
 

 

 

Towards Real-Time CFD Simulation of In-Flight Icing 

via Reduced-Order Modeling 
 

 

 

Zhao Zhan 

 

 

 

Department of Mechanical Engineering 

McGill University 

Montreal, Québec 

August, 2016 

 

 

 

A thesis submitted to McGill University in partial fulfillment of the requirements of the degree 

of Doctor of Philosophy 

© Zhao Zhan, 2016 



ii 

 

ACKNOWLEDGEMENTS 

I would like to thank my supervisor, Professor Wagdi G. Habashi, for giving me the 

opportunity to work on this interesting and challenging research topic at McGill University’s 

CFD Laboratory, and for mentoring and supporting me throughout the course of my research. I 

would also like to thank my co-supervisor, Professor Marco Fossati, who helped me to advance 

my research via valuable advice and in-depth discussions.  

I would like to express my gratitude to our system administrator, Jesse Stacey, for solving 

all software/hardware related issues in a timely manner. I also express my gratitude to the staff of 

Newmerical Technologies International (now ANSYS-Montreal) for providing suggestions in 

using their software package FENSAP-ICE. In particular, thanks to Jian Chen for his help in 

mesh generation for the complex regional jet geometry. Additionally, I appreciate the helpful 

discussions with Dr. Isik Ozcer.  

I also wish to acknowledge the Natural Sciences and Engineering Research Council of 

Canada for funding through an Industrial Research Chair. Moreover, I am grateful to Compute 

Canada and Calcul Québec for the use of their supercomputer resources, and for the excellent 

technical support they have provided. 

Additionally, I am thankful to my colleagues in CFD Lab for creating a positive and 

interactive research environment. A special thanks goes to David Bilodeau for assisting in 

reviewing the thesis.  

Lastly, I give my heartfelt gratitude to the most important people in my life, my parents and 

my husband. Their love, encouragement and support are the greatest motivation for my pursuit of 

excellence.  



iii 

 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ..................................................................................................... ii 

TABLE OF CONTENTS ........................................................................................................ iii 

NOMENCLATURE .............................................................................................................. vii 

Abbreviations ..................................................................................................................... vii 

Symbols ............................................................................................................................ viii 

LIST OF FIGURES ............................................................................................................... xii 

LIST OF TABLES ................................................................................................................ xvi 

ABSTRACT ......................................................................................................................... xvii 

RÉSUMÉ .............................................................................................................................. xix 

CHAPTER 1 INTRODUCTION .......................................................................................... 1 

1.1 Motivation and objective .......................................................................................... 1 

1.1.1 Icing certification ............................................................................................... 2 

1.1.2 Icing effects in flight simulators ........................................................................ 4 

1.1.3 Thesis objective ................................................................................................. 5 

1.2 Literature review ....................................................................................................... 6 

1.2.1 Reduced-order modeling ................................................................................... 6 

1.2.2 Interpolation-based ROM .................................................................................. 9 

1.2.3 Local reduced-order modeling ......................................................................... 11 



iv 

 

1.2.4 Sampling of the design space .......................................................................... 12 

1.3 Thesis contributions ................................................................................................ 13 

1.3.1 Algorithmic advances ...................................................................................... 13 

1.3.2 Engineering contributions................................................................................ 14 

1.4 Thesis outline .......................................................................................................... 14 

CHAPTER 2 METHODOLOGIES .................................................................................... 16 

2.1 Reduced-order modeling via POD and Kriging...................................................... 16 

2.1.1 Proper orthogonal decomposition .................................................................... 16 

2.1.2 Multi-dimensional interpolation: Kriging ....................................................... 18 

2.2 Gradient-based optimization method ...................................................................... 22 

2.2.1 Selection of search direction............................................................................ 23 

2.2.2 Determine step length ...................................................................................... 24 

2.3 Local POD using machine learning algorithms ...................................................... 26 

2.3.1 The role of machine learning ........................................................................... 26 

2.3.2 K-means clustering .......................................................................................... 27 

2.3.3 Logistic regression ........................................................................................... 28 

2.4 Error driven iterative sampling method .................................................................. 30 

2.4.1 Centroidal Voronoi tessellation ....................................................................... 32 

2.4.2 Leave-one-out cross-validation ....................................................................... 35 

2.5 CFD-icing tools ....................................................................................................... 36 



v 

 

2.5.1 The FENSAP-ICE package ............................................................................. 36 

2.5.2 Configuration for icing calculation .................................................................. 36 

2.6 Computational cost and parallelization ................................................................... 37 

2.6.1 Computational cost .......................................................................................... 37 

2.6.2 Parallel computations ...................................................................................... 38 

CHAPTER 3 TWO-DIMENSIONAL ANALYSIS ............................................................ 40 

3.1 Continuous maximum ............................................................................................. 42 

3.1.1 Initial sampling and the snapshots ................................................................... 42 

3.1.2 Iterative sampling based on global ROM ........................................................ 46 

3.1.3 Local ROM and error driven sampling ............................................................ 48 

3.1.4 Comparison of local vs. global ROM .............................................................. 52 

3.2 Intermittent maximum ............................................................................................ 53 

3.2.1 Determination of local ROM ........................................................................... 54 

3.2.2 Error driven iterative sampling ........................................................................ 56 

3.3 Discussion ............................................................................................................... 61 

CHAPTER 4 THREE-DIMENSIONAL ANALYSIS ........................................................ 62 

4.1 Exploration of the continuous maximum icing envelope ....................................... 62 

4.1.1 Initial sampling and the snapshots ................................................................... 64 

4.1.2 Error driven sampling and local ROM ............................................................ 67 

4.1.3 Complete exploration of the CM ..................................................................... 70 



vi 

 

4.2 Aerodynamic degradation of an ice-contaminated regional jet .............................. 72 

4.2.1 Parameters of the analysis and iterative sampling ........................................... 75 

4.2.2 Aerodynamic analysis for an aborted descent ................................................. 79 

4.2.3 Aerodynamic degradation: icing encounters flight simulator ......................... 91 

CHAPTER 5 CONCLUSIONS ........................................................................................... 93 

REFERENCES ...................................................................................................................... 95 

 

  



vii 

 

NOMENCLATURE 

Abbreviations 

AoA   Angle of Attack 

BFGS  Broyden, Fletcher, Goldfarb and Shanno method 

CFD   Computational fluid dynamics 

CM   Continuous maximum 

CPU  Central processing unit 

CVT   Centroidal Voronoi tessellation 

DoE  Design of experiments  

EFD   Experimental fluid dynamics  

FAA   Federal Aviation Administration  

FFD   Flight fluid dynamics 

GA   Genetic algorithm 

GPU   Graphics processing unit 

IAS   Indicated air speed 

IM   Intermittent maximum 

LHS   Latin hypercube sampling 

LOOCV   Leave-one-out cross-validation 

LR   Logistic regression 

LWC   Liquid water content 

MPI  Message Passing Interface 

MVD   Median volumetric diameter 

NASA   National Aeronautics and Space Administration 



viii 

 

N-S   Navier-Stokes 

NTSB   National Transportation Safety Board 

PA  Pressure altitude 

PDE  Partial differential equations 

POD   Proper orthogonal decomposition 

QN  Quasi-Newton 

RBF  Radial basis function 

RJ   Regional jet 

ROB   Reduced-order basis 

ROM   Reduced-order modeling 

TAS   True air speed 

TRL   Technology Readiness Levels 

Symbols 

𝑁𝐷   Dimension of design space (parameter space) 

𝑁𝑆   Number of samples (snapshots) 

𝑁𝑃   Number of data points contained in a snapshot 

Design of experiments 

Ω ⊆ ℝ𝑁𝐷  Open set 

𝐳 ∈ Ω   Generator 

�̂� ∈ Ω  Voronoi region 

𝜌(∙)  Density function 

𝐳∗ ∈ Ω  Mass centroid of Voronoi region �̂� 

𝑊 ∈ ℝ𝑁𝐷  Discrete set of points 



ix 

 

ℱ(⋅)   Energy/cost function 

𝜇    Mean of Gaussian distribution 

𝜎2   Variance of Gaussian distribution 

𝜆    Rate parameter of exponential distribution 

Proper orthogonal decomposition 

𝑼 ∈ ℝ𝑁𝑃  Observation/snapshot 

�̅� ∈ ℝ𝑁𝑃  Arithmetic mean  

�̃� ∈ ℝ𝑁𝑃  Snapshot deviation from mean 

𝝋 ∈ ℝ𝑁𝑃  POD basis 

𝐑 ∈ ℝ𝑁𝑆×𝑁𝑆  Correlation matrix between snapshots 

𝜷 ∈ ℝ𝑁𝑆  Eigenvector of correlation matrix 𝐑 

𝜆   Eigenvalue of correlation matrix 𝐑 

𝐸    Energy content 

𝑀    Number of modes from truncation  

𝛼   Mode coefficient 

𝐱δ ∈ ℝ𝑁𝐷  Untried input condition 

𝛼𝛿   Mode coefficient at untried input condition 

Kriging 

𝐱 ∈ ℝ𝑁𝐷   Input parameter defining observation condition 

𝑦    Observed function value  

𝒚 ∈ ℝ𝑁𝑆   Vector of observed function values 

𝑌   Random variable 

𝒀 ∈ ℝ𝑁𝑆  Vector of random variables 



x 

 

𝐑 ∈ ℝ𝑁𝑆×𝑁𝑆  Correlation matrix between random variables 

𝜎2   Covariance of random variable 𝑌 

𝜇    Mean of random variable 𝑌 

�̂�2   Estimated covariance  

�̂�   Estimated mean 

𝜽 ∈ ℝ𝑁𝐷  Weight parameter 

𝐿(⋅)  Concentrated log-likelihood function 

𝑠2   Mean square error of Kriging predictor 

Machine learning 

𝐽(⋅)  Objective function / distortion measure 

𝑟    Binary indicator 

𝝁 ∈ ℝ𝑁𝑃   Cluster center  

𝑆   Training set 

𝑡    Label of the class 

𝜙(⋅)  Basis function 

𝑁𝐹   Number of features 

𝐺   Polynomial degree 

𝒞   Class 

𝑝    Posterior probability 

𝑦   Predicted posterior probability 

𝜎(⋅)   Logistic sigmoid function 

𝒘 ∈ ℝ𝑁𝐹   Model parameter 

𝐽(⋅)  Penalized cost function  



xi 

 

𝜆    Regularization coefficient  

Unconstrained minimization  

𝑓(⋅)   Objective function 

𝜽0 ∈ ℝ𝑁𝐷  Initial guess  

𝒑 ∈ ℝ𝑁𝐷   Search direction  

∇2𝑓  Hessian matrix 

𝑩 ∈ ℝ𝑁𝐷×𝑁𝐷 Approximation to Hessian matrix 

𝛼   Step length 

𝜙(∙)   Step length function 

Others  

𝐶𝐿   Lift coefficient 

𝐶𝐷   Drag coefficient  

𝐶𝑀   Pitching moment coefficient 

𝜀𝑚𝑎𝑠𝑠  Error of mass of ice 

𝜀𝐶𝐿
  Error of 𝐶𝐿 − 𝛼 curve 

‖⋅‖  Euclidean norm 

|⋅|   Absolute value 

𝐿∞  Infinity norm 

Units 

ft    Foot 

kt   Knot (1 knot = 1 nautical mile per hour) 

  



xii 

 

LIST OF FIGURES 

Figure 1-1: Appendix C envelopes: continuous maximum (left); intermittent maximum 

(right). ............................................................................................................................................. 2 

Figure 2-1: Flowchart of error driven iterative sampling. ..................................................... 32 

Figure 2-2: Flowchart of LOOCV. ........................................................................................ 35 

Figure 2-3: One-shot, multi-shot and unsteady ice accretion configuration. ......................... 37 

Figure 3-1: Hybrid mesh around the GLC305 airfoil. ........................................................... 41 

Figure 3-2: Initial sampling of the CM. ................................................................................. 43 

Figure 3-3: Glaze ice and the associated CL - α curve (left); Mach number contours (right). 44 

Figure 3-4: Rime ice and the associated CL - α curve (left); Mach number contours (right). 44 

Figure 3-5: No-ice and the associated CL - α curve (left); Mach number contours (right). ... 45 

Figure 3-6: Eigenvalues vs. modes convergence for shape of ice (left) and CL - α curve 

(right). ........................................................................................................................................... 45 

Figure 3-7: Global ROM LOOCV errors after the first sampling iteration: mass of ice (left); 

CL (right). ...................................................................................................................................... 47 

Figure 3-8: Global ROM LOOCV errors of the sixth sampling iteration: mass of ice (left); 

CL (right). ...................................................................................................................................... 47 

Figure 3-9: Decision boundaries identified by supervised learning (left); snapshots and 

clustering after 12 iterations (right). ............................................................................................. 49 

Figure 3-10: Local ROM LOOCV error after 12 iterations (left); mass of ice variation 

obtained from 3,000 ROM solutions (right). ................................................................................ 50 

Figure 3-11: Local ROM LOOCV error after 12 iterations (left); aerodynamic degradation in 

terms of loss of CL,max obtained from 3,000 ROM solutions (right). ............................................ 51 



xiii 

 

Figure 3-12: Error reduction history throughout iterative samplings: mass of ice (upper); CL 

(lower). .......................................................................................................................................... 53 

Figure 3-13: Initial sampling of the IM. ................................................................................ 54 

Figure 3-14: Decision boundaries defined by supervised learning. ....................................... 55 

Figure 3-15: Local ROM LOOCV errors on 94 snapshots: mass of ice (left); CL (right). .... 56 

Figure 3-16: Snapshots and clustering after 11 iterations. ..................................................... 57 

Figure 3-17: Local ROM LOOCV error after 11 iterations (left); mass of ice variation 

obtained from 3,000 ROM solutions (right). ................................................................................ 58 

Figure 3-18: Local ROM LOOCV error after 11 iterations (left); aerodynamic degradation in 

terms of loss of CL,max obtained from 3,000 ROM solutions (right). ............................................ 59 

Figure 3-19: Error reduction history throughout iterative samplings: mass of ice (upper); CL 

(lower). .......................................................................................................................................... 60 

Figure 4-1: Geometry and mesh of a generic RJ. .................................................................. 63 

Figure 4-2: Continuous maximum icing envelope, with initial sampling. ............................ 65 

Figure 4-3: Contours of ice thickness, along with ice shape comparisons between ROM and 

CFD, glaze ice. .............................................................................................................................. 65 

Figure 4-4: Contours of ice thickness, along with ice shape comparisons between ROM and 

CFD, rime ice. ............................................................................................................................... 66 

Figure 4-5: Contours of ice thickness, along with ice shape comparisons between ROM and 

CFD, trace or no ice. ..................................................................................................................... 66 

Figure 4-6: Eigenvalues vs. modes convergence for shape of ice. ........................................ 67 

Figure 4-7: Global ROM LOOCV errors: the first sampling iteration with 36 snapshots (left); 

the fourth sampling iteration, with 60 snapshots (right). .............................................................. 68 



xiv 

 

Figure 4-8: Snapshots and clustering after 6 iterations, with 80 snapshots (left); local ROM 

LOOCV error after 6 iterations (right). ......................................................................................... 69 

Figure 4-9: Snapshots and clustering for the last sampling iteration, with 103 snapshots (left); 

local ROM LOOCV errors for the last sampling iteration (right). ............................................... 70 

Figure 4-10: Classification of 1,000 target conditions (left); mass of ice variation obtained 

from 1,000 ROM solutions (right). ............................................................................................... 71 

Figure 4-11: Ice shape considered for aerodynamic analysis. ............................................... 73 

Figure 4-12: Flow over iced RJ. ............................................................................................ 74 

Figure 4-13: Flow over clean RJ. ........................................................................................... 74 

Figure 4-14: Initial sampling of 84 snapshots. ...................................................................... 76 

Figure 4-15: Eigenvalues vs. modes convergence: pressure (left); shear stress (right). ........ 77 

Figure 4-16: LOOCV error of the initial sampling, pressure field (left) and shear stress field 

(right) over iced RJ. ...................................................................................................................... 78 

Figure 4-17: LOOCV error of the final sampling, pressure field (left) and shear stress field 

(right) over iced RJ. ...................................................................................................................... 78 

Figure 4-18: LOOCV error of the final sampling, pressure (left) and shear stress (right) of 

clean RJ. ........................................................................................................................................ 79 

Figure 4-19: Flight path simulating an aborted descent. ....................................................... 80 

Figure 4-20: ROM vs. CFD comparison of pressure and shear stress, over iced geometry, 

target point 13. .............................................................................................................................. 84 

Figure 4-21: ROM vs. CFD comparison of pressure and shear stress, over clean geometry, 

target point 13. .............................................................................................................................. 86 



xv 

 

Figure 4-22: ROM vs. CFD comparison of pressure and shear stress, over iced geometry, 

target point 21. .............................................................................................................................. 88 

Figure 4-23: ROM vs. CFD comparison of pressure and shear stress, over clean geometry, 

target point 21. .............................................................................................................................. 90 

Figure 4-24: Aerodynamic degradations in CL, CD and CM. .................................................. 92 

Figure 4-25: Aerodynamic penalty for ice-contaminated RJ. ................................................ 92 

 

  



xvi 

 

LIST OF TABLES 

Table 2-1: Summary of search directions .............................................................................. 23 

Table 3-1: Summary of computational cost (CM exploration) .............................................. 52 

Table 3-2: Summary of computational cost (IM exploration) ............................................... 59 

Table 4-1: Computational cost for CM exploration for the RJ .............................................. 72 

Table 4-2: Flight conditions parameters, with their corresponding ranges ........................... 75 

Table 4-3: Flight conditions parameters on RJ flight path .................................................... 81 

Table 4-4: Field variables’ error of targets ............................................................................ 81 

Table 4-5: Computational cost of aerodynamic analysis for the RJ ...................................... 82 

Table 4-6: Integrated variables’ error at various target points ............................................... 91 



xvii 

 

ABSTRACT 

Computational fluid dynamics (CFD) is playing a rapidly growing role in the aero-icing 

certification process. However, three-dimensional (3D) viscous turbulent CFD-icing simulations 

of complete aircraft are prohibitive, in particular parametric studies where the cost of repeated 

calculations could become overwhelming. A reduced-order modeling (ROM) approach is 

proposed to explore the complete icing envelopes, with comparable accuracy to CFD. 

The ROM approach uses a limited, but strategically selected, number of snapshots (solutions 

obtained at various operating conditions) of the complex icing problem, and extracts a basis of 

vectors (or modes) that represent its most fundamental physical features. Proper orthogonal 

decomposition (POD) is adopted to extract modes from the snapshots. A linear combination of 

the POD modes can be subsequently used to obtain solutions for conditions different than the 

snapshots, with coefficients obtained via multi-dimensional interpolation. In regard to the 

continuous and intermittent maximum icing envelopes, a local POD approach, using machine 

learning algorithms, is developed. It clusters similar snapshots and delimits ice-type regions 

within the envelope, such that distinct physical features can be extracted separately. An error-

driven iterative sampling method combining a greedy approach and a centroidal Voronoi 

tessellation sampling technique is developed to position additional snapshots in the regions of 

high nonlinearity, finding a good balance between accuracy and the total number of snapshots. 

The proposed ROM framework and iterative sampling methodology is first assessed on an 

airfoil. It is demonstrated that the continuous and intermittent maximum icing envelopes can be 

explored via ROM in terms of both shape/mass of ice and the associated lift coefficient curves. 

The methodology is then applied, for the first time to the best knowledge of the author, to a 
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detailed aero-icing study of a regional jet, in terms of: 1) the “complete” exploration of the 

continuous maximum icing conditions for the shape/mass of ice, and 2) its aerodynamic 

degradation (changes in lift, drag and pitching moment) due to ice contamination during holding 

around an airport, and the consequent effect during descent and aborted landing. The results 

strongly support the drive to incorporate more CFD information into in-flight icing certification 

procedures as well as pilot training programs, leading to increased aviation safety. 
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RÉSUMÉ 

La mécanique des fluides numérique (CFD) joue un rôle de plus en plus important lors du 

processus de certification du givrage en vol. Toutefois, la prédiction du cumul de glace sur un 

aéronef entier est trop coûteuse, particulièrement lors d’analyses paramétriques pour lesquelles le 

coût de calculs répétitifs peut devenir prohibitif. Un modèle d'ordre réduit (MOR; ROM en 

anglais) est proposé pour balayer à coût modeste la plage entière de l’enveloppe de certification, 

tout en offrant une précision comparable à la CFD. 

La méthode MOR utilise un nombre limité mais stratégiquement sélectionné de solutions, 

dites prises ou snapshots, obtenues à différentes conditions opérationnelles du problème et en 

extrait une base de valeurs propres (ou modes) représentant les caractéristiques physiques 

fondamentales du système. Une décomposition orthogonale propre (POD) est adoptée pour 

extraire les modes de ces prises. Une combinaison linéaire des modes est par la suite utilisée 

pour obtenir des solutions à des conditions autres que celles des prises, par interpolation 

multidimensionnelle. En ce qui concerne les domaines de givrage maximaux continus et 

intermittents, une décomposition orthogonale propre locale, utilisant des algorithmes 

d'apprentissage automatique, est développée. Cette méthodologie permet la partition de prises 

similaires et la délimitation de différentes régions selon le type de glace, de telle sorte que leurs 

caractéristiques physiques distinctes peuvent être traitées séparément. Une méthode 

d'échantillonnage itératif combinant un algorithme glouton (dit greedy en anglais), et une 

technique de partition d'échantillonnage de type centroïde de Voronoï, sont développées pour 

finement positionner des prises additionnelles dans les régions de forte non-linéarité, tout en  

maintenant un juste équilibre entre la précision et le nombre total de prises. 
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L’approche ROM et la méthodologie d'échantillonnage itératif sont d’abord évaluées pour 

un profil aérodynamique, et il est démontré que les enveloppes de givrage maximum-continu et 

intermittent peuvent être explorées via ROM pour prédire la forme et la masse de glace, ainsi que 

la portance. La méthode est par la suite appliquée, pour la première fois au meilleur des 

connaissances de l'auteur, à l’étude détaillée de l’aéro-givrage d'un jet régional, en termes de: 1) 

l'exploration "complète" des conditions de givrage maximales continues pour la forme/masse de 

glace et 2) la dégradation aérodynamique (changement de portance, de traînée et de moment de 

tangage) en raison de l’accumulation de glace lors de survol prolongé d’un aéroport, de descente 

et d'atterrissage avorté. Le niveau de précision atteint démontre la pertinence d’incorporer plus 

d'informations CFD dans les programmes de certification pour le givrage en vol, ainsi que lors 

de la formation de pilotes, avec pour but d’améliorer la sécurité aérienne. 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation and objective 

In-flight icing poses substantial risks to aviation safety [1]. As a consequence of accretion of 

ice on wings and/or other critical surfaces, lift decreases, drag increases, and the center of gravity 

shifts. These adverse effects will degrade the aerodynamic performance and controllability of the 

airplane, resulting in incidents and accidents.  

From 1996 to 2008, the National Transportation Safety Board (NTSB) had issued 82 icing-

related recommendations to the Federal Aviation Administration (FAA), based on its aviation 

accident investigations [2]. For instance, following the 1997 fatal crash of Comair Airlines Flight 

3272 near Monroe, Michigan, the NTSB called for FAA to:  

“(A-98-92) Conduct research to identify realistic ice accumulations and determine the 

effects and dangers of such ice accumulations. The information developed through 

such research should be incorporated into aircraft certification requirements and pilot 

training programs.”  

More recently, following the 2009 crash of Empire Airlines Flight 8284 in Lubbock, Texas, the 

NTSB made recommendations that put more emphasis on pilot training [3]:  

“(A-11-46) Define and codify minimum simulator model fidelity requirements for 

aerodynamic degradations resulting from airframe ice accumulation. These 

requirements should be consistent with performance degradations that the National 

Transportation Safety Board and other agencies have extracted during the 

investigations of icing accidents and incidents.”  
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Among NTSB’s icing-related recommendations to the FAA, the following are recognized as 

being key factors and challenges in reducing risks posed to aviation safety by icing, namely:  

 rigorous aircraft in-flight icing certification; 

 realistic and thorough training for pilots to recognize and deal with degraded flight 

characteristics due to airframe icing. 

1.1.1 Icing certification  

Icing effects on aircraft are assessed through an extensive procedure, intended to ensure safe 

operation for conditions specified in the icing envelopes described in the Appendix C of the 

Code of Federal Regulations - Title 14 (Aeronautics and Space) - Part 25 (Airworthiness 

Standards: Transport Category Airplanes) [4]. Two types of icing envelopes have to be 

considered in the certification process: continuous maximum (CM) representing stratus-type 

clouds and intermittent maximum (IM) representing cumulus-type clouds (Figure 1-1). These 

icing envelopes specify atmospheric icing conditions in terms of pressure altitude, temperature, 

 

Figure 1-1: Appendix C envelopes: continuous maximum (left); intermittent maximum (right). 
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liquid water content (LWC) and water droplet median volumetric diameter (MVD). Most 

recently, new appendices have been created to take into account icing conditions containing 

freezing drizzle and freezing rain. These are Appendix O (Supercooled large drop icing 

conditions) added to Part 25, and Appendix D (Mixed phase and ice crystal icing conditions) 

added to Part 33 (Airworthiness Standards: Aircraft Engines) [5].  

The traditional icing certification process includes numerical (computational fluid dynamics, 

CFD) and wind/icing tunnel simulations (experimental fluid dynamics, EFD), flight behind an 

icing tanker, and, ultimately, flight into natural icing conditions (flight fluid dynamics, FFD). 

With the exponential increase in computer power and the accompanying sophistication of 

numerical technologies, CFD has been playing a rapidly growing, shortly to become primary, 

role in the aero-icing certification process. Given the large number of icing conditions to be 

tested, the use of wind/icing tunnels is slowly waning, as the full geometry (whole airplane, with 

engines or propellers running) cannot be tested, nor the altitude conditions replicated. Natural 

flight tests are the ultimate step to be completed before obtaining certification [6]. However, not 

all icing conditions can be easily found in nature within a limited number of flights. Similarly, 

3D viscous turbulent CFD-icing simulations of complete or even partial aircraft geometries are 

considered expensive and even prohibitive for parametric studies where the cost of repeated 

calculations could become overwhelming.  

To alleviate the computational burden, a reduced-order modeling (ROM) approach based on 

proper orthogonal decomposition (POD) and multidimensional interpolation is developed within 

this thesis, dramatically reducing the computational complexity of covering the entire icing 

envelopes with comparable accuracy to full-fledged CFD. Meanwhile, the proposed method 

should also be able to incorporate seamlessly EFD and FFD data when and if available.  
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1.1.2 Icing effects in flight simulators 

The current implementation of icing effects in commercial flight training simulators is rather 

primitive [7]. The reason for this is because flight simulation models are based on flight test data 

supplied by manufacturers. Since only limited aircraft performance data in icing conditions is 

available, and data from accidents can be accounted for only a posteriori, icing effects in flight 

simulators are represented by a combination of increased weight, a displacement of the center of 

gravity and engine vibration. This rather primitive simulation may give pilots false impressions 

that are far from the realities of an actual icing encounter [3]. It goes without saying that if icing 

effects were to be represented with more fidelity in flight simulators, pilots could be better 

trained to recognize and recover, within the few seconds available to them, from the degraded 

handling qualities of an iced aircraft [8]. This ought to have a considerable beneficial impact on 

aviation safety.  

In order to introduce icing effects into flight training simulators, National Aeronautics and 

Space Administration (NASA) Glenn’s Icing Branch launched a program in 1998 [7]. The 

airplane chosen for this activity was a De Havilland DHC-6 Twin Otter, which has been 

historically employed by NASA as an icing research aircraft. Using the combination of wind 

tunnel and flight test data, an Ice Contamination Effects Flight Training Device was developed 

[9]. Their research demonstrated that icing effects could be modeled accurately in flight training 

devices to show how they adversely affect airworthiness. However, as the aircraft type and icing 

condition changes, this wind tunnel experiment and flight test based method could become 

prohibitively expensive in practical applications.  

In this thesis, a CFD-based icing effects flight simulator is proposed, which would be 

aircraft-specific. CFD-icing tools are capable of providing more detailed, reliable and repeatable 
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information about the ice accretion and the associated “deltas” in aerodynamic degradation, for 

lift, drag and moments. However, generating a large amount of CFD data corresponding to a 

wide range of pilot inputs, e.g., pitch angle, roll angle, indicated air speed, flight altitude, etc., 

requires a tremendous amount of computational resources, making it extremely difficult. 

Reduced-order modeling is therefore proposed, which is capable of providing solutions of as 

great accuracy and as much detail as the full 3D Navier-Stokes (N-S) equations. These ROM 

solutions are available at a computational cost several orders of magnitude smaller than the N-S 

solutions, and ultimately, may provide real-time representations of in-flight icing for pilot 

training. 

1.1.3 Thesis objective 

The objective of this thesis is to develop an optimized ROM framework for the parametric 

analysis of in-flight icing problems, with specific applications in icing certification and icing 

effects flight simulators. While considerable developments in ROM have already been made at 

the McGill CFD Laboratory [10-12], research work still needs to be done to make this approach 

usable at the level required by aircraft manufacturers and engineers for these types of 

applications. Namely, a method characterized by a relatively high grade (>5) in the Technology 

Readiness Levels (TRL) [13]. 

For icing certification application, the focus is on the exploration of all icing conditions 

enclosed by the icing envelopes. Based on a limited, but strategically selected, number of CFD 

solutions (defined at different icing conditions), the ROM approach is capable to predict the 

outputs of interest (e.g. shape of ice, pressure distribution, shear stress distribution) at “untried” 

input conditions. However, distinct physical features exhibited in the icing envelope pose 

substantial challenges for ROM to make accurate predictions. Therefore, the method of local 
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reduced-order modeling has been developed during this thesis, which deals with distinct physical 

features separately, leading to more accurate ROM performances over the entire icing envelopes. 

For flight simulators, data is needed in real-time, making the use of anything but lookup 

tables, impossible. Therefore, the goal is to advance the ROM framework to achieve real-time 

performance (around or below 1/15
th

 second), such that it can be incorporated into a flight 

simulator to generate aerodynamic data “on-the-fly”. In case of near-real-time performance, 

ROM can be used to fill up the lookup table in an accurate and efficient way. Nevertheless, 

realistic in-flight icing training can be realized by introducing reliable performance degradation 

data obtained from CFD and ROM, which will be beneficial for the flight simulation industry.  

In summary, this thesis aims to: 

1. Develop an automatic approach to address the problem of optimal identification of 

snapshots; 

2. Develop local reduced-order modeling technique, to deal with distinct physical features 

exhibited in the icing envelopes; 

3. Advance the ROM methodologies/algorithms towards real-time or near-real-time 

performance; 

4. Assess the proposed methodologies using representative 2D and 3D geometries. 

1.2 Literature review 

1.2.1 Reduced-order modeling 

Many engineering problems can be modeled by partial differential equations (PDEs), such 

as the N-S equations and Euler equations in fluid mechanics. Solving these PDEs typically 

requires discretization of the physical domain, e.g., finite element method, finite volume method 

and finite difference method, which result in very high dimensional (in terms of degrees of 
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freedom) models. In disciplines requiring repeated model evaluations over a large range of 

system inputs, such as design optimization, optimal control and parameter variation studies, 

reduced-order modeling (ROM), or model order reduction, has become a very active research 

topic to alleviate the computational burden. 

Reduced-order models are defined as opposed to high dimensional (or high fidelity) models. 

Unlike the low-fidelity methods based on reduced dimensions (2D or quasi-3D approximations) 

and/or reduced physics (empirical correlations, inviscid flow, incompressible flow), in the 

present context, the ROM approach makes low order approximation to the high fidelity models, 

at a much lower computational cost (usually several orders of magnitude smaller), while 

maintaining the spatial dimensions and physics of the problem. A common feature shared by 

reduced-order methods is that they use a number of snapshots (solutions of the high fidelity 

model at different input conditions) of the complex system to extract a basis of vectors (or 

modes), which span a low-order subspace where the solution of the system can be represented as 

a linear combination of the basis vectors. For time-dependent systems, snapshots are taken at 

discrete time instants; while for parametric systems, the reduced-order basis (ROB) can be 

selected to cover solution variety over variation of parameters. Different approaches can be used 

to define the basis, e.g. Lagrangian reduced-basis [14], centroidal Voronoi tessellations based 

approaches [15], and proper orthogonal decomposition (POD) [16, 17]. In this thesis, POD is 

adopted, given that it not only provides the optimal linear representation of the dominant 

features/physics, but also allows for the truncation of the linear combination of modes for a given 

level of accuracy. POD-based ROM is widely applied in many engineering fields such as in 

aeroelasticity [18-22], optimal flow control [14, 23], optimal design [24], inverse design [25, 26], 

mesh adaptation [27], parametric studies [28, 29] and aero-icing analysis [12, 30-34].  
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Once the basis vectors are determined, the scalar coefficients in the linear combination of 

modes can be obtained by adopting one of the two following approaches.  

The projection-based ROM, which can be generally categorized as an “intrusive” approach, 

projects the governing PDEs onto the subspace spanned by the ROB to yield a smaller set of 

nonlinear equation (ODEs), and then solves these ODEs for the coefficients of the linear 

combination of POD modes [35-39]. A major drawback of the projection-based ROM is that it 

requires direct operation on the governing equations (hence the code) of the problem, which may 

lack numerical stability. More importantly, for applications with mixed-type of snapshots, such 

as in icing certification, when the numerical snapshots (CFD data) are mixed with ones obtained 

from flight (FFD) and/or experimental tests (EFD), this projection-based ROM is no more 

applicable. 

The interpolation-based ROM, which is categorized as a “non-intrusive” approach, uses 

response surface methods to get the coefficients. For each POD mode, a response surface is 

formed by projecting the high fidelity solutions (snapshots) onto this specific mode. Based on the 

assumption that the response surface formed by the projection coefficients is smooth, for any 

“untried” input condition, the unknown mode coefficient can be obtained via multi-dimensional 

interpolation. This method does not involve any intrusive modifications to the governing 

equations or code, making it more robust. It can also work with any combination of snapshots 

coming from CFD, EFD and/or FFD. From a computational point of view, defining a response 

surface for each coefficient of the linear expansion is much more effective than solving a system 

of ODEs as required by the projection-based approach. Therefore, with this approach, obtaining 

real-time computing is more straightforward. The response surface for the mode coefficients can 

be obtained by polynomial interpolation [23, 25], Akima or Kriging interpolations [12, 30, 31], 



9 

 

radial basis functions (RBFs) [24, 29], or by Smolyak sparse grid interpolation method [40]. In 

this thesis, interpolation-based ROM is adopted, with more discussion given in the following 

section.  

1.2.2 Interpolation-based ROM 

The interpolation-based ROM was first introduced by Ly and Tran in [23], for the modeling 

and control of steady-state Rayleigh-Bénard convection problems. In that setting, the input 

parameter is the Rayleigh number, and the snapshots are CFD solutions containing the 

temperature distributions. The boundary control problem was formulated as finding the optimum 

Rayleigh number to minimize a cost functional. It was shown that POD can be used to model the 

natural convection and the approach is very efficient and is suited for process control.  

In the work of Bui-Thanh et al. [25], POD with cubic spline interpolation was applied to 

parametric variation study of steady subsonic flow about an airfoil with varying angle of attack 

(AoA) and Mach number. The same methodology was used by Yapalparvi et al. [41] to predict 

the unsteady flow fields and trajectories of tumbling plates. In this application, time is considered 

as one of the two input parameters. Mifsud et al. evaluated spline interpolation methods and 

RBFs in [29], where parametric studies were performed for two-parameter inviscid steady flow 

about a flare stabilized projectile, and a two-parameter supersonic turbulent flow around a fin-

stabilized projectile with drooping nose control. In the work of Audouze et al. [24], POD with 

RBFs were applied to 1D and 2D multi-parameter, nonlinear, steady state convection-reaction-

diffusion problems. Their work also employs a greedy residual search in the parameter space to 

incrementally update the reduced-order model. More recently, Xiao et al. [40] introduced 

Smolyak sparse grid method for calculating the POD coefficients, and applied this non-intrusive 

ROM to two unsteady flow problems: 2D flow past a cylinder and flow within a gyre. In another 
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work of Xiao et al. [22], POD with RBFs was proposed for fluid-structure interaction 

applications. 

In the field of aero-icing studies, ROM was first introduced by Nakakita et al. in [30]. In that 

work, POD with Akima interpolation was applied to the prediction of ice shapes over an airfoil 

under a one-variable (freestream temperature) problem, as well as ice shapes over a DLR-F6 

geometry with two parameters (freestream temperature and AoA). Later on, POD with Kriging 

was introduced by Lappo and Habashi [31], and applied to the prediction of ice shapes accreted 

on an airfoil with four input parameters, namely AoA, LWC, free stream temperature and MVD. 

In the work of Jung et al. [32], POD with piecewise linear interpolation was adopted in a two-

parameter test case (AoA and MVD) to predict the droplet collection efficiency and ice shapes 

for an airfoil.  

It is worth noting that in all the above-mentioned interpolation-based ROM methods, the 

accuracy of ROM is evaluated in a rather “spotty” approach. Namely, by selecting some 

unsampled locations in the parameter space (or time instants for time-dependent problems), the 

associated CFD solutions are computed as references, then the accuracy of ROM is evaluated by 

comparing the ROM solution with the corresponding CFD solution [22, 23, 25, 29-32, 40, 41], or 

using the residual returned by the CFD solver, taking the ROM solution as a candidate guess 

solution [24]. Errors obtained in this type of approach only provide spotty information regarding 

the accuracy of ROM in the parameter space (or time span), since for the majority of the 

unsampled design space, the accuracy of ROM remains unknown.  

A more systematic way to evaluate ROM accuracy in the entire design space was proposed 

by Fossati and Habashi in [12], where the method of leave-one-out cross-validation (LOOCV) 

was adopted. This approach gives a good estimation of the performance of ROM over the entire 
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design space. Based on this estimation, an error driven iterative sampling method is proposed in 

this thesis, which is capable of adaptively enriching the set of snapshots and improving the 

accuracy of ROM in a systematic way. Details about LOOCV and iterative sampling will be 

given in Section 2.4.  

1.2.3 Local reduced-order modeling 

Given a set of snapshots, global or local POD methods can be used to identify the basis 

vectors. The global POD approach uses all the available snapshots to generate the basis. This 

method is straightforward, but for problems with locally distinct physical characteristics, such as 

glaze and rime ice formations in the case of aero-icing, or subsonic, supersonic and hypersonic 

regimes in the case of aerodynamic studies, reduced-order solutions obtained via global POD 

may be affected by very different snapshots features. Local POD, on the other hand, deals with 

distinct physical characteristics separately. The local approach calls for the subdivision of the 

solution (and parameter) spaces into subregions, each ideally comprising snapshot characterized 

by similar or sufficiently close physical features. In the recent literature, k-means clustering has 

often been used for grouping similar snapshots into clusters [42-44].  

To build local reduced-order models, three issues have to be solved. Firstly, similar 

snapshots have to be grouped into clusters such that POD can be applied locally to each cluster, 

i.e. only to that selected set of snapshots, to generate a set of local ROBs. The desired clustering 

can be achieved by using an unsupervised learning algorithm known as k-means clustering, also 

adopted in [42-44].  

The second problem is identifying the most suitable cluster for the new solution of an 

untried condition to be represented as a linear combination of the POD basis of only that cluster. 

This is a “classification problem”: given a set of known input parameters and the corresponding 
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clusters obtained from the k-means algorithm, a new input condition has to be assigned to one of 

the available 𝐾 discrete classes. This can be addressed by using a supervised learning algorithm. 

In [44], a nearest neighbor classifier is employed, while logistic regression is adopted in the 

present thesis. 

The third problem is to define the boundaries of the subregions in the parameter space such 

that each cluster is ideally enclosed. Neighboring clusters must also be contiguous, leaving no 

void regions in the parameter space. In [42, 43], problems arising at the boundary of each region 

are solved by adding neighboring snapshots to each cluster to obtain a set of overlapping clusters 

and ensuring that there are no “gaps” between clusters. The overlap is performed in the solution 

space, while in the present work the boundary has been defined in the input parameter space. 

This issue can also be addressed by logistic regression and other classification methods [44]. 

Each input is assigned to one of the 𝐾 discrete classes, hence the input space is divided into 

decision regions whose boundaries are identified as decision boundaries. 

1.2.4 Sampling of the design space 

A crucial aspect in the success of a ROM approach is to optimally define the snapshots that 

best extract the physical features of the solution. Defining a suitably rich set of snapshots in the 

parameter space (also referred to as design space) is a problem of design of experiments (DoE) 

[45, 46]. Classical approaches have been adopted in the ROM literature, e.g. uniform/grid 

sampling [23, 25, 47], Latin hypercube sampling (LHS) [24, 29] and LPτ [31]. These sampling 

methods are straightforward, but do not allow adaptive enrichment of the snapshots set, i.e. 

introducing new samples in desired locations of the design space without changing the previous 

distribution, which is a crucial aspect of improving ROM model accuracy.  
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Recently, a greedy sampling algorithm was introduced to adaptively place new sample 

points at the location in the parameter space where the maximum error occurs [48-54]. These 

techniques are developed in the community of projection-based model order reduction, rely on 

residual-based error bounds or error indicators to assess the accuracy of ROM solutions, and the 

location of new samples can be determined by a direct search over a set of predefined candidate 

samples [48, 49, 51], adaptive parameter domain partition [50], or by an optimization algorithm 

[52-54].  

In case formal error indicators are not available or difficult to define, the degree of accuracy 

of reduced-order solutions can be estimated via leave-one-out cross-validation (LOOCV): an 

approach compatible with mixed-type snapshots. Sampling techniques based on centroidal 

Voronoi tessellations (CVT) [55] could be employed in conjunction with LOOCV to identify the 

location of the snapshots in the parameter space according to a prescribed density function. As 

the density function for CVT can be based on either errors in the parameter space or a priori 

knowledge of the physics of the problem, it has the capacity to provide additional sample points 

judiciously placed in regions of high nonlinearity. In this thesis, an error driven iterative 

sampling methodology combining LOOCV error and CVT sampling technique is developed [33, 

34], with more details given in Section 2.4.  

1.3 Thesis contributions 

1.3.1 Algorithmic advances 

This thesis made fundamental contributions in the area of non-intrusive ROM, leading to 

faster and more accurate ROM performances.  

1. Developed an automatic error-driven iterative sampling methodology to improve the 

accuracy of ROM in a systematic approach; 
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2. Developed local POD method based on machine learning algorithms, to efficiently 

identify and cluster the snapshots in both solution space and parameter space;  

3. Advanced Kriging interpolation by adopting gradient-based optimization method, 

combining with the currently available global optimizer, forming a more cost efficient 

hybrid optimization method;  

4. Parallelized the ROM code using Message Passing Interface (MPI) to achieve 

considerable speed-up; 

5. Optimized the framework of the proposed methodologies to higher grade of TRL. 

1.3.2 Engineering contributions 

The thesis made significant contributions in the engineering field, particularly in the area of 

icing certification and flight simulators.  

1. A major engineering contribution is the use of ROM to explore the CM and IM icing 

envelopes, for 2D and 3D geometries. It was demonstrated that ROM can be used to 

completely cover the gaps in icing certification, rather than the current spotty approach.  

2. The aero-icing analysis for a regional jet demonstrated the possibility of incorporating 

CFD data into flight simulators. In such case, in-flight icing training will no longer be 

simply based on limited manufacturers and accident data, but can benefit from an 

aircraft-specific EFD-FFD-CFD database.  

1.4 Thesis outline  

Chapter 2 describes the mathematical models adopted/advanced in this thesis. Firstly, a brief 

summary of interpolation-based ROM using POD and Kriging is presented; then, the gradient-

based optimization method adopted for Kriging model fitting is introduced; after that, local POD 

using machine learning algorithms is explained in detail, followed by the introduction of an error 
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driven iterative sampling method and leave-one-out error estimation; a very brief introduction of 

the CFD-icing tools used in this thesis is also given; and finally, computational cost analysis of 

the proposed CFD-ROM framework is presented, as well as its parallelization.  

Chapter 3 demonstrates the proposed methodologies for the exploration of Appendix C icing 

envelopes. A 2D geometry (GLC305 airfoil) was selected for the assessment, and the output of 

interest is the shape of ice accumulated under different icing conditions and the associated lift 

coefficient curve (𝐶𝐿 − 𝛼 curve). For the CM, both global and local POD was used and the 

effectiveness of the two compared. For the IM, local POD was exclusively employed. 

Chapter 4 presents the assessment of the proposed methodologies on a regional jet. The first 

part describes the exploration of Appendix C CM icing envelope for a 25-minute holding pattern. 

The second part presents aerodynamic degradations resulting from airframe ice accumulation, 

with detailed parametric analysis over varied flight conditions. Flow details in terms of pressure 

distribution and shear stress distribution, as well as integrated quantities like lift, drag and 

pitching moment coefficients (𝐶𝐿 , 𝐶𝐷 , 𝐶𝑀 ) are investigated, for the consequent effect during 

descent and aborted landing. 

Finally, conclusions and future works are given in Chapter 5. 
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CHAPTER 2 METHODOLOGIES 

2.1 Reduced-order modeling via POD and Kriging 

The non-intrusive ROM method based on POD and multi-dimensional interpolation 

developed at the McGill CFD Laboratory [10-12] is adopted in the present work, with only a 

brief summary given for the purpose of self-containment. 

2.1.1 Proper orthogonal decomposition 

The POD, also known as Karhunen-Loève expansion, is a procedure for extracting basis 

functions or modes from a set of snapshots obtained experimentally or from numerical 

simulations [16]. For an ensemble of 𝑁𝑆 observations {𝑼1 , … , 𝑼𝑁𝑆
}, where 𝑼𝑖 = 𝑼(𝐱𝑖) ∈ ℝ𝑁𝑃, 

and 𝐱𝑖 ∈ ℝ𝑁𝐷 specifies input parameters defining observation conditions. 𝑁𝑃 denotes the number 

of points from which the observation is defined, i.e., in the case of CFD simulation, 𝑁𝑃 equals to 

the number of grid points; in experiment measurements, 𝑁𝑃  equals to the number of probes 

arranged. For CFD-based icing analysis, 𝑼  may be ice shape represented by the Cartesian 

coordinates of the 𝑁𝑃 surface nodes, while 𝐱 defines icing condition in terms of MVD, LWC, etc. 

For aerodynamic analysis, 𝑼 can be the solution field of interest, e.g. pressure and shear stress, 

while 𝐱  defines flight conditions like AoA, speed, flight altitude, etc. In the present 

implementation, the arithmetic mean 

 �̅� =
1

𝑁𝑆
∑ 𝑼𝑖

𝑁𝑆

𝑖=1

, (2.1)  

is subtracted from the snapshots, leaving a modified snapshots set 𝐀 = {�̃�1 , … , �̃�𝑁𝑆
} ∈ ℝ 𝑁𝑃x𝑁𝑆, 

which represents observation deviations from the mean values. POD yields a set of basis vectors 
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𝝋𝑗 ∈ ℝ𝑁𝑃 , 𝑗 = 1, … , 𝑁𝑆 that best represents the dominant physical behavior featured within the 

snapshots. The POD basis is optimal in the sense that the projection of �̃� onto 𝝋 is maximized, 

according to the following maximization problem [16]: 

 max
𝝓

〈(�̃�, 𝝓)
2
〉

(𝝓, 𝝓)
=

〈(�̃�, 𝝋)
2
〉

(𝝋, 𝝋)
, (2.2)  

where (∙,∙) indicates an inner product, and 〈∙〉 denotes an averaging operation. It can be shown 

that the POD basis vectors are the eigenvectors of the kernel 𝐊 = 𝐀𝐀𝑇, where 𝐊 is a 𝑁𝑃 × 𝑁𝑃 

matrix. If 𝑼𝑖 is generated by CFD simulation, 𝑁𝑃, i.e. the number of grid points, can easily reach 

the order of 106 − 108, making it very costly to extract the eigenvectors.  

By using the method of “snapshots” proposed by Sirovich [17], the desired eigenvectors 𝝋 

can be computed as a combination of the snapshots 𝑼𝑖, i.e. 

 𝝋𝑗 = ∑ 𝛽𝑖
𝑗
𝑼𝑖

𝑁𝑆

𝑖=1

, (2.3)  

which in turn reduces the maximization problem (2.2) to an eigenvalue-eigenvector problem in 

the form 

 𝐑𝜷 = 𝚲𝜷, (2.4)  

where 

 𝐑 =
1

𝑁𝑆
𝐀𝑇𝐀, (2.5)  

is a correlation matrix between snapshots. Therefore, instead of solving an eigenvalue problem 

for a 𝑁𝑃 × 𝑁𝑃  matrix 𝐊, a smaller problem for the matrix 𝐑 of dimension 𝑁𝑆 × 𝑁𝑆  has to be 

solved, where 𝑁𝑆  is the number of snapshots. The eigenvalues of the covariance matrix are 

arranged in descending order 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑁𝑆
≥ 0, which have the interpretation of giving 
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the “energy” of the system projected on the 𝝋𝑗 mode. Therefore, the fraction of the total energy 

associated to each mode 𝝋𝑗 can be computed as 

 𝐸𝑗 =  𝜆𝑗 ∑ 𝜆𝑖

𝑁𝑠

𝑖=1

⁄ . (2.6)  

An “untried” solution of the system can be approximated via a linear combination of the 

modes 

 𝑼(𝐱𝛿) = �̅� + ∑ 𝛼𝑗
𝛿𝝋𝑗

𝑀≤𝑁𝑆

𝑗=1

, (2.7)  

where 𝑀 indicates the truncation of the expansion at the desired level of energy content.  

For each mode 𝝋𝑗, the projection coefficient at each snapshot location 𝐱𝑖 can be expressed 

as 

 𝛼𝑗
𝑖 = 𝑼𝑖 ∙ 𝝋𝑗. (2.8)  

The 𝛼𝑗
𝑖 , 𝑖 = 1, … 𝑁𝑆  form a multi-dimensional response surface for each mode 𝝋𝑗 , having as 

input the parameters 𝐱𝑖 of the analysis and as outputs the 𝛼𝑗
𝑖 coefficients. Then for any untried 

input parameter 𝐱𝛿, the mode coefficient 𝛼𝑗
𝛿 can be obtained from interpolation. 

2.1.2 Multi-dimensional interpolation: Kriging 

Kriging was initially developed in the geostatistics community, to evaluate gold deposit at 

an unexplored location, from information observed at nearby locations [56]. In recent decades, 

following Sack’s landmark work [45], Kriging has gained popularity in the engineering 

community, especially in design and optimization, to approximate deterministic computer 

models [57-60]. In these applications, Kriging is used to build surrogate models (also referred to 
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as meta-models or response surfaces), which serve as an internal model used during optimization 

processes. 

Suppose that we have a function sampled at 𝑁𝑆 points 𝐱𝑖 ∈ ℝ𝑁𝐷 , 𝑖 = 1, … , 𝑁𝑆, where 𝑁𝐷 is 

the dimension of the design space, and function values at these points are denoted by 𝑦𝑖 = 𝑦(𝐱𝑖). 

Note that 𝑦  is the 𝛼  coefficients in the context of ROM. Kriging models the function as a 

realization of Gaussian stochastic process [57]. The strength of Kriging is that it provides a 

measure of the possible error in the predictor. As an interpolation method, the response surface 

passes exactly through the sampled points, therefore at these sampled points the error is 0. But in 

between, Kriging gives some standard error, which measures the uncertainly of the predictor at 

the unknown points. This uncertainty is modeled by a random variable 𝑌(𝐱), which is normally 

distributed with mean 𝜇 and covariance 𝜎2. Consider two points 𝐱𝑖 and 𝐱𝑗, assuming the function 

being modeled is continuous and smooth, then the correlations between the random variables 

𝑌(𝐱𝑖) and 𝑌(𝐱𝑗) is given by 

 𝐶𝑜𝑟𝑟[𝑌(𝐱𝑖), 𝑌(𝐱𝑗)] = exp (−distance(𝐱𝑖, 𝐱𝑗)), (2.9)  

which indicates that the closer the two points 𝐱𝑖 and 𝐱𝑗 are, the higher the correlation between 

them. The distance between the two points 𝐱𝑖 and 𝐱𝑗 is not Euclidean distance, but weighted by a 

parameter 𝜽 ∈ ℝ𝑁𝐷 , which measures the relative importance of the 𝑁𝐷 design variables 

 distance(𝐱𝑖, 𝐱𝑗) = ∑ 𝜃𝑙|x𝑖𝑙 − x𝑗𝑙|
𝑝𝑙

𝑁𝐷

𝑙=1

, (2.10)  

where the parameters 𝜃𝑙  and 𝑝𝑙 satisfy 𝜃𝑙 ≥ 0  and 0 < 𝑝𝑙 ≤ 2 . The 𝜽  parameter serves the 

purpose to adjust the relative importance of each design variable, hence improves the accuracy of 

Kriging over other interpolation methods. Usually 𝑝𝑙 = 2 is used as it gives smooth correlation 

with continuous gradient [58].  
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The uncertainty of the function’s values at the 𝑁𝑆 points can be expressed as  

 𝐘 = (

𝑌(𝐱1)

⋮
𝑌(𝐱𝑁𝑆

)
). (2.11)  

This random vector has mean equal to 𝝁, which is a 𝑁𝑆 × 1 vector, and the covariance matrix 

equals to  

 𝐶𝑜𝑣(𝐘) = 𝜎2𝐑, (2.12)  

where 𝐑 is a 𝑁𝑆 × 𝑁𝑆 matrix with 𝑅𝑖,𝑗 given by Equation (2.9).  

The values of 𝜃𝑙  (𝑙 = 1, … , 𝑁𝐷)  can be estimated by maximizing the concentrated log-

likelihood function [57] 

 𝐿(𝜽) = −
𝑁𝑆

2
log(�̂�2) −

1

2
log(|𝐑|), (2.13)  

where  

 �̂� =
𝟏′𝑹−1𝒚

𝟏′𝑹−1𝟏
, (2.14)  

 �̂�2 =
(𝒚 − 𝟏�̂�)′𝑹−1(𝒚 − 𝟏�̂�)

𝑁𝑆
, (2.15)  

and 

 𝒚 = (

𝑦1

⋮
𝑦𝑁𝑆

), (2.16)  

represents the observed function values. 

Maximizing the likelihood function by selecting proper parameters means that the data 

observed will be most likely to be generated by the model. A hybrid optimization method 

combining genetic algorithm and gradient-based local search method is proposed in this thesis, 

with a brief introduction given in the following section. The gradient of the log-likelihood 

function can be expressed as  
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𝜕𝐿

𝜕𝜃𝑙
=

1

2
𝑡𝑟 {𝐑−1

𝜕𝐑

𝜕𝜃𝑙
} −

1

2�̂�2
(𝒚 − 𝟏�̂�)′𝐑−1

𝜕𝐑

𝜕𝜃𝑙
𝐑−1(−𝟏�̂�). (2.17)  

After obtained the parameter 𝜽, a new function value 𝑦𝛿  at an untried location 𝐱δ can be 

determined by the Kriging predictor: 

 �̂�(𝐱δ) = �̂� + 𝐫′𝐑−1(𝒚 − 𝟏�̂�), (2.18)  

where  

 𝐫 = (
𝐶𝑜𝑟𝑟[𝑌(𝐱δ), 𝑌(𝐱𝑖)]

⋮
𝐶𝑜𝑟𝑟[𝑌(𝐱δ), 𝑌(𝐱𝑁𝑆

)]

). (2.19)  

The mean square error of the predictor derived using the standard stochastic-process is  

 𝑠2(𝐱∗) = �̂�2 [1 − 𝐫′𝐑−1𝐫 +
(1 − 𝟏′𝐑−1𝟏)𝟐

𝟏′𝐑−1𝟏
], (2.20)  

and the value of 𝑠2(𝐱∗) is zero at any sampled point.  

Remarks: 

1. The mean term in Kriging predictor (2.18) is a constant, therefore this type of Kriging is 

called ordinary Kriging. Variants that use polynomial approximation or Bayesian 

statistics procedures for the mean term are also available, such as universal Kriging and 

Blind (or Bayesian) Kriging [61].  

2. A desirable feature of ordinary Kriging is that with the same set of points {𝐱𝑖}𝑖=1
𝑁𝑆  and 

the corresponding outputs {𝑦𝑖}𝑖=1
𝑁𝑆 , the model parameter 𝜽 ∈ ℝ𝑁𝐷  is fixed. In other 

words, for any new function value 𝑦𝛿 at any untried 𝐱δ, we can use the same 𝜽 trained 

from the 𝑁𝑆  samples, without doing the maximization of log-likelihood function 

repeatedly. This is especially beneficial in the context of ROM, since the most time 

consuming part of Kriging is the optimization process, and it can now be done offline, 
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making the online computations more efficient. Further discussions of the online and 

offline costs are presented in Section 2.6.1.  

2.2 Gradient-based optimization method 

Kriging interpolation requires the maximization of the likelihood function (2.13), for which 

the analytical formula is known, but the shape of the function might become highly nonlinear 

and present multiple optima, as the problem and/or the snapshots change. In the previous work of 

Lappo [11], genetic algorithm (GA) was adopted for the maximization of the likelihood function 

of Kriging. The GA was selected due to its robustness in identifying the global optimum (as 

opposed to local optimum), even with complex and highly nonlinear objective functions. A 

drawback of this approach is that it takes a relatively long time to locate the exact local optimum. 

Therefore, a gradient-based local search method is implemented and combined with the GA 

approach to speed up the search for a global optimum. 

In the context of maximization of the Kriging log-likelihood function, 𝜽 ∈ ℝ𝑁𝐷 is the vector 

of variables, 𝐿(𝜽) is the objective function to be maximized. Note that although 𝜃𝑙 has to satisfy 

𝜃𝑙 ≥ 0, 𝑙 = 1, … , 𝑁𝐷, it is a trivial constrain that can be easily resolved in the code. Therefore the 

problem of searching for the best 𝜽 ∈ ℝ𝑁𝐷  that maximizes the log-likelihood function 𝐿(𝜽) can 

be recast into the following form of unconstrained minimization: 

 min
𝜽∈ℝ𝑁𝐷

𝑓(𝜽), (2.21)  

where 𝑓(∙) = −𝐿(∙). 

Optimization algorithms start from an initial guess 𝜽0  and generate a series of points 

𝜽𝑘, 𝑘 = 1, … , ∞ until certain stopping criterion is met. Generally, there are two strategies for 

searching: line search and trust region. The line search method selects a direction 𝒑𝑘 at each 

iteration 𝑘 and searches along this direction for lower values of objective function 𝑓(𝜽), and the 
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step length 𝛼 is selected using a proper algorithm. Trust region method builds a model function 

to approximate the objective function 𝑓 near 𝜽𝑘 , within a certain region, and then determine 

search direction 𝒑𝑘 by solving a sub-problem in the trust region [62]. In this thesis, line search 

method is selected. As a classical optimization method, detailed description and algorithm can be 

found in [62, 63], with only a brief summary given here for the purpose of self-containment. 

2.2.1 Selection of search direction 

Regarding search directions, four typical methods are listed in Table 2-1. Although 

Newton’s method has a quadratic rate of convergence, it can sometimes be expensive and error-

prone, due to the explicit computation of the Hessian matrix. A quasi-Newton (QN) method was 

therefore selected, as it does not require the computation of the Hessian and yet still attains a 

Table 2-1: Summary of search directions 

Search 

direction 
Definitions  Pros and cons 

Rate of 

convergence 

Steepest 

descent 
𝒑𝑘 = −∇𝑓𝑘 

- Does not require Hessian  

- Can be very slow for difficult 

problems 

Linear 

Conjugate 

gradient 
𝒑𝑘

𝑁 = −∇𝑓(𝜽𝑘) + 𝛽𝑘𝒑𝑘−1 

- Does not require storage of 

matrices 

- Not as fast as Newton or 

quasi-Newton 

Linear 

Newton 𝒑𝑘
𝑁 = −(∇2𝑓𝑘)−1∇𝑓𝑘 

- Fast convergence 

- Requires Hessian, may be 

expensive and error prone 

Quadratic 

Quasi-Newton 𝒑𝑘
𝑁 = −𝑩𝑘

−1∇𝑓𝑘 
- Fast convergence 

- Does not require Hessian 
Super-linear 

 

Note: ∇𝑓𝑘 is the gradient of 𝑓 at point 𝜽𝑘, ∇2𝑓𝑘 is the Hessian matrix, 𝛽 is a scalar to ensure 𝒑𝑘 and 

𝒑𝑘−1 are conjugate. 

 



24 

 

super-linear rate of convergence. In place of the Hessian ∇2𝑓𝑘, QN uses an approximation 𝑩𝑘, 

which is updated after each iteration step, by incorporating information obtained from the current 

step. The most effective QN update algorithm is the BFGS method, named for its developers 

Broyden, Fletcher, Goldfarb and Shanno  

 𝑩𝑘+1 = 𝑩𝑘 −
𝑩𝑘𝒔𝑘𝒔𝑘

𝑇𝑩𝑘

𝒔𝑘
𝑇𝑩𝑘𝒔𝑘

+
𝒚𝑘𝒚𝑘

𝑇

𝒚𝑘
𝑇𝒚𝑘

, (2.22)  

where 𝒔𝑘 = 𝜽𝑘+1 − 𝜽𝑘, 𝒚𝑘 = ∇𝑓𝑘+1 − ∇𝑓𝑘.  

2.2.2 Determine step length 

In line search methods, in each iteration, the algorithm selects a search direction 𝒑𝑘, and 

decides how far to go in this direction, 

 𝜽𝑘+1 = 𝜽𝑘 + 𝛼𝑘𝒑𝑘. (2.23)  

The step length 𝛼𝑘  has to meet the Wolfe conditions to: 1) ensure sufficient decrease of the 

objective function, and 2) eliminate unacceptably small steps to make the algorithm efficient.  

The ideal step length would be the global minimizer of function 𝜙(∙), defined by 

 𝜙(𝛼) = 𝑓(𝜽𝑘 + 𝛼𝒑𝑘), 𝛼 > 0. (2.24)  

As it is too expensive to solve for the exact global minimizer of 𝜙, in practice an inexact line 

search is performed to identify a suitable step length, which produces sufficient decrease of 

objective function value 𝑓 at minimum cost. To find a minimum of the one-dimensional function 

(2.24), the step length is determined using an iterative backtrack procedure [62]. Namely, 

starting from an initial step length 𝛼0 = 1 , if 𝜽𝑘 + 𝒑𝑘  is not acceptable, reduce 𝛼  until an 

acceptable 𝜽𝑘 + 𝛼𝑘𝒑𝑘 is found.  

The sufficient decrease condition can be written in the form of 𝜙,  
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 𝜙(𝛼) ≤ 𝜙(0) + 𝑐1𝛼𝜙′(0). (2.25)  

In practice, 𝑐1is quite small, e.g. 10−4. Suppose initial step length 𝛼0 = 1, if  

 𝜙(𝛼0) ≤ 𝜙(0) + 𝑐1𝛼0𝜙′(0), (2.26)  

then this step length satisfies the sufficient condition, and the search can be terminated. 

Otherwise, the acceptable step length lies in the interval [0, 𝛼0]. A quadratic approximation 

𝜙𝑞(𝛼) to 𝜙 can be constructed as 

 𝜙𝑞(𝛼) = (
𝜙(𝛼0) − 𝜙(0) − 𝛼0𝜙′(0)

𝛼0
2 ) 𝛼2 + 𝜙′(0)𝛼 + 𝜙(0), (2.27)  

which interpolates three known quantities: 𝜙(0), 𝜙′(0) and 𝜙(𝛼0). Note that 𝜙𝑞(0) = 𝜙(0), 

𝜙𝑞′(0) = 𝜙′(0), 𝜙𝑞(𝛼0) = 𝜙(𝛼0). The new value 𝛼1  can be obtained by setting 𝜙𝑞
′ (𝛼) = 0, 

which gives  

 𝛼1 = −
𝜙′(0)𝛼0

2

2[𝜙(𝛼0) − 𝜙(0) − 𝛼0𝜙′(0)]
. (2.28)  

If this 𝛼1 satisfies the sufficient decrease condition, terminate the search. Otherwise, construct a 

cubic function that interpolates the four known quantities: 𝜙(0), 𝜙′(0), 𝜙(𝛼0) and 𝜙(𝛼1), which 

is 

 𝜙𝑐(𝛼) = 𝑎𝛼3 + 𝑏𝛼2 + 𝜙′(0)𝛼 + 𝜙(0). (2.29)  

where 

 [
𝑎
𝑏

] =
1

𝛼0
2𝛼1

2(𝛼1 − 𝛼0)
[

𝛼0
2 −𝛼1

2

−𝛼0
3 𝛼1

3 ] [
𝜙(𝛼1) − 𝜙(0) − 𝜙′(0)𝛼1

𝜙(𝛼0) − 𝜙(0) − 𝜙′(0)𝛼0
]. (2.30)  

By differentiating 𝜙𝑐(𝛼), one can obtain the minimizer 𝛼2 of 𝜙𝑐 which lies in the interval [0, 𝛼1] 

given by 

 𝛼2 =
−𝑏 + √𝑏2 − 3𝑎𝜙′(0)

3𝑎
. (2.31)  
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Once the suitable step length is determined, a new search point can be found using Equation 

(2.23), and the algorithm proceeds to the next search iteration, until a certain termination 

criterion is met.  

2.3 Local POD using machine learning algorithms 

2.3.1 The role of machine learning 

The field of machine learning deals with the construction of algorithms that can learn 

patterns from a collection of data and make accurate predictions of untried conditions. Machine 

learning is based on the principles of statistics and probability, and overlaps extensively with 

other fields like pattern recognition, data mining, and artificial intelligence. Machine learning 

algorithms can be generally categorized as supervised and unsupervised learning [64, 65]. In 

supervised learning, one has a set of training data that comprises input variables and the 

corresponding output. A learner/model is trained on the basis of existing data to predict the 

output from the input values. The method is called “supervised” because the learning process is 

guided by the available outputs. For unsupervised learning, on the other hand, the training data 

consists of input data only, and the goal is to discover underlying structures within the data. 

Without a known output to guide the prediction, this process is called “unsupervised learning”.  

In the context of the proposed local POD, the target of grouping the snapshots into clusters 

can be achieved via an unsupervised learning algorithm known as k-means clustering, also 

adopted in [42-44]. In this context the snapshots are the inputs and the desired output is the label 

that identifies a snapshot with a cluster. The identification of the proper cluster for an untried 

solution and the definition of the boundaries of each cluster in the parameter space are problems 

that fall into the category of supervised learning, more specifically classification. Given the 

operating conditions of the snapshots and the class labels obtained from k-means clustering, a 
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training set of data can be defined. Using this data set, one can train a prediction model, or 

learner, which will predict the cluster (class labels) to which the untried solution is expected to 

belong, based on the predicted posterior probability. The boundaries of the subregions are called 

decision boundaries defined by a hyperplane that has equal probability for two neighboring 

clusters. For self-containment, the ideas behind k-means clustering and logistic regression are 

briefly outlined below. 

2.3.2 K-means clustering 

K-means algorithm is the most used clustering method, also referred to as Lloyd's algorithm 

[66]. In a clustering problem, one is given a data set {𝑼1, … , 𝑼𝑁𝑆
}, where 𝑼𝑖 ∈ ℝ𝑁𝑃 , 𝑖 = 1, … , 𝑁𝑆 

and the goal is to partition the data set into 𝐾 subsets, such that those solutions that are within 

each cluster share similar features. The dissimilarity/distance between two samples 𝑼𝑖 and 𝑼𝑗 

can be computed by the Euclidean distance squared 

 𝑑(𝑼𝑖, 𝑼𝑗) = ‖𝑼𝑖 − 𝑼𝑗‖
2

. (2.32)  

Supposing that the number of desired clusters 𝐾 is given, then the problem of clustering is 

equivalent to minimizing an objective function, also called a distortion measure, given by [64] 

 𝐽 = ∑ ∑ 𝑟𝑖𝑘‖𝑼𝑖 − 𝝁𝑘‖2

𝐾

𝑘=1

𝑁𝑆

𝑖=1

, (2.33)  

where 𝑟𝑖𝑘 ∈ {0,1} is a binary indicator defined as 

 𝑟𝑖𝑘 = {
1    if 𝑘 = arg min

𝑗
‖𝑼𝑖 − 𝝁𝑗‖

2

0    otherwise,
, (2.34)  

and 𝝁𝑘 is cluster center given by 

 𝝁𝑘 =
Σ𝑖𝑟𝑖𝑘𝑼𝑖

Σ𝑖𝑟𝑖𝑘
. (2.35)  
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The objective function 𝐽 can be minimized by a two-step iterative procedure: 

1. Assign the samples to the nearest cluster center; 

2. Update the cluster center to the mean of samples assigned to it. 

Steps 1 and 2 are iterated until the assignments no longer change. Given that the procedure 

may converge to a local minimum, it is advised [65] to initialize the cluster center 𝝁𝑘 multiple 

times by randomly choosing 𝐾 samples in the training set, and select the one that yields the 

lowest objective function value. 

2.3.3 Logistic regression 

Logistic regression (LR) is a type of generalized linear method adopted for classification 

problems [64, 65]. To assign an input vector 𝐱𝑖 ∈ ℝ𝑁𝐷  to one among 𝐾  available classes 

𝒞𝑘, 𝑘 = 1, … , 𝐾, the learner/model is trained using a training set 𝑆 = {(𝐱1, 𝑡1), … , (𝐱𝑁𝑆
, 𝑡𝑁𝑆

)}, 

where 𝑡 ∈ ℝ is the label of the class. Since the classes are disjoint sets, the input space can 

always be divided into decision regions, with boundaries identified as decision boundaries. 

Although LR is a linear model, it can account for nonlinear features by using nonlinear basis 

functions 𝝓(𝐱) (e.g. polynomial and trigonometric expansion, radial basis expansion, to name a 

few) such that nonlinear decision boundaries can be obtained in the original input space 𝐱, while 

being linear in the expanded feature space 𝝓 ∈ ℝ𝑁𝐹  [64, 65]. 

An example of polynomial expansion is illustrated as follows: let {𝜙𝑗(𝐱)|𝑗 = 1, … , 𝑁𝐹} be a 

basis of the set of all polynomials in 𝐱 of degree 𝐺 , since 𝐱 = (𝑥1, 𝑥2, … , 𝑥𝑁𝐷
) ∈ ℝ𝑁𝐷 , each 

𝜙𝑗(𝐱) is a term like 𝑥1

𝑔1𝑥2

𝑔2 ⋯ 𝑥𝑁𝐷

𝑔𝑁𝐷  where 𝑔1 + 𝑔2 + ⋯ + 𝑔𝑁𝐷
≤ 𝐺. In the case where 𝑁𝐷 = 2, 

degree 𝐺 = 1, we will have 𝜙1
(𝐱) = 1, 𝜙2

(𝐱) = 𝑥1, 𝜙3
(𝐱) = 𝑥2 and 𝑁𝐹 = 3. Namely, 𝝓(𝐱) =

∑ 𝜙𝑘(𝐱)𝑁𝐹
𝑗=1 = 1 + 𝑥1 + 𝑥2. While for case with 𝑁𝐷 = 2, degree 𝐺 = 2, we will have 𝜙1

(𝐱) = 1, 



29 

 

𝜙2
(𝐱) = 𝑥1

2 , 𝜙3
(𝐱) = 𝑥1𝑥2 , 𝜙4

(𝐱) = 𝑥2
2 , and 𝑁𝐹 = 4 , then 𝝓(𝐱) = ∑ 𝜙𝑗(𝐱)𝑁𝐹

𝑝=1 = 1 + 𝑥1
2 +

𝑥1𝑥2 + 𝑥2
2, so on and so forth. 

Consider the case of a two-class (i.e. 𝐾 = 2) classification, where 𝑡 ∈ {0,1}, such that 𝑡 = 1 

represents class 𝒞1 and 𝑡 = 0 represents class 𝒞2. The posterior probability of class 𝒞1 can be 

expressed as a logistic sigmoid applied to a linear function of the feature vector 𝝓, that is 

 𝑝(𝐶1|𝝓) = 𝑦(𝝓) = 𝜎(𝒘𝑇𝝓), (2.36)  

with 𝑝(𝒞2|𝝓) = 1 − 𝑝(𝒞1|𝝓), this model is known as logistic regression [64]. Here 𝜎(⋅) is the 

logistic sigmoid function defined by 

 𝜎(𝑎) =
1

1 + exp(−𝑎)
, (2.37)  

that maps the real axis into a finite interval [0, 1], representing posterior probability ranging from 

zero to one. The decision boundary is the hyperplane defined by 

 {𝝓 | 𝒘𝑇𝝓 = 0}, (2.38)  

which has equal probability for classes 𝒞1 and 𝒞2. From Equation (2.36) we have  

 𝑦(𝝓) = 𝜎(𝝓, 𝒘) = 𝜎 (∑ 𝑤𝑗𝜙𝑗(𝐱)
𝑁𝐹

𝑗=0
) = 𝜎(𝒘𝑇𝝓(𝐱)), (2.39)  

where 𝝓 = (𝜙1, … , 𝜙𝑁𝐹
)

𝑇
 is the feature vector and 𝒘 = (𝑤1, … , 𝑤𝑁𝐹

)
𝑇
 is the model parameter 

which can be determined by minimizing a penalized cost function defined by 

 𝐽(𝒘) = − ∑{𝑡𝑛ln(𝑦𝑛) + (1 − 𝑡𝑛) ln (1 − 𝑦𝑛)}

𝑁𝑆

𝑛=1

+
𝜆

2
 ∑ 𝑤𝑗

2

𝑁𝐹

𝑗=2

, (2.40)  

where 

 𝑦𝑛 = 𝑝(𝒞1|𝝓) = 𝜎(𝒘𝑇𝝓𝑛). (2.41)  
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This cost function consists of two parts: the negative logarithm of the likelihood 𝑝(𝒕|𝒘) =

∏ 𝑦𝑛
𝑡𝑛(1 − 𝑦𝑛)1−𝑡𝑛

𝑁𝑆
𝑛=1  modeling the conditional Bernoulli distribution of 𝑡𝑛  given 𝝓𝑛 , and a 

regularization term with coefficient 𝜆 to balance model fitting. If a model perfectly fits all data 

points in the training set, it will lack generality when predicting unseen data, thus 𝜆 is introduced 

to prevent this over-fitting phenomenon. On the other hand, large value of 𝜆 will heavily penalize 

the 𝒘 parameters, thus cause under-fitting. To this effect, the proper regularization coefficient 𝜆 

has to be determined by trial and error. 

As the resulting optimization problem from Equation (2.40) is convex [65], a gradient-based 

algorithm can be used to search for the best model parameter 𝒘. The quasi-Newton line search 

method with BFGS updating is selected for the optimization. 

For multi-class classification, 𝑡 ∈ {1, … , 𝐾} . The problem can be converted into binary 

classification using a technique called one-versus-the-rest or one-versus-all [64, 65], which trains 

𝐾 binary classifiers 𝑓𝑘: ℝ𝑁𝐷 ↦ {0,1} on the training set 𝑆, each distinguishes one class 𝑘 from all 

the others. An unseen sample will be assigned to the class whose classifier gives highest 

probability 

 ∀𝐱 ∈ ℝ𝑁𝐷 , 𝑝(𝐱) = argmax
𝑘∈{1,…,𝐾}

𝑓𝑘(𝐱). (2.42)  

2.4 Error driven iterative sampling method 

Local reduced-order models can meet the challenge of addressing highly nonlinear problems 

characterized by distinct physical regimes. However, identifying the best number and location of 

snapshots in the parameter space is a non-trivial task. The POD-based ROM can be seen as a 

spectral method with empirical basis functions. Therefore, the quality of the reduced-order 

solutions is critically dependent on the information provided by the POD basis, which is in turn 
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determined by the snapshots. Since it may not be known a priori how many snapshots to 

compute and/or which operating conditions are the most important to consider, an iterative 

sampling strategy based on a “greedy” application of centroidal Voronoi tessellation (CVT) is 

proposed, where an initial ensemble of snapshots is iteratively optimized according to a 

prescribed error level. The concept behind this iterative sampling approach is that if the 

inaccuracy of the reduced model is caused by insufficient information contained in the snapshot 

set, then the accuracy may be improved by enriching the set of basis considering new snapshots 

positioned in areas of high error. The CVT based iterative sampling strategy is analogous in 

principle to greedy approaches [48-54]. Namely, they all place points where the error is high. 

However, the way the error is computed is very different. Classical greedy approaches rely on 

residual-based error bounds and error indicators, while in this thesis the leave-one-out cross-

validation (LOOCV) error has been selected to guide the proposed iterative sampling process. 

The iterative sampling strategy improves an initial distribution of snapshots in the parameter 

space in three steps during each iteration: 

1) Error-driven sampling of the parameter space; 

2) Computation of the snapshots via CFD; 

3) ROM versus CFD error evaluation via LOOCV. 

The flowchart of error driven iterative sampling is show in Figure 2-1. 
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2.4.1 Centroidal Voronoi tessellation 

Defining a suitably rich set of snapshots in the parameter space (also referred to as design 

space) is a problem of design of experiments. In view of iterative sampling, it becomes necessary 

for the algorithm to be able to add more samples in desired locations of the design space without 

changing the previous distribution. Moreover, the method should be able to define samples that 

are either uniformly distributed in the design space or aggregated according to a specified density 

function. Given all this, CVT is adopted to perform the sampling, since it has superior 

capabilities of uniform and dispersed sampling with respect to other classical methods, and most 

importantly, it allows for aggregating of samples in the areas of higher density. 

 

Figure 2-1: Flowchart of error driven iterative sampling. 
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Given an open set Ω ⊆ ℝ𝑁𝐷  and a set of points 𝐳𝑖 ∈ Ω, 𝑖 = 1, … , 𝑠, the Voronoi region �̂�𝑖 

corresponding to the point 𝐳𝑖 is defined as 

 �̂�𝑖  = {𝐱 ∈ Ω | ‖𝐱 − 𝐳𝑖‖ < ‖𝐱 − 𝐳𝑗‖ for 𝑗 = 1, … , 𝑠, 𝑗 ≠ 𝑖}, (2.43)  

where ‖⋅‖ denotes the Euclidean norm. The points {𝐳𝑖}𝑖=1
𝑠  are called generators of these Voronoi 

region, and the set {�̂�𝑖}𝑖=1

𝑠
 is called a Voronoi tessellation of Ω. Given a density function 𝜌(𝐱) 

defined in �̂�𝑖, the mass centroid 𝐳𝑖
∗ of the Voronoi region �̂�𝑖 is  

 𝐳𝑖
∗  =

∫
𝑉𝑖

𝐱𝜌(𝐱)𝑑𝐱

∫
𝑉𝑖

𝜌(𝐱)𝑑𝐱
. (2.44)  

If the generators 𝐳𝑖 for the Voronoi regions �̂�𝑖 are at the same time the mass centroids of these 

regions, namely 

 𝐳𝑖 = 𝐳𝑖
∗, 𝑖 = 1, … , 𝑠, (2.45)  

then such a tessellation is called a centroidal Voronoi tessellation [55]. 

CVT-based sampling is identical to finding 𝑠 generators 𝐳𝑖 that tessellate the design space 

into 𝑠 Voronoi regions 𝑉𝑖 for 𝐳𝑖 and 𝐳𝑖 = 𝐳𝑖
∗. In this context, discrete CVT is adopted. Instead of 

a region Ω, the design space is represented by a discrete set of points 𝑊 = {𝐱𝑖}𝑖=1
𝑛 ∈ ℝ𝑁𝐷 . 

Voronoi sets corresponding to generators {𝐳𝑖}𝑖=1
𝑠 ∈ ℝ𝑁𝐷 are now defined by  

 

�̂�i = {𝐱 ∈ 𝑊 | ‖𝐱 − 𝐳𝑖‖ ≤ ‖𝐱 − 𝐳𝑗‖  for 𝑗 = 1, … , 𝑠,

𝑗 ≠ 𝑖, where equality holds only for 𝑖 < 𝑗}. 

(2.46)  

And the mass centroid 𝐳∗ of a Voronoi set 𝑉 ⊂ 𝑊 is given by 

  ∑ 𝜌(𝐱)‖𝐱 − 𝐳∗‖2

𝐱∈𝑉

= inf
𝐳∈𝑉∗

∑ 𝜌(𝐱)‖𝐱 − 𝐳‖2

𝐱∈𝑉

, (2.47)  

where 𝑉∗ can be taken to be 𝑉 or a larger set like ℝ𝑁𝐷 [55]. 
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In [55] it is stated that discrete CVT is closely related to k-means clusters, for which 

Voronoi regions and centroids are referred to as clusters and cluster centers, respectively. 

Therefore Lloyd’s method is adopted for discrete CVT, which performs a two-step iterative 

process between constructing Voronoi tessellation and replacing generators with the mass 

centroids. The energy (which is also referred to as cost or distortion error) is given by 

 ℱ((𝐳𝒊, 𝑉𝑖), 𝑖 = 1, … , 𝑠) = ∑ ∑ 𝜌(𝐱)‖𝐱 − 𝐳𝑖‖2𝑑𝐱

𝐱∈𝑉𝑖

𝑠

𝑖=1

. (2.48)  

Depending on how the density function is defined, the CVT is capable to perform three 

types of sampling: 

 Uniform sampling 

 𝜌(𝐱) ≡ 1. (2.49)  

 Biased sampling 

𝜌(𝐱) can be defined as standard probability density function, e.g. Gaussian distribution, 

 𝜌(𝑥 | 𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒

−(𝑥−𝜇)2

2𝜎2 , (2.50)  

where the mean and the variance are denoted by 𝜇 and 𝜎2. Or exponential distribution, 

 𝜌(𝑥 | 𝜆) = 𝑒𝜆𝑥, (2.51)  

where 𝜆 is the rate parameter. 

 Error driven sampling 

𝜌(𝐱) is defined on the error obtained from the LOOCV procedure of ROM, described in 

the next paragraph.  
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2.4.2 Leave-one-out cross-validation 

The error of the ROM prediction can be obtained by comparing the reduced solution with a 

reference solution (in the case of this thesis a high fidelity CFD solution) via a leave-one-out 

cross-validation approach [64, 65]. Given a set of 𝑁𝑠 snapshots, one of the snapshots is excluded 

from the set and adopted as a reference solution. Next, the ROM solution for the condition of the 

selected reference solution is defined on the basis of the other 𝑁𝑠 − 1 snapshots, and finally 

compared with the reference one. In order to have an indication over the entire parameter space 

of the analysis, this approach is repeated 𝑁𝑠 times, excluding at each time a different snapshot. A 

flowchart illustrating this process is given in Figure 2-2. 

 

 

Figure 2-2: Flowchart of LOOCV. 
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LOOCV assesses the ROM error when removing one snapshot. It is expected that adding the 

excluded snapshot will help improve the accuracy, since a richer set of snapshots will be used for 

the final analysis. Whenever the maximum error is revealed exactly at the location of a taken out 

snapshot, which means that it is a crucial snapshot and that the area is characterized by high 

nonlinearity, CVT introduces new points (snapshots) in the neighborhood of that location but not 

exactly at that location since two generators cannot coincide in the CVT context. Moreover, 

LOOCV is a general approach that works with any type of snapshot, making it an optimal choice 

for non-intrusive ROM. Through the iteration process, the number of snapshots will increase, 

and eventually be rich enough to provide a reliable error estimation. 

2.5 CFD-icing tools 

2.5.1 The FENSAP-ICE package 

All CFD-aero and CFD-icing snapshots adopted in this paper are obtained using FENSAP-

ICE simulation system [67], which includes modules for N-S flow prediction, water droplet 

impingement computation by an Eulerian method, the prediction of the 3D ice accretion/water 

runback, and conjugate heat transfer for anti-icing and de-icing, all based on partial differential 

equations for viscous turbulent flows [68-71]. Validation of FENSAP-ICE is beyond the scope of 

this thesis and has been extensively covered in other articles [68-71]. It should be pointed out 

that although ROM inherits the quality of the underlying CFD, the proposed framework for 

model reduction is independent of the accuracy of the CFD solver. 

2.5.2 Configuration for icing calculation  

For the simulation of ice accretion for a certain period of time, several approaches are 

available such as one-shot, multi-shot or unsteady icing calculations, as illustrated in Figure 2-3 
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[72]. In multi-shot approach, each module (airflow, impingement, accretion) are solved 

independently, with selected variables passed between them. At the end of each iteration, a 

displaced grid accommodating the accreted shape of ice is generated. This grid is used by the 

flow solver for the next iteration. 

 

2.6 Computational cost and parallelization  

All methodologies proposed in this thesis are implemented using FORTRAN 90. Parallel 

computation is realized via Message Passing Interface (MPI). The computational cost can be 

split into offline and online costs, as described below.   

2.6.1 Computational cost  

2.6.1.1 Offline cost 

The collection/computation of snapshots, the adaptive sampling and training of local 

reduced-order models can be considered as the offline cost. For LOOCV, the offline cost is 

equivalent to building 𝑁𝑆  reduced-order models, which includes POD basis extraction on the 

remaining 𝑁𝑆 − 1 snapshots and multi-dimensional interpolation for the modes coefficients. The 

 

Figure 2-3: One-shot, multi-shot and unsteady ice accretion configuration. 
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LOOCV cost depends on the complexity/size of the problem, i.e. the number of snapshots 𝑁𝑆, 

the dimension of snapshots 𝑁𝑃, the nonlinearity of the problem (high nonlinearity requires more 

modes to be retained in the expansion to ensure the desired level of energy content), and the 

interpolation method. When the LOOCV error is reduced to an acceptable level via iterative 

sampling, the set of snapshots is fixed. Then the extracted POD bases and their associated 

projection coefficients can be stored in a database for later use. Moreover, as mentioned in 

Section 2.1.2, the Kriging parameter 𝜽 is fixed once the snapshots are fixed. Therefore the 𝜽 

parameter can also be computed and stored in the same database, such that the time-consuming 

optimization process is avoided during the online stage. 

2.6.1.2 Online cost 

To compute a target solution, the online cost consists only in the identification of the 

corresponding local ROB and interpolation of coefficients for the modes. Depending on the size 

of the problem, i.e. the number of modes 𝑀 and dimension of mode 𝑁𝑃, the cost of the online 

phase is usually of the order of seconds, or a fraction of a second, as opposed to the hours 

required by high-fidelity CFD.  

2.6.2 Parallel computations  

Computation of snapshots defined from DoE is well suited for parallel computing, since the 

computations are completely independent of each other. Note that the snapshots may contain 

multiple solution fields. For example, in a flow solution, fields like density, pressure, velocity (x, 

y, z components), temperature and shear stress (x, y, z components) are typically computed. In 

this case, the ROM operations are performed field by field. Moreover, it is possible for the user 

to specify arbitrary fields that are of interest to be retained in the ROM solution, making the 

analysis more efficient. 
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For small-scale problems, like the 2D analysis presented in Chapter 3, a single CPU is 

capable of achieving near-real-time performance. However, for large-scale problems, like the 3D 

analysis presented in Chapter 4, where the snapshots are N-S solutions solved on a mesh of 

approximately 10 million nodes, the execution speed of ROM must still be accelerated via 

parallel computation. MPI is implemented in two parts of the code: POD and calculation of 

modes coefficients. For POD, the snapshots field variables are stored in a matrix of size 𝑁𝑃 × 𝑁𝑆 

(for 3D N-S solutions, the matrix size is typically in the order of 107 × 102). This matrix is split 

into 𝑁𝐶𝑃𝑈  blocks, and each processor operates on its own portion of data to obtain the POD 

modes (Equation 2.3 and 2.5). For the interpolation of modes coefficients, 𝑀 coefficients (tasks) 

are distributed onto 𝑁𝐶𝑃𝑈 processors. Eventually, a linear combination of the modes is computed 

and the solution is written. For LOOCV, the building of each one of the 𝑁𝑆  reduced-order 

models is already parallelized using MPI. Moreover, given the independence of the operations 

involved, the computation of the 𝑁𝑆  LOOCV can be “embarrassingly” parallelized to further 

reduce the total offline cost. 
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CHAPTER 3 TWO-DIMENSIONAL ANALYSIS 

The proposed local reduced-order modeling coupled with the iterative sampling 

methodology is applied to the problem of in-flight icing certification. A two-dimensional airfoil 

has been considered as the reference geometry for which to assess the effects of ice accretion 

over the continuous maximum (CM) and intermittent maximum (IM) icing envelopes. The 

geometry selected is a GLC-305, a business jet type of airfoil with a chord length of 36 inches. 

Airspeeds and altitudes typical of a business jet aircraft were used, e.g. pressure altitude of 

10,000 feet with a true air speed (TAS) of 175 knots [73]. For the present study, accretion time 

was computed based on airspeed and the standard reference cloud extent. The purpose is to 

demonstrate that Appendix C can be explored via ROM in terms of both ice characteristics and 

aerodynamic degradation. Namely, one can obtain the accreted ice shape and the mass of ice at 

all conditions inside the icing envelope, based on a set of pre-computed ice shapes taken as 

snapshots. Similarly, aerodynamic performance in terms of 𝐶𝐿 − 𝛼 curves can also be obtained 

everywhere inside the icing envelope on the basis of a set of pre-computed 𝐶𝐿 − 𝛼 curves taken 

as snapshots.  

Numerical solutions are taken as snapshots, as well as references to examine the quality of 

reduced-order solutions. The calculation of the snapshots was performed on a Compute Canada 

supercomputing cluster. A hybrid mesh was employed with 204,612 nodes, 57,989 quadrilateral 

elements and 87,495 triangular elements (Figure 3-1). For the analysis of the ice shape, each 

snapshot 𝑼𝑖 consists of the x and y coordinates of the 1049 nodes defining the surface mesh. For 

the aerodynamic analysis, each snapshot 𝑼𝑖  consists of lift coefficient curves for a range of 
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angles of attack from −4° to 15°, at a Mach number of 0.21 and a Reynolds number of 10.5 ×

106.  

 

The accuracy of the ROM predictions versus CFD results is evaluated via the LOOCV. Two 

types of errors corresponding to the two types of snapshots are defined. For the shape of ice, an 

integral quantity i.e. the mass of ice is adopted 

 𝜀𝑚𝑎𝑠𝑠
𝑖 = |𝑚𝑎𝑠𝑠𝑖𝑐𝑒,𝑅𝑂𝑀

𝑖 − 𝑚𝑎𝑠𝑠𝑖𝑐𝑒,𝐶𝐹𝐷
𝑖 |, 𝑖 = 1, … , 𝑁𝑆, (4.1)  

where the unit is gram per unit span. Mass of ice is computed by subtracting the area of clean 

airfoil from the area of ice accumulated airfoil, then multiplying ice density (assumed constant at 

917 kg/m
3
). For the lift coefficient curve, the error for each snapshot 𝑼𝑖 is defined as the infinity 

norm of the vector of the errors 𝜀𝑗
𝑖  at each point j of the solution 

 

𝜀𝑗
𝑖 = |

𝑈𝑗,𝑅𝑂𝑀
𝑖 − 𝑈𝑗,𝐶𝐹𝐷

𝑖

𝑈𝑗,𝐶𝐹𝐷
𝑖

| , 𝑖 = 1, … , 𝑁𝑆, 𝑗 = 1, … , 𝑁𝑃 

𝜀𝐶𝐿

𝑖 = max{𝜀1
𝑖 , ⋯ , 𝜀𝑁𝑃

𝑖 } , 𝑖 = 1, ⋯ , 𝑁𝑆. 

(4.2)  

 

Figure 3-1: Hybrid mesh around the GLC305 airfoil. 



42 

 

In both icing envelopes, it is possible to identify three typical types of icing snapshots: no or 

trace ice (clean or nearly clean airfoil), glaze/mixed ice and rime ice. The motivation for this 

behavior can be explained as follows: at certain airspeed, for a narrow region near the 32 °F 

boundary, the stagnation temperature is higher than 32 °F, such that no ice will be accumulated 

on the airfoil. Moving from the 32 °F boundary towards the -22 °F or -40 °F boundaries of the 

CM and IM, the temperature continues to decrease, creating icing conditions. The type of ice 

varies from glaze to mixed for relatively high temperatures, and eventually rime ice for lower 

ones. These different types of solutions will pollute each other in the context of ROM, an 

expected result of using global POD for highly nonlinear problems. For aerodynamic 

performance, the pollution is more evident: the clean airfoil has a much higher 𝐶𝐿,𝑚𝑎𝑥 than the 

ice-contaminated airfoil, and their proximity in the icing envelope (the narrow transition region 

from no-ice area to ice-contaminated area) makes it very difficult for global ROM to make 

accurate predictions. Local ROM is therefore introduced to handle these distinct solutions 

separately by subdividing the icing envelope into three subregions. In particular, given that all 

snapshots in the no-ice subregion are identical, no ROM computations are required for untried 

conditions classified into this region, provided the ice-free zone can be properly identified by a 

decision boundary. Detailed analysis will be given in the remainder of this section.  

3.1 Continuous maximum 

3.1.1 Initial sampling and the snapshots 

The initial sampling consists of 56 points (Figure 3-2), each representing a different icing 

condition in terms of MVD, LWC and, implicitly, external temperature. This initial sampling is 

not uniform but clustered towards the high temperature and high LWC region, because 
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experience suggests that near freezing temperature and large amount of LWC is more likely to 

produce glaze ice, which has irregular horns that are more difficult for ROM to predict, 

comparing with streamline shaped rime ice. Therefore, more samples are placed in this region.  

 

The exposure time considered for the CM is 4 minutes, and the ice shape snapshots are 

obtained via a 4-shot CFD-icing calculation. Figure 3-3 to Figure 3-5 illustrate three typical ice 

shapes and the associated 𝐶𝐿 − 𝛼 curves, as well as the Mach number contours for three icing 

conditions selected from the original set of snapshots. These figures demonstrate ice shape 

comparisons and 𝐶𝐿 − 𝛼  curve comparisons of ROM solution versus CFD solution, during 

LOOCV at this specific snapshot location, i.e. the ROM solution is obtained based on the 

remaining 55 snapshots. The solution shown in Figure 3-3 is a horn-like shape glaze ice, 

determined by relatively high temperature and large liquid water content; the solution shown in 

Figure 3-4 is a streamlined shape rime ice, formed under very low temperature conditions; and 

the solution shown in Figure 3-5 is the clean airfoil without any ice formation, in above freezing 

 

Figure 3-2: Initial sampling of the CM. 
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total temperature conditions. It is worth noting that for glaze ice with irregular horns, as shown in 

Figure 3-3, although ROM did not capture precisely the shape of ice horns, the aerodynamic 

performance prediction in terms of 𝐶𝐿 − 𝛼 curve could still be very accurate. 

 

 

 

 

Figure 3-3: Glaze ice and the associated CL - α curve (left); Mach number contours (right). 

 

Figure 3-4: Rime ice and the associated CL - α curve (left); Mach number contours (right). 
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Figure 3-6 (left) illustrates the eigenvalue convergence plot for the shape of ice, represented 

by x and y coordinates, respectively. The Y-axis is the normalized energy content associated to 

 

Figure 3-5: No-ice and the associated CL - α curve (left); Mach number contours (right). 

 

Figure 3-6: Eigenvalues vs. modes convergence for shape of ice (left) and CL - α curve (right). 
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each POD mode, i.e. 𝜆𝑗 ∑ 𝜆𝑖
𝑁𝑠
𝑖=1⁄ . The POD expansion can be truncated at a user-defined energy 

content, given that adding more modes will not significantly change the predicted target solution. 

In this analysis, an energy content of 99.9999% is selected, corresponding to 34 modes for x-

coordinate and 38 modes for y-coordinate used in ice shape prediction. Figure 3-6 (right) 

illustrates the eigenvalue convergence plot for 𝐶𝐿 − 𝛼 curve, and 14 modes were used for the 

same energy content.  

3.1.2 Iterative sampling based on global ROM 

Figure 3-7 shows the LOOCV error distribution associated with the initial set of snapshots 

(the LOOCV errors at each snapshot location are interpolated to obtain error estimation 

everywhere in the parameter space). The highest error in terms of mass of ice is around 70 grams 

per unit span (which accounts for 32% of 𝑚𝑎𝑠𝑠𝑖𝑐𝑒,𝐶𝐹𝐷,𝑚𝑎𝑥), and the 𝐿∞ error of 𝐶𝐿 − 𝛼 curve is 

around 47%. These errors were used to define the density function 𝜌(𝐱) in Equation (2.47) for 

the subsequent iteration of CVT sampling. The method of global POD was adopted in the first 

six iterations, namely all snapshots were considered together. Figure 3-8 illustrates the error 

distribution after six iterations consisting of 96 snapshots. Despite the application of the iterative 

sampling approach, the errors were not reduced but, instead, increased: the highest error of mass 

of ice has been increased to around 89 grams per unit span, and the 𝐿∞ error of 𝐶𝐿 − 𝛼 curve is 

around 67%. This can be explained by the fact that using global POD for highly nonlinear 

problems, as more snapshots are added, more physical features are introduced into the snapshots 

set, and different types of solutions pollute each other. Moreover, it is worth noting that in Figure 

3-8, for both types of snapshots, the highest errors lie in a narrow strip, which is the transition 

region between no-ice and glaze ice conditions. Such phenomenon clearly indicates that distinct 

physical features in this region require special treatment, and hence local POD is adopted. 
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Figure 3-7: Global ROM LOOCV errors after the first sampling iteration: mass of ice (left); CL 

(right). 

 

Figure 3-8: Global ROM LOOCV errors of the sixth sampling iteration: mass of ice (left); CL 

(right). 
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3.1.3 Local ROM and error driven sampling 

In order to define local ROB, the 96 snapshots are grouped into three subsets, as three types 

of icing solutions are expected. The clustering analysis was done based on 𝐶𝐿 − 𝛼  curves 

because their pollution had more prominent effects compared to those of ice shapes. The 

decision boundaries between clusters were determined via logistic regression, using a degree-3 

polynomial feature mapping with a regularization factor of 1 × 10−2, as shown in Figure 3-9 

(left). Before doing the leave-one-out error evaluation on each cluster, the snapshots on the 

decision boundaries need to be computed such that each cluster is enclosed. As shown in Figure 

3-9 (left), the initial set of boundary lines are marked by green dash lines. Between cluster 2 and 

3, eight points were defined and the corresponding snapshots (ice shapes and 𝐶𝐿 − 𝛼 curves) 

were shared between these neighboring sub-regions, leaving no uncharted areas in the parameter 

space. Between cluster 1 and 2, nine points were defined on the decision boundary, however only 

required by cluster 2, since cluster 1 comprises ice-free solutions and no more computation needs 

to be done there. To find the exact location of iced vs. no-ice boundary, k-means clustering was 

applied on the 96 snapshots plus 9 boundary snapshots between clusters 1 and 2, and the new 

boundary identified by logistic regression is marked as red dash line in Figure 3-9 (left), where 

evident changes in terms of line location can be observed in the high MVD region. Another nine 

boundary points (red circles), as well as the snapshots, were defined and a third boundary 

marked as blue dash line is obtained by repeating the same procedure on 96 plus 18 boundary 

snapshots, and this time the change is very limited. After a few more iterations, it was shown that 

the decision boundary eventually converged to a specific position in the icing envelope that 

identifies precisely the no-ice zone. Note that the 8 boundary snapshots between clusters 2 and 3, 
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once determined, were excluded from the following clustering analysis in the search for iced vs. 

no-ice boundary, therefore, the boundary line between clusters 2 and 3 remains unchanged. 

 

Once the boundaries were established, error driven sampling was continued on each cluster. 

At the end of the iterative sampling, 140 snapshots were obtained, partitioned into 3 clusters for a 

final state of 3 local reduced order bases (Figure 3-9 right). It is also worth noting that the 

clustering based on the aerodynamic solution implicitly identifies the different physical regimes 

in the parameter space, i.e. in the case of icing simulation, it is capable of identifying a no-ice 

region (cluster 1), a glaze-mixed ice region (cluster 2) and a rime ice region (cluster 3) in the 

icing envelope. 

Figure 3-10 (left) shows the error distribution for mass of ice for the last iteration. The 

maximum error has been reduced to 47 grams per unit span (which accounts for 21% of 

𝑚𝑎𝑠𝑠𝑖𝑐𝑒,𝐶𝐹𝐷,𝑚𝑎𝑥 ), mainly in the transition region where the tiniest amount of ice starts to 

accumulate, while for the majority of the CM icing envelope, the error is less than 10 grams per 

 

Figure 3-9: Decision boundaries identified by supervised learning (left); snapshots and 

clustering after 12 iterations (right). 
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unit span. Figure 3-10 (right) illustrates the overall mass of ice accumulation throughout the CM 

icing envelope. This result is obtained from 3,000 ROM solutions, which are uniformly 

distributed in the parameter space. Each target condition is sorted into a corresponding cluster by 

the classifier trained via logistic regression. Then, the specific ROB from that cluster is used to 

build the reduced solution. As shown in the graph, the accumulated mass of ice can reach a 

maximum of 220 grams per unit span, mainly in the region where total temperature is close to 

the freezing point and large amounts of liquid water are conducive to the formation of larger 

amount of ice. This mass of ice distribution could be helpful for the design of an ice protection 

system to manage optimum energy requirements for different icing conditions. In this test case, 

the online cost of computing each ROM solution on a desktop computer takes 0.13 second using 

a single CPU, while the computational time of each CFD-icing solution is 9 hours using 16 

CPUs on a supercomputer (offline cost). Detailed information about the computational cost is 

summarized in Table 3-1.  

 

 

 

 Figure 3-10: Local ROM LOOCV error after 12 iterations (left); mass of ice variation obtained 

from 3,000 ROM solutions (right). 
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Figure 3-11 (left) demonstrates the error distribution in terms of 𝐶𝐿 − 𝛼 curves for the last 

iteration. The maximum error has been reduced to 13.3%, while for the majority of the icing 

envelope the error is less than 3%. This level of accuracy is considered to be a good compromise 

given the cost necessary to get the snapshots. Figure 3-11 (right) illustrates the penalty in 

maximum lift coefficient due to ice accretion. This result is again obtained from 3,000 ROM 

solutions based on 140 pre-computed CFD snapshots. The decrease in 𝐶𝐿,𝑚𝑎𝑥 can reach 50% for 

a considerably large region of the icing envelope, which is detrimental to flight safety in an icing 

scenario. In this case, the online cost for each ROM solution takes 0.083 second on a single CPU, 

while the computational time of each CFD solution is 12 hours on 32 CPUs (Table 3-1). The 

near real-time performance obtained in this case supports the possibility of incorporating local 

ROM technology into flight simulators to enable realistic in-flight icing scenarios during pilot 

training. 

 

 

Figure 3-11: Local ROM LOOCV error after 12 iterations (left); aerodynamic degradation in 

terms of loss of CL,max obtained from 3,000 ROM solutions (right). 
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3.1.4 Comparison of local vs. global ROM 

The advantages of local ROM versus global ROM for highly nonlinear problems are clearly 

shown in Figure 3-12. The upper graph demonstrates the mass of ice error reduction history 

throughout 12 iterations. Within the first 6 iterations that global ROM was adopted, the 

maximum error did not decrease due to pollution of distinctive physical characteristics of the 

solutions. In the following 6 iterations, local ROM was adopted and the maximum error of mass 

of ice was reduced by 50%. The effectiveness of local ROM is much more evident in the case of 

𝐶𝐿 − 𝛼 curves. As can be seen, the maximum error has been reduced to 13% by local ROM, as 

opposed to 67% for global ROM. In this comparison local and global ROMs are not using the 

Table 3-1: Summary of computational cost (CM exploration) 

 Process Computational cost 

Offline 

CFD-icing 

simulations 
Each snapshot 

9 h on 16 CPUs
* 
(ice shape)

 

12 h on 32 CPUs
* 
(𝐶𝐿 − 𝛼 curve)

 

Iterative 

sampling 

Each LOOCV; 

each CVT sampling 

1.5 ~ 3 h on a single CPU
**

 

(depending on the number of snapshots) 

0.5 ~ 1 min on a single CPU
**

 

Machine 

learning 

K-means clustering, logistic 

regression (defining decision 

boundaries) 

3 ~ 5 seconds on a single CPU
**

 

Build 

database 

Extract POD modes from the 

final set of snapshots, 

compute Kriging model 

parameter 

14 min on a single CPU
**

 (ice shape) 

2.5 min on a single CPU
**

 (𝐶𝐿 − 𝛼 curve) 

Online 
Solve 

target 

Logistic regression 

(classification), linear 

combination of POD modes 

0.13 s on a single CPU
**

 (ice shape) 

0.083 s on a single CPU
**

 (𝐶𝐿 − 𝛼 curve) 

* 
  Intel Xeon E5462 quad-core, 2.8 GHz (supercomputer Colosse) 

**
 AMD Phenom II X6 1075T Processor, 800 MHz (desktop computer) 



53 

 

same number of snapshots, however it has been demonstrated that global ROM failed to yield 

reasonable accuracy by adding more snapshots, and it is for this reason that local ROM was 

considered. 

 

3.2 Intermittent maximum 

The effectiveness of local reduced-order modeling demonstrated in the test case of CM 

supported the exploration of the IM envelope with local ROM only. The exposure time 

considered is 54 seconds, based on the standard horizontal distance specified in Appendix C (2.6 

nautical miles) and the selected TAS (175 knots). The ice shape snapshots are obtained via a 3-

 

 

Figure 3-12: Error reduction history throughout iterative samplings: mass of ice (upper); CL 

(lower). 
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shot CFD-icing simulation, with uniform shot timings. One should note that IM (thunderstorms) 

conditions are difficult to find and dangerous to test in nature. Very often, simulation means are 

accepted in evaluating these conditions.  

3.2.1 Determination of local ROM 

The initial sampling consists of 56 points (Figure 3-13). Again, it is not uniform but biased 

towards the high temperature and high LWC region, for the same reason as explained in the CM 

exploration section. To implement local ROM from the very beginning, k-means clustering was 

conducted in the solution space, grouping 56 snapshots into 3 subsets (Figure 3-14). Decision 

boundaries (green dashed lines) were obtained via logistic regression using a degree-4 

polynomial feature mapping with regularization factor 1 × 10−4 . Nineteen (19) points were 

defined on the decision boundaries (green hollow circles) and the corresponding snapshots were 

computed. However, due to the relatively sparse sampling of the first iteration, by running k-

means clustering and LR again on all available snapshots (initial 56, plus 19 boundary points), a 

 

Figure 3-13: Initial sampling of the IM. 
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second set of decision boundaries were obtained (red dashed lines) that are quite different from 

the first set. To determine local reduced order models that better identify different physical 

regions in the parameter space, an additional 19 points (red hollow circles) were defined on the 

new decision boundaries and the corresponding snapshots were computed. To assess the change 

in the decision boundaries, k-means clustering and LR were implemented on all 94 snapshots (75 

plus 19 new), and the third set of decision boundaries, marked by blue dashed lines, were 

identified very close to the red dashed ones representing the second set of decision boundaries. 

Although precise location of boundaries can be obtained by continuing this iterative approach, 

repeated computation could be expensive. As a trade-off between computational cost and the 

precise subdivision of parameter space, the second set of decision boundaries were adopted to 

define subregions for the construction of local ROM, as the maximum difference in LWC 

between the second and third sets of decision boundaries is 6.06 × 10−2 g/m
3
, and the averaged 

difference is 1.74 × 10−2 g/m
3
, leading to an insignificant influence on the final results. 

 

 

Figure 3-14: Decision boundaries defined by supervised learning. 
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3.2.2 Error driven iterative sampling 

Figure 3-15 shows the error distribution associated with the second set of decision 

boundaries, obtained from local ROM. As can be seen, the highest error of mass of ice is around 

58 grams per unit span (which accounts for 29% 𝑚𝑎𝑠𝑠𝑖𝑐𝑒,𝐶𝐹𝐷,𝑚𝑎𝑥), and the 𝐿∞ error of 𝐶𝐿 − 𝛼 

curve is around 18%. In total, eleven iterations were conducted resulting in 119 snapshots, as 

shown in Figure 3-16.  

 

 

Figure 3-15: Local ROM LOOCV errors on 94 snapshots: mass of ice (left); CL (right). 
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Figure 3-17 (left) reports the error distribution in the mass of ice for the last iteration 

(contours obtained from interpolation of the LOOCV errors at each snapshot location). The 

maximum error has been reduced to 44 grams per unit span, while for the majority of the IM 

icing envelope, the error is less than 10 grams per unit span. Figure 3-17 (right) illustrates the 

overall mass of ice accumulation throughout the IM. This result is obtained by using 3,000 ROM 

solutions based on the 119 pre-computed CFD snapshots. The accumulated mass of ice can reach 

200 grams per unit span, mainly in the region where total temperature is close to freezing and 

large amounts of liquid water are conducive to the formation of larger amount of ice. In this test 

case, each ROM solution takes 0.30 second on a single CPU, while the computational time of 

each CFD-icing solution is 8 hours on 16 CPUs as illustrated in Table 3-2.  

 

Figure 3-16: Snapshots and clustering after 11 iterations. 
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Figure 3-18 (left) demonstrates the error distribution in terms of 𝐶𝐿 − 𝛼  curves for the 

eleventh iteration with 119 snapshots, with a maximum error less than 12%. Figure 3-18 (right) 

illustrates the change in maximum lift coefficient due to ice accretion. This result is again 

obtained by using 3,000 ROM solutions based on the 119 pre-computed CFD snapshots. The loss 

of 𝐶𝐿,𝑚𝑎𝑥 can be as high as 50% for a considerably large region in the icing envelope, resulting 

in adverse impact on aerodynamic performance. In this case, each ROM solution takes 0.30 

second on a single CPU, while the computational time of each CFD solution is 12 hours on 32 

CPUs. Details can be found in Table 3-2. 

 

Figure 3-17: Local ROM LOOCV error after 11 iterations (left); mass of ice variation obtained 

from 3,000 ROM solutions (right). 
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Figure 3-18: Local ROM LOOCV error after 11 iterations (left); aerodynamic degradation in 

terms of loss of CL,max obtained from 3,000 ROM solutions (right). 

Table 3-2: Summary of computational cost (IM exploration)  

 Process Computational cost 

Offline 

CFD-icing 

simulations 
Each snapshot 

8 h on 16 CPUs
* 
(ice shape)

 

12 h on 32 CPUs
* 
(𝐶𝐿 − 𝛼 curve)

 

Iterative 

sampling 

Each LOOCV; 

 each CVT sampling 

1 ~ 2 h on a single CPU
**

 

(depending on the number of snapshots) 

0.5 ~ 1 min on a single CPU
**

 

Machine 

learning 

K-means clustering, logistic 

regression (defining decision 

boundaries) 

3 ~ 5 seconds on a single CPU
**

 

Build 

database 

Extract POD modes from the final 

set of snapshots, compute Kriging 

model parameter 

6 min on a single CPU
**

 (ice shape) 

1 min on a single CPU
**

 (𝐶𝐿 − 𝛼 curve) 

Online Solve target 
Logistic regression (classification), 

linear combination of POD modes 

0.3 s on a single CPU
**

 (ice shape) 

0.3 s on a single CPU
**

 (𝐶𝐿 − 𝛼 curve) 

* 
  Intel Xeon E5462 quad-core, 2.8 GHz (supercomputer Colosse) 

**
 AMD Phenom II X6 1075T Processor, 800 MHz (desktop computer) 
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The error reduction history throughout 11 iterations for both mass of ice and lift coefficient 

curve is shown in Figure 3-19. Local ROM was adopted through all eleven iterations. The 

experience obtained through exploration of the IM suggests that the initial sampling should not 

be too sparse so as to avoid large movement of decision boundaries, which requires computation 

of additional boundary snapshots. Although there are positions to which the decision boundaries 

will eventually converge, a stopping criterion should be specified to avoid excessive 

computational cost, while still maintaining reasonable accuracy. 

 

 

 

Figure 3-19: Error reduction history throughout iterative samplings: mass of ice (upper); CL 

(lower). 
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3.3 Discussion 

There are two open questions about the proposed methodologies worth further investigation. 

The first open question regarding iterative sampling involves the number of new snapshots that 

should be introduced within each iteration. The density function in CVT sampling is defined by 

the errors obtained from LOOCV, but the number of new snapshots to be added is rather 

empirical. While it would be more straightforward to add one snapshot at a time, in the highest 

error region, efficiency is diminished since the computation of several snapshots can be run 

simultaneously on a supercomputer. Another open issue is the optimal number of clusters. In this 

paper, three clusters were proposed since there are three distinct classes of ice formations. For 

other problems, the optimal number of clusters may not be easily determined a priori, but should 

be chosen to properly represent the physics of the problem while remaining mathematically 

tractable.  
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CHAPTER 4 THREE-DIMENSIONAL ANALYSIS 

This chapter extends the assessment of the ROM framework to the complete exploration of 

the FAA continuous maximum (CM) icing envelope for a regional jet (RJ). Machine learning 

algorithms are used to address the clustering of snapshots and delimit ice-type regions within the 

envelope. For aerodynamic degradations resulting from airframe ice accumulation, detailed 

parametric analysis is performed on varied flight conditions. The greedy algorithm and CVT are 

combined in an iterative framework to position snapshots in the regions of high nonlinearity, 

determining a judicious balance between accuracy and the number of snapshots.  

4.1 Exploration of the continuous maximum icing envelope 

The proposed local ROM, coupled with the iterative sampling methodology, are applied to 

the problem of in-flight icing certification, to estimate ice build-up on unprotected aircraft 

surfaces during a holding pattern in a 17.4 nautical miles region of the CM icing conditions. A 

RJ with a 2.93 meter mean aerodynamic chord has been considered in this work (Figure 4-1). 

Airspeeds and altitudes have been selected to represent a typical holding condition, e.g. pressure 

altitude of 5,000 meters with a true air speed of 268 knots at an AoA of 3.7°. The exposure time 

considered is 25 minutes, a preliminary exploration for the maximum 45-minute hold 

certification requirement. The purpose is to demonstrate that ice shapes and mass within the CM 

icing envelope can be completely explored via ROM, not only for sections of the wing but for 

the entire aircraft.  
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Given the complexity of the RJ geometry, mesh adaptation was used to improve 

mesh/solution quality and convergence of the flow solver. A hybrid mesh of 9,788,214 nodes, 

14,926,688 prism elements and 12,587,875 tetrahedral elements was used to provide the 

necessary CFD-icing snapshots. Ice accretion was done in one-shot for 25 minutes, with the 

availability of multi-shot ice accretion when and if more precision is needed.  

For the analysis of the ice shapes, the snapshots 𝑼𝑖, are the Cartesian coordinates of the 

202,260 nodes defining the surface mesh. As a result of ice accretion, the surface mesh is 

displaced from the original clean surface. The accuracy of the ROM predictions versus CFD 

results is evaluated via the LOOCV. For each snapshot 𝑼𝑖, the vector of the errors 𝜀𝑗
𝑖 at each 

node 𝑗 of the surface mesh is defined as the difference of ice thickness 𝛿𝑗
𝑖 at that mesh point, 

namely 

 𝜀𝑗
𝑖 = |𝛿𝑗,𝑅𝑂𝑀

𝑖 − 𝛿𝑗,𝐶𝐹𝐷
𝑖 |, 𝑖 = 1, … , 𝑁𝑆, 𝑗 = 1, … , 𝑁𝑃. (4.1)  

 

Figure 4-1: Geometry and mesh of a generic RJ. 
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Then for any location 𝑖 in the parameter space, the LOOCV error is expressed as the mean 

square root of the error vector 

 𝜀𝑖𝑐𝑒
𝑖 = √

∑ (𝜀𝑗
𝑖)

2𝑁𝑃
𝑗=1

𝑁𝑃,𝑖𝑐𝑒𝑑
, 𝑖 = 1, … , 𝑁𝑆, 𝑗 = 1, … , 𝑁𝑃, (4.2)  

where 𝑁𝑃,𝑖𝑐𝑒𝑑 is the number of surface nodes displaced due to ice accretion. These errors were 

used to define the density function in CVT for the subsequent sampling iteration, which 

identifies new samples/snapshots to be added in the high error region.  

In Chapter 3 it is shown that three typical types of ice snapshots exist within the CM: no ice 

(clean geometry) or trace ice (ice becomes perceptible), glaze/mixed ice, and rime ice. These 

different types of solutions could numerically pollute each other in the context of global POD, 

therefore local POD is employed to handle these distinct solutions by subdividing the icing 

envelope into three sub-regions. In this work, local ROM is validated on a 3D geometry; detailed 

analysis will be given in the remainder of this section. 

4.1.1 Initial sampling and the snapshots  

The initial sampling consists of 36 points (Figure 4-2), each representing a different icing 

condition in terms of MVD, LWC and, implicitly, external temperature. Figure 4-3 to Figure 4-5 

illustrate examples of typical snapshots, representing glaze ice, rime ice and trace ice, 

respectively. These three figures demonstrate ice thickness contours obtained for the specific 

icing condition, as well as ice shape comparisons of ROM solution versus CFD solution at 

different sections of the airplane, during LOOCV at this specific snapshot location, i.e. the ROM 

solution is obtained based on the remaining 35 snapshots.  
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Figure 4-2: Continuous maximum icing envelope, with initial sampling. 

 

Figure 4-3: Contours of ice thickness, along with ice shape comparisons between ROM and 

CFD, glaze ice.  
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Figure 4-4: Contours of ice thickness, along with ice shape comparisons between ROM and 

CFD, rime ice. 

 

Figure 4-5: Contours of ice thickness, along with ice shape comparisons between ROM and 

CFD, trace or no ice. 
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Figure 4-6 illustrates the eigenvalue convergence plot for shape of ice, represented by x, y 

and z coordinates, respectively. The Y-axis is the normalized energy content associated to each 

POD mode, i.e. 𝜆𝑗 ∑ 𝜆𝑖
𝑁𝑠
𝑖=1⁄ . The POD expansion can be truncated at user defined energy content, 

given that adding more modes will not significantly change the predicted target solution. In this 

analysis, an energy content of 99.9999% is selected, corresponding to 26 modes for x coordinate, 

28 modes for y coordinate, and 25 modes for z coordinate used in ice shape prediction. 

 

4.1.2 Error driven sampling and local ROM 

The experience obtained from the 2D analysis (Chapter 3) suggests that an adequate number 

of snapshots should be collected before the subdivision of the parameter space. Since no a priori 

knowledge exists as to where the most critical region (glaze/mixed ice) is located within the 

envelope, it is preferable to start from a smaller number of uniformly distributed snapshots, and 

iteratively enrich them according to a suitable error indicator. 

 

Figure 4-6: Eigenvalues vs. modes convergence for shape of ice. 
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Figure 4-7 (left) shows the LOOCV error distribution associated with the initial set of 

snapshots (the LOOCV errors at each snapshot location are interpolated to obtain error 

estimation everywhere in the parameter space). The highest error in terms of ice thickness is 4.4 

mm (which accounts for 15% 𝛿𝑖𝑐𝑒,𝐶𝐹𝐷,𝑚𝑎𝑥). Figure 4-7 (right) illustrates the LOOCV error after 

the fourth iteration, with 60 snapshots. As more snapshots are added, the error has not been 

further reduced, but increased. This is a clear signal that global POD is not adequate for this type 

of analysis, since snapshots with distinct features start to pollute each other, therefore these 

different features need to be treated separately, namely using local POD. 

Figure 4-8 (left) shows the snapshots and clustering after 6 sampling iterations, with 80 

snapshots. The clustering analysis was done based on ice thickness over the aircraft. The 80 

snapshots are grouped into three subsets: no-ice or trace ice (cluster 1), glaze/mixed ice (cluster 2) 

and rime ice (cluster 3). The decision boundaries between clusters are determined via logistic 

regression, using a degree-4 polynomial feature mapping with a regularization factor 1 × 10−4, 

 

Figure 4-7: Global ROM LOOCV errors: the first sampling iteration with 36 snapshots (left); the 

fourth sampling iteration, with 60 snapshots (right). 
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as shown in Figure 4-8 (left). Before doing the leave-one-out error evaluation for each cluster, 

the snapshots on the decision boundaries need to be computed such that each cluster is totally 

enclosed. Therefore, ten points were defined on the decision boundary between clusters 1 and 2, 

and six points were defined on the decision boundary between clusters 2 and 3. These 

corresponding snapshots were shared between the neighboring subregions, leaving no untagged 

areas in the parameter space. The LOOCV results for the 3 clusters are shown in Figure 4-8 

(right). Comparing with global POD (Figure 4-7), the accuracy has been greatly improved. 

 

Once the boundaries are established, error driven sampling is continued on each cluster. At 

the end of the iterative sampling, 103 snapshots are obtained, partitioned into 3 clusters, for a 

final state of three local ROB (Figure 4-9 left). Figure 4-9 (right) shows the ice thickness error 

distribution for the last iteration. The maximum error has been reduced to 2.7 mm (which 

accounts for 9% 𝛿𝑖𝑐𝑒,𝐶𝐹𝐷,𝑚𝑎𝑥), a 40% deduction of the maximum error obtained from the initial 

sampling. For the majority of the icing envelope, the error is less than 1.2 mm. 

 

Figure 4-8: Snapshots and clustering after 6 iterations, with 80 snapshots (left); local ROM 

LOOCV error after 6 iterations (right).  
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4.1.3 Complete exploration of the CM 

To explore the CM, 1,000 icing conditions are uniformly sampled in the parameter space, 

with each target condition sorted into a corresponding cluster by the classifier trained via LR 

(Figure 4-10 left). Then, the specific ROB from that cluster is used to build the reduced solution. 

With the displaced surface mesh, the volume of accreted ice can be determined by calculating the 

volume of the space enclosed by the iced surface and the clean geometry. TetGen [74] is adopted 

to fill this space with a tetrahedral mesh, from which the total volume can be directly calculated. 

The mass of the ice can then be determined by multiplying the volume with density of ice 

(assumed constant at 917 kg/m
3
). Figure 4-10 (right) illustrates the overall mass of ice 

accumulation throughout the CM icing envelope.  

 

Figure 4-9: Snapshots and clustering for the last sampling iteration, with 103 snapshots (left); 

local ROM LOOCV errors for the last sampling iteration (right). 
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As shown in the graph (Figure 4-10 right), the accumulated mass of ice can reach a 

maximum of 142 kilograms, mainly in the region where total temperature is close to the freezing 

point and large amounts of liquid water are conducive to the formation of a larger amount of ice. 

This mass of ice distribution could be helpful for rapidly and accurately determine the critical 

mass in the design of ice protection systems and thus manage optimum energy requirements for 

all icing conditions. As shown in Table 4-1, in the current test case for a complete aircraft, the 

computational time of each CFD-icing solution is 16 to 32 hours using 128 CPUs, and is the 

offline cost. The online cost of computing each ROM solution takes 1.4 seconds using 6 CPUs. 

 

Figure 4-10: Classification of 1,000 target conditions (left); mass of ice variation obtained from 

1,000 ROM solutions (right). 
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4.2 Aerodynamic degradation of an ice-contaminated regional jet  

After holding in CM icing conditions for a certain time, ice build-up will adversely affect 

aerodynamic performance. It is important to reassess performance during subsequent 

aerodynamic maneuvers such as descent or aborted landing, for which pilots need to rapidly pull 

up and climb to a newly assigned altitude, afterwards, either prepare for re-landing, or divert to 

an alternate airport.  

The purpose of this section is to demonstrate that, based on a set of pre-computed flow 

solutions under various flight conditions taken as snapshots, flow details in terms of pressure 

distribution and shear stress distribution (which are the major sources of lift and drag) for any 

untried flight condition can be obtained via ROM. In this work, the focus is on the analysis of 

Table 4-1: Computational cost for CM exploration for the RJ 

 Process Computational cost 

Offline 

CFD-icing 

simulations 
Each snapshot 

 16 ~ 32 h on 128 CPUs
*
 

(depending on convergence rate) 

Iterative 

sampling 

Each LOOCV; 

each CVT sampling 

1 ~ 2 h on 6 CPUs
**

 

(depending on the number of snapshots) 

1 min on a single CPU
**

 

Machine 

learning 

K-means clustering, logistic 

regression (defining decision 

boundaries) 

10 ~ 15 seconds on a single CPU
**

 

Build 

database 

Extract POD modes from the 

final set of snapshots, compute 

Kriging model parameter 

22 min on 6 CPUs
**

 

Online Solve target 

Logistic regression 

(classification), linear 

combination of POD modes 

1.4 s on 6 CPUs
** 

 

* 
  Intel Xeon E5-2670 eight-core (supercomputer Guillimin) 

**
 AMD Phenom II X6 1075T Processor, 800 MHz (desktop computer) 
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steady longitudinal flight performance of a RJ. The resultant data can be incorporated into flight 

simulators, enabling icing scenario training for the pilots to better understand the hazards of in-

flight icing, particularly in holding, descent or an aborted landing. 

The ice shape considered is obtained from a 45-minute exposure under a CM icing condition 

(MVD = 21.26 μm, LWC = 0.30 g/m
3
), at typical holding flight conditions (5,000 meters 

pressure altitude, 268 knots TAS and 3.7° AoA), with clean aircraft configuration (flaps/slats 

retracted, no deflection of control surfaces) (Figure 4-11). A hybrid mesh with 9,788,214 nodes, 

14,926,688 prism elements and 12,587,875 tetrahedral elements is considered. For the 

aerodynamic analysis in question, the snapshots 𝑼𝑖 are the flow variables of interest: pressure at 

the 9,788,214 nodes of the volume mesh and shear stress (x, y, z components) at the 202,260 

surface nodes. Figure 4-12 gives an example of the flow solution over this ice-contaminated RJ, 

under flight condition IAS = 230 kt, AoA = 9° and PA = 3,000 ft. As a reference, flow over clean 

geometry, under the same flight condition as the iced one, is demonstrated in Figure 4-13. One 

can observe that due to ice accretion, the low-pressure region on the upper surface of the wing 

has been diminished, resulting in reduced lift. Meanwhile, the maximum shear stress increased 

 

Figure 4-11: Ice shape considered for aerodynamic analysis. 
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significantly, leading to increased drag. Both effects will adversely affect performance, as will be 

shown in the remainder of this chapter.  

 

 

 

  

 

 

 

Figure 4-12: Flow over iced RJ. 

  

 

Figure 4-13: Flow over clean RJ. 
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4.2.1 Parameters of the analysis and iterative sampling 

For the steady flight analysis and flight performance of a RJ in descent, climb and level 

flights, three parameters are selected: indicated air speed (IAS), AoA and pressure altitude (PA). 

These parameters are typical inputs made by pilots for longitudinal operation of the aircraft 

(AoA is equivalent to pitch angle minus flight path angle). Besides these three parameters, 

atmospheric parameters such as static pressure, static temperature and density are also required 

for setting up the numerical simulations. The International Standard Atmosphere model [75] is 

adopted to determine how atmospheric parameters change over the range of flight altitudes. The 

ranges for the parameters covered in the present analysis are shown in Table 4-2.  

 

The initial sampling consists of 84 points (Figure 4-14), with 64 inside the design space and 

20 on the boundaries. The error level is estimated on the basis of a leave-one-out approach: for 

any location 𝑖 in the parameter space where a snapshot 𝑼𝑖 is available, the error can be computed 

as the normalized L
2
-norm of the vector of the errors 𝜀𝑗

𝑖 at each node 𝑗 of the mesh 

 𝜀𝑗
𝑖 =

‖𝑈𝑗,𝑅𝑂𝑀
𝑖 − 𝑈𝑗,𝐶𝐹𝐷

𝑖 ‖
2

‖𝑈𝑗,𝐶𝐹𝐷
𝑖 ‖

2

, 𝑖 = 1, ⋯ , 𝑁𝑆, 𝑗 = 1, ⋯ , 𝑁𝑃. (4.3)  

For the pressure field, 𝑈𝑗
𝑖 = 𝑝𝑗

𝑖  is the pressure value at node 𝑗 of snapshot 𝑖; while for the shear 

stress field, 𝑈𝑗
𝑖 = 𝜏𝑗

𝑖 = √(𝜏𝑗,𝑥
𝑖 )

2
+ (𝜏𝑗,𝑦

𝑖 )
2

+ (𝜏𝑗,𝑧
𝑖 )

2
 is the magnitude of shear stress at node 𝑗 of 

Table 4-2: Flight conditions parameters, with their corresponding ranges 

 IAS [kt] AoA [°] PA [ft] Pstatic [Pa] Tstatic [°K] Density [kg/m
3
] Mach 

Min 190 0 3000 54900 256.47 0.75 0.30 

Max 270 9 16000 90808 282.21 1.12 0.55 
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snapshot 𝑖. Then the volume weighted overall error at each location 𝑖 in the parameter space can 

be expressed as  

 𝜀𝑖 = √
∑ (𝜀𝑗

𝑖𝜐𝑗) 
𝑁𝑃
𝑗=1

∑ 𝜐𝑗
𝑁𝑃
𝑗=1

, 𝑖 = 1, ⋯ , 𝑁𝑆, 𝑗 = 1, ⋯ , 𝑁𝑃, (4.4)  

where 𝜐𝑗 is the cell volume of each node of the mesh. 

 

Figure 4-15 illustrates the eigenvalue convergence plot for the solution fields of pressure and 

shear stress 𝜏 (in x, y and z coordinates). The Y-axis is the normalized energy content associated 

to each POD mode, i.e. 𝜆𝑗 ∑ 𝜆𝑖
𝑁𝑠
𝑖=1⁄ . In this analysis, an energy content of 99.999% is selected, 

corresponding to 44 modes for the pressure field, 67 modes for 𝜏𝑥, 67 modes for 𝜏𝑦, and 56 

modes for 𝜏𝑧 used in flow solution prediction. 

 

Figure 4-14: Initial sampling of 84 snapshots. 
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Figure 4-16 shows the LOOCV volume weighted L
2
-norm error of the pressure and shear 

stress fields over the ice-contaminated aircraft. The LOOCV errors at each snapshot location are 

interpolated to obtain error estimation everywhere in the parameter space. As can be seen, the 

highest error of pressure and shear stress are 1.5% and 8.6%, respectively. Given that the 

pressure field accuracy is fairly good, the error driven sampling is focused on shear stress only. 

After seven sampling iterations, 129 snapshots were defined (Figure 4-17), with LOOCV the 

error reduced to 1.3% and 6.0%, for pressure and shear stress, respectively. For the present 

demonstration, a maximum error of 6.0% is considered satisfactory and no further snapshots are 

added to the set of CFD solutions. One must keep in mind that in natural icing testing an 

accuracy of 6% would be considered extraordinary. 

 

Figure 4-15: Eigenvalues vs. modes convergence: pressure (left); shear stress (right). 
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In order to assess the aerodynamic performance degradation, flow solutions over the clean 

geometry are needed and 129 such snapshots under the same flight conditions as the ice-

 

Figure 4-16: LOOCV error of the initial sampling, pressure field (left) and shear stress field 

(right) over iced RJ. 

 

Figure 4-17: LOOCV error of the final sampling, pressure field (left) and shear stress field 

(right) over iced RJ. 
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contaminated aircraft have been computed. The LOOCV of clean solutions are shown in Figure 

4-18. The highest error of pressure and shear stress are 1.0% and 11.9%, respectively. Although 

higher than the ice-contaminated case, this level of accuracy can be considered acceptable. 

 

4.2.2 Aerodynamic analysis for an aborted descent 

Based on these two sets of snapshots (129 CFD solutions each, clean and iced) and the 

estimated error, one is reasonably confident to make predictions for other flight conditions within 

the parameter space. A hypothetical flight path representing an aborted descent is simulated 

using 21 target points, as shown in Figure 4-19. The parameter values of points on the flight path 

are selected to be as close to a realistic flight operation as possible. Among these 21 flight 

conditions, targets 1 to 9 represent the process when the airplane is allowed to exit its holding 

pattern and descend to 3,000 feet. Targets 9 to 13 represent the abortion of the descent, where the 

AoA increases from 0.9° to 7.0°, and the airplane starts to regain altitude. Targets 13 to 21 

illustrate the climb stage, for which the aircraft gets back to the holding altitude and resumes 

 

Figure 4-18: LOOCV error of the final sampling, pressure (left) and shear stress (right) of clean 

RJ. 
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level flight AoA, after which it may need to prepare for a second landing, or fly to an alternate 

airport. The input parameters values of targets 1, 9, 13 and 21 are listed in Table 4-3. 

 

 

 

Figure 4-19: Flight path simulating an aborted descent. 
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Based on the two sets of 129 snapshots each, 21 ROM solutions for the ice-contaminated 

airplane and another 21 ROM solutions for the clean airplane are obtained. As a validation, CFD 

solutions for flight conditions 1, 9, 13 and 21, on both iced and clean geometries, are computed 

to check the accuracy of ROM solutions. The volume weighted L
2
-norm error of field variable in 

terms of pressure and shear stress are summarized in Table 4-4. As one can see, all errors are 

well bounded by the LOOCV error estimators; therefore the leave-one-out approach provides a 

reliable error estimation. 

 

Figure 4-20 gives a detailed comparison of ROM vs. CFD results in terms of field quantities 

(pressure and shear stress) over the ice-contaminated airplane, under target flight condition 13, 

which is located at the bottom of the descent, where the airplane just re-establishes a climbing 

Table 4-3: Flight conditions parameters on RJ flight path 

 IAS [kt] AoA [°] PA [ft] 

Target 1 255 3.7 15,000 

Target 9 195 0.9 4,000 

Target 13 200 7.0 4,300 

Target 21 265 3.7 15,000 

 

Table 4-4: Field variables’ error of targets 

 Iced Clean 

 
|𝑃𝑅𝑂𝑀 − 𝑃𝐶𝐹𝐷|

𝑃𝐶𝐹𝐷
 

|𝜏𝑅𝑂𝑀 − 𝜏𝐶𝐹𝐷|

𝜏𝐶𝐹𝐷
 

|𝑃𝑅𝑂𝑀 − 𝑃𝐶𝐹𝐷|

𝑃𝐶𝐹𝐷
 

|𝜏𝑅𝑂𝑀 − 𝜏𝐶𝐹𝐷|

𝜏𝐶𝐹𝐷
 

Target 1 6.4527E-04 6.1656E-03 6.1826E-04 9.3841E-03 

Target 9 7.1029E-05 6.8925E-03 5.6252E-04 2.6860E-02 

Target 13 2.2571E-04 4.4945E-03 2.3879E-04 7.7051E-03 

Target 21 1.5195E-04 2.0054E-02 3.8306E-04 1.4939E-02 
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altitude (IAS = 200 kt, AoA = 7.0°, PA = 4,300 ft). Three cross-sections over the wing (21.6%, 

50.1% and 95.2% of wing span) and one cross-section on the tail (56.3% tail span) are selected, 

denoted by part a), b), c) and d), respectively. As illustrated, ROM solution agrees very well with 

the CFD solution. Figure 4-21 shows comparison of ROM vs. CFD for pressure and shear stress, 

at the same target flight condition 13, but over the clean airplane. Again, the ROM solution 

agrees well with the CFD solution for most regions of the wing and tail. Figure 4-22 and Figure 

4-23 demonstrate flow field comparison under flight condition 21, which is at the top of the 

climb path (IAS = 265 kt, AoA = 3.7°, PA = 15,000 ft), for ice-contaminated and clean 

geometries, respectively. The offline and online costs are summarized in Table 4-5. In this test 

case, the computational time of each CFD flow solution is 24 hours on 128 CPUs (offline cost). 

With these CFD solutions taken as snapshots, building a reduced model database (extracting 

POD modes, solving Kriging model parameters) takes 36.8 minutes using 16 CPUs (offline cost). 

Table 4-5: Computational cost of aerodynamic analysis for the RJ 

 Process Computational cost 

Offline 

CFD 

simulations 
Each snapshot 24 h on 128 CPUs

*
 

Iterative 

sampling 

LOOCV; 

each CVT sampling 

6 ~ 27 h on 16 CPUs
*
 

(depending on the number of snapshots) 

1 min on a single CPU
**

 

Build 

database 

Extract POD modes from the 

final set of snapshots, compute 

Kriging model parameter 

36.8 min on 16 CPUs
*
 

Online Solve target 

Logistic regression 

(classification), linear 

combination of POD modes 

28 s on 16 CPUs
* 
 

* 
  Intel Xeon E5-2670 eight-core (supercomputer Guillimin) 

**
 AMD Phenom II X6 1075T Processor, 800 MHz (desktop computer) 
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Once this database is stored, solving a ROM solution containing pressure and shear stress fields 

(over the entire computational domain) only takes 28 seconds using 16 CPUs (online cost). 

 

 

 

a) 

 

 

b) 
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c) 

 

 

d) 

Figure 4-20: ROM vs. CFD comparison of pressure and shear stress, over iced geometry, target 

point 13. 
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a) 

 

 

b) 
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c) 

 

 

d) 

Figure 4-21: ROM vs. CFD comparison of pressure and shear stress, over clean geometry, target 

point 13. 
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a) 

 

 

b) 
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c) 

 

 

d) 

Figure 4-22: ROM vs. CFD comparison of pressure and shear stress, over iced geometry, target 

point 21. 
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a) 

 

 

b) 
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c) 

 

 

d) 

Figure 4-23: ROM vs. CFD comparison of pressure and shear stress, over clean geometry, target 

point 21. 
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4.2.3 Aerodynamic degradation: icing encounters flight simulator 

Figure 4-20 to Figure 4-23 demonstrated the accuracy of ROM in terms of field variables. 

Since ROM solutions contain information on all grid points, it is possible to integrate the field 

variables (pressure and shear stress) to obtain integrated qualities such as lift coefficient (𝐶𝐿), 

drag coefficient (𝐶𝐷) and pitching moment coefficient (𝐶𝑀). Although at some sections of the 

wing ROM and CFD do not perfectly match, after integration, 𝐶𝐿, 𝐶𝐷 and 𝐶𝑀 have a very small 

error, as shown in Table 4-6. Note that Δ𝐶𝐿 = |𝐶𝐿,𝐶𝐹𝐷 − 𝐶𝐿,𝑅𝑂𝑀|, Δ𝐶𝐷 = |𝐶𝐷,𝐶𝐹𝐷 − 𝐶𝐷,𝑅𝑂𝑀| and 

Δ𝐶𝑀 = |𝐶𝑀,𝐶𝐹𝐷 − 𝐶𝑀,𝑅𝑂𝑀|. 

 

It is of interest to see how performance is penalized during this aborted descent due to ice 

accretion. Moreover, what is important in a flight simulator are not the exact values but the 

differences in lift, drag and moments, which can be very accurate with the present method. 

Figure 4-24 illustrates aerodynamic degradation in terms of lift, drag and pitching moment for 

the ice-contaminated airplane, while Figure 4-25 gives the performance penalty in percentage. 

As can be seen, the increase of drag due to ice accretion is significant, reaching as much as 61%, 

compared to the clean aircraft. Meanwhile, lift may decrease by up to 17%, and the change of 

pitching moment is as high as 20%. The reason for relatively low penalty on lift is that the ice 

Table 4-6: Integrated variables’ error at various target points 

 Iced Clean 

 
Δ𝐶𝐿

𝐶𝐿,𝐶𝐹𝐷
 

Δ𝐶𝐷

𝐶𝐷,𝐶𝐹𝐷
 

Δ𝐶𝑀

𝐶𝑀,𝐶𝐹𝐷
 

𝛥𝐶𝐿

𝐶𝐿,𝐶𝐹𝐷
 

Δ𝐶𝐷

𝐶𝐷,𝐶𝐹𝐷
 

Δ𝐶𝑀

𝐶𝑀,𝐶𝐹𝐷
 

Target 1 2.78E-03 2.19E-03 3.02E-03 4.76E-03 9.85E-03 4.55E-03 

Target 9 1.67E-02 1.66E-02 2.11E-02 9.03E-03 4.42E-02 1.48E-02 

Target 13 1.27E-03 6.74E-04 1.06E-03 1.06E-03 3.51E-03 1.22E-03 

Target 21 9.58E-03 9.16E-03 1.08E-02 4.33E-05 7.64E-03 2.61E-04 
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shape is rime (MVD = 21.26 μm, LWC = 0.30 g/m
3
, Temperature = -13.4 °C). Such 

aerodynamic degradation values can be incorporated into flight simulators, with additional CFD-

based visual aids/clues, making pilot training correspond to real-time and real-life by greatly 

improving simulator fidelity. Moreover, although the present analysis covers pre-stall AoAs, it 

can be easily extended to the stall and post-stall range of AoAs to enable stall recognition and 

recovery training. 

 

 

 

Figure 4-24: Aerodynamic degradations in CL, CD and CM. 

 

Figure 4-25: Aerodynamic penalty for ice-contaminated RJ. 



93 

 

CHAPTER 5 CONCLUSIONS 

The thesis presents a rigorous and self-contained ROM framework based on proper 

orthogonal decomposition, multi-dimensional interpolation and machine learning algorithms, 

along with an error driven iterative sampling approach to adaptively define an optimal set of 

snapshots.  

The proposed methodologies were applied to an aero-icing study for an airfoil, where icing 

effects in terms of the mass of ice and maximum lift coefficient were investigated. The 

application of the proposed approach in the context of in-flight icing demonstrated that Appendix 

C can be, it is believed for the first time, completely explored. Then, the methodologies were 

applied, again for the first time, to a detailed aero-icing study of a regional jet, in terms of: 1) the 

“complete” exploration of the FAA CM icing conditions for the shape/mass of ice, and 2) its 

aerodynamic degradation due to ice contamination during holding, and the consequent effect 

during descent and aborted landing.  

Future research work can be done in investigating the use of graphics processing units 

(GPUs) to further speed up the execution of the ROM code to achieve real-time performance. 

Although in this thesis, only CFD data is used as the snapshots for ROM, it should be pointed out 

that the proposed methodology is comprehensive in permitting the combination of CFD, EFD 

and FFD. In such case, certification will not only be more complete, and dangerous areas fully 

identified, but in addition certification campaigns could be shortened to one season instead of 

several. The proposed methodology can also be used to make the flight simulator a proactive tool 

in preventing accidents rather than just their reoccurrence. In addition, while the icing 

certification envelope is the same for all aircraft, its effect on each class of aircraft is far from 
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being the same. Thus, the current methodology can be used to assess the significance of an icing 

encounter before launching the aircraft into it, and also to give confidence to the pilots as to the 

anticipated behavior of the aircraft. Thus, in summary, the technology enables designers to avoid 

any “blind spots” and provides data for conditions that could not be located in nature, or that are 

too dangerous or impossible to test in real life. All these will lead to beneficial and sustained 

impact on aviation safety through CFD simulations. 
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