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Abstract 

This thesis presents algorithms for approximating a set of n points by a. line which 
minimizes the L1 norm of vertical and orthogonal distances. The algorithms find exact 
solutions based upon geometric properties of the problems as opposed to approximate 
solutions based upon existing numerical techniques. The algorithmic complexity of these 
problems appears not to have been investigated. The first result is an 0( n) optimal 
time algorithm for the weighted vertical problem based upon a modified multidimen
sional search technique which extends the applicability of the basic technique to a wider 
class of problems. Second, an O(n1 •5 log2 n) algorithm is presented for the unweighted 
orthogonal problem, and an 0( n2 ) algorithm is presented for the weighted orthogonal 
problem; both algorithms provide an interesting application of the (weighted) k-belts of 
an arrangement of lines. Also, an 0( n log n) lower bound for the orthogona.l L1 problem 
is shown under a certain model of computation. 

Resume 
Ce memoire presente des algorithmes pour !'approximation d'un ensemble den points 
par une droite minimisant la norme L1 des distances verticales et orthogonales. Les 
a.lgorithmes trouvent des solutions exactes basees sur les proprietes geometriques des 
problemes par opposition a.ux solutions approximatives basees sur des techniques 
numeriques exista.ntes. La. complexite algorithmique de ces problemes ne semble pas 

. avoir ete etudiee. Le premier resultat est un algorithme prenant un temps optimal 
O(n) pour le probleme vertical pondere base sur une modification d'une technique de 
recherche multi-dimensionelle qui rend possible !'application de la technique de base 8. 
une plus vaste classe de problemes. En second lieu, un a.lgorithme O(nl.5 log2 n) est 
presente pour le probleme orthogonal non-pondere ainsi qu'un a.lgorithme O(n2 ) pour 
le probleme orthogona.l pondere; les deux constituent une application interessante des 
"k-ruba.ns" (ponderes) d'un arrangement de droites. Ega.lement, une borne inferieure 
de 0( n log n) pour le probleme orthogona.l L1 est demon tree avec un certain modele de 
ca.lcul. 
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1. Introduction 

This thesis is concerned with a problem which is encountered in almost all of the applied 
sciences: the line fitting problem. There are many variations of the general problem and 
the terminology varies between different fields of research. Simply stated, the input is a 
set of n points, and the output is a line which best fits the set of points according to some 
given criterion. The origins of the problem are related to data reduction, representing 
the information from a large point set in the form of a line. Applications range from 
clustering to signal processing. While statisticians and econometricians have produced 
the most literature on the subject, the problem is also of fundamental importance in 
transportation science where it is known as the linear facility location problem, or simply 
the location problem. 

In particular, this thesis is concerned with the computational complexity of the 
Lt linear approximation problem, or simply the Lt problem. In general, statisticians 
have not been concerned with the amount of time required to solve their problems; 
they are concerned with the theoretical aspects of their results. Shamos [S76] may have 
been the first to analyze the computational complexity of some statistical algorithms 
and suggest efficient alternative algorithms for traditional methods. The first result 
presented in this thesis provides an answer to one of the questions raised in [S76]: an 
optimal, 9( n ), time algorithm is given for the vertical L1 linear approximation problem. 
The next two results, algorithms for the unweighted and weighted orthogonal L1 linear 
approximation problem, provide a direct application for (and generalize) a relatively 
recent concept in combinatorial geometry: the (weighted) k-belt [EW86]. Finally, a 
lower bound is given for the orthogonal L1 linear approximation problem. 

1.1. The Linear Approximation Problem 

The problem, in its general form, may be stated as follows (see Figure 1.1). The input 
to the problem consists of two parts. The first part is a set, S, of n points in the 
(z,y)-plane: 

S = {Pi : ( Zi, !li ), i = 1, ... , n } . 

The interpretation of the coordinates varies according to the application. In the location 
problem, the points represent the location of feeders (i.e. cities); the problem is to 
determine a transportation facility, (usually modeled by a straight line called the trunk 
line) which minimizes a given transportation cost from the feeders to the trunk line 
(feeder routes). From a mathematical viewpoint, z is considered as the independent 
variable and y is considered as the dependent variable defined by an unknown function 
y( z) such that 

The general linear problem is to approximate the function y( z) by a linear combina
tion (hence, the term linear approximation) of so called basis functions, 4>;( z ), of the 
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Figure 1.1. The line fitting problem. 

independent variable, x, 

where c; represents the ith coefficient. In other words, the problem is to find values for 
the parameters, ea, such that the approximating function best fits the data according to 

. some given criterion. The second part defines the type of problem by specifying t/>;(x} 
and an error criterion, E( c }, where c represents the parameters c;, ( i = 0, •.• , m). 

The goal of the linear approximation problem is to minimize the given error criterion 
with respect to the approximating function t/>(x} and the set of points S. The linear 
approximation problem is characterized by the choice of the approximating function 
and the error criterion. Another characteristic of the problem is the weighting of the 
points Pi by corresponding weights w;; the unweighted case corresponds to Wi = 1, 
(i = 1, .•• , n). Without loss of generality, we assume that all weights are positive 
valued, w; > 0. 

The most common choice of t/>;(x} is xi, which implies that the data fits some 
polynomial curve. This thesis is concerned with approximating the data points by a 
polynomial of degree 1, a line l : y = c0 + c1 x; hence, the problem is called the line R tting 
problem. For convenience, let a = c1 and b = c0 represent the slope and y-intercept, 
respectively, of l. The problem may now be stated as the approximation of a set, S, of 
points by a line y = ax + b according to a specified error criterion. 

The most common choice of error criterion, or function, comes from the family of 
Lp norms: 

where ei( c} represents the error from the ith point. The most common choices of ei( c }, 
or ei(a,b), are the vertical, d.,, and orthogonal, d0 , distances from the point Pi to the line 
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: d,., = Yi - O.Xi - b 
I 
I 
I 
I 
I 
I 
I 

(a.2 + 1)112 

Figure 1.2. (a) Vertical distance from a point to a line. (b) Orthogonal distance from 
a point to a line. · · 

11 = az + b (see Figure 1.2). In the weighted case, the weighting is taken into account 
by multiplying the (Lp adjusted) error from the it.h point, lei(e)l', by the corresponding 
weight, w,. 

In particular, three values of p are usually considered in the linear approximation 
problem, p = 1, 2, and oo: 

n 

L1 : L walea(a,b)l, 
i=l 

n 

L'J: L walea(a,b)f' 
i=l 

Loo: m~{lea(a,b)l}. 
' 
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The problem of minimizing a particular L11 norm, with respect to a point set and a line, 
will be called the L11 method. For example, minimizing the Lt norm is simply called the 
(vertical or orthogonal) L1 method. Several methods have adopted special names from 
the mathematical and statistical literature. Minimizing the L, norm with respect to 
vertical distances is the well known Least Squares method; note that the L2 norm may 
be minimized without the pth root since the optimal lines are the same (but the optimal 
value may differ) [R64]. Minimizing the Loo norm, also known as the Chebyshev norm, 
with respect to vertical distances, is called the Chebyshev method. Unless otherwise 
specified, we assume that there are weights associated with the points. 

In the statistical literature, the vertical distance (see Figure 1.2(a)), 

is almost exclusively used (the vertical problem). In the vertical problem, the inde
pendent variable, z, often represents time while the dependent variable, y, represents 
experime~tal measurements which may be subject to error. When the vertical distance 
is used as the error function, the optimal solutions to the three methods mentioned 
above have distinct characteristics which may determine the appropriate method for a 
particular application. Despite that fact, in practice, the Least Squares method has 
been almost exclusively used for the linear approximation problem. 

Using the orthogonal, or Euclidean, distance (see Figure 1~2(b)), 

(the orthogonal, or Euclidean, problem) is of particular interest from the point of view of 
transportation science since the orthogonal distance represents the shortest path from 
a point (possibly representing a warehouse or city) to a line (representing a planned 
transportation route) in the location problem. In the location problem, the L 1 and L00 

methods are the most practical of the three methods. The L1 method minimizes the 
total distance from the points to the line which is often directly proportional to the 
cost of transporting goods along the route. The L 00 method minimizes the maximum 
distance from the route to any point; such a criterion may be of interest, for example, 
in terms of locating emergency services. Use of the orthogonal distance in statistical 
applications represents error in both the independent and dependent variables. 

1.2. Motivation 

The L 2 norm has been well researched and a basic theory on L2 approximation exists. 
As mentioned above, the Least Squares (vertical L,) method enjoys the most popularity 

. and use in the linear approximation problem. The Least Squares method may be solved 
in 9( n) optimal time and, under certain assumptions about the distribution of points, 
the solution represents the intuitively best solution relative to the other two methods. 
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The orthogonal L2 method has not received as much attention as the Least Squares 
method. 

The vertical Loo method may be formulated as a convex linear programming prob
lem and many techniques have been developed based on such a formulation. Megiddo 
{Me84] notes that the vertical Loo problem can be solved in 9( n) optimal time by ap
plying his multidimensional search technique developed for linear programming in linear 
time. Lee and Wu [LW86] considered the orthogonal Loo problem and some of its varia-
tions and developed optimal and efficient algorithms based on computational geometry 
techniques. The Loo method has been well researched from the practical viewpoint: 
efficient algorithms exist for the basic problem and its variations. The notable point 
about those algorithms ([Me84] and (LW86]) is that they are analytical: if a. solution 
exists, then the algorithm will find the solution within a. specified time bound. That 
property does not hold for many of the numerical.techniques used to solve the problems. 

The vertical L1 problem may also be formulated as a convex linear programming 
problem and there exist many general and specialized techniques for solving the problem. 
The mathematical community has recently generated a. renewed interest in L1 approx
imation theory with the objective of promoting the practical use of the L1 method. 
That research has resulted in many specialized algorithms; however, as noted in [BS80], 
the number of algorithms widely available for efficiently solving the Lt method is very 
small and their performance may vary according to the distribution of the data points. 
Although both the L1 and Loo problems ma.y be formulated as convex linear program
ming problems, Megiddo's technique cannot be directly applied to the L1 problem to 
produce an optimal algorithm. The orthogonal Lt problem has appeared recently in 
the form of a location problem {MN80] and an O(n.3 ) brute force algorithm was given. 

Shamos [S76] was the only reference which provided an analysis of a.n algorithm 
for solving the vertical L1 problem in O(n.2 ) time and O(n.) space. (S76] notes that 
until a better algorithm is developed, iterative methods will remain preferable and also 
that no non-trivial lower bound is known. This thesis answers Shamos' problem by 
providing a.n optimal algorithm for. the vertical Lt problem based upon a modification 
of Megiddo's technique. The thesis also raises similar problems by providing efficient, 
but probably not optimal, algorithms for the unweighted and weighted orthogonal L1 

problems. All three algorithms find exact solutions by efficient search techniques as 
opposed to converging towards the solution by iterative techniques. 

1.8. Contents and Summary of Results 

In this thesis, the vertical and orthogonal Lt problems are considered. First, a history 
of the Lt problem is presented. Also, to provide a wider background, the histories of the 
L2 and Loo problems are briefly discussed. Second, algorithms for three general cases 

, of the Lt problem are presented: the (weighted) vertical L1 problem, the unweighted 
orthogona.l Lt problem, and the weighted orthogonal L1 problem. 

Section 2 presents the historical background. Section 3 presents an analysis of 
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the Ltt L2 , and L00 methods. Section 4 provides geometric preliminaries applicable 
to the following sections. Section 5 discusses the vertical L1 method. The major 
re15ult is an optimal, 0(n), time algorithm for the vertical Lt method in the plane. The 
algorithm is based on a modification of Megiddo's multidimensional search technique 
which may be applicable to similarly structured problems to produce optimal time 
algorithms. Section 6 discusses the orthogonal L1 method and relates the problem to 
(weighted) k-belts. The results are an O(n1•6 log2 n) time and O(n) space algorithm 
for the unweighted orthogonal Lt method based on a sophisticated plane sweep, an 
O(n2 ) time and O(n) space algorithm for the weighted orthogonal L1 method based on 
a topological sweep algorithm, and an n( n log n) lower bound (based on a particular 
computational model) for the orthogonal L1 method in the plane. Section 1, the 
conclusion, summarizes the theoretical and practical aspects of the results presented. 
Open problems and future research are also mentioned. 

6 



0 

2. History 

This thesis is primarily concerned with the computational complexity of the L1 linear 
approximation problem; however, since there is very little history in that area, a general 
history of the problem is given. This section summariZes the history of the Lt linear 
approximation problem. Also, the histories of the ~ and Loo problems are briefly 
discussed. 

Three starting points for sources of historical information are Gentle's "Least ab
solute values estimation: An introduction" [G77] (an introduction to a special issue on 
L1 estimation in Communications in Statistics-Simulation and Computation), Chvltal's 
"Linear Programming" [ 083], and Dodge's "An introduction to L1 -norm based statis
tical data analysis" [D87b] (an introduction to three special issues on L1 estimation in 
Computational Statistics and data Analysis). Barter provides an extensive historical 
account of linear model estimation based on Least Squares and alternative methods 
[H74a, H74b,H75a,H75b,H75c,H76]. 

2.1. The L, Linear Approximation Problem 

The linear approximation problem was motivated by the development of celestial me
chanics in the eighteenth century in the form of approximations of data on star move
ments. Boscovitch gave a geometric method for solving the L 1 problem sometime be
tween 1755 and 1757. The common method of solving the L2 problem, the Least Squares 
method, dates back to the beginning of the nineteenth century although whether Gauss 
or Legendre deserves the credit for the invention of Least Squares remains unclear [St81]. 
Linear programming formulations for the L1 and L00 problems and methods for solving 
them were proposed in the 1820's by J.B.J. Fourier. Wagner [W59} provides a summary 
of the linear programming approach up untill959. Since 1959, many algorithms based 
on the linear programming formulation have been presented; however, most of those 
algorithms use a simplex method type approach to solve the problem. 

Dodge notes that the Least Squares method has been widely used by statisticians 
for many years due to mathematical convenience, ease of computation, and since the 
method determines the most likely solution under strictly Gaussian parametric models. 
However, if the data points do not satisfy the Gaussian model, then the Least Squares 
solution may be intolerably skewed by outliers (also called noise or errors) in the data 
points (see next section). The term robustness was first used by Box to describe ap
proximation methods which are not easily influenced by outliers in the data.. The L1 
method is one of the most popular robust methods and provides a good alternative to 
the Least Squares method. 

Presently, the linear approximation problem may be found in applications in almost 
all of the applied sciences. In particular, a large amount of the literature comes from 

. statistics, econometrics, and biometrics, which consider the problem from a statistical 
point of view, and from operations research, transportation science, and geographical 
science, which consider the problem as a location problem. Shamos [S76] notes that the 
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analysis of statistical algorithms remains largely ignored. In the last few years, however, 
several results from computational geometry have presented optimal or efficient algo
rithms and their analysis for the Loo and other statistical problems. Unfortunately, it 
seems that, to a large extent, the researchers from the different :fields are not completely 
aware of each others work; for example, we found no reference to Morris and Norback's 
work [MN80,NM80,MN83] in the statistical literature even though their work appears 
in mathematical journals. Although we have not examined the Loo approximation lit
erature as well as the L1 approximation literature, Lee and Wu's [LW86] significant 
results on the L00 problem and its variations also appears to suffer from a lack of inter
disciplinary communication. Even in articles which claim to be concerned with the 
complexity of statistical algorithms, we have not found a reference to Shamos' [S76] 
work. 

2.2. The L1 Method 

An excellent source of references for the L1 method is the above mentioned [G77]. The 
notable feature of the article is that the author divides the references into important 
aspe~ts of L1 approximation: history, robustness, nonuniqueness, basic theory, proper
ties, and :finally computational aspects of the problem. Dodge [D87b] also provides a 
well categorized list of references; although Dodge does not provide as many references 
as Gentle, he does provide a brief description of the contents of the referenced articles. 
Bloomfield and Steiger [BS80] present a brief history of algorithmic approaches to the 
vertical L1 problem. 

The earliest reference to linear approximation seems to be a geometric method 
for solving a. special L1 approximation problem proposed by R.J. Boscovitch sometime 
between 1755 and 1757. P.S. Lapla.ce provided an analytic derivation of Boscovitch's 
method and further theoretical work on L1 approximation was performed by O.F. Gauss. 
In the 1820's, J.B.J. Fourier outlined a linear programming formulation of L1 and Loo 
approximation problems, and suggested a. simplex method for solving them. However, 
Lt approximation remained impractical until the advancement of linear programming 
and the computer code for its implementation. 

Ohv~tal [ 083] discusses the computation of best vertical L1 and Loo approximations 
based on the paper by H.M. Wagner [W59]. [W59] provides a. summary o£ the linear 
programming approach up until1959. Since 1959, many algorithms based on the linear 
programming formulation have been presented; however, Ohv~tal notes that, during the 
period from 1974 to 1983, the best algorithm for solving the vertical L1 problem seems 
to be the algorithm proposed by P.Bloom:field and W.L. Steiger [BS80]. 

While there existed many published algorithms for the vertical L1 method by 1977, 
Gentle [G77] notes that one impediment to the applied statistician's use of L1 approx

. imation is the lack of such procedures in the statistical program packages. Ten years 
later, with many more published algorithms, a comparison of :five "openly available" 
codes notes that two of the implementations were provided by the authors of the al-
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gorithms and one those failed to converge to a. solution enough times to warrant its 
exclusion from the final survey (GSN88]. 

Even though the linear programming approaches tend to be iterative and ma.niJr 
ula.te large matrices, undesirable characteristics in terms of computational complexity, 
very few alternative approaches appear in the literature. Soliman, Christensen, and 
Rouhi [SoCR88] present a. nonitera.tive technique which appears simple to apply al
though they provide no computational complexity analysis. The lad: of such analysis 
is typical of the sta.tisticallitera.ture with one exception: Bloomfield and Steiger {BS80) 
provide a. partial analysis of their algorithm versus ordinary Least Squares. Their final 
analysis rests on comparison of CPU times in which case they claim 0( n) complexity. 
One source of algorithms which addresses both the time and space complexity issues is 
computational geometry. {S76] provides an 0( n2 ) time and 0( n) space algorithm for the 
vertical L1 problem and notes that a. lower bound remains a.n open problem. This thesis 
provides an optimal, e( n ), time and 0( n) space algorithm thus closing that problem. 
The complexity of the orthogonal L 1 problem, however, remains an open problem. 

The literature on the orthogona.l L 1 problem is not nearly as extensive as that 
of the vertical L1 problem. In the three special issues on L1 estimation in Compu
tational Statistics and Data Analysis [D87b,D88a.,D88b], there is only one article on 
the orthogonal L 1 problem: [N88]. In tha.t article, Nyquist references only two other 
results on orthogonal estimation. One of them, Wald [Wa.40], was the earliest reference 
to the orthogonal L1 problem that we found. A noticeable omission in [N88] is Spith 
a.nd Watson's [SW87] "On orthogonallinea.r 11 approximation" which characterizes best 
approximations, discusses robustness, and provides an algorithm and the results of its 
applications to some data. sets. 

One of the original references used in the research for this thesis did not come from 
the sta.tisticallitera.ture: the article is "A Simple Approach to Linear Facility Location," 
by Morris and Norba.ck [MN80]. Morris and Norback take a. discrete geometric approach 
to solving the problem: since there exists an optimal solution to the L1 method which 
is incident with two data points, their approach was (basicly) to investigate each of the 
0( n2 ) possible solutions. Their research led to a.t least two related papers [NM80,MN83] 
and provided some of the motivation for the research presented in this paper. 

2.3. The L2 Method 

Plackett [P72] details the dispute over the priority of the independent discovery of the 
Least Squares method by Gauss and by Legendre. Stigler [St81] provides circumstantial 
evidence in favor of Gauss but credits Legendre for "crystalizing the idea. in a form that 
caught the mathematical public's eye." Legendre was the first to publish the method 
in 1805; he also included an example application. However, Gauss is credited with fully 

, exploring the method. 

As mentioned above, Harter provides an extensive historical account of the Least 
Squares method. Those articles form a five part chronological history of the Least 
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squares method dating from 1632 to 1974; the sixth article is a summary and subject 
and author indices to the references. There are also several articles which compare the 
L1 and L2 methods, such as [F87 a]. 

Almost all college students learn how to solve the Least Squares method in one 
form or another. For an exposition on the computational aspects of the Least Squares 
method, almost any numerical analysis book will contain the necessary information if 
not actually devoting a chapter to the method such as in [PFTV86). (PFTV86] explains 
the Least Squares method as interpreted by statisticians and presents several solution 
techniques. For a statistical discussion, any college level statistics text book will contain 
a discussion of the Least Squares method. The amount of literature on the orthogonal 
L2 problem is relatively limited compared to the amount of literature on the vertical 
L2 problem. 

2.4. The Loo Method 

Rice [R64] provides a brief historical account of the Chebyshev norm. The Chebyshev 
norm was proposed by Laplace in 1799 and Fourier studied a similar problem in 1824. 
The name of the norm is derived from P.L. Tchebycheff (many different spellings ap
pear in the literature) who was the first to extensively study the problem (from around 
1850-1897). The problem remained stagnant during the period from 1915 until the in
troduction of high speed computers after the Second World War. Farebrother presents 
"The historical development of the L 1 and Loo estimation procedures" in [F87b]. Wag
ner (W59] summarizes the development of the linear programming formulation of the 
vertical Loo problem. Appa and Smith [AS73) discuss some theoretical properties of the 
L1 and Loo methods and consider the applicability of those methods for use in econo
metric work. Rice [R64] provides a comprehensive account of the theory of Chebyshev 
approximation. 

Megiddo [Me84] notes that the vertical Loo problem may be solved in 9( n) optimal 
time since it can be formulated as a linear programming problem and solved by his 
multidimensional search technique. Lee and Wu consider the orthogonal L 00 problem 
and some of its variations from a location problem point of view. They present an 
optimal e(nlogn) algorithm for the unweighted case and an O(n2 logn) algorithm for 
the weighted case; they also provide optimal algorithms for two variations of the basic 
problem (the optimality is based upon the algebraic computational model of Ben-Or [B-
083]). Lee and Wu state that the motivation for their work was provided by Morris and 
Norback [NM80]. Surprisingly, Lee and Wu have no reference to the statistical nature 
of the basic problem; similarly, the statistical community appears surprisingly unaware 
of their work, considering the simplicity and efficiency of their algorithms. Houle and 
Roberts [HR88] and Hiroshi and Keiko Imai [II88], have independently developed an 
0( n log n) algorithm for the weighted orthogonal L 00 problem in two dimensions. The 

' algorithm is based on transforming the problem into a three dimensional convex hull 
problem and provides a significant improvement over Lee and Wu's result. 
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3. Analysis 

This section discusses certain characteristics of the L1 , L2, and Loo methods, although 
the emphasis of the discussion is on the L 1 method. The objective'of the discussion is 
an analysis of the methods; note, however, that the term "analysis" may have a broad 
range of meanings. In the context of this thesis, we use the term to describe the process 
of analyzing the problem in the context of determining its computational complexity. 
Of course, such a process implies, for the most part, reviewing formal analyses of the 
problem. In the case of the L, approximation methods, the analyses fall under two 
different categories: mathematical and statistical (strictly speaking, statistics is not 
considered a branch of mathematics). Note that these two viewpoints are very much 
different. From the viewpoint of mathematical analysis, Rice [R64] notes that a rather 
complete theory has evolved for L 1 approximation. In contrast, Dodge [D87a] points 
out that, although a great deal of research has been performed on L1 approximation 
methods, there is a need to unify and communicate the theory. 

There were two primary sources of information. Rice (R64] gives a very good (and 
widely referenced) mathematical analysis of the L, problems. On the other hand, Press 
et a1 [PFTV86} give a practical, statistical analysis (practical in the sense that they 
are concerned with the computation of solutions as well as the theory). Since much of 
their discussions goes beyond the context of this thesis, we outline the contents of the 
discussions and then briefly state the relevant results. We then co.-atinue by summarizing 
how those results are used in analyzing the computational complexity of the methods. 
We also look at the applicability of the methods to certain problems. 

3.1. Mathematical Analysts 

Rice [R64] is primarily concerned with the approximation of continuous functions and 
only considers the vertical problems in detail (hence, unless otherwise specified, the 
discussion in this section refers to the vertical problem). The first step in the analysis is 
choosing an approximating function and an error criterion. Rice considers many types of 
approximating functions and hence goes beyond the context of this thesis. On the other 
hand, he points out some of the general factors involved in choosing an error function. 
The most important factor in choosing the error criterion is the application, although 
the choice of approximating function may also effect the selection. In particular, Rice 
compares the L1 , L2 , and Loo norms and discusses the existence and uniqueness of 
optimal approximations. 

Rice observes that the theory of the L2 and L 00 approximation of a continuous 
function may be generalized to the approximation of a discrete set of points. On the 
other hand, the theory of the L1 approximation of a continuous function is basicly 
different from the approximation of a discrete set of points. Even so, the analysis may 

. be extended to the approximation of a finite point set and Rice observes that some of 
the analysis is actually simplified. 

The basic difference between the L1 approximation of a continuous function and a 
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set of points is in the nature of the L1 norm. Let 

K = { (a, b, c) I D( a, b) < c }, 

where D( a, b) represents the value of the L1 norm. Hence, the L1 method is equivalent 
to the geometrical problem of finding the lowest point on K. In the approximation of a 
finite set of points, the set K is the intersection of hyperplanes and forms a polytope in 
Rtl+l, where d is the number of parameters. Rice notes that it is intuitively clear that 
the lowest point lies at a corner of K: i.e., at an intersection of the hyperplanes. 

Morris and Norback [MN80,MN83,NM80} also develop the same result from a 
slightly different viewpoint. First, [MN80] show that there exists an optimal solution 
to the weighted orthogonal L1 problem in the plane which is incident to two of the 
given data points; we call that result the incidence property of an optimal solution. 
Later, [NM80) generalize the result to higher, d, dimensions and note that an optimal 
hyperplane exists which is incident to d of the given data points. The equivalence of the 
results lies in a fundamental theorem of linear programming which states that an opti
mal solution lies at a vertex of a convex polyhedron, the corner of K; that relationship 
is explained in Section 5. 

Morris and Norback [MN80] also prove a second property called the weighted me
dian property which states that the absolute difference of the sums of weights of points 
above and below an optimal line does not exceed the sum of the weights of points on 
the line. In the unweighted case, this just means that the optimal line divides the data 
points into about equal size groups above and below the line. Combining the two re
sults provides a nice characterization of an optimal solution which can be exploited to 
develop efficient geometric algorithms. 

8.2. Statistical Analysis 

Press et &1 [PFTV86} are primarily concerned with numerical techniques for determining 
an optimal solution; however, they ·provide a very readable account of several basic but 
important statistical properties in linear approximation. Their discussion also goes 
beyond the context o£ this thesis, but, in contrast to the mathematical analysis above, 
they give very sound advice in understanding and avoiding the pitfalls of practical linear 
approximation. 

They devote a large amount of discussion to the concept of the Least Squares 
method as a maximum likelihood estimator and consider the special case of the line 
fitting problem. They also present a brief discussion of robust estimators. The above 
two concepts are of interest to the three methods with respect to the application of a 
particular method to a particular problem. They also discuss more general approxima
tion methods (for example, nonlinear approximation functions) and confidence limits 

. which are beyond the context of this thesis. 
Of particular importance to the statistical performance of any of the three methods 

is the distribution of the measurement errors of the given data points. In statistics, the 
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concept of maximum likelihood estimation relates the probability of the data. given 
the parameters to the likelihood of the parameters given the data. [PFTV86] gives 
a very readable account of maximum likelihood estimation in the context of the Least 
Squares method. Under a strictly Ga.ussian distribution model, the solution to the Least 
Squares method is a maximum likelihood estimator. While the Gaussian distribution 
may be found in numerous applications, if any error is present the Least Squares solution 
may be intolerably skewed. [BS80] notes that the L1 method is a maximum likelihood 
estimator under a double exponential Laplace distribution model. The L00 distribution 
is a maximum likelihood estimator under a. uniform distribution model. 

Although many applications exist in which the distribution of the measurement 
errors is known a priori, the existence of errors in the data is natural from both a sta
tistical or systematic point of view. Even though such errors may be well understood, 
different methods behave differently for points which exceed the expected error. The 
error may be greater than expected either because the actual distribution of the mea
surement errors is not the assumed distribution, or because there is actually an error in 
the data. Note that the latter case is present in many applications; a power surge or a 
miscopied data entry may introduce a data point whose error is far from the assumed 
distribution. Such points are called outliers, or noise. 

A robust estimator is a method which is insensitive to deviations from the as
sumed population distribution [S78]. Robust estimation is important in problems in 
which a distribution model cannot be predicted or in which outliers are important. The 
robustness has important implications to both the statistical and the location prob
lem applications. Since there is a great deal of material on the subject of robustness 
([Hu64,Hu72,Hu73,Hu81,Hu87] provides a mathematical view of robustness) the pur
pose of the presentation here is to provide an example of the effects of outliers on the 
optimal solutions. 

The vertical L1 method is well known in statistics as a robust estimator: the 
solution to the L 1 method is not easily in:O.uenced by outliers in the data (see 
Figure 8.1(a)); for that reason, the L1 solution is recognized as a good initial es
timate for iterative techniques for other approximation methods. Intuitively, the L2 
method assumes that all the data points are significant; hence, the method is suscep
tible to the in:O.uence of outliers, or error, in the data. (see Figure 3.1(b)). The Loo 
method minimizes the maximum distance from the points to the line and hence is the 
most effected by outliers {see Figure 8.1(c)). 

When the distribution of the data points is not known, but is of importance, the 
solutions to all three methods may be computed and then compared to help determine 

· some characteristics of the distribution. The L 1 method may be preferable to the Least 
Squares method in applications in which the distribution of the data points is not known 
but the presence of outliers is known. 
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• Figure 3.1. (a) Optimal L1 line is not affected by outlier. (b) Optimal L2 line is 
slightly affected by outlier. (c) Optimal Loo line is the most affected by the outlier. 
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3.3. Applications 

The robustness of the method has different implica.tions depending on the a.pplica.tion. 
The loca.tion problem has an interesting interpreta.tion of the effect of outliers. If the 
a.pproxima.ting line represents a. ma.jor transporta.tion route such as a. ra.ilroa.d ( a.s con
sidered in [AS73]), then the L1 method ma.y produce the best answer since the solution 
will not sa.crifice service to many points for the sa.ke of one outlier. The L1 method 
ma.y be useful in evaluating the cost of a. transporta.tion network since the cost is often 
proportional to the total distance (the cost of tra.veling on the trunk line is considered 
negligible). The orthogonal L1 method is of pa.rticula.r interest since it represents the 
minimum Euclidean distance from the points to the line. In the context of emergency 
services, the ma.ximum dista.nce from the route to a. point ma.y be minimized in order 
to gua.rantee response time fot a.ny point; such a.n a.ssumption implies the use of the 
L00 method. While the a.bove observa.tions a.re ba.sed on ma.thema.tical properties of 
the solutions, the solutions ma.y be counter intuitive; whether such solutions should be 
a.ccepted depends on the a.pplica.tion. 

The importa.nce of not blindly a.ccepting a. solution is illustra.ted by Appa. a.nd Smith 
[AS73] who give exa.mples of da.ta. sets whose L1 or L 00 solutions a.re counterintuitive. 
They give two inputs for which the optimal L1 solutions do not indica.te downwa.rd and 
upward trends in the data, respectively, although such trends are visually perceptible. 
They note that, in general, in the vertical L1 problem, any point not on the optimal 
line may be translated vertically without changing the optimal line as long as the point 
is not translated a.cross the optimal line. They also note that a. point which determines 
the optimal line may be translated vertically within a range which has both lower a.nd 
upper bounds without a.ffecting the optima.lity of the line. 

The optimal solution to the Loo problem is known to be determined by points on 
the convex hull of the given points. Appa and Smith note that such a property makes 
the L 00 method unattractive for work in econometrics since the optimal solution may 
depend on rela.tively few of the data points. They give an exa.mple in which all but one 
of the points lie on a straight line; hence, the convex hull forms a triangle with all but 
one point on a single edge. The optimal solution, however, does not lie on the edge 
with most of the points since it is influenced by the lone outlier; in fact, it lies on one of 
the other edges of the convex hull, thus intersecting only two of the points and giving a 
very false indication of the linear trend in the data. 

3.4. Algorithms 

As Rice notes, one of the most important points of a theory of approximation is the 
knowledge of some cha.raderistic property of best approximations. He describes such 
properties a.s the method by which we may distinguish a "best" approximation from 

. one which is merely good. Those properties, however, may also play a funda.mental role 
in the computational complexity of the problem and in the development of algorithms. 

The Least Squa.res method has the nicest chara.cteristic property for a best, or 
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optimal, solution: the formula. for the optimal solution, or optimal parameters, may be 
explicitly given. Price et al give two different methods for computing the parameters. 
The first is an efficient algorithm for the fitting of a. straight line which directly computes 
the values of the parameters. The second is an algorithm for the more general problem 
which, although less efficient, is considered a. fa.ilsa.fe method. 

The Lt and Loo methods have received much attention from the algorithmic view
point. In terms of computational complexity, the formulation of the problem may be an 
important consideration. Both the vertical Lt and vertical Loo problems may be for
mulated as convex linear programming problems, whereas the orthogonal formulations 
are quite different. The orthogonal L1 method may be solved by a concave quadratic 
programming approach [SW87], while the orthogonal L00 problem lacks convexity, con
cavity, and differentiability [MN83]. On the other hand, optimal solutions to the L1 

and L00 methods may be geometrically characterized. The significance of such proper
ties from the application side have not been mentioned in the literature although those 
properties have been exploited in the development of efficient algorithms. 

The only difference between the vertical and orthogonal methods is the divisor in 
the distance function which converts the vertical to the orthogonal distance. However, 
that divisor destroys the convexity of the vertical problem, and the orthogonal Lt and 
Loo methods seem to present more difficult problems than the corresponding vertical 
problems. 

The vertical Lt and Loo methods have a multitude of algorithms almost all based 
on a. linear programming approach. However, very little analysis of the performance 
of those algorithms has been published [G77,GSN88]. In contrast, several analytical 
results have been produced based upon geometrical properties of the optimal solutions 
to the particular problem being solved. 

Although both the vertical L1 and vertical L00 methods may be formulated as 
convex linear programming problems, the Loo may be solved in e( n) optimal time by 
Megiddo's technique [Me83] while the L1 method does not admit a direct application of 
the technique. The reason that the technique does not apply to the L1 method is that 
it assumes the function to be optimized is dependent upon at most a constant number 
of the constraints. It is well known that at most three points determine the solution to 
the L00 method while the solution to the L1 method is clearly dependent upon all the 
constraints due to the mini-sum nature of the problem. However, as illustrated in this 
thesis, the vertical Lt problem may also be solved in 8(n) optimal time. 

There are several characterizations for the optimal orthogonal Loo solution; they 
may be summed up as follows. The optimal line to the L1 linear approximation problem 
is at maximum weighted distance from at least three demand points [MN83]. Further
more, for the unweighted problem, there are two points which determine an optimal 
solution and which are on the convex hull of the given set of points. Based on those 
properties, Lee and Wu (LW86] presented an optimal, 9( n log n ), time algorithm for 

. the unweighted orthogonal L00 problem. Recently, Houle and Roberts [HR88] and Ima.i 
and Ima.i [II88] have independently developed an e(nlogn) problem for the weighted 
problem which Lee a.nd Wu conjectured to be a more difficult problem. 
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As mentioned above, the L1 method has nice properties which characterize an 
optimal solution. Although Rice considers the vertical problem whereas Morris and 
Norback consider the orthogonal problem, we note that the incidence and weighted 
median properties mentioned above apply to both problems. The incidence property 
implies an O(n3) brute force algorithm which computes the value of the L 1 norm for a 
line determined by each pair of points. Although Morris and Norback tried to exploit 
the weighted median property to improve upon such an algorithm, in complexity terms 
their algorithm still took 0( n3 ) time. This thesis takes further advantage of those 
properties to develop optimal and efficient algorithms for the Lt methods. 

The fundamental difference in the complexity of the vertical and orthogonal Lt 
method is illustrated in the optimal 9( n) time algorithm for the vertical L 1 problem as 
compared to the 0( n log n) lower bound for the orthogonal L 1 problem presented in this 
thesis. We also note that the weighted orthogonal Lt problem seems to be harder than 
the unweighted problem, whereas introducing weights in the vertical L 1 problem does 
not change the computational complexity of the problem. We give an 0( n1 •5 log2 n) time 
algorithm for the unweighted problem and an O(n2 ) time for the weighted problem. 

Another feature of the geometric algorithms mentioned above is that they give the 
solution in terms of the data points, as opposed to the iterative techniques which improve 
an initial guess at each step. For example, the algorithms for the L1 methods presented 
in this thesis always provide a solution which is incident to two data points. Similarly, 
the algorithm of Lee and Wu [LW86] determines a set of three data points from which the 
optimal solution may be computed for the unweighted Loo problem with a similar result 
for the weighted case. Another paper on linear approximation {ES88], although not Lp 
based, also applies computational geometry techniques to determine an answer which 
is dependent on a constant number of the original data points. Furthermore, recent 
techniques in computational geometry allow the algorithm to monitor the consistency 
of the intermediate computations [DS88,HHK88]. Since the answer can be given in 
terms of the input, there is essentially no error in the answer. The fact that optimal 
solutions determined by the geometric algorithms always satisfy such properties may 
be of definite interest from the point of view of the location problem. Whether such 
properties are of interest to statisticians remains to be seen. 
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4. Geometric Preliminaries 
Computational geometry has provided the designer of algorithms with a very power
ful set of tools, called design paradigms by [E87], which have proven to be useful in 
the design of algorithms for many different applications. In this thesis, all three algo
rithms use a paradigm called the point-line, or dual, transformation. As (E87] notes, 
the transformation of one problem into another cannot create anything new if the trans
formation maintains a one-to-one mapping; the power of the dual transformation lies in 
its ability to focus the designer's attention on different aspects of the problem, as will 
be demonstrated in the three algorithms presented in this thesis. 

This section introduces the concept and terminology of the dual transformation 
and illustrates its application by introducing two other geometric paradigms used in 
the algorithms. The dual transformation and two of its properties are defined. The 
basic geometric concepts used in solving the vertical Lt problem and the orthogonal 
L1 problems are introduced. Although the purpose of this section is to introduce the 
geometric aspects of the problems rather than the problems themselves, some properties 
of the L1 problems are introduced here to provide a motivation for the discussion. 

4.1. Dual Transformation 

Consider a set of points in the (z,y)-plane. The dual transformation,[), maps a point, 
Pi: (zi.,Yi), in the (z,y)-plane to a line in the (a, b)-plane (see Figure 4.1): 

l>(Pi) -+I; : b = -Zia + lli· 
Similarly, l) maps a line l' : y = a'z+ b' in the (z, y)-pla.ne to a point in the (a, b)-plane: 

0(11)-+ p': (a.', b'). 

The transformation also performs the same mapping from the (a, b)-plane to the (z, y)
plane, hence: 

and 
D(p') -+ l'. 

In the context of this thesis, the most notable properties of the dual transformation 
are the preservation of above-below and incidence relationships between the points and 
lines. Also note that the dual transformation always maps a point to a nonverticalline 
(assuming there are no points at infinity). 

The point Pi : (Xi, Yi) is above the line I' : y = a' z + b' if 

Yi.- (a
1
Zi + b') > 0; 

, which may also be stated as the line is below the point. Similarly, the point Pi is below 
the line l' if 

Yi- (a'zi + 6') < 0; 
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(a) 

b 
4 5 6 1 2 

(b) 
Figure 4.1. (a) Arrangement in the { z, y )-plane. {b). Dual arrangement in the {a, b)
plane. 

which may also be stated as the line is above the point. If a point is neither above nor 
below the line, it must be on, or incident to, the line. The same terminology holds in 
either the (z,y)-plane or the (a,b}-plane. 

We now show that if a point Pi is above the line l' in the ( z, y }-plane, then the line 
li = D(Pi) is above the point p' = D(l') in the (a, b)-plane. If the point Pi is above the 

• line 11 in the (z,y)-plane, then 

!li- (a' xi+ 6') > 0. 
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We wish to show that the line l1 is above the point p' in the (a, b)-plane. According to 
the definition, l1 is above the point p' if 

I ( I · ) b - -x,a. + Jli < 0, 

which may be rewritten as 

Jli- (a'x, + b1
) > 0, 

which is true from the assumpiion. Clearly, the reverse argument, from the (a., b)-plane 
to the (x,y)-plane, also holds (just reverse the variable names). Hence, the above-below 
relationship is preserved. 

The point Pi is incident to the line l' if 

I bl !la= a Xi+ , 

and vice versa. Assume that Pi is incident to l'. We wish to show that li is incident to 
the point p1

: 

b1 = - Xi6.
1 + !li 

or 
I . I 

!li = a Xi + b , 

which is true by the assumption. Hence the incidence relationship is preserved. 

4.2. Arrangements 

The original problem posed in this thesis is given in terms of n data points, Pi: (XitYi) 
( i = 1, ... , n ), and an approximation line, l1 

: y = a.1 x + b', in the ( x, y )-plane. After 
applying the dual transformation the problem is given in terms of n data lines, li : b = 
-Xi a + !li ( i = 1, ... , n), and an appl'OJdmation point, rl : {a.', b'), in the (a, b)-plane 
(see Figure 4.1 ). The (a, b)-plane has a nice interpretation in this application since 
it represents the parameter-space (slope and intercept) of the original problem (some 
applications do not have such a direct interpretation). 

To understand the advantage of considering the dual problem, we must first mention 
a property of the vertical and orthogonal L1 methods: there exists an optimal line 
y = a* x + b* (point ( a•, b*)) which is incident to two data points (lines) in the ( x, y )
plane ((a., b)-plane). Note that the combinatorial complexity of the problem is O(n2 ), 

the number of pairs of data points (or pairs of data lines). The advantage of considering 
the problem in the (a, b)-plane is that there are several efficient methods for searching 

, the line arrangement for a point determined by the intersection of the lines, whereas 
there are no comparable methods for searching through the lines defined by pairs of 
points in a large point set. 
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4.3. Multidimensional Search Technique and the Vertical L1 Problem 

In the vertical L 1 problem, the search is performed efficiently by eliminating many lines 
with only a constant number of tests at each step and is based on the multidimensional 
search technique by Megiddo [Me83]. Since an optimal point exists which is determined 
by the intersection of two of the data lines, those data lines which do not determine an 
optimal solution may be eliminated. At each iteration, the test determines a constant 
factor, a, of the remaining lines which cannot determine an optimal (intersection) point. 

Let D( a, b) represent the value of the vertical £ 1 norm at a point (a, b) with respect 
ton data lines in the (a,b)-plane. The following description is intended to illustrate 
the process of elimination. The discussion of the test used in this process is left to later 
sections. 

The basic method for eliminating a constant factor of data lines proceeds as follows. 
Assume that there exists a test, which, given any line, l, in the (a, b)-plane reports the 
relative position (i.e. above, below, or on the line) of an optimal point (a•, b•); actually, 
we assume for reasons given below, that all optimal solutions lie on one side of a line. 
The test is applied to only two lines, 11 and l", in order to eliminate 1/8 of the remaining 
lines. 

(i) Determine the median, -zm, of the slopes of the data lines. 
(ii) Divide the data lines into pairs (I,, I;) such that li has slope less than the 

median and l; has slope greater than the median. For each pair (l,, I;), 
compute their intersection point q,. 

(iii) Determine the point, qm: (am,bm), with median a-coordinate among the 
O(n/2) points {qi}. Considf"r the vertical line, 11

: a= am, which divides 
the points {qi} into approximately equal size groups of O(n/4) points (see 
Figure 4.2). Test the line l'. If the minimum lies on 11 then we are done; 
otherwise, suppose the test reports that an optimal solution exists to the 
right of 11

: a• > am; then consider the set of approximately n/4 points 

to the left of 11. 

(iv) Deterllli, ,,_,. . v....:.: -Xma +Cm, with median slope which divides 
the points in Q' into approximately equal size sets of O(n/8) points (again, 
note that this can done in linear time with respect to the number of points 
in Q'). Test the line 111• Suppose the test reports that an optimal point 
( a•, b*) exists below l". Let 

be the set of points above 111
• 

We now know that an optimal solution lies in the region R1, formed by the inter
sedion of the half-plane to the right of l' and the half-plane below I" (see Figure 4.3). 
Furthermore, all the optimal solutions must lie in the region Rt. We know from the test 
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Figure 4.2. The first test line, 11• 

that an optimal solution lies to one side of the test line. If another optimal solution lies 
on the other side, then by the convexity of D( a, b) an optimal solution must lie on the 
line. Since the test did not find an optimal solution on the line, all optimal solutions 
must lie to one side of the line. Hence, all the optimal solutions lie in the region R1 and 
any line which does not intersect R1 cannot determine an optimal solution. 

Consider the O(n/8) points in Q". In particular, consider the pairs of lines (1.,1,) 
which determine the points in Q". One of each of those pairs of lines has slope greater 
than the median slope. A line with slope greater than the median slope and which is 
incident to a point in the region, R', to the left of l' and above l", cannot intersect 
the region R1. Hence, 0( n/8) data lines have been found which cannot determine an 
optimal point ( a•, b•). 

The process is repeated on the remaining lines until no more lines may be elimi
, nated; the remaining lines determine the optimal point. Note that there are two major 

computations in the above algorithm: computing the median of a set of points along a 
line and testing a line to determine the relative position of an optimal solution. There 
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Figure 4.3. The situation after one iteration: the region R1 • 

are several well known methods for computing the median point, or in general, selecting 
the kth element (see, for example,'[AHU74]). 

Hence, at each step a constant factor a, 0 < a < 1, o£ lines are eliminated, thus re
ducing the size o£ the problem for the next iteration. The crucial point in the complexity 
of the technique is the time required to perform the test of a line, which is performed 
twice for each iteration. Assuming that the test may be performed in linear time with 
respect to the number of remaining lines, let T( n) represent the exact time to compute 
one iteration. T( n) is 0( n) where the constant has been noted to be dependent on d, 
the number of dimensions, which is fixed [Me84). 

Since the number of lines is reduced by a factor of a at each step, the time com
plexity is bounded by 

·· T(n) + T(an) + T(a2n) + T(a1n) + · · · + T(a0(losn>n), 

O which is 0( n) total time, since each T( m) < cm for some fixed c > 0 (as m becomes 
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sma.ll the problem may be solved more efficiently by direct methods). Note that since 
the size of the problem is reduced by a at each step, there are only O(log n) iterations. 

The above description is a direct application of Megiddo's technique. In Section 
5, we show that a direct application of the technique does not result in a linear time 
algorithm. The difficulty lies in devising a test which reports an answer in linear time 
with respect to the remaining number of lines. 

4.4. Plane Sweeps and The Orthogonal L1 Problem 

The major difference between the vertical and orthogonal problems is that the vertical 
L 1 norm is convex while the orthogonal Lt norm is not. The lack of convexity makes 
devising a test for a line, which runs in linear time with respect to the number of 
remaining lines, very difficult. Instead, the approach we took was to investigate all 
possible solutions. Such an approach was investigated by Morris and Norback [MN80] 
who searched for candidate lines which satisfied two properties of an optimal line. The 
first property is the incidence property which is the same property used in the vertical 
L 1 problem. The second property, ca.lled the weighted median property, was used by 
Morris and Norback only to save some division operations. They did not investigate the 
complexity of their computations; in fact, their algorithm has the same time complexity, 
O(n3 ), as a brute force algorithm. 

The weighted median property states that there exists a solution to the weighted 
orthogonal Lt problem which satisfies 

I: Wi - I: Wi < I: Wi, 
iEA iEB iEO 

where A, B, and 0 are the set of points (lines) above, below, and on, respectively, 
the optimal line (point) in the (z,y)-plane ((a,b)-plane). Lines (points) in the (z,y)
plane ((a,b)-plane) which satisfy both the incidence and weighted median property are 
ca.lled candidate solutions. Note that in the unweighted case, the weighted median 
property states that an optimal line (point) exists which divides the points (lines) into 
approximately equal size sets above and below the line (point). 

Genera.lly speaking, we take the same approach as Morris and Norback: we wish to 
find a.11 candidate solutions and evaluate the value of D(a,b) at those points in order to 
determine an optimal solution. However, rather than searching for candidate lines in the 
( x, y )-plane, we search for candidate points in the (a, b)-plane, the dual transformations 
of the candidate lines, by using efficient plane sweep techniques. The unweighted and 
weighted problems are considered separately since it seems easier to find the candidate 
points of the unweighted problem than those of the weighted problem. 

4.4.1. k-graphs, k-belts and the Unwelghted Orthogonal L1 Problem 

Let S be a set of n points in general position (no three collinear ). For any two points 
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p, q E 8, the directed line pq ha.a a certain number, N(pq), of points of 8 on its positive 
side, that is, the open half-plane to the right of pq. Erdos, Lov&sz, Simmons, and 
Strauss (ELSS73] consider the properties of k-graphs, G~c, of 8 whose edges are the 
segments pq with N(pq) = k (k = 0, 1, ... , (n- 2)/2) (see Figure 4.4(a)). Note that, 
fork= (n- 2)/2, the lines pq are the candidate lines for the unweighted orthogona.l L1 

problem. [ELSS73] provide an O(nlogk) lower bound and an O(nv'k) upper bound for 
the number of edges of G~c. Hence the number of candidate solutions is in O(nlog n) 
and O(n1•5). 

The above complexity results were independently found by Edelsbrunner and Welzl 
(EW85) who studied so-called k-sets: sets of k points of 8 separated by a line from the 
rest of 8, as defined above except that the line is not incident to any points in S. 
[ELSS73] conjecture that the upper bound is actually closer to the lower bound, thus 
providing motivation for an efficient search of the candidate vertices as a method for 
solving the orthogona.l L 1 problem. However, neither of the above papers consider the 
efficient computation of the k-sets. 

Edelsbrunner and Welzl [EW86] introduced the concept of the k-belt of an arrange
ment of lines. Consider a point pin the plane. Let a(p), b(p), and o(p) represent the 
number of points above, below, and on p, respectively. The k-belt is defined as the set 
of all points such that a(p) + o(p) 2: k and b(p) + o(p) > k, for 0 < k < rn/21. For 
k > 1 the k-belt is bounded above and below by an unbounded polygonal chain. For 
k odd, note that the two boundaries of the rn/21-belt coincide (see Figure 4.4(b)). 
The chain is formed by edges which coincide with the lines of the arrangement and each 
edge is bounded by two vertices determined by the intersection of two of the lines in 
the arrangement. The chains are monotone with respect to the horizontal axis which 
means that a vertical line intersects the cha.in in exactly one point. 

Although [EW85) do not consider, by definition, k-sets which are defined by lines 
which are incident to points of S, in [EW86), the vertices of the k-belt are actually 
the dual representation of the lines pq investigated in {ELSS73]. [EW86] provides an 
0( b~c( n) log2 n) time algorithm for finding the vertices of the k-belt based upon a "sophis
ticated plane sweep" algorithm, where b~c(n) is the number of vertices in the k-belt. The 
plane sweep may be considered sophisticated since it does not have to search through 
all of the O(n2 ) vertices of the arrangement; it is able to construct the k-belt, for fixed 
k, by directly computing the vertices which lie on the boundaries of the belt in left to 
right order. 

In the unweighted L 1 problem we are interested in the r n/21-belt, referred to as 
the median-belt. Because of the dual correspondence between the lines of G 1c and the 
vertices of the k-belt, we know that the vertices of the median·belt are the candidate 
points of the unweighted orthogona.l problem. Hence, the sophisticated plane sweep 

. algorithm may be used to find the median-belt vertices in O(n1•6 log2 n) time. Based 
on that algorithm, we show how to efficiently compute the solution to the unweighted 
orthogonal L1 problem. 
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(a) 

5 6 7 1 2 

(b) 
Figure 4:.4:. (a) The lines determined by the edges of the graph Ga. (b) The 3-belt of 
a set of 8 lines. 

4:.4.2. Weighted Median Belts and the Weighted Orthogonal L1 Problem 

The median..:belt may be generalized to the weighted median-belt. The weighted median
belt is the set of points in the (a, b)-plane which satisfy the weighted median property: 
at each point on the belt, the sum of the weights of the data lines incident with the 
point is greater than the absolute difference of the sums of weights of the data lines 

.. above and below the point. Hence, the vertices of the weighted median-belt are the 
candidate points of the weighted orthogonal Lt problem. 

We are not aware of any previous work concerning weighted median-sets or weighted 
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median-belts. In particular, we are interested in the determining the number of vertices 
in a weighted median-belt and the complexity of finding them. Those problems are 
answered in in Section 6 where the weighted median-belt is investigated and then used 
to solve the weighted orthogonal Lt problem. 
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5. Vertical L1 Linear Approximation Problem 

This section describes an optimal, 9( n) time, algorithm for finding an exact solution 
to the weighted vertical L 1 linear approximation problem of a set of points in the 
plane {referred to as the vertical L1 problem). Clearly, the algorithm is also optimal 
for the unweighted problem in which all weights, w;, are set equal to 1. The algorithm 
is of interest for two reasons. First, the algorithm improves the previous upper bound 
of O(n3 ) for an algorithm which finds the exact solution. Second, the algorithm mod
ifies a basic technique used in computational geometry, the multi-dimensional pruning 
technique, to suit a problem which does not admit a direct application of the basic 
technique. Furthermore, the modified technique is applicable to a wide class of similar 
problems. 

5.1. Preliminaries 

The vertical £ 1 problem in the ( x, y )-plane, referred to as the primal problem, and the 
corresponding problem in the (a, b)-plane, referred to as the dual problem, are formally 
stated {note that the use of the term primal is used for convenience; there is no relation 
to the primal and dual problems of mathematical programming). The convexity of the 
objective function, the vertical L1 norm, is shown. A property of an optimal solution 
to the primal problem is noted and the corresponding dual property is shown. 

5.1.1. The Primal Problem 

The vertical L 1 problem may be formally stated as follows. 

Problem 6.1. The Primal Problem. Given a set, S, of n points, Pi : 
(x,, !Ji) (i = 1, ... , n), in the (x, y)-plane, with corresponding weights, w,, find 
a pair of values ( a•, b* ), for the parameters a and b, which solves the following 
mini-sum problem: 

n 

min 
a,b 

D(a,b)- L Wi IYs- (ax; + b)l· 
i=l 

D( a, b) will be referred to as the objective function. The goal of the vertical L1 problem 
is to find parameter values a• and b* such that D(a* ,b*) ~ D(a,b), for all values of a 
and b. 

llice [R64] shows that the set of possible solutions to the (unweighted) vertical prob
lem is convex by noting that D( a, b) is convex. For the completeness of the argument, 
a definition of convexity is stated, and then D(a,b) is shown to satisfy the definition of 
convexity. 

Definition 5.1. Convex Function. A function F(x, y), defined for points 
in the (x, y)-plane, is said to be convex if, given A, JJ > 0, A+ JJ = 1, then for 
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Figure 6.1. Vertical L 1 problem in the (z,u)-plane. 

uy two points (zt,y2 ), (z2,JI:a), the following 1s true: 

F(..\(zhfl1) + J.'(Z2,J12)) < ..\F(Zt,t/1)+ p.F(z2,J12), 

where ..\( ZIJ t11) + p.( :1:2, t12) is called the convex combination of the points 
(z1,Jit) ud (z2,J12)· · 

D( a, 6) is shown to be convex by the definition of convexity. 

Lemma 6.1. D(a,6) is convex. 

Proof: For any fJ (0 < fJ < 1) and (a~t6!),(a2,62), Wi > 0, 

fJD(at,6t) + (1- fJ)D(B:a,62)- D{flat + (1.- fl)B:a,fl61 + (1- fJ)62) 
n n 

= fJ L: U/il !li- (a1zi + 61) I+ (1- fJ) E w•l tli- (a2Zi + b2) I 
i=l i=l 

n 

- L Wil Yi- [ (la1 + (1- l)a2) Zi + (lbt + (1- l)62)] I 
i=1 

n 

= 2: w; { fllru- (atzi + 61) I+ (1- fl)l t/i- (a2zi + 62) I 
i=l 

-I tli- [(flat + (1- S)a2) z; + (661 + {1- 6)62)] I} 
>O 

(Since IAI + IBI >lA+ B!, for any A and B). 0 

D(a,6) has a unique global minimum which is called the optimal value (see (R64] for 
a. mathematical characterization of the L1 approximation problem). A pair of values 
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for the parameters a and b, ( a•, b* ), which attains the optimal value, called an optimal 
solution, always exists and is either unique or there are infinitely many such pairs. 

Graphically, in the (x,y)-plane (see Figure 5.1), an optimal solution, (a* ,b*), 
defines an optimal line, y = a • x + b*, which minimizes D( a, b) with respect to the 
given point set S. An approximate solution is any pair of values (a,b); likewise, an 
approximate line is any line defined by the pair of values (a,b). The following result 
characterizes an optimal solution to Problem 5.1. 

Lemma 5.2. There is an optimal line which is incident to two points of S. 

Barrodale and Roberts [BR70] provide a proof for Lemma 5.2 for vertical L 1 approx
imation in ( n + 1 )-dimensions based on the properties of convex sets. We will give a 
proof for Lemma 5.3, the dual version of Lemma 5.2. 

An approximate line which is incident to two points of S is called a candidate 
line, or in general, a candidate solution. Since there are (~) = O(n2 ) pairs of points, 
there are O(n2 ) candidate lines and one of the candidate lines is an optimal line due to 
Lemma 6.2. A brute force algorithm to determine the candidate lines can be easily 
derived. For each pair of points in S, compute D( a, b) for the parameters a and b 
determined by a candidate line which passes through the pair of points, and choose the 
pair which minimizes D( a, b). Since there are 0{ n 2 ) pairs of points and for each pair it 
t~es O{n) time to compute D(a,b), an upper bound for determining an optimal line 
is O(n2 ) * O(n) = O(n3 ). However, by considering the vertical L1 . problem in the dual 
plane, an efficient search through the candidate solutions may be derived. 

6.1.2. The Dual Problem 

The point set S of the primal problem is transformed to a line set, H, of the dual problem 
by transforming each point {xi, Yi) in Sin the (x, y)-plane to a line li : b = -xia + Yi in 
H in the (a, b)-plane (see Section 4). The corresponding dual problem of Problem 5.1 
may be formally stated as follows. 

Problem 5.2. The Dual Problem. Given a set, H, of n lines, 1, : b = 
-x;a+y&(i = 1, ... , n), in the (a, b)-plane, with corresponding weights, w,, find 
a pair of values ( a•, b* ), for the parameters a and b, which solves the following 
mini-sum problem: 

rmn 
a,b 

n 

D(a,b) = L Wi IYi- (axi + b)J. 
i=l 

Note that the objective function, D(a,b), is the same in both the primal and the dual 
problems (in mathematical programming, the objective functions of the primal and dual 

. problems are different). 
Graphically, in the (a, b)-plane (see Figure 5.2), an optimal solution, (a• ,b*), 

defines an optimal point, which minimizes the L1 norm with respect to the set of 
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4 5 6 1 2 

Figure 6.2. Vertical L1 problem in the (a, b)-plane. 

lines H. The following characterization of an optimal point in the (a, b)-plane, the dual 
version of Lemma 6.2, is the key to successfully applying the pruning technique. 

Lemma 6.3. There is an optimal point which is incident to two lines in H. 

Proof: Consider the arrangement in the (a,b)-plane determined by the lines 
in H. Since D(a,b) is convex (Lemma 6.1) and piecewise linear, the set 
of points {(a,b,c)lc > D(a,b)}, forms a convex polyhedron above the (a, b)
plane. By the Fundamental Theorem of Linear Optimization [PFTV86], the 
function D( a, b) is minimized at an extreme point of the convex polyhedron. 
The extreme points are the vertices of the convex polyhedron. Since D( a, b) 
is a piecewise linear function, the vertices of the polyhedron correspond to 
intersections of the lines in H. Hence, there exists an optimal point in the 
(a.,b)-plane which lies at the intersection of two data lines in H. o 

A candidate point in the (a, b)-plane is a point determined by the intersection of two 
data lines. An 0( n3

) brute force algorithm to search through the candidate points may 
be derived from Lemma 5.3: perform a plane-sweep (O(n2 ) time, O(n) space [EG86]), 
computing the value of the L1 norm at each intersection point, or candidate point, and 
choose the candidate point which minimizes the L1 norm. By utilizing another property 
of the vertical L1 problem, the time complexity may be reduced to O(n2 ) as illustrated 
in the algorithm for the weighted orthogonal L1 problem presented in Section 6. 

5.2. 9(n) Algorithm 

Based on the result in Lemma 6.3, we will apply the pruning technique to the dual 
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problem to eliminate data lines which are known not to determine an optimal intersec
tion point; when no more lines may be eliminated we know that the remaining lines 
determine an optimal solution. As mentioned in Section 4 the important part of the 
technique is the test to determine the relative position of an optimal point with respect 
to a line. By using the convexity of D(a.,b), such a test may be derived based on the 
computation of the derivatives at the point which minimizes D(a.,b) on the given line 
l. Since the method for pruning the data lines is a direct application of the technique 
presented in (Me83], we focus upon the development of a test which reports the relative 
position of an optimal position with respect to the given line l in linear time with respect 
to the number of remaining data lines. 

As mentioned above, the test utilizes the derivatives of D( a., b) to determine an 
answer. The problem lies in the complexity of computing the derivatives. Since all 
of the data lines contribute to the value of the derivative at a given point, the time 
complexity of a basic test will require 0( n) time even if some data lines have been 
"eliminated." In fact, the principles of the pruning technique are needed to produce an 
O(n) time basic test as described below. 

In order to produce an 0( n) total time algorithm, however, the test must be able to 
determine a result in time linear to the remaining number of constraints. The problem 
with the basic pruning technique is that it assumes information from eliminated lines 
is not needed in further computations. To overcome that problem a. data structure, 
called Ro, is introduced which, in one sense, retains the relevant· information about the 
eliminated lines. A method for exploiting that information in order to compute the 
derivatives in linear time with respect to the remaining data lines is given. The data 
structure Ro is described and finally, a test is given which uses Ro to test a line in the 
required time. 

5.2.1. Maintaining D(a,b) 

The analytic complexity of D( a., b) is exploited in order to maintain D( a., b) in a form 
such that, under certain conditions, the contribution of eliminated data lines can be ac
counted for in constant time. First, note that D( a., b) is a. convex piecewise linear func
tion. Second, although D( a, b) has points of nondi:fl'erentiability, the one-dimensional 
left-hand and right-hand side (lhs and rhs, respectively) derivatives of D(a,b) may be 
computed at any point (a, b). 

For fixed a. and b, define sets [+ (a, b) and 1- (a, b) of indices by: 

J+ (a, b) = { i I Yi > a.z;. + b ( i = 1, •.• , n)} 

and 

1-{a., b) = { i I y;. < az;. + b ( i = 1, ... , n)} . 

The above notation may be interpreted as the set of indices of points (z;., Yi) above and 
below, respectively, a line defined by (a., b) in the ( z, y )-plane, or as the corresponding 
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set of indices oflines defined by (-x;,y;) above and below, respectively, a point (a,b) 
in the (a, b)-plane. The objective function D( a, b) may then be written as follows. 

where 

n 

D(a,b) = L w; IYi- (ax; + b)l 
i=l 

I: Wi (Yi- (ax, +b)) 
iei+(11,6) 

L w; (Yi- (ax, +b)) 
iei-(11,6) 

- L w;y, - L w,ax; - L w;b 
ier+(11,6) iei+(11,6) ier+(11,6) 

L w;y; + L w;ax; + L w,b 
iei-(11,6) iei-(11,6) iei-(11,6) 

= y+ - ax+ - bw+ - y- + ax- + bw-, 

w+ = L w;, x+ = L WiXi, y+ = L w,y,, 
iei+(11,6) iei+(11,6) iei+(11,6) 

w- = L w,, x- = L w,x,, y- = L w,y,. 
ier-(11,6) iei-(11,6) ier-(11,6) 

Similarly, the one-dimensional functions of D( a, b) may be written as follows. 
Fixing a = a, the value of D( a, b) may be regarded as a function of b: 

n 

D(b) = D(a,b) = L: w; IYi- (ax, + b)l. 
i=l 

In the ( x, y )-plane, the one-dimensional function, D( b), corresponds to the value of 
D( a, b) as a line with fixed slope a, l : y = ax + b is translated. In the (a, b)-plane, 
D( b) corresponds to the value of D( a, b) as a point (a, b) moves along the vertical line 
l :a= a. D(b) is a piecewise linear convex function of b, and at a differentiable point, 
(a, b), 

D'(b) = dD~:,b) =- L: w; + L: Wi 
ier+(a,6) ier-(a,6) 

=w- -w+ 

At a differentiable point on l in the (a,b)-plane, D'(b) indicates whether D(a,b) is 
increasing or decreasing along l. At a nondifferentiable point, (a',b'), on l (a point of 
intersection with a data line), the lhs and rhs derivatives may be computed in order to 

. determine the local behaviour of D( a, b). Since we are considering a one-dimensional 
problem, note that the left-hand side implies points on l with b < b'; similarly, the 
right-hand side implies points on l with b > b'. 
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Letting b ="''a+ p, the value of D(a,b) may be written as a function of a: 

" 
D(a) = D(a,"'/a + P) = L Wi !Yi- (a(zt +"f)+ P)l· 

t=l 

D( a) corresponds to the value of D( a, b) as a point moves along the non vertical line, 
b = "''a + P, in the (a, b)-plane and to the value of D( a, b) as a line is rotated about the 
point (-"'',P) in the (z,y)-plane. D(a) is a piecewise linear convex function of a, and 
at a differentiable point: 

1 dD( a, "''a + P) """ """ D (a) 5 da =- L...., Wi(Zi- "'!) + L., Wi(Zi- "'') 
•er+ ier-

= x-- x+ +"''(w+- w-), 

where I+= I+(a,"'/a+P) and I-= I-(a,"''a+P). In the (a, b)-plane, at a differentiable 
point on l, D' (a) indicates whether D{ a, b) is increasing or decreasing along the line l. 
At a nondifferentiable point on l, the lh8 and rh8 derivatives may be computed in order 
to determine the local behaviour of D( a, b). 

The above representation will be used to maintain the contributions of eliminated 
data lines. Consider the problem in the (a, b)-plane. Assume that some data lines, E, 
have been eliminated by the pruning technique. Let the sets E+ and E- represent 
the set of indices of eliminated data lines above and below, respectively, a point (a, b), 
while I+ and I- represent the indices of the remaining data lines above and below, 
respectively, (a,b). Then D(a,b), D'(a), and D'(b) may be written as follows. 

D(a,b) = L Wi (Yi- (azi +b))- L Wi (Yi- (azi +b)) 
iei+(e~,6) ier-(e~,6) 

. '+ '+ '+ , , , +Y -aX -bW -Y-+aX-+bW-

D'(a) =- L Wi(Xi- "'!) + L Wi(Xi- "'!) 
ier+ •er-

, '+ '+ I + X - - X + "t(W - W -} 

D'(b) = - E Wj + L. Wi 

iEI+( 4,6) iei-( 11,6) 

+w'--w'+, 

where 
w'+ = W . X - .... y -'+ I: '+ " - ..,., -

iEE+(11,b) ieE+(o.,6) 

w'- = I: w,, x'- = I: z,, y'- = I: y,. 
ieE-(a,6) ieE-(~:~,6) ieE-(~:~,6) 
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The advantage of considering the functions in this form is that, under certain ~onditions, 
the contributions of the eliminated constraints may be maintained by six variables. 

Suppose that the set E of data. lines has been eliminated and the six variables 
computed. The problem is to compute the next set of derivatives in linear time with 
respect to the remaining data lines. Note, however, that if the position of the eliminated 
data. lines changes with respect to the next point of computation, then the contributions 
from eliminated points will have to be recomputed since we no longer know whether 
they are above or below the current point. The variables may be used to advantage 
by restricting the computations to a. region whose relative position with respect to .the 
eliminated lines does not change. The next section illustrates that such a restriction ' 
can be satisfied in the one-dimensional search along a. line I for a. point which minimizes 
D( a, b) on l. The modified technique describes how such a region may be maintained in 
the (a, b)-plane and how the tests required by the pruning technique may be restricted 
to that region. 

5.2.2. The Basic Test 

The basis of the algorithm is a test which, given any line, l, and a set of data lines 
H = { l, : b = -xia + :w, i = 1 ... n}, in the (a, b)-plane, answers: 

Case 1. an optimal point, (a., b• ), lies on I, or 
Case 2. (a., b•) lies to the right of l, or 
Case 3. (a• ,b•) lies to the left of l. 

The test result may be determined by exploiting the analytic behavior of D( a, b). The 
test involves two steps. First, given a line l in the (a,b)-plane, find the point, (a',b'), 
which minimizes D(a,b) on I. The convexity of D(a,b) guarantees that such a point 
exists. Furthermore, the piecewise linearity of D( a, b) guarantees that there exists such 
a point which lies at an intersection with one of the data lines, 1,. Second, compute the 
lhs and rhs one-dimensional derivatives along the data line Is at (a', b') to determine 
the side which contains an optimal solution. Recall that the point (a', 6') determines a 
left-hand side and a right-hand side on lii we say that a point lies to the left (right) of 
I with respect to li if the point lies on the same side of I as the left-hand (right-hand) 
side of li. 

In the first step there are two cases two consider: first, the test line, l : a = a, is 
vertical; second, the test line I : b ="fa+ {J, is nonvertical. In both cases, the principle 
of the pruning technique may be applied, although the first case is a very familiar one
dimensional problem. The second case illustrates the method of maintaining D( a, b) 
described above in order to maintain linear time computation. 

First, consider the case when I is vertical. In order to find the point which minimizes 
D(a,b) on l, we set: 

D'(b) = w-- w+ = o. 
The data line, 1,, which determines the intersection point with weighted median b-value 
minimizes D(b) since it sets n' (b) closest to zero by balancing the weights equally above 
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and below the point. This is a well k~own observation and avoids the use ofcomputing 
derivatives to search for the minimum since there are 0( n) time weighted median finding 
algorithms [S76). 

Second, consider the case when l is not vertical. Since we know that a minimizing 
point (a', b') lies at the intersection of one of the data lines li ( i = l, ... , n) and I, the 
minimizing point may be found by a ·type of binary search with the moves decided by 
the derivatives at the intersection points. By computing the derivatives along l at the 
point with median a-coordinate, about half of the intersection points are "eliminated" at 
each step; hence, after O(log n) iterations the minimizing point is found. Note, however, 
that since the derivative requires 0( n) time to compute, the search would take a total 
time of 0( n log n ). The method for maintaining D( a, b) described above will be used 
to compute the derivatives in linear time with respect to the number of remaining data 
lines thus providing an O(n) linear time algorithm. 

First, compute the intersection points, (a;, b; ), of the data lines, l; ( i = 1, ... , n ), 
with the test line l. Find the intersection point with median a-coordinate, am. Compute 
the left-hand and right-hand side derivatives at the median point. 

1. If the rhs derivative is negative, then a1 > am. 
2. If the lhs derivative is positive, then a'< am. 
3. Otherwise, a1 =am. 

Hence, at each step, we can either eliminate half the points from the search or determine 
the minimizing point (a', b'). 

Suppose a' <am (see Figure 5.3); then the data lines E = {I; :a; > am} may 
be eliminated from the search since they cannot determine (a', b'). Those data lines can 
be divided into two sets, A and B, accotding to their relative position with respect to l 
for a< am. A contains the eliminated data lines with slope less than land B contains 
the rest; in other words, for a < am, the lines in A are above I and the lines in B are 
below l. 

Let H' = H\E. The value of the derivatives of D( a, b) at a point on l to the left 
of am can be written as 

where 
w'+ = LWi, x'+ = l:xi, 

iEA iEA 

w'- = E Wi, x'- =Ex;, 
iEB iEB 

. and J+ = J+(a,..,a+P) and J- = J-(a,..,a+{J). Note, however, that the four variables, 
'+ '+ I I • W , X , W -, and X -, are constant for pomts on l to the left of am; hence, the 

above procedure can be repeated in time proportional to the number of remaining data 
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Figure 5.3. Minimizing D( a, ,.,a + /1). 

lines (the lines which intersect l to the left of am) by accumulating the contributions of 
eliminated lines in the. appropriate variables. Eventually, the point (a', b') is found and, 
as shown in Section 4:, the total time spent is O(n). 

We may now assume we have found, in 0( n) time, a minimizing point, (a', 6'), on l 
which lies at the intersection of a data line 1,. Consider the second step. Given the point 
(a', 6'), the test result is determined as follows. Compute the lhs and rhs derivatives of 
D(a,b) along li at (a',b'). 

1. I£ the rhs derivative is negative, then (a •, 6"') lies to the right, with respect 
to l;, of l. 

2. I£ the lhs derivative is positive, then (a•, b"') lies to the left, with respect 
to li, of l. 

3. Otherwise, (a', b') is ( a•, b"' ). 
The proofs for the above results are based on the convexity of D( a, b) • 

. · Consider the first condition. H the rhs derivative is negative at ( a1
, b'), then D( a, 6) 

decreases along li to the right of l at (a',b') and there exists a minimizing point (a~,b~) 
on li such that D(a~,bD < D(a1,b1

) (see Figure 6.3). H an optimal point, (a"',b"'), lies 
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Figure 6.4. The arrows indicate the direction of decrease of the value of D( a, b) along 
the line. If two arrows along the same line point away from a point known not to be an 
optimum solution then there exist two local minima; a contradiction to the convexity 
of D(a,b). 

to the left of l, then a line segment from (a• ,b•) to (a~,6H intersects l at some point 
(a", 6"). Since (a', b') is the minimum on l, D(a', 6') < D(a" ,b"). Hence, the relationship 
of the values of D(a,b) at those points is D(a• ,6•) < D(a~,6a < D(a',b') < D(a",b"). 
However, that is a contradiction to the convexity of D( a, 6) since (a", b") is a convex 
combination of (a~, ba and ( a•, b•) which implies that there are two local minima.. Hence, 
any optimal solution must lie to the right of l. The argument for the second condition 
is symmetrical to the above discussion. In the third condition, (a, b, D( a.', b')) is a 
supporting hyperplane for the convex polyhedron (a,b,D(a,b)). Note that, due to the 
convexity of D(a,b), if an optimal solution does not lie on the test line l, then all the 
optimal solutions lie on one side of l. Also note that the line along which we compute 
the derivative a.t (a', b') need not be a. data line; any line through (a.', ll) could be used 
to determine a decreasing direction. 

If there is more than· one data line which intersects l at the point (a', b'), then 
testing only one line is not sufficient; on the other hand, we cannot afford to test each 
line to determine a direction in which D( a, b) decreases. As is seen from the previous 
discussion, we have only to find a line passing through (a', b') along which D( a, b) 

•, decreases to one side in order to determine the relative position of (a• ,b•). If no such 
line exists, (a',b') is a local minimum and, due to the convexity of D(a,b), is also a 
global minimum. The result may be determined by considering three vertical test lines 
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in the (a, b)-plane. 
We first con11ider the line l' : a = a1, in the (a, b)-plane. We compute the partial 

derivatives at (a', ll) along the vertical line l'; if D( a, b) decreases along l' in one di
rection, then we a.re done. Otherwise, (a',b') is the minimizing point on 11

• Note that 
(a', b') is the weighted median point of the intersection points of the data lines and the 
line 1'. 

Next we consider the two lines l'+ :a= a1 + E and 11
- :a= a'- e, where Eisa. very 

small number. We choose E small enough such that the relative positions of the data. 
lines which lie above and below (a', b1

) a.re preserved with respect to the minimizing 
points on zt+ and ,,_. The choice of E guarantees that, if an optimal point ( a• 'b*) lies 
to the right (left) of l', then it also lies to the right (left) of zt+ (1'-). The proof may 
be based on the properties of the weighted median-belt, the set of all weighted median 
points: the weighted median-belt is a-monotone and the points of the belt lie on the 
data. lines (see Section 6). Since an optimal solution (a• ,b*) is a weighted median 
point with respect to the intersection points of the data lines and a vertical line a= a•, 
and since we are looking for an optimal point which lies at the intersection of two data. 
lines, we know that the closest possible optimal solution to ( a1

, b') would have to lie at 
an intersection of one of the incident data lines with one of the nonincident data. lines. 
Hence, the choice of E guarantees that such a point does not lie in between l'+ and l'-. 

Consider the line t'+. If we find the minimizing point on I'+ and consider the line, 
111

, incident to that point and (a', b'), then we can determine if an optimal line lies to 
the right, with respect to l", of l as follows. Compute the lhs and rhs derivatives along 
l" at (a', b'). 

1. If the lhs derivative is positive, then (a* ,b*) lies to the left, with respect 
to 111

, of l. 
2. If the rhs derivative is negative, then ( a•, b*) lies to the right, with respect 

to 111 , of I. 
3. Otherwise, test l'-. 

The argument for the first and second cases is based on the convexity of D( a, b) as 
shown above. The first and second cases also hold for testing 1'-. 

If we arrive at the third case in testing zt-, then ( a.1, b1) must be the global minimum. 
Suppose ( a1

, b') is not the global minimum; then we know that there is a line through 
(a', b') which decreases towards the optimal solution. But that line must pass through 
one oft'+ or zt- at a point (a.", b"). Suppose it passes through ft+. Since we have already 
found the minimizing point on t'+, we know that the value of D( a", b") is greater than 
or equal to the value at (a', b1

). Since the previous cases have failed, we know that the 
value of D(a,b) at (a',b'), the minimizing point on l', is less than at the minimizing 
point on 1'+. Hence, D(a',b') < D(a",b"), which contradicts the assertion that D(a,b) 
is decreasing in the direction o£ {a", b"). 

We now show that the above testing may be done without specifying a specific e . 
. Recall that we need to consider an E small enough such that, if (a', b') is not an optimal 

solution, then the optimal solution lies to the right (left) oft'+ (I'-). First, we note that 
if (a* ,b"') is an optimal solution which is incident to at least one data line, then it is 
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the weighted median point of the intersection points of the data lines with the vertical 
line 4 = 4•. Second, note that the weighted median points form an 4-monotone chain 
defined by line segments on the data lines with endpoints determined by the intersection 
of data lines as described in Section 6. Hence, the minimizing point on l'+ ( l'-) must 
lie at the intersection with one of the lines incident to ( 4 1, b'). 

Note, however, that we do not need to determine the actual minimizing point on l'+ 
or 1'-; we only need to determine the data line which determines the weighted median 
point and take the derivative along that line at ( 4 1

, b'). In that case, we may consider 
the intersection points of the data lines incident at (a', b') with any line to the right 
(left) of 11 and assume that the other lines intersect above or below those intersection 
points according to whether they intersected l' above or below, respectively, (a', b'). 
Now, the data line which determines the weighted median point at a vertical line within 
£ of l' may be determined in linear time. · 

6.2.3. The Region Ro 

In this section we describe the basis of the modified technique. The objective of the 
modified technique is to somehow retain the information given by the tests in order 
that further calculations may be performed efficiently. In the basic technique, we de· 
termine a region which is not intersected by a constant factor of the remaining lines; 
those lines are then assumed to be eliminated. However, as we have already seen (in 
the one dimensional minimization problem), we may need some information from the 
"eliminated" lines. The modified technique does not directly provide that information; 
rather, it retains the information from the test result: the relative positions of all op· 
timal points with respect to all eliminated lines is known. The application determines 
how to use that retained information. We motivate the discussion by considering the 
vertical Lt problem, however, note that the technique may be used for a large class of 
problems. 

Note that the method of finding the minimizing point on a nonvertical test line l 
described above is a simple example of the principle of the modified technique. In that 
application, each test not only eliminated a constant factor of lines but also determined 
a region (on the line l) which contained an optimal solution and whose relative position 
with respect to all the eliminated lines remained fixed. Hence, the contributions from 
eliminated lines to further computations remained fixed and the total time spent at 
each iteration was linear with respect to the number of remaining data lines. The same 
concept will be applied to the search for an optimal point (4*,b•) in the (a, b)-plane. 

Recall the description of the basic pruning technique described in Section 4. The 
problem with the basic technique is that the computations occur at random locations 
depending on the pairing of the lines. Hence, the contribution from eliminated lines must 

, be recomputed at each iteration. However, as seen by the one-dimensional example 
above, by controlling the region in which computations occur, the contributions of 
eliminated constraints to the computations may be accounted for in constant time. The 
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Figure 6.6. After a second iteration: the regions R1 and R2 • 

main characteristic of the modified technique is that the computations are performed 
within a specific region, Ro which, in effect, maintains the necessary information from 
previous iterations. 

Consider the situation alter the first application of the pruning technique. The two 
lines l' and l" divide the (a, 6 )-plane into four regions. One of those four regions, called 
R1, is known to contain an optimal solution. The region, R', which is "opposite to" (does 
not share an edge with) R~t is known to contain n/8 intersection points p,, = {p~}, 
determined by the intersection of two data lines I, and lt, one o£ which, say, 1,, can be 
eliminated. 

. Let E 1 = {l,} represent the set of eliminated lines in the first application of the 
pruning technique. The relative position, with respect to Rt, o£ the lines in E 1 can 

, . be easily determined from the result of the test of the nonvertical test line. If the 
optimum solution lies above the nonvertical test line, then the eliminated lines lie below 
the region; otherwise, they lie above. 
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D(a,b) may be written in terms of the remaining, or active, lines, H' = H\EIJ and 
the eliminated lines, E1, as follows. Suppose the lines in E1 lie above the region R1. 

where 

D(a,b) = L WilY•- a:ci- bj + L WiiYi- a:c,- bl 
iEH' iEEt 

= L Wihli- a:c,- bl + y+- ax+- bw+, 
ieH' 

w+ =I: w,, x+ = I: w,:c,, y+ = I: w,y,. 
iEBh iEE1 iEEt 

Hence, as long as the computations can be restricted within R1 , the region constructed 
by a second application of the pruning technique, R2, can be constructed in linear, 
O(IH'I), time with respect to the remaining constraints. But now there are two sets 
of eliminated constraints, E1 and E2 (for example, Figure 5.5); hence, further com
putations would have to be restricted to a region whose relative position with respect 
tC? both sets of eliminated constraints is known. The intersection of the two regions R1 

and R2 is such a region. 

Let Ro = ni=l, ... ,mRi, where m is the last iteration number. Ro is initially set to 
the whole plane and hence contains all optimal solutions. Since each Hi contains all 
optimal solutions, Ro = ni=l, ... ,mRi contains all optimal solutions as does the region 
Rm+l· Note that, since Ro is the intersection of half-planes, Ro is convex. Also, since 
at most two edges are added at each iteration and there are at most O(log n) iterations, 
R0 has at most O(log n) edges and the total complexity of maintaining Ro is O(log2 n) 
[Pr79] which is negligible. 

Let Eo = Ui=l, ... ,mEi, where m is the last iteration number. Since the relative 
position of (the lines in) E, with respect to R, is the same as the relative position of 

, E; with respect to Ro, the relative position of all the lines in Eo with respect to Ro is 
known. Let Eo = E+ U E-, where E+ and E- are the sets of eliminated lines above 
and below Ro, respectively. Let H' = H\Eo. D( a, b) may now be written in terms of 
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the contributions of the active lines, H', and the eliminated lines, E0 • 

where 

D(a,b) = L Wihli- a:r:i- bl + L Wil!li- a:r:i- bl 
ieH' iEBo 

= L Wi hli - a:r:, - bl + L Wi'lli - aw,:r:, - bw, 
iEH' ieE+ 

- L Wi1Ji - aw,:r:, - bw, 
ieE-

= L Wi IYi - a:r:, - bl + L Wi1Ji - L awiXi - L bw, 
iEH' ieE+ ieE+ ieE+ 

- L Wi1Ji + L aw,:r:, + L bw, 
ieE- ieB- ieE-

- L WilY•- a:r:,- bl + y+- ax+- bw+- y- +ax- + bw-, 
ieH' 

w+ = I: w,, x+ = I: w.:r:,, y+ = I: w,y,, 
ieB+ ieB+ seE+ 

w- = L w,, x- = L w,:r:,, y- = L Wi1Ji· 
ieE- ieE- ieB-

w+' x+, y+' w-' x-, and y- may be updated after each iteration and saved for 
computations in the next iteration. Hence, the computations performed in the region 
Ro may be computed in linear time with respect to the number of lines in H', since the 
contribution from eliminated lines may be accounted for in constant time. 

6.2.4. The Modified Test 

Next, a method for restricting the computations to the region Ro is described. Recall 
that the problem is caused by the computations required by the testing of a line. The 
major problem is that, in the test described above, the minimizing point along the 
given test line must be determined; once determined, the one-dimensional derivatives 
are computed at that point to determine a result. However, the minimizing point may 
not lie inside the region Ro. The solution is to devise a new test which restricts the 
computations to the region Ro. 

The modified test tests a line, l, against the region Ro as follows. First, compute 
the intersection points, rl and r r, of l and the boundary of Ro. If l does not intersect 
Ro, then compute the position of Ro with respect to l. Since Ro contains all the optimal 

, solutions, the -position of Ro determines which side of l an optimal solution exists (see 
Figure 6.6(a)). Otherwise, at least one of r1 and rr exists; note that, since Ro may be 
unbounded, only one of r1 and rr may exist. Since it takes O(log n) to determine the 
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We must show that, in the sequence of elementary steps, the vertices of the weighted 
media.n-belt appea.r in a left to right order. The following lemma proves that the order 
of the vertices of the weighted media.n-belt will be encountered in left to right order. 

Lemma 6.6. The topological sweep of Edelsbrunner and Guibas [EG86] 
sweeps an arrangement of n lines, H, such that the vertices P1, p,, ... , Pn, 
Pi : ( tli, 6, ), of any monotone chain determined by the intersection of lines in the 
arrangement are encountered in left to right order, a, < aH1( i = 1, •.. , n -1 ). 

Proof: .We consider the nondegenerate case in which all vertices are deter
mined by only two lines (the reason for this is that the algorithm transforms 
degenerate, or multiple, intersections of i > 2 lines into i - 1 nondegenerate 
intersections). We will show that if a point Pi is to be swept by the next 
elementary step, then the point Pi-1 must already have been swept by the ar
rangement, which implies that the points must be swept in left to right order. 
Suppose that edges c, and Ci+1 in the cut determine the next elementary step 
at vertex Pi of the monotone chain (see Figure 6.'1). One of them, say c,, 
determines an edge of the monotone path with vertices Pi-1 and Pi· Now con
sider the incident edges to the right of Pi-l· One of them must be c,. Hence, 
Ci can only enter the cut after Pi-1 has been swept. Since c, is in the cut, 
Pi-1 must have been swept. Hence, the vertices of the monotone chain must 
be swept in left to right order. o 

Next we show that we can use the topological sweep to find the weighted median-belt. 
Note that the leftmo8t edge of the weighted media.n-belt ca.n be determined in linea.r 

time by a weighted media.n selection algorithm (see [876]). The weighted median-belt 
may be constructed by keeping track of the current edge of the belt. We start with 
the leftmost edge. We ca.n detect when the sweep processes a media.n-belt vertex in 
consta.nt time by checking each elementary step for the current edge. After a median
belt vertex is processed, there a.re only two choices for the next median-belt edge. Since 
the contributions of the lines above a.nd below the current edge have already been 
computed and since only a constant factor of lines switch their relative positions, we 
can decide in consta.nt time, which of the two edges is the next weighted median edge 
by checking if Lemma 6.4 holds for either the line determined by Ci or c;. Since there 
a.re O(n2 ) elementa.ry steps we have the following result. 

Lemma 6.6. The vertices of the weighted median-belt may be found in 
optimal, 9(n2 ), time and O(n) space by the topological sweep of [EG86]. 

6.3.3. Computing the Optimal Solution 

. As the topological sweep proceeds, the optimal solution may be computed as follows. 
First, after the leftmost edge has been found, the six variables are initialized in linear 
time. Next, suppose that Ci and c; in the cut determine the next elementa.ry step and Ci 
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Figure &.6. D(a, b) decreases to side which contains an optimal solution. 

intersections at each step, and there are O(log n) steps, the time required to determine 
the intersections does not factor in the total time complexity of the algorithm. 

Compute the one~dimensionallhs and rhs derivatives along I at r1 and rr. If tbe 
rha derivative at r, (if it exists) is negative and the lhs derivative at rr (if it exists) is 
positive, then the minimizing point, (a', b'), on I lies inside the region Ro and the basic 
test may be applied since the contributions from eliminated data. lines are available in 
constant time. In Figure 6.6(b) the arrows indicate the direction in which D( a, b) 
decreases along the line (the result of computing the derivatives). First the derivatives 
are computed along l at its intersection with the boundary of Ro. The minimum point, 

, . (a', b') is easily determined as stated above, and the derivative is computed along li 
(recall that (a', b') lies at the intersection with a data line, li) to determine the relative 
position of an optimal point (a• ,b•). 
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Otherwise, consider the point r,., the point r1 is handled in a. similar fashion. If 
the rhs-derivative at r,. is positive, then the point, ( a1, b1), which minimizes D( a., b) 
on l lies outside of Ro to the right of r ,.. In that case, the derivatives at (a', b') can
not be computed in the required time since the relative positions of the eliminated 
lines are not known at (a.',b'). However, the side which does contain an optimal so
lution may still be determined as follows. Consider the edge of R0 which intersects l 
at r,. (see Figure 5.6(c)); note that there would be two edges if r,. is a vertex (see 
Figure 5.6(d)). First, consider the case in which r,. is incident to only one edge e. 
Consider the line le which contains the edge e. Compute the derivatives along le at r,.. 

Lemma 5.4. An optimal solution lies on the side of l which has D(a.,b) 
decreasing from r,. along le. The side to which D( a., b) decreases can be deter
mined by computing the lhs and rhs derivatives at r,. along 1 •. There are only 
two cases: if the lhs derivative is positive, then the optimal solution lies on 
the left-hand side, with respect to l., of l; otherwise, the rhs must be negative 
and the optimal solution lies on the rjght-hand side of l. 

Proof: First, note that D( a, b) can only decrease in one direction along l from 
r,. because of the convexity of D(a,b): if D(a,b) decreased in both directions 
{styled arrows in Figure 5.6( d)), then there would be at least two local min
ima which contradicts the convexity of D(a,b). Recall that the optimal point 
cannot lie on l since the minimizing point on l lies outside of Ro. Hence, there 
are only the two above mentioned cases to consider. 

The proof is identical for both cases. An optimal solution does exist and, 
furthermore, if there are more than one optimal solution, then they all lie on 
the same side of l; if not, there would have to be an optimal solution which 
lies on l, but we have already stated that that is not the case. Since D(a,b) 
decreases along le to only one side of l, D(a,b) must be increasing along le 
in the other direction. Let the increasing side denote the side of l on which 
D(a.,b) increases along 1 •. Similarly, let the decreasing side denote the side of 
l on which D(a,b) decreases along le. 

The proof is essentially the same as for deciding the side in the basic 
test. Suppose an optimal solution, (a"',b*), lies on the increasing side (see 
Figure 5.6(c)). Consider the line segment, s, from that optimal solution to 
the minimizing point on l. The line segment intersects le at a point (a", b") 
on the increasing side. Consider the values of D(a,b) at the points (a* ,b*), 
(a.", b"), and (a', b'). The three points all lie on the line segment s but the 
values of D(a,b) at the endpoints, (a.,b*) and (a',b'), are less than at the 
point (a", b"), which is a contradiction to the convexity of D( a, b); hence, the 
optimal solution lies to the decreasing side. o 

If r,. is a vertex of R0 , then a similar discussion applies. Let e and e' denote the edges 
of Ro incident to rr. Let le and le' denote the lines obtained by extending the edges e and 
e', respectively. Consider the lhs and rhs derivatives at rr along le and le'· D(a, b) can 
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only decrease to one side along l, and z,,. Suppose the contrary: D( a, b) decreases along 
l, to one side of l and D( a, b) decreases along l,, to the opposite side of l. Consider the 
n;Unimizing points on l, and l,, which lie on opposite sides of l (see Figure 5.6(d), the 
straight edge arrows indicate the direction in which those minimizing points supposedly 
lie). Consider an optimal point on the opposite side of either of those minimizing points. 
The line segment connecting the optimal point to the minimizing point on the opposite 
side of l intersects l at a point with greater D(a,b) value than at the endpoints. But 
that is a contradiction to the convexity of D(a,b) hence D(a,b) decreases to only side 
along l, and z,,, Now the argument that the optimal solution lies on the decreasing side 
is the same as above. 

We have noted that all the computations may be performed in linear time with 
respect to the remaining, or active lines. Since only a constant number of lines have to 
be tested, we have the following result. 

Lemma 5.5. Given a line, l, in the (a, b)-plane, the Modified Test determines 
the relative position of an optimal solution in O(H') time, where H' is the set 
of active lines. 

The algorithm for the weighted vertical L1 linear approximation problem may be 
summarized as follows. For each step i: 

(i) Determine region R, and save the contributions from eliminated lines. If 
the optimal solution was found during the tests, stop and report. 

(ii) Update Ro = Ro n Ri and go back to step (i). 
We showed that the time spent in step (i) is linear with respect to the number 

of remaining data lines. At each step, 1/8 of the remaining lines are eliminated. The 
total time spent for step {ii) is O{log2 n) and hence is negligible since the linear time 
complexity of such an algorithm was illustrated in Section 4. 

We formalize the result in the following theorem. 

Theorem 5.1. The weighted vertical L1 linear approximation problem of 
a set of points in the plane may be solved in optimal, e(n), time and O(n) 
space. 

5.3. Summary 

The algorithm is notable for several reasons. First, the algorithm finds an exact solution 
to the problem as opposed to an approximate solution obtained by numerical approx
imation techniques. Second, the worst case complexity of the algorithm improves the 
previous bounds for finding an exact solution by two orders of magnitude. Third, the 
modification of the pruning technique is general enough to be applied to problems with 
similar structure in order to derive optimal algorithms. 

The basic pruning technique has been applied to a variety of problems and has 
taken different forms according to the particular problem being solved; however, as far 
as the author knows, the above modified technique is the first time the basic technique 
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has been applied in such a way to produce a linear time algorithm for a class of problems. 
While the above modification does not directly generalize to d-dimensions, the above 
concept has been generalized to main~aining a tetrahedral region to solve the vertical £ 1 

method in three dimensions {IK88]. That result may be generalized to higher dimensions 
by maintaining a simplex in d-dimensions. 
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6. Orthogonal L1 Linear Approximation Problem 
This section presents algorithms for the unweighted and weighted orthogonal L1 linear 
approximation problems in the plane (referred to as the orthogonal Lt problems). An 
O(nlog n) lower bound for the orthogonal L1 problem is also shown. The algorithms 
find exact solutions to both the unweighted and weighted orthogonal L1 problems, as 
opposed to approximate solutions derived by numerical approximation techniques. The 
results are of interest for at least three reasons. First, the algorithms improve upon 
previous O(n8 ) naive algorithms for finding an exact solution. Second, the unweighted 
orthogonal L1 problem is shown to be an application of the le-belt of an arrangement of 
lines. Although [EW86J use the le-belt to solve several problems, none of the problems 
are as directly related to the notion of a k-belt as the orthogonal L1 problem. We show 
how the le-belt algorithm of [EW86} may be used to efficiently solve the unweighted 
orthogonal L1 problem. Third, the generalized concept of a weighted k-belt, or, more 
precisely, the weighted median-belt is introduced and it is shown that the unweighted 
le-belt algorithm is not optimal for finding the weighted median-belt. A basic technique 
in computational geometry, the topological sweep [EG86], is used to find the vertices 
of the weighted median-belt in optimal, e(n2 ), time, and O(n) space, and it is shown 
that the weighted orthogonal L1 problem may be solved at the same time as the belt is 
computed. 

6.1. Preliminaries 

The primal problem and two characteristic properties of an optimal solution are given. 
Next, the dual problem is described and the dual version of the two properties are 
given. A method for maintaining D( a, b) is described; the method is essentially the same 
technique which was described in Section 5 except that the application is different. 

6.1.1. The Primal Problem 

The weighted orthogonal L1 problem in the (:r:, y)-plane may be stated as follows. 

Problem 6.1. The Primal Problem. Given a set, S, of n points, Pi : 
(z.:, Yi) (i = 1, ... , n), in the (z,y)-plane, with corresponding weights, wr:, find 
a pair of values ( a•, b*), for the parameters a and b, which solves the following 
mini-sum problem: 

...... ;n D( b)=~ .lllr:- (a:r:i +b)! 
~ a, _ LJw, ·' . 
e~,b i=l va2 + 1 

. The unweighted primal problem corresponds to setting all the weights equal to one. 
Morris and Norback [MN80] present two characteristic properties of an optimal 

solution to the primal problem. The first property is known as the incidence property. 
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Lemma 6.1. There exists an optimal approximation line, t• : y = a•:r; + b*, 
for the (weighted) orthogonal L 1 problem which is incident to two points of S. 

Lemma 6.1 suggests an 0( n3 ) brute force approach to solving the primal problem. For 
each of the possible(;) = O(n2 ) pairs of points, compute the orthogonal L1 norm for a 
line which passes through the pair. The pair which determines a line which minimizes 
the Lt norm must be an optimal solution according to Lemma 6.1. Note, however, 
that Lemma 6.1 does not characterize all optimal solutions. 

The second property, known as the (weighted) median-set property, characterizes 
all optimal solutions. 

Lemma 6.2. The sum of the weights of points on an optimal approximation 
line, l*, is greater than the absolute difference of the sums of weights of the 
points above and below l*. 

where 

and 

!w+- w-1 < W 0
, 

w+ = E w,, w- = E wi, W 0 = E wi, 
ier+ ier- iero 

I+ = { i I Yi - a:r:i - b > o} , 

I- = { i I "' - tl:l':i - b < 0} ' 
I 0 = { i I 'Yi - tl:l':i - b = 0} . 

Although Lemma 6.2 characterizes all optimal solutions, it does not give much insight 
into finding lines which satisfy the weighted median-set property, or weighted median 
lines. 

[MN80] suggest finding candidate solutions, pairs of data points in the ( :r:, y )-plane 
which satisfy both properties, in order to solve the orthogonal L1 problem. They suggest 
the brute force approach of inspecting each of the possible (;) pairs to see if the line 
defined by the pair satisfies the second property ( 0( n) time); if so, then compute the 
Lt norm ( 0( n) time) with respect to the candidate line defined by the pair of points. 
The advantage is that some division and multiplication operations may be avoided. In 
terms of asymptotic complexity, however, that algorithm is not a great improvement 
over computing the Lt norm for every possible pair ( 0( n8 ) time) since just to check the 
second property for each pair takes O(n8 ) time. 

[MN80] note that the number of pairs of points satisfying the second condition 
may be significantly smaller than O(n2 ), the total number of pairs. For example, in 
Figure 6.1( a), there are only 8 candidate lines out of a total 21 possible lines satisfying 

. only Lemma 6.1. However, they do not investigate or give references to any known 
bounds on the number of candidate lines. Their approach raises three questions. How 
many candidate lines are there? What is the complexity of finding the candidate lines? 
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5 6 7 

(a) 

{b) 
Figure 6.1. (a) Candidate lines. (b) Corresponding candidate vertices on median-belt. 

What is the complexity of finding the candidate line which minimizes the orthogonal 
L1 norm? 

In the unweighted problem, Lemma 6.2 is just a eardina.lity problem: 

the absolute difference in the number of points above and below the line must not exceed 
. . the number of points on the line. Hence, candidate lines in the unweighted orthogonal 

L1 problem correspond to the lines pq o£ k-graphs fork = f(n-2)/21, called the median
lines. (see Figure 6.1(a)). Hence, the answer to the first question, for the unweighted 
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problem, is that there are O(n1•5 ) candidate solutions due to (ELSS73] (see Section 4). 
Note, however, that [ELSS73] conjecture that the upper bound is actually closer to the 
lower bound of 0( n log n ); hence, by considering only the candidate solutions we may 
be able to derive an efficient algorithm for the unweighted orthogonal L1 problem. 

In the weighted orthogonal L1 problem, however, lines which satisfy Lemma 6.2 
are not as easy to count in the ( z, y )-plane. By considering the counting problem in 
the dual plane, however, a worst case example may be easily illustrated. Furthermore, 
by considering both the unweighted and weighted orthogonal L1 problems in the dual 
plane, the candidate points may be found by using basic techniques in computational 
geometry . 

6.1.2. The Dual Problem 

The weighted orthogonal Lt. problem in the (a, b)-plane may be stated as follows. 

Problem 6.2. The Orthogonal L1 Problem. Given a set, H, ofn lines, 
l, : b = -z,a+yi ( i = 1, ... , n ), in the (a, b)-plane, with corresponding weights, 
w,, find a pair of values (a• ,b•), for the parameters a and b, which solves the 
following mini-sum problem: 

. D( b)=~ .IYi-(az,+b)l rmn a, - L.., w, . 
a.,b • ya2 + 1 

•=1 

The unweighted primal problem corresponds to setting all the weights equal to one. As 
in the vertical L1 problem, the objective function, the (orthogonal) L1 norm, remains 
the same in the primal and dual problems. Note that, in the vertical L1 problem the 
dual transformation preserves the geometry of the problem: the vertical distance from a 
data point to an approximate line in the (z, y)-plane is the same as the vertical distance 
fr~m the transformed data line to .an approximate point in the (a,b)-plane. However, 
in the orthogonal L1 problem such a direct relationship does not hold. Nonetheless, the 
dual problem exhibits a geometry of the orthogonal L1 problem not apparent in the 
{ z, y )-plane. 

The dual versions of Lemma 6.1 and Lemma 6.2 are now stated. The results hold 
in the dual plane since the dual transformation preserves the incidence and above-below 
relationships between points and lines. 

Lemma 6.3. There is an optimal point, ( a•, b• ), for the (weighted) orthog
onal Lt problem which is incident to two lines in H. 

Note that an O(n3 ) brute force algorithm may be devised for the dual problem based 
. on Lemma 6.3: compute the value of the L1 norm, O(n) time, at each of the O(n2 ) 

intersection points of each pair of lines in H. 
The second property is known as the (weighted) median-belt property. 
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Lemma 6.4. The sum of the weights of lines incident to an optimal point 
( a•, b*) is greater than the absolute difference of the sums of weights of the 
lines above and below ( a•, b* ). 

where 

w+ = E w,, w- = E w,, W 0 = E wi, 
~ff ~~ ~~ 

and J+, 1-, and 1° are as defined in Lemma 6.2. 

In the unweighted case, candidate points, points which satisfy Lemma 6.3 and 
Lemma 6.4, are the vertices of k-belts for k = r n/21, or median-belts, as defined in 
Section 4. The bold line in Figure 6.1(b) represents the median-belt for the seven 
data lines which are duals of the seven data points in Figure 6.1(a); the vertices of 
the median-belt are the dual transformations of the eight candidate lines in the (z, y)
plane. Hence, we arrive at the same O(nlogn) lower bound and O(n1•5 ) upper bound 
on the number of vertices (due to [EW86)) as in the primal problem (see Section 4). 
Furthermore, the vertices of the median-belt may be found in O(n1•5 log2 n) time by the 
"sophisticated plane sweep algorithm" of [EW86]. 

In the weighted case, however, we will show that the number of vertices is 9(n2 ). 

We also show that the plane sweep algorithm of [EW86] may not be the best algorithm 
for computing the weighted median-belt by giving a method which has better worst case 
time complexity. 

Finally, note that the (upper and lower chains of the) unweighted and weighted 
median-belts are a-monotone chains, (an orthogonalline from the a-axis intersects the 
belt in only one point). If the vertices of the belt are given in increasing a-coordinate, 
then the following method for maintaining D( a, b) may be used to efficiently compute 
the value of the orthogonal L1 norm at each vertex, or candidate solution, thereby 
determining an optimal solution. 

6.1.3. Maintaining D( a, b) 

We assume that the candidate points, Pi: (ai,bi) (i = l, ... ,n), are given in sorted 
order with increasing a-coordinates (ai < 4i+tt i = 1, ... ,(n -1)). We will show that 

. once the value of D( a, b), the orthogonal L1 norm, has been computed at a point Pi 
using the method presented below, then the value of D(a.,b) at the point Pi+t can be 
computed in constant time in the nondegenerate case. 
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D( a, b) may be written as follows. 

where 

and 

D(a, b) = t tu& IY.:- (ax.: + b)l 
. i==l v'a2 + 1 

_ L tu·'Y'- (ax, +b) _ L tu·'Yi- (ax, +b) 

ier+(o.,b) ' v'a
2 + 1 ier-(o.,b)' v'a

2 +1 

= 1 
{ "" tu·y·- a "" tu·x·- b "" tu· ../2 1 L.; '' L.; '' L.; ' a + iEI+(o.,b) ier+(a,b) aer+(o.,6) 

L tua'Yi +a L tuiXi + b L tui} 
iei-(o.,b) iei-(a,b) aei-(11,6) 

a.(x-- x+) + b(w-- w+) + y+- y-
= ..fa2 + 1 ' 

w+ = E tu,, 
iEI+ 

w- = E w,, 
ier-

x+ = E w,x,, 
ier+ 

x- = L w,x,, 
.:er-

y+ = L w.:y.:, 
•er+ 

y- = E Wi1/i, 
ier-

.r+ {a, b) = { i I 'Yi > ax.: + b ( i = 1, ... , n)} , 
I- (a, b) = { i I 'Yi < ax, + b ( i = 1, ... , n)} . 

Note that, by computing the values for the variables w+, x+, y+, w-, x-, and y-, 
the value of D( a, b) can be computed in constant time for fixed J+ and 1-. Also, and 
of more importance here, is that for small changes in the sets [+ and 1- (a constant 
number of elements entering or leaving the set), the values of those variables may be 
updated in constant time. 

In order to solve the odhogonal L 1 problems, the value at all the possible candi
date solutions will be computed in order to determine an optimal solution. If those 
calculations are performed ina naive manner, then the computation time alone would 
be O(IOin), where 0 is the set of candidate solutions, which would exceed the cost 
of finding the candidate solutions. The above representation for D( a, b) allows us to 
compute the values for all the candidate solutions with O(n) preprocessing time, and 
then a constant time for each step of the algorithm. 

Consider the situation at a candidate point Pi on the median-belt (the following 
discussion applies to both the weighted and unweighted problems although the weighted 

. case is more general as will be described later). Suppose that the sets J+ and 1- have 
been determined for Pi and the values for w+, x+, y+, w-, x-, and y- have 
been computed. Suppose that the point Pi : ( ai, bi) is determined by two of the data. 
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Figure 6.2. Maintaining D(a,6). · 

lines l; and li+lt where la determines the median·belt edge fot aa-1 < a < a,, and 
li+t determines the median-belt edge for ai < a < a&+t (see Figure 6.2). Similarly,· 
consider the candidate point Pi+t which is determined by the data lines li+t and li+z· 

Note that, in the nondegenerate case, only a constant number of lines change their 
positions relative to the belt (and hence relative to J+ and I-) (see Figure 6.2). At 
Pi, li+t was removed from r- without upsetting the balance since it is now incident to 
the candidate point. However, for a; < a < ai+h I; enters 1- to restore the balance. 
A similar exchange takes place at Pi+l except that li+2 is removed from J+ and li+1 

enters J+. 
The point of the above discussion is that between consecutive vertices of the median

.. belt the sets J+ and r- change by only a constant number of. data lines in the non de
generate case. The degenerate case is discussed in the descriptions of the algorithms. 
Since the sets of lines only change by a constant number of data lines, the variables 
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w+' x+' y+' w-' x-' and y- may be updated in constant time by simply adding or 
subtracting the contributions of the data lines which change sets. Hence, if the candi· 
date points are processed in a sorted order with respect to the a-coordinate and given 
in terms of the incident data lines, then the value of the L1 norm at any vertex may 
be computed in constant time given the values for the variables at the previous vertex. 
The preprocessing consists of initializing the variables at the leftmost point which can 
easily be done in 0( n) time. 

6.2. The Unweighted Problem 

In the unweighted orthogonal L1 problem, the dual transformations of the candidate 
lines correspond to the vertices of the median-belt (see Figure 6.1). [EW86] present 
an O(b~~:(n)log2 n) time and O(bk(H)) space algorithm for computing the k-belt, where 
b~e(n) is the number of vertices in a k-belt of n·lines and b~c(H) is the number of vertices 
in a k-belt for a given set H of lines. Conceptually, the algorithm sweeps a vertical line 
from left to right and reports only the vertices of interest; hence the sorted order of the 
candidate points is guaranteed. In our application, we are interested in the k = r n/21 
or median-belt and since we do not need to store the whole k-belt the algorithm takes 
0( n 1 •5 log2 n) time and 0( n) space. The details of the algorithm are not explained since 
the algorithm is applied directly (see [EW86] for the details). We show that the value 
of the Lt norm can be computed while the algorithm proceeds, and that the time spent 
on such computations does not exceed the time complexity of the algorithm. 

The algorithm sweeps an arrangement of lines by a vertical line L from left to right 
by maintaining two copies of a data structure which computes the intersection of n 
half-planes (determined by the data lines in H) in O(nlog n) time [OL81]. Furthermore, 
the data structure allows the efficient insertion and deletion of lines in O(log2 n) time 
and can report the adjacent edges of a given edge in constant time. The two data 
structure are used to maintain the sets of lines, H+ and H-, which lie above and below, 
respectively, a particular point on the median-belt. The intersection of the half-planes 
bounded below by lines in H- is stored in one data structure, called Jt- {hopefully, 
the double notation will not introduce any confusion) (see Figure 6.3); similarly, the 
intersection of the half-planes bounded above by lines in H+ is stored in the other data. 
structure, called Jl+. 

At a= -oo, the data line, lm, with the median slope also has the median intersec
tion with L. Let H+ be the set of data lines above lm and similarly H- the set of data 
lines below lm with respect to the median intersection point on L. The sets[+ and!
refer to the indices of the lines in H+ and n-, respectively, and the variables used to 
maintain D( a, b) can be initialized in linear time. 

At each step the algorithm returns the line which determines the next edge of the 
. median-belt in O(log2 n) time as follows (see Figure 6.3). Suppose the current edge of 

the median-belt is determined by lm. We wish to find the leftmost intersection of the 
data lines with lm. First, lm is inserted into Jt+ which may or may not cause a new 
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Figure 6.3. Determining the next median-belt edge. 

edge; if it does create a new edge then the adjacent edge, which determines the leftmost 
intersection of the lines in J(+ with lm, can be found in constant time. Second, the 
identical operation is performed with lm and N- to determine the leftmost intersection 
of the lines in N- and lm. Suppose that, of those two intersection points, the leftmost 
point is caused by a line l2 in N-. Then the next vertex, Pl, lies at the intersection of lm 
and 12 • To reflect the median-belt as we sweep past Ph lm is left in )1- but deleted from 
J(+, 12 is deleted from}(-, and l2 now determines the current edge of the median-belt. 

Now we show how the value of D(a,b) is maintained at each step of the above 
a!gorithm. After determining lm, Lh·· leftmost edge, suppose the algorithm finds that 
the next edge lies on the line l2 : b :..-: --x2a + !12; without loss of generality, assume that 
the line l2 is is in the set H+. Heucf! the first candidate point, Pl, lies at. the vertex 
determined by the lines lm and l2. The value of D(a,b) may be computed at Pt in 

. . constant time as follows. Since 12 is leaving H+' subtract Z2 from x+ and 1/2 from y+ 0 

Those operations take constant time and D( a, b) may be computed in constant time 
with the updated values. lm must lie above the next candidate point so we add Xm to 
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x+ and 1/m to y+ and a similar process takes place for each subsequent line determined 
by the algorithm. 

[EW86] show that degenerate vertices, vertices at which i > 2 data lines intersect, 
can be handled in 0( i log2 n) time which is less time than it would take to process those 
lines if they determined (;) intersection points. Updating the variables in such a case 
would only take 0( i) time, hence the degenerate case poses no problem in terms of the 
time complexity of the algorithm. 

Pointers to the data lines which determine a candidate point which minimizes 
D( a, b) may be maintained in constant time at each step. Thus, an optimal solution 
may be found without increasing the complexity of the k-belt construction algorithm. 
Since O(nl.5 log2 n) time is spent in constructing the median-belt, the following result 
is obtained. 

Theorem 6.1. The unweighted ortbogonal L1 linear approximation problem 
for n points can be solved in O(n1.5 log2 n) time and O(n) space. 

The above algorithm, although efficient, is still an exhaustive search of all the can
didate solutions. Note that the algorithm is for constructing the general k-belt; for at 
least one value of k, k = 1, a more efficient algorithm, O(nlogn) time, can be obtained 
by considering the particular problem. Hence, we conjecture that a more efficient algo
rithm may be obtained by considering the particular properties of the median-belt or 
by improving the bound on the number of vertices of median-belts. 

6.3. The Weighted Problem 

In the weighted orthogonal L1 problem, the dual transformations of the candidate lines 
correspond to the vertices of the weighted median-belt. Hence, the complexity of find
ing a solution can be related to the number of vertices, nw, on the boundary of the 
weighted median-belt (due to Lemma 6.2). Although the weighted median-belt is a 
straightforward generalization of the median-belt, we have not found any mention of it in 
the literature. In this section, we show that the weighted median-belt can have 0(n2 ) 

vertices. We give an 0(n2) time and O(n) space algorithm for :finding the weighted 
median-belt based on the topological sweep of (EG86] and show that it can also be used 
to solve the weighted orthogonal L1 problem in the same time and space complexity. 

6.3.1. The Weighted Median-Belt 

First, we formally define the weighted median-belt. 

Definition 6.1. The Weighted Median-Belt. Given an arrangement of 
n lines in the (a, b)-plane, li : b = -zia + 1/i ( i = 1, ..• , n), with associated 
weights, w,, the weighted median-belt is defined as the set of all points, p : 
(a', b'), such that 
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where 

and 

w+ = E wi, w- = E w,, w' = E wi, 
iei+(p) ier-(p) iEI0 (p) 

J+ (p) = { i I Yi - a' Xi - b' > 0} , 

1-(p) = { i I Yi - a' Xi - b' < 0} , 

I' (p) = { i I Yi - a' Xi - b' = 0} . 

Although the weighted median-belt is simply derived from the median-belt by introduc
ing weights to the lines, the complexities of the two belts appears to be fundamentally 
different. 

The complexity of nw, the number of vertices on the weighted median-belt, depends 
on how a vertex of the median-belt is defined. A vertex can be described as either any 
point on the boundary of the weighted median-belt which is incident to more than 
one line of the arrangement (called degenerate vertices) (see Figure 6.4), or any point 
on the boundary of the weighted median-belt whose incident boundary edges are dis
tinct {nondegenerate vertices or turns) (see Figure 6.5). Note that the nondegenerate 
vertices are a subset of the degenerate vertices. 

The geometries of the (unweighted) median-belt and of the weighted median-belt 
can be quite different. In the unweighted case, the median-belt only has nondegenerate 
vertices since the belt switches lines at every intersection. In the weighted case, however, 
the weighted median-belt may not switch at an intersection if the current edge has a 
relatively large weight. 

Since the weighted median-belt is an a-monotone chain, we investigated whether 
lower bounds for monotone chains may be applied to the weighted median-belt. The 
number of degenerate vertices in a monotone chain is n(n2 ) [We87] (see Figure 6.4). 
The number of nondegenerate vertices in a monotone chain is O(n513) [M87] (see 
Figure 6.5). Note, however, that not all monotone chains are weighted median-belts. 
In the examples above, legal weight assignments (bold numbers) can be given to the 
lines, however, there are examples in which no such assignments are possible (such as 
the example by Sharir with n(n312 ) nondegenerate vertices [Sh87]). 

6.3.2. Con&tructing the Weighted Median Belt 

Since there are O(n2 ) vertices on the weighted median-belt, the complexity of applying 
the sophisticated plane sweep algorithm to the weighted problem is in O(n2 log2 n). 
However, all (;) = O(n2 ) intersections of the arrangement of n lines may be determined 
by the O(n2 ) time and O(n) space topological sweep ofEdelsbrunnerand Guibas [EG86]. 

Note that the plane sweep of [EG86] differs from the plane sweep algorithm used 
. for the unweighted case [EW86]. The sophisticated plane sweep computes only points 

of interest in order from left to right, whereas the topological plane sweep of [EG86] 
reports all O(n2 ) vertices of the arrangement in an order defined by a topological sweep 
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Figure 6.4. O(n2 ) Degenerate vertices. 

line from left to right. The topological sweep line is not a vertical line, and although 
it is only a conceptual line, it may be visualized by the bqld line in Figure 6.6. In 
order to efficiently construct the weighted median-belt, we would like to determine the 
vertices of the belt in a left to right order as the plane sweep progresses; hence, we must 
show that the vertices o£ the weighted median-belt are £ound in a left to right order by 
the topological sweep. 

The details of the plane sweep algorithm are beyond the scope of this thesis; how
ever, we will need to introduce some o£ the concepts in order to show that the vertices 
will be found in a left to right order. Refer to Figure 6.6 for the following discussion. 
First, we say that the lines in H form regions in the plane which are bounded by edges 
formed by line segments of the lines in H. The boundaries of the edges are points, called 
vertices, where the lines of H intersect. We say that a region A is above a region B 
if A and B have intersecting projections on the a-axis, and at each abscissa a of their 

, . intersection, all points of A are above all poinis of B. Note that there is exactly one 
region, T, which is not below any other region; similarly, there is exactly one region, 8, 
which is not above any other region. 
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(a) 

(b) 
Direction Bundles Lines Weight 

A m m2 a 
B m2 +m m-1 b=mc 
c m, m c 
D m-1 1 d=m2a 
E m(m2 -1) 1 e = (m2 -1)d 

(c) 
Figure 6.6. (a) An overview of the arrangement; thick lines are bundles and there are 

· • m3
, m = ln113 J, intersections of three bundles as shown in detail below. (b) Close up 

o{ a triple of bundles, or fat vertex, which has m 2 turns; hence, there are a total of n 613 

turns. (c) General weighting for the lines such that the monotone path is a weighted 

median line. 
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Figure 6.6. Topological sweep line: the leftmost, o, and rightmost, Or, cutsets. 

The topological sweep line interseds the lines of H in the ordered set of edges, 
chc2, ... ,c .. , which is called the vertjcal cut (see Figure 6.6). The edges are ordered 
such that for each i, 1 < i < (n- 1), Ci and Ci+t are both incident upon the region 
Ri and Ci is above R, and Ci+t is below Ri. Furthermore, CJ is an edge of the region 
T and Cn. is an edge of the region 8. Those two conditions imply that no two edges of 
the cut lie on the same line of H so that there is a one-to-one correspondence between 
the edges of the cut and the lines in H; also, the cut gives an ordering of then lines in 
H. There is a leftmost cut, Or, which contains all the leftmost edges of the lines, a.nd a. 
corresponding rightmost cut, Or, which contains all the rightmost edges of the lines, 

The sweep consists of pushing the cut from the leftmost cut to the rightmost cut by 
a sequence of elementary steps. An elementary step is performed when the topological 
line sweeps past a vertex. An elementary step is detected if two lines corresponding to 

' ' adjacent edges in the cut, Ci and Ci+l, intersect to the right of the sweep line. Hence, 
sweeping over a vertex Pi with left incident edges Ci and Ci+l consists of transposing the 
order of the corresponding lines in the cut. 
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Figure 6.7. Elementary step determined by edges Ci and Ci+ti Ci is on the monotone 
path. 

is the current edge of the median-belt. The intersection of the lines which determine Ci 

and Cj is a candidate point and we may compute the value for D( a, b) in constant time 
since only the contribution from the line which determines Cj needs to be subtracted 
from the appropriate variables. Next, we determine, in constant time (since, again, the 
computations only involve adding or subtracting a. constant number of values from the 
variables), which of Ci or c; determines the next weighted median edge. Hence, the 
weighted median-belt and the value of D(a,b) may be computed with O(n) time plus 
a constant amount of time for each elementary step. Since there are O(n2 ) elementary 
steps, we obtain the following result. 

Theorem 6.2. The weighted orthogonal L1 linear approximation problem 
for a set of points may be found in O(n2 ) time and O(n) space. 

, , The algorithm may be called an efficient brute force algorithm since, even though 
all the vertices are visited, the computations are performed efficiently, reducing the 
complexity of a pure brute force search by a factor of O(n). Also note that the above 
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Figure 6.8. Uniform gap problem on the half unit circle. 

uniformly placed under a given permutation a. Define W c am-t by 

where the union is taken over all permutations a on {2, .•. , m}. Hence, W represents 
· the set o{ all po11ible inputs to the uniform gap on the half unit circle problem which 

have a yes answer. 
The answer for the uniform gap problem for points PhP2t··· ,Pm+l is yes if and 

only if (x2 , ... ,xm) E W, which implies that by Ben-Or's theorem (B-083] a lower 
·· bound of the complexity of the uniform gap problem under the algebraic computation 

tree is O(log#W), where #W is the number of connected components of W. Each 
W o- consists of a single point in R m-l, and for two distinct permutations a and a', 
Wo- =/= Wo-'' so that the number #W of connected components of W is (m -1)!. Since 
log( m - 1 )I = 0( m log m), we obtain the following. 

Lemma 6. '1. Under the algebraic computation tree model, the complexity 
of the uniform gap problem on the half unit circle is 0( m log m). 

Next, the input for the uniform gap problem on a circle is transformed, in linear 
time, to an input for the L1 problem. Given the points Pl, Ph • •• , PmH of the uniform 
gap problem, and let 0;. denote the polar angle of Pi· For each Pi (i = 2, ... , m), 
construct the point PHm on the unit circle whose polar angle Oi+m is equal to Oi + 71" 

(see Figure 6.9). The set, S, of n = 2m points P1tP2t ... ,p,.. is then used as the input 
for the L1 problem. The validity of the transformation is given by the following result. 

Lemma 6.8. The minimum objective function value of the orthogonal L1 

linear approximation for the set S of points is at most 2cot(7r/n), and is 
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Figure 6.0. Transformed input of the UGP. for the L1 problem. 

2cot(,..'/n) if and only if the answer for the uniform gap problem of points 

P1tP2t • • • tPmtPm+l is yes. 

The proof is developed as follows. We know from Lemma 6.1 that there is an 
optimal approximation line such that the line passes two points among the given points 
and from Lemma 6.2 that IN+ - N-1 < N° where N+, N- and N° are the numbers 
of points above, below, and on the line, respectively. 

By the symmetry of the transformed problem, there is an optimal approximation 
line, l,, among the m lines connecting points Pi and Pi+m (i = 1, .•. ,m). Without loss 
of generality, assume that 0 = 61 < 62 < · • • < Bm < Bm+l = ,.., where O, denotes the 
polar angle of Pi. There is no loss of generality since we are interested in showing the 
value of the minimum of the Lt norm, not how to compute that value (that is done by 
the algorithm). The assumption simplifies the expression {or D(a., b) and allows us to 
derive a minimum. 

The value for the orthogonal Lt norm with respect to the line li, the summation 
of the orthogonal distances from points Pi (j = 1, ... , n) to l,, is given by 

n. 

I: I sin( I; - Bi)l. {1} 
j=l 

Hence, the minimum function value of the orthogonallinear Lt approximation for S is 
given by 

n. 

. min L lsin(B;- 6,)1. 
t=l, ... ,m . 

,1=1 

{2} 
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Recall that we want to show that the maximum of (2) is 2 cot,.. Jn.. We wish to maximize 
(2) for 0 = 61 <.62 < ··· < Bm <,..and Bi+m =Bt. (i = l, •.• ,m); however, that is an 
optimization problem of maxi-min type which is rather difficult to solve directly. 

Observe that the function values for lines lt. are the same when the set S of points 
are uniformly placed on the circle. Hence, if 

m " L L I sin(S;- S,)l (3) 
i=l i=l 

is maximized when and only when the set S of points are uniformly placed, then (2) 
is maximized only in the same uniform case. Let us prove that (3) is maximized when 
and only when the set S of points are uniformly placed. 

( 3) is further expressed as 

m " m Hm 

L L I sin(B; - Bi)l = 2 L L sin(B; - 6;) 
i=l i=l i=l j=i+l 

For any k = 1, ... , m, we know that 

0 < 6&+/c - 6; < 7r 

and 
m 

I:)o'+lc- o,) = k1r. 
i=l 

Since sin z is strictly concave on the interval [0, 1r], we know 

f:sin(BH/c- Bt.):::; msin k1r 
. m 
•=1 

and the equality holds if and only if all Bi+lc- Bt. (i = 1, ..• ,m) are equal. All Bt.+1c- Bt. 
(i = 1, ... ,m) are equal for any k = 1, ... ,m if and only if all SH1- (Ji (i = 1, ... , m) 
are equal. Hence, (3) is maximized when and only when the setS of points are located 
uniformly on the circle. 

When the set S o{ points are placed uniformly, the function value of the orthogonal 
L 1 norm is expressed by 

" • m • 

"'I . 3"'1 ""' . 3
"" L...t sm- = 2 L...tsm-

. m . m 
,1=1 J=l 

7r 7r 
= 2 cot - = 2 cot -

2m n. 

. (the trigonemetric equality comes from [Mo]). Thus, we have shown Lemma 6.8. 
Using the above lemmas, the following result provides a lower bound for the or

thogonal Lt problem. 
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Theorem 6.3. Under t..he algebraic computation tree model, t..he complexity 
of t.he ort.hogonal L1 linear approximation of n points is 0( n log n ). 

Proof: As mentioned above, we show that t.he uniform gap problem on 
t.he .half unit circle is linear-time reducible to t.he Lt problem. Given m + 1 
input points for the uniform gap problem, we consider the set 8 of n points 
as above, and solve t.he ort.hogonal linear L1 approximation problem for this 
set 8. Then, we compare t.he minimum function value of this problem with 
2cot(n"/n), and answer yes or no to t.he uniform gap problem ift.hey are equal 
or not, respectively. The validity of this algorithm follows from Lemma 6.8. 

As to t.he complexity of t.he transformation, since n is a power of 2 we 
can compute cot(1f/n) in O(logn) time using t.he operations of t.he algebraic 
computation tree (recall t.he .half-angle identities, apply recursively). Hence, 
t.he problem transformation can be done in 0( n) total time. Since t.he uniform 
gap problem on t.he .half unit circle .has an 0( n log n) lower bound {Lemma 
6. 'I), we obtain an 0( n log n) lower bound for t.he ort.hogonal L1 linear approx-
imation problem via transformability. c 

This result is mainly of interest to the unweighted orthogonal problem since the 
actual bound for the algorithm presented above is in 0(6rc(n)log2 n), where b~c(n) is the 
number of k-sets of n points (k = fn/21). As mentioned above, the bounds for b1c(n) 
are in O(nlogk) and O(nkl.6 ) (O{nlogn) and O(n2 ), respectively, fork= fn/21), but 
Erdos, Lovasz, Simmons, and Strauss [ELSS73] conjecture that the upper bound is 
actually closer to the lower bound of O(nlogk) (O(nlogn) fork= fn/21). 

6.5. Summary 

We have shown that the unweighted orthogonal Lt method may be solved in 
O(n1•5 log2 n) time and O(n) space and the weighted orthogonal Lt method may be 
solved in 0( n 2 ) time and 0( n) space. Both algorithms use plane sweep methods to 
determine exact solutions as opposed to iterative techniques which converge to optimal 
solutions from an initial guess. Both algorithms improve upon previous results for algo
rithms which find the exact solution. The results are a direct application of the concept 
of k-belts. We also introduced the concept of the weighted median-belt and showed that 
it can be found in optimal 9(n2 ) time. 

The question remains as to the tightness of the 0( n log n) lower bound. Note that 
both algorithms are based on k-belt algorithms. While the k-belt algorithms provide 
an efficient method for solving the orthogonal L 1 problem, the method is a direct, or 
brute force type, approach and we hope that by further investigating the properties of 
the orthogonal Lt method, more efficient solutions may be found. 

Further research includes the investigation of the multidimensional orthogonal L 1 

linear approximation problem, the fitting of a. hyperpla.ne to a set of points in R 11• 

Both Lemma 6.1 and Lemma 6.2 generalize to d-dimensions and the d-dimensional 
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orthogonal L1 method can be solved by an O(n4 ) time and O{n) space algorithm by 
applying the algorithms above to all the combinations of (d- 2) hyperplanes. 
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0 1. Conclusion 
Several results were given concerning the computation and analysis of three L1 linear 
approximation problems of a. set of points by a. line. An optimal 9(n) time and O(n) 
space algorithm was given for the (weighted) vertical L 1 problem. An O(n1•5 log2 n) 
time and 0( n) space algorithm was given for the unweighted orthogonal Lt problem. 
An O(n2 ) time and O(n) space algorithm was given for the weighted orthogonal L1 
problem. Finally, an n(nlog n) lower bound was given for the orthogonal L1 problem. 
The results are significant from theoretical, practical, and historical viewpoints. 

The result for the vertical L 1 problem is of theoretical interest since the modification 
of the multidimensional search technique extends the basic technique to a. larger class of 
problems. The results for the unweighted and weighted orthogonal L1 alg.,rithm are of 
interest from a theoretical viewpoint since they relate the complexities of the problems to 
k-sets and k-belts and introduce the concept of the weighted median-belt. The geometric 
and combinatorial complexities of k-sets and k-belts is an open problem in combinatorial 
geometry. We showed that the combinatorial complexity of the weighted median-belt is 
9(n2 ) and gave an optimal, 9(n2 ), time and O{n) space algorithm for searching through 
the vertices. The results presented here motivate further improvements on the bounds 
for the number of vertices in a. median-belt. Another open problem is a.n improved 
algorithm for constructing the median-belt. 

The results are of practical interest since the algorithms provide efficient algorithms 
for solving the most popular forms of the L 1 approximation problem. The results are 
of particular interest for the linear facility problem and the linear regression problem 
since the algorithms provide practical and efficient alternatives to the currently used 
methods {for example, the La and Loo approximations). 

The results are of historical interest since this is the last of the three most popular 
L, approximation problems (p = 1, 2, oo) to succumb to efficient (analytical) algorithms. 
[083] notes that alternative criteria. to the L2 norm have been investigated since the 
mid-1750s when R.J. Boscovitch proposed a geometric method for solving a special case 
of the L1 approximation problem. Interestingly enough, the efficient algorithms for both 
the L1 and the Loo problems have been derived from applying basic paradigms used in 
computational geometry. 

Continuing research includes the Lt problem in higher dimensions, which is of 
particular interest to econometricians since they often consider the linear and non-linear 
Lp problems in higher dimensions [AS73). We are also investigating the combinatorial 
complexity of the median-belt. Also, the algorithms will be implemented in order to 
determine their applicability in practical applications. 

My hope is that the results on Lt approximation presented in this thesis do not 
get categorized as yet another algorithm for L 1 approximation. While the results are of 
theoretical and practical interest in the field of computational geometry, we hope tha.t 
these results will find their way into the mathematical literature and point out that 

· the potential for "applications which has a. long history in economy, but not probably 
known in other fields" [D87a] has already ma.terialized. 
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