Vascular, Extracellular and Restricted 
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Diffusion for Cytometry in Tumors) [22] and POMACE (pulsed and oscillating gradient MRI for 

assessment of cell size and extracellular space) [23] have been proposed to map the average cancer 

cell radius 𝑅 and the relative cell volume fraction 𝑣#$, covering the entire tumor volume. These 

techniques have been applied to a number of preclinical in-vitro and in-vivo studies, where the 

estimated mean cell radius from DW-MRI are comparable with measured cell radius assessed by 

light microscopy [18], [24]–[26]. Recently, Xu et al. have conducted the first clinical study for in-

vivo imaging of mean tumor cell size of breast cancer patients[27]. These developments allow 

characterization of the tumor microenvironment and better capture the tumor heterogeneity; 

however, existing methods assume that tumors feature a single cell population, which is not valid 

in many applications. 

 

To address the limitation of the single cell population microstructure model, we propose a method 

for voxel-wise estimation of cell radii and volume fractions of two cell populations, when they co-

exist in the same MR voxel. We investigated the robustness of the method under the influence of 

noise and propose methods to improve the stability of parameter estimation. The ability to reliably 

estimate cell radii and volume fractions for tissue with 2 cell populations opens exciting avenues 

of potential applications in tumor diagnosis and treatment monitoring. For instance, round 

cell/myxoid liposarcoma is composed of high-grade cells (R~10𝜇𝑚) and low-grade cells (R~4𝜇𝑚). 

The amount of the high-grade component is strongly related to tumor grade and changes the course 

of treatment[28], [29]. In addition, this technique could potentially aid the quantification of the 

infiltrating T-cells (R~4𝜇𝑚) to cancerous cells (R~10𝜇𝑚) during immunotherapy[30]. 

 

5.4 Theory 
 

5.4.1 One cell population microstructure model (1P-MM) 

 

Tumor microstructure can be modeled with cancer cells as a single population of impermeable 

spheres[18], [21], [27], [31]. The normalized diffusion MR signal from a population of uniform 

cells can be calculated using the one-population microstructure model (1P-MM): 

 

𝑆/𝑆! = 𝑣#$	𝑆#$(𝑅, 𝐷#$) + (1 − 𝑣#$)	𝑆%&'(𝐷%&')				 (1)	
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where 𝑆#$  and 𝑆%&'  represent the normalized signal from the water inside the cells (restricted 

diffusion) and the extracellular water (hindered diffusion). 𝐷#$ and 𝐷%&' are the intra- and extra-

cellular diffusion coefficients. The water exchange between intra- and extracellular spaces is not 

considered, due to its negligible effect on the estimation of mean cell size [32].   

 

The mathematical expression of the signal 𝑆#$ depends on the pulse sequence, the shape of the 

diffusion gradient, and the cell shape. The analytical expression for 𝑆#$	within impermeable 

spheres, measured with pulsed gradient spin-echo (PGSE) [18] with rectangular gradient field 

pulses is 

 

𝑆#$(𝑃𝐺𝑆𝐸) = exp K−2L
𝛾𝑔
𝐷#$

O
*
P

𝐵$
𝜆$*
{𝜆$𝐷#$𝛿 − 1 + exp(−𝜆$𝐷#$𝛿)

$

+ exp(−𝜆$𝐷#$Δ)(1 − cosh(𝜆$𝐷#$𝛿)}Y		(3) 

The expression for the intracellular signal 𝑆#$  contains terms for the gradient pulse: gradient 

amplitude 𝑔, the gradient pulse duration 𝛿, the separation time between the two diffusion gradients 

Δ , the structure dependent parameters 𝜆$  and 𝐵$ , and the intracellular diffusivity 𝐷#$.  The 

expressions for 𝜆$ and 𝐵$ have been reported in literature [24]: 

 

𝐵$ =
2(𝑅 𝜇$⁄ )*

𝜇$* 	 − 2
,				𝜆$ =

𝜇$*

𝑅*	  

where 𝜇$ is the nth root of the equation 𝜇𝐽I *⁄
1 (𝜇) − "

*
𝐽I *⁄ 	(𝜇) = 	0.  𝐽I *⁄  is the Bessel function of 

order 3/2.  

 

The extracellular diffusion signal can be expressed with a mono-exponential function of 𝐷%&' as: 

 

𝑆%&' 	= exp(−𝑏	 ⋅ 𝐷%&') (4) 
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5.4.2 Two cell population microstructure model (2P-MM) 

 

The 1P-MM (Eq. 1) can be extended to model tissue with two cell populations of different sizes 

and percentage volume fractions by including an additional restricted diffusion compartment: 

 

𝑆/𝑆! = 𝑣#$,l𝑆#$,l(𝑅l , 𝐷#$) + 𝑣#$,Y𝑆#$,Y(𝑅Y, 𝐷#$) + ^1 − 𝑣#$,l − 𝑣#$,Y_𝑆%&'(𝐷%&')	 (5) 

 

where the subscripts 𝑙 and 𝑠 represent the two cell populations of different sizes, i.e. large and 

small cell populations. Compared to four free fitting parameters in the 1P-MM 𝑅, 𝑣#$, 𝐷#$, 𝐷%&', 

the two-cell population microstructure model (2P-MM) has two additional fitting parameters from 

the second cell population : 	𝑅l , 𝑣#$,l , 𝑅Y, 𝑣#$,Y, 𝐷#$, 𝐷%&' .   Stabilization of the fitting quickly 

becomes the primary challenge. Here, we propose two techniques to reduce the number of fitting 

parameters, thus stabilizing the fit.  

 

Stabilization by suppressing signal dependence on diffusion time from small cell population 

 

The diffusion signal over a range of effective diffusion times Δ%PP shows strong dependence on 

cell radius (Figure 5.1). Signal from cells of 𝑅 = 1	or	2	𝜇𝑚 shows little change with Δ%PP. With 

prior knowledge on the anticipated cell sizes, the set of Δ%PP values can be strategically selected 

for the measurement to remove signal sensitivity to small cells, where 𝑆#$,Y ≈ 1. The 2P-MM (Eq. 

5) can then be simplified to: 

 

𝑆/𝑆! = 𝑣#$,l𝑆#$,l(𝑅l , 𝐷#$) + 𝑣#$,Y ⋅ 1 + ^1 − 𝑣#$,l − 𝑣#$,Y_ ⋅ 𝑆%&'(𝐷%&') (6) 

 

This method, referred to as the constrained-2P-MM, reduces the number of fitting parameters and 

allows the estimation of 𝑅l  and 𝑣#$,l  of the large cells and 𝑣#$,Y  of the small cells without any 

sensitivity to 𝑅Y.   
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Figure 5.1 Simulated diffusion signals over a range of diffusion times Δ%PP (for fixed b-value) 

shows strong dependence on cell radii. Signal from cells of small radii (e.g. 1 − 2	µm) shows little 

change over diffusion times. For the 2- cell population model, strategic selection of diffusion times 

removes signal sensitivity to small cells and reduces the number of fitting parameters, producing 

more stable fits. 

 

Stabilization by fixing model parameters 

 

For cells of similar radii, the signal can no longer be selectively desensitized during measurement 

(see Figure 5.1). Simulation results suggest that by fitting the 1P-MM to diffusion signals from 

tissue with two underlying cell populations, the estimated 𝑣#$ approximately yields the total cell 

volume which we can denote as 𝑣#$,:': = 𝑣#$,l + 𝑣#$,Y . This observation holds for multiple 

combinations of cell populations with different radii and % volumes fractions (see Results section, 

Figure 5.3), and can be exploited to reduce the number of free parameters by performing two-step 

fitting process: (1) the diffusion signal is fitted with the 1P-MM to obtain 𝑣#$,:':, and (2) 𝑣#$,:': is 

fixed in the 2P-MM fit, as shown in Eq. 7, which is then fitted to the diffusion signals again to 

obtain the desired parameters. 
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𝑆/𝑆! = (𝑣#$,:': − 𝑣#$,l) ⋅ 𝑆#$,Y(𝑅Y, 𝐷#$) + 𝑣#$,l ⋅ 𝑆#$,l(𝑅l , 𝐷#$) + ^1 − 𝑣#$,:':_ ⋅ 𝑆%&'(𝐷%&')	 (7) 

 

This technique is referred to as the 2-step-2P-MM and allows the direct estimation of 𝑅l, 𝑅Y, and 

𝑣#$,l . The relative volume fraction of the small cell population 	𝑣#$,Y  can be calculated by 

subtracting 𝑣#$,l from 𝑣#$,:':.  

 

5.5 Method 
 

5.5.1 Diffusion signal simulation 

 

 
Figure 5.2 Schematic of the diffusion signal simulation and analysis pipeline. The cells are 

modeled as impermeable spheres of different sizes, where red and grey spheres represent the 

large and small cell populations, respectively. 

The matrix method (Microstructure Imaging Sequence Simulation Toolbox (MISST), UCL) was 

used to simulate PGSE diffusion signals [34], [35]. Tissue with 2 underlying cell populations was 

modeled using impermeable spheres of two different radii and volume fractions (Figure 5.2 red 

and grey spheres). The extracellular matrix is modeled as non-free water tissue with hindered 

diffusion. The intra- and extra-cellular diffusivities 𝐷#$ and 𝐷%&' were set to be "no
!

oY
 and *no

!

oY
, 

respectively. Simulations were performed for two sets of microstructures (Table 5.1). The term 

“microstructure” is used represent tissue model with a single combination of input model 

parameters. The first microstructure set contains 99 microstructures with combinations of 𝑅l =

Simulate diffusion 
signals with MISST 

toolbox 

Fit microstructural 
model to diffusion 

signals 

Extract model 
parameters 
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2, 3, 4, 5, 6, 7, 8, 9, 10	𝜇𝑚 , 𝑅Y = 1	𝜇𝑚 , 𝑣#$,l = 5,10, 15, 20, 25,30, 35,40, 45,  50, 55	%  and 

𝑣#$,Y = 60%−	𝑣#$,l.  For each microstructure, signals were simulated at three effective diffusion 

times Δ%PP = 5.7, 10.7, 66.7	𝑚𝑠 , using b-values from 0 to 2000 oY
no!  in intervals of 250 oY

no! , 

gradient duration 𝛿 = 	4	𝑚𝑠 , and gradient separation Δ = 7, 12, 68	𝑚𝑠 . Similarly, for cells of 

close radii, 66 microstructures (Table 5.1, microstructure set 2) were simulated with combinations 

of 𝑅l = 5, 6, 7, 8, 9, 10	𝜇𝑚 , 𝑅Y = 4	𝜇𝑚 , 𝑣#$,l = 5,10, 15, 20, 25,30, 35,40, 45, 50,55%  and 

𝑣#$,Y = 60%−	𝑣#$,l . Signals were simulated at four effective diffusion times Δ%PP =

	5.7,16.7,36.7,66.7	𝑚𝑠, with 𝛿 = 	4	𝑚𝑠 and Δ = 7,18,38,68	𝑚𝑠. 

 

Table 5.1 Summary of input model parameters for simulated microstructures used in this 

manuscript. Respectively. The term “microstructure” is used represent tissue model with a single 

combination of input model parameters. 

  𝑹 

(𝝁𝒎) 

𝒗𝒊𝒏 

(%) 

𝑫𝒊𝒏/𝑫𝒆𝒙𝒐 

(𝝁𝒎𝟐/𝒎𝒔) 

2P Model 

fitted 

Parameter 

extracted 

Microstructure 

set 1 

Large cells 2:1:10 5:5:55 1/2 Constrained-

2P-MM 

𝑅6 , 𝑣78,6 , 𝑣78,: 

Small cells 1 55: -5:5 

Microstructure 

set 2 

Large cells 5:1:10 5:5:55 1/2 2P-MM,2-

step-2P-MM 

𝑅6 , 𝑅:, 𝑣78,6 , 𝑣78,: 

Small cells 4 55: -5:5 

 

5.5.2 Fitting 

 

The simulated diffusion signals of each microstructure were fitted with the 1P-MM, the 2P-MM 

or a simplified version of 2P-MM. To ensure convergence on the global solution, every fit was 

performed using a multi-start technique, from one hundred random starting points. The final 

parameter estimates were taken as those giving the lowest value of the objective function. The four 

free parameters in the 1P-MM were constrained to the following ranges: 0.1 ≤ 𝑅(𝜇𝑚) ≤ 25,

0.01 ≤ 𝑣#$ ≤ 1, 𝑎𝑛𝑑	0.1 ≤ 𝐷#$, 𝐷%&'(𝜇𝑚*/𝑚𝑠) ≤ 3.0.   Similarly, for the 2P-MM, six free 

parameters were constrained to be within plausible limits: 0.1 ≤ 𝑅l , 𝑅Y(𝜇𝑚) ≤ 25, 0.01 ≤

𝑣#$,l , 𝑣#$,Y ≤ 1, 𝑎𝑛𝑑	0.1 ≤ 𝐷#$, 𝐷%&'(𝜇𝑚*/𝑚𝑠) ≤ 3.0. Fits within 1% of the fit constraints were 

excluded from subsequent analysis [31].  The fitting process was repeated for all microstructure 

combinations and all models, and the estimated radii and volume fractions were compared to the 
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ground-truth values specified in the simulations. All analyses were carried out in MATLAB 2019b 

(The MathWorks,Natick, MA, USA), with least squares fitting performed using a Trust-Region 

reflective algorithm and a multi-start approach for robustness (lsqcurvefit, multistart in MATLAB). 

 

5.5.3 Simulated Influence of SNR 

 

To evaluate the effect of noise on the accuracy and precision of the fitting, Rician noise was added 

to the simulated signals of two subsets of microstructures: (1) 𝑅l = 4, 5, 6, 7, 8, 9, 10	𝜇𝑚, 𝑅Y =

1	𝜇𝑚, 𝑣#$,l = 45%,  𝑣#$,Y = 15%; and (2)  𝑅l = 7, 8, 9, 10	𝜇𝑚, 𝑅Y = 4	𝜇𝑚, 𝑣#$,l = 45%, 𝑣#$,Y =

15%. 1,500 noisy synthetic signals were generated for each microstructure, with the signal-to-

noise-ratio (SNR) defined for the 𝑏 = 0	𝑚𝑠/𝜇𝑚* signal. The SNR was calculated by dividing the 

𝑏 = 0	𝑚𝑠/𝜇𝑚* signal by the Gaussian noise standard deviation. The constrained-2P-MM was 

fitted to the noisy signals of the first subset of microstructures; both the 2P-MM and 2-step-2P-

MM were fitted to the noisy signals of the second subset of microstructures. The accuracy and 

precision of the model parameter estimates were evaluated at four SNRs = 20, 35, 50, 80 for the 

first subset of signals, and at three SNRs = 30, 50, 80 for the second subset, respectively. The 

accuracy was assessed using the mean difference between fitted estimates and the ground truth, 

and precision was assessed using the standard deviation of the fitted values [31]. 

 

5.5.4 Simulated Influence of pre-defined 𝑫𝒊𝒏 

 

In addition to the constrained-2P-MM and 2-step-2P-MM method, the approach of fixing 𝐷#$ to a 

pre-defined value was investigated as a means of improving fit stability. The 2P-MM was fitted to 

the noisy signals (SNR=50) from the microstructures 𝑅l = 7, 8, 9, 10	𝜇𝑚 , 𝑅Y = 4	𝜇𝑚 , 𝑣#$,l =

45%, 𝑣#$,Y = 15%,  with 𝐷#$  fixed at 0.6, 0.8, 1 (truth), 1.2, and 1.4 𝜇𝑚*/𝑚𝑠 . Fitting was 

repeated for 1,500 noisy signals for each microstructure, following the procedure described in 

section 3.2 “Fitting”. The resulting model parameter estimates were compared to the estimates 

from leaving 𝐷#$  as a free parameter. The accuracy metric was taken as the absolute % error 

between each fitted value and the ground truth for each model parameter estimates.  
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5.6 Results 
Before diving into the more complicated models, the mono-exponential diffusion model was first 

evaluated for its ability to describe the tumor microstructure with two underlying cell populations. 

Supplementary Figure S1 shows ADC values from simulated signals in 44 microstructures of large 

and small cells of different radii and volume fractions. Nine microstructures fall into the narrow 

grey band that spans ADC value of (3.00 ± 	0.15) × 10,F	mm*/s, which suggests that ADC 

alone cannot distinguish fundamental variations in the underlying tissue microstructure in the 

presence of bimodal cell distributions 

 

5.6.1 One population model (1P-MM) 

 

The 1P-MM appeared unfit to describe tissue with 2 underlying cell populations, as it tends to 

return an apparent radius R between the true radii of large and small cell populations. As 𝑣#$,l 

increased, the R estimated from the 1P-MM fit lay between the ground truth of 𝑅l and 𝑅Y (Figure 

3a).  The fitted R latched onto the ground truth values of 𝑅Y or 𝑅l when the total cell volume was 

dominated by the small cells (i.e. 	𝑣#$,l/𝑣#$,Y = 5%/55%  ) or large cells (i.e. 𝑣#$,l/𝑣#$,Y =

55%/5%), respectively. A similar trend was observed for the other set of 66 microstructures 

(Figure 3b), where various volumes of large cells were mixed with small cells of 4𝜇𝑚. The 

estimated 𝑣#$ from the 1P-MM consistently yielded the total % volume fraction 𝑣#$,:': (Figures 3c 

and 3d), even in cases where one population is dominant. The mean 𝑣#$ was approximately 60% 

for both sets of microstructures, with max/min 𝑣#$ of 64%/57% and 61%/55% respectively. 
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Figure 5.3 The 1P-MM was fitted to signals from two sets of microstructures (Table 1): 

microstructure set 1 (99 microstructures) (a,c) and  microstructure set 2 (66 microstructures) (b,d). 

Plots show the estimated R of a microstructure (circles, panels a and b) where the red to blue color 

gradient indicates increasing  𝑣#$,l,  and the estimated 𝑣#$ of a microstructure ( hexagons, panels c 

and d) where the green to orange color gradient shows increasing 𝑅l.  The black dashed and black 

dotted lines (a, b) represent the ground truth values of 𝑅l and 𝑅Y, respectively. The blue dot-dashed 

and grey dot-dashed lines (c,d) represent the ground truth values of 𝑣#$,l and 𝑣#$,Y respectively. 

The solid line (c,d) indicates the ground truth value of the total % volume fraction 𝑣#$,:': = 60% 

 

5.6.2 Two population model (2P-MM) 

 

Stabilization by signal suppression from small cell population 

 

Parameters from fits of the constrained-2P-MM (Eq. 6), tested with microstructure set 1 (Table 

5.1) in a noiseless environment, were accurate. The difference maps between the estimated model 

parameters 𝑅l , 𝑣#$,l , 𝑣#$,Y and the ground truth values demonstrates improved accuracy, with the 

b a 

c d 
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mean/max absolute difference of 0.2	𝜇𝑚 /2 𝜇𝑚, 1%/9%, 1%/9%, respectively (Figure 5.4). The 

maximum difference occurred at low 𝑣#$,l of 5% and 𝑅l 	𝑜𝑓	2𝜇𝑚 for all three parameters, where 

the accuracy is poorer. Both 𝑅l  and 𝑣#$,l  tended to be overestimated, as 𝑅l  and 𝑣#$,l  increases, 

where 𝑣#$,Y tends to be underestimated. 

 

 
Figure 5.4 The difference maps of estimated 𝑅l , 𝑣#$,l , 𝑣#$,Y  from the ground truth values 

demonstrated good estimation accuracy. The model parameters were estimated by fitting the 

constrained-2P-MM to diffusion signals of microstructure set 1 (99 microstructures). The color 

brown and blue in the color bar represents overestimation and underestimation respectively. 

 

Brute force fitting with 2P-MM 

 

The model parameters 𝑅l , 𝑅Y , 𝑣#$,l , 𝑣#$,Y  can be accurately estimated for microstructure set 2, 

when 𝑅l > 7𝜇𝑚. The difference maps between the estimated model parameters and the ground 

truth values illustrate poor estimation accuracy, especially when cells of 𝑅l = 5, 6 𝜇𝑚 are mixed 

with cells of 𝑅Y = 4𝜇𝑚 at various volume fractions (Figure 5.5). This observation suggests that 

when the radii of two cell populations are too similar, the 2P-MM is unable to properly characterize 

their radii or volume fractions even in the noiseless environment. As a result, the cell mixtures of 

𝑅l = 5, 6 𝜇𝑚 with 𝑅Y = 4𝜇𝑚 were removed from future analysis. Improved estimation accuracy 

was observed for 𝑅l greater than 7𝜇𝑚, with the mean/max absolute difference for 𝑅l, 𝑅Y, 𝑣#$,l, 

𝑣#$,Y of 0.2	𝜇𝑚/2	𝜇𝑚,  0.3𝜇𝑚/1𝜇𝑚,  0.9%/5%, and 0.9%/5%, respectively. Similar to previous 

observations, the maximum absolute difference for 𝑅l, 𝑣#$,l, 𝑣#$,Y  tended to occur at low 𝑣#$,l and 

𝑅l . For the additional parameter 𝑅Y , the accuracy worsened as the 𝑣#$,l  increased, with the 

maximum absolute difference observed at the highest 𝑣#$,l.  
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Figure 5.5 The difference maps of estimated 𝑅l , 𝑅Y , 𝑣#$,l , 𝑣#$,Y  from the ground truth values 

demonstrated good estimation accuracy for 𝑅l  greater than 7𝜇𝑚. The model parameters were 

estimated by fitting the constrained-2P-MM to diffusion signals of microstructure set 2 (66 

microstructures). The color brown and blue in the color bar represents overestimation and 

underestimation respectively. 

Stabilization by fixing fitting parameters  

 

The precision of parameter estimation was improved by the proposed 2-step-2P-MM.  Fitting with 

the 2-step-2P-MM to noiseless diffusion signals from microstructure set 2 showed little 

improvement, similar to results in Figure 5.5, and are therefore not shown here. Figure 5.6 shows 

a representative example of a subset of 4 microstructures (𝑅l = 7, 8, 9, 10	𝜇𝑚, 𝑅Y = 4	𝜇𝑚, 𝑣#$,l =

45%, 𝑣#$,Y = 15%.), where both models were fitted to the noisy signals  (SNR=50) of these 4 

microstructures. Both the 2P-MM and 2-step-2P-MM yielded similar median difference between 

the fitted parameters and the ground truth values. However, the interquartile range of the estimated 

𝑅l, 𝑅Y, 𝑣#$,Y from 2-step-2P-MM was considerably smaller compared to 2P-MM. 
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Figure 5.6 Comparison of extracted model parameters 𝑅l, 𝑅Y, 𝑣#$,l, 𝑣#$,Y from 2P-MM (green) and 

2-step-2P-MM (pink). The model parameters were extracted by fitting both models to the noisy 

signal (SNR=50) of 4 microstructures with combinations of 𝑅l = 7: 1: 10	𝜇𝑚, 𝑅Y = 4	𝜇𝑚, 𝑣#$,l =

45	% and 𝑣#$,Y = 15%. The difference between fitted model parameters and the ground truth 

values for 𝑅l, 𝑅Y, 𝑣#$,l, 𝑣#$,Y are plotted. For each box, the central line (red) indicates the median 

and the edges of the box indicate the 25th and 75th percentiles, respectively. The error bars 

represent the maximum and minimum values. 

 

5.6.3 Influence of SNR 

 

The parameter estimation accuracy and precision both depended on the level of noise for the 

constrained-2P-MM (Figure 5.7) and the 2-step-2P-MM (Figure 5.8).  The accuracy and the 

precision improved as the SNR increased. At an SNR of 35, the mean difference of fitted Rr, vij,r 

and vij,s were within ±1µm,±5%	and ± 5% respectively (Figure 5.7). Nevertheless, an SNR of 
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50 is necessary to keep the standard deviations under 2µm, 10%, and	10%.  For the second set of 

microstructures, a similar SNR was needed to keep the mean difference of fitted Rr, Rs vij,r and 

vij,s within ±1µm,±1µm,±5%	and ± 5% respectively. At SNR=50, the standard deviation of 

Rr, Rs vij,r and vij,s  was within 2µm, 2µm, 17%, and	16%. 

 

 
Figure 5.7 Influence of noise on fitted model parameters, extracted from fitting the constrained-

2P-MM to simulated noisy signals with SNR = 20, 35, 50, and 80, showing the accuracy and 

precision of the fitted radius of the large cells (Rl) and of the relative volume fraction for both cell 

populations (𝑣#$,l , 𝑣#$,Y).  

 

Precision 

Accuracy 
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Figure 5.8 Influence of noise on fitted model parameters, extracted from fitting the 2-step-2P-MM 

to simulated noisy signals with SNR = 30, 50, and 80 , showing the accuracy and precision of fitted 

radii and the percentage volume fraction for both cell populations. 

Accuracy 

Precision 
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5.6.4 Influence of fixing Din in the model fit 

 

When fitting with a fixed 𝐷#$, the choice of pre-defined 𝐷#$ influences the estimation accuracy 

and precision. Greater percentage errors were observed when 𝐷#$< 1	𝜇𝑚*/𝑚𝑠 for all 4 estimated 

model parameters (Figure 5.9). However, the accuracy of the fitted model parameters using all 

other fixed 𝐷#$𝑠 greater than 1	𝜇𝑚*/𝑚𝑠 was not significantly affected by the choices of 𝐷#$ used 

in the data analysis. The median and interquartile range of the absolute % errors for fixed 𝐷#$ ≥ 

1	𝜇𝑚*/𝑚𝑠 were comparable or slightly lower than that of leaving 𝐷#$ as a free parameter.  

 

 

Figure 5.9 Influence of fixing 𝐷#$  to pre-defined values 0.6, 0.8, 1 (ground truth), 1.2, 1.4 

𝜇𝑚*/𝑚𝑠 on the estimation accuracy and precision is assessed. The absolute % error of the fitted 

𝑅l, 𝑅Y, 𝑣#$,l, 𝑣#$,Y from the ground truth value are plotted for a representative microstructure with 

combinations of 𝑅l = 9	𝜇𝑚, 𝑅Y = 4	𝜇𝑚, 𝑣#$,l = 45	% and 𝑣#$,Y = 15%. For each box, the central 

line (red) indicates the median and the edges of the box indicates the 25th and 75th percentiles, 

respectively. The error bars represent the maximum and minimum values.  
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5.6.5 Comparison of methods 

 

Both 2-step-2P-MM and 2P-MM with fixed 𝐷#$ demonstrated improved fitting robustness, while 

maintaining comparable estimation accuracy and precision to the 2P-MM. Figure 5.10 compares 

the accuracy (Figure 5.10a) and the robustness (Figure 5.10b) of the model parameter estimates 

from 2P-MM, 2-step-2P-MM and 2P-MM with fixed 𝐷#$  (=1, 1.2 and 1.4 	𝜇𝑚*/𝑚𝑠  ). The 

accuracy metric was taken as the median absolute percentage difference between fit result and the 

ground truth, with the boxplots in each panel representing the distribution over 4 microstructures.  

The accuracy improved for both 2-step-2P-MM and 2P-MM with fixed 𝐷#$.  In addition, both the 

2-step-2P-MM and 2P-MM with fixed 𝐷#$  tended to result in a much higher percentage of 

acceptable fits, suggesting higher degree of robustness than the 2P-MM. 

 

 
Figure 5.10 The accuracy and robustness of the 3 models– 2P-MM, 2-step-2P-MM and 2P-MM 

with fixed 𝐷#$  was evaluated. All three models were fitted to the noisy signal (SNR=50) of 4 

microstructures with combinations of 𝑅l = 7: 1: 10	𝜇𝑚 , 𝑅Y = 4	𝜇𝑚 , 𝑣#$,l = 45	%  and 𝑣#$,Y =

15%. The boxplots in each panel represents the distribution over 4 microstructures.  Fits that were 

not within 1% of the fit constraints were considered acceptable fits. 
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5.7 Discussion 
 

This manuscript introduced a method to characterize the tumor microenvironment when two cell 

populations of different sizes and volume fractions co-exist in the same space. This development 

could be useful for applications in diagnosis of complex tumors and assessment of treatment-

induced changes. For example, myxoid liposarcoma is a type of soft-tissue sarcoma characterized 

by a morphological continuum that includes well-differentiated liposarcoma cells (𝑅~3 − 5𝜇𝑚) 

and a hypercellular neoplasm composed of poorly differentiated round cells (R~8-10	𝜇𝑚)[36], 

[37]. The amount of round cell component is directly related to tumor grading, metastasis, and 

survival time[38]. Compared to tumors with less than 5% round cells, tumors with more than 25% 

round cells have 3 times the probability of developing metastasis, which is often treated with 

neoadjuvant radiotherapy before surgery[28].  In addition, as emerging immunotherapy becomes 

a potent treatment for multiple cancers [39]–[41], efforts have been made to visualize and quantify 

immune cell therapy in vivo. Fluorine-19 MRI paired with cell labeling has enabled T-cell imaging 

and quantification up to 3 weeks post-transfer [42]. While Fluorine-19 MRI is a technique with 

much merit, it requires specialized hardware not commonly available in most MRI centres[43].  

Our proposed method based on diffusion-weighted MRI is both non-invasive and uses proton MRI, 

more suitable for clinical translation. 

 

The constrained-2P-MM, 2P-MM and 2-step-2P-MM demonstrated substantial improvement in 

the estimation accuracy of 𝑅l, 𝑅Y, 𝑣#$,l, and 𝑣#$,Y for various microstructures with different radii 

and volume fractions in a noiseless environment. For microstructure set 1, the constrained-2P-

MM yielded mean errors of 0.2	𝜇𝑚, 1%, and 1% between model parameter estimates 𝑅l, 𝑣#$,l and 

𝑣#$,Y and the ground truth, respectively. Similarly, mean errors of 0.2	𝜇𝑚, 0.3	𝜇𝑚, 0.9%, and 0.9% 

for model parameters 𝑅l , 𝑅Y , 𝑣#$,l  and 𝑣#$,Y	were found for microstructure mixture 2. The 

imperfect model parameter estimates without the influence of noise originates from the 

discrepancy between the simulated diffusion signal with MISST and the ideal signal generated by 

the analytical equation used for fitting. Fitting to signal generated using an independent simulation 

tool is a more realistic simulation of the actual data acquisition and analysis, rather than using the 

signal calculated using the analytical signal equation.  
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The estimation accuracy of the proposed fitting model is limited, even in a noiseless environment, 

for the following two scenarios: 1) 𝑅l close to 𝑅Y, and 2) 𝑣#$,l ≫	𝑣#$,Y or 𝑣#$,Y ≫	𝑣#$,l.  When 𝑅l 

is too close to 𝑅Y, the signal dependence on diffusion times (Figure 5.1) becomes too similar to 

detect the subtle difference in radii.  On the other hand, the similarity in volume fractions between 

two cell populations has little effect on accuracy. The fit is poorer when one of the cell populations 

has low volume fraction. This behavior is consistent with previous reports of poorer accuracy and 

precision of model parameters at low volume fractions in 1P-MM [31]. These results could be of 

practical importance in determining the appropriate applications and in longitudinal studies. For 

example, if 𝑣#$,l  is large before treatment and decreases to 5% after treatment, the ability to 

accurately measure 𝑅l would also decrease.  

 

The estimation accuracy and precision of the fitting models depend on the level of noise. As a 

result, the ability to differentiate two cell populations is also SNR dependent. While decent 

accuracy was observed for an SNR of 30 (Figure 5.7, 5.8), an SNR of 50 or greater provides better 

estimation precision. The stability of the fit at different SNRs was also considered. The stability 

was quantified by calculating the percentage of acceptable fits where only cases with greater than 

50% acceptable fits were considered stable [31], [44]. For microstructure subset 1 (Method 

section-simulated influence of SNR), more than 50% fits were acceptable for 𝑅l ≥ 5𝜇𝑚 (with 

𝑅Y = 1𝜇𝑚 ) at an SNR of 35, and for 𝑅l ≥ 4𝜇𝑚  (with 𝑅Y = 1𝜇𝑚 ) at an SNR ≥ 50 .  For 

microstructure subset 2, an SNR of 50 or above was needed to generate stable fits for 𝑅l ≥

7𝜇𝑚	(with	𝑅Y = 4𝜇𝑚)	.  This means that for an SNR of 50, the difference between 𝑅l and 𝑅Y has 

to be greater ≥ 3 𝜇𝑚 for us to robustly differentiate these two cell populations. To determine the 

extract resolution limit of minimal radii difference between two cell populations, a systematic 

study of multiple Δ𝑅 = 𝑅l − 𝑅Y at various volume fractions and SNRs would be of interest for this 

method. Signal averaging could be considered to increase the SNR of higher b-value signals, thus 

reducing the overall SNR requirement [45]. 

 

Both the 2-step-2P-MM and 2P-MM with fixed 𝐷#$improved the estimation accuracy and resulted 

in much higher percentage of acceptable fits, due to their decreased number of fitted parameters. 

Fixing 𝐷#$ has been previously studied for both PGSE and IMPULSED acquisitions [32], [33]. It 

was found that the sensitivity to the intracellular diffusivity is reduced for longer diffusion times 
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(> 1 ms), thus it could not be reliably estimated. As a result, it is possible to fix 𝐷#$ in fitting to 

PGSE and IMPULSED data to increase the stability. In this work, fixing 𝐷#$ led to little effect on 

estimation accuracy for fixed 𝐷#$ ≥ 1	𝜇𝑚*/𝑚𝑠, whereas large estimation errors were obtained for 

fixed 𝐷#$ below its ground truth value (1	𝜇𝑚*/𝑚𝑠). This result is consistent with previous studies, 

which recommend choosing a relatively larger 𝐷#$ than the ground-truth value to maintain the 

estimation accuracy. [32], [33] 

 

Our simulation experiment showed promising results for the characterization of tissue with two 

cell populations. However, 𝑖𝑛	𝑣𝑖𝑡𝑟𝑜 and 𝑖𝑛	𝑣𝑖𝑣𝑜 validation of the proposed model is still required 

before it can become a robust tool in the research or clinical setting. The requirement of the 

gradient coil strength is an important factor to consider during in vitro and in vivo experiments. 

For a PGSE sequence, a gradient strength of approximately 300 mT/m is needed to reach the 

maximum b-value of 2000 s/𝑚𝑚* at the lowest diffusion time of 5.7 ms. A gradient system with 

maximum gradient amplitude > 300 mT/m in a single direction is available for most pre-clinical 

MR scanners[21] [44], which makes in vitro and in vivo experiments using the proposed method 

feasible. Measures could be taken to adapt the current method for clinical applications, to 

accommodate for the limited gradient strength (60-80 mT/m). The cosine-modulated oscillating 

gradient diffusion sequence (OGSE) could be adopted to reach similar b-values with half of the 

gradient strength required for PGSE[3], [21]. Recently, Xu et al. have proposed a trapezoidal 

OGSE sequence, which further reduces the requirement of maximum gradient strength [33]. With 

OGSE sequences, a diffusion time down to 5 ms has been achieved using a human whole-body 3 

T MRI system with a gradient strength < 60 mT/m[33], for limited range of b-values. Further 

investigation is needed to determine the appropriate protocol for clinical applications.  

 

5.8 Conclusion 
 

In this proof-of-concept study, we have proposed a diffusion MRI-based method for voxel-wise 

estimation of cell radii and volume fractions of two cell populations, when they co-exist in the 

same MR voxel. We evaluated their feasibility and robustness through simulation experiments. 

For a minimum difference of 3 𝜇𝑚 in radius between the large and small cell populations and an 

SNR of 50, the radii and volume fractions of both cell populations can be accurately estimated. 
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Three techniques were proposed to improve the stability of the fit, including the constrained-2P-

MM, 2-step-2P-MM and 2P-MM with fixed 𝐷#$. The ability to reliably estimate cell radii and 

volume fractions for tissue with two cell populations opens exciting avenues of potential 

applications in both tumor diagnosis and treatment monitoring. 
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5.9 Supplementary Information 
 

ADC sensitivity to the volume fraction of cells 

 

The apparent diffusion coefficient (ADC) calculated from signals simulated for various 

combinations of large and small cells of different radii shows increasing ADC as the percentage 

of large cells increases. This simulation also shows that individual a specific ADC can 

confoundingly reflect multiple combinations of cells. The narrow grey band indicates an ADC of 

(3.00 ± 	0.15) × 10,F	mm*/s, within which we find the ADC from 9 microstructures of the 

simulated 2 cell populations. 

 
Supporting Figure 5.1 Apparent diffusion coefficient (ADC) of various combinations of large 

and small cells of different radii. The radius of large cells varies from 7 to 10 µm and the small 

cells are always of radius = 4µm . The total % volume of the cells is kept at 60% for all 

combinations. The grey band indicates ADC value of (3.00 ± 	0.15) × 10,F	mm*/s.  
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Chapter 6 
 
6 Detecting the evolving tumor microenvironment 
 

 

 

 

6.1 Preface 

 
Cancer therapy can lead to multiple underlying microstructural variations that yield similar ADC 

values. For example, infiltration of T-cells and tumor progression can both lead to decreased ADC. 

Acellular necrosis can lead to increased ADC. With the proposed two-cell population model 

(Chapter 5), all three scenarios can now be characterized by the appropriate diffusion model. 

However, at the time of image acquisition, the underlying tissue microstructure of a given voxel 

is usually a “black box”. Differentiating the above three post-treatment scenarios remains a 

challenge. In this chapter, we propose a voxel-wise model selection method that chooses the most 

suitable diffusion model among ME-ADC,1P-MM, and 2P-MM within tumors. Understanding the 

suitability of the models may provide information about qualitatively different tumor 

microenvironments, allowing the differentiation of the three post-treatment scenarios. 
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6.2 Abstract 
 

Purpose: Cancer therapy can lead to multiple underlying microstructural variations that yield 

similar ADC values. For example, infiltration of T-cells and tumor progression can both lead to 

decreased ADC. Acellular necrosis can lead to increased ADC. To differentiate these scenarios, 

we propose a voxel-wise model selection method that chooses the most suitable diffusion model 

among the monoexponential ADC (ME-ADC) model, one population microstructure model (1P-

MM) and two population microstructure model (2P-MM) within tumors. Understanding the 

suitability of the models may provide information about qualitatively different tumor 

microenvironments, allowing the differentiation of the three post-treatment scenarios. 

 

Method: The proposed model selection method was tested using simulated diffusion data with 

SNR=50 for a range of microstructures which represents the acellular necrotic tissue, cellular 

tissue with one underlying cell population and cellular tissue with two underlying cell populations. 

The accuracy of the model selection method was evaluated by comparing the classification from 

our proposed method to the ground truth. The accuracy and variability of the estimated model 

parameters were also investigated. 

 

 

Results: The proposed model selection method demonstrates decent classification accuracy, with 

(72±5)%, (86±7)%, and (82±8)% of the noisy iterations correctly classified for the scenarios of 

one-cell populations, two-cell populations and necrosis, respectively.  The parameter maps of cell 

radii and volume fractions demonstrated expected intra-tumoral heterogeneity.   

 

Conclusion: The combination of corrected Akaike information criterion (cAIC) and estimated 

radii was able to differentiate among models of acellular tissue, cellular tissue with one cell 

population, and cellular tissue with two cell populations. This could be used to characterize tumors 

on a voxel level. This technique potentially allows the differentiation of a variety of clinical 

outcomes during therapy including necrosis, T-cell infiltration, and tumor advancement (failure of 

therapy). 
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6.3 Introduction  
 

Quantitative imaging biomarkers extracted from various non-invasive imaging modalities have 

become increasingly important in monitoring tumor progression and assessing therapeutic tumor 

response [1]–[3]. Non-invasive diffusion weighted magnetic resonance imaging (DW-MRI), and 

more specifically the quantitative apparent diffusion coefficient (ADC), have been used to detect 

changes in the tumor microenvironment during cancer treatment, such as radio-, chemo- and 

recently immune therapy[4]–[7]. Therapy induced increases in ADC are often related to the 

reduction of cellularity or cell apoptosis, which is associated with positive clinical outcomes[8], 

[9].  

 

The ADC characterizes the overall water diffusion properties, which could be influenced by a 

number of factors such as cell size, intracellular volume fraction and intra-/extra-cellular 

compartment diffusivities[10], [11]. As a result, multiple underlying microstructural variations can 

lead to similar changes in ADC [12]. For example, cancer therapy could lead to several scenarios 

including  (Figure 6.1)  1) therapy induced necrosis, 2) increased number of cancerous cells due 

to ineffective therapy, and 3) infiltration of modified T-cells (cell radius R~ 4𝜇𝑚) among the 

cancerous cells (R ~8-10𝜇𝑚) in immunotherapy or radiation induced immune-response [13]. The 

last two scenarios are opposed in terms of clinical response, but both cause the ADC to decrease. 

ADC alone cannot distinguish them. A more sophisticated method is required to characterize the 

complex tumor microenvironment.  
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Figure 6.1 Schematic illustration of three possible scenarios after immunotherapy including 1) 

therapy induced necrosis, 2) increased number of cancerous cells due to ineffective therapy, and 

3) infiltration of modified T-cells (cell radius R~ 4𝜇𝑚) to the cancerous cells (R ~8-10𝜇𝑚) in 

immunotherapy or radiation induced immune-response. The diffusion inside the cells is considered 

restricted, and the diffusion in the extracellular space (blue background) is modeled as hindered 

and ascribed a constant diffusion coefficient.  

Advanced DW-MRI methods and analysis frameworks have been proposed to describe the three 

scenarios of tumor microenvironment. The mono-exponential ADC model (ME-ADC) is 

commonly used to characterize diffusion, and is most mathematically appropriate to quantify 

acellular tissue[14]. This model can be applied to any DW-MRI dataset to characterize the average 

diffusion properties. Any change in cellular content can affect the ADC. The ME-ADC is unable 

to capture the underlying tissue microstructures. Multiple DW-MRI analysis techniques assume 

that tumors can be represented by a single type of cell and use the one-cell population diffusion 

microstructural model (1P-MM) to map the average cell radius 𝑅 and percentage volume occupied 

by cells 𝑣#$ . These include IMPULSED (Imaging Microstructural Parameters Using Limited 

Spectrally Edited Diffusion) [15], VERDICT (Vascular, Extracellular and Restricted Diffusion for 

Cytometry in Tumors) [16] and POMACE (pulsed and oscillating gradient MRI for assessment of 

cell size and extracellular space) [17]. In addition, a previous study has proposed a two-cell 

population diffusion microstructural model (2P-MM) for voxel-wise estimation of cell radii and 

Progression of cancer Infiltration of T cells Necrosis 

↓ ADC ↓ ADC ↑↑ in ADC 
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volume fractions of two cell populations, when they co-exist in the same MR voxel [18]. When 

the underlying tissue microstructure is known, these models can be applied to estimate complex 

histological parameters.  However, at the time of image acquisition, the underlying tissue 

microstructure of a given voxel is usually a “black box”. Differentiating the above three post-

treatment scenarios remains a challenge.  

 

Analysis of model suitability can be used to distinguish between tissue. Model selection techniques 

have been developed and applied to different diffusion models to determine their applicability, 

which could infer various tumor microenvironments. For example, a comparison between a 

microstructural model and the monoexponential ADC model has been used to distinguish viable 

tissue in gliomas from necrotic or oedematous regions [19]. Recently, McHugh et al. proposed a 

diffusion model comparison technique to differentiate cellular tissue from necrosis in colon 

carcinoma and to track changes in tissue composition during radiotherapy [20].  While these 

existing techniques allow us to recognize necrosis from cellular tissue, it provides little information 

about whether the cellular tissue contains one or two cell populations.  

 

In this work, we propose a voxel-wise model selection method that chooses the most suitable 

diffusion model among ME-ADC,1P-MM and 2P-MM within tumors. Understanding the 

suitability of the models may provide information about qualitatively different tumor 

microenvironments. We hypothesize that model selection based on the quality of model fit, and 

constraints based on model parameter values, can be use in the differentiation of the three post-

treatment scenarios (Figure 6.1) and become a valuable tool to detect therapy-induced changes. 

The effects of variations in the underlying tissue properties on different fitted microstructural 

parameters are also studied. This technique could potentially serve as a non-invasive imaging 

biomarker capable of quantifying T-cells at the tumor site during immunotherapy, thus predicting 

therapeutic response following immunotherapy.  

 

 

 

 

 



Detecting the evolving tumor microenvironment 144 

6.4 Methods 
 

Simulations were performed to explore the performance of model fitting, and the proposed model 

selection approach. The matrix method (Microstructure Imaging Sequence Simulation Toolbox 

(MISST), UCL) [21] was used to simulate diffusion signals for each tissue microstructure from a  

pulsed gradient spin-echo (PGSE) diffusion MRI sequence [22], [23]. The tissue microstructure 

was characterized in terms of cell radius R, intracellular volume fraction 𝑣#$, and the intra- and 

extra-cellular diffusivities 𝐷#$ and 𝐷%&'. 

 

Diffusion signals were generated for three sets of tissue microstructures (22 microstructures in 

total) with various radii and percentage volume fractions. The cells were modeled as impermeable 

spheres with restricted diffusion; and the extracellular compartment is modeled as non-water tissue 

with hindered diffusion [22]. Microstructures included 1) ten microstructures with a single 

underlying cell population R = 10µm, 𝑣#$= 50%, 60%, and 70%; R = 9 µm, 𝑣#$= 50%, 60%, R=7, 

8µm, 𝑣#$=50%, and  R=7, 8, 9 10 µm, 𝑣#$=45%, 2) ten microstructures with two cell populations 

𝑅l=10µm, 𝑅Y=4µm, 𝑣#$,l= 35%, 40%, 45%, 50%, 𝑣#$,Y= 25%, 20%, 15%, 10%; 𝑅l=8, 9µm, 

𝑅Y=4µm, 𝑣#$,l= 50%, 𝑣#$,Y= 10%, and 𝑅l=7,8,9µm 𝑅Y=4µm, 𝑣#$,l= 45%, 𝑣#$,Y= 15%, and 3) two 

acellular tissues (i.e. necrosis) with different diffusivity 𝐷%&' = 2	µm*/ms and 𝐷%&' = 2.2	µm*/

ms. For cellular tissues (i.e. microstructure set 1 and 2), 𝐷#$ and 𝐷%&' were set to be 1μm2/ms and 

2 μm2/ms respectively. For each tissue microstructure, PGSE signals were simulated at four 

effective diffusion times (Δbcc = 5.7,16.7,36.7, and	66.7𝑚𝑠), using a gradient pulse with duration 

𝛿 = 	4	𝑚𝑠 and gradient separation time Δ = 7,18, 38, and	68	𝑚𝑠. Nine b-values were simulated 

from 0 to 2000 oY
no! , in intervals of 250 oY

no!.  1,600 noisy synthetic signals with SNR of 50 were 

generated for each tissue microstructure with the signal-to-noise-ratio (SNR) defined for the 𝑏 =

0	𝑚𝑠/𝜇𝑚* signal. The SNR was calculated by dividing the 𝑏 = 0	𝑚𝑠/𝜇𝑚* signal by the noise 

standard deviation. The choice of SNR here was based on the lowest SNR that gave robust fitting 

results for the 2P-MM, empirically demonstrated in Chapter 5. 

 

The three diffusion models (ME-ADC, 1P-MM, and 2P-MM) and were separately fitted to the 

signals for each microstructure.  The apparent cell radius 𝑅\ZZ and volume fraction 𝑣#$,\ZZ were 
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estimated from 1P-MM [15]. The radius and volume fraction of the large and small cells 𝑅l,  𝑅Y, 

𝑣#$,l and 𝑣#$,Y were obtained from the 2P-MM [18]. A mono-exponential function was fitted to the 

same data, yielding the ADC. To ensure convergence on the global solution, every fit was 

performed using a multi-start technique, from one hundred random starting points. The final 

parameter estimates were taken as those giving the lowest value of the objective function. The 

model parameters were constrained to the following ranges: 0.1 ≤ 𝑅\ZZ, 𝑅l , 𝑅Y(𝜇𝑚) ≤ 25,

0.01 ≤ 𝑣#$,\ZZ, 𝑣#$,l , 𝑣#$,Y ≤ 1		𝑎𝑛𝑑	0.1 ≤ 𝐷#$, 𝐷%&'(𝜇𝑚*/𝑚𝑠) ≤ 3.0.  Fits within 1% of the fit 

constraints were considered extreme fits and excluded from subsequent analysis [12].  The 𝐷#$ 

value was fixed to 1	𝜇𝑚*/𝑚𝑠 for the 2P-MM to stabilize the fit. All analyses were carried out in 

MATLAB 2019b (The MathWorks, Natick, MA, USA), with least squares fitting performed using 

a Trust-Region Reflective algorithm (lsqcurvefit and multistart in MATLAB).  
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Figure 6.2 Model selection pipeline that choose the most suitable diffusion model among 1P-MM, 

2P-MM and ME-ADC in a three-step process. The corrected Akaike information criterion (cAIC) 

allows the separation between necrosis and cellular tissue. The comparison between fitted radii 

from 1P-MM and 2P-MM further classifies cellular tissue into tissue with one underlying cell 

population and tissue with two underlying cell populations. 

 

The proposed model selection method combined an assessment of the fit quality and of fit 

parameter values in a two-step process (Figure 6.2). First, the corrected Akaike Information 

Criterion (cAIC) was computed to differentiate necrosis from cellular tissue [20], [24]. The model 

that produced the lowest cAIC was preferred. Subsequently, to further characterize cellular tissue, 
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𝑅l and 𝑅Y were compared with 𝑅\ZZ, based on the interpercentile range (IPR) between the 5th and 

95th percentiles of 𝑅\ZZ  estimated by fitting 1P-MM to 1,600 noisy signals. The 1P-MM was 

preferred when  𝑅l − 𝑅Y ≤ IPR of 𝑅\ZZ, suggesting a single underlying cell population.  On the 

other hand, the 2P-MM was selected if 𝑅l − 𝑅Y >  IPR of 𝑅\ZZ , suggesting an underlying 

combination of two cell populations.  

 

To evaluate the accuracy of the model selection method, a digital object mimicking a tumor was 

created encompassing 16 microstructures covering a range of radii and volume fractions. We 

generated the diffusion “image” for b = 1000 𝑠/𝑚𝑚*, the ADC map, the model selection map, 

and the 	𝑅l ,  𝑅Y , 𝑣#$,l  and 𝑣#$,Y  maps. Each “voxel” in the maps contained estimated model 

parameters from 1,600 noisy iterations.  The median of the estimated parameters was also 

calculated. 

 

6.5 Results 
 

Separating necrosis from cellular tissue  

 

The quality of the model fit to simulated data, quantified by the cAIC, differentiated between 

necrosis and cellular tissue models, but was unable to distinguish cellular tissue microstructures 

with single-cell and two-cell populations. This is visible in the distributions of the cAIC over the 

1600 noisy fits (Figure 6.3, bottom row). For the necrotic tissue (Figure 6.3 left column), all three 

models appear to fit the diffusion signals well (row 2-4).  The cAICME_ADC distribution shifted 

towards a lower value compared to the cAIC1P-MM and cAIC2P-MM distributions (Figure 6.3, bottom 

row). For tissue microstructure with a single cell population (Figure 6.3 Middle column), the 

example fits to the diffusion signal (row 2-4) demonstrated visually better fit using the 1P-MM 

and 2P-MM than ME-ADC. The distribution of cAIC from 1P-MM fit (cAIC1P-MM) overlapped 

with the cAIC distribution from 2P-MM fit (cAIC2P-MM). The cAIC distribution from the ME-ADC 

fit (cAICME_ADC), however, was centered around a considerably greater value. The same trend was 

observed for tissue microstructure with two cell populations (Figure 6.3 right column).  
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Figure 6.3 Model selection based on the corrected Akaike information criterion (cAIC) allows the 

distinction between necrotic and cellular tissue. Example fits of three diffusion models, ME-ADC, 

1P-MM and 2P-MM (row 2-4), to diffusion signals from three scenarios simulating tumor 

microstructures are demonstrated. The noisy signals (SNR=50) were simulated at four diffusion 

times ( Δbcc = 5.7,16.7,36.7,66.7𝑚𝑠 ), normalized to signal at b = 0 ms/µm2. The cAIC 

distributions are plotted over 1600 fits to noisy data. 
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Separating tissue with one-cell population from tissue with two cell populations 

 

The tissue microstructure with a single cell population was distinguished from the tissue 

microstructure with two cell populations based on the estimated radii. When both 1P-MM and 2P-

MM were fitted to signal from tissue microstructure with one cell population, the estimated radii 

were approximately equal, i.e. 𝑅\ZZ ≈ 𝑅l ≈ 𝑅Y (Figure 6.4, top row). All three estimated radii 

followed the ground truth values closely (Figure 6.4, top row, dash-dotted lines). For signal from 

tissue microstructure with two cell populations, the fits returned 𝑅Y < 𝑅\ZZ < 𝑅l  (Figure 6.4, 

bottom row). The estimated  𝑅l and 𝑅Y from the 2P-MM followed the true radii values used in 

simulation (Figure 6.4, bottom row, dashed and dotted lines), whereas the estimated 𝑅\ZZ  lay 

between the the true radii values of 𝑅l and 𝑅Y.  
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Figure 6.4 A representative example of model selection based on the fitted radii to differentiate 

cellular tissue with one cell population from tissue (a,c) with two cell populations (b,d). Both 1P-

MM and 2P-MM were fitted to the noisy signals (SNR=50) of tissue microstructure with one cell 

population (𝑅	= 7,8,9,10µm, 𝑣#$	= 45%) and microstructure with two cell populations (𝑅l 	= 

7,8,9,10µm, 𝑅Y	= 4µm, 𝑣#$,l 	= 45%, 𝑣#$,Y	= 15%), where 𝑅\ZZ (gray),	𝑅l (pink) and	𝑅Y (blue) were 

estimated. The dashed and dotted black lines represent the ground truth values for	𝑅l  and	𝑅Y 

respectively. For each box, the central red line indicates the median and the edge of the box 

indicates the 25th and 75th percentiles over 1600 noisy simulations. 
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Figure 6.5 Simulations from the digital “tumor” object mimicking three clinical scenarios over a 

range of radii and volume fractions. ADC values are similar for multiple regions.  The 1P-MM, 

2P-MM and ME-ADC are correctly selected for (72	± 5) %, (86	± 7) %, and (82	± 8) % of the 

noisy iterations after removal of extreme fit values. The parameter maps (middle row) show results 

from individual fits and demonstrate the overall viability of the technique in spite of the variability 

of the parameter estimates. The median parameter maps (bottom row) computed as the median of 

1600 noisy fits of SNR =50 showed intra-tumoral heterogeneity in regions identified as cellular 

tissue. The 𝑅\ZZ, 𝑣#$,\ZZ estimated from 1P-MM are displayed in the 𝑅l and 𝑣#$,l maps. The 𝑅Y 

and 𝑣#$,Y not applicable for the one cell population voxels, are displayed in brown.  

 

Analysis of the simulated tumor mimicking the three tissue scenarios covering a range of radii and 

volume fractions showed similar ADC values for multiple “voxels”.  The parameter maps 

demonstrated the expected intra-tumoral heterogeneity, with contrast in  𝑅l/𝑅\ZZ, 𝑣#$,l/𝑣#$,l  and 

𝑣#$,Y maps in regions identified as cellular tissue (Figure 6.5). The mean % accepted fits were 
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approximately (60	± 6) % across 14 tissue microstructures with varying radii and volume fractions.   

Excluding the extreme values, the (mean ± standard deviation) percentage of noisy iterations 

correctly classified by the model selection method was (72	± 5) %, (86	± 7) %, and  (82	± 8)% 

for the microstructures of one-cell populations, two-cell populations and necrosis, respectively. 

For the tissue microstructure with two cell populations, the model selection accuracy reduced from 

86% to 73% as the radius of the large cells decreased from 10µm to 8µm. Model selection accuracy 

appears to be independent of varying volume fractions.  The parameter maps demonstrated 

considerable variability in the estimated parameters. Despite the variability, intra-tumoral 

heterogeneity for the cellular tissue was observed. The median parameter maps illustrated that the 

radii and volume fractions can be accurately estimated within ±	1𝜇𝑚 and ±	5% repectively. 

 

6.6 Discussion 
 

This manuscript introduced a voxel-wise model selection technique, allowing the classification of 

three different tissue microstructures including acellular and cellular tissue with one or two cell 

populations. Our proposed technique builds on the existing cAIC based model selection method 

[20] and further differentiates cellular tissue into tissue with one cell population and tissue with 

two cell populations, based on the estimated radii. This development may be beneficial for the 

qualitative characterization of tumor heterogeneity and the assessment of treatment induced 

changes. For example, immune system stimulation with T-cell recruitment to the tumor site after 

radiation therapy has been found to associate with positive clinical outcomes[25]. Understanding 

the tumor microenvironment could help determine the success of therapy at an early stage[26]. As 

emerging immunotherapy becomes a potent treatment for multiple cancers [27]–[29], efforts have 

been made to quantify immune cells in vivo. Fluorine-19 MRI paired with cell labeling has enabled 

T-cell imaging and quantification up to 3 weeks post-transfer [30]. While Fluorine-19 MRI is a 

technique with much merit, it requires specialized hardware not commonly available in most MRI 

centres [31].  Our proposed method based on diffusion-weighted MRI and microstructure 

modeling is both non-invasive and uses proton MRI, more suitable for clinical translation.  
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The proposed model selection method demonstrates decent classification accuracy, for the 

scenarios of one-cell populations, two-cell populations and necrosis. The classification accuracy 

for necrotic tissue is consistent with published results[20].  In addition, the accuracy of the model 

selection method depends on the underlying microstructure properties. For tissue microstructure 

with two underlying cell populations, the selection accuracy improved as the difference in radii 

Δ𝑅 between 𝑅l and 𝑅Y increased from 4 µm to 6 µm (Result section, Figure 6.5). This observation 

is caused by the resolution limit of the 2P-MM. Our previous study has shown that the ability to 

distinguish two cell populations is SNR dependent. At a SNR of 50, a minimal radii difference of 

3 µm is required to resolve the two cell populations. As a result, when Δ𝑅  approaches the 

resolution limit, an increased number of cases would be misclassified as one-cell population. 

Higher SNRs could be considered to further improve the classification accuracy.  

 

Aside from the classification accuracy, the median parameter maps demonstrated that model 

parameters can be accurately estimated. A considerable amount of variability in the parameter 

estimates were observed (Figure 6.5 middle row), as well as extreme fits (within 1% of the fitting 

constraints). A similar degree of variability and percentage extreme fits were reported in previous 

simulation studies with the 1P-MM at similar SNR [12], [20], [32]. The median value of estimated 

parameters over noisy iterations were usually used to evaluate accuracy. The variability and 

extreme values in the estimates could present a potential challenge in voxel-wise parameter 

mapping. The extreme values tend to occur, when the magnitudes of the diffusion signals do not 

follow a descending order as the diffusion time decreases, for a given b-value. This behavior 

violates the premise of the diffusion signal model, thus leading to poor fitting results. Under 

experimental condition, three main techniques could be used to address this limitation. The 

simplest one would be to filter out voxels that do not exhibit the desired signal order, which is 

similar to our approach of removing extreme values. Secondly, signal averaging could be applied 

to improve the SNR of the measurement at the cost of scanning time. Lastly, one could also 

increase voxel size to improve the SNR[33].  

 

This simulation study provides the initial step in developing a novel tissue classification method 

for three different clinical scenarios, based on the comparison of different diffusion models. In 

vitro and in vivo experimental validations are necessary before this can become a robust tool in the 
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research or clinical setting. As high-powered gradient systems (> 300 mT/m) are readily available 

for most pre-clinical MR scanners[33], [34], the current protocol can be directly used for 

experimental validations in these systems. Appropriate cell phantoms, capable of representing the 

three scenarios, will be developed for future in vitro validations. For example, established animal 

models and histological analysis of tumor specimen could be used for in vivo validations[35]. 

 

6.7 Conclusion 
 

The combination of cAIC and estimated radii was able differentiate among models of acceular 

tissue, cellular tissue with one cell population, and cellular tissue with two cell populations. This 

could be used to characterize tumors on a voxel level. The relative cell volume fractions can be 

accurately estimated. This technique potentially allows the differentiation of a variety of clinical 

outcomes during therapy including necrosis, T-cell infiltration, and tumor advancement (failure of 

therapy). In addition, the percentage volume fraction of T-cells at the tumor site could potentially 

be quantified, thus allowing clinicians to monitor T-cell infiltration after administration. 
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Chapter 7 

 

7 Conclusion and Future work 
 

 

 

 

7.1 Summary 
 

Most cancerous tumors are heterogenous in their cellular composition and morphology [1]. As the 

cancer therapy paradigm shifts towards personalized medicine, personalized approaches such as 

targeted chemotherapy and dose painting in radiotherapy are developed to provide tailored 

treatments for each tumor and its habitats [2]. This requires us to have a thorough understanding 

of tumor microenvironment, i.e. of tumor habitats and their underlying biophysical structures at a 

cellular level. This thesis presents work on developing novel diffusion MRI analysis and modelling 

frameworks to characterize tumor microenvironment.  

 

The first part of this work focused on the characterization of tumor habitats (Chapter 3). Using 

maps of the apparent diffusion coefficient (ADC), T2 relaxation, and a calculated map representing 

high-b-value diffusion-weighted MRI, we developed a novel reference-tissue-based method for 
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probabilistic classification of up to five tumor habitats. These habitats included hypercellularity, 

high T2 proteinaceous fluid, necrosis, collagenous stroma, and fibrosis. This technique was 

demonstrated in seven patients with biopsy-confirmed soft tissue sarcoma. The classification 

results were qualitatively consistent with histopathology. The identified necrotic regions 

demonstrated quantitative agreement with low FDG uptake regions in FDG-PET. This technique 

allowed us to capture the heterogeneity in the complex tumor microenvironment and to monitor 

their progression during the course of radiotherapy.  

 

While studying treatment induced changes in tumor habitats, we observed a biphasic response in 

ADC values for certain soft tissue sarcoma, with reduced ADC at mid-point of the radiotherapy 

treatment course (week 3), followed by a near doubling after the completion of treatment. The 

decreased ADC could be the result of the swelling of the cells, which is the pre-phase for cell 

apoptosis, or by increasing cellular density, indicating progression of disease [3]. This observation 

inspired us to look beyond the habitats and to further investigate the microenvironment on a 

cellular level.  Quantifying microstructural parameters far below the nominal resolution of MR 

was a difficult task.  We have demonstrated through computer simulations, in-vitro and in-vivo 

experiments that microstructural parameters, such as cell size and volume fraction, can be reliably 

estimated using the IMPULSED method (Chapter 4). The estimated cell radius and volume 

fraction demonstrated agreement with the ground truth values during the simulation experiment. 

The preliminary results of estimated cell diameters from in-vitro and in-vivo experiments were 

comparable to literature values.  

 

Once we ensured that the microstructural parameters could be accurately and robustly estimated, 

we built on the current technique and developed microstructure mapping with two cell populations 

co-existing in the same space (Chapter 5). This work was motivated by recent clinical development 

in immunotherapy, where infiltrating t-cells (~4𝜇𝑚) and cancer cells (~8-12𝜇𝑚) could be seen in 

the same MR voxel. In this computational proof-of-concept study, we proposed a two-cell 

population microstructure model which allowed voxel-wise estimation of cell radii and volume 

fractions of a mixture of two cell populations. It was found that for a minimum difference of 3 𝜇𝑚 

in radius between the large and small cell populations and an SNR of 50, the radii and volume 

fractions of both cell populations could be accurately estimated. Three techniques were proposed 
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to improve the stability of the fit, including the constrained-2P-MM, 2-step-2P-MM and 2P-MM 

with fixed 𝐷#$.  

 

The ability to reliably estimate cell radii and volume fractions for tissue with two cell populations 

opens exciting avenues of potential applications in treatment monitoring. For example, cancer 

therapy could lead to several clinical scenarios including 1) therapy induced necrosis, 2) increased 

number of cancerous cells due to ineffective therapy, and 3) infiltration of modified T-cells to the 

cancerous cells in immunotherapy or radiation induced immune-response [4]. Since the underlying 

tissue microenvironment was usually unknown at the time of data acquisition, a method capable 

of differentiating these clinical scenarios was necessary. To this end, we developed a model 

selection method, based on the combination of cAIC and estimated radii, to differentiate tumor 

microenvironment with acellular tissue, cellular tissue with one cell or two cell populations 

without a priori knowledge. This method was tested with simulated diffusion data. A classification 

accuracy of (72±5)%, (86±7)%, and (82±8)% for the scenarios of one-cell populations, two-cell 

populations and necrosis was achieved.  

 

 

7.2 Future directions 
 

The first part of future work would be focused on the pathological validation of tumor habitats. 

The habitat classification work discussed in Chapter 3, demonstrated qualitative agreement 

between tumor histopathology and identified habitats. Due to the lack of exact spatial information 

of the biopsy location, we were unable to provide a direct validation of our classification method. 

To implement this method in the clinic, the next reasonable step would be to develop an imaging-

tumor pathology pipeline to validate the classification algorithm with pathology findings at known 

location of biopsy. This could potentially be achieved by acquiring the same set of MR-DWI and 

FSE scans before and after the tumor biopsy (Figure 7.1), where biopsy markers could be left at 

the biopsy locations [5]. Overlaying the two sets of images would allow the identification of the 

biopsy locations. The habitat classification at the biopsy location could then be compared with 

pathological findings. The validation process would involve close collaborations with the surgeon 

(who performs the biopsy), the pathologist (who examines the findings), the MR technologist (who 
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performs the scans), and a small cohort of patients. However, after pathological validation, this 

classification algorithm could become a valuable tool for image-guided biopsy. In addition, the 

classification technique could be used to develop alternative radiotherapy treatment plans, where 

each habitat would be given a different amount of radiation. A systematic study on how habitat-

based treatment plans would differ from conventional plans would be worthwhile.  

 
Figure 7.1 Pipeline of the proposed validation study. 

 

The microstructure mapping technique with two cell populations co-existing in the same space 

(Chapter 5) would also require in vitro and in	vivo validation before it could become a robust tool 

in the research or clinical setting. In	vitro validation could be performed with a cell phantom, 

where two cell populations of different cell sizes and volume fractions are mixed together. The 

cells would then be centrifuged to create a cell pellet and imaged with a preclinical MR scanner. 

Alternatively, McHugh et al. has also proposed a biomimetic tumor tissue phantom, composed of 

micron-scale hollow polymer spheres, which could be modified to include two spheres of different 

sizes [6]. In vivo validation could be performed by irradiating an animal model with implanted 

tumor. Radiation could lead to the recruitment of T-cells to the tumor site [7]. T-cells could be 

labeled with perfluorocarbon (PFC) to be visible on Fluorine-19 MR images [4]. The percentage 

volume fraction of T-cells estimated from microstructure imaging with DWI could be compared 

with the percentage volume fractions estimated from Fluorine-19 MR images. 

 

Aside from in vitro and in vivo validations, the microstructure mapping technique could be 

expanded to differentiate two cell populations based on their cell shapes. This could be used to 
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characterize biphasic tumors such as biphasic synovial sarcoma, where spindle cells and glandular 

epithelia cells co-exist in the same tumor [8]. The spindle cells would likely be modeled as 

cylinders, and the glandular cells as spheres. Differentiating cells with different shapes would 

likely involve diffusion tensor imaging, which would add another layer of complexity to the 

existing model. Existing microstructure mapping techniques for neurological applications, such as 

AxCaliber or ActiveAx would be a good starting point to learn to incorporate diffusion 

directionality into the model [9], [10]. 

 

 

 

 

 

  



Conclusion and Future work 164 

References 
 

[1] G. H. Heppner and B. E. Miller, “Tumor heterogeneity: biological implications and 

therapeutic consequences,” 1983. 

[2] F. Meric-Bernstam, C. Farhangfar, J. Mendelsohn, and G. B. Mills, “Building a 

personalized medicine infrastructure at a major cancer center,” Journal of Clinical 

Oncology, vol. 31, no. 15. American Society of Clinical Oncology, pp. 1849–1857, 20-

May-2013. 

[3] D. M. Patterson, A. R. Padhani, and D. J. Collins, “Technology insight: water diffusion 

MRI--a potential new biomarker of response to cancer therapy.,” Nat. Clin. Pract. Oncol., 

vol. 5, no. 4, pp. 220–233, 2008. 

[4] F. Chapelin, C. M. Capitini, and E. T. Ahrens, “Fluorine-19 MRI for detection and 

quantification of immune cell therapy for cancer,” J. Immunother. Cancer, vol. 6, no. 1, p. 

105, Dec. 2018. 

[5] K. Kubota, N. Gomi, T. Wakita, H. Shibuya, M. Kakimoto, and T. Osanai, “Magnetic 

resonance imaging of the metal clip in a breast: safety ana its availability as a negative 

marker,” Breast Cancer, vol. 11, no. 1, pp. 55–59, Jan. 2004. 

[6] D. J. McHugh et al., “A biomimetic tumor tissue phantom for validating diffusion-

weighted MRI measurements,” Magn. Reson. Med., vol. 80, no. 1, pp. 147–158, Jul. 2018. 

[7] H. de A. Carvalho and R. C. Villar, “Radiotherapy and immune response: the systemic 

effects of a local treatment,” Clinics, vol. 73, no. Suppl 1, 2018. 

[8] C. Fisher, “Synovial sarcoma,” Annals of Diagnostic Pathology, vol. 2, no. 6. W.B. 

Saunders, pp. 401–421, 01-Dec-1998. 

[9] Y. Assaf, T. Blumenfeld-Katzir, Y. Yovel, and P. J. Basser, “AxCaliber: A method for 

measuring axon diameter distribution from diffusion MRI,” Magn. Reson. Med., vol. 59, 

no. 6, pp. 1347–1354, 2008. 

[10] E. Panagiotaki, T. Schneider, B. Siow, M. G. Hall, M. F. Lythgoe, and D. C. Alexander, 

“Compartment models of the diffusion MR signal in brain white matter: A taxonomy and 

comparison,” Neuroimage, vol. 59, no. 3, pp. 2241–2254, 2012. 

 



7.2 Future directions 165 

 
 
 
8 Appendix A 
Approval for in-vivo MRI studies 

 

 

 
Studies involving human subjects require review and approval by the appropriate board. Ethics 

approval for the habitat classification of soft-tissue sarcoma, involving patients has been 

approved by the Research Ethics Board of the McGill University Health Center. The letter of 

approval is reproduced on the next page. 
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